
Samik Basu
Cesare Pautasso
Liang Zhang
Xiang Fu (Eds.)

 123

LN
CS

 8
27

4

11th International Conference, ICSOC 2013
Berlin, Germany, December 2013
Proceedings

Service-Oriented
Computing

Lecture Notes in Computer Science 8274
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Samik Basu Cesare Pautasso Liang Zhang
Xiang Fu (Eds.)

Service-Oriented
Computing
11th International Conference, ICSOC 2013
Berlin, Germany, December 2-5, 2013
Proceedings

13

Volume Editors

Samik Basu
Iowa State University, Ames, IA, USA
E-mail: sbasu@iastate.edu

Cesare Pautasso
University of Lugano, Switzerland
E-mail: cesare.pautasso@usi.ch

Liang Zhang
Fudan University, Shanghai, China
E-mail: lzhang@fudan.edu.cn

Xiang Fu
Hofstra University, Hempstead, NY, USA
E-mail: xiang.fu@hofstra.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45004-4 e-ISBN 978-3-642-45005-1
DOI 10.1007/978-3-642-45005-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013953384

CR Subject Classification (1998): D.2, C.2, H.4, H.3, H.5, J.1, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the 11th International Conference on Service-
Oriented Computing (ICSOC 2013), held in Berlin, Germany, December 2–5,
2013. These proceedings contain high-quality research papers that represent the
latest results, ideas, and positions in the field of service-oriented computing.

Since the first meeting more than ten years ago, ICSOC has grown to be-
come the premier international forum for academics, industry researchers, and
practitioners to share, report, and discuss their ground-breaking work. ICSOC
2013 continued along this tradition, in particular focusing on emerging trends
at the intersection between service-oriented, cloud computing, and big data.

This year’s call for papers attracted 205 submissions from 29 countries and
five continents. The submissions were rigorously evaluated by three reviewers
followed by a meta-review by a senior Program Committee (PC) member, which
in turn was followed by discussion moderated by the senior PC member. The
decision for acceptance/rejection was based on all the above aspects. The PC is
composed of world-class experts in service-oriented computing from 30 different
countries. The ICSOC 2013 program featured a research track with 26 full papers
and 26 short papers (giving an acceptance rate of 13% and 25%, respectively).
Concerning the industry track, we received 15 submissions for the industry track,
out of which three full papers and one short paper were accepted for these
proceedings. The conference program was highlighted by two invited keynotes
(by Carlo Ghezzi and by Richard Hull), two invited tutorials (by Jian Yang
and by Manfred Reichert), a lively panel discussion on big data (moderated
by Mathias Weske), many demonstrations, the PhD Symposium, and a record
number of workshops.

We would like to express our gratitude to all individuals, institutions, and
sponsors that supported ICSOC 2013. The high-quality program you are about
to experience would have not been possible without the expertise and dedica-
tion of our PC and in particular of our senior PC members. We are grateful
for the guidance of the General Chairs (Wolfgang Reisig and Jianwen Su), the
effort of the external reviewers, the Proceedings Chair (Xiang Fu), and the local
organizers, and last but not least to the distinguished members of the ICSOC
Steering Committee. All of them helped to make ICSOC 2013 a success. Finally,
a special word of thanks goes to all researchers and students who contributed
with their presentations, questions, and active participation in the conference.
We hope you enjoy these proceedings!

September 2013 Samik Basu
Cesare Pautasso

Liang Zhang

ICSOC 2013 Organization

General Co-chairs

Wolfgang Reisig Humboldt University of Berlin, Germany
Jianwen Su University of California at Santa Barbara, USA

Program Co-chairs

Samik Basu Iowa State University, USA
Cesare Pautasso University of Lugano, Switzerland
Liang Zhang Fudan University, China

Workshop Co-chairs

Alessio R. Lomuscio Imperial College London, UK
Surya Nepal CSIRO, Australia

Demonstration Chairs

Roman Vaculin IBM T.J. Watson Research Center, USA
Marco Montali Free University of Bozen-Bolzano, Italy

Panel Chair

Mathias Weske University of Potsdam, Germany

PhD Symposium Chairs

Boualem Benatallah University of New South Wales, Australia
Ivona Brandi Vienna University of Technology, Austria
Fabio Patrizi Sapienza University of Rome, Italy

Publicity Co-chairs

Domenico Bianculli University of Luxembourg, Luxembourg
Zhongnan Shen Bosch Research and Technology Center, USA

Corporate Sponsor Chair

Hua Liu Xerox Research Center, USA

VIII ICSOC 2013 Organization

Publication Chair

Xiang Fu Hofstra University, USA

Web Chair

Cagdas Evren Gerede Google, USA

Steering Committee

Asit Dan IBM Research, USA
Bernd Krämer FernUniversität in Hagen, Germany
Boualem Benatallah UNSW, Australia
Fabio Casati University of Trento, Italy
Mike Papazoglou Tilburg University,

The Netherlands - Acting Chair
Paco Curbera IBM Research, USA
Paolo Traverso ITC-IRST, Italy
Winfried Lamersdorf University of Hamburg, Germany

Program Committees

Senior PC Members

Athman Bouguettaya RMIT, Australia
Boualem Benatallah UNSW, Australia
Barbara Pernici Politecnico di Milano, Italy
Fabio Casati University of Trento, Italy
Flavio De Paoli Università di Milano Bicocca, Italy
Gustavo Rossi UNLP, Argentina
Heiko Ludwig IBM T.J. Watson Research Center, USA
Jian Yang Macquarie University, Australia
Lin Liu Tsinghua University, China
Mathias Weske HPI / University of Potsdam, Germany
Michael Maximilien IBM Research, USA
Michael Q. Sheng Adelaide University, Australia
Mohand-Said Hacid Universite Claude Bernard Lyon 1, France
Schahram Dustdar TU Wien, Austria
Stefan Ta KIT, Germany
Zahir Tari RMIT University, Australia

PC Members

Abdelkarim Erradi Qatar University, Qatar
Aditya Ghose University of Wollongong, Australia
Alvaro Arenas Instituto de Empresa Business School, Spain
Andrea Zisman City University London, UK
Andreas Friesen SAP AG, Germany
Antonia Bertolino ISTI-CNR, Italy

ICSOC 2013 Organization IX

Antonio Ruiz-Cortes University of Seville, Spain
Artem Polyvyanyy Queensland University of Technology, Australia
Bernhard Holtkamp Fraunhofer ISST, Germany
Carlo Ghezzi Politecnico di Milano, Italy
Cesare Pautasso University of Lugano, Switzerland
Christian Perez Inria, France
Christoph Bussler Analytica, Inc., USA
Claudio Bartolini HP Labs, Palo Alto, USA
Colette Roland Université Paris Pantheon Sorbonne, France
D. Janakiram IIT Madras, India
Daniel Gmach HP Labs
Daniela Grigori University of Paris-Dauphine, France
Dimka Karastoyanova University of Stuttgart, Germany
Dragan Gasevic Athabasca University, Canada
Ebrahim Bagheri Athabasca University, Canada
Emmanuel Coquery Université de Lyon, France
Florian Daniel University of Trento, Italy
Florian Rosenberg IBM Research, USA
Francesco Lelli European Research Institute on Service

Science, Tilburg, The Netherlands
Frank Leymann University of Stuttgart, Germany
Frank Puhlmann inubit AG, Germany
Fu-ren Lin National Tsing Hua University, R.O.C.
G.R. Gangadharan IDRBT, Hyderabad, India, India
George Spanoudakis City University London, UK
Gerald Kotonya Lancaster University, UK
Gregor Engels University of Paderborn
Guiling Wang North China University of Technology, China
Hai Jin HUST, China
Haluk Demirkan Arizona State University, USA
Helen Paik UNSW, Australia
Ignacio Silva-Lepe IBM, USA
Ingo Weber NICTA, Australia
Jian Yu Swinburne University of Technology, Australia
Jianwu Wang University of California, San Diego, USA
Joao E. Ferreira University of Sao Paulo, Brazil
Jos van Hillegersberg University of Twente, The Netherlands
Jun Han Swinburne University of Technology, Australia
Jun Li HP Labs, USA
Karthikeyan Ponnalagu IBM Research, India
Khalil Drira LAAS Toulouse, France
Lai Xu Bournemouth University, UK
Larisa Shwartz IBM T.J. Watson Research Center, USA
Lars Moench University of Hagen, Germany
Lawrence Chung The University of Texas at Dallas, USA
Liang Zhang Fudan University, China

X ICSOC 2013 Organization

Luciano Baresi Politecnico di Milano, Italy
Manfred Reichert University of Ulm, Germany
Manuel Carro UPM and IMDEA Software Institute, Spain
Marcelo Fantinato University of Sao Paulo, Brazil
Marco Pistore Fondazione Bruno Kessler, Italy
Markus Kirchberg National University of Singapore
Massimo Mecella Sapienza Università di Roma, Italy
Michael Mrissa University of Lyon, France
Mikio Aoyama Nanzan University, Japan
Nanjangud C. Narendra IBM India Software Lab, Bangalore, India
Olivier Perrin Lorraine University, France
Paolo Giorgini University of Trento, Italy
Patricia Lago VU University Amsterdam, The Netherlands
Paul Grefen Eindhoven University of Technology,

The Netherlands
Peng Han Chongqing Academy of Science and

Technology, China
Qi Yu Rochester Institute of Technology, USA
RadhaKrishna Pisipati Infosys Technologies Limited, India
Rafael Accorsi University of Freiburg, Germany
Rama Akkiraju IBM/USA, USA
Raman Kazhamiakin Say Service s.r.l., Italy
Rania Khalaf IBM T.J. Watson Research Center, USA
Rik Eshuis. Eindhoven University of Technology,

The Netherlands
Roman Vaculin IBM, USA
Salima Benbernou Université Paris Descartes, France
Sami Bhiri DERI, Ireland
Sergey Smirnov SAP Research, Germany
Shiping Chen CSIRO ICT, Sydney
Shuiguang Deng Zhejiang University, China
Surya Nepal CSIRO, Australia
Sven Graupner HP Labs, Palo Alto, USA
Vincenzo D’Andrea University of Trento, Italy
Walter Binder University of Lugano, Switzerland
Weiliang Zhao University of Wollongong, Australia
Wing-Kwong Chan City University of Hong Kong, SAR China
Woralak Kongdenfha Naresuan University, Thailand
Xumin Liu Rochester Institute of Technology, USA
Yan Wang Macquarie University, Australia
Yan Zheng Aalto University/Xidian University, Finland
Ying Li Zhejiang University, China
Zaki Malik Wayne State University, USA
Zhongjie Wang Harbin Institute of Technology, China
Zibin Zheng The Chinese University of Hong Kong,

SAR China

ICSOC 2013 Organization XI

Additional Reviewers

Saeed Aghaee University of Lugano, Switzerland
Masiar Babazadeh University of Lugano, Switzerland
Alessio Gambi University of Lugano, Switzerland
Zachary J. Oster University of Wisconsin-Whitewater, USA
Achille Peternier University of Lugano, Switzerland
Ganesh Ram Santhanam Iowa State University, USA

Sponsors

IBM Research
SOAMED
Berlin’s First University
SerTech
ACM

Table of Contents

Keynotes

Data-Centricity and Services Interoperation . 1
Richard Hull

Research Track

QoS-Aware Cloud Service Composition Using Time Series 9
Zhen Ye, Athman Bouguettaya, and Xiaofang Zhou

QoS Analysis in Heterogeneous Choreography Interactions 23
Ajay Kattepur, Nikolaos Georgantas, and Valérie Issarny

Improving Interaction with Services via Probabilistic Piggybacking 39
Carlo Ghezzi, Mauro Pezzè, and Giordano Tamburrelli

Runtime Enforcement of First-Order LTL Properties on Data-Aware
Business Processes . 54

Riccardo De Masellis and Jianwen Su

QoS-Aware Service VM Provisioning in Clouds: Experiences, Models,
and Cost Analysis . 69

Mathias Björkqvist, Sebastiano Spicuglia, Lydia Chen, and
Walter Binder

Personalized Quality Prediction for Dynamic Service Management
Based on Invocation Patterns . 84

Li Zhang, Bin Zhang, Claus Pahl, Lei Xu, and Zhiliang Zhu

Open Source versus Proprietary Software in Service-Orientation:
The Case of BPEL Engines . 99

Simon Harrer, Jörg Lenhard, and Guido Wirtz

Detection of SOA Patterns . 114
Anthony Demange, Naouel Moha, and Guy Tremblay

Optimal Strategy for Proactive Service Delivery Management Using
Inter-KPI Influence Relationships . 131

Gargi B. Dasgupta, Yedendra Shrinivasan, Tapan K. Nayak, and
Jayan Nallacherry

On-the-Fly Adaptation of Dynamic Service-Based Systems:
Incrementality, Reduction and Reuse . 146

Antonio Bucchiarone, Annapaola Marconi,
Claudio Antares Mezzina, Marco Pistore, and Heorhi Raik

XIV Table of Contents

WT-LDA: User Tagging Augmented LDA for Web Service Clustering . . . 162
Liang Chen, Yilun Wang, Qi Yu, Zibin Zheng, and Jian Wu

Does One-Size-Fit-All Suffice for Service Delivery Clients? 177
Shivali Agarwal, Renuka Sindhgatta, and Gargi B. Dasgupta

Runtime Evolution of Service-Based Multi-tenant SaaS Applications 192
Indika Kumara, Jun Han, Alan Colman, and Malinda Kapuruge

Critical Path-Based Iterative Heuristic for Workflow Scheduling
in Utility and Cloud Computing . 207

Zhicheng Cai, Xiaoping Li, and Jatinder N.D. Gupta

REFlex: An Efficient Web Service Orchestrator for Declarative Business
Processes . 222

Natália Cabral Silva, Renata Medeiros de Carvalho,
César Augusto Lins Oliveira, and
Ricardo Massa Ferreira Lima

Task Scheduling Optimization in Cloud Computing Applying
Multi-Objective Particle Swarm Optimization . 237

Fahimeh Ramezani, Jie Lu, and Farookh Hussain

Verification of Artifact-Centric Systems: Decidability and Modeling
Issues . 252

Dmitry Solomakhin, Marco Montali, Sergio Tessaris, and
Riccardo De Masellis

Automatically Composing Services by Mining Process Knowledge
from the Web . 267

Bipin Upadhyaya, Ying Zou, Shaohua Wang, and Joanna Ng

Batch Activities in Process Modeling and Execution 283
Luise Pufahl and Mathias Weske

Multi-Objective Service Composition Using Reinforcement Learning 298
Ahmed Moustafa and Minjie Zhang

Provisioning Quality-Aware Social Compute Units in the Cloud 313
Muhammad Z.C. Candra, Hong-Linh Truong, and Schahram Dustdar

Process Discovery Using Prior Knowledge . 328
Aubrey J. Rembert, Amos Omokpo, Pietro Mazzoleni, and
Richard T. Goodwin

Mirror, Mirror, on the Web, Which Is the Most Reputable Service
of Them All? A Domain-Aware and Reputation-Aware Method
for Service Recommendation . 343

Keman Huang, Jinhui Yao, Yushun Fan, Wei Tan, Surya Nepal,
Yayu Ni, and Shiping Chen

Table of Contents XV

Service Discovery from Observed Behavior while Guaranteeing
Deadlock Freedom in Collaborations . 358

Richard Müller, Christian Stahl, Wil M.P. van der Aalst, and
Michael Westergaard

Priority-Based Human Resource Allocation in Business Processes 374
Cristina Cabanillas, José Maŕıa Garćıa, Manuel Resinas,
David Ruiz, Jan Mendling, and Antonio Ruiz-Cortés

Prediction of Remaining Service Execution Time Using Stochastic Petri
Nets with Arbitrary Firing Delays . 389

Andreas Rogge-Solti and Mathias Weske

Research Track Short Paper

Entity-Centric Search for Enterprise Services . 404
Marcus Roy, Ingo Weber, and Boualem Benatallah

Tactical Service Selection with Runtime Aspects . 413
Rene Ramacher and Lars Mönch

Online Reliability Time Series Prediction for Service-Oriented System
of Systems . 421

Lei Wang, Hongbing Wang, Qi Yu, Haixia Sun, and
Athman Bouguettaya

Multi-level Elasticity Control of Cloud Services . 429
Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and
Schahram Dustdar

Reasoning on UML Data-Centric Business Process Models 437
Montserrat Estañol, Maria-Ribera Sancho, and Ernest Teniente

QoS-Aware Multi-granularity Service Composition Based
on Generalized Component Services . 446

Quanwang Wu, Qingsheng Zhu, and Xing Jian

Evaluating Cloud Services Using a Multiple Criteria Decision Analysis
Approach . 456

Pedro Costa, João Carlos Lourenço, and Miguel Mira da Silva

An Approach for Compliance-Aware Service Selection with Genetic
Algorithms . 465

Fatih Karatas and Dogan Kesdogan

Decomposing Ratings in Service Compositions . 474
Icamaan da Silva and Andrea Zisman

XVI Table of Contents

Automatic Generation of Test Models for Web Services Using WSDL
and OCL . 483

Maćıas López, Henrique Ferreiro, Miguel A. Francisco, and
Laura M. Castro

An Incentive Mechanism for Game-Based QoS-Aware Service
Selection . 491

Puwei Wang and Xiaoyong Du

Goal Oriented Variability Modeling in Service-Based Business
Processes . 499

Karthikeyan Ponnalagu, Nanjangud C. Narendra, Aditya Ghose,
Neeraj Chiktey, and Srikanth Tamilselvam

A Cooperative Management Model for Volunteer Infrastructure
as a Service in P2P Cloud . 507

Jiangfeng Li and Chenxi Zhang

Process Refinement Validation and Explanation with Ontology
Reasoning . 515

Yuan Ren, Gerd Gröner, Jens Lemcke, Tirdad Rahmani,
Andreas Friesen, Yuting Zhao, Jeff Z. Pan, and Steffen Staab

Automated Service Composition for on-the-Fly SOAs 524
Zille Huma, Christian Gerth, Gregor Engels, and Oliver Juwig

Deriving Business Process Data Architectures from Process Model
Collections . 533

Rami-Habib Eid-Sabbagh, Marcin Hewelt, Andreas Meyer, and
Mathias Weske

A Case Based Approach to Serve Information Needs in Knowledge
Intensive Processes . 541

Debdoot Mukherjee, Jeanette Blomberg, Rama Akkiraju,
Dinesh Raghu, Monika Gupta, Sugata Ghosal, Mu Qiao, and
Taiga Nakamura

Patience-Aware Scheduling for Cloud Services: Freeing Users
from the Chains of Boredom . 550

Carlos Cardonha, Marcos D. Assunção, Marco A.S. Netto,
Renato L.F. Cunha, and Carlos Queiroz

MaxInsTx: A Best-Effort Failure Recovery Approach
for Artifact-Centric Business Processes . 558

Haihuan Qin, Guosheng Kang, and Lipeng Guo

Table of Contents XVII

Extending WS-Agreement to Support Automated Conformity Check
on Transport and Logistics Service Agreements . 567

Antonio Manuel Gutiérrez, Clarissa Cassales Marquezan,
Manuel Resinas, Andreas Metzger, Antonio Ruiz-Cortés, and
Klaus Pohl

Automatic Composition of Form-Based Services in a Context-Aware
Personal Information Space . 575

Rania Khéfifi, Pascal Poizat, and Fatiha Säıs

Synthesizing Cost-Minimal Partners for Services . 584
Jan Sürmeli and Marvin Triebel

An Architecture to Provide Quality of Service in OGC SWE Context . . . 592
Thiago Caproni Tavares, Regina Helenna Carlucci Santana,
Marcos José Santana, and Júlio Cezar Estrella

Verification of Semantically-Enhanced Artifact Systems 600
Babak Bagheri Hariri, Diego Calvanese, Marco Montali,
Ario Santoso, and Dmitry Solomakhin

A Framework for Cross Account Analysis . 608
Vugranam C. Sreedhar

DataSheets: A Spreadsheet-Based Data-Flow Language 616
Angel Lagares Lemos, Moshe Chai Barukh, and Boualem Benatallah

Industry Track

Decision Making in Enterprise Crowdsourcing Services 624
Maja Vukovic and Rajarshi Das

Towards Optimal Risk-Aware Security Compliance of a Large IT
System . 639

Daniel Coffman, Bhavna Agrawal, and Frank Schaffa

Behavioral Analysis of Service Delivery Models . 652
Gargi B. Dasgupta, Renuka Sindhgatta, and Shivali Agarwal

Industry Track Short Paper

A Novel Service Composition Approach for Application Migration
to Cloud . 667

Xianzhi Wang, Xuejun Zhuo, Bo Yang, Fan Jing Meng,
Pu Jin, Woody Huang, Christopher C. Young, Catherine Zhang,
Jing Min Xu, and Michael Montinarelli

XVIII Table of Contents

Demo Track

PPINOT Tool Suite: A Performance Management Solution
for Process-Oriented Organisations . 675

Adela del-Rı́o-Ortega, Cristina Cabanillas, Manuel Resinas, and
Antonio Ruiz-Cortés

SYBL+MELA: Specifying, Monitoring, and Controlling Elasticity
of Cloud Services . 679

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and
Schahram Dustdar

Modeling and Monitoring Business Process Execution 683
Piergiorgio Bertoli, Mauro Dragoni, Chiara Ghidini,
Emanuele Martufi, Michele Nori, Marco Pistore, and
Chiara Di Francescomarino

A Tool for Business Process Architecture Analysis 688
Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

OpenTOSCA – A Runtime for TOSCA-Based Cloud Applications 692
Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp,
Frank Leymann, Alexander Nowak, and Sebastian Wagner

iAgree Studio: A Platform to Edit and Validate WS–Agreement
Documents . 696

Carlos Müller, Antonio Manuel Gutiérrez,
Manuel Resinas, Pablo Fernández, and
Antonio Ruiz-Cortés

Winery – A Modeling Tool for TOSCA-Based Cloud Applications 700
Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann

Barcelona: A Design and Runtime Environment for Declarative
Artifact-Centric BPM . 705

Fenno (Terry) Heath, III, David Boaz, Manmohan Gupta,
Roman Vacuĺın, Yutian Sun, Richard Hull, and Lior Limonad

Author Index . 711

Data-Centricity and Services Interoperation

Richard Hull

IBM T. J. Watson Research Center, New York, USA
hull@us.ibm.com

Abstract. This position paper highlights three core areas in which persistent data
will be crucial to the management of interoperating services, and highlights se-
lected research and challenges in the area. Incorporating the data-centric perspec-
tive holds the promise of providing formal foundations for service interoperation
that address issues such as providing a syntax-independent meta-model and se-
mantics, and enabling faithful modeling of parallel interactions between multiple
parties.

1 Introduction

Services-oriented computing has been evolving, from its roots in orchestration and
choreography to the recent tremendous growth in usage stemming from the Software-
as-a-Service paradigm and the pragmatism of open REST APIs. Strong notions of
”type” have been dropped in favor of message-based API’s that refer to data objects
with flexible and possibly nested structure. However, as we embrace a world of rich
and rapidly created combinations of SaaS-based services from massive numbers of
third-party sources, we face challenges of ontology mismatch, entity resolution, and
correlation confusion. These challenges must be addressed if we are to find formal and
syntax-independent abstract models of service interoperation, systematic design meth-
ods for large-scale service compositions, and approaches to support intuitive and for-
mal reasoning about them. Solving these challenges will involve multiple techniques
and new advances, but a key element will rely on a shift towards data-centricity, that
is, enabling data to be at the heart of conceptual modeling, design, and reasoning for
interoperating services.

This position paper highlights the need for data-centricity, and overviews research
progress and challenges in the area. In particular, the next three sections overview issues
and relevant research to date on shared vocabularies and ontologies, entity resolution,
and entity correlation; and the concluding section highlights selected research chal-
lenges raised and and opportunities enabled by incorporating a data-centric perspective
into services interoperation.

2 Shared Vocabulary

Service interoperation involves the exchange of information between services; this is
predicated on the assumption that the services involved have an agreed upon meaning
for the information. As outlined briefly below, the general solution to enabling rapid

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 1–8, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Hull

compositions of services from multiple sources will require access to ontology map-
pings, which in turn will rely on both stored information and description-logic style
reasoning.

Under the traditional solution, a standard is established that a large body of ser-
vices are to follow, e.g., see the work of the United Nations Economic Commission
for Europe that maintains standards for Electronic Data Interchange (EDI) relating to
commercial activities [30]. In the services realm, the SA-WSDL standard [20] enables
specification of the ontologies to be used for interpreting values of parameters men-
tioned in service APIs. Importantly, recent work such as [21] is developing extensions
of SA-WSDL to apply to REST APIs, and enabling matchmaking techniques to be
applied on them.

In many application areas, however, it is not possible to enforce a universal standard
with regards to the vocabulary or ontology used by services. This is acknowledged in
the data management literature, for example, [9] provides a survey of problems and
techniques for integrating data stored according to different vocabularies and ontolo-
gies. Citation [16] argues that we must live with such heterogeneity in the healthcare
domain, and [18] argues similarly for education. More generally, [10] provides a com-
prehensive discussion of techniques to semi-automatically develop mappings between
ontologies, and how the results are used in a variety of applications.

From the perspective of service interoperation, simply having the ability to semi-
automatically compute ontology matchings is not sufficient. In particular, mechanisms
are needed to access such matchings, either from a locally stored ontology or through
a service. A rich example of the latter is found in OntoCAT [2], which provides APIs
for going between multiple ontologies in the bioinformatics field. Tools such as the
Karlsruhe Ontology (KAON) infrastructure [17] and the Ontology Mapping Store [25]
provide generic access to ontology mappings.

To summarize, although ontology mappings are not in practical use to support mod-
ern service interoperation, much of the foundational research and several research tools
have been developed in recent years. In the coming years requirements from industry
will help to determine the application, business models, and evolution of these tech-
niques.

3 Entity Synonym Repositories

Entity resolution, that is, the problem of extracting, matching, and resolving occur-
rences of entity names in structured and unstructured data has a history going back to
the 1950’s. This topic has become important again in recent years because of the interest
in so-called “big data” and applications in advertising, marketing, and personalized ser-
vices that attempt to mine social data for useful, entity-specific information. A survey
of the field, including recent advances that use advanced machine learning techniques,
is provided in the recent tutorial [11].

On the positive side, many successful techniques are in place to achieve relatively
accurate entity resolution. But in practical systems that need a very high degree of pre-
cision it is typical to augment the automated techniques with manual validation activity.
Although not scalable in a true sense, this can provide a pragmatic approach to in-
crementally build up near-certain information that augments the automated techniques.

Data-Centricity and Services Interoperation 3

To illustrate, consider applications that attempt to find sales leads for business-to-
business (B2B) companies, by searching through news articles, blogs, and other so-
cial media for events that suggest that a given company might be helped through the
purchase of a given product. Although there are pseudo-standards for company names,
e.g., the Dunn and Bradstreet database, companies are often referred to by a handful of
synonyms in the media. As a result, a viable service in this space will augment auto-
mated techniques by storing a dictionary of manually determined synonyms. Whether
this is stored as part of the service, or is accessed from an external service, it is never-
theless a persistent data store.

Increasingly, interoperating services will be accessing unstructured data and/or data
from multiple repositories. As a result they will need to rely on entity resolution, and
on associated repositories of entity synonyms. It is likely that multiple proprietary and
externally accessible services will become available that provide access to synonym
repositories, to enable uniform entity reference across interoperating services.

4 Managing Entities across Services

In many service interoperation scenarios there are multiple entities, either physical or
conceptual, that are being managed or manipulated through time by different services.
This requires precise management of the relationships between the entities, called cor-
relation in the early literature on orchestration and choreography of web services. That
early literature does not provide mechanisms for explicitly modeling or specifying such
correlations. Recently, [29] has developed a framework for such explicit modeling,
based on the notion of business artifacts This includes a declarative language for in-
tuitive yet systematic specification of correlations across entities along with constraints
on the correlations, and also supports the possibility of formal reasoning about them.
This section briefly explores some of the ways that the business artifact perspective can
support the management of correlations.

Since their introduction in 2003 [26,19], business artifacts have been shown useful
for several aspects of business process modeling. Briefly, a business artifact type is used
to represent a class of (physical or conceptual) entities that evolve as a business process
unfolds. An artifact type includes both an information model, that provides room to
hold (possibly nested) data about an artifact instance that may change over time, and a
lifecycle model, that holds a specification of the possible ways that the artifact instance
might evolve. (The lifecycle model might be specified in a procedural paradigm such as
finite state machines or Petri nets, or a more declarative paradigm such as DECLARE
[27] or Guard-Stage-Milestone [13,8]). Applications of the artifact perspective include
enabling a cross-silo view of business processes [28], providing a coherent integrated
view of multiple similar but different business processes [7], business process perfor-
mance monitoring [23] and enabling data-centric service interoperation [15]. Further,
artifacts are closely related to “cases” in the sense of Case Management, and the recent
OMG Case Management Modeling and Notation (CMMN) standard [6] embodies a
merging of these two streams of conceptual modeling [24]. We believe that the artifact
approach will bring numerous advantages to our understanding, design, and deploy-
ment of service compositions, including those just mentioned. We focus here on the

4 R. Hull

issue of correlation because it provides the single most easily motivated application of
the artifact perspective to services interoperation.

To illustrate the basic form of correlation, consider the “make-to-order” example as
described in [14] and elsewhere. In this scenario, a “Customer Purchase Order” is sent
to an “assembler”, who in turn creates several “Line Items” that must be obtained in
order to fulfill the customer order. The assembler researches the problem of which sup-
pliers to use to obtain the line items, and eventually creates multiple “Supplier Purchase
Orders”, each of which may request multiple line items from a given supplier. Further-
more, in some cases a supplier may reject a Supplier Purchase Order, which means that
the affected Line Items must be grouped again to generate additional Supplier Purchase
Orders. Importantly, the specific relationships evolve over time, e.g., as, Line Items are
created, as Supplier Purchase Orders are created, and as Supplier Purchase Orders are
fulfilled or rejected. It is easy to see that in the general case, there are 1:n relationships
between Customer Purchase Orders and Line Items. If we consider Line Items and Sup-
plier Purchase Orders over time, then n:m relationships may arise, e.g., if a Supplier
Purchase Order is rejected and then one of its Line Items is placed into a second Sup-
plier Purchase Order. Business artifacts were used in 2005 in support of an application
with similar kinds of correlations involving 1000’s of interrelated objects [5]. The ap-
plication, based on the pharmaceutical drug discovery process, was centralized in that
study, but would most likely be distributed across multiple services if developed today.

As mentioned above, [29] shows that a natural approach for explicitly modeling
correlations in a services interoperation context is through the use of business artifacts.
In the make-to-order example, three artifact types can be used, one each for Customer
Purchase Order, Line Item, and Supplier Purchase Order. It is straightforward in this
context to maintain the correlations between artifact instances, e.g., in a deployment
where each artifact type is maintained by a separate service. This approach can be
extended to situations where one or more artifact types is managed by multiple services,
rather than by just one. The approach can be used in a choreography-based setting, as
illustrated in [29], or in an orchstration-based setting such as [15,22].

A richer form of correlation arises when entities can be split apart or merged. One
example of this arises in the context of Collaborative Decision Processes. These are
processes that involve multiple stakeholders who together explore a variety of ideas
and initiatives in order to reach a (typically multi-faceted) decision over a period of
time (e.g., weeks or months). An example application is when members of a commu-
nity decide on the characteristics that should be embodied in a new shopping mall. This
may include several investigations into traffic impact, watershed impact, etc., and also
the exploration of numerous alternatives. In some cases these initiatives may split (e.g.,
consideration of a recreational shop for the mall may split into considerations for adult
recreation and for youth recreation) or iniatives may merge (e.g., separate initiatives
around a movie theater and something for art lovers might merge into an initiative for
an independent film theater). As described in [31], it is natural to model and implement
such processes using the business artifact approach, using an artifact instance for each
idea or initiative that is explored. This simplifies the use of multiple interoperating ser-
vices when implementing the core of the decision process, and also when incorporating
new services, e.g., to solicit opinions from a crowd or to conduct polls.

Data-Centricity and Services Interoperation 5

An application area that involves a broad array of stakeholder enterprises and where
conceptual entities can transform is in tracking food in the supply chain “from farm
to fork”. For example, with a potato in a frozen stew, multiple interrelated “lots” (i.e.,
collections of goods treated as a unit for shipping or processing activities) come into
being, as the result of combining potatoes from different harvests, mixing different in-
gredients, and finally the packaging and delivery. Monitoring the overall process and
enabling adjustments to it (including recalls) is vastly simplified if a data model is de-
ployed as the backbone for the interoperation. In this case, the lots are naturally modeled
as business artifacts, and systematic correlation between lots is easily managed, even as
the underlying goods are processed.

As illustrated by the examples above, the artifact perspective can provide a natural
and comprehensive modeling framework for managing entities and their correlations in
service compositions. At the core of the approach is the understanding that the various
services are manipulating a common set of conceptual entities. Multiple approaches can
be used for the actual storage of associated information, e.g., maintaining full artifact
instances within a single service, distributing their storage across multiple services, or
passing partially completed artifact instances from one service to another (cf. [1]).

5 The Challenges Ahead

Data has always been fundamental in service interoperation, but until recently it has
not been emphasized in the research on conceptual models, in specification languages,
or in the study of foundations. With the dramatic increase in SaaS offerings and the
anticipation that many business processes will be performed using rapidly created ser-
vice compositions, the systematic and intuitively natural management of the data aspect
along with the process aspect will become essential. As discussed above, there are three
main components to the data aspect, namely, access to ontology matchings, access to
synonym repositories, and the management of entity correlations. Three broad research
areas are now highlighted.

One broad challenge area concerns extensions of “keep it simple” approaches such
as REST and noSQL (e.g., as embodied by JSON) to incorporate data more explicitly.
As noted above, the piece-parts to support such extensions are now available in the re-
search literature. But finding ways to combine them in simple ways that become widely
adopted remains open. Here the ontology matching and entity name synonyms can be
viewed as more-or-less stand-alone services giving access to essentially static data, In
contrast, entity correlation involves dynamic data and traditional database considera-
tions such as transactional consistency, maintenance of equivalence across copies of
data held in different services, and preservation of integrity constraints across updates.
Such issues become more intricate in cases where the underlying implementation for
one or more services is parallelized and/or distributed for performance reasons.

A second challenge area involves developing mechanisms for reasoning about ser-
vice interoperation, reasoning that incorporates the data aspect along with the process
aspect. Promising formal work in this direction is provided by, e.g., [4], which devel-
ops formal verification techniques for distributed artifact-based systems, and by, e.g.,
[12] and related papers, which develop a rich theoretical basis for formal verification

6 R. Hull

of systems that involve ontology, data, and the evolution of data reminiscent to that
found in artifact systems. The latter work is especially relevant to service interoperation
where ontology matching is involved, since those matchings may include a combination
of fixed data and description logic based reasoning. More broadly, this work will help
to pave the way for practical (possibly semi-automatic) verification tools that enable
faster and more automated development and testing of service compositions, and also
for debugging systems that can help to explain why errors are occurring.

A third area where the data-centric perspective may have useful application for ser-
vice interoperation is to address concerns around foundations for the orchestration and
choreography standards, as raised in [3] and elsewhere. In particular, the artifact per-
spective holds the promise of providing a formal grounding for both orchestration and
choreography, precisely because it can faithfully represent not only the process aspects
but also the data aspects. Reasoning about the interactions between entities can be ex-
plicit, as already demonstrated in [29]. More broadly it appears that these techniques
can be extended to reason about both the parties involved in a service composition and
the conceptual entities being manipulated on their behalf. The artifact perspective can
be extended to provide an explicit formal meta-model underlying the BPEL and WS-
CDL standards, which would enable rich styles of formal verification for specifications
in those standards, styles that incorporate the data aspects as well sa the process as-
pects. Multi-party interactions, and in particular managing multiple interactions that
may happen in parallel, can be formalized and studied, as illustrated by the work on en-
tity correlation [29] described above, and by research on artifact-centric interoperation
hubs [15]. Finally, the artifact perspective may provide a workable basis for developing
a theory around the integration of multiple service compositions, including an under-
standing of compositions of compositions, an area that will be increasingly important
as the use of service compositions continues to grow.

References

1. Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: An overview. Very Large
Databases Journal 17(5), 1019–1040 (2008)

2. Adamusiak, et al.: OntoCAT simple ontology search and integration in Java, R and REST/-
JavaScript. BMC Bioinformatics 12(218) (2011),
http://www.biomedcentral.com/1471-2105/12/218

3. Barros, A., Dumas, M., Oaks, P.: Standards for web service choreography and orchestration:
Status and perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp.
61–74. Springer, Heidelberg (2006)

4. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact systems. CoRR,
abs/1301.2678 (2013)

5. Bhattacharya, K., et al.: A Model-driven Approach to Industrializing Discovery Processes in
Pharmaceutical Research. IBM Systems Journal 44(1) (2005)

6. BizAgi, Cordys, IBM, Oracle, SAP AG, Singularity (OMG Submitters), Agile Enterprise
Design, Stiftelsen SINTEF, TIBCO, Trisotech (Co-Authors).: Case Management Model and
Notation (CMMN), FTF Beta 1 (January 2013), OMG Document Number dtc/2013-01-01,
Object Management Group

http://www.biomedcentral.com/1471-2105/12/218

Data-Centricity and Services Interoperation 7

7. Chao, T., et al.: Artifact-based transformation of IBM Global Financing. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 261–277. Springer,
Heidelberg (2009)

8. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint seman-
tics for business artifacts with guard-stage-milestone lifecycles

9. Doan, A., Halevy, A.Y.: Semantic-Integration Research in the Database Community. AI Mag-
azine 26(1) (2005)

10. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
11. Getoor, L., Machanavajjhala, A.: Entity resolution: Theory, practice & open challenges. Proc.

of the VLDB Endowment (PVLDB) 5(12), 2018–2019 (2012)
12. Hariri, B.B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of rela-

tional data-centric dynamic systems with external services. In: Proc. Intl. Conf. on Principles
of Database Systems (PODS), pp. 163–174 (2013)

13. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying business en-
tity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24.
Springer, Heidelberg (2011)

14. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: Managing artifact
interactions with conditions and events. In: ACM Intl. Conf. on Distributed Event-based
Systems, DEBS (2011)

15. Hull, R., Narendra, N.C., Nigam, A.: Facilitating workflow interoperation using artifact-
centric hubs. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 1–18. Springer, Heidelberg (2009)

16. Iroju, O., Soriyan, A., Gambo, I.: Ontology matching: An ultimate solution for semantic
interoperability in healthcare. International Journal of Computer Applications 51(21), 7–14
(2012)

17. KAON2 Home Page (2005), http://kaon2.semanticweb.org/
18. Kiu, C.-C., Lee, C.-S.: Ontology mapping and merging through ontodna for learning object

reusability. Educational Technology & Society 9(3), 27–42 (2006)
19. Kumaran, S., Nandi, P., Heath III, F.F. (T.), Bhaskaran, K., Das, R.: Adoc-oriented program-

ming. In: SAINT, pp. 334–343 (2003)
20. Farrell, L., Lausen, H.: Semantic Annotations for WSDL and XML Schemas. W3C Recom-

mendation (August 2007), http://www.w3.org/TR/sawsdl/
21. Lampe, U., Schulte, S., Siebenhaar, M., Schuller, D., Steinmetz, R.: Adaptive matchmaking

for restful services based on hrests and microwsmo. In: Proceedings of the 5th International
Workshop on Enhanced Web Service Technologies, WEWST 2010, pp. 10–17. ACM, New
York (2010)

22. Limonad, L., Boaz, D., Hull, R., Vaculı́n, R., Heath, F.(T.): A generic business artifacts based
authorization framework for cross-enterprise collaboration. In: SRII Global Conference, pp.
70–79 (2012)

23. Liu, R., Vaculı́n, R., Shan, Z., Nigam, A., Wu, F.: Business artifact-centric modeling for real-
time performance monitoring. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 265–280. Springer, Heidelberg (2011)

24. Marin, M., Hull, R., Vaculı́n, R.: Data centric BPM and the emerging case management
standard: A short survey. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP,
vol. 132, pp. 24–30. Springer, Heidelberg (2013)

25. Marte, A., Fuchs, C.H.: OMS - Ontology Mapping Store (2013), Available on Source Forge,
http://sourceforge.net/projects/om-store/

http://kaon2.semanticweb.org/
http://www.w3.org/TR/sawsdl/
http://sourceforge.net/projects/om-store/

8 R. Hull

26. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

27. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-
structured processes. In: IEEE Intl. Enterprise Distributed Object Computing Conference
(EDOC), pp. 287–300 (2007)

28. Strosnider, J.K., Nandi, P., Kumaran, S., Ghosh, S., Arsanjani, A.: Model-driven Synthesis
of SOA Solutions. IBM Systems Journal 47(3) (2008)

29. Sun, Y., Xu, W., Su, J.: Declarative choreographies for artifacts. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 420–434. Springer, Heidelberg
(2012)

30. United Nations Economic Commission for Europe (UNECE). Introducing UN/EDIFACT
(2013), http://www.unece.org/trade/untdid/welcome.html

31. Vaculı́n, R., Hull, R., Vukovic, M., Heath, T., Mills, N., Sun, Y.: Supporting collaborative
decision processes. In: Intl. Conf. on Service Computing, SCC (2013)

http://www.unece.org/trade/untdid/welcome.html

QoS-Aware Cloud Service Composition

Using Time Series

Zhen Ye1, Athman Bouguettaya2, and Xiaofang Zhou1

1 The University of Queensland, Australia
2 Royal Melbourne Institute of Technology, Australia

Abstract. Cloud service composition is usually long term based and
economically driven. We propose to use multi-dimensional Time Series
to represent the economic models during composition. Cloud service com-
position problem is then modeled as a similarity search problem. Next,
a novel correlation-based search algorithm is proposed. Finally, exper-
iments and their results are presented to show the performance of the
proposed composition approach.

1 Introduction

Cloud computing is increasingly becoming the technology of choice as the next-
generation platform for conducting business [1]. Big companies such as Amazon,
Microsoft, Google and IBM are already offering cloud computing solutions in the
market. A fast increasing number of organizations are already outsourcing their
business tasks to the cloud, instead of deploying their own local infrastructures
[2]. A significant advantage of cloud computing is its economic benefits for both
users and service providers.

Compared to traditional service composition, cloud service composition is usu-
ally long-term based and economically driven. Traditional quality-based compo-
sition techniques usually consider the qualities at the time of the composition
[3]. For example, which composite service has the best performance at present?
This is fundamentally different in cloud environments where the cloud service
composition should last for a long period. For example, which composite cloud
service performs best in the next few years, despite it may not be the best one at
present? This paper presents a novel cloud service composition approach based
on time series. Time series databases are prevalent in multiple research ares,
e.g., multimedia, statistics etc. Many techniques [4], [5] have been proposed to
effectively and efficiently analyze economic models in cloud computing [] [].

We identify four actors in the cloud environment (Fig. 1): End Users, Com-
poser, SaaS (Software as a Service) Providers and IaaS (Infrastructure as a
Service) Providers. Platform as a Service (PaaS) layer is omitted as we assume
that it is included in the IaaS layer. End Users are usually large companies and
organizations, e.g., universities, governments. The composer in this paper rep-
resents the proposed composition framework. SaaS providers supply SaaS [6] to
end users. IaaS providers supply IaaS [6], i.e., CPU services, storage services,
and network services, to SaaS providers and end users. The composer acts on

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 9–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

10 Z. Ye, A. Bouguettaya, and X. Zhou

committee
/ university

committee
/ university End User

Composition
Framework

SaaS Provider

IP1 IP2 IaaS ProviderIP3

1:N1:1

SP1 SP2

committee
/ university

Composer

1:N 1:N

Fig. 1. Four actors in cloud computing

the behave of the end users to form composite services that contains services
from multiple SaaS providers and IaaS providers (Fig. 1).

Similar to traditional service composition [7], cloud service composition is
conducted in two steps. First, a composition schema is constructed for a compo-
sition request. Second, the optimal composition plan is selected. A composition
plan is formed by choosing concrete cloud service providers for each abstract
SaaS and abstract IaaS in the composition schema.

Our research focuses on the selection of composition plans based solely on non-
functional (Quality-of-Service, or QoS) attributes [8]. On one hand, we model
the requirements of end users as a set of time series. On the other hand, cloud
service providers market their services (SaaS or IaaS) using a set of time series.
Each time series represents the values of a corresponding QoS attribute over
a long period. Hence, cloud service composition problem becomes a similarity
search problem whose query is a set of desired time series.

Traditional techniques seldomly handle complex time series queries which re-
quire the correlation between the time series to be used during similarity match-
ing. The correlation, however, are prevalent during service compositionwhere each
QoS attribute is correlated with several other QoS attributes. For example, con-
sidering that we will select the best composition plan by leveraging two QoS at-
tributes, response time and cost. The cost of a cloud service may decrease during a
period, while the response time of the cloud service is also decreasing.We can eas-
ily observe the correlations that exist between time series. If we process each time
series independently, we will not be able to make use of the inherent correlations.

We refer to groups of time series with correlations as Time Series Groups
(TSG). Given a query TSG object Q = {q1, q2, . . . , ql}, where l is the number of
the time series in Q and each time series qi = {(xm, tm)|m = 1, 2, . . . , Li},
where xm is the value of the time series at time tm, and a TSG set D =
{TSG1, TSG2, . . . , TSGN}. The similarity search on TSG is to find the most
similar TSGs from set D via a predefined function dist(Q, TSCi), where

result = argmini=1,...,N (dist(Q, TSCi)). (1)

The main contributions of the paper include: (1) Cloud service composition
problem is considered as a similarity search problem. Specifically, this paper

QoS-Aware Cloud Service Composition Using Time Series 11

proposes algorithms that leverages time series correlations to effectively and effi-
ciently compute the distance between two TSGs. (2) We propose two data struc-
tures for Time Series Group processing, which leverage the principal components
and the relations of time series. A key difference between TSG and existing time
series similarity search is that the former requires the use of relations between
time series. (3) Analytical experiments are presented to show the performance of
the proposed approach. The empirical results show that the proposed approach
is superior compared with other similarity search approaches.

The remainder of the paper is structured as follows: Related work are pre-
sented in section 2. Section 3 presents a use case for cloud service composition.
Section 4 gives a detail analysis of the research challenges and then elaborates
the proposed composition approach. Section 5 evaluates the proposed approaches
and shows the experiment results. Section 6 concludes this paper and highlights
some future work.

2 Related Work

Service composition is an active research topic in service-oriented computing [9].
During the last decade, many QoS-aware composition approaches are proposed.
QoS-aware service composition problem is usually modelled as a Multiple Crite-
ria Decision Making [3] problem. The most popular approaches include integer
linear programming and genetic algorithms. An Integer Linear Program (ILP)
consists of a set of variables, a set of linear constraints and a linear objective
function. After having translated the composition problem into this formalism,
specific solver software such as LPSolve [10] can be used. [11] and [12] use Ge-
netic Algorithms (GA) for service composition. Individuals of the population
correspond to different composition solutions, their genes to the abstract com-
ponent services and the possible gene values to the available real services. While
GAs do not guarantee to find the optimal solution, they can be more efficient
than ILP-based methods (which have exponential worst-case time complexity).
Most of the traditional Web service composition approaches are not well suited
for cloud environment [12]. They usually consider the qualities at the time of the
composition [9]. [8] adopts Nayesian Network and Influence diagram to model
the economic models and solve the cloud service composition problem. However,
they assume conditional probability relationship among multiple QoS attributes,
which is not a general case in reality. This paper considers a general case where
QoS attributes can be described using time series.

Existing work on time series query can be categorized into two categories,
time series matching and pattern and correlation mining on multiple time series.
In existing similarity search over time series databases, the time series is trans-
formed from its original form into a more compact representation. The search
algorithm leverages on two steps: dimensionality reduction [4], [13], [14], [15] and
data representation in the transformed space. Various dimensionality reduction
techniques have been proposed for time series data transformation. These in-
cludes: Discrete Fourier Transform (DFT), Singular Value Decomposition (SVD)

12 Z. Ye, A. Bouguettaya, and X. Zhou

Find
Publications

&Citations (T1)

Find Comparable
Professors (T2)

Generate
Reports (T3)

e

CPU Sto Net
IaaS Provider

SaaS
Provider

SaaS
Provider

SaaS
Provider

Fig. 2. Tenure application for University A

[13], Discrete Wavelet Transform (DWT)[14], and Piecewise Aggregate Approx-
imation (PAA) [13]. Another approach for dimensionality reduction is to make
use of time series segmentation [4].

Existing multiple time series research have focused on pattern mining and
finding correlation between multiple time series, over patterns and observed val-
ues from group of individual time series. Papadimitriou et al. [16] proposed
the SPIRIT system, which focuses on finding patterns, correlations and hidden
variables in a large number of streams. SPIRIT performs incremental Principal
Component Analysis (PCA) over stream data, and delivers results in real time.
SPIRIT discovers the hidden variables among n input streams and automatically
determines the number of hidden variables that will be used. The observed val-
ues of the hidden variables present the general pattern of multiple input series
according to their distributions and correlations. These existing approaches can-
not be easily extended for the TSG similarity search problem because of the lack
of a clearly defined similarity measure. Most importantly, existing approaches
are unable to deal with the relations that exist between the multiple time series.

3 Use Case

Let us consider a simple use case, university A requires a composite cloud ser-
vice to aid the tenure process every year. Suppose the university outsources
three main tasks to the clouds during 2012 and 2015. The aim of cloud service
composition in this example is to find and select a set of component cloud ser-
vices to form a tenure application. Specifically, the tenure application (Fig. 2)
has three abstract SaaS. Tenure application will first search and find the pub-
lication and citation records of a candidate (task 1, T1). It will then find the
the publication and citation records of the comparable professors (task 2, T2).
Finally, the tenure application will generate the evaluation report (task 3, T3).
Besides these abstract SaaS, the composite tenure application also needs CPU,
network and storage resources from IaaS providers. CPU services (denoted as
CPU) are used to do computations on data. Storage services (denoted as Sto)
are used to keep intermediate data. The whole tenure application should be as
fair as and as transparent as possible. Therefore, all the input and output data,
should be stored in case some appeals arise. Network services (denoted as Net)

QoS-Aware Cloud Service Composition Using Time Series 13

are needed to transfer data between end users and the application, and between
components in the composite application.

University A has different QoS requirements (e.g., the number of tenure cases
that the composite service can process at once, the cost of the service and the
reputation of the service) on the composite tenure application over a period of
time. These preferences are presented through a set of time series data. Each
time series denotes the requirement of the university on a specific QoS attribute.
All the cloud service providers also advertise their services using time series
with the same time frequency. Hence, there are multiple candidate composition
plans, which are also represented as a set of time series data by aggregating all
the component services together. The composition problem, therefore, becomes
a query problem that aims to find the most similar sets of time series to meet
the university’s requirements.

4 Time Series Group Search Approach

There are two requirements when designing our composition approach. First, a
time series representation is needed to describe and measure the general infor-
mation extracted from a TSG. Second, the similarity search algorithm must be
more scalable compared to other approaches, since cloud environment is more
scalable than other existing platforms.

This section first presents the QoS model for cloud service composition. Two
data structures, denoted as QA and QR are then introduced to represent time
series during cloud service composition. The proposed composition approach is
finally presented at the end of this section.

4.1 QoS Model

To differentiate composition plans during selection, their non-functional prop-
erties need to be considered. For this purpose, we adopt a QoS model that is
applicable to all the SaaS and IaaS. Without loss of generality, we only consider
the QoS attributes listed as follows. Although the adopted QoS models have a
limited number of attributes, they are extensible and new QoS attributes can be
added. We assume IaaS are homogeneous. One unit of IaaS, i.e., CPU, network
or storage, possess the same resources.

Three QoS attributes are considered for component services and composite
services: throughput, reputation, and cost.

– Throughput. Given an SaaS provider SP , the throughput of its SaaS qsr(SP)
is the number of requests the SaaS provider is able to process per sec-

ond. Given an IaaS provider IP , the service rate of its IaaS
−−−−−→
qsr(IP) =

[qCPU
sr (IP), qNet

sr (IP), qSto
sr (IP)] is a three-attribute vector, where qCPU

sr (IP)
(qNet

sr (IP), qSto
sr (IP)) represents the number of CPU (network, storage) re-

quests the IaaS provider is able to process per second.

14 Z. Ye, A. Bouguettaya, and X. Zhou

– Reputation. Given an SaaS provider SP , the reputation qrt(SP) is a value be-

tween (0, 1). Given an IaaS provider IP , the reputation of its IaaS
−−−−−→
qrt(IP) =

[qCPU
rt (IP),qNet

rt (IP), qSto
rt (IP)] is a three-attribute vector, where qCPU

rt (IP)
(qNet

rt (IP), qSto
rt (IP)) is the reputation for processing a computation (data

transfer, storage) request.
– Cost. Given an SaaS provider, the execution cost qcost(SP) is the fee that

a customer needs to pay for the SaaS. Given an IaaS provider IP , the cost

for using IaaS is denoted as a three-attribute vector
−−−−−−→
qcost(IP) = [qCPU

cost (IP),
qNet
cost(IP), qSto

cost(IP)], where qCPU
cost (IP), qNet

cost(IP) and qSto
cost(IP) are the price

for using CPU IaaS, unit network IaaS and unit storage IaaS correspondingly.

The quality criteria defined above are in the context of elementary cloud
services. Aggregation functions are used to compute the QoS of the composite
service.

– Throughput. The throughput of a composite service denotes the number
of requests it serves per second. For an abstract composite service aCS,
the throughput qsr(aCS) is the minimal service rate of the selected SaaS
providers qsr(SP) and the IaaS provider qsr(IP).

– Reputation. The reputation qrt(aCS) of an abstract composite service aCS
is computed by multiplying the selected SaaS providers and IaaS providers.

– Cost. The cost of an abstract service is the sum of execution cost of all the
selected SaaS and IaaS.

4.2 QoS Attribute of TSG

One of the key challenges of performing TSG similarity search in cloud service
composition is to efficiently match the QoS attribute (QA) of multiple time series
in TSGs. Using a compact representation can avoid the need to perform pairwise
comparisons of the time series, which is computationally expensive.

Principal Component Analysis (PCA) is commonly used in time series analysis
[16] to reduce dimensionality, and to facilitate query retrieval. The essential
idea in PCA is to transform a set of observed values in the high-dimensional
vector space into a smaller new vector space. Given a data matrix X , and a
transformation matrix W . Each column of X corresponds to a data vector in
the original space. Each row of W corresponds to a transformation vector. The
transformation vector transforms the data vectors from the original space to
the value of certain principal components (PCs). The PCA transformation is
given as: Y = X × W . Y denotes the data matrix in the new vector space. In
the new vector space, each dimension corresponds to the principal component
of the original space. It is generated from the original dimensions based on the
statistical distribution of the observed values.

We adopt PCA to produce QA, a compact representation of the patterns of
multiple time series in a TSG. Each QA consists of one or several time series of
the principal components extracted from the original TSG. Given a TSG, which
consists of n time series T1, T2, . . . , Tn, for each time series Ti, the observed

QoS-Aware Cloud Service Composition Using Time Series 15

value in time tj is xtj . Assume the number of time slots is denoted as l, the TSG
can also be represented as a ln−dimensional vector. We build a n-dimensional
vectorXj = (x1j , x2j , . . . , xnj) for each time slot. Each dimension refers to a time
series in T1, T2, . . . , Tn. We perform PCA transformation on these n-dimensional
vectors to identify the first few principal components. In the implementation, we
choose the first n′ principal components as the QAs (n′ ≤ n). These n′ PCs can
capture the most dominant information of the original data, even if n′ � n. We
only consider these PCs and their associated observed values which have been
transformed in PCA dimensions. The new observed values of time slot tj on the
dimensions of transformed PCA space are:

Xj = Xj × W = (Xj × W1, Xj × W2, . . . , Xj × Wn). (2)

where Wi is a n-dimensional transformation vector. The derived values in each
time slot tj in QA are the first n′ principal components of Xj , which are the
first n′ dimensions of Xj . The transformation matrix which transforms the origin
vector space into first n′ dimensions is: W ′ = (W1,W2, . . . ,Wn′). Hence, QA can
be represented as:

QA = X × W ′ = (X1 × W ′, X2 × W ′, . . . , Xl × W ′), (3)

where l is the length of time series. The l × n′ data matrix in this equation
represents n′ time series which are generalized form the multiple patterns of
original n time series.

Comparing to Brute-Force method (mentioned in Sec. 5), which finds the best
matches between every time series pair, QA is a more general feature and is easier
to measure the similarity, though information will be lost by only reserving the
first few principal components. The lost information can be compensated using
QoS Relation (QR) which will be introduced in the next section.

4.3 QoS Relation for TSG

This section shows how we can generate relations among time series in a TSG.
Relations between multiple time series can be complex. Similar to “Relation
Vector” in [17], a QoS Relation (QR) of a TSG is a multidimensional vector,
which can be used to describe the relations among multiple time series in a TSG.
QR consists of a set of signatures, which are extracted from a relation matrix.
The relation matrix is obtained based on the relation descriptors of every time
series pair in TSG.

QR can be generated in mainly two steps:

– First, a relation descriptor is used to capture the intrinsic relationship for
any two time series in a TSG.

– Second, PCA transformation is used to transform the high-dimensional re-
lation descriptors into a smaller space.

The relations between Tm and Tn refer to the differences between the QoS
values in the time series and the associated time slots. Hence, we introduce two

16 Z. Ye, A. Bouguettaya, and X. Zhou

basic relations defined by [17], i.e., variance in QoS values (VIQ) and variance
in time (VIT). The VIQ is a high-dimensional vector, each dimension of which
captures the difference between the sampled observed QoS values of Tm and Tn:

(|xms1 − xns1 |, |xms2 − xns2 |, . . . , |xmsl
− xnsl

|), (4)

where xmsi is the sampled QoS values of Tm, and xnsj is the sampled QoS value
of Tn. VIT is a descriptor of the relation between intervals of Tm and Tn denoted
as a 4D vector V IT (Tm, Tn) [17]:

V IT (Tm, Tn) = (tm1 − tn1, tml − tnl, t
3
m,n, t

4
m,n), (5)

where tm1 and tn1 are the first time ticks of Tm and Tn, tml and tnl are the last
time ticks. t3m,n and t4m,n are used to describe the overlap status between two
time series’ interval. They are defined as:

t3m,n =

⎧⎨⎩
0, m = n,

tm1 − tnl, tm1 ≥ tn1,
−(tn1 − tml), tml < tn1.

(6)

t4m,n =

⎧⎨⎩
0, m = n,

tml − tn1, tm1 ≥ tn1,
−(tnl − tm1), tml < tn1.

(7)

In summary, the relation descriptor of Tm and Tn is the combination of two
components, i.e., the differences between QoS values and intervals.

The relation descriptors of each time series pair in TSG are vectors in a
high-dimensional vector space. Given a TSG object which has n time series
T1, T2, . . . , Tn, we can generate n2 relation descriptors Rij of each pair of time
series Ti and Tj from the TSG object, where Rij = {V IQ(Ti, Tj), V IT (Ti, Tj)}.
Using these n2 vectors, we perform PCA to find the Principal components ac-
cording to the datas latent correlation and distribution on these dimensions. Set
r as the dimensionality of each Rij , and r×r transformation matrix W for PCA
as (W1,W2, . . . ,Wr), we reserve only first few PCs which contain the majority
information. The number of PCs remained is denoted as r′. Thus, we obtain the
transformed relation descriptors Rij

Rij = (Rij × W1, Rij × W2, . . . , Rij × Wr′). (8)

4.4 Similarity Search of Time Series Groups

Given two TSG objects which are represented by aforementioned features, e.g.,
TSGi = {QAi, QRi} and TSGj = {QAj , QRj}, we define the distance function
between two TSGs dist(TSGi, TSGj) based on the similarity measure for QA,
i.e.,DIS(QAi, QAj) and relation vector QR, i.e.,DIS(QRi, QRj). For simplicity

QoS-Aware Cloud Service Composition Using Time Series 17

of presentation, we deploy the euclidean Distance as the default distance func-
tion. The distance between two QAs can be calculated by the following equation:

DIS(QAi, QAj) =
√∑

(qcki − qckj)
2 (9)

where qcki and qckj are the values for the k principal components of TSGi and
TSGj.

The distance between two QRs can be calculated:

DIS(QRm, QRn) =
√∑

(Rm
ij − Rn

ij)
2 (10)

According to the distance functions defined on the two features, the overall
distance between two TSG objects dist(TSCi, TSCj) can be calculated by the
geometric value of the two distances:

dist(TSCi, TSCj) =
√

DIS(QAi, QAj)× DIS(QRi, QRj). (11)

By using these two components for TSG similarity evaluation, we solve the
two challenges of effectively evaluating relations and measuring the patterns of
multiple time series in TSG; therefore, our approach can perform effectively and
efficiently for similarity search in TSG databases.

5 Experiments and Results

We conduct a set of experiments to assess the performance of the proposed
approach. We measure both the query effectiveness and the execution time for
TSG retrieval. We compare our proposed approach named TSG with the Brute-
Force approach, and the QA-only approach. QA-only approach is the same with
the proposed approach in Sec.4 except that it only consider QAs when computing
the distance between two TSGs. All experiments are conducted using Matlab.
We run our experiments on a Macbook Pro with 2.2 GHz Intel Core i7 processor
and 4G Ram under Mac OS X 10.8.3. Since there is no testbed available, we
focus on evaluating the proposed approach using synthetic cloud services.

5.1 Brute-Force Approach

To show the performance of the proposed approach, we first present a Brute-
Force approach for solving the TSG matching problem, which exhaustively com-
pares the time series in TSGs. In such a Brute-Force approach for TSG similarity
matching, the distances between all the QoS attributes in the query time series
and the candidate plan’s time series are computed. The maximum similarity (i.e.,
minimum distance) is then used to represent the similarity between two TSGs.
Here, we computing the similarity between TSG1 and TSG2 by calculating the
euclidean distances. The Brute-Force approach guarantees the minimum of∑

Ti∈TSG1

∧
T ′
i∈TSG2

DIS(Ti, T
′
i), (12)

18 Z. Ye, A. Bouguettaya, and X. Zhou

where T ′
i ∈ TSG2 and Ti in TSG1 are QoS attributes. In summary, by enu-

merating all pairs between the time series in two TSGs, we can calculate the
minimum distance of Brute-Force approach by the following equation:

distBF (TSG1, TSG2) = mink(
∑

(DIS(Tm, Tn))), (13)

The Brute-Force TSG similarity matching approach is an exhaustive matching-
based algorithm. The approach is very costly, as it requires an enumeration
between all pairwise single time series. Meanwhile, this method can measure the
patterns between time series in two TSGs well, but ignores the correlations of
time series inside the TSG.

5.2 Data Description

To generate the synthetic data sets, we first randomly generate 5 time series.
Each time series is denoted as {(QoSi, ti)|i = 1, 2, 3, . . . , l}, where the length l is
equal to 150. These five time series form the seed TSG. For each time series in
the seed TSG, we add some normally distributed random noise to create another
199 TSGs. Using the 200 TSGs as seeds, we expand them to 200 TSG categories,
each of which is with 80 TSGs. We produce variations of TSGs by adding small
time warping (e.g., 5 percent of the series length), and some normally distributed
random noise. Consequently, our synthetic data set contains 200 categories and
each has 80 similar TSGs, i.e., the TSG database has 16,000 TSGs in total. We
use the first 200 TSGs as the query set.

We generate two dataset to evaluate the proposed approach. Time series in
RAND dataset are generated randomly in Matlab, while time series in GAS
dataset are generated with Gaussian distribution. For each TSG in the query
set, we search the similar TSG in the whole dataset using three approaches: TSG,
QA-only and the brutal force approach. Each approach will return a sorted list
of the most similar TSG to the query.

We use recall and precision to compare different algorithms. We denote the
first 100 results returned by the brutal force approach as the relevant results.
Hence, the precision and the recall can be calculated using:

precision =
{relevant}

⋂
{retrieved}

{retrieved} (14)

recall =
{relevant}

⋂
{retrieved}

{relevant} (15)

5.3 Performance

In the first experiment, we investigate two important parameters of the pro-
posed TSG retrieval method. The first parameter is the number of PCs reserved
in QA feature generation. We extract QA feature by using first n′ PCs of mul-
tiple time series. The second parameter is the reduced dimensionality of Relation

QoS-Aware Cloud Service Composition Using Time Series 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n’=1
n’=2
n’=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r’=1
r’=2
r’=3
r’=5
r’=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r’=1
r’=2
r’=3
r’=5
r’=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n’=1
n’=2
n’=3

RAND RAND

GAS GAS

(c) (d)

(a) (b)Recall Recall

Recall Recall

Precision Precision

Precision Precision

Fig. 3. Performance on parameter tuning. (a) varying the number of PCs in QA using
RAND data set. (b) Varying the number of PCs in QR using RAND data set. (c)
varying the number of PCs in QA using GAS data set. (b) Varying the number of PCs
in QR using GAS data set.

Descriptor in QR , i.e., r′, which is used to capture the relations among the time
series in a TSG.

We first evaluate the effect of QA feature on TSG retrieval performance by
varying the number of PCs n′. As the maximum number of PCs in QA generation
is the number of time series in TSG, we conduct the experiments by varying n′

from 1 to 5. The results of precision/recall for TSG retrieval are shown in Fig. 3.
Each line in the graph represents the performance of a corresponding approach.
Each node on a line represents the precision and the recall when the first num
(num ≥ 100) results are returned. For example, in the first graph in Fig. 3, the
first node on the green line represents the precision and the recall when the first
100 results are returned.

According to Fig. 3a and Fig. 3a, the TSG approach performs best when n′ =
1, although when it comes to RAND data set, n′ = 3 performs better than n′ = 1
when the recall is less than 0.16. The approach performs similarly when the recall
is high. This can be explained by that when almost all the relevant results are
retrieved, the precision tends to be the same. To sum up, the best performance

20 Z. Ye, A. Bouguettaya, and X. Zhou

(a) (b)

Precision Precision

Recall Recall

QA-only QA-onlyRAND GAS

Fig. 4. Performance comparison of effectiveness: precision and recall. (a) Results using
RAND data set. (b) results using GAS data set.

is obtained when only the first PC is reserved. This is because the first PC
summarizes sufficient general information of multiple patterns in TSGs, while
the retrieval performance by using more PCs may suffer from redundant and
useless information. Note that, when n′ > 1, we generate multiple representative
time series as QA features, and hence the incurred multiple time series matching
may degrade overall performance.

Next, we investigate the performance of TSG retrieval by varying the reduced
dimensionality of Relation Descriptor in QR feature, i.e., r′, which is shown in
Fig.3b and Fig.3d. From these figures, we can observe that as more PCs are
used, the performance is improved. This is because more information is included
in the relation descriptor of the QR. Notice that when the recall is higher, the
approach performs more similarly. Therefore, in the following experiments, we
fix the two parameters for performance comparison, i.e., n′ = 1 and r′ = 5.

5.4 Comparison with Other Methods

In this experiment, we compare the retrieval performance of our approach with
the the QA-only method. As we can see from Fig. 4, the proposed TSG approach
performs similarly as the QA-only approach when the recall is bigger than 0.5
for RAND data set and 0.55 for GAS data set. This is because that when recall
gets larger, more relevant results are retrieved. However, we can still observe
that when the recall is small, i.e., retrieving a few most similar results, which
is more common in the similarity query area, TSG still preforms better than
QA-only approach. This is because the compact representation of multiple time
series in QA-only approach, can only capture the limited pattern information,
while ignore the intrinsic relations between the multiple time series in the TSG,
which are more valuable to distinguish different TSCs. QA feature matches the
similarity of group of time series by generalizing their characteristic patterns,
and the QR information can capture the natural relations among time series in
TSGs. The TSG approach can take both factors into effect for TSG retrieval,
and hence improve the retrieval effectiveness in TSG databases.

QoS-Aware Cloud Service Composition Using Time Series 21

5.5 Scalability and Robustness

In this section, we investigate the scalability and robustness of the proposed
approaches. We first evaluate the time efficiency for the three approaches in
terms of the scalability of the database size. We vary the size of TSG data set
by utilizing 50, 100, 150, 200 categories of TSGs, which results in the data size
from 4,000 to 16,000 TSGs.

Fig. 5 shows the average time cost of these different approaches for one TSG
retrieval. We can observe that QA-only approach and the proposed approach are
comparable and perform much better than the Brute-Force method. Our TSG
approach explores both QA and QR for similarity computation, and the extra
computation on QR feature is needed compared with QA-only approach. While
the Brute-Force algorithm performs badly by two orders of magnitude. This is
because the Brute-Force algorithm needs to calculate all the matches for each
time series pair in the group.

QA-only

TSG

Brutal-Force

4000 7000 10000 13000 16000

Fig. 5. Time efficiency of different approaches

6 Conclusion

This paper proposes a cloud service composition approach to aid end users select-
ing and composing SaaS providers and IaaS providers in the cloud environment.
Compared to traditional service composition framework in SOC, the proposed
approach considers service composition from a long-term perspective. Cloud eco-
nomic models for both end users and cloud service providers are leveraged during
the composition. Specially, we propose to use time series to represent the eco-
nomic models. Cloud service composition is then modeled as a similarity search
problem in the multiple time series database. We use two structure QoS attribute
and QoS relation to further improve the effectiveness and the efficiency of the
similarity search approach.

22 Z. Ye, A. Bouguettaya, and X. Zhou

References

1. Motahari-Nezhad, H., Stephenson, B., Singhal, S.: Outsourcing business to cloud
computing services: Opportunities and challenges. IEEE Internet Computing
(2009)

2. Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud comput-
ing. In: Grid Computing Environments Workshop (2009)

3. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

4. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and
novel approach. Data Mining in Time Series Databases 57, 1–22 (2004)

5. Bashir, F.I., Khokhar, A.A., Schonfeld, D.: Real-time motion trajectory-based in-
dexing and retrieval of video sequences. IEEE Transactions on Multimedia 9(1),
58–65 (2007)

6. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28 (2009)

7. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing, 51–59 (2004)

8. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on
economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)

9. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the
semantic web. The VLDB Journal 12(4), 333–351 (2003)

10. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-
integer) linear programming system. Eindhoven U. of Technology (2004)

11. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)

12. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based qoS-aware service com-
positions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)

13. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems 3(3), 263–286 (2001)

14. Kahveci, T., Singh, A.: Variable length queries for time series data. In: Proceedings
of the 17th International Conference on Data Engineering, pp. 273–282. IEEE
(2001)

15. Wu, Y.-L., Agrawal, D., El Abbadi, A.: A comparison of dft and dwt based sim-
ilarity search in time-series databases. In: Proceedings of the Ninth International
Conference on Information and Knowledge Management, pp. 488–495. ACM (2000)

16. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple
time-series. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 697–708. VLDB Endowment (2005)

17. Cui, B., Zhao, Z., Tok, W.H.: A framework for similarity search of time series
cliques with natural relations. IEEE Transactions on Knowledge and Data Engi-
neering 24(3), 385–398 (2012)

QoS Analysis in Heterogeneous Choreography

Interactions

Ajay Kattepur, Nikolaos Georgantas, and Valérie Issarny�

Equipe ARLES, Inria Paris-Rocquencourt, France
firstname.lastname@inria.fr

Abstract. With an increasing number of services and devices interact-
ing in a decentralized manner, choreographies are an active area of in-
vestigation. The heterogeneous nature of interacting systems leads to
choreographies that may not only include conventional services, but also
sensor-actuator networks, databases and service feeds. Their middleware
behavior within choreographies is captured through abstract interaction
paradigms such as client-service, publish-subscribe and tuple space. In this
paper, we study these heterogeneous interaction paradigms, connected
through an eXtensible Service Bus proposed in the CHOReOS project.
As the functioning of such choreographies is dependent on the Quality of
Service (QoS) performance of participating entities, an intricate analysis
of interaction paradigms and their effect on QoS metrics is needed. We
study the composition of QoS metrics in heterogeneous choreographies,
and the subsequent tradeoffs. This produces interesting insights such as
selection of a particular system and its middleware during design time or
end-to-end QoS expectation/guarantees during runtime. Non-parametric
hypothesis tests are applied to systems, where QoS dependent services
may be replaced at runtime to prevent deterioration in performance.

Keywords: Heterogeneous Choreographies, Quality of Service, Interac-
tion Paradigms, Middleware Connectors.

1 Introduction

Choreographies, unlike centrally controlled orchestrations, involve a decentral-
ized service composition framework where only the participants’ functionality
and associated message passing are described [1]. Service Oriented Architectures
(SOA) allow choreography components to interact via standard interfaces, with
the enterprise service bus (ESB) [3] providing a common middleware protocol to
convey the messaging interactions. However, these are principally based on the
client-service interaction paradigm, as, for instance, with RESTful services [20].

Heterogeneous choreographies that involve conventional services, sensor net-
works and data feeds, such as those seen in the Internet of Things [12], require

� This work has been partially supported by the European Union’s 7th Framework Pro-
gramme FP7/ 2007-2013 under grant agreement number 257178 (project CHOReOS,
http://www.choreos.eu).

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 23–38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.choreos.eu

24 A. Kattepur, N. Georgantas, and V. Issarny

additional paradigms to ensure interoperability. Heterogeneous applications are
handled at the middleware level with varied interactions, data structures and
communication protocols made interoperable. In particular, platforms such as
REST [20] based client-service interactions, publish-subscribe based Java Mes-
saging Service [19] or JavaSpaces [9] for tuple space are made interoperable
through middleware protocol converters.

Studies that characterize the Quality of Service (QoS) in web services orches-
trations have conventionally been done at the application level; heterogeneous
choreographies consisting of services and sensor networks require further QoS
analysis of paradigms, unless they can rely on QoS aware middleware [18]. An in-
tricate analysis of QoS at the abstract level of interaction paradigms, in addition
to the application level, would enable analysis of heterogeneous choreographies.

In this paper, we use the eXtensible Service Bus (XSB) proposed by the
CHOReOS project [4,10] in order to deal with the heterogeneous aspects of chore-
ographies. The common protocol of XSB preserves the interaction paradigms of
the individual components, while still allowing interoperability. It supports inter-
operability among the three aforementioned, widely used, middleware paradigms:
client-service, publish-subscribe and tuple space.

We enhance the middleware paradigms that are employed inside heteroge-
neous choreographies with QoS composition frameworks. While our previous
work [15] studies the effect of choreography topology on the QoS, by fine-grained
analysis of message interactions, we evaluate the performance of choreography
participants in relation to heterogeneous paradigms. This methodology enables:
1) Design-time selection of interaction paradigms to match required functional
and QoS goals, and 2) Runtime analysis of composed choreographies to prevent
deterioration of end-to-end QoS of participants. Interesting facets include the
use of non-parametric Kolmogorov-Smirnov hypothesis testing to replace an in-
teraction paradigm with another, when abstracted with a particular QoS metric.

The rest of the paper is organized as follows. An overview of heterogeneous
interaction paradigms and XSB is provided in Section 2. The QoS domains,
metrics and algebra for composition are studied in Section 3. The methodology of
measuring and propagating QoS increments across various domains are analyzed
in Section 4. The results of our analysis through experiments are presented in
Section 5, which includes an analysis of tradeoffs and interaction substitution.
This is followed by related work and conclusions in Sections 6 and 7, respectively.

2 Interconnecting Heterogeneous Interaction Paradigms

In this section, we briefly describe the three interaction paradigms that may be
abstractly applied within our QoS analysis framework. The functional semantics
of these paradigms are abstracted into a set of corresponding middleware con-
nectors proposed by the CHOReOS project. After that, we provide an overview
of the eXtensible Service Bus (XSB) connector, which ensures interoperability
across these connectors and the represented paradigms.

QoS Analysis in Heterogeneous Choreography Interactions 25

Table 1. APIs of Interaction Paradigms

Interaction Primitives Arguments
Client-Service send destination, operation, message

receive_sync ↑source, ↑operation, ↑message, timeout
receive_async source, operation, ↑callback(source, operation, message),

↑handle
end_receive_async handle
invoke_sync destination, operation, in_msg, ↑out_msg, timeout
invoke_async destination, operation, in_msg, ↑callback(out_msg), ↑handle

Publish-Subscribe publish broker, filter, event, lease
subscribe broker, ↑filter, ↑handle
get_next handle, ↑event, timeout
listen handle, ↑callback(event)
end_listen handle
unsubscribe handle

Tuple Space out tspace, extent, template, tuple, lease
take tspace, extent, template, policy, ↑tuple, timeout
read tspace, extent, template, policy, ↑tuple, timeout
register tspace, extent, template, ↑callback(), ↑handle
unregister handle

2.1 Interaction Paradigm Connectors

In order to let choreographies include services (typically, client-service interac-
tions), service feeds (publish-subscribe), and sensor-actuator networks (shared
tuple spaces), it is a requirement to allow heterogeneity. We briefly review in
the following the relevant interaction paradigms [10], and discuss the Applica-
tion Programming Interfaces (APIs) of corresponding connectors [4]. These APIs
are depicted in Table 1. Their primitives and arguments are provided, with ↑
representing an out or in-out return argument of a primitive.

– Client-Service (CS) - Commonly used paradigm for web services. The client
may send a message with send; the receiving service blocks further execution
until synchronization or timeout, with a receive_sync. Alternatively, asyn-
chronous reception can be set up with receive_async; then, a callback is
triggered by the middleware when a message arrives. The two-way request-
response invocation procedure is further captured by the invoke_sync and
invoke_async primitives. CS represents tight space coupling, with the client
and service having knowledge of each other. There is also tight time coupling,
with service availability being crucial for successful message passing.

– Publish-Subscribe (PS) - Commonly used paradigm for content broadcast-
ing/feeds. Multiple peers interact using an intermediate broker service. Pub-
lishers publish events that may be forwarded to peers via the broker until
a lease period. Filtering (filter) of messages may be done with respect
to subscriptions (subscribe) of the peers. Besides synchronous reception
(get_next with timeout) of an event, asynchronous reception of multiple
events is procured via listen and callback. PS allows space decoupling, as
the peers need not know each other. Additionally, time decoupling is possi-
ble, with the disconnected peers receiving updates synchronously or asyn-
chronously when reconnected to the broker.

– Tuple Space (TS) - Commonly used for shared data with multiple read/write
users. Peers interact with a data space, with participants having write (out),

26 A. Kattepur, N. Georgantas, and V. Issarny

read and data removal (take) access. The peers can retrieve data whose
value matches a tuple pattern (template), either synchronously with a
timeout or asynchronously via register and callback. A peer may con-
nect to the space at any time and procure data before the lease period. TS
enables both space and time decoupling between interacting peers.

2.2 eXtensible Service Bus (XSB)

CHOReOS [4] uses the following abstractions to deal with large scale choreogra-
phies that connect heterogeneous participants:

– Components : The heterogeneity of services and devices encountered are mod-
eled as service interface abstractions, which represent groups of alternative
services that provide similar functionalities through varied interfaces.

– Connectors :This definition relates to the introduction of a newmulti-paradigm
eXtensible Service Bus (XSB) connector, which allows components to inter-
operate even if they are based on heterogeneous interaction paradigms. XSB
extends the conventional ESB system integration paradigm [10].

– Coordination Delegates : These are used to enforce the realizability of chore-
ographies despite the autonomy of the composed services. They ensure that
the choreography specifications, such as message ordering integrity, are ad-
hered to by the participating entities.

Fig. 1. CHOReOS Choreography Model

The generic representation of the CHOReOS model is shown in Fig. 1, with
services/devices represented by components abstracting their functional behav-
ior. At the choreography level, the coordination delegates wrap such services and
adapt their roles to message passing specifications. The XSB connector ensures

QoS Analysis in Heterogeneous Choreography Interactions 27

Table 2. XSB connector API

Primitives Arguments
post scope, data
get_sync ↑scope, ↑data, timeout
get_async scope, ↑callback(scope, data), ↑handle
end_get_async handle
post_get_sync scope, in_data, ↑out_data, timeout
post_get_async scope, in_data, ↑callback(out_data), ↑handle

interoperability across a host of middleware protocols (following the CS, PS, TS
paradigms). Note that there are multiple types of components that may partic-
ipate: Atomic/Composite Services (CS requests-responses); Data Feed Services
(they publish PS events, which are then passed to subscribers); Sensor Actuator
Networks (TS-based interaction).

The semantics of the XSB connector is elicited as the greatest common de-
nominator of the semantics of the CS, PS and TS connectors. As the latter
semantics are incompatible in certain aspects, some enforcement by the applica-
tions employing the heterogeneous connectors may be necessary. For example,
the two-way, time-coupled, CS interaction has no equivalent in the PS and TS
paradigms. In this case, the PS and TS applications interacting with a CS ap-
plication will have to complement the semantics of their underlying connectors
with the lacking behavior (e.g., ensure that a PS peer receiving a published event
will respond by publishing a correlated event that will be received by the ini-
tial publishing peer). Hence, the XSB connector can abstractly represent any of
the three CS, PS and TS connectors. The XSB API is depicted in Table 2. It
employs primitives such as post and get to abstract CS (send, receive), PS
(publish, get_next), and TS (out, take/read) interactions. The data ele-
ment can represent a CS message, PS event or TS tuple. The scope argument
is used to unify space coupling (addressing mechanisms) across CS, PS and TS.
Two-way interaction is enabled with the post-get primitive. Additionally, XSB
is the common bus protocol employed for the interconnection of CS, PS and TS
systems, as seen in Fig. 1. Finally, XSB represents also the end-to-end interaction
protocol among such interconnected systems.

3 Modeling Quality of Service

While conventional middleware connectors focus on heterogeneity and functional
interoperability, choreographies include additional non-functional metrics during
design/runtime. This specifically involves analysis of constraints on QoS perfor-
mance of individual participants (at the application/middleware level) and their
side-effects on choreography enaction. QoS metrics being probabilistic and multi-
dimensional, accurate analysis of increments and composition rules are crucial.
In this section, the QoS domains that are of interest for interactions and the
corresponding algebra for their composition are analyzed.

28 A. Kattepur, N. Georgantas, and V. Issarny

3.1 QoS Domains

We review the basic domains of QoS that require analysis for heterogeneous
choreography interactions. We identify three basic domains [6]:

– δ: Timeliness incorporates aspects such as latency and reliable message de-
livery. For the case of client-service interactions, timeliness concerns one-way
message or two-way request-response latency. In case of publish-subscribe,
the latency between publication to a broker and subsequent coupled or de-
coupled delivery to peers is examined. With tuple space, the latency between
writing to a tuple and coupled or decoupled access to the data is analyzed.

– S: Security/Data Integrity incorporates the trustworthiness of the interaction
paradigms with respect to the confidentiality of information. This especially
holds in publish-subscribe systems, where there is an intermediate broker, or
tuple spaces, where there is an intermediate space and multiple peers have
access to the same data. For example, a peer in the tuple space may remove
and modify the data before they are procured by the other peers.

– λ: Resource Efficiency incorporates multiple aspects, such as efficiency in
bandwidth usage and protocol message passing. In the case of publish-
subscribe, for instance, the additional resources needed for subscription mes-
sages are to be included. Generally, this may be traded off with timeliness:
greater bandwidth usage/active sessions help in timely delivery of messages.
Analysis of these tradeoffs will help understand the pros and cons of a par-
ticular interaction paradigm.

3.2 QoS Algebra

In order to aggregate metrics available from heterogeneous interactions, we make
use of an algebraic framework as introduced in [21]. This can handle random
variables drawn from a distribution associated with a lattice domain. A QoS
metric q is a tuple:

q = (D,≤,⊕,
∧

,
∨

) (1)

1. (D,≤) is a QoS domain with a corresponding partially ordered set of QoS
values.

2. ⊕ : D × D → D defines how QoS gets incremented by each new action
or operation, like sending a message or receiving an event. It satisfies the
following conditions:

– ⊕ possesses a neutral element q0 satisfying ∀q ∈ D ⇒ q⊕q0 = q0⊕q = q.
– ⊕ is monotonic: q1 ≤ q′1 and q2 ≤ q′2 imply (q1 ⊕ q2) ≤ (q′1 ⊕ q′2).

3. (
∧

,
∨
) represent the lower and upper lattice, meaning that any q ⊆ D has

a unique greatest lower, least upper bound (
∧

q,
∨

q). When taking the best
QoS with respect to the ordering ≤, we take the lowest QoS value, with

∧
.

When synchronizing (for instance, with fork-joins), the operator
∨

amounts
to taking the worst QoS as per the ordering ≤.

QoS Analysis in Heterogeneous Choreography Interactions 29

Table 3. Basic classes of QoS domains

QoS Metric D ≤ ⊕ ∧ ∨
δ: Timeliness R+ < + min max

S : Security/Data Integrity finite set Q >
∨

max min
λ: Resource Efficiency finite set Q < + min max

Basic classes of QoS domains are displayed in Table 3 and composed according
to rules specified in Eq. 1. The use of this algebraic framework allows us to
reason, in an abstract way, about the behavior of interaction paradigms and
their effect on choreography performance. The framework may be invoked by any
choreography description language to incorporate QoS composition. It specifies
calculation of the QoS increments via the associated algebra with domains D,
partial order ≤, and operations (⊕,

∨
,
∧
). Note that the algebra is “general”

enough to incorporate multiple units for each domain. For metric S, the domain
Q can be subjective to scaled preferences such as {low,medium, high}. The
operation ⊕ is treated as

∨
, modeling instances where “high” security data is

passed to a “low” security service.

4 QoS Analysis of Interactions

In order to upgrade choreography interactions with QoS assessment, we equip
every atomic transaction T in a client-service, publish-subscribe, or tuple space
interaction with a QoS increment; T represents an end-to-end interaction en-
abling sending and receiving of data. From Fig. 1, T includes end-to-end data
transfer between components enabled by the XSB connectors. This produces a
tuple of (T , q) that may be propagated along the choreography. As the choreog-
raphy does not have a centralized QoS control mechanism, this propagation of
tuples can be combined with the algebraic operators to aggregate these incre-
ments. As the QoS values are random variables, the collected increments may be
used either at design time (using statistical data) or for run-time monitoring.

4.1 QoS Model for Generic XSB Transactions

The XSB connector can represent end-to-end transactions for any one of the CS,
PS, TS connectors. One-way interaction can be abstracted as follows: a sender
can post data – representing a message, event or tuple – with a validity period
lease; this is procured (using get) within the timeout period at the receiver
side. The peers initiate their actions independently.

Model for Timeliness. Fig. 2 depicts an one-way XSB transaction as a cor-
relation in time between a post action and a get action. The post and get

operations are asynchronous and have individual time-stamps. The post oper-
ation is initiated at tpost0 . At tmed, the posted data arrive at the intermediary
medium; we introduce this notion to represent the broker/data space in the case

30 A. Kattepur, N. Georgantas, and V. Issarny

Fig. 2. Analysis of post and get δ increments for success and failure

Fig. 3. Analysis of post and get S and λ increments for success and failure

of PS/TS, or the remote CS middleware entity. A timer is initiated at tmed, con-
straining the data availability to the lease period tlease. Note that the lease

period may be set to 0, as in the case of CS messages. Similarly at the receiver
side, the get operation is initiated at tget0 , together with a timer controlling the
timeout period ttimeout. If get returns before the timeout period with valid
data (not exceeding the lease), then the transaction is successful. We consider
this instance also as the end of the post operation. Hence, if the transaction is
successful, the overall QoS increment is:

δ =
∨

(δpost, δget) (2)

where δpost and δget represent the durations of the two corresponding actions.
In the case of failure, there is no overlapping in time between the two actions. In
other words, only one of them takes place, and goes up to its maximum duration,
i.e., δmed + lease for post or timeout for get, while the other’s duration is 0.
Hence, the QoS output is once again as in Eq. 2. Finally, we note that, while
we present the synchronous data reception case, the case with asynchronous get
and callbacks follows similar timeliness composition models.

Model for Security/Data Quality. In order to model the data security level
associated with each transaction, we equip the data-carrying post and get op-

QoS Analysis in Heterogeneous Choreography Interactions 31

erations, depicted in Fig. 3, with a security level. Note that the post operation
here refers to the interaction between the sender and what we called above the
medium, i.e., the PS broker, TS data space, or remote CS middleware entity.
Locally executed actions, such as get(msg) in the case of CS schemes, come
equipped with good security levels. In case of TS schemes, as there is a shared
channel between peers (unlike the exclusive channel of CS, PS), the security lev-
els are worse than, for example, PS. For a successful transaction, the supremum
of the security levels linked with the actions are taken, which means the worst
security level among the supported ones:

S =
∨

(Spost, Sget) (3)

In the case of failure, Eq. 3 still holds, with the operation that did not take
place carrying a null security level. Finally, for asynchronous data reception,
the security level composition is similar to the synchronous case presented here.

Model for Resource Efficiency. When measuring resource efficiency, we in-
clude the subset of all networked primitives related to the post and get opera-
tions, as in Fig. 3. In the case of PS, for instance, the subscription level primitives
are taken into account. Note that we only consider synchronous data reception in
our evaluation; for asynchronous callbacks, resource efficiency can be evaluated
in a similar fashion. In case of success, the resultant resource efficiency is:

λ = λpost ⊕ λget (4)

In case of failure, Eq. 4 still holds, with the missing operation contributing a
null value to the metric.

4.2 Upgrading the API

We append the API arguments of Table 2 with QoS parameters that may be
either self-measured by the peers or aggregated through a third party service. The
QoS increments and composition are presented in Table 4. The post operation
is given an initial QoS value q_post. This is, for the example of timeliness, the
timestamp tpost0 (see Fig. 2), which is then used at the receiver to calculate
the final returned output QoS increment. For a successful get_sync, the value
specified in Eq. 2 is returned with q_get_sync. In the case of failure, the resulting
timeliness value can be measured either by the receiver (timeout) or by a probe
installed at the medium (δmed + lease).

4.3 Model for QoS Propagation

The QoS model for generic XSB transactions and the related API introduced in
Sections 4.1 and 4.2 can be applied for measuring QoS in heterogeneous chore-
ographies where CS, PS and TS systems are interconnected via an XSB bus
(see Fig. 1). In particular, the model and API introduced for XSB can be easily
transcribed to the corresponding primitives and transactions of CS, PS and TS.
Additionally, they can be used directly for the transactions performed on the

32 A. Kattepur, N. Georgantas, and V. Issarny

Table 4. Extending the XSB API for QoS Analysis

Primitives Arguments
post scope, data, q_post
get_sync ↑scope, ↑data, timeout, ↑q_get_sync
get_async scope, ↑callback(scope, data), ↑handle, ↑q_get_async
end_get_async handle, q_end_get_async
post_get_sync scope, in_data, q_post, ↑out_data, timeout, ↑q_post_get_sync
post_get_async scope, in_data, q_post, ↑callback(out_data), ↑handle, ↑q_post_get_async

XSB bus interconnecting heterogeneous systems. For multiple sequential chore-
ography transactions, QoS increments can be propagated along with the trans-
action data and be passed from one transaction to the following one. Hence, QoS
values can be calculated, propagated and aggregated along end-to-end choreog-
raphy links, such as the ones depicted in Fig. 1. For example, in the case of
timeliness for an one-way CS-XSB-PS transaction, we need to aggregate the
three involved transactions:

δ =
∨

(δsend, δreceive)⊕
∨

(δpost, δget)⊕
∨

(δpublish, δgetnext) (5)

In a similar fashion, for timeliness or other QoS metrics, QoS increments can be
composed for both one-way and two-way interaction.

5 Results: QoS in Choreography Interactions

Choreographies involve heterogeneous interactions between services, things (sen-
sors/actuators), computational entities and human participants. The use of our
QoS analysis enables the following:

1. Bottom-up Choreography Designs : where the interactions are fixed but the
choreography enaction and the expected QoS can be modified. The compo-
sition models take into account the nature of the interaction and their effect
on the composed QoS. This is primarily done at design-time with previously
collected statistics.

2. Top-down Choreography Designs : fixed choreography specifications that may
be implemented by varied interaction paradigms. At runtime, similar func-
tionality may be replicated by services/things in a registry – leading to late
binding. Focusing on QoS, we study the possibility of replacing an interaction
with another to prevent deterioration of output QoS.

For example, an improvement in performance δ by the interactions is traded
off with deteriorating λ. Thus, if cost of bandwidth is to be taken into consid-
eration, a choice can be made at design time to select a particular interaction
paradigm over another. This involves discovering services that are implemented
with specific interaction paradigms. In case this is not exposed, the worst case
performance for each domain must be expected at design time. At runtime, if
re-configuration [15] or replacement/late-binding occurs, changes that may be
expected through varied interaction paradigms may be evaluated. For instance,
reduced S may be traded off with improvements in δ.

QoS Analysis in Heterogeneous Choreography Interactions 33

5.1 Comparison of Tradeoffs

To compare the effect of CS/PS/TS paradigms on QoSmetrics such as timeliness,
security and message efficiency, simulations were performed according to the
models provided in Section 4.1. As any particular implementation is affected
by the network load, middleware and individual applications’ QoS increments,
we assume some general characteristics in our simulations. The interactions are
assumed to follow tight space-time coupling for CS/PS/TS to prevent failed
transactions (even though our analysis in Section 4.1 can handle this). The details
for the specific interactions are:

– Client-Service - At (tpost0), every client posts a message to a single server.
Two measurements are made: the QoS increments associated with one-way
post-get messages; the QoS increments with round-trip two-way request-
response invocations. CS assumes tight space-time coupling and that the
server is available and connected to the client. The response get(msg) is
linked with the end-to-end QoS increments.

– Publish Subscribe - At (tpost0), a publication to a broker is initiated, which is
then forwarded to the peers. We assume that the broker is efficient and that
it forwards the messages to all subscribed peers synchronously (get_next).
The broker intermediary adds some latency δbroker and has some effect on
the security level Sbroker . The subscription level messages subscribe, un-
subscribe are considered during message efficiency calculations. While PS
schemes typically allow only one-way publisher to subscriber messaging, to
compare with the two-way CS case, we assume that the applications may
behave as a publisher+subscriber for the two-way interaction.

– Tuple Space - At (tpost0), data is written to a tuple, whichmay be readby peers.
Synchronous write-read scenarios are studied, with the data space being effi-
cient in matching tuples. Note that there may be QoS increments introduced
betweenwriting and reading from the tuple, capturedby δtuplespace,Stuplespace.
Of particular interest is the data integrity/security of the tuples, as these may
be modified/removed by any of the peers. Two-way interaction is additionally
studied, with a writer to a tuple later functioning as a reader.

– XSB - When converting between these schemes via a common bus protocol
provided by the XSB, QoS increments are produced. These are appended
for various domains using δpost,Sget and so on. The conversion also increases
the bandwidth resource usage that must be taken into account.

Based on [7], the QoS random variables are modeled as follows: δ as a heavy-tailed
(nctrnd) distribution; S as a uniform (randi) distribution; λ as an exponential
(exprnd) distribution. The simulations are done in MATLAB with increments
and random variables provided as in Table 5. We assume uniform performance
of the interactions, with δsend, δpost, δpub drawn from distributions with similar
mean and variances. Slight variations are provided, with faster response times
pertaining to the broker, tuple space and bus protocols. The security level of
the tuple space is set to be lower than other interaction paradigms, as the data
can be maliciously modified by peers. These values can differ according to the
implementations, network load and resource management accorded.

34 A. Kattepur, N. Georgantas, and V. Issarny

Table 5. Simulation Parameters in MATLAB

QoS Increments MATLAB call
δsend, δreceive, δpub, δgetnext, δout, δread nctrnd(1,10)
δbroker , δtuplespace, δpost, δget nctrnd(1,2)
Ssend, Sreceive, Spub, Sgetnext, Sout, Sread, Sbroker , Spost, Sget randi(3)
Stuplespace randi(2)
λsend, λreceive, λpub, λgetnext, λout, λread, λsub, λendsub, λpost, λget exprnd(5)

As shown in Fig. 4, there are differences in performance of these schemes
for the evaluated QoS metrics. The cases considered were: one-way interaction:
CS send-receive, PS publish-subscribe, TS write-read; two-way interaction: CS
invocation, PS publish-subscribe-(re)publish-subscribe, TS write-read-(re)write-
read. In case of timeliness δ, the one and two-way CS schemes performed supe-
riorly to corresponding TS and PS schemes. For security S, as an intermediate
broker or data space are employed by the PS/TS schemes, the levels are consis-
tently lower than that of the CS scheme. The security level of the TS scheme is
lower than that of the PS scheme due to the ability of peers to access common
data. Message efficiency λ considers individual subscriptions needed by the PS
scheme, which increases the number of messages per interaction.

We continue this evaluation in Fig. 5 with the effect of using the intermediate
XSB connectors on these metrics. The increments are studied for two-way interac-
tion across connectors.While there are not significant differences in domains δ and
S for the CS-PS-TS interconnection, the CS-TS interconnection has lowermessage
efficiency λ. Having these statistics in mind, it is possible to study the runtime re-
placement of a particular connection with another, as we see in the next section.

5.2 Substituting Interactions

In large spaces of services and devices [12], late-binding and replacement pro-
cedures are commonly employed. The replacement of heterogeneous systems
in such cases should take into account the interaction paradigms and their
corresponding QoS. A level of control is to check if the replacement would not
affect the particular QoS metric in hand. In order to compare the statistics pro-
vided by two interaction paradigms, we employ nonparametric hypothesis tests.

The two-sample Kolmogorov-Smirnov test [5] is a nonparametric hypothesis
test that evaluates the difference between the cumulative distribution functions
of two sample data sets. This statistic may also be used to test whether two
underlying one-dimensional probability distributions differ:

KSn,n′ =
∨
q

| F1,n(q)− F2,n′(q) | (6)

where F1,n and F2,n′ are the empirical distribution functions of the first and
the second sample data sets with n and n′ elements in the vectors, respectively.
The hypothesis test result is returned as a logical value: h = 0 indicates an
acceptance of the null hypothesis at α significance level: that the data in vectors
q1 and q2 are from the same distribution; h = 1 indicates the rejection of the

QoS Analysis in Heterogeneous Choreography Interactions 35

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

δ: Timeliness (milliseconds)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.4

0.6

0.8

1

S: Security (1−low, 2−medium, 3−high)C
um

ul
at

iv
e

D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

λ: Message Efficiency (no. messages per transaction)

CS one−way msg.
PS one−way msg.
TS one−way msg.
CS two−way msg.
PS two−way msg.
TS two−way msg.

Fig. 4. QoS composition with CS, TS, PS paradigms

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

δ: Timeliness (milliseconds)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.92

0.94

0.96

0.98

1

S: Security (1−low, 2−medium, 3−high)C
um

ul
at

iv
e

D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

λ: Message Efficiency (no. messages per transaction)

CS−PS two−way connector
CS−TS two−way connector
PS−TS two−way connector

Fig. 5. QoS composition across the XSB connector

null hypothesis at α significance level: the alternative hypothesis that q1 and q2
are from different distributions. The null hypothesis is accepted at level α if:√

nn′

n+ n′KSn,n′ ≤ Kα (7)

We make use of this test on the observations of the CS, TS, PS schemes when
applied to connectors, such as in Fig. 5. This is to determine whether a partic-
ular scheme can be replaced with another when querying for a particular QoS
metric (δ,S, λ). We set this tests in MATLAB with α = 1% as [h,KSstat] =

kstest2(q1,q2,0.01) in Table 6.
This provides some interesting insights: assuming certain distributions on the

underlying interactions (as in Fig. 5), for timeliness δ, the CS-PS interaction can
be suitably replaced by the CS-TS interaction; for security S, all interactions
are replaceable with the 1% confidence interval selected; for message efficiency
λ, the CS-PS interaction can be suitably replaced by the PS-TS interaction.
Though this can change according to measurements and collected statistics, this
procedure can be applied in general cases to safely replace interactions. For
example, if contractual obligations and SLAs need to be met in certain domains,

36 A. Kattepur, N. Georgantas, and V. Issarny

Table 6. KS Tests applied to various connectors

δ: Timeliness
Connectors CS-PS CS-TS PS-TS

CS-PS – h = 0; KSstat = 0.0115 h = 1; KSstat = 0.0309
CS-TS h = 0; KSstat = 0.0115 – h = 1; KSstat = 0.0240
PS-TS h = 1; KSstat = 0.0309 h = 1; KSstat = 0.0240 –

S: Security
Connectors CS-PS CS-TS PS-TS

CS-PS – h = 0; KSstat = 0.0128 h = 0; KSstat = 0.0088
CS-TS h = 0; KSstat = 0.0128 – h = 0; KSstat = 0.0216
PS-TS h = 0; KSstat = 0.0088 h = 0; KSstat = 0.0216 –

λ: Message Efficiency
Connectors CS-PS CS-TS PS-TS

CS-PS – h = 1; KSstat = 0.3335 h = 0; KSstat = 0.0102
CS-TS h = 1; KSstat = 0.3335 – h = 1; KSstat = 0.3413
PS-TS h = 0; KSstat = 0.0102 h = 1; KSstat = 0.3413 –

deterioration of the QoS metrics due to replacement would be deterred. This
sort of comparison not only takes into account the probabilistic nature of the
QoS metrics, but also the tradeoffs provided due to the multi-dimensional QoS
evaluation and corresponding interaction paradigms.

6 Related Work

QoS issues in web services span multiple topics, such as optimal late-binding
(discovery, selection, substitution) and contract management (SLAs, negotia-
tion, monitoring). Relevant QoS analysis techniques are used by Zeng et al.
[23] for optimal decomposition of global QoS constraints into local constraints
for composition in the case of service orchestrations. An algebraic formulation
based on multi-dimensional probabilistic models is proposed in [21] to compose
QoS metrics in the case of web services orchestrations. This has been used to
support optimization problems for decision making in orchestrations [14]. In our
work, we make use of this algebraic framework and provide an extension for the
case of heterogeneous choreography QoS composition.

While QoS issues in composite services based on centralized control (orches-
trations) have received some attention, the metrics relevant to choreographies are
an active area of research. In [17], Mancioppi et al. provide a structured overview
of the possible metrics to be incorporated within choreographies. A generalized
stochastic Petri net model is proposed in [8] to compose QoS in choreographies.
In [2], the MOSES framework is proposed as an efficient and flexible technique
for runtime self-adaptation in service oriented systems. Adaptive and self-healing
choreographies have been studied with the survey by Leite et al. [16] providing
a systematic overview of model, measurement, agent and formal methods driven
techniques for adaptation. In [11], Goldman et al. use a linear programming
framework to predict the QoS of BPMN based web services choreographies. A
constraint based model for QoS dependent choreographies is proposed in [13].
However, these techniques assume typical client-service interactions for analysis.

QoS Analysis in Heterogeneous Choreography Interactions 37

With an increasing number of devices being interconnected through the Inter-
net of Things [12], extensions to the standard (client-service interaction based)
ESB middleware adapters [3] are required. In the CHOReOS project [4][10], the
XSB connector is provided, which incorporates multiple interaction paradigms
including PS and TS schemes. In order to extend such middleware with QoS, in
[18], metrics are integrated in the middleware architecture for discovery, config-
uration and deployment analysis. In [6], the characteristics of publish-subscribe
interactions that are crucial to QoS composition are studied in considerable de-
tail. In [22], the publish-subscribe middleware interaction is upgraded with the
Harmony overlay messaging to prevent runtime QoS deterioration. Our work
builds on heterogeneous interaction paradigms and enhances them with QoS
composition rules. While QoS in the typical web services setting is done at the
application level, capturing the fine-grained interactions within heterogeneous
paradigms provide us with a detailed outlook of QoS aggregation policies. These
may be exploited during design-time selection or runtime replacement.

7 Conclusions

QoS analysis in choreographies typically considers homogeneous client-service
interactions and is performed at the application level. Choreographies of hetero-
geneous devices, such as those in the Internet of Things, require further fine-
grained QoS analysis of underlying interaction paradigms. In this paper, we
study the effect of heterogeneous middleware connectors, interconnected via the
extensible service bus from the CHOReOS project, on choreography QoS met-
rics. Using multi-dimensional, probabilistic QoS metrics and an algebraic model
for composition, this procedure reveals some interesting results. The tradeoffs
in particular QoS domains may be studied along with interactions, for efficient
selection during design-time. Through hypothesis tests, such as Kolmogorov-
Smirnov, runtime replacement of a particular interaction paradigm with another
can be performed. In the near future, we intend to apply these analysis techniques
on real-world implementations of large scale heterogeneous choreographies, like
the ones currently being developed in the CHOReOS project.

References

1. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE
Trans. on Services Computing 2, 152–166 (2009)

2. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola,
R.: MOSES: A framework for QoS driven runtime adaptation of service-oriented
systems. IEEE Trans. on Software Engineering 38(5) (2012)

3. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media (2004)
4. CHOReOS. Final CHOReOS architectural style and its relation with the

CHOReOS development process and IDRE. Technical report, Large Scale Chore-
ographies for the Future Internet (2013),
http://www.choreos.eu/bin/Download/Deliverables

5. Conover, W.J.: Practical Nonparametric Statistics. Wiley (1999)

http://www.choreos.eu/bin/Download/Deliverables

38 A. Kattepur, N. Georgantas, and V. Issarny

6. Corsaro, A., Querzoni, L., Scipioni, S., Piergiovanni, T.S., Virgillito, A.: Quality of
service in publish/subscribe middleware. Global Data Management 8, 1–19 (2006)

7. Cremonesi, P., Serazzi, G.: End-to-end performance of web services. In: Calzarossa,
M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 158–178. Springer,
Heidelberg (2002)

8. Diaz, A.P., Batista, D.M.: A methodology to define QoS and SLA requirements
in service choreographies. In: 17th Intl. Wksp. on Computer Aided Modeling and
Design of Communication Links and Networks (2012)

9. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Professional (1999)

10. Georgantas, N., Bouloukakis, G., Beauche, S., Issarny, V.: Service-oriented Dis-
tributed Applications in the Future Internet: The Case for Interaction Paradigm
Interoperability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 134–148. Springer, Heidelberg (2013)

11. Goldman, A., Ngoko, Y., Milojicic, D.: An analytical approach for predicting QoS
of web services choreographies. In: Middleware for Grid and eScience (2012)

12. Guinard, D., Karnouskos, S., Trifa, V., Dober, B., Spiess, P., Savio, D.: Interacting
with the SOA-based internet of things: Discovery, query, selection, and on-demand
provisioning of web services. IEEE Trans. on Services Computing 3, 223–235 (2010)

13. Ivanović, D., Carro, M., Hermenegildo, M.V.: A constraint-based approach to qual-
ity assurance in service choreographies. In: Liu, C., Ludwig, H., Toumani, F., Yu,
Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 252–267. Springer, Heidelberg (2012)

14. Kattepur, A., Benveniste, A., Jard, C.: Optimizing decisions in web services or-
chestrations. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 77–91. Springer, Heidelberg (2011)

15. Kattepur, A., Georgantas, N., Issarny, V.: QoS composition and analysis in recon-
figurable web services choreographies. In: Intl. Conf. on Web Services (2013)

16. Leite, L.A.F., Oliva, G.A., Nogueira, G.M., Gerosa, M.A., Kon, F., Milojicic, D.S.:
A systematic literature review of service choreography adaptation. In: Service Ori-
ented Computing and Applications, pp. 1–18 (2012)

17. Mancioppi, M., Perepletchikov, M., Ryan, C., van den Heuvel, W.-J., Papazoglou,
M.P.: Towards a quality model for choreography. In: Dan, A., Gittler, F., Toumani,
F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 435–444. Springer, Hei-
delberg (2010)

18. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: QoS-aware middleware for ubiqui-
tous and heterogeneous environments. IEEE Communications Magazine 39, 140–
148 (2001)

19. Richards, M., Monson-Haefel, R., Chappell, D.A.: Java Message Service, 2nd edn.
O’Reilly (2009)

20. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)
21. Rosario, S., Benveniste, A., Jard, C.: Flexible probabilistic QoS management of

transaction based web services orchestrations. In: IEEE Intl. Conf. on Web Services,
pp. 107–114 (2009)

22. Yang, H., Kim, M., Karenos, K., Ye, F., Lei, H.: Message-oriented middleware with
QoS awareness. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 331–345. Springer, Heidelberg (2009)

23. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for web services composition. IEEE Trans. on Software
Engineering 30, 311–326 (2004)

Improving Interaction with Services

via Probabilistic Piggybacking�

Carlo Ghezzi1, Mauro Pezzè2, and Giordano Tamburrelli2

1 Dipartimento di Elettronica e Informazione. Politecnico di Milano, Italy
carlo.ghezzi@polimi.it

2 Faculty of Informatics. University of Lugano, Switzerland
{mauro.pezze,giordano.tamburrelli}@usi.ch

Abstract. Modern service oriented applications increasingly include
publicly released services that impose novel and compelling requirements
in terms of scalability and support to clients with limited capabilities
such as mobile applications. To meet these requirements, service oriented
applications require a careful optimisation of their provisioning mecha-
nisms. In this paper we investigate a novel technique that optimises the
interactions between providers and clients called probabilistic piggyback-
ing. In our approach we automatically infer a probabilistic model that
captures the behaviour of clients and predicts the future service requests.
The provider exploits this information by piggybacking each message to-
ward clients with the response of the predicted next request, minimizing
both the amount of exchanged messages and the client latency. The pa-
per focuses on REST services and illustrates the technique with a case
study based on a publicly available service currently in use.

1 Introduction

Service oriented applications (SOC) [16] support the integration and collabo-
ration among internal entities of the same organisation and enable industrial
partnerships across distinct organisations, independently from their technolog-
ical stacks. Recently, software services are increasingly released to the general
public allowing independent developers and external software organisations to
create new software artifacts that leverage them.

The increasing popularity of openly accessible services introduces novel soft-
ware engineering challenges that affect the way clients exploit services as well as
the mechanisms adopted by service providers to offer them. From the service pro-
vider perspective, SOC applications need to meet new compelling requirements
in terms of scalability, being concurrently accessed by large and unpredictable
populations of distinct clients. Indeed, the massive stream of requests that service
providers have to deal with may hamper their capability to operate efficiently,

� This research has been funded by the EU, Programme IDEAS-ERC, Project 227977-
SMScom and FP7-PEOPLE-2011-IEF, Project 302648-RunMore.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 39–53, 2013.
© Springer-Verlag Berlin Heidelberg 2013

40 C. Ghezzi, M. Pezzè, and G. Tamburrelli

potentially violating existing service level agreements. For example, the Twitter
REST services1 serve several billions of requests per day and several thousands
calls per second. Moreover, from the client perspective, the interactions with
the service providers need to be as efficient as possible for example in terms
of number of exchanged messages and latency. Indeed, an increasing percent-
age of existing clients is represented by mobile applications that are typically
characterised by limited bandwidth, unreliable connectivity, and limited compu-
tational power. To effectively support the required scalability and to optimise the
interactions with clients characterised by limited capabilities, modern SOC ap-
plications require efficient service provisioning mechanisms. This paper addresses
this issue and introduces a technique that focuses on REST services [8,22] called
probabilistic piggybacking.

Probabilistic piggybacking consists of an inference algorithm that monitors
at runtime all the requests issued by a client and incrementally infers a proba-
bilistic model of its behaviour in terms of service invocations. Given a certain
service invocation currently issued by a client, the inferred probabilistic model
predicts the next service invocation it may issue next. The service provider ex-
ploits this information by piggybacking each message towards the client with the
response to the predicted request. Probabilistic piggybacking brings two distinct
advantages, (1) reduces client latency since responses to predicted invocations
are immediately available to the client, and (2) optimises the interaction among
clients and service providers since each correctly predicted invocation reduces the
number of exchanged messages. In addition, as discussed later on in Section 5,
the proposed solution is transparent to the client, requires a minimum modi-
fication to the server implementation, and is complementary to other existing
related techniques such as caching.

This paper contributes to current research in service engineering in two dis-
tinct ways. First, it defines an inference algorithm for SOC applications that
captures the usage profiles of clients and predicts their service invocation pat-
terns. Second, it proposes a novel probabilistic piggybacking technique based on
the inference algorithm to optimise REST service provisioning mechanisms. The
inference algorithm and the proposed technique have been validated with exper-
iments and simulations extracted from a case study of a set of REST services
currently in use.

The remainder of the paper is organized as follows. Section 2 overviews the
probabilistic piggybacking technique. Section 3 introduces the running case study,
namely a set of REST services publicly available online and currently in use that
we use throughout the paper to exemplify and validate the approach. Section 4
provides a detailed description of the approach through the case study, while
Section 5 presents the results of our analytical and experimental evaluation of
the proposed approach and its applicability. Section 6 discusses the related work.
Section 7 summarizes the main contributions of the paper, and illustrates the
ongoing research work.

1 https://dev.twitter.com

https://dev.twitter.com

Improving Interaction with Services via Probabilistic Piggybacking 41

2 Probabilistic Piggybacking: An Overview

Piggybacking [17] is a well-known data transmission technique that belongs to
the network layer and improves transmission efficiency. In this technique, the
acknowledgements to data received from an emitter by a sender are attached
to the messages emitted in the opposite direction. More precisely, piggybacking
implies that an acknowledgement sent by a receiver, instead of being sent in an
individual message, is piggybacked on a data frame going toward the sender. In
this paper we conceived a probabilistic technique inspired by the basic principle
of piggybacking that optimises service provisioning. Although the proposed tech-
nique is in principle applicable to many different SOC styles, we refer to services
implemented according to a REST architectural style. REST is an increasingly
popular2 architectural style in which requests and responses flow through the
stateless transfer of resources via http urls that uniquely identify the state of
the conversation between clients and servers. A complete discussion of the REST
architectural style is beyond the scope of this paper, the interested readers can
find additional details in [8,22].

The probabilistic piggybacking technique includes two fundamental compo-
nents: (1) the inference engine and (2) the piggybacking engine. The former is
deployed to the client, while the latter is deployed to the service provider. The
technique is articulated in four main steps that we introduce below. The first
step occurs at design time, while the others take place at runtime.

1. Specifying Endpoints: At design time providers specify the service endpoints
using a lightweight service description language. This description integrates the
service documentation and is publicly released to clients.

2. Inferring the model: The inference engine monitors the service requests issued
by a client and infers a discrete time Markov chain (DTMC) [18]. DTMCs are
finite state automata augmented with probabilities. The Markov model is built
incrementally as soon as new requests are issued to the service provider.

3. Predicting requests: The inference engine uses the inferred model to predict
the next most likely service invocation, given a currently issued service request.
The prediction is sent, together with the request currently issued, to the provider.

4. Instantiating request parameters: The service provider serves the requests as
soon as they are issued and receives with each of them the endpoint predicted
by the inference engine deployed on the client side. The piggybacking engine
– deployed on the service provider – exploits this information, instantiates the
actual parameters of the predicted endpoint, and prepares the corresponding
response to be sent to the client via piggybacking (i.e., attached to the response
of the request issued by the client). The response piggybacked to the client is
cached. If the prediction made by the inference engine is correct the cached
response will be immediately available thus reducing the latency and avoiding
otherwise the client to issue a new service invocation to the provider.

2 According to ProgrammableWeb, the largest directory of publicly available services,
the percentage of publicly available REST services listed in their platform is gradu-
ally increasing and recently reached 68%. http://www.programmableweb.com

http://www.programmableweb.com

42 C. Ghezzi, M. Pezzè, and G. Tamburrelli

Table 1. Flixster Movie REST Api

Name Type Service Endpoint Description Url Parameter (default value)
The movies search q: query to search (-)

search GET /movies.json endpoint for plain page_limit: results per page (30)
text queries page: selected page (1)

Detailed information
info GET /movies/<id>.json on a specific movie -

specified by the <id>

Retrieves the complete
cast GET /movies/<id>/cast.json cast for a movie -

specified by the <id>

Retrieves the trailer
clips GET /movies/<id>/clips.json for a movie -

specified by the <id>

Retrieves similar
similar GET /movies/<id>/similar.json movies for a movie limit: max number of results (5)

specified by the <id>

3 Motivating Example

In this section we introduce an example of popular REST services that we use
through the paper to illustrate and motivate our research. The case study refers
to the Flixster movie REST api3 that gives access to the Flixster movie database,
allowing independent developers or external organisations to build applications
and widgets containing movies data. Using these api users can search for movies,
retrieve detailed movie information like cast or directors, and access movie trail-
ers. The Flixster movie REST api includes other endpoints (related to upcoming
movies, dvd, etc) that we omit due to the limited space. Service endpoints return
responses in the JSON4 standard format: a lightweight data-interchange format
alternative to XML increasingly popular for REST services. Table 1 lists the
service endpoints with a brief textual description. The proposed solution focuses
on optimising GET requests and ignores other kinds of messages (e.g., POST).
Indeed, GET requests correspond to requesting specific resources and retrieving
data without any side-effect on the server [7]. In other words GET requests are
idempotent read requests that can be predicted and served by our piggybacking
mechanism without hampering the semantics of the interaction between client
and server. In addition, GET requests represent, in practice, the most frequent
class of messages exchanged among clients and REST service providers.

In REST services, GET requests may have two distinct classes of parameters:
structural parameters and url parameters. Structural parameters refer to para-
metric fragments of the path of a certain endpoint used to customise requests
issued by the clients. For example, clients parametrize the path of the similar
service endpoint with respect to the id of the movie they are interested in. Url
parameters refer to parameters appended at the end of the endpoint in the form
name=value and interleaved by an ampersand. For example, the similar service
endpoint may be parametrized with the limit url parameter as reported in the

3 http://developer.rottentomatoes.com
4 http://www.json.org

q
GET
/movies.json
page_limit
page
GET
/movies/<id>.json
<id>
GET
/movies/<id>/cast.json
<id>
GET
/movies/<id>/clips.json
<id>
GET
/movies/<id>/similar.json
limit
<id>
http://developer.rottentomatoes.com
http://www.json.org

Improving Interaction with Services via Probabilistic Piggybacking 43

1 {
2 ”name” : ” s ear ch ” ,
3 ”url ” : ”/movies . j s on ? apikey={}&q={}&page l im i t={30}&page={1}” ,
4 ”response ” :
5 [
6 {
7 ”name” :” id ” ,
8 ” select ” : ”$. movies [0] . i d ”
9 }

10]
11 }

Listing 1.1. RDL endpoint definition with response field

fourth column of Table 1. The fourth column of the table reports the default
value of url parameters (i.e., the value of the parameter if omitted in the re-
quest). All the endpoints reported in Table 1 require the additional mandatory
url parameter apikey used by the service provider to identify the clients. The
following url is an example of a valid service request to the similar endpoint:

/movies/77/similar.json?apikey=798&limit=30

In this case the client has an apikey equal to 798, the movie targeted by the
request has an id equal to 77, and the request will return at most 30 movies.

As introduced in Section 1, thousands of clients may simultaneously access
these endpoints and an increasing number of these accesses is performed by
client with limited capabilities such as mobile applications. As a consequence,
the service provisioning mechanisms should be as efficient and scalable as
possible.

4 Probabilistic Piggybacking Explained

In this section we explain in details the probabilistic piggybacking approach and
how it optimises the service provisioning mechanisms referring to the four steps
previously introduced and to the Flixster movie services.

4.1 Specifying Endpoints

Providers describe the endpoints with a lightweight service description language
in the JSON format called RDL5. We conceived RDL specifically for probabilistic
piggybacking, not with the goal of designing a new service specification language
that could replace existing standards, such as WSDL [5]. Indeed, the scope of
RDL is limited to supporting the piggybacking operations and not to specifying
or documenting the endpoints.

5 REST Description Language

/movies/77/similar.json?apikey=798&limit=30

44 C. Ghezzi, M. Pezzè, and G. Tamburrelli

The RDL service description consists of a list of JSON objects. Each of
them contains the description of an endpoint in terms of its name and its url.
The url representation includes its parameters as follows. Structural parameters
in the url are specified by a name within curly brackets ({parameter name}),
while url parameters are specified by their name followed by an equal sign and
curly brackets that may contain the default value of the parameter (parame-
ter name={default value}). As an example, let us consider Listing 1.1, which
shows the RDL representation of the Flixster search endpoint. The response
field in the RDL description may be used to select a string fragment of the
endpoint response and to assign to it a name. For this task RDL relies on a
JSONPath6 expression. JSONPath is a path expression syntax, which can select
parts of JSON documents in the same way as XPath [1] expressions select nodes
of XML documents. For example, in the case of the search endpoint specified
in Listing 1.1, we may want to select the id of the first movie in the response
by labelling it with the string “id”. The index 0 indicates we are interested in
the first item of the array of the movies returned in the response. We clarify the
meaning of an RDL response field in the context of probabilistic piggybacking
in Section 4.4.

The provider of Flixster movie services may easily translate all the endpoints
illustrated in Table 1 to RDL obtaining a complete description to be publicly
released to the clients.

4.2 Inferring the Model

Clients invoke service endpoints by issuing http requests to the endpoint urls.
In our approach, each request issued by a client is intercepted by the inference
engine and used to incrementally infer a discrete time Markov chain (DTMC) [18]
used to predict the next request by the client. DTMCs are finite state automata
augmented with probabilities. In our setting each state corresponds to a service
endpoint, while probabilistic transitions among states represent the probabilities
of sequences of invocations. Formally:

A DTMC is a tuple 〈S, s0,P ,N ,L〉 where:
S : is a non empty finite set of states, where s0 ∈ S is the initial state;
P : S × S → [0, 1] is a stochastic function representing the probabilistic edges

that connect the states in S. An element P(si, sj) represents the probability
that the next state will be sj given that the current state is si;

N : is the set of endpoint names extracted from the RDL file;
L : S → N is a labeling function associating each state to an endpoint name;

The inference engine uses the RDL specification of endpoints to identify and
label states. The inference process starts from a DTMC with a set of states S
that contains only the initial state s0 and the initial labelling function L(s0) =
start. The inference engine builds the DTMC incrementally by processing the
service requests as they are issued by the client adding new states to DTMC and
inferring transitions between states in S. For each request the inference engine

6 http://goessner.net/articles/JsonPath/

http://goessner.net/articles/JsonPath/

Improving Interaction with Services via Probabilistic Piggybacking 45

1 /movies . j s on ? ap i k e y=798&q=Psycho&p a g e l i m i t=30&page=1
2 /movies /17355. j s on ? ap i k e y=798
3 /movies /17355/ s i m i l a r . j s on ? ap i k e y=798& l i m i t =30
4 /movies . j s on ? ap i k e y=798&q=Ve r t i g o&p a g e l i m i t=30&page=1
5 /movies /22490. j s on ? ap i k e y=798
6 /movies /22490/ ca s t . j s on ? ap i k e y=798

Listing 1.2. A list of REST requests

infers a transition following a 3-step process: extracting the destination state,
extracting the source state, and computing the probabilities.

1. Extracting the destination state. The inference engine examines the current
request r and maps the request to its corresponding endpoint name n exploiting
the RDL file. Thus the engine associates a destination state d ∈ S to r such that
L(d) = n. If d does not belong to S yet, the inference engine adds the new state
d to S and updates the labelling function L accordingly.

2. Extracting the source state. The engine associates the destination state of
the last invoked service request to the source state of r and associates the first
service request issued by the client to the initial state s0.

3. Computing the probabilities. The engine uses the intercepted service invoca-
tions to update two sets of counters that are initially set to zero: a set of counters
ci,j for each pair of states (si, sj) ∈ S ×S, and a set of counters ti for each state
si ∈ S. The inference engine increments both the counter ci,j for each transition
from state si to sj and the counter ti for each transition whose source state is
si, independent of its destination state. The counter ti represents the number of
times the clients exited state si, while the counter ci,j represents the number of
times the clients moved from state si to state sj . The inference engine updates
the counters for each request that corresponds to a transition in the model, and
uses these counters to calculate the (i, j) entry of the stochastic function P that
represents the probability of traversing the edge from state si to state sj , by
computing the following frequency:

P(si, sj) =
ci,j
ti

for all pairs of states si and sj . The probability P(si, sj) computed as the ratio
between the number of traversals of the transition from the state si to sj and the
total number of traversals for all the transitions exiting state si corresponds to
the maximum likelihood estimator for P(si, sj) [6]. Notice that the probabilities
can be recomputed incrementally after adding any number of transitions or states
to the DTMC.

Figure 1 illustrates the inference process described so far, by referring to the
sequence of invocations of a given client reported in Listing 1.2. We start from

46 C. Ghezzi, M. Pezzè, and G. Tamburrelli

start

s0 s1
search

1

(a)

1

start

s0

s1

search

1

s2

info

1

s3

similar

1

(b)

0.5

start

s0
s1

search

1

s2

info

1 s3

similar

1

s4

cast

0.5

(c)

s5
clipsstart

s0

s1

search

1

s2

info

s3

similar

s4

cast

0.8

0.2

0.05

0.1

1

1

1

0.6

0.25

(d)

Fig. 1. DTMC inference process

the initial DTMC shown in Figure 1(a), and proceed incrementally through the
invocations. The first invocation is associated with the endpoint search. Since
S does not contain any state s such that L(s) = search, the engine adds a new
state s1 to S, and extends the labelling function with L(s1) = search. Being
this the first service invocation of the client, the engine considers state s0 as
the source state for the inferred transition (〈s0, s1〉). The engine increments the
counters t0 and c0,1, and consequently P(s0, s1) is set to 1. The resulting DTMC
is shown in Figure 1(a). The second request corresponds to a request of detailed
information on a specific movie with id equal to 17355 and is associated with
the endpoint info. The inference engine associates the new destination state s2
to this request and updates the labelling function: L(s2) = info. The engine
identifies the destination state of the last invoked service request as the source
state yielding to a transition 〈s1, s2〉. The engine increments the counters related
to the new transition: t1 = 1 and c1,2 = 1. Consequently, P(s1, s2) is set to 1.

Similarly, the third request is associated with a new destination state s3 such
that L(s3) = similar. The source state is associated again with the destination
state of the last transition generated (s2) and results in transition 〈s2, s3〉. The
engine increments the counters t2 and c2, 3, and consequently sets P(s2, s3) = 1.
The fourth request results in the transition 〈s3, s1〉. The resulting DTMC is
reported in Figure 1(b). The fifth request represents again a request to the
info endpoint and is treated as previously shown. The sixth request infers a
new destination state s4, where L(s4) = cast, and a new transition 〈s2, s4〉. The
engine increments the counters t2 and c2, 4, and consequently sets P(s2, s4) = 0.5
and P(s2, s3) = 0.5. Figure 1(c) shows the resulting DTMC.

By applying the inference algorithm to the requests issued by a client we
eventually obtain a DTMC that probabilistically captures its usage profile. For
example, if a client issued 350 requests to the search endpoint and 280 of these
requests were followed by a request to the info endpoint, in the inferred DTMC
the transition 〈s1, s2〉 would be associated with probability 0.8. An example of
a possible inferred DTMC for the Flixster services is shown in Figure 1(d).

In this paper we refer to client applications that deal with only one service
provider. This is not always the case if we consider for example applications
that organise and exploit multiple services such as service mashups or ser-
vice compositions. The proposed technique is applicable seamlessly also to these

Improving Interaction with Services via Probabilistic Piggybacking 47

multi-provider examples by simply instantiating several inference engines, one
for each provider, that independently infer distinct client behaviours.

4.3 Predicting Requests

The inference engine intercepts all the outgoing service requests issued by the
client to infer the DTMC model as explained above. At each intercepted service
request, the engine uses the inferred model to predict the service endpoint that
the client will invoke in the next service request.

Given a request r to a certain service endpoint e, the engine analyzes the state
in the DTMC representing e and selects the outgoing transition with the highest
probability. If the transition probability is greater than a given threshold (the
piggybacking threshold) the engine considers its destination state as a valuable
prediction of the most likely next service request. The engine communicates this
information to the server by appending an additional url parameter (called pig-
gyback) to the outgoing request r that indicates the predicted endpoint name
as specified in the RDL file. If the transition probability is less than the pig-
gybacking threshold, the engine does not append the additional parameter and
the probabilistic piggybacking simply does not occur for this request.

Let us consider the case where a client issued a request to the info endpoint
for the movie with id equal to 77. In the scenario in which the DTMC indicates
that the most likely service endpoint invoked next is the similar endpoint, the
url actually issued by the client is the following:

/movies/77.json?apikey=798&piggyback=similar

The prediction process starts only after the inference engine has collected a
significant number of requests obtaining a DTMC that well represents the client’s
behaviour. This minimum number of requests is a parameter that can be tuned
for each client to meet its specific characteristics.

4.4 Instantiating Request Parameters

The service provider serves the received requests and computes their responses ig-
noring the piggyback parameter appended to them. Before sending the responses
back to client, for each request that contains the piggyback parameter the provi-
der invokes the piggybacking engine forwarding to it the following elements: (1)
the request including its piggybacking parameter and (2) the computed response.
The piggybacking engine is in charge of transforming the predicted endpoint (the
piggybacking parameter) to a concrete service request: a valid url with its ap-
propriate parameters. To this end the engine looks up in the RDL file the url
structure of the predicted endpoint, extracts the parameters it contains compos-
ing a set of parameters M. To instantiate a valid url for the predicted endpoint,
the piggybacking engine finds a suitable value for all the elements in M relying
on the following heuristics:

/movies/77.json?apikey=798&piggyback=similar

48 C. Ghezzi, M. Pezzè, and G. Tamburrelli

1. The engine extracts all the parameter values contained in the client request.
The engine relies on these extracted values to instantiate the corresponding
parameters in M.

2. The engine examines the response to the current request and extracts the
parameters specified in the response field as defined in the RDL file (see for
example Listing 1.1). The engine relies on these extracted values to instantiate
the corresponding parameters in M.

3. The engine considers the most recent past requests of the predicted endpoint
and uses their parameter values to instantiate the parameters in M.

4. If by applying the above steps the engine could not instantiate all the pa-
rameters in M, the engine relies on their default value if available.

The engine proceeds with the piggybacking process if and only all the parameters
in M have a corresponding value for their instantiation obtained through the
heuristics described above. Otherwise the engine aborts the piggybacking process
for this request. Let us consider the case in which the client issued the url
exemplified in the previous paragraph where the model prediction corresponds
to the similar endpoint. Given the structure of the similar endpoint as specified
in the RDL file we have that M = {id, apikey, limit}. The id as well as the
apikey parameters are collected from the url request issued by the client (i.e., id=
77, apikey= 798), while the limit parameter is extracted from previous similar
requests issued to the server or using its default value (limit= 5). Considering
this second case the predicted request to the similar endpoint is instantiated as:

/movies/77/similar.json?apikey=798&limit=5

Similarly, let us consider the case in which the client issued a request to the
search endpoint where the prediction corresponds to the info endpoint. In this
case we have that M = {apikey, id}. The apikey parameter is collected as in
the previous case. However, the id parameter is not present in the request issued
by the client (the search endpoint does not contain any id parameter). The
piggybacking engine collects it from the response to the search request computed
by the service provider. Indeed, the engine applies step 2 of the heuristics and
relies on the JSONPath expression reported in Listing 1.1 to instantiate the
id parameter. This process yields the following url (assuming the result of the
search request produced an array in which the first item has id equal to 48):

/movies/48.json?apikey=798

As shown by this example, the RDL response field may be used to exploit regu-
larities in the usage profile of the clients to instantiate the predicted url. In this
case, we rely on the fact that the first result in the movie returned by the search
is the most relevant result and thus the most likely parameter for the predicted
info endpoint. If the piggybacking engine successfully instantiates a url corre-
sponding to the predicted endpoint, the provider serves it as if it was a request
issued by the client. At this stage the service provider has two responses: the re-
sponse computed for the request issued by the client and the response computed

/movies/77/similar.json?apikey=798&limit=5
/movies/48.json?apikey=798

Improving Interaction with Services via Probabilistic Piggybacking 49

from the url instantiated by the piggybacking engine. The provider sends back
to the client a unique response message that encapsulates the second one in a
specific field. On the client side the inference engine intercepts the response mes-
sage sent from the service provider and forwards the first response to the client,
while caching internally the response to the predicted endpoint. A subsequent
request of the client to the predicted endpoint with the same parameters used
by piggybacking engine will result in a cache hit. In such a case, the result is
available to the client with zero latency and without exchanging any additional
message. The effectiveness of the heuristics described in this section is applica-
tion specific, and thus the piggybacking engine is open to possible extensions
and customisations to fit the specific requirements of applications.

5 Evaluation of Probabilistic Piggybacking

Efficiency. Let us consider two endpoints A and B offered by a provider and let
us consider the case of a client that, after invoking A, invokes B with probability
to pAB. By relying on the maximum likelihood estimator, see Section 4.2, the
transition between the states representing A and B will eventually be labelled
with probability pAB. If pAB is greater than the piggybacking threshold, each
response to requests to A is piggybacked with a response to B. Thus, the overall
probability for a client to experience a cache hit is: phit = pAB×pparam, where the
first term indicates the probability of having a request to B after a request to A,
while the second term indicates the probability that requests to B are correctly
instantiated by the piggybacking engine. Notice that, for every cache hit, the
client and the server exchanged only two messages (request and response), while
in the case of a cache miss the client and the sever exchanged four messages (two
requests and two responses). Thus the average number of messages exchanged
(mp) can thus be estimated as follows:

mp = phit × 2 + (1− phit)× 4 (1)

Since phit is a probability (0 ≤ phit ≤ 1) we have that mp ≤ 4, while the number
of messages exchanged by implementations without piggybacking is four. This
indicates that the average number of message exchanged with piggybacking is
always less than or equal to the number of messages exchanged by an imple-
mentation that does not rely on it and the difference among these two values
depends on the probability of cache hits. We measured approximately these re-
sults by considering the Flixster movie services. We extended an existing Java
client7 with our inference engine and we produced sequences of invocations to
the the similar and to the info endpoint. We also built a proxy of the Flixster
movie services to serve these requests relying on our piggybacking engine. We
artificially generated the client requests with an increasing value of pinfo,similar

and a fixed value of pparam. Running the client, we measured the average num-
ber of messages exchanged with and without the probabilistic piggybacking.

7 JTomato: http://giordano.webfactional.com/?page_id=22

http://giordano.webfactional.com/?page_id=22

50 C. Ghezzi, M. Pezzè, and G. Tamburrelli

(a) Average Messages. (b) Model Update Overhead.

Fig. 2. Simulation results

If piggybacking is disabled, we measured a constant number of exchanged mes-
sages equal to four. Enabling piggybacking – with a piggybacking threshold equal
to 0.6 – we obtained an average number of messages always less than or equal
to four as illustrated in Figure 2(a). In particular, the average number of mes-
sages depends linearly on the parameters pinfo,similar and pparam as indicated in
Equation 1. In general, the larger their product is (i.e., phit), the more efficient
the interaction among the client and the service provider is. In addition to the
increased efficiency in terms of exchanged messages, probabilistic piggybacking
also brings an additional advantage to the client side in terms of latency. Indeed,
each cache hit corresponds to a service invocation issued by the client that can
be resolved locally and thus immediately without any network latency. Proba-
bilistic piggybacking introduces an overhead which may be relevant on the client
side, in particular in the specific case of mobile clients. To measure this overhead
we ran our inference engine on an Android8 client measuring the average time
required by the inference engine to process a service request updating an inferred
model of increasing dimension. Figure 2(b) shows that the overhead is negligi-
ble. For example the average time required to update a DTMC of 40 states –
corresponding to a service with 40 endpoints – is only 40ms. In this evaluation
we measured the increased efficiency in terms of exchanged messages and not in
terms of generated network traffic. Indeed, in this domain, a real bottleneck is
the number of connections opened with clients (see for example the well known
C10K problem [10]), which directly depends on the number of service requests
invoked by them. Similarly, from the perspective of mobile clients, the metric to
be minimised is the number of messages since, because of their mobile nature,
each additional message may potentially require a new connection (and thus a
new TCP/IP handshake) that is a considerable overhead in terms of radio (i.e.,
battery) usage and latency. Due to the lack of space we cannot report other
relevant scenarios. To support the replicability of results we released our current
prototype as an open source artefact9.

8 HTC Wildfire, Android 2.1.
9 http://giordano.webfactional.com/?page_id=22

http://giordano.webfactional.com/?page_id=22

Improving Interaction with Services via Probabilistic Piggybacking 51

Adaptability to Multiple Usage Profiles. The inferred DTMC captures two
distinct usage profiles: (1) the application profile, and (2) the user profile. The
application profile refers to patterns in service requests caused by the structure
of the client application. Let us consider for example a mobile application that
relies on the Flixster movie services. Let us imagine that this mobile application
includes a frame that: (1) displays the details of a given movies and (2) lists a set
of recommended similar movies. To develop this frame the developers invoke the
info endpoint to retrieve the detail of the movie and subsequently the similar
endpoint to display the recommended movies. The causal correlation among
these two requests is captured by the inferred DTMC as a transition between
the states corresponding to these endpoints labelled with an high probability
of occurrence (equal to one if the application invokes the info endpoint only in
this application frame). In this case the probabilistic piggybacking is extremely
effective since the client’s behaviour is easily predictable. Indeed, in this case,
the correlation between the invocations is hardcoded in the client application.
The user profile refers instead to patterns in service requests caused by frequent
behaviours of the final users of the client application. For example, as previously
exemplified in Section 4.4, given a request to the search endpoint the user may
subsequently select – in the majority of cases – the first item in the result set
returned by the search. Our solution seamlessly captures also this kind of usage
patterns by piggybacking the appropriate response.

Transparency to Clients. Clients typically issue requests to service endpoints
using http libraries that are available off the shelf for all the commonly adopted
programming languages. The inference engine is an extension of these libraries
that issues the requests, handles the responses, infers a DTMC, and caches the
responses piggybacked by the provider. From this viewpoint, probabilistic pig-
gybacking is totally transparent to the clients that invoke requests through the
inference engine instead of invoking them through the standard http library. Our
current implementation of the inference engine consists of an extension of the
popular Java http library Apache HttpComponents10.

Complementarity to Caching Techniques. Efficient service provisioning is
so crucial in modern service oriented applications that clients always try to op-
timise the way in which they use services, for example adopting caching mecha-
nisms to reduce the number of interactions with the providers. An additional ad-
vantage of the probabilistic piggybacking technique is its complementarity with
respect to the traditional caching of requests. Indeed, while caching minimises
the interactions with the service provider by exploiting recurrent past service
invocations, probabilistic piggybacking minimises the interactions by predicting
and anticipating future service requests, similarly to server-side active caches [3].
These techniques are orthogonal and complementary. Indeed, the piggybacked
responses may be stored in the same cache used by traditional caching solutions.

10 http://hc.apache.org

http://hc.apache.org

52 C. Ghezzi, M. Pezzè, and G. Tamburrelli

6 Related Work

The problem of inferring and analysing the client behaviours has been address by
many approaches for several distinct goals. For example, Liu and V. Kešelj com-
bine the analysis of Web server logs with the contents of the requested Web pages
to predict users future requests [13]. They capture the content of Web pages by
extracting character N-grams that are combined with the data extracted from
the log files. Alternatively, Schechter et al. use a tree-based data structure to
represent the collection of paths inferred from the log file and predict the next
page access [20]. Markov models are the most commonly adopted framework to
represent clients interactions. Indeed, such models provide an approximate ab-
straction of client behaviours that, when applicable in a given domain [4], balance
well complexity and expressiveness. Borges and Levene propose a Markov model
for representing user navigation sessions inferred from log files and modelled with
hypertext probabilistic grammars whose higher probability strings correspond to
the users navigation patterns [2]. Sarukkai relies on Markov chains for predicting
links and analysing paths by using an inference mechanism similar to the one
proposed in this paper [19]. Considering the specific problem of optimising the
service provisioning mechanisms we can mention the work by Krashinsky [11]
that investigates how to optimise the final critical link between a mobile client
and a stationary base station by compressing http request and response mes-
sages. Similarly, Tian et al. [21] discuss the benefits obtained by compressing
the messages in XML. Krishnamurthy et al. [12] categorises instead the set of
clients communicating with a server in order to optimise the communication for
example optimising the interactions with clients characterised by a limited con-
nectivity altering the caching policies. In [14] Papageorgiou et al. analyse the
factors that affect the consumption of services by mobile devices in terms of effi-
ciency by comparing different approaches and protocols. Papageorgiou et al. [15]
discuss the effectiveness of client side cache for services and mobile clients. Fi-
nally, concerning specifically the REST architectural style we can mention the
work by Hamad et al. [9] that evaluates the efficiency of REST against SOAP ser-
vices. Probabilistic piggybacking differs and complements these solutions since it
focuses on optimising the service provisioning mechanisms minimising the num-
ber of exchanged messages and exploiting a probabilistic approach specifically
conceived for mobile clients.

7 Conclusions and Future Work

In this paper we discussed a novel technique to optimise the flow of service re-
quests and the client latency. The proposed solution is transparent to the client
and complementary to other existing related techniques such as caching. Future
work includes a larger validation campaign based on logs of real service invoca-
tions and an extension to support services implemented with other architectural
styles.

Improving Interaction with Services via Probabilistic Piggybacking 53

References

1. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J.,
Siméon, J.: Xml path language (xpath) 2.0. W3C recommendation, 23 (2007)

2. Borges, J., Levene, M.: Evaluating variable-length markov chain models for anal-
ysis of user web navigation sessions. IEEE Transactions on Knowledge and Data
Engineering 19(4), 441–452 (2007)

3. Cao, P., Zhang, J., Beach, K.: Active cache: Caching dynamic contents on the web.
Distributed Systems Engineering 6(1), 43 (1999)

4. Chierichetti, F., Kumar, R., Raghavan, P., Sarlós, T.: Are web users really marko-
vian? In: WWW. ACM (2012)

5. Chinnici, R., Moreau, J., Ryman, A., Weerawarana, S.: Web services description
language version 2.0 part 1: Core language. W3C Recommendation, 26 (2007)

6. DeGroot, M.H., Schervish, M.J.: Probability and Statistics-International Edition.
Addison-Wesley Publishing Company, Reading (2001)

7. Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol–http/1.1 (1999)

8. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Transactions on Internet Technology (TOIT) 2(2), 115–150 (2002)

9. Hamad, H., Saad, M., Abed, R.: Performance evaluation of restful web services for
mobile devices. International Arab Journal of e-Technology (2010)

10. Kegel, D.: The c10k problem (2006), http://www.kegel.com/c10k.html
11. Krashinsky, R.: Efficient web browsing for mobile clients using http compression

(2003), http://www.cag.lcs.mit.edu/~ronny/classes/httpcomp.pdf
12. Krishnamurthy, B., Wills, C.E.: Improving web performance by client characteriza-

tion driven server adaptation. In: Proceedings of the 11th International Conference
on World Wide Web, pp. 305–316. ACM (2002)

13. Liu, H., Kešelj, V.: Combined mining of web server logs and web contents for
classifying user navigation patterns and predicting users future requests. Data &
Knowledge Engineering 61(2), 304–330 (2007)

14. Papageorgiou, A., Blendin, J., Miede, A., Eckert, J., Steinmetz, R.: Study and
comparison of adaptation mechanisms for performance enhancements of mobile
web service consumption. In: Services. IEEE (2010)

15. Papageorgiou, A., Schatke, M., Schulte, S., Steinmetz, R.: Enhancing the caching
of web service responses on wireless clients. In: 2011 IEEE International Conference
on Web Services (ICWS), pp. 9–16. IEEE (2011)

16. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, WISE 2003, pp. 3–12. IEEE (2003)

17. Postel, J.: Rfc 793: Transmission control protocol, september 1981 (2003)
18. Ross, S.M.: Stochastic processes. Wiley Series in Probability and Mathematical

Statistics, EUA (1983)
19. Sarukkai, R.R.: Link prediction and path analysis using markov chains. Computer

Networks 33(1), 377–386 (2000)
20. Schechter, S., Krishnan, M., Smith, M.D.: Using path profiles to predict http re-

quests. Computer Networks and ISDN Systems 30(1), 457–467 (1998)
21. Tian, M., Voigt, T., Naumowicz, T., Ritter, H., Schiller, J.: Performance consid-

erations for mobile web services. Computer Communications 27(11), 1097–1105
(2004)

22. Wilde, E., Pautasso, C.: REST: From Research to Practice. Springer (2011)

http://www.kegel.com/c10k.html
http://www.cag.lcs.mit.edu/~ronny/classes/httpcomp.pdf

Runtime Enforcement of First-Order LTL

Properties on Data-Aware Business Processes

Riccardo De Masellis1 and Jianwen Su2

1 Sapienza Università di Roma, Italy
demasellis@dis.uniroma1.it

2 University of California at Santa Barbara, United States
su@cs.ucsb.edu

Abstract. This paper studies the following problem: given a relational
data schema, a temporal property over the schema, and a process that
modifies the data instances, how can we enforce the property during each
step of the process execution? Temporal properties are defined using
a first-order future time LTL (FO-LTL) and they are evaluated under
finite and fixed domain assumptions. Under such restrictions, existing
techniques for monitoring propositional formulas can be used, but they
would require exponential space in the size of the domain. Our approach
is based on the construction of a first-order automaton that is able to
perform the monitoring incrementally and by using exponential space
in the size of the property. Technically, we show that our mechanism
captures the semantics of FO-LTL on finite but progressing sequences of
instances, and it reports satisfaction or dissatisfaction of the property at
the earliest possible time.

Keywords: data-aware business processes, runtime monitoring, formal
verification.

1 Introduction

A common pattern in computer science is the constantly increasing complex-
ity of systems, therefore a main challenge is to provide formalisms, techniques,
and tools that enable the efficient design and execution of correct and well-
functioning systems, despite their complexity. Such a challenge is tackled by
business process management (BPM) in the context of business processes. When
interested in checking the correctness of a process w.r.t. some properties, two
orthogonal approaches can be put in place: (i) given a dynamic model of the pro-
cess, checking offline, i.e., before the process is executed, whether every possible
execution satisfies the properties, or (ii) checking online (or at runtime) if the
current execution satisfies the properties. The first problem is generally called
verification, and model checking [7] has been the major breakthrough, while the
second is called runtime verification [20], and it occupies the middle-ground be-
tween verification and testing. While both of the aforementioned techniques have
considered almost entirely propositional properties, in recent years the emerg-
ing of data-aware approaches to business process modeling [24,5] pushed the

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 54–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 55

verification and database community to explore more expressive formalisms for
specifying the properties of interest [11,19,4,8]. The key idea of data-aware ap-
proaches is to elevate design of data to the same level as design of activities and
their control flows, enriching the classical approaches which lack the connection
between process and data. Unfortunately, data-aware business process systems
are very challenging to be verified. Indeed, on the one hand, languages for speci-
fying properties are very expressive since they merge the capability of querying a
rich structure (e.g., relational) with temporal operators, and on the other hand
the presence of data makes such systems infinite state. Unless several restric-
tions to both the language and possible system evolutions are posed [19,4,8],
the classical verification techniques, which check offline all possible evolutions of
the systems, are, in general, undecidable. In many practical scenarios, however,
it is not necessary to verify all possible executions of the system, but just the
current one. For instance, a formal description of the system to be analyzed can
be missed, e.g., because unknown, or because highly unstructured (hence an of-
fline analysis cannot be performed) but nonetheless, there are underlying data
changing and temporal properties over such data should be enforced.

A representative scenario is health care. Governments have general guidelines
which do not describe a precise process, but rather a set of cases in which some
activities have to be performed. As an example, when a head injury happens,
the patient may be rushed to a hospital. During the transportation and upon
arrival in emergency room, a crude assessment of the vitals are measured, us-
ing the Glasgow coma scale (GCS), injury severity score (ISS) and other test
results. Physicians make decisions on diagnostics and treatments based on col-
lected data and protocols. Treatment protocols are formulated based on analysis
of past patient records and change often. For example, a protocol may state that
lightly injured (low ISS score) patients over 65 years old with decreasing GCS
scores should have additional tests. After analyzing data, the condition in the
protocol may be revised to lightly injured patients over 79 with decreasing GCS
or increasing heart rate. In such a scenario, runtime monitoring of data would
help physicians to adhere to the protocol and assists their decisions.

A further motivation for runtime verification is that it monitors a concrete
execution of the process, while offline verification is performed on a model of the
process (not on the process itself) which, in order to achieve decidability of veri-
fication or to cope with the state explosion problem, is usually an approximation
of the original process (obtained, e.g., through predicate abstraction or bit state
hashing techniques), leading to sound but not complete verification procedures.

In this paper, we focus on the support for runtime enforcement of first-order
LTL formulas for data-aware process executions and study the problem of how to
incrementally evaluate them. Technically, properties are specified in a first-order
language extended with (future time) linear-time logic (LTL) operators and we
check them on a sequence of relational data instances incrementally.

The paper makes the following technical contributions. We initiate the study
on incremental evaluation of first-order temporal properties over data instances
evolving over time, by proposing an automata-based approach: we extend
the runtime verification technique presented in [3] to a first-order setting by

56 R. De Masellis and J. Su

constructing a first-order Büchi automaton. Such an automaton, along with
auxiliary data structures evolving together with the data evolution, is able to
monitor the property in an incremental fashion and in exponential space in the
size of the property, while using existing propositional techniques would require
exponential space in the size of the domain. More generally, this paper provides
an alternative way of performing formal verification of artifact-centric models
[17,8] and other business process models such as [14,21].

The paper is organized as follows. Section 2 defines our first-order LTL lan-
guage and its formal semantics; Section 3 illustrates the automata-based ap-
proach and the auxiliary data structures needed for the monitoring; Section 4
describes the space and time complexity; Section 5 provides a picture of the
related works and Section 6 concludes the paper.

2 First-Order LTL

We assume the data schema to be relational. We define the data schema as a
tuple S = (R1 . . . Rn, Δ) where R1 . . . Rn are relation symbols with an associated
arity and Δ is a fixed a-priori and finite set of constants. An instance I of S
interprets each relation symbol Ri with arity n as a relation RI

i ⊆ Δn. Values
in Δ are interpreted as themselves, blurring the distinctions between constants
and values. Following the tradition of artifact-centric models, we use the terms
instance, snapshot or interpretation interchangeably. Given a schema S, symbol
I denotes all possible interpretations for S.

The analysis we perform consists in checking temporal properties while data
evolve. In particular, we provide the theoretical foundations for building a mod-
ule that takes as input a first-order temporal property and, each time data
changes, it inspects the new instance and checks whether the temporal property
is verified, is falsified or neither of the previous. If the property is falsified, the
new instance is rejected, and the execution must continue starting from the pre-
vious one, i.e., we rollback to the previous state. Otherwise, the new instance is
accepted. In such a scenario we need to recognize a violation at the earlier pos-
sible time, in order to be sure that before the last update, i.e., from the previous
snapshot, a possible execution that satisfies the formula does exist.

We present a first-order LTL language that merges the capabilities of first-
order logic for querying the instance with the LTL temporal operators.

Definition 1 (First-order LTL Language L Syntax). Given a data schema
S, the set of closed first-order LTL formulas Φ of language L are built with the
following syntax:

Φ� := true | Atom | ¬Φ� | Φ�
1 ∧ Φ�

2 | ∀x.Φ�

Φt := Φ� | XΦt | Φt
1UΦt

2 | ¬Φt | Φt
1 ∧ Φt

2

Φ := Φt | ¬Φ | ∀x.Φ

where x is a variable symbol and Atom is an atomic first-order formula or atom,
i.e., a formula inductively defined as follows: true is an atomic formula; if t1

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 57

and t2 are constants in Δ or variables, then t1 = t2 is an atomic formula and
if t1 . . . tn are constants or variables and R a relation symbol of arity n, then
R(t1 . . . tn) is an atomic formula. Since Φ is closed, we assume that all variables
symbols are in the scope of a quantifier.

We call local formulas the set Φ� because they do not include any temporal
operators. In fact, a formula in Φ� is a first-order formula with equality but no
function symbols and, by expressing a local constraint, it can be checked by
looking at a single snapshot. The set of formulas in Φt are temporal formulas,
and indeed they include X and U logic symbols that are the usual LTL next
and until operators. Satisfiability of temporal formulas cannot be established by
looking at a single snapshot only. Notice that formulas in Φt do not include any
quantifier for variables occurring in the scope of temporal operators. Finally, the
set Φ is made up by formulas that have quantifiers for variables that occur in
the scope of temporal operators. We call such variables across-state variables.
Such formulas are hard and costly to be monitored, because, in general, they
require the whole history of snapshots seen so far to determine their truth value.
Notice also that the scope of the quantifiers is required to be the entire formula.
In other words, our language is not full first-order LTL, since we require all
across-state variables to appear in the front of the formula. As an example,
∀x.(R1(x)U(¬∀y.(R2(x, y)∧XR3(y)))) is not allowed, since variable y is across-
states (because in the scope of X) but its quantifier is not in the front.

We define the propositional symbols ∨ and ∃ as Φ1∨Φ2 := ¬(¬Φ1 ∧¬Φ2) and
∃x.Φ := ¬∀x.¬Φ respectively. Moreover the “finally” F and “globally” G LTL
operators are defined as FΦ := trueUΦ; GΦ := ¬FΦ.

Every formula in L can be translated into an equivalent formula in prenex nor-
mal form, i.e., with all quantifier in the front. From now on we assume formulas
to be in such a form.

Before showing the semantics of L, we need to introduce the notion of assign-
ment. Let I be a first-order interpretation, i.e., a snapshot for S, an assignment
η is a function that associates to each free variable x a value η(x) in Δ. Let η
be an assignment, then ηx/d is the assignment that agrees with η except for the
value d ∈ Δ that is now assigned to the variable x. We denote by Φ[η] is the
formula obtained from Φ by replacing variables symbols with values in η.

Our analysis is performed at runtime, and hence its semantics is based on
finite-length executions, also called paths. Such a semantics is defined starting
from the usual infinite-length paths semantics, therefore we first show the latter,
and then we turn to the former. An infinite path is an infinite sequence of snap-
shots I0, I1 . . ., i.e., given a schema S, it is a function π : IN → I that assigns a
snapshot Ii to each time instant i ∈ IN.

Definition 2 (Infinite path L Semantics). Given a formula Φ ∈ L over a
schema S, an assignment η, a path π and an instant of time i we have that:

– (π, i, η) |= Φ� iff (π(i), η) |= Φ�, where (π(i), η) |= Φ� is the usual first-order
logic evaluation function;

– (π, i, η) |= XΦt iff (π, i+ 1, η) |= Φt;

58 R. De Masellis and J. Su

– (π, i, η) |= Φt
1UΦt

2 iff for some j ≥ i we have that (π, j, η) |= Φt
2 and for all

i ≤ k < j we have that (π, k, η) |= Φt
1;

– (π, i, η) |= ¬Φ iff (π, i, η) �|= Φ
– (π, i, η) |= Φ1 ∧ Φ2 iff (π, i, η) |= Φ1 and (π, i, η) |= Φ2;
– (π, i, η) |= ∀x.Φ iff for all d ∈ Δ we have (π, i, ηx/d) |= Φ;

Further, (π, η) |= Φ iff (π, 0, η) |= Φ and, since every formula in L has no free
variables, we can simply write π |= Φ.

Note that when a formula does not contain any temporal operators, i.e., when
it is local, its semantics corresponds exactly to the usual first-order semantics.
Indeed, in order to evaluate a local formula, we do not need the whole path, but
the current snapshot only. Moreover, the domain Δ is the same for each instant
of time (see [15] for a dissertation on different semantics for first-order modal
logics).

We now turn to the finite-path semantics. Since the first introduction of LTL
by Pnueli [25], several different semantics for finite-path LTL have been pro-
posed, see e.g., [23,13,9]. Here we adapt the one in [3] to our first-order setting.
Such a semantics is strongly related with the notion of bad prefixes, that has
been established in [22]. Given a formula Φ in L, a bad prefix for Φ is a finite
path such that any infinite extension of it does not satisfy Φ. In other words, no
matter the continuation of the prefix, the formula Φ will be always evaluated to
false. As an example, safety properties such as “p holds forever” always have a
bad prefix that violates them, that is, a finite path containing a state where p
does not hold. Analogously, a good prefix can be defined as a finite path which,
no matter its continuation, it will always satisfy the property Φ. Eventualities,
such as “eventually p holds”, always have a finite path that satisfies them. Notice
that there are several LTL properties that cannot be satisfied nor falsified by any
finite trace, e.g., “infinitely often p holds” as any finite path can be extended to
an infinite one satisfying the formula as well as falsifying it. Such formulas are
called in [3] non-monitorable.

Definition 3 (Finite path L Semantics). Given a formula Φ over a schema
S and a finite path of length k, written as π[k], the truth value of a formula Φ
on π[k], denoted by [π[k] |= Φ], is an element of the set B3 = {true, false, ?}
defined as follows:

– [π[k] |= Φ] := true iff π[k] is bad prefix for ¬Φ;
– [π[k] |= Φ] := false iff π[k] is bad prefix for Φ;
– ? otherwise.

Notice that a bad prefix for ¬Φ is a good prefix for Φ. The core technical issue of
our problem can now be re-formulated as recognizing the bad and good prefixes.
Indeed, when a new snapshot Ii is presented as input, we have to check if I0 . . . Ii
is a bad, good prefix or neither of the two, i.e., we have to compute the relation
[I0 . . . Ii |= Φ]. In the classical, propositional version, the problem of recognizing
a bad prefix for a propositional formula Ψ can be solved by building a so-called
monitor for Ψ (see, e.g., [3,9]). The procedure is centered on the construction of
a Büchi automaton for Ψ (e.g., following the procedure in [1] or [16]) which is an

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 59

automaton on infinite strings representing the language L(Ψ) whose accepting
condition requires that a final state is visited infinitely often.

Given a propositional formula Ψ over a set of atomic propositions AP , the
Büchi automaton A for Ψ is the automaton such that the language it accepts,
denoted by L(A), is the language L(Ψ). Technically, a Büchi automaton is a
tuple A = (2AP , Q, δ,Q0, F) where Q is a set of states, δ : Q × 2AP → 2Q

the (possibly nondeterministic) transition function, Q0 the set of initial states
and F is the set of final states. A run of A on an infinite word α = a0, a1 . . .
(or ω-word) is an infinite state sequence r(0), r(1) . . . where the following holds:
(i) r(0) = q0 and (ii) r(i) ∈ δ(r(i − 1), ai) for i ≤ 1 if A is nondeterministic
or r(i) = δ(r(i − 1), ai) for i ≤ 1 if A is deterministic. An infinite word α is
accepted by A iff there exists a run r(0), r(1) . . . which visits one of the states
in F infinitely often. In other words, α is accepted if the run r(0), r(1) . . . cycles
in a set of states containing a final state.

Given a propositional formula Ψ , the monitor for Ψ is constructed as follows:
(1) the automaton for Ψ is generated and (2) states of the automaton that
do not satisfy the Büchi condition, i.e., from which a path that leads to a cycle
containing an accepting state does not exist, are marked with “bad”. The analysis
in (2) is called emptiness check. To monitor an execution of a system, it is enough
to navigate the automaton’s transitions while instances are presented as inputs.
When a bad state is reached, the last instance must be rejected. In fact from
each bad state there is no way to accept any infinite words belonging to L(Ψ),
meaning that Ψ is falsified. Notice that the monitor outputs the truth value ?
in any other no bad states, because from them there exists a path leading to
the acceptance condition, but the formula can still be falsified later on. Indeed,
by using the automaton for Ψ we can recognize the bad prefixes only, but not
the good ones. To fully capture the three-valued semantics presented before, two
automata have to be used: one for Ψ for recognizing the bad prefixes and one
for ¬Ψ recognizing the good ones. We propose an approach that is grounded on
the aforementioned technique but that introduces some novelties needed when
dealing with first-order properties.

Before entering into the details of our methodology, we point out that our
first-order formulas can be translated into an equivalent propositional formula.
Indeed, given that no function symbols are in the language and we assume finite
domain, the first-order syntax is just a shortcut for the propositional one. Given
a first-order formula Φ ∈ L, we can build an equivalent propositional formula.

In what follows, we refer to [28] for the classical, i.e., on infinite paths, LTL
propositional semantics and to [3] to the LTL3 semantics, i.e., on finite proposi-
tional paths.

Lemma 1 (Propositionalization). Let L be the language defined before, Lp a
propositional LTL language and Δ a finite domain. Then we can build a mapping
p : L → Lp such that, given a formula Φ ∈ L, an infinite path π, and a finite
path π[k]:

– π |= Φ ≡ p(π) |= p(Φ);
– [π[k] |= Φ] ≡ [p(π[k]) |= p(Φ)]

60 R. De Masellis and J. Su

where, with abuse of notation, p(π) is the natural extension of p to paths, i.e.,
the path obtained from π by applying function p at the first-order interpretation
π(i) seen as a logic formula1, for each time instant i ∈ IN.

Proof (Sketch). Function p is inductively defined over L formulas and, as base
case, it associates propositional symbols to first-order atoms. When applied to
formulas with a universal quantifier, p returns the conjunction of each assignment
for the variables. Given that the domain is finite, we get the claim. �

Notice that there are several ways to map atoms to propositional symbols,
hence there are several different propositionalization functions, all equivalent
modulo propositional symbol renaming. In the rest of the paper we assume to
set one, say function p.

Given a formula Φ ∈ L, the size of the formula p(Φ) is exponential in the
number of universal variables, hence, in the worst case, on the length of Φ. More
precisely, its size is |Δ||Φ|.

3 First-Order Automaton

Every formula Φ ∈ L can be propositionalized. Therefore it is easy to see that
to monitor Φ we could first propositionalize it, obtaining p(Φ), and then we
could use existing techniques for monitoring propositional formulas. However,
building a monitor requires the construction of the Büchi automaton for p(Φ)
(see, e.g., [1,16] for the actual procedure) that is exponential in the size of the
formula, which, in turn, is exponentially bigger than the original Φ. Given that
the automaton construction is c|p(Φ)|, where c is a constant, we obtain an overall

space complexity of is c|Δ||Φ|
, that is, exponential in the size of the domain and

double exponential in the size of the formula.
In this Section we illustrate how to monitor a first-order formula in exponential

space in the size of the formula. We make use of a first-order automaton plus some
data structures. As it will be clear later on, the auxiliary data structures are used
to keep track of assignments to variables. The advantage of this methodology is
to decouple the cost of building the automaton from the size of the domain.

Given a formula Φ ∈ L, in order to build the first-order automaton for Φ, we
first drop all quantifiers from Φ, obtaining an open first-order formula Φ̂ and then
we build the automaton for Φ̂. Indeed, given that Φ̂ contains no quantifiers, we
can consider the atomic formulas of Φ̂ as propositional symbols and use a stan-
dard propositional procedure, e.g., the one in [1], for building the automaton for
Φ̂. The formal procedure would require to first propositionalize the atoms of Φ̂,
then build the automaton, and lastly use p−1 to translate back the propositional

1 We can represent an interpretation I as the conjunction of all positive facts
Ri(d1, . . . , dn) when (d1, . . . , dn) ∈ RI

i and the conjunction of all negative facts
¬Ri(d1, . . . , dn) when (d1, . . . , dn) �∈ RI

i , for all relation symbol Ri ∈ L and tuple
(d1, . . . , dn) ∈ Δn.

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 61

symbols into first-order formulas. To ease the presentation we skip the propo-
sitionalization step. Indeed, given that Φ̂ does not have quantifiers, function p
turns out to be a syntactic renaming of atoms (cf. Lemma 1).

The automaton A(Φ̂) is likewise a propositional one, except for its
transitions and states that are labeled with open first-order formulas.

φ1 = P (x, h)
φ2 = ToBC(x)
φ3 = P (x, n)

q0 q1

q3

¬φ1

q2
φ3∧¬φ1

φ1 φ2∧¬φ3

φ1∧φ3

φ1∧φ3

φ2∧¬φ3

φ3∧¬φ1

where:

Fig. 1. Graphical representation of the
first-order automaton for the formula in Ex-
ample 1.

Example 1. As an example of the
first-order automaton construction,
let us consider an hospital that keeps
track of the vitals of its patients.

Table P stores information about
patients and its attributes are the
identifier of the patient and the blood
pressure. Moreover, we have a ToBC
table with a single attribute stor-
ing information about patients which
need to be checked by a nurse. We
assume possible values for the blood
pressure to be normal (n), high (h)
or low (l). We want to monitor the
property that, for each patient, any-

time his blood pressure changes to high, then, in the next instant, a check is
needed until his pressure goes back to normal. Such a property can be expressed
in L as:

Φ := ∀x.G(P (x, h) → X(ToBC(x)UP (x, n)))

The first-order automaton for Φ is graphically represented in Figure 1, and it
is obtained by: (1) dropping the quantifiers in the front of the formula getting
Φ̂ = G(P (x, h) → X(ToBC(x)UP (x, n))) and (2) building the Büchi automaton
of Φ̂ according to the procedure in [1] by considering atoms as propositional
symbols. Double-circled states q0 and q1 are final states, q0 is the only initial state
and the dashed state q3 is a sink, i.e., bad state. To keep the picture readable,
labels on transitions to the sink state are omitted, but, intuitively, from each
state qi the bad state is reached whenever any other outgoing transition cannot
be executed, hence we have δ(q1,¬((¬φ1 ∧φ3)∨ (φ3 ∧¬φ1)∨ (φ2 ∧¬φ3)) = {q3},
δ(q2,¬(φ2 ∧ ¬φ3) ∨ (φ1 ∧ φ3) ∨ (φ3 ∧ ¬φ1)) = {q3} and δ(q3, true) = {q3}.

Automaton A(Φ̂) can be used to recognize bad prefixes of Φ. In general, in
order to capture the three-valued semantics in Definition 3, we have to recognize
the good prefixes as well, and hence we need the automaton A(¬Φ̂). In our
example, however, being Φ a safety property, it has no good prefixes because it
can be verified by an infinite trace only. The automaton for ¬Φ is therefore not
needed, because it would always return ?. �

Our approach is grounded on the fact that a first-order automaton A(Φ̂) along
with some data structures, is capable of effectively simulating the propositional
automata A(p(Φ)) needed for recognizing the bad prefixes of p(Φ). When using

62 R. De Masellis and J. Su

automaton A(¬Φ̂) we can recognize also the good prefixes of p(Φ). In the rest of
the section we are going to show how to use both A(Φ̂) and A(¬Φ̂) for monitoring
Φ according to the finite path semantics in Definition 3. To ease the presentation,
we proceed in two steps: we first illustrate how, given an assignment η for the
variables in Φ, we can recognize the bad prefixes of Φ[η], where Φ[η] denotes the
formula obtained from Φ by ignoring the quantifiers and by assigning variables
according to η. We then generalize the procedure by showing how to concurrently
monitor all possible assignments using A(Φ̂) and A(¬Φ̂) and how to compose the
results obtained for each assignment and for each automata in order to evaluate
the original formula.

Let us assume an assignment η for the variables of Φ. We now show a procedure
that, given as input: (i) a first-order automaton A(Φ̂); (ii) an assignment η for
the variables and (iii) the snapshots (as data evolve), is able to recognize the
bad prefixes for p(Φ[η]) (an analogous procedure can be used on A(¬Φ̂) for
recognizing the good prefixes). The steps of the procedure follow:

1. we propositionalize the automaton A(Φ̂) with assignment η. Recalling that
a first-order automaton has transitions labeled with first-order formulas, its
propositionalization consists in first substituting the variables with values in
η and then using function p to obtain propositional formulas in the transi-
tions. We denote such an automaton with p(A(Φ̂)[η]);

2. We define a marking M ′ := Q0 as the set of initial states and a marking
M := ∅.

3. At runtime, when a new snapshot I is presented as input:

(a) M := M ′ and M ′ := ∅;
(b) for each state q ∈ M if there exists a transition (q, p(γ[η]), q′) such that

p(I) |= p(γ[η]), then M ′ := M ′ ∪ q′.
(c) we check the emptiness for all q ∈ M ′. If at least one state in M ′ satisfies

the Büchi condition, then we return ?, otherwise false.

The markings are needed to follow the execution of the snapshots over the au-
tomaton which is, in general, nondeterministic, hence more than one state can
be contained in the current marking. If from none of the states in the marking
it is possible to reach a cycle containing an accepting state, then the sequence
of snapshots seen so far is a bad prefix for Φ, and the procedure returns false.

By running the same procedure in parallel on the automaton for ¬Φ (except
for step 3(c) where we output true if none of the states satisfies the Büchi
condition) we recognize also the good prefixes of Φ.

We now prove that this procedure capture exactly the semantics in Definition
3. To this purpose, we reduce to the propositional case where the same result
has been proved to hold in [3] and, as a first step, we show that the automaton
p(A[η]) and the propositional one for p(Φ[η]) recognize the same language.

Theorem 1. Given a formula Φ ∈ L, let Φ̂ be the (open) formula obtained
from Φ by dropping the quantifiers and Φ̂[η] the formula obtained from Φ̂ by
substituting all variables with the value given by assignment η. Let moreover:

– A(Φ̂) be the first order automaton for Φ̂;
– A(p(Φ̂[η])) the propositional automaton for p(Φ̂[η]);

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 63

– p(A(Φ̂)[η]) the automaton obtained from A(Φ̂) by substituting variables with
values given by assignment η and by propositionalizing first order formulas
with function p;

then L(p(A(Φ̂)[η])) = L(A(p(Φ̂[η]))).

Proof (Sketch). We prove that the two languages are the same by showing that
automata p(A(Φ̂)[η]) and A(p(Φ̂[η])) are the same automaton. As a first step,
since formula Φ̂ has no quantifiers, we abstract from p that trivially associates
atoms of the form R(x, y) to propositional symbols Rx y. Then we notice that
an assignment η can be viewed as a syntactic manipulation of the formula which
changes the name of the variables. Two cases are possible: (i) η assigns each
variable symbol to a different constant, and (ii) η assigns two (or more) variable
symbols to the same constant. First case is trivial, while the second one is more
involved since two different atoms, e.g., R(x, y) and R(x, x) can become identical,
e.g., when η = {x/a, y/a}. If we assume to have two variables only, this requires
to prove that A(Φ̂(x, y))|y/x and A(Φ̂(x, x)) are indeed the same automaton,

where with A(Φ̂(x, y))|y/x we denote the automaton obtained from A(Φ̂(x, y))

by syntactically replacing each occurrence of y with x. Intuitively, A(Φ̂(x, x))
shares with A(Φ̂(x, y)) some states and transitions but it has some less because
substituting y to x in Φ may generate contradictions in sub-formulas of Φ (see
automaton construction in [1]). Such additional states and transitions, however,
are ruled out in A(Φ̂(x, y))|y/x after the substitution of y with x. �

Since (i) A(p(φ[η])) and p(A(Φ̂)[η]) recognize the same language and (ii)
the monitoring procedure checks the emptiness per state at each step, we are
guaranteed that p(A(Φ̂)[η]) recognizes minimal bad prefixes for Φ̂[η].

We now show the key idea for monitoring the whole formula Φ, i.e., all
assignment concurrently. Since Φ is in prenex normal form, formula p(Φ)
has the structure

∧
d1∈Δ

∨
d2∈Δ . . .

∧
dn+m∈Δ p(Φ[x/d1, y/d2 . . . z/dn+m]). We

can look for the bad (or good) prefixes of such a formula by monitoring
p(Φ[x/d1, y/d2 . . . z/dn+m]) for each assignment {x/d1, y/d2 . . . z/dn+m} sepa-
rately and then composing the results. Indeed, from Definition 3 and the seman-
tics of LTL, it follows that:
– [π[k] |= φ1 ∧ φ2] = true iff [π[k] |= φ1] = true ∧ [π[k] |= φ2] = true;
– [π[k] |= φ1 ∧ φ2] = false iff [π[k] |= φ1] = false ∨ [π[k] |= φ2] = false;
– [π[k] |= φ1 ∧ φ2] =? otherwise

and analogously for [π[k] |= φ1 ∨ φ2].
Given a first order automaton A(Φ̂), the procedure for recognizing the bad

prefixes of Φ is as follows:

1. We define a marking m : Q → 2η (where η is the set of possible assignments
for Φ) as a function which takes as input a state q of A(Φ̂) and returns the
set of assignments q is marked with; we assign m′(q) := η for each q ∈ Q0

and m′(q) := ∅ for each q �∈ Q0.
2. When a new snapshot I is presented as input:

(a) m := m′ and m′(q) := ∅ for each q ∈ Q;

64 R. De Masellis and J. Su

(b) for each state q and for each assignment η ∈ m(q), if there exists a
transition (q, γ, q′) such that I |= γ[η] (recall that γ is an open first-
order formula) then m′(q′) := m′(q′) ∪ η;

(c) for each assignment η we assign a truth value t(η) as follows: if there
exists at least one state q such that η ∈ m′(q) and the emptiness check
from q w.r.t. η (see later) returns true, then t(η) =?, otherwise t(η) =
false.

(d) recalling that Φ :=
∧

d1∈Δ

∨
d2∈Δ . . .

∧
dn+m∈Δp(Φ[x/d1, y/d2 . . . z/dn+m]),

we output the truth value
∧

d1∈Δ

∨
d2∈Δ . . .

∧
dn+m∈Δ t(x/d1, y/d2 . . .

z/dn+m).

Notice that the emptiness check is now more complex (step 2(c)), because (unlike
the previous case) transitions are first-order formulas. In order to find the minimal
bad prefixes, for each q and η such that η ∈ m′(q), we have to substitute values
given by η to all transitions involved in paths starting from q. The emptiness check
cannot be computed once and for all for a state q because it also depends on the
value of η, that is, there can be a transition (q, γ, q′) that is first-order satisfiable,
i.e., there is at least one assignment that satisfies γ, but γ[η] is unsatisfiable. We
have indeed to be sure thatA(Φ̂) is suitably pruned from unsatisfiable transitions
for a given assignment η, before checking for emptiness for q.

By reducing to the previous case, and by running the algorithm in parallel
on both A(Φ̂) and A(¬Φ̂) we capture the semantics of Definition 3 for a first-
order formula Φ so we recognize minimal good and bad prefixes, i.e., we report
a violation or satisfaction at the earliest possible.

φ1 = P (x, h)
φ2 = ToBC(x)
φ3 = P (x, n)

x/a
x/b

q0 q1

q3

¬φ1

q2
φ3∧¬φ1

φ1 φ2∧¬φ3

φ1∧φ3

φ1∧φ3

φ2∧¬φ3

φ3∧¬φ1

x/a x/b

q0 q1

q3

¬φ1

q2
φ3∧¬φ1

φ1 φ2∧¬φ3

φ1∧φ3

φ1∧φ3

φ2∧¬φ3

φ3∧¬φ1

x/a

x/b

q0 q1

q3

¬φ1

q2
φ3∧¬φ1

φ1 φ2∧¬φ3

φ1∧φ3

φ1∧φ3

φ2∧¬φ3

φ3∧¬φ1

I0 =P (b, h),
P (a, n)

I1 =P (a, h)

where:

Fig. 2. Graphical representation of the monitoring described in Example 2

Example 2. We continue Example 1 by showing the evolution of marking m
as new instances are presented as inputs. We assume a domain Δ = {a, b}.
Figure 2 illustrates graphically the assignments m(qi) inside boxes next to qi for

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 65

each qi ∈ Q. In the initial time instant, according to step 1 of the monitoring
procedure, the initial state is marked with all assignments for the free variables,
that is, η1 = x/a and η2 = x/b. When instance I0 = P (b, h), P (a, n) is presented
as input, we check if it satisfies any of the outgoing transitions from q0 with
substitutions η1 and η2 (recall transitions are labeled with open formulas). The
automaton has two outgoing transitions from q0, namely δ(q0,¬P (x, h)) = {q0}
and δ(q0, P (x, h)) = {q1}. Given that I0 |= ¬P (x, h)[x/a] and I0 |= P (x, h)[x/b],
following step 2(b) of the procedure, the new marking is m′(q0) = {{x/a}}
and m′(q1) = {{x/b}}. We then check the emptiness condition for every state
marked with an assignment (step 3(c)) and we get t(x/a) =? and t(x/b) =?
because both q0 and q1 are not bad states and, indeed, from both of them there
exists a path leading to a loop containing a final state. Since the original formula
is
∧

x∈{a,b} Φ̂(x), we get ?∧? =?, meaning that the formula is not yet falsified.

Next instance I1 = P (a, h) satisfies transitions from q0 to q1 with assignment
{x/a} and from q1 to q3 with assignment {x/b}. Given that q3 is a bad state, we
get ? ∧ false = false and the monitoring can be stopped since any prosecution
will violate the formula.

4 Time and Space Complexity

The number of states of the Büchi automaton for a formula Φ is c|Φ|. During
the runtime monitoring we keep |Δ|n number of assignments where n is the
number of variables, hence, in the worst case |Δ||Φ|. Given that the automaton
is nondeterministic, each state can be marked with all assignments, hence we get
a space complexity of c|Φ| · |Δ||Φ| which is exponential in the size of the formula.
For the sake of readability, we presented markings as containing substitutions to
both across-state and local variables. Actually, in order to evaluate a formula in
L we do not need to keep assignments for local variables across the execution.
Indeed, they are used to check local conditions only. Therefore we can mark
states of the automaton with the across-state variables only and use a refined
(but trivial) mechanism for computing the markings at each step. Therefore, we
get an exponential space approach in the number of across state variables only,
which, in many practical cases, is much smaller than the length of the formula.

Recall that the naive approach costs c|Δ||Φ|
in space.

This gain does not come for free. Indeed, while in the naive approach the
emptiness per state can be done offline and once for all after the construction
of the automaton, in our case checking the Büchi condition is more involved,
because we have to perform it for each assignment separately. As described in
the previous Section, we perform such an analysis on the fly. Assuming we use
nested depth first search, that is linear time in the size of the automaton, each
time a new instance is presented as input, we have to check the emptiness |Δ||Φ|

times. We get |Δ||Φ| · c|Φ| time complexity at each step. We could also check
the emptiness for each assignment offline, paying the time cost once for all.
This, however, would require to keep, for each state q and for each assignment η
information about the badness of q for η, leading to another c|Φ| · |Δ||Φ| in space.

66 R. De Masellis and J. Su

Since the major constraint of this problem is the space rather than the time, we
prefer to perform the analysis online.

5 Related Work

Our work stands in the middle-ground between databases and verification, hence
it has been influenced by both fields.

Concerning databases, works on incremental evaluation of queries inspired our
approach. The work in [12] addresses the problem of efficiently evaluating a data-
log query to a database that is being updated. The solution amounts to compute
differences between successive database states which, along with the old query an-
swer, can be used to reduce the cost to re-evaluate the query in the new state. De-
rived (auxiliary) relations are stored to solve the problem. Chomicki [6] focuses on
an “history less” approach for checking database integrity temporal constraints.
Such constraints are FO-LTL formulas with past-tense operators (previous time
and since). This impacts the verification procedure that is not runtime and does
not account the undefined ? truth value. An incremental solution, which makes
use of auxiliary relations to store intermediate results, is proposed and complexity
results are similar. Toman [27] investigated techniques for historical query eval-
uation in warehouse systems, which, knowing all queries to be asked in advance,
physically delete irrelevant past databases. The query language includes temporal
variables. Besides, how to evaluate temporal queries over databases has been ex-
tensively studied in database literature and ad-hoc query languages has been pro-
posed, such as TSQL2 [26]. Such approaches, however, explicitly represent time
in the data, hence they deeply differ from the incremental approach used here. All
the aforementioned solutions do not employ automata.

On the other side, the verification community has proposed several techniques
for checking dynamic properties of data-aware business processes, all of them
based on model checking [7]. Since the presence of data makes the system infinite-
state, distinct approaches differ over restrictions used to achieve decidability.
In [4] decidability results for verifying temporal properties over data-aware sys-
tems are shown, and they are obtained by abstraction and by bounding the size
of the so-called deployed instances. In [11,19,8] decidability is achieved by con-
straining the actions that specify how the system evolves. Given that in general
several restrictions should be put in place to achieve decidability, our work dis-
tances itself from (offline) verification by proposing runtime verification as an
alternative to evaluate temporal properties on dynamic systems.

In the runtime verification literature, different formalisms for specifying ad-
missible executions has been proposed, such as ω-regular languages [9], LTL [3]
or even μ-calculus [10], but all of them uses propositional languages. In [2] open
first-order temporal properties are monitored, and the technique proposed re-
turns assignments that falsify the formula. However, the logic is too expressive
for supporting satisfiability and, more important, there is no “lookahead” mech-
anism of possible future evolutions (automata are not used indeed) so the bad
prefixes recognized are not minimal. The work in [18] is the closest to ours, but
a naive solution is adopted and no emphasis on complexity is placed.

Runtime Enforcement of FO LTL Properties on Data-Aware BPs 67

6 Conclusions and Future Work

This paper initiates the study of runtime monitoring of temporal properties over
data evolution using an automata-based technique. We have presented a property
specification languageL, that consists in afirst-order languagewithLTLoperators,
fixed domain and quantification across-state.To achieve decidability we constraint
the interpretation domain to be finite. From a formula Φ∈L we have shown how
to build a first-order automaton that, along with auxiliary data structures, can
be used for monitoring data evolutions of finite and unknown length. In order to
do so, we use the finite path semantics during the runtime evolution of snapshots
for recognizing both bad prefixes and good prefixes of a formula. Given that some
LTL properties can be violated or satisfied only by infinite paths, such a semantics
accounts the truthvalue ?.The evaluationof theproperty isbasedon the traditional
emptiness checking and our mechanism captures the semantics of finite paths.

We believe the theoretical complexity results we have obtained justify a deeper
investigation of the topic. As a first step in this direction we plan to practically
validate our approach. We think that implementing our procedure by making
use of symbolic data structures, such as binary decision diagrams, can further
improve space and time performances. Besides, an analysis of structural proper-
ties of both formulas and automata can reveal ways for implementing optimized
data structures for assignments in order to save space. From the theoretical view-
point, we plan to relax some of the assumptions we have made in this paper,
such as the fixed and finite domain assumptions. It would be also of interest
to investigate extensions of the temporal component of the language, such as
regular expressions, or more powerful logics such as μ-calculus.

Acknowledgments. The authors would sincerely like to thank G. De Giacomo,
C. Di Ciccio, D. Firmani, F. Leotta and A. Russo for the interesting discussions
and suggestions about the paper.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
2. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.

In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for ltl and tltl. ACM
Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

4. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
ICSOC 2011. LNCS, vol. 7084, pp. 142–156. Springer, Heidelberg (2011)

5. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007),
http://www.springerlink.com/content/w31j312311x6310j

6. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems 20(2), 149–186 (1995)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cam-
bridge (1999)

http://www.springerlink.com/content/w31j312311x6310j

68 R. De Masellis and J. Su

8. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-
centric business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 3–16. Springer, Heidelberg (2011)

9. D’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K., Ra-
jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg
(2005)

10. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: TIME, pp. 166–174 (2005)

11. De Giacomo, G., De Masellis, R., Rosati, R.: Verification of conjunctive artifact-
centric services. Int. J. Cooperative Inf. Syst. 21(2), 111–140 (2012)

12. Dong, G., Su, J., Topor, R.: Nonrecursive incremental evaluation of datalog queries.
Annals of Mathematics and Artificial Intelligence 14, 187–223 (1995)

13. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

14. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous soundness checking of industrial business process models. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 278–293. Springer, Heidelberg (2009)

15. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer Academic Press
(1998)

16. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

17. Gerede, C.E., Su, J.: Specification and verification of artifact behaviors in business
process models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 181–192. Springer, Heidelberg (2007),
http://www.springerlink.com/content/c371144007878627

18. Hallé, S., Villemaire, R.: Runtime monitoring of message-based workflows with
data. In: EDOC, pp. 63–72 (2008)

19. Hariri, B.B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P., Montali,
M.: Verification of description logic knowledge and action bases. In: ECAI, pp.
103–108 (2012)

20. Havelund, K., Rosu, G.: Foreword - selected papers from the first international
workshop on runtime verification held in paris, july 2001 (rv’01). Formal Methods
in System Design 24(2), 99–100 (2004)

21. Klai, K., Tata, S., Desel, J.: Symbolic abstraction and deadlock-freeness verification
of inter-enterprise processes. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 294–309. Springer, Heidelberg (2009)

22. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

23. Manna, Z., Pnueli, A.: Temporal verification of reactive systems - safety. Springer
(1995)

24. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

25. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
26. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)
27. Toman, D.: Expiration of historical databases. In: TIME, pp. 128–135 (2001)
28. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,

F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

http://www.springerlink.com/content/c371144007878627

QoS-Aware Service VM Provisioning in Clouds:

Experiences, Models, and Cost Analysis

Mathias Björkqvist1, Sebastiano Spicuglia2, Lydia Chen1, and Walter Binder2

1 IBM Research Zürich Laboratory
Rüschlikon, Switzerland

{mbj,yic}@zurich.ibm.com
2 University of Lugano
Lugano, Switzerland

firstname.lastname@usi.ch

Abstract. Recent studies show that service systems hosted in clouds
can elastically scale the provisioning of pre-configured virtual machines
(VMs) with workload demands, but suffer from performance variability,
particularly from varying response times. Service management in clouds
is further complicated especially when aiming at striking an optimal
trade-off between cost (i.e., proportional to the number and types of VM
instances) and the fulfillment of quality-of-service (QoS) properties (e.g.,
a system should serve at least 30 requests per second for more than 90%
of the time). In this paper, we develop a QoS-aware VM provisioning
policy for service systems in clouds with high capacity variability, using
experimental as well as modeling approaches. Using a wiki service hosted
in a private cloud, we empirically quantify the QoS variability of a sin-
gle VM with different configurations in terms of capacity. We develop
a Markovian framework which explicitly models the capacity variability
of a service cluster and derives a probability distribution of QoS ful-
fillment. To achieve the guaranteed QoS at minimal cost, we construct
theoretical and numerical cost analyses, which facilitate the search for
an optimal size of a given VM configuration, and additionally support
the comparison between VM configurations.

Keywords: QoS, cloud services, VM provisioning, Markovian models.

1 Introduction

Service systems are increasingly deployed in clouds due to the advantages of
scalability and ease of management. In the cloud, a set of preconfigured VM in-
stances is available at different costs (e.g., small, medium, large, and very large
instances in Amazon EC2 [1]), and their corresponding hardware-related per-
formance metrics are provided at best effort [15]. Meanwhile, service providers
face ever more stringent QoS demands from users, in particular regarding the
tail performance, e.g., 95th percentile or higher response times. The difficulties
of service management in clouds (i.e., selecting a VM configuration and dimen-
sioning the system correctly) are further exacerbated when aiming at providing

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 69–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 M. Björkqvist et al.

QoS guarantees for both average and tail performance [8], while retaining the
cloud advantages at the same time.

Several empirical studies [6, 16, 20] point out a common pitfall in clouds that
the performance variability — in this case the response time of services — fluc-
tuates significantly and tail latency degrades due to the heterogeneity of the
underlying hardware and the workloads collocated on the same physical hosts.
Although virtualization enables the efficient multiplexing of workloads across the
ample hardware resource, performance isolation is limited [7], especially for ap-
plications that are not CPU intensive. While the performance variability persists
in cloud platforms, little is known about the sensitivity of services on different
VM configurations in terms of capacity1 i.e., the maximum number of service
requests that can be processed sustainably, and the aggregate impact of the
capacity variability of a single VM on the QoS of the entire service cluster.

VM provisioning of service systems is typically based on the average capacity,
which in turn is a good indicator for systems experiencing low variability and
providing simple QoS guarantees [22], such as average throughput over a cer-
tain threshold. To avoid performance penalties due to variability in the cloud,
selecting VMs with desirable performance becomes of paramount importance
not only to reduce performance variability [9], but also to optimize cost [3, 5].
Consequently, empirical approaches are proposed to acquire VMs with higher
capacities. However, due to the empirical nature of the proposed VM selection
strategies, a QoS promise of satisfying a given target throughput is only attained
at best effort. Moreover, the resulting cost minimization may be arbitrary, de-
pending on the workload dynamics of the underlying cloud platform.

Our study aims to find the optimal VM provisioning for a service system,
i.e., composed of an ideal VM configuration using a minimum number of VM
instances, such that the required QoS properties are guaranteed for a certain
fraction of time at minimal cost (e.g., 90% of the time the sustainable through-
put should be at least 30 requests per second). To such an end, we study a
wikipedia service [19] and first empirically quantify its capacity variability on
different VM configurations, in the presence a daemon VM executing various
benchmark workloads in a private cloud. Leveraging our empirical experience,
we build a Markovian model which explicitly models the capacity variability
of an entire cluster, and we derive the probability distribution of the delivered
QoS for a given number of VMs of a certain configuration. Based on analytical
solutions regarding the QoS fulfillment, we construct theoretical and numeri-
cal analyses to evaluate the tradeoff between cost and the fulfillment of QoS
promises, (1) by comparing optimal provisioning to simple pessimistic and op-
timistic provisioning; (2) when provisioning based on the average capacity fails;
and (3) when choosing a VM configuration that returns the best cost/service-
availability ratio.

This paper is organized as follows: The capacity variability of a VM hosting a
wiki service on different VM configurations is discussed in Section 2. The proposed

1 In this paper, we use the terms capacity and sustainable maximum throughput
interchangeably.

QoS-Aware Service VM Provisioning in Clouds 71

Markovianmodel andVMprovisioning optimization is described in Section 3. Sec-
tion 4 presents our cost analysis. Related studies are summarized in Section 5. Sec-
tion 6 concludes this paper.

2 Capacity Variability of Service VM Configuration

In this section, we use a controlled cloud environment to study the capacity
variability of service hosting on different VM configurations, i.e., the fluctuation
of capacity, against single neighboring VMs executing various workloads. To such
an end, our target service is a wikipedia deployed on a set of VM configurations
and collocated with a daemon VM executing Dacapo benchmarks [2] in a private
cloud. Essentially, we use the daemon VM to synthesize interference that can be
encountered by a wiki VM in the cloud and parametrize the capacity variability,
which is then used to build the QoS model for a service cluster in Section 3.

2.1 Experiment Setup

From our private cloud environment, we chose two IBM System x3650 M4 ma-
chines, gschwend and nussli, each with 12 Intel Xeon E5-2620 cores running at
2.00GHz, and 64 and 36 GB of RAM, respectively, for running our experiments.
We use KVM on gschwend for hosting our target and daemon VMs, and nussli
for generating the Apache JMeter workload requests for our target wiki VM.

The target wikipedia system is based on a subset of 500000 entries from a
pages-articles.xml dump downloaded on October 12, 2012. The wiki VM is a
Debian 7.0 system running an Apache 2.4.4 web server, the PHP 5.4.15 server-
side script engine, MediaWiki 1.21 as the web application, and the MySQL 5.5.31
database. The number of threads employed by Jmeter is configured such that
the maximum throughput of the wiki VM is reached. As for the workload on the
daemon VM, we selected the following benchmarks from the Dacapo benchmark
suite: (1) fop, a lowly threaded CPU-intensive benchmark; (2) luindex, a lowly
threaded IO-intensive benchmark; (3) sunflow, a highly threaded CPU-intensive
benchmark; (4) lusearch, a highly threaded CPU- and IO-intensive benchmark;
and (5) tomcat, a network-intensive benchmark. We refer readers to [7] for the
detailed threading behaviors and characterization of the Dacapo benchmarks.

We consider four types of VM configurations, with CPUs and memory sizes
as listed in Table 1, which are comparable to VM offerings in Amazon EC2 [1].
We use three configurations for the wiki VM (bronze, silver, and gold), and two
configurations for the daemon VM (gold and platinum). Based on experimental
evaluation, we use two, four, and eight threads when running Jmeter against a
wiki running on a bronze, silver, and gold VM instance, respectively. In total,
we evaluate the amount of performance interference experienced by the wiki
under 36 scenarios, i.e., three configurations of wiki VMs × six types of dae-
mon workloads (5 DaCapo benchmarks and no workload) × two daemon VM
configurations.

72 M. Björkqvist et al.

Table 1. VM configurations and naming conventions

Bronze Silver Gold Platinum

No. processing units 1 2 4 8

RAM (GB) 4 8 16 32

The target wiki performance statistics are collected from the Apache log files
which record the current time, the requested URL, and response time for each
request. After a warmup period for the wiki VM, Jmeter, the daemon VM and
the DaCapo benchmark, we start collecting statistics for five minutes for each
of the 36 scenarios, each of which is repeated ten times. We summarize the
results of 36∗10 = 360 runs using box plots in Fig. 1. One can straightforwardly
find that the capacity variability of the wiki, i.e., the difference between no
workload and different DaCapo benchmarks running on the daemon VM, can
vary significantly depending on VM configurations and the characteristics of the
DaCapo benchmark.

For further analysis, we take the median of the repeated runs of all scenarios
and compute the average of the normalized throughput, compared to the scenario
with no daemon VM neighbor. We thereafter categorize the results by target VM
type, daemon VM type, and benchmark.

none fop ldex lsrchsuflo toca

3.5

4

4.5

5

5.5

6

gold , platinum

m
ax

 T
hp

t/c
ap

ac
ity

none fop ldex lsrchsuflo toca
1.5

2

2.5

3

gold , platinum

m
ax

 T
hp

t/c
ap

ac
ity

none fop ldex lsrchsuflo toca
0.6

0.8

1

1.2

1.4

1.6

gold , platinum

m
ax

 T
hp

t/c
ap

ac
ity

(a) Wiki on gold (b) Wiki on silver (c) Wiki on bronze

Fig. 1. Capacity variability of a wiki running on different VM configurations against
fop, luindex, lusearch, sunflow, and tomcat, hosted on gold and platinum VMs: box
plots based on 10 repetitions

2.2 (In)Sensitivity of Capacity Variability

To compare the robustness of different target VM configurations, we normal-
ize the throughput of the wiki VM by the throughput of the wiki without any
neighbor for gold, silver, and bronze VMs. In Fig. 2(a), we present the average
normalized throughput, a higher value of which means less interference is ob-
served and the wiki VM is more robust. When collocated with a gold daemon
VM, the difference between wikis running on different VM configurations is al-
most negligible. However, in our setup, when the daemon VM is more dominant,
i.e., a platinum VM, a wiki on a silver VM seems to be slightly more robust
than when on a gold or bronze VM. Such an observation can also be made for
individual daemon workloads, see Fig. 1. Overall, our experiments show that a

QoS-Aware Service VM Provisioning in Clouds 73

wiki running on a silver VM is slightly more robust to noisy neighbors, and the
capacity of the wiki can be throttled by 10-20% on average due to interference
from neighboring VMs.

Gold Silver Bronze
0.5

0.6

0.7

0.8

0.9

1

0.90
0.91 0.91

0.82 0.83
0.80

N
or

m
al

iz
ed

 T
hp

t/c
ap

ac
ity

gold
platinum

fop ludex lsrch sunflow tomcat
0.5

0.6

0.7

0.8

0.9

1
0.97 0.98

0.64

0.79

0.92

N
or

m
al

iz
ed

 T
hp

t/C
ap

ac
ity

(a) Impact of different target VM (b) Impact of different daemon
configurations workloads

Fig. 2. Average analysis of normalized throughput of target wiki

2.3 A Really Noisy Daemon

We try to identify which type of workload represents the noisiest neighbor and
causes high capacity variability for a wiki service collocated on the same physical
machine. We compute the average normalized throughput across all target VM
configurations for each benchmark, as presented in Fig. 2(b). One can clearly see
three levels of performance variability: (1) mild interference from fop, luindex,
and tomcat, where the capacity degradation is within 10%; (2) medium interfer-
ence from sunflow, where the capacity is degraded by roughly 20%; and (3) high
interference from lusearch, where the capacity degradation can be up to 35%.
Clearly, lusearch is the noisiest neighboring VM for our wiki service, as they
both compete for a similar set of resources, i.e., both CPU and IO. As both
fop and luindex have limited concurrent threading, only limited performance
interference is observed.

Up to this point, our experiments have addressed the variability of a wiki ser-
vice hosted on a single VM. In the next section, we leverage Markovian modeling
to capture the capacity variability of a wiki cluster consisting of multiple VMs.

3 Markov Chain Model for Service Cluster

In this section, our objective is to derive a rigorous mathematical analysis for
answering the question, ”what is the minimum size of a cluster whose VMs
experience capacity variability such that the probability of achieving a target
QoS is guaranteed?”. We define the service capacity C(n) as the total number of

74 M. Björkqvist et al.

requests processed by a cluster of n ∈ Z VMs, its QoS target as C∗, the ful-
fillment of which should be above a certain threshold ξ. Using Markov chain
modeling, we obtain the steady-state distribution of QoS of a cluster with n
VMs, and further search for the minimum n that satisfies the desired availabil-
ity, Pr[C(n) > C∗] > ξ.

We start out the analysis by modeling the transition between high and low
capacity of a single wiki VM, using values obtained in the previous section.
Based on that, we develop a continuous-time Markov chain to model the service
availability of the entire cluster. Finally, we show, by theoretical analysis and
numerical examples, that the proposed minimum cluster size, n∗, indeed attains
a good trade-off between cost and guarantee of service availability.

3.1 Single VM Node

We assume that a VM of a certain configuration (e.g., gold, silver, or bronze)
alternates between states of high and low capacity, denoted by μh and μl, for
exponentially distributed times with rate α and β, respectively. Examples of
such values can be found in Fig. 1 for different VM configurations. We term
the difference between μh and μl the capacity variability, and (α, β) the inten-
sity of the variability. Fig. 3 illustrates the state transitions and time series of
such a model. To capture the maximum variability possibly experienced by a
VM, we only adopt two states of capacity, namely high and low, for different
VM configurations. Their parameterizations can be carried out by our empir-
ical analysis in Section 2. On the contrary, the values of α and β depend on
the workload dynamics of the underlying cloud, and thus are assumed invariant
to VM configurations. Note that one may find intermediate states in reality,
i.e., the capacity is between [μl, μh]. Our proposed model can be further refined
to accommodate multiple levels of capacities, albeit with a higher computation
overhead for obtaining steady-state probability of service availability (see the
next subsection).

Capacity
Per VM

Time

~Exp()

~Exp()
μl

μh

h l

Fig. 3. Capacity variability of a VM: state diagram of high and low capacity (left) and
illustration of time series (right)

QoS-Aware Service VM Provisioning in Clouds 75

3.2 Continuous Markov Chain Modeling of the Cluster

The single VM model naturally leads us to use a continuous-time Markov chain
(CTMC) to describe the dynamics of available capacity in a cluster consisting
of n VMs, experiencing high and low capacity. In the proposed CTMC, a state
i ∈ I = {1, 2, . . . n} is defined as the number of VMs having low capacity,
while the rest of n− i VMs in the cluster have high capacity. Consequently, the
corresponding capacity of state i in the systems is

Ci(n) = iμl + (n − i)μh.

Note that Ci(n) ≥ Cj(n), for i ≤ j — essentially, Ci(n) monotonically de-
creases in i. When there are i VMs with low capacity, the system transpositions
to state i + 1 with the rate (n − i)α, and to state i − 1 with the rate iβ. Fig. 4
illustrates such a Markov chain for a cluster of n VMs.

0

n (n 1)

•••1 2 i nn-1•••

(n i)

0

2 n

1 2

i

Fig. 4. Markov chain of aggregate VM capacities, where the state denotes the number
of VMs experiencing low capacity

We let π = [π0, π1 . . . πn] denote the steady-state probability that the system
has a service capacity of Ci(n). One can solve the Markov chain in Fig. 4 by a
set of balance equations [13], i.e.,

(n − i)απi = (i)βπi+1 ∀i,∑
i

πi = 1.

Substituting all πi as a function of πn, we can then obtain the closed formed
solution of π

πn =
1

(1 + α
β)

n
(1)

πi =

(
n

i

)
(
α

β
)n−iπn, 0 ≤ i < n.

Consequently, we can derive the probability that the service capacity is greater
than the target

Pr[C(n) > C∗] =
∑

i∈{I:Ci(n)>C∗,i≤n}
πi. (2)

76 M. Björkqvist et al.

To compute Pr[C(n) > C∗] for all n ∈ Z, one shall first compute the values
πi, ∀i using 1 for a given n, and the sum of πi for the states i where the resulting
capacity is greater than C∗, and then iterate the computation procedure for all
values of n.

3.3 Trade-Off between Cost and Service Availability

To find a minimum cluster size that ensures that a service capacity greater than
the target capacity, C > C∗, is guaranteed for ξ% of time, we can formulate
the following optimization after substituting Eq. 1 into the constraints and re-
arrangements:

minimize n

subject to (n − i)μh + iμl ≥ C∗∑
i

(
n

i

)
(
α

β
)n−i 1

(1 + α
β)

n
≥ ξ

i ≤ n

For given values of α, β, μh, and μl, Pr[C(n) > C∗] is a function increasing
in n, i.e., when n1 ≥ n2, Pr[C(n1) > C∗] ≥ Pr[C(n2) > C∗], as self-explained in
the second constraint in the above optimization. Consequently, one can straight-
forwardly find the optimal n∗ by linearly searching through the possible values
of n ∈ Z in an increasing order.

Note that the optimization is constructed implicitly depending on the work-
load intensity via the value of C∗. For a given period of time when the workload
intensity is predicted as λ requests per second, one may want to keep the system
80% utilized, and set the target capacity to C∗ = λ/0.8. The choice of the target
capacity is out of scope of this work, and we direct interested readers to our
prior work [4, 5].

n∗ vs. Simple Solutions. Herein, we illustrate how n∗ obtained through our
proposed methodology attains a good trade-off between the cost and the guaran-
teed service availability, compared to simple optimistic and pessimistic solutions.
One may optimistically think that all VMs have high capacity and only purchase
nopm = �C∗/μh� VMs by simply dividing the target capacity with the value of
high capacity of a single VM. In contrast, a pessimistic solution would be to as-
sume that all VMs have low capacity and purchase npsm = �C∗/μl�. As μh > μl,
npsm is greater than nopm.

We compute the service availability curves by Eq. 2 for all values of n that
fulfill the target capacity of C∗ = 60 requests per second, using α = 60, β = 50
and two sets of μh and μl, respectively. Fig. 5 summarizes the numerical results.
Additionally, we also graphically illustrate the optimal provisioning of VMs (n∗)
that fulfill the desired service availability, i.e., the cluster capacity is greater than
60 for ξ = 90% of the time, compared with pessimistic (npsm) and optimistic
(nopm) solutions. We consider service availability curves in two cases of capacity

QoS-Aware Service VM Provisioning in Clouds 77

variability, namely with smaller and bigger difference between the high and low
capacity of a VM. One can easily see that the optimal cluster size grows with
the variability, indicated by a higher value of n∗ in Fig. 5(b) than (a). When the
variability of capacity is higher, the service availability curve increases slower
in n than in the low variability case. Moreover, the pessimistic and optimistic
allocations are even further away from the optimal one.

25 30 35 40
0

0.2

0.4

0.6

0.8

1

P
r(

C
>

C
*)

size of cluster(n)

μ
h
=2.4, μ

l
=1.6

QoS curve
Optimal n
Optimistic n
Pessimistic n

20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

P
r(

C
>

C
*)

size of cluster(n)

μ
h
=3.2, μ

l
=0.8

QoS curve
Optimal n
Optimistic n
Pessimistic n

(a) Smaller variability (b) Bigger Variability

Fig. 5. Service availability curve, Pr[C(n) > 60]: the optimal number of VMs to achieve
ξ = 90%, the pessimistic, and the optimistic solution

To proceed to cost comparison, we assume the cost of a cluster, cost(n), is
a strictly increasing function in n, i.e., cost(n1) ≥ cost(n2) when n1 ≥ n2.
Furthermore, due to the monotonicity of Pr[C(n) > C∗] and nopm ≤ n∗ ≤ npsm,
we reach the following corollary:

Corollary 3.1.

cost(nopm) ≤ cost(n∗) ≤ cost(npsm),

Pr[C(nopm) > C∗] ≤ Pr[C(n∗) > C∗] � ξ ≤ Pr[C(npsm) > C∗].
(3)

Though the optimistic solution incurs lower cost, the QoS fulfillment threshold
is not met. On the contrary, the pessimistic solution can achieve the service
availability with 100% guarantee, but at a higher cost. The optimal provisioning
of VMs, n∗, indeed achieves a good trade-off between cost and QoS fulfillment,
compared to simple optimistic and pessimistic solutions. Note that n∗ can result
in a slightly higher value of Pr[C(n∗) > C∗] than ξ, due to the discrete choice
of the number of VMs.

We further numerically illustrate how such a trade-off is affected by different
levels of variability in capacity of a single VM. Using a simple linear cost function,
i.e., cost(n) = 1.2 · n, we construct two numerical examples in Fig. 6, following
the parameters discussed in Fig. 5. Note that the cost here is defined as the cost
per time unit, which can be aligned with the billing periods used in commercial
clouds, e.g., one hour. One can see that n∗ can improve the QoS fulfillment

78 M. Björkqvist et al.

drastically by increasing cost, compared to nopm, and reduce cost significantly
by allowing a fractional capacity degradation, compared to npsm. The advantage
of n∗ in attaining a good trade-off is even more prominent in the case of bigger
variability.

n^{opm} n^* n^{psm}
0

0.5

1

P
ro

b(
C

>
C

*)

n^{opm} n^* n^{psm}
0

20

40

60

co
st

n^{opm} n^* n^{psm}
0

0.5

1

P
ro

b(
C

>
C

*)
n^{opm} n^* n^{psm}

0

50

100

co
st

(a) Lower variability, (μl, μh) = (1.6, 2.4) (b) Higher variability, (μl, μh) = (0.8, 3.2)

Fig. 6. QoS fulfillment vs. cost: Pr[C(n) > C∗ = 60] > ξ = 0.9

Why Not Consider Average Capacity of a VM?. In this subsection, we
show that choosing n based on the average capacity of a VM cannot reach the
optimal values nor guarantee QoS fulfillment at the target capacity level, using
numerical examples. Recalling the state transition of a VM depicted in Fig. 3(a),
the average capacity of a single VM, μ, and the VM provisioning based on the
average capacity, navg are

μ =
μhα + μlβ

α + β
, and navg =

C∗

μ
,

respectively. Fig. 7 demonstrates that a cluster size based on the average ca-
pacity is not a reliable solution under three scenarios of (α, β), namely (a) often
experiencing low capacity (b) alternating between high and low capacity equally,
and (c) often experiencing high capacity. We let μh = 2.4 and μl = 1.6, as used
in the case of small variability. Shown in Fig. 7(a), when α < β, navg tends
to overestimate and Pr[C(n) > C∗] is over the required values, ξ = 0.9. When
α > β, navg tends to underestimate and Pr[C(n) > C∗] is below the required
values, indicated by the horizontal line overlapped on the x-axis in Fig. 7(c).

As for α = β, we want to highlight that navg can achieve the target capacity
roughly 50% of the time, for any capacity variability and target values. This
observation can be explained by Eq. 1. When α = β, the steady state of QoS
fulfillment is greatly simplified to πn = 1/2n and πi =

(
n
i

)
(1/2n). Thus, substi-

tuting navg = �1/2μh + μl� can result in Pr[C(n) > C∗] = (50 + ε)%], where ε
is a small positive fluctuation due to the ceiling operator on navg.

Observation 3.2. When α = β, navg can achieve C(n) > C∗ roughly 50% of
the time, i.e., Pr[C(n) > C∗] = 50 + ε%, where ε is a small positive value.

QoS-Aware Service VM Provisioning in Clouds 79

25 30 35 40
0

0.2

0.4

0.6

0.8

1

P
r(

C
>

C
*)

size of cluster(n)

α= 20, β= 50

QoS curve
Optimal n
Average n

25 30 35 40
0

0.2

0.4

0.6

0.8

1

P
r(

C
>

C
*)

size of cluster(n)

α= 50, β= 50

QoS curve
Optimal n
Average n

25 30 35 40
0

0.2

0.4

0.6

0.8

1

P
r(

C
>

C
*)

size of cluster(n)

α= 50, β= 20

QoS curve
Optimal n
Average n

(a) α < β (b) α = β α > β

Fig. 7. QoS fulfillment curves based on navg and n∗, under μh = 2.4 and μl = 1.6

4 Choosing a VM Configuration

In this section, we compare different VM configurations in terms of their optimal
cluster sizes and total cost, based on our proposed Markov chain model. Using
theoretical and numerical analysis, we study if a cluster composed of more power-
ful VMs is always smaller than a cluster of weaker VMs. Due to the large number
of parameters considered, we focus on providing a condition where weaker VMs
imply a bigger cluster, and numerical counter examples where a cluster of weaker
VMs can provide better service availability than a cluster of more powerful VMs.

4.1 Typical Case: Weaker VM Means a Bigger Cluster

Following the convention in Section 2, we consider three types of VM instances,
namely gold, silver, and bronze. A gold instance is more powerful and implies
a higher average computational capacity than a silver instance, whose average
capacity is more than that of a bronze instance. All VM configurations experience
high (μh,type) and low capacity (μl,type) for exponentially distributed durations
with means equal to α and β, respectively. We can show the necessary condition
for the typical case, meaning clusters of weaker VMs are bigger than clusters of
more powerful VMs when achieving the same target of service availability.

Theorem 4.1. When experiencing the same α and β and aiming at the same
service availability threshold, the cluster sizes of gold, silver, and bronze instances
are

n∗
gold ≤ n∗

silver ≤ n∗
bronze, when

μh,gold ≤ μh,silver ≤ μh,bronze, andμl,gold ≤ μl,silver ≤ μh,bronze.

The theorem follows straightforwardly from the monotonicity of Pr[C(n) >
C∗] in n. Due to the lack of space, we skip the proof. The theorem tells us that
to guarantee the same level of service availability, one should definitely acquire
a higher number of weaker VMs than powerful VMs, when the low and high
capacity of weaker VMs are inferior to the low and high capacity of powerful
VMs, respectively.

80 M. Björkqvist et al.

We note that the typical case simply implies the order of n∗ for different con-
figurations, not the differences in their costs. Using three types of cost functions,
namely linear, concave, and convex, we show that the costs of different types
of VM clusters can vary a lot. In particular, the high and low capacities expe-
rienced by each VM configuration are listed under the typical case in Table 2,
where (α, β) are (40,20). The linear/concave/convex cost function means the
cost per VM instance is linearly/concavely/convexly proportional to the average
capacity of single VM of a particular type. We set the cost per VM per time
unit of (gold, silver, bronze) for linear, concave, and convex as (1.5, 2.25, 3.375),
(1.5, 1.95, 2.7), and (1.5, 2.7, 4.2), respectively. Fig. 8(a) and (b) summarize the
resulting service availability curves of different VM types and the resulting costs
under different cost functions. One can see that although the bronze cluster is
much bigger than the gold, the cost can still be lower when the cost per VM is
linearly and convexly proportional to their average capacity. On the contrary,
when there is a discount on computational capacity, i.e., when the cost per unit
of computation decreases for gold, a gold cluster can be a cheaper option as
shown by the case of a concave cost function.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

size of cluster,n

P
r(

C
>

C
*)

bronze
silver
gold
ξ=0.9

linear concave convex
0

5

10

15

20

25

30

35

40

co
st

[$
]

bronze
silver
gold

(a) QoS Curves (b) Different cost functions

Fig. 8. QoS fulfillment and cost comparison for a typical case: comparison of gold,
silver and bronze VMs

4.2 Counter Example: A Cluster of Weaker VMs Can Be Smaller

Here, we show by some counter examples that the optimal size of a cluster with
weaker VMs is not necessarily larger. The capacity parameters of gold, silver,
and bronze instances used are listed under the counter example in Table 2. The
average capacity, μ, is the average of high and low capacity, and grows with the
VM configuration. However, the capacity variability, i.e., the difference between
high and low capacity, is higher for more powerful VMs.

Fig. 9 summarizes the curve of QoS fulfillment of the three VM configurations.
One can see that the QoS curve of the three types of VMs cross each other at
n = 15. For a given size, the QoS of a gold VM is not necessarily higher than
that of a silver or bronze VM. In particular, for n ≥ 15, the QoS of a silver
VM is higher or equal to a gold VM. As a result, depending on the threshold of

QoS-Aware Service VM Provisioning in Clouds 81

Table 2. Capacity parameters of single VM for all VM types

Typical Case Counter Example

μl μ μh μl μ μh

Gold 3.75 4.5 5.62 0.26 2.65 5.03
Silver 2.25 3.00 3.75 0.95 2.30 3.64
Bronze 1.50 2.00 2.50 1.80 2.00 2.20

QoS, ξ, the optimal cluster size of bronze VMs can be bigger, or smaller than
that of gold VMs. To guarantee Pr[C(n) > 30] ≥ 0.85, the optimal cluster size
of all three types of VMs is 16. When such a threshold is higher than 0.85, the
number of VMs in a gold cluster should be higher than in a bronze cluster. This
leads us to conclude that not only the average, but also the variability in VM
throughput is crucial in choosing and sizing VM clusters in the cloud.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

size of cluster,n

P
r(

C
>

30
)

Bronze QoS
Silver Qos
Gold QoS
ξ=0.85

Fig. 9. QoS curve of different types of VMs, under α = β = 20, Pr[C > 30] > 0.85

Our proposed Markov model and solution provide an efficient means to ex-
plore a large number of parameters encountered, such as different cost functions,
and exogenous variabilities and their intensity, when choosing the right VM con-
figuration and deciding the cluster size. Numerical examples serve the purpose of
illustrating how our solution robustly attains an optimal trade-off between cost
and QoS fulfillment across different system parameters and VM configurations.

5 Related Work

Recent studies on QoS analysis for cloud services [18, 21, 22] are mainly driven
by service compositions and service selection, using a Markovian decision pro-
cess [14] or a Baysian network model [21]. In contrast, studies focusing on con-
stant QoS value, e.g., Zheng [22] proposed a calculation method to estimate the
probabilistic distribution of QoS. However, the impact on the QoS due to the
underlying performance variability of the cloud is to a large extent overlooked.

Most existing studies on the performance variability of applications hosted
in the cloud are based on empirical experiments, especially in terms of average
and 95th response time [16, 20], and aim to discover the root cause of such a

82 M. Björkqvist et al.

phenomenon [10–12]. The observations made from cloud experiments are mainly
based on a single type of configuration and simple benchmarks. A few studies [16,
17, 20] focus on multiple types of VM configurations and try to quantify the
variability in their response times. Moreover, the variability in throughput is
largely evaluated under a particular workload intensity, instead of using the
maximum sustainable throughput, i.e., the capacity.

Meanwhile, another set of studies focus on developing solutions to reduce the
performance variability in a best effort manner, from the perspective of service
providers. Particularly, both [5,9] propose opportunistically selecting VMs which
have high capacity, while discarding VMs with low capacity. Another type of so-
lution is to try to figure out the underlying hardware and neighboring workloads,
so as to select similar physical hosts [16] and influence the neighboring VMs [15].
As the methodology is trial and error, the QoS of the target application, e.g.,
the service availability, is not always guaranteed. Moreover, the cost analysis is
over-simplified, without considering the performance variability.

Our study provides a complementary perspective to the related work by char-
acterizing capacity variability experienced by a single VM, with respect to dif-
ferent types of workloads, and rigorously models its aggregate effect on multiple
VMs in fulfilling sophisticated QoS while aiming at minimizing cost.

6 Conclusion

Using empirical experiments with a wikipedia system, as well as a Markovian
model and numerical analysis, we demonstrate how QoS fulfillment can be best
guaranteed with a minimum number of correctly configured VMs deployed in a
cloud where VMs suffer from high capacity variability. Our experimental results
show that different VM instance sizes can have varying degrees of capacity vari-
ability from collocated VMs and that workloads on collocated VMs can impact
the capacity of the service VM by up to 35%. Our analytical and numerical
results provide not only insight on how an optimal number of VMs should be
chosen for a service cluster, but also give counter examples on why simple pes-
simistic, optimistic, and average-based provisioning of VMs cannot strike an
optimal balance of cost and QoS fulfillment in the cloud where performance
variability persists. Overall, we provide a systematic and rigorous approach to
explore several crucial aspects of VM provisioning for service clusters, i.e., ca-
pacity variability, cost structure, and guarantees regarding QoS fulfillment.

Acknowledgements. The research presented in this paper has been supported
by the Swiss National Science Foundation (project 200021 141002) and by the
European Commission (Seventh Framework Programme grant 287746).

References

1. Amazon EC2, http://www.amazon.com/
2. DaCapo suite, http://dacapobench.org/

http://www.amazon.com/
http://dacapobench.org/

QoS-Aware Service VM Provisioning in Clouds 83

3. Björkqvist, M., Chen, L.Y., Binder, W.: Cost-driven Service Provisioning in Hybrid
Clouds. In: Proceedings of IEEE Service-Oriented Computing and Applications
(SOCA), pp. 1–8 (2012)

4. Björkqvist, M., Chen, L.Y., Binder, W.: Dynamic Replication in Service-Oriented
Systems. In: Proceedings of IEEE/ACM CCGrid, pp. 531–538 (2012)

5. Björkqvist, M., Chen, L.Y., Binder, W.: Opportunistic Service Provisioning in the
Cloud. In: Proceedings of IEEE CLOUD, pp. 237–244 (2012)

6. Casale, G., Tribastone, M.: Modelling Exogenous Variability in Cloud Deploy-
ments. SIGMETRICS Performance Evaluation Review 40(4), 73–82 (2013)

7. Chen, Y., Ansaloni, D., Smirni, E., Yokokawa, A., Binder, W.: Achieving
Application-centric Performance Targets via Consolidation on Multicores: Myth
or Reality? In: Proceedings of HPDC, pp. 37–48 (2012)

8. Dean, J., Barroso, L.: The Tail at Scale. Commun. ACM 56(2), 74–80 (2013)
9. Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bowers, K.D., Swift, M.M.:

More for your Money: Exploiting Performance Heterogeneity in Public Clouds. In:
SoCC, pp. 20:1–20:14 (2012)

10. Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking Supernovae
in the Clouds: A Performance Study. In: Proceedings of HPDC, pp. 421–429 (2010)

11. Kossmann, D., Kraska, T., Loesing, S.: An Evaluation of Alternative Architectures
for Transaction Processing in the Cloud. In: SIGMOD Conference, pp. 579–590
(2010)

12. Mao, M., Humphrey, M.: A Performance Study on the VM Startup Time in the
Cloud. In: IEEE CLOUD, pp. 423–430 (2012)

13. Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathe-
matics of Computer Performance Modeling. Springer (2000)

14. Ramacher, R., Mönch, L.: Dynamic Service Selection with End-to-End Constrained
Uncertain QoS Attributes. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
ICSOC 2012. LNCS, vol. 7636, pp. 237–251. Springer, Heidelberg (2012)

15. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: Pro-
ceedings of ACM CCS, pp. 199–212 (2009)

16. Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance. PVLDB 3(1), 460–471 (2010)

17. Spicuglia, S., Chen, L.Y., Binder, W.: Join the Best Queue: Reducing Performance
Variability in Heterogeneous Systems. In: Proceedings of IEEE CLOUD (2013)

18. Tsakalozos, K., Roussopoulos, M., Delis, A.: VM Placement in non-Homogeneous
IaaS-Clouds. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 172–187. Springer, Heidelberg (2011)

19. Wikipedia, http://www.wikipedia.org/
20. Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: Avoiding Long Tails in the

Cloud. In: Proceedings of NSDI (April 2013)
21. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on

economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)

22. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service
compositions based on probabilistic qoS. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg
(2011)

http://www.wikipedia.org/

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 84–98, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Personalized Quality Prediction for Dynamic Service
Management Based on Invocation Patterns

Li Zhang1,2, Bin Zhang1, Claus Pahl2, Lei Xu2, and Zhiliang Zhu1

1 Northeastern University, Shenyang, China
{zhangl,zhuzl}@swc.neu.edu.cn, zhangbin@ise.neu.edu.cn

2 Dublin City University, Dublin, Ireland
{cpahl,lxu}@computing.dcu.ie

Abstract. Recent service management needs, e.g., in the cloud, require services
to be managed dynamically. Services might need to be selected or replaced at
runtime. For services with similar functionality, one approach is to identify the
most suitable services for a user based on an evaluation of the quality (QoS) of
these services. In environments like the cloud, further personalisation is also pa-
ramount. We propose a personalized QoS prediction method, which considers
the impact of the network, server environment and user input. It analyses pre-
vious user behaviour and extracts invocation patterns from monitored QoS data
through pattern mining to predict QoS based on invocation QoS patterns and
user invocation features. Experimental results show that the proposed method
can significantly improve the accuracy of the QoS prediction.

Keywords: Service Quality, Web and Cloud Services, QoS Prediction, Invoca-
tion Pattern Mining, Collaborative Filtering, Personalized Recommendation.

1 Introduction

Service QoS (Quality of Service) is the basis of Web and Cloud service discovery [1-
4], selection [5,6] and composition [7-9]. For services located in open environments
such as the Web or the Cloud, QoS may vary depending on the network, the service
execution environment and user requirements. Additionally, a personalized QoS eval-
uation of services for different service users is necessary in particular in these open
environments, as users more and more expect the customisation of publically pro-
vided services used by them. Generally, service QoS information is derived in three
ways: delivered by services providers, evaluated based on user feedback and pre-
dicted based on monitoring information. Prediction based on monitoring is more ob-
jective and reliable in untrusted Web and Cloud contexts and more suitable for these
dynamically changing environments. There are two types of prediction based on mon-
itoring: one is based on statistical, the other is personalized prediction. Many imple-
mentations [1,5,7,9,10] adopt the statistical approach for usage (QoS) prediction. The
statistical method is simple and easy to implement, e.g., response-time is usually
calculated based on the average response time. This method ignores the users’
personalized requirements, network conditions and execution features. For example,

 Personalized Quality Prediction for Dynamic Service Management 85

for an on-demand cloud-based movie/video processing service, the size of the video
has a significant influence on the response time. Different users, accessing the service
through the cloud, may experience different response times. In [11,12,13], collabora-
tive filtering methods are proposed, predicting QoS for a user by referring to past
information of similar users. The influence of the user environment and input can also
be considered to provide a user with a more personalized QoS prediction.

Moreover, even the same user does not experience the same QoS values for differ-
ent invocations at different times and with different invocation parameters – which is
something that current cloud services, whether multimedia on-demand for end users
or commercial applications in the cloud, highlight as a problem. If a user invokes a
service many times, then the QoS cannot be determined by collaborative filtering,
which is inefficient for QoS prediction for every invocation. A Bayesian network-
based QoS assessment model for web services is proposed in [13]. It predicts the ser-
vice performance level depending on the user requirements level, but how to define
the performance level is still a problem. Most QoS prediction methods of services do
not consider the impact on service performance by environmental factors. The predic-
tion performance becomes a critical aspect in dynamically managed service and cloud
environments, where monitored QoS data is taken into account.

Our experiments and analyses show that user inputs, network conditions and Web
server performance impact on QoS significantly. Assume three services s1, s2 and s3
with similar functions. Take input data size, network throughput and CPU utilization
as representatives of input, network and Web server characteristics. Table 1 shows an
invocation log of these services. It records information for every invocation: network
throughput (MB), data size (MB), Web server CPU utilization and response-time(s).

Table 1. Services Usage Information

Service

name

1st invocation 2nd invocation 3rd invocation 4th invocation 5th invocation

s1 <2, 10, 0.2, 0.5> <1.5,20, 0.5, 2> <2.5,10,0.1,0.2> <2,30, 0.3, 0.8> <2, 8,0.2, ?>

s2 <1.5,10,0.3, 0.3> <2,20, 0.4, 1.8>

s3 <2, 20, 0.3, 3 > <1, 20, 0.2, 6 > <1.5,20, 0.3, 4 > <2,15,0.2, 2.4 >

In the third invocation of s1, network throughput is 2.5MB, data size is 10MB, Web

server CPU utilization is 0.1 and response time is 0.2sec. Now, if there is another user
wanting to invoke s1, the network throughput is 2MB, data size is 8MB and CPU
utilization is 0.2. Then, predicting the response time for this user depends on history
information (cf. Table 1). The three services were invoked 5 times, 2 times or 4 times.
The average response times are 0.875s, 1.05s and 3.85s. This is independent of invo-
cation parameters. No matter what the situation of the next invocation, the traditional
prediction results will be the same, but according to Table 1, the real result is depen-
dent on input, network and Web server factors. The prediction in our previous work
[15,16] is based on collaborative filtering. It predicts QoS through calculating the
similarity of invocation parameters and parameters in past invocations. The prediction
is more accurate than an averaging method, but needs to calculate the similarity of
target invocation and all past invocations, resulting in too many repeated calculations
and low efficiency, which needs to be addressed for dynamic contexts like the cloud.

86 L. Zhang et al.

An important observation is that most services have relatively fixed service invoca-
tion patterns (SIPs). A SIP consists of ranges of input characteristics, network charac-
teristics and Web server characteristics and reflects relatively stable, acceptable
variations. The service QoS keeps steady under a SIP. If we can abstract the SIP from
service usage, the prediction can be based on usage information for the matched pat-
tern. If there is no usage information for the matched pattern, the prediction needs to
be calculated using past log information of other similar services. We propose con-
structing SIPs by analysing user input, network environment and server status factors.
We adapt collaborative filtering prediction to be based on SIPs and pattern mining,
improving prediction accuracy and performance. Thus, our contributions are:

• Firstly, we propose the novel concept of Service Invocation Pattern and an aligned
method for mining and constructing SIPs (Sections 2 and 3). It considers the influ-
ence of environmental characteristics on the quality of a Web service.

• Secondly, we propose a collaborative filtering QoS prediction algorithm based on
SIPs (Sections 4 and 5). This approach can predict QoS based on personalized user
requirements. It improves the prediction accuracy and computational performance.

2 Service Invocation Pattern SIP

Services QoS characteristics are related to user input, network status and server per-
formance. It means that a certain range of input, network status and server status de-
termines a relatively fixed service invocation pattern. A SIP reflects that the QoS
remains steady under this pattern, i.e., predicting QoS this way is beneficial. We ana-
lyse the characteristics which impact Web service execution and define the SIP.

Definition. 1. Service Invocation Characteristic (SIC). C = < Input, Network, Serv-
er> is the characteristic model of one invocation. Input, Network and Server
represent user input characteristics, network characteristics and Web server characte-
ristics, respectively. We take input data size, network throughput and CPU utilization
as examples. In invocation characteristic <30, 1.5, 0.2>, the input data size is 30MB,
throughput between server and user is 1.5MB and server CPU utilization is 0.2.

Definition. 2. Input Characteristic (IC). Input =< In1,In2,…, InP> is the input charac-
teristics vector. It describes the input characteristics that have an influence on QoS.
I
k
 (1≤ k ≤ p) is the k-th input characteristic.

Definition. 3. Network Characteristic (NC). Network =< net1,net2,…, net
r
> is the

network characteristics vector. It describes the network characteristics that have an
influence on QoS. nk

 (1≤= k ≤ r) represents the k-th network characteristic.

Definition. 4. Web Server Characteristic (WSC). Server =< se1,se2,…,se
q
> is the

server characteristics vector. It describes the Web server characteristics that have an
influence on service QoS. se

k
 (1≤ k ≤ q) represents the k-th server characteristic.

Definition. 5. Service Invocation Pattern (SIP). A SIP is a group of service invocation
characteristics SIC. In a SIP, the value of invocation characteristics is a range. The QoS
is meant to be steady under a SIP. We describe it as M = < Inputlow ~ Inputhigh,

 Personalized Quality Prediction for Dynamic Service Management 87

Networklow ~ Networkhigh , Serverlow ~ Serverhigh >, Input, Network and Server are input
characteristics, network characteristics and Web server characteristics.

Definition. 6. Invocation Pattern-QoS matrix. If the QoS of services keeps steady or
have a fixed relation to a SIP, then this relation can be expressed as a matrix MS:

=

mlll

m

m

m

qqq

qqq

qqq

sss

,2,1,

,22,21,2

,12,11,1

21

l

2

1

M

M

M

MS

The matrix MS shows the QoS informa-
tion of all the services s under all the
patterns M. qij (1≤j≤l, 1≤i≤m) is the QoS
of service sj under the pattern Mi.

with

=
 .~'' range with pattern under history invocation has Service~

.pattern under history invocation no has Service

,,

,

i

i

m

m

jjiji

j

ji

shighlow

s

q

φ

If a pattern is <20-30MB, 0.5-0.6, 0.2-0.4, 30-40MB>, then the input data size is
20-30MB, CPU utilization is 0.5-0.6, memory utilization is 0.2-0.4 and server
throughput is 30-40MB. We can search for the QoS of a service based on informa-
tion related to this pattern. If there is corresponding information and the value keeps
steady in a range, then it is returned to the user. If the value is not consecutive, it
means the service is not only affected by the characteristics of the invocation pattern.
It then needs further calculation based on history information. If there is no invocation
history, this value will be null. In that case, prediction is done for a user invocation
requirement. Below is an example of an Invocation Pattern-QoS Matrix. There are 4
invocation patterns. We introduce how to abstract/mine SIPs and predict in Sect. 3.

s

sss

ss

ss

ssss

4~3

5.0~3.04.2~25.0~4.0

5.1~1.11.1~8.0

3.1~15.0~2.0
4321

4

3

2

1

M

M

M

M

Some services have no usage
information within a pattern
range – e.g., since s1 has an
invocation history for pattern
M1, it returns this range of
values, but as s2 has no invoca-
tion history, it needs collabora-
tive filtering for prediction.

3 Service Invocation Pattern Abstraction and Mining

The values of user invocation characteristics are spread across a certain range. Obtain-
ing these value ranges significantly helps QoS prediction, but the number of SIPs that
reflect these cannot be decided in advance and all usage information is multi-
dimensional. Density-based spatial clustering of applications is used to achieve
this. DBSCAN (density-based spatial clustering of application with noise) [17] is a
density-based clustering algorithm. It analyses the density of data and allocates them

88 L. Zhang et al.

into a cluster if the spatial density is greater than a threshold. DBSCAN can find clus-
ters of any shape. The DBSCAN algorithm has two parameters: ε and MinPts. If the
distance between two points is less than the threshold ε, they can be in the same clus-
ter. The minimum number of points in a cluster must be greater than MinPts.
DBSCAN clusters the points through spatial density. The main steps of DBSCAN:

1. Select any object p from the object set and find the objects set D in which the ob-
ject is density-reachable from object p with respect to ε and MinPts.

2. Choose another object without cluster and repeat the first step.

A SIP Extraction Algorithm based on DBSCAN shall now be introduced. A SIP is
composed of user input, network and server characteristics. For these aspects, we take
throughput, input size and CPU utilization as representatives, respectively. We con-
sider the execution time as the representative of QoS here.
• An execution log records the input data size and execution QoS.
• A monitoring log records the network status and Web server status.
We reorganize these two files to find the SIP under which QoS keeps steady. A SIP
extraction algorithm is shown in Alg. 1 (see also the SIP format in Definition 5).
__

Algorithm 1. SIP Extraction Algorithm based on DBSCAN
Input: Service Usage Information InforSet (execution+monitoring log), ε, MinPts.
Output: SIP Database PatternBase, Pattern-QoS information PatternQoS.
1 for (Infori<DataSize, CPU, ThroughPut, time> ∈ InforSet)
2 {
3 if (Infori does not belong to any exist cluster) {
4 Pj= newPattern(Infori) // create a new pattern withInfori as seed.
5 Add(Pj, PatternBase)
6 InforSet = InforSet – Infori
7 SimInfor = SimilarInfor(InforSet, Infori, ε) // SimInfor is the infor-
8 mation set which includes all the similar usage information of
9 Infori. Differences between the information in SimInfor and
10 Infori on the charac-teristics value except execution time are
11 less than ε. n is the number of information items in SimInfor.
12 InforSet = InforSet – SimInfor
13 if (n>MinPts) { // MinPts is min number of exec inform in cluster.
14 (S1, S2, … ,Sm) = Divide(SimInfor) // Divide SimInfor into different
15 groups. Group S1 includes all information of servs1.
16 for(k=1; k≤m; k++){
17 for(Inforj∈Sk) {
18 SimInfor = SimilarInfor(InforSet, Inforj, time, MinPts, ε)
19 // Search similar info of Sk in execution information set. If
20 the number of similar information item is less than MinPts,
21 then the density will turn low and top the loop.
22 Sk = Sk + SimInfor
23 InforSet = InforSet – SimInfor
24 }
25 PatternCharacteristics(Sk) // Organizes the information in the
26 cluster and statistics for the ranges of characteristics.
27 Completes the pattern-QoS matrix.
28 }
29 }
30 }
31 }

 Personalized Quality Prediction for Dynamic Service Management 89

The distance calculation between two objects in this algorithm is different from the
traditional DBSCAN. It includes two types of distance:
• Firstly, when we initialize a cluster, we randomly select an object without cluster.

We take it as the seed to find the cluster it belongs to. In this cluster, the response
time of different services may differ, but the performance of different invocations
of the same service keeps steady. The distance between the other information and
seed information is computed based on all characteristics except response time.

• Secondly, when the cluster has been constructed, we need to check whether the
information does not belong to any cluster or belongs to the given cluster. We
need to compare this information with others of the same service in the cluster
and calculate the distance of this information with the cluster. Then, the distance
computation is dependent on all the characteristics of the two information items.

4 The QoS Prediction Based on SIP

This section will introduce the Web Service QoS prediction approach. It uses Service
Invocation Patterns and the Invocation Pattern-QoS Matrix to carry out the prediction.
It fully considers the requirements of every invocation.

4.1 The QoS Prediction Procedure Based on SIP

In order carry out the prediction, we assume that the SIP database has been created.

Fig. 1. QoS Prediction Procedure

The steps of the prediction procedure in Fig. 1 are as follows. Firstly, we match the
target invocation characteristics with the SIPs in the database. We match the characte-
ristics of target service sj with the characteristics of stored patterns. If there is a pattern
that can be matched directly, then we return it. Otherwise, we employ the Gray Re-
levance Analysis to get the matched pattern. Assume that the matched pattern is mi.
Then, we search information about a matched pattern in the QoS matrix. If there is
QoS information of the target service in pattern mi, then we return it directly. Finally,
if there is no related QoS information, then we predict QoS by collaborative filtering.

4.2 Matching User Invocation Characteristics with Patterns

A characteristics vector of a user invocation is C = < Input, Network, Server>. Here
Input, Network and Server represent input, network and server characteristics,

Invocation
Pattern
MatchUser

Invocation
Characteristics

QoS
Information
in Matched

Pattern?

SIP
Database

Return
Prediction

Prediction
based on

Collaborative
Filtering

90 L. Zhang et al.

respectively. The Service Invocation Pattern is defined as M = < Inputlow~Inputhigh,
Networklow~Networkhigh, Serverlow~Serverhigh >. During the matching process, we
compare the user invocation characteristics and the respective component in the pat-
tern. Matching is successful if Inputlow ≤ Input ≤ Inputhigh, Networklow ≤ Network ≤
Networkhigh and Serverlow ≤ Server ≤ Serverhigh. Assume the matched pattern is mi.

If there is no matched pattern, adopt the Gray Relevance Analysis method to calcu-
late the association degree between QoS and invocation characteristics to a) find the
ordering of characteristics that have greater impact on QoS and b) match the pattern
based on the order. Table 2 shows the n times invocation information of service s.

Table 2. Usage Information of Service s

Features 1 …… I …… n

Response Time T1 …… Ti …… Tn

Input Datasize Data1 …… Datai …… Datan

Throughput TP1 …… TPi …… TPn

CPU utilization CPU1 …… CPUi …… CPUn

1. Take response time as the reference sequence x0(k), k = 1,…, n, and other charac-

teristics as comparative sequences. Calculate the association degree of the other
characteristics with response time. First, take the characteristics of an invocation
as standard and carry out normalization of the other characteristics. The reference
sequence and comparative sequence are handled dimensionless. Assuming the
standardized sequence yi(k), i=1,…,4, k=1,…,n, Table 3 shows the result matrix.

Table 3. Normalized Usage Informaiton

Features 1 …… I …… n

Response Time 1 …… y1(i) …… y1(n)

Input Datasize 1 …… y2(i) …… y2(n)

Throughput 1 …… y3(i) …… y3(n)

CPU utilization 1 …… y4(i) …… y4(n)

2. Calculate absolute differences for Table 3 using 0 0() () ()i ik y k y kΔ = − . The result-

ing absolute difference sequence is:
))(,),1(,0(010101 nyy =Δ ，))(,),1(,0(020202 nyy =Δ ，))(,),1(,0(030303 nyy =Δ

3. Calculate a correlation coefficient between reference and comparative sequence:

max0

maxmin
0)(

)(
Δ+Δ

Δ+Δ=
ρ

ρζ
k

k
i

i
is the correlation coefficient of the Gray Relevance.

Here |)()(|)(00 kykyk ii −=Δ is the absolute difference and min 0min min ()ii k
kΔ = Δ

is the minimum difference value between two poles, and max 0max max ()i
i k

kΔ = Δ

is the maximum difference value. ρ ∈ (0,1) is the distinguishing factor.

 Personalized Quality Prediction for Dynamic Service Management 91

4. Calculate the correlation degree: Use
=

=
n

k
i k

n
r

1
010)(

1 ζ to calculate the cor-

relation degree between characteristics. Then, sort the characteristics based on the
correlation degree. If r0 is the largest, it has the greatest impact on response time
and will be matched prior to others. Assume usage information of s as in Table 4.

5 QoS Prediction Based on Collaborative Filtering

If there is no related QoS within matched patterns, we need to predict QoS based on
collaborative filtering. In the Invocation Pattern-QoS Matrix, there are a usually a
number of null values. The prediction accuracy will be affected if we ignore these null
values. We need to fill the null values for the information items of similar services.

5.1 QoS Prediction Process Based on Collaborative Filtering

Assume that the target service is sj, and the matched pattern is mi. When service sj has
no QoS information in pattern mi, the prediction process is as follows:

1. For any service sv, v ≠ j, if there is information of sv under pattern mi. then calculate
the similarity between service sj and service sv.

2. Get the k neighbouring services of service sj through the similarity calculated in
step 1. The set of these k services is S = {s1‘,s2‘,

…,sk‘}. We fill the null QoS values
for the target invocation using the information in this set.

3. Using the information in S, calculate the similarity of mi with other patterns that
have the information for target service sj.

4. Choose the most similar k‘ patterns of mi, and use the information across the k‘ pat-
terns and S to predict the QoS of service sj .

5.2 Service Similarity Computation

Assume that mi is the matched pattern and sj is the target service. If there is no infor-
mation of sj in pattern mi, we need to predict the response time qi,j for sj. Firstly, cal-
culate the similarity of sj and services which have information within pattern mi
ranges. For a service sv∈Ii where Ii is the set of services that have usage information
within pattern mi, calculate the similarity of sj and sv. Vector similarity calculation
commonly adopts cosine similarity, correlation similarity or correction cosine similar-
ity. However, these 3 methods do not consider the impact of user environment differ-
ences, i.e., the methods are not suited for service similarity computation directly. We
need to improve the similarity calculation. We define service similarity as follows:

Definition. 7. The similarity of two services sj and sv is defined by

),(),(),(jvdatajvsumjv sssimsssimsssim ⋅+⋅= βα (1)

where

92 L. Zhang et al.

• simsum(sv,sj) is the similarity of the numbers of invocation patterns which are in-
voked by services sv and sj together. Two services are more similar if they have
more used invocation patterns in common.

• simdata(sv,sj) is the similarity of the usage information of services sj and sv. Two
services are more similar if their usage information is more similar.

• α and β are adjustable balance parameters. They can be changed based on differ-
ent user requirements.

For services sj and sv, P(sj/sv) is the probability of the coexistence of services sj and sv
within a pattern. This probability can be used to measure the similarity of sj and sv:

)(

)(
),(

j

jv
jvsum snum

ssnum
sssim = (2)

Here, num(sv, sj) is the number of the common pattern-based invocations by two ser-
vices. num(sj) is the number of pattern-based invocation by service sj. Based on for-
mula (1), simsum(sv, sj) is between 0 and 1.

Our definition of the similarity of invocation information adopts the correction co-
sine similarity method. It is shown in formula (3). Mvj is the set of invocation pattern
models which have the usage information of sv and sj.

∈∈

∈

−−

−−
=

vj jjcvj vvc

jcvvc

jvdata

cc

vjjc j

qqqq

qqqq
sssim

MM

M

mm

m

2
,

2
,

,,

)()(

))((
),(

 (3)

Here,
vq is the average of the usage information for service sv, jq is the average of

the usage information for service sj.
From formula (3), we can obtain all similarities between sj and others services

which have usage information within pattern mi. The more similar the service is to sj,
the more valuable the data of it is. Formulas (2) and (3) are two aspects of service
similarity. Formula (1) provides the sum of these two different similarities.

5.3 Predicting Missing Data

Missing data will have a negative impact on the accuracy of QoS prediction. We cal-
culate the similarity between two services and get the k neighbouring services. Then,
we establish the k neighbours matrix Tsim and fill the missing data in Tsim.

Assume the k neighbouring services form the set S = {s1‘,s2‘,
…,sk‘}. Here, '

1s has

the highest similarity with service sj and so on. Then, these k services are more valua-
ble and their usage information is defined as follows in matrix (4) below. Matrix Tsim
shows the usage information of the k neighbouring services of sj within all invocation
patterns. The data space is reduced to k columns and the computational effort required
is consequently also reduced. In this matrix, there are still many missing data items ti,j.
We need to fill these empty spaces before prediction. Firstly, we fill the missing data
references to the services similarity.

 Personalized Quality Prediction for Dynamic Service Management 93

Φ
=

'
,

'
2,

'
1,,

'
,

'
2,

'
1,

'
,1

'
2,1

'
1,1,1

''
2

'
1

kllljl

kiii

kj

kj

tttt

ttt

tttt

ssss

l

i

1

sim

M

M

M

T
 (4)

We fill
ser
piP , , which is the data of service sp under pattern mi. The method is:

∈

∈

−
− −×

+=
' ,

' ,,
, |)(|

)''(
'

Sn pn

Sn nnipn
p

ser
pi sim

ttsim
tP , (5)

Here
−

pt' is the average QoS of service sp, and simn,p is the similarity between service
sn and sp. For any service p∈ S’, every service has usage information within all the
pattern ranges in mi after this process.

5.4 Calculating the Pattern Similarity and Prediction

There is QoS information of k neighbouring services of sj in matrix Tsim. Some of
them are prediction values. We can calculate the similarity of pattern mi and other
patterns using the correction cosine similarity method:

∈∈

∈

−−

−−
=

SS

S

kk

k j

s jkjs iki

s kjiki

jiel
tttt

tttt
mmsim

2
,

2
,

,,

mod
)''()''(

)'')(''(
),(, (6)

After determining the pattern similarity, the data of patterns with low similarity are
removed from Tsim. The set of the first k patterns is },,{ '

2
'
1

'
kMMM =M' . The data of

these patterns are retained for prediction.
As described above, if pi,j is the data to be predicted as the usage data of service sj

within pattern Mi., it is calculated as:

∈

∈

−
− −×

+=
' ,

' ,,
, |)(|

)''(
'

Mn

Mn

in

njnin
iji sim

ttsim
tp (7)

Here
−

it ' is the average QoS of the data related to pattern mi and simn,i is the similar-
ity between patterns Mn and Mp.

6 Experimental Analysis

We have designed a simulation environment to evaluate the efficiency and accuracy
of the approach proposed. First, we implemented 100 Web services. These services
belong to 3 categories, which are sensitive to data size, network throughput and CPU
utilization separately. They are distributed over different network environments. All
Web servers provide an open SNMP service and we installed a monitoring program

94 L. Zhang et al.

for network monitoring. We gathered user input data size, server CPU utilization and
server port throughput. The monitor submits environment information to the monitor-
ing log recorder, which is responsible for cleaning the monitor log and storing data in
the database. We generated a 200*100 invocation pattern-QoS matrix, restricted to the
response time characteristics. Fig. 2 shows the experimentation architecture.

Fig. 2. Experimentation Architecture

Service providers register their Web service with a registry centre. Monitors for
server and client are responsible for submitting the monitoring data to the Monitoring
Log Recorder and the Execution Log Recorder. The Service Invocation Pattern Ex-
traction module is responsible for extracting the service invocation patterns from the
monitoring log and the execution log. When user requirements need to be processed,
the QoS Management System will predict service QoS for a user according to their
requirements. Then, the user can decide to invoke this service or not.

Accuracy Analysis. MAE (Mean Absolute Error) is the normal standard to measure
the prediction accuracy. Here MAE is the mean absolute error between prediction
and real response time. The smaller the MAE, the more accurate is the prediction.
Assuming pij is the prediction value and tij is the real value, then MAE can be calcu-
lated as follows, where N is the total number of predictions:

N

pt
MAE ji ijij −

= ,
||
 (8)

Different characteristics of QoS have different ranges. Consequently, we use
NMAE (Normalized Mean Absolute Error) instead of MAE. The smaller the NMAE,
the more accurate is the prediction. NMAE is the normalized MAE:

Service
Consumer

Register Centre

Web Services

Service Providers

 Personalized Quality Prediction for Dynamic Service Management 95

Nt

MAE
NMAE

jiji /,,
= (9)

The accuracy of the prediction is important. Web QoS prediction algorithms usual-
ly are statistics-based and collaboration method-based. Average-based methods do not
consider the users’ personalized requirements and the impact of the network. Thus,
they calculate the same prediction for all users. Collaboration-based methods need to
use all historic data, i.e., the computation takes too long. We analysed these three
approaches and tried different settings of k, α and β to assess the result.

Fig. 3. NMAE of k=15 Fig. 4. NMAE of k=18

Different ks have different impacts on the result. If k is too large, there will be too
much unnecessary information. The prediction result will be affected. However, if k is
too small, useful information will be ignored and the data will not be sufficiently large
enough for prediction. The similarity of the first k patterns maybe different under
different data condition. Thus, a fixed k is not the objective. We tested different num-
bers of neighbouring patterns. We took the square root of the number of patterns first.
Then, considering the pattern similarity, we fixed 0.5 as the critical value of similari-
ty. If similarities between the target pattern and all other patterns exceed 0.5, then we
increase k, otherwise decrease k. After testing, when k is 15 or 18, the performance is
better in our environment. α and β in Formula (1) have also different impacts in dif-
ferent datasets. For our dataset, the performance is best when α is 0.2. We use AP to
represent the average method. CF is the abbreviation of the collaboration-based algo-
rithm. MCF is the abbreviation of the approach in this paper. As indicated in Figures
3 and 4, an increase of the dataset size improves the accuracy significantly.

Efficiency Analysis. If the target invocation can be matched in the service invocation
pattern database and if there is QoS of the target service within the matched pattern,
we can predict QoS directly. Only if there is no related data, collaborative computation
is needed. The dataset for collaborative computation is related to service invocation
patterns, but the number of patterns is far less than the number of usage information
items. We used DBSCAN to obtain the service invocation patterns. We determined
150 invocation patterns from 2400 usage recordings. Compared to work in [11,12],
the matrix for collaborative computation is reduced from 2400*100 to 150*100.
Here, only when the matched pattern has no information of the target service, the
calculation for prediction is required. Thus, the computation effort is decreased to a

96 L. Zhang et al.

large extent. We tested the algorithm on many datasets. For each dataset, 50 predic-
tions were taken and we averaged the response time. The comparison between the
methods is shown in Figure 5. When the size of the dataset grows, time consumption
in normal collaborative cases increases quickly. Our approach (MCF) is not much
affected by data size.

Fig. 5. Efficiency Analysis

7 Related Work

Different types of Web or cloud services [26] usually have different QoS characteris-
tics [1-12]. The normally used ones are response time, execution cost, reliability,
availability, security and reputation. There are many factors that impact on QoS [18].
Some factors are static, some are run-time static, the others are totally dynamic. Run-
time static and dynamic factors are uncertain. They are client load, server load, net-
work channel bandwidth or network channel delay. Most factors can be obtained by
monitoring, but not all. Then, their impact cannot be calculated.

QoS-based service selection has been widely covered [1-10]. Many service predic-
tion methods are proposed. There are three categories of prediction. The first one is
statistic, which is normally adopted [1,2,7,8,9]. This method is simple and easy to
implement. The second category is based on user feedback and reputation [19,20]. It
can avoid malicious feedback, but these methods do not consider the impact of user
requirements and the environment and cannot personalize prediction for users. The
third category is based on collaborative filtering [11-14]. Collaborative filtering is a
widely adopted recommendation method [21-24,28]. Zeng [22] summarizes the appli-
cation of collaborative filtering in book, movie and music recommendation. In this
paper, collaborative filtering is combined with service invocation patterns, user re-
quirement and preferences. This considers different user preferences and makes pre-
diction personalized, while maintaining good performance results.

Some works integrate user preferences into QoS prediction [11-15], e.g. [11-13]
propose prediction algorithms based on collaborative filtering. They calculate the
similarity between users by their usage data and predict QoS based on user similarity.
This method avoids the influence of the environment factor on prediction. Even the
same user will have different QoS experiences over time or with different input data,
but these works do not consider user requirements and generally show low efficiency.

The proposed method in this paper takes full account of user requirements, the net-
work and server factors. It abstracts the service invocation pattern to keep the service

 Personalized Quality Prediction for Dynamic Service Management 97

QoS steady. When user requirements are known, prediction can be done based on
matched patterns. This approach is efficient and reduces the computational overhead.

8 Conclusion

Service management in Web and Cloud environments [26,27], e.g. public clouds,
requires service-level agreements (SLA) for individual users to be managed conti-
nuously, based on monitored QoS data. (Cloud) service managers take care of this for
the users. Dynamic, personalised prediction of QoS is an essential component of reli-
able service provisioning that makes service lifecycle management more reliable. The
need to personalise services dynamically is highlighted by e.g. cloud requirements for
efficient service quality management adapted to user-specific requirements and situa-
tions across a range of end-user and business solutions offered as cloud services.

This paper proposes a service QoS prediction technique to satisfy personalized re-
quirements. It considers not only the impact of the network, but also the Web server
environment, and especially the individual user requirements. Based on historic in-
formation, we can abstract past user invocation pattern (mined from monitored log
data) in order to predict future QoS of potential services to be utilised. The pattern
approach provides independent reliability for the prediction of SLA-relevant aspects.
When there is no information about the target pattern, we utilize collaborative filter-
ing to predict according the data of other patterns. The results show that this approach
is more accurate and personalized, and also demonstrates good prediction perfor-
mance, which allows for dynamic utilisation of the technique.

Acknowledgement. This research has been supported by the National Natural
Science Foundation of China (grant 61073062), the Technology Project of LiaoNing
Province (2011216027) and the Irish Centre for Cloud Computing and Commerce, an
Irish national Technology Centre funded by Enterprise Ireland and the Irish Industrial
Development Authority.

References

1. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows
and Web Service Processes. Journal of Web Semantics 1(3), 281–308 (2004)

2. Kritikos, K., Plexousakis, D.: Requirements for QoS-based Web service description and
discovery. IEEE Transactions on Services Computing 2(4), 320–337 (2009)

3. Zheng, K., Xiong, H.: Semantic Web service discovery method based on user preference
and QoS. In: Intl. Conf. on Consumer Electr., Comms. and Netw. CECNet 2012, pp.
3502–3506 (2012)

4. Ali, R.J.A., Rana, O.F., Walker, D.W.: G-QoSM: Grid service discovery using QoS prop-
erties. Computing and Informatics 21(4), 363–382 (2012)

5. Wang, P.: QoS-aware web services selection with intuitionistic fuzzy set under consumer’s
vague perception. Expert Systems with Applications 36(3), 4460–4466 (2009)

6. Huang, A.F.M., Lan, C.W., Yang, S.J.H.: An optimal QoS-based Web service selection
scheme. Information Sciences 179(19), 3309–3322 (2009)

7. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-Aware Cloud Service Composition based on Eco-
nomic Models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS,
vol. 7636, pp. 111–126. Springer, Heidelberg (2012)

98 L. Zhang et al.

8. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service
composition. In: Proc. Intl. Conf. on World Wide Web, pp. 11–20. ACM (2010)

9. Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-Aware middleware for Web services
composition. IEEE Trans. on Software Engineering 30(5), 311–327 (2004)

10. Yu, T., Lin, K.J.: Service Selection Algorithms for Web Services with End-to-end QoS
constraints. Information Systems and E-Business Management 3(2), 103–126 (2005)

11. Shao, L., Zhang, J., Wei, Y., et al.: Personalized QoS prediction for Web services via collabor-
ative filtering. In: IEEE Intl. Conference on Web Services, ICWS 2007, pp. 439–446 (2007)

12. Zheng, Z., Ma, L.M.R., et al.: Qos-aware web service recommendation by collaborative
filtering. IEEE Transactions on Services Computing 4(2), 140–152 (2011)

13. Zheng, Z., Ma, H.: WSRec: A Collaborative Filtering Based Web Service Recommender
System. In: Proc IEEE Intl. Conference on Web Services, pp. 437–444 (2009)

14. Wu, G., Wei, J., Qiao, X., et al.: A Bayesian network based QoS assessment model for
web services. In: Proc IEEE Intl. Conference on Service Computing, pp. 498–505 (2007)

15. Li, Z., Bin, Z., Ying, L., et al.: A Web Service QoS Prediction Approach Based on Colla-
borative Filtering. In: IEEE Asia-Pacific Services Computing Conf APSCC 2010, pp. 725–
731 (2010)

16. Li, Z., Bin, Z., Jun, N., et al.: An Approach for Web Service QoS prediction based on ser-
vice using information. In: Intl Conference on Service Sciences, ICSS 2010, pp. 324–328
(2010)

17. Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In: Proc. Intl. Conf. on Knowledge Discovery in
Databases and Data Mining (KDD 1996), pp. 226–232. AAAI Press (1996)

18. Lelli, F., Maron, G., Orlando, S.: Client Side Estimation of a Remote Service Execution.
In: IEEE International Symposium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS (2007)

19. Vu, L.H., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with Trust
and Reputation Management. Computer Science 3760(2005), 466–483 (2005)

20. Yan, L., Minghui, Z., Duanchao, L., et al.: Service selection approach considering the
trustworthiness of QoS data. Journal of Software 19(10), 2620–2627 (2008)

21. Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering recommendation
algorithms. In: Proc 10th Int’l World Wide Web Conf., pp. 285–295. ACM Press (2001)

22. Chun, Z., Chunxiao, X., Lizhu, Z.: A Survey of Personalization Technology. Journal of
Software 13(10), 1852–1861 (2002)

23. Hailing, X., Xiao, W., Xiaodong, W., Baoping, Y.: Comparison study of Internet recom-
mendation system. Journal of Software 20(2), 350–362 (2009)

24. Ailing, D., Yangyong, Z., Bole, S.: A Collaborative Filtering Recommendation Algorithm
Based on Item Rating Prediction. Journal of Software 14(9), 1621–1628 (2003)

25. Balke, W.T., Matthias, W.: Towards personalized selection of Web services. In: Proc. Intl.
World Wide Web Conf., pp. 20–24. ACM Press, New York (2003)

26. Pahl, C., Xiong, H., Walshe, R.: A Comparison of On-premise to Cloud Migration Ap-
proaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS,
vol. 8135, pp. 212–226. Springer, Heidelberg (2013)

27. Pahl, C., Xiong, H.: Migration to PaaS Clouds - Migration Process and Architectural Con-
cerns. In: IEEE 7th International Symposium on the Maintenance and Evolution of Ser-
vice-Oriented and Cloud-Based Systems, MESOCA 2013. IEEE (2013)

28. Huang, A.F., Lan, C.W., Yang, S.J.: An optimal QoS-based Web service selection scheme.
Information Sciences 179(19), 3309–3322 (2009)

Open Source versus Proprietary Software in

Service-Orientation: The Case of BPEL Engines

Simon Harrer, Jörg Lenhard, and Guido Wirtz

Distributed Systems Group, University of Bamberg, Germany
{simon.harrer,joerg.lenhard,guido.wirtz}@uni-bamberg.de

Abstract. It is a long-standing debate, whether software that is de-
veloped as open source is generally of higher quality than proprietary
software. Although the open source community has grown immensely
during the last decade, there is still no clear answer. Service-oriented
software and middleware tends to rely on highly complex and interre-
lated standards and frameworks. Thus, it is questionable if small and
loosely coupled teams, as typical in open source software development,
can compete with major vendors. Here, we focus on a central part of
service-oriented software systems, i.e., process engines for service orches-
tration, and compare open source and proprietary solutions. We use the
Web Services Business Process Execution Language (BPEL) and com-
pare standard conformance and its impact on language expressiveness
in terms of workflow pattern support of eight engines. The results show
that, although the top open source engines are on par with their propri-
etary counterparts, in general proprietary engines perform better.

Keywords: open source, SOA, BPEL, patterns, conformance testing.

1 Introduction

The comparison of open source and proprietary software is a topic that, de-
pending on the audience, can quickly turn from a moderate discussion to a
heated debate. Although it has been investigated a number of times, see for in-
stance [10, 15, 26, 27], a definite answer is seldom found. Studies often focus on
software such as operating systems [26] and despite the wide academic interest in
such comparisons, little work on comparing open source and proprietary service-
oriented software can be found. In the services ecosystem, highly specialized and
inherently complex software that differs from operating systems in nature and
level of abstraction prevails. Especially when it comes to middleware, vendors
established large projects and created highly priced products and it is unclear
whether open source alternatives can compete. This makes the comparison of
open and proprietary service-oriented software especially interesting. What is
more, direct comparisons of open source and proprietary software are typically
impeded by the fact that truly comparable software is hard to find [26, p.260].
In the area of service-oriented computing, however, there exists a large set of
detailed international standards that describe required functionality for Web

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 99–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 S. Harrer, J. Lenhard, and G. Wirtz

Services. Hence, a meaningful and precise comparison becomes feasible in this
area. Here, we compare service-oriented middleware for service orchestration [23],
in particular BPEL engines.

The BPEL 2.0 specification [20] defines a language to implement executable
processes as interactions of Web Services in XML. A series of control- and data-
flow activities are used to specify the order of the interactions, thereby orches-
trating invoked Web Services [23]. A typical example for a BPEL process is
that of a travel agency service which books accommodation, flight and trans-
portation in a single transaction by reusing multiple external services. BPEL is
tightly integrated into the Web Services ecosystem and relies heavily on other
standards, e.g., the Web Service Description Language (WSDL), XPath, and
SOAP. As such, BPEL is a natural choice for implementing processes within
a Web Services-based service-oriented architecture (SOA) [22]. It is frequently
used in scenarios such as business-to-business integration where multiple part-
ners participate in cross-organizational business processes. Within such scenar-
ios, service choreographies define the global perspective of a shared process by
specifying the public collaboration protocol, whereas orchestrations implement
the local perspective of a single partner [23]. BPEL particularly fits to implement
these orchestrations due to its inherent usage of vendor-independent technolo-
gies such as Web Services and XML, and has been used in industry standards,
for example [24], and various studies, e.g., [9, 11].

These approaches rely, among other criteria, on the existence of fully con-
formant BPEL engines, which provide two of the key selling points of BPEL,
namely platform independence and portability of process definitions. Therefore,
standard conformance is a highly relevant selection criterion for projects in in-
dustry or academia that leverage BPEL. For this reason, we use standard confor-
mance as the central comparison factor in this study. A comparison of additional
quality factors, such as performance, is also valuable, but we defer this to future
work. Directly related to standard conformance and potentially more insight-
ful is the factor of expressive power. Expressive power refers to the ease with
which concepts typically needed in a language or system can be expressed in that
system. The more concepts supported and the easier they can be expressed, the
more suitable the system is. For process languages such as BPEL, expressiveness
is typically measured in terms of workflow pattern support [30]. Such patterns
are derived from real world systems and usage scenarios, describing features
of processes that are repeatably used. Thereby, patterns can provide meaning-
ful insights into the capabilities of engines. If an engine is not fully standard
conformant and lacks several features, it may also suffer from a reduction of
expressiveness. Hence, we consider expressiveness of engines as the second com-
parison factor. In previous work [8], we evaluated the standard conformance of
five open source engines and could show that it varies strongly among them.
Here, we complement this evaluation by extending the comparison to a) pro-
prietary engines and b) workflow pattern support. These proprietary engines
often claim to excel in terms of performance and are part of large and optimized
middleware solutions. We evaluate three proprietary engines and contrast the

Open Source versus Proprietary BPEL Engines 101

results to [8]. Furthermore, we present a test suite for automatically evaluating
workflow patterns [30] support to determine the effects of standard conformance
of engines on their expressiveness. In summary, we pose two research questions:

RQ1: Do proprietary BPEL engines outperform open source engines in terms
of standard conformance?

RQ2: How do variances in standard conformance influence the expressiveness
of the language subsets supported by the engines?

The rest of the paper is structured as follows: First, we discuss related work
and, thereafter, outline our testing approach with a focus on the testing of ex-
pressiveness. In section 4, we evaluate, analyze, and discuss the test results and
their implications, and answer both research questions. Last, a summary and an
outlook on future work is given in section 5.

2 Related Work

Related work is subdivided into four different areas: i) alternative process and
workflow languages and systems, ii) testing and verification of BPEL, iii) eval-
uations of the expressiveness of process languages using patterns, and iv) ap-
proaches for comparing the quality of open versus proprietary software.

i) Process languages: Although BPEL has received immense attention in
the last decade, there are a variety of other process or workflow languages and
engines. Yet Another Workflow Language (YAWL) [29] is a formally defined
workflow language based on Petri nets with direct support for workflow pat-
terns [30]. At this time, only one implementation, namely, the YAWL workflow
engine exists. Another notable competitor to BPEL is the Windows Workflow
Foundation [4]. For this language, there is also only a single implementation,
but it is closed source and does not ship with an accompanied specification. In
recent years, the Business Process Model and Notation (BPMN) 2.0 [21] has
gained rising attention. Although the focus of BPMN resides on its visual nota-
tion for business processes, it ships with a mapping to BPEL 2.0 [21, pp. 445–
474]. Today, several implementations of BPMN have arrived. However, nearly
all of them only provide modeling conformance [21, p.1], meaning they can be
used for visualization, but not execution conformance, required for constructing
executable processes. What is more, the BPMN specification offers a lot of room
for interpretation concerning executable processes models. This makes it more
easily adaptable to a different technological context, as opposed to BPEL which
is tailored to Web Service orchestration, but complicates the construction of
processes that can be executed on more than a single engine [6]. Last, the XML
Process Definition Language (XPDL) 2.2 [31] from the Workflow Management
Coalition (WfMC) is a serializable meta model to exchange process definitions
between different products. As opposed to BPEL, XPDL includes and serializes
visual information and is well suited for exchanging BPMN models but does not
provide execution semantics. In summary, we focus on BPEL here, as it provides,
in contrast to other process languages, precisely defined execution semantics, as
well as a variety of open source and proprietary implementations, which are
directly comparable.

102 S. Harrer, J. Lenhard, and G. Wirtz

ii) Testing of BPEL: Testing and verification of SOAs and Web Services has
been extensively studied. See for instance [3] for a comprehensive overview.When
it comes to conformance testing, a distinction has to be made between approaches
that assert the conformance of concrete services, possibly implemented in BPEL,
to a communication protocol, such as [5, 14], and the testing of an engine to a
language specification, which we do here. Concerning BPEL, research primarily
focuses on unit testing, performance testing, or formal verification of BPEL
processes, and not engines. When it comes to unit testing, BPELUnit is of most
importance [17]. Performance testing approaches for services, such as SOABench
[1], which also benchmarks BPEL engines, and GENESIS2 [13], are based on
generating testbeds from an extensible domain model which can then be used
to gather performance metrics. Here, we conduct standard conformance testing,
thus, instead of testing the correctness of a BPEL process, we test the correctness
of a BPEL engine, and focus on different kinds of metrics. We build upon the
tool betsy1, which we also use in [8], but extend it with capabilities for testing
several proprietary engines and a test suite for the evaluation of workflow pattern
support.

iii) Expressiveness and patterns: Workflow patterns aim to “provide the
basis for an in-depth comparison of a number of commercially available workflow
management systems” [30, p.5]. Patterns capture a distinct feature or piece of
functionality that is frequently needed in workflows and processes and which
should therefore be supported as directly as possible in process languages. The
more patterns a language or system supports, the more expressive it is. The orig-
inal pattern catalog [30] consists of 20 workflow control-flow patterns (WCPs)
which are subdivided into basic control-flow, advanced branching and synchro-
nization, structural, state-based, cancellation, and multi-instance patterns. Al-
though the appropriateness of these patterns is not undisputed [2], they have
been extensively used for benchmarking, designing and developing languages
and systems, as demonstrated by a large array of additional pattern catalogs
and studies, for instance [16, 19, 28]. For this reason, the usage of the work-
flow patterns here facilitates the comparison of this study to related work. The
Workflow Patterns Initiative2 already provides evaluations of the expressiveness
of BPEL 1.1 and two proprietary BPEL 1.1 engines. Here, we focus on BPEL 2.0
only, as it is the latest published version of the standard for six years. In [19],
multiple pattern catalogs, including the workflow patterns, have been imple-
mented for WF, BPEL 2.0 and the BPEL 2.0 engine OpenESB. We base our
work on [19] by adapting these BPEL 2.0 implementations of the original 20
workflow patterns to allow for an automatic and repeatable benchmark of eight
BPEL engines and thereby evaluate the effects of BPEL standard conformance
on language expressiveness.

iv) Comparing quality: Software quality comparisons typically focus on
internal quality [26, 27], for instance by computing and comparing source code
metrics for different pieces of software, or external quality [15], by investigating

1 This tool can be found at https://github.com/uniba-dsg/betsy .
2 See the project page at http://www.workflowpatterns.com/ .

https://github.com/uniba-dsg/betsy
http://www.workflowpatterns.com/

Open Source versus Proprietary BPEL Engines 103

the usefulness of the software for its end users. Here, we do not look at source
code, which in case of proprietary engines is not available. Instead, we focus
on conformance as an external quality attribute. Conformance determines the
degree to which prescribed functionality is available to the users of an engine.
This has a direct effect on the kinds of patterns that can be implemented on an
engine, and thereby its expressiveness. The more standard-conformant an engine
is, and the more patterns it directly supports, the higher its external quality is.

3 Testing Approach

To be able to compare different engines and answer the research questions, we
need a mechanism for an in-depth and isolated analysis of each engine. The ap-
proach for achieving this kind of analysis is described in this section. Thereafter,
the results are aggregated for the comparison in the following section.

The testing approach consists of the testing setup in general and the expres-
siveness test suite in particular. Within the testing setup, we list the engines
under test, elaborate on the standard conformance test suite, and the steps of a
typical test run.

3.1 Testing Setup

Our testing setup is an adapted and extended version of the setup proposed in [8]
which relies on the publicly available testing tool betsy. The tool can be used
to automatically manage (download, install, start and stop) several open source
engines. Moreover, it provides a conformance test suite which comprises more
than 130 manually created test cases, in the form of standard-conformant BPEL
processes. Since the publication of [8], three open source engines received major
or minor updates. Here, we updated betsy to use the latest versions of these
engines, namely, Apache ODE 1.3.5, bpel-g 5.3, OpenESB v2.3, Orchestra 4.9.0
and Petals ESB 4.13. Furthermore, we added support for testing the conformance
of three proprietary BPEL engines. These engines come from major global SOA
middleware vendors that also participated in crafting the BPEL specification.
Due to licensing reasons, we cannot disclose the names of the proprietary engines,
and, therefore, refer to them as P1, P2 and P3.

The tests are derived manually from the normative parts of the BPEL spec-
ification which are indicated with the keywords MUST and MUST NOT, as
defined in [12]. The test suite is subdivided into three groups resembling the
structure of the BPEL specification, namely, basic activities [20, pp. 84–97] (e.g.,
assign, empty, exit, invoke, and receive), scopes [20, pp. 115–147] (e.g., fault-,
compensation-, and termination handlers) and structured activities [20, pp. 98–
114] (e.g., if, while, flow, and forEach). The various configurations of the BPEL
activities of each group form the basis of the test cases, including all BPEL
faults. Hence, every test case of the standard conformance test suite asserts

3 Download links available at https://github.com/uniba-dsg/betsy#downloads

https://github.com/uniba-dsg/betsy#downloads

104 S. Harrer, J. Lenhard, and G. Wirtz

the support of a specific BPEL feature. Every test case consists of a test defini-
tion, the BPEL process and its dependencies (WSDL definitions, XML Schemas,
etc.), and a test case configuration, specifying the input data and assertions on
the result. All processes are based upon the same process stub, which is shown
in Listing 1, and implement the same WSDL interface containing a one-way
and two request-response operations for exchanging basic data types via the
document/literal binding over HTTP4. To assert the correctness of the process
execution, each test must provide observable output, which is implemented via
a receive-reply pair.

1 <process >

2 <partnerLinks/>

3 <variables/>

4 <sequence >

5 <receive createInstance="true" />

6 <!-- feature under test -->

7 <assign /> <!-- prepare reply message -->

8 <reply />

9 </sequence>

10 </process >

Listing 1. Process stub for conformance tests adapted from [8, p.4]

The tests aim at checking the conformance of a feature in isolation. This is
not completely possible, as the basic structure depicted in Listing 1 and basic
input and output is always required, otherwise the correctness of a test cannot
be asserted. However, all features in the stub could be verified to work in a basic
configuration on all engines and therefore have no impact on the test results.

During a full test run, our tool automatically converts the engine independent
test specifications to engine specific test cases and creates required deployment
descriptors as well as deployment archives. Next, these archives are deployed
to the corresponding engines and the test case configurations are executed. At
first, every test case configuration asserts successful deployment by determin-
ing whether the WSDL definition of the process has been published. Next, the
different test steps are executed, sending messages and asserting the responses
by means of correct return values or expected SOAP faults. When all test cases
have been tested, an HTML report is created from the test results.

The quality and correctness of the conformance test cases were ensured by
validating them against the XML Schema files of their specifications, e.g., BPEL
2.0, WSDL 1.1 and XML Schema 1.1, and by reviewing them within our group.
In addition, all test cases are publicly available and, as a result, already have
been improved by the developers of two of the engines, Apache ODE and bpel-g.
Finally, only 4 of the test cases fail on all engines, hence, approx. 97% of all test
cases succeed on at least one engine, indicating their correctness.

4 This is the preferred binding for achieving interoperability, as defined by the WS-I
Basic Profile 2.0.

Open Source versus Proprietary BPEL Engines 105

3.2 Pattern Test Suite

Table 1 shows the test case implementations for the automatic testing of work-
flow patterns support of the original 20 workflow patterns from [30]. According
to [30] and related studies, a pattern is directly supported (denoted as +) in
a language or system, if at least one direct solution using a single language
construct (activity in BPEL) for the pattern can be found. If the solution in-
volves a combination of two constructs, it is counted as partial support (denoted
as +/−) for the pattern, otherwise, there is no direct support (denoted as −).
The BPEL 2.0 column in Table 1 shows the workflow patterns support by the
specification [19]5.

Table 1. List of workflow patterns from [30] along with number of test cases and
degree of support

Basic Control Flow Patterns BPEL 2.0 Tests
WCP01 Sequence + 1
WCP02 Parallel Split + 1
WCP03 Synchronization + 1
WCP04 Exclusive Choice + 1
WCP05 Simple Merge + 1

Advanced Branching and Synchronization Patterns BPEL 2.0 Tests
WCP06 Multi-Choice + 2
WCP07 Synchronizing Merge + 2
WCP08 Multi-Merge - 0
WCP09 Discriminator - 0

Structural Patterns BPEL 2.0 Tests
WCP10 Arbitrary Cycles - 0
WCP11 Implicit Termination + 1

Patterns with Multiple Instances BPEL 2.0 Tests
WCP12 Multiple Instances Without Synchronization + 3
WCP13 Multiple Instances With a Priori Design Time Knowledge + 2
WCP14 Multiple Instances With a Priori Runtime Knowledge + 1
WCP15 Multiple Instances Without a Priori Runtime Knowledge - 0

State-based Patterns BPEL 2.0 Tests
WCP16 Deferred Choice + 1
WCP17 Interleaved Parallel Routing +/- 1
WCP18 Milestone +/- 1

Cancellation Patterns BPEL 2.0 Tests
WCP19 Cancel Activity +/- 1
WCP20 Cancel Case + 1

The BPEL implementations used here are adopted from [18, 19] and mod-
ified to be automatically testable with betsy, that is, to use the same WSDL
definition and partner service as the conformance test suite. The pattern imple-
mentations work similar to the other test cases and are based on the process
stub presented in Listing 1. Each pattern test case contains an implementation
of a workflow pattern in BPEL. Given an engine successfully deploys the process
and returns the asserted result on invocation, it demonstrates that it supports

5 The pattern support evaluation from [19] differs from [25] which evaluates BPEL 1.1.
Please refer to [19] or the technical report [18] for explanatory details.

106 S. Harrer, J. Lenhard, and G. Wirtz

the related workflow pattern. Four of the patterns, Multi-Merge, Discriminator,
Arbitrary Cycles and Multiple Instances Without a Priori Runtime Knowledge,
are left untested. These patterns cannot be implemented directly in BPEL (i.e.,
they would require the usage of too many constructs), due to the structuredness
of its control-flow definition and the inability to create cycles using links [19].
Moreover, the tests for three patterns, Interleaved Parallel Routing, Milestone,
and Cancel Activity provide at most partial support, as there is no single ac-
tivity in BPEL that directly implements these patterns. Four of the patterns,
Multi-Choice, Synchronizing Merge, Multiple Instances Without Synchronization
and Multiple Instances With a Priori Design Time Knowledge are implemented
in more than one test case. The reason for this is that multiple alternative im-
plementations of the pattern, with a differing degree of support, are available in
BPEL. For instance, the Multi-Choice pattern is typically implemented in BPEL
using links in a flow activity to activate different parallel control-flow paths at
the same time. However, links are not supported by all engines under test and
these engines would consequently fail to support that pattern. An alternative
implementation of the Multi-Choice pattern that grants partial support can be
achieved by nesting multiple if activities in a flow activity. By including such
alternative tests, we can provide a precise classification of all engines under test.

In summary, if an engine passes a test case, it provides either direct or partial
support depending on the type of the test case. If there are multiple test cases,
the engine is granted the degree of support of the most direct test case.

4 Results and Implications

In this section, we present the test results of a full test run evaluating the stan-
dard conformance and the expressiveness test suite on both, proprietary and
open source engines6. The results are subdivided into standard conformance re-
sults in Table 2 and expressiveness evaluations in Table 3. In the following, we
first discuss the conformance results of the three proprietary engines. Next, we
compare these to the results of the five open source engines and discuss the
implications of this comparison. Last, based on workflow pattern support, the
effects of standard conformance on expressiveness are evaluated and presented
for both engine types.

4.1 Commercial Engines

The conformance results in Table 2 consist of the aggregated number of successful
tests per BPEL activity for each engine as well as the percentage and average
values per engine, engine type, and activity group. In addition, the deployment
rate, the percentage of successfully deployed test cases, is given at the bottom
of the table.

6 We executed this test run on a Windows 7 64 bit system with 16 GB of RAM and
an i7-2600 processor.

Open Source versus Proprietary BPEL Engines 107

Engine P1: Engine P1 ranks first place when compared to the other propri-
etary products and conforms to the BPEL specification to a degree of 92%,
failing only in eleven of 131 test cases. Nine of these failed tests concern basic
and two concern structured activities, respectively. Language features related to
scopes are fully supported. The major shortcomings of this engine lie in fault
handling and detection. Faults that are expected to be thrown under certain
circumstances are not thrown. For example, the engine does not throw the ex-
pected invalidExpressionValue fault when the startCounter of the forEach
activity is too high or its completionCondition is negative. In addition, XSL
transformations and the invocation of Web Service operations that do not expect
input are not implemented in a standard-conformant fashion.

Table 2. Number of successfully passed conformance tests, aggregated by activity,
group, and engine

Prop. E. Open Source Engines
Activity P1 P2 P3 Ø bpel-g ODE OpenESB Ø Orch. Petals Ø Σ

Basic Activities
Assign 15 7 15 15 10 13 11 8 19
Empty 1 1 1 1 1 1 1 1 1
Exit 1 1 1 1 1 1 1 1 1
Invoke 11 6 7 11 7 3 8 5 12
Receive 4 3 3 4 3 1 1 1 5
ReceiveReply 8 6 6 8 5 6 5 1 11
Rethrow 3 0 1 3 2 1 0 0 3
Throw 5 0 4 5 5 4 0 0 5
Validate 2 0 2 2 0 2 0 0 2
Variables 3 1 1 3 2 2 1 1 3
Wait 3 2 3 3 3 3 2 1 3
Σ 56 27 44 56 39 37 30 19 65

86% 41% 68% 65% 86% 60% 57% 68% 46% 29% 56%
Scopes
Compensation 5 5 5 5 4 5 2 0 5
CorrelationSets 2 0 2 2 2 1 0 0 2
EventHandlers 8 5 7 8 6 6 6 0 8
FaultHandlers 6 5 6 6 6 6 2 5 6
MessageExchanges 3 1 1 3 1 1 1 0 3
PartnerLinks 1 0 1 1 1 1 1 0 1
Scope-Attributes 3 2 3 3 2 3 1 1 3
TerminationHandlers 2 0 0 2 0 2 2 0 2
Variables 2 2 2 2 2 2 2 0 2
Σ 32 20 27 32 24 27 17 6 32

100% 63% 84% 82% 100% 75% 84% 86% 53% 19% 66%
Structured Activities
Flow 9 6 7 9 9 2 7 0 9
ForEach 9 4 6 9 3 9 0 2 11
If 5 4 4 5 4 4 4 4 5
Pick 5 5 5 5 5 4 4 1 5
RepeatUntil 2 2 2 2 1 2 2 0 2
Sequence 1 1 1 1 1 1 1 1 1
While 1 1 1 1 1 1 1 1 1
Σ 32 23 26 32 24 23 19 9 34

94% 68% 76% 79% 94% 71% 68% 77% 56% 26% 62%

Σ of Σ 120 70 97 120 87 87 66 49 131
92% 53% 74% 73% 92% 66% 66% 75% 50% 26% 62%

Deployment Rate 98% 88% 100% 98% 92% 100% 95% 57%

108 S. Harrer, J. Lenhard, and G. Wirtz

Engine P2: The second engine is the lowest-ranking proprietary product, as it
only supports roughly half of the test cases. Although it supports approximately
two third of the scope and structured activity test cases, less then half of the
basic activities are implemented correctly. This is mostly due to the way faults
are propagated in engine P2. If a fault is not handled at root level, the process
fails silently and does not propagate the fault to external callers that are still
waiting for a response. Thus, an external caller gets no hint on the cause of
the error. This contradicts common fault handling principles known in higher
level programming languages and hampers distributed fault handling [7]. As a
consequence, P2 fails all fault related tests, e.g., for the throw, rethrow, and
validate activities, the handling of incoming faults from invoked services, and
tests for standard BPEL faults. This amounts to ten tests for structured activi-
ties, two for scopes and 30 for basic activities, and adds up to 32% of all tests in
total. Another factor that impacts its standard conformance rating is its deploy-
ment rate. Twelve percent of the standard-conformant test cases are rejected by
P2 during deployment resulting in an upper bound of 88% for its conformance
rating. Furthermore, multiple features of the assign activity seem to be unim-
plemented: the XPath extension functions for BPEL, getVariableProperty and
doXslTransform, the assignment of a partnerLink or a property, as well as the
keepSrcElementName attribute of a copy element. Invoke activities cannot be
used with correlationSets or empty messages, and the same applies to embed-
ded fault handlers. Engine P2 does not implement terminationHandlers and
the definition of correlationSets or partnerLinks at the level of a scope is un-
supported, although both constructs work when used on the process level. Event
handling is supported in a basic fashion. However, the onEvent activity does not
support the fromParts syntax and the onAlarm activity does not support the
until element. The initiation of a correlationSet with an asynchronous oper-
ation leads to a failure to correlate on this set in an onEvent message handler.
If used within a scope or at root level, faultHandlers work in most cases.
The only exception to this is the failure to catch a fault that carries additional
fault data using a faultElement. The forEach activity is implemented but
lacks support for configuration related to the completionCondition. In a simi-
lar fashion, the flow activity supports links, but no conditional activation with
joinConditions.

Engine P3: The proprietary engine with the second highest degree of standard
conformance, successfully completing 74% of the tests, is engine P3. It supports
all structured activities in their basic configuration but fails to support sev-
eral special cases, such as links in a flow activity that use joinConditions,
and forEach activities that use a completionCondition with successful-

BranchesOnly. In addition, the forEach activity is always executed sequentially
even if the parallel attribute is set. P3 does not support terminationHandlers,
throwing or re-throwing faultData, the keepSrcElementName option of the
copy element and the specification of toParts for messaging activities. More-
over, embedded fault- or compensation handlers for the invoke activity are not

Open Source versus Proprietary BPEL Engines 109

supported. Finally, the remaining tests fail, because certain standard faults, such
as correlationViolation or missingReply, are not thrown as required.

4.2 Comparison of Proprietary and Open Source Engines

This section compares the standard conformance and its effects on expressiveness
of open source engines with that of proprietary engines and answers the two
research questions posed in the introduction. The results of the five open source
engines presented in Table 2 vary slightly from previous analyses [8], because
the engines under test as well as the conformance test suite were updated.

Proprietary engines successfully pass between 53% and 92% of the confor-
mance tests. For open source engines, these numbers vary from 26% to 92%. On
average, proprietary engines pass 73% of the conformance test suite, whereas the
open source engines only achieve 62%. We used a binomial test to verify if this
difference is significant. We tested if the number of successfully passed tests for
open source engines is equal to the corresponding value for proprietary engines at
a significance level of 5%. With a p-value of 2.5e−9, this hypothesis can be safely
rejected in favour of the alternative: Open source engines pass significantly less
tests than their counterparts. A reason for this observation may be that our test
set of open source engines includes engines that could be considered experimen-
tal or premature. This is supported by the fact that the lowest ranking engine
only deploys 57% of the tests and passes 26%. But because we lack market data
on engine usage, we are unable to make a clear distinction on this issue. The
overall situation changes, however, when looking at the top three open source
engines which, to our experience, also are the ones most widely used in practice.
Considering the top three open source engines, standard conformance ranges
at 75%, two percentage points above the corresponding value for proprietary
engines. Using binomial tests as before, we could confirm that there is no signif-
icant difference between the proprietary and the top three open source engines.
The number of successful tests is clearly not lower (p-value of 0.81), but also
not significantly higher (p-value of 0.23) for open source engines. In summary,
based on this data, the answer to RQ1, whether proprietary engines outperform
open source ones, has to be confirmed. In total, proprietary engines provide a
higher degree of support, although the difference balances when only considering
mature open source engines.

Table 3 details the results for workflow pattern support based on the expres-
siveness test suite using the trivalent rating described in section 3.2. Insights on
pattern support can be gained by comparing the engines with the workflow pat-
tern support of BPEL 2.0 shown in the BPEL column. We consider the number
of times an engine is compliant to BPEL (i.e., the engine has the same degree
of pattern support as BPEL), the engine deviates (i.e., the engine only provides
partial support while BPEL directly supports the pattern) and the engine fails
to directly support the pattern, in relation to the total number of patterns. We
exclude the four patterns that cannot be implemented directly in BPEL from
these calculations, as we cannot diagnose support for them in the first place. The
results show that compliance to BPEL in pattern support ranges from 56% to

110 S. Harrer, J. Lenhard, and G. Wirtz

Table 3. Workflow patterns support per engine, aggregated by pattern, pattern group
and engine

Comm. Eng. Open Source Engines

Pattern BPEL P1 P2 P3 bpel-g ODE OpenESB Orch. Petals

Basic Control-Flow Patterns 100%

WCP01 Sequence + + + + + + + + + 100%

WCP02 Parallel Split + + + + + + + + + 100%
WCP03 Synchronization + + + + + + + + + 100%
WCP04 Exlusive Choice + + + + + + + + + 100%
WCP05 Simple Merge + + + + + + + + + 100%

Advanced Branching and Synchronization Patterns 88%

WCP06 Multi-Choice + + + + + + +/- + +/- 75%
WCP07 Synchronizing Merge + + + + + + +/- + +/- 75%

Structural Patterns 100%

WCP11 Implicit Termination + + + + + + + + + 100%

Patterns with Multiple Instances 50%

WCP12 MI Without Sync. + + + +/- + + +/- +/- +/- 50%

WCP13 MI W. Design T. Know. + + + - + + +/- +/- +/- 50%
WCP14 MI W. Runtime Know. + + + - + + - - - 50%

State-based Patterns 90%

WCP16 Deferred Choice + + + + + + + + + 100%
WCP17 Interl. Parallel Routing +/- +/- +/- +/- +/- +/- - - - 63%
WCP18 Milestone +/- +/- +/- +/- +/- +/- +/- - - 75%

Cancellation Patterns 100%

WCP19 Cancel Activity +/- +/- +/- +/- +/- +/- +/- +/- +/- 100%
WCP20 Cancel Case + + + + + + + + + 100%

compliance 100% 100% 81% 100% 100% 63% 69% 56% 84%
deviation 6% 25% 13% 25% 9%

no direct support 13% 13% 19% 19% 8%

Ø of compliance per engine group 94% 88% 72%

100% for open source engines, wheras proprietary engines excel their competitors
with support ranging from 81% up to 100%. Two open source engines, Apache
ODE and bpel-g, and two proprietary engines, P1 and P2, are completely com-
pliant to BPEL in terms of support. P3 ranks second, whereas the remaining
open source engines Orchestra, OpenESB, and PetalsESB come last.

All engines share the degree of support with BPEL for nine patterns (WCP01-
WCP05, WCP11, WCP16, WCP19-20). For three patterns, several engines devi-
ate from BPEL, whereas five patterns are not directly supported by at least one
engine. As shown in the right-most column in Table 3, engines comply with BPEL
for the basic control-flow patterns, the structural patterns, and the cancellation
patterns. Patterns with multiple instances show most deviations and only in 50%
of the cases, the engines achieve the same rating as BPEL. For advanced branch-
ing and synchronization and state-based patterns, engines provide 88% and 90%
of compliance, respectively. What is more, support for advanced branching and
synchronization patterns is in place for all engines, although two open source
engines only support the patterns using a workaround solution. A similar situa-
tion applies to the the Multiple Instances patterns, where two patterns, WCP12
and WCP13, can be implemented by workaround solutions by three engines.
One proprietary engine fails to support two of the Multiple Instances patterns
(WCP13 and WCP14), and deviates from BPEL for the third Multiple Instance
pattern (WCP12). Several open source engines also fail to support three pat-
terns, namely, the Multiple Instances With a Priori Runtime Knowledge pattern
(WCP14), the Interleaved Parallel Routing pattern (WCP17) and the Milestone

Open Source versus Proprietary BPEL Engines 111

pattern (WCP18). Interestingly, the patterns for which open source and propri-
etary engines deviate from BPEL are almost disjunctive, only WCP14 is not
directly supported in both groups on at least one engine. Moreover, WCP14 is
the least supported pattern as the corresponding test case fails on four engines.
In total, the proprietary engines implement more workflow patterns (94%) than
their open source counter parts (72%). As before, when comparing the three pro-
prietary engines with the top three open source engines, this difference shrinks
to an insignificant level (94% vs. 88%). The proprietary engines provide no di-
rect support in two cases and deviate from BPEL in one case, whereas the top
three open source engines provide no direct support in two cases and deviate
from BPEL in four cases. These results reinforce the answer to RQ1.

The 21 cases of deviation from BPEL are caused by a lack of support for the
flow activity in combination with links (six times), the forEach activity (three
times) in combination with parallel execution (nine times), message correlation
(twice) and isolated scopes (once). These results let us answer RQ2, concerning
the impact of standard conformance on workflow pattern support. All in all, 18
cases of deviation (or 86% of the deviations) are a result of the lack of a standard
conformant implementation of the flow and the forEach activity. Put differently,
the lack of truly parallel execution in an engine is the biggest obstacle to pattern
support. Nevertheless, the impact of standard conformance on pattern support
seems little. Apache ODE, with 66% of successful conformance tests, supports
all workflow patterns that can be directly implemented in BPEL. Even the worst
engine in terms of standard conformance, PetalsESB with only 26% of successful
conformance tests, provides direct or partial support for 13 out of 16 workflow
patterns (81%). To frame an answer to RQ2: Workflow patterns can be directly
implemented with only a moderate degree of standard conformance, but support
for truly parallel execution of activities is a decisive factor.

5 Conclusion and Future Work

In this paper, we presented a comparison of open source and proprietary BPEL
engines in terms of standard conformance and language expressiveness. The re-
sults demonstrate, that proprietary engines provide a slightly higher degree of
standard conformance and language expressiveness than their open source coun-
terparts, and thus are of higher quality. This observation changes when con-
sidering the top three open source engines which are equal to their proprietary
counterparts. The effect of standard conformance on language expressiveness
turned out to be moderate, although parallel execution is a crucial factor.

Future work comprises two aspects: i) adding additional conformance and ex-
pressiveness test suites to get a more precise picture and ii) enhancing the test
suite for testing other criteria, to provide a more comprehensive comparison of
open source and proprietary products. Firstly, the BPEL specification [20, ap-
pendix B] contains a list of 94 static analysis rules specifying which BPEL pro-
cesses must be rejected by a standard conformant engine. A test suite based
on these rules that helps to verify if erroneous processes are correctly rejected

112 S. Harrer, J. Lenhard, and G. Wirtz

would be desirable. Concerning language expressiveness, as outlined in section 2,
many additional pattern catalogs do exist for which automatic testing would be
beneficial. Secondly, in addition to standard conformance and expressiveness,
performance is also a very important selection criteria for a process engine and a
major quality criterion. The existing infrastructure could be used to provide valu-
able insights on the performance of certain activities and combinations thereof,
as well as of workflow pattern implementations.

References

1. Bianculli, D., Binder, W., Drago, M.L.: Automated Performance Assessment for
Service-Oriented Middleware: a Case Study on BPEL Engines. In: Proceedings
of the 19th International World Wide Web Conference (WWW), Raleigh, North
Carolina, USA, pp. 141–150 (April 2010)

2. Börger, E.: Approaches to modeling business processes: a critical analysis of BPMN,
workflow patterns and YAWL. Software & Systems Modeling 11(3), 305–318 (2012)

3. Bozkurt, M., Harman, M., Hassoun, Y.: Testing & Verification In Service-Oriented
Architecture: A Survey. Software Testing, Verificaton and Reliability, 1–7 (2012)

4. Bukovics, B.: Pro WF: Windows Workflow in .NET 4. Apress (June 2010) ISBN-13:
978-1-4302-2721-2

5. Geiger, M., Schönberger, A., Wirtz, G.: Towards Automated Conformance Check-
ing of ebBP-ST Choreographies and Corresponding WS-BPEL Based Orchestra-
tions. In: 23rd International Conference on Software Engineering and Knowledge
Engineering, Miami, Florida, USA, July 7-9, KSI (2011)

6. Geiger, M., Wirtz, G.: BPMN 2.0 Serialization - Standard Compliance Issues and
Evaluation of Modeling Tools. In: 5th International Workshop on Enterprise Mod-
elling and Information Systems Architectures, St. Gallen, Switzerland (September
2013)

7. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the Interplay Between Fault
Handling and Request-Response Service Interactions. In: 8th International Con-
ference on Application of Concurrency to System Design (ACSD), Xi’an, China,
pp. 190–198 (June 2008)

8. Harrer, S., Lenhard, J., Wirtz, G.: BPEL Conformance in Open Source Engines.
In: Proceedings of the 5th IEEE International Conference on Service-Oriented
Computing and Applications (SOCA2012), Taipei, Taiwan, December 17-19. IEEE
(2012)

9. Harrer, S., Schönberger, A., Wirtz, G.: A Model-Driven Approach for Monitoring
ebBP BusinessTransactions. In: Proceedings of the 7th World Congress on Services
2011 (SERVICES 2011). IEEE, Washington, D.C. (2011)

10. Hoepman, J., Jacobs, B.: Increased Security Through Open Source. Communica-
tions of the ACM 50(1), 79–83 (2007)

11. Hofreiter, B., Huemer, C.: A model-driven top-down approach to inter-
organizational systems: From global choreography models to executable BPEL.
In: Join Conf. CEC, EEE, Hong Kong, China (2008)

12. IETF. Key words for use in RFCs to Indicate Requirement Levels (March 1997),
RFC 2119

13. Juszczyk, L., Dustdar, S.: Programmable Fault Injection Testbeds for Complex
SOA. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010.
LNCS, vol. 6470, pp. 411–425. Springer, Heidelberg (2010)

Open Source versus Proprietary BPEL Engines 113

14. Kaschner, K.: Conformance Testing for Asynchronously Communicating Services.
In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS,
vol. 7084, pp. 108–124. Springer, Heidelberg (2011)

15. Kuan, J.: Open Source Software as Lead User’s Make or Buy Decision: A Study
of Open and Closed Source Quality. In: Proceedings of the 2nd Conference on
The Economics of the Software and Internet Industries, Toulouse, France (January
2003)

16. Lanz, A., Weber, B., Reichert, M.: Workflow Time Patterns for Process-Aware
Information Systems. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. LNBIP, vol. 50,
pp. 94–107. Springer, Heidelberg (2010)

17. Lübke, D.: Unit Testing BPEL Compositions. In: Baresi, L., Nitto, E.D. (eds.)
Test and Analysis of Service-oriented Systems, pp. 149–171. Springer (2007) ISBN
978-3-540-72911-2

18. Lenhard, J.: A Pattern-based Analysis of WS-BPEL and Windows Workflow. Bam-
berger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik, no. 88,
Otto-Friedrich Universität Bamberg (March 2011)

19. Lenhard, J., Schönberger, A., Wirtz, G.: Edit Distance-Based Pattern Support
Assessment of Orchestration Languages. In: Meersman, R., et al. (eds.) OTM 2011,
Part I. LNCS, vol. 7044, pp. 137–154. Springer, Heidelberg (2011)

20. OASIS. Web Services Business Process Execution Language v2.0 (April 2007)
21. OMG. Business Process Model and Notation, v2.0 (January 2011)
22. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented Computing. Communica-

tions of the ACM 46(10), 24–28 (2003)
23. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10),

46–52 (2003)
24. RosettaNet. MCC Web Services Profile, R11.00.00A (June 2010)
25. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow

Control-Flow Patterns: A Revised View. Technical report, BPM Group, Queens-
land University of Technology; Department of Technology Management, Eindhoven
University of Technology (2006)

26. Spinellis, D.: Quality Wars: Open Source Versus Proprietary Software. O’Reilly
Media, Inc., Making Software (2011) ISBN: 978-0-596-80832-7

27. Stamelos, I., Angelis, L., Okionomou, A., Bleris, G.L.: Code quality analysis in open
source software development. Information Systems Journal 12(1), 43–60 (2002)

28. Thom, L.H., Reichert, M., Iochpe, C.: Activity Patterns in Process-aware Infor-
mation Systems: Basic Concepts and Empirical Evidence. International Journal of
Business Process Integration and Management (IJBPIM) 4(2), 93–110 (2009)

29. van der Aalst, W., ter Hofstede, A.: YAWL: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

30. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

31. WfMC. XML Process Definition Language, v2.2 (August 2012)

Detection of SOA Patterns

Anthony Demange, Naouel Moha, and Guy Tremblay

Département d’informatique, Université du Québec à Montréal, Canada
anthonydemange@gmail.com,

{moha.naouel,tremblay.guy}@uqam.ca

Abstract. The rapid increase of communications combined with the
deployment of large scale information systems lead to the democratiza-
tion of Service Oriented Architectures (SOA). However, systems based
on these architectures (called SOA systems) evolve rapidly due to the
addition of new functionalities, the modification of execution contexts
and the integration of legacy systems. This evolution may hinder the
maintenance of these systems, and thus increase the cost of their devel-
opment. To ease the evolution and maintenance of SOA systems, they
should satisfy good design quality criteria, possibly expressed using pat-
terns. By patterns, we mean good practices to solve known and common
problems when designing software systems. The goal of this study is to
detect patterns in SOA systems to assess their design and their Qual-
ity of Service (QoS). We propose a three steps approach called SODOP
(Service Oriented Detection Of Patterns), which is based on our previ-
ous work for the detection of antipatterns. As a first step, we define five
SOA patterns extracted from the literature. We specify these patterns
using “rule cards”, which are sets of rules that combine various metrics,
static or dynamic, using a formal grammar. The second step consists in
generating automatically detection algorithms from rule cards. The last
step consists in applying concretely these algorithms to detect patterns
on SOA systems at runtime. We validate SODOP on two SOA systems:
Home-Automation and FraSCAti that contain respectively 13 and 91
services. This validation demonstrates that our proposed approach is
precise and efficient.

Keywords: Service Oriented Architecture, Patterns, Specification and
Detection, Software Quality, Quality of Service (QoS), Design.

1 Introduction

Service Oriented Architecture (SOA) is an architectural style increasingly adopt-
ed because it offers system architects a high level solution to software design.
SOA systems are based upon loosely coupled, autonomous and reusable coarse-
grained components called services [22]. Each service provides a domain specific
behavior, and services can be composed as composite to fulfill high level busi-
ness processes requirements. Various technologies have emerged to implement
this style, among them, Web Services [14] and SCA [6]. Google, Amazon, Mi-
crosoft are well-known businesses that have successfully based their information

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 114–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detection of SOA Patterns 115

systems on SOA. Software systems evolve rapidly due to the addition of new func-
tionalities and the integration of legacy systems. Well designed systems tend to
reduce maintenance effort and costs in the long term [4,21]. However, designing
such systems becomes far more complex with the increasing use of distributed
and service-based systems. To ease evolution and maintenance, it is important
that systems satisfy good design and Quality of Service (QoS) criteria. These
concerns were first assessed in the object-oriented (OO) world. For instance, the
“Gang of Four” (GoF) [12] proposed several good practices, known as design
patterns, to solve common and recurring design problems. In the SOA context,
various catalogs [7,9,22] have been published in the last few years to provide sim-
ilar good patterns to follow. For example, a Facade, also referred by the same
name in the catalog of OO patterns, correspond to a service that hides complex
implementation details. The implementation is decoupled from the service con-
sumer and therefore can evolve independently. A Router is another typical SOA
pattern [19], which provides an additional layer to service consumers to preclude
strong coupling with business services. However, due to their own structural and
behavioral properties, SOA and OO patterns remain different.

Various interesting approaches have been proposed to assess software systems
quality and efficiency. Many of them focus on automatic design pattern detec-
tion in OO systems [3,8,13,15,17]. These are either based on static or dynamic
analysis, even sometimes on trace execution mining for architectural style recov-
ery. Thus, they provide a consistent and mature way to assess the quality of OO
systems.

Unfortunately, to our knowledge, no such approach exists in the SOA con-
text; that’s why we are exploring the SOA patterns detection area. The only
closely related work corresponds to our previous work for the detection of SOA
antipatterns, which are bad practices by opposition to SOA patterns, which are
good practices [20]. A domain specific language provided by the Service Oriented
Framework for Analysis (SOFA: http://sofa.uqam.ca) allows system analysts
to describe bad design practices with a high level expressive vocabulary. Each an-
tipattern, derived from the literature, is specified with rule cards, which are sets
of rules that use specific metrics [20]. These can either be static, and thus provide
information about structural properties like cohesion or coupling, or dynamic,
and provide information about response time or number of service invocation.
An automatic generation process converts rule cards into detection algorithms,
that can then be applied on the SOA systems under analysis.

In this paper, we extend the existing SOFA framework to consider the de-
tection of SOA patterns at runtime. Until now, no automatic approach for the
detection of such patterns has been proposed, making the approach proposed
in this paper original. The proposed approach is called SODOP (Service Ori-
ented Detection Of Patterns) and consists in the following three contributions.
(1) A thorough domain analysis from different catalogs led us to compile and
categorize the best practices in SOA systems and their underlying technologies.
(2) This analysis resulted in the specification of five significant SOA patterns
using rule cards. We selected these five SOA patterns because they represent

http://sofa.uqam.ca

116 A. Demange, N. Moha, and G. Tremblay

technology-agnostic, common and recurrent good quality practices in the design
and QoS of SOA systems. (3) Specifying the appropriate rule cards required us
to extend SOFA’s existing set of metrics with eight new metrics. We validated
the proposed approach with two SOA systems: Home-Automation, a system that
provides services for domotic tasks, and FraSCAti, an implementation of the Ser-
vice Component Architecture (SCA) standard [24]. We show that our SODOP
approach allows the specification and detection of SOA patterns with high preci-
sion values. More detailed information on our approach and the analyzed systems
can be found through the SOFA website (http://sofa.uqam.ca/sodop).

Overall, the paper is organized as follows. Section 2 describes related work
in SOA patterns and their automatic detection. Section 3 presents the proposed
approach for the specification and detection of SOA patterns based on metrics.
Section 4 describes experiments and results on the two SOA systems mentioned
above. Finally, Section 5 concludes and presents future work.

2 Related Work

Automatic detection of design patterns has already been highly investigated for
assessing the quality of OO systems. Antoniol et al. proposed one of the first
approach for design pattern recovery in OO programs [3]. The first step of this
approach consists in mapping source code in an intermediate representation with
an abstract object language. In the second step, several static metrics, like the
number of attributes, methods or associations, are then computed on this ab-
stract language. The final pattern recognition process is executed by examining
relations between classes and matching them with GoF design patterns. How-
ever, as in many other work, behavioral patterns were omitted because of the
focus on static analyses.

Tsantalis et al. proposed an interesting way to recover behavioral patterns
through a data-mining process based on execution traces [25]. The process con-
sists in extracting graphs or matrices for each of the following OO concepts:
association, generalization, abstract classes and abstract method invocations.
Based on design patterns definition from the literature, they identify the best
matching results from each matrix and identify candidate patterns. Ka-Yee Ng
et al. gave an alternative solution based on a dynamic pattern recovery pro-
cess [18]. They begin with the specification of scenario diagrams for each design
pattern to consider. Based on execution traces, the system under analysis is then
reverse-engineered based also on a scenario diagram. This program scenario di-
agram is finally assigned to the initial design pattern scenario diagram with an
explanation-based constraint programming to identify potential matches. Wen-
dehals et al. combined static and dynamic approaches to recover both structural
and behavioral patterns. Their dynamic approach is based on transforming ex-
ecution calls between objects to finite automata. A matching process between
these automata and design patterns templates returns the best patterns candi-
dates.

The majority of the community tends to say SOA was first introduced in
1996 by Schulte and Natiz in their Gartner technical report [23]. SOA patterns

http://sofa.uqam.ca/sodop

Detection of SOA Patterns 117

catalogs only appeared starting around 2009 [7,9,22]. Galster et al. identified
most of the patterns specified in Erl’s SOA Patterns [9] and showed the positive
impacts of patterns on quality attributes [11]. Their approach, manual, con-
sists in specifying quality attributes on each pattern and then identifying them
manually in real service-based systems.

Despite the emerging interest in SOA, the literature is not really consistent
with respect to SOA pattern definition and specification. Indeed, the available
catalogs use different classification, either based on their nature, scope or ob-
jectives. After an in depth review, we identified the available patterns and the
three main categories in which they fall. The first category describes structural
patterns which focus on how services are designed to assess common concerns
like autonomy, reuse, or efficiency. The second category represents integration
and exchange patterns, and describes how service composition and orchestration
are used to answer high level business application needs. This category includes
how services communicate with each other using different messaging capabili-
ties like synchronous or asynchronous exchanges. The last category can be seen
as specific QoS objective patterns such as scalability, performance or security
requirements.

To our knowledge, the only related work investigating design and quality of
service-based systems is from Yousefi et al. [27]. Their recent work proposed
to recover specific features in SOA systems by mining execution traces. By ex-
ecuting specific scenarios provided by a manager, they collect the distributed
execution traces. A bottom-up data mining algorithm analyzes the traces to
build closed frequent item-sets graphs. A filtering and feature recovering process
finally eliminates noises and omnipresent calls. This process allows the extrac-
tion of specific scenario features based on call frequency and utilization. The
obtained results tend to help maintainers by focusing on the most important
service providers to improve the QoS of SOA systems and ease their evolution.

Finally, Hohpe, in his report SOA Patterns: New Insights or Recycled Knowl-
edge? [16], explained that SOA is more than “a new fancy technology.” It is
really a new programming model that requires specific approaches and there-
fore interests in SOA patterns. Thus, OO software systems cannot be directly
compared to SOA systems because they both have their own structural and be-
havioral properties. Therefore, OO design patterns recovery cannot be directly
applied to SOA pattern detection. This is why our approach aims at providing
a specific technique to recover SOA patterns in an automated manner.

3 Our Approach SODOP

We propose the SODOP approach (Service Oriented Detection Of Patterns) that
aims at the specification and automatic detection of SOA patterns. SODOP is
an extension of a previous approach proposed by Moha et al. [20] called SODA
(Service Oriented Detection for Antipatterns). In the following, for the sake of
clarity, we first describe the SCA standard key concepts and the SODA ap-
proach. Then, we present the SODOP approach and the specification of five
SOA patterns as defined with SODOP.

118 A. Demange, N. Moha, and G. Tremblay

3.1 About the Service Component Architecture

Before introducing the SODA and SODOP approaches, it must be stressed that
the following experiments were made with the Service Component Architecture
(SCA) standard. A description of the SCA standard and its vocabulary is thus
useful to better understand how specific metrics are computed. A software appli-
cation built with SCA contains one or many components as shown in Figure 1.
A component is a logical building block implementing a specific business logic,
which is why we consider a component as a high level SOA service in this paper.
Each component can expose services, which declare methods potentially called
by clients, and references to other services the component depends on. The link
between two components is called a wire. A component could potentially nest
other components and become a composite. This composite can expose nested
components behaviors by promoting their services or references.

Fig. 1. Key Concepts of the SCA Standard

3.2 Description of the Earlier SODA Approach

SODA proposes a three steps approach for the detection of SOA antipatterns—
an antipattern corresponds to bad design practices, by opposition to patterns.
The first step consists in specifying SOA antipatterns using a Domain Specific
Language (DSL) that defines “rule cards”, which are set of rules matching spe-
cific QoS and structural properties. Figure 3 shows this DSL’s grammar, in
Backus-Naur Form. A rule describes a metric, a relationship, or a combination
of other rules (line 3) using set operators (line 6). A metric can either be static
(line 11) or dynamic (line 12)—computed at runtime. Examples of static metrics
include number of methods declared (NMD) or number of outgoing references
(NOR). Examples of dynamic metrics include response time (RT) or number
of incoming calls (NIC). A metric can optionally be defined as an arithmetic
combination of other metrics (lines 8 and 9). Each metric can be compared to
one ordinal values (line 7)—a five value Likert scale from very low to very high
(line 12)—or compared to a numeric value (line 8) using common arithmetic
comparators (line 13). A metric value is calculated for each service in the set
to populate one box-plot per metric. Figure 2 describes how ordinal values are
mapped to box-plot intervals.

Detection of SOA Patterns 119

Fig. 2. Mapping between ordinal values and box-plot intervals

The second step consists in generating automatically the detection algorithms
corresponding to the rule cards specified. These algorithms were generated with
the EMF [2] meta-model combined with the Acceleo [1] code generation tool. The
third and final step consists in applying these algorithms on real SOA systems
to detect candidate services that match antipattern rule cards. In our case, SCA
joint points were woven on each service so that every call trigger an event. Each
event is caught so that the computation of metrics is done on the called service.

1 rule card ::= RULE CARD:rule card name { (rule)+ };

2 rule ::= RULE:rule name { content rule };

3 content rule ::= metric | set operator rule type (rule type)+

4 | RULE CARD: rule card name
5 rule type ::= rule name | rule card name

6 set operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= metric value comparator (metric value | ordi value | num value)

8 metric value ::= id metric (num operator id metric)?

9 num operator ::= + | - | * | /

10 id metric ::= ANAM | ANIM | ANP | ANPT | COH | NID | NIR | NMD | NOR | NSC | TNP
11 | A | DR | ET | NDC | NIC | NOC | NTMI | POPC | PSC | SR | RT

12 ordi value ::= VERY LOW | LOW | MEDIUM | HIGH | VERY HIGH
13 comparator ::= < | ≤ | = | ≥ | >

14 rule cardName, ruleName ∈ string
15 num value ∈ double

Fig. 3. BNF Grammar for Rule Cards

3.3 Description of the SODOP Approach

The SODA approach is flexible and relatively easy to extend for SOA patterns
instead of antipatterns. Indeed, the DSL and the underlying SOFA framework
allow the integration of new metrics required for the specification of patterns.
The approach proposed in this paper, called SODOP, introduces five new pat-
terns, that we identified from the SOA literature. These patterns have been
specified with rule cards by combining existing metrics along with eight newly
defined ones—those are underlined in Figure 3 and are briefly described be-
low. SODOP’s three steps are described in Figure 4, and are similar to SODA’s
ones. The DSL grammar has been extended to allow more flexibility in the rule
card specification. We add the possibility of combining two existing metrics with

120 A. Demange, N. Moha, and G. Tremblay

numeric operators to avoid the proliferation of new metrics and, thus, to provide
ratios. The pattern rule cards specified in Step 1 are generated automatically into
detection algorithms in Step 2, followed by the concrete detection of patterns on
SOA systems in Step 3. The first specification step is thus manual, whereas the
second and third are automated.

Fig. 4. The Three Steps of the SODOP Approach

The following eight new metrics were defined. The Execution Time (ET) rep-
resents the time spent by a service to perform its tasks; it differs from the
response time as it excludes the execution time of nested services. The Number
of Different Clients (NDC) is the number of different consumers, thus multiple
incoming calls from the same consumer are counted only once. By contrast, the
Number of Incoming Calls (NIC) and Number of Outgoing Calls (NOC) refer
to dynamic calls, thus possibly counting several times the same service. The
Delegation Ratio (DR) represents the ratio of incoming calls that are relayed
by a service. The Service Reuse (SR) is a dynamic metric that computes to
what extent a service is reused; it is the ratio between the incoming calls (NIC)
and the total number of calls in the system. The Proportion of Outgoing Path
Change (POPC) computes the proportion of outgoing paths that change for a
given incoming call. In other words, this proportion is zero if the incoming call
and its underlying outgoing calls are always the same. Finally, the Proportion of
Signature Change (PSC) computes the proportion of method signature change
for a pair of incoming/outgoing calls. In other words, this metric represents the
dissimilarity level between an incoming and outgoing method call; it is computed
with the Jaro-Winkler similarity distance between method names [26].

3.4 Basic Service Pattern

When dealing with SOA pattern specification and detection, we want to specify
the best fundamental characteristics every system designer or architect should
take into account. Several principles, some of which are described in SOA Pat-
terns [9], have to be considered for service design. Components reusability (SR)
as well as high cohesion (COH) are common requirements in the design of general

Detection of SOA Patterns 121

systems such as OO systems [5]. The dynamic nature of SOA systems introduces
new non-functional requirements such as high availability (A) or low response
time (RT). These metrics are combined in the rule card shown in Figure 9(a) for
the specification of this Basic Service pattern.

3.5 Facade Pattern

A Facade, as illustrated in Figure 5, is used in SOA systems to get a higher
abstraction level between the provider and the consumer layers. Fowler and Erl
describe the pattern respectively as Remote Facade [10], Decoupled Contract or
Service Decomposition [9] and give as example using it to wrap legacy systems.
This pattern is similar to the Facade in OO systems because it hides imple-
mentation details [12] such as nested compositions and calls. It also provides
loosely coupled relationships with consumer services and let the implementation
evolve independently, without breaking the client contract. Using this pattern,
it is possible to decompose SOA systems following the principle of separation of
concerns. It will thus be easier to reuse the different layers in other systems. A
Facade can be responsible for orchestration, and can describe how composition
of subsequent services can fulfill the client requirements. Given that the Facade
acts as a front layer to several clients, we characterize its response time (RT) as
high. Such a pattern is defined to hide implementation details from many ser-
vices. Thus, its incoming outgoing calling ratio (NIC/NOC) is low because for
one incoming call, the components tends to execute multiple outgoing calls. Fi-
nally, we assume that such a service has a high delegation ratio (DR) because it
does not provide business logic directly but, instead, delegates to other services.
Figure 9(b) shows the rule card specification for the Facade pattern.

Fig. 5. Facade Pattern Example

3.6 Proxy Pattern

The Proxy pattern, represented in Figure 6, is another well-known design pattern
from OO systems, that adds an additional indirection level between the client
and the invoked service. Its objective differs from a Facade because it can, for
example, add new non-functional behaviors, which can cover security concerns

122 A. Demange, N. Moha, and G. Tremblay

Fig. 6. Proxy Pattern Example

such as confidentiality, integrity or logging execution calls for accountability
goals. Different kinds of Proxy patterns exist, such as Service Interceptor [7] or
Service Perimeter Guard [9], and they could all be specified with several distinct
rule cards. Instead, we choose to specify a generic version of this pattern with the
following characteristics. The proportion between incoming and outgoing calls
(NIC/NOC) has to be equal to one because it acts only as a relay. Moreover,
this relay property implies that incoming and outgoing method signatures have
to be the same. The fact that the Proxy pattern generally adds non-functional
requirements to SOA systems also means that it can be involved in several
scenarios. Thus, it has a high service reuse (SR) compared to other services.
Figure 9(c) shows its underlying rule card.

3.7 Adapter Pattern

The Adapter pattern, shown in Figure 7, is also close to the Adapter as found
in OO systems. Its goal is to adapt the calls between the destination service and
the clients. The integration of legacy systems into a SOA system often requires
adaptations to perform type transformations and preserve the functionality of
the legacy systems. Daigneau gives the example of a Datasource Adapter [7]
pattern as a solution that provides data access to specific different platforms. In
general, the number of incoming and outgoing calls are identical, thus the ratio
(NIC/NOC) is equal to one. Given the fact this pattern adapts specific client
calls, we can infer a high proportion of signature change (PSC) between incoming
and outgoing calls. This characteristic makes the Adapter differ from the Proxy,
which preserves the method signatures and simply relays calls. Figure 9(d) shows
the Adapter pattern rule card.

Fig. 7. Adapter Pattern Example

3.8 Router Pattern

The Router pattern, as illustrated in Figure 8, is similar to a network router
that forwards packets according to different paths. A SOA Router distributes
incoming calls to various destinations based on different criteria, which can be
either the client identity or the call parameters. Some smart routers either de-
tect paths on dynamic metrics such as availability or previous calls history and
forward calls to the best matching service. The main criterion to consider is a

Detection of SOA Patterns 123

Fig. 8. Router Pattern Example

change of outgoing paths for a specific incoming call, so a high proportion in
path changes (POPC) can be significant. It may be interesting to see if some
specific clients use specific paths and then make the correlation with incoming
parameters. Figure 9(e) shows the Router pattern rule card.

1 RULE CARD: Basic Service {
2 RULE: Basic Service {INTER HighSR
3 HighCOH HighA LowRT};
4 RULE: HighSR {SR ≥ HIGH};
5 RULE: HighCOH {COH ≥ HIGH};
6 RULE: HighA {A ≥ HIGH};
7 RULE: LowRT {RT ≤ LOW};
8 };

(a) Basic Service

1 RULE CARD: Facade {
2 RULE: Facade {INTER HighDR
3 LowIOCR HighRT};
4 RULE: HighDR {DR ≥ HIGH};
5 RULE: LowIOCR {NIC/NOC ≤ LOW};
6 RULE: HighRT {RT ≥ HIGH};
7 };

(b) Facade

1 RULE CARD: Proxy {
2 RULE: Proxy {INTER EqualIOCR
3 HighSR LowPSC};
4 RULE: EqualIOCR {NIC/NOC = 1.0};
5 RULE: HighSR {SR ≥ HIGH};
6 RULE: LowPSC {PSC ≤ LOW};
7 };

(c) Proxy

1 RULE CARD: Adapter {
2 RULE: Adapter {INTER EqualIOCR
3 HighPSC};
4 RULE: EqualIOCR {NIC/NOC = 1.0};
5 RULE: HighPSC {PSC ≥ HIGH};
6 };

(d) Adapter

1 RULE CARD: Router {
2 RULE: Router {HighPOPC};
3 RULE: HighOPC {POPC ≥ HIGH};
4 };

(e) Router

Fig. 9. Rule Cards for SOA Patterns

4 Experiments

To show the usefulness of the SODOP approach, we performed some experiments
that consisted in specifying the five SOA patterns presented in the previous sec-
tion and detecting them automatically on two SCA systems, Home-Automation

124 A. Demange, N. Moha, and G. Tremblay

and FraSCAti. Home-Automation is a system that provides services for domotic
tasks, whereas FraSCAti is an implementation of the SCA standard. Concretely,
these experiments aim to show the extensibility of the DSL for specifying new
SOA patterns, the accuracy and efficiency of the detection algorithms, and the
overall correctness of the underlying framework. As part of the experiments, two
independent analysts validated results for Home-Automation and the FraSCAti
team validated the results obtained for their framework. This independent vali-
dation enables us to compare the precision and recall of our SODOP approach
and demonstrates the accuracy and efficiency of the rule cards and the related
detection algorithms.

4.1 Assumptions

The experiments aim at validating the following three assumptions:

A1. Extensibility: The proposed extended DSL is flexible enough to define SOA pat-
terns. Through this assumption, we show that although the DSL and the SOFA frame-
work were initially dedicated to the specification and detection of SOA antipatterns,
they are sufficiently extensible to handle SOA patterns thorough the use of metrics.

A2. Accuracy: The services identified as matching our SOA patterns must attain at
least 80% of precision and 100% of recall. We want to guarantee the accuracy and
the efficiency of the rule cards and the related detection algorithms by identifying all
patterns present in the analyzed systems while still avoiding too many false positives
with a high precision value.

A3. Performance: The time needed by the detection algorithms must not impact the
performance of the analyzed system. We want to keep the detection time required by
the SODOP approach and the underlying SOFA framework very low to avoid efficiency
issues in the analyzed system.

4.2 Analyzed Systems

The experiments have been performed on two different SCA systems that are
in conformance with the SOA principles: Home-Automation, composed of 13
services and executed with 7 different scenarios, and FraSCAti, an open-source
implementation of the SCA standard. FraSCAti fully uses SCA service compo-
sition as it includes 13 composite components, themselves encapsulating compo-
nents, for a total of 91 components. The experiment with this system involves
the bootstrap and launch of six SCA applications developed within FraSCAti to
simulate the scenarios.

4.3 Process

The process used for these experiments follows the three steps of the SODOP
approach presented in Section 3. We first specified the rule cards representing the
five SOA patterns described previously. Then, we generated automatically the
detection algorithms in the second step. Finally, we applied them respectively

Detection of SOA Patterns 125

on Home-Automation and FraSCAti to detect the SOA patterns specified. We
validated the results by computing the precision—the proportion of true patterns
in the detected patterns— and the recall—the proportion of detected patterns in
all existing patterns. These validations were made through a manual and static
analysis of each service in the systems under analysis. The computations were
performed by two external software engineers to ensure the results were not
biased. An additional feedback was given by the FraSCAti core team itself to
strengthen the results.

4.4 Results

In the following, we first discuss the results obtained on the two SCA systems.
Tables 1 and 2 respectively present the detection results on each system. For
each SOA pattern listed in column one, column two describes the services de-
tected as patterns. Columns three, four and five give respectively the value of
metrics involved in the rule card of the pattern, the time required for applying
the detection algorithms and the system execution time. The two last columns
provide the precision and the recall values. The last row gives average values
(detection time, execution time, precision and recall).

Details of the Results on Home-Automation
Four of the five specified SOA patterns were detected on Home-Automation—
the Adapter pattern was not detected. The patientDAO, communication and
knxMock components are detected as Basic Service pattern with a maximal
cohesion (COH ≥ 0.34), high reuse values (SR > 0.10) and very low response
time (RT < 0.25ms). According to the definition of the Basic Service pattern,
these three components thus represent the services in the system that are the
most well designed, as they appear to satisfy common software design principles.
The mediator component is considered both a Facade and a Router. The Facade
represents a service acting as a front layer to clients to hide a complex subsystem.
Indeed, the delegation metric (DR = 1) of the mediator component always acts
as a relay and tends to have six times more outgoing calls for each incoming
one (NIC/NOC = 0.17), thus this traduces its high response time (RT = 2.8ms).
The mediator has also been detected as a Router because of its high dynamic
metric (POPC = 0.5). This value means that the mediator distributes to different
outgoing paths half of its incoming calls. The patientDAO also matches the
Proxy pattern because of its high reuse (SR = 0.24 compared to the median
value of 0.06) and systematic incoming calls relay (NIC = NOC) with the same
method signatures (PSC = 0). We can also observe that the time required for the
detection of each pattern is on average 25ms, whereas the average execution time
on a given set of scenarios is 6.73s. These values demonstrate the low impact of
the pattern detection on the system execution, and thus on the results. Finally,
the validation performed by the two experts lead to a 93.3% precision and 100%
recall, which indicates that all existing patterns in Home-Automation have been
detected, with high precision.

126 A. Demange, N. Moha, and G. Tremblay

Table 1. SOA Pattern Detection Results on the Home-Automation System

����������� 	���
�������
�� �����
� 	���
����� ���
���� ���
����� ��
���

Basic Service

COH RT SR

80ms 6.82s
patientDAO 0.49 0.25ms 0.24 [3/2] [2/2]
communication 0.34 0.24ms 0.10 66.6% 100%
knxMock 0.38 0.16ms 0.11

Facade
NIC/NOC DR RT

10ms 6.66s [1/1] [1/1]mediator
0.17 1.0 2.8ms

100% 100%

Proxy
NIC/NOC SR PSC

13ms 6.74s [1/1] [1/1]patientDAO
1.0 0.24 0.0

100% 100%

Adapter n/a n/a 10ms 6.76s [0/0] [0/0]
100% 100%

Router
POPC

11ms 6.67s [1/1] [1/1]mediator
0.5

100% 100%

Average 25ms 6.73s 93.3% 100%

Details of the Results on FraSCAti
As shown in Table 2, the detection of patterns on FraSCAti returns more results
than Home-Automation, i.e. more components are detected as patterns. This is
partly explained by the size of FraSCAti, which is almost ten times larger than
Home-Automation. Five components have been detected as matching the Basic
Service pattern, because of their very high reusability (SR > 0.1 compared to the
median value of 0.003), high cohesion (COH > 0.48) and mostly very low response
time (RT < 0.7ms). The core framework components, FraSCAti, assembly-factory
and composite-parser, are detected as Facade as they are main entry points of
the framework that relay every incoming calls (DR = 1). Their incoming outgoing
call ratio (NIC/NOC = 0.46, 0.25 and 0.63) remains low compared to the median
value of 1. They act as a Facade because they have among the highest response
times (respectively 571ms, 181ms and 10ms) mainly due to their massive under-
lying calls. The Proxy pattern is involved in the three following components:
sca-interface, sca-implementation and component-factory. The components have
been identified as Proxy because they represent highly reused (SR > 0.5) relay
services (NIC/NOC = 1) and they include the same method calls (PSC = 0). The
only missing SOA pattern in Home-Automation and discovered in FraSCAti is
the Adapter, seen in the BindingFactory component. It acts as an Adapter be-
cause it relays all its incoming calls (NIC/NOC = 1) and adapts the method
calls to the underlying components (PSC = 1, which indicates a high proportion
of signature change). Unlike in Home-Automation, no Router pattern has been
detected. The average detection time required for our experiments is 97ms on
average for a total time average of 10.9s. As for Home-Automation, the detection
represents only 1% of the total system execution, and thus does not affect its
performance, even with a relatively larger system. We reported those results to
the FraSCAti core team and they confirmed all components detected as pat-
terns. This leads to a precision of 100% for this detection. However, the recall

Detection of SOA Patterns 127

Table 2. SOA Pattern Detection Results on the FraSCAti System

����������� 	���
�������
�� �����
� 	���
����� ���
���� ���
����� ��
���

Basic Service

COH RT SR

241ms 11.34s n/a

sca-interface 0.48 0.09ms 0.11

sca-interface-java 0.50 0.02ms 0.11 [5/5]
sca-impl. 0.48 0.67ms 0.05 100%
sca-impl.-java 0.50 0.59ms 0.04

sca-comp.-service 0.48 0.25ms 0.48

Facade

NIC/NOC DR RT

57ms 10.62s
FraSCAti 0.46 1.0 571ms

[3/3] [3/16]
assembly-factory 0.25 1.0 181ms

100% 18.7%
composite-parser 0.63 1.0 10ms

Proxy

NIC/NOC SR PSC

65ms 10.72s
sca-interface 1.0 0.11 0.0

[3/3] [3/14]
sca-impl. 1.0 0.05 0.0

100% 21.4%
component-factory 1.0 0.11 0.0

Adapter
NIC/NOC PSC

57ms 10.96s [1/1] [1/14]BindingFactory
1.0 1.0

100% 7.1%

Router n/a n/a 67ms 10.88s [0/0] [0/7]
100% 0.0%

Average 97ms 10.90s 100% 11.8%

value of 11.8% is low. Our detection algorithms thus failed at detecting all the
existing components involved as patterns in the FraSCAti system.

4.5 Discussion

We now discuss the three assumptions mentioned earlier to show the usefulness
of the SODOP approach.

A1. Extensibility: The proposed extended DSL is flexible enough to define SOA pat-
terns. This first assumption is positively supported because we show through the ex-
periments that the DSL allows designers to define different kinds of rule cards and add
new metrics that can be either static or dynamic. Indeed, the specification of SOA
patterns required the addition of eight dynamic metrics and the reuse of the 14 ex-
isting ones. In addition to the new metrics, the DSL has been extended with numeric
operators (+,-,*,/) to allow the combination of metrics and, thus, avoid introducing
new metric specifications, keeping the language as simple and flexible as possible.

A2. Accuracy: The services identified as matching our SOA patterns must attain at
least 80% of precision and 100% of recall. The detection results demonstrate the high
precision of the SODOP approach, respectively 93.3% and 100% for Home-Automation
and FraSCAti. The recall for Home-Automation is 100% but the one for FraSCAti is
about 12%. This result is related to the highly dynamic detection of patterns, which is
based on a set of scenarios that do not cover all the system execution paths. In these
experiments with FraSCAti, unlike with Home-Automation, it is quite difficult to reach
100% coverage because of the system size.

A3. Performance: The time needed by the detection algorithms must not impact the
performance of the analyzed system. As shown in Tables 1 and 2, no matter which

128 A. Demange, N. Moha, and G. Tremblay

SOA patterns or how many metrics are computed, the detection time remains low
compared to the execution time and thus does not impact the system under analysis.
As a first analysis, we find the only affecting property is the number of services involved
in the SOA system under analysis, because all the metrics are computed against each
of them. FraSCAti has around eight times more components than Home-Automation,
which explains the proportional time needed to run the metrics computation (around
1% of the execution time). Because the experiments are run locally, the execution time
is also highly dependent on the computer computational power. In these experiments,
an Intel E5345 CPU with 4GB of RAM was used.

4.6 Threats to Validity

Several threats can be considered as counter-measures to the validity of our
study. First, the external reliability, i.e., the repeatability of our experiments,
is guaranteed under the condition that the same computational facilities are
used. This is still guaranteed by the automatic detection algorithms genera-
tion, which will be identical for the same input rule card. We provide the
details of our results as well as the systems analyzed in the SOFA website
(http://sofa.uqam.ca/sodop). The main possible external validity threat may
come from the fact we only focus on two SCA systems. Although they are rep-
resentative of small as well as big systems, SOA technologies often have specific
characteristics, which is why we plan to extend our study in the future. We tried
to minimize the potential construct validity of our approach by providing the
most representative execution scenarios for each system under analysis. However
for FraSCAti, the scenarios were not exhaustive as highlighted by the recall of
11.8%. Because of the size of the system, we will consider it in our next future ex-
periments. The other construct validity potentially questionable may come from
the rule cards subjectivity. Indeed, this depend heavily on the designer specify-
ing them, but we tried as much as possible to remain close and faithful to the
SOA patterns described in the literature. Moreover, although we only defined
five SOA patterns in the form of rule cards, they are representative according to
the literature. Indeed, even if SOA catalogs mainly define patterns for specific
technologies, we tried to specify meaningful technology-agnostic SOA patterns.

5 Conclusion and Future Work

SOA patterns are proven good practices to solve known and common problems
when designing software systems. Indeed, our three steps SODOP approach con-
sists in the specification and detection of SOA patterns to assess the design and
QoS of SOA systems. The first step consists in specifying rule cards—set of rules,
combining static and dynamic metrics—for each pattern. Five patterns were de-
scribed in our study, involving 22 different static and dynamic metrics, including
eight newly defined dynamic metrics. The second step consists in generating au-
tomatically detection algorithms from rule cards, and applying them on SOA
systems in the third step. We validated our approach using two SCA systems,
Home-Automation—a system that provides 13 services for domotic tasks—and

http://sofa.uqam.ca/sodop

Detection of SOA Patterns 129

FraSCAti—a SCA standard implementation that provides 91 components. The
experiments showed that we can obtain high precision and recall values under
the condition that execution scenarios are exhaustive.

Various lines of future work are currently being explored by our research
group. First, we will expand the SODOP approach by specifying more SOA
patterns and applying them on other SOA systems. We also plan to extend
our approach to other SOA technologies, such as Web Services and REST, as
they share many common properties. Our approach remain however applica-
ble to these other technologies to the condition we wrap them in specific SCA
containers.

Acknowledgments. The authors would like to thank the FraSCAti core team,
and in particular Philippe Merle, for the validation of the results on FraSCAti
and their valuable discussions on these results. This work was partially supported
by Research Discovery grants from NSERC (Canada).

References

1. Acceleo code generator tool, http://www.acceleo.org/
2. Eclipse modeling framework project, http://www.eclipse.org/modeling/emf/
3. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design Pattern Recovery in Object-

Oriented Software. In: 14th IEEE Intl. Conf. on Prog. Comprehension, pp. 153–160
(June 1998)

4. Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D.: Software complexity and
maintenance costs. Comm. of the ACM 36(11), 81–94 (1993)

5. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics
as quality indicators. IEEE Transactions on Software Engineering 22(10), 751–761
(1996)

6. Chappell, D.: Introducing SCA (2007),
http://www.davidchappell.com/articles/introducing_sca.pdf

7. Daigneau, R.: Service Design Patterns. Addison-Wesley (2011)
8. De Lucia, A., Deufemia, V., Gravino, C., Risi, M.: Improving Behavioral Design

Pattern Detection through Model Checking. In: 14th European Conf. on Soft.
Maintenance and Reengineering, pp. 176–185. IEEE Comp. Soc. (March 2010)

9. Erl, T.: SOA Design Patterns. Prentice Hall PTR (2009)
10. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-

fessional (2002)
11. Galster, M., Avgeriou, P.: Qualitative Analysis of the Impact of SOA Patterns on

Quality Attributes. In: 12th Intl. Conf. on Quality Software, pp. 167–170. IEEE
(August 2012)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

13. Guéhéneuc, Y.G., Antoniol, G.: DeMIMA: A Multilayered Approach for Design
Pattern Identification. IEEE Trans. on Soft. Eng. 34(5), 667–684 (2008)

14. Hansen, M.D.: SOA Using Java Web Services. Prentice Hall (2007)
15. Heuzeroth, D., Holl, T., Hogstrom, G., Löwe, W.: Automatic design pattern detec-

tion. In: Intl. Symp. on Micromechatronics and Human Science, pp. 94–103. IEEE
Comp. Soc. (2003)

http://www.acceleo.org/
http://www.eclipse.org/modeling/emf/
http://www.davidchappell.com/articles/introducing_sca.pdf

130 A. Demange, N. Moha, and G. Tremblay

16. Hohpe, G., Easy, C.: SOA Patterns New Insights or Recycled Knowledge. Tech.
rep. (2007)

17. Hu, L., Sartipi, K.: Dynamic Analysis and Design Pattern Detection in Java Pro-
grams. In: 20th Intl. Conf. on Soft. Eng. and Data Eng., pp. 842–846 (2008)

18. Ka-Yee Ng, J., Guéhéneuc, Y.G., Antoniol, G.: Identification of Behavioral and
Creational Design Patterns through Dynamic Analysis. In: 3rd Intl. Work. on
Progr. Comprehension through Dynamic Analysis, pp. 34–42. John Wiley (2007)

19. Milanovic, N.: Service Engineering Design Patterns. In: Second IEEE Intl. Symp.
on Service-Oriented System Eng., pp. 19–26 (October 2006)

20. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and Detection of SOA Antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 1–16.
Springer, Heidelberg (2012)

21. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-
ity. In: Proc. Conf. on Soft. Maint., pp. 337–344. IEEE Comp. Soc. Press (1992)

22. Rotem-Gal-Oz, A.: SOA Patterns. Manning Publications (2012)
23. Schulte, R.W., Natis, Y.V.: Service Oriented Architectures, Part 1. Tech. rep.,

Gartner (1996)
24. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.B.: Re-

configurable SCA Applications with the FraSCAti Platform. In: 2009 IEEE Intl.
Conf. on Services Computing, pp. 268–275. IEEE Computer Society (September
2009)

25. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.: Design Pattern
Detection Using Similarity Scoring. IEEE Trans. on Soft. Eng. 32(11), 896–909
(2006)

26. Winkler, W.E.: String Comparator Metrics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage (November 1989)

27. Yousefi, A., Sartipi, K.: Identifying distributed features in SOA by mining dynamic
call trees. In: 27th IEEE Intl. Conf. on Soft. Maint., pp. 73–82. IEEE (September
2011)

Optimal Strategy for Proactive Service Delivery
Management Using Inter-KPI Influence Relationships

Gargi B. Dasgupta, Yedendra Shrinivasan, Tapan K. Nayak, and Jayan Nallacherry

IBM Research, Bangalore, India

Abstract. Service interactions now account for major source of revenue and em-
ployment in many modern economies, and yet service operations management
remains extremely complex. To lower risks, every Service Delivery (SD) envi-
ronment needs to define its own key performance indicators (KPIs) to evaluate
the present state of operations and its business outcomes. Due to the over-use of
performance measurement systems, a large number of KPIs have been defined,
but their influence on each other is unknown. It is thus important to adopt data-
driven approaches to demystify the service delivery KPIs inter-relationships and
establish the critical ones that have a stronger influence on the business outcomes.
Given a set of operational KPIs and SD outcomes, we focus on the problem of (a)
extracting inter-relationships and impact delays among KPIs and outcomes, and
building a regression-based KPI influence model to estimate the SD outcomes
as functions of KPIs. (b) Based on the model we propose a schedule of action
plans to transform the current service delivery system state. (c) We also build a
visualization tool that enables validation of extracted KPIs influence model, and
perform what-if analysis.

1 Introduction

A Service System (SS) is an organization composed of (a) the resources that support,
and (b) the processes that drive service interactions so that the outcomes meet customer
expectations [8]. Service interactions now account for a major source of revenue and
employment in many modern economies, and yet service operation management re-
mains extremely complex and unpredictable. Due to the labor intensive processes, their
complex inter-dependencies, and the large variation in the tasks and skills required,
these human provided Service Delivery Systems (SDS) are often at the risk of missing
performance targets.

Conforming with the underlying philosophy of “what gets measured, gets done”,
every SS has now defined a set of key performance indicators (KPIs) in accordance
with standardized process frameworks such as ITIL 1, Lean[13], Six Sigma 2. These
KPIs serve as management aids to evaluate the present state of operations. Consider
an incident management process measured by the MTTR (mean time to resolve) as
well as incidents resolved within target time. Or, a work assignment process measured

1 http://www.itil-officialsite.com/home/home.aspx
2 http://asq.org/learn-about-quality/six-sigma/
overview/overview.html

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 131–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.itil-officialsite.com/home/home.aspx
http://asq.org/learn-about-quality/six-sigma/overview/overview.html
http://asq.org/learn-about-quality/six-sigma/overview/overview.html

132 G.B. Dasgupta et al.

by the mean waiting time for an incident and mean utilization of service workers. A
special category of KPIs are the service delivery outcomes of customer satisfaction and
quality of service. These are measured against the Service Level Objectives (SLO) (e.g.,
availability, throughput, response time, etc) agreed between the service provider and
the customer. Inter-relationships between KPIs and business outcomes are critical for
business decisions. Consider an example where the MTTR in a SS is seen to improve,
it alone may not indicate an improving system. At the same time if overall customer
satisfaction drops, this is likely to indicate that irrespective of the tickets being closed
quickly, the real problem still exists in the customer environment. Hence same issues
are being re-opened (can be measured by a rework KPI) and satisfaction scores are
plummeting.

The increasing KPI population poses a challenge for managers to use manual meth-
ods for understanding KPI alignments and implications to outcomes, especially given
the large number of performance measurement systems and hundreds of KPIs use in
current service delivery. It is hence important to drive data-driven methods that ana-
lyzes the critical KPIs and can help move the system to a desired optimal state. How-
ever demystifying the impact of operational KPIs is non-trivial due to the following
reasons:(1) each KPI relation can have multiple attributes of direction, strength and po-
larity [1]. Negative polarities imply that improving some KPIs could worsen others. (2)
a KPI’s impact on an outcome may not be visible instantly, taking effect only after a
lag (3) due to the high number of KPIs, their different polarities and lags, the possible
paths to affect business outcomes is exponentially large.

Measurement frameworks for IT service systems is a well-established need and in the
last couple of years a fair amount of research is focusing on service quality [4]. In the
paper [1] authors discuss a validation approach for KPI relationships and a regression
model for predicting the values of outcome KPIs. However the work uses an aggregated
KPI measure and complexity of different lags is not addressed. The problem of selecting
the right set of KPIs, such that the desired outcome state is attained within a time and
a budget constraint has also not been addressed in the service system domain. Building
up on previous work [1], we outline the following:

Contributions: Given a complex network of operational KPIs and Service Delivery
Outcomes, both of which can be represented as time-varying datasets, we focus on the
problem of: (1) Adopting a data driven approach for detecting inter-relationships and
impact delays among KPIs and business outcomes. (2) Building an analytical model
to estimate the SD outcomes as functions of KPIs.(3) Using the model to compute a
optimal plan of scheduled actions such that transformation of outcome KPI performance
can happen within a time and a budget.(4) Building a visualization tool that helps the
user to explore and tune the proposed plan using what-if analysis.

The rest of the paper is organized as follows. Section 2 presents background of
the data center management domain and describes some KPIs used in our analysis.
Section 3 presents our KPI data analysis and influence estimation while Section 4 in-
troduces our prediction model and the transformation planning algorithm. Section 5
presents an interactive visualization system that can be used by experts for relationship
visuals, what-if type of analysis and plan exploration. Related work is summarized in
Section 6 and we conclude with Section 7.

Optimal Strategy for Proactive Service Delivery Management 133

2 Data Center Management Services

This section gives background on the domain of data center management services, the
nature of work and the role of KPI management. In the domain of data center man-
agement, the customers own data centers and other IT infrastructures supporting their
business. The service provider manage the data centers from remote locations called
delivery centers where groups of service workers (SW) skilled in specific technology
areas support the corresponding service requests (SR). Each SR from the customer ar-
rives with an associated priority (e.g. High, Medium or Low) and skills required to solve
it. SWs also have associated skill levels and can work on matched SRs. Every priority
of work has an associated service level objective (SLO) that is derived from the contract
agreed between customer and provider.

The primary focus of this business is to make sure customer SLOs are not violated.
To ensure this and continuously improve the efficiency of the service delivery teams,
multiple KPIs have been defined with the purpose of measuring the SD operations.
Some of the representative KPIs and their measures are given in Table1. Also is shown
a business outcome measured by SLO misses of a particular priority of work. The prob-
lem at hand is to understand which of these KPIs have a major impact on SLO misses.
Consider an example of the workload distribution KPI that is an indicator of how evenly
work gets distributed among SWs and is measured by the mean utilizations of different
groups of people. But does improving this KPI impact the business goal of reducing
SLO Misses? If yes, what is the expected time of benefit realization? These are the
questions we attempt to address with our model in section 3.

3 KPI Analysis and Influence Estimation

KPI relationships can be captured by direction and polarity. For example, the rework
KPI in a service system maybe impacted by the workload complexity KPI. In this case
the direction of this causal relationship is from workload complexity to rework. Ad-
ditionally, an increase in one KPI may imply a decrease in another. In such cases, the
polarity of the causal relationship is negative. Further, the degree of influence one KPI
has on another varies — some KPIs are independent implying no influence. Lastly, the
influences among KPIs do not occur instantaneously, the performance of one process
influences another with a certain delay. Thus each causal relationship has a lag asso-
ciated with it. Assessing the direction, polarity, degree of influence, and impact delay
among the KPIs is a prerequisite to predicting their impact to the business outcomes.

A possible approach for assessing the KPI relations is to depend on domain expertise
for identifying the major KPIs of interest and their intuitive relationships. Shrinivasan
et al.[1] outline a method for validating expert opinion and leveraging it to understand
relations. However it may not be feasible to identify all the relations using domain
experts, especially their strength of influence or how soon the causal effects of one be
seen on the other. Hence, there needs to be a data driven method for estimating the
strength of the relation as well as the impact delay between the relationships.

134 G.B. Dasgupta et al.

Table 1. Example Data Management KPIs and their measurements

Data Management KPIs Measured As:
A. Central Assignment: SRs should be centrally assigned
to SWs

Fraction of SRs dispatched via dedi-
cated dispatchers.

B. Workload distribution: Achieve even distribution of
workload among SWs in each skill group.

Proximity among utilizations of all
SWs of all skill groups.

C. Planned Upskilling: SRs are assigned to SWs with
lower skills in a planned manner to up-skill them.

Fraction of higher-skill SRs assigned
to lower-skilled SWs as per skill plan.

D. Skills Under-Utilization: SRs are assigned to SWs
with higher skills to control backlogs.

Fraction of low-skill SRs assigned to
higher-skilled SWs.

E. Cross Customer work SWs should work on SRs from
multiple customers.

Fraction of SWs working for multiple
customers.

F. Rework: Number of attempts required to resolve SRs. Fraction of SRs resolved in the first at-
tempt.

Business Outcomes Measured As:
G. SLO Misses for Priority p, p ∈ High, Med, Low : Number of Misses on the work of type

Priority p

3.1 KPI Data Analysis

We now analyze real KPI data for the datacenter management domain and establish
some observations based on its statistical properties. While the specific observations
may be domain-specific, the analysis methodology remains same for data collected in a
different domain.

The KPIs are collected from different data sources such as work hours claim cata-
logues, human resource management, and customer works process management tools
deployed in a large service delivery organization. These datasets are refreshed at daily,
weekly and monthly frequencies. We use data for real 57 service systems collected over
60 weeks of duration in the year 2012. We use the weekly frequency data for analysis.
For each week of data, KPIs are computed and results are stored in a database. Since the
management tools are often deployed on production system, the data was noisy in parts
due to routine system maintenance (server reboots, performance troubleshooting etc.).
Thus, the traces had missing or incorrect data for many time intervals during the trace
period. We used a simple interval graph technique to identify the longest contiguous
interval, where all the KPIs in one SS had monitored data available. Hence, for each SS
we identified a smaller period of 56 weeks which had accurate monitored data available
and used this 56 periods for our analysis.

Fig.1 shows the timeseries plot of each KPI over time. The ones marked in red are the
outcome KPIs (i.e., KPI 9 and 10). We observe that there exists a wide variation both
across the time dimension and among the individual KPIs. This is reinforced by looking
at the Cumulative Probability Distributions (CDF) plot that shows the large skew in the
distributions. Many KPIs achieve the maximum performance value of 1 at some point
of time. Due to the skewness, statistical measures like mean, median, percentiles may
not be useful. Also since the distributions are so widely varied, statistical properties of

Optimal Strategy for Proactive Service Delivery Management 135

a single distribution will not be effective for outcome prediction. This has an important
implication on our method.

Observation 1:The impact of KPIs on outcomes is not easily deducible from visuals.
Aggregation measures like mean, median or percentiles cannot be used for representing
the KPI distribution.

Fig. 1. Operational KPIs and Outcomes as functions of time (CDF of KPI 3 and 8 are omitted to
improve the clarity as these are close to step functions)

We next measure the variability in each individual KPI and compute the coefficient
of variation (COV) for each. The coefficient of variation is a normalized measure of
dispersion of a probability distribution. and is defined as: COV = σ

μ where σ is the
standard deviation and μ is the mean of the distribution.

COV is a useful statistic for comparing the degree of variation and equals to 1 for
exponential distribution. Distributions with COV > 1 (such as a hyper-exponential
distribution) are considered high-variance, while those with COV < 1 are considered
low-variance. The coefficient of variations for all the KPIs are shown for three differ-
ent service systems in Fig.2 We observe that for each SS there are a few KPIs with
heavy-tailed distributions with COV > 1. If the outcome is hyper-exponential (as in
the second SS) then the individual KPIs that have higher variation is more likely to in-
fluence the outcome. In the third SS there is very little variation in the outcomes. This
leads to our second important observation.

Observation 2: For outcome metrics that are heavy-tailed, KPI metrics with low COV
may have low influence and vice versa. Statistical measures that ignore the variation in
the distribution i.e. the tail of the individual KPIs will be unlikely to accurately estimate
the influence.

As a consequence of the above observation rule, we use it as a filtering mechanism to
identify the influential KPIs which show statistically similar variation as the outcome(s)
KPI.

Next the relationship between a pair of KPIs is studied, using the cross-correlation
measure. The cross-correlation function between the KPIs with timeseries {x1, x2, . . . ,
xN} and {y1, y2, . . . , yN} is represented by the normalized covariance function,

ρxy(k) =

∑
t(xt − x̄)(yt+k − ȳ)√

(
∑N

t=1(xt − x̄)(
∑N

t=1(yt − ȳ)
, k = 0,±1,±2, . . . (1)

136 G.B. Dasgupta et al.

Fig. 2. Coefficient of Variation of different KPIs (8 operation KPIs and 2 Outcomes) at different
SS. KPIs in each SS are sorted by COV for easy comparison

Fig. 3. (a)KPI-KPI and Outcome-KPI correlations Matrix (KPI 9 and 10 correspond to outcomes)
and (b) Outcome-KPI correlation magnitudes at different lags (0 to 6 weeks)

where x̄ and ȳ are the means of {xt} and {yt}, respectively, and k is the lag. Fig. 3
shows the cross-correlation matrix between the KPIs in a SS at lag=0. We observe that
there exists both positive and negative correlations among the KPIs. The uncorrelated
KPIs may be ignored from the influence model perspective.

We note that while one KPI can positively affect an outcome (i.e. KPI 4 and outcome
9), it can simultaneously negatively affect a different outcome(i.e. KPI 4 and outcome
10). This adds to the complexity of the model and the model should consider these inter-
KPI dependencies. Again the correlations are also dependent on time lags. Fig.3(b)
shows the correlations of 4 KPIs with an outcome with lag varying from 0 to 6 weeks.
It is seen that though KPI 1 may appear uncorrelated at lag 0, the correlation increases
at lag of 1 week and is maximum at week four. In contrast, KPI 3 affects the outcome
instantaneously. This brings us to our third observation.

Observation 3: Correlation is a significant indicator of influence and a KPI may have
both the positive and negative impacts simultaneously on different set of outcomes. KPI
relations which may have transitive influence on the outcome needs to be considered.
Also due to the possible delayed response of influence, correlations at all reasonable
lags need to be studied. Thus cross-correlation among KPIs as well as with the out-
comes are both important for the influence model.

Optimal Strategy for Proactive Service Delivery Management 137

3.2 Influence Estimation

Correlation with lags is a characteristic of many physical systems and we use it as sta-
tistical measure for KPI influence on service delivery outcomes. After calculating the
cross-correlation between two KPIs, we compute the time-lag at which this maximum
correlation occurs. The maximum of the cross-correlation function indicates the point
in time where the signals are best aligned with respect to the delay between the KPIs.
Hence the maximum impact delay or impact delay between a pair of KPIs can be esti-
mated by the argument of the maximum of cross-correlation,

kimpact = argmax
k

ρxy(k), 0 ≤ k ≤ kmax, (2)

where kmax is the upper bound on the lag in weeks. We fix the upper bound kmax = 8
as the impact delay rarely exceeds over 8 weeks. The KPIs whose maximum cross-
correlation value among each other and with the outcome is above a threshold are con-
sidered for the influence model, described in section4.1.

Among multiple KPIs with the same correlation value, the one which affect the out-
come quicker is considered as more crucial. For this purpose we define the weekly rate
of influence between two KPIs as γxy = ρxy(kimpact)/kimpact.

Intuitively, the rate of influence between any two KPIs reflects how influence flows
from a source KPI to a target when there is a stimulus at the source KPI. In the SD
domain, possible stimuli for changing performance of a KPI are budget investments
that improve the overall process.

4 Outcome Prediction and System Transformation Model

In this section, we develop a model to predict the system outcomes as a function KPI
variables and subsequently formulate an optimization model to solve the investment
scheduling problem so as to meet the service level objectives while minimizing the cost
and delay for system transformation.

4.1 Outcome Prediction Using Multi-variate Regression Model with Time-Lag

A multivariate regression model is formulated to represent the system outcomes as a
linear function of KPI variables with appropriate time-lags. For multiple outcome pre-
diction, the prediction model is applied separately for each outcome since the impact
delays between the KPI variables and each outcome could be different.

Assume x1(t), . . . , xM (t), t=1, . . . , N are the M KPI variables related to the out-
come y(t). The linear regression model for the dependent variable y(t) has the form

y(t) = β0 + β1x1(t − k1) + β2x2(t− k2) + . . .+ βMxM (t− kM) + ε(t), (3)

where ki, i = 1, . . . ,M is the impact delay of KPI variable xi on the outcome y, ε(t)
is a random error and βi, i = 0, 1, . . . ,M are the unknown regression coefficients. The
accuracy of the prediction depends on the sample values of the KPI variables as well
as the corresponding delay of impact on the outcome. To estimate the impact delay, we
develop a model based on user’s suggestion and fine tune it around the suggested value

138 G.B. Dasgupta et al.

with observed data. For each KPI, we select a range of time delay around the suggested
value and set the lag of maximum correlation as the impact delay (see eqn. 2).

The above model estimates the impact delays k1, k2, . . . , kM for all the KPIs. Ag-
gregating the sample points, we have

Y = β0 + β1X1 + β2X2 + . . .+ βMXM + ε = Xβ + ε, (4)

where Y = [y(1) . . . y(n)]T ,Xi = [0 . . . xi(1) . . . xi(n − ki)]
T ,X0 = [1, . . . , 1]T ,

X = [X0X1 . . .XM], β = [β0β1 . . . βM]T and ε = [ε(1)ε(2) . . . ε(n)]T .
To estimate the unknown regression coefficients β0, β1, . . . , βM , the least squares

estimation method is used that minimizes the sum of squared residuals (Y−Xβ)T (Y−
Xβ). The least square estimate of regression coefficients β̂ = (XTX)−1XTY.

The outcome estimate as a linear function of lagged KPI variables given by:

ŷ(t) = β̂0 + β̂1x1(t − k1) + β̂2x2(t− k2) + . . .+ β̂MxM (t− kM) (5)

= f(x1(t − k1), x2(t − k2), . . . , xM (t − kM)). (6)

4.2 Budget Allocation Model

In this section, we address the budget allocation problem for system transformation.
Given a service delivery system SS1 that has the following properties:

1. SS1 has J outcomes and the desired values of outcomes are ydj , j = 1, 2, · · · , J.
2. Assume B denotes the available budget and T represents the time limit to complete

the system transformation.
3. Investment can be applied to a given set of leaf nodes and without loss of generality,

assume the nodes are 1, 2, . . . , p. Let Qi be the investment required to improve the
KPI value of node i, xi by unit amount, i = 1, 2, . . . , p.

4. A outcome j can be improved at time t by improving one or more of the KPI
values x1, x2, . . . , xp at the leaf nodes provided the impact delay of the KPI is less
than t. Thus a KPI node i is a candidate for investment if the impact delay on j-
th outcome kji is smaller than t. Let Aji denotes the case that KPI node i is an
investment candidate for improving the outcome j.

A system outcome yj can be estimated as a function of lagged KPI variables as shown
in eqn. (6). After investment at t = 0, KPI values will be increased from x0

i to xi, i ∈
{1, 2, . . . , p} at selected set of nodes and the rest of KPI values will remain unchanged.
From eqns. (6), we can also estimate any outcome as a function of investment-ready
KPI variables (x1, . . . , xp) only as the impact of remaining leaf nodes is unchanged.
Hence the modified prediction function will be

yj=F
(
Aj1x1+(1−Aj1)x

0
1, . . . , Ajixi+(1−Aji)x

0
i , . . . , Ajpxp+(1−Ajp)x

0
p

)
+ ηj ,

(7)
where ηj is a constant. Note that the investment-ready leaf node i is an investment
candidate if the improvement in KPI value xi causes improvement in the outcome value
yj and is represented as Aji = 1. Considering all the outcomes, an investment-ready
leaf node will be an investment candidate if it has the ability to improve any of the
system outcomes within the time limit T . A binary variable Hi is defined to represent
the KPI node i as an investment candidate. Hence Hi = 1 if and only if there exists at

Optimal Strategy for Proactive Service Delivery Management 139

least one Aji=1 or Hi=1−
∏

j(1−Aji). The total cost of investment to improve the
candidate KPI values from x0

i to xi is
∑p

i=1 QiHi(xi − x0
i).

Given the KPI network and relation among the nodes, we need to decide the invest-
ment amount at each candidate node so as to meet the desired outcome requirements
within an overall budget and time. The general problem is to choose the investment-
ready nodes (Hi = 1) and the corresponding KPI values xi, so as to minimize the
weighted combination of normalized transformation time t/T and normalized cost∑p

i=1 QiHi(xi − x0
i)/B, subject to the constraints that the outcome values are greater

than the desired levels, required transformation time is bounded by the upper limit T
and the total investment does not exceed the overall budget B.

The problem is stated formally as a mathematical program.

Objective function: min wt
t

T
+wc

1

B

p∑
i=1

QiHi(xi − x0
i) (8)

subject to

yj = F
(
Aj1x1+(1−Aj1)x

0
1, . . . , Ajpxp+(1−Ajp)x

0
p

)
+ ηj ≥ yd

j , ∀j, (9)
p∑

i=1

QiHi(xi − x0
i) <= B, (10)

t <= T, (11)
x0
i ≤ xi ≤ xM

i , ∀i, (12)
0 ≤ Aji ≤ I{t>kji}, ∀i, j, (13)

Hi = 1−
∏
j

(1− Aji) ∈ {0, 1}, Aji ∈ {0, 1}, ∀i, j, (14)

where wc and wt are the weights corresponding to transformation cost and time, xM
i is

the upper bound on KPI value xi and I is an indicator function defined as I{x} = 1, if
x ≥ 0, else I{x} = 0. Note that transformation time minimization for a given budget B
and transformation cost minimization for a given time limit T are special cases of the
above general formulation with (wt = 1, wc = 0) and (wt = 0, wc = 1), respectively.

This is an example of mixed integer nonlinear program or MINLP. Although some
efficient algorithms are known for solving nonlinear programs (NLPs), no efficient
algorithms are known for the solution of arbitrary MINLPs which are extremely hard
[18]. Hence we develop a heuristic to find the optimal solution under certain conditions
using an iterative approach over t. Observe that the integer complexity arises due to the
transform time optimization and it has the same level of complexities as the weighted
combination. However, if we fix the transformation time t = tL, the integer variables
Aji = I{tL>kji} becomes constant for all i = 1, . . . , p, and j = 1, . . . , J and we need
to solve only the reduced cost optimization problem as following:

Objective function: min

p∑
i=1

QiHi(xi − x0
i) (15)

subject to

yj = F
(
Aj1x1+(1−Aj1)x

0
1, . . . , Ajpxp+(1−Ajp)x

0
p

)
+ ηj ≥ ydj , ∀j, (16)

p∑
i=1

QiHi(xi − x0
i) <= B, (17)

x0
i ≤ xi ≤ xM

i , ∀i, Hi = 1−
∏
j

(1− Aji) ∀i, j. (18)

140 G.B. Dasgupta et al.

The above mathematical problem (eqns. (15)–(18)) is a linear optimization problem
as all the constraints and objective functions are linear and it can be solved by the algo-
rithms for linear constrained minimization [18,19]. Statistical toolboxes like MATLAB,
SPSS provide such facilities. However, this solves the investment optimization problem
for a given time limt tL. We select integer values for tL as 1, 2, . . . , T and solve the
above problem (eqns. (15)–(18)) iteratively to compute the minimum investment re-
quired

∑p
i=1 QiHi(x

∗
i − x0

i) at each iteration. The optimum weighted combination is
obtained by comparing the results at all iterations. Note that the integer assumption of
transformation time limit t is a valid assumption as impact delays are generally mea-
sured as integers in terms of weeks or days and hence the iterative approach will lead to
an optimal solution. For the optimal solution t∗, assume x∗

i is the optimal value of KPI
xi. We now compute the week-wise transformation schedule for each xi based on the
weekly rate of modification.

4.3 Transformation Schedule

If every KPI can be increased to their optimal values without any constraint, then in
order to find the schedule, we update every KPI at the beginning of the first week, and
due to the respective lags, they converge to the optimal values within t∗ weeks. However
in reality, increasing a KPI value instantaneously without any limit is not feasible, since
improving a KPI usually involves process or people changes or both. Thus typically
every KPI will have a limit beyond which it cannot be changed in one week. In that
case we use a heuristic to modify a schedule:

Let xc
i be the maximum improvement that can be made to xi in one week

1: if (x∗
i −x0

i)
xc
i

+maxj (kji) ≤ t∗ then
2: Increment xi by xc

i every week till it reaches x∗
i

3: else
4: Update upper limit of xi, x

M
i = x0

i + xc
i × (t∗ −maxj (kji)).

5: Redo Iterative Optimization (eqns. (15)–(18))
6: end if

5 Model Validation Using Interactive Visualization

We build an interactive visualization system to enable managers/analysts of a service
system to (a) explore and validate KPI relationships; (b) interactively conduct what-if
analysis, and (c)choose the right action plan for improvement. The tooling is Html5
based with the backend supported by Java Server and IBM DB2. KPI datasets from 57
real service systems across 60 weeks are stored, visualized and analyzed by the sys-
tem. For the backend statistical models (i.e., distributions, COV, correlation, regression,
solver) we use standard MATLAB/SPSS packages.

5.1 Relationship Visualization

KPI relationships in the tool are captured using a graph notation, where nodes represent
the KPIs. Directed edges connecting two KPIs represents the influence relationship
between them. The label pair along the edge represent maximum relationship intensity

Optimal Strategy for Proactive Service Delivery Management 141

(a)

O1

p5

p2

p3

p4

p1

4
0.5

2
0.3

3
0.6

4
0.24

2
0.32

(b)

Intensity
Time Lag KPI

B
KPI
A

Fig. 4. A KPI relationship representation

and the lag at which it occurs as shown in Fig. 4(a). Blue edges represent positive
polarity and those in orange represent negative polarity. Fig. 4(b) shows relationships
among process KPIs (pi) and their relationships to an outcome (o1). The outcome node
(o1) is placed in the far right. Process KPI nodes are arranged in columns left to (o1)
based on the directness of influence to KPIs. For instance, KPIs p5, p2 and p3 are placed
in the first column left to (o1) since they directly affect the outcome. KPIs p1 and p4 are
placed in the second column left to (o1) because they are one-hop away and so on.

5.2 Relationship Validation and Prediction

In order to validate the KPIs relationships, tool users start with selecting both the ser-
vice system for investigation and an outcome through ‘service system and outcome
selection’ panel (see Fig. 5a). Users can also select the process KPIs to be included for
the relationship analysis (see Fig. 5b). To assist them in the selection of the outcome
KPI for analysis, we show a series of trend graphs, the CDFs and the CoV values for the
outcome KPIs for different service system. This view, as shown in Fig. 5c, enables users
to select the outcome by investigating its behavior over time. As discussed in section 3,
outcomes that demonstrate variation are more suited for this kind of influence analysis.

Next, the KPI relationships are extracted by individual setting of the parameters of
lag and minimum pairwise relationship strength (Fig. 5d).
(a)Lag analysis: Users can study the impact of lag on relationships by either fixing
a lag period (in weeks) or selecting a range of lag periods. This helps to explore the
degree of influence among KPIs at any given lag. In Fig. 6, a user explores and validates
KPIs relationship based on only the degree of influence by fixing lag at 2 and 5 weeks
respectively. On selecting a range of lags on the UI, the lag at maximum correlation is
associated with the relationship. A KPI relationship map extracted using this option is
shown in Fig. 5e with a lag range of 0 to 8 weeks.
(b)Degree of influence analysis: Users can study the impact of pairwise relationship
strength by varying a minimum threshold on the strength parameter with a given lag
setting. This filters out any relation with strength below the threshold. Fig. 6 shows a
dense and a sparse KPI relationship based on threshold values of 44.3% and 51.3%,
respectively. The extracted KPI relationship is visualized in Fig. 5f, with the settings in
(Fig. 5e) and can be accordingly modified by users (Fig. 5g). The validated relationships
are saved for future use.
Prediction Model Validation. The validated relationships are used to build the multi-
variate regression model with time lag (Section 4.1). Fig. 7 shows regression co-efficients
for 3 SS and their normalized RMSE. In this example 40 weeks of data was used for
building the model and the next 17 weeks was predicted. In each case the outcome was
dependent on 4−10 influence KPIs. We note that for 2 out of 3 service systems the RMSE

142 G.B. Dasgupta et al.

Fig. 5. An interactive visualization system to validate KPIs relationship in a service system. (a)
Service System and outcome Selection, (b) KPIs selection, (c) Outcome KPI trends for service
systems, (d) KPIs relationship extraction settings, (e) Graph drawing settings, (f) KPIs relation-
ship visualization using representation discussed in Fig. 4b, and (g) Relationship validation panel.

Fig. 6. KPI relationship validation by varying minimum threshold for pairwise relationship
strength and lag. The dense KPI network is obtained by setting low threshold for pairwise re-
lationship strength and high lag range. The sparse KPI network (shown in the inset) is obtained
by setting high threshold for pairwise relationship strength for the same lag range.

Optimal Strategy for Proactive Service Delivery Management 143

Fig. 7. (a)-(c) Regression results for models from 3 Service Systems

Fig. 8. An interactive user interface for exploring possible plans for improvement. (a) Outcome
prediction settings panel. (b) Possible plans. (c) Selected plan details with options for adjusting
weekly rates. (d) Weekly plan details. (e) Prediction graph showing the improvement in the out-
come using the recommended plan. Red dashed line represents the current outcome and green
line represents the improvement achievable by the suggested plan A.

errors is within 1%. Hence it seems that having a linear model of outcome prediction may
work reasonably well for service systems, where the dependent KPI relations affecting
each outcome is under 10. For a larger number of KPI relationships other models will
have to be explored. For each service system, users can either accept the error of predic-
tion (NRMSE) or choose to re-validate with a different set of parameter settings. Once
a prediction model is accepted (Fig. 8a), the next step is to explore possible plans for
system improvement.

5.3 Exploring Improvement Plans

In this state, the user is ready to explore different transformation plans. The follow-
ing inputs are required (as shown in bottom part of Fig. 8a):(1) Desired state of the

144 G.B. Dasgupta et al.

outcomes, (2) Time in weeks within which the desired state needs to be achieved,(3)
Budget allocation available for the improvement actions,(4) Cost in USD for improving
each KPI by 0.01 (1%).

Based on the algorithms discussed in Sections(4.2 and 4.3), the possible plans for
improvement are derived and summarized in a table (Fig. 8b). The table shows the
budget required to execute the plan and duration of the execution. With the alternate
plans presented, users can quickly compare and choose a plan that suits them. To further
support the plan selection process, they can select a plan and get details about the rate
at which they need to change a KPI’s performance (Fig. 8c). If the rates cannot be
achieved due to people or process constraints on the ground, adjustments are allowed to
the KPI rates. Recomputations are performed on the revised targets (based on method
in sec 4.3, thereby producing a new set of expected outcomes. Fig. 8d gives the detailed
weekly performance improvement plans that are derived from the final targets, using
the weekly schedule computation algorithm discussed in sec 4.3. On selecting the final
plan, managers can observe the week-wise perceived benefit achieved in the outcome
state and compare (Fig. 8e) with respect to the current state.

6 Related Work

In recent times service delivery has been highly IT oriented and there have been studies
around the need of measurement frameworks especially for IT services [3] and service
quality ([14],[4]). It has been widely adopted by delivery frameworks [12] that the op-
erational processes and their KPIs are inter-related to each other and they influence the
performance outcome of the service systems. Authors [20] outline an approach for mod-
eling performance indicators in organizations and the relationships between them which
constitutes a part of an expressive general framework for organizational modeling and
analysis. In the absence of precise information techniques are outlined [21] for deriving
values for composite indicators when the relation between composite and component
is not completely known. In BPM and Service Oriented Architecture (SOA) too, there
is work [6] on automated monitoring of KPIs and developing dependency trees using
machine learning. Authors in [2] detail methods for preventing KPI violations based on
decision tree learning and proactive runtime adaptation.

Process based performance analysis has been addressed before([7][15], [5]), but not
in the particular flavor of service delivery outcomes. Lag selection using regression for
high dimensional data is addressed in [10]. Authors refer to budgeting for the service
transformation in [17]. However, none of them address the combined problem of cre-
ating influence models and using it for a budget constrained transformation schedule.

7 Conclusions and Future Work

We present a KPI influence model that can be used by managers for outcome state pre-
diction, as well as system state transformation. We also provide visualization system
supported by statistical models for managers to perform what-if type of analysis and
iterative refinements before producing a consolidated final plan. During our model val-
idation we find that a linear relationship may not suffice for all service systems. As part
of future work we propose to investigate non-linear influence models.

Optimal Strategy for Proactive Service Delivery Management 145

References

1. Shrinivasan, Y.B., Dasgupta, G.B., Desai, N., Nallacherry, J.: A method for assessing influ-
ence relationships among kPIs of service systems. In: Liu, C., Ludwig, H., Toumani, F., Yu,
Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 191–205. Springer, Heidelberg (2012)

2. Prashanth, L.A., Prasad, H.L., Desai, N., Bhatnagar, S., Dasgupta, G.: Stochastic optimization
for adaptive labor staffing in service systems. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 487–494. Springer, Heidelberg (2011)

3. Lepmets, M., Ras, E., Renault, A.: A quality measurement framework for it services by
marion lepmets. In: SRII Global Conference (2011), 9. Lin, S.P., Chen, L.F., Chan, Y.H.:
What is the valuable

4. Rajamani, N., Mani, D., Mehta, S., Chebiyyam, M.: Quality, Satisfaction and Value in Out-
sourcing: Role of Relationship Dynamics and Proactive Management. In: ICIS 2010 (2010)

5. Motta, G., Pignatelli, G., Barroero, T., Longo, A.: Service level analysis method - SLAM. In:
Proceedings of ICCSIT, pp. 460–466 (2010)

6. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Monitoring
and analyzing influential factors of business process performance. In: Proceedings of EDOC.
IEEE Computer Society (2009)

7. Han, K.H., Kang, J.G., Song, M.: Two-stage process analysis using the process-based per-
formance measurement framework and business process simulation. Expert Systems with
Applications 36(3, pt. 2), 7080–7086 (2009)

8. Alter, S.: Service system fundamentals: Work system, value chain, and life cycle. IBM Sys-
tems Journal 47(1), 71–85 (2008)

9. Johnston, R., Clark, G.: Service operations management: improving service delivery. Finan-
cial Times Prentice Hall, Harlow (2008) ISBN 9781405847322

10. Simon, G., Verleysen, M.: Lag Selection for Regression Models Using High-Dimensional
Mutual Information: ESANN 2006 proceedings. In: European Symposium on Artificial Neu-
ral Networks, Bruges (Belgium), April 26-28 (2006)

11. Settas, D., Bibi, S., Sfetsos, P., Stamelos, I., Gerogiannis, V.: Using Bayesian Belief Networks
to Model Software Project Management Antipatterns. In: Proceedings of the Fourth Interna-
tional Conference on Software Engineering Research, Management and Applications (2006)

12. Grembergen, W.V., Haes, S.D.: Cobits management guidelines revisited: The kgis/kpis cas-
cade. Information Systems Control Journal 6(1), 1–3 (2005)

13. Apte, U.M., Goh, C.H.: Applying lean manufacturing principles to information intensive
services (2004)

14. Schneider, B., White, S.S.: Service Quality: Research Perspectives (Foundations for Organi-
zational Science). Sage Publications (2003)

15. Linard, K., Fleming, C., Dvorsky, L.: System dynamics as the link between corporate vision
and key performance indicators. In: System Dynamics Conference, pp. 1–13 (2002)

16. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco (1999)

17. Abedian, I., Strachan, B., Ajam, T.: Transformation in Action: Budgeting for Health Service
Delivery. University of cape town press, ISBN 1-919713-26-3

18. Bertsekas, D.: Nonlinear Optimization. Athena Scientific (1995)
19. Nash, S., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill, New York (1996)
20. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. In: Inf. Syst.

2010. Elsevier Science Ltd. (2010)
21. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Reasoning with Key Performance Indica-

tors. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM 2011. LNBIP, vol. 92, pp.
82–96. Springer, Heidelberg (2011)

On-the-Fly Adaptation of Dynamic Service-Based
Systems: Incrementality, Reduction and Reuse

Antonio Bucchiarone, Annapaola Marconi,
Claudio Antares Mezzina, Marco Pistore, and Heorhi Raik

Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy
{bucchiarone,marconi,mezzina,pistore,raik}@fbk.eu

Abstract. On-the-fly adaptation is where adaptation activities are not explicitly
represented at design time but are discovered and managed at run time consider-
ing all aspect of the execution environments. In this paper we present a compre-
hensive framework for the on-the-fly adaptation of highly dynamic service-based
systems. The framework relies on advanced context-aware adaptation techniques
that allow for i) incremental handling of complex adaptation problems by inter-
leaving problem solving and solution execution, ii) reduction in the complexity
of each adaptation problem by minimizing the search space according to the spe-
cific execution context, and iii) reuse of adaptation solutions by learning from
past executions. We evaluate the applicability of the proposed approach on a real
world scenario based on the operation of the Bremen sea port.

1 Introduction

One of the key advantages of the service oriented paradigm is the possibility to reduce
the development and maintenance cost of software applications without loosing the
control of their quality and the capability of managing their lifecycle. A key enabling
factor to fully exploit these advantages, is the capability of service oriented applications
to adapt, i.e., to modify their behavior and to evolve in order to satisfy new requirements
and to fit new situations. Addressing this problem is not at all easy, especially consid-
ering the challenges posed by the Internet of Services [13], where applications need to
deal with a continuously changing environment, both in terms of the context in which
the applications operate, and of the services, users and providers involved. In such a
setting, the same application shall operate differently for different contextual situations,
deal with the fact that involved services are not known a priori, and be able to dynami-
cally react to changes to better fit the new situations.

Despite the considerable effort dedicated in recent years to investigate approaches for
the adaptation of service-based systems, we are still far from effective solutions. As we
will discuss in depth in the related work, most adaptation approaches require to analyze
all the possible adaptation cases at design-time, and to embed the corresponding recov-
ery activities in the system model, and can hardly be used in dynamic settings; or only
deal with very limited forms of “local” dynamic adaptation, e.g., service replacement.

In recent work [4], we have proposed a comprehensive framework for the on-the-fly
adaptation of service-based application. This approach exploits the concept of process
fragments [9] as a way to model reusable process knowledge and to allow for an incre-
mental and context-aware composition of such fragments into adaptable service-based

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 146–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On-the-Fly Adaptation of Dynamic Service-Based Systems 147

applications. The framework allows for processes that are only partially specified at de-
sign time, and that are automatically refined at run-time taking into account the specific
execution context. This refinement exploits the available fragments, which are provided
by the other actors and systems to describe the services and capabilities that are offered
to the process in the specific context. The framework also supports on-the-fly adapta-
tion to unexpected or improbable context changes that may affect the execution of the
application. Also in this case, available fragments and current context are exploited to
solve the problem.

Since highly dynamic systems generates a large number of adaptation problems (both
in terms of process refinements and of other forms of adaptation), this paper investi-
gates a potential problem of on-the-fly adaptation for such system: is it feasible to solve
large number of adaptation problems at run time, each involving a potentially very large
set of other actors and available fragments? We answer to this question by extending
the framework of [4] in two directions: first, we show that it is possible to reduce the
complexity of each adaptation problem by minimizing the search space so that it only
includes fragments and properties that are relevant for the problem; second, we show
that it is possible to store and reuse previously discovered adaptation solutions, thus
learning from past executions and reducing the number of adaptations to be effectively
computed at run time. These two extensions are complementary and integrated: by re-
ducing the adaptation problems to their minimal versions, we increase the number of
adaptation problems that turn out to be equal, and we hence increase the possibility of
reusing previous solutions.

We evaluate the proposed approach on a real world scenario based on the operation
of car logistics in the Bremen sea port [3]. We show that it is effective in reducing the
number of requested adaptations: the experiments show that, while the situation where
new adaptation are not needed is never reached (thus witnessing the need of dynamic
adaptation), the number of such new adaptations decreases over time (thus making reuse
more and more efficient). We also show that the approach seamlessly accommodates
situations where previous adaptations are not valid anymore, e.g., due to changes in
the requirements or in the available fragments: these changes are reflected in changes
in the context that make the past solutions not reusable; the approach computes new
solutions suited for the new requirements and fragments; and the overhead in terms of
performance of this computation of new plans is very limited.

The rest of the paper is structured as follows. Following, we shortly introduce the
Bremen harbor car logistic scenario that is used as a reference throughout the paper.
Section 2 presents the proposed framework for on-the-fly adaptation; Section 3 gives a
formal specification of the framework, while Section 4 shows the definition and imple-
mentation of adaptation reduction and reuse within the framework. Finally, Section 5
describes how we have evaluated our solution using the car logistic demonstrator while
Section 6 presents some related works, and conclusions.

1.1 Motivating Scenario: Car Logistics

The reference scenario is based on the operation of the sea port of Bremen, Germany
[3], where nearly 2 million new vehicles are handled each year in order to deliver them
from manufacturers to retailers.

148 A. Bucchiarone et al.

Our goal is to develop a system (the Car Logistic System (CLS)) to support the
management and operation of the port, where numerous actors (i.e., cars, ships, trucks,
treatment areas, etc.) need to cooperate in a synergistic manner respecting their own
procedures and business policies. The system needs to deal with the dynamicity of the
scenario, both in terms of the variability of the actors’ involved and of their procedures
(customizable processes), and of the exogenous context changes affecting its operation.

Considering for instance the delivery process of each car, customization means that
the delivery procedure of each car needs to be customized according to the car brand,
model, retailer-specific requirements, etc. Moreover new car models, having specific
requirements and procedures, have to be able to be easily integrated in the system. Sim-
ilarly, the system needs to flexibly deal with changes in the procedures of external actors
such as ships and trucks. Concerning context dynamicity, examples of environment con-
ditions to be taken into account are the unavailability or malfunctioning of the different
port facilities, accidental damages of cars and trucks, human errors (e.g., a car is parked
in the wrong parking lot).

2 General Framework and Approach

In this section we present our framework for creating and running adaptive context-
aware service-based systems like the CLS described above.

2.1 Modeling Artifacts

In our framework, we model the real-world system under consideration as a set of en-
tities that can collaborate with each other in order to accomplish their business goals
(e.g., in the CLS scenario such entities might be cars, ships and other port facilities). In
turn, the entity model includes 1) entity context capturing key characteristics of the en-
tity, 2) business process determining entity behaviour and 3) a set of process fragments
(from now on, simply fragments) that can be exploited by external partners (i.e., other
entities) in order to collaborate with the fragments owner.

Fig. 1. Modeling Artifacts

Entity context is modeled as a set of context properties, each capturing some rele-
vant characteristic of an entity (e. g., car location, car status, etc.). A context property
is represented by a context property diagram, a state transition system containing all
possible property values (states) and value changes (transitions labeled with events).

On-the-Fly Adaptation of Dynamic Service-Based Systems 149

For instance, car location may be changed from storage to mechanical station when
the car moves around the harbour area. The overall application context is composed of
context properties of all constituent entities (see Figure 1).

Entity process and fragments are modeled as Adaptable Pervasive Flows (APFs)
[5], that is an extension of classical workflow languages that 1) adds the possibility to
model special types of process activities (most interestingly, abstract activities), and
2) introduce contextual annotations that connect processes to their operational context.
Abstract activities let us include in a process some task whose actual implementation
cannot be efficiently provided at design time and needs to be dynamically determined
(or generated) at run time. Contextual annotations include preconditions, effects, goals
and compensations. Activity precondition shows in which contextual situations (states)
the activity execution is allowed. Activity effect indicates which contextual events are
triggered when the activity is executed. Abstract activity goal expresses an abstract
task associated with the abstract activity in terms of goal contextual situations. Finally,
activity compensation specifies how the activity can be compensated after execution
(similarly to goals, it is expressed as a set of context situations in which activity effects
are considered to be compensated).

The proposed set of modeling artifacts is able to capture the key characteristics of
dynamic context-aware systems since i) abstract activities expressed in terms of goals
allow for run-time selection of fragments according to their availability and further frag-
ment composition in compliance with the execution context, ii) the context-awareness
of processes allows us to detect execution problems at run time (e. g., by detecting pre-
condition violations) and produce solutions to them dynamically (using fragment com-
position tools), iii) entities can join/leave the system at run time without interrupting its
operation.

2.2 On-the-Fly Adaptation Approach

Our approach enables on-the-fly adaptation of context-aware systems by combining the
four key features: i) incremental resolution of complex adaptation problems by inter-
leaving problem solving and solution execution, ii) reduction in the complexity of each
adaptation problem (by using the search space that contains only information that is
relevant for a given problem and context), iii) reuse of adaptation solutions by learning
from past executions, and iv) exploitation of advanced AI planning techniques [2] to
solve adaptation problems by appropriately composing available fragments. The gen-
eral idea of the approach consists in constantly monitoring process execution, detecting
various forms of inconsistencies (for now, these includes unrefined abstract activities
and precondition violation) and resolving them through composition of available frag-
ments. In Figure 2 we show the approach life-cycle and in the rest of this section we
explain it in detail.

Incremental Adaptation. As described in Section 2.1, a key feature of the framework
is the possibility of partially specifying the process logic at design-time, leaving the
refinement of abstract activities and resolution of most problems to run time. The ad-
vantage of performing process adaptation at run time is twofold. First, efficient adap-
tation heavily depends on run-time status of the execution environment (e.g., on the

150 A. Bucchiarone et al.

set of available fragments and actual context), which often is unknown at design time.
Second, availability of automated adaptation tools significantly simplifies the work of
process designer, who now does not need to consider all special cases and to implement
all tasks at design time.

Abstract activity refinement consists in producing fragment composition that satis-
fies abstract activity goal and thus can be used as an activity implementation. Since
fragments used in refinement may also contain abstract activities, the resulting pro-
cess instance has a multi-layer structure, where the top layer is the initial process and
intermediate layers correspond to incremental refinements. Consider, for instance, the
abstract activity Store of the main car process in Figure 3. During the execution, the ac-
tivity is automatically refined and composes four available fragments (i.e., Registration,
StorageAssignment, StoreToA, StoreToB) provided by different entities (i.e, Storage
Manager, Storage Area A, Storage Area B). The abstract activity BookA within this
refinement is further refined with fragments provided by StorageAreaA entity.

Considering another form of on-the-fly adaptation (i. e., reaction to precondition vi-
olation), the aim of the composition produced is to bring the system to a context where
the process execution can be resumed (i.e., precondition is not violated anymore). This
is the case of adaptation A1 in Figure 3, where the car has been damaged and violates
the precondition of the Registration fragment. The framework supports different adap-
tation mechanisms to tackle this problem, among which: local adaptation, where the
aim is to bring the system to a context configuration satisfying the violated precondi-
tion; on-the-fly compensation, that can be used to dynamically compute a compensation
process for an activity or a set of already executed activities; re-refinement, combining

Fig. 2. Overview of the On-the-Fly Adaptation Approach

On-the-Fly Adaptation of Dynamic Service-Based Systems 151

Fig. 3. Process Adaptations in action

compensation and refinement mechanisms to re-compute the refinement of an abstract
activity considering the new execution context. A complete description and definition of
all the adaptation mechanisms and strategies provided by the ASTRO-CAptEvo Frame-
work is presented in [4].

To summarize, this phase can deal with two different adaptation needs: the need
for refining an abstract activity and the need to resolve precondition violation. In both
cases, an adaptation problem is formally specified, in terms of the goal to be reached,
the available fragments, and the current context configuration. Then, it is passed as input
to the problem reduction phase.

Problem Reduction. The aim of this phase is to optimize an adaptation problem in
order to reduce search space for further planning. The point is that while the whole sys-
tem can be rather complex (including dozens of facilities and thousands of cars), only
its small portion is relevant for a particular inconsistency resolution (e. g., if we need to
plan car unloading, we need to consider only this particular car and only the actors par-
ticipating in unloading). This is done in two steps. First, we identify the range of entities
(participants) that are relevant for the adaptation problem in hands. Second, we reduce
preselected fragments and context properties taking into account the current context
state of the system (e.g., remove all transitions and state that can never be reached from
the current state). These two steps are further explained in Section 4.1.

It is worth to mention that the reduction phase is key not only for the Adaptation
as Planning phase, but also for the Solution Reuse phase, since it allows for better
characterization of the adaptation problem.

Solution Reuse. Given an adaptation problem, this phase checks whether absolutely the
same problem has already been solved in the past. Though simple from a conceptual

152 A. Bucchiarone et al.

point of view, this step requires generalization of a specific adaptation problem so that
it is abstracted away from specific instances and can be conceptually compared to sim-
ilar problems previously resolved (see Section 4.2 for the details). If a solution exists,
it is properly grounded to the instance-level adaptation problem and passed to the In-
cremental Execution phase to be executed. Otherwise, the adaptation problem is passed
to the Adaptation as AI Planning phase.

Adaptation as AI Planning. This phase is responsible for finding a solution to the
adaptation problem (i.e., a new fragment), by automatically composing the set of avail-
able fragments, according to the current context configuration and to the goal to be
achieved. This phase exploits the ASTRO-CAptEvo adaptation engine [14] that trans-
forms an adaptation problem into a planning problem and applies to it advanced plan-
ning techniques capable of dealing with asynchronous nondeterministic domains and
complex goals ([2,10]).

3 Formal Framework: Background

In this section we introduce formal definitions of the core elements of our adaptation
framework. They will be used in Section 4 to present our solution.

3.1 Elements

Definition 1 (Context Property Type). A context property type is a state transition
system c = 〈L, l0, E, T 〉, where:

– L is a set of context states and l0 ∈ L is the initial state;
– E = Eunc ∪ Ecnt is a set of context events, where Eunc is a set of uncontrollable

and Ecnt is a set of controllable events, such that Ecnt ∩ Eunc = ∅;
– T ⊆ L × E × L is a transition relation.

The context model of a system is composed by a set of context property types CM =
{c1, . . . , cn} such that ci = 〈Li, l

0
i , Ei, Ti〉 and Li ∩ Lj = ∅ and Ei ∩Ej = ∅ if i �= j.

For each context property type ci there may exist zero or more instances at run time,
hence we define the runtime context state as a set of the states of the all the instances.

Definition 2 (Runtime Context State). A runtime context state is a set C = {(li,j)}
such that li,j ∈ Li for some ci = 〈Li, l

0
i , Ei, Ti〉 ∈ CM .

Since we want to relate multiple states of the same context property ci with different
instances, we define the set of all possible states of an instance j of type i as the set
Li
j = {(j, l) | l ∈ Li}.

We denote with L = (
∏

∀i|ci∈CM

Li) and LC = (
∏

∀i∀j|li,j∈C

Lj
i).

Set L represents the set of all the possible configurations (in terms of states) in which
the context model CM can be, while LC represents the set of all the possible config-
urations in which the runtime context C can be. In the same way sets E and EC are

On-the-Fly Adaptation of Dynamic Service-Based Systems 153

defined, representing respectively all the possible combinations of events of the model
and of the runtime context.

Processes (and fragments) are modeled as state transition systems, where each tran-
sition corresponds to a particular process activity. In particular, we distinguish four
kinds of activities: input and output activities model communications among processes;
concrete activities model internal elaborations by the process; and abstract activities
correspond to the abstract activities of the process. In the following we will indicate
with A� either the set A or ∅. Abstract activities can be annotated with goals, while
input, output and concrete activities can be annotated with preconditions, effects, and
compensations. We define a process instance as follows:

Definition 3 (Process Instance). A process instance defined over the runtime context
state C is a tuple p = 〈S, s0, A, T, Ann〉, where:

– S is a set of states and s0 ⊆ S is a set of initial states;
– A = Ain ∪ Aout ∪ Acon ∪ Aabs is a set of activities, where Ain is a set of input

activities, Aout is a set of output activities, Acon is a set of concrete activities, and
Aabs is a set of abstract activities. Ain, Aout, Acon, and Aabs are disjoint sets;

– T ⊆ S × A × S is a transition relation;
– Ann = 〈Pre, Eff, Goal, Comp〉 is a process annotation, where Pre : Ain ∪ Aout ∪

Acon → L�
C is the precondition labeling function, Eff : Ain ∪ Aout ∪ Acon → E�

C

is the effect labeling function, Goal : Aabs → LC is the goal labeling function, and
Comp : A → L�

C is the compensation labeling function;

We denote with S(p), A(p), etc. the corresponding elements of p.

Definition 4 (Process Fragment). A process fragment defined over the context model
CM is a tuple f = 〈S, s0, A, T, Ann, En〉, where:

– S, s0, A, T are as Definition 3;
– Ann is as Definition 3 but on set L� and E�

– En is a set of entity types that can use the process fragment f .

Let a ∈ A(f) an activity of a process fragment f and l = Ann(a) ⊂ L� its annota-
tion. To understand if l contains states of a certain context property type ci ∈ CM we
define the projection of the annotation l onto context property type ci as l ↓ci= li. In
the same way we define an instance based projection on LC , written LC ↓i,j to capture
all the possible states of an instance j of type ci.

As described in Section 2, the system operation is modeled through a set of entities
(e.g., ships, cars, trucks, etc..), each specifying its behavior through a process and offer-
ing their services through a set of process fragments. Formally an entity type is defined
as:

Definition 5 (Entity Type). An entity type E is a tuple E = 〈p,F , CE〉 where p is
the entity behaviour (i.e., process), F is a set of process fragments provided by the
entity and CE ⊆ CM is a set of context property types that characterize the entity itself
(i.e., CarLocation, etc..). We denote with p(E), F(E) the corresponding elements of an
entity E .

154 A. Bucchiarone et al.

3.2 Execution Model

As illustrated in Section 2, an adaptable process is a multi-layer process, where the top
layer is the initial process and the intermediate layers correspond to the adaptations
(i.e, incremental refinements, local adaptations and compensations). For this reason we
model the process execution of an adaptable process as a stack of pairs process-state.
In the pair, process is a fragment as defined in Definition 4, while state is the current
state of the process instance. The bottom (first) pair refers to the core process and all
the others refers to adaptation processes. The top (last) pair in the stack is the one that
is currently under execution. Pairs can be pushed to the stack when process adaptation
is performed and can be popped from the stack when, e.g., the process instance of the
top pair terminates.

Definition 6. (Process Execution) A process execution is a non-empty stack of pairs
φ = (p1, s1), (p2, s2), . . . , (pn, sn), where: pi = 〈Si, s

0
i , Ai, Ti, Anni, Eni〉 ∈ φ is

a process fragment, while si ∈ Si is the current state in the corresponding process
fragments.

Following Definition 5, we define entity instance as follows:

Definition 7 (Entity Instance). An entity instance e of type E is a tuple e = 〈pe,F , Ce〉
where pe is an instance of the process p(E), F = F(E) is a set of process fragments
provided by the entity and Ce = {(i, j)} s.t. ci ∈ CE and li,j ∈ C is a set of pairs
indicating the context property instances that characterize the entity instance.

The running configuration of the whole system is defined by the runtime context
state, by the process instances in the system, and by the set of available fragments.

Definition 8. (Running System Configuration) A running system configuration is a tu-
ple S = 〈CM ,F , C,Ω〉, where: CM is the context model, F is the set of fragments
available in the system, C is the runtime context state, and Ω is a set of pairs (pi, Ej)
where pi is a process instance of p(Ej).

3.3 Adaptation Need and Solution

Our framework can deal with two different adaptation needs [4,14]: the need for re-
fining an abstract activity within a process instance, and the violation of the context
precondition of an activity that has to be executed. The refinement adaptation is trig-
gered whenever an abstract activity in a process instance needs to be refined. The aim
of this mechanism is to automatically compose available process fragments taking into
account the goal associated to the abstract activity and the current context

An adaptation need captures all the runtime system information at the time of the
violations. We formalize it as follows:

Definition 9 (Adaptation Need). An adaptation need is a tuple ξ = 〈CM ,F , C,G, (pi,
Ej)〉, where: CM is the context model, F is a set of process fragments available in
the system annotated over context model CM , C is the runtime context state, G is an
adaptation goal over C, and (pi, Ej) is the process instance pi that needs to be adapted
and Ej is the type of the entity to which the process instance belongs.

We denote with C(ξ) and F(ξ) the corresponding elements of an adaptation need ξ.

On-the-Fly Adaptation of Dynamic Service-Based Systems 155

For expressing the adaptation goals, we exploit EAGLE [7] that allows the definition
of goals as sets of context configurations, G ⊆ C.

An adaptation solution is a process fragment fadapt that is obtained as the composi-
tion of a set of fragments in F . When executed from the current system configurationS,
and in absence of exogenous events corresponding to unpredicted situations, fadapt en-
sures that the resulting runtime context state C satisfies the goal G(ξ) of the adaptation
need ξ.

4 Formal Framework: Solution

The aim of this section is to present how the on-the-fly adaptation framework works.
Starting from the elements introduced in the previous section we present: (i) how an
adaptation problem is generated from an adaption need, (ii) how an adaptation problem
is optimized, and (iii) how we can reuse or find a solution for that problem.

4.1 Adaptation Problem

With respect to an adaptation need, an adaptation problem captures all the relevant
system information needed to resolve it. In our approach it is generated by calling first
the function reduce of Figure 4 and then function optimize of Figure 5.

The reduce function takes as input an adaptation need ξ and returns a first version
of an adaptation problem with the set of relevant fragments Frd and context properties
Crd that can be used to satisfy the need. It is computed in two steps: Step 1 (lines 3-5)
analyzes each fragment f ∈ F and selects only those that can be used by the entity
ei (ei ∈ En(f)); Step 2 (lines 6-15) analyzes each fragment f ∈ Frd and for each
activity a that belongs to f it retrieves its annotations l (line 8). From all the context
properties instances li,j ∈ C the algorithm first selects only those whose type is part of
the annotation l and that are defined by the entity ei (lines 10-11). Afterwards, it selects
all the context property instances that are used by the fragments provided by the entities
that eventually can collaborate with ei (lines 13-15).

Once a reduced version of the adaptation problem is obtained, we further optimize
it by eliminating all states (transitions) in the context properties and process fragments
that a priori will never be reached (triggered). The optimization algorithm is shown in
Figure 5. The main function optimize (lines 27-40) takes as input an adaptation problem
and returns its optimized version. The function repeats two optimization steps (lines 32-
39) until the fixed point is reached.

1 f u n c t i o n r e d u c e (〈CM ,F , C,G, (pi, ei)〉)
2 Frd = ∅ ; Crd = ∅ ; CMrd

= CM ;
3 foreach (f∈ F)
4 i f (ei ∈ En(f))
5 Frd = Frd ∪ {f} ;
6 foreach (f∈ Frd)
7 foreach (a∈ A(f))
8 l = Ann(a) ;

9 foreach (li,j ∈ C)
10 i f (l ↓ci

∈ l ∧ (i, j) ∈ Ce(ei))
11 Crd = Crd∪ {(li,j)} ;
12 e l s e CMrd

= CMrd
\ {ci}

13 foreach (E ∈ En(f))
14 i f (ci ∈ CE(E))
15 Crd = Crd ∪ {(li,j)} ;
16 re turn (〈CMrd

,Frd, Crd,G〉) ;

Fig. 4. Reduction algorithm

156 A. Bucchiarone et al.

1 f u n c t i o n fwdCntx (〈L, l0, E, T 〉 , F , l0)
2 Lnew = {l0} ;
3 do
4 Lold = Lnew ;
5 Lnew = Lnew ∪ {l′ ∈ L : ∃(l, e, l′) ∈ T :
6 l ∈ Lnew∧ e f f V a l (e,F)} ;
7 whi le (Lold �= Lnew) ;
8 E = E \ {e ∈ E : � ∃(l, e, l′) ∈ T :

9 l, l′ ∈ Lnew} ;
10 T = T \ {(l, e, l′) ∈ T : e �∈ E} ;
11 L = Lnew ;
12 re turn 〈L, l0, E, T 〉 ;
13

14 f u n c t i o n fwdFrgm (〈S, s0, A, T, Ann〉 , CM)
15 Snew = {s0 } ;
16 do
17 Sold = Snew ;
18 Snew = Snew ∪ {s′ ∈ S : ∃(s, a, s′) ∈ T :
19 s ∈ Snew∧ p r e c V a l(a,F, CM)} ;
20 whi le (Sold �= Snew) ;

21 A = A \ {a ∈ A : � ∃(s, a, s′) ∈ T : s, s′ ∈ Snew} ;
22 T = T \ {(s, a, s′) ∈ T : a �∈ A} ;
23 S = Snew ;
24 re turn 〈S, s0, A, T, Ann〉 ;
25

26

27 f u n c t i o n o p t i m i z e (〈CM ,F, l0C ,G〉)
28 Fnew = F ; Cnew

M = CM ;
29 do
30 Fold = Fnew ; Cold

M = Cnew
M ;

31 Fnew = ∅ ; Cnew
M = ∅ ;

32 foreach (c ∈ Cold
M)

33 Cnew
M = Cnew

M ∪
34 {fwdCntx (c , Fold , l0C ↓c))} ;
35 foreach (f∈ Fold)
36 f ′ = fwdFrgm (f , Cnew

M) ;
37 i f (! h a s E f f e c t (f ′))
38 Fnew = Fnew∪ {f ′ } ;
39 whi le (Fnew �= Fold ∨ Cnew

M �= Cold
M) ;

40 re turn (〈Cnew
M ,Fnew, l0C ,G〉) ;

Fig. 5. Optimization algorithm

Step 1 (lines 32-34) is the reachability analysis of context properties (l0C ↓c returns
a state of context property c for context configuration l0C using set-based projection).
We remark that context model CM is the reduced one take form algorithm in Fig.4. The
core of this step is function fwdCntx(c, F, l0) (lines 1-12), which figures out the
portion of the original context property c that can be reached from the current state l0
by executing fragments F . It is implemented as a largest fixed point loop (lines 3-7),
in which it is assumed that a context property can evolve only through transitions that
can be triggered by available fragments (in lines 5-6 function effVal(e,F) is used
to identify if there exists at least one action among F that triggers e). All the irrelevant
elements are removed from the original context property (lines 8-10);

Step 2 (lines 35-38) is the reachability analysis for fragments exploiting fwdFrgm
function (lines 13-23). Function fwdFrgm(f, C) figures out the portion of the orig-
inal fragment f that can be reached from its current state in compliance with context C.
It is implemented as a largest fixed point loop (lines 16-20), in which it is assumed that
a fragment can evolve only through transition that can be executed in the current con-
text model without violating their preconditions (in lines 18-19 function precVal(a,
F, C) is used to identify if action a belonging to some fragment among F can ever
have its precondition satisfied in context model C). All the irrelevant elements are re-
moved from the original fragment (lines 21-23). After fwdFrgm is called, we check
(line 37) if the resulting fragment f ′ obtained can produce any contextual affect in the
current contextual situation (using function hasEffect(f ′) we check if fragment f
still contains at least one action that is either abstract or can potentially produces some
affect). If it is the case, f ′ is added to the collection of fragments, if not, it is considered
as useless (it by now means can change the context) and is filtered out.

We remark that any optimization in Step 1 may enable further optimization in Step 2
and vice versa. This is why the optimization process have to continue until a fixed point
is reached.

On-the-Fly Adaptation of Dynamic Service-Based Systems 157

4.2 Plan or Reuse

After that an adaptation problem has been optimized, the next step is to check if a
solution for it has already been found in the past or not. Since the context C and the
goal G of an adaptation problem are expressed in terms of property instances, we have
to abstract them in a way that they refer to context model. To this end we define an
abstract adaptation problem as:

Definition 10 (Abstract Adaptation Problem). An abstract adaptation problem is a
tuple ξabs = 〈CM , Cabs,F , C,G,Gabs〉, where:

– CM , F , C,G are as Definition 9 ;
– Cabs is a set of pairs of the form (i, li,j) where ci is a property model (type), while

li,j is the state of its instance;
– Gabs is a set of pairs of the form (i, li,j) indicating that a context property of type

ci should reach the state li,j .

We indicate with the symbol ξabs• the triplet 〈Cabs,F ,Gabs〉 belonging to a abstract
problem ξabs.

1 f u n c t i o n abs (CM ,F , C,G)
2 Cabs = ∅ ; Gabs = ∅ ;
3 foreach (li,j ∈ C)
4 Cabs = Cabs∪ {(i , li,j)} ;
5 foreach (l ∈ G)
6 foreach (li,j ∈ C)
7 i f (l ↓ ci ∈ l}
8 Gabs = Gabs ∪ {(i , li,j)} ;
9 re turn 〈Cabs,Gabs〉 ;

10 f u n c t i o n f i n d (〈CM , Cabs , F , C ,
11 G , Gabs , Ψ〉)
12 ξabs• = 〈Cabs , F , Gabs〉 ;
13 i f (Ψ(ξabs•) == ⊥)
14 s o l u t i o n = planner(CM ,F , C,G) ;
15 Ψ = Ψ [ξabs• , solution] ;
16 re turn solution ;
17 e l s e
18 re turn Ψ(ξabs•) ;

19 f u n c t i o n grnd (f, CM , C)
20 A′ = ∅ ;
21 foreach (a ∈ A(f))
22 l = Ann (a) ;
23 foreach ci,j ∈ C
24 i f (l ↓ ci ∈ l ∧ (j, l ↓ ci) ∈ LC ↓i,j)
25 A′ = A′ ∪ {j, l ↓ ci} ;

26 A(f)=A’ ;
27 re turn f ;
28

29 f u n c t i o n r e u s e (CM ,F , C,G)
30 〈Cabs,Gabs〉 = abs(CM ,F , C,G) ;
31 f = f i n d (〈CM , Cabs,F , C,G, Gabs, Ψ〉) ;
32 re turn grnd (f, CM , C) ;

Fig. 6. Reuse Algorithm

Figure 6 shows the reuse algorithm (lines 29-32). It is composed by three steps:
problem abstraction, finding a general solution and then grounding the solution to the
actual runtime context. Once the abstract adaptation problem has been computed (func-
tion abs of Figure 6), then the function find checks if a solution for it has already been
calculated in the past. To this end, we use a lookup function Ψ from abstract problems
to fragments. If an abstract problem does not belong to the domain1 of Ψ (e.g. the ab-
stract problem is a new one) then the solution is calculated by invoking the adaptation
engine and then Ψ is augmented with the new solution (line 15 of Figure 6). We define
Ψ [ξabs• , f](ξ

1
abs•) as:

Ψ [ξabs, f](ξ
1
abs•) =

{
Ψ(ξ1abs•) if ξ1abs• �= ξabs•

f otherwise

1 The function returns ⊥ if a problem is not in its domain.

158 A. Bucchiarone et al.

Solutions returned by the function find (and by the planner) are fragments, whose an-
notations are on context models and not on instances. We need then to ground the found
solution to the level of the process that rose the adaptation, in terms of context property
instances used by the process itself. To this end the function grnd that substitutes all
the (context model) annotations of a fragment with runtime context state annotations.

5 Experiments and Results

The proposed framework has been implemented as an extension of the ASTRO-CAptEvo
framework [14] and evaluated on a real world scenario based on the operation of car lo-
gistics in the Bremen sea port [3]. We show that it is effective in reducing the number of
requested adaptations: while the situation where new adaptation are not needed is never
reached (thus witnessing the need of dynamic adaptation), the number of such new adap-
tations decreases over time (thus making reuse more and more efficient). We also show
that the approach seamlessly accommodates situations where previous adaptations are
not valid any-more, e.g., due to changes in the requirements or in the available fragments.
The specification of the CLS we used to evaluate our approach contains 29 entity types,
69 process fragment models and 40 types of context properties.

During the experiments2, we collected the number of adaptation cases and the time to
generate an adaptation solution for each case. We remark that preliminary optimization
steps described in Section 4 require significantly less time than planning itself and thus
do not contribute dramatically to the overall solution search time.

In the first experiment we measure the effectiveness of the proposed optimization
approach, i.e., of the possibility to reuse previous solutions. We conducted four simu-
lations in different configurations, each one differing from the others in terms of fre-
quency of ship arrivals, car damages and delivery orders. The chart in Figure 7 plots on
the X-axis the number of adaptation cases (the first 2500 for each simulation) and on the
Y-axis the number of unique adaptation problems (i.e., number of adaptations actually
computed in the presence of our reuse mechanism). The dashed curve represents the
old (naive) approach without the reuse mechanism. Indeed the curve is linear for all the
experiments, meaning that for each adaptation problem that comes a solution is calcu-
lated from scratch. The other curves correspond to the four simulations with the reuse.
In the worst case, we have 118 unique adaptation problems out of 2500 adaptation
cases, that is in 94.3% of the cases we are able to reuse existing solutions. On aver-
age for the four simulations, the reuse rate was 95.5%. In terms of time (not shown in
the figure), the computation of all 2500 adaptations solutions without adaptation prob-
lem optimization required 4821 seconds, while the optimization mechanism reduced
this time to 306 seconds (6.34% of the non-optimized time). Figure 7 also shows that
new adaptation problems (where reuse was not possible) keep emerging through all the
simulation, even though their rate reduced over time. This indicates the importance of
on-the-fly adaptation as opposed to static predefined solutions. Indeed, after the initial
phase (first 1000 adaptation cases) new adaptation problems emerge quite rarely, but

2 All the experiments were executed on a Linux machine with 4-core Intel i7 CPU running at
2.3GHz with 16GB of memory.

On-the-Fly Adaptation of Dynamic Service-Based Systems 159

even after 2500 cases they do not disappear completely (i.e., the complete reuse was
not possible).

In order to see how the new framework can deal with highly dynamic systems, we
measure the impact of various dynamic factors (in particular, changes in requirements
and fragments) on its operation and performance. More precisely, we compare the nor-
mal simulation of the system with the one where two dynamic factors are enabled.
These factors are (i) the introduction of a new type of entity (in our case, the luxury
car) and (ii) the change in a single fragment (in our case, we change the procedure
for storing cars in the consignment area). In the first case, all the adaptation solutions
involving luxury cars have to be generated anew (no reuse is possible). In the second
case, all the adaptation cases involving the changed fragment have also to be regener-
ated. Both dynamic changes result in increase of a number of unique adaptation cases
(and in additional workload for the composition engine). To reflect this in figures,
through the simulation we measure the number of calls to the composition engine for
the last 40 adaptation cases (thus reflecting the number of new adaptation problems
for which reuse is not possible). These data are shown in Figure 8. The solid red line
reflect the rate of new adaptation problems attributed to the normal run of the system,
while the dashed blue one reflects only those new adaptation cases that were triggered
by dynamic factors. From the red line it can be seen that the high rate of new adaptation
cases is common for the initial phase of the simulation (first 800 − 1000 adaptation
cases) but even after 2000 cases into the simulation it is still non-zero. From the blue

Fig. 7. New adaptation problems versus total number of adaptation needs

Fig. 8. Impact of dynamic factors on the number of new adaptation problems

160 A. Bucchiarone et al.

line, it is evident that new adaptation problems start to emerge after 1200 cases (which
actually corresponds to the introduction of a new entity type) and has a prominent peak
around 1700-th case (which corresponds to the change in the fragment). It is worth
to note that introducing a new entity brings immediately just a small amount of new
adaptation problems (three peaks between the 1200-th and 1600-th problem) while the
change in the fragment that is involved in many various adaptations produces consider-
able immediate surge. Again, after having computed the new problems brought by the
changes, the system behaves as the normal execution (e.g. the ratio of new problems
keeps decreasing but never reaches 0).

6 Related Work and Conclusion

In the community of Service Oriented Computing (SOC), various approaches supporting
adaptation have been defined, e.g., triggering repairing strategies as a consequence of a
requirement violation [15], and optimizing QoS of service-based applications [11,17,19],
or for satisfying some application constraints [8,16]. Repairing strategies could be spec-
ified by means of policies to manage the dynamism of the execution environment [1,6].
The aim of the strategies proposed by the aforementioned approaches range from ser-
vice selection to rebinding and application reconfiguration [12,18]. These are interest-
ing features, but cannot deal with complex and dynamic service-based systems where
context-awareness and adaptivity are key characteristics.

In this paper, we have proposed an on-the-fly adaptation approach where adaptation
activities are not explicitly represented at design time but are discovered and managed
on-the-fly considering all aspects of the execution environment (current context, avail-
able process fragments, etc.). This means that if an adaptation solution exists, our ap-
proach will find it automatically, without involving off-line activities. Moreover, our
approach is able to reduce the complexity of each adaptation problem by minimizing
the search space according to the specific execution context, and reuse adaptation solu-
tions by learning from past executions.

The type of systems that our approach can deal with have the characteristic to be
dynamic in terms of number of entities involved and number of adaptation problems to
consider. At the same time each adaptation problem involves a potentially very large
set of available fragments. Thanks to the two steps defined in our approach: problem
reduction and solution reuse we are able to solve such a large number of adaptation
problems on-the-fly and in a reasonable execution time.

As future work, we want to extend the framework in a such a way that it will be
also user-centric. In user-centric systems [13], services are intended to be consumed
directly by the user (e.g., personal agenda, on-line flight booking, etc.). While in our
approach process fragments are orchestrated in order to accomplish a specific business
task, user centric systems should allow the user to decide and control which tasks are
executed and how. This requires to extend our approach with the ability not only to au-
tomatically compose and adapt different, often unrelated, fragments on the fly, but also
to generate a flexible interaction protocol that allows the user to control and coordinate
the composition execution.

On-the-Fly Adaptation of Dynamic Service-Based Systems 161

Acknowledgment. This work is partially funded by the 7th Framework EU-FET project
600792 ALLOW Ensembles.

References

[1] Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: Proc. of ESSPE 2007, pp. 11–20. ACM (2007)

[2] Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via planning
in asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

[3] Böse, F., Piotrowski, J.: Autonomously controlled storage management in vehicle logistics
applications of RFID and mobile computing systems. International Journal of RT Technolo-
gies: Research an Application 1(1), 57–76 (2009)

[4] Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of Fragment-
based and Context-aware Business Processes. In: Proc. of ICWS 2012, pp. 33–41 (2012)

[5] Bucchiarone, A., Antares Mezzina, C., Pistore, M.: Captlang: a language for context-aware
and adaptable business processes. In: Proc. of VaMoS 2013, pp. 12:1–12:5. ACM (2013)

[6] Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execution environ-
ment supporting dynamic changes disciplined through rules. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg (2006)

[7] Dal Lago, U., Pistore, M., Traverso, P.: Planning with a Language for Extended Goals. In:
Proc. of AAAI 2002 (2002)

[8] de Leoni, M.: Adaptive Process Management in Highly Dynamic and Pervasive Scenarios.
In: Proc. of YR-SOC, pp. 83–97 (2009)

[9] Eberle, H., Unger, T., Leymann, F.: Process fragments. In: Meersman, R., Dillon, T., Her-
rero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 398–405. Springer, Heidelberg
(2009)

[10] Marconi, A., Pistore, M., Traverso, P.: Automated Composition of Web Services: the AS-
TRO Approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

[11] Mirandola, R., Potena, P.: A qos-based framework for the adaptation of service-based sys-
tems. Scalable Computing: Practice and Experience 12(1), 63–78 (2011)

[12] Pfeffer, H., Linner, D., Steglich, S.: Dynamic adaptation of workflow based service compo-
sitions. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS,
vol. 5226, pp. 763–774. Springer, Heidelberg (2008)

[13] Pistore, M., Traverso, P., Paolucci, M., Wagner, M.: From software services to a future
internet of services. In: Proc. of FIA 2009, pp. 183–192 (2009)

[14] Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: Astro-captevo: Dynamic
context-aware adaptation for service-based systems. In: Proc. of SERVICES 2012, pp. 385–
392 (2012)

[15] Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for service
centric systems. In: Proc. of IEEE SCC 2005, pp. 251–259 (2005)

[16] Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S approach for
configuring and executing dynamic web processes. Technical report, University of Georgia,
Athens (2005)

[17] Wang, C., Pazat, J.L.: A two-phase online prediction approach for accurate and timely adap-
tation decision. In: Proc. of SCC 2012, pp. 218–225. IEEE Computer Society (2012)

[18] Yan, Y., Poizat, P., Zhao, L.: Self-adaptive service composition through graphplan repair.
In: Proc. of ICWS 2010, pp. 624–627 (2010)

[19] Zhai, Y., Zhang, J., Lin, K.: Soa middleware support for service process reconfiguration
with end-to-end qos constraints. In: Proc. of ICWS 2009, pp. 815–822 (2009)

WT-LDA: User Tagging Augmented LDA

for Web Service Clustering

Liang Chen1, Yilun Wang1, Qi Yu2,
Zibin Zheng3, and Jian Wu1

1 Zhejiang University, China
2 Rochester Institute of Technology, USA

3 The Chinese University of Hong Kong, HK
{cliang,yilunwang,wujian2000}@zju.edu.cn, qi.yu@rit.edu,

zibinzheng@cse.cuhk.edu.hk

Abstract. Clustering Web services that groups together services with
similar functionalities helps improve both the accuracy and efficiency
of the Web service search engines. An important limitation of existing
Web service clustering approaches is that they solely focus on utilizing
WSDL (Web Service Description Language) documents. There has been
a recent trend of using user-contributed tagging data to improve the
performance of service clustering. Nonetheless, these approaches fail to
completely leverage the information carried by the tagging data and
hence only trivially improve the clustering performance. In this paper,
we propose a novel approach that seamlessly integrates tagging data
and WSDL documents through augmented Latent Dirichlet Allocation
(LDA). We also develop three strategies to preprocess tagging data before
being integrated into the LDA framework for clustering. Comprehensive
experiments based on real data and the implementation of a Web service
search engine demonstrate the effectiveness of the proposed LDA-based
service clustering approach.

1 Introduction

The explosive growth of Web services poses key challenges for Web service dis-
covery. Existing service discovery approaches rely on either UDDI (Universal
Description Discovery and Integration) or Web service search engines to locate
matching services. As many service providers choose to publish their Web ser-
vices through their own websites instead of using public registries, the number
of Web services in public UDDI registries decreases significantly. A recent study
shows that more than 53% of the UDDI business registry registered services are
invalid, whereas 92% of Web services cached by Web service search engines are
valid and active [1]. Therefore, using search engines to search and discover Web
services becomes more common and effective than UDDI service registries [17].

Existing Web service searching engines primarily focus on keyword-based
matching on names, input/output parameters, and bindings defined in the Web
service description file [1]. In this case, if a service description does not match

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 162–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 163

the query term, it won’t be discovered even though the service may provide the
user desired functionality. As it is difficult for a casual user to choose keywords
that match the terms in a service description, keyword-based search usually suf-
fers from low recall, where services containing synonyms or concepts at a higher
(or lower) level of abstraction will not be discovered. As an example, a service
named “Mobile Messaging Service” may not be returned for the query term
“SMS” submitted by a user even though they describe the same concept. To
handle this issue, service clustering has been recently exploited to improve the
search quality [19,20]. By clustering Web services together, services in the same
cluster are expected to provide similar functionalities so that they can be discov-
ered together as a group. However, existing service clustering algorithms mainly
rely on the WSDL descriptions of services, which usually contain very limited
terms, some of which are even not proper words. Hence, these algorithms may
lead to low clustering quality, which will negatively affect the accuracy of service
discovery.

Recently, some real-world Web service search engines, such as Seekda!, have
allowed users to manually annotate Web services using tags. Tags provide mean-
ingful descriptions of objects and allow users to organize and index their con-
tents. Tagging data has been proved to be very useful in many domains such as
multimedia, information retrieval, data mining, and so on. Figure 1 shows two
examples of Web service tags in Seekda! service search engine. MeteorologyWS
in Fig. 1(a) is a weather forecasting Web service, which has two tags, weather
and waether. However, there is no word weather in its service name or WSDL
document. Thus, it is hard for this service to be clustered into the weather clus-
ter. Further, this service will be hard to be retrieved without utilizing the tag
information, if the query term is weather. Besides, the tag waether is also useful
as some users may make a mistake in the typing process and use waether as the
query term. As a service provider, one may have different naming convention
and prefer to use Meteorology instead of weather in the generated WSDL file,
as shown in Fig. 1(a). On the other hand, service users are likely to use the
same tag to annotate services with similar functionality. Therefore, leveraging
the tagging information along with the WSDL can help improve the quality of
service clustering.

(a) (b)

Fig. 1. Example of Web Service Tags

164 L. Chen et al.

In this paper, we propose to augment the Latent Dirichlet Allocation (LDA)
model [3,13], referred to as WT-LDA, to seamlessly integrate WSDL documents
and service tags for service clustering. LDA has been demonstrated to be an
effective tool in topic modeling and document clustering in the text domain.
Specifically, WT-LDA models each service as a distribution of a set of topics
and functionally similar services are expected to be represented by a similar
distribution of topics. Service tags are also used to determine the topics of the
services. We assess the effectiveness of the proposed WT-LDA via real-world
Web services collected from Seekda!. Preliminary experimental results reveal
that the performance of WT-LDA is affected by Web service with few tags
or many meaningless tags. To tackle this issue, we propose three strategies to
preprocess service tags before being used by WT-LDA. The experiment results
in Section 5 demonstrate that our tag preprocessing strategies help improve
the performance of WT-LDA. The major contributions of this paper can be
summarized as follows:

1. We propose a novel Web service clustering approach WT-LDA based on a
probabilistic graphic model (i.e., LDA), in which both the WSDL documents
and service tags are effectively utilized.

2. We propose three tag preprocessing strategies to improve the performance
of WT-LDA.

3. We crawl 15,968 real Web services to evaluate the performance of WT-LDA
and three tag preprocessing strategies.

The rest of this paper is organized as follows. Section 2 gives an overview of
the related work on Web service discovery and clustering. Section 3 details the
proposedWT-LDA, while Section 4 presents the tag preprocessing strategies that
help improve the performance of WT-LDA. Section 5 shows the experimental
results and Section 6 concludes the paper.

2 Related Work

With the wide adoption of service computing and cloud computing, Web service
discovery becomes a popular research topic that attracts significant attention.
Recently, Web service clustering [8,10,21] has been demonstrated as an effective
tool to boost the performance of Web service discovery. Most service clustering
algorithms rely on the computation of similarity between services, which can be
(1) semantic based and (2) non-semantic based. Ontology is utilized to compute
the semantic similarity between Web services in many studies [2,6,11,15]. Specif-
ically, Cristina et al. [11] propose to use an ant-based method to cluster Web
services based on semantic similarity. Sun et al. [15] propose to adopt Petri net
as the modeling language for the specification of a service process model, and
cluster services based on functional similarity and process similarity. In this pa-
per, we focus on the clustering of non-semantic Web services as most services are
described using the WSDL standard, which focuses on the syntactic description
of services.

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 165

Several approaches have been developed for the calculation of similarity be-
tween non-semantic Web services [7,16]. Liu et al. propose to extract 4 features,
i.e., content, context, host name, and service name, from the WSDL document to
cluster Web services [16]. They take the process of clustering as the preprocessor
to discovery, aiming to building a search engine that crawls and clusters non-
semantic Web services. Khalid et al. also propose to extract features from WSDL
documents to cluster Web services [7]. Different from the work in [16], a set of
different features, including content, types, messages, ports, and service name
are extracted from the WSDL documents. SVD based and matrix factorization
based approaches are adopted to achieve the co-clustering of services and opera-
tions in [19,20]. Co-clustering exploits the duality relationship between services
and operations to achieve better clustering quality than one-side clustering.

Despite WSDL-based clustering being widely adopted, the clustering perfor-
mance is rather limited as only WSDL documents are employed. With the de-
velopment of Web service community, more and more tags are annotated to
Web services by users. These tags can be employed to enhance the accuracy of
service discovery. However, limited work has exploited tagging data for service
discovery. In our preliminary work [4,5,18], we investigated the benefits of uti-
lizing both WSDL documents and tagging data to cluster Web services. The
findings motivate our present study. In this paper, we improve the performance
of Web service clustering by introducing a novel LDA based approach to explore
the knowledge behind WSDL & tags and by proposing three tag preprocessing
strategies to improve the performance of service clustering.

3 WT-LDA Based Service Clustering

In this section, we first describe the proposed architecture for Web service discov-
ery framework in Section 3.1, and then introduce data preprocessing component
and the probabilistic graphic model of WT-LDA in Section 3.2 and Section 3.3,
respectively.

3.1 Web Service Discovery Framework

Figure 2 shows the proposed architecture for Web service discovery framework,
which consists of two major components: data preprocessing and service discov-
ery. In the first component, both WSDL documents and tags of Web services
are crawled from the Internet, which will be used for service clustering. Specifi-
cally, we use the meaningful words in WSDL documents as the feature words to
construct a probabilistic graphic model, i.e., WT-LDA. After we extract feature
words and tags from Web services, the WT-LDA is used to cluster Web services.
Since data preprocessing and service clustering are conducted offline, the effi-
ciency of service discovery can be guaranteed. Hence, the focus will be placed
on accuracy. In the second component, clustered result of WT-LDA will be used
to improve the search result of a Web service search engine. When a query term
is sent to the Web service search engine, it can return a more accurate search
result by leveraging the clustered result.

166 L. Chen et al.

Internet

Crawl

WSDL

Tag

Extraction Feature

Feature
Words

WT-LDA Cluster 1

Web Services Search
Engine

Data Processing

Response Query

Cluster 2

Cluster N

Service Discovery

Tags

Fig. 2. Framework for Web service Discovery

3.2 Data Preprocessing

As discussed above, we extract the meaningful words from WSDL documents
as the feature words, then jointly model these feature words and tags for the
purpose of clustering of Web services. In this part, we describe the details in
data preprocessing component.

1. Building an original vector. In this step, we perform tokenization over
the entire WSDL document to produce the original content vector.

2. Suffix Stripping. Words with a common stem will usually have the same
meaning, for example, connect, connected, connecting, connection, and con-
nections all have the same stem connect [16]. We strip the suffix of all these
words that have the same stem by using the Porter stemmer [12]. After the
step of suffix stripping, a new content vector is produced.

3. Pruning. In this step, we remove two kinds of words from the content
vector. The first kind is XML tags, such as s:element, s:complexType, and
wsdl:operation, which are not meaningful for the comparison of content vec-
tors. Content words are typically nouns, verbs or adjectives, and are often
contrasted with function words which have little or no contribution to the
meanings of texts. Therefore, the second kind of word to be removed is func-
tion word. Church et al. state that the function words could be distinguished
from content words using a Poisson distribution to model word occurrence
in documents [9]. Typically, a way to decide whether a word w in the content
vector is a function word is by computing the degree of overestimation of the
observed document frequency of the word w, denoted by nw using Poisson
distribution. The overestimation factor can be calculated as follows.

Λw =
n̂w

nw
, (1)

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 167

where n̂w is the estimated document frequency of the word w. Specifically,
the word with higher value of Λw has higher possibility to be a content word.
In this paper, we set a threshold ΛT for Λw, and take the words which have
Λw higher than threshold as content words. The value of threshold ΛT is set
as follows:

ΛT =

{
avg[Λ] if(avg[Λ] > 1);

1 otherwise
(2)

where avg[Λ] is the average value of the observed document frequency of all
words considered. After the process of pruning, we can obtain a new content
vector, in which both XML tags and function words are removed.

4. Refining. Words with very high occurrence frequencies are likely to be too
general to discriminate between Web services. After the step of pruning, we
implement a step of refining, in which words with too general meanings are
removed. Clustering based approaches were adopted to handle this problem
in some related work [7,16].

After the above four steps, we obtain the meaningful words in a WSDL docu-
ment.

3.3 WT-LDA

The proposed WT-LDA model extends Latent Dirichlet Allocation and takes
both the content of WSDL documents and the user-contributed tagging data
into consideration.WT-LDA can find short description of members of a collection
that enable efficient processing of large collections of WSDL documents while
preserving the essential statistical relationship that are useful for Web services
clustering. Main advantages of the proposed WT-LDA model are listed below:

1. It provides a generative probabilistic graphic model of WSDL documents
and a probabilistic view to extract latent variables from WSDL documents
which can significantly improve the clustering result of Web services

2. It measures the word co-occurrence from heterogeneous service description
in WSDL documents, infer the topic distribution of each WSDL document
and the result topic vectors can contribute to Web services clustering.

3. It takes tagging data of WSDL documents into consideration while unique
tag has its own distribution of topics. Tags with similar meaning or function
have similar distribution of topics. Thus the content of WSDL documents as
well as tagging data can contribute to the clustering of Web services.

In the model of WT-LDA, tag related to one document is chosen uniformly at
random for each word in that document. Each tag has its own distinct contribu-
tion to the topic distribution of the documents. Thus, the topic distribution cor-
responding to each tag of Web service is drawn from Dirichlet hyper-parameter
α. The word distribution specific to each topic is drawn from the Dirichlet hyper-
parameter β. Then, a topic is drawn from the topic distribution according to the
chosen tag in the document, and the word is generated from that chosen topic.

168 L. Chen et al.

z

w w

z

x

t

DD
N NT T

t

Fig. 3. Probabilistic graphical models of LDA and WT-LDA: the nodes denote random
variables, while the edges indicate conditional dependencies. The shaded nodes are
observed variables (words); the unshaded nodes are latent variables (topics). The outer
rectangles, or ”plates”, indicate repeated samples.

WT-LDA is a generative model of user-contributed tagging data and words in
the WSDL documents. The generative process can be described as follows:

1. Draw T multinomial φz from a Dirichlet prior β, one for each topic z
2. For each tag td in document d, draw a multinomial θtd from a Dirichlet prior

α
3. For each word wdi in document d:

(a) Draw a tag xdi uniformly from tags td in document d;
(b) Draw a topic zdi from multinomial θxdi

;
(c) Draw a word wdi from multinomial φzdi ;

The probabilistic graphical model corresponding to WT-LDA is shown in Fig.
3. As a Web service clustering model, each topic is associated with a distribution
φ over words, drawn independently from a Dirichlet prior β. x indicates the tag
responsible for a given word, chosen from td, and each tag has a distribution θ
over topics generated from a Dirichlet prior α. The topic distribution of tags and
the word distribution of topics is combined to generate a topic zdi, then a word
wdi is drawn from the chosen topic.

As shown in the above process, the posterior distribution of topics depends
on the information from both content of the WSDL documents and the tags.
WT-LDA parameterization is given as follows:

θx|α ∼ Dirichlet(α)
φz|β ∼ Dirichlet(β)
xdi|td ∼ Uniform(td)

zdi|θxdi
∼ Multinomial(θxdi

)
wdi|φzdi ∼ Multinomial(φzdi)

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 169

We employ Gibbs sampling as a common means of statistical inference to infer
WT-LDA. Note that Gibbs sampling provides a simple and effective method to
estimate the latent variables under Dirichlet priors and observed variables given
by the content of the WSDL documents and the user-contributed tagging data of
corresponding documents. There are four latent variables inWT-LDAmodel: the
word distribution of topic φz , the topic distribution of tag θx, the tag assignment
xdi of each word, and the topic assignment zdi of each word. Gibbs sampling
construct a Markov chain that calculate the conditional distribution P (zdi =
j, xdi = k|wi = m, z−di, x−di, td) where z−di represents the topic assignments for
all tokens except wdi, x−di represents the tag assignments for all tokens except
wdi, the conditional probability is shown below:

P (zdi = j, xdi = k|wi = m, z−di,x−di, td) ∝ mxdizdi + αzdi∑V
v=1(mxdiv + αv)

∗ nzdiwdi + βwdi∑V
v=1(nzdiv + βv)

(3)

where nzw is the number of tokens of word w are assigned to topic z, mxz

represent the number of tokens in tag x are assigned to topic z.
In Gibbs Sampling, we sample zdi and xdi by fixing z−di and x−di. The other

two latent variables: the word distribution of topic φ and the topic distribution
of tag θ are estimated from samples by:

θxz =
mxdizdi + αzdi∑V
v=1(mxdiv + αv)

, φzw =
nzdiwdi

+ βwdi∑V
v=1(nzdiv + βv)

(4)

For document d, we sum over all the θx where x ∈ td to compute the topic
distribution of document d. Therefore, we can cluster web service by θ and get
the detail information of each cluster by φ.

4 Tag Preprocessing Strategies

Some inherent properties of Web service tagging data, e.g., uneven tag distri-
bution and noisy tags, impact the reliability of tagging data. In this section,
we introduce three tag preprocessing strategies to make the tagging data more
reliable and suitable for the proposed WT-LDA model to further improve the
service clustering accuracy.

4.1 Tag Recommendation

Through our observation, some Web services, especially those newly deployed
ones, do not have tags. In this case, we have to assign some initial tags from the
textual features of the services first by using approaches such as TF-IDF, and
then use a tag recommendation approach to improve the quality of the tagging
data. For the Web services with few user-contributed tags, tag recommenda-
tion approaches could be directly employed. Typically, an initial set of tags Is
associated with a Web service s is provided to the recommendation method,

170 L. Chen et al.

which outputs a set of related tags Cs, where Is
⋂
Cs = ∅. Tag co-occurrence is

a commonly used method for tag recommendation.
Figure 4 shows an example of tag co-occurrence based recommendation frame-

work, in which it first generates candidate tags based on original tags by using
tag co-occurrence, and then obtains the recommended tags by using some tag
ranking strategies, e..g, Sum and Vote [14]. Due to the space limitation, we do
not give the details of tag recommendation. In this paper, tag co-occurrence and
Vote ranking strategy are employed for recommendation.

Tourism Car Rental

User Defined Tags

Tag

Co-occurrence

Candidate Tags

Car Rental:

Tourism:

car, automobile,
company, business

hotel, company, flight,
booking

Tag

Rank

Recommended Tags

business,
company,
booking,
car

Fig. 4. An Example of Framework for Web Service Tag Recommendation

4.2 High-Frequency Tags

In order to cluster Web services into the exact cluster they belong to, we expect
tags of Web services provide accurate information of distinct property between
different clusters and common property shared among the Web services in same
cluster. As a result, we believe high-frequency tag, which means the unique tag
of one Web service that occurs with a high frequency among all tags of the Web
service, as an important evidence for Web service clustering.

4.3 Tag Preprocessing Strategies

Based on the above analysis, we present three tag preprocessing strategies to
improve the performance of WT-LDA

1. Original tags. In this strategy, only the original user-contributed tags are
provided for WT-LDA based Web service clustering.

2. Original tags + Recommended tags. In this strategy, we mix original
tags with recommended tags generated by the proposed approach in Section
4.1.

3. High-frequency tag. In this strategy, we select the high-frequency tag of
each Web service for clustering.

5 Experiments

In this section, we first compare the performance of different Web service cluster-
ing approaches and then study the performances of tag preprocessing strategies.

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 171

Table 1. Experimental Data Description

WSDL Document 185

Word 62,941

Token 1481

Tag 888

Recommended Tag 799

5.1 Experiment Setup

To evaluate the performance of Web service clustering approaches and tag pre-
processing strategies, we crawl 15,968 real Web services from the Web service
search engine Seekda!. For each Web service, we get the data of service name,
WSDL document, tags, and the name of service provider. We publicize the
crawled dataset via http://www.zjujason.com. Further, to implement the overall
process of service discovery, we build a Web service search engine Titan, which
could be accessed via http://ccnt.zju.edu.cn:8080.

As the manual creation of ground truth is an expensive process, we randomly
select 185 Web services from the dataset we crawled to evaluate the performance
of Web service clustering. We perform a manual classification of these 185 Web
services to serve as the ground truth for the clustering approaches. Specifically,
we distinguish the following categories: “Weather”, “Stock”, “SMS”, “Finance”,
“Tourism”, and “University”. There are 28 Web services in ”Weather” category,
21 Web services in “Stock” category, 37 Web services in “SMS” category, 21 Web
services in “Finance” category, 31 Web services in “Tourism” category, 27 Web
services in “University” category. 20 Web services are randomly selected from
other categories as noise in our experiment. Limited by space, we don’t show the
detailed information of these Web services. The experimental data description
is given in Table 1.

All experiments are implemented with JDK 1.7.0-10, Eclipse 3.6.0. They are
conducted on a Dell OptiPlex 390 machine with an 3.10 GHZ Intel Core I3 CPU
and 2GB RAM, running Windows 7.

5.2 Evaluation Metric

To evaluate the performance of Web service clustering, we introduce two met-
rics: Precision and Recall, which are widely adopted in the information retrieval
community.

Precisionci =
succ(ci)

succ(ci) + mispl(ci)
(5)

Recallci =
succ(ci)

succ(ci) + missed(ci)
, (6)

where succ(ci) is the number of services successfully placed into cluster ci,
mispl(ci) is the number of services that are incorrectly placed into cluster ci,

172 L. Chen et al.

Fig. 5. Performance Comparison of Four Web Service Clustering Approaches

and missed(ci) is the number of services that should be placed into ci but are
placed into another cluster.

5.3 Performance of Web Service Clustering

In this section, we compare the performance of four Web service clustering ap-
proaches, including two state-of-the-art clustering approaches and two versions
of the proposed WT-LDA approach. The details of these algorithms are given
below:

1. WCluster . In this approach, Web services are clustered according to the
semantic WSDL-level similarity between Web services. This approach has
been adopted in some related works [4,7,16].

2. WTCluster . In this approach, both WSDL documents and the tagging
data are employed to cluster the Web services according to the composite
semantic similarity [4].

3. W-LDA. In this approach, we extract feature words fromWSDL documents
and cluster Web service without any additional information using traditional
LDA approach.

4. WT-LDA. In this approach, we utilized both feature words from WSDL
documents and the user-contributed tagging data, then cluster Web services
using WT-LDA approach proposed in Section 3.

Figure 5 shows the performance comparison of above 4 Web service clustering
approaches. Empirically, we set α = 0.01, β = 0.01 and run Gibbs-sampling for
1000 iterations in the proposed WT-LDA approach. It can be discovered that
the proposed WT-LDA outperforms the other three approaches in most cases in
terms of precision and recall, respectively. Further, it can be found the addition
of tagging data improves the performance of service clustering, as WT-LDA
outperforms W-LDA, and WTCluster outperforms WCluster in most cases.

Table 2 shows the average precision and recall values of the above four service
clustering approaches. It can also be found that the proposed WT-LDA has the
best performance in terms of average precision and average recall. Further, we
can also find thatWTCluster outperformsWCluster, and WT-LDA outperforms

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 173

Table 2. Average Precision and Recall of Four Web Service Clustering Approaches

Clustering Approach Precision Recall

WCluster 0.4219 0.4378

WTCluster 0.4387 0.4553

W − LDA 0.4350 0.5017

WT − LDA 0.5966 0.5919

Fig. 6. Word Distribution of Two Clusters: the left cluster is about weather forecast,
while the right cluster is about stock

W-LDA. As we discussed above, the user-contributed tagging data of Web ser-
vices contains a lot of information, such as service function, location, and other
semantical information. Utilizing these information improves the performance of
Web service clustering.

Figure 6 shows the word distribution of two clusters, for each of which we
pick words with top ten probability in each cluster and the size of word in
Fig. 6 is corresponding to its probability. After observing the services in each
cluster, we find the services in the first cluster are most about weather forecast,
which matches the word distribution in the left figure. And the services in the
second cluster are most about stock, which also matches the word distribution
in the right figure. Thus, the proposed WT-LDA is quite effective. Compared
with traditional unsupervised clustering approach, one additional advantage of
WT-LDA is that user could directly know the main functionality of services in
one cluster, instead of observing all services in the cluster.

5.4 Evaluation of Tag Preprocessing Strategies

In this section, we compare the performance of the proposed three tag preprocess-
ing strategies with the one without tagging data. The four clustering approaches
for comparison are detailed as follows:

1. No Tag . In this approach, Web services are clustered according to word fea-
tures from WSDL documents. We cluster Web services using the traditional
LDA approach.

2. Original Tag . In this approach, we utilize both the WSDL documents and
the original tags, and cluster the Web services using the proposed WT-LDA.

174 L. Chen et al.

Fig. 7. Performance Comparison of Tag Preprocessing Strategies

Table 3. Average Precision and Recall of Four Tag Strategies

Clustering Approach Precision Recall

No Tag 0.4350 0.5017

Original Tag 0.5966 0.5919

Rec Tag 0.7442 0.7426

High Tag 0.8882 0.9841

3. Rec Tag . In this approach, we utilize the WSDL documents, the original
tags, and the recommended tags. Then we cluster the Web services using
the proposed WT-LDA.

4. High Tag . In this approach, we utilize both the WSDL documents and the
high-frequency tags, and cluster the Web services using WT-LDA.

Figure 7 shows the performance comparison of the above four approaches.
It can be found that the High Tag approach outperforms the other three ones
in most cases in terms of precision and recall, respectively. This is because the
high-frequency tags are helpful for distinguishing services, while the addition
of low-frequency tags has a negative effect. From Fig. 7, it can also be found
that the Rec Tag approach outperforms Original Tag approach in most cases,
which means the recommended relevant tags improves the performance of service
clustering.

Table 3 shows the average precision and recall values of the above four clus-
tering approaches. It can be found that the High Tag has the best performance
in terms of both average precision and recall, while the performance of No Tag
is the worst. This can be easily understood because No Tag does not utilize
tagging data, which contains a lot of meaningful information. Similarly, it can
be observed that Rec Tag outperforms Original Tag. Therefore, it can be found
that the High Tag strategy is the best strategy for WT-LDA clustering.

6 Conclusion

In this paper, we propose a probabilistic graphical model based approach, re-
ferred to as WT-LDA, which explores the knowledge behind WSDL documents

WT-LDA: User Tagging Augmented LDA for Web Service Clustering 175

and user-contributed tagging data to cluster Web services. Three tag preprocess-
ing strategies are also developed to improve the service clustering performance.
Extensive experiments conducted over real Web services demonstrate the effec-
tiveness of the proposed WT-LDA approach and tag preprocessing strategies.

In our future work, we plan to use an online version of WT-LDA to improve
the efficiency of Web service clustering, which allows the algorithm to scale to
a massive number of services and service tags contributed by a large number of
users.

Acknowledgements. This research was partially supported by the National
Technology Support Program under the grant of 2011BAH16B04, the National
Natural Science Foundation of China under the grant of No. 61173176, Na-
tional High-Tech Research and Development Plan of China under the Grant No.
2012AA02A604 and No. 2013AA01A604, the Shenzhen Basic Research Program
(Project No. JCYJ20120619153834216).

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: International World Wide Web Conference, pp. 795–804 (2008)

2. Bianchini, D., Antonellis, V.D., Pernici, B., Plebani, P.: Ontology-based method-
ology for e-service discovery. ACM Journal of Information Systems 31(4), 361–380
(2006)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of
Machine Learning Research 3(1), 993–1022 (2003)

4. Chen, L., Hu, L., Zheng, Z., Wu, J., Yin, J., Li, Y., Deng, S.: WTCluster: Utilizing
tags for web services clustering. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 204–218. Springer, Heidelberg (2011)

5. Chen, L., Zheng, Z., Feng, Y., Wu, J., Lyu, M.R.: WSTRank: Ranking tags to
facilitate web service mining. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
ICSOC 2012. LNCS, vol. 7636, pp. 574–581. Springer, Heidelberg (2012)

6. Dasgupta, S., Bhat, S., Lee, Y.: Taxonomic clustering of web service for efficient
discovery. In: Proceedings of International Conference on Information and Knowl-
edge Management, pp. 1617–1620 (2010)

7. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap
the discovery of web services. In: International Conference on Web Services, pp.
147–154 (2009)

8. Hao, Y., Junliang, C., Xiangwu, M., Bingyu, Q.: Dynamically traveling web service
clustering based on spatial and temporal aspects. In: Hainaut, J.-L., et al. (eds.)
ER Workshops 2007. LNCS, vol. 4802, pp. 348–357. Springer, Heidelberg (2007)

9. Church, K., Gale, W.: Inverse document frequency (idf): a measure of deviations
from poisson. In: Proceedings of the ACL 3rd Workshop on Very Large Corpora,
pp. 121–130 (1995)

10. Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidi-
mensional angles as proximity measures. ACM Transactions on Internet Technol-
ogy 9(3), 1–26 (2009)

176 L. Chen et al.

11. Pop, C.B., Chifu, V.R., Salomie, I., Dinsoreanu, M., David, T., Acretoaie, V.:
Semantic web service clustering for efficient discovery using an ant-based method.
In: Essaaidi, M., Malgeri, M., Badica, C. (eds.) Intelligent Distributed Computing
IV. SCI, vol. 315, pp. 23–33. Springer, Heidelberg (2010)

12. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
13. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for

authors and documents. In: Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, pp. 487–494 (2004)

14. Sigurbjrnsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proceedings of the 17th International Conference on World Wide
Web, pp. 327–336 (2008)

15. Sun, P., Jiang, C.: Using service clustering to facilitate process-oriented semantic
web service discovery. Chinese Journal of Computers 31(8), 1340–1353 (2008)

16. Liu, W., Wong, W.: Discovering homogenous service communities through web
service clustering. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z., Vo,
Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006, pp. 69–82. Springer, Heidelberg (2008)

17. Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: A system for effective web service
discovery. In: 21st International World Wide Web Conference, pp. 441–444 (2012)

18. Wu, J., Chen, L., Zheng, Z., Lyu, M.R., Wu, Z.: Clustering web services to facilitate
service discovery. International Journal of Knowledge and Information Systems
(2012) (to appear)

19. Yu, Q.: Place semantics into context: Service community discovery from the WSDL
corpus. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011.
LNCS, vol. 7084, pp. 188–203. Springer, Heidelberg (2011)

20. Yu, Q., Rege, M.: On service community learning: A co-clustering approach. In:
Internatonal Conference on Web Services, pp. 283–290 (2010)

21. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware Web service recommendation
by collaborative filtering. IEEE Transactions on Service Computing 4(2), 140–152
(2011)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 177–191, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Does One-Size-Fit-All Suffice for Service Delivery
Clients?

Shivali Agarwal, Renuka Sindhgatta, and Gargi B. Dasgupta

IBM Research India
{shivaaga,renuka.sr,gdasgupt}@in.ibm.com

Abstract. The traditional mode of delivering IT services has been through cus-
tomer-specific teams. A dedicated team is assigned to address all (and only
those) requirements that are specific to the customer. However, this way of or-
ganizing service delivery leads to inefficiencies due to inability to use expertise
and available resources across teams in a flexible manner. To address some of
these challenges, in recent times, there has been interest in shared delivery of
services, where instead of having customer specific teams working in silos,
there are cross-customer teams (shared resource pools) that can potentially ser-
vice more than one customer. However, this gives rise to the question of what is
the best way of grouping the shared resources across customer? Especially, with
the large variations in the technical and domain skills required to address cus-
tomer requirements, what should be the service delivery model for diverse cus-
tomer workloads? Should it be customer-focused? Business domain focused?
Or Technology focused? This paper simulates different delivery models in face
of complex customer workload, diverse customer profiles, stringent service
contracts, and evolving skills, with the goal of scientifically deriving principles
of decision making for a suitable delivery model. Results show that workload
arrival pattern, customer work profile combinations and domain skills, all play a
significant role in the choice of delivery model. Specifically, the complementa-
ry nature of work arrivals and degree of overlapping skill requirements among
customers play a crucial role in the choice of models. Interestingly, the impact
of skill expertise level of resources is overshadowed by these two factors.

1 Introduction

Service-based economies and business models have gained significant importance
over the years. The customers (a.k.a. clients) and service providers exchange value
through service interactions with the goal of achieving their desired outcomes. Given
the focus on the individual customer’s value and uniqueness of the customer’s needs,
the service providers need to meet a large variety of expectations set by the customers
with due diligence. At the same time, they need to continuously evolve better methods
of operations to minimize cost of delivery in order to be competitive in the market. In
this paper, we focus on how to organize IT (software) service delivery for diverse
customer workloads under strict contractual agreements.

Services in software service industry are typically delivered by specialized Service
Workers (SW) or human resources who are teamed together in order to serve the

178 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

Service Requests (SR) or work of the customer. The structure of this team and the
flow of customer work across multiple teams define a Service Delivery Model
(SDM). A service provider typically caters to multiple customers belonging to differ-
ent industry domains that require multiple business functions, applications and tech-
nologies to be supported. For example, it is possible to service clients from banking,
telecom and insurance domain at the same time by a service delivery organization. In
spite of belonging to different verticals, customers may share common business func-
tions like payroll, HR etc. Analogously, it is possible that all these functions for all
the customers require common set of technical skills like Storage, Database, and
Mainframes etc. In such situations, it becomes important to identify the optimal way
of grouping customers and forming SW teams to service them such that service pro-
vider can minimize resource costs without compromising customer satisfaction.

A customer’s work could be potentially mapped to one or more teams in accor-
dance with one of the following service delivery models: (a) Customer focused (b)
Business Function focused and (c) Technology-focused. Figure 1 shows a relation-
ship among business functions, technologies and teams for each of the three models.
The legend for technology, business and customer in the figure is as follows: technol-
ogies are denoted by colors, the business functions are denoted by the shape of the
boxes and the customers are denoted by the different patters in the boxes. A customer
has systems based on different technologies (Unix, Windows, Transaction Server,
etc.) catering to different business functions (Payroll, Billing, Marketing,etc.). In the
Customer focused (CF) SDM, all service interactions of a customer, across all busi-
ness functions are served from single customer dedicated team. While this model is
believed to have high customer satisfaction levels, the practical challenges involve
scalability (since every new customer on-boarded now needs a dedicated team). In the
Business focused (BF) model, business functions of multiple customers are served
from the common pool. The resources in such a pool have the desired domain know-
ledge in addition to the required technical skills required to carry out the tasks. This
model addresses the utilization issue of the dedicated scenario by supporting multiple
customers with similar business functions and also maintains no fragmentation within
the business function of a customer. However since business functions may map to
different technologies, the common pool again requires expertise in multiple technol-
ogies, which results in higher labor costs. In Technology-focused (TF) SDM, mul-
tiple customers using similar technologies are grouped into a team which is served by
highly skilled people in the relevant technologies. There are dedicated teams for each
required technology in this model and it carries out work related to that technology
from multiple business functions across different customers. In this model single
skilled people are needed which is easier to hire and train. The drawback of this mod-
el is that customer work is split by technology and tends to get very fragmented. This
may result in complex situations taking longer to resolve, as they traverse through the
multiple teams, thereby causing customer dissatisfaction.

Given the choice of the types of SDM and their associated merits and de-merits, it
becomes challenging for an organization to decide which model to adopt. The situa-
tion is further aggravated by the fact that various client specific factors, that may be
static and dynamic, play a role in accentuating or diminishing the merits/de-merits of
the SDMs. Section 2 of this paper, describes some of the key factors that impact SDM
performance. A static one-time decision that is universally applied to all customers

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 179

may not suffice for the design of a large-scale service provider. Especially with ser-
vices business revenue being close to a billion USD for major providers, its success is
strongly related to the trust and satisfaction of its existing customers. This necessitates
a superior decision process regarding which customer workload, service contracts and
skill distributions effectively map best to which SDM and optimize cost to the
provider. In this paper, we aim to analyze the three SDMs from the perspective of
performing highly diverse and complex clients’ workload and focus on the multiple
performance parameters of SLA, cost, throughput and utilization. The goal is to not
only establish the best SDM under a subset of specific circumstances, but also under-
stand the Pareto improvements that can be made to any SDM parameter. The simula-
tion analysis presented here can be used by organizations to find the most appropriate
delivery model for a client portfolio. It can also be used to find the appropriate
customers groupings for a given SDM type.

Fig. 1. Customer processes to SDM mapping

Rest of the paper is organized as follows: Section 2 describes the different factors
specific to customers that affect the choice of SDM. Section 3 introduces our simula-
tion model and the various operational parameters of interest. Section 4 presents the
experimental analysis and section 5 presents a review of the related work.

2 Why One Model May Not Fit All

In this section, we describe the key factors that should be considered in choosing a
service delivery model for diverse customer group. Each of these factors capture some
aspect of the customer and its’ workload. A combination of these factors defines the
clients’ work portfolio being serviced by the service provider. Different portfolios
will typically suit different delivery models. Portfolios are dynamic in nature as exist-
ing customers can undergo changes and new customers may get on boarded. A ser-
vice provider has to deal with different work portfolios at different points in time

180 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

making it difficult to have a de-facto model because it can perform in a very sub-
optimal manner for portfolios that it does not correspond to.

Customer Work Profiles - Work profile of a customer defines the nature of SRs that
arrive in that customer’s workload. It is a mapping of the customer’s business func-
tions to the technologies that are required to carry it out. The combined profiles of
customers determine the required skills for the service delivery. Fig 2 provides the
combined profiles samples that are studied in this paper. These are representative
samples of the actual profiles and capture the key features relevant for simulation.
The Type 1 profile in Fig 2 depicts a case where the provider is catering to three cus-
tomers, C1, C2, C3 such that C1 has work that belongs to business functions of type
B1 and B2. The business function B1 needs the technologies T1 and T2 both, while
B2 requires T2 and T3 both. The label x1 and y1 denote the percentage of work of
type B1 and B2 respectively. The work of C2 and C3 can be interpreted analogously.
Each of the types illustrates different levels of overlap between the customer require-
ments. For example, C1 and C2 in Type 2 have a complete overlap in business do-
main and technology skill requirements (e.g. payroll and HR may both require Unix
and DB2) but only a partial overlap in Type 1.

Fig. 2. Clients’ Work Profile Sample Combinations

In some cases the combined profiles may look obviously tailored for a certain type
of shared model, for example, because of the higher sharing of business functions in
Type 3, it is intuitive that sharing of resources at business function level may benefit
Type 3. This is less clear in Type 1 and Type 2, where it is possible that TF outper-
forms BF. A detailed analysis is required to develop the insight into the effect of dif-
ferent overlapping patterns that may occur in customer work profiles.

Workload Arrival Patters – It may be a myopic strategy to make decisions about
shared delivery models solely based on customer work profiles, because the work
arrival patterns also play a role in accentuating the benefits of sharing. The benefits of
sharing will be visible most when customers have complementary workload arrival
patterns. That is, the peaks and crests of one customer do not coincide with the others
who are being serviced from the same pool. Then the question arises that how are the
comparative performances of CF, TF and BF models in case of non-complementary
workloads. It is also important to understand the role of overlapping business func-
tions and technical skill requirements in the performance of the three SDMs in case of
complementary arrivals.

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 181

Business Function Complexity – Some complex SRs may need deep domain know-
ledge and customer knowledge while the others may be relatively simple to handle.
Consequently, the service times for a request involving a complex function will be
different in the case where it is handled by a SW with less domain knowledge vs. one
with high domain knowledge. As mentioned in section 1, resources in TF SDM will
typically have lower level of domain and customer knowledge. This can potentially
lead to SLA misses for service requests and thus skill levels become an important
factor in choosing the model.

We resort to simulation based analysis for studying the interplay of these factors in
mapping the class of portfolios that are best suitable for each of the three SDMs.

3 Formalizing the Service Delivery Model

We now formalize the SDM and present the framework that models the various cus-
tomer and workload related factors. Each SDM is typically characterized by:

• A finite set of customers, denoted by C , to be supported.
• A finite set of W Service Workers (SW).

• A finite set of teams consisting of a mutually exclusive subset of W ,
─ denoted by CT, if Customer Focused SDM
─ denoted by BT, if Business function Focused SDM
─ denoted by TT, if Technology Focused SDM

• A finite set of domain skills, denoted by BD , with L levels in each skill.
• A finite set of technical skills, denoted byTD , with L levels in each skill.
• A finite set of skills pertaining to customer knowledge, denoted byCK .
• A finite set of priority levels, denoted by the set P .
• A finite set of service requests (SR) raised by the customers that arrive as work

into the system.
• A map of service requests to required skills, defined by

TDBDCKSR → .
• A map of service workers to skills,

─ One-to-many map, defined by TDBDCKW → , if CT

─ One-to-many map, defined by TDBDW → , if BT

─ One-to-one map, defined by TDW → , if TT
• A finite set of Key Performance Indicators, denoted by KPI.
In CF model, each customer team has a dedicated set of SWs for each business func-
tion, such that they have the customer knowledge, business domain knowledge and
are skilled in the required technologies for that function. In BF model, the SWs work-
ing in a team are shared across customers and are knowledgeable about the business
domain handled by that team as well as skilled in the required technologies for servic-
ing that business function. The workers may acquire customer knowledge in the
process of servicing customers for a long period of time, In TF model, the SWs are
skilled in a particular technology and may acquire domain and customer knowledge

182 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

over a period of time by virtue of servicing multiple customers. It is possible to have
delivery models that are a combination of CF, BF and TF but such models are outside
the scope of this paper. The goal of this work is to fundamentally understand the sui-
tability of specified models for specific type of workloads.

We next discuss the operational aspects like customer SLAs of the SR, service
times and evolving skills of workers, and how SRs are dispatched to service workers.
We also discuss the specifics of performance indicators.

3.1 Service Level Agreements

SLA constraints, given by the mapping () 2,1,,,: 21 =ℜ∈→× irrrPC iγ is a

map from each customer-priority pair to a pair of real numbers representing the SR
resolution time deadline (time) and the percentage of all the SRs that must be resolved

within this deadline within a month (pct). For example, () 95,4, 11 =PCustomerγ ,

denotes that 95% of all SRs from customer1 with priority P1 in a month must be resolved
within 4 hours. Note that SLAs are computed at the end of each month and hence the
aggregate targets are applicable to all SRs that are closed within the month under con-
sideration. Also the SLAs are on the entire SR itself, which means the targets apply
to resolution across multiple domains.

3.2 Service Time

The time taken by a SW to complete an SR is stochastic and follows a lognormal
distribution for a single skill, where the parameters of the distribution are
learned by conducting time and motion exercises described in [6]. Service time

distributions are characterized by the mapping 1,1: σμτ →× DP , where

CKTDBDD ∪∪= and 1μ , 1σ are the mean and standard deviation parame-

ters of the lognormal distribution and represent the longest time a worker usually
takes to do this work. The distribution varies by the priority of a SR as well as the
minimum skill-level required to service it. For complex work requiring multiple

skills ()iDD ,1 the total service time is an additive component of the individual

work completions and follows a shifted lognormal distribution [16].
However with some learning in the environment and with repeated use of skills,

these service times become lower according to a power law equation given by LFCM
[13]. Also since complex work takes more time to complete, for the sake of maintain-
ing throughput, it becomes imperative to assign some work to people skilled below

the minimum skill-level. When lower skilled people ()ws do higher skilled

work ()rs , where ,wr ss > the service times become higher. This increase in service

time is obtained from an adaptation of the LFCM algorithm [17], where the service

time),(rwn ssμ to finish the nth repetition of work requiring skill rs by worker with

skill level ws is given by:

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 183

 ()

 +

−−

=
n

t

rwn

n

nss
log

1log
1

1,

γ
β

μμ ()1

where 1μ is the mean service time to execute the higher skilled work for the first

time, β is the learning factor, γ is the skill gap between levels ws and rs , nt is the

time spent by worker at level rs . Higher the gapγ , and lower the time spent nt ,

higher is nμ . 1μ represents the longest time to do this type of work, but with work

repetitions, expertise is gained and nμ decreases. In practice we bound the minimum

value of nμ at minμ , which is the lowest service time work rs can take. The para-

meters min1 ,,, μγβμ are learned by conducting time and motion studies [6] in

real SS to measure the exclusive time spent by a SW on a SR. As given by Eqn. (1),
slower learning rates and bigger gaps in the skill required of a SR and skill possessed
by a SW, both contribute to longer service times.

3.3 Dispatching

The Dispatcher is responsible for diagnosis of the faulty component(s) as well as
work assignment to a suitable worker. During work assignment, SRs are assigned in
order of their work priorities to SWs of the matching skill-level requirements. When
matching skill levels are not available, higher or lower skilled SW may be utilized for
servicing a SR. For fault diagnosis the dispatcher intercepts the SR to determine the
most likely faulty component(s) and maps them to appropriate skill domains (from
BD,TD). In case of CF model, it ensures that it maps to the right customer team as

well. In TF model, a SR dispatched with { }2,1 TDTD , needs to traverse through

teams that support 1TD and 2TD . When multiple domains of customers are sup-

ported, solving the fault-diagnosis without ambiguity is non-trivial [24] and may re-
sult in misroutes. We assume no misrouting in our model, without loss of generality.

3.4 Key Performance Indictors

Cost: The cost of delivery is directly related to the cost of the resources working in

the teams. Let lC be the base cost of the resource in TF model with single skill ex-

pertise at level l. The base cost is assumed to be higher for higher skilled people (i.e.,

l2l1CC ll >∀> ,21). In contrast BF/CF model has multi-skilled people who would

need training for each additional skill. Let lH be the highest skill level of a resource in
this model. We assume that the base cost of a multi-skilled resource is dominated by
the base cost of her highest expertise. She also has N additional skills, out of which ni

skills are at level li. Let the cost for training each skill to level li be given by ilδ .

184 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

Assuming a linear cost model of skills, the cost incurred for training a multi-skilled
resource is given by:

 NnwherenCC
i

ilii

i
lH

=∗+= ,δ ()2

It can be seen that a resource in a BF/CF model is much more expensive than in the
TF model.

Utilization: If a resource works for x hours out of available H hours, then the utiliza-
tion is x/H. A SDM with higher utilization of SWs is indicative of good staffing.

Throughput: Ratio of the amount of work completed and the amount of incoming
work is defined as the throughput. A model with higher throughput will typically lead
to improved chances of SLA adherence.

4 Simulation Based Evaluation

In this section, we describe the simulation set up for SDM according to its definitions
in Section 3 and present the experimental analysis.

Workload Parameters

• Customer Work Profiles : The workload is generated as per the customer work
profiles given in Fig. 2. These are a very small scale representation of the actual
clients’ profiles but capture all the essential attributes required for simulation. The
values of distributions, x1 and y1 are simulated with either of the two distributions:
(i) uniform distribution, (ii) an extremely biased distribution where 90% work is of
one business function type and 10% of the other.

• Work Arrivals : According to existing body of literature in the area of Service De-
livery systems [6,8], work arrives into the system at a finite set of time intervals,
denoted by T , where during each interval the arrivals stay stationary. Arrival
rates are specified by the mapping ℜ→×TC:α , assuming that each of the SR
arrival processes from the various customers iC are independent and Poisson dis-
tributed with)(, ji TCα specifying the rate parameter. Customers can have com-

plementary patterns of work arrival where peaks and troughs complement each
other, or it can be amplifying workload with overlapping peaks or the work arrival
can be a simple uniform pattern without much variation in time.

Simulation Parameters

• T contains one element for each hour of week. Hence, |T| = 168. Each time inter-
val is one hour long.

• Priority Levels P = {P1, P2, P3, P4}, where, P1 > P2 > P3 > P4.
• Customer Skills CK={C1,C2,C3}, Business Domain Skills BD={B1,B2,B3},

Technology Skills TD={T1,T2,T3}

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 185

• Skill Levels and Service Times: We assume 3=L . The three different levels of
expertise simulated are {Low, Medium, High}, where, High > Medium > Low.

Each level of expertise has a least service time distribution ()minmin ,σμ asso-

ciated with it, which characterizes the minimum time this work type could take.
The estimates are obtained from real life, time and motion studies [6].

• Learning Factor: We assume a learning rate of β = 0.1 for each SW with high
skill level, 0.08 for medium and 0.06 for low.

• Transfer Time: In case of work requiring multiple skills, the work gets handed
over from one team to another. The teams could be geographically co-located
(transfer time ~20min) or dispersed (> 20min).

• Cost: A blended rate (across skill levels) of 80K USD per SW and an additional
cost of 10K USD per specialized skill or customer knowledge is assumed.

4.1 Experimental Analysis

We employ the AnyLogic Professional Discrete Event simulation toolkit [4] for the
experiments. We simulate up to 40 weeks of simulation runs with the aforementioned
parameters and dispatching as described in section 3.3. Measurements are taken at
end of each week. No measurements are recorded during the warm up period of first
four weeks. In steady state the parameters that were measured include:

• SLA measurements at each priority level
• Completion times of work in minutes (includes queue waiting times, transfer

times, and service times)
• Throughput (work completed/week)
• Resource utilization (captures the busy-time of a resource)
• Number of resources that is an indication of cost

For all the above parameters the observation means and confidence intervals are
reported. Whenever confidence intervals are wider, the number of weeks in simula-
tion is increased and reported values in the paper are within %5± confidence inter-
vals. We seed the simulation with a good initial staffing solution from the Optimizer
kit [15] which returned the optimal number of resources that can meet the contractual
SLAs (we assume SLA adherence as a required condition for a model). Table 1 shows
the distribution of work across priorities, the target resolution times and the percen-
tage of SRs that need to be completed within the target resolution time. These values
are defined based on our analysis of the real life data collected from projects at IBM.

Table 1. Work Distribution and SLA Target Times and Percentages

90480202

100720403

1001440304

90240101

% Meeting
Target Time

SLA Target Times
(minutes)

%
Distribution

Priority of SR
or Work

90480202

100720403

1001440304

90240101

% Meeting
Target Time

SLA Target Times
(minutes)

%
Distribution

Priority of SR
or Work

186 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

Simulation Results for Studying the Impact of Arrival Patterns and Skills on
SDM

For the first set of experiments we take the work profiles with substantial overlap like
Type 1 as shown in Fig. 2, and vary the workload arrival patterns. We have two type
of arrival patterns, i) non-complementary workload for all customers and ii) comple-
mentary workload for customer C1 and C2 and uniform for C3. For the purpose of
experiments, we differentiate resources with specialized customer knowledge (CK)
and technical skills (TD). Specialized customer knowledge includes fair amount of
knowledge of customer specific details of the business functions in addition to ade-
quate relevant BD skills. The effect of skills is captured by differentiating the service
times as described in section 3.2. We simulate non-complementary workload by simu-
lating simultaneous peaks in the customer workload. In this case as shown in Table 2,
we see that when all SDMs have equally skilled people with high customer know-
ledge (CK), then the optimal staffing required by CF, BF teams is very similar. Since
the service workers have similar skills, the average completion times for work and the
resource utilizations are comparable. We next simulate the environment where the
skills of people in the SDMs vary. We assume in CF, people are highly well-versed
with the customer domain while the people in BF and TF have comparatively lower
customer knowledge. The results in Table 2 show the trend that with increasingly
different levels of customer knowledge between the three models, CF increasingly
tends to outperform the other two delivery models. Thus we conclude, without loss of
generality, that the CF focused SDM is actually the best choice among all SDMs,
when the workload arrivals offer no real benefit of work multiplexing especially when
customer knowledge is an important part of the work environment.

Table 2. KPI Performance for Non-complementary, Type1 work profile

We next simulate the scenario, when the workload arrivals are complementary.

The customer knowledge is still assumed to be an important part of the environment,
i.e., CF has a higher customer knowledge skill. However the fact that the workload
peaks are now staggered and no longer happen simultaneously, changes the landscape
of the results. Table 3 shows that in this case BF and TF show big improvements
when compared to CF in terms of resource cost and utilization. The CF suffers from
low resource utilization in this scenario. Both BF and TF perform well, with BF hav-
ing the lowest cost, and completion times. The TF completion times are slightly high-
er, even though both have the same level of skills (medium CK). This can be

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 187

explained due to the effect of transfer times on multi-skill work requirements in the
TF model. Recall that the work coming to these teams require multiple skills for reso-
lution. Workers in BF SDMs typically have multiple skills and work on tickets for a
longer amount of time. In contrast the TF workers only work on their specific specia-
lized skill and pass it on to the next expert resulting in higher completion time.

We conclude that when workloads have some complementary behavior, either BF
or TF should be the SDM of choice; and the impact of complementary behavior over-
rides the requirement of customer knowledge in the SDM KPIs. The simulations for
other profile types follow suite and for sake of brevity, results are not presented here.

Table 3. KPI Performance for Complementary, Type1 and 2 work

8.9M
(@80K/SW)

9.0M
(@90K/SW)

9.9M
(@90K/SW)

9.9M
(@80K/SW)

9.3M
(@90K/SW)2

9.9M
(@90K/SW)

Cost (USD)

50%60%46%50%59%46%Utilization %

151147147173152141Completion
Time

112100115124103115Num
Resources

TF (Med CK)BF (Med CK)CF (HI CK)TF (Med CK)BF (Med CK)CF (HI CK)

Specialized Customer Knowledge
Type 2 Profile

Specialized Customer Knowledge
Type 1 Profile

Complementa
ry workload

8.9M
(@80K/SW)

9.0M
(@90K/SW)

9.9M
(@90K/SW)

9.9M
(@80K/SW)

9.3M
(@90K/SW)2

9.9M
(@90K/SW)

Cost (USD)

50%60%46%50%59%46%Utilization %

151147147173152141Completion
Time

112100115124103115Num
Resources

TF (Med CK)BF (Med CK)CF (HI CK)TF (Med CK)BF (Med CK)CF (HI CK)

Specialized Customer Knowledge
Type 2 Profile

Specialized Customer Knowledge
Type 1 Profile

Complementa
ry workload B1

C1

B2 B3

C2 C3

T1 T2 T3

Type 1

x1
y1

B1

C1

B2 B3

C2 C3

T1 T2 T3

Type 2

Simulation Results for Studying the Impact of Work Profiles on SDM
We simulate different work profiles on SDM that captures the level of sharing that
can be achieved at the customer, business or the technical domains. We restrict to
complementary workloads to study BF vs. TF. It was seen that BF clearly outper-
forms others in most KPIs, as shown in Table 3, where there is sufficient overlap
between business functions of customers with complementary workloads. Note that
this is true even though people in CF have higher skills and lower completion times
when compared to BF.

We next simulate scenario for type 4 where the customers do not have many over-
lapping business functions, but a high technology overlap. In this case customers
have a very diverse set of business functions but they all require common technolo-
gies. In this case, Table 4 shows that the TF model performs the best in terms of re-
source cost, completion time and utilization. This is when we assume that customer
knowledge is still higher with the CF SDM. Since TF builds specialized skills, it is
often believed that workers in TF are highly skilled in the technical areas of expertise.
With this assumption we simulate the case where TF workers have higher skills in
their individual domains but lower customer knowledge skill. In this scenario, while
transfer times are reasonable (~10 to 20 minutes) TF is remains the best SDM.

The biggest drawback of the TF model in case of multi-skill work is the hand-off
between teams, causing transfer delays. We next analyze the sensitivity of the
TF performance with respect to transfer times. Fig. 3 and Fig. 4 show that TF

188 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

performance degrades, both in terms of completion time and number of resources
deteriorate as transfer times increase beyond 30 min. Hence, while TF is a good mod-
el for type 2 customer profiles, its sensitivity to transfer times needs to be considered.
Especially when the teams are geographically distributed and transfer times are natu-
rally higher due time-zone shifts, the benefit of using TF in a high technology overlap
customer profile may be overridden.

Impact of Transfer Time on TF Cost

120
122
124
126

128
130
132
134

5 10 20 30 50

Transfer Time (min)

R

es
ou

rc
es

Impact of Transfer Time on TF Completion Time

0

50

100

150

200

5 10 20 30 50

Transfer Time (min)

A
vg

. C
om

pl
et

io
n

 T
im

e

 Fig. 3. Transfer time Vs Completion time (TF) Fig. 4. Transfer time Vs Cost (TF)

Table 4. KPI Performance for Complementary, Type4 work

9.2M@(80K/
SW)

9.9M@(90K/
SW)

9.9@(90K/S
W)

9.6M@(80K/
SW)

9.9M@(90K
/SW)

9.9@(90K/S
W)

Cost (USD)

55%55%49%52%55%49%Utilization %

150155157154155157Completion
Time

116110110120110110Num
Resources

TF (Med CK +
Hi TD)

BF (Med CK
+ Med TD)

CF (Hi CK +
Med TD)

TF (Med CK)BF (Med
CK)

CF (Hi CK)

Specialized Customer Knowledge
And

Specialized Technical Domain Knowledge

Specialized Customer KnowledgeComplementa
ry workload,
Profile Map

Type 4

9.2M@(80K/
SW)

9.9M@(90K/
SW)

9.9@(90K/S
W)

9.6M@(80K/
SW)

9.9M@(90K
/SW)

9.9@(90K/S
W)

Cost (USD)

55%55%49%52%55%49%Utilization %

150155157154155157Completion
Time

116110110120110110Num
Resources

TF (Med CK +
Hi TD)

BF (Med CK
+ Med TD)

CF (Hi CK +
Med TD)

TF (Med CK)BF (Med
CK)

CF (Hi CK)

Specialized Customer Knowledge
And

Specialized Technical Domain Knowledge

Specialized Customer KnowledgeComplementa
ry workload,
Profile Map

Type 4

B1

C1

B2 B3

C2 C3

T1 T2 T3

Type 4

In the last profile experiment, we simulate the profile type 3 when technology re-

quirements are very distinct even though a lot of business function sharing is present.
In this case, BF is the clear choice, even when customer skills are higher in CF and
technology skills are higher in TF as show in Table 5.

Table 5. KPI Performance for complementary, Type3 work

10.2M@(80K
/SW)

9.3M@(90K/
SW)

9.9@(90K/S
W)

10.4M@(80K
/SW)

9.4M@(90K/
SW)

9.9@(90K/
SW)

Cost (USD)

50%57%49%47%55%49%Utilization %

150155157154155157Completion
Time

128104110130105110Num
Resources

TF (Med CK
+ Hi TD)

BF (Med CK
+ Med TD)

CF (Hi CK +
Med TD)

TF (Med CK)BF (Med CK)CF (Hi CK)

Specialized Customer Knowledge
And

Specialized Technical Domain Knowledge

Specialized Customer KnowledgeComplementa
ry workload,
Profile Map

Type 3

10.2M@(80K
/SW)

9.3M@(90K/
SW)

9.9@(90K/S
W)

10.4M@(80K
/SW)

9.4M@(90K/
SW)

9.9@(90K/
SW)

Cost (USD)

50%57%49%47%55%49%Utilization %

150155157154155157Completion
Time

128104110130105110Num
Resources

TF (Med CK
+ Hi TD)

BF (Med CK
+ Med TD)

CF (Hi CK +
Med TD)

TF (Med CK)BF (Med CK)CF (Hi CK)

Specialized Customer Knowledge
And

Specialized Technical Domain Knowledge

Specialized Customer KnowledgeComplementa
ry workload,
Profile Map

Type 3

B1

C1

B2 B3

C2 C3

T1 T2 T3

Type 3

B1

C1

B2 B3

C2 C3

T1 T2 T3

Type 3

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 189

We conclude that customer profile maps are a very prominent factor in deciding
the SDM of choice and has a bigger impact than skills (customer knowledge or tech-
nical domain expertise) on SDM KPIs. For most profiles, that have some degree of
commonality in business functions, BF is the best SDM choice. When customers
have diverse business requirements but common technology requirements, TF outper-
forms other models, as long as transfer times are reasonable (~20 min).

A note on Utilization: With respect to the utilization of resources, we realize that the
averages may not accurately represent the distributions that have a lot of skew. Hence,
we look at the distributions of the utilization across the three scenarios to draw con-
clusions on their utilization pattern. Fig 5 shows the box-plots for CF, BF and TF
utilization, when sharing is high at both business and technology levels. The whiskers
represent the min and max of the distributions while the ‘+’ indicates the median. In
the high sharing case for all distributions, the median lies in the centre of the box. In
CF the box is equally placed between the whiskers indicating normally distributed
utilization. The smaller inter-quartile range shows similar utilizations among the re-
sources in TF, but varied in case of BF to CF. Overall Fig. 5 shows that in each sce-
nario, peoples’ utilization distributions are more symmetric. In Fig. 6 for a profile
like type 4, where the business function sharing is low, the CF and BF utilizations are
skewed. In CF, the median is closer to the first quartile value, indicating that more
people are lowly utilized. For BF, the median is closer to the third quartile value indi-
cating a left skew with a larger clustering of higher values in that section. However
the median of the TF is centrally located indicating a more uniform distribution. This
shows that from the utilization perspective, TF focused teams exhibit uniform utiliza-
tion patterns irrespective of the amount of sharing available. BF shows uniform utili-
zations with high business function sharing customer profiles.

 Fig. 5. Utilization Distribution: Type 1 Fig. 6. Utilization Distribution: Type 4

5 Related Work

The concept of shared service has existed for a long time, for e.g., multiple depart-
ments within an organization shared services like HR, finance, IT etc. A recent study
[23] of global service delivery centers revealed that shared services not only reduces
costs, but also improves quality. There is also work on organizational design
principles underlying an effective service delivery model [1,3,5] and resource hiring,
cross-training in such models [20]. However, there is no work on generalizing
the service delivery models and evaluating the pros and cons when presented with
different kinds of workloads and work arrival patterns. Learning and forgetting curves
in production and manufacturing industry [13] have received a lot of attention.

190 S. Agarwal, R. Sindhgatta, and G.B. Dasgupta

The service delivery work, being repetitive in nature can benefit from these results in
modeling the effect of learning and forgetting on service times. This paper incorpo-
rates some of the manufacturing domain results. One of the interesting results in this
body of work is [14] where the authors demonstrate that forgetting by workers in an
establishment or line of production as a substantive characteristic of actual production
processes is overstated and that although important and interesting, is not as influenti-
al as previous work for labor productivity has suggested. There is another line of work
that studies the effects of task assignment on long term resource productivity. This is
because the task assignment impacts mean learning rate, mean forgetting rate, mean
prior expertise, variance of prior expertise etc and thus has a direct consequence on
productivity. The work in [18] presents a heuristic approach for assigning work by
taking into account all these factors. We have modeled productivity differences
between various skill levels for the same skill type. How to staff, cross-train them and
utilize multi-skill resources have also received adequate attention in the past and
especially in the context of call-centers [7,9]. The work in [12] advocates that a
flexible worker should process a task s/he is uniquely qualified for before helping
others in shared tasks. This is advocated in work-in-process constrained flow-lines
staffed with partially cross-trained workers with hierarchical skill sets. The effect of
collaboration between teams has also been studied in work in [21] which proposes the
concept of social compute unit. The work in [10] theorizes how task/team familiarity
interact with team coordination complexity to influence team performance. They find
that task and team familiarity are more substitutive than complementary in: Task
familiarity improves performance more strongly when team familiarity is weak and
vice versa. The work in [2] elaborates on the impact of high transfer times on SLAs
and deals with minimizing the transfer times in the context of service tickets.

6 Conclusion

We conclude that when strict SLA adherence is a pre-requisite for service delivery,
complementary nature of work arrivals and overlapping skill requirements of custom-
ers play a crucial role in the choice of SDM. Domain knowledge plays a role mainly
in case of non-complementary workload. The business function focused model per-
forms best or at par with others in most cases if costs are ignored. Technology fo-
cused model performs best for certain specific work profile combinations and is at par
with BF in most cases if labor cost is the primary KPI. TF model also exhibits more
uniform utilization, but suffers from high sensitivity to transfer times. Such kind of
detailed analysis will give useful insights in choosing the delivery model. An interest-
ing extension of this study would be to evaluate the conditions for hybrid SDMs.

References

1. Agarwal, S., Reddy, V.K., Sengupta, B., Bagheri, S., Ratakonda, K.: Organizing Shared
Delivery Systems. In: Proc. of 2nd International Conference on Services in Emerging
Markets, India (2011)

2. Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket dis-
patch in an IT service environment. In: Proc. of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2012 (2012)

 Does One-Size-Fit-All Suffice for Service Delivery Clients? 191

3. Alter, S.: Service System Fundamentals: Work System, Value Chain, and Life Cycle. IBM
Systems Journal 47(1), 71–85 (2008)

4. Anylogic Tutorial, How to build a combined agent based/system dynamics model in Any-
logic. In: System Dynamics Conference (2008),
http://www.xjtek.com/anylogic/articles/13/

5. Assembly Optimization: A Distinct Approach to Global Delivery, IBM GBS White Paper
(2010)

6. Banerjee, D., Dasgupta, G.B., Desai, N.: Simulation-based evaluation of dispatching poli-
cies in service systems. In: Winter Simulation Conference (2011)

7. Cezik, M.T., L’Ecuyer, P.: Staffing multi-skill call centers via linear programming and si-
mulation. Management Science Journal (2006)

8. Diao, Y., Heching, A., Northcutt, D., Stark, G.: Modeling a complex global service deli-
very system. In: Winter Simulation Conference 2011 (2011)

9. Easton, F.F.: Staffing, Cross-training, and Scheduling with Cross-trained Workers in Ex-
tended-hour Service Operations. Robert H. Brethen Operations Management Institute
(2011) (manuscript)

10. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Familiarity, Complexity, and
Team Performance in Geographically Distributed Software Development. Organization
Science 18(4), 613–630 (2007)

11. Franzese, L.A., Fioroni, M.M., de Freitas Filho, P.J., Botter, R.C.: Comparison of Call
Center Models. In: Proc. of the Conference on Winter Simulation (2009)

12. Gel, E.S., Hopp Wallace, J., Van Oyen, M.P.: Hierarchical cross-training in work-in-
process-constrained systems. IIE Transactions, 39 (2007)

13. Jaber, M.Y., Bonney, M.: A comparative study of learning curves with forgetting. Applied
Mathematical Modelling 21, 523–531 (1997)

14. Kleiner, M.M., Nickelsburg, J., Pilarski, A.: Organizational and Individual Learning and
Forgetting. Industrial and Labour Relations Review 65(1) (2011)

15. Laguna, M.: Optimization of complex systems with optquest. OptQuest for Crystal Ball
User Manual Decisioneering (1998)

16. Lo, C.F.: The Sum and Difference of Two Lognormal Random Variables. Journal of Ap-
plied Mathematics 2012, Article ID 838397, 13 pages (2012)

17. Narayanan, C.L., Dasgupta, G., Desai, N.: Learning to impart skills to service workers via
challenging task assignments. IBM Technical Report (2012)

18. Nembhard, D.A.: Heuristic approach for assigning workers to tasks based on individual
learning rates. Int. Journal Prod. Res. 39(9) (2001)

19. Ramaswamy, L., Banavar, G.: A Formal Model of Service Delivery. In: Proc. of the IEEE
International Conference on Service Computing (2008)

20. Subramanian, D., An, L.: Optimal Resource Action Planning Analytics for Services Deli-
very Using Hiring, Contracting & Cross-Training of Various Skills. In: Proc. of IEEE SCC
(2008)

21. Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L., Dustdar, S.: Who do you call?
Problem resolution through social compute units. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 48–62. Springer, Heidelberg (2012)

22. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps Toward a Science of Service Sys-
tems. IEEE Computer 40(1), 71–77 (2007)

23. Shared Services & Outsourcing Network (SSON) and The Hackett Group, Global service
center benchmark study (2009)

24. Verma, A., Desai, N., Bhamidipaty, A., Jain, A.N., Barnes, S., Nallacherry, J., Roy, S.:
Automated Optimal Dispatching of Service Requests. In: Proc. of the SRII Global Confe-
rence (2011)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 192–206, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Runtime Evolution of Service-Based Multi-tenant SaaS
Applications

Indika Kumara, Jun Han, Alan Colman, and Malinda Kapuruge

Faculty of Information and Communication Technologies
Swinburne University of Technology, Melbourne, Australia

{iweerasinghadewage,jhan,acolman,mkapuruge}@swin.edu.au

Abstract. The Single-Instance Multi-Tenancy (SIMT) model for service deli-
very enables a SaaS provider to achieve economies of scale via the reuse and
runtime sharing of software assets between tenants. However, evolving such an
application at runtime to cope with the changing requirements from its different
stakeholders is challenging. In this paper, we propose an approach to evolving
service-based SIMT SaaS applications that are developed based on Dynamic
Software Product Lines (DSPL) with runtime sharing and variation among te-
nants. We first identify the different kinds of changes to a service-based SaaS
application, and the consequential impacts of those changes. We then discuss
how to realize and manage each change and its resultant impacts in the DSPL.
A software engineer declaratively specifies changes in a script, and realizes the
changes to the runtime model of the DSPL using the script. We demonstrate the
feasibility of our approach with a case study.

Keywords: SaaS, Evolution, Multi-tenancy, SPL, Compositional, Feature.

1 Introduction

The Software as a Service (SaaS) models for service delivery offer software applica-
tions as a utility over the Internet. In particular, the Single-Instance Multi-Tenancy
(SIMT) model hosts different tenants in a single application instance, increasing run-
time sharing and hence reducing operational cost [1]. In this model, the functionality
for all the tenants is integrated into a single application, and the differentiation of the
varied support for tenants is realized at runtime.

After an SIMT application is successfully developed and deployed, its evolution
takes place. During this phase, the application can be modified, for instance, to cope
with a changed need of a tenant or the SaaS provider or a change in a partner service’s
capability. Evolving an SIMT application is a complex problem. Firstly, the applica-
tion should support different classes of changes that can potentially occur during its
lifetime. Secondly, the application needs to enable the identification and control of the
impacts of a change on the application. Finally, a change and its impacts need to be
realized and managed at runtime without disturbing the operations of those tenants
unaffected by the change.

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 193

To date, there is little support for runtime evolution of a multi-tenant SaaS applica-
tion [2-4]. Some efforts have considered such issues as tenant on-boarding [2] and
tenant-specific variations [3, 4]. However, they do not sufficiently support two key
activities of change management [5]: identifying a change and its impacts, and de-
signing and implementing the change and impacts.

In [6], we have proposed to realize a service-based SIMT SaaS application as a
Service-Oriented Dynamic Software Product Line (SO-DSPL) that supports runtime
sharing and variation across tenants/products. Our approach utilizes the DSPL’s capa-
bility to share and differentiate product features, but all achieved at runtime.

In this paper, we discuss the above-mentioned two key activities of change man-
agement (main contributions) for service-based SIMT applications developed using
our product line based model. We first identify the different types of changes to our
SO-DSPL and their potential impacts. Second, we discuss our approach to realizing
each change and managing each change impact. In particular, we support the identifi-
cation of the potential impacts of a change on the products (tenants), and the man-
agement of such impacts without disturbing the operations of the unaffected products.
An initial modification and its consequential impacts can be specified and realized
through the runtime representation of the product line created based on the mod-
els@runtime concept [7]. With a case study that implements common SPL evolution
scenarios, we demonstrate the feasibility of our approach. We analyze the case study
results to assess change impacts and the programming effort for the scripts that speci-
fy changes. We also quantify the time taken to realize such changes at runtime.

In this paper, we start by providing the motivation, background, and overview of
our approach to realizing an SIMT application as an SO-DSPL (Sections 2, 3, and 4).
Section 5 presents our approach to the identification and management of the runtime
changes and their impacts. In Sections 6 and 7, we discuss our prototype implementa-
tion and evaluation results respectively. Section 8 presents related work, and Section
9 concludes the paper while providing directions for future research.

2 Motivating Scenario and General Requirements

To motivate this research, let us consider a business scenario from SwinRoadside, a
company offering roadside assistance to its customers such as Travel Agencies (TA)
and Truck Sellers (TS) by utilizing external partner services such as Garage Chains
(GC) and Towing Companies (TC). SwinRoadside manages both the roadside assis-
tance business and the supporting IT infrastructure, which adopts the SIMT SaaS
model. The customers use their own variants of this roadside assistance service to
serve their users such as travelers and truck buyers. In this IT-enabled business scena-
rio, we can identify three key requirements for SwinRoadside.

(Req1) Runtime Sharing with Variations. To achieve economies of scale, Swi-
nRoadside expects to share the roadside business process and services across its cus-
tomers (tenants). However, these customers have varying needs. For instance, TA1
needs onsite vehicle repair and accommodation, while TS1 prefers repairing at a ga-
rage. SwinRoadside needs to support sharing with variations at runtime.

194 I. Kumara et al.

(Req2) Managing Runtime Changes to the SaaS Application. The requirements of
the tenants, the SaaS provider, and the external services can change over time. For
instance, six months into operation, TA1 needs support for renting a vehicle instead of
accommodation, as travelers prefer continuing their journey. After one year, Swi-
nRoadside decides to enhance repair notification by supporting the direct notification
of a motorist by the garage. The towing company starts to offer accident towing that
SwinRoadside and some of its customers want to utilize. The roadside application
needs to evolve at runtime to respond to or utilize these changes.

(Req3) Managing Change Impacts. A change in the roadside process can affect the
application as well as individual tenants. For example, modifying the towing capabili-
ty to tow a rented vehicle (for TA1) can affect TS1 that uses it to tow a vehicle to a
garage. The roadside application needs to identify and control these impacts.

3 Software Product Lines and Feature Model

An SPL is a family of software systems developed from a common set of core assets
[8]. Compared to an SPL, a dynamic SPL (DSPL) creates and adapts products at run-
time [9]. The realization of a variant-rich application with the SPL approach can yield
significant improvements in business drivers such as time to market, cost, and produc-
tivity. There are two main ways to implement an SPL: annotative approach and
compositional approach [10]. The former embeds the features of the SPL in the ap-
plication code using explicit annotations (e.g., ‘#ifdef’ and ‘#endif’ statements of C
style) or implicit annotations (e.g., hooks or extension points), supporting fine-grained
variability, but reducing flexibility and maintainability [10]. The latter realizes the
features as modular units and creates products by composing these modular units. It
can potentially reduce the aforementioned drawbacks of the annotative approach [10].

A feature model [11] captures the commonality and variability in a product line at
a higher abstraction level. It supports activities such as asset development and product
creation. Figure 1 shows the cardinality-based feature model [12] for the motivating
example. The Composed of relationship arranges features in a hierarchy. For instance,
the features Accommodation and TechAdvice are the children of ExtraServices. The
feature cardinality specifies how many instances of a feature can be included in a
feature configuration or product. The cardinality of an optional feature is [0-1], and
that of a mandatory feature is [1-1]. The cardinality of a feature group specifies how
many features the group can include. For example, the group cardinality ([1-2]) of
ExtraServices implies that at least one of its two children must be selected. The con-
straints define dependencies among features. For instance, the constraint AtGarage
includes Tow indicates that if AtGarage is selected, Tow must also be selected. By
selecting the features respecting these constraints, a feature configuration is created.

Fig. 1. The feature model for the motivating example

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 195

4 Product Line-Based Realization of SIMT SaaS Applications

Design-Time Representation. In [6], we have introduced a service-oriented DSPL
(SO-DSPL) based approach to realizing service-based SIMT SaaS applications that
supports runtime sharing among products/tenants while allowing product/tenant-
specific variations (Req1). This section provides an overview of our DSPL based
approach, which comprises four layers, as shown in Fig. 2(a).

At the bottom is the service asset layer, including all the partner services used by
the product line or SaaS application. The structure layer provides an abstraction over
service assets and their interactions needed to realize the features of the product line.
The roles are abstract representations of service assets (referred as players), making
roles and players loosely coupled. The contracts capture the allowed interactions
between the players playing roles, and make roles loosely coupled. The role-contract
topology, consisting of roles and contracts, models the structure of the product line. A
role defines its responsibility as a set of tasks that encapsulate the capabilities of a
service. A contract consists of a set of interaction terms, defining the allowed interac-
tions between the relevant roles (players). The input and output of a task are defined
based on interaction terms. Messages flow between services via roles and contracts.

Consider the structure layer for the motivating example (see Fig. 2(a)). The role-
contract topology comprises the roles MM, SC, HC, GC, TC and the contracts among
them. The role GC, an abstract garage service, is realized by the service (player) Fa-
stRepair. The role SC represents the Support Center and is realized by the service
24by7. The contract SC_GC defines the expected interactions between the players
24by7 and FastRepair in playing the roles SC and GC. Lines 13-14 in Fig. 3 show the
task tRepair of the role GC. The task’s input (UsingMsg) uses the interaction iOrder-
Repair from SC. Its output (ResultingMsg) refers to the interactions iPayRepair to SC
and iAckRepair to MM (representing the member, i.e., the user or motorist).

Fig. 2. (a) An overview of the SO-DSPL for the motivating example, (b) part of the organizer

196 I. Kumara et al.

1 ProductDefinition Product1 {
2 CoS "eProduct1Reqd"; CoT "ePaidRepair * ePaidRoomRent * eAckedMM";
3 BehaviorRef bRepairing; BehaviorRef bProvidingAccommodation; ... }
4 Behavior bRepairing {
5 TaskRef GC.tRepair { InitOn "eRepairReqd"; Triggers "eRepaired"; }
6 TaskRef SC.tPayRepair { InitOn "eRepaired"; Triggers "ePaidRepair"; }
7 TaskRef MM.tAckRepair { InitOn "eRepaired"; Triggers "eAckedMM"; } ...}
8 Behavior bProvidingAccommodation { ... }
9 Contract SC_GC { A is SC, B is GC;
10 ITerm iOrderRepair(String:msg) withResponse (String:ack)from AtoB; ITerm iPayRepair(..);..}
11 Contract GC_MM { ITerm iAckRepair(...) ...}
12 Role GC {
13 Task tRepair { UsingMsgs SC_GC.iOrderRepair.Req;
14 ResultingMsgs SC_GC.iPayRepair.Req,GC_MM.iAckRepair.Req; } ...}
15 Role MM { Task tAckRepair{...} ...}, Role SC { Task tPayRepair{...} ... }
16 PlayerBinding gcPlayer "www.fastrepair.com/GCService" is a GC;

Fig. 3. Part of the configuration for the product line depicted in Fig. 2(a)

The behavior layer, consisting of behavior units, encapsulates the control flow and
regulates the message flow between service assets. To provide a feature, a behavior
unit realizes a collaboration among a subset of services by coordinating the tasks of the
roles that these services fulfill. The topology of the collaboration (referred to as local
topology) is defined using references to the tasks of the participating roles. The control
flow is specified as the dependencies between the tasks using their InitOn and Triggers
clauses (pre- and post-conditions) based on events that are generated by interpreting
role-role interactions. For example, consider the behavior unit bRepairing (lines 4-7 in
Fig. 3). It groups and coordinates the tasks of GC.tRepair, SC.tPayRepair, and
MM.tAckRepair. The task GC.tRepair depends on the task that creates the event eRe-
pairReqd. Its completion generates the event eRepaired that triggers (as the precondi-
tions for) the consequent tasks, e.g., SC.tPayRepair and MM.tAckRepair.

At the product layer, a product models a tenant’s product configuration and com-
poses the related behavior units by referring to them (aka, the compositional ap-
proach). Products share behavior units for their commonality and use different beha-
vior units for their variability, i.e., achieving the SIMT model. As depicted in Fig.
2(a), Product1 and Product2 use the behavior unit bRepairing, and one of the behavior
units bTowing and bProvidingAccommodation. A product also defines its start and end
using CoS (Condition of Start) and CoT (Condition of Termination) (line 2 in Fig. 3).

Runtime Representation. The above-mentioned architecture model of the product
line is kept alive at runtime using the models@runtime concept [7]. As such, its ele-
ments can be modified at runtime, e.g., adding roles or contracts. In particular, it has
an organizer role and player (see Fig. 2(a)) through which runtime changes to the
product line can be performed (see Section 5). The organizer role and player are ge-
neric to our approach. Some of their adaptation capabilities that this research uses are
shown as adaptation operations in Fig. 2(b).

5 Runtime Evolution of Product Line-Based SIMT SaaS
Applications

Two of the main activities for software change management are: (1) identifying a
change and its impacts, and (2) designing and implementing the change [5, 13]. In this
paper, we consider these activities at runtime for service-based SIMT SaaS applica-
tions developed using our DSPL based model (Req2 and Req3). Section 5.1 identifies

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 197

the changes to the DSPL and their potential direct impacts. Section 5.2 discusses the
realization and management of the identified changes and impacts in the DSPL.

5.1 Identification of Changes and Impacts

A change request and the current system are key inputs to a change process [5]. In our
approach, external service providers consider changes at the service-level, such as
service addition and removal. The SaaS provider and tenants identify changes at the
feature-level as addition, removal and modification of features. The SaaS provider can
also consider architectural changes, e.g., for the purpose of optimizing the product
line architecture. In general, each layer of the product line can be potentially modified
to realize a change (see Fig. 4).

Service Asset Layer. The changes at the service asset layer include: adding, remov-
ing, replacing, and modifying a service asset, service capability changes, and service
interface changes. The capability changes include adding, removing, and modifying
capabilities and the control relations between them. The interface changes include
adding, removing, and modifying operations and the control relations between them.

A new service asset (to be used) requires a role, a player binding for that role, and
a set of contracts to capture the expected relationships between the new service asset
and the relevant existing service assets in realizing that role. It also introduces new
capabilities. The removal of a used service asset makes the related player binding,
role, and contracts invalid since the player binding refers to a nonexistent service, the
realization of the role is removed, and the contracts represent nonexistent relation-
ships. Moreover, the used capabilities of the deleted service asset are removed. The
replacement of a used or an existing service asset requires updating the related player
binding. Additionally, the mismatch/difference between the new service and the re-
placed one can result in capability and interface changes (see below for their impacts).
A modification to a used service asset can involve capability and interface changes.

A new service capability (to be used) requires a task to represent it. The removal of
a used capability makes the related task invalid since there is no realization for it. The
modifications to used capabilities (e.g., merging capabilities) can result in the same
types of changes to the relevant tasks. Generally, to use or realize a capability, service

Fig. 4. Changeable elements and their potential direct impact relations

198 I. Kumara et al.

assets need to interact with each other, and thus a capability change can also have
impacts on contracts and interaction terms. A change to a control relation between
used capabilities can affect the dependencies among the corresponding tasks captured
in relevant behavior units. A capability change can also involve an interface change.

An interface change related to an unused capability does not affect the product line.
The impacts of an interface change related to a used capability (unchanged) are un-
wanted by the product line, and thus should be controlled (see Section 5.2). An inter-
face change that alters a used capability has the same impacts of a capability change.

Structure Layer. The changes at the structure layer include adding, removing, and
modifying the role-contract topology and the player bindings. The modifications to a
role-contract topology include adding, removing, and modifying roles and contracts.
Altering a role involves adding, removing, and modifying tasks. Altering a contract
involves adding, removing, and modifying interaction terms. The modifications to a
player binding include updating its endpoint and role reference.

The addition and removal of the role-contract topology implies the initiation and
termination of the system. A new role may need a set of tasks, a player binding, and
the contracts with the other roles that the new role should interact. The removal of a
role deletes its tasks, and makes its contracts and the references to the role in behavior
units and player bindings invalid. A new contract between two roles relates the two
roles, and may require a set of interaction terms to be used by the tasks of the two
roles. A deletion of a contract removes its interaction terms and the association be-
tween the related roles, and makes the references to it by the related tasks invalid.

A new task may use a subset of existing interaction terms, and require the references
to it in the behavior units that need to use it. If an interaction term used in a task is not
shared by other tasks, the removal of the task makes the interaction term isolated. A
deleted task also makes the reference to it in the related behavior units invalid.

A new interaction term may require adding the references to it in the tasks that
need to use it. A deleted interaction term makes the references to it in the related tasks
invalid. Moreover, the changes to interaction terms that alter the events they create
can affect the representations of the dependencies between tasks (InitOn/Triggers of a
task reference). A new incoming interaction of a task may require adding the relevant
events to the InitOn of the related task references. A removed incoming interaction
makes the references to the related events invalid. The similar impacts on the Triggers
of a task reference can occur due to a change to an outgoing interaction of a task.

A new player binding for a role makes the role implemented by a player. A deleted
player binding removes the realization for the corresponding role.

Behavior Layer. The changes at the behavior layer include creating, deleting, and
modifying the feature-based decomposition of the behavior layer. The alterations to
this decomposition involve adding, removing, and modifying behavior units. The
modifications to a behavior unit involve adding, removing, and modifying its task
references. The alterations to a task reference include adding, removing, and updating
its InitOn and Triggers clauses to create and change the dependencies between tasks.

The creation and deletion of the feature-based decomposition of the behavior layer
implies the initiation and termination of the system. A new behavior unit requires the
references to it in the products that need to use it. A deleted behavior unit makes the
references to it in the relevant products invalid. The changes to the task references and

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 199

task dependencies captured in a behavior unit can alter the service collaboration (the
feature implementation) realized by the behavior unit. This in turn can modify the
feature (an end-user experienced functionality/behavior) offered by the behavior unit.

A change to a feature implementation can introduce unintended behaviors to one or
more different features as well as to a subset of the products that use the feature. As
an example for the first case, consider that the feature AtGarage uses the feature Tow
to carry a vehicle to a garage (used by Product2), and the new feature VehicleHire
also needs the feature Tow to tow a rented vehicle (to be used by Product1). Changing
the collaboration related to the feature Tow can affect the feature AtGarage. As an
example for the second case, suppose that Product2 needs a periodic repair notifica-
tion. Modifying the collaboration for the shared feature Repair for this purpose adds
an unwanted behavior to Product1. These effects need to be reduced (see Section 5.2).

Product Layer. The changes at the product layer include: adding, removing, and
modifying products. The modifications to a product involve adding and removing the
references to behavior units, and updating its CoT and CoS. Since the events used in
the CoT and CoS of a product depend on the behavior units that the product uses, the
inclusion and exclusion of a behavior unit in the product as well as the change to a
behavior unit used by the product can affect the CoT and CoS of the product.

5.2 Realization of Changes and Impacts

In this section, we describe how the identified changes and impacts can be realized in
the SO-DSPL, and how the change impacts are managed and realized.

Solutions for Changes. The change primitives supported by the organizer (see Fig. 2
(b)) are used to perform the changes to the runtime model of the product line.

Using the operations [add/remove/update][Role/Contract](), the role-contract to-
pology can be altered. The methods [add/remove/update]PlayerBinding() can be used
to realize player binding changes. To change tasks, interaction terms, and their rela-
tions, the operations [add/remove/update][Task/Interaction]() can be used.

The operations [add/remove]Behavior() need to be used to add or remove a beha-
vior unit. By changing the task references of a behavior unit using the methods [add/
remove]TaskRef(), the local topology of a collaboration captured in a behavior unit
can be modified. The control flow can be altered by modifying dependencies among
tasks via changing their InitOn and Triggers using the operation updateTaskRef(). For
example, to ensure a repair notification (MM.tAckRepair) follows a repair payment
(SC.tPayRepair), the InitOn of the taskref MM.tAckRepair in the behavior unit bRe-
pairing (Fig. 3) can be replaced by the Triggers of SC.tPayRepair. Figure 5 shows
this variation with an EPC (event-driven-process chain) diagram [14].

Fig. 5. Changing the control flow via altering task dependences (a) initial, (b) modified

200 I. Kumara et al.

A product can be created and removed using the methods [add/remove]Product().
The operation updateProduct() can be used to alter the CoS and CoT of a product. A
created product can be reconfigured using the operations [add/remove]BehaviorRef().

Solutions for Impacts. The general approach to realize an impact of a change is as
follows. If a change E causes a change F as a direct impact, then to propagate this
impact, the techniques for realizing the change F need to be used (see above). For
example, the removal of a role requires the removal of its contracts since there are
invalid, and the operation removeContract() can be used to propagate this effect. Note
that we assume that the initial change made by a developer is an intended one. Due to
limited space, we do not describe each propagation link using the general approach.

 However, there are two cases that require specific techniques to control the propa-
gation of impacts. First, the service interface changes related to a used capability
(unchanged) should not be propagated to the product line. Such changes include: op-
eration signature changes, and operation granularity (e.g., split) and transition (control
relation) changes. By changing the transformations between role-role interactions and
role-player interactions, the propagation of the operation signature changes can be
avoided. To cope with the operation granularity and transition changes, sub-service
composites that act as adapters need to be created. A sub-composite (an adapter) for
handling the interface changes of the player C of the role B becomes the new player
(the realization) for the role B. In [15], different service composite-based adapters are
presented, and thus we will not further discuss these issues in this paper.

Second, the feature changes that add unwanted behaviors to one or more different
features or to a subset of products need to be controlled. For this purpose, we create
variations of the affected feature implementations (collaborations). Such variations
are captured in the behavior layer by specializing the related behavior units. Note that
a variation in a collaboration may require structural changes, e.g., new tasks. A beha-
vior unit can be specialized to create new child behavior units by adding new ele-
ments or overriding its existing elements. The parent represents common behaviors,
and the children represent variations. For instance, to support towing a rented vehicle,
the behavior unit bTowing can be extended to create bTowingRentedVehicle (Fig. 6).
The task VC.tGetLocation is created (VC - vehicle renting company), and a reference
to it is added to bTowingRentedVehicle. The InitOn of TC.tTow is overridden to en-
sure that the towing starts after VC.tGetLocation gave the destination. Now, Product1
uses bTowingRentedVehicle, while Product2 continues using bTowing (no impact).

Note that, due to limited space, the use of the proposed techniques to solve feature
implementation dependency types that can make products invalid, e.g., operational
dependency [16] and feature interaction [17] is not discussed. To address these issues,
the works in [16, 17] used (class) inheritance and coordination, which we also adopt.

Fig. 6. Extending the collaboration for the feature Tow for the feature VehicleHire

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 201

Realization of Changes and Impacts to the Running Application. Upon receiving
a change request, the software engineer identifies the initial changes to realize the
change request as well as the further impacts of each change. The solutions for the
identified changes and impacts are designed and then specified in a form of a change
script. A unit in such a script is a change command, which comprises a name and a set
of parameters as name-value pairs. For example, addBehavior is a command name,
and bId =”bRentingVehicle“ is a parameter (line 18 in Fig. 7). These change com-
mands are the representations of the change primitives of the organizer at the script-
level. The changes defined in a change script can be applied to the running system
using the operation executeScript() of the organizer role. The organizer creates the
executable change commands (in Java) from a change script, and applies those com-
mands to the runtime model of the system created using the models@runtime concept.

An Example. Bellow, we present the process of designing a change script using an
example: add feature VehicleHire whose implementation creates a new collaboration
among a subset of services to implement the feature VehicleHire for use in Product1.

1. Identifying and defining role-contract topology and service changes: A developer
identifies the differences between the expected topology and the initial one, and
specifies the differences in a change script. For instance, the collaboration for Ve-
hicleHire requires a topology consisting of the roles MM, VC (vehicle renting
company) and SC, and contracts SC_MM, SC_VC and VC_MM. The roles MM
and SC, and contract SC_MM are in the initial system so the required changes
concern the role VC, and contracts SC_VC and VC_MM. The player TomAuto is
required to play role VC. Lines 3, 8, and 15 in Fig. 7 define part of these changes.

2. Identifying and defining role-role interaction changes: Next, a developer designs
the changes to interaction terms. In our example, we add the interaction terms iOr-
derVehicle and iPayVehicleFare to the contract SC_VC, and the interaction term
iAckVehicleBooking to the contract VC_MM. Lines 9-10 and 12 in Fig. 7 specify
part of these changes.

Fig. 7. Part of the change script for adding the feature VehicleHire

202 I. Kumara et al.

3. Identifying and defining task definition changes: Next, a developer identifies and
designs the changes to the task definitions in the related roles. In our example, we
create the definitions for the tasks VC.tRentVehicle, SC.tPayVehicleFare, and
MM.tAckVehicleBooking. Lines 4-5 in Fig. 7 define part of the task tRentVehicle.

4. Identifying and defining behavior unit changes: In the next step, the changes to the
local topologies, control flow, and behavior layer decomposition are designed. In
our example, the behavior unit bRentingVehicle needs to be created with the refer-
ences to the above-mentioned tasks. Lines 18-20 specify part of these changes.

5. Identifying and defining product changes: Next, a developer reconfigures the af-
fected products. In our example, Product1 needs the feature VehicleHire. Thus, a
reference to the behavior unit bRentingVehicle is added to it (line 23 in Fig. 7).

6 Prototype Implementation

To realize SO-DSPL based SaaS applications in our approach, we adopt and further
improve the ROAD/Serendip framework [18, 19], which supports development and
management of adaptive service orchestrations. In doing so, we treat the SO-DSPL
realization for an SIMT SaaS application as an adaptive service orchestration. We
presented this implementation in [6] in detail. For this work, we have used this proto-
type to analyze the changes and impacts presented in Section 5 and to implement the
proposed solutions. We have also formulated and implemented the change commands
required for this work, which are generic to our approach and independent from a
particular case study.

We provide Eclipse plugins to specify (the change script editor) and perform (the
adaptation tool) changes discussed in Section 5. The former can highlight and detect
errors of the syntax of change commands. The latter allows executing a change script,
shows the status of the execution, and if it fails, the details required to correct and
rerun it. The organizer role is exposed as a Web service to allow providing change
scripts remotely. We adopt the Serendip language to specify the SO-DSPL architec-
ture and the evolutionary changes. Figure 8 shows a screenshot of the adaptation tool,
executing the change script for removing the feature Accommodation. The snippets of
the change script and the logs of the execution of the script are shown.

Fig. 8. A screenshot of the adaptation tool running the script for removing Accommodation

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 203

7 Evaluation

We demonstrate our approach’s feasibility by realizing 10 SPL evolution scenarios
(adapted based on [20, 21]) (Table 1). For each scenario, we create a change script
capturing the difference between the initial system configuration and the expected
configuration after an evolution. A change script is enacted at runtime on the system
with the initial configuration. To validate an evolution, we first analyze logs for all
the expected changes. Second, we compare the responses and logs for requests to the
products after evolution with those of the system having the expected system configu-
ration (manually created). The case study resources are in http://tinyurl.com/d5xlaom.

Change Impact Analysis. We assessed the effectiveness of our support for evolution
by doing a change impact analysis. The complexity of each scenario was intentionally
kept low to make it easier to identify change impacts. Due to limited space, we
present the results for three scenarios related to addition, removal, and modification of
a feature. The results for other scenarios are in the case study resources (see above).

To add the feature BankTransfer (CS3), we create a collaboration consists of the
roles BK (Bank), AF (AccountingFirm), and MM. The last two roles and the contract
between them (AF_MM) are part of the initial system. Two new contracts BK_AF
and BK_MM are created. The tasks and interactions required to implement the bank
transfer functionality are added/modified. A new player for realizing the role BK, and
the player-binding is added. Finally, the behavior unit bPayingByBankTransfer, to
capture this collaboration is created, and the related products are updated to use it.

The removal of the feature BankTransfer (CS6) is realized by deleting the elements
of the collaboration for that feature, which are the same elements introduced in CS3.

Scenario CS10 is implemented by removing the interaction term iNotifyCompletion
from the contract SC_MM, and adding a new contract GC_MM with the same inte-
raction term. Additionally, the tasks GC.tOrderRepair and SC.tAckRepair are updated
to reflect the interaction term changes, and the new task MM.AckRepair is added.
These modifications are confined to the collaboration for the feature Repair.

As per the above analysis, units of change at the feature-level and the service-level
are confined to their explicit representations in the SO-DSPL architecture, i.e., colla-
borations and abstract representations of services, their interactions and the control
flow among them. This is a key requirement to support effective evolution [22].

Table 1. Change scenarios for the roadside assistance case study

No: Type of Change Example
CS1 Inclusion of a mandatory feature Supporting the reimbursement of costs met by a member
CS2 Inclusion of an optional feature Supporting renting a vehicle as an alternative transport
CS3 Inclusion of an alternative feature Supporting paying by credit card or bank transfer
CS4 Mandatory to optional conversion Allow using towing or expert advice without repairing
CS5 Removal of an optional feature Discontinuing providing accommodations
CS6 Removal of an alternative feature Dropping the bank transfer payment option
CS7 Splitting one feature into two Separating legal assistance from the accident towing
CS8 Merging two features Merging technical advice and vehicle test reports
CS9 Feature implementation changes Extending fuel delivery by using an external service center
CS10 Feature implementation changes Direct notification by a garage instead via a support center

204 I. Kumara et al.

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Lines of Code (LoC)

Runtime Adaptation
Time(Millisecond)

Fig. 9. Runtime adaptation realization time and change script size for change scenarios

Programmer Effort. We have used lines of code (LOC) as the metric to measure the
size of a change script to approximate the effort for developing the change scripts for
the case study (similar to [23]). We ignored blank lines and comments. The length of
a line is approximately 120 characters. Figure 9 shows the sizes of the change scripts.

Runtime Adaptation Realization Time (RART). We have measured the runtime
adaptation realization time (RART) for each scenario. It is the time difference be-
tween the system receiving a script and its being ready for use after changes. The
framework was run on an Intel i5-2400 CPU, 3.10GHz with 3.23 GB of RAM and
Windows XP. As shown in Fig. 9, the RART is within 6-110 milliseconds. We be-
lieve that this is reasonable. In addition, we observed a correlation between the RART
and the size (LoC) of a change script, which approximately corresponds to the num-
ber of atomic adaptation steps included in the script. We also observed that the time
taken for the removal of a feature (CS3) is low compared to its addition (CS6).

8 Related Work

We discuss below the existing research efforts from the perspectives of (D)SPLs and
SaaS applications that consider service-based systems and support runtime changes.

In general, the runtime changes to a product line fall into two categories: adapta-
tion of a product, and evolution of the product line [9]. Most existing works studied
only the first issue [9]. We also considered it in [6] and thus focus on the second
issue in this paper. In a product line, the problem space (e.g., the feature model), the
solution space, and the mapping between them can evolve [20]. Within the scope of
this paper, we consider the solution space for an SO-DSPL. Among the works focused
on the solution space, Morin et al. [7] and Baresi et al. [21] supported modifying a
business process at a set of predefined variation points to create products. They used
SCA (Service Component Architecture) and BPEL (Business Process Execution Lan-
guage) to realize their SO-DSPLs, and AOP (Aspect-Oriented Programming) to real-
ize changes. Bosch and Capilla [24] supported, in a smart home SPL, feature-level
changes by mapping a feature to a device that offers a particular service.

Studies on runtime changes to SaaS applications considered issues such as tenant
on-boarding [2] and tenant-specific variants [3, 4]. Ju et al. [2] proposed a formal
model to assess the cost of tenant on-boarding. In the context of component-based
systems, Truyen et al. [3] proposed the tenant-aware dependency injection to bind
tenant-specific variants to the variation points of the application’ component model.
Moens et al. [4] proposed a feature-model based development of services where a
one-to-one mapping between a feature and a service is used. These services are dep-
loyed in a cloud environment and composed based on the selected features.

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 205

In analyzing the above works, the studies that allow modifying the product line or

SaaS application at the predefined variation points did not consider the changes to the
base model and its variation points, and the studies that used a compositional ap-
proach assumed a feature as a component service. None of them considers change
impacts on variants. The underlying technologies used (i.e., SCA and BPEL) do not
sufficiently represent the structure and behavior of services or modular service colla-
borations, and thus offer little support to explicitly represent units of change at the
feature-level or the service-level. Moreover, the works in DSPLs usually create physi-
cally separated variants, which do not meet the requirements of the SIMT model.

In comparison with the above approaches (Table 2), we use a compositional tech-
nique to realize the variability by treating collaboration as the unit of composition. A
collaboration provides a better abstraction to modularize a feature compared to a ser-
vice or an arbitrary process fragment [6]. Moreover, we consider the runtime changes
to an SO-DSPL that supports runtime sharing, and the management of the impacts of
those changes. Our product line architecture provides an abstraction over the service
asset space and explicitly represents features as modular units.

9 Conclusions and Future Work

We have addressed the runtime evolution of single-instance multi-tenant SaaS applica-
tions that are realized based on SO-DSPLs and support runtime sharing and tenant-
specific variations. We have identified different types of changes to the SaaS application
and their potential impacts, and proposed techniques to realize those changes and im-
pacts at our SO-DSPL based SaaS applications. In particular, we have presented solu-
tions to control the impacts of a change on tenants (products). A change is realized on
the runtime model of the product line created based on the models@runtime concept.
We have evaluated our approach with a case study and related analysis concerning
change impacts, effort of developing change scripts, and time to realize a runtime
change. The results have shown that our approach is feasible and beneficial.

In future, we plan to extend FeatureIDE (http://fosd.de/fide) to provide direct sup-
port for feature-based evolution, to study change impacts on ongoing transactions, and
to explore the performance variability in a service-based SaaS application.

Acknowledgements. This research was partly supported by the Smart Services Coop-
erative Research Centre (CRC) through the Australian Government’s CRC Program
(Department of Industry, Innovation, Science, Research & Tertiary Education).

Table 2. A summary of the comparative analysis of the related works

Criterion \ Approach [7] [21] [24] [3] [4] we
Req1 Runtime Sharing - - - + - +

Variations + + + + + +
Req2 : Managing Changes ~ ~ ~ - - +
Req3 : Managing Change Impacts - - - - - +
Explicit Representations of Units of Change ~ ~ - - - +

+ Supported

- Not

 Supported

~ Limited

 Support

206 I. Kumara et al.

References

1. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail, MSDN Li-
brary. Microsoft Corporation (2006)

2. Ju, L., Sengupta, B., Roychoudhury, A.: Tenant Onboarding in Evolving Multi-tenant
Software-as-a-Service Systems. In: ICWS, pp. 415–422 (2012)

3. Truyen, E., et al.: Context-oriented programming for customizable SaaS applications. In:
SAC, pp. 418–425 (2012)

4. Moens, H., et al.: Developing and managing customizable Software as a Service using fea-
ture model conversion. In: NOMS, pp. 1295–1302 (2012)

5. Bohner, S.A.: Impact analysis in the software change process: a year 2000 perspective. In:
ICSM, pp. 42–51 (1996)

6. Kumara, I., et al.: Sharing with a Difference: Realizing Service-based SaaS Applications
with Runtime Sharing and Variation in Dynamic Software Product Lines. In: SCC, pp.
567–574 (2013)

7. Morin, B., et al.: Models@ Runtime to Support Dynamic Adaptation. Computer 42, 44–51
(2009)

8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Wesley (2003)
9. Bencomo, N., Hallsteinsen, S., Almeida, E.S.: A View of the Dynamic Software Product

Line Landscape. Computer 45, 36–41 (2012)
10. Kastner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In: ICSE,

pp. 311–320 (2008)
11. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE Soft-

ware 19, 58–65 (2002)
12. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints: a

progress report. In: International Workshop on Software Factories, pp. 16–20 (2005)
13. Han, J.: Supporting impact analysis and change propagation in software engineering envi-

ronments. In: STEP, pp. 172–182 (1997)
14. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling using Event-Driven Process

Chains. In: Process-Aware Information Systems, pp. 119–145 (2005)
15. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing Adapters

for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

16. Lee, K., Kang, K.C.: Feature Dependency Analysis for Product Line Component Design.
In: Dannenberg, R.B., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107,
pp. 69–85. Springer, Heidelberg (2004)

17. Weiss, M., Esfandiari, B.: On feature interactions among Web services. In: ICWS, pp. 88–
95 (2004)

18. Colman, A., Han, J.: Using role-based coordination to achieve software adaptability.
Science of Computer Programming 64, 223–245 (2007)

19. Kapuruge, M.K.: Orchestration as organization. PhD Thesis. Swinburne University (2013)
20. Seidl, C., Heidenreich, F., Aßmann, U.: Co-evolution of models and feature mapping in

software product lines. In: SPLC, pp. 76–85 (2012)
21. Baresi, L., Guinea, S., Pasquale, L.: Service-Oriented Dynamic Software Product Lines.

Computer 45, 42–48 (2012)
22. Tarr, P., et al.: N degrees of separation: multi-dimensional separation of concerns. In:

ICSE, pp. 107–119 (1999)
23. Hihn, J., Habib-agahi, H.: Cost estimation of software intensive projects: A survey of cur-

rent practices. In: ICSE, pp. 276–287 (1991)
24. Bosch, J., Capilla, R.: Dynamic Variability in Software-Intensive Embedded System Fami-

lies. Computer 45, 28–35 (2012)

Critical Path-Based Iterative Heuristic

for Workflow Scheduling in Utility and Cloud
Computing

Zhicheng Cai1, Xiaoping Li1, and Jatinder N.D. Gupta2

1 Computer Science and Engineering, Southeast University, Nanjing, China
2 College of Business Administration, University of Alabama in Huntsville,

Huntsville, USA

Abstract. This paper considers the workflow scheduling problem in util-
ity and cloud computing. It deals with the allocation of tasks to suitable
resources so as tominimize total rental cost of all resources while maintain-
ing the precedence constraints on onehand andmeetingworkflowdeadlines
on the other. AMixed Integer programming (MILP)model is developed to
solve small-size problem instances. In view of its NP-hard nature, a Critical
Path-based Iterative (CPI) heuristic is developed to find approximate so-
lutions to large-size problem instances where themultiple complete critical
paths are iteratively constructed by Dynamic Programming according to
the service assignments for scheduled activities and the longest (cheapest)
services for the unscheduled ones. Each critical path optimization problem
is relaxed to aMulti-stageDecision Process (MDP) problem and optimized
by the proposed dynamic programming based Pareto method. The results
of the scheduled critical path are utilized to construct the next new critical
path. The iterative process stops as soon as the total duration of the newly
found critical path is no more than the deadline of all tasks in the work-
flow. Extensive experimental results show that the proposed CPI heuristic
outperforms the existing state-of-the-art algorithms on most problem in-
stances. For example, comparedwith an existingPCP (partial critical path
based) algorithm, the proposed CPI heuristic achieves a 20.7% decrease in
the average normalized resource renting cost for instances with 1,000 ac-
tivities.

Keywords: Cloud computing, workflow scheduling, utility computing,
critical path, dynamic programming, multi-stage decision process.

1 Introduction

Cloud computing is a new economic-based computational resource provisioning
paradigm, in which customers can outsource their computation and storage tasks
to Cloud providers and pay only for resources used. At present, only simple pric-
ing models (posted prices) are applied in cloud computing and resources for a
task are usually from a single cloud provider. However, there is a trend towards
the use of complex pricing models (such as spot-pricing) and a federated archi-
tecture (which spans both Cloud and Grid providers) [1]. That is to say, a Utility

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 207–221, 2013.
© Springer-Verlag Berlin Heidelberg 2013

208 Z. Cai, X. Li, and J.N.D. Gupta

IaaS Provider 1

An workflow
application instance

a VM instance

Services (different types and numbers
of VM instances)

Workflow Scheduling
(Service Encapsulation)

A service

Virtual machines

Minimum resource
renting Cost

A User

Grid Provider 1 IaaS Provider 2

Fig. 1. Architecture of the Utility Computing Environments

Computing based global market (such as Federated Cloud) containing different
types of computing and storage resources with different prices is established. For
example only in the commercial Amazon Cloud, there are many types of Virtual
Machines (VM), each of which provides different levels of services (number of
virtual cores, CPU frequency, memory size and I/O bandwidth) with various
prices per hour.

Many complex applications such as commercial data analysis, scientific earth-
quake prediction, weather forecast, are usually modeled as workflow instances
and executed on Utility Computing based platforms. Workflows are always de-
noted by Directed Acyclic Graphs (DAG), in which nodes represent activities
and arcs represent precedence relations between activities. Most workflow appli-
cations have deadlines. It is desirable to select appropriate services (appropriate
type and right number of VM instances) for each activity to get a balance be-
tween the task execution time and resource costs. For DAG based task schedul-
ing, there have been many related works such as in homogeneous [2] and hetero-
geneous distributed systems [3]. They usually try to maximize the utilization of
fixed number of resources from the perspective of the service providers. In this
paper, we consider the minimization of resource renting cost over unbounded
dynamic resources (such as Clouds) for executing a workflow with a given due
date from the perspective of customers. For customer-oriented resource renting
cost minimization, Byun et al. [4] allocates fixed number of resources to the
whole lifespan of the workflow. But in this paper, resources can be acquired at
any time and released when they are idle, saving renting cost.

Exact methods, heuristics, and meta-heuristics are commonly used for the
DAG-based scheduling problems. Since the workflow scheduling considered in
this paper is known to be NP-hard [5], exponential amount of computation
time is required for exact algorithms, such as dynamic programming, Branch
and Bound, and Benders Decomposition. The three available heuristics for these

Workflow Scheduling in Cloud Computing 209

Fig. 2. An Illustrative Example for the Workflow

problems, MDP [6], DET [7], and PCP [8] are single or partial critical-path based.
Meta-heuristics, such as [9,10,11] are time-consuming for complex applications
(such as workflows with thousands of activities).

DET [7] and PCP [8] schedule activities of a workflow by partitioning them
into different types of critical paths and assigning a priority to each critical
path. The procedures used to assign services to activities and to schedule (par-
tial) critical paths immensely impact the performance of a scheduling algorithm.
Therefore, in this paper, CPI (Critical Path based Iterative) heuristic is devel-
oped. CPI heuristic generates complete critical paths as opposed to the partial
ones produced by PCP. The proposed CPI heuristic iteratively generates multi-
ple critical paths, which is distinct from the single critical path way adopted in
DET. All unscheduled activities are assigned to the longest services. Assignment
of all scheduled activities are kept unchanged to generate new complete critical
paths. As soon as a new critical path is found, its cost is minimized. In order to
simplify the optimization process, the critical path optimization problem is re-
laxed to the Multi-stage Decision Process (MDP) problem, which can be solved
by a dynamic programming algorithm in pseudo-polynomial time.

The rest of the paper is organized as follows. Section 2 describes the workflow
scheduling problem in detail and constructs its mathematical model. Section 3
presents the proposed CPI, the complexity analysis and an illustrative example.
Experimental results are given in Section 4, followed by conclusions in Section 5.

2 Problem Description

Workflows in Utility and Cloud Computing environments can be depicted by a
Directed Acyclic Graph (DAG),G = {V,E} where V = {V1, V2, . . . , VN} is the
set of activities of the workflow, E = {(i, j)|i < j} is the precedence constraints
of activities, which indicates that Vj cannot start until Vi completes, Pi and
£i represents the immediate predecessor set and the immediate successor set of
Vi, and path(i, j) = 1 means that there exists a path from Vi to Vj , otherwise,
path(i, j) = 0. Figure 2 depicts a workflow example with five activities (V1 and
V7 are dummy source and sink nodes).

As shown in Figure 1, different types of Virtual Machines (with distinct price
per hour) are provided by different IaaS or even Grid providers. For every ac-
tivity, there are several candidate services, each of which has different types and
numbers of VMs with distinct execution times and costs. The candidate services

210 Z. Cai, X. Li, and J.N.D. Gupta

Table 1. Service Pool of the Illustrative Example

Services Configurations Execution time Cost

S1
2 1 Small VM 24 hours $1.44

S2
2 1 Medium VM 15 hours $1.8

S3
2 1 Large VM 8 hours $1.92

S4
2 1 Extra Large VM 6 hours $2.88

S1
3 1 Extra Large VM 18 hours $8.6

S2
3 2 Extra Large VM, 1 Large VM 9 hours $10.8

S3
3 4 Extra Large VM 6 hours $11.52

S1
4 1 Large VM 30 hours $7.2

S2
4 1 Extra Large VM 20 hours $9.6

S3
4 1 Extra Large VM, 1 Medium VM 18 hours $10.8

S1
5 1 Small VM 35 hours $2.1

S2
5 2 Small VM 20 hours $2.4

S3
5 4 Small VM 13 hours $3.12

S1
6 1 Medium VM 25 hours $3

S2
6 2 Medium VM 20 hours $4.8

for activity Vi form the service pool Si = {S1
i , S

2
i , · · · , Smi

i }, mi = |Si|. And,
the service is denoted as Sk

i = (dki , c
k
i), in which dki means the execution time

(contains VM set up time and data transfer time) and cki represents the resource
renting cost. Shorter activity execution time needs higher resource renting cost.
The cost function for the activity execution time may be concave, convex and
hybrid. For example, the candidate services for each activity of the workflow in
Figure 2 are illustrated in Table 1.

Appropriate services must be selected for each activity to make a balance
between execution time and cost. The binary variable χk

i ∈ {0, 1}, 1 ≤ i ≤
N, 1 ≤ k ≤ mi is used to demonstrate whether the service Sk

i is chosen for
Vi. Each activity is allocated to the most appropriate service to minimize the
total resource renting cost, under the constraint of a given deadline D, i.e., the
objective of the problem is to find the activity-service mapping for all activities
and services to minimize the total cost within deadline D. This problem can be
modeled as a mixed integer linear programming (MILP) problem as follows.

Min
∑

i∈V

∑mi
k=1 c

k
i χ

k
i (1)

S.t.
∑mi

k=1 χ
k
i = 1, 1 ≤ i ≤ N (2)

fi ≤ fj −∑mi
k=1 d

k
jχ

k
j , ∀(i, j) ∈ E (3)

f1 ≥ ∑m1
k=1 d

k
1χ

k
1 (4)

χk
i ∈ {0, 1}, 1 ≤ k ≤ mi (5)

dki ∈ I+, 1 ≤ i ≤ N, 1 ≤ k ≤ mi (6)

Max{fi} ≤ D, 1 ≤ i ≤ N (7)

The objective function (1) is to minimize the total cost. One and only one
service (mode) is assigned to each activity according to constraint (2). Constraint

Workflow Scheduling in Cloud Computing 211

(3) and (4) guarantee the precedence constraints. Constraint (5) denotes a binary
decision variable. The execution times of activities are integers according to
constraint (6). The deadline is met according to the constraint (7).

3 Proposed Heuristics

Though critical paths are commonly calculated in DAG-based scheduling meth-
ods, only single critical path or partial critical paths are utilized to distinguish
critical activities from the activity set. For the grid workflow scheduling consid-
ered by Yuan et al. [7], the criticality of non-critical activities is measured by
activity floats after the activities on the single critical path have been scheduled.
For the workflow scheduling in IaaS Clouds and Utility Grids considered by Abr-
ishami et al. [12,8], partial critical paths are obtained by setting all unscheduled
activities with the shortest services. Path structure information is not fully used
in these two methods. In this paper, a novel critical path construction method
and a new critical path optimizing method are investigated.

3.1 Multiple Complete Critical Path Construction

Let F and U denote the set of scheduled and unscheduled activities respectively.
Q[j] denotes the index of the selected services for scheduled activity Vj in par-
tial solution Q and EFTL(Vi) denotes the earliest finish time of the activity
Vi, calculated by assigning all activities in U to the services with the longest
execution times while keeping the scheduled activities in F unchanged. If the
activity Vi has been scheduled, i.e., Vi ∈ F , the execution time of the Vi remains

d
Q[i]

i , the same as the assigned service in Q. Otherwise, the execution time of
Vi is set as maxmi

k=1{dki }. EFTL(Vi) for each activity Vi is calculated from V1

to VN sequentially according to the above procedure. Initially, the sink activity
VN is chosen as the last node of the critical path (CP) and set as the current
activity. The activity with the largest EFTL among immediate predecessors of
the current activity, denoted as Vb, is inserted at the head of CP . Vb is set as
the current activity and the activity with the largest EFTL among its immediate
predecessors is denoted as Vb and inserted at the head of CP . The procedure
is repeated until V1 is inserted into CP and the final CP is constructed. The
construction process is formally described in Algorithm 1.

Multiple complete critical paths are generated iteratively during the whole
optimization process. To ensure that the whole workflow can finish before D,
the latest finish time LFT S(Vi) of Vi is calculated by keeping the scheduled
activities unchanged and assigning the unscheduled activities to their short-

est execution times, i.e., minVj∈£i{{LFT S(Vj) + d
Q[j]

j , Vj ∈ F}, {LFT S(Vj) +

min
mj

k=1{dkj }, Vj ∈ U}}. The solution of the workflow is feasible if and only if the

finish time of every Vi is not greater than LFT S(Vi). Then, the length of CP

is �LCP =
∑

Vi∈F∩CP{d
Q[i]

i } +
∑

Vi∈U∩CP {max1≤k≤mi{dki }}. If �LCP is less than
D, the current solution is cheapest because all unscheduled activities take their

212 Z. Cai, X. Li, and J.N.D. Gupta

Algorithm 1. CP Construction using Longest services

1: EFTL(V1) ← 0,CP ← (VN),Vb ← VN .
2: for j = 2 to N do
3: if Vj ∈ F then

4: EFTL(Vj) ← max
Vi∈Pj

{EFTL(Vi)}+ d
Q[j]

j .

5: else
6: EFTL(Vj) ← max

Vi∈Pj

{EFTL(Vi)}+
mj
max
k=1

{dmj

j }.
7: while (Vb! = V1) do
8: Vb ← arg max

Vk∈Pc

{EFTL(Vk)}}.
9: Insert Vb at the head of CP .
10: return CP .

cheapest services. The whole algorithm terminates. Otherwise, some activities on
CP should be assigned to shorter execution times at higher cost services, which
may result in new critical paths. In other words, unscheduled activities onCP
are reassigned to services in order to minimize the total cost CCP of CP while all
activities in V meet their LFT S constraints, i.e, all unscheduled activities on CP
are reassigned to the most appropriate services to minimize CCP . The details
of the critical path optimization process is described in Section 3.2 below. The
critical path of the workflow would be changed and a new one could be obtained
by Algorithm 1 again. The process is iterated until the length of the newly found
critical path is not greater than D.

3.2 Critical Path Optimization

The model of the critical path optimization problem is as follows:

Min CCP =
∑

i∈CP

∑mi
k=1 c

k
i χ

k
i (8)

S.t.
∑mi

k=1 χ
k
i = 1,∀Vi ∈ U (9)

χk
i ∈ {0, 1}, ∀Vi ∈ U, 1 ≤ k ≤ mi (10)

χk
i = yk

i , i ∈ F , 1 ≤ k ≤ mi (11)

Equations (3),(4),(6),(7)

where yki = 1 if activity Vi ∈ F and 0 otherwise.
The objective (8) is to minimize the total cost CCP of the critical pathCP ,

Constraints (9), and (10) are similar to the constraints (2) and (5) of the original
problem respectively. Constraint (11) means that the scheduled activities keep
their services assignments unchanged.

In this paper, a Dynamic Programming based Pareto Method (DPPM) is
proposed to simplify the critical path optimization problem. For each activity
Vi, EFT S(Vi) is the earliest finish time in terms of the scheduled activities, i.e.,

execution time of the scheduled activities remain d
Q[i]

i . At first, the critical path
optimizing problem is relaxed to a Multi-stage Decision Process (MDP) problem

Workflow Scheduling in Cloud Computing 213

Algorithm 2. Dynamic Programming forMDPi

1: Initialize the PS1 ← {< 0, 0, 0 >},i ← 1;
2: for i=1 to |CP | do
3: for each s ∈ PSi do
4: for k=1 to |Si+1| do
5: Generate a solution s

′
for SSPi+1, C(s

′
) ← C(s) + cki+1;

6: T (s
′
) ← T (s) + dki+1,s

′ ←< T (s
′
), C(s

′
), I(1,i)(s), k >;

7: PSi+1 ← PSi+1

⋃{s′};
8: Update PSi+1, remove solutions which are dominated by others or the finish

time is already greater than D;
9: return PS|CP |;

by temporarily deleting activities and precedence constraints not on the critical
pathCP Then, the MDP problem can be formulated as follows:

Min [
∑

i∈CP

∑mi
k=1 c

k
i χ

k
i ,
∑

i∈CP

∑mi
k=1 d

k
i χ

k
i]

T (12)

S.t.
∑mi

k=1 χ
k
i = 1, ∀Vi ∈ U ∩ CP (13)

fi ≤ fj −∑
1≤k≤mi

dkjχ
k
j ,∀(i, j) ∈ CP (14)

χk
i ∈ {0, 1}, ∀Vi ∈ U ∩ CP, 1 ≤ k ≤ mi (15)

χk
i = yk

i , i ∈ F ∩ CP, 1 ≤ k ≤ mi (16)

dki ∈ I, Vi ∈ CP, 1 ≤ k ≤ mi (17)

Max{fi} ≤ D, Vi ∈ CP (18)

Function (12) means that it is a multi-objective optimization problem to find
Pareto optimal solutions. Only precedence relations on CP are considered, which
are represented in Constraints (14) and (18).

Then, a Dynamic Programming (DP) algorithm is proposed to optimize the
MDP problem in pseudo-polynomial time. Sub-problems should be defined be-
fore a DP algorithm can be used. In this paper, the ith sub-problemSSPi of the
MDP is defined to get a Pareto solution set for partial critical path PCPi={CP1,
CP2, CP3, . . . , CPi} . Solutions of current sub-problem SSPi are constructed by
combining the Pareto solutions of the immediate former sub-problem SSPi−1

and services of the ith activity CPi. Solutions, which are dominated by others
or the solutions with the total execution time larger than the deadline, are re-
moved from the Pareto set. Pareto solutions of the SSPi can be represented with
a set PSi= {< T (s), C(s), I1(s), I2(s), I3(s), . . . , Ii(s) >, . . .}. Each element of
the PSi is a (i+ 2)-tuple. The first and second elements of the tuple represents
the finish time and the total cost of the PCPi. The element Ii(s) of the tuple
represents the index of the selected service for the ith activity of the SSPi in
solution s. The I1(s), I2(s), I3(s), . . . , Ii(s) can be denoted with I(1,i)(s). Since
SSPi+1can be solved based on the solutions of SSPi directly, SSP1 to SSPL are
solved one by one. At last, a Pareto optimal solution set PS|CP |, in which there
are at most D solutions, is found. The formal description of this DP procedure
is given in Algorithm 2.

214 Z. Cai, X. Li, and J.N.D. Gupta

Algorithm 3. DPPM(SPi)

1: Relax the critical path optimizing problem to MDP;
2: Call Algorithm 2 to get a Pareto solution setPS for MDP;
3: Sort solutions ofPS by the total cost in non-decreasing order;
4: for each s ∈PS do
5: for j = 1 to N do
6: if Vj ∈ CPi then

7: EFTS(Vj) ← max
i∈Pj

{EFTS(Vi)}+ d
s[j]
j ;

8: else if Vj ∈ F then

9: EFTS(Vj) ← max
i∈Pj

{EFTS(Vi)}+ d
Q[j]
j ;

10: else

11: EFTS(Vj) ← max
i∈Pj

{EFTS(Vi)}+
mj

min
k=1

{dmj

j }
12: if EFTS(Vj) >LFTS(Vj) then
13: Goto Step 4;
14: sbest ← s, break;
15: return sbest;

After MDP is solved by Algorithm 2, the cheapest feasible solution should be
distinguished from PS|CP |. Firstly, solutions of PS|CP | are sorted by the total
costs T (s) in non-decreasing order. Then, their feasibility is verified by checking
whether EFT S(Vi) is less thanLFT S(Vi) for all activity Vi ∈ V . Once a feasible
solution is found, the feasibility verification process stops. Finally,LFT S(Vi) are
recalculated once a critical path is scheduled. The formal description of the
DPPM procedure is shown in Algorithm 3, in which s[j] is the services index of
activity Vj in solution s.

3.3 The Proposed CPI Heuristic

The proposed CPI heuristic can be described as follows: Initially, U ← V and
F are set as empty. LFT S(Vi) is calculated one by one with all activities being
assigned the shortest services. A new critical pathCP is generated by assigning
all unscheduled activities to the longest services while keeping the assignment of
scheduled activities in F unchanged. If the total duration of theCP is less than
the deadline D (i.e., �LCP ≤ D), the algorithm stops because the partial solution
Q (unscheduled activities select the longest durations) is feasible. Otherwise,
CP is optimized by DPPM. U ← U/{Vj ∈CP} and F ← F ∪ {Vj ∈CP}. scp is
appended to Q.LFTi is recalculated in terms of Q. The steps of the CPI heuristic
are formally described in Algorithm 4.

3.4 An Illustrative Example for CPI

Take the workflow in Figure 2 for example. Set deadline D = 35.

(1) Calculate LFTS(V7) = 35, LFTS(V6) = 35, LFTS(V5) = 35, LFTS(V4) = 35,
LFTS(V3) = 17 and LFTS(V2) = 17. Since no activities has been scheduled in

Workflow Scheduling in Cloud Computing 215

Algorithm 4. CPI

1: Set U ← V,F ← NULL,LFTS(VN) ← D.
2: Assign Vi the service with minmi

k=1{dki },Vi ∈ V .
3: for i = N − 1 to 1 do
4: Calculate LFTS(Vi);
5: while U �= Null do
6: CP ← Call Algorithm 1.
7: if �BCP ≤ D then
8: Set Vi ∈ U with the longest services,Update Q, Go to step 11.
9: scp ←DPPM(CP).
10: U ← U/{Vj ∈ CP}, F ← F ∪ {Vj ∈ CP}. Append scp to Q. Recalculate

LFTS(Vi), 1 ≤ i ≤ N in terms of Q.
11: return Q.

the first iteration, all activities are allocated to their longest services. Calculate
EFTL(V2) = 24,EFTL(V3) = 18, EFTL(V4) = 54, EFTL(V5) = 53 and EFTL(V6) =
25 one by one . Initially, V7 is added to the CP first, then, immediate prede-
cessor V4 with largest EFTL(V4) = 54 is added to the front of CP and set as
the current activity. Later, V2 is added. At last the first critical path CP1 =
(V1, V2, V4, V7) is constructed. Since �LCP1

= 54 > D, CP1 should be optimized. In
Algorithm 3, a Pareto solution set PSCP1 = {(35, 11.4, S2

2 , S
2
4), (28, 11.52, S

3
2 , S

2
4),

(33, 12.6, S2
2 , S

3
4), (26, 12.48, S

4
2 , S

2
4), (24, 13.68, S

4
2 , S

3
4)} is generated by Algorithm

2. Later, the cheapest feasible solution s = (35, 11.4, S2
2 , S

2
4) for the CP1 is distin-

guished from PSCP1 . Update Q = {χ2
2 = 1, χ2

4 = 1}, LFTS(V7) = 35, LFTS(V6) =
35, LFTS(V5) = 35, LFTS(V4) = 35, LFTS(V3) = 15 and LFTS(V2) = 15.
F = {V1, V2, V4, V7}, U = {V3, V5, V6}.

(2) After EFTL(V2) = 15, EFTL(V3) = 18, EFTL(V4) = 38, EFTL(V5) = 53 and
EFTL(V6) = 25 are calculated in terms of the solution of CP1, a new criti-
cal path CP2 = (V1, V3, V5, V7) is generated. Since �LCP2

= 53 ≥ D, CP2 still
needed to be optimized. At first, a Pareto solution set PSCP2 = {(31, 11.72, S1

3 , S
3
5),

(29, 13.2, S2
3 , S

2
5), (22, 13.92, S

2
3 , S

3
5), (26, 13.92, S

3
3 , S

2
5), (19, 14.64, S

3
3 , S

3
5)} for the

MDP is generated. Later, each solution of PSCP2 is checked to find if EFTS(Vi) ≤
LFTS(Vi), Vi ∈ V . For the first solution (31, 11.72, S1

3 , S
3
5), EFTS(V2) = 18 >

LFTS(V2). So, it is infeasible. Considering the second solution (29, 13.2, S2
3 , S

2
5),

EFTS(V2) = 15, EFTS(V3) = 9, EFTS(V4) = 35, EFTS(V5) = 29, EFTS(V2) = 18
is calculated. Since EFTS(Vi) ≤ LFTS(Vi), for all Vi ∈ V , the second solution is
the cheapest feasible solution for CP2.

(3) Update Q = {χ2
2 = 1, χ2

4 = 1, χ2
3 = 1, χ2

5 = 1}, F = {V1, V2, V4, V3, V5, V7},
U = {V6}. Then calculate EFTL(V2) = 15, EFTL(V3) = 9, EFTL(V4) = 35,
EFTL(V5) = 29 and EFTL(V6) = 25. The CP1 = (V1, V2, V4, V7) is got again and
�LCP1

= 35 ≤ D, which demonstrate that the left unscheduled activities need not to
be optimized again, i.e., χ2

6 = 1 is added to Q. The CPI algorithm terminates.

3.5 Complexity Analysis

Let N is the number of activities and M = maxNi=1{mi}. In step 2 of Algorithm
2, there are |CP | ≤ N iterations. And in step 3, the Pareto solution set PSi

has at most D Pareto non-dominated solutions. That is because the finish time

216 Z. Cai, X. Li, and J.N.D. Gupta

of solutions can only be an integer in the interval [1,D] and for each finish time
there can be only one Pareto non-dominated solution. For step 4 of Algorithm 2,
|Si+1| ≤ M services are available. And the complexity of generating a solution
is O(N). So the complexity of Algorithm 2 is O(N2DM). The complexities of
the step 3 and 4 of the Algorithm 3 are O(D2) and O(DN) respectively. So, the
complexity of Algorithm 3 is O(N2D2M). It now remains to find the number of
times step 5 of algorithm 4 is executed. The following theorem helps to do that.

Theorem 1 (Unequal critical path property in CPI). In the CPI, if �LCPi
>

D, at least one activity in the new generated critical path CPi is unscheduled,
i.e., CPi has never been found in previous steps.

Proof. In each iteration step j, j < i, the critical path CPj , j < i is scheduled,
while the LFT S is not violated, i.e., �S of all paths is less than D. Assuming
that all activities of CPi have been scheduled after iteration k, k ≤ i − 1, we
can conclude that in each iteration step j, j > k, �SCPi

= �LCPi
and �SCPi

< D.

Therefore,�LCPi
< D is obtained, which is conflict with �LCPi

> D. ��

In view of the above theorem, there are at most N iterations of step 5 of
Algorithm 4. And the complexity of Algorithm 1 is O(N2). Therefore, the overall
complexity of the proposed CPI heuristic is O(N3D2M).

4 Computational Results

We now describe the computational tests used to evaluate the effectiveness of
the proposed CPI heuristic in finding good quality workflow schedules. To do
this, the proposed CPI heuristic is compared with three existing state-of-the-
art algorithms (DET heuristic [7], PCP F heuristic where PCP heuristic with
fair policy is used [8], and PCP D heuristic in which PCP heuristic deploys the
decrease cost policy [8]. For comparison purposes, we also included the ILOG
CPLEX v12.4 with default settings to solve the MILP model of the workflow
problem formulated in Section 2 earlier. All four algorithms (CPI, DET, PCP F
and PCP D) were coded in Java. Computational experiments for all four algo-
rithms and ILOG CPLEX v12.4 were performed on Core 2 computer with one
3.1GHZ processor, 1G RAM, and Windows XP operating system.

4.1 Test Problems

Since parameters exert influence on the performance of an algorithm, they should
be tested on different values. Existing test problem instances used by Abrishami
et al. [12] only have paths with at most 9 activities. However, in practice, paths
of workflow have much more activities. In our computational experiments, there-
fore, parameters of the problem instances are as follows:

– the number of activities, N in a workflow takes a value from {200, 400, 600,
800, 1000};

Workflow Scheduling in Cloud Computing 217

– the number of services for each activity i, mi is generated from a discrete
uniform distribution DU [2, 10],DU [11, 20], or DU [21, 30];

– the complexity of the network structure, measured by OS according to [13],
takes a value from {0.1, 0.2, 0.3};

– the cost function (CF), denoting the functional type of cost to duration, is
concave, convex, or hybrid;

– deadlines are generated by D = Dmin + (Dmax − Dmin) ∗ θ where Dmin is
the minimal total duration (using shortest duration of each activity), Dmax

is the maximal total duration of the workflow, and θ is the Deadline Factor,
which takes a value from {0.15, 0.3, 0.45, 0.6}. This ensure the existence of
at least one feasible solution.

The services alternatives for each activity are generated according to [14] and de-
tails are as follows: First the number of services, mi, is generated from DU[2,10]
(i.e., discrete uniform distribution with parameters 2 and 10), DU[11,20] or
DU[21,30]. Then, the execution time of these services are randomly generated
between 3 and 163 as follows: The range [3, 163] is divided into intervals of size
4 and a simple randomized rule is used to decide whether one of the services
will have an execution time within that interval. If so, the execution time is
generated within the interval using Discrete Uniform distribution. After all the
mi number of execution times are determined, the costs of the services are gen-
erated sequentially, starting with that of the minimum-cost services, cmi , which
comes from U[5,105]. Given the execution time, cost pair (dk, ck), for services k
and dk−1 for service k − 1, ck−1 is calculated as ck + sk(dk − dk−1), where sk is
the randomly generated slope. For convex cost functions, sk−1 is generated from
U(sk,sk + S), where S is the maximum change in slope per service and gener-
ated from U(1,2). smi−1 (the minimum slope) is set to be 0.5. For the concave
functions,smi−1 is randomly generated as 1 + u(mi − 1)S, where u is generated
from U[0.75,1.25] (so that the initial slope is large enough to allow for smaller
slopes for the other services), and then sk−1 is generated from U[max(1,(sk-
S)),sk]. For the hybrid functions, we randomly determine the number of times
the slope will increase/decrease compared to the previous one.

The paths connecting various activities are randomly generated, during which
the redundant arc avoiding method given by [15] are adopted. The details are
shown in Algorithm 5. path(i, j) = 0 means that there is no path from Vi to Vj .
Step 1 of Algorithm 5 generates the node number of activities with ascending
integer numbers. Then, in step 2, random arcs are added to the network one by
one where an arc is accepted only if it does not produce redundancy [15].

Using the above test problem generation schemes, for each combination of mi,
OS, and CF, 10 problem instances are generated. Thus, a total of 1,350 problem
instances (= 5(N) * 3(mi)*3(OS)*3(CF)*10) are generated and used in our
computational experiments.

4.2 Comparison with Existing Algorithms

To compare the effectiveness of the proposed CPI algorithm with existing algo-
rithms, several measures are used. Let C∗

b be the total cost if all activities of

218 Z. Cai, X. Li, and J.N.D. Gupta

Algorithm 5. Random Instance Generating Algorithm

Generate activities V = {1, 2, . . . , N};
while OSc ≤ OS do

Generate a non-existed arc (i, j), i < j randomly;
if (∀Vt1 ∈ Pj∀Vt2 ∈ £i∀Vt3 ∈ Pi∀Vt4 ∈ £j)(path(i, j) = 0 ∧ path(t1, i) = 0 ∧
path(j, t2) = 0 ∧ path(t3, t4) = 0) then

Accept the arc (i, j), recalculate Order Strength OSc.
return

a problem instance b select the cheapest services. Let bestb and worstb be the
best and worst solutions among all compared algorithms on instance b. For the
convenience of reporting, let Wp be the total number of all problem instances for
parameter p which are grouped together (shown in Count column of Table 3).
Further, let Cb(A) be the total cost of instance b obtained by algorithm A. Then,
the ANC (average normalized resource renting cost), ARDI (Average Relative
Deviation Index), and VAR (variance of RDI), are defined as follows:

ANC = (
∑Wp

b=1 Cb(A)/C∗
b)/Wp (19)

RDIb = (Cb(A)− bestb)/(worstb − bestb) (20)

ARDI = (
∑Wp

b=1 RDIb)/Wp (21)

V AR = (
∑Wp

b=1(RDIb −
∑Wp

b=1 RDIb/Wp)
2)/Wp (22)

Due to the excessive computational time requirements, CPLEX cannot optimally
solve most of the random instances with the above parameters. Therefore, to
fairly compare the algorithms, the computation time of CPLEX is set to be
identical to that of CPI on the same instance and the best solution obtained
within this time is taken as the solution by CPLEX.

Table 2 illustrates that CPI outperforms PCP F, PCP D and DET on av-
erage normalized renting cost (ANC) and ARDI for all cases. The percentage
number in the ANC column for the CPI heuristic in Table 2 shows the decreased
percentage of average normalized renting cost, comparing the CPI and PCP F.
CPI gets better performance (lower renting cost) than CPLEX when N > 400
or OS ≥ 0.2. As N increases, Both ANC and ARDI of CPI decease faster than
the other heuristics, which implies that CPI is more suitable than the compared
heuristics for complexity network structure instances, i.e., great N and big OS.
As mi and OS increase, ANC of all algorithms increases because the problems
become more and more complex. ANC of the compared algorithms with concave
CF is significantly bigger than those with convex and hybrid CF because the
concave CF has fewer cheap service candidates than the other two.

From VAR column of Table 3, it can be observed that the CPI heuristic gen-
erates solutions with the lowest VAR for all cases except for N = 200. This
illustrates that proposed CPI heuristic is more robust than the compared ex-
isting algorithms. VAR of CPI decreases as N increases, which means that the
robustness of the CPI heuristic increases with the increase in the size of the prob-
lem instance. As mi becomes larger, VAR of each algorithm increases. Among

Workflow Scheduling in Cloud Computing 219

Table 2. ANC and ARDI(%) of the Random Instances

ParasVals
CPLEX DET PCP F PCP D CPI

ANCARDIANCARDIANCARDIANCARDI ANC(Perc en) ARDI
N 200 5.27 0 12.45 95.6 7.74 33.2 8.15 51.2 7.43(4%↓) 26.2

400 3.78 1.7 8.53 91.7 4.99 27.9 5.27 48 4.25(14.8%↓) 15.2
600 5.67 10.6 8.76 87.9 5.02 26.7 5.27 47.1 4(20.3%↓) 8.4
800 7.32 16.7 8.9 86.1 4.88 24.6 5.14 44.4 3.84(21.5%↓) 6.7
1000 5.77 14.8 7.34 85.7 4.16 23.3 4.41 42.7 3.3(20.7%↓) 6.1

mi [2,10] 1.44 1.6 3.03 99.2 1.75 23.5 1.76 30.6 1.55(11.4%↓) 10.5
[11,20] 4.4 8 8.04 89.1 4.71 29.6 4.98 54.1 4.09(13.2%↓) 15.5
[21,30] 11.11 14.4 18.07 80.5 10.63 30.5 11.28 58.6 9.11(14.3%↓) 15.4

OS 0.1 3.63 2.1 7.29 87.1 4.68 30.8 5.03 55.3 3.95(15.6%↓) 13.2
0.2 5.69 9 9.67 89.8 5.57 26.3 5.87 46.5 4.78(14.2%↓) 13
0.3 7.65 15.3 10.93 90.8 5.93 23.9 6.17 39.4 5.05(14.8%↓) 11.6

CF convex 2.77 3.6 5.81 97.8 3.65 34.1 3.84 38.1 2.87(21.4%↓) 12.6
concave 12.4 11.7 20.92 93.9 11.67 27.5 11.95 28.2 10.22(12.4%↓) 16
hybrid 1.31 8 1.73 78.2 1.36 21.4 1.8 75.3 1.3(4.4%↓) 12.5

θ 0.15 8.84 14.1 12.2 89.8 9.4 40.8 9.68 56.5 8.47(9.9%↓) 23.3
0.3 6.59 10.5 10.03 89.3 6.37 33.5 6.7 51.5 5.4(15.2%↓) 16.4
0.45 4.24 4.8 8.38 90.3 4.02 23.4 4.33 44.4 3.28(18.4%↓) 10.1
0.6 2.34 1.8 7.25 90.4 2.42 13 2.68 36.2 2.01(16.9%↓) 4.9

Table 3. VAR(%) and Time (s) of the Random Instances

Paras Vals Count
CPLEX DET PCP F PCP D CPI

VAR Time VARTime VARTime VAR Time VAR Time
N 200 270 0 12.9 1.9 0.83 2.7 0.31 7.8 0.27 3.62 14.05

400 270 1.67 20.4 3.65 1.06 3.02 1.65 9.69 1.41 1.48 21.18
600 270 9.26 27.0 4.93 2.28 3.52 4.89 10.72 4.20 0.73 27.74
800 270 13.77 38.5 5.38 4.78 3.31 10.25 10.48 8.93 0.61 39.58
1000 270 12.45 40.9 5.84 6.43 3.32 13.34 10.95 11.82 0.54 41.17

mi [2,10] 450 1.55 14.3 0.41 2.32 1.55 3.08 3.26 2.88 1.09 15.18
[11,20] 450 7.28 29.3 4.18 3.28 3.46 6.82 10.71 5.81 2.67 30.28
[21,30] 450 12.09 36.2 6.78 2.77 4.66 6.46 11.44 5.59 2.83 37.50

OS 0.1 450 2.0 23.6 5.7 2.96 3.7 4.18 10.5 3.72 1.7 24.58
0.2 450 8.0 29.7 4.0 3.14 2.9 5.57 10.0 4.90 2.0 30.86
0.3 450 12.9 27.9 3.8 2.71 2.8 7.85 8.5 6.74 2.2 28.89

CF convex 450 3.48 24.0 1.15 2.84 4.61 4.79 6.55 5.16 1.96 25.08
concave 450 10.26 21.4 3.13 2.22 2.54 4.71 3.19 4.67 2.71 22.15
hybrid 450 7.13 33.3 6.39 3.26 1.82 6.63 7.43 4.25 1.89 34.41

θ 0.15 1350 11.8 37.1 4.0 2.48 3.4 4.72 6.9 3.90 3.7 37.98
0.3 1350 9.2 29.5 4.4 2.61 2.8 5.26 7.8 4.52 2.0 30.17
0.45 1350 4.5 22.9 4.2 2.82 1.7 5.64 9.8 5.00 0.9 23.61
0.6 1350 1.8 15.5 4.5 3.19 0.8 5.88 12.4 5.35 0.3 17.10

220 Z. Cai, X. Li, and J.N.D. Gupta

the compared algorithms, as N and mi increase, VAR of CPLEX increases the
fastest and that of CPI increases the slowest. This demonstrates that the sta-
bility of CPLEX decreases rapidly as the complexity of the problem increases.
VAR of CPLEX and CPI on concave instances is bigger than that on convex
and hybrid instances. As the deadline factor θ increases (the deadline becomes
looser), the performance of CPLEX, CPI and PCP F becomes more stable.

Time columns of Table 3 show that CPI and CPLEX consume more com-
putation time than the other algorithms. DET is the fastest algorithm. As N ,
mi, and OS increase, more computation time is needed by all algorithms. CF
exerts little influence on computation time. Instances with bigger θ consume less
computation time for CPI and CPLEX whereas it is reverse situation for PCP
and DET. However, computational time to solve a problem by any heuristic is
less than one minute, which is reasonable and acceptable in practice.

5 Conclusions

In this paper, services with different time and cost attributes are allocated to
workflows in Utility Computing environments by the proposed Critical-Path
based Iterative (CPI) heuristic. All activities are grouped and scheduled by iter-
atively constructed critical paths. In every iteration, a new critical path is gen-
erated by keeping the activity-service mapping of the scheduled activities and
temporarily assigning the unscheduled activities to the longest services. Dynamic
programming based Pareto method is developed for the renting cost minimiza-
tion of critical paths, in which the workflow is relaxed to a Multi-stage Decision
Process (MDP) problem by removing the activities and relations not on the crit-
ical path. CPI heuristic is compared with the state-of-the-art algorithms (PCP,
DET, and CPLEX) for the considered problem. Experimental results show that
the proposed CPI heuristic outperforms the PCP and the DET algorithms for
all cases. CPI heuristic is better than CPLEX for most instances and is more
stable than CPLEX. Though CPLEX outperforms the CPI heuristic on small
size and simple structure problems, the stability of CPLEX is much worse than
that of CPI. While computational time required to solve the workflow schedul-
ing problem using the CPI heuristic is more than that required for the PCP
and DET algorithms, it is never more than one minute, which is reasonable and
acceptable in practice.

In the future, it is worth developing more effective methods for critical path
optimization, introducing new decomposition methods for workflows, and inves-
tigating the bounds of the problem during the search process.

Acknowledgment. This work was supported in part by the National Natural
Science Foundation of China (61003158 and 61272377) in part by the Research
Fund for the Doctoral Program of Higher Education of China (20120092110027)
and in part by the Southeast University (CXLX12 0099).

Workflow Scheduling in Cloud Computing 221

References

1. Chard, K., Bubendorfer, K.: High performance resource allocation strategies for
computational economies. IEEE Transactions on Parallel and Distributed Sys-
tems 24(1), 72–84 (2013)

2. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (CSUR) 31(4), 406–471
(1999)

3. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Transactions on Parallel and Distributed Systems 15(2), 107–118
(2004)

4. Byun, E.K., Kee, Y.S., Kim, J.S., Deelman, E., Maeng, S.: Bts: Resource capacity
estimate for time-targeted science workflows. Journal of Parallel and Distributed
Computing 71(6), 848–862 (2011)

5. De, P., Dunne, E., Ghosh, J., Wells, C.: Complexity of the discrete time-cost trade-
off problem for project networks. Operations Research 45(2), 302–306 (1997)

6. Yu, J., Buyya, R., Tham, C.: Cost-based scheduling of scientific workflow appli-
cations on utility grids. In: First International Conference on e-Science and Grid
Computing, p. 8. IEEE (2005)

7. Yuan, Y., Li, X., Wang, Q., Zhu, X.: Deadline division-based heuristic for cost op-
timization in workflow scheduling. Information Sciences 179(15), 2562–2575 (2009)

8. Abrishami, S., Naghibzadeh, M., Epema, D.: Cost-driven scheduling of grid work-
flows using partial critical paths. IEEE Transactions on Parallel and Distributed
Systems 23(8), 1400–1414 (2012)

9. Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms. Scientific Programming 14(3), 217–
230 (2006)

10. Chen, W.N., Zhang, J.: An ant colony optimization approach to a grid workflow
scheduling problem with various qos requirements. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 39(1), 29–43 (2009)

11. Wu, Z., Liu, X., Ni, Z., Yuan, D., Yang, Y.: A market-oriented hierarchical schedul-
ing strategy in cloud workflow systems. The Journal of Supercomputing 63(1),
256–293 (2013)

12. Abrishami, S., Naghibzadeh, M., Epema, D.: Deadline-constrained workflow
scheduling algorithms for iaas clouds. In: Future Generation Computer Systems
(2012)

13. Demeulemeester, E., Vanhoucke, M., Herroelen, W.: Rangen: A random network
generator for activity-on-the-node networks. Journal of Scheduling 6(1), 17–38
(2003)

14. Akkan, C., Drexl, A., Kimms, A.: Network decomposition-based benchmark re-
sults for the discrete time–cost tradeoff problem. European Journal of Operational
Research 165(2), 339–358 (2005)

15. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a gen-
eral class of resource-constrained project scheduling problems. Management Sci-
ence 41(10), 1693–1703 (1995)

REFlex: An Efficient Web Service Orchestrator

for Declarative Business Processes

Natália Cabral Silva, Renata Medeiros de Carvalho,
César Augusto Lins Oliveira, and Ricardo Massa Ferreira Lima

Center for Informatics (CIn),
Federal University of Pernambuco,

Recife – PE, Brazil
{ncs,rwm,calo,rmfl}@cin.ufpe.br

Abstract. Declarative business process modeling is a flexible approach
to business process management in which participants can decide the
order in which activities are performed. Business rules are employed to
determine restrictions and obligations that must be satisfied during ex-
ecution time. In this way, complex control-flows are simplified and par-
ticipants have more flexibility to handle unpredicted situations. Current
implementations of declarative business process engines focus only on
manual activities. Automatic communication with external applications
to exchange data and reuse functionality is barely supported. Such au-
tomation opportunities could be better exploited by a declarative engine
that integrates with existing SOA technologies. In this paper, we in-
troduce an engine that fills this gap. REFlex is an efficient, data-aware
declarative web services orchestrator. It enables participants to call ex-
ternal web services to perform automated tasks. Different from related
work, the REFlex algorithm does not depend on the generation of all
reachable states, which makes it well suited to model large and com-
plex business processes. Moreover, REFlex is capable of modeling data-
dependent business rules, which provides unprecedent context awareness
and modeling power to the declarative paradigm.

Keywords: declarative business process, business process flexibility, busi-
ness rules, web services orchestrator, context awareness.

1 Introduction

Processes change very often in some business areas. Customer demands are
volatile and business partners change frequently as new opportunities arise. To
remain competitive, organizations need to be prepared to confront unforeseen
situations. This requires flexible processes that can be adapted to cope with
changes in the environment [10]. Such flexibility requirements motivated the
development of the declarative business process paradigm. The declarative ap-
proach differs from most traditional, imperative modeling approaches because
they model what must be done but do not prescribe how [13] to do it. In this way,

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 222–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 223

declarative business processes allow the participants to decide which activities
are more appropriate for each particular situation.

Service Oriented Architecture (SOA) is a well-established software architec-
ture for the design of enterprise applications. In SOA, a number of business
activities may be performed by mature services provided by partners and third-
party enterprises. These services deliver functionalities that can be shared and
reused across the enterprise. Web service orchestration is an essential feature of
most business process enactment frameworks. They enable the construction of
automated workflows that explore the benefits provided by SOA. However, cur-
rent technologies for declarative business process enactment (Declare and DCR
Graphs) are focused in the modeling of manual activities. They lack adequate
support for web service integration. This impairs their use in more complex
applications in which both manual and automated activities are necessary.

The purpose of this paper is to introduce an approach for integrating the
declarative paradigm with SOA. Our tool, calledREFlex (Rule Engine for Flex-
ible Processes), is a declarative process management system that provides a rule
engine for declarative processes and a language for service orchestration [4][14].

REFlex is based on an efficient algorithm that does not rely on state-space gen-
eration [4]. Moreover, it offers support for data manipulation and data-dependent
rules, which improves its context awareness and increases the range of modeling
capabilities.

This paper is organized as follows. An overview of background and related
work is presented in Sections 2 and 3, respectively. REFlex rule engine is de-
scribed in Section 4. Next, Section 5 describes the orchestration mechanism and
architecture. To demonstrate the use of the proposed approach, a case study is
presented in Section 6. Finally, Section 7 discusses conclusions and future work.

2 Declarative Processes

When the company tasks are less repetitive and predictable, workflows are not
able to properly represent the possible flows of work [10]. They often are either
too simple, thus unable to handle the variety of situations that occur; or they are
too complex, trying to model every imagined possible situation but being hard
to maintain. In both cases, they may cause several problems to the company.
To tackle these limitations, flexible processes surged as a shift paradigm from
traditional workflow approaches [15].

Declarative business processes define the process behavior by business rules
described in a declarative language. Traditional workflows take an “inside-to-
outside” strategy, where all the executions alternatives must be explicitly rep-
resented in the process model. On the other hand, a declarative process takes
an “outsite-to-inside” strategy, where the execution options are guided by con-
straints [13]. Adding new constraints reduces the number of execution options.

In this constraint-based approach, a process model is composed of two el-
ements: activities and constraints. An activity is an action that updates the
enterprise status and is executed by a resource. A constraint is a business rule

224 N.C. Silva et al.

that must be respected during the entire process execution. Thereby, the per-
mission to execute activities is controlled by business rules. Each activity has its
execution enabled only if and when the business rules allow it.

3 Related Work

In this section we discuss some important works in the areas of declarative
processes and web service composition.

3.1 Declarative Processes

Declare is a rule engine system proposed by Pesic et al. [12] for modeling and
executing declarative processes through an extensible graphical language called
ConDec [13]. This language offers a set of graphical representations to describe
control-flow rules that constrain the execution of process activities. Declare uses
Linear Temporal Logic (LTL) as its formalism for the internal representation
of business processes. Process enactment requires the construction of a Büchi
automaton that contains all possible states of the process. This strategy leads
to the well known problem of state space explosion, which limits the size and
complexity of the business processes that can be executed using Declare.

Hildebrandt and Mukkamala [8] propose a graph-based model called DCR
Graphs to specify business process rules. At runtime, DCR Graphs control the
dynamic evolution of the process’ state. Since the states of the process are up-
dated dynamically, this approach does not require a prior generation of all pos-
sible states.

In a previous work, we proposed an approach for declarative processes that
is based on event-driven programming [11]. This approach aims to minimize
the gap between the business rules and their implementation by systematically
moving from business rules described in natural language towards a concrete
implementation of a business process. We use complex event processing (CEP)
to implement such a process. CEP is more expressive than the above mentioned
languages. It can describe both control-flow and data dependencies. However,
this approach is not based on an underlying formal model that guarantees the
correctness of the resulting process models.

Except from our former approach using CEP, none of the aforementioned
declarative approaches are data-aware, i.e., the activities and rules do not have
the concept of context data. Furthermore, none of these works are integrated with
SOA concepts, i.e., the activities are not executed by web service invocation.

Works on process mining have already considered data-aware rules in declar-
ative processes. Through the SCIFF Checker [1], a set of execution traces can be
classified as compliant or not compliant with a group of business rules. However,
SCIFF’s algorithm is only useful for verification purposes and is not applicable
for business process enactment.

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 225

3.2 Web Service Composition

None of the current tools that support the execution of declarative processes [8][12]
employ Service-Oriented Computing (SOC) concepts. In all these systems, the
activities are manual. The user only informs when the activity starts, concludes,
or is canceled. There is no built-in support for activity automation.

The Business Process Execution Language (BPEL) [2], is the de facto standard
for web services orchestration. However, it is static and not easy to adapt [16]. In
this regard, a number of works propose flexible alternatives to BPEL, to allow for
the construction of more flexible and adaptable business processes [9][5][7][17].

VxBPEL [9] is an extension to the standard BPEL language that provides
VariationPoint, which is a container of possible BPEL codes available for selec-
tion at runtime.

AO4BPEL [5] is another BPEL extension that improves the business process
flexibility using aspect-oriented concepts. The BPEL structure is expanded to
include aspects, which define fragments of business processes that can be inserted
into one or more process models at runtime.

CEVICHE [7] is a tool that employs the AO4BPEL. CEVICHE’s users do not
activate the aspects. Instead, the aspects are activated when event patterns are
recognized by a Complex Event Processing (CEP) engine. Thus, CEVICHE can
automatically decide when and how to adapt the system by analyzing events
with the CEP technology.

Xiao et al. [17] propose a constraint-based framework that employs process
fragments. A process fragment is a portion of a process that can be reused across
multiple processes. These fragments are selected and composed based on some
business constraints and policies. The resulting process is a standard BPEL
process, deployable on standard BPEL engines.

Another dynamic composition proposal is the SCENE service execution envi-
ronment [6]. It allows the BPEL to be changed at runtime by choosing the correct
service to be invoked based on business rules. These rules are used to realize the
correct bindings between the BPEL engine and the services. For this purpose,
there is a rule engine that makes the decisions about the services selection.

All the aforementioned works are extensions to BPEL aiming at making it
more adaptive. However, none of them provide ways to execute declarative pro-
cesses. Since declarative processes do not have any predefined structure, it is
not possible to execute them using BPEL or its extensions. Therefore, integrat-
ing web services and the declarative approach requires the development of novel
engine technology.

4 REFlex Rule Engine

In this section, we describe the rule engine used by REFlex to control the exe-
cution of declarative processes.

The declarative business process engines primary task is to guarantee that all
process instances adhere to the business rules defined for that process. To accom-
plish this, the engine must prevent the user from executing activities that violate

226 N.C. Silva et al.

the rules and must also oblige the execution of pending activities. Moreover,
the engine should not let the user execute a sequence of activities that blocks
the completion of the process. In other words, the engine must guarantee that
the process never reaches a deadlock state, in which pending activities cannot
be executed.

The REFlex rule engine is an efficient declarative process engine. It does not
have the state explosion problem that is exihibited by DECLARE, since it does
not require the previous generation of the complete set of reachable states [4].
The state of the process is updated dynamically. To avoid deadlocks, REFlex
uses a liveness-enforcement algorithm that guarantee that a deadlock state is
never reached.

REFlex models are directed graphs in which nodes are activities and arcs
define the relationship between activities. Table 1 describes the rule types
of REFlex, as well as their graphical representation (arcs) and semantics. An
example of REFlex model can be seen in Section 6.

Observe that several ConDec rules can be implemented using REFlex rule
types. The translation from ConDec to REFlex rules is shown in Table 2.

During runtime, activities change their state. An activity may be enabled,
disabled, or blocked. An enabled activity may also be obliged. An obliged activity
that has not be executed is called “pending activity”. Activities that are disabled
or blocked cannot be executed by the user. Moreover, the process can not be
concluded if there are pending activities left.

When the user executes an enabled activity X , an exec(X) event is issued.
This event causes an update in the state of the system according to the process
rules (Table 1). Furthermore, certain rules are valid only at the first execution
of an activity (see, for example, precedence). In such cases, the rule is removed
from the process after its conditions have been fulfilled.

To guarantee deadlock freedom, i.e., that the process instance never reaches
a deadlock state, REFlex inserts liveness-enforcing rules in the model. The ob-
jective of these rules is to disable execution paths that would certainly result in
a deadlock in a future step of execution. As an example, consider a process with
three activities (A, B, C) and two rules: response(A, B) and not after(C, B).
Clearly, after the execution of A, the activity C can not be executed until B is
executed. This is because if C executes between A and B it would make activity
B both obliged and blocked, which configures a deadlock. A similar situation
occurs if A executes after C. Indeed, A can never execute after C in such a
process.

The idea behind the liveness-enforcing algorithm is to avoid all situations that
cause an activity to be simultaneously blocked and obliged. To accomplish that,
we analyze the model statically and (transparently) insert new rules that are
specific to control such situations. The model can execute only after applying
the algorithm to analyze the model and inserting the rules to remove deadlock
threats. The rules inserted by the algorithm do the following: 1) “propagate”
blocking states (e.g., if A obliges B and B obliges C, when C is blocked, so are
A and B); 2) disable blocking when the activities that would be blocked are

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 227

Table 1. REFlex rule types

Existential Rules

at least(A, n)
n

Behavior Semantics
A is initialy obliged and remains obliged

until it is executed n times.

when exec(A) do if (n > 0) then n =
n− 1

at most(A, n)
n

Behavior Semantics
After n executions of A, it is blocked. when exec(A) do if (n > 0) then n =

n− 1; when n = 0 do block A

Relational Rules

response(A, B)

Behavior Semantics
After the execution of A, B is obliged. when exec(A) do oblige B

responded existence(A, B)

Behavior Semantics
The first execution of A obliges B. If B
is executed before A, remove the rule.

when exec(A) do remove
resp.existence(A,B), oblige B;
when exec(B) do remove
resp.existence(A,B)

precedence(A, B)

Behavior Semantics
While A is not executed, B is disabled. when exec(A) do remove prece-

dence(A,B)

not after(A, B)

Behavior Semantics
After the execution of A, B is blocked. when exec(A) do block B

Default Rules (valid for all activities in all processes)

disable(A)

Behavior Semantics
If exists X such that precedence(X, A),
A is disabled.

if exists precedence(X, A) then disable
A

waive(A)

Behavior Semantics
After the execution of A, if there is an at
least(A, n), n > 0, then A is obliged. If
not, A is not obliged.

when exec(A) do if not exists at
least(A, n), n > 0 then A is not obliged
else A is obliged

already obliged (e.g., in the previous example, if D blocks C, when A, B, or C
are obliged, D is disabled until the obligations are waived); 3) oblige precedences
(e.g., if there is a precedence (A, B), obliging B also obliges A); and 4) blocking
precedences (e.g., if there is a precedence (A, B), blocking A also blocks B). A
proof for the liveness of REFlex models is described by Carvalho et al. [3].

228 N.C. Silva et al.

Table 2. ConDec templates X REFlex rule types

Condec Rules Description Reflex Rules

Existential Rules

init(A) All activities but A are disabled
until the execution of A.

For all activities (ai) ex-
cept A, precedence(A, ai)

existence(A, n) A is obliged until it is executed
n times.

at least(A, n)

absence(A, n) After n − 1 executions of A, it
can not be executed anymore.

at most(A, n-1)

exactly(A, n) A must be executed exactly n
times in a process instance.

at least(A, n) and at
most(A, n)

Relational Rules

response(A, B) After the execution of A, B is
obliged.

response(A, B)

precedence(A, B) While A is not executed, B is
disabled.

precedence(A, B)

succession(A, B) After the execution of A, B is
obliged, but it is disabled while
A is not executed.

precedence(A, B) and re-
sponse(A, B)

coexistence(A, B) A and B are either both exe-
cuted or not executed at all.

responded existence(A,
B) and responded exis-
tence(B, A)

responded exis-

tence(A, B)

The first execution of A obliges
B.

responded existence(A,
B)

Negation Rules

not response(A, B) After the execution of A, B can
not be executed.

not after(A, B)

not coexistence(A, B) A and B can not be both ex-
ecuted in the same process in-
stance.

not after(A, B) and not
after(B, A)

4.1 Data-Aware Extension

The semantics of REFlex is extended to support data-dependent rules. This kind
of rule is applied only if certain conditions hold. Such data-aware extensions
provide unprecedented expressive power to declarative business processes. Few
engines today are able to model this type of constraints [11]. Yet, data-dependent
rules are ubiquous. It is difficult to model large, realistic declarative processes
without data-dependencies.

Data-dependent rules are constructed following the pattern:

IF predicate THEN rule (...)

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 229

Graphically, a data-dependent rule is represented by an arc that has an inscrip-
tion attached. The inscription corresponds to the predicate that is the condition
for the rule.

The semantics is the following. If the rule’s predicate is true, the rule is part
of the process. We say that the rule is active in the process instance. If the
predicate is false, the engine ignores the rule. We say that it is inactive.

Some example of data-dependent rules are:

1. A reimbursement for expenditure can not be sent after the grant is cancelled,
unless the expenditure is prior to the cancellation date

IF date of expenditure > date of cancellation
THEN not after (“cancel grant”, “send reimbursement”)

2. If a rented car is returned after the expected return date, a charge must be
issued

IF return date > expected return date
THEN response (“return car”, “issue charge”)

Liveness-enforcement is a challenge for data-dependent rules. The reason is
that it is not always possible to foresee which rules will be activated at runtime.
For example, let us assume we have a data-dependent response (A, B) and a
regular not after (C, B). In the moment that A is obliged, if the response rule
is active, the engine disables C until A and B execute. However, if the response
rule is not active at this moment, it is ignored. So the engine lets the user execute
C, which blocks B. Suppose that, after the execution of C, the conditions for
activating the response are met. Now we have a situation that leads to a deadlock,
once the execution of A will oblige activity B, which is currently blocked.

The problem just described can be solved if we restrict the action of activity
C over the variables of the process. Once C blocks an activity, we can not allow
that the execution of C itself creates conditions to oblige that activity.

This solution can be generalized as follows. First, we identify all activities
that may be obliged in the next or in a future execution step (Def. 1).

Definition 1 (Possible obligation).We say that an activity A possibly obliges
B in a process instance if:

– the process contains the rule response(A, B) and the conditions for its acti-
vation are satisfied; or

– the process contains the rule responded existence(A, B) and the conditions
for its activation are satisfied; or

– there is an activity X that possibly obliges B and A possibly obliges X.

Next, we restrict the variables that can be affected by certain activities of the
process, according to Def. 2.

230 N.C. Silva et al.

Definition 2 (Data-Restricted Activities). An activity A is not allowed to
change the value of a process variable x if, for any activity B:

1. the process contains a rule not after (A, B) and
(a) there is one or more conditional rules in the process that depend on x;
(b) the rules that are conditioned to x affect whether B is possibly obliged

or not in a process instance.
2. or the process contains a rule at most(A, 1) and

(a) the rules that are conditioned to x affect whether A is possibly obliged
or not in a process instance.

The modeler is responsible for assuring the process’s conformance to the data
restrictions in Def. 2. With such an approach, we guarantee that, if an activity
A blocks another activity B in the process, the latter will never be obliged in
the future. If B is obliged before A, the liveness-enforcing rules already inserted
into the model will prevent B from executing while A is obliged. The liveness-
enforcing rules will also guarantee that no activity will ever oblige B after it has
been blocked.

5 REFlex Orchestrator

Amongst the engines for declarative processes, only REFlex has the ability to
execute external web services. Such feature allows for the modeling of semi-
automated declarative business processes. This section describes how REFlex’s
orchestration mechanism works.

In most business processes, there are several opportunities for the automation
of tasks through the use of web services. For example, we may want to query a
database for product or customer information, to schedule an appointment into
an on-line calendar, or perhaps to register an authorization for a new employee.
We may want to be able to request an operation from a web service, send our
process’ data to it, and use the data from its response in other activities of the
process.

To implement this feature, REFlex allows the user to set up variables and
service bindings. Variables may be global (accessible in the entire process) or
local (accessible in the scope of a single activity). The user can define any number
of variables for a process. Currently, the data types supported by REFlex are
int, float, double, String, boolean and list (an array of elements of any of the
primitive types).

Service bindings, in turn, enable the linkage between an activity in the process
and an external web service. A service binding describes which web service is
linked to the activity, the location of its WSDL interface, and the binding, port
type, and operation that should be called when the user wants to execute the
activity.

REFlex uses the WSDL interface of the web service to automatically construct
and interpret SOAP messages that are sent/received to/from the web service.
The variables of the process are filled in the SOAP message body according

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 231

User

calls

activity

Load

WSDL

Construct

SOAP

message

Select

element

with XPATH

Fill-in

variable’s

value

Call

web service

Receive

response

Select

element

with XPATH

Copy

value to

variable

Has variable

binding?

Has variable

binding?

No

Yes

Yes

No

Fig. 1. REFlex orchestration process

Fig. 2. Elements of a Process Definition XML

to the activity’s data input binding and data output binding. These elements
define variable bindings, which map a variable into an element inside the SOAP
body using XPATH expressions. When calling the web service, the values of the
process’ variables are copied to the SOAP message. Once the response from the
web service is received, its contents are copied into process’ variables, according
to the variable bindings.

The process just described is illustrated in Fig. 1.
The process definition is described in an XML file, which contains all infor-

mation necessary to execute the process and to communicate with web services.
A process definition includes the elements presented in the diagram shown in
Fig. 2.

There are four major components in REFlex architecture [14]: REFlex is
composed of four main components: the Engine, which interprets the rules and

232 N.C. Silva et al.

updates the states of the activities; the Data Manager, which stores data vari-
ables and controls their access and updates; the Service Manager, which inter-
prets WSDL descriptions, creates/interprets SOAP messages and invokes web
services when demanded; and the Process Instance Manager, which manages the
interaction of these components and communicates with the user. The Process
Instance Manager interprets process models described in the XML language,
initialize process instances, and interpret user inputs.

6 Case Study

This section presents a case study that demonstrates the use of REFlex. A busi-
ness process of a travel agency is modeled. Common tasks performed by this
travel agency are flight and/or hotel booking. Moreover, currency conversion is
often needed for international trips. These activities compose the Travel Arrage-
ments process.

The agency’s information system offers three web services whose operations
are useful for the Travel Arrangements process. Table 3 details the three services,
their operations, and the input and output parameters of each operation.

The declarative approach is suitable for modeling the Travel Arrangements
process. It can be described by the following rules:

1. It is not possible to book a flight without previously checking its price.
2. If a flight is booked, a payment for this booking is required.
3. If the customer wants to book a flight, its price must be checked at least in

two different airlines.
4. The check-in is only available if the flight payment was confirmed.
5. It is not possible to book a hotel without checking its information before.
6. If a hotel is booked, a payment for this booking is required.
7. If the booking payment was confirmed, then a voucher must be sent to the

costumer email.
8. If the booking payment was not confirmed, then the costumer must be noti-

fied.
9. A discount must be issued to groups of more than 10 persons that book a

hotel.

One can notice that the currency service was not mentioned among the busi-
ness rules. This means that the user can choose currency operations at any time
while executing the business process, which characterizes the flexibility provided
by declarative processes.

Fig. 3 shows how REFlex rule engine represents these rules graphically. Each
node is an activity available in the process. Rules that have any dependency on
context data are represented by arcs annotated with conditions. A rule is active
only if the condition is evaluated to true. Otherwise, the rule is simply ignored.
On other hand, rules that have no data dependency are always active. Thus,
rules are enforced or not depending on the context.

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 233

Table 3. Services details

Operations Input Variables Output Variables

Flight Service

checkFlightPrice from, to, price, date, airline flightId

bookFlight flightID bookID

payFlight bookID, value, creditCard confirmation, paymentCode

checkIn bookID, passportNumber, -

email

Hotel Service

checkHotel hotelName, checkInDate, roomsAvailable

checkOutDate

bookHotel hotelName, checkInDate, bookID, bookValue

checkOutDate, persons

payHotelBooking bookID, value, creditCard confirmation, paymentCode

sendVoucher bookID, email -

notifyCostumer email, message -

giveDiscount bookID, discountPercentage finalValue

Currency Service

convertCurrency value, fromCurrency, newCurrency

toCurrency

To better understand how useful data-aware rules are, note the activities send
voucher and notify costumer are dependent form the result of pay hotel booking.
This result can only be analyzed at run-time. If the business rules were static,
it would not be possible to model this dependency. Thus, in this case, there are
two response rules that rely on the result of pay hotel booking activity. Each
rule has a condition that expresses what must be checked at run-time. When
this activity is executed, the global data hotelBooked is updated. If the payment
is confirmed, activity send voucher is obliged by the response rule while notify
costumer becomes optional. If the payment is not confirmed, notify costumer is
obliged and activity send voucher will be disabled, due to a precedence on itself.
Without data-dependent rules, this behavior would be hard to achieve. Thus,
data-aware declarative models are more intuitive and expressive.

After modeling the activities and their relationship, we are able to link activ-
ities to their corresponding web service operations. The orchestrator uses this
information to perform the service bindings and invoke operations when activi-
ties are executed. Listing 1.1 presents an excerpt of the XML definition of our
process’ variables and activity bindings. It shows how the Pay Flight activity
is bound to the payFlightBooking operation of the FlightService. This activity
references local variables, whose values are provided by the user prior to its

234 N.C. Silva et al.

Check
Flight
Price

Book
Flight

Pay
Flight

Check
Hotel

Book
Hotel

Pay
Hotel

Booking

Send
Voucher

Notify
Costumer

Convert
Currency

2

Check-in

IF flightPaid

IF hotelBooked

IF hotelBooked

IF NOT hotelBooked

Give
Discount

1
IF persons > 10

Fig. 3. REFlex model of the case study

execution. It also references global variables, which may be set by the user or by
other services. For example the input parameter bookValue is the return of the
bookFlight operation.

<process name="TravelProcess">
<globalData>
...
<variable name="bookID" type="STRING"/>
<variable name="flightPaid" type="BOOLEAN"/>
<variable name="flightPaymentCode" type="INT"/>
...

</globalData>
<activities>
...
<activity name="Pay Flight">
<serviceBinding operation="payFlightBooking"
wsdlUrl="http://...FlightService?wsdl"
portType="FlightServicePortType"
binding="FlightServiceSOAP11Binding"/>
<dataInputBinding>
<variableBinding variableName="bookID" global="true"
expression="xpath:/payFB/bookID"/>
<variableBinding variableName="value" global="false"
type="DOUBLE" expression="xpath:/payFB/value"/>
<variableBinding variableName="creditCard" global="false"
type="STRING" expression="xpath:/payFB/creditCard"/>

</dataInputBinding>
<dataOutputBinding>
<variableBinding variableName="flightPaid"
expression="//payFB/result/confirmation"/>
<variableBinding variableName="flightPaymentCode"
expression="//payFB/result/paymentCode"/>

</dataOutputBinding>
</activity>
...

</activities>
</process>

XML 1.1. Snipet of the process definition of the case study

REFlex: An Efficient WS Orchestrator for Declarative Business Processes 235

7 Conclusions

This work proposes a web-service orchestrator for declarative business processes,
called REFlex. This kind of business process rely on business rules to describe
the behavior of the process and to control the execution of process instances.
Hence, the flow of activities is only determined at run-time.

Current engines for the enactment of declarative processes are not completely
integrated with current SOA technologies. On the other hand, all professional
engines for traditional workflow execution recognize the necessity for integration
with web services. It is our contend that a web service orchestrator capable of
interpreting declarative models brings enormous benefits to the field. It allows
for the construction of semi-automated, flexible business processes where process
participants interact with external tools to exchange data and reuse functionality.
In this way, the flexibility of declarative models can be complemented by the
efficiency offered by automation.

REFlex adopts both a graphical and an XML-based languages for the de-
scription of declarative business models. The graphical notation is useful for
communication with business administrators. The XML model is used to model
the technical details of the process, such as its data variables and web service
bindings. SOAP messages are automatically constructed at run-time to perform
the service invocations requested by the user.

REFlex uses a novel rule engine that offers the efficient and deadlock-free
execution of declarative business processes [4]. Furthermore, a unique feature of
REFlex engine among related work is its capacity to interpret data-aware rules.
These rules depend on context information and enhance the expressive power of
the modeling language.

To demonstrate our approach, we described a declarative business process
modeled in REFlex notation. The process make use of web service bindings and
data-dependent rules. Albeit simple, it illustrates the usefulness of such features
for real world applications.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifi-
able agent interaction in abductive logic programming: The sciff framework. ACM
Trans. Comput. Logic 9(4), 29:1–29:43 (2008)

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S.: et al. Business process execution language
for web services (2003)

3. de Carvalho, R.M., Silva, N.C., Oliveira, C.A.L., Lima, R.M.: Reflex: an efficient
graph-based rule engine to execute declarative processes. In: Proceedings of the
International Conference on Systems, Man and Cybernetics (2013)

4. de Carvalho, R.M., Silva, N.C., Oliveira, C.A.L., Lima, R.M.: A solution to the
state space explosion problem in declarative business process modeling. In: Pro-
ceedings of the 25th International Conference on Software Engineering and Knowl-
edge Engineering (2013)

236 N.C. Silva et al.

5. Charfi, A., Mezini, M.: Ao4bpel: An aspect-oriented extension to bpel. World Wide
Web 10(3), 309–344 (2007)

6. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execution
environment supporting dynamic changes disciplined through rules. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Hei-
delberg (2006)

7. Hermosillo, G., Seinturier, L., Duchien, L.: Using complex event processing for
dynamic business process adaptation. In: 2010 IEEE International Conference on
Services Computing (SCC), pp. 466–473 (July 2010)

8. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES, pp. 59–73 (2010)

9. Koning, M., Sun, C.-A., Sinnema, M., Avgeriou, P.: Vxbpel: Supporting variability
for web services in bpel. Inf. Softw. Technol. 51(2), 258–269 (2009)

10. Nurcan, S.: A survey on the flexibility requirements related to business processes
and modeling artifacts. In: HICSS 2008: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, p. 378. IEEE Computer Society,
Washington, DC (2008)

11. Oliveira, C., Silva, N., Sabat, C., Lima, R.: Reducing the gap between business and
information systems through complex event processing. Computing and Informat-
ics 32(2) (2013)

12. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2007, p. 287 (October 2007)

13. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
(2008)

14. Silva, N.C., de Carvalho, R.M., Oliveira, C.A.L., Lima, R.M.: Integrating declara-
tive processes and soa: A declarative web service orchestrator. In: Proceedings of
the 2013 International Conference on Semantic Web and Web Services (2013)

15. van der Aalst, W.M.P., Pesic, M.: Decserflow: Towards a truly declarative service
flow language. In: Leymann, F., Reisig, W., Thatte, S.R., van der Aalst, W.M.P.
(eds.) The Role of Business Processes in Service Oriented Architectures, July 16-
July 21. Dagstuhl Seminar Proceedings, vol. 06291. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

16. Weigand, H., van den Heuvel, W.-J., Hiel, M.: Business policy compliance in
service-oriented systems. Information Systems 36(4), 791–807 (2011), ¡/ce:title¿
Selected Papers from the 2nd International Workshop on Similarity Search and
Applications SISAP 2009 ¡/ce:title¿

17. Xiao, Z., Cao, D., You, C., Mei, H.: Towards a constraint-based framework for
dynamic business process adaptation. In: Proceedings of the 2011 IEEE Interna-
tional Conference on Services Computing, SCC 2011, pp. 685–692. IEEE Computer
Society, Washington, DC (2011)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 237–251, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Task Scheduling Optimization in Cloud Computing
Applying Multi-Objective Particle Swarm Optimization

Fahimeh Ramezani, Jie Lu, and Farookh Hussain

Decision Systems & e-Service Intelligence Lab
Centre for Quantum Computation & Intelligent Systems

School of Software, Faculty of Engineering and Information Technology
University of Technology, Sydney, P.O. Box 123 Broadway NSW 2007 Australia

Fahimeh.Ramezani@student.uts.edu.au,
{Jie.Lu,Farookh.Hussain}@uts.edu.au

Abstract. Optimizing the scheduling of tasks in a distributed heterogeneous
computing environment is a nonlinear multi-objective NP-hard problem which
is playing an important role in optimizing cloud utilization and Quality of Ser-
vice (QoS). In this paper, we develop a comprehensive multi-objective model
for optimizing task scheduling to minimize task execution time, task transfer-
ring time, and task execution cost. However, the objective functions in this
model are in conflict with one another. Considering this fact and the supremacy
of Particle Swarm Optimization (PSO) algorithm in speed and accuracy, we de-
sign a multi-objective algorithm based on multi-objective PSO (MOPSO) me-
thod to provide an optimal solution for the proposed model. To implement and
evaluate the proposed model, we extend Jswarm package to multi-objective
Jswarm (MO-Jswarm) package. We also extend Cloudsim toolkit applying MO-
Jswarm as its task scheduling algorithm. MO-Jswarm in Cloudsim determines
the optimal task arrangement among VMs according to MOPSO algorithm. The
simulation results show that the proposed method has the ability to find optimal
trade-off solutions for multi-objective task scheduling problems that represent
the best possible compromises among the conflicting objectives, and signifi-
cantly increases the QoS.

Keywords: Cloud computing, Task Scheduling, Multi-Objective Particle
Swarm Optimization, Jswarm, Cloudsim.

1 Introduction

Cloud computing provides new business opportunities for both service providers and
requestors (e.g. organizations, enterprises, and end users) by means of a platform for
delivering Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Soft-
ware as a Service (SaaS). A Cloud encloses IaaS, PaaS, and/or SaaS inside its own
virtualization infrastructure to carry out an abstraction from its underlying physical
assets [1].

Task scheduling problems which relate to the efficiency of the whole cloud compu-
ting facilities, are one of the most famous combinatorial optimization problems, and

238 F. Ramezani, J. Lu, and F. Hussain

play a key role in improving flexible and reliable systems. The main purpose is to
schedule tasks to adaptable resources in accordance with adaptable time, which in-
volves establishing a proper sequence whereby tasks can be executed under transac-
tion logic constraints [2]. The scheduling algorithms in distributed systems usually
have the goal of spreading the load on processors and maximizing their utilization
while minimizing the total task execution time [3]. In the cloud environment, the
number of tasks in a workflow as well as the number of available resources can grow
quickly, especially when virtual resources are allocated. Calculating all possible task-
resource mappings in cloud environment and selecting the optimal mapping is not
feasible, since the complexity would grow exponentially with the number of tasks and
resources [4]. The use of a heuristic algorithm ensures an acceptable runtime of the
scheduling algorithm itself since it significantly reduces the complexity of the search
space. This provides a compromise between scheduling runtime and optimality of the
assignment. Of the heuristic optimization algorithms, genetic algorithm, fuzzy-genetic
algorithm, multi-objective genetic algorithm, swarm optimization and normal best-
oriented ant colony have been applied in previous works for optimizing task schedul-
ing, mostly with two main objectives: (1) to minimize the task execution time and (2)
to minimize cost in the cloud environment.

Although a significant amount of research has been done in this area, the majority
assumed that the objective functions in their multi-objective optimization model are
not in conflict with each other and have the same trend. Therefore, they applied sin-
gle-objective evolutionary algorithms to solve their optimization problem. In this
study we develop a comprehensive multi-objective task scheduling optimization mod-
el to optimize cloud utilization and QoS, with in the objective functions are in conflict
with each other. Considering the supremacy of PSO for solving task scheduling opti-
mization in cloud and grid environments [5-9], we develop an algorithm based on
Multi-Objective Particle Swarm Optimization (MOPSO) to solve our model. The
feasibility and the advantages of applying MOPSO for task scheduling in any distri-
buted environments, has not been investigated previously in the literature. In the
proposed model, the criteria of QoS, including response time and service cost, are
considered to determine the optimization objectives for task distribution in cloud
computing. To implement and evaluate the proposed optimization model, we extend
Jswarm [10] to Multi-objective Jswarm and apply it in the Cloudsim toolkit [11] as
the task scheduling algorithm. We analyze the implementation results and compare
our method with three other methods to prove its efficiency. Simulation result shows
that the proposed model significantly increases the QoS in comparison with previous
works. In fact, the proposed model is able to determine good trade-off solutions that
offer the best possible compromises among the optimization objectives, and help
clouds providers to maintain the expected level of QoS, or to improve it after creating
new optimal task distribution schema. The paper contributions can be summarized as:

1) Develop a new multi-objective task scheduling model to minimize both task execu-
tion and transferring time, and task execution cost

2) Develop a MOPSO-based algorithm to solve the proposed task scheduling model
3) Extend the Jswarm and Cloudsim packages to evaluate our model

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 239

The rest of this paper is organized as follows. In Section 2, related works for task
scheduling optimization methods are described. In Section 3, we propose our multi-
objective model for optimal task scheduling, followed by a developed MOPSO-based
algorithm for solving the proposed multi-objective task scheduling model in Section
4. We evaluate our developed model and analyze the simulation results, in Section 5.
Finally we present our conclusion and future works in Section 6.

2 Related Works for Task Scheduling Optimization

The task scheduling problem in distributed computing systems is an NP-hard optimi-
zation problem which plays an important role in optimizing cloud utilization. It also
effects on QoS in the cloud environment by optimizing service cost and service re-
sponse time. Song et al. [12] proposed a general task selection and allocation frame-
work to be directly applicable in a dynamic collaboration environment and improve
resource utilization for primary cloud provider. Their framework utilizes an adaptive
filter to select tasks and a modified heuristic algorithm (Min-Min) to allocate tasks. A
trade-off metric is developed as the optimization goal of the heuristic algorithm, so
that it is able to manage and optimize the trade-off between the QoS of tasks and the
utilization of resources. The authors considered four criteria for resource utilization in
their approach, namely: resource requirement of CPU, memory, hard-disk and net-
work bandwidth. In addition they considered two objectives: they tried to allocate
tasks to a physical machine by maximizing the remaining CPU capacity, and max-
imizing the utilization of whole resources. Li et al. [13] applied another heuristic op-
timization approach to propose an algorithm called Normal Best-Oriented Ant Colony
Optimization (NBOACO). They applied their experimental results in a simulation
environment to prove that a better scheduling result with shorter total-task-finish time
and mean-task finish time, and batter load balance can be achieved by their proposed
algorithm in compared to the Ant Colony Optimization algorithm (ACO). To achieve
better results in task scheduling, Li et al. [14] took resource allocation pattern into
account and proposed a task and resource optimization mechanism. Their approach
contains two online dynamic task scheduling algorithms: dynamic cloud list schedul-
ing and dynamic cloud min-min scheduling. These algorithms were designed to sche-
dule tasks for the IaaS cloud system with preemptive tasks and task priorities. They
considered tasks map and task types (Advance Reservation or Benefit- effort), to de-
termine tasks priorities. Their algorithms dynamically adjust the resource allocation
based on updated actual task execution which can be calculated by applying the in-
formation about the resource status. This information is pulled from other clouds and
aggregated by clouds’ servers managers.

Zomaya et al. [3] and Xiao et al. [2] applied Genetic Algorithm (GA) to develop a
load-balancing algorithm whereby optimal or near optimal task allocation can evolve
during the operation of the parallel computing system. To enhance the accuracy of
GA results for the task scheduling process, Tayal [15] purposed an optimized algo-
rithm based on the fuzzy-genetic algorithm optimization which makes a scheduling
decision by evaluating the entire group of tasks in the job queue. To adapt the GA
operator’s value (selection; crossover; mutation) during the run of the GA, they

240 F. Ramezani, J. Lu, and F. Hussain

designed an algorithm for the fuzzy setting of GA parameters. They considered three
parameters for the triangular function which are: (1) execution time, (2) work load
and (3) objective function1. Juhnke et al. [4] proposed a multi-objective scheduling
algorithm for cloud-based workflow applications by applying Pareto Archived Evolu-
tion Strategy which is a type of GA which are capable of dealing with multi-objective
optimization problems. When the constituent workflow tasks in a cloud environment
are geographically distributed – hosted by different cloud providers or data centers of
the same provider – data transmission can be the main bottleneck. The multi-objective
genetic algorithm therefore takes data dependencies between BPEL (Business Process
Execution Language for Web Services) workflow steps into account and assigns them
to cloud resources based on the two conflicting objectives of execution cost and ex-
ecution time according to the preferences of the user, and provides additional re-
sources when needed.

Task assignment has been found to be an NP-Complete problem, thus GA has been
used for solving this problem. However, GA may not be the best method. Lei et al. [6]
and Salman et al. [5] have illustrated that the particle swarm optimization (PSO) algo-
rithm is able to obtain a better schedule than GA in grid computing and distributed
systems. Not only is the solution quality of PSO algorithm better than GA in most of
the test cases, it also runs faster than GA [7].

Considering that user applications may incur large data retrieval and execution
costs. Chen and Tsai [16] suggested that the cost arising from data transfers between
resources as well as execution costs, should be taken into account in the optimization
of task scheduling. They therefore presented a Discrete Particle Swarm Optimization
(DPSO) approach for tasks allocation. They proposed a meta-heuristic optimization
approach based on PSO for finding the near optimal tasks allocation with reasonable
time. The approach seeks to dynamically generate an optimal task allocation so that
tasks can be completed in a minimal period of time while still utilizing resources in an
efficient way. Similarly, Guo et al. [7] proposed a PSO algorithm which is based on a
small position value rule to formulate a model for task scheduling that would minim-
ize the overall time of execution and transmission. They compared and analyzed PSO
with crossover, mutation and local search algorithms based on particle swarm. The
experiment results demonstrate that the PSO algorithm converges and performs more
quickly than the other two algorithms in a large scale. Hence the authors concluded
that the PSO is more suitable for task scheduling in cloud computing. As an expan-
sion of [16] and [7], Liu et al. [8] introduced several meta-heuristic adaptations to the
particle swarm optimization algorithm to deal with the formulation of efficient sche-
dules and presented the Variable Neighborhood Search Particle Swarm Optimization
(VNPSO) algorithm as a method for solving the resulting scheduling problem. They
formulated the scheduling problem for workflow applications with security con-
straints in distributed data-intensive computing environments and presented a novel
security constraint model. They introduced VNPSO as an algorithm which can be
applied in distributed data-intensive applications to meet specific requirements,
including workflow constraints, security constraints, data retrieval/transfer, job

1 Objective function represents the time that processor i will have finished the previously as-

signed jobs and E[t][i] is the predicted execution time that task t is processed on processor i.

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 241

interaction, minimum completion cost, flexibility and availability. The authors ben-
chmarked the proposed algorithm with a multi-start particle swarm optimization and
multi-start genetic algorithm. The empirical results illustrate that VNPSO is more
feasible and effective than two other baselines. According to the outputs, VNPSO
balances the global exploration and local exploitation for scheduling tasks very well.

Despite the efficiency of PSO-based single objective algorithms, they are not prac-
tical for solving a multi-objective task scheduling problems for minimizing both cost
and time in a cloud environment, because these two objectives are in conflict with one
another and there does not exist a single solution that simultaneously optimizes each
of them. To confront with this drawback, MOPSO is applied in this paper to solve
such problems and determine the best possible trade-off among the objectives while
also providing higher QoS.

3 A Multi-Objective Model for the Optimal Task Scheduling
Problem

We develop a multi-objective model for optimizing task scheduling considering three
aspects of task scheduling optimization problem including: task execution time, task
transferring time, and task execution cost. To determine this problem we combine and
improve the methods which are proposed in [7, 8] for formulating task execution
time. In this model, to minimize time consumption, not only total tasks execution time
is minimized, but also minimize the maximum tasks execution time. Applying this
method, the highest level of time consumption for task executing is also restricted. To
formulate the multi-objective model, the following variables are defined: n The number of arrival tasks T t , t , … , t Set of arrival tasks NPM The number of Physical Machines PMs) in cloud m The number of VMs VM Virtual Machine j , j 1,2, … , m PM k|VM z th PM, z ∈ 1,2, … , NPM The set of VMs which are located in zth PM SP k|VM Pth Cloud provider, P ∈ 1,2, … , cpThe set of VMs which are asigned to th provider B The bandwidth between center and VM
cp = Number of cloud providers C Maximum capacity for provider x 1 if task is assigned to VM and x 0, otherwise The amount of data that task i assigns to the VM

242 F. Ramezani, J. Lu, and F. Hussain

 The amount of memory of VM c The amount of capacity of VM The cost of one unit VM for jth provider USD per hour) The total number of VMs supplied by provider that have executed tasks in the period time
Applying these variables, we can calculate the following functions:

 1)

where denotes the task execution time on VM . Using this, the total task execu-
tion time is calculated as:

 2)

The total tasks transferring time is determined as: 3)

The total task execution cost for providers (USD per hour) is: ∈)) 4)

and is determined using following equation: , 1∈) 5)

Problem:)) 6)) 7)

Subject to

1, 1, … ,
∈ 0,1 , 1, . . , & 1, … , 0 , 1,2, … ,

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 243

4 MOPSO-Based Algorithm for Solving the Multi-Objective
Task Scheduling Problem

In this section we first provide preliminary definition and explanation of MOPSO
method. Then, we explain our proposed MOPSO-based algorithm that will be used to
solve the proposed model in Section 3.

4.1 Multi-Objective Particle Swarm Optimization Method

Optimization problems that have more than one objective function are rather common
in every field or area of knowledge. In such problems, the objective functions are
normally in conflict with respect to each other, which means that there is no single
solution for these problems. Instead, the aim is to find good trade-off solutions that
represent the best possible compromises among the objectives [17]. A multi-objective
optimization problem is of the form: Min F x) f x), f x), … , f x) 8)

where , , … ,) is the vector of decision variables; : ,1, … , are the objective functions. Let particle , , … ,) represent a solu-
tion to (1). A solution dominates if for all j=1,..,k and for at least one j=1,…,k. A feasible solution is called Pareto

optimal (non-dominated) if there is no other feasible solution that dominates it.
The set of all objective vectors corresponding to the Pareto optimal solutions is
called the Pareto front (P*). Thus, the goal is to determine the Pareto optimal set from
the set F of all the decision variable vectors (particles) [18-21].

In PSO, particles are flown through hyper dimensional search space. Changes to
the position of the particles within the search space are based on the social–
psychological tendency of individuals to emulate the success of other individuals. The
position of each particle is changed according to its own experience and that of its
neighbors. Let) denote the position of particle i, at iteration t. The position of) is changed by adding a velocity 1) to it as follows: X t 1) X t) V t 1) 9)

The velocity vector reflects the socially exchanged information and, in general, is
defined in the following way: V t 1) WV t) C r x X t) C r x X t) 10)

where C1 is the cognitive learning factor and represents the attraction that a particle
has towards its own success; C2 is the social learning factor and represents the attrac-
tion that a particle has towards the success of the entire swarm; W is the inertia
weight, which is employed to control the impact of the previous history of velocities

244 F. Ramezani, J. Lu, and F. Hussain

on the current velocity of a given particle; x is the personal best position of the
particle i; x is the position of the best particle of the entire swarm; and r , r ∈0,1 are random values [17]. In MOPSO all Pareto optimal solutions are stored in an
archive and x is chosen from this archive.

4.2 MOPSO-Based Algorithm

We develop a MOPSO-based algorithm to solve the proposed multi-objective task
scheduling problem presented in Section 3. MOPSO finds the optimal task scheduling
pattern, minimizing task execution time, task transfer time, and task execution cost. In
the task scheduling model, we have n tasks , , … , that should be assigned to
m VMs , , … , to be executed (Table1). All particle positions , , … ,) determined by MOPSO by applying Equations 9 and 10, are vectors
with continuous values, but we need their corresponding discrete values to determine
the number of chosen VM for executing tasks. Therefore, we convert the particles’
continuous position values vector to discrete vectors) , , … ,) applying
the Small Position Value (SPV) rule [7].

Table 1. Task scheduling pattern (task mapping)

Tasks t1 t2 t3 t4 t5 … tn

VM number = Particle position vm7 vm4 vm5 vm7 vm3 … vmm

Particle position in Table 1 is a possible solution) , , … ,)7, 4, 5, 7, 3, . . ,) after converting the continuous position values to discrete. Accord-
ing to this possible solution VMs: vm7, vm4, vm5, vm7, …, and vmm are chosen to ex-
ecute t1, t2, t3, t4, …, and tn respectively. Considering this fact, every particle in our
MOPSO model has n dimensions to assign n tasks to m VMs, and this model has two
fitness functions: (1) minimizing task execution and transferring time ()), (2)
minimizing tasks execution cost: ()). Every particle will be assessed consider-
ing these fitness functions and all Pareto optimal solutions stored in an archive. In this
paper we assume:

 , ∈ Archive 11)

where m is the number of objective functions and Wj is the preference weight for
every objective function (). We then rank Pareto optimal solutions (archive
members) on the basis of the number of functions that they minimized, and the maxi-
mum value of QoS. Then is randomly chosen from the top ten. The MOPSO-
based algorithm is summarized as follow:

Step 1. Initialize population: determine random position and velocity for every par-
ticle in the swarm population

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 245

Step 2. Initialize archive: archive members are non-dominated solutions (n dimen-
sions particles whose position is a Pareto optimal solution)

Step 3. Convert continuous position values vector of to discrete vector)
using SPV rule to determine allocated VM for every arrival task.

Step 4. Determine the value of , , c , , and B based on) to calculate the value of every fitness function.
Step 5. Evaluate population according to defined fitness functions:

Step 5.1. Minimize tasks execution/transferring time (Equation (6))
Step 5.2. Minimize tasks execution cost (Equation (7))

Step 6. Update the archive contents: delete dominated members from archive and
store the Pareto optimal (non-dominated) solutions in the archive.

Step 7. Sort archive members based on the number of function that they minimized

and the maximum value of))

Step 8. Choose from top 10 sorted members in the archive randomly

Step 9. Choose for every particle: If the current position of the particle domi-

nates best position of the particle, use current position as new best position
for the particle

Step 10. Compute inertia weight and learning factors
Step 11. Compute new velocity and new position of the particles based on MOPSO

formulations (Equations (9) and (10))
Step 12. If maximum iteration is satisfied then

Step 12.1. Output) position as the best task scheduling pattern

(task mapping))
Else

Step 12.2 Go to Step 3

5 Simulation Results

In this section, we aim to prove the efficiency of our multi-objective task scheduling
method. We first describe the simulation environment. Then, we explain how the
Jswarm and CloudSim packages are extended to implement the method, and finally
the performance and evaluation section is presented.

5.1 Environment Description

We design the simulation by assuming that we have three PMs (data centers), five
VMs, five cloud providers and ten arrival tasks (cloudlets). We assume every VM
belongs to one provider. Data and information about VMs and tasks (cloudlets) are
summarized in Tables 2 and 3:

246 F. Ramezani, J. Lu, and F. Hussain

Table 2. Properties of VMs

VM Id MIPS VM image size
VM memo-

ry (Ram)
Bandwidth

The number
of CPUs

VMM name

0 256 10000 512 10000 4 Xen
1 300 1000 256 1000 1 Xen
2 256 1000 512 10000 2 Xen
3 256 1000 512 1000 1 Xen
4 256 100 256 10 1 Xen

Table 3. Properties of tasks

Task Id Length File Size Output Size The number of required CPUs

0 250000 300 300 1
1 25000 300 300 1
2 250000 300 300 1
3 25000 300 300 1
4 250000 300 300 1
5 250000 300 300 1
6 25000 300 300 1
7 250000 300 300 1
8 250000 300 300 1
9 25000 300 300 1

5.2 Implementation

To implement the proposed method, we extend Jswarm package [10] to MO-Jswarm
by converting the PSO algorithm to MOPSO algorithm. To achieve this goal, we first
change the evaluation method in Swarm class by adding four new functions to: de-
termine non-dominated (Pareto optimal) solutions, insert non-dominated solutions in
the archive, determine the dominated solutions in the archive, and update achieve. In
the first function, for every iteration, the positions of the particles (possible solutions)
are assessed considering all the fitness functions (objectives) and the non-dominated
solutions are determined, then they are inserted in the archive by applying the second
function. Non-dominated solutions in the archive are assessed by the third function to
find dominated solutions in the archive, and in the fourth function, dominated solu-
tions in the archive are deleted. The archive members are then sorted. We then change
the velocity and position calculation methods in ParticleUpdate class. We also make
Particle, Neighborhood, SwarmRepulsive, VariableUpdate classes compatible with
the new multi-objective calculations. We then extend the Cloudsim toolkit [11] by
applying MO-Jswarm as its task scheduling algorithm. The bindCloudletToVm()
method in the DatacenterBrocker class of Cloudsim is responsible for assigning tasks
to VMs, and the MO-Jswarm has the ability to determine the optimal tasks arrange-
ment among VMs according to the MOPSO algorithm.

The objective functions in the proposed multi-objective task scheduling model are
applied as the fitness functions in MO-Jswarm. In our model, we have 20 particles
and the optimal results are obtained after 2000th iteration of the MOPSO algorithm in

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 247

MO-Jswarm. Cloudsim allocates tasks to VMs in an optimal way based on the results
of the developed MOPSO-based algorithm in MO-Jswarm.

5.3 Evaluation

To evaluate the proposed method, we firs perform the simulation under the environ-
ment that we define in Section 5.1.The output results are illustrated in Table 5. As can
be seen from the results, cloudlets (tasks) 1, 2, 4, 7, 8 and 9 are assigned to VM0 , and
cloudlets 0, 3, 5 and 6 are allocated to VM2.

Table 4. Cloudsim outputs for the proposed model using MO-Jswarm

Tasks t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

VM numbers =
Particle position

vm2 vm0 vm0 vm2 vm0 vm2 vm2 vm0 vm0 vm5

The graphs for task execution/transferring time ()), and task execution cost
()) using our MOPSO-based algorithm are illustrated in Fig. 1. As can be seen,) fluctuates from 420 to 60 seconds, and) decreases from 37 to
around 14 USD per hour, within 2000 iterations.) decreases while)
rises dramatically in interval [140, 260] iteration. This shows that some solutions
(task scheduling pattern) that minimize one objective can maximize another objective.
In the obtained optimal solution at iteration 2000,) and) are equal to
60 seconds and 14 USD respectively.

Fig. 1. The value of objective functions: Task execution/transferring time and task execution
cost

We compare our proposed multi-objective method of solving task scheduling prob-
lem with conflicting objective with three different methods. The defined methods are
explained as follows:

248 F. Ramezani, J. Lu, and F. Hussain

• Method 1: in which a single-objective optimization model is applied to minimize
tasks execution/transferring time with objective function). The corres-
ponding value of) is simply calculated using the optimal solution of the
model in Equation 7.

• Method 2: in which a single-objective optimization model is applied to minimize
tasks execution cost with objective function). The corresponding value of) is simply calculated using the optimal solution of the model in Equation
6.

• Method 3: in which a single-objective optimization model is applied to minimize) and), and weighted aggregation of these objectives is considered
as the single-objective of the model:)) 12)

The PSO algorithm in Jswarm package is used to solve the optimization models in
these three methods. In the third comparison, we compare our method with the opti-
mization method proposed by [7] which has two objectives: (1) execution time and
(2) execution cost and is solved by PSO-based single-objective algorithms. In this
model, the weighted aggregation of the objectives is considered as a single optimiza-
tion objective, which means the optimal solutions for the single-objective optimiza-
tion problem are Pareto optimal solutions to the multi-objective optimization problem,
and the conflict between the objectives is neglected. Based on the Cloudsim output
results, the optimal solutions (best particle position) resulted from every method are
illustrated in Table 5.

Table 5. Cloudsim outputs for three methods using Jswarm.

Tasks t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Optimal solution

in Method 1
vm1 vm3 vm0 vm1 vm0 vm2 vm1 vm3 vm0 vm1

Optimal solution

in Method 2
vm0 vm4 vm0 vm4 vm0 vm0 vm0 vm0 vm0 vm0

Optimal solution

in Method 3
vm0 vm0 vm0 vm0 vm0 vm0 vm0 vm0 vm0 vm0

According to the first method, the optimal tasks execution/transferring time is 32.6.
We calculate the corresponding tasks execution cost which is equal to 54.36 applying
the optimal solution in). In the second method, the optimal task execution
cost is 12.21, and the corresponding tasks execution/transferring time applying the
optimal solution in) is equal to 6335. In third method, the optimal task execu-
tion/transferring time and tasks execution cost is equal to -3235.66 applying weighted
aggregation of the objectives. To estimate the QoS which results from every method,
the following equation is utilized by assuming the same preference weight (-0.5) for
both cost and time: 0.5)) 0.5)) 4)

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 249

The optimal results of all methods are summarized in Table 6.

Table 6. Comparison results

User preference weight

Cost weight = Time weight = -
0.5

Task execution and
transferring time

(Seconds)

Task execution cost

(USD)
Estimated

QoS

PSO in Method 1 32.6 54.36 -43.48

PSO in Method 2 6335 12.21 -3173.6

PSO in Method 3 -3235.66 -3235.66

MOPSO in the proposed Method 60 15.00 -37.5

As can be seen from the comparison results in Table 6, the estimated QoS in Me-
thods 1, 2 and 3 are -43.48, -3173.6 and -3235.66 respectively. The estimated QoS in
our proposed method is equal to -37.5, that is significantly increased in contrast to the
QoS obtained in Methods 2 and 3. It is also higher than the QoS resulted from Me-
thod 1. Although,) in Method 1 (i.e. 32.6) and) in Method 2 (i.e.
12.21) have their minimum values, they did not result the highest QoS. In addition,
the QoS has its lowest value in Method 3. In this case, the approaches in Methods 1
and 2 are even better than the multi-objective optimizing approach in Method 3.

As the result, the proposed method determines an optimal trade-off solution for the
multi-objective task scheduling problem with objective functions that are in conflict
with one another, and determines the best possible compromises among the objec-
tives, thereby significantly increasing the QoS.

6 Conclusion and Future Works

In this paper we propose a multi-objective model for optimizing task scheduling that
considers three aspects of the task scheduling optimization problem: task execution
time, task transferring time, and task execution cost. We also design a MOPSO algo-
rithm to solve the proposed task scheduling model. To evaluate our proposed method
we first extend the Jswarm package, change it to a multi-objective PSO and convert it
to MO-Jswarm. Then we extend the Cloudsim toolkit by applying MO-Jswarm as its
task scheduling algorithm. The bindCloudletToVm() method in the DatacenterBrock-
er class of Cloudsim is responsible for assigning tasks to VMs, and the MO-Jswarm
has the ability to determine the optimal task arrangement among VMs according to
the MOPSO algorithm. The experimental results in the simulation environment show
that the proposed optimization model has the ability to determine the best trade-off
solutions compared to recent task scheduling approaches; it provides the best possible
coincidences among the objectives and achieves the highest QoS. The decision sup-
port system that we have designed, implemented and validated in our work, could be
made part of the virtualization layer. This would enable data center operators to make
use of this system for load balancing.

250 F. Ramezani, J. Lu, and F. Hussain

In our future work, we will implement the proposed model in a real cloud envi-
ronment. We also will consider task priorities and types in our optimization model. In
addition, we will extend our model to minimize energy consumption by not choosing
VMs on idle PMs as new hosts for executing tasks. Furthermore, we will compare the
MOPSO with other multi-objective evolutionary algorithms such as MOGA, to find
the most efficient and reliable algorithm that not only determines the optimal task
scheduling pattern but also obtains the solution in the shortest possible time.

Acknowledgment. The first author would like to thank Dr. Vahid Behbood for his
help and comments.

References

1. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Virtual machine provisioning through sa-
tellite communications in federated cloud environments. Future Generation Computer Sys-
tems 28(1), 85–93 (2012)

2. Xiao, Z.J., Chang, H.Y., Yi, Y.: An optimization m ethod of w orkflow dynamic schedul-
ing based on heuristic GA. Computer Science 34(2) (2007)

3. Zomaya, A.Y., Yee-Hwei, T.: Observations on using genetic algorithms for dynamic load-
balancing. IEEE Transactions on Parallel and Distributed Systems 12(9), 899–911 (2001)

4. Juhnke, E., Dörnemann, T., Böck, D., Freisleben, B.: Multi-objective scheduling of bpel
workflows in geographically distributed clouds. In: 4th IEEE International Conference on
Cloud Computing, pp. 412–419 (2011)

5. Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assignment
problem. Microprocessors and Microsystems 26(8), 363–371 (2002)

6. Lei, Z., Yuehui, C., Runyuan, S., Shan, J., Bo, Y.: A task scheduling algorithm based on
pso for grid computing. International Journal of Computational Intelligence Research 4(1),
37–43 (2008)

7. Guo, L., Zhao, S., Shen, S., Jiang, C.: Task scheduling optimization in cloud computing
based on heuristic algorithm. Journal of Networks 7(3), 547–553 (2012)

8. Liu, H., Abraham, A., Snášel, V., McLoone, S.: Swarm scheduling approaches for work-
flow applications with security constraints in distributed data-intensive computing envi-
ronments. Information Sciences 192(0), 228–243 (2012)

9. Behbood, V., Lu, J., Zhang, G.: Fuzzy bridged refinement domain adaptation: Long-term
bank failure prediction. International Journal of Computational Intelligence and Applica-
tions 12(01) (2013), doi:10.1142/S146902681350003X

10. Cingolani, P.: http://jswarm-pso.sourceforge.net/
11. Calheiros, R.N., Ranjan, R., De Rose, C.A.F., Buyya, R.: Cloudsim: A novel framework

for modeling and simulation of cloud computing infrastructures and services. Arxiv pre-
print arXiv:0903.2525 (2009)

12. Song, B., Hassan, M.M., Huh, E.: A novel heuristic-based task selection and allocation
framework in dynamic collaborative cloud service platform. In: 2nd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 360–367
(2010)

13. Li, J., Peng, J., Cao, X., Li, H.-y.: A task scheduling algorithm based on improved ant co-
lony optimization in cloud computing environment. Energy Procedia 13, 6833–6840
(2011)

 Task Scheduling Optimization in Cloud Computing Applying Multi-Objective PSO 251

14. Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling
preemptable tasks on iaas cloud systems. Journal of Parallel and Distributed Compu-
ting 72(5), 666–677 (2012)

15. Tayal, S.: Tasks scheduling optimization for the cloud computing systems. International
Journal of Advanced Engineering Sciences and Technologies 5(2), 111–115 (2011)

16. Chen, Y.M., Tsai, S.Y.: Optimal provisioning of resource in a cloud service. IJCSI Interna-
tional Journal of Computer Science Issues 7(6), 1694–1814 (2010)

17. Mahmoodabadi, M.J., Bagheri, A., Nariman-zadeh, N., Jamali, A.: A new optimization al-
gorithm based on a combination of particle swarm optimization, convergence and diver-
gence operators for single-objective and multi-objective problems. Engineering Optimiza-
tion, 1–20 (2012)

18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

19. Alves, M.J.: Using MOPSO to solve multiobjective bilevel linear problems. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T.
(eds.) ANTS 2012. LNCS, vol. 7461, pp. 332–339. Springer, Heidelberg (2012)

20. Gao, Y., Zhang, G., Lu, J., Wee, H.-M.: Particle swarm optimization for bi-level pricing
problems in supply chains. Journal of Global Optimization 51(2), 245–254 (2011)

21. Lu, J., Zhang, G., Ruan, D.: Multi-objective group decision making: Methods, software
and applications with fuzzy set techniques. Imperial College Press, London (2007)

Verification of Artifact-Centric Systems:
Decidability and Modeling Issues

Dmitry Solomakhin1, Marco Montali1,
Sergio Tessaris1, and Riccardo De Masellis2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{solomakhin,montali,tessaris}@inf.unibz.it

2 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
demasellis@dis.uniroma1.it

Abstract. Artifact-centric business processes have recently emerged as an ap-
proach in which processes are centred around the evolution of business entities,
called artifacts, giving equal importance to control-flow and data. The recent
Guard-State-Milestone (GSM) framework provides means for specifying busi-
ness artifacts lifecycles in a declarative manner, using constructs that match how
executive-level stakeholders think about their business. However, it turns out that
formal verification of GSM is undecidable even for very simple propositional
temporal properties. We attack this challenging problem by translating GSM into
a well-studied formal framework. We exploit this translation to isolate an interest-
ing class of “state-bounded” GSM models for which verification of sophisticated
temporal properties is decidable. We then introduce some guidelines to turn an
arbitrary GSM model into a state-bounded, verifiable model.

Keywords: artifact-centric systems, guard-stage-milestone, formal verification.

1 Introduction

In the last decade, a plethora of graphical notations (such as BPMN and EPCs) have
been proposed to capture business processes. Independently from the specific notation
at hand, formal verification has been generally considered as a fundamental tool in the
process design phase, supporting the modeler in building correct and trustworthy pro-
cess models [17]. Intuitively, formal verification amounts to check whether possible
executions of the business process model satisfy some desired properties, like generic
correctness criteria (such as deadlock freedom or executability of activities) or domain-
dependent constraints. To enable formal verification and other forms of reasoning sup-
port, business process models are translated into an equivalent formal representation,
which typically relies on variants of Petri nets [1], transition systems [2], or process al-
gebras [19]. Properties are then formalized using temporal logics, using model checking
techniques to actually carry out verification tasks [9].

A common drawback of classical process modeling approaches is being activity-
centric: they mainly focus on the control-flow perspective, lacking the connection be-
tween the process and the data manipulated during its executions. This reflects also
in the corresponding verification techniques, which often abstract away from the data
component. This “data and process engineering divide” affects many contemporary
process-aware information systems, increasing the risk of introducing redundancies and

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 252–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 253

potential errors in the development phase [13,8]. To tackle this problem, the artifact-
centric paradigm has recently emerged as an approach in which processes are guided
by the evolution of business data objects, called artifacts [18,10]. A key aspect of arti-
facts is coupling the representation of data of interest, called information model, with
lifecycle constraints, which specify the acceptable evolutions of the data maintained by
the information model. On the one hand, new modeling notations are being proposed
to tackle artifact-centric processes. A notable example is the Guard-State-Milestone
(GSM) graphical notation [11], which corresponds to way executive-level stakehold-
ers conceptualize their processes [7]. On the other hand, the formal foundations of the
artifact-centric paradigm are being investigated in order to capture the relationship be-
tween processes and data and to support formal verification [12,5,4,3]. Two important
issues arise. First, verification formalisms must go beyond propositional temporal log-
ics, and incorporate first-order formulae to express constraints about the evolution of
data and to query the artifact information models. Second, verification tasks become
undecidable in general.

In this work, we tackle the problem of automated verification of GSM models. First of
all, we show that verifying GSM models is indeed a very challenging issue, being unde-
cidable in general even for simple propositional reachability properties. We then provide
a sound and complete encoding of GSM into Data-Centric Dynamic Systems (DCDSs),
a recently developed formal framework for data- and artifact-centric processes [4]. This
encoding enables the to transfer in the GSM context the decidability and complexity re-
sults recently established for DCDSs with bounded information models (state-bounded
DCDSs). These are DCDSs where the number of tuples does not exceed a given maxi-
mum value. This does not mean that the system must contain an overall bounded amount
of data: along a run, infinitely many data can be encountered and stored into the informa-
tion model, provided that they do not accumulate in the same state. We lift this property
in the context of GSM, and show that verification of state-bounded GSM models is decid-
able for a powerful temporal logic, namely a variant of first-order μ-calculus supporting
a restricted form of quantification [14]. We then isolate an interesting class of GSM mod-
els for which state-boundedness is guaranteed, introducing guidelines that help to make
GSM models state-bounded and, in turn, verifiable.

The rest of the paper is organized as follows. Section 2 gives an overview of GSM
and provides a first undecidability result. Section 3 introduces DCDSs and presents
the GSM-DCDS translation. Section 4 introduces “state-bounded” GSM models and
provides key decidability results. Discussion and conclusion follow.

2 GSM Modeling of Artifact-Centric Systems

The foundational character of artifact-centric business processes is the combination of
static properties; i.e., the data of interest, and dynamic properties of a business process,
i.e., how it evolves. Artifacts, the key business entities of a given domain, are char-
acterized by (i) an information model that captures business-relevant data, and (ii) a
lifecycle model that specifies how the artifact progresses through the business. In this
work, we focus on the Guard-Stage-Milestone (GSM) approach for artifact-centric mod-
eling, recently proposed by IBM [11] and included by the Object Management Group
(OMG) into the new standard for Case Management Model and Notation (CMMN) [22].

254 D. Solomakhin et al.

For the sake of simplicity here we provide a general overview of the GSM methodology
and we refer an interested reader to [6] for more detailed and formal definitions.

GSM is a declarative modelling framework that has been designed with the goal of
being executable and at the same time enough high-level to result intuitive to executive-
level stakeholders. The GSM information model uses (possibly nested) attribute/value
pairs to capture the domain of interest. The key elements of a lifecycle model are stages,
milestones and guards (see Example 1). Stages are (hierarchical) clusters of activities
(tasks) intended to update and extend the data of the information model. They are as-
sociated to milestones, business operational objectives to be achieved when the stage
is under execution. Guards control the activation of stages and, like milestones, are de-
scribed in terms of data-aware expressions, called sentries, involving events with associ-
ated data (called payload) and conditions over the artifact information model. Sentries
have the form on e if cond, where e is an event and cond is an (OCL-based, see [16])
condition over data. Both parts are optional, supporting pure event-based or condition-
based sentries. Changes on the artifact state are performed by tasks, which represent
atomic operations. They can be used to update the data of artifact instances (e.g., based
on the payload of an incoming event), or to add/remove (nested) tuples. Crucially, tasks
are used to manage artifacts life cycle. Create-artifact-instance tasks enable the cre-
ation of new artifact instances of a given type. Creation of artifacts is modelled as a
two-way service call, where the returned result is used to create a new tuple for the
artifact instance, to assign a new identifier to it, and to fill it with the result’s payload.
Analogously, tasks may remove existing artifact instances. In the following, we use
model for the intensional level of a specific business process described in GSM, and
instance to denote a GSM model with specific data for its information model.

The execution of a business process may involve several instances of artifact types
described by a GSM model. At any instant, the state of an artifact instance (snapshot) is
stored in its information model, and is fully characterised by: (i) values of attributes in
the data model, (ii) status of its stages (open or closed) and (iii) status of its milestones
(achieved or invalidated). Artifact instances may interact with the external world by
exchanging typed events. In fact, tasks are considered to be performed by an external
agent, and their corresponding execution is captured with two event types: a service call,
whose instances are populated by the data from information model and then sent to the
environment and a service call return, whose instances represent the corresponding
answer from the environment and are used to incorporate the obtained result back into
the artifact information model. The environment can also send unsolicited (one-way)
events, to trigger specific guards or milestones. Additionally, any change of a status
attribute, such as opening a stage or achieving a milestone, triggers an internal event,
which can be further used to govern the artifact lifecycle.

Example 1. Figure 1 shows a simple order management process modeled in GSM. The
process centers around an order artifact, whose information model is characterized by
a set of status attributes (tracking the status of stages and milestones), and by an ex-
tendible set of ordered items, each constituted by a code and a quantity. The order
lifecycle contains three top-level atomic stages (rounded rectangles), respectively used
to manage the manipulation of the order, its payment, and the delivery of a payment
receipt. The order management stage contains a task (rectangle) to add items to the

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 255

add itemon itemRequest
if not Order paid

Item added

execute
payment

on payRequest
if order.items -> exists Order paid

send receipt Receipt sent

...

status attributes items
...

code qty

Fig. 1. GSM model of a simple order management process

order. It opens every time an itemRequest event is received, provided that the order
has not yet been paid. This is represented using a logical condition associated to a
guard (diamond). The stage closes when the task is executed, by achieving an “item
added” milestone (circle). A payment can be executed once a payRequest event is is-
sued, provided that the order contains at least one item (verified by the OCL condition
order.items → exists). As soon as the order is paid, and the corresponding milestone
achieved, the receipt delivery stage is opened. This direct dependency is represented us-
ing a dashed arrow, which is a shortcut for the condition on Order paid, representing
the internal event of achieving the “Order paid” milestone.

2.1 Operational Semantics of GSM

GSM is associated to three well-defined, equivalent execution semantics, which disci-
pline the actual enactment of a GSM model [11]. Among these, the GSM incremental se-
mantics is based on a form of Event-Condition-Action (ECA) rules, called Prerequisite-
Antecedent-Consequent (PAC) rules, and is centered around the notion of GSM Business
steps (B-steps). An artifact instance remains idle until it receives an incoming event
from the environment. It is assumed that such events arrive in a sequence and get pro-
cessed by artifact instances one at a time. A B-step then describes what happens to an
artifact snapshot Σ when a single incoming event e is incorporated into it, i.e., how it
evolves into a new snapshot Σ′ (see Figure 5 in [11]). Σ′ is constructed by building a se-
quence of pre-snapshots Σi, where Σ1 results from incorporating e into Σ by updating
its attributes according to the event payload (i.e., its carried data). Each consequent pre-
snaphot Σi is obtained by applying one of the PAC rules to the previous pre-snapshot
Σi−1. Each of such transitions is called a micro-step. During a micro-step some outgo-
ing events directed to the environment may be generated. When no more PAC rules can
be applied, the last pre-snapshot Σ′ is returned, and the entire set of generated events is
sent to the environment.

Each PAC rule is associated to one or more GSM constructs (e.g. stage, milestone)
and has three components:

– Prerequisite: this component refers to the initial snapshot Σ and determines if a
rule is relevant to the current B-step processing an incoming event e.

– Antecedent: this part refers to the current pre-snapshot Σi and determines whether
the rule is eligible for execution, or executable, at the next micro-step.

– Consequent: this part describes the effect of firing a rule, which can be nondeter-
ministically chosen in order to obtain the next pre-snapshot Σi+1.

Due to nondeterminism in the choice of the next firing rule, different orderings among
the PAC rules can exist, leading to non-intuitive outcomes. This is avoided in the GSM

256 D. Solomakhin et al.

operational semantics by using an approach reminiscent of stratification in logic pro-
gramming. In particular, the approach (i) exploits implicit dependencies between the
(structure of) PAC rules to fix an ordering on their execution, and (ii) applies the rules
according to such ordering [11]. To guarantee B-step executability, avoiding situations
in which the execution indefinitely loops without reaching a stable state, the GSM in-
cremental semantics implements a so-called toggle-once principle. This guarantees that
a sequence of micro-steps, triggered by an incoming event, is always finite, by ensur-
ing that each status attribute can change its value at most once during a B-step. This
requirement is implemented by an additional condition in the prerequisite part of each
PAC rule, which prevents it from firing twice.

The evolution of a GSM system composed by several artifacts can be described by
defining the initial state (initial snapshot of all artifact instances) and the sequence of
event instances generated by the environment, each of which triggers a particular B-
step, producing a sequence of system snapshots. This perspective intuitively leads to
the representation of a GSM model as an infinite-state transition system, depicting all
possible sequences of snapshots supported by the model. The initial configuration of
the information model represents the initial state of this transition system, and the in-
cremental semantics provides the actual transition relation. The source of infinity relies
in the payload of incoming events, used to populate the information model of artifacts
with fresh values (taken from an infinite/arbitrary domain). Since such events are not un-
der the control of the GSM model, the system must be prepared to process such events
in every possible order, and with every acceptable configuration for the values carried
in the payload. The analogy to transition systems opens the possibility of using a for-
mal language, e.g., a (first-order variant of) temporal logic, to verify whether the GSM
system satisfies certain desired properties and requirements. For example, one could
test generic correctness properties, such as checking whether each milestone can be
achieved (and each stage will be opened) in at least one of the possible systems’ execu-
tion, or that whenever a stage is opened, it will be always possible to eventually achieve
one of its milestones. Furthermore, the modeler could also be interested in verifying
domain-specific properties, such as checking whether for the GSM model in Figure 1 it
is possible to obtain a receipt before the payment is processed.

2.2 Undecidability in GSM

In this section, we show that verifying the infinite-state transition system representing
the execution semantics of a given GSM model is an extremely challenging problem,
undecidable even for a very simple propositional reachability property.

Theorem 1. There exists a GSM model for which verification of a propositional reach-
ability property is undecidable.

Proof. We represent a Turing machine as a GSM artifact, formulating the halting prob-
lem as a verification problem over such artifact. We consider a deterministic, single tape
Turing machine M = 〈Q,Σ, q0, δ, qf , 〉, where Q is a finite set of (internal) states,
Σ = {0, 1, } is the tape alphabet (with the blank symbol), q0 ∈ Q and qf ∈ Q are
the initial and final state, and δ ⊆ Q \ {qf} × Σ × Q × Σ × {L,R} is a transition re-
lation. We assume, without loss of generality, that δ consists of k right-shift transitions

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 257

Halt
curState == qf

Transition done

...

status attributes curState cellscurCell

curCell = curCell.next;

Head moved

if curCell.next == null

newCell = createCell();
newCell.value = "_";
curCell.next = newCell;
newCell.prev = curCell;
newCell.next = null;

Tape extended

if curCell.next != null

curCell = createCell();
curCell.value = "_";
curState = q0;Initialized if curCell == null

MovedR

. . .

curCell.value = vR1';
curState = qR1';

if curState = qR1

&& curCell.value = vR1

R1 state updated

. . .

curCell.value = vRk';
curState = qRk';

if curState = qRk

&& curCell.value = vRk

Rk state updated

...

value prev next

Transition stage

State update stages

Init stage

Right shift stage

(left transitions) (Left shift stage)
.

Fig. 2. GSM model of a Turing machine

R1, . . . , Rk (those having R as last component), and n left-shift transitions L1, . . . , Ln

(those having L as last component). The idea of the translation into a GSM model is the
following. Beside status attributes, the GSM information model is constituted by: (i) a
curState slot containing the current internal state q ∈ Q; (ii) a curCell slot pointing
to the cell where the head of M is currently located and (iii) a collection of cells rep-
resenting the current state of the tape. Each cell is a complex nested record constituted
by a value v ∈ Σ, and two pointers prev and next used to link the cell to the previous
and next cells. In this way, the tape is modeled as a (double) linked list, which initially
contains a single, blank cell, and which is dynamically extended on demand. To mark
the initial (resp., last) cell of the tape, we assume that its prev (next) cell is null.

On top of this information model, a GSM lifecyle that mimics M is shown in Fig-
ure 2, where, due to space constraints, only the right-shift transitions are depicted (the
left-shift ones are symmetric). The schema consists of two top-level stages: Init, used
to initialize the tape, and Transition, encoding δ. Each transition is decomposed into
two sub-stages: state update and head shift. The state update is modeled by one among
k + n atomic sub-stages, each handling the update that corresponds to one of the tran-
sitions in δ. These stages are mutually exclusive, being M deterministic. Consider for
example a right-shift transition Ri = δ(qRi, vRi, qR

′
i, vR

′
i, R) (the treatment is sim-

ilar for a left-shift transition). The corresponding state update stage opens whenever
the current state is qRi, and the value contained in the cell pointed by the head is vRi

(this can be extracted from the information model using the query curCell.value). The
incoming arrows from the two parent’s guards ensure that this condition is evaluated
as soon as the parent stage opens, hence, if the condition is true, the state update stage

258 D. Solomakhin et al.

is immediately executed. When the state update stage closes, the achievement of the
corresponding milestone triggers one of the guards of the right shift stage that handles
the head shift. Right shift stage contains two sub-stages: the first one extends the tape
if the head is currently pointing to the last cell, while the second one just performs the
shifting. Whenever a right or left shift stage achieves the corresponding milestone, then
also the parent, transition stage is closed, achieving milestone transition done. This has
the effect of re-opening the transition stage again, so as to evaluate the next transition
to be executed. An alternative way of immediately closing the transition stage occurs
when the current state corresponds to the final state qf . In this case, milestone halt is
achieved, and the execution terminates (no further guards are triggered).

By considering this construction, the halting problem for M can be rephrased as
the following verification problem: given the GSM model encoding M, and starting
from an initial state where the information model is empty, is it possible to reach a
state where the halt milestone is achieved? Since M is deterministic, the B-steps of the
corresponding GSM model give raise to a linear computation, which could eventually
reach the halt milestone or continue indefinitely. Therefore, reaching a state where halt
is achieved can be equivalently formulated using propositional CTL or LTL. ��

3 Translation into Data-Centric Dynamic Systems

Despite having a formally specified operational semantics for GSM models [11], the
verification of different properties of such models (e.g. existence of complete execution,
safety properties) is still an open problem. A promising framework for the formalization
and verification of artifact systems is the one of data-centric dynamic systems (DCDS),
recently presented in [4]. Translating a GSM model into a corresponding DCDS enables
the application of the decidability results and verification techniques discussed in [4] to
the concrete case of GSM. Additionally, such translation will allow to benefit from the
results of the ongoing effort towards execution support for DCDS [20]. First we briefly
introduce DCDS and then we present a translation that faithfully rewrites a GSM model
into a corresponding formal representation in terms of DCDSs.

Formally, a DCDS is a pair S = 〈D,P〉, where D is a data layer and P is a pro-
cess layer over D. The former maintains all the relevant data in the form of a rela-
tional database together with its integrity constraints. In the artifact-centric context, the
database is the union of all artifacts information models. The process layer modifies the
data maintained by D, and it is defined as a tuple P = 〈F ,A, �〉 where:

– F is a finite set of functions representing interfaces to external services, used to
import new, fresh data into the system.

– A is a set of actions of the form α(p1, ..., pn) : {e1, ..., em}, where p1, ..., pn are
input parameters of an action and ei are effects of an action. Each effect specifica-
tion defines how a portion of the next database instance is constructed starting from
the current one and has the form ei = q+i ∧ Q−

i � Ei where:
• q+i is a union of conjunctive queries (UCQ) over D, used to instantiate the

effect with values extracted from the current database.
• Q−

i is an arbitrary FO formula that filters away some tuples obtained by q+i .

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 259

• Ei is a set of effects, specified in terms of facts over D that will be asserted in
the next state; these facts can contain variables of Q (which are then replaced
with actual values extracted from the current database) and also service calls,
which are resolved by calling the service with actual input parameters and sub-
stituting them with the obtained result.1.

– � is a declarative process specified in terms of a finite set of Condition-Action (CA)
rules that determine, at any moment, which actions are executable. Technically,
each CA rule has the form Q → α, where α is an action and Q is a FO query over
D. Whenever Q has a positive answer over the current database, then α becomes
executable, with actual values for its parameters given by the answer to Q.

Example 2. Consider a fragment of an order management process. Once pending, an order can
be moved to the ready state by executing a prepare action, which incorporates into the system the
destination address of the customer associated to the order. A DCDS could encode the executabil-
ity of the prepare action by means of the following CA rule: order(id, cust)∧ pending(id) �→
PREPARE(id). The rule states that whenever an order identified by id and owned by customer
cust is pending, it is possible to apply action prepare on it. The action can in turn be defined as:

PREPARE(id) : { order(id, cust) ∧ pending(id)� {ready(id), dest(id, addr(cust))}
order(x, y)� {order(x, y)}

order(x, y) ∧ pending(x)∧ x �= id� {pending(x)}
order(x, y) ∧ ready(x)� {ready(x)} }

The first effect states that the order id becomes ready, and its destination is incorporated by calling
a service addr, which mimics the interaction with the customer. The other effects are used to de-
termine which information is kept unaffected in the next state: all orders remain orders, all ready
orders remain ready, and all pending orders remain pending, except the one identified by id.

The execution semantics of a DCDS S is defined by a possibly infinite-state transition
system ΥS , where states are instances of the database schema in D and each transition
corresponds to the application of an executable action inP . Similarly to GSM, where the
source of infinity comes from the fact that incoming events carry an arbitrary payload, in
DCDSs the source of infinity relies in the service calls, which can inject arbitrary fresh
values into the system. Despite the resulting undecidability of arbitrary DCDSs, an inter-
esting class of state-bounded DCDSs has been recently identified [4], for which decid-
ability of verification holds for a sophisticated (first-order) temporal logic called μLP .
Intuitively, state boundedness requires the existence of an overall bound that limits, at
every point in time, the size of the database instance of S (without posing any restriction
on which values can appear in the database). Equivalently, the size of each state con-
tained in ΥS cannot exceed the pre-established bound. Hence, in the following we will
indifferently talk about state-bounded DCDSs or state-bounded transition systems.

Theorem 2 ([4]). Verification of μLP properties over state-bounded DCDS is decid-
able, and can be reduced to finite-state model checking of propositional μ-calculus.

μLP is a first-order variant of μ-calculus, a rich branching-time temporal logic that sub-
sumes all well-known temporal logics such as PDL, CTL, LTL and CTL* [14]. μLP

1 In [4], two semantics for services are introduced: deterministic and nondeterministic. Here we
always assume nondeterministic services, which is in line with GSM.

260 D. Solomakhin et al.

employs first-order formulae to query data maintained by the DCDS data layer, and sup-
ports a controlled form of first-order quantification across states (within and across runs).

Example 3. μLP can express two variants of a correctness requirement for GSM:
– it is always true that, whenever an artifact id is present in the information model, the corre-

sponding artifact will be destroyed (i.e., the id will disappear) or reach a state where all its
stages are closed;

– it is always true that, whenever an artifact id is present in the information model, the corre-
sponding artifact will persist until a state is reached where all its stages are closed.

3.1 Translating GSM into DCDS

In this section we propose a translation procedure that takes a GSM model and produces
a corresponding faithful representation in terms of DCDSs. This allows us to transfer
the decidability boundaries studied for DCDSs to the GSM context2.

As introduced in Section 2.1, the execution of a GSM instance is described by a
sequence of B-steps. Each B-step consists of an initial micro-step which incorporates
incoming event into current snapshot, a sequence of micro-steps executing all applica-
ble PAC-rules, and finally a micro-step sending a set of generated events at the termi-
nation of the B-step. The translation relies on the incremental semantics: given a GSM
model G, we encode each possible micro-step as a separate condition-action rule in
the process of a corresponding DCDS system S, such that the effect on the data and
process layers of the action coincides with the effect of the corresponding micro-step
in GSM. However, in order to guarantee that the transition system induced by a result-
ing DCDS mimics the one of the GSM model, the translation procedure should also
ensure that all semantic requirements described in Section 2.1 are modeled properly:
(i) “one-message-at-a-time” and “toggle-once” principles, (ii) the finiteness of micro-
steps within a B-step, and (iii) their order imposed by the model. We sustain these
requirements by introducing into the data layer of S a set of auxiliary relations, suitably
recalling them in the CA-rules to reconstruct the desired behaviour.

Restricting S to process only one incoming message at a time is imple-
mented by introducing a blocking mechanism, represented by an auxiliary relation
Rblock(idR, blocked) for each artifact in the system, where idR is the artifact instance
identifier and blocked is a boolean flag. This flag is set to true upon receiving an incom-
ing message, and is then reset to false at the termination of the corresponding B-step,
once the outgoing events accumulated in the B-step are sent the environment. If an arti-
fact instance has blocked = true, no further incoming event will be processed. This is
enforced by checking the flag in the condition of each CA-rule associated to the artifact.

In order to ensure “toggle once” principle and guarantee the finiteness of sequence of
micro-steps triggered by an incoming event, we introduce an eligibility tracking mech-
anism. This mechanism is represented by an auxiliary relation Rexec(idR, x1, ..., xc),
where c is the total number of PAC-rules, and each xi corresponds to a certain PAC-rule
of the GSM model. Each xi encodes whether the corresponding PAC rule is eligible to

2 For the sake of space, we give a general description of the translation and illustrate the techni-
cal development by the example in Figure 4. For a full technical specification of the translation,
we refer the interested reader to a technical report [21].

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 261

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧ Rblock(idR, true) �→ (1)

a
k
exec(idR, a

′
, x) : { (2)

Ratt(idR, a, s,m) ∧ R
Sj
chg(idR, true) � {Ratt(idR, a, s,m)[mj/false]} (3)

Ratt(idR, a, s,m) ∧ R
Sj
chg(idR, true) � {Rmj

chg(idR, false)} (4)

RM
exec(idR, x) ∧ xk = 0 � {RM

exec(idR, x)[xk/1]} (5)

[CopyMessagePools], [CopyRest] } (6)

Fig. 3. CA-rule encoding a milestone invalidation upon stage activation

fire at a given moment in time (i.e., a particular micro-step). The initial setup of the eli-
gibility tracking flags is performed at the beginning of a B-step, based on the evaluation
of the prerequisite condition of each PAC rule. More specifically, when xi = 0, the cor-
responding CA-rule is eligible to apply and has not yet been considered for application.
When instead xi = 1, then either the rule has been fired, or its prerequisite turned out to
be false. This flag-based approach is used to propagate in a compact way information
related to the PAC rules that have been already processed, following a mechanism that
resembles dead path elimination in BPEL. In fact, Rexec is also used to enforce a firing
order of CA-rules that follows the one induced by G. This is achieved as follows. For
each CA-rule Q → α corresponding to a given PAC rule r, condition Q is put in con-
junction with a further formula, used to check whether all the PAC rules that precede r
according to the ordering imposed by G have been already processed. Only in this case
r can be considered for execution, consequently applying its effect α to the current arti-
fact snapshot. More specifically, the corresponding CA-rule becomes Q∧exec(r) → α,
where exec(r) =

∧
i xi such that i ranges over the indexes of those rules that precede

r. Once all xi flags are switched to 1, the B-step is about to finish: a dedicated CA-
rule is enabled to send the outgoing events to the environment, and the artifact instance
blocked flag is released.

Example 4. An example of a translation of a GSM PAC-rule (indexed by k) is presented in
Figure 3. For simplicity, multiple parameters are compacted using an “array” notation (e.g.,
x1, . . . , xn is denoted by x). In particular: (1) represents the condition part of a CA-rule, en-
suring the “toggle-once” principle (xk = 0), the compliant firing order (exec(k)) and the “one-
message-at-a-time” principle (Rblock(idR, true)); (2) describes the action signature; (3) is an
effect encoding the invalidation a milestone once the stage has been activated; (4) propagates an
internal event denoting the milestone invalidation, if needed; (5) flags the encoded micro-step cor-
responding to PAC rule k as processed; (6) transports the unaffected data into the next snapshot.

Given a GSM model G with initial snapshot S0, we denote by ΥG its B-step tran-
sition system, i.e., the infinite-state transition system obtained by iteratively applying
the incremental GSM semantics starting from S0 and nondeterministically considering
each possible incoming event. The states of ΥG correspond to stable snapshots of G, and
each transition corresponds to a B-step. We abstract away from the single micro-steps
constituting a B-step, because they represent temporary intermediate states that are not
interesting for verification purposes. Similarly, given the DCDS S obtained from the
translation of G, we denote by ΥS its unblocked-state transition system, obtained by
starting from S0, and iteratively applying nondeterministically the CA-rules of the pro-

262 D. Solomakhin et al.

s0

aux.

...
s1

aux.
event

...

event

s2

aux.

...

(unblocked)

(unblocked)

acyclic graph of
intermediate steps

acyclic graph of
intermediate steps

ΥSΥG

s0

... s1

event

...

event
s2

...

(stable)

(stable)

acyclic graph of
intermediate steps

acyclic graph of
intermediate steps

s0

s0

aux.

s1

s0

aux.

s2

Fig. 4. Construction of the B-step transition system ΥG and unblocked-state transition system ΥS
for a GSM model G with initial snapshot s0 and the corresponding DCDS S

cess, and the corresponding actions, in all the possible ways. As for states, we only
consider those database instances where all artifact instances are not blocked: these cor-
respond in fact to stable snapshots of G. We then connect two such states provided that
there is a sequence of (intermediate) states that lead from the first to the second one, and
for which at least one artifact instance is blocked; these sequence corresponds in fact to
a series of intermediate-steps evolving the system from a stable state to another stable
state. Finally, we project away all the auxiliary relations introduced by the translation
mechanism, obtaining a filtered version of ΥS , which we denote as ΥS |G . The intuition
about the construction of these two transition systems is given in Figure 4. Notice that
the intermediate micro-steps in the two transition systems can be safely abstracted away
because: (i) thanks to the toggle-once principle, they do not contain any “internal” cy-
cle; (ii) respecting the firing order imposed by G, they all lead to reach the same next
stable/unblocked state. We can then establish the one-to-one correspondence between
these two transition systems in the following theorem (refer to [21] for complete proof):

Theorem 3. Given a GSM model G and its translation into a corresponding DCDS S,
the corresponding B-step transition system ΥG and filtered unblocked-state transition
system ΥS |G are equivalent, i.e., ΥG ≡ ΥS |G .

4 State-Bounded GSM Models

We now take advantage of the key decidability result given in Theorem 2, and study
verifiability of state-bounded GSM models. Observe that state-boundedness is not a
too restrictive condition. It requires each state of the transition system to contain a
bounded number of tuples. However, this does not mean that the system in general is
restricted to a limited amount of data: infinitely many values may be distributed across
the states (i.e. along an execution), provided that they do not accumulate in the same
state. Furthermore, infinitely many executions are supported, reflecting that whenever
an external event updates a slot of the information system maintained by a GSM artifact,
infinitely many successor states in principle exist, each one corresponding to a specific
new value for that slot. To exploit this, we have first to show that the GSM-DCDS
translation preserves state-boundedness, which is in fact the case.

Lemma 1. Given a GSM model G and its DCDS translation S, G is state-bounded if
and only if S is state-bounded.

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 263

Proof. Recall that S contains some auxiliary relations, used to restrict the applicability
of CA-rules in order to enforce the execution assumptions of GSM: (i) the eligibility
tracking table Rexec, (ii) the artifact instance blocking flags Rblock, (iii) the internal
message pools Rmsgk

data , Rsrvp
data, Rmsgq

out , and (iv) the tables of status changes Rmi

chg , Rsj
chg .

(⇐) This is directly obtained by observing that, if ΥS is state-bounded, then also ΥS |G
is state-bounded. From Theorem 3, we know that ΥS |G ≡ ΥG , and therefore ΥG is state-
bounded as well.
(⇒) We have to show that state boundedness of G implies that also all auxiliary relations
present in ΥS are bounded. We discuss each auxiliary relation separately. The artifact
blocking relation Rblock keeps a boolean flag for each artifact instance, so its cardinality
depends on the number of instances in the model. Since the model is state-bounded, the
number of artifact instances is bounded and so is Rblock. The eligibility tracking table
Rexec stores for each artifact instance a boolean vector describing the applicability of
a certain PAC rule. Since the number of instances is bounded and so is the set of PAC
rules, then the relation Rexec is also bounded. Similarly, one can show the boundedness
of Rmi

chg, Rsj
chg due to the fact that the number of stages and milestones is fixed a-priori.

Let us now analyze internal message pools. By construction, S may contain at most
one tuple in Rmsgk

data and R
srvp
data for each artifact instance. This is enforced by the block-

ing mechanism Rblock, which blocks the artifact instance at the beginning of a B-step
and prevents the instance from injecting further events in internal pools. The outgoing
message pool R

msgq
out may contain as much tuples per artifact instance as the amount

of atomic stages in the model, which is still bounded. However, neither incoming nor
outgoing messages are accumulated in the internal pool along the B-steps execution,
since the final micro-step of the B-step is designed not to propagate any of the internal
message pools to the next snapshot. Therefore, ΥS is state-bounded. ��

From the combination of Theorems 2 and 3 and Lemma 1, we directly obtain:

Theorem 4. Verification of μLP properties over state-bounded GSM models is decid-
able, and can be reduced to finite-state model checking of propositional μ-calculus.

Obviously, in order to guarantee verifiability of a given GSM model, we need to under-
stand whether it is state-bounded or not. However, state-boundedness is a “semantic”
condition, which is undecidable to check [4]. We mitigate this problem by isolating a
class of GSM models that is guaranteed to be state-bounded. We show however that
even very simple GSM models (such as Fig. 1), are not state-bounded, and thus we
provide some modeling strategies to make any GSM model state-bounded.

GSM Models without Artifact Creation. We investigate the case of GSM models
that do not contain any create-artifact-instance tasks. Without loss of generality, we
assimilate the creation of nested datatypes (such as those created by the “add item” task
in Example 1) to the creation of new artifacts. From the formal point of view, we can in
fact consider each nested datatype as a simple artifact with an empty lifecycle, and its
own information model including a connection to its parent artifact.

Corollary 1. Verification of μLP properties over GSM models without create-artifact-
instance tasks is decidable.

264 D. Solomakhin et al.

status attributes items

∅...

123

status attributes items

...

itemRequest(123,6) code qty

6

...

...

123

status attributes items

...

itemRequest(413,2) code qty

6

...

...

413 2

itemRequest(…,…)

...

...

...

(unbounded number of items)

Fig. 5. Unbounded execution of the GSM model in Fig. 1

Proof. Let G be a GSM model without create-artifact-instance tasks. At each stable
snapshot Σk, G can either process an event representing an incoming one-way message,
or the termination of a task. We claim that the only source of state-unboundedness can be
caused by service calls return related to the termination of create-artifact-instance tasks.
In fact, one-way incoming messages, as well as other service call returns, do not increase
the size of the data stored in the GSM information model, because the payload of such
messages just substitutes the values of the corresponding data attributes, according to the
signature of the message. Similarly, by an inspection of the proof of Lemma 1, we know
that across the micro-steps of a B-step, status attributes are modified but their size does
not change. Furthermore, a bounded number of outgoing events could be accumulated
in the message pools, but this information is then flushed at the end of the B-step, thus
bringing the size of the overall information model back to the same size present at the
beginning of the B-step. Therefore, without create-artifact-instance tasks, the size of
the information model in each stable state is constant, and corresponds to the size of
the initial information model. We can then apply Theorem 4 to get the result. ��

Arbitrary GSM Models. The types of models studied in paragraph above are quite
restrictive, because they forbid the possibility of extending the number of artifacts dur-
ing the execution of the system. On the other hand, as soon as this is allowed, even
very simple GSM models, as the one shown in Fig. 1, may become state unbounded. In
that example, the source of state unboundedness lies in the stage containing the “add
item” task, which could be triggered an unbounded number of times due to continuous
itemRequest incoming events, as pointed out in Fig. 5. This, in turn, is caused by the
fact that the modeler left the GSM model underspecified, without providing any hint
about the maximum number of items that can be included in an order. To overcome
this issue, we require the modeler to supply such information (stating, e.g., that each
order is associated to at most 10 items). Technically, the GSM model under study has
to be parameterized by an arbitrary but finite number Nmax, which denotes the maxi-
mum number of artifact instances that can coexist in the same execution state. We call
this kind of GSM model instance bounded. A possible policy to provide such bound is
to allocate available “slots” for each artifact type of the model, i.e. to specify a maxi-
mum number NAi for each artifact type Ai, then having Nmax =

∑
i NAi . In order

to incorporate the artifact bounds into the execution semantics, we proceed as follows.
First, we pre-populate the initial snapshot of the considered GSM instance with Nmax

blank artifact instances (respecting the relative proportion given by the local maximum
numbers for each artifact type). We refer to one such blank artifact instance as artifact
container. Along the system execution, each container may be: (i) filled with concrete
data carried by an actual artifact instance of the corresponding type, or (ii) flushed to the
initial, blank state. To this end, each artifact container is equipped with an auxiliary flag

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 265

fri, which reflects its current state: fri is false when the container stores a concrete arti-
fact instance, true otherwise. Then, the internal semantics of create-artifact-instance is
changed so as to check the availability of a blank artifact container. In particular, when
the corresponding service call is to be invoked with the new artifact instance data, the
calling artifact instance selects the next available blank artifact container, sets its flag
fri to false, and fills it with the payload of the service call. If all containers are occu-
pied, the calling artifact instance waits until some container is released. Symmetrically
to artifact creation, the deletion procedure for an artifact instance is managed by turning
the corresponding container flag fri to true. Details on the DCDS CA-rules formalizing
creation/deletion of artifact instances according to these principles can be found in [21].

We observe that, following this container-based realization strategy, the information
model of an instance-bounded GSM model has a fixed size, which polinomially de-
pends on the total maximum number Nmax. The new implementation of create-artifact-
instance does not really change the size of the information model, but just suitably
changes its content. Therefore, Corollary 1 directly applies to instance-bounded GSM
models, guaranteeing decidability of their verification. Finally, notice that infinitely
many different artifact instances can be created and manipulated, provided that they
do not accumulate in the same state (exceeding Nmax).

5 Discussion and Related Work

In this work we provided the foundations for the formal verification of the GSM artifact-
centric paradigm. So far, only few works have investigated verification of GSM models.
The closest approach to ours is [6], where state-boundedness is also used as a key prop-
erty towards decidability. The main difference between the two approaches is that de-
cidability of state-bounded GSM models is proven for temporal logics of incomparable
expressive power. In addition to [6], in this work we also study modeling strategies to
make an arbitrary GSM model state-bounded, while they assume that the input model
is guaranteed to be state-bounded. Hence, our strategies could be instrumental to [6] as
well. In [15] another promising technique for the formal verification of GSM models
is presented. However, the current implementation cannot be applied to general GSM
models, because of assumptions over the data types and the fact that only one instance
per artifact type is supported. Furthermore, a propositional branching-time logic is used
for verification, restricting to the status attributes of the artifacts. The results presented in
our paper can be used to generalize this approach towards more complex models (such
as instance-bounded GSM models) and more expressive logics, given, e.g., the fact that
“one-instance artifacts” fall inside the decidable cases we discussed in this paper.

It is worth noting that all the presented decidability results are actually even stronger:
they state that verification can be reduced to standard model checking of propositionalμ-
calculus over finite-state transition systems (thanks to the abstraction techniques studied
in [4]). This opens the possibility of actually implementing the discussed techniques,
by relying on state-of-the-art model checkers. We also inherit from [4] the complexity
boundaries: they state that verification is EXPTIME in the size of the GSM information
model which, in the case of instance-bounded GSM models, means in turn EXPTIME

in the maximum number of artifact instances that can coexist in the same state.

266 D. Solomakhin et al.

References

1. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-Oriented Ap-
proach. Springer (2011)

2. Armando, A., Ponta, S.E.: Model checking of security-sensitive business processes. In:
Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 66–80. Springer, Hei-
delberg (2010)

3. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P., Montali, M.:
Description logic knowledge and action bases. Journal of Artificial Intelligence Research,
651–686 (2013)

4. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: Proc. of PODS, pp.
163–174. ACM Press (2013)

5. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of
artifact-centric systems. In: Proc. of KR. AAAI Press (2012)

6. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of gsm-based artifact-centric systems
through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 17–31. Springer, Heidelberg (2012)

7. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-centered opera-
tional modeling: Lessons from customer engagements. IBM Systems Journal 46(4) (2007)

8. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis: A
database theory perspective. In: Proc. of PODS, pp. 1–12. ACM Press (2013)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)
10. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-

tions and processes. IEEE Data Eng. Bull. 32(3) (2009)
11. Damaggio, E., Hull, R., Vaculin, R.: On the equivalence of incremental and fixpoint seman-

tics for business artifacts with guard-stage-milestone lifecycles. Information Systems (2012)
12. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business

processes. In: Proc. of ICDT, pp. 252–267. ACM Press (2009)
13. Dumas, M.: On the convergence of data and process engineering. In: Eder, J., Bielikova, M.,

Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 19–26. Springer, Heidelberg (2011)
14. Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity and Finite

Models (1996)
15. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying gsm-based business artifacts. In: Proc.

of ICWS, pp. 25–32. IEEE (2012)
16. Group, T.O.M.: Object constraint language, version 2.0. Tech. Rep. formal/06-05-01, The

Object Management Group (May 2006), http://www.omg.org/spec/OCL/2.0/
17. Morimoto, S.: A survey of formal verification for business process modeling. In: Bubak, M.,

van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102,
pp. 514–522. Springer, Heidelberg (2008)

18. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3) (2003)

19. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow patterns. In: van
der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649,
pp. 153–168. Springer, Heidelberg (2005)

20. Russo, A., Mecella, M., Montali, M., Patrizi, F.: Towards a reference implementation for data
centric dynamic systems. In: Proc. of BPM Workshops (2013)

21. Solomakhin, D., Montali, M., Tessaris, S.: Formalizing guard-stage-milestone meta-models
as data-centric dynamic systems. Tech. Rep. KRDB12-4, KRDB Research Centre, Faculty
of Computer Science, Free University of Bozen-Bolzano (2012)

22. The Object Management Group: Case Management Model and Notation (CMMN), Beta 1
(January 2013), http://www.omg.org/spec/CMMN/1.0/Beta1/

http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/CMMN/1.0/Beta1/

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 267–282, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automatically Composing Services by Mining Process
Knowledge from the Web

Bipin Upadhyaya1, Ying Zou1, Shaohua Wang1, and Joanna Ng2

1 Queen's University, Kingston, Canada
{bipin.upadhyaya,ying.zou}@queensu.ca, shaohua@cs.queensu.ca

2 CAS Research, IBM Canada Software Laboratory, Markham, Canada
jwng@ca.ibm.com

Abstract. Current approaches in Service-Oriented Architecture (SOA) are chal-
lenging for users to get involved in the service composition due to the in-depth
knowledge required for SOA standards and techniques. To shield users from the
complexity of SOA standards, we automatically generate composed services for
end-users using process knowledge available in the Web. Our approach uses
natural language processing techniques to extract tasks. Our approach automati-
cally identifies services required to accomplish the tasks. We represent the
extracted tasks in a task model to find the services and then generate a user
interface (UI) for a user to perform the tasks. Our case study shows that our
approach can extract the tasks from how-to instructions Web pages with high
precision (i.e., 90%). The generated task model helps to discover services and
compose the found services to perform a task. Our case study shows that our
approach can reach more than 90% accuracy in service composition by identify-
ing accurate data flow relation between services.

Keywords: task model, service composition, Web, instructions, UI generation.

1 Introduction

Software is prevalent in all aspects of our lives, such as checking a stock price, find-
ing a doctor and buying a product. Nowadays a significant part of software system is
structured using software services and implemented using Web service technologies.
Programmable Web1 alone has indexed more than 9000 services that are used in our
daily activities, such as education, dating, shopping, and job search. However, a sin-
gle service cannot fulfill a user’s goal. For example if a user wants to plan a trip, he
may require a flight booking and a hotel reservation services. One or more services
are combined to fulfill his goal. A service composition is a process that combines a
set of logically related services to achieve a given goal. In the current state of practic-
es, the combination process is based on a pre-defined process model that describes the
services to accomplish a task, such as planning a travel. A significant amount of effort
from industry and academics focuses on providing infrastructures, languages and

1 ProgrammableWeb - Mashups, APIs, and the Web as Platform,
 http://www.programmableweb.com/

268 B. Upadhyaya et al.

tools to compose the services. However, the complexity of state-of-the-art Web ser-
vices technology prevents users with limited IT skills from getting easy access to Web
services and their offered functionalities. A user has to perform a sequence of tasks to
complete a process. From the implementation point of view, a task can be imple-
mented by one or more services. For example, a typical process of buying a movie
ticket includes tasks related to “searching for movies”, “choosing the date and time”,
and “paying for the ticket”. Web service composition [11] requires the resolution of
multiple dependencies between input parameters (IP), output parameters (OP) and
non-trivial reasoning about the composition of required functionalities from smaller
units of Web services. It is challenging to acquire the complete knowledge of a do-
main (e.g., hotel booking, flight booking in travel) and then searching, and combining
the services found. We envision two challenges for a novice designer or a user to
perform service composition (SC) as listed below:

• Lack of complete knowledge about the tasks involved in order to accomplish a
goal. A user has to repeatedly search the Web to learn and complete different tasks
required to achieve a goal. For example, searching for a movie, finding the show-
time in a local theater and making online payment are tasks for buying a movie
tickets. This process is tedious, error-prone and time consuming. Knowledge from
business processes to describe the tasks for achieving a goal, if available, is hard
for a novice designer or a user to understand.

• Difficult to identify a set of services and link the services to execute a process.
There are a large number of services available on the Web. Locating a suitable set
of services and linking the identified services are challenging even for experienced
developers. Current work in service flow identification [1, 2 and 6] do not help to
identify tasks as those methods are solely based on input and output parameters of
services. A user communicates with a task through a user interface (UI). Current
approaches in UI generation for Web services [10 and 12] are based on technical
descriptions and therefore, are difficult to understand and error prone.

In this research, we address the aforementioned challenges. The Web contains a lot of
well-written instructions (such as eHow [27] and Wikihow [28]) to teach people how
to perform a process (such as how to buy a camera, how to make a restaurant reserva-
tion and how to buy a movie tickets). These instructions often describe how to
accomplish a sequence of tasks step by step. Our approach understands the human-
written instructions and guides a user to complete a process by discovering and inte-
grating different services. Our goal is to build a knowledge base for a process using
text mining techniques that exploit the structure of the how-to descriptions. Our ap-
proach automatically identifies a task model from written instructions in the Web
pages. We use a task model to identify and combine services to execute a process. To
complete a process, a user needs a UI. Building a UI for a task is time consuming. We
present an approach to generate a UI to execute a task. Our UI generation approach
considers data-sharing between services, so a user only needs to provide minimum
input for a task.

The remainder of this paper is organized as follows. Section 2 gives an overview
of our approach and provides in detail discussion about each step. Section 3 presents
our case study. Section 4 discusses the related work. Finally, Section 5 concludes the
paper and explores the future work.

 Automatically Composing Services by Mining Process Knowledge from the Web 269

2 Background

Our research is primarily focused on extracting knowledge from Web pages with
how-to instructions. In this section, we will discuss the basic structure of how-to in-
struction Web pages, Web services, and task models.

2.1 How-to Instruction Web Pages

How-to instructions in the Web are a knowledge
base of human activities. These websites currently
store millions of articles on how to do things step
by step, which collectively cover almost every
domain of our daily lives, such as business, educa-
tion, and travel. More or less all how-to instruction
Web pages have the similar format to present the
content. Fig. 1 shows an example of a Web page
with how-to instructions from an eHow website.
The article describes the steps to buy a movie ticket
online. Fig. 1 contains four annotated parts, such as
a process; a short description of the process; other
related processes; and a list of tasks for completing
the process. We observed three types of how-to
instruction articles in the Web. First type of how-to

Fig. 1. An annotated eHow article2

articles helps a user to perform labor-intensive processes, such as how to clean a TV
screen, and how to create a contact group on iPhone. The second type contains partic-
ularly descriptive and well-defined processes, such as Web pages related to recipes or
hobbies. The third type describes the dynamic processes with many choices since the
parameters and choices of a task involved vary from user to user. Examples of these
tasks are reserving a seat in a restaurant, and going for a trip to Europe. Our approach
cannot help with the first type of labor intensive processes. For the second and the
third type of how-to instructions, our approach can assist in finding possible services
and integrate services to perform a process.

2.2 Web Services

A Web service is a software module designed to help interoperation between ma-
chines over the Web. There are currently two approaches for interfacing to the Web
with Web services, namely Simple Object Access Protocol (SOAP) and Representa-
tional State Transfer (REST) [20]. REST as the architectural style of the Web im-
proves scalability of the Web applications using statelessness, performance based on
caching, and compatibility through content types. RESTful services [21] simplify the
development, deployment and invocation of Web services. In this paper, we refer to a

2 How to Buy Movie Tickets Online | Ehow,
www.ehow.com/how_2106555_buy-movie-tickets-online.html

270 B. Upadhyaya et al.

service as a RESTful resource. If a service is not RESTful, it is transformed into a
RESTful service using the techniques described in our earlier work [4]. We model a
service in terms of service name, HTTP verb, input parameters and output parameters.

In a service invocation chain, there can be different linkages: user-to-service; ser-
vice-to-service and service-to-user. When a user invokes a service, the relation is a
user-to-service linkage. A service-to-human linkage indicates that a service needs
human inputs or confirmation. A service-to-service linkage occurs when a service
invokes another service.

2.3 Task Model

A Task model describes the logical tasks that have to be carried out in a process to
reach a user’s goals. Several task modeling notations exist, such as Hierarchical Task
Analysis (HTA), Goals, Operators, Methods, Selection rules (GOMS), and Concur-
TaskTrees (CTT). CTT [30] is a graphical notation that supports the hierarchical
structure of tasks, which can be interrelated through a powerful set of operators (such
as iteration and optional) that describe the temporal relationships (such as choice,
interleaving and enabling) between subtasks. CTT describes four types of tasks: the
user, the application, their interaction and the abstract tasks. W3C [19] specification
for CTT [30] provides complete information on CTT Meta-model and relations
among the tasks. We use CTT to model tasks as CTT follows an engineering ap-
proach to task models. Moreover, the semantics of CTT are more complete and pre-
cise. It can support automated service discovery more effectively than other user task
modeling formalisms. CTT is applied in the field of end-user programming. It is easy
for end-users to express and understand CTT.

Find
Services

Identify Data
& Control Flow

Service
RepositoryDomain

Expert

Find a Web
page

Preprocess
Webpage

Extract
Tasks

Verify Task
Model

Extract a Task
Model from Web

Compose
Services

Extraction
Rules

Task
Model

Task
Relations

Task
name

Composes
Services

Find a Instruction
Webpage

Dictionary

Generate
GUI

Template
and Rules

Service Composition
based on a Task Model

Fig. 2. Overall steps to generate UI for a task from Web services

3 Overview of Our Approach

A user selects one of many how-to instruction Web pages related to his goal. Our
approach is to search and compose services based on a user selected Web page. A
process is well-defined, concrete action that a user performs to achieve a goal. In
order to achieve a user’s goal, we break a process into a set of tasks that can be sche-
duled and completed. Fig. 2 shows the overall steps of our approach. We identify
task models from how-to instructions in the Web. We use the task models to find and
compose services. We describe each step in details in this section.

 Automatically Composing Services by Mining Process Knowledge from the Web 271

3.1 Extracting a Task Model from the Web

In this sub-section, we introduce our approach that automatically extracts a task mod-
el from a semi structured Web page.

Find Web Pages
In this paper, we examine two specific Web sites to extract human written instructions
(eHow [28] and Wikihow [27]). If a Web page matches the user’s scenario, we use
this Web page to extract a task model to form service composition.

Preprocess How-to Instruction Web Pages
To analyze Web pages, we parse Web pages to build a Document Object Model
(DOM) tree structure. An HTML file may contain mismatched HTML tags although
it can be correctly displayed by Web browsers due to the fault-tolerance capability of
Web browsers. We use HTML syntax checker [9] to correct the malformed HTML
tags. Then we parse the HTML into DOM tree structure. The preprocessor contains
two steps: 1) learn rules from the sample Web pages; and 2) apply rules on a Web
page to extract tasks. We manually examine and learn the DOM structure of the title
and the instruction steps. We use these learned DOM structures to form the rules. This
procedure is based on the assumption that the documents collected from an identical
source share the common structures. The preprocessor uses wrapper induction ap-
proaches to extract the title and the instruction steps from a Web page. The title be-
comes the root of a task model and the instruction steps become the tasks to complete
a process (i.e., extracting tasks).

Fig. 3. An algorithm for identifying tasks from how-to instruction Web pages

Extract Tasks
Each instruction step describes the tasks in a process. We extract functional semantics
of an instruction step. Functional semantics express the main intent of a sentence in
terms of the action-object pairs. An action-object pairing articulates what action is
performed with an object. An action is represented by a verb and objects are described
by nouns in a sentence. For example, in a sentence “buy a ticket”, the functional se-
mantic pair is {buy, ticket}. “buy” and “ticket” correspond to the action and the object
respectively. Our objective is to extract tasks involved in a process (i.e., instruction
steps) as action-object pairs. We analyze the instruction steps to extract tasks as

272 B. Upadhyaya et al.

functional semantics. Fig. 3 shows
the algorithm to identify tasks. An
instruction steps may contain
multiple segments. Each segment
is an instruction to perform a task.
A segment is a sentence in the
instruction step containing one or
more verbs and nouns. Line 3 in
Fig. 3 extracts the segments from
an instruction step. We use a
well-stabilized part-of-speech
(POS) tagger [29] to identify the
syntactic structure of a segment.
Step 2 in Fig. 4 shows a POS
tagged sentence. The number
(i.e., inside small brackets) in
Step 2 indicates the index of the
word as a noun or a verb in a
sentence. For example in Step 2
of in Fig. 4, selection is the first

Fig. 4. An example for task extraction steps

noun (NN) and the movie is the second noun (NN). We post-process the generated
data structures to resolve object names consisting of multiple words (e.g., "Computer
screen"), phrasal verbs (e.g., "go to"), and pronominal referrals (e.g., "it"). We assume
"it" always refers to the last mentioned object, which is proved to be a sensible heuris-
tic in most of the cases. For each segment, we extract actionable verb (VB)/verb
phrases (VP) and the related noun phrases (NP). (VB/VP) or (NP) forms a task. Step 3
shows action-object pairs, such as “confirm selection”, “reviewing movie”, “review-
ing theater”, “reviewing showtime” and “reviewing computer screen”. ,) domain)) (1)

where hits (x) is the number of results that a search engine returns for a query ‘x’.
We filter irrelevant tasks from the list of tasks extracted. PMI (Pointwise mutual

information) [23] helps identify how two words or phrases are related based on all the
information available in the Web. We use Google Services3 to calculate PMI. The
PMI score is the number of hits for a query that combines domain and task divided by
the hits for the task alone. This can be viewed as the probability that a domain and a
task can be found on a Web page as shown in equation 1. For example in Step 4, we
compute PMI for each term with the domain “movie” and each object in action-object
pairs. As a result, PMI (movie, review theater) is 0.287; PMI (movie, confirm selec-
tion) is 0.197; and PMI (movie, review computer screen) is 2.13415E-05. To identify
the threshold to filter irrelevant tasks, we randomly selected 10 how-to description
Web pages and manually check the result PMI. We empirically set 10 as the thre-
shold. In line number 6 of Fig. 3, we compute the score. If the score is above the thre-
shold, we consider it as an action-object pair. Hence in Fig. 4, (review, computer

3 https://developers.google.com/web-search/docs/

 Automatically Composing Services by Mining Process Knowledge from the Web 273

screen) is filtered out. We convert the verb to the base form. For the extracted pairs,
we analyze its occurrence index and compare with clauses, such as before, after, and
by, to identify the order of the sequence. We further arranged the remaining action-
object (review movie, review theater and review selection) pairs based on the hierar-
chical relationship among the words. If no relation is found, the arrangement is based
on the order of their occurrences in a sentence.

Using the action-object
extracted from Fig. 3, we
build a CTT task model.
Fig. 5 shows a task model to
buy a movie ticket online.
Only two kinds of temporal
relationship exist in how-to
instructions. If the two noun
phrases are connected
through and clauses, there is
a sequential enabling info
(i.e., []>>) relation. If the
noun phrases are connected
with or clauses there is
a Choice (i.e. []).If the same

Buy a movie
Ticket

[]>>
Find

Theatre
Find

Movie

Choose
Theatre

Click
Movie

[]>>
[]>
>

Abstract task 1

Abstract task 2 Confirm
Selection

Review
Theatre

Review
Movie

Review
ShowTime

Enter
Qty

Enter Ticket
type

[]>>
Enter Promotional

codes

Abstract task 4

[]>>
[]>>

[]>>

Confirm
ticket

[]>>
Print

Confirmation

Abstract task 3

[]>>
Find

showtime

Fig. 5. A simplified task model extracted from Fig. 1

task appears multiple times in a process, we choose the last place where the task had
appeared and remove other occurrences. If a step contains multiple tasks, we make an
abstract task which connects all the tasks of a step. An extracted model is verified by
a user. It is easy to add and modify tasks in a CTT model.

Table 1. Different information extracted from the task model

Field Heuristic and Explanation Example
Domain
Concept

Noun in the process title In “How to Buy Movie Tick-
ets Online”, movie is the do-
main of process title.

Service
Name

For each task, the first word corresponds
a service name.

In “Review movies”, review
is related to the service name

Input Noun occurring with the UI related words
(Input, Enter, Fill, Click, Submit)

In “Enter Name”, name is the
word related to input

Output Noun occurring with the UI related words
(show, select, read, confirm, validate,
check, review, decide, ensure, choose)

In “Show movie list”, movie
list is the word related to the
output.

3.2 Service Composition Based on the Task Model

In this sub-section, we present our approach to find and compose services based on
the task model generated from Section 3.1.

274 B. Upadhyaya et al.

Find Services
In this step, we find the services for each step in CTT task model. We use our pre-
vious work in concept-based service discovery [3] to discover services. A concept is a
semantic notion or a keyword for describing a subject, e.g., “traveling” or “taxi reser-
vation”. Service repository indexes services based on concepts available in the service
description documents. Our approach clusters services using the concepts conveyed in
the service description. While searching for a service, we perform the entity identifi-
cation [15] and change the query if the services are not found. For example if our
service repository does not contain a service for “Buy a camera” then we change the
query to a more general upper level domain “Buy a product”. We use WordNet [5] as
the knowledge base for transformation. WordNet [5] is a lexical database that groups
words into a set of synonyms and connects words to each other via semantic relations.
For the task model shown in Fig. 4, we identify concepts to search for services. Table
1 lists the concepts extracted from the task model.

Table 2. Rules used to decompose words

Rule Before applying rule After applying rule
CaseChange FindCity Find, city

getMovie Get, Movie
Suffix containing No. City1 City
Underscore separator Customer_Information Customer, Information
Dash separator Find-city Find, City

Identify Control and Data Flows
We consider the task relations from the CTT model as a control flow of a composite
service. We find the data-dependency between services and change the control flow
based on the data-dependency. A data-dependency graph depicts the collaboration
relations between services related to different tasks. Each service has a name and
takes input parameters and gives an output. Either input or output of a service can be
empty, but, not both. Multiple input and output messages in a composite service are
merged into a set of input or output. We exclude fault messages as they seldom con-
tribute to the data flow to the subsequent services. Similarly, access keys for services
are excluded as they do not contribute to the data flow.

,) 1 identical/synonymous 1# , 0 2)
where, ps1 and ps2 are the name of parameters of services s1 and s2;
#link is the number of nodes to reach a common parent from the names of ps1 and ps2 in
WordNet

The name of a service and the input/output parameters follow the conventions used
in programming languages. Table 2 shows the rules to decompose input parameters
and output parameters. After decomposing words, we use porter stemmer [20], which

 Automatically Composing Services by Mining Process Knowledge from the Web 275

is the process for reducing derived words to their stem, base, or root form. For exam-
ple, the words "fishing", "fished", "fish", and "fisher" have the same root word, "fish".
Equation (2) shows a formula to calculate the semantic similarity. For each word, we
calculate the semantic similarity. WordNet helps to identify if two terms are semanti-
cally similar and to what degree they are similar. When the words are identical or
synonymous, the semantic similarity is 1. If there is a hierarchical relation, it depends
on their similarity degree. If the semantic (ps1, ps2) is greater than a threshold (i.e.,
0.3), we consider it is a match. We choose a threshold by analyzing different service
input and output parameters. For each pair of services, we evaluate the semantic simi-
larity between the input and output parameters. Based on the similarity between
parameters, we identify the linkage between different services.

For a set of services, if an output
parameter of one service and an input
parameter of another service are
semantically similar, a data flow rela-
tion exists. We compute the semantic
weight between the services which is
the sum of semantic similarity between
all parameters of two services. The
semantic weight is normalized in in-
terval 0 to 1. 0 means no data flow. 1
indicates that all the inputs of a service
come from the output of another service.

Task A Task B Task C

0.5
0.5

0.2

0.2
0.2

0.4 0.3

0.8
A1

A2

B1

B2

C1

C2

C3B3

0.5

Fig. 6. Dependency graph between different
services in three different tasks

Fig. 6 shows a simplified version of the dependency graph containing services of
different tasks. Moreover, the direction of the edges between two enclosed nodes
dictates the dataflow. The service where the arrow points to takes one output of the
preceding service as its input. For example shown in Fig. 6, service B2 of task B has
two links between services, C1 and C2 on task C.

Compose Services
We have a task model that defines the steps that a user needs to follow to perform a
process. A task model helps us to find relevant services and then gives a logical flow
between different services. However, a task is performed by services. The execution
order of services can be different from the task model. It depends on the data depen-
dency between services. An executable task is a graph G (V, E) where G is a Directed
Acyclic Graph (DAG). Each vertex vi ∈V is a service. Each edge (u, v) represents a
logical flow of messages from service u to service v. If there is an edge (u, v), then it
means that an output message produced by service u is used to create an input message
to service v. Our goal in this step is to combine one or more services in the dependency
graph to form a task that can maximize the data sharing properties between services.
From Fig. 6, we select A1 between {A1, A2} based on the semantic weight. We
select B2 among {B1, B2} because its weight to C2 or C1 is the maximum. Hence the
flow will be A1B2C1.

The task model from how-to instruction Web pages, such as recipe Webpage is
different. Obviously services for the action-object pairs like “Boil Pasta” are not

276 B. Upadhyaya et al.

available, and hence there is no flow information. For such Web pages, we define a
service composition template and use a rule to invoke predefined template in such a
specific domain. We impose a rule to invoke E-commerce templates for recipe related
how-to Web pages.

Generate User Interface (UI)
A user needs an interface to provide the data to perform a task. Each task may require
more than one service. As mentioned in the background section, three relations
among services are defined. We want to increase the service-to-service interaction to
minimize the demand for a user to enter information for accomplishing a task. Our
service selection approach maximizes data sharing by choosing services with the
maximum shared parameters. We extract all the parameters that may be required by a
service that is to be executed later and ask a user to fill the information avoiding mul-
tiple services-to-the user or user-to-service linkage.

Fig. 7. Screenshot of generated UI

We enhance Kasarda et al. [22] approach to generate UI when each service has dif-
ferent input and output parameters. The approach by Kasarda et al. is simple and easy
to implement. The use of XHTML makes the generated UI adaptable to cross-
platforms. Decision for the placement input or output in UI is based on the dependen-
cy between the services. The service input and output parameters are represented in
XML. We enhance the approach by Kasarda et al. to find the relation among differ-
ent input elements. Our enhancement also helps decide whether the input element
should be user editable or not. We enhance the UI generation techniques using the
following techniques:

1. If the output of a service is not used as an input parameter to another service, the UI
element of the output parameter is not user editable;

 Automatically Composing Services by Mining Process Knowledge from the Web 277

2. If the output of a service is a single parameter and used as an input parameter to
another service, the UI element of the parameter is not user editable;

3. If the output of a service has multiple values (i.e., array) and one of the elements is
used as an input parameter to another service, the UI element of the parameter is
user editable;

4. If the input parameter for a service does not come as an output from any other ser-
vices, we select an appropriate UI element based on the approach described in [22].

5. If a node has multiple paths and if they do not merge to the same node later, the
shortest path becomes a new task and used as a link. For example in Fig.7a review
movie and theater are tasks used as links.

6. Based on the dependency found in section Identify Control and Data Flow step, we
link service invocation with UI elements. Unless it’s predefined in a template, we
add two UI elements (submit and cancel), submit executes all the service invoca-
tions and the cancel exits the service composition. For example as illustrated in Fig.
7, the change in theater name alters the values in the selection box for the movie
name which in turn modifies the values in the show time selection box.

UI elements for an executable task are dependent on each other. A change in one
parameter can trigger a run-time change in another UI element. We also identify the
dependency between these parameters. Fig. 7 shows the generated UI. Fig.7a shows a
UI of a process to get a movie ticket. Fig. 7b illustrates a UI to order items to prepare
a recipe based on pre-defined e-commerce template.

4 Case Study

We conduct a case study to evaluate the effectiveness of our approach. The objectives
of our case study include: 1) evaluate if our approach can achieve high precision and
recall to extract task models from how-to instruction Web pages; and 2) evaluate the
accuracy of our approach to compose services from task models.

4.1 Setup

We collect 40 different how-to instructions from eHow and Wikihow. The collected
Web pages were from different domains, such as communication (e.g., send SMS),
finance (e.g., find a stock price of a company), and E-commerce (e.g., buy a product).
We avoid selecting many processes from the domain to ensure the case study result is
not skewed due to this particular. In addition, we collected more than 600 service
description files to examine our approach on the service composition capability. The
collected service description files have more than 4,000 different services. Our case
study specifically answers the following two research questions.

1. How effective is our approach to extract a task model from Web pages?

2. How accurate is our approach of service composition based on task models?

In our case study, the first author evaluated all the result. Our evaluator has two
years of experience in developing Web services and composite services.

278 B. Upadhyaya et al.

4.2 Evaluate the Effectiveness of Our Approach to Extract Task Models

We measure the effectiveness of our approach on identifying task models using preci-
sion and recall. As shown in equation (3), the precision is the ratio of the total number
of tasks correctly extracted by our approach to the total number of tasks in a how-to
instruction Web page. Recall, as shown in equation (4), is the ratio of the total number
of tasks correctly extracted by our approach to the total number of tasks existing in
the how-to description Web pages. relevant tasks retrieved tasks 3) relevant tasks relevant tasks 4)

Table 3 presents the effectiveness of our approach to extract task models from how-to
instruction Web pages. Table 3 shows the effectiveness of task identification of our
approach. Our approach has the average precision of 90% and average recall of 59%.
The reason for lower recall is due to verb scoping during task extraction step. When
two verbs are conjoined, it is not clear whether the noun is associated with both or just
the latter one. With “review and buy a camera” and “Go and buy a camera”, for
example, our approach needs to decide whether the noun (i.e., camera) is associated
with either both the verbs or just the one. Our approach could not correctly identify
multi-word expressions (MWEs) in the instruction steps. MWEs represent the struc-
ture and meaning that cannot be derived from the component words, as they occur
independently. Examples of MWEs include conjunctions like ‘as well as’ (meaning
‘including’), and phrasal verbs like ‘find out’ (meaning ‘search’).

Table 3. Results for our case study

Domain

Effectiveness of our approach
to extract task model

Accuracy of our approach
to compose services

#Web
pages

Precision
(%)

Recall
(%)

task
Model

Accuracy of SC
(%)

Hotel 10 91 57 3 88
Flight 10 89 53 2 85
Ecommerce 8 92 61 4 83
Finance 7 88 58 3 85
Communication 5 93 70 3 95

4.3 Evaluate the Accuracy of Automatic SC Based on the Task Model

We are interested in evaluating the accuracy of service composition based on the task
model. Equation (5) gives the measure of our accuracy. Accuracy of our approach is
given by the ratio of the correctly identified data and control flow by the total number
of data and control flows among services.

 Automatically Composing Services by Mining Process Knowledge from the Web 279

#Correctly Identified # required 100 %) 5)

To check the accuracy of service composition we first made sure that there are servic-
es available to perform the service composition for the task models. We selected the
task model with at least one candidate service to form the service composition. For
this case study, we selected 15 out of 40 task models. We manually verified the ser-
vices used by our approach and the data and control flows between the services se-
lected. Table 3 presents the result of our case study for automatic service composition
based on a task model. Our approach has average accuracy of 85% to identify correct
flow different services. The uses of ambiguous words and the words not available in
WordNet cause difficulties in identifying semantic similarity. Some element names
were misspelled or inconsistently named. e.g., an element conferenceIdentifier was
misspelled as conderenceIdentifier in several places in a conference management
service. Hence our approach could not identify the data flow between services. Some
of the entities are named differently, e.g., ASIN and OfferListingID were used inter-
changeably in Amazon Product API. We were unable identify these interchangeable
entities.

4.4 Threats to Validity

In this section, we discuss the limitations of our approaches and the threats that may
affect the validity of the results of our case study. In our case study, only one of the
co-author inspects the results. Our evaluator has experience in developing service
composition and has knowledge of the domains used in our case study. The manual
verification introduces bias because a single evaluator could make mistakes. We
should have recruited additional people for the evaluation. Unfortunately, we were not
able to recruit more evaluators with sufficient knowledge about service-oriented ap-
plications and who can spend considerable time to manually inspect our results. To
generalize our results to task extraction and service composition in other domains, we
chose to study systems with a variety of domains to help ensure the generality of our
results. Even though we think the case study in still need to enhance to include more
domains and a wider variety of tasks from each domain.

5 Related Work

Our work is related to three research areas: mining human activities from the Web,
Web service composition and UI generation from Web services.

5.1 Mining Human Activities from the Web

Singh et al. [21] collect knowledge about commonsense including daily living is the
Open Mind Common Sense project. More than 729,000 raw sentences representing
commonsense knowledge collected from the general public through a template-based

280 B. Upadhyaya et al.

Web interface. In our previous work [16], we extract process knowledge by analyzing
the menus and forms that are limited to a certain domain. In this work, we extract
human activity knowledge automatically from how-to instructions on the Web. We
define a process in terms of a sequence of tasks. Our approach is similar to Perkowitz
et al. [13] who proposed a method for mining human activity models in terms of a
sequence of objects involved in an activity and their probabilities. From the defini-
tions of activities obtained in external resources, such as how-to instructions, recipes,
and training manuals, they attempted to extract objects by identifying noun phrases
and their hyponyms under ‘object’ or ‘substance’ categories in WordNet. Unlike their
approach, we not only focus on identifying tasks to achieve a goal. We find the cor-
responding services and link services to execute a task.

5.2 Web Service Composition

For composing services, a user can perform either a manual composition in coopera-
tion with domain experts or automatic composition [2, 6 and 7] conducted by soft-
ware programs. In the manual approach, human users who know the domain well
(e.g., domain ontology) select proper Web services and weave them into a cohesive
workflow. Although users may rely on some GUI-based software [24] to facilitate the
composition, in essence, it is a labor-intensive and error-prone task. On the contrary,
in the automatic composition approach, software programs know if two Web services
can be connected or not (i.e., via syntactic matching of Web services parameters or
even via semantic matching). The problem with AI based approach is how we can
make sure what are the services need to perform a task, such as “planning a holiday in
New York”. Our approach combines both manual and automatic aspects of SC. We
use task models to discover relevant services and define the sequence between servic-
es. Instead of relying on data dependencies among service, our approach uses task
relations along with data-dependencies to identify service sequences.

Currently available end-users SC [11] tools, such as Yahoo! Pipe [35] and IBM
Mashup center [25] provide a user friendly environment for end users to integrate
different services. However, those products require end-users to manually identify all
the services to form a process. Our approach reduces the workload of end users by
automatically generating processes required based on easily available knowledge in
the Web. Our approach helps novice programmers and end-users.

5.3 User Interface Generation from Web Services

The creation of user interfaces is still a complex problem. Bias et al. [8] state that
50% of time for building an application is due to the UI development. There are some
approaches for generating the UI automatically [6, 10 and 12]. These approaches
focus on the generation of user interfaces for services. A common way to generate
user interfaces for services is their inference from services description, like WSDL
[17] or WADL [18] files. Given that data types can be matched to specific graphical
controls, the inference mechanism to create UI forms can be straightforward. Howev-
er, the inference mechanism is limited to a certain degree because the developer may

 Automatically Composing Services by Mining Process Knowledge from the Web 281

need to include more details to the controls on the form that cannot be inferred from
technical descriptions. Some research, such as Dynvoker [12] cannot support com-
posed services. Moreover, a designer cannot edit the resulting forms. We present an
approach for task identification that considers the composition as a dynamic hyper-
linked environment of services. Our UI is editable making modification easier.

6 Conclusion and Future Work

We provide an approach to build task models from how-to instruction Web pages.
Our case study shows that our approach has high precision to identify instructions
from Web pages. In most cases, our approach can correctly identify tasks. Similarly,
we use the task model to find relevant services to execute tasks based on the data
flows between the services. Given a correct task model, our approach can build an
executable process with 90% accuracy. We believe the UI generation process is still a
complex issue. The manual creation process is time consuming and complex because
it requires the combination of the work from application developers and the UI de-
signers. We designed and developed a tool which intends to ease and enhance the
automatic UI generation process. In the future, we plan to conduct a user study to see
the effectiveness of UI generation. We would also like to perform a larger case study
including different how-to instructions.

References

[1] Gerede, C.E., Hull, R., Ibarra, O.H., Su, J.: Automated composition of e-services: loo-
kaheads. In: ICSOC, pp. 252–262 (2004)

[2] Thomas, J.P., Thomas, M., Ghinea, G.: Modeling of web services flow. In: IEEE Inter-
national Conference on E-Commerce, CEC 2003 (2003)

[3] Upadhyaya, B., Khomh, F., Zou, Y., Lau, A., Ng, J.: A concept analysis approach for
guiding users in service discovery. In: 2012 5th IEEE International Conference on
SOCA, pp. 1–8 (2012)

[4] Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., Lau, A.: Migration of SOAP-based services to
RESTful services. In: Proc. of the 13th IEEE International Symposium on WSE, pp.
105–114 (2011)

[5] Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41

[6] Li, L., Chou, W.: Automatic Message Flow Analyses for Web Services Based on
WSDL. In: IEEE International Conference on Web Services (2007)

[7] Hwang, S.Y., Lim, E.P., Lee, C.H., Chen, C.H.: Dynamic Web Service Selection for
Reliable Web Service Composition. IEEE Transactions on Services Computing 1(2),
104–116 (2008)

[8] Bias, R.G., Mayhew, D.J.: Cost-Justifying usability. Morgan Kaufmann Publishers, San
Francisco

[9] JTidy, http://jtidy.sourceforge.net/
[10] Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for web services. IEEE Internet

Comp. 7(5), 66–73

282 B. Upadhyaya et al.

[11] Mehandjiev, N., Namoune, A., Wajid, U., Macaulay, L., Sutcliffe, A.: End User Service
Composition: Perceptions and Requirements. In: IEEE 8th European Conference on
ECOWS, pp. 139–146 (2010)

[12] Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad Hoc Usage of Web
Services with Dynvoker. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008.
LNCS, vol. 5377, pp. 208–219. Springer, Heidelberg (2008)

[13] Perkowitz, M., Philipose, M., Fishkin, K.P., Patterson, D.J.: Mining models of human
activities from the web. In: WWW 2004, pp. 573–582 (2004)

[14] Raphael, B., Bhatnagar, G., Smith, I.F.: Creation of flexible graphical user interfaces
through model composition. Artif. Intell. Eng. Des. Anal. Manuf. 16(3), 173–184
(2002)

[15] Poibeau, T., Kosseim, L.: Proper Name Extraction from Non-Journalistic Texts. In:
Proc. Computational Linguistics in the Netherlands (2001)

[16] Xiao, H., Upadhyaya, B., Khomh, F., Zou, Y., Ng, J., Lau, A.: An automatic approach
for extracting process knowledge from the Web. In: Proc. of ICWS, pp. 315–322 (2011)

[17] Web Service Definition Language (WSDL), http://www.w3.org/TR/wsdl
[18] Web Application Description Language,

http://www.w3.org/Submission/wadl/
[19] World Wide Web Consortium (W3C), http://www.w3.org/
[20] Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture, pp.

407–416
[21] Richardson, L., Ruby, S.: RESTful web services (2007)
[22] Ján, K., Necaský, M., Bartoš, T.: Generating XForms from an XML Schema. NDT (2),

706–714 (2010)
[23] Turney, P.D.: Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. In:

Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502.
Springer, Heidelberg (2001)

[24] IBM WebSphere Integration Developer,
http://www-01.ibm.com/software/integration/wid/

[25] IBM Mashup Center, https://greenhouse.lotus.com/wpsgh/
wcm/connect/lotus+greenhouse/lotus+greenhouse+next+site/
home/products/ibm+mashup+center

[26] iGoogle, http://www.google.com/ig
[27] wikihow-how to do anything, http://www.wikihow.com/Main-Page
[28] eHow | Discover the expert in you, http://www.eHow.com
[29] Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: 41st Annual Meeting of

the Association for Computational Linguistics, pp. 423–430 (2003)
[30] Concur Task Trees (CTT), http://www.w3.org/2012/02/ctt/
[31] Singh, P., Lin, T., Mueller, E.T., Lim, G., Perkins, T., Zhu, W.L.: Open Mind Common

Sense: Knowledge acquisition from the general public. In: Meersman, R., Tari, Z. (eds.)
CoopIS/DOA/ODBASE 2002. LNCS, vol. 2519, pp. 1223–1237. Springer, Heidelberg
(2002)

All URLs are last accesses on 25-July-2013

Batch Activities
in Process Modeling and Execution

Luise Pufahl and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam

{luise.pufahl,mathias.weske}@hpi.uni-potsdam.de

Abstract. In today’s process engines, instances of a process usually run inde-
pendently to each other. However, in certain situations a synchronized execution
of a group of instances of the same process is necessary especially to allow the
comparison of business cases or to improve process performance. In this paper,
we introduce the concept of batch activities to process modeling and execution.
We provide the possibility to assign a batch model to an activity for making it
a batch activity. As opposed to related approaches, the batch model has several
parameters with which the process designer can configure individually the batch
execution. A rule-based batch activation is used to enable a flexible batch han-
dling. Our approach allows that several batches can run in parallel in case of
multiple resources. The applicability of the approach is illustrated in a case study.

Keywords: batch activity, process modeling, synchronization of instances.

1 Introduction

In today’s organizations, modeling of business processes and their execution based on
process-oriented systems has a high relevance. Business operations are usually specified
by process models with focus on the single business case. A process model describes a
set of activities jointly realizing a business goal and the execution constraints between
them [16]. At runtime, for each business case, a process instance is created. When
designing a process, it is typically assumed that process instances are completely in-
dependent from each other [4]. Also in process engines, instances are usually executed
individually. Nevertheless, certain dependencies between process instances may require
a synchronization. In this paper, we introduce an approach for coordinating the activity
execution of different process instances motivated by the following example.

Fig. 1 shows the Train ticket refund process of a train company in which passenger
claims are received and checked. When a passenger experienced a delay of more than
one hour, the company provides a voucher card with an amount of 50% of the train ticket
price. A process instance is started when a claim for refund is received from a passenger
. Then, for each activity in the process model, an activity instance is created as soon as
a process runs. Usually, activity instances are executed independently from each other.
For instance, the company enters the data of each claim individually and checks whether
the claim is correct. However, activities in process models can be observed for which it
is beneficial or even required to synchronize the execution of a group of business cases,

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 283–297, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

284 L. Pufahl and M. Weske

T
ra

in
 c

o
m

p
a
n

y

Claim for
t icket refund

Enter claim
for train

t icket refund

Check
refund claim

Produce
voucher card

Reject ion

min. 15
accepted
claims

Letter of
apology with
voucher card

Passenger

a
c
c
e

p
te

d
re

je
c
te

d

Fig. 1. Train ticket refund process

e.g., the activity Produce voucher card. The train company activates the machine for
producing the voucher cards only when 15 cards are requested in order to save setup
costs. Such a type of activity, we call batch activity which is defined as an activity
clustering a set of active activity instances together and synchronizing their execution
according to pre-defined rules [4, 13]. Currently, the batch activation rule is informally
noted as comment on the respective activity (cf. Fig. 1). The goal of this paper is to
formalize the design of batch activities and to give a blue print for them. Two types of
use cases for which a batch activity is needed, can be differentiated [2]:

– Achieving an increased process performance: A process may have an activity
with high setup costs, i.e., preparation costs to start an activity (e.g., setups of ma-
chines, familiarization periods for a type of work or traveling distances). In our
example, we have the setup costs of the voucher card machine. By synchronizing
the activity enactment of several cases, the train company can save those costs and
can be more efficient in their process execution.

– Comparing business cases: A process may have an activity where business cases
are ranked according to specific criteria. In order to be able to compare them, sev-
eral cases have to be grouped together, e.g., a ranking of application candidates.

A common assumption is that batch requirements can be solved with multi-instance
patterns [14] which are supported by several modeling languages. For example, the
widely applied process modeling language BPMN (Business Process Modeling Nota-
tion) provides the concept of multi-instance activities. When a multi-instance activity
is started in the context of a process instance, multiple activity instances are initialized
simultaneously running independently from each other. Synchronization may be orga-
nized with regards to starting the subsequent activity, but their execution is not aligned.
Since multi-instance activities have an opposite execution paradigm which splits one in-
stance as opposed to synchronize multiple existing instances, a new concept for a batch
handling needs to be developed.

Also, most process modeling languages do not support the design and configuration
of batch activities; they are often enacted as batch manually or by special software. Or-
ganized manually by human resources, the rules of a batch activity can be unclear or
the batch execution may simply be forgotten resulting in lower process performance.
Otherwise, a batch activity may be controlled by specific software. Since the batch con-
figurations are then not traceable for the process owner and the participants, the batch
activity settings cannot be controlled by them and adaptations result in high efforts.

Batch Activities in Process Modeling and Execution 285

In this paper, we propose a concept to integrate batch activities in process modeling
and execution. The integration has the advantages that (i) rules are clear for the process
owner, the participants, and the process engineer, (ii) no manual implementation is re-
quired, (iii) batch activities can be included into potential process simulations, and (iv)
monitoring as well as analysis of executed batches can be done based on process logs.

The paper is structured as follows. In Section 2, we discuss requirements for inte-
grating the concept of batch activities into process modeling and execution. Then, we
present our approach to enable the design, configuration and execution of batch activi-
ties in Section 3, where we also discuss the applicability of our approach in a case study.
In Section 4, related work is discussed followed by a conclusion in Section 5.

2 Requirements of Integrating Batch Activities

In the following, we present several requirements to integrate batch activities in process
modeling and execution, summarized and related to each other in Fig. 2. On the one
hand, they arise due to the different execution semantics of a batch activity (cf. path (b)
in Fig. 2) in comparison to the regular one (cf. path (a) in Fig. 2) (R1). On the other hand,
we collect them based on descriptions of the batch service problem. The batch service
problem was investigated by the queuing research, e.g., in [8–10], and is described as
follows: “Customers arrive at random, form a single queue in order of arrival and are
served in batches” [1], whereby the basic object of investigation is when to start a batch
(R2). Queuing researchers investigated it for different configurations of queue (R3) and
server (R4-6). In the following, we will discuss the identified requirements in detail.

Server
(i.e. task executor)

Enabled
activity

instance

Batch of
activity instances

Queue of waiting
activity instances

(a) regular activity execution

(b) batch activity execution

(R2) Activation rule

(R4) Single vs. multiple
server(s)

(R3) Homogenous
vs. heterogenous

requirements

(R1) Different
execution semantics

(R6) Maximum
capacity

(R5) Parallel vs.
sequential enactment

Fig. 2. Requirements regarding integration of batch activities

Requirement R1 - Different execution semantics: A usual activity instance passes differ-
ent states during its lifetime [16]. In a simplified version, these are init, ready, running,
and terminated. With the start of a process, the activity instance enters the init state and
changes to the ready state when all pre-conditions for the activity are fulfilled. Then, it
is immediately offered by the process engine to the respective task executor (cf. path (a)
in Fig. 2). The task executor can be either a software service, a human, or a non-human
resource. When a resource or service starts the work of the activity instance, it enters
the running state and with completion, it is in the terminated state.

286 L. Pufahl and M. Weske

In contrast, the offer of a batch activity instance has to be delayed by the process
engine in order to provide the task executor a group of instances being executed as
batch. Here, it is required that the process engine collects all enabled activity instances
according to a queue discipline, e.g., first-come first-served (FCFS) or last-come first-
served (LCFS), and assigns them to a batch as depicted in Fig. 2. In this paper, we
choose FCFS as queuing system, because it is a commonly applied policy [8].

Requirement R2 - Activation rule: With a batch activity, the control of starting a group
of instances is allocated to the process engine to achieve an increased process perfor-
mance or to enable the comparison of business cases. The larger the size of a batch, the
lower are the average setup costs per activity instance, but the higher are the waiting
time per instance. So, costs can be reduced, when the train company waits at minimum
for 30 instead of 15 claims for which a voucher card is produced. However, the risk
for the train company increases to lose passengers, because of dissatisfaction regarding
the service time. Rules have to be specified and enforced in order to achieve an optimal
trade-off between setup costs and waiting time. As stated, this optimization problem
– when to activate a batch service and provide it to the server – is investigated by the
queuing research for which they propose different optimization policies. In this paper,
we want to present two often discussed rules [10]:

– Threshold rule: Originally called the general bulk service rule, it states that a batch
is started, when the length of the waiting queue with customers is equal or greater
than a given threshold (i.e., a value between one and the maximum server capacity)
and the server is free [9]. Several studies investigate how to determine an optimal
value for the threshold under varying assumptions concerning the distribution of
arrival and service times as well as capacity constraints of server and queue (an
overview is for example given by Medhi [8]). In this paper, we assume that the
threshold value is given by the process designer who may derive it from expert
knowledge, simulations, or statistical evaluations. This rule can be extended by a
maximum waiting time so that a group of less than the threshold is also served,
when a certain waiting time of the longest paused one is exceeded [9].

– Cost-based rule: Originally called the derivation policy, it states that a batch is
started, when the total waiting costs of all customers in the waiting queue is equal
or greater then the total service costs and the server is free [15]. The total waiting
costs are the sum of costs for each waiting customer based on the given penalty
costs per time period. The total service costs can be either a constant value or they
are a function considering the number of customers.

Besides these two, other types of activation rules exist. Thus, it should be possible to
provide different types of activation rules from which a process designer can select one
for a batch activity and fill it with required user inputs.

Requirement R3 - Homogeneous vs. heterogeneous requirements: In studies from queu-
ing research, it is discussed that arrived customers may be homogeneous or heteroge-
neous in their demand [10]. If they are heterogeneous, different types of batches have
to be formed. Also activity instances can be heterogeneous regarding their inputs re-
spectively required outputs. In our train example, all Produce voucher card-instances

Batch Activities in Process Modeling and Execution 287

are currently homogeneous. The activity instances will become heterogeneous concern-
ing their output requirements, for example, if the train company produces two types of
voucher cards; white colored ones for amounts lower e150 and better protected once
in silver for amounts equal or greater than e150. In this case, two different batch types
have to be created. However, we assume in this work that all activity instances are ho-
mogeneous.

Requirement R4 - Single vs. multiple server(s): Often, studies from queuing research as-
sume that only a single server is available [8]. Hereby, it is assumed that the availability
of the server is controlled and the activation of a batch depends on it. Business pro-
cess management differentiates between the control flow perspective, where the batch
activity is part of, and the resource perspective concentrating on the modeling of re-
sources and the allocation of work. Russell et al. [11] present several resource patterns
for offering, allocating, and detouring work after an activity was enabled (e.g., the role-
based allocation). We require that the batch activity execution should not interfere with
the concepts of the resource perspective. Therefore, we assume the general case that a
batch can be provided to multiple available resources. Here, the engine should be able
to run several batches in parallel when they are needed.

Requirement R5 - Parallel vs. sequential enactment: Batch processing occurs in two
versions: parallel and sequential execution [7]. In parallel batch execution, the activity
instances of a batch are processed by the task executor simultaneously, because the server
capacity is greater than one. An example for it is the voucher card machine of the train
company which can produce more than one card in a run. In sequential batch execution,
the task executor enacts the activity instances one after another. They are processed as
batch, because they share the same setup, e.g., the setup of a machine, a traveling dis-
tance. An example is the task of controlling exams where the examiner needs a certain
familiarization phase for each examination question and then checks the answers of all
students for one question.

Requirement R6 - Maximum capacity: An often discussed constraint of the batch ser-
vice problem is the maximum capacity of the task executor respectively the maximum
number of cases that the executor can handle in a sequence [8]. For instance, the voucher
card machine may be able to produce at maximum 25 cards in a run. This capacity de-
termines the maximum size of a batch, which is 25 for the Train ticket refund example.
If a batch is activated and offered to its executor, but not yet started, because the ex-
ecutor is not available, it should be still possible to add further activity instances until
the maximum is achieved or the batch is started. This leads to an increased process
performance.

3 Integrate Batch Activities in Process Modeling and Execution

In this section, a general approach to model and configure a batch activity in process
modeling languages is presented. The de facto standard BPMN is used to illustrate
it. For the approach, we augmented the process meta model by Weske [16] with the
required concepts for batch activities which is explained in detail in Section 3.1. For
the enactment of batch activities in a process engine, an enhanced engine architecture

288 L. Pufahl and M. Weske

and execution semantics is proposed in Section 3.2. We evaluate the applicability of our
approach based on a case study in Section 3.3.

3.1 Modeling and Configuration of a Batch Activity

In this work, we want to provide the possibility to design and configure a specific ac-
tivity as batch activity in order to synchronize the execution of its instances. Therefore,
we extended the process meta model by Weske [16]. The meta model describes that
a process model consists of nodes and edges. A process model acts as blueprint for a
set of process instances which are related to exactly one process model. A node in a
process model can represent an event, a gateway, or an activity model. Similar as the
node, the activity model is associated to an arbitrary number of activity instances (see
Fig. 3(a)) for which it describes the key characteristics, e.g., resource assignment, input
and output data. An activity model can be a system, user interaction, or manual activity.

Activity ModelActivity Instance 1*

-activationRule
-sequentialExecution
-maxBatchSize
-waitingQueue

Batch Model

1

0..1

Batch Instance0..1

*

1*

1..maxBatchSize

(a) Batch activity meta-model

-UserInput
-Event
-Condition

Activation Rule

Threshold Rule Cost-based Rule

-maxBatchSize
-sequentialExecution
-waitingQueue

Batch Model

1 1

(b) Rule-based initialization concept

Fig. 3. Extension of process meta model for batch activities. In (a), we show that a batch activity
can be designed by assigning a batch model with several configuration parameters to an activity
model. In (b), we show that each batch model gets assigned an activation rule which can be from
different types (here from type threshold or cost-based) to enable a rule-based batch initialization.

We extend these concepts by the batch model (see class diagram of Fig. 3(a)); an
activity becomes a batch activity, if its activity model is associated to a batch model
which in turn can only be associated with exactly one activity model. A batch model
describes the conditions for batch execution and can be configured based on the param-
eters activationRule, sequentialExecution, and maxBatchSize by the process designer.

– The activationRule provides the possibility to specify a policy when a batch is
enabled and offered to the task executor. Therefore, the process designer selects an
activation rule type (e.g., threshold rule) and provides required user inputs (see R2).

– The sequentialExecution is of type boolean. In case of false, all instances of a batch
are provided at once to task executor for parallel execution. In case of true, instances
are provided one after another to the executor for sequential execution (see R5).

– The maxBatchSize is of type integer and represents the maximum capacity of the
task executor. It specifies the number of instances which can be at maximum in a
batch. It can be limited by user input or unlimited without user input (see R6).

Batch Activities in Process Modeling and Execution 289

In Fig. 4, we show an exemplary configuration by means of the batch activity B in the
example process P. In this context, we illustrate a batch activity in BPMN by a double
framed activity. For the batch activity B, the process designer selected the threshold rule
as activation rule with a threshold of two and a maximum waiting time of one hour (i.e.,
the batch is offered to the task executor latest after an hour). The batch activity was
configured such that at maximum three instances of B can be in a batch and they are all
executed in parallel, because the sequentialExecution is set to false.

A B C

activat ionRule = ThresholdRule(2 cases, 1h)
sequentialExecut ion = false
maxBatchSize = 3

B

Fig. 4. Example process P with three activities whereby A and C are usual single case activities
and B is a batch activity illustrated here with a double border

In summary, a batch model associated to an activity model describes with its config-
urations the behavior for an arbitrary set of batch instances. A batch instance represents
one batch and is responsible for its initiation and execution. Several batch instances
being associated to exactly one batch model can exist simultaneously to allow the par-
allel execution of batches (see R4). Thus, when a batch instance is currently executed,
another instance can already be initiated when it is required, and can be allocated, e.g.,
to an alternative resource. We will give more details on how the parallel run of batch
instances can be organized and implemented in the next section.

Enabled activity instances are associated to a batch instance. Each batch instance
has its own waiting queue where all its assigned activity instances are collected in order
of their arrival (see R1). At minimum, the queue has the size of one, because a batch
instance is only initialized when it is required by at least one instance, and at maximum
it has a size of the user-specified maxBatchSize. A batch instance also passes the states
init, ready, running and terminated. Thereby, a batch instance changes from the init
to ready state as soon as the predefined activation rule is fulfilled. Then, the batch of
activity instances is offered to the task executor. When a resource accepts it, the batch
instance enters the running state and as soon as the batch work is completed, it changes
into the terminated state. Additionally, we extended the life cycle for batch instances
so that they can also be in state maxloaded after being ready and before being running
when it reaches the specified maximum size of a batch. After a batch instance is initial-
ized and as long as it does not enter the maxloaded or running state, activity instances
can be bound to it. So, we ensure that an optimal number of activity instances is added
to a batch instance.

As described, the process designer selects an activation rule type for a batch model
and configures it with the required user inputs. Thus, each batch model is associated
with an activation rule as shown in Fig. 3(b). We assume that process engine suppliers
provide different types of activation rules in advance, e.g., the threshold rule or cost-
based rule from queuing research presented in Section 2. In general, an activation rule

290 L. Pufahl and M. Weske

relies on the concept of ECA (Event Condition Action) rules. Basic elements of an ECA
rule are an event E triggering the rule, a condition C which has to be satisfied, and an
action A being executed in case of fulfillment of the condition [3].

Thus, we define an activation rule as a tuple E × C × A, whereby the action A
is always the enablement of the associated batch instance. An event E is either an
atomic event (e.g., a state change of the batch waiting queue or a specific time event)
or a composite event being a composition of atomic events through logical operators,
as for instance AND or OR. A condition C is a boolean function. The input elements
to such a function can be system parameters (e.g., actual length of waiting queue),
user inputs (e.g., THRESHOLD), or a combination of both (e.g., total service costs =
(VARIABLE COSTS ∗ actual length of waiting queue) + CONSTANT COSTS) connected
by a relational expression. The composition of several atomic conditions with logical
operators is called composite condition.

An example for the threshold rule is given below. In this activation rule, the user
inputs are indicated by capitals and the system parameters are italicized. It consists of
a composite event saying that the rule is triggered when a new activity instance was
added to the waiting queue of the associated batch instance b or when no new one was
added for a specific period, i.e., the user-specified maximum waiting time divided by
ten. With triggering the rule, the given composite condition is checked. It states that
either the length of the waiting queue has to be equal or greater than the user-specified
threshold or the lifetime of b has to be equal or greater than the user-specified maximum
waiting time. If the condition evaluates to true, b gets enabled.

ActivationRule Threshold rule

On Event (Instance added to b.waitingQueue) OR

(No instance since MAXWAITINGTIME/10)

If Condition (b.waitingQueue.length ≥ THRESHOLD)OR

(b.lifetime ≥ MAXWAITINGTIME)

Do Action Enable batch instance b

End ActivationRule

We enable the integration of batch activities into process modeling with few extensions
on the existing process meta model. In the next section, we propose an architecture and
execution semantics for batch activities.

3.2 Execution of a Batch Activity

In Fig. 5, we present an abstract architecture of a usual process engine (cf. white ele-
ments). Process models are saved in a repository on which the process engine has read
access. As soon as a start event occurs for a process, the engine initializes an instance
of this process. Thereby, the process instance controls the initialization and enablement
of each of its activity instances based on the control flow specification in the process
model. Exemplary, we show in Fig. 5 process instances of our example process P with
its activity instances. The process engine is able to offer and allocate the work of activity
instances to task executors. For service activities, the respective service is invoked by
the engine. User interaction activities are provided via a task management component

Batch Activities in Process Modeling and Execution 291

with a graphical interface to the process participants. This approach aims at relating a
batch configuration to any activity type (i.e., system, user interaction, or manual activ-
ity). Thus, we abstract from the service invocation and task management components.

Batch
Instance
batch1 of B

Batch
Factory

Process Model
Repository

Process
Engine

Task
Executor

Process
Instance p1

of P

Activity instances of p1
a1 of A c1 of Cb1 of B

Fig. 5. Process engine architecture (white ele-
ments) with extensions for batch activity execu-
tion (shaded elements)

In order to execute a batch activity,
the architecture is extended with batch in-
stances and a batch factory (cf. shaded el-
ements in Fig. 5 for the example batch
activity B). For each batch activity, a
batch factory exists which is responsible
for mapping activity instances to batch
instances and for initializing new batch
instances when required. Thus, activity
instances request the batch factory – in
Fig. 5 the instances of the batch activity B
– for being associated to a batch instance.
A batch instance in turn communicates
with one or more associated activity in-
stances as well as with the process engine
which can offer the batch to the executor.

allocate(batch1)

getInstance()

terminate()

b2:B

b1:B

bdF:batchFactory

addToBatch(b2)

batch1:Batch

t:taskExecutor

IN
IT

ProcessEngine

getInstance()
addToBatch(b1)

initialize()

IN
IT

READY

addInstance(b2)

RU
N complete(batch1)terminate()

start()start()

p1:Process
initialize()

start()

terminate()

READY
IN
IT

initialize()

addInstance(b1)
getState()

checkActivationRule

RU
N

offer(batch1)
accept

checkActivationRule

enable()

request()

enable()

initialize()
READY

RU
N

Fig. 6. Execution semantics of a batch activity

An example scenario of the activity instance b1 of the batch activity B being part of
the process instance p1 and associated to the batch instance batch1 is represented in the
sequence diagram of Fig. 6. It illustrates the execution semantics of an activity instance
of a batch activity which is a refinement (cf. shaded box in Fig. 6) of the common
activity instance execution. The main difference is that instead of offering the activity
directly to the task executor after its enablement, it is added to a batch instance which
then controls its start and termination. In the sequence diagram, we label the activation

292 L. Pufahl and M. Weske

line of the activity instance and batch instance entities with the states they are currently
in. Next, we discuss the sequence diagram in detail.

As usual, the process engine initializes the instance p1 of the process P and the
instance initializes all its activity instances including b1. Based on the control flow
specification, the process instance enables b1 as soon as the preceding activity A was
terminated. Differently to the usual activity instance, b1 requests the batchFactory for
being added to a batch instance with the function addToBatch. We propose to imple-
ment the batchFactory class as singleton for having only one responsible object for the
mapping of activity instances to batch instances. It decides whether it can add an activ-
ity instance to a still not maxloaded, running, or terminated batch instance or whether
it has to initialize a new batch instance. Thereby, the requests by the activity instances
are sequentialized such to prevent an inconsistent state of the system. We developed the
following algorithm for the batchFactory class:

Algorithm 1. Algorithm for the function addToBatch
Require: i:activity instance

if availBatch not null then
if availBatch.getState ! = INIT || READY then

availBatch= initialize new batch();
end if

else
availBatch= initialize new batch();

end if
availBatch.addInstance(i);

The batchFactory class has an attribute availBatch where the potential batch instance
to which activity instances can be still added, is saved. When the algorithm is called with
an activity instance i and the availBatch is empty, a new batch instance is initialized
and set as availBatch. If it is not empty, the state of the corresponding batch instance is
checked with the getState-function. In case, it is not in state init or ready, a new batch in-
stance is initialized and set as availBatch. After these checks, the given activity instance
is added to the current availBatch. With the algorithm, we ensure that a maximal load
of a batch can be achieved, but if a batch instance has reached its maximum capacity or
is already executed, no new instances are added to it.

In our example, the threshold rule with a threshold of two was selected as activation
rule for the batch activity B (cf. Fig. 4). When the activity instance b1 was added to
the waiting queue of batch1, its activation rule is checked, because it is an event which
triggers to check the condition. Due to the waiting queue length of one, the condition is
evaluated to false and the action is not executed. For reason of complexity reduction, we
represent the activation rule in Fig. 6 as function and not as own object. With the second
added activity instance b2, batch1 enters the ready state, because now the condition that
the waiting queue length is greater or equal to the threshold is fulfilled. Then, the process
engine is requested to offer batch1 to the task executor. With acceptance of the task
executor, the engine allocates the work of all associated activity instances at once and
starts the batch instance. Having entered the running state, the batch starts all its activity

Batch Activities in Process Modeling and Execution 293

instances of its waiting queue. At some time, the task executor completes the batch.
Then, the engine terminates the batch and batch1 in turn terminates its activity instances
b1 and b2. In case that the sequential execution was selected for a batch activity, the
engine acts slightly different compared to the parallel execution: After the batch was
accepted by a resource, the engine starts the batch instance. The batch instance provides
in a loop its associated activity instances one after another over the engine to the task
executor. The currently provided activity instance is then started and terminated by it.

After we presented the architecture and execution semantics of a batch activity, we
will illustrate our approach using a case study in the next section.

3.3 Case Study

We already provided some insights into the Train ticket refund process in the introduction
on which we will focus in our case study. Fig. 7 shows a variant of it as BPMN model.

T
ra

in
 c

o
m

p
a
n

y

Train company

Claim for
t icket refund

Enter claim
for train

t icket refund

Check
refund claim
automatically

Reject ion
act ivat ionRule =
ThresholdRule(5 cases, 1d)
sequenialExecut ion = true
maxBatchSize = 20

act ivat ionRule =
ThresholdRule(15 cases, 1d)
sequenialExecut ion = parallel
maxBatchSize = 25

Letter of
apology with
voucher card

B
Check

refund claim
manually

B
Produce
voucher

card

Passenger

borderline
case

a
c
c
e

p
te

d

re
je

c
te

d
a
c
c
p

e
te

d

re
je

c
te

d

Fig. 7. Train ticket refund process with manual claim check

After a claim by a passenger is received in a form, the data of the form is entered
into the process system of the train company. We assume that our company receives
150 claims per day on average. Based on the entered data, the process system runs an
automatic check whether the passenger claim is accepted or rejected. Some claims – in
average 5% – are classified as borderline cases where the system check could not result
in a clear decision, e.g., when a passenger experienced a delay of 56 minutes instead of
an hour. An employee has to check them manually a second time.

We assume that the employee needs a familiarization phase of approximately four min-
utes for this task to get afresh familiar with proceeding guidelines and rules. In order to
save setup time, the employee shall process at minimum a set of five cases. The employee
can organize this for her-/himself. However, the employee may get disturbed from each
case arriving in the work list while working on other tasks. We propose to install a batch
activity so that the employee gets offered the work only when necessary. The require-
ments are that at minimum five cases should be processed in a sequence, but not more
than 20 cases due to the risk of decreased motivation, and no case should wait longer than
one day until being provided to task executor to ensure short response time for passengers.
We capture them in our batch activity (cf. Check refund claim manually in Fig. 7).

294 L. Pufahl and M. Weske

Table 1. Activity instance log of Check refund claim manually: Each row presents an activity
instance, i.e., when it entered a certain state and its relating batch instance

id init ready running terminated batch

...
i31 13/03/11 09:31 am 13/03/11 10:20 am 13/03/11 03:40 pm 13/03/11 03:51 pm 11
i37 13/03/11 09:58 am 13/03/11 11:01 am 13/03/11 03:51 pm 13/03/11 03:57 pm 11
i40 13/03/11 12:01 am 13/03/11 12:17 am 13/03/11 03:57 pm 13/03/11 04:02 pm 11
i48 13/03/11 02:33 pm 13/03/11 02:46 pm 13/03/11 04:02 pm 13/03/11 04:09 pm 11
i51 13/03/11 02:54 pm 13/03/11 03:14 pm 13/03/11 04:09 pm 13/03/11 04:16 pm 11
i59 13/03/11 03:07 pm 13/03/11 03:32 pm 13/03/12 04:16 pm 13/03/12 04:23 pm 11
i64 13/03/11 04:02 pm 13/03/11 04:13 pm 14/03/12 04:13 pm 14/03/12 04:25 pm 12
i76 14/03/12 10:21 am 14/03/12 10:45 am 14/03/12 04:25 pm 14/03/12 04:31 pm 12
i83 14/03/12 02:40 pm 14/03/12 02:49 pm 14/03/12 04:31 pm 14/03/12 04:36 pm 12
...

In Tables 1 and 2, we show exemplary extracts of the activity and batch log of Check
refund claim manually in order to illustrate the batch activity execution. A new activ-
ity instance i31 initialized at 9:31 am gets enabled at 10:20 am and requests the batch
factory for being added to a batch. Base on its algorithm, the batch factory initializes a
new batch instance b11, because the current availBatch b10 is already maxloaded. The
batch factory sets b11 as availBatch and adds i31 to its waiting queue. As time proceeds,
new enabled instances (i37, i40, i48) are added to b11. For each, the activation rule of
the batch instance is triggered, because the number of waiting instances is increased,
but it does not evaluate to true. With activity instance i51, the waiting queue length is
equal to the threshold of five. The activation rule evaluates its condition to true and the
action to enable the batch instances is executed. With b11 being in the ready state (at
3:14 pm), it is offered to the task executor which are all employees having the role of
claim inspector.

Table 2. Batch instance log: Each row
presents moment of state change by a
batch instance

id state time

...
b10 maxloaded 13/03/11 10:18 am
b10 running 13/03/11 10:50 am
b10 terminated 13/03/11 11:45 am

b11 init 13/03/11 10:20 am
b11 ready 13/03/11 03:14 pm
b11 running 13/03/11 03:40 pm
b11 terminated 13/03/11 04:23 pm

b12 init 13/03/11 04:13 pm
b12 ready 14/03/12 04:13 pm
b12 running 14/03/12 04:17 pm
b12 terminated 14/03/12 05:05 pm
...

A new enabled instance i59 arrives which is as-
signed to b11 by the batch factory, because b11
is still in the ready state and so still the avail-
Batch. At 3:40 pm, a claim inspector accepts the
batch and starts it. The batch instance b11 changes
into the running state. Due to the choice of se-
quential batch execution, b11 triggers the state
change of the first assigned activity instance i31
and provides it over the process engine to the
claim inspector. When i31 is terminated, the batch
instances starts the next instance. For the newly
enabled activity instance i64, a new batch instance
b12 is created, because b11 is running already.
With completion of i59 at 4:23 pm – the last one
in the waiting queue of b11 –, the batch instance
changes into terminated.

On the next day, only few enabled activity instances for manual claim check arrive.
The activation rule is triggered, because instances are not added to the waiting queue of
b12 for a longer time period. At 4:13 pm, the condition that the lifetime of b12 is equal
or greater than the maximum waiting time of one day is fulfilled and the enablement of

Batch Activities in Process Modeling and Execution 295

b12 is conducted. Few minutes later at 4:17 pm, the batch is accepted by a claim inspec-
tor. Again, the activity instances are started one after another and the batch instance b12
terminates at 4:36 pm with the end of its last activity instance i83.

The batch activity Produce voucher card in the process of Fig. 7 is an example
for parallel batch execution. As we already discussed parallel execution in detail in
Section 3.2, we will omit the discussion here due to space requirements.

4 Related Work

In an early work, Barthelmess and Wainer distinguish activities in work-case based ac-
tivities acting exclusively on particular business cases and batch activities for which a
set of cases have to be bought together [2]. They argue that batch activities are needed
to improve process performance or to compare business cases. Since than, only few at-
tempts to integrate batch activities into process modeling and execution were proposed.
In Table 3, we show them with respect to their coverage of the requirements of Section 2.

Table 3. Evaluation of related work

Aalst et al. [13] Sadiq et al. [12] Liu et al. [4] Mangler et al. [6] This

R1: Different execution semantics + + + + +
R2: Activation rule - - o + +
R3: Homog. vs. heterog. requirements - - + + -
R4: Single vs. multiple server(s) + + - o +
R5: Parallel vs. sequential enactment - - - - +
R6: Maximum capacity + + + - +

fully satisfied (+), partially satisfied (o), not satisfied (-)

One of them is the proclet framework by van Aalst et al. [13]. It defines a process
as a set of interacting proclets representing process fragments via channels. A batch
activity can be realized by a proclet which receives a predefined number of messages
by instances of a cooperating proclet, enacts the batch task and sends back messages to
the corresponding instances (R1). The other proclet may cover all single-case activities
of the process. A sequential batch execution is not possible. Proclets allow different
resource allocations (R4), but the size of a batch has to be explicitly given at design
time (R6) leading to a inflexible batch execution: The number of cases for comparison
cannot be defined dynamically and waiting for specific number of instances can result
in decreased process performance. In this work, we provide a flexible batch execution
approach by giving the possibility to select an activation rule for a batch activity.

Sadiq et al. [12] propose to establish compound activities in workflow systems with
a grouping- and ungrouping-function generating one activity instance based on several
ones and splitting it after task execution (R1). This activity instance could be provided
based on different resource patterns to task executors (R4). The grouping-function can
be either auto-invoked with a predefined number of required instances (R6), which has
similar drawbacks as proclets, or user-invoked, creating a batch with user-selected in-
stances. The user-invocation means a manual batch organization where rules are not
explicitly defined and errors can occur. In contrast, our approach offers the possibility
to explicitly define the batch execution rules with automatic enforcement of those.

296 L. Pufahl and M. Weske

Also, Liu et al. [4] want to integrate a new type of activity for batch execution into
workflow systems which is called batch processing activity (BPA). As the BPA is lim-
ited to the threshold rule (R2), the process designer defines a threshold and the maximal
capacity for a BPA as well as a grouping characteristic. Based on this characteristic, a
grouping and selection algorithm (GSA) groups activity instances arrived in the central
waiting queue of the BPA and selects a group to submit it to a server (R3). The func-
tionality of the GSA is not further discussed in this work; a proposal can be found in a
later work [5]. The authors limit their approach such that each BPA has only one server
available. Liu et al. [4] establish a scheduling algorithm for the GSA which observes
the state of BPA’s waiting queue as well as server and initializes it when the server is
idle and the threshold rule is fulfilled. With this algorithm, only one specific case of a
direct allocation to one resource is covered. In our work, we allow that several batches
can run in parallel so that all patterns of the resource perspective can still be used.

Mangler and Rinderle-Ma [6] provide an approach for a rule-based activity synchro-
nization of instances of the same process as well as of instances of different processes.
The synchronization is organized before or after specific rendezvous points. They pro-
pose that an external synchronization service can subscribe itself for being informed
about the progress of certain process instances. This service can trigger to stop their
execution as well as their continuation due to predefined ECA rules. According to their
approach, a batch activity can be organized as follows: Before certain process instances
start with a specified activity, the subscriber stops them and the references to them are
saved in a buffer (R1). When a certain condition is met, the subscriber triggers the con-
tinuation of the respective process instances (R2). With several subscribers focusing on
same rendezvous points, but different types of instances, also heterogeneous demands
by activity instances can be served (R3). However, the authors do not discuss, how this
batch of instances is provided to the task executor (R4). Furthermore, advanced techni-
cal knowledge is requested for the implementation of the synchronization service and
its ECA rules. In this paper, we provided an approach with which a batch activity can
be designed without any technical background and then automatically be executed.

5 Conclusion

In this work, we propose an approach to integrate the concept of batch activities into
process modeling and execution. Therefore, we first defined several requirements based
on the batch service problem in queuing research and the different execution seman-
tics of a batch activity compared to a regular one. Next, we extended the process meta
model so that a batch model can be optionally associated to an activity making it a batch
activity. With its different parameters, a process designer can configure the batch execu-
tion by selecting an activation rule and defining the maximum batch size as well as the
way of execution (i.e., parallel vs. sequential). With these configuration parameters, the
rules for a batch activity are explicitly documented which facilitates the communication
with process stakeholders. The batch model describes the behavior for a set of batch in-
stances where each batch instance manages one batch execution in order to allow that
several batches can run in parallel in case of multiple available resources. We presented
an architecture and execution semantics to show how the parallel batch execution can
be organized and implemented in a process engine. The applicability of our approach

Batch Activities in Process Modeling and Execution 297

was illustrated based on a case study. The study demonstrated that an automatic exe-
cution of batch activities by a process engine removes effort from process participants
to organize it manually. Furthermore, it improves monitoring and analysis of a batch
activity which results can be also used for enhancing batch configurations.

Our approach covers all defined requirements except that activity instances can be
heterogeneous in their demands and may have to be grouped into different types of
batches. This may be solved by developing an additional configuration parameter for
the batch model to express grouping characteristics. Furthermore, our approach assumes
that only activity instances of the same process can be grouped into a batch. The BPMN
concept of call activities can provide a possibility for bringing activity instances of
different processes together. When the batch activities are part of the process model, the
process designer has an increased responsibility for their correct configuration. In order
to support that, further validation and verification techniques should be developed which
take into account batch activities. In future work, we want to address these limitations.

References

1. Bailey, N.: On queueing processes with bulk service. Journal of the Royal Statistical Society.
Series B (Methodological), 80–87 (1954)

2. Barthelmess, P., Wainer, J.: Workflow systems: A few definitions and a few suggestions. In:
Organizational Computing Systems, pp. 138–147. ACM (1995)

3. Laliwala, Z., Khosla, R., Majumdar, P., Chaudhary, S.: Semantic and rules based event-
driven dynamic web services composition for automation of business processes. In: SCW,
pp. 175–182. IEEE (2006)

4. Liu, J., Hu, J.: Dynamic batch processing in workflows: Model and implementation. Future
Generation Computer Systems 23(3), 338–347 (2007)

5. Liu, J., Wen, Y., Li, T., Zhang, X.: A data-operation model based on partial vector space for
batch processing in workflow. Concurrency and Computation 23(16), 1936–1950 (2011)

6. Mangler, J., Rinderle-Ma, S.: Rule-based synchronization of process activities. In: CEC, pp.
121–128. IEEE (2011)

7. Mathirajan, M., Sivakumar, A.I.: A literature review, classification and simple meta-analysis
on scheduling of batch processors in semiconductor. IJAMT 29(9-10), 990–1001 (2006)

8. Medhi, J.: Stochastic Models in Queueing Theory. Academic Press (2002)
9. Neuts, M.F.: A general class of bulk queues with poisson input. The Annals of Mathematical

Statistics 38(3), 759–770 (1967)
10. Papadaki, K.P., Powell, W.B.: Exploiting structure in adaptive dynamic programming algo-

rithms for a stochastic batch service problem. EJOR 142(1), 108–127 (2002)
11. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource

patterns: Identification, representation and tool support. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)

12. Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When workflows will not deliver: The case
of contradicting work practice. In: BIS, vol. 1, pp. 69–84. Witold Abramowicz (2005)

13. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. IJCIS 10(4), 443–481 (2001)

14. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

15. Weiss, H.J., Pliska, S.R.: Optimal control of some markov processes with applications to batch
queueing and continuous review inventory systems. CMS-EMS, Discuss. Paper (214) (1976)

16. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

Multi-Objective Service Composition

Using Reinforcement Learning

Ahmed Moustafa and Minjie Zhang

School of Computer Science and Software Engineering
University of Wollongong, Gwnneville, NSW 2500, Australia

{aase995,minjie}@uowmail.edu.au

http://www.uow.edu.au

Abstract. Web services have the potential to offer the enterprises with
the ability to compose internal and external business services in order
to accomplish complex processes. Service composition then becomes an
increasingly challenging issue when complex and critical applications are
built upon services with different QoS criteria. However, most of the
existing QoS-aware compositions are simply based on the assumption
that multiple criteria, no matter whether these multiple criteria are con-
flicting or not, can be combined into a single criterion to be optimized,
according to some utility functions. In practice, this can be very difficult
as utility functions or weights are not well known a priori. In this paper,
a novel multi-objective approach is proposed to handle QoS-aware Web
service composition with conflicting objectives and various restrictions
on quality matrices. The proposed approach uses reinforcement learning
to deal with the uncertainty characteristic inherent in open and decen-
tralized environments. Experimental results reveal the ability of the pro-
posed approach to find a set of Pareto optimal solutions, which have the
equivalent quality to satisfy multiple QoS-objectives with different user
preferences.

Keywords: Web services, multi-objective optimization, reinforcement
learning.

1 Introduction

Web service composition is an important and effective technique that enables
individual services to be combined together to generate a more powerful service,
composite service. When conducting service composition, certain Quality of Ser-
vice (QoS) constraints have to be considered, namely, QoS-aware Web service
composition. This usually refers to the problem of composing a set of appropri-
ate services into a richer service that follows application logics while satisfying
certain QoS requirements.

QoS-aware Web service composition has been widely researched in the areas
of Service Oriented Architecture (SOA) and Service Oriented Computing (SOC)
[4,10,19]. However, existing approaches assume simple service composition mod-
els. Also, they give a single objective semi-optimal solution rather than a set of

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 298–312, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.uow.edu.au

Multi-Objective Service Composition Using Reinforcement Learning 299

Pareto optimal solutions that exhibit the trade-offs among different objectives.
For example, it becomes complex if a client wants to make sure of receiving a ser-
vice which meets a specific performance within a given cost level and a minimum
time delay, but within a higher availability. This is because different dimensional
qualities may conflict with one another in the real world. A typical example is
the time and cost pair. QoS-aware service composition is then a multi-objective
optimization problem, which requires simultaneous optimization of multiple and
often competing criteria. Finding the optimal solutions for QoS-aware Web ser-
vice composition with conflicting objectives and various restrictions on quality
matrices is an NP-hard problem.

In the literature, linear weight sum method is employed, and single-objective
algorithms are used to solve this problem [22]. However, linear weight sum
method has the following problems: 1) solutions are sensitive to the weight vec-
tor and stronger prior awareness is required before solving the problem; 2) its
number of solutions is small and the distribution of solutions is poor; 3) its time
complexity increases exponentially with the increasing problem space size; 4)
it will fail to find Pareto optimal solutions which lie in concave regions of the
Pareto front.

On the other hand, linear weight sum method offers the user only one solution,
while in reality, the user might prefer to see several good solutions, i.e., Pareto
optimal, and decide which one is the best for himself. It is more natural to let
the user decide the importance of each objective than aggregating the objectives
and ask the user to specify a priori his/her preferences which is a demanding
task. By using multi-objective optimization, it is no longer necessary for the user
to define a priori an aggregation function.

Reinforcement learning (RL) [15] originally stems from the studies of ani-
mal intelligence, and has been developed as a major branch of machine learning
for solving sequential decision-making problems. RL is concerned with how an
agent ought to take actions in an environment so as to maximize some notion
of long-term reward. RL has primarily been limited in its applicability to solve
only single objective problems. However, many industrial and scientific prob-
lems are inherently complex and cannot be expressed in terms of just a single
objective. Multi-objective Reinforcement Learning (MORL) combines advances
in multi-objective optimization and techniques from reinforcement learning, thus
extending RL techniques into the realms of multi-objective problems.

In this paper, an approach based on (MORL) is proposed for multi-objective
service composition and adaptation in dynamic uncertain environments. Within
the proposed approach, two algorithms are devised to handle different compo-
sition scenarios based on user preferences. Experiments have shown the ability
of the proposed approach to provide scalable results especially in compositions
with multiple quality attributes. The rest of this paper is organized as follows.
The problem formulation and basic definitions are introduced in Section 2. Sec-
tion 3 presents the multi-objective service composition approach. In Section 4,
some experimental results are presented for evaluating the proposed approach.

300 A. Moustafa and M. Zhang

Section 5 gives a brief review of related work and discussions. Finally, the paper
is concluded in Section 6.

2 Problem Formulation

In this section, we describe the problem of service composition and give basic
definitions related to our approach. In this approach, we employ the concept of
Markov Decision Process (MDP) to schematically describe the process of ser-
vice composition and adaptation. MDP is an AI method to model sequential
decision processes under uncertainty and has also been used in different applica-
tions [12]. We use Multi-objective Markov Decision Process (MOMDP) to model
multi-objective service composition in uncertain dynamic environments. The key
concepts used in our approach are formally defined as follows.

In general, Web services can be described in terms of their service ID and
QoS. A Web service can be formally defined by Definition 1.

Definition 1: (Web Service). AWeb Service WS is defined as a tuple WS =<
ID,QoS >, where ID is the identifier of the Web service, QoS is the quality of
the service represented by a n-tuple < Q1;Q2; ...;Qn >, where each Qi denotes
a QoS attribute of WS.

Generally, a single objective Markov Decision Process (MDP) can be defined
defined as follows.

Definition 2: (Markov Decision Process (MDP)). An MDP is defined as
a 4-tuple MDP =< S,A, P,R >, where

– S is a finite set of states of the world;
– A(s) is a finite set of actions depending on the current state s ∈ S;
– P is a probability value, i.e., when an action a ∈ A is performed, the world

makes a probabilistic transition from its current state s to a resulting state
s′ according to a probability distribution P (s′ | s, a); and

– R is a reward function. Similarly, when action a is performed the world makes
its transition from s to s′ , the composition receives a real-valued reward r,
whose expected value is r = R(s′ | s, a).

By extending the single-objective Markov decision process, the multi-objective
Markov decision process is defined as follows.

Definition 3: (Multi-Objective Markov Decision Process (MOMDP)).
An MOMDP is defined where

– There is an environment and an agent which takes an action at discrete time
t = 1, 2, 3, .

– The agent receives a state s ∈ S from the environment, where S is the finite
set of states.

– The agent takes an action a ∈ A at state s, where A is the finite set of
actions that the agent can select.

Multi-Objective Service Composition Using Reinforcement Learning 301

– The environment gives the agent the next state s′ ∈ S. The next state is
determined with the state transition probability P (s, a, s′) for state s, action
a and the next state s′. The state transition probability can be defined by
the mapping:

P : S × A× S → [0, 1] (1)

– There are (M > 1) objectives which the agent wants to achieve, and the
agent gains the following reward vector from the environment when it moves
to the next state.

r(s, a, s′) = [r1(s, a, s
′), r2(s, a, s′), · · · , rM (s, a, s′)]T (2)

MOMDP involves multiple actions and paths for each agent to choose. By
using MOMDP to model service compositions, the composition agent will be
able to find a set of Pareto optimal workflows satisfying the trade-offs among
multiple QoS objectives. For each agent i, we call our service composition model
as Multi-Objective Markov Decision Process based Web Service Composition
(MOMDP −WSC), which simply replaces the actions in a MOMDP with Web
services.

Definition 4: (MOMDP-Based Web Service Composition (MOMDP-
WSC)). An MOMDP-WSC is defined as a 6-tuple MOMDP − WSC =<
Si, si0, S

i
r, Ai(.), P

i, Ri >, where

– Si is a finite set of world states observed by agent i;
– si0 ∈ S is the initial state and any execution of the service composition

usually starts from this state;
– Si

r ⊂ S is the set of terminal states. Upon arriving at one of those states, an
execution of the service composition terminates;

– Ai(s) is the set of Web services that can be executed in state s ∈ Si , a Web
service ws belongs to Ai, only if the precondition wsP is satisfied by s;

– P i is the probability when a Web service ws ∈ Ai(s) is invoked when agent i
makes a transition from its current state s to a resulting state s′, where the
effect of ws is satisfied. For each s, the transition occurs with a probability
P i(s′|s, ws); and

– Ri is a reward function when a Web service ws ∈ Ai(s) is invoked, agent
i makes a transition from s to s′, and the service consumer receives an
immediate reward ri, whose expected value is Ri(s′|s, ws). Consider selecting
Web service ws with multiple QoS criteria, agent i receives the following
reward vector:

Q(s, ws, s′) = [Q1(s, ws, s′), Q2(s, ws, s′), · · · , QM (s, ws, s′)]T , (3)

where each Qi denotes a QoS attribute of ws.

The solution to an MOMDP-WSC is a decision policy, which is defined as a
procedure for service selection ws ∈ A by agent i in each state s. These policies,
represented by π, are actually mappings from states to actions, defined as:

302 A. Moustafa and M. Zhang

π : S −→ A. (4)

Each policy of MOMDP-WSC can define a single workflow, and therefore, the
task of our service composition model is to identify the set of Pareto optimal
policies that gives the best trade-offs among multiple QoS criteria.

3 Multi-Objective Reinforcement Learning for Service
Composition

In order to solve the above mentioned MOMDP, we propose an approach based
on Multi-Objective Reinforcement Learning (MORL). The goal of MORL is to
acquire the set of Pareto optimal policies in the MOMDP model. The set πp of
the Pareto optimal policies is defined by:

πp =

{
πp ∈ Π

∣∣∣∣�π ∈ Π, s.t. ∨πp

(s) >p ∨π(s), ∀s ∈ S

}
, (5)

where Π is the set of all policies and >p is the dominance relation. For two
vectors a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn), a >p b means that ai ≥ bi
is satisfied for all i and ai > bi is satisfied for at least one i. Moreover, V π(s) =
(V π

1 (s), V π
2 (s), · · · , V π

M (s)) is the value vector of state s under policy π and it is
defined by:

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

}
, (6)

where Eπ is the expected value provided that the agent follows policy π, st
is the state at time t, rt is the reward vector at t and γ is the discount rate
parameter. We also define the Q-learning [20] vector by:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s, at = a

}
, (7)

where at is the action at time t.
The MORL agent works to find the set of Pareto optimal policies under the

condition that the agent does not know the state transition probability P (s, a, s′)
and the expected reward vector E{r(s, a, s′)}.

Current MORL approaches can be divided into two classes based on the num-
ber of policies that they learn [11]. The first class aims to learn the single policy
that best satisfies a set of preferences between objectives as derived from the
problem structure. We will refer to theses as single policy approaches. The sec-
ond class seeks to find the set of policies which approximate the Pareto optimal
front of all possible user preferences. We will refer to these as multiple policy
approaches. Inspired by recent works in MORL [11], we propose two algorithms
to address multi-objective composition in Web service environments. The first
algorithm handles the case of single policy multi-objective service composition

Multi-Objective Service Composition Using Reinforcement Learning 303

and the second algorithm handles the case of multiple policy multi-objective
service composition.

3.1 Single Policy Multi-objective Service Composition

In the first algorithm, each QoS-objective is implemented as a separate Q-
learning agent. Web services and their relative importance to these objectives are
learned rather than predefined and the deployment of multiple QoS-objectives
is enabled. At every state s, each agent i selects the candidate web service wsi
that optimizes its relative QoS-objective, then the agents negotiate together to
decide which candidate service to execute in this state.

The agents learn to cooperate by negotiation and the agent that wins is the
agent that would suffer the most if it did not. Given a state s, the agents suggest
their Web service selections with strengths or weights Wi(s). The agent with the
largest W values is then allowed to deploy its preferred Web service in this state
such that:

Wk(s) = Maxi∈1,···,nWi(s) (8)

Therefore, agent k is then a winner and executes Web service wsk. We call
agent k the leader in competition for state s at the moment. The agents then
modify their wi(s) values based on whether they were obeyed, and what hap-
pened if they weren’t, so the next round there may be a new winner.

Algorithm 1. Single Policy Algorithm

Observe state s
initialize leader k with a random integer between 1 and N
Wk ← 0
ak ← argmaxaQk(s, a)
repeat

for all agents i except k do
Wi ← maxaQi(s, a)−Qi(s, ak)
if the highest Wi > Wk then

Wk ← Wi

ak ← argmaxaQi(s, a)
k ← i

end if
end for

until converges
return ak

W values build up on the difference between predicted reward P , which rep-
resents what is predicted if the agent was obeyed, and actual rewards A, which
represents what actually happened. Therefore, W is calculated by:

W = P − A, (9)

304 A. Moustafa and M. Zhang

where p is the anticipated Q-vector if this agent’s suggested Web service is
executed, and A is the received Q-vector of the execution of another agent’s
suggested Web service. (P − A) is the loss that the other agent causes to this
one by being obeyed in its place. Consider the Q-learning process, when agent k
is the winner and has its Web service executed, all other agents except k update
their W values as follows:

Wi(x) → (Qi(x, ai)− (ri + γmaxb∈aQi(y, b))), (10)

where the reward ri and the next state y are caused by the agent k than by
this agent itself. This process is described by Algorithm 1.

3.2 Multiple Policy Multi-objective Service Composition

In the second algorithm, the multiple policy service composition problem is
solved by introducing the concept of the convex hull into Q-learning based Web
service composition [8]. The convex hull is defined as the smallest convex set
that contains all of a set of points. In this case, we mean the points that lie
on the boundary of this convex set, which are of course the extreme points, the
ones that are maximal in some direction. This is somewhat similar to the Pareto
front, since both are maxima over trade-offs in linear domains. The proposed
algorithm exploits the fact that the Pareto optimal set of the Q-vectors is the
same as the convex hull of these Q-vectors.

In order to acquire the set of Pareto optimal service selection policies for all
the QoS objectives, the set of the vertices in the convex hull of the Q-vectors at
state s is updated by the value iteration method:

Q̂(s, a) = (1− α)Q̂(s, a) + α

[
r(s, a) + γhull

⋃
a′

Q̂(s′, a′)
]
, (11)

where Q̂(s, a) is the vertices of the convex hull of all possible Q-value vectors
for taking action a at state s, α is the learning rate, γ is the discount value, r is
the immediate reward, the operator hull means to extract the set of the vertices
of the convex hull from the set of vectors.

Algorithm 2. Multiple Policy Algorithm

initialize Q̂(s, a) arbitrarily ∀s, a
while not converged do

for all s ∈ S, a ∈ A do

Q̂(s, a) = (1− α)Q̂(s, a) + α

[
r(s, a) + γhull

⋃
a′ Q̂(s′, a′)

]

end for
end while

Multi-Objective Service Composition Using Reinforcement Learning 305

Given these definitions, now we can rewrite the Q-learning based Web service
composition algorithm [8] in terms of operations on the convex hull of Q-values.
In the proposed algorithm, an action is selected based on the dominance relation
between Q-vectors following the ε-greedy exploration strategy. This algorithm
can be viewed as an extension to [8], where instead of repeatedly backing up
maximal expected rewards, it backs up the set of expected rewards that are
maximal for some set of linear preferences. The proposed multiple policy Web
service composition algorithm is illustrated in Algorithm 2.

4 Simulation Results and Analysis

Two simulation experiments have been conducted to evaluate the proposed algo-
rithms from different perspectives. The first experiment examines the ability of
the single policy algorithm in composing Web services with Multiple QoS criteria
and unknown user preferences. The second experiment examines the efficiency of
the second algorithm in learning the set of Pareto optimal compositions consid-
ering the trade-offs among QoS objectives, simultaneously. Note that terms such
as criteria and objectives, qualities and characteristics, solutions and workflows
are used interchangeably unless otherwise specified.

We consider using four abstract services (i.e. the typical travel scenario) in
both experiment. We assume there are a number of concrete Web services avail-
able for each abstract service. The detailed task is to choose the optimal concrete
services to achieve better composition results that satisfy three QoS objectives
which are availability, response time and cost.

4.1 Experiment Setting

Since there is not any sizable Web service test case that is in the public domain
and that can be used for experimentation purposes, we focus on evaluating the
proposed algorithms by using synthetic Web services. We assigned each concrete
Web service in the simulated MOMDP-WSC model with random QoS vector.
The values of the quality parameters in this vector followed normal distribution.

The proposed algorithms run in successive iterations/episodes till reaching
a convergence point. Each algorithm converges to a near optimal policy once
it receives the same approximate value of average accumulative rewards for a
number of successive episodes, those average accumulated rewards are compared
episode by episode and the difference is projected against a threshold. For both
algorithms, this threshold value is set to 0.001, and the number of successive
episodes is set to 1000

To ensure the highest learning efficiency, a number of parameters are set up for
both experiments as follows. The learning rate α is set to 1, the discount factor
γ is set to 0.8 and the ε-greedy exploration strategy value is set to 0.7. These
parameter settings are shown in Table 1. The two experiments are conducted on
3.33 GHz Intel core 2 Duo PC with 3 GB of RAM.

306 A. Moustafa and M. Zhang

Table 1. Parameter Settings

Parameter Meaning Value

α Learning rate 1

γ Discount factor 0.8

ε Exploration strategy 0.7

4.2 Result Analysis

The results of the two experiments are demonstrated and analyzed in details in
the following subsubsections

Experiment 1: Single Policy Algorithm
The purpose of the first experiment is to examine the ability of the single policy
algorithm in composing web services with multiple QoS criteria and with no
predefined user preferences. The algorithm’s ability is measured in terms of the
average accumulated reward the composition agent receives when it converges
to an optimal policy. This reward value represents the aggregate QoS of the
optimal workflow.

For this end, we ran the experiment multiple times and changed the envi-
ronment scale in every run. The environment scale represents the number of
concrete Web services assigned to each abstract service. The average accumu-
lated reward of the single policy algorithm is recorded accordingly and compared
with the average accumulated reward of the linear weight Q-learning approach
[18]. The linear weight Q-learning approach assumes a predefined user prefer-
ences encoded as a weight vector over the multiple QoS attributes. This weight
vector is set, in this experiment, to ω = (0.3, 0.3, 0.3)

Fig. 1 depicts the relationship between the average accumulated rewards ob-
tained by running the single policy algorithm and the linear weight Q-learning
approach multiple times with various number of concrete Web services.

As shown in Fig. 1, the proposed single policy algorithm yields higher rewards
than the linear weight Q-learning approach, every run, apart from the number
of concrete Web services. This proves the capability of the single policy algo-
rithm to find higher quality compositions considering multiple QoS objectives.
The reward difference becomes more significant as the number of web services
increases, i.e., goes beyond 200. This is explained by the ability of the single
policy algorithm to better explore the Pareto front. While the linear weight Q-
learning approach fails to explore solutions lie on concave regions of the Pareto
front, the proposed algorithm is able to scale well with the spread of Pareto front
as the environment scale increases. Also, the linear-weight Q-learning approach
assumes the usage of a predefined user preferences represented by a given weight
vector ω. This weight vector might trip the search process into suboptimal re-
gions of the Pareto surface as the composition agent is biased towards the user

Multi-Objective Service Composition Using Reinforcement Learning 307

preferences. In contrast, the proposed algorithm builds upon the composition
structure to derive the relative weights among different QoS preferences. This
feature allows the proposed algorithm to adapt efficiently to the dynamics of
open environments where many Web services join or leave during run-time.

Fig. 1. Single Policy Algorithm

Experiment 2: Multiple Policy Algorithm
The purpose of the second experiment is to assess the ability of the proposed
multiple policy algorithm in learning the set of Pareto optimal workflows consid-
ering the trade-offs among different QoS criteria. Totally three tests are carried
out in this experiment. In the first two tests, each abstract service has been
assigned 50 and 100 candidate Web services, respectively. Consequently, this
creates an 4 × 50 matrix and 4 × 100 matrix for each quality attribute, respec-
tively. The proposed multiple policy algorithm is implemented and tested with
the parameters given above. The proposed algorithm runs till convergence and
the number of non-dominated solutions/workflows are calculated accordingly.

As shown in Fig. 2, the experimental results indicate that the proposed al-
gorithm is capable of guiding the search towards the Pareto-optimal front effi-
ciently. As the initial attribute matrix data are created randomly, we have no
idea where the true Pareto optimal front is. However, we understand that better
solutions would be the ones with lower cost, lower response time, but higher
availability. The search process should converge towards this direction.

308 A. Moustafa and M. Zhang

Fig. 2a clearly shows that the optimal solutions have achieved lower cost and
response time, but greater availability, which are centered between 0.4, 0.2, and
0.8, respectively. Fig. 2b also supports this statement, regardless of the bigger
number of concrete services assigned to each abstract service, as the optimal
solutions continue showing the same trend with lower cost and response time,
but greater availability, which are centered between 0.3, 0.4, and 0.6, respectively.

Fig. 2. (a) Results of composition with 50 services in each state; (b) Results of com-
position with 100 services in each state

The next test is performed to display the convergence property with the pres-
ence of different environment scales and various concrete services. Still, four
abstract services are considered. We experiment three different cases with the
number of concrete Web services varying from 100 to 400 for each abstract ser-
vice. As shown in Fig. 3, it takes longer to find a set of optimal solutions with
the increase of the number of concrete services. For example, in the case of 100
services, the algorithm converges at 400 episodes, while for the cases of 200 ser-
vices and 400 services, the algorithm finds the non-dominated solutions at 800
episodes and 1000 episodes, respectively. The same tendency is anticipated to
continue for any other bigger number of concrete services. As a matter of fact,
the three cases generated the same number of non-dominated solutions, 25, at
episode 400. The reason for this is currently unknown and is set for future re-
search. In short, the proposed multiple policy algorithm is able to provide a set
of Pareto-optimal solutions for service composition problems with different QoS
criteria.

Multi-Objective Service Composition Using Reinforcement Learning 309

Fig. 3. Multiple Policy Algorithm

5 Related Work and Discussion

The problem of QoS-aware Web service composition is well known in SOC do-
main and various solutions are proposed based on different approaches[9,22,10,1].
Zeng et al. [22] introduced a QoS model in which aggregation functions are de-
fined in order to aggregate and measure constraints into a single objective func-
tion. The major issues of the QoS-driven service selection approach presented in
[22] are scaling (amongst objectives) and weighting. Its weighting phrase requires
the selection of proper weights to characterize the users preferences, which can
be very difficult in practice. Furthermore, the method from [22] cannot always
guarantee the the fulfillment of global constraints, since Web service composition
is not separable. Wang et al. [19] proposed an efficient and effective QoS-aware
service selection approach. It employs cloud model to compute the QoS uncer-
tainty for pruning redundant services while extracting reliable services. Then,
Mixed Integer Programming (MIP) is used to select optimal services. Lin [10]
aims at enhancing the credibility of service composition plan, taking advantage
of a Web services QoS history records, rather than using the tentative QoS val-
ues advertised by the service provider, but at last the composition optimization
problem is also instantiated into an Integer Programming (IP) problem. How-
ever, as pointed out by Berbner et al. in [1], the IP approach is hardly feasible
in dynamic real-time scenarios when a large number of potential Web services
are concerned. Canfora et al. [2] proposed the use of Genetic Algorithms (GAs)
for the problem mentioned above. It has shown that GAs outperform integer

310 A. Moustafa and M. Zhang

programming used in [22] when a large number of services are available. More-
over, GAs are more flexible than the MIP since GAs allow the consideration
of nonlinear composition rules. Apparently, traditional GAs have some inherent
limitations in solving QoS-aware composition problems as the the selection of
the weights of characteristics is required in order to aggregate multi-objectives
into a single objective function in GAs.

All the above mentioned approaches, however, cannot solve Web service selec-
tion with multiple QoS objectives and multi-constrain. They all assume multiple
criteria, no matter whether they are competing or not, can be combined into a
single criterion to be optimized, according to some utility functions. When mul-
tiple quality criteria are considered, users are required to express their preference
over different, and sometimes conflicting, quality attributes as numeric weights.
This is a rather demanding task and an imprecise specification of the weights
could miss user desired services.

Despite the fact that the QoS optimization problem is multi-objective by na-
ture few approaches based on multi-objective algorithms can be found in the
literature [17,6,16]. Yu and Lin [21] studied multiple QoS constraints. The com-
position problem is modelled as a Multi-dimension Multi-choice 0-1 Knapsack
Problem (MMKP). A Multi-Constraint Optimal Path (MCOP) algorithm with
heuristics is presented in [21]. However, the aggregation of parameters using the
Min function is neglected. Maximilien and Singh [13] describe the Web Service
Agent Framework (WSAF) to achieve service selection by considering the pref-
erences of several service consumers as well as the trustworthiness of providers.

Evolutionary Algorithms (EAs) are suitable to solve multi-objective optimiza-
tion problems because they are able to produce a set of solutions in paral-
lel. A growing interest in the application of EAs to the multi-objective Web
service composition in recent years is evident. Claro et al. [5] discussed the
advantages of Multi-Objective Genetic Algorithms (MOGA) in Web service
selection and a popular multi-objective algorithm, NSGA-II [7], is used to find
optimal sets of Web services. Other EAs that have been proposed to solve multi-
objective service composition include, Multi-Objective Particle Swarm Opti-
mizer (MOPSO) [3], and Multi-Objective Evolutionary Algorithm based on De-
composition (MOEA/D) [14]. These EAs propose mathematical improvements to
solve multi-objective service composition problems. However, as the dimensional-
ity of problems increases, the performance of these EAs significantly deteriorates,
since they cannot find a wide range of alternative solutions. In addition, MOGA
and MOPSO cannot solve the optimization problems with concave Pareto fronts
which are commonly encountered in the real world. In contrast, the proposed
MORL based approach is able explore well the Pareto front of multi-objective
service composition problems and deliver optimal solutions.

On the other hand, EAs require a level of awareness of the problem domain
to setup the initial population through encoding the available combinations as
genomes. In contrast, the proposed MORL based approach can learn how to
best select Web services in complex environments based on multiple QoS criteria

Multi-Objective Service Composition Using Reinforcement Learning 311

without any prior knowledge regarding the nature or the dynamics of these
environment. Up to our knowledge, this is the first approach that uses MORL
to solve this problem.

6 Conclusion

This paper proposes a novel approach to facilitate the QoS-aware service compo-
sition problem. By using multi-objective reinforcement learning, we devise two
algorithms to enable Web service composition considering multiple QoS objec-
tives. The first algorithm addresses the single policy composition scenarios, while
the second algorithm addresses the multiple policy composition scenarios. The
simulation results have shown the ability of the proposed approach to efficiently
compose Web services based on multiple QoS objectives, especially in scenar-
ios where no prior knowledge of QoS data is available and no predefined user
preferences are given. The future work is set to study the performance of the
proposed approach in large scale service compositions scenarios.

References

1. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for
qos-aware web service composition. In: International Conference on Web Services,
ICWS 2006, pp. 72–82 (2006)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation GECCO 2005, pp. 1069–1075.
ACM, New York (2005)

3. Cao, J., Sun, X., Zheng, X., Liu, B., Mao, B.: Efficient multi-objective services
selection algorithm based on particle swarm optimization. In: 2010 IEEE Asia-
Pacific Services Computing Conference (APSCC), pp. 603–608 (2010)

4. Chiu, D., Agrawal, G.: Cost and accuracy aware scientific workflow composition
for service-oriented environments. IEEE Trans. Services Computing (2012)

5. Claro, D.B., Albers, P., Hao, J.K.: Selecting web services for optimal composition.
In: SDWP 2005, pp. 32–45 (2005)

6. de Campos, A., Pozo, A.T.R., Vergilio, S.R., Savegnago, T.: Many-objective evolu-
tionary algorithms in the composition of web services. In: 2010 Eleventh Brazilian
Symposium on Neural Networks (SBRN), pp. 152–157 (2010)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

8. Dehousse, S., Faulkner, S., Herssens, C., Jureta, I.J., Saerens, M.: Learning opti-
mal web service selections in dynamic environments when many quality-of-service
criteria matter. Machine Learning, InTech., 207–229 (2009)

9. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive
computing. IEEE Trans. Parallel and Distributed Systems 18(7), 907–918 (2007)

10. Lin, W., Dou, W., Luo, X., Chen, J.: A history record-based service optimization
method for qos-aware service composition. In: 2011 IEEE International Conference
on Web Services (ICWS), pp. 666–673 (2011)

312 A. Moustafa and M. Zhang

11. Liu, C., Xu, X., Hu, D.: Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews PP(99), 1–13 (2013)

12. Mastronarde, N., Kanoun, K., Atienza, D., Frossard, P., van der Schaar, M.:
Markov decision process based energy-efficient on-line scheduling for slice-parallel
video decoders on multicore systems. IEEE Trans. Multimedia 15(2), 268–278
(2013)

13. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services
selection. IEEE Internet Computing 8(5), 84–93 (2004)

14. Suciu, M., Pallez, D., Cremene, M., Dumitrescu, D.: Adaptive moea/d for qos-
based web service composition. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013.
LNCS, vol. 7832, pp. 73–84. Springer, Heidelberg (2013)

15. Sutton, R.S., Barto, A.G.: Reinforcement learning: Introduction (1998)
16. Taboada, H.A., Espiritu, J.F., Coit, D.W.: Moms-ga: A multi-objective multi-state

genetic algorithm for system reliability optimization design problems. IEEE Trans-
actions on Reliability 57(1), 182–191 (2008)

17. Wada, H., Suzuki, J., Yamano, Y., Oba, K.: E3: A multiobjective optimization
framework for sla-aware service composition. IEEE Transactions on Services Com-
puting 5(3), 358–372 (2012)

18. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service
composition based on reinforcement learning. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer, Hei-
delberg (2010)

19. Wang, S., Zheng, Z., Sun, Q., Zou, H., Yang, F.: Cloud model for service selection.
In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 666–671 (2011)

20. Watkins, C.: Learning from Delayed Rewards. PhD thesis, Cambridge University,
England (1989)

21. Yu, T., Lin, K.-J.: Service selection algorithms for composing complex services with
multiple qos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

22. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

Provisioning Quality-Aware Social Compute

Units in the Cloud

Muhammad Z.C. Candra, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{m.candra,truong,dustdar}@dsg.tuwien.ac.at

Abstract. To date, on-demand provisioning models of human-based
services in the cloud are mainly used to deal with simple human tasks
solvable by individual compute units (ICU). In this paper, we propose a
framework allowing the provisioning of a group of people as an execution
service unit, a so-called Social Compute Unit (SCU), by utilizing clouds
of ICUs. Our model allows service consumers to specify quality require-
ments, which contain constraints and objectives with respect to skills,
connectedness, response time, and cost. We propose a solution model
for tackling the problem in quality-aware SCUs provisioning and employ
some metaheuristic techniques to solve the problem. A prototype of the
framework is implemented, and experiments using data from simulated
clouds and consumers are conducted to evaluate the model.

Keywords: human-based service, social compute unit, quality of ser-
vice, service cloud management.

1 Introduction

Recently, we have been seeing on-demand online resource provisioning models
being applied not only to hardware- and software-based computing elements but
also to human-based counterpart. To date, the provisioning of human-based ser-
vices (HBS) in the cloud is traditionally used to provision an individual compute
unit (ICU) suitable for solving simple and self-contained human tasks. However,
for solving more complex tasks, we often require a group of people working in
a collaboration. We advocate the notion of a Social Compute Unit (SCU) as
a construct for loosely coupled, and nimble team of individual compute units,
which can be composed, deployed, and dissolved on demand.

In provisioning an SCU, quality control remains a major issue. Existing qual-
ity control approaches are traditionally relies on primitives and hard-wired tech-
niques, which do not allow consumers to customize based on their specific
requirements [1]. Still we lack effective HBS management frameworks to man-
age the socially connected human-based resources for fulfulling the consumers’
requests.

In this work, we present a framework that focuses on the provisioning of SCUs
containing socially connected ICUs obtained from the cloud, such as crowdsourc-
ing marketplaces. We posit that provisioning SCUs using the underlying ICU

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 313–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

314 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

clouds could enhance the on-demand provisioning model of human-based ser-
vices so that it can be utilized for solving more complex tasks. Our contribution
in this paper is to provide a flexible quality-aware SCU provisioning framework,
which is based on consumer-defined quality requirements, using ICUs obtained
from the cloud. In particular, our framework provides

– an architecture for quality aware SCU provisioning, which allows different
quality control mechanisms to be plugged in using provisioning APIs,

– a tool for modeling quality requirements using fuzzy concepts, and
– solution models which exemplify the quality control strategies for the frame-

work. Specifically, we develop some algorithms, one of them based on the Ant
Colony Optimization (ACO) approach, for dealing with the multiobjective
quality-aware SCU formation problem.

The proposed framework is particularly useful for, e.g., (i) providing a tool for
the human-based services management, which integrates the involved parties in
the human-based services ecosystem, and (ii) providing a simulation testbed for
studying various quality control technique for human-based services. To illus-
trate the usefulness of our framework, we study the feasibility of the results and
compare with other simpler and common approaches using simulations.

The rest of the paper is organized as follows. Section 2 provides some back-
ground for our work. Section 3 discusses the details of our proposed framework.
In Section 4, we present a provisioning solution model and describe some al-
gorithms for dealing with the SCU formation problem. Section 5 presents our
experiments to study our model. Some related works are presented in Section 6.
Finally, Section 7 concludes the paper and outlines our future work.

2 Background

2.1 Human-Based Compute Unit

We define two types of compute units, which are capable of delivering HBS: an
individual person, i.e., Individual Compute Unit (ICU), and a composition of
socially connected individuals, i.e., Social Compute Unit (SCU). These individ-
uals can be obtained on-demand from ICU clouds. Some examples of ICU clouds
include task-based crowdsourcing platforms (e.g., in [2]), collections of experts
on social networks (e.g., in [3]), and enterprise ICU pools (e.g., in [4]).

The execution of human tasks may employ different patterns depending on the
problem domain and on the runtime systems. Some examples of such patterns
include (i) single unit, where ICUs works individually on different tasks, (ii)
pipeline, where the assigned SCU members execute the task sequentially one
after another, (iii) parallel, where the task is split into subtasks, assigned to
SCU members, and the results are merged back after they finish (e.g., in [5]), (iv)
fault-tolerant, where the task execution is made redundant and the best result is
selected from the aggregation of the results (e.g., in [6]), and (iv) shared artifacts,
where the SCU members works collaboratively over some objects shared among
all SCU members (e.g., in [7]).

Provisioning Quality-Aware Social Compute Units in the Cloud 315

The effect of these patterns to the SCU provisioning is that each pattern may
require different ways to measure the SCU properties. For example, given a task
t, and an SCU V = {v1, v2, ..., vn}, the response time of the pipeline pattern may
be defined as

∑
v∈V time(v, t), while the response time of the parallel pattern

may be defined as maxv∈V time(v, t), where time(v, t) is the time required by
the ICU v to execute the task t.

2.2 ICU Properties

We define the following generally common ICU properties: skill sets, response
time, and cost.

Skill Set. A skill of an ICU represents a qualification that the ICU has. An
ICU, v, has a set of skills, Skv = {(s1, x1), (s2, x2), ..., (sn, xn}, where n =| Skv |.
The skill type, si, of a skill defines the kind of competency that the ICU is
endowed with. The skill level xi may be defined based on different measurement
techniques. For example, the skill level can be calculated based on a qualification
test or based on a stastical measurement such as the acceptance rate [2].

Response Time. For any ICU v for executing a task t, an estimated response
time can be provided, i.e., time : (v, t) → R>0. This response time is also affected
by the job queueing and assignment model, such as based on a maximum number
of concurrent job (e.g., [2]), using a work queue approach commonly found in
WfMS (e.g., [8]), or using a project scheduling approach considering the time
availability of the candidates (e.g., [9]).

Cost. An ICU v may specify its expected cost to perform a task t, which is
modeled as a function of the task parameters cost : (v, t) → R>0. This function,
for example, can be simply based on the estimated duration and the hourly cost.

2.3 Social Connectedness

The success of an SCU depends highly on its social connectedness [4]. We define
a connectedness graph as an ordered pair G = (V , E), where V represents an
SCU obtained from ICU clouds, and E represents a set of weighted undirected
edges between two different ICUs in V . We define an edge e = {v1, v2} ∈ E as an
indication that v1 and v2 have worked together in the past. The weight of the
edge, w(e), is an integer number that represents the number of successful task
completions substracted by the number of unsuccesful task completions. This
weighting approach allows us to give penalty to, for example, malicious workers.

An SCU and its connectedness can be represented as a graph G′ = (V ′, E ′),
where V ′ ⊂ V , E ′ ⊂ E , so that E ′ is the maximum subset of E that connects all
ICUs in V ′. We measure the connectedness of G′ as the average weighted degree
of all nodes:

conn(G′) =

∑
e∈E′

2 · weight(e)

|V ′| (1)

316 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

3 Quality-Aware SCU Provisioning Framework

3.1 Framework Overview

The core of our framework is the Provisioning Middleware, which coordinates
interactions among the ICU Cloud Manager, the Provisioning Engine, and the
Runtime Engine, as depicted in Figure 1. A scenario for an SCU provisioning
starts when a consumer submits a task request to the Runtime Engine. This
request contains the consumer-defined quality requirements for the task. This
quality requirements consists of required skill levels of the SCU members, as
well as their connectedness, maximum response time, and total cost. For exe-
cuting this task, the Runtime Engine sends an SCU provisioning request to the
Provisioning Middleware using the hybrid service programming API [10].

The Provisioning Middleware retrieves ICUs’ properties from the ICU Cloud
Manager, which maintains the functional and non-functional properties of the
ICUs, as well as tracking the previous interactions between ICUs, from various
ICU clouds. This ICU Cloud Manager encapsulates different APIs provided by
different ICU clouds into a unified API. This ICU Cloud Manager also allows
the formation of an SCU using many ICUs from different clouds.

The Provisioning Engine is responsible for controlling the quality of the SCU
provisioning. A quality control strategy for an SCU provisioning is a strategy
to control the formation and execution of an SCU, which takes the consumer
requirements and the properties of ICUs on the cloud into consideration. There
are two types of SCU quality control strategies covering two phases of the task life
cycle: pre-runtime and runtime. At pre-runtime, an SCU quality control strategy
governs the SCU formation. During runtime, a dynamic adaptation technique
is employed to guarantee the required quality. Here we focus on pre-runtime
quality control strategies (Section 4), and leave the latter issue for future work.

A pre-runtime quality control strategy is implemented using an algorithm
and executed by the Provisioning Engine. To process a task in the queue, the
Provisioning Middleware requests the Provisioning Engine to form the SCU.
Then, the Provisioning Engine invokes the algorithm to create the formation.
Upon receiving this formation, the Provisioning Middleware instructs the ICU
CloudManager to instantiate this SCU and deploy it to the Runtime Engine. The
SCU then executes the tasks using human interfaces provided by the Runtime
Engine. When the task finished, the result is returned back to the consumer.

3.2 Consumer Requirements

In our framework, we allow consumers (e.g., human-based application own-
ers, crowdsourcing requesters) to specify their requirements that represent con-
straints and objectives for the SCU formation and task execution. Our model
defines the consumer requirements along four dimensions: job descriptions, con-
nectedness, response time, and cost.

Due to imprecise nature of human work, defining a precise constraint can
be troublesome for consumers. Here, we propose to model quality requirements

Provisioning Quality-Aware Social Compute Units in the Cloud 317

...

ICU Cloud - 2 ICU Cloud - nICU Cloud - 1

ICU Manager

Consumer

request

Runtime Engine

SCU Provisioning
Middleware

Quality-Aware
ProvisioningEngine

(task spec,
consumer requirements)

hy
br
id
se
rv
ic
e

pr
og
ra
m
m
in
g

AP
Is

Algorithms

pr
ov
is
io
ni
n g

AP
Is

ICUmanagement APIs

deploy SCU

ICU
Properties

SCU Provisioning
Framework

Fig. 1. SCU Provisioning Framework

using fuzzy concept [11,12]. For example, instead of saying “I need an ICU with
a translation qualification ≥ 0.75”, the consumer could say “I need an ICU
with a good translation skill”. For a given fuzzy quality q (e.g., good), we could
measure the grade of membership of an ICU using the function μq : R≥0 → [0..1].
We apply this fuzzy concept to model the consumer requirements with respect
to job descriptions and connectedness.

Job Description. A task request contains a set of job descriptions, or jobs for
short. For each job, the consumer defines the meta-information (e.g., title, de-
scription, and presentation) and the required skill set. Our framework provisions
an SCU for the task, where each SCU member with the required skill set fulfills
a job in the task. Table 1 depicts an example of job requirements for a task,
which requires two SCU members: one translator and one reviewer.

Given a task with a set of jobs J = {j1, j2, ..., jn} for an SCU with size n, the
Provisioning Engine attempts to find a set of ICUs V ′ = {v1, v2, ..., vn}, which
maximizes μji(vi) ∀i ∈ [1..n]. μji represents the aggregated grade of membership
on the intersection of the fuzzy sets of all required fuzzy qualities in the job, i.e.,
given ji = {(t1, q1), (t2, q2), ..., (tm, qm)}, μji(v) = ∧(tk,qk)∈ji{μqk(x

v
k)}, where

xv
k is the numerical skill level of ICU v for skill type tk. Here, we use the min

operation as the interpretation of fuzzy set intersection [12].

Connectedness. The required connectedness of the SCU being formed is calcu-
lated using Equation 1. This requirement is also defined using a liguistic variable,
e.g., the consumer may say “I want to have an SCU with fair connectedness”.
Given a connectedness requirement qconn (e.g., fair), the Provisioning Engine
composes an SCU V ′ = {v1, v2, ..., vn} with a connectedness graph G′ = (V ′, E ′),
which maximizes μqconn(conn(G′)).

318 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

Table 1. An example of job requirements for an SCU

Jobs
Required Skill Sets

Skill Types
Fuzzy
SkillLevels

Job #1
– Translating DE to EN Good
– Acceptance Rate Fair

Job #2
– Reviewing Translation Good
– Acceptance Rate Very Good

Maximum Response Time. The maximum response time of the task t, maxRT ∈
R>0, is the time limit specified by the consumer within which the task execution
by the SCU must finish. For example, given a task t with parallel subtasks
and the maximum response time maxRT , the Provisioning Engine selects SCU
members V ′ = {v1, v2, ..., vn}, which satisfies maxni=1 time(vi, t) ≤ maxRT .

Cost Limit. The consumer defines cost limit of the task t, costLimit ∈ R>0 which
represents the maximum total cost payable to the SCU members, i.e., give a task
t with cost limit costLimit, the composed SCU members V ′ = {v1, v2, ..., vn},
must satisfy

∑n
i=1 cost(vi, t) ≤ costLimit.

Objectives. Furthermore, consumers may also define the objective of the SCU
formation. We support the following four goals:maximizing skill levels, maximiz-
ing connectedness,minimizing maximum response time, and minimizing cost. An
objective is an ordered 4-tuple, O = (ws, wcn, wt, wc), each respectively represent
the weights of skill levels, connectedness, response time, and cost for measuring
the objective value of a provisioning solution, where ws + wcn + wt + wc > 0.

Given the aforementioned constructs, we define a task request as a 3-tuple,
t = (J , C,O), where J = {j1, j2, ..., jn}, ji = {(t1, q1), (t2, q2), ..., (tm, qm)},
C = (qconn,maxRT, costLimit), and O = (ws, wcn, wt, wc).

4 Quality Control Strategies

Here we focus on pre-runtime quality control strategies, which deal with the
formation of SCU prior to runtime. We formulate the SCU formation problem,
which takes the quality requirements from the consumer into consideration, and
propose some algorithms to solve it.

Given an SCU V socially connected in a graph G = (V , E), and a task request
t = (J , C,O), we define the SCU formation problem as a problem of finding
V ′ ⊂ V as members of SCU for executing task t which minimizes O subject to C
and skill set requirements in J . In the following we discuss some building blocks
required to solve the SCU formation problem.

Provisioning Quality-Aware Social Compute Units in the Cloud 319

4.1 Assignments

The ICU Cloud Manager maintains a socially connected ICUs G = (V , E) ob-
tained from various ICU clouds. Given a task t with a set of jobs J , our goal is
to create assignments A = {(j1, v1), (j2, v2), ..., (jn, vn)}, ∀ji ∈ J , vi ∈ V .

The goal of an algorithm for solving the quality-aware SCU formation problem
is to find A in the search space J × V . Due to the size of V obtained from
ICU clouds, this search space can be extremely huge. Therefore, we filter out
non-feasible assignments based on the feasibility of competency, deadline, and
cost. Formally, for each job j, we search only in V ′ ⊂ V , where μj(v) > 0 and
time(v, t) ≤ maxRT and cost(v, t) ≤ costLimit, ∀v ∈ V ′.

However, this filtering does not guarantee a full feasibility of complete assign-
ments on all jobs. To guide our heuristic algorithms for selecting assignments
towards a feasible solution while minimizing the objective, we define two algo-
rithm control mechanisms: the local fitness which represents the fitness of an
assignment relative to other possible assignments for the same job, and the ob-
jective value of a solution which represents the fitness of a complete solution.
The formulation of these mechanisms is stimulated by the necessity to measure
the heuristic factors and solution quality in ACO approaches[13]. However, as
we show in Section 4.4, these mechanisms can also be used by other heuristics.

4.2 Local Fitness

The local fitness of an assignment is defined based on a partially selected assign-
ments, starting form an empty set of assignments when the algorithm begins.
Given a task t with the objective weighting factors O = (ws, wcn, wt, wc), a set of
selected partial assignments up to job number i− 1, Ai−1, that already contains
a set of ICUs Vi−1, and a set of possible assignments for the subsequent job ji,
AP

i , the local fitness λ for an assignment ai,j = (ji, vj), ai,j ∈ AP
i , is defined as

λ(ai,j ∪ Ai−1) =
λs · ws + λcn · wcn + λt · wt + λc · wc

ws + wcn + wt + wc
(2)

where

λs(ai,j ∪ Ai−1) = μji(vj),

λcn(ai,j ∪ Ai−1) =
conn(vj ∪ Vi−1)− conn(Vi−1)

γconn + conn(vj ∪ Vi−1)− conn(Vi−1)
,

λt(ai,j ∪ Ai−1) =
γtime

γtime + time(vj ∪ Vi−1, t)− time(Vi−1, t)
,

λc(ai,j ∪ Ai−1) =
γcost

γcost + cost(vj , t)
.

where γ is an adjustable parameter, e.g., we can use the consumer-defined
costLimit as γcost. Note that these local fitness values are normalized, i.e.,
λ : AP → [0..1]. The elements in AP

i can be defined based on the ICUs fil-
tering described in Section 4.1.

320 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

4.3 Objective Value of Solution

For each solution, i.e., a complete set of assignments A for all jobs in J , we
could measure the normalized objective value returned by the function f :
AD → [0..1], AD = J × V . Given a task t with the objective weighting factors
O = (ws, wcn, wt, wc), the objective function f(A) for A = {(j1, v1), (j2, v2), ...,
(jn, vn)}, is defined as follows:

f(A) = 1− fs(A) · ws + fcn(A) · wcn + ft(A) · wt + fc(A) · wc

ws + wcn + wt + wc
, (3)

where
fs(A) = ∧(ji,vi)∈A{μji(vi)},

fcn(A) = μconn(VA),

ft(A) =
γtime

γtime + SCURT (VA, t)
, and

fc(A) =
γcost

γcost +
∑

(ji,vi)∈A cost(vi, t)
.

VA is the set of ICUs in assignments A, i.e., for any A = {(j1, v1), (j2, v2), ...,
(jn, vn)}, VA = {v1, v2, ..., vn}. For fs(A), we again apply min function as the
interpretation of intersection operation ∧. The function SCURT (VA, t) returns
the aggregated response time of all ICUs in VA, which determined by, e.g., the
response time of each ICU and the SCU pattern employed (see Section 2.1). The
goal of an SCU formation algorithm is to minimize f(A).

4.4 Algorithms

We have established the building blocks required for solving the SCU formation
problem. Here, we present some algorithms to solve the SCU formation problem.

Simple Algorithms. We present two simple algorithms that can be used to find
a solution of the SCU formation problem based on the first come first selected
(FCFS) and the greedy approach.

FCFS Approach. This approach resembles the approach traditionally used in
task-based crowdsourcing model: the first ICU who ’bids’ wins the task. Assum-
ing that a standby ICU is interested in taking a task, we select the first earliest
available ICU for each job. In the case where there are some ICUs with the same
earliest availability, we pick one randomly.

Greedy Approach. Initially we construct a solution by selecting assignments for
each job that has the highest local fitness value. Afterwards, we gradually im-
prove the solution by changing an assignment at a time. Improvement is done
by randomly selecting a job, and randomly selecting another ICU for that job. If
the new assignment improve the objective value of the solution, we replace the
associated old assignment with this new better one. This procedure is repeated
until a certain number of maximum cycle is reached. The greedy approach makes
a locally optimized choice for each job at a time with a hope to approximate the
global optimal solution.

Provisioning Quality-Aware Social Compute Units in the Cloud 321

Ant Colony Optimization. Ant Colony Optimization (ACO) is a metaheuris-
tic inspired by the foraging behavior of some ant species[13]. In the ACO tech-
nique, artificial ants tour from one node to another node in the solution space
until a certain goal is achieved. The tour is guided by the pheromone trails,
which are deposited by the ants to mark the favorable path. The nodes visited
in a complete tour represent a solution. Once all ants have finished a tour, the
process is repeated for a specified number of cycles or until a certain condition
is met. The best solution of all cycles is selected as the solution of the problem.

In our SCU formation problem, given a requested task with a set of ordered
jobs J , a node is a tuple (j, v), where j ∈ J and v ∈ V . An ant starts a tour by
selecting an initial node (j1, v1) and travels to the next nodes (j2, v2), ... (jn, vn)
until all jobs ji ∈ J are assigned. Each node has a probability to be selected
determined by the pheromone trail and heuristic factor of the node.

Several variants of ACO algorithms have been proposed. Here, we develop our
algorithm based on three variants: the original Ant System (AS) [14], MAX -
MIN Ant System (MMAS) [15], and Ant Colony System (ACS) [16]. Generally,
the ACO approach is depicted in Algorithm 1.

When traveling through the nodes, at each move i, an ant k constructs a
partial solution Ak

i consisting all visited nodes for job 1 to i. When ant k has
moved i − 1 times, the probability it moves to another node (ji, vj) is given by

pki,j =

⎧⎪⎨⎪⎩
(τi,j)

α · (ηi,j)β∑
(ji,vw)∈AP ′

i

(
(τi,w)α · (ηi,w)β

) if (ji, vj) ∈ AP ′
i ,

0 otherwise,

(4)

where AP ′
i = AP

i −Ak
i−1, i.e. the set of possible assignments for job ji containing

only ICUs that are not yet included in Ak
i−1; τi,j is the pheromone value of the

node (ji, vj) at current cycle; and the heuristic factor ηi,j = λ(ai,j ∪ Ak
i−1) as

defined in Equation 2. The relative importance of pheromone and heuristic factor
are determined by parameter α and β. ACS variant uses a modified transition
rule, so-called pseudorandom proportional rule as shown in [16].

At the end of each cycles, pheromone trails on all nodes are updated. At each
cycle t, given the number of ants nAnts, the basic pheromone update formula
for a node (ji, vj), which is proposed by the original AS variant [14], is given by

τi,j(t) = (1− ρ) · τi,j(t− 1) +

nAnts∑
k=1

Δτk
i,j (5)

where ρ ∈ (0..1] is the pheromone evaporation coefficient, and Δτk
i,j is the quan-

tity of pheromone laid by ant k on the node (ji, vj), which is given by

Δτk
i,j =

{
Q/f(Ak) if (ji, vj) ∈ Ak ∧ Ak is feasible,
0 otherwise,

(6)

where Ak is the solution found by ant k and Q is an adjustable parameter. Ak is
feasible if it does not violate any constraints C. We exclude solutions that violate

322 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

one or more constraints so that only feasible solutions are promoted by the ants.
The pheromone update for MMAS and ACS variant has the same principle but
different formula as presented in [15] and [16].

Algorithm 1. Ant-based Solver Algorithm

initialize graph and pheromone trails
repeat

Aants ← ∅
for i = 0 to nAnts do

A ← find a tour for anti
Aants ← Aants ∪ A

update pheromone trails
until ∃A ∈ Aants f(A) = 0 or is stagnant or max cycles reached

5 Evaluation

5.1 Implementation

We have implemented a prototype of our proposed provisioning framework as de-
picted in Figure 1. The implementation contains three independent components,
namely Provisioning Middleware, Provisioning Engine, and ICU Cloud Manager.
The Provisioning Engine is implemented using the quality control strategies dis-
cussed in Section 4. For simulation purpose, we populate the ICU cloud with
a simulated pool of ICUs. Furthermore, we have also develop a prototype con-
sumer application which capable to submit SCUs provisioning requests to the
Provisioning Middleware. These components are loosely-coupled and talk to each
other through specified APIs implemented using SOAP-based Web services.

In our experiments, we focus on the following aspects of the SCU provisioning:
(i) we study our pre-runtime quality control strategy based on the three afore-
mentioned algorithms and analyze the perfomance and result, and (ii) we study
the ACO approach to have an insight of (a) the effect of different algorithm
parameters (b) the performance and result of the three different ACO variants.

5.2 Experiment Setup

Our prototype ICU manager maintains a work queue for each ICU. Each ICU
can only execute a single job at a particular time. We experiment with parallel
pattern (see Section 2.1), where subtasks, i.e., jobs, are assigned to the SCU
members and executed in parallel. We generate 500 ICUs on our simulated cloud.
We define 10 types of skills, and each ICU is randomly endowed with these skill
types. The consumer application generates task request with random parameters.
Each job in a task has some skills set requirements with the required fuzzy quality
uniformly distributed over four fuzzy quality levels: poor, fair, good, and very
good. In this experiment, we use the trapezoidal membership functions adopted
from [17], which support over-qualification when assigning SCU members.

Provisioning Quality-Aware Social Compute Units in the Cloud 323

5.3 Experiment Result

To study our pre-runtime quality control strategy, we configure our consumer
application to randomly generate and submit 100 task requests. The requests are
queued by the Provisioning Middleware in first-in-first-out manner. The Provi-
sioning Middleware then requests the Provisioning Engine to form an SCU for
each task request. We repeat the same setup three times to test the Provisioning
Engine configured using the three implemented algorithms: the FCFS algorithm,
the greedy algorithm, and the original variant of Ant System (AS) algorithm.

Table 2 shows a comparison of average results from all task requests. The
AS algorithm outperforms the others with respect to the aggregated objective,
i.e., minimizing f(A). The AS algorithm also provides SCU team formation
with better skill levels. However, as expected, the FCFS algorithm gives the
fastest running time. But considering the nature of human tasks, few seconds
running times of the AS algorithm and the greedy algorithm are reasonable.
This fast performance is not without cost, since the FCFS algorithm concludes a
solution too fast considering the response time only, it results in some constraint
violations. Fortunately, due the filtering of the search space (see Section 4.1),
violations on skill level constraints do not occur.

Table 2. Results and performance comparison

Algo
Objective
Values

f

Skill
Levels
fs

Response
Times

SCURT
Violation

Algo
Time

FCFS 0.4501 0.0810 6.06 4% 0.9117 ms

Greedy 0.3468 0.2130 11.87 0% 0.1219 s

AS 0.3147 0.3228 10.90 0% 6.6565 s

Furthermore, we are also interested in studying the quality control behavior
with respect to the objective weightings, O = (ws, wcn, wt, wc), as defined by
the consumer. Figure 2 shows results of our experiment using task requests with
varying objective weightings and SCU size. On each experiment shown on the
subfigures, we vary one weight from 0.5 to 8 and fix the others. The results show
that the AS algorithm honors the consumer defined weights better compared to
the other two. The sensitivity of the FCFS algorithm is flat on all cases, because it
does not consider the objective weightings during the formation. The sensitivity
levels of the cost weight wc of the greedy algorithm and the AS algorithm are
similar, due to the fact that the local fitness value for cost λc contributes linearly
to the objective value of the cost fc. For the connectedness sensitivity, the AS
algorithm cannot be seen clearly outperforms the greedy algorithm, because the
formed SCU almost reach the upper limit of fcn, i.e., 1.

Knowing that the AS algorithm provides better results in many aspects, we
carry out further experiments to understand the behavior of our ACO approach.
First, we study the effect of the ACO parameters to the perfomance and to the
quality of the resulted SCU formation. In our experiment, we use the AS variant

324 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

(a) Skill levels (fs vs ws) (b) Connectedness (fcn vs wcn)

(c) Cost (fc vs wc) (d) Response time (ft vs wt)

Fig. 2. Sensitivity on objective weightings

and fix the pheromone evaporation factor low, ρ = 0.01. If ρ is set too high, it will
cause the pheromone trails to be negligible too fast. Then, we vary the relative
importance of pheromone and heuristic factor, α and β. Figure 3a shows how
different α and β yield different results with respect to the average aggregated
objective value of the best SCUs formed. Furthermore, we run the experiments
for 8 ants in 2000 cycles and see whether a stagnant behavior occurs as shown
in Figure 3b. A cycle is said to be stagnant when all ants result in the same
SCU formation; hence, causing the exploration of the search space to stop. Our
experiments show that the combination of α = 0.2 and β = 1 gives best results.

Furthermore, we extend the experiment further using the same α and β pa-
rameters to the other two ACO variants. We are interested in finding out which
ACO variants give faster conclusion to a good SCU formation. We run the ex-
periment using 8 ants and 10000 cycles as shown in Figure 4. The result shows

(a) Objective values average (b) Stagnant behavior

Fig. 3. Influence of α and β

Provisioning Quality-Aware Social Compute Units in the Cloud 325

Fig. 4. Comparison on results of ACO variants

that the MMAS variant gives better SCU formations (less objective values) in
less number of cycles than the others.

Different quality control strategies implemented by different algorithms cater
different needs. Here we show an ACO based algorithm provides better results
in some aspects. However, there is no “one size fits all” strategy. For exam-
ple, the FCFS approach may be preferable in some circumstances where the
response time is the most important factor and the consumer only cares about
skill constraints, which happens in typical microtask crowdsourcing systems. The
usefulness of our framework is therefore also to support multiple strategies.

6 Related Work

HBS Management Framework. Recently, the issue of quality management in
human-based services has attracted many researchers. The issue becomes even
more crucial when we deal with online and open labor markets such as crowd-
sourcing marketplaces [1,18]. Several works have also been introduced to deliver
managed human-based services frameworks such as [19,20].

Many techniques have also been introduced for executing human tasks in a
workflow management system using organizational human-based services, such
as [21,22]. Some works such as [23] goes further to allow the execution of work-
flows or business processes using the cloud of human-based services.

Our work endorses the notion of Social Compute Unit (SCU), which allows
the execution of human tasks not only by a single human-based service but
also by a composition of socially connected human-based services. Furthermore,
we abstract open (e.g., crowdsourcing) and organizational pool of human-based
services as ICU clouds, and therefore, we envision the execution of organizational
human-based workflow using open ICU clouds such as crowdsourcing platforms.

Formation Techniques. One of the main focus of our work is in the domain of
team formation optimization. Some approaches for team formation based on the
fuzzy concept have been proposed, e.g., [9,17]. Other works, such as [24,25,26,27],
also take the social network of the team member candidates into consideration.

326 M.Z.C. Candra, H.-L. Truong, and S. Dustdar

Our work differs from the aforementioned works in the following aspects: (i) we
model constraints and objectives in four dimensions: skills, social connectedness,
response time, and cost, (ii) we utilize the fuzzy concept not only to model skills
but also to model the social connectedness, and (iii) we employ Ant Colony
Optimization to compose the team members.

7 Conclusions and Future Work

In this paper we present our framework for the quality-aware provisioning of
SCU using ICU clouds. Our framework contains the Provisioning Engine which
executes quality control strategies. We propose some algorithms for pre-runtime
quality control strategies, which deals with the SCU formation request consider-
ing the consumer-defined quality requirements and the ICUs properties obtained
from the cloud. We conduct experiments to study the characteristics of the al-
gorithms, which could be utilized to cater different system needs.

Our work presented in this paper is part of our ongoing research in the field
of human-based service. We plan to develop other quality control strategies such
as runtime adaptation techniques to govern the human-based services during
runtime. Furthermore, we are also interested in investigating quality control
strategies for human-based tasks on busines processes using the ICU clouds.

Acknowledgements. The first author of this paper is financially supported by
the Vienna PhD School of Informatics. The work mentioned in this paper is par-
tially supported by the EUFP7 FETSmartSociety (http://www.smart-society
-project.eu/).

References

1. Allahbakhsh, M., Benatallah, B., Ignjatovic, A., Motahari-Nezhad, H.R., Bertino,
E., Dustdar, S.: Quality control in crowdsourcing systems: Issues and directions.
IEEE Internet Computing 17(2), 76–81 (2013)

2. Amazon: Amazon mechanical turk. Website (2013), http://www.mturk.com/
3. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online

team formation in social networks. In: WWW, pp. 839–848. ACM (2012)
4. Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L., Dustdar, S.: Who do you

call? problem resolution through social compute units. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 48–62. Springer,
Heidelberg (2012)

5. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and
workflow design for mechanical turk. In: CHI, pp. 2053–2058 (2011)

6. Varshney, L.: Privacy and reliability in crowdsourcing service delivery. In: IEEE
2012 Annual SRII Global Conference (SRII), pp. 55–60 (2012)

7. Spillers, F., Loewus-Deitch, D.: Temporal attributes of shared artifacts in collabo-
rative task environments (2003)

8. Jin, L.J., Casati, F., Sayal, M., Shan, M.C.: Load balancing in distributed workflow
management system. In: ACM SAC, pp. 522–530. ACM (2001)

http://www.smart-society-project.eu/
http://www.smart-society-project.eu/
http://www.mturk.com/

Provisioning Quality-Aware Social Compute Units in the Cloud 327

9. Baykasoglu, A., Dereli, T., Das, S.: Project team selection using fuzzy optimization
approach. Cybernet. Syst. 38(2), 155–185 (2007)

10. Truong, H.-L., Dustdar, S., Bhattacharya, K.: Programming hybrid services in the
cloud. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS,
vol. 7636, pp. 96–110. Springer, Heidelberg (2012)

11. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning–i. Information Sciences 8(3), 199–249 (1975)

12. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management
Science 17(4), B141 (1970)

13. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computa-
tional Intelligence Magazine 1(4), 28–39 (2006)

14. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE TSMC 26(1), 29–41 (1996)

15. Stutzle, T., Hoos, H.H.: Max-min ant system. Future Generations Computer Sys-
tems 16(8), 889–914 (2000)

16. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. TEC 1(1), 53–66 (1997)

17. Strnad, D., Guid, N.: A fuzzy-genetic decision support system for project team
formation. Applied Soft Computing 10(4), 1178–1187 (2010)

18. Ipeirotis, P.G., Horton, J.J.: The need for standardization in crowdsourcing. In:
Proceedings of the CHI 2011 Conference (2011)

19. Minder, P., Seuken, S., Bernstein, A., Zollinger, M.: Crowdmanager-combinatorial
allocation and pricing of crowdsourcing tasks with time constraints. In: Workshop
on Social Computing and User Generated Content, pp. 1–18 (2012)

20. Dow, S., Kulkarni, A., Klemmer, S., Hartmann, B.: Shepherding the crowd yields
better work. In: ACM CSCW, pp. 1013–1022. ACM (2012)

21. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König,
D., Leymann, F., et al.: WS-BPEL extension for people (BPEL4People). V1. 0
(2007)

22. Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: An
overview. EJOR 134(3), 664–676 (2001)

23. La Vecchia, G., Cisternino, A.: Collaborative workforce, business process crowd-
sourcing as an alternative of BPO. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010.
LNCS, vol. 6385, pp. 425–430. Springer, Heidelberg (2010)

24. Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation in social
networks based on densest subgraphs. In: WWW, pp. 1077–1088. ACM (2013)

25. Kargar, M., An, A., Zihayat, M.: Efficient bi-objective team formation in social
networks. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 483–498. Springer, Heidelberg (2012)

26. Cheatham, M., Cleereman, K.: Application of social network analysis to collabo-
rative team formation. In: CTS, pp. 306–311. IEEE (2006)

27. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
ACM SIGKDD, pp. 467–476. ACM (2009)

Process Discovery Using Prior Knowledge

Aubrey J. Rembert, Amos Omokpo,
Pietro Mazzoleni, and Richard T. Goodwin

IBM T.J. Watson Research Center
Yorktown Heights NY 10598, USA

Abstract. In this paper, we describe a process discovery algorithm that
leverages prior knowledge and process execution data to learn a control-
flow model. Most process discovery algorithms are not able to exploit
prior knowledge supplied by a domain expert. Our algorithm incorpo-
rates prior knowledge using ideas from Bayesian statistics. We demon-
strate that our algorithm is able to recover a control-flow model in the
presence of noisy process execution data, and uncertain prior knowledge.

1 Introduction

Process discovery is a research area at the intersection of business process man-
agement and data mining that has as one of its main objectives the development
of algorithms that find novel relationships within, and useful summarizations
of, process execution data. These relationships and summarizations can provide
actionable insight such as the need for process redesign, organizational restruc-
turing, and resource re-allocation. Control-flow discovery is a sub-area of process
discovery concerned with the development of algorithms for learning the depen-
dency structure between activities from process execution data.

In this paper, we consider the problem of learning control-flow models in the
form of Information Control Nets (ICN) from the combination of noisy process
execution logs, and uncertain prior knowledge encoded as augmented ICNs. Most
control-flow discovery algorithms do not incorporate prior domain knowledge.
Prior knowledge from domain experts or a repository of process models from the
same domain can be a valueable resource in the discovery of control-flow models.
This is especially true if there are important process segments that are executed
infrequently. For example, in a banking process, if a transaction involving more
than $100,000 is performed, a separate part of the banking process is executed. If
the underlying control-flow discovery algorithm is designed to handle noise, then
important, infrequent process executions may not get reflected in the discovered
control-flow model. On the other hand, if the control-flow discovery algorithm is
not designed to handle noise, then the discovered control-flow model will incor-
porate important, infrequent process executions, as well as erroneous, infrequent
process executions.

The main contributions of this paper are that we present a control-flow discov-
ery algorithm that uses prior knowledge in the form of an augmented Information
Control Net, and process execution data to automatically discover a control-flow

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 328–342, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Process Discovery Using Prior Knowledge 329

model in the form of an Information Control Net. Our control-flow discovery al-
gorithm can deal with noise in the process execution data, and uncertainty in the
prior knowledge using ideas from Bayesian statistics. Additionally, our control-
flow discovery algorithm can deal with cycles and discovers the semantics of
splits and joins.

2 Related Work

The area of process discovery is over fifteen years old. It was first investigated by
Cook and Wolf [1] in the context of software processes. Next, process discovery
was investigated by Agrawal et. al [2] in the context of business processes. The
work of Cook andWolf, and Agrawal et. al laid a foundation for process discovery.
However, their work does not make use of models that can explicitly represent
the nature of concurrent and decision splits, and synchronous and asynchronous
joins, and does not leverage prior knowledge. The first phase of our algorithm
builds on the algorithm developed by Agrawal et. al [2] by incoporating an
approach to leverage prior knowledge.

In the paper [3], van der Aalst et al. describe the α-algorithm, a process
discovery algorithm that explores the theoretical limits of the WF-Net (a Petri-
net variant) approach to process discovery. It is based on a complete and noise-
free log of process traces. The authors describe some control-flow patterns that
are impossible for the α-algorithm to discover.

The paper by Fahland and van der Aalst [4] proposes an approach to include
prior knowledge in process discovery. Their approach takes as input a poten-
tially noisy process execution log and prior knowledge encoded as a Petri net. It
produces a Petri net that contains the prior knowledge Petri net with additional
sub-models that represent subtraces in the process execution data that did not
fit the prior knowledge Petri net. Their approach assumes that the control-flow
model provided by a domain expert is accurate and that only the addition of
sub-control-flow models to the domain expert supplied control-flow model can be
made. Our approach assumes that there is a level of uncertainty associated with
provided domain knowledge. This leaves room for a domain expert’s control-
flow model to be erroneous. In our approach to process discovery using prior
knowledge, the resulting control-flow model omits erroneous structures in a do-
main expert’s control-flow model if it is not supported by enough evidence in
the process execution data.

In the paper [5], Medeiros et. al. introduce a genetic algorithm for process
discovery that takes as input process models represented as Causal Matrices as
an initial population. This initial population can be a set of process models sup-
plied by a domain expert. However, the genetic algorithm approach for process
discovery uses a global score and search procedure, which makes it difficult to
distinguish important, yet infrequent process fragments from noise.

330 A.J. Rembert et al.

3 Process Execution Logs

Process execution logs are the process execution data that our control-flow dis-
covery algorithm uses to learn control-flow models. A process instance is an
execution of a process. A process trace or simply trace is a list of events gen-
erated by a process instance. The events in a trace are denoted by the triple,
(P,A,X), where P is unique trace identifier, A is the name of the activity, and
X is the timestampe of the event. A process execution log, denoted by L, is a
multiset of process traces.

The dependencies that exist in a process will be implicitly embedded in the
process execution log it generates. For instance, if activity b is dependent on
activity a in a control-flow model, then, in each trace containing events from
activities a and b, the event generated by a will always appear before that of b,
unless there are measurement or ordering errors in process execution log gener-
ation. By an abuse of notation, we represent activities and events with the same
symbol; this abuse of notation will be clear from the context.

Definition 1 (Precede). Given a trace T containing events a and b, event a
precedes event b in T , denoted by a ≺T b, if a occurs before b in T . (The T from
≺T can be dropped when the context is clear)

Definition 2 (Dependent). Let L = {T1, . . . , T|L|} be a process execution log.
Activity b is dependent on activity a, denoted by a → b, if event a precedes event
b a statistically significant number of times.

Definition 3 (Independent). Let L be a process execution log. Activity a is
independent of activity b (and vice versa), if it is not the case that a → b, or
b → a.

Definition 4 (Mutually Exclusive). Let L be a process execution log. Activity
a is mutually exclusive of activity b, if a and b are negatively correlated in L
(i.e. they hardly ever appear together in the same process trace).

Given a process execution log, L, we can define a dependency graph, and an
independency graph that represent the dependencies between activities. These
two graphs implicitly represent the structure and semantics of the underlying
control-flow model. The dependency graph represents the structure, and the
independency graph represents the semantics of the splits and joins.

Definition 5. Given a process execution log, L, and a set of unique activities in
L, denoted by AL, a directed graph DL = (AL, F) is a dependency graph over
L, if for each pair of activities a, b ∈ AL, there exists a path a � b in DL where
there exists a dependency relationship, a → b, between activities a and b in L.

Definition 6. Given the process execution log, L, and a set of unique activities,
AL, an undirected graph UL = (AL, H) is a independency graph over AL, iff
there exists an undirected edge between each pair of activities a and b in UL
where there exists an independency relationship between a and b in L.

Process Discovery Using Prior Knowledge 331

4 Information Control Nets

The result of control-flow discovery using prior knowledge is an Information
Control Net (ICN). An ICN is an edge-colored, directed graph G = (A,E, δ)
used to model the control-flow of a business process, where A is a finite set of
activities, E ⊆ A × A is a set of control-flow links, and δ = δin ∪ δout is a set
of mappings used to represent edge colors. Sets A and E define the structure of
an ICN, while set δ defines the semantics of its splits and joins. Let a, b ∈ A be
activities. The predecessors of a are denoted by pred(a) = {b|(b, a) ∈ E)}. The
successors of a are denoted by succ(a) = {b|(a, b) ∈ E)}.

Activities can be classified as simple, split or join. A simple activity has at
most one predecessor, and at most one successor. A split activity has multi-
ple successors, and a join activity has multiple predecessors. It is important to
note that in the ICN model a single activity can be both a split activity and
a join activity. There are two unique activities, s and t, called the starting and
terminating activities, respectively, in every ICN. Starting activity s has no pre-
decessors, and terminating activity t has no successors.

A control-flow link (a, b) is said to be activated if once activity a has finished
executing, activity b is eligible for execution. In some instances, where activity
a is a split activity, activity a must choose a subset of its control-flow links to
activate. If the proper constraints are satisfied, the target activities of activated
control-flow links can be executed. We describe those contraints in Section 4.1.

4.1 ICN Normal Form of δ

The ICN Normal form of δ is a canonical representation, invented by Ellis in
the paper [6], that enables our edge coloring scheme. The mappings δin(a) and
δout(a) partition the sets pred(a) and succ(a), respectively, in such a way that
they describe which activities can execute concurrently and which activities can-
not. Let C be a set of disjoint sets of activities such that δx(a) = C, and let each
Ci ∈ C be a set of activities. Additionally, let the cardinality of each Ci ∈ C
be s(i), the cardinality of C be �, and cji be an activity in the set Ci. The ICN
normal form of δx(a) is represented by Equation 1, where x can take on either
the value in or out.

δx(a) = {{c11, . . . , c
s(1)
1 }, . . . , {c1� , . . . , c

s(�)
� }}, (1)

In Equation 1, when x = in, activity a can execute if and only if each activity

cji in exactly one set Ci = {c1i , . . . c
s(i)
i } ∈ C has finished executing and activated

control-flow link (cji , a). When x = out, activity a can choose only one set Ci ∈ C.
Based on this choice, each activity cki ∈ Ci is enabled to execute when control-

flow link (a, cki) becomes activated. Activities cji and cki in the same set Ci can
be executed concurrently. Alternatively, given sets Ci, Cj ∈ δx(a) such that
activities cki ∈ Ci, clj ∈ Cj , and i �= j, it is the case that ckj and cli can never be
executed concurrently.

332 A.J. Rembert et al.

Wenow sketch our edge-coloring scheme.Given an activity a such that δout(a) =
C = {C1, . . . , C�}, letEsucc(a) = {(a, b)|b ∈ succ(a)}be the set of control-flow links
to the activities in succ(a) from a. Let each Ci ∈ C define a color. Each edge in
Esucc(a) is colored according to the set, Ci ∈ C, its target activity belongs to. How-
ever, if a is connected to a join activity j then the color of the (a, j) control-flow link
is determined byEpred(j), which is defined analogously toEsucc(a). Additonally, in
ICNs, some activities are observable, while others are hidden. Observable activities
are executed by (human/machine) actors and generate events that are recorded in
process execution data, while hidden activities are not executed by actors and do
not generate events that are recorded. Hidden activities are a convention used to
represent control-flow patterns that cannot be directly represented in ICN normal
formusing only observable activities. For purposes of this paper,we substitute edge
color for edge slashes (edges with the same number of slashes are the same color).

Example 1. Consider the ICN in Figure 1. Let the hollow circles represent hidden
activities h1 and h2. The figure shows that δout(a) = {{b, h1}} and δin(a) =
{{}}. This means that a can be executed at any time, and once it has finished
executing, the control-flow links (a, b) and (a, h1) are activated. Thus, enabling b
and h1 to execute concurrently. This figure also shows that δin(h2) = {{c}, {d}}.
This means h2 can execute when either the control-flow link (c, h2) is activated as
a result of c finishing execution, or when the control-flow link (d, h2) is activated
as a result of d finishing execution. After h2 executes, the control-flow link (h2, f)
is activated. Note that f cannot execute until the both the (e, f) and (h2, f)
edges are activated.

a

b

e

c d

f

h1

h2

Fig. 1. An Information Control Net (ICN)

4.2 Augmented ICN

The prior knowledge is specified in an augmented ICN. That prior knowledge can
be from a domain expert, or a repository of control-flow models from the same
domain in which we wish to perform process discovery. An augmented ICN is an
ICN with degrees of belief specified on its edges, and edge colors. The degree of
belief specified on an edge reflects either how strongly a domain expert believes
in the dependency between two activities, or, given a repository of control flow

Process Discovery Using Prior Knowledge 333

a

b

e

c d

f

a

b

e

c

d

f

a

b

e

c d

f

0.90
0.85

0.80

0.75

1.0

0.95

0.80

0.75

1.0

1.0

1.0

1.0

Augmented ICN

Augmented Dependency Graph

Augmented Independency Graph

Fig. 2. An Augmented ICN with Corresponding Augmented Dependency Graph and
Augmented Independency Graph

models from the same domain, the proportion of control flow models that contain
that edge. The degree of belief specified on an edge color signifies the strength of
belief in the concurrency of two activities. Degrees of belief can be represented
by the thickness of an edge (i.e. the thicker the edge the higher the degree of
belief), and the intensity of an edge color (i.e. the more intense the edge color
the higher the degree of belief). The thickness of an edge, as well as the intensity
of an edge color correspond to a probability in the interval (0, 1].

An augmented ICN can be broken down into its components, which are an
augmented dependency graph DK, and an augmented independency graph UK.
The augmented dependency graph DK is a colorless digraph that contains all of
the observable activities in the corresponding augmented ICN, and edge labels
of the degree of belief. The augmented independency graph is an undirected
graph that contains all of the observable activities in the augmented ICN as
vertices. An undirected edge in the augmented independency graph represents a
concurrency relationship between the incident activities.

In addition to the degree of belief, the experience level of the domain ex-
pert, and/or number of control-flow models in the repository must be taken into
account. The quantity nK represents the number of traces that a domain ex-
pert’s belief is based on or the number of control-flow models in the repository.
This experience level will also help in determining how eager our control-flow
discovery algorithm is to change the structure and semantics of an augmented
ICN. Figure 2 shows an augmented ICN along with its corresponding augmented
dependency graph and augmented independency graph.

334 A.J. Rembert et al.

5 Dependency Extraction

We can now state the control-flow discovery with prior knowledge problem. Given
a process execution log L, an augmented dependency graph DK, and an aug-
mented indenpendency graph UK, construct an Activity Precedence Graph G,
that encodes the statistically significant activity dependencies in the combination
of L, DK, and UK. The algorithm we present to solve the control-flow discov-
ery with prior knowledge problem consists of two phases. The first phase, called
Dependency Extraction, learns activity dependencies and independencies from
the combination of a process execution log and prior knowledge. The output
of the Dependency Extraction phase is a dependency graph DL and a inde-
pendency graph UL. The second phase, called Split/Join Semantics Discovery,
is concerned with transforming the dependency graph and independency graph
into an ICN. The Split/Join Semantics Discovery phase is described in the 2009
paper by Rembert and Ellis [7], and will not be presented in this paper due to
space concerns.

The Dependency Extraction algorithm computes the pair-wise precedence re-
lationships between activities found in the process execution log. The input to
the Dependency Extraction algorithm is a process execution log L, a user-defined
threshold μ, an augmented dependency graph DK, an augmented independency
graph UK, and a domain expert’s experience level nK.

The outputs of this algorithm are a dependency graph and an independency
graph that contain the most probable dependency relationships reflected in both
the process execution log and the prior knowledge. The Dependency Extraction
algorithm is depicted in Algorithm 5.1

Before we proceed with the description of the algorithm, we first characterize
the type of noise we expect to see in process traces. Our characterization is
adapted from Silva et. al. [8]. By an abuse of notation, we let a be a binary
random variable such that a = 1 means that activity a was executed, and a = 0
means that activity a was not executed. Let aR be a binary random variable
such that aR = 1 means that the event corresponding to activity a was recorded
and aR = 0 means that the event was not recorded. We assume the following
type of measurement error. The conditional probability p(aR = 1|a = 1) = ω >
0, captures the uncertainty associated with an activity executing in a process
instance, and its corresponding event being recorded in the appropriate process
trace. We assume p(aR = 1|a = 0) = 0, which expresses that an event cannot
be included in a process trace if a corresponding activity was not executed. In
addition to measurement error (activities being executed but not recorded in
a process trace), we consider ordering errors. An ordering error happens in a
process instance when an activity a finishes executing before an activity b has,
but in the corresponding process trace event b is recorded as finishing before
event a has finished. Between each pair of activities, we consider and ordering
error rate of ε.

Process Discovery Using Prior Knowledge 335

The DependencyExtraction algorithm is based on ideas presented by Agrawal
et. al [2]. The first idea that we leverage from Agrawal is the notion of cycle
unrolling in the process execution log. Cycle unrolling entails treating events with
the same label in a process trace as different events. This is done by relabeling
events with an occurence counter. For instance, the first occurence of activity a
is relabeled a1, the second occurence as a2, and so on. The process execution log
L with unrolled cycles is denoted by L∗.

Mutually exclusive activities can be difficult to detect if they occur within a
cycle. This is because cycles can enable mutually exclusive activities to appear
in the same process trace. However, we can leverage correlation to determine the
strength of association between activities across process traces. In a cycle un-
rolled process execution log, we can compute the φ-coefficient between activities
and store the result in the square matrix Mφ = [φij]. The rows and columns of
Mφ correspond to unique activities in L∗, and the value φij corresponds to the
φ-coefficient of activities indexed by i and j. The φ-coefficient of activities a and
b is given by Equation 2

φab =
(NabNab)− (NabNab)√

NaNaNbNb

, (2)

where:
– Nab is the number of process traces that both activities a and b occurr in,
– Nab is the number of traces that don’t contain either a or b,
– Nab is the number of traces that contain a, but not b,
– Nab is the number of traces that contain b, but not a,
– Na is the number of traces that contain a,
– Na is the number of traces that don’t contain a,
– Nb is the number of traces that contain b, and
– Nb is the number of traces that don’t contain b.

If activities are found to be negatively correlated, we assume that they are mu-
tually exclusive. It easy to see that if Nab = 0 (i.e. activities a and b don’t occur
in any of the same process traces), then Equation 2 will have a negative value.

Binomial Distribution and Beta Prior. For all the positively correlated
pairs of activities, we compute the likelihood that one activity is dependent
on another with the results stored in a cycle unrolled dependency graph and
a cycle unrolled independency graph. Let DL∗ be a cycle unrolled dependency
graph and UL∗ be a cycle unrolled independency graph, both of which contain
all of the relabeled activities as vertices. The cycle unrolled dependency graph
is a directed graph, and the cycle unrolled independency graph is an undirected
graph, both of which are initially edgeless.

To add directed edges to DL∗ and undirected edges to UL∗ , we leverage the
Binomial distribution and the Beta prior. The binomial distribution is used de-
termine the probability of k successes in N bernoulli trials given a parameter

336 A.J. Rembert et al.

μ. Let a and b be activities that we wish to discover the dependency relationship
between, N be the total number of traces in the process execution log, Nab be
the number of traces that both a and b occur in, and ka≺b (kb≺a) be the number
of traces that a precedes b (b precedes a). Additionally, let μ be a user-defined
parameter that represents the proportion of times that a must precede b in order
for b to be considered dependent on a; μ can be considered an activity precedence
to occurrence ratio. It is important to note that one should set μ so that a certain
amount of ordering error can be effectivly handled.

The binomial distribution can be written

p(Dab|μ) =
(

Nab

ka≺b

)
μka≺b(1− μ)Nab−ka≺b (3)

, where (
Nab

ka≺b

)
=

Nab!

(Nab − ka≺b)!ka≺b!
. (4)

The conditional probability p(Dab|μ) is the likelihood of Dab given μ, where
Dab = {T a≺b

1 = 1, T a≺b
2 = 0, . . . , T a≺b

Nab
= 1} represents the set of traces that

activities a and b occur together in. The trace-level precedence indicator T a≺b
i

takes a value of 1, if a was executed before b, and 0 otherwise. It should be noted
that ka≺b =

∑Nab

i=1 T a≺b
i .

We use the binomial distribution in activity dependency discovery by conduct-
ing a binomial test for each pair unique activities in the cycle unrolled process
execution log L∗. The null hypothesis of this test is: if p(Dab|μ) is greater than
a user-defined significance level, then ka≺b

Nab
is not significantly different from μ,

thus a → b. The first alternative hypothesis is: if p(Dab|μ) is less than a user-

defined significance level in the top tail of the binomial distribution, then ka≺b

Nab

is significantly larger than μ, therefore it is also the case that a → b. The second
alternative hypothesis is: if P (Dab|μ) is less than a user-defined significance level

in the bottom tail of the binomial distribution, then ka≺b

Nab
is significantly smaller

than μ, therefore b is not dependent on a. The user-defined significance-level
is typically 0.05 or 0.025 for two-tailed binomial tests. If the null hypothesis is
accepted, or the null hypothesis is rejected and the first alternative hypothesis is
accepted, then a directed (a, b) edge is added to the cycle unrolled dependency
graph DL∗ . If it is found that b is not dependent on a and vice-versa, then an
undirected edge (a, b) is added to UL∗ .

The approach just described is called the Likelihood Estimate approach. The
Likelihood Estimate approach is based solely on data and does not take into
account the experience and expertise of domain experts when discovering the
dependency between activities. In situations where domain expertise is not avail-
able, or contains gaps, the Likelihood Estimate approach is used. However, since
the Likelihood Estimate approach does not take into account the prior knowl-
edge of a domain expert, we need an approach that does. This can be done using
Bayesian statistics.

Process Discovery Using Prior Knowledge 337

In Bayesian statistics, we can leverage prior knowledge to help with determin-
ing the dependencies between activities. In the Likelihood Estimate approach,
the uncertainty is associated with the data. However, in the Bayesian approach,
the uncertainty is associated with the activity precedence to occurrence ratio μ.
So, instead of calculating p(Dab|μ), we calculate p(μ|Dab), which according to
Bayes’ Theorem is:

p(μ|Dab) =
p(Dab|μ)p(μ)

p(Dab)
. (5)

From Equation 5, we can see that the Bayesian approach leverages the Likeli-
hood Estimate approach. Additionally, since the data is given, p(Dab) = 1. For
the assesment of p(μ), we choose the Beta distribution as a prior because it is
conjugate to the Binomial distribution. The Beta distribution is defined as

p(μ) = Beta(μ|v, w), (6)

such that

Beta(μ|v, w) =
Γ (v + w)

Γ (v)Γ (w)
μv−1(1− μ)w−1, (7)

where the Gamma function is defined as Γ (x+ 1) = x!. The quantities v and w
are called the hyperparameters of the Beta distribution, and are used to control
its shape.

To incorporate prior knowledge, we take both the augmented dependency
graph and the augmented independency graph and use the edge labels as priors
when trying to determine the dependency relationship between activities. Es-
sentially, the prior knowledge of experts represent virtual occurences of activity
pairs occurring in a particular order. Since kb≺a = Nab − ka≺b, then

p(μ|Dab) =
Γ (Nab + v + w)

Γ (ka≺b + v)Γ (kb≺a + w)
μka≺b+v−1(1− μ)kb≺a+w−1, (8)

where the hyperparameters v and w are based on the prior degree of belief on
the domain expert.

We now show how to assess the hyperparameters v and w for a pair of ac-
tivities, given an augmeneted dependency graph DK and an augmented inde-
pendency graph UK. For activities a and b, let there be a directed (a, b) edge
in the augmented dependency graph DK. By another abuse of notation, let
a → b be a binary random variable such that p(a → b = 1|DK, UK) is the
degree of belief specified on the dependency relationship between activities a
and b. Additionally, let edge (a, b) be based on nK process traces, which, as
described above, captures the level of experience of the domain expert. Given
these assumptions, we set v and w to be: v = p(a → b = 1|DK, UK)nK, and
w = p(a → b = 0|DK, UK)nK. For activities b and c, let there be an undirected
(b, c) edge in an augmented independency graph UK. In this case, we assess v
and w to be: v = p(a → b = 1|DK, UK) · 0.5 · nK, and w = v.

The binomial test is again used to determine activity dependence. The null
hypothesis of this test is: if p(μ|Dab) is greater than a user-defined significance

338 A.J. Rembert et al.

level, then there is no significant difference between μ and ka≺b+v
Nab+v+w , and there-

fore a → b. The first alternative hypothesis is: if p(μ|Dab) is less than a user
defined significance level and in the top tail of the distribution, then μ is signif-
icantly less than ka≺b+v

Nab+v+w , and a → b. The second alternative hypotheis is: if

p(μ|Dab) is less than a user defined significance level and in the bottom tail of

the distribution, then μ is significantly greater than ka≺b+v
Nab+v+w , and b is not de-

pendent on a. If the probability returned from the binomial distribution is above
a user-defined significance-level, then we accept the null hypothesis, otherwise
we reject it and accept the alternative hypothesis. Like the Likelihood Estimate
approach, If the null hypothesis is accepted, or the first alternative hypothesis is
accepted, we add an directed edge (a, b) in the cycle unrolled dependency graph
DL∗ , and if b is not dependent on a, and vice-versa, we add an undirected edge
(a, b) in UL∗ .

When constructing DL∗ and UL∗ using prior knowledge DK and UK, it is
the case that the relabeled activities in the cycle unrolled process execution
log L∗ will not match the activities in DK and UK. To handle this issue, when
matching activities from the augmented dependency graph and the augmented
independency graph, we ignore the count appended to the activities in L∗. For
example, the edge (a, b) in an augmented dependency graph will match the pair
of activities a1 and b1, as well as the pair a2 and b7. If b7 is found to be dependent
on a2 based on edge (a, b) in the augmented dependency graph and the binomial
test, then edge (a2, b7) is added to DL∗ .

Re-rolling the Cycle Unrolled Dependency and Independency Graphs.
Our algorithm re-rolls the cycle unrolled dependency and independency graphs.
The first step in this process is to minimize the number of edges in DL∗ without
loosing the appropriate dependency information. This is done by using a heuristic
proposed by Agrawal et. al. [2], which computes the transitive reduction of each
induced subgraph Di

L∗ formed over the activity relabeled process trace Ti. For
each Di

L∗ , mark all the edges in the transitive reduction. Remove all edges from
DL∗ that remains unmarked.

The next step in our process is to collapses DL∗ and UL∗ such that all of
the activities that were relabelled to unroll cycles are merged into their original
activity in both graphs. For instance, activity a2 is collapsed into activity a1, and
all of the incoming and outgoing edges of a2 become incoming and outgoing edges
of a1. This process continues until there are no more activities with an activity
counter label greater than 1. The activity counter label, is then dropped from all
activities. The collapsed versions of DL∗ and UL∗ are DL and UL, respectively.

The final step in cycle re-rolling algorithm is the capture of cycles in DL. We
capture cycles in DL because in the split/join semantics discovery phase of the
LearnICN algorithm activities that are the target of a backegdge are treated
slightly different than other activities. Cycles are captured by discovering and
marking all backegdes in DL. Backedges are discovered using a simple depth-first
search exploration of DL initiated at the unique starting activity s.

Process Discovery Using Prior Knowledge 339

Algorithm 5.1. DependencyExtraction(L, DK, UK, nK, μ)

1: L∗ ← UnrollCyclesInLog(L)
2: A∗ ← unique activities in L∗

3: Mφ ← ComputeCorrelation(L∗)
4: DL∗ ← (A∗,∅)
5: UL∗ ← (A∗,∅)
6: for each pair of positively correlated activities a, b ∈ Mφ do
7: if the pair (a, b) is unmarked then
8: Let Nab be the number of times that a and b occur in the same process trace
9: v ← 0
10: w ← 0
11: if edge (a, b) ∈ DK then
12: v ← p(a → b = 1|DK, UK) · nK
13: w ← p(a → b = 0|DK, UK) · nK
14: else if edge (a, b) ∈ UK then
15: v ← p(a → b = 1|DK, UK) · 0.5 · nK
16: w ← v
17: end if
18: if BinomialTest(ka≺b + v,Nab + v + w, μ) accepts null hypothesis or first alternate

hypothesis then
19: add directed edge (a, b) to DL∗
20: else if BinomialTest(kb≺a +w,Nab + v+w, μ) accepts null hypothesis or first alternate

hypothesis then
21: add directed edge (b, a) to DL∗
22: else
23: add undirected edge (a, b) to UL∗ , if its not already there
24: end if
25: mark the pair (a, b)
26: end if
27: end for
28: for each process trace Ti ∈ L∗ do
29: Let Di

L∗ be the trace dependence graph for Ti

30: Compute the transitive reduction of Di
L∗

31: Mark the edges in DL∗ that are in the transitive reduction of Di
L∗

32: end for
33: Remove all unmarked edges from D∗

L
34: DL ← Collapse(DL∗)
35: UL ←Collapse(UL∗)
36: Mark all backedges in DL
37: Return DL, UL

6 Experiments

We tested the hypothesis that, in the presence of noise, our process discovery
algorithm that leverage prior knowledge learns more accurate APGs than ICN
learning algorithms that do not. We tested our algorithm using the telephone
repair example process execution log from the ProM example [9]. In our exper-
iments, we let the activity occurrence to precedence ratio be μ = 0.90, and the
significance level be 0.05 for a two-tailed test. We experimented with two types of
domain knowledge (perfect and imperfect), as well as no domain knowledge. We
consider perfect domain knowledge to have the same structure as the reference
activity precedence graph and certainty of edges and edge colors between (0.9
and 1.0) We created imperfect domain knowledge by removing and adding edges
from the augmented dependency graph and the augmented independency graph.
Additionally, the degree of belief for edges in both graphs is drawn uniformly
from the range (0.5, 0.9).

340 A.J. Rembert et al.

We tested the three versions of the algorithm at seven different log sizes (200,
400, 600, 800, 1000, 1200, 1400), three different experience levels (100, 200, 400),
and three different measurement error levels (0.95, 0.90, 0.85) and a constant
ordering error level of (0.05). To determine how well the control-flow discovery
algorithm works, we compared the learned dependency graph and independency
graph to the reference dependency graph and reference independency graph. The
reference dependency graph and reference independency graphs were computed
from the reference ICN. The reference ICN is the true control-flow model.

To compare the learned dependency graphwith the reference dependency graph,
we computed the edge recall, edge precision, color recall, and color precision. Edge
recall is the number of edges that the learned dependency graph and reference
dependency graph share divided by the number of edges in the reference depen-
dency graph. Edge precision is the number of edges that the learned dependency
graph and reference dependency graph share diveded by the number of edges in the
learned dependency graph. Edge F-measure is a combination of edge precision and
edge recall. Table 1 shows the edge F-measure for the dependency graphs learned
from noisy process execution logs of the telephone repair process with a domain
expert experience level of 200 (i.e. nK = 200). As can be seen from the results
in Table 1, the control-flow discovery approach that leverages imperfect prior
knowledge performs better, in terms of Edge F-measure, than the control-flow
discovery approach that does not use prior knowldge. However, as the log size
increases, this disparity is reduced because evidence provided by the data will
eventually be the main determiner of edge recall and edge precision. Color recall
is the size of the intersection between the edges in the learned independency
graph and reference independency graph divided by the number of edges in the
reference independency graph. Color precision is the number of edges that the
learned independency graph and reference independency graph share diveded
by the number of edges in the learned independency graph. Table 2 shows the
color F-measure for the independency graphs learned from noisy process execu-
tion logs of the telephone repair process with a domain expert experience level
of 200 (i.e. nK = 200). In Table 2, the color F-measure for Imperfect domain
knowledge is slightly smaller than the color F-measure for no prior knowledge.
This is primarily due to color recall for Imperfect domain knowledge.

Table 1. Edge F-measure of Learned Dependency Graph with ε = 0.05 and nK = 200

Measurement Error
0.85 0.9 0.95

�������Traces
Prior

None Imperfect Perfect None Imperfect Perfect None Imperfect Perfect

200 0.744 0.841 0.844 0.778 0.871 0.874 0.870 0.935 0.937
400 0.766 0.846 0.848 0.844 0.904 0.905 0.938 0.980 0.984
600 0.798 0.863 0.867 0.878 0.925 0.927 0.950 0.991 0.993
800 0.831 0.879 0.883 0.900 0.943 0.948 0.950 0.989 0.997
1000 0.827 0.860 0.864 0.902 0.947 0.949 0.952 0.998 1.000
1200 0.821 0.893 0.895 0.915 0.968 0.970 0.952 0.996 1.000
1400 0.854 0.940 0.945 0.925 0.989 0.993 0.952 0.996 1.000

Process Discovery Using Prior Knowledge 341

Table 2. Color F-measure of Learned Dependency Graph with ε = 0.05 and nK = 200

Measurement Error
0.85 0.9 0.95

�������Traces
Prior

None Imperfect Perfect None Imperfect Perfect None Imperfect Perfect

200 0.809 0.974 0.984 0.777 0.961 0.979 0.789 0.947 0.964
400 0.899 0.971 0.984 0.932 0.957 0.973 0.966 0.958 0.966
600 0.917 0.972 0.980 0.947 0.944 0.953 0.984 0.957 0.984
800 0.955 0.958 0.974 0.960 0.942 0.961 0.996 0.982 0.996
1000 0.970 0.963 0.978 0.956 0.949 0.956 0.999 0.987 0.999
1200 0.887 0.947 0.968 0.953 0.945 0.963 0.990 0.999 1.000
1400 0.875 0.949 0.961 0.946 0.970 0.986 0.998 0.977 1.000

The slightly reduced color recall numbers are due to ordering errors in the log
being boosted by reversed edges in the imperfect augmented dependency graph.
However, despite the errors in the imperfect domain knowledge, a more correct
model was found as more process execution data was provided. Additionally,
as can be seen in both the edge F-measure, and the color F-measure, when
there are small data sizes, having some prior knowledge increases the edge F-
measure and color F-measure. This means that portions of the true process that
are executed infrequently can be boosted by the presence of domain knowledge,
therefore those infrequent portions of a process trace won’t be considered noise.
The results of our experiments confirm our hypothesis.

7 Summary and Future Work

In this work, we have presented a process discovery algorithm that leverages prior
knowledge in the form of augmented Information Control Nets. We have shown
that our process discovery algorithm is robust to noise in the process execution
data in the form of measurement errors and ordering errors. Additionally, our pro-
cess discovery algorithm is able to deal with uncertainty and errors in the prior
knowledge it is provided. Through experimentation, we have shown that our ap-
proach is useful when important, infrequent portions of a process need to be dis-
covered. Given enough certainty and experience, our approach will not consider
the infrequency of those executions as noise. ICNs were developed nearly 30 years
ago by Ellis [6]. Since the ICN normal form is nearly identical to the Causal Ma-
trix [5] formalism, for the future, we’d like to explore process discovery with prior
knowledge using Causal Matrices, which can be transformed into Petri nets.

References

1. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Software Engineering Methodology 7(3), 215–249 (1998)

2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

342 A.J. Rembert et al.

3. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

4. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In:
Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245.
Springer, Heidelberg (2012)

5. Medeiros, A., Weijters, A., Aalst, W.: Genetic process mining: an experimental
evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)

6. Ellis, C.A.: Formal and informal models of office activity. In: IFIP Congress, pp.
11–22 (1983)

7. Rembert, A.J., Ellis, C(S.): Learning the control-flow of a business process using
ICN-based process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 346–351. Springer, Heidelberg (2009)

8. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: KDD 2005:
Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, pp. 275–284. ACM Press, New York (2005)

9. Verbeek, H.E., Bose, J.C.: Prom 6 tutorial, reviewexample. (2010)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 343–357, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Mirror, Mirror, on the Web, Which Is the Most
Reputable Service of Them All?

A Domain-Aware and Reputation-Aware Method for Service
Recommendation

Keman Huang1, Jinhui Yao2, Yushun Fan1, Wei Tan3,
Surya Nepal4, Yayu Ni1, and Shiping Chen4

1 Department of Automation, Tsinghua University, Beijing 100084, China
2 School of Electrical and Information Engineering, University of Sydney, Australia

3 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
4 Information Engineering Laboratory, CSIRO ICT Centre, Australia

hkm09@mails.tsinghua.edu.cn, jinhui.yao@gmail.com,
fanyus@tsinghua.edu.cn, wtan@us.ibm.com, surya.nepal@csiro.au,

nyy07@mails.tsinghua.edu.cn, shiping.chen@csiro.au

Abstract. With the wide adoption of service and cloud computing, nowadays
we observe a rapidly increasing number of services and their compositions, re-
sulting in a complex and evolving service ecosystem. Facing a huge number of
services with similar functionalities, how to identify the core services in differ-
ent domains and recommend the trustworthy ones for developers is an impor-
tant issue for the promotion of the service ecosystem. In this paper, we present a
heterogeneous network model, and then a unified reputation propagation (URP)
framework is introduced to calculate the global reputation of entities in the eco-
system. Furthermore, the topic model based on Latent Dirichlet Allocation
(LDA) is used to cluster the services into specific domains. Combining URP
with the topic model, we re-rank services’ reputations to distinguish the core
services so as to recommend trustworthy domain-aware services. Experiments
on ProgrammableWeb data show that, by fusing the heterogeneous network
model and the topic model, we gain a 66.67% improvement on top20 precision
and 20%~ 30% improvement on long tail (top200~top500) precision. Further-
more, the reputation and domain-aware recommendation method gains a
118.54% improvement on top10 precision.

Keywords: Heterogeneous Network, Reputation Propagation, Topic Model,
Service Recommendation, Service Ecosystem.

1 Introduction

With the wide adoption of service and cloud computing, nowadays we observe a ra-
pidly increasing number of services and their compositions (mashups, workflows) [1].
Internet companies such as Google, Flickr, and Facebook publicly provide the APIs
of their services, which effectively motivates individual developers to combine avail-
able services (e.g. web services, web APIs) into innovative service-compositions/

344 K. Huang et al.

mashups as a value-add to these existing web services. As a consequence, several
domain-specific or general purpose online service ecosystem, such as Programmab-
leWeb1, myExpriment2 and Biocatalogue3, have emerged and collected a rapidly
increasing number of services and their compositions in recent years. As atomic ser-
vices are composed into composite ones, they are not isolated but influenced with
each other. Thus the services, compositions (mashups, workflows), the service pro-
viders and the composition developers together form a complex and evolving service
ecosystem. When constructing a composition in the service ecosystem, the
straightforward method for the developers is to refer to the related domain and then
select the trustworthy services to compose. However, it is difficult to guarantee this
trustworthiness in the real practice.

First of all, the querying power in the recent service ecosystems is usually prelimi-
nary [2]. Taking ProgrammableWeb as an example, services are registered into a spe-
cific category with only a simple word such as “Bookmarks”, “Search” and “Social”,
etc. However, some services naturally belong to multiple domains as they offer dif-
ferent domain-specific functionalities. For example, “del.icio.us” is a famous service
for the social bookmarks which also can be used to store the users’ bookmarks online
and search the bookmarks by tags. Thus it not only belongs to the category “Book-
marks” and “Social” , but also the category “Database” and “Search”. Thus in this
paper, a topic model based on Latent Dirichlet Allocation (LDA) [3] is used to cluster
the services so that we can assign the services into different domains.

Secondly, facing the huge number of services, the developers need to select the de-
sirable services against many other alternatives which are similar to one another.
Therefore, the ecosystem should not only list services in different domains but also
provide guidelines for selecting the trustworthy ones based on their performance in
the past. We define trust as the belief that a user has regarded the intention and capa-
bility of a service/mashup to behave as expected. We use reputation as a mechanism
of establishing the belief about a service’s ability to deliver a certain service level
objective [4, 14]. The notion underpinning the reputation-based trust models is to cap-
ture consumers’ perception of the consumed service and use it to evaluate the reputa-
tion of the service [5, 20]. Many researches use the quality of service (Qos) combining
with the Collaborative Filtering (CF) to calculate the reputation of the services [6-9].
However, it is resource-intensive and sometime impossible to fetch the Qos of the
services over time, especially when considering the different Qos metrics that can be
applied for different types of services that are deployed remotely. Taking Program-
mableWeb as an example, there is no information about the Qos for most of services.
Fortunately, the historical usage information embedded with the related consumers’
experiences [10] and the collective perception from the developers can be used to
calculate the reputation of services in the ecosystem. In this paper, we present a uni-
fied reputation propagation (URP) method to calculate services’ reputation so as to
facilitate trust-aware recommendations. Furthermore, different services with unique

1 http://www.programmableweb.com
2 http://www.myexperiment.org/
3 http://www.biocatalogue.org/

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 345

functionalities have specific areas where they can perform better than others [11].
Therefore, combining the services’ reputation and the LDA model, we re-rank the
services to get a domain-aware recommendation for their specific functionality do-
mains. Based on these, the main contribution of this paper is as follow:

1) We propose a heterogeneous network model of the service ecosystem and the
unified reputation propagation (URP) framework is used to calculate the global repu-
tation of various entities in the ecosystem.

2) The LDA model is used to analyze the services in the ecosystem and re-cluster
them into different domains. Combing the LDA and the URP-based reputation-
ranking method, for the first time, we offer the reputation- and domain-aware service
recommendation.

3) Experiments on the real-world dataset, i.e., ProgrammableWeb, show that our
method gain a 66.67% improvement on top20 precision and 20%~ 30% improvement
on long tail (top200~top500) precision, compared to the methods based on the homo-
geneous network. Furthermore, the reputation and topic aware recommendation me-
thod gains a 118.54% improvement on top10 precision, compared to the domain-only
method. Thus our approach can effectively offer trustworthy recommendation for
developers.

The rest of the paper is organized as follows. Section 2 introduces a heterogeneous
network model and the reputation propagation framework to calculate the global repu-
tation. Section 3 shows the domain-aware recommend method which combines the
topic model and the global reputation. Section 4 reports our empirical experiments on
the real-world data ProgrammableWeb. Section 5 discusses the related work and Sec-
tion 6 concludes this paper.

2 Unified Reputation Network Model

2.1 Heterogeneous Network Model

In the service ecosystem, service providers publish services into the ecosystem and
then those services are classified into different domains based on their functionalities.
Composition developers will choose one or more services and combine them into a
composition (i.e. mashup) and publish it into the ecosystem which will be used by
consumers. Throughout this paper, we will use “composition” and “mashup” inter-
changeably as they both combine atomic services to provide added value. Considering
these, we can model the ecosystem into a heterogeneous network model which con-
tains developers, mashups, services and providers as well as the relationships among
them. Figure 1 shows the schematic diagram of the heterogeneous network and we
can formalize it as follow:

Definition 1 (Heterogeneous Network for a Service Ecosystem). A service ecosys-
tem is a heterogeneous network (,)G V= Ε where { , , , }V De Ma Se Pr= refers to the

four different types of entities in the ecosystem. De refers to all the developers who
publish at least one mashup in the ecosystem. Ma refers to all the mashups. Se
refers to the services and Pr refers to the service providers. { , , }D Y PΕ = refers to

346 K. Huang et al.

the three kinds of relationships among the entities. D refers to the developer-mashup
network, Y is the mashup-service network and P is the provider-service network.
These three networks can be defined in matrix as follows:

Fig. 1. The heterogeneous network model for service ecosystem which including developers,
mashups, services, providers as well as the three kinds of relationships among them

Definition 2 (Developer-mashup Network) The developer-mashup network is used
to present the publish relationship between developers De and mashups Ma . It is

denoted by a n m× matrix ij n m
D d

×
 = and the element is

 i j
ij

1 if De develops Ma
d =

0 otherwise

where n refers to the number of developers and m is

the number of mashups.

Definition 3 (Mashup-service Network) The mashup-service network is used to
present the invoking relationship between mashups Ma and services Se . It is de-

noted by a m s× matrix jk m s
Y y

×
 = and the element is j k

jk

1 if Ma invokes Se
y =

0 otherwise

where m is the number of mashups and s is the number of services.

Definition 4 (Provider-service Network) The provider-service network is used to
present the supply relationship between services and providers. It is denoted by a

p s× matrix []ok p s
P p

×
= and the element o k

ok

1 if Pr provides Se
p =

0 otherwise

 and p is

the number of providers.
Furthermore, based on the definitions shown above, we can get the derivations:

Definition 5 (Service Co-occurrence Network) The service co-occurrence network
is denoted by a s s× matrix []kl s sS f ×= in which kkf = the number of mashups the

service k is invoked and klf is the number that service k and service l are used to-

gether in the same mashup. We denote the main diagonal as []kk s s
f

×
Λ = and it is easy

to get that:
 kk jkj

f y= (1)

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 347

Definition 6: Developer reputation is a 1n× vector [] 1d i n
R rd

×
= and the element ird

refers to the reputation of developer i .

Definition 7: Mashup reputation is a 1m× vector
1y j m

R ry
×

 = and the element iry

refers to the reputation of mashup j .

Definition 8: Service reputation is a 1s × vector [] 1x k s
R rx

×
= and the element krx

refers to the reputation of service k .

Definition 9: Provider reputation is a 1p× vector [] 1p o p
R rp

×
= and the element orp

refers to the reputation of provider o .

2.2 Unified Reputation Propagation Model

It is troublesome to calculate the reputation of the four entities at once in the ecosys-
tem as they are affecting each other simultaneously. However, there are a few basic
assumptions that we can take to simplify the calculation:

Assumption 1. Highly reputable providers will offer many highly reputable ser-
vices which are invoked in many highly reputable mashups.

Assumption 2. Highly reputable developers will develop many highly reputable
mashups which invoke the highly reputable services.

As we known, the evolution of the ecosystem is driven by the enrolling of new ma-
shups and services. However, the services which are never invoked will not affect
other services’ reputations, including the newly registered one. So the propagation of
the reputation in the ecosystem will be activated by the mashup. Thus we get the third
assumption in this paper:

Assumption 3. The reputation of mashups activates the reputation propagation
process in the ecosystem.

Based on these assumptions, we have a simple illustration of the reputation propaga-
tion model as Figure 2.

Fig. 2. The unified reputation propagation model for the service ecosystem

348 K. Huang et al.

Mashup Reputation
The reputation of the mashup is decided by the reputation of the services it invoked
and the reputation of its developer. Thus we can get the iterative equation as:

 1T
y y d x yR R D R Y Rμ α λ ξ+ −← + + Λ + (2)

Here 1, 0, 0, 0μ α λ μ α λ+ + ≤ ≥ ≥ ≥ . T
dD Rα refers to the reputation from its

developers; 1
xY Rλ −Λ refers to the reputation from its invoking services, yξ refers to

the random factors and yRμ is used for iteration. Then the reputation is normalized:

y

y
y

R
R

R

+
+

+←
1

 (3)

Developer Reputation
The reputation of the developer comes from the mashups he/she has ever published in
the past. Intuitively, the higher the reputation his/her mashups have, the higher the
reputation he/she will gain. Thus the iterative equation can be defined as:

 d d y dR vR DRβ ξ+ +← + + (4)

Here 1, 0, 0v vβ β+ ≤ ≥ ≥ . yDRβ + refers to reputation from the mashups the

developers have ever published and dξ refers to the random factors. dvR refers to

iteration from the last step. Then the reputation is normalized:

 d
d

d

R
R

R

+
+

+←
1

 (5)

Service Reputation
The service reputation comes from the reputation of the mashups it has been invoked
in and the reputation of its providers. We define the iterative equation as:

 () T T
x x y p xR R Y R P Rγ λω ω θ ξ+ + +← − + + + (6)

Here 1, , , 0γ ω θ γ ω θ+ + ≤ ≥ . T
yY Rω + refers to the reputation updating from

mashups, T
pP Rθ + refers to the reputation from the providers and xξ refers to the ran-

dom factors. () xRγ λω− is used for the iteration. Then we normalize the vector as:

 x
x

x

R
R

R

+
+

+←
1

 (7)

Provider Reputation
The reputation of the providers comes from the services he/she published in the eco-
system. Thus the iterative equation is as follow:

 p p x pR R PRη ρ ξ+ ← + + (8)

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 349

Here 1, , 0η ρ η ρ+ ≤ ≥ . xPRρ refers to the reputation from services, pξ refers

to the random factors and pRη is used for iteration. Then we normalize the vector:

p

p
p

R
R

R

+
+

+←
1

 (9)

2.3 Model Simplification

Until now, we have proposed the iteration method for the reputation propagation so
that we can gain the global reputation of the entities in the ecosystem. By setting dif-
ferent parameter combinations, we can derive three different propagation methods:

Top-Popularity Reputation (TR) Model
Here we set 0, 1, 0, 1, 0, 0α μ λ ω θ γ= = = = = = and set the random factor

0, 0y xξ ξ= = We can easily get that:

 0
y yR R=

0
0

0

1
T

y T
x yT

y

Y R
R Y R

Y R C
= =

1
 (10)

Where 0
yR refers to the initial reputation of mashup and 0T

yC Y R= 1 will be a con-

stant for different services in the ecosystem. Furthermore, we set 0

1

1
y

m
R m ×

 =

which means that the initial reputation for each mashup is equivalent, then we get:

 ()x jk kkj
R k y f∝ = (11)

This means that the reputations of services are just based on its used frequency.

Page-Rank-Based Reputation (PR) Model
Here we set 0, 0, 1, 0, 0α μ λ θ γ= = = = = and the random factor for mashup’s

reputation is set as 0, we can easily get that:

1

1
x

y
x

Y R
R

Y R

−
+

−

Λ=
Λ1

 (12)

As 1 1x kk
Y R rx−Λ = =1 we can further get that:

1

1

1()

T
T x

x x y x x x
x

T
x x

Y Y R
R R Y R R

Y R

Y Y I R

ωω ω ξ ω ξ

ω ξ

−
+ +

−

−

Λ= − + + = − + +
Λ

= Λ − +

1 (13)

Setting
1

1
(1)x

nn
ξ ω

×

 = −
 we can get that:

350 K. Huang et al.

1

1

1
() (1)T

x x
n

R Y Y I R
n

ω ω+ −

×

 = Λ − + −
 (14)

(1)

,ki
i kk

kk

f
rx rx i k

f n

ωω+ −= + ≠ (15)

Apparently, the reputation of the service is based on the reputation of its neighbors.
In this case, our model can be reduced into a page-rank [12] algorithm method just
based on the co-occurrence service network.

Developer-Related Reputation (DR) Model
Here we set 1, 0, 1 , 0, 1, 0, 0β ν μ α λ ω γ θ= = = − = = = = and , , 0y d xξ ξ ξ =
which means the reputation of the developers just come from the reputation of ma-
shups, the reputation of the services is decided by the mashups it has been invoked in.

(1)

(1)
((1))

T
y d T

y y dT
y d

R D R
R R D R

R D R

α α
α α

α α
+ − +

= = − +
− +1

 (16)

y

d y
y

DR
R DR

DR

+
+ +

+= =
1

T
y

x T
y

Y R
R

Y R

+
+

+=
1

 (17)

Furthermore we can get the reputation for mashups and developers as:

 0(())t T t
y yR I I D D Rα= − −

0(())t T t

d yR D I I D D Rα= − − (18)

Here t refers to the number of iterations. If we set 0α = , this model will reduce to
the TR model.

2.4 Initial Strategy

From the discussion above, we can observe that the global reputation is related to the
initial reputation of each mashup. We define two initial reputations as:

1) Equivalent Initial Mashup Reputation (EI): The hypothesis here is that the ini-

tial reputation for each mashup is equivalent. We can set that 0

1

1
y

m
ER m ×

 =

2) Popularity-based Initial Mashup Reputation (PI): The hypothesis here is that
highly reputable mashups will attract consumers’ high attention, which will be re-
flected in their rating and visited number. We define the popularity of the mashup as
the product of its rating and visited number. Then we use the normalized popularity as

the initial reputation. Thus we can get that
0 0

1y i m
PR prx

×
 =

0 () ()

() ()
i i

i
k kk

Rate Ma Visited Ma
prx

Rate Ma Visited Ma

×=
×

 (19)

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 351

3 Domain-Aware and Reputation-Aware Recommendation

As we discussed in the introduction, the current categorization method for the service
ecosystem such as ProgrammableWeb is rather preliminary. Topic model based on
LDA performs well for the document analysis, thus we will firstly employ the LDA to
analyze the context (tags, description, summary, etc) of the services in the ecosystem
and extract different topics from the context. Each topic is considered as a domain and
each service will be affixed with the affiliation degree to the domain. Then for each
domain, the services with a top-k affiliate degree will be selected and considered as
the related services in the domain. Based on the URP framework, we can get the
global reputation for each service in the ecosystem which reflects the collective per-
ception from the historical information. Thus we can re-rank the services in each do-
main by the global reputation so that we can get the top trustworthy services for the
developers in each domain. Table 1 shows the detail of our method for the domain-
aware and reputation-aware recommendation.

From the algorithm we can see that the topic model is used to cluster the services
by their context so that we can get the most related services; then the global reputation
is used to re-rank the services by their reputation so that the trustworthy services can
be recommended. Thus this method can recommend the highly trustworthy services in
each domain for the developers.

Table 1. Combining Topic Model and Reputation for Recommendation

Algorithm: Topic Model with Reputation for Recommend

Input:

(1) Service list Se with the global reputation for each service xR

(2) Topic/Domain Number: T
(3) Top number of services for each topic: k ; Parameter q

Output:
(1) Top-k services for each Topic
01. Running LDA method to extract the T topics in the service list

02. For each topic, sort the services by its affiliate degree then get the top qk services

03. Sort the qk services by the reputation xR and then get the top-k services for each topic

4 Empirical Study on ProgrammableWeb

4.1 Experiment Data Set

To the best of our knowledge, ProgrammableWeb is by far the largest online reposito-
ry of web services, and their mashups. In this paper, we obtain the data regarding
services and compositions from June 2005 to March 2013. Each service contains the
information such as name, provider, category, publication date, summary and descrip-
tion; each mashup contains the information such as name, creation data, developer, the
list of services in it, its description and its visited number as well as the user rating; each
developer contains the information including name and the mashups he/she registered.

352 K. Huang et al.

In order to examine the performance of our method, we separate the dataset into
two sets: one set contains the mashups published from June 2005 to August 2012
which we use as the Training Data to calculate the global reputation and the topics in
the ecosystem; the other set contains the mashups published from September 2012 to
March 2013 which we use as the Testing Data to test the performance of our ap-
proach. Table 2 reports some basic statistics of our experiment dataset.

Table 2. Basic Statistic of the ProgrammableWeb Data for Experiment

Training Period
(2005.6~2012.8)

Testing Period
(2012.9~2013.3)

Number of Services 7077 805

Number of Mashups 6726 212

Number of Developer*
2383 127

Number of Providers
5905 699

*: Only the developers who publish at least one mashup are considered

4.2 Evaluation Metrics

In order to evaluate the performance of each approach, we use the existence of the
services in the testing period as the ground truth.

1

()
0

i
i

Se exist in the testing period
y Se =

otherwise

 (20)

As the invoked frequencies of different services during the testing period are dif-
ferent, we can use the frequency ()if Se as the ground truth. If a service does not

appear in the testing period, then () 0if Se = . Based on these, we can consider the

precision (@P k), and discounted cumulative gain (@D k) which are defined as:

()

@ i
iSe top k

y Se
P k

k
∈ −=

()
@

log(1 ())i

i

Se top k
i

f Se
D k

Seπ∈ −
=

+ (21)

Here ()iSeπ is the position of the service in the reputation ranking list. Further-

more, given an approach as the baseline, we can calculate the difference discounted
cumulative gain (@DD k):

@ @ ()

@
@ ()

D k D k Baseline
DD k

D k Baseline

−= (22)

4.3 Performance Comparison

Global Reputation Ranking Based on URP Framework
Based on the discussion shown above, we will consider three propagation models: 1)
Top-Popularity Reputation Model (TPR) in which the reputation of each service is
just based on its used frequency; 2) Page-Rank-Based Reputation Model (PRR) in
which the reputation of each service is related to its co-occurrence services and 3)
Developer-related Reputation Model (DRR) in which the reputation of the developers

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 353

is taken into account. For each model we will consider the two initial strategies (EI
and PI) we discuss in Section 2.4. Thus we can get six models such as: TPR+EI,
TPR+PI, PRR+EI, PRR+PI, DRR+EI and DRR+PI.

In order to compare the performance of the heterogeneous network, we define two
methods which just employ the information of the service co-occurrence network. In
fact, the service co-occurrence network is a homogeneous network.

1) Top-Degree Reputation Model (TDR): The reputation of each service is the
normalization of its network degree in the service co-occurrence network.

2) Homogeneous Page-Rank Reputation Model (HPRR): The page rank algorithm
is run on the service co-occurrence network and then the reputation of each service is
the normalization of its page rank value.

Fig. 3. Performance Comparison. (a) Performance comparison between different initial reputa-
tion of mashups. (b) Performance improvement in precision.

Fig. 4. Performance comparison between heterogeneous network methods and homogeneous
network methods

Figure 3 shows the performance comparison between different initial reputations.
We can observe that TPR model and DRR model are sensitive to the intitial mashup
reputation. For TPR, the precision improvement for the top20 is up to 53.85% while
for the long tail (top200~top500) is about 20%; For DRR, the precision improvement

0 100 200 300 400
0

0.5

1

P
re

ci
si

on

Performance Comparison Between Initial Reputation

0 100 200 300 400
0

0.5

1

P
re

ci
si

on

0 100 200 300 400
0

0.5

1

(a) Top-k

P
re

ci
si

on

TPR+EI
TPR+PI

PRR+EI
TRR+PI

DRR+EI
DRR+PI

0 100 200 300 400 500 600
0

0.2

0.4

0.6

X: 20
Y: 0.5385

P
re

ci
si

on

Performance Improvement for Precision

0 100 200 300 400 500 600
0

0.2

0.4

0.6

(b) Top K

P
re

ci
si

on

TPR

DPR

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Top K

P
re

ci
si

on
@
k

Heterogeneous vs Homogeneous

TPR+PI
PRR+PI
DRR+PI
TDR
HPRR

0 100 200 300 400 500 600
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

P
re

ci
si

on
@
k

Performance Improvement

0 100 200 300 400 500 600
-0.1

-0.05

0

0.05

0.1

(b) Top K

D
D

@
k

TDR
TRP+PI
DRR+PI
HPRR

TDR
TRP+PI

DRR+PI
HPRR

354 K. Huang et al.

for top20 is up to 42.85% while for the long tail (top200~top500) is also about 20%.
However for the PRR model, it is not sensitive to the initial mashup reputation and
the two models have the extractly same performance. From the result, we can
conclude that in practice, taking the mashup‘s popularity into account can help to
improve the performance.

Figure 4 shows the performance comparison between the heterogeneous network
and homogeneous network. From Figure 4 (a), we can observe that TPR+PI and
DRR+PI gain consistently higher performance than TDR and HPRR. However,
PRR+PI is the worst method in our experiment. One reason is that in
ProgrammableWeb, the distribution of the service usage frequency meets the power-
law distribution and only few services are very popular, for example, “Google
Map“ appears in 2975 mashups. This makes the reputation propagation from service
to mashup useless.

Here, we take the approach TDR as the baseline and Figure 4 (b) shows the
performance improvement for the approaches except PRR+PI. We can observe that
for the precision, HPRR gains a slight improvement; TRP+PI and DRR+PI gain the
similar improvement, for top20 we gain a 66.67% improvement for TRP+PI and
61.53% for DRR+PI while for the long tail we gain a 30% improvement. Also the
top15 DD@k for TRP+PI and DRR+PI is smaller than TDR while the precision for
TRP+PI and DRR+PI are much better than TDR. This indicates that TRP+PI and
DRR+PI will rank the services which are not that popular in a higher position. For
example, in the top10, TRP+PI and DRR+PI will get the services such as “Twilio“,
“Twilio SMS“, “ Foursquare“ and “ Box.net“ whose usage frequencies are not in the
top10. However, the top10 services for TDR and HPRR are all the top10 popular
services in the training period. Furthermore, for the long tail (top200~top500), we can
observe that TRP+PI and DRR+PI gain a 5% improvement than TDR. Thus TRP+PI
and DRR+PI can gain a higher performance than TDR and HPRR for the services
which are not so popular in the past.

From the experiments shown above, we can conclude that: 1) The popularity-based
reputation for mashups can improve the accuracy of the reputation ranking. 2) The
heterogeneous network which contains richer information can gain a higher
performance for the reputation ranking than the homogeneous network.

Domain-Aware and Reputation-Aware Recommendation

Fig. 5. Effectiveness of Reputation-based Recommendation

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Topic

P
re

ci
si

on
@
1

Performance Comparison For Precision@1

Reputation Re-Rank
Topic Related

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Topic

P
re

ci
si

on
@
10

Performance Comparison For Precison@10

Reputation Re-Rank
Topic Related

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 355

Another observation from the experiments is that the TRP+PI and DRR+PI gain
higher performances than the others. Thus in this paper, we just employ DRR+PI to
generate the global reputations for each services. Then the LDA-based topic model
implemented in Mallet4 is used to extract the different domains from the context of
the services in the ecosystem. Here we set the number of domains to be 40. For each
domain, we get the top 50 services based on the topic affiliate degree and consider
then as the related services in the certain domain. Finally, we re-rank the services in
each domain based on the global reputation and get the top-10 services as the
recommendation for the providers. For simplicity, we name our approach as “RR“.

In order to show the performance of our method, we consider the approach which
only based on the domain affiliation degree. For simplicity, we name it as “TR“. From
Figure 5. We can observe that for the top1 recommendation, RR performances better
than TR in 24 (60%) domains and worse than TR only in 2 (5%) domains; For the
top10 recommendation, RR still performances better than TR in 60% domains and
worse in 5% domains. Furthermore, the average improvement for the precison@10 is
up to 118.54%.

5 Related Work

5.1 Reputation Based Trust for Recommendation

The concept of trust is not new. Trust has been studied in many disciplines including
sociology, economics, and computer science [13]. In this paper, we consider the repu-
tation based trust [14]. There are three groups of trust models for social networks:
graph based trust models, interaction based trust models[7] and hybrid trust models
[8]. These models aggregate the opinions of other users in the trust network to gener-
ate personalized recommendation for consumers. Recently, some researches employ
the Quality of Service (Qos) combining with the Collaborative Filtering (CF) to cal-
culate the reputation of the services for recommendation [6,8].

Recommender systems often exploit explicit trust data to generate recommended
list. Explicit data sources include user profiles, articulated friend networks, or group
memberships. Recommenders often exploit explicit friendships or linkages to gener-
ate recommendation lists [19, 21]. User profile data can be used to identify articles
and other content believed to be relevant to users [22].

These approaches can yield good results when the services have complete metada-
ta. However, in practice, most of the service ecosystem will not contain detail feed-
back from the users and the Qos for each service is resource-intensive to fetch,
especially when considering the different Qos over time or at the different location.
Thus from a different perspective, we just employ the historical popularity and the
topological information to calculate the reputation of the services.

5.2 Complex Network for Service Ecosystem

The increasingly growth of Web services has attracted much attention in recent years.
Many works employ the network analysis method to study the web service ecosystem
as complex network analysis is a powerful tool to understand the large scale networks

4 http://mallet.cs.umass.edu/topics.php

356 K. Huang et al.

[15]. Yu and Woodard presented a preliminary result in studying the properties in
ProgrammableWeb and proved that the cumulative frequency of APIs follows power
law distribution [16]. Wang et al emphasized on mining mashup community from
users’ perspective by analyzing the User-API and User-Tag network in Programmab-
leWeb [17]. Our previous work [18] studied the usage pattern of services in Program-
mableWeb based on the social network analysis.

Unlike the existing studies shown above, our work constructs a heterogeneous net-
work for the service ecosystem and then formalizes the reputation propagation in the
ecosystem. Furthermore, we take the difference between domains into account so that
we can offer a domain-aware and reputation-aware recommendation.

6 Conclusion and Future Work

With the widely adoption of Service Oriented Architecture, we can observe a rapidly
increasing number of services and their compositions these days. When exploring a
service repository to choose services among those with similar functions, it is impor-
tant to provide guidelines for the developers to select the trusted services. To the
best of our knowledge, we are the first to: 1) Introduce a heterogeneous network mod-
el for a service ecosystem and the unified reputation propagation (URP) framework to
calculate reputations in the service ecosystem. 2) Combine the LDA-based topic
model with the URP to offer a domain-aware and reputation-aware service recom-
mendation for the developers.

We conducted a comprehensive set of experiments on ProgrammableWeb and the
results show the effectiveness of our method: 1) Taking the mashups’ popularity into
account gains a 40%~50% improvement for top20 precision and about 20%
improvement for the long tail (top200~top500); 2) Compared with the method based
on the homogeneous network, the heterogeneous network based methods such as TPR
with PI and DRR with PI gain at least 60% improvement for top20 precision and 30%
for the long tail (top200~top500); 3) Combining the reputation and domain, we get an
118.54% improvement for top10 precision compared to the domain-only method,
which indicates that we can offer the trustworthy recommendation for each domain.

In the future, we will further our study on the implications of different parameters
in our reputation propagation model, and the approach to find an optimal set of para-
meters for reputation calculation.

Acknowledgments. This work is partially supported by the National Natural Science
Foundation of China (No. 61174169) and the National High Technology Research
and Development Program of China (863Program, No. 2012AA040915)

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In:
Proc. 17th International Conference on World Wide Web, pp. 795–804 (2008)

2. Wang, J., Zhang, J., Hung, P.C.K., Li, Z., Liu, J., He, K.: Leveraging fragmental semantic
data to enhance services discovery. In: IEEE International Conference on High Perfor-
mance Computing and Communications (2011)

3. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proc. 23rd International Conference
on Machine Learning, pp. 113–120 (2006)

 Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All? 357

4. Mollering, G.: The Nature of Trust: From Geog Simmel to a Theory of Expectation, Inter-
pretation and Suspension. Sociology 35, 403–420 (2002)

5. Cook, K.S., Yamagishi, T., Cheshire, C., Cooper, R., Matsuda, M., Mashima, R.: Trust
building via risk taking: A cross-societal experiment. Social Psychology Quarterly 68,
121–142 (2005)

6. Cao, J., Wu, Z., Wang, Y., Zhuang, Y.: Hybrid Collaborative Filtering algorithm for bidi-
rectional Web service recommendation. Knowledge and Information Systems, 1–21 (2012)

7. Yao, J., Chen, S., Wang, C., Levy, D.: Modelling Collaborative Services for Business and
QoS Compliance. In: Proc. International Conference on Web Services (ICWS), pp. 299–
306 (2011)

8. Wang, Y., Vassileva, J.: A review on trust and reputation for web service selection. In:
27th International Conference on Distributed Computing Systems Workshops (2007)

9. Wu, Y., Yan, C., Ding, Z., Liu, G., Wang, P., Jiang, C., Zhou, M.: A Novel Method for
Calculating Service Reputation. IEEE Transactions on Automation Science and Engineer-
ing 99, 1–9 (2013)

10. Zhang, J., Tan, W., Alexander, J., Foster, I., Madduri, R.: Recommend-As-You-Go: A
Novel Approach Supporting Services-Oriented Scientific Workflow Reuse. In: IEEE In-
ternational Conference on Services Computing, pp. 48–55 (2011)

11. Gupta, M., Sun, Y., Han, J.: Trust analysis with clustering. In: Proc. 20th International
Conference Companion on World Wide Web, pp. 53–54 (2011)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing
order to the web, Technical Report, Stanford Digital Library Technologies Project (1999)

13. Yao, J., Tan, W., Nepal, S., Chen, S., Zhang, J., De Roure, D., Goble, C.: ReputationNet: a
Reputation Engine to Enhance ServiceMap by Recommending Trusted Services. In: IEEE
Ninth International Conference on Services Computing, pp. 454–461 (2012)

14. Nepal, S., Malik, Z., Bouguettaya, A.: Reputation management for composite services in
service-oriented systems. International Journal of Web Services Research 8, 29–52 (2011)

15. Tan, W., Zhang, J., Foster, I.: Network Analysis of Scientific Workflows: A Gateway to
Reuse. IEEE Computer 43, 54–61 (2010)

16. Yu, S., Woodard, C.J.: Innovation in the programmable web: Characterizing the mashup
ecosystem. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp.
136–147. Springer, Heidelberg (2009)

17. Wang, J., Chen, H., Zhang, Y.: Mining user behavior pattern in mashup community. In:
IEEE International Conference on Information Reuse & Integration, pp. 126–131 (2009)

18. Huang, K., Fan, Y., Tan, W.: An Empirical Study of Programmable Web: A Network
Analysis on a Service-Mashup System. In: IEEE 19th International Conference on Web
Services, pp. 552–559 (2012)

19. Chen, J., Geyer, W., Dugan, C., Muller, M., Guy, I.: Make new friends, but keep the old:
recommending people on social networking sites. In: Proceedings of the SIGCHI Confe-
rence on Human Factors in Computing Systems, pp. 201–210. ACM, Boston (2009)

20. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proc. ACM Conference on
Recommender Systems (2007)

21. Guy, I., Ur, S., Ronen, I., Perer, A., Jacovi, M.: Do you want to know?: recommending
strangers in the enterprise. In: Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work, pp. 285–294. ACM, Hangzhou (2011)

22. Liu, H., Maes, P.: Interestmap: Harvesting social network profiles for recommendations.
Beyond Personalization-IUI (2005)

Service Discovery from Observed Behavior

while Guaranteeing Deadlock Freedom
in Collaborations

Richard Müller1,2, Christian Stahl2,
Wil M.P. van der Aalst2,3, and Michael Westergaard2,3

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
Richard.Mueller@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands
{C.Stahl,W.M.P.v.d.Aalst,M.Westergaard}@tue.nl

3 National Research University Higher School of Economics, Moscow, 101000, Russia

Abstract. Process discovery techniques can be used to derive a process
model from observed example behavior (i.e., an event log). As the ob-
served behavior is inherently incomplete and models may serve different
purposes, four competing quality dimensions—fitness, precision, simplic-
ity, and generalization—have to be balanced to produce a process model
of high quality.

In this paper, we investigate the discovery of processes that are spec-
ified as services. Given a service S and observed behavior of a service P
interacting with S, we discover a service model of P . Our algorithm bal-
ances the four quality dimensions based on user preferences. Moreover,
unlike existing discovery approaches, we guarantees that the composition
of S and P is deadlock free. The service discovery technique has been
implemented in ProM and experiments using service models of industrial
size demonstrate the scalability or our approach.

1 Introduction

Service-oriented design [24] reduces system complexity, and service models are
useful to understand the running system, to verify the system’s correctness, and
to analyze its performance. However, it is often not realistic to assume that there
exists a service model. Even if there exists a formal model of the implemented
service, it can differ significantly from the actual implementation; The formal
model may have been implemented incorrectly, or the implementation may have
been changed over time. Fortunately, we can often observe behavior recorded
in the form of an event log. Such event logs may be extracted from databases,
message logs, or audit trails. Given an event log, there exist techniques to pro-
duce a (service) model. The term service discovery [5] or, more general, process
discovery [3] has been coined for such techniques.

In this paper, we assume a known service model S and an event log L contain-
ing observed behavior in the form of message sequences being exchanged between

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 358–373, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Service Discovery from Observed Behavior 359

(instances of) the implementation of S and (instances of) its environment (i.e.,
the services S interacts with) to be given. Our goal is to produce a model of the
environment of S. As the event log is inherently incomplete (i.e., not all pos-
sible behavior was necessarily observed), there are, in general, infinitely many
models of the environment of S. Clearly, some models might be more appropri-
ate than others regarding some user requirements. Therefore, service discovery
can be seen as a search process : We search for a model of the environment that
describes the observed behavior “best”.

To judge the discovered model we consider two aspects: correctness (internal
consistency of model, e.g., no deadlocks) and quality (ability to describe the
underlying observed process well).

Correctness is motivated by the discovery of sound workflow models in [10],
where soundness refers to the ability to always terminate [1]. In our service-
oriented setting, it is reasonable to require that S and its environment interact
correctly. As a minimal requirement of correct interaction, we assume deadlock
freedom throughout this paper. We refer to such model of the environment of S
as a partner of S. Thus, we are interested in discovering a partner of S.

Regarding quality, there exist four quality dimensions for general process mod-
els [3]: (1) fitness (i.e., the discovered model should allow the behavior seen in
the event log), (2) precision (i.e., the discovered model should not allow behav-
ior completely unrelated to what was seen in the event log), (3) generalization
(i.e., the discovered model should generalize the example behavior seen in the
event log), and (4) simplicity (i.e., the discovered model should be as simple
as possible). These quality dimensions compete with each other. For example,
to improve the fitness of a model one may end up with a substantially more
complex model. A more general model usually means a less precise model. We
assume that a user guides the balancing of these four quality dimensions. As a
consequence, we aim at discovering a service model that is a partner of S and,
in addition, balances the four quality dimensions guided by user preferences.

The actual challenge is now to find such a model. As a service S has, in gen-
eral, infinitely many partners, the search space for service discovery is infinite.
Therefore, we are using a genetic algorithm to find a good but possibly not an
optimal model of a partner of S. We have implemented this algorithm. It takes
a service model S, an event log, and values for the four quality dimensions as
input. The output of the algorithm is a model of a partner of S that comes close
to the specified values of the quality dimensions. We show its applicability using
eight service models of industrial size. Moreover, based on the notion of a finite
representation of all partners of S [14]—referred to as operating guideline—we
additionally apply an abstraction that reduces the search space to a finite one.
Although the abstraction only preserves fitness, our experimental results show
that the other quality dimensions do not suffer too much due to this abstrac-
tion. An full version of this paper including a more detailed discussion on the
abstraction and the experimental results has been published as a technical report
in [22].

360 R. Müller et al.

Summarizing, the main contributions of this paper are:

– adapting existing discovery techniques for workflows (i.e., closed systems) to
services (i.e., reactive systems);

– adapting the metrics for the four quality dimensions to cope with service
models;

– presenting an approach to reduce an infinite search space to a finite one; and
– validation of the algorithm based on a prototype.

We continue with a motivating example in Sect. 2. Section 3 provides back-
ground information on our formal service model and process discovery tech-
niques. Section 4 adapts existing discovery techniques and metrics for workflows
for service mining and reduces the infinite search space to a finite one. We present
experimental results in Sect. 5. Section 6 reviews related work, and Section 7
concludes the paper.

2 Motivating Example

Figure 1 shows a service S modeled as a state machine, and an event log L. A
transition label !x (?x) denotes the sending (receiving) of a message x to (from)
the environment of S. The event log L contains information on 210 traces. There
are three types of traces: ac (10 times), ad (100 times), and bd (100 times). Our
goal is to produce a model of the environment of S. Two example models are P
and R in Fig. 1. P incorporates the frequently observed behavior in L (traces
ad and bd) and disregards trace ac, arguing that ac is negligible for a “good”
model. R incorporates even more than the observed behavior in L—for example,
the trace bc which was not observed in the interaction with S—generalizing the
observed behavior in L in account for L’s incompleteness.

S0

S1

!a

?c ?d

!b

?d
S2

S3 S4 S5

(a) Service S

trace

10 ac
100 ad
100 bd

210

(b) Event log L

P0

P1

?a

!d

P2

?b
τ

(c) Service P

R0

R1

?a

R2

?b
τ

!c !d

(d) Service R

Fig. 1. Running example: The event log L represents observed communication behavior
of S and its environment

The service P is a partner of S—they both interact without running into a
deadlock—whereas the service R is not: If S sends a message b, then R receives
this message b and may send a message c. However, S cannot receive message
c and R does not send any additional messages unless it receives a message a
or b. Thus, the interaction of S and R deadlocks. For this reason, we prefer P
over R and our discovery algorithm would exclude R. Classical process mining
approaches do not take S into account and will allow for models that deadlock
when composed.

Service Discovery from Observed Behavior 361

3 Preliminaries

For two sets A and B, A # B denotes the disjoint union, i.e., writing A # B
expresses the implicit assumption that A and B are disjoint. Let �+ denote the
positive integers. For a set A, |A| denotes the cardinality of A, B(A) the set of
all multisets (bags) over A, and [] the empty multiset. Throughout the paper,
we assume a finite set of actions A such that {τ, final} ∩ A = ∅.

For a set A, let A∗ be the set of finite sequences (words) over A. For two
words v and w, v $ w denotes that v is a prefix of w. For a ternary relation

R ⊆ A × B × A, we shall use a
b−−→R a′ to denote (a, b, a′) ∈ R. If any of the

elements a, b, or a′ is omitted, we mean the existence of such an element. The
relation R∗ ⊆ A×B∗ ×A is the reflexive and transitive closure of R, defined by

a
b1...bn−−−−−→R∗ a′ if and only if there are a0, . . . , an ∈ A such that a = a0, a

′ = an,

and, for all 1 ≤ i ≤ n, ai−1
bi−−→R ai. If a −→R∗ a′, then a′ is reachable from a

in R.

3.1 State Machines for Modeling Services

We model a service as a state machine extended by an interface, thereby restrict-
ing ourselves to the service’s communication protocol. An interface consists of
two disjoint sets of input and output labels corresponding to asynchronous mes-
sage channels. In the model, we abstract from data and identify each message
by the label of its message channel.

Definition 1 (State Machine). A state machine S = (Q,α,Ω , δ, I ,O) con-
sists of a finite set Q of states, an initial state α ∈ Q, a set of final states Ω ⊆ Q,
a transition relation δ ⊆ Q × (I # O # {τ})× Q, and two disjoint, finite sets of
input labels I ⊆ A and output labels O ⊆ A.

Let l(t) = a define the label of a transition t = (q, a, q′) ∈ δ. We canonically
extend l to sequences of transitions. For a state q ∈ Q, define by en(q) = {a |
q

a−−→δ} the set of labels of outgoing transitions of q. The set R(S) = {q | α −→δ∗

q} denotes the reachable states of S. The state machine S is deterministic if for all
q, q′, q′′ ∈ Q and a ∈ I #O , (q, τ, q′) ∈ δ implies q = q′ and (q, a, q′), (q, a, q′′) ∈ δ
implies q′ = q′′; it is deadlock free if, for all q ∈ R(S), en(q) = ∅ implies q ∈ Ω .�

Graphically, we precede each transition label x with ? (!) to denote an input
(output) label. A final state is depicted with a double circle (e.g., S3 in Fig. 1(a)).
An incoming arc denotes the initial state (e.g., S0 in Fig. 1(a)).

For the composition of state machines, we assume that their interfaces com-
pletely overlap. We refer to state machines that fulfill this property as compos-
able. We compose two composable state machines S and R by building a product
automaton S ⊕ R, thereby turning all transitions into (internal) τ -transitions.
In addition, a multiset stores the pending messages between S and R.

Definition 2 (Composition). Two state machines S and R are composable if
IS = OR and OS = IR. The composition of two composable state machines S and

362 R. Müller et al.

R is the state machine S⊕R = (Q,α,Ω , δ, ∅, ∅) with Q = QS ×QR×B(IS # IR),
α = (αS , αR, []), Ω = ΩS×ΩR×{[]}, δ containing exactly the following elements:

– (qS , qR, B)
τ−−→δ (q

′
S , qR, B), if qS

τ−−→δS q′S ,
– (qS , qR, B)

τ−−→δ (qS , q′R, B), if qR
τ−−→δR q′R,

– (qS , qR, B + [a])
τ−−→δ (q′S , qR, B), if qS

a−−→δS q′S and a ∈ IS ,

– (qS , qR, B + [a])
τ−−→δ (qS , q′R, B), if qR

a−−→δR q′R and a ∈ IR,

– (qS , qR, B)
τ−−→δ (q

′
S , qR, B + [a]), if qS

a−−→δS q′S and a ∈ OS , and

– (qS , qR, B)
τ−−→δ (qS , q′R, B + [a]), if qR

a−−→δR q′R and a ∈ OR. �

We compare two state machines S and R by a simulation relation, thereby
treating τ like any action in A. A binary relation � ⊆ QS × QR is a simulation
relation of S by R if (1) (αS , αR) ∈ �, and (2) for all (qS , qR) ∈ �, a ∈ A # {τ},
q′S ∈ QS such that qS

a−−→S q′S , there exists a state q′R ∈ QR such that qR
a−−→R

q′R and (q′S , q′R) ∈ �. If such a � exists, we say that R simulates S. A simulation
relation � of S by R is minimal, if for all simulation relations �′ of S by R,
� ⊆ �′.

We want the composition of two services to be correct. As a minimal crite-
rion for correctness, we require deadlock freedom and that every reachable state
contains only finitely many pending messages (i.e., the message channels are
bounded). We refer to two services that interact correctly as partners.

Definition 3 (b-Partner). Let b ∈ �+. A state machine R is a b-partner of a
state machine S if S⊕R is deadlock free and for all (qS , qR, B) ∈ R(S ⊕R) and
all a ∈ IS # IR, B(a) ≤ b. �

In Fig. 1, P is a 1-partner of S, but R is not because the composition S ⊕ R
can deadlock.

If a state machine S has one b-partner, then it has infinitely many b-partners.
Lohmann et al. [14] introduce operating guidelines as a way to represent the infi-
nite set of b-partners of S in a finite manner. Technically, an operating guideline
is a deterministic state machine T where each state is annotated with a Boolean
formula Φ, which specifies the allowed combinations of outgoing transitions. A
state machine R is represented by an operating guideline if (1) there exists a
minimal simulation relation � of R by T (as T is deterministic, � is uniquely
defined); and (2) for every pair of states (qR, qT) ∈ �, the outgoing transitions of
qR and the fact whether qR is a final state must define a satisfying assignment
to Φ(qT).

Definition 4 (b-Operating Guideline). An annotated state machine (T, Φ)
consists of a deterministic state machine T and a Boolean annotation Φ, assigning
to each state q ∈ Q of T a Boolean formula Φ(q) over the literals I #O#{τ, final}.

A state machine R matches with (T, Φ) if there exists a minimal simulation
relation � of R by T such that for all (qR, qT) ∈ �, Φ(qT) evaluates to true for the

following assignment β: β(a) = true if a �= final ∧ qR
a−−→δR or a = final ∧ qR ∈

ΩR, and β(a) = false otherwise.

Service Discovery from Observed Behavior 363

Let b ∈ �+. The b-operating guideline OGb(S) of a state machine S is an
annotated state machine such that for all state machines R, R matches with
OGb(S) iff R is a b-partner of S. �

Figure 2a depicts OG1(S) = (T, Φ) of the service S. The state machine P
(Fig. 1c) matches with (T, Φ): The minimal simulation relation of P by T is � =
{(P0, T0), (P1, T3), (P1, T1), (P2, T5), (P2, T4), (P0, T5), (P0, T4), (P1, T7), (P2, T7),
(P0, T7)}, and the formula Φ is evaluated to true, for all pairs of �. For example,
for (P0, T0) we have Φ(P0) = (true∨ false)∧(true∨ false) = true, and for (P0, T4)
we have Φ(T4) = true. Thus, P is a 1-partner of S. Figure 2b depicts the smallest
subgraph G of OG1(S) such that P is still simulated by G, i.e., the subgraph
used for the simulation relation above. In contrast to P , the state machine R
(Fig. 1d) does not match with (T, Φ), because (R1, T1) violates the simulation

relation: We have R1
!c−−→ but T1 � !c−−→. Thus, R is not a 1-partner of S.

dT1 a ∧ b T2 c ∨ d T3

(a ∨ d) ∧ (b ∨ d)T0

final T6finalT4 final T5

?b

?a!d !c

!d ?a

?b !d

true T7

?a, ?b ?a, ?b?a, ?b

?a, ?b ?a, ?b

?a, ?b, !c, !d

(a) OG1(S).

T1 T3

T0

T4 T5

?b

!d

?a

!d

T7

?a, ?b?a, ?b

?a, ?b, !d

τ

τ

τ

(b) Subgraph G of OG1(S).

Fig. 2. OG1(S) and its smallest subgraph G such that P is simulated by G. The
annotation of a state is depicted inside the state. For OG1(S), every state has a τ -
labeled self-loop and the annotation an additional disjunct τ , which is omitted in the
figure for reasons of readability.

In the remainder of the paper, we abstract from the actual bound chosen
and use the terms partner and operating guideline rather than b-partner and
b-operating guideline.

3.2 Event Logs and Alignments

An event log is a multiset of traces. Each trace describes the communication
between S and R in a particular case in terms of a sequence of events (i.e., sent
and received messages). We describe an event as an action label and abstract
from extra information, such as the message content or the timestamp of the
message. Formally, a trace w ∈ A∗ is a sequence of actions, and L ∈ B(A∗) is an
event log.

364 R. Müller et al.

To compare a (discovered) service model R with the given event log L, we use
the alignment-based approach described in [4]. This approach relates each trace
w ∈ L to a sequence σ of transitions of R that can be executed from R’s initial
state by pairing events in w to events of σ.

Formally, a move is a pair (x, y) ∈
(
(A # {%}) × (δR # {%})

)
\ {(%,%)}.

We call (x, y) a move in the model if x =% ∧y �=%, a move in the log if
x �=% ∧y =%, a synchronous move if x �=% ∧y �=%, and a silent move if
x =% ∧y �=% ∧l(y) = τ .

An alignment of a trace w ∈ L to R is a sequence γ = (x1, y1) . . . (xk, yk)
of moves such that the projection of (x1 . . . xk) to A is w, the projection of
(y1 . . . yk) to δR is (αR, a1, q1) . . . (qj−1, aj , qj), and transition label l(yi) and
action xi coincide for every synchronous move (xi, yi) of γ. Let trace(γ) ∈ A∗

denote the word l(y1) . . . l(yk) with all τ -labels removed.
Some alignments for L and P in Fig. 1 are:

γ1 =
a c
a %

(P0, a, P1)
γ2 =

a d
a d

(P0, a, P1) (P1, d, P2)
γ3 =

b d
b d

(P0, b, P1) (P1, d, P2)

The top row of γ1 corresponds to the trace ac ∈ L and the bottom two rows
correspond to the service P . There are two bottom rows because multiple transi-
tions of P may have the same label; the upper bottom row consists of transition
labels, and the lower bottom row consists of transitions. We have αP

a−−→δ∗P but

αP � ac−−→δ∗P ; that is, ac deviates from a by an additional c-labeled transition. We
denote this move in the log by a “%” in the upper bottom row.

The goal is to find a best alignment that has as many synchronous and silent
moves as possible. The approach in [4] finds such an alignment by using a cost
function on moves. Let γ be an alignment of a trace w to R. Formally, a cost
function κ assigns to each move (x, y) of an alignment γ a cost κ((x, y)) such
that a synchronous or silent move has cost 0, and all other types of moves have
cost > 0. The cost of γ is κ(γ) =

∑k
i=1 κ((xi, yi)); γ is a best alignment if, for

all alignments γ′ of w to R, κ(γ′) ≥ κ(γ). We use the function λR to denote, for
each trace w ∈ L, a best alignment of w to R.

Finally, we combine the best alignment of each trace of L to R into a weighted
automaton AA. A state of AA encodes a sequence of (labels of) transitions of
R. We define the weight ω(w) of each state w as the number of times a trace of
L was aligned to w. We shall use AA for the computation of metrics for the two
quality dimensions precision and generalization later on.

Definition 5 (Alignment Automaton). The alignment automaton AA(L,R)
= (V, v0, E, ω) of L and R consists of a set of states V = A∗, an initial state
v0 = ε (ε is the empty trace), a transition relation E ⊆ V × A × V with

v
a−−→E va iff there exists w ∈ L such that va $ trace(λR(w)), and a weight

function ω : V → �
+ such that ω(v) =

∑
w∈L∧v�trace(λR(w)) L(w) for all v ∈ V .�

Figure 3 depicts the alignment automaton AA(L, P) of the event log L and
the state machine P . Each trace in L is either aligned to the transition sequence

Service Discovery from Observed Behavior 365

labeled with a, ad or bd (ignoring τ ’s), as a transition sequence labeled with
ac is not present in P . The weight of each state is depicted inside the state;
for example, ω(a) = 110 means 110 traces of L can be aligned to a transition
sequence of P whose prefix is a.

210
100b

d
a

d

110

100

100

Fig. 3. The alignment automaton AA(L,P)

4 Service Discovery from Observed Behavior

Given a state machine S and an event log L, service discovery aims to produce a
service R that is (1) a partner of S and (2) of high quality. The first requirement
reduces the search space from all composable services to partners of S, and
can be achieved by either model checking S⊕R or checking whether R matches
with the operating guideline OG(S) of S. In the following, we discuss the second
requirement.

4.1 Incorporating the Quality Dimensions

We are interested in discovering a partner of high quality. Numerous metrics for
measuring the four quality dimensions have been developed [4,6,26]. However, we
cannot simply apply these metrics but have to adapt them to cope with service
models.

Fitness. Let R be a partner of S and L an event log. Fitness indicates how
much of the behavior in the event log L is captured by the model R. A state
machine with good fitness allows for most of the behavior seen in the event
log. We redefine the cost-based fitness metrics from [4] for state machines: We
quantify fitness as the total alignment costs for L and R (computed using the
best alignments provided by λR) compared to the worst total alignment costs.
The worst total alignment costs are just moves in the log for the events in the
observed trace and no moves in the model, in all optimal alignments.

Definition 6 (Fitness). The fitness of L and R is defined by

fit(L,R) = 1−
∑

w∈L

(
L(w)·κ(λR(w))

)
∑

w∈L

(
L(w)·∑x∈w κ((x,�))

) . �

Assume a cost function κ where each synchronous and each silent move has
cost 0, and all other types of moves have cost 1. The best alignments given by
λP are γ1–γ3. We have costs of 1 for γ1, 0 for γ2, and 0 for γ3; therefore, we
calculate fit(L, P) = 1− 10·1+100·0+100·0

10·2+100·2+100·2 ≈ 0.976. As expected, the fitness value
is high because only 10 out of 210 traces are non-fitting traces in L (i.e., the
traces ac).

366 R. Müller et al.

Simplicity. Simplicity refers to state machines minimal in structure, which
clearly reflect the log’s behavior. This dimension is related to Occam’s Razor,
which states that “one should not increase, beyond what is necessary, the number
of entities required to explain anything.” Various techniques exist to quantify
model complexity [17]. We define the complexity of the model R by its number
of states and transitions, and compare it with the smallest subgraph G of OG(S)
such that R is simulated by G. Although both R and G have the same behavior,
G is not necessarily less complex than R. Our metric takes this into account.

Definition 7 (Simplicity). Let OG(S) = (T, Φ). The simplicity sim(L,R) of

L and R is |QG|+|δG|
|QR|+|δR| if |QG|+ |δG| <= |QR|+ |δR| and 1 otherwise, where G is

the smallest subgraph of T such that G simulates R. �

Figure 2b shows the smallest subgraph G of OG(S) such that G simulates P .
G consists of 6 states and 14 transitions (including the τ -loops at states T4, T5,
and T7). Therefore, |QG|+ |δG| = 6+14 = 20 and |QP |+ |δP | = 3+4 = 7; thus,
sim(L, P) = 1. As expected, L and P have a perfect simplicity value, as P is
less complex than G.

Precision. Precision indicates whether a state machine is not too general. To
avoid “underfitting”, we prefer state machines with minimal behavior to repre-
sent the behavior observed in the event log as closely as possible. We redefine the
alignment-based precision metric from [6] for state machines. This metric relies
on building the alignment automaton AA, which relates executed and available
actions after an aligned trace of the log.

Definition 8 (Precision). Let AA(L,R) = (V, v0, E, ω) be the alignment au-
tomaton of L and R. Then the precision of L and R is defined by
pre(L,R) =

(∑
v∈V

(
ω(v)· |exec(v)|

))
/
(∑

v∈V

(
ω(v)· |avail (v)|

))
, where exec(v)

= en(v) in AA(L,R), and avail (v) =
⋃

q∈X en(q) with X = {q | αR
w−−→δ∗R

q ∧ w|A = v} in R. �

Figure 3 shows the alignment automatonAA(L, P), which has been build from
the best alignments γ1–γ3. We obtain pre(L, P) = 210·2+110·1+100·0+100·1+100·0

210·2+110·1+110·2+100·1+100·2 =
0.6. As expected, L and P have average precision, as P allows for far more
behavior than the behavior observed in L.

Generalization. Generalization penalizes overly precise state machines which
“overfit” the given log. In general, a state machine should not restrict behavior to
just the behavior observed in the event log. Often only a fraction of the possible
behavior has been observed, e.g., due to concurrency. For this dimension, we
developed a new metric. We combine the generalization metric from [4] with the
alignment automaton AA(L,R). The idea is to use the estimated probability
π(x, y) that a next visit to a state w of the alignment automaton will reveal a
new trace not observed before: x = |en(w)| is the number of unique activities
observed at leaving state w, and y = ω(w) is the number of times w was visited
by the event log. We employ an estimator for π(x, y), which is inspired by [9].

Service Discovery from Observed Behavior 367

Definition 9 (Generalization). Let AA(L,R) = (V, v0, E, ω) be the align-
ment automaton of L and R. The generalization of L and R is defined by
gen(L,R) = 1 −

(
1

|V |
∑

v∈V π(|en(v)|, ω(v))
)
, where π can be approximated [4]

by π(x, y) = x(x+1)
y(y−1) , if y ≥ x + 2, and π(x, y) = 1, if y ≤ x + 1. �

We obtain gen(L, P) = 1− 1
5

(
2·3

210·209+
1·2

110·109+
1·2

100·99
)
≈ 1. Given the numbers

of traces in L, L and P have nearly perfect generalization as expected, because
it is unlikely to reveal a new trace not observed before.

Balancing the Quality Dimensions. As quality refers to the possibly com-
peting quality dimensions fitness, simplicity, precision and generalization [3], we
cannot assume the existence of a partner that has the highest value for every
dimension. We rather need to balance these dimensions and, therefore, assume
that a user specified his requirements using weights ωfit , ωsim , ωpre , and ωgen .
With these four weights, we can actually search for the partner of S that has
highest quality.

Definition 10 (Quality). Let ωall = ωfit+ωsim+ωpre+ωgen . The quality of R
for L is defined by quality(L,R) =

ωfit

ωall
fit(L,R)+ ωsim

ωall
sim(L,R)+

ωpre

ωall
pre(L,R)+

ωgen

ωall
gen(L,R) �

Using weights of 2 for fitness, precision, and generalization, and a weight of 1
for simplicity (incorporating that the discovered service can be simpler than its
simulation subgraph), we obtain quality(L, P) = 2

7 ·0.976+
1
7 ·1+

2
7 ·0.6+

2
7 ·1 ≈

0.879.

4.2 A Finite Abstraction of the Search Space

The actual challenge of service discovery is that the search space is the set
partners of S, which is infinite. In the following, we present an abstraction that
reduces the search space to a finite number of partners. To this end, we restrict
ourselves to partners of S that are valid subgraphs of OG(S) = (T, Φ), i.e.,
subgraphs of T whose states are connected, contain the initial state of T , and
that match with OG(S). As T contains only finitely many states, the number of
valid subgraphs of OG(S) is finite too. So, instead of investigating any partner
of S, we only consider valid subgraphs of OG(S).

However, this finite abstraction comes at a price: Although every valid sub-
graph is a partner of S, we may have excluded partners of S that have a bet-
ter quality than any valid subgraph. More precisely, it can be shown that this
abstraction only preserves fitness. We do not elaborate on this and refer the
interested reader to [22]. The experimental results in Sect. 5 illustrate the ap-
propriateness of the abstraction.

4.3 Algorithm and Implementation

Discovering a partner for a given state machine S and an event log L is chal-
lenging because the search space is the infinite set of partners of S. Even the

368 R. Müller et al.

finite abstraction of the search space to valid subgraphs (see Sect. 4.2) may still
be too large to search for an optimal candidate exhaustively. Thus, we are using
a genetic algorithm to find a partner of high but possibly not of highest qual-
ity. Genetic algorithms have been successfully applied for discovering workflow
models [16,10]. A genetic algorithm evolves a population of candidate solutions
(i.e., the individuals) step-wise (i.e., in generations) toward better solutions of
an optimization problem. In our setting, an individual is a state machine R. The
quality of a candidate solution is determined by the quality of R (see Def. 10).

Our algorithm employs the general procedure of genetic algorithms, which
is depicted in Fig. 4. It creates children through the operations crossover (i.e.,
randomly exchanging subgraphs between two given individuals), mutation (i.e.,
randomly adding or removing a transition or a final state from a given individ-
ual), and replacement (i.e., replacing a randomly chosen individual by a new,
randomly generated individual). We employ a combination of four different ter-
mination criteria: A time and a generation limit (i.e., the evolution stops after a
given amount of time or generations), a stagnation limit (i.e., the evolution stops
if the quality of the high-quality individual stagnates a given number of genera-
tions), and a quality limit (i.e., the evolution stops if the high-quality individual
meets a specified quality threshold).

Fig. 4. The different phases of the genetic algorithm

We have implemented the genetic algorithm, with and without the abstraction
presented in Sect. 4.2, as a runner-up package in the latest ProM 6.3 release1.

5 Experimental Results

In this section, we evaluate the feasibility of our approach by discovering partners
for eight service models of industrial size. Table 1 gives an overview about the
eight service models. The services “Loan Approval” and “Purchase Order” are
taken from the WS-BPEL specification [12], all other examples are industrial
service models provided by a consulting company.

1 https://svn.win.tue.nl/trac/prom/wiki/rel63:release

https://svn.win.tue.nl/trac/prom/wiki/rel63:release

Service Discovery from Observed Behavior 369

Table 1. Size of the service models, the operating guidelines, and event logs

service S OG(S) event log L

name (abbreviation) |Q| |δ| |Q| |δ| cases events
Car Breakdown (CB) 11, 381 39, 865 1, 449 13, 863 300 1, 938
Deliver Goods (DG) 4, 148 13, 832 1, 377 13, 838 300 1, 938
Loan Approval (LA) 30 41 21 84 300 2, 537
Purchase Order (PO) 402 955 169 1, 182 300 2, 537
Internal Order (IO) 1, 516 4, 996 97 567 300 1, 938
Ticket Reservation (TR) 304 614 111 731 300 2, 381
Reservations (RS) 28 33 370 3, 083 300 2, 671
Contract Negotiation (CN) 784 1, 959 577 4, 859 300 1, 938

As most services were specified in WS-BPEL, we had to translate them into
state machines using the compiler BPEL2oWFN [13]. For each state machine S,
we calculated the operating guideline OG(S) using the tool Wendy [15]. Next,
we used the underlying state machine T of OG(S) to generate a random event
log L using the tool Locretia2. Because T is the “most permissive” partner [14]
of S, there exists a partner exhibiting the observed behavior in L. Each such
event log L is free of noise and consists of 300 cases with about 1, 900–2, 700
events. Table 1 shows the details. The size of our generated event logs is the
size of event logs successfully applied to evaluate the genetic process discovery
algorithm in [10]. Finally, we used our implementation to discover a partner of
S from OG(S) and L.

As parameters for the genetic algorithm, we used an initial population of 100
individuals, a mutation/crossover/replacement probability of 0.3 with at most
1 crossover point, and elitism of 0.3, i.e., the 30 individuals with the highest
quality are directly shifted to the next generation. The computation of a new
generation stops after 1, 000 generations, if the highest quality stagnates for 750
generations, if a quality of 0.999 is reached, or if the algorithm ran for 60 minutes.
To take into account that a discovered service can be simpler than the subgraph
to be compared, we chose a weight of 1 for simplicity and a weight of 2 for all
other dimensions. The experiment data is available online3.

To the best of our knowledge, there does not exist any other service discov-
ery implementation with which we could compare our algorithm. Therefore, we
performed two different experiments: discovering a partner from the complete
search space (Experiment 1), and discovering a partner from the abstract search
space (Experiment 2).

The results in Table 2 show that discovered partners in Experiment 1 are more
complex than the ones in Experiment 2; that is, valid subgraphs are smaller than
arbitrary partners. This explains the higher computation time in Experiment 1

2 http://svn.gna.org/viewcvs/service-tech/trunk/locretia/
3 https://u.hu-berlin.de/mueller

http://svn.gna.org/viewcvs/service-tech/trunk/locretia/
https://u.hu-berlin.de/mueller

370 R. Müller et al.

by a factor of 1–44 compared to Experiment 2: Smaller candidates enable the
algorithm to compute more generations in less time. For the same reason, Exper-
iment 2 produced, in general, partners with higher fitness. The simplicity values
are by Def. 6 higher for Experiment 2. In all examples, the discovered partners
in Experiment 2 have slightly higher precision values than the partners discov-
ered in Experiment 1. However, in three out of eight examples they have slightly
lower generalization values. Restricting the search space to valid subgraphs is an
abstraction, which neither preserves precision nor generalization. Therefore, we
expected lower precision and generalization values for the partners discovered
in Experiment 2. Despite the loss of preservation of the abstraction, the overall
quality of the respective partner discovered in Experiment 2 is in all examples
better.

Summing up, our experimental results validate that, in general, partner dis-
covery produces better results on a finite abstraction of the search space than
on the complete search space. Although the abstraction only preserves fitness,
the values of the other three dimensions and the quality are high.

Table 2. Discovery of an ordinary partner (Experiment 1) and a valid subgraph (Ex-
periment 2) using the genetic algorithm (with quality and time) conducted on a Mac-
Book Pro, Intel Core i5 CPU with 2.4 GHz and 8 GB of RAM.

discovered partner in Experiment 1 discovered partner in Experiment 2

S |Q| |δ| q fit sim pre gen t in s |Q| |δ| q fit sim pre gen t in s

CB 548 1, 180 0.72 0.59 0.59 0.7 0.95 3, 744 86 384 0.95 0.87 1 0.99 0.96 3, 602
DG 246 829 0.71 0.5 0.94 0.57 0.94 3, 689 82 316 0.96 0.91 1 0.98 0.98 1, 763
LA 15 19 0.97 0.91 1 0.98 1 3, 239 14 30 0.98 0.98 1 0.98 0.97 73
PO 101 248 0.94 0.92 0.89 0.99 0.94 3, 605 33 107 0.97 0.9 1 1 1 214
IO 107 106 0.62 0.11 0.19 0.95 1 3, 698 9 11 0.87 0.6 1 0.98 0.95 3, 021
TR 29 99 0.91 0.93 1 0.82 0.95 3, 606 15 48 0.96 0.96 1 0.99 0.92 143
RS 218 671 0.93 0.95 0.98 0.8 1 3, 601 176 582 0.97 1 1 0.91 1 207
CN 73 220 0.62 0.7 1 0.61 0.35 3, 798 74 201 0.94 0.86 1 0.97 0.94 3, 606

6 Related Work

The term “service discovery” describes techniques for finding a service model
in a service repository in service-oriented architectures [24], and techniques for
producing a service model from observed communication behavior of services [5].
In this paper, we refer to the latter. We investigated the discovery of a service
model from observed communication behavior, which corresponds to a partic-
ular form of process mining [3]. Process mining research has been focused on
workflows (i.e., closed systems) but during the last few years, process mining
techniques have also been applied to services resulting in the term “service min-
ing”. Paper [2] reviews service mining research and identifies two main challenges
regarding the discovery of services: (1) the correlation of instances of a service

Service Discovery from Observed Behavior 371

with instances of another service (e.g., [8,19]) and (2) the discovery of services
based on observed behavior (e.g., [11,25,23,7,27,18]). This paper contributes to
the second challenge.

In [21], we considered with weak termination a stronger correctness criterion
than deadlock freedom but solely focused on the fitness dimension, thus, ignored
the three other quality dimensions. To make the discovery efficient, we do not
discover a “best” model as in [21] but a model of high quality using a genetic
algorithm. The idea of using an genetic algorithm is inspired by the work of
Buijs et al. [10] on discovering sound workflow models while balancing the four
conflicting quality dimensions. In Sect. 4, we discussed the relation of our metrics
for these four quality dimensions and the metrics used in [10]. For the simplicity
metric, we used the structure of the operating guideline, which does not exist for
workflow models. Correctness in our setting is deadlock freedom of the service
composition, a weaker criterion than soundness in [10]. To deal with correctness
in the setting of services, we assume a service S to be given and we discover a
partner of S from observed behavior of S.

Musaraj et al. [23] correlate messages from an event log without correla-
tion information and use this information in their discovery algorithm. In con-
trast, we abstract from correlation information and assume cases to be indepen-
dent. Furthermore, our approach produces a partner of a given service model S
and balances the four conflicting quality dimensions guided by user preferences.
Motahari-Nezhad et al. [20,18] only consider fitness (referenced as “recall”), sim-
plicity and precision, and ignore generalization of the discovered service. Like
Musaraj et al. [23], they do not assume a service model to be given and, thus,
they cannot guarantee that their produced service model can interact correctly
with its environment. Other approaches discover workflow models from service
interaction [11] from interaction patterns [7,27]. Whereas our algorithm produces
a complete service model, [11,7,27] can only discover parts of a service.

7 Conclusion and Future Work

We presented a technique to discover a service model from a given service S and
observed behavior of a service P interacting with S. Our technique produces a
service model for P that can interact correctly (no deadlocks) with S and, in
addition, balances the four conflicting quality dimensions (i.e., fitness, simplic-
ity, precision, and generalization). As an additional improvement, we proposed
an abstraction technique to reduce the infinite search space to a finite one. As
an exhaustive search to find an optimal solution may still be intractable, we
implemented our technique as a genetic algorithm. In a prototypical implemen-
tation, we experimented with several service models of industrial size. Our results
showed that the algorithm finds (nearly) optimal solutions in acceptable time.
It is worth mentioning that our approach is not restricted to service models but
can discover arbitrary reactive systems.

In future work, we aim to extend our presented approach by improving the
simplicity metrics, studying the impact of different weights of the quality di-
mensions on the quality of the discovered partner, and investigating how the

372 R. Müller et al.

abstraction technique based on valid subgraphs can be improved such that it
preserves all metrics. We also plan to extend our approach to stronger correct-
ness criteria than deadlock freedom, e.g., weak termination (i.e., the possibility
to always terminate in a service composition).

Acknowledgement. Support from the Basic Research Program of the National
Research University Higher School of Economics is gratefully acknowledged.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Service mining: Using process mining to discover, check,
and improve service behavior. IEEE Transactions on Services Computing (2012)

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

5. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194.
Springer, Heidelberg (2012)

6. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.)
BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)

7. Asbagh, M., Abolhassani, H.: Web service usage mining: mining for executable
sequences. In: WSEAS 2007, vol. 7, pp. 266–271 (2007)

8. Basu, S., Casati, F., Daniel, F.: Toward web service dependency discovery for SOA
management. In: SCC 2008, vol. 2, pp. 422–429 (2008)

9. Boender, C., Rinnooy Kan, A.: A bayesian analysis of the number of cells of a
multinomial distribution. The Statistician, 240–248 (1983)

10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R., et
al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg
(2012)

11. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services
interaction mining. Int. Journal of Business Process Integration and Manage-
ment 1(4), 256–266 (2006)

12. Jordan, D., et al.: Web services business process execution language version 2.0.
OASIS Standard 11 (2007)

13. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

14. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

15. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services.
Fundam. Inform. 113(3-4), 295–311 (2011)

Service Discovery from Observed Behavior 373

16. Medeiros, A., Weijters, A., van der Aalst, W.M.P.: Genetic process mining: an ex-
perimental evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)

17. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence
of errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

18. Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B.: Deriving protocol models
from imperfect service conversation logs. IEEE Trans. Knowl. Data Eng. 20(12),
1683–1698 (2008)

19. Motahari Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event corre-
lation for process discovery from web service interaction logs. The VLDB Jour-
nal 20(3), 417–444 (2010)

20. Motahari-Nezhad, H., Saint-Paul, R., Benatallah, B., Casati, F.: Protocol discovery
from imperfect service interaction logs. In: 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE), pp. 1405–1409 (2007)

21. Müller, R., van der Aalst, W.M.P., Stahl, C.: Conformance checking of services
using the best matching private view. In: ter Beek, M.H., Lohmann, N. (eds.)
WS-FM 2012. LNCS, vol. 7843, pp. 49–68. Springer, Heidelberg (2013)

22. Müller, R., Stahl, C., van der Aalst, W.M.P., Westergaard, M.: Service discovery
from observed behavior while guaranteeing deadlock freedom in collaborations.
BPM Center Report BPM-13-12, BPMcenter.org (2013),
http://bpmcenter.org/wp-content/uploads/reports/2013/BPM-13-12.pdf

23. Musaraj, K., Yoshida, T., Daniel, F., Hacid, M.S., Casati, F., Benatallah, B.: Mes-
sage correlation and web service protocol mining from inaccurate logs. In: ICWS
2010, pp. 259–266 (2010)

24. Papazoglou, M.: Web Services - Principles and Technology. Prentice Hall (2008)
25. Rouached, M., Gaaloul, W., van der Aalst, W.M.P., Bhiri, S., Godart, C.: Web

service mining and verification of properties: An approach based on event calcu-
lus. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 408–425.
Springer, Heidelberg (2006)

26. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

27. Tang, R., Zou, Y.: An approach for mining web service composition patterns from
execution logs. In: WSE 2010, pp. 53–62 (2010)

http://bpmcenter.org/wp-content/uploads/reports/2013/BPM-13-12.pdf

Priority-Based Human Resource Allocation

in Business Processes�

Cristina Cabanillas1, José Maŕıa Garćıa2, Manuel Resinas3,
David Ruiz3, Jan Mendling1, and Antonio Ruiz-Cortés3

1 Vienna University of Economics and Business, Austria
{cristina.cabanillas,jan.mendling}@wu.ac.at
2 STI Innsbruck, University of Innsbruck, Austria

jose.garcia@sti2.at
3 University of Seville, Spain

{resinas,druiz,aruiz}@us.es

Abstract. In Business Process Management Systems, human resource
management typically covers two steps: resource assignment at design
time and resource allocation at run time. Although concepts like role-
based assignment often yield several potential performers for an activity,
there is a lack of mechanisms for prioritizing them, e.g., according to
their skills or current workload. In this paper, we address this research
gap. More specifically, we introduce an approach to define resource pref-
erences grounded on a validated, generic user preference model initially
developed for semantic web services. Furthermore, we show an imple-
mentation of the approach demonstrating its feasibility.

Keywords: preference modeling, preference resolution, priority-based
allocation, priority ranking, RAL, resource allocation, SOUP.

1 Introduction

Business Process Management System (BPMS) are increasingly used for sup-
porting service composition. Typically, they work with executable process mod-
els that define the control flow, data processing, and resource involvement of a
specific process. Resources in this context include both automatic services and
services provided by human resources. In particular, the appropriate selection
of human resources is critical as various factors such as workload or skills have
an impact on work performance. While priorities for automatic services are in-
tensively researched, it is surprising that prioritizing human resources has been
hardly discussed. In classical workflow management, only two steps of resource
management are considered: resource assignment at the level of process speci-
fication and resource allocation at run time [1]. Resource assignment builds on

� This work was partially supported by the European Union’s Seventh Framework
Programme (FP7/2007-2013), the European Commission (FEDER), the Spanish
and the Andalusian R&D&I programmes (grants 318275 (GET Service), 284860
(MSEE), TIN2009-07366 (SETI), TIN2012-32273 (TAPAS), TIC-5906 (THEOS)).

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 374–388, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Priority-Based Human Resource Allocation in Business Processes 375

defining for each activity the human resources that are candidates to work on
the activity. These are called potential performers. At run time, the resource
allocation step considers these potential performers to select actual performers
(often a single person) who find the activity in their worklist. For instance, the
Yet Another Workflow Language (YAWL) system [2] uses this concept to sup-
port variousWorkflow Resource Patterns (WRPs) [3]. Even though these WRPs
identify strategies to balance workload, there is no explicit consideration of pri-
oritizing potential performers to facilitate the selection of the actual performer.
This is remarkable, as deriving a set of performers immediately poses the ques-
tion of who would be the best candidate to pick up the work. Also professional
solutions such as Activiti1, WebSphere MQ2 or BPEL4People, do not provide
means to prioritize performers, but assign priority indicators to activities only.

In this paper, we address this research gap of how prioritization of resources
can be integrated in BPMS. More specifically, we provide two contributions:
(i) we conceptually define prioritized allocation based on preferences; and (ii)
we propose a concrete way in which preferences over resources can be defined
such that a resource priority ranking can be automatically generated. Our so-
lution builds on the adaptation of a user preference model that was developed
for the discovery and ranking of semantic web services [4] to the domain at
hand. As a proof of concept, we have extended the resource management tool
Collection of Resource-centrIc Supporting Tools And Languages (CRISTAL)3[5]
with the Semantic Ontology of User Preferences (SOUP) component [6] to sup-
port priority-based allocation. In this system, Resource Assignment Language
(RAL) [7] is used for resource selection.

The rest of the paper is structured as follows. In Section 2, we conceptually
define priority-based allocation based on preferences and describe the require-
ments to address it based on a motivating scenario. In Section 3, we explain the
adaptation of the preference metamodel and its formalization for automated pri-
oritization. In Section 4, we evaluate the approach regarding preference modeling
and resolution. Work related to preference modeling and resource prioritization
in Business Processes (BPs) is detailed in Section 5, before closing the paper by
drawing some conclusions and deriving potential future work in Section 6.

2 Priority-Based Resource Allocation

We define priority-based resource allocation as the ability to rank a set of re-
sources according to one or more preferences. The result is thus a prioritized
list of resources that can be allocated to a process activity. In the following, we
present a real scenario that motivates the problem, and a set of requirements
that must be considered in order to deal with it.

1 http://www.activiti.org/
2 http://www-01.ibm.com/software/integration/wmq/
3 http://www.isa.us.es/cristal

http://www.activiti.org/
http://www-01.ibm.com/software/integration/wmq/
http://www.isa.us.es/cristal

376 C. Cabanillas et al.

2.1 Motivating Scenario

The need for resource prioritization is motivated by a real scenario located in
the Andalusian Institute of Public Administration (in Spanish IAAP), which
serves more than eight million end users. The Business Process (BP) in question
represents the procedure to create and process a resolution proposal for hiring
people and has a high use frequency in the IAAP. Fig. 1 shows the process
in Business Process Model and Notation (BPMN). Once a draft of a resolution
proposal is created, it is concurrently sent to the Consultative Board and to
the Legal Department for evaluation. The IAAP then analyzes the reports and
decides whether an external resolution is required. In that case, a request is sent
to an external committee, which must create and send a new resolution. Other-
wise, the resolution proposal is reviewed, and changes are applied to the initial
one according to the reports received. In any case, the documents generated are
signed and archived, and the resolution result is appropriately notified.

IA
A

P

IAAP

Create
Resolut ion
Proposal

Update
Resolut ion
Proposal

Analyze
Reports

Internal
Resolut ion

Request
Report to

Consultat ive
Board

Request
Report to

Legal
Department

External
resolut ion required?

Receive
External

Resolut ion

External
Resolut ion

Resolut ion
Proposal

Resolut ion
Proposal Resolut ion

Proposal

Request
External

Resolut ion

Report CB

Report LD

Sign, Store
and Notify
Resolut ion

Data warehouse

CONSULTATIVE BOARD

LEGAL DEPARTMENT

EXTERNAL COMMITTEE
N

o
Y

es

Fig. 1. BP to create and process a resolution proposal for hiring people

The part of the organizational structure of the IAAP related to Administrative
Resource Management involved in this BP is hierarchically structured in eight
positions : Business Manager (BM), Technician of the IAAP (T-IAAP), Assistant
of the IAAP (A-IAAP), Secretary (SE), Assistant of the Legal Department (A-
LD), Technician of the Legal Department (T-LD), Assistant of the Consultative
Board (A-CB) and Technician of the Consultative Board (T-CB). They are
occupied by a total of eleven people. Table 1 shows the selection conditions
for each activity (positions are acronymized) and the preferences to prioritize
the resulting set of potential performers for allocation.

2.2 Requirements for Resource Prioritization

The preferences for priority-based allocation as defined in the example have to
yield a partial order relation over the set of potential performers of an activity.

Priority-Based Human Resource Allocation in Business Processes 377

Table 1. Resource selection conditions and resource preferences

Activity Potential
Performers

Preferences

Create Resolu-
tion Proposal

T-IAAP The greatest number of past executions of the ac-
tivity (history)

Request Report
to CB/LD

T-IAAP The best balance between low cost (price) and short
worklist (availability), i.e., a person is preferred over
another person if his/her cost is lower and his/her
worklist is not longer, or vice versa

Analyze Reports T-IAAP The least average execution time for the activity
(speed)

Request External
Resolution

SE The best skills on using a specific software applica-
tion (expertise)

Update Resolu-
tion Proposal

T-IAAP, T-
CB or T-LD

The same person who created the resolution draft
(Binding of Duties (BoD) [8])

Sign, Store and
Notify Resolu-
tion

SE A person that has been working for the company for
at least one year (experience). In case of no distinc-
tion, the person with shortest worklist (availability)

More specifically, we identify a set of requirements that must hold in order to
deal with such automated resource prioritization as follows:

– Resource assignment. Some mechanism for resource assignment must be put
into place to calculate the potential performers before resource prioritization.
There are many different approaches for that purpose, e.g., [8–10].

– Expressive preference modeling. In this context, there is a need for expressive
preferences that range from single-value criteria (e.g., age), to composite
preferences where the preferences themselves can be ranked (cf. preference
for Sign, Store and Notify Resolution in Table 1).

– Preference resolution. Some mechanism must enable the automated resolu-
tion of preferences at run time based on actual values.

– Information availability. In addition, similarly as for resource assignment,
specific information (also called properties) about the resources needs to be
stored, updated, and retrieved, to define and resolve resource preferences.
For instance, the following types of properties can be distinguished for our
motivating scenario:

• Personal and Organizational Data. From personal data such as the ID
number, name or age, to properties related to positions occupied in the
company or functional roles being held. This data partially depends on
the type of organizational model used in the company.

• Skills. As shown for activity Request External Resolution in Table 1,
knowledge on specific software applications, technologies, methodologies,
etcetera may be of interest for resource prioritization.

• Professional Information. Information on the salary of the resource (e.g.
in terms of cost/hour) or the years of experience, can be necessary to
determine the resource that best meets the needs of the company.

378 C. Cabanillas et al.

• Worklist. The workload of the resources can also be critical to offer
or allocate an activity to a specific person. An organization may prefer
having balanced workloads rather than very busy people and idle people.

• History. For each person, information about the past execution of process
activities must be stored, e.g. activities performed, BPs to which they
belonged, execution time, number of times executed, etcetera.

This list cannot be exhaustive, but has to be adapted for the context of the
process at hand. For instance, in other cases it might also be necessary to
access calendar data, such as scheduled meetings or holidays, in order to
prioritize according to availability on a specific date.

3 Materializing Priority-Based Resource Allocation

As derived from the previous section, the main challenge for resource prioriti-
zation is two-fold: (i) to come up with a mechanism to express preferences over
resources, and (ii) to develop a way to rank a set of resources according to those
preferences. Furthermore, the solution should be as independent as possible from
the properties used in the preferences so that they can accommodate the different
requirements several organizations may have.

The first challenge is solved by leveraging SOUP, a highly expressive user
preference model defined by Garćıa et al. [4, 6] that we adapt to the BP domain
in this paper. To deal with the second challenge, we have developed a novel al-
gorithm to rank resources according to the preferences expressed in SOUP. Both
the preference metamodel and the algorithm are independent of the properties
used in the preferences.

3.1 SOUP: A Metamodel to Define Preferences

In SOUP, a preference can be intuitively expressed as “I prefer y rather than
x”, where x and y are instances of domain concepts that represent properties of
the resources to be allocated (e.g., size of the worklist). This relation between
concept instances can be mathematically interpreted as a strict partial order.
Therefore, in SOUP a preference can be defined as:

Definition 1 (Preference). Let C be a non-empty set of domain concepts, and
dom(C) the set of all possible instances of those concepts. We define a preference
as P = (C, <P), where <P⊆ dom(C)× dom(C) is a strict partial order (irreflex-
ive, transitive and asymmetric), and if x, y ∈ dom(C), then x <P y is interpreted
as “I prefer y rather than x”.

Consequently, each preference term instance defines its order depending on
the concrete concepts referred (C) and some operand values that determine the
evaluation of the <P relation. Furthermore, if we consider a finite set of concept
instance pairs (x, y) ∈<P , P can be represented as a directed acyclic graph,
also known as Hasse diagram [11], where each node corresponds to a concept
instance, and edges represent the preference relation <P .

Priority-Based Human Resource Allocation in Business Processes 379

Fig. 2 shows a UML representation of SOUP preference terms. Atomic pref-
erences can be expressed using different preference terms, whereas composite
preferences can be used to compose those terms, defining the relation between
previously expressed atomic preferences. Both atomic and composite preferences
are handled by ranking mechanisms that implement the ranking process accord-
ing to the corresponding term definition.

Fig. 2. UML representation of SOUP

In particular, atomic preferences are related to a domain-specific concept that
usually represents a property that should be optimized to fulfill the user pref-
erence over it. SOUP supports both qualitative and quantitative preferences,
depending on the nature of the property referred by the concrete preference.
On the one hand, if the property is qualitative, e.g. the skills of a resource,
one can use a Favorites preference to state that certain values of that prop-
erty are favored against the rest (e.g., skills on a concrete software application).
Conversely, a Dislikes preference can be used to enumerate the values that
should not be provided for the referred property. A FavoritesAlternative al-
lows defining a favorite and an alternative set of property values, meaning that
values contained in the former set are the most preferred, but if there is none
then values from the latter set can also be considered. A FavoritesDislikes

preference is a combination of a Favorites and a Dislikes preference, where
preferred values are the ones in the favored set or at least not in the disfavored
set. Finally, an Explicit preference simply states the preference between two
concrete values of a property (e.g. skills on LibreOffice are more preferred than
skills on Microsoft Office).

On the other hand, quantitative preferences compare numerical values of the
related properties. Thus, a Highest (Lowest) preference means the user prefers
higher (lower) values for the referred property. Around and Between preferences

380 C. Cabanillas et al.

Fig. 3. Modeling priority-based resource allocation using SOUP

prefer values that are close to a specific value, or included within an interval,
respectively. Finally, a Score preference expresses that the property value will
be evaluated using a scoring function that returns a real value between 0 and 1
expressing to what extent the referred property value is preferred against others.

Concerning composite preferences, SOUP provides three facilities for defin-
ing the semantics. First, a Balanced preference P combines preference terms
P1, . . . ,Pn using the Pareto-optimality principle. Therefore, a resource rscl is
considered better than another resource rscm with respect to P if rscl is better
than rscm with respect to any Pi such that rscl is not worse than rscm with
respect to the rest of the combined preferences Pj with i �= j.

Second, a Prioritized preference combines preferences in importance order.
If a list of terms P1,P2, . . . ,Pn is combined using this operator, resources will
be ranked first in terms of P1. Those that are equally preferred using P1 are
ranked in terms of P2, and so forth.

Finally, a Numerical preference is the combination of preferences using a
real function to obtain a numerical score value for each resource. Resources are
ranked in terms of their score values. However, this composite preference can
only combine quantitative preferences that can be evaluated to a score value.

3.2 Modeling Priority-Based Resource Allocation with SOUP

Two aspects must be modeled for resource prioritization, namely resource as-
signments for defining potential performers, and preference modeling for defining
their order of priority (cf. Fig. 3).

First, each activity of the BP has a resource assignment expression that defines
its set of potential performers. In our case, we use Resource Assignment Lan-
guage (RAL) [12] as a language to select a set of potential performers. The lan-
guage is grounded on a consensual organizational metamodel [13] that takes into
consideration not only people and roles, but also positions, organizational units
and skills. It also allows selecting people based on the performers of previous ac-
tivities in the process. We have chosen Resource Assignment Language (RAL)
for its expressiveness, extensibility, and for its capabilities to automatically re-
solve RAL expressions [7].

Priority-Based Human Resource Allocation in Business Processes 381

Second, preferences for resource prioritization are formulated using SOUP
Preference Terms. All such preferences in SOUP must refer to some domain
concept that represents the properties used in the preference. Therefore, model-
ing the preferences specified for each of the activities of the scenario also involves
identifying the domain concepts used to prioritize resources. For instance, our
scenario requires domain concepts like Cost and the number of times a resource
has carried out a certain activity (History Count Activities). Additionally,
a RAL expression can also be used in place of a domain concept. An example of
such a preference is I prefer the resource that is responsible for activity Create
Resolution Proposal, which can be modeled by means of a preference term of
type Favorites referred to a domain concept of type RAL Expression and an
operand that specifies the expression: IS PERSON RESPONSIBLE FOR ACTIVITY

Create Resolution Proposal.

3.3 Ranking Resources According to SOUP Preferences

The prioritization of resources according to preferences is based on ranking mech-
anisms, which can be defined as follows:

Definition 2 (Ranking mechanism). We define a ranking mechanism as an
algorithm that receives as input a preference and a set of resources to be ranked,
and returns as output a partially ordered set of the resources ranked according
to the preference.

Each Preference Term has a ranking mechanism that is used to implement
the ranking process according to the corresponding term definition. Ranking
mechanisms can be shared between different preference terms. In [6], ranking
mechanisms for composite preference terms are discussed. However, the authors
do not provide details about the ranking mechanisms for atomic preferences
because they heavily depend on the characteristics of the knowledge base that
contains the information about the domain concepts used in the preferences.

Therefore, in this section we adapt SOUP by providing a formalization of a
generic ranking mechanism for atomic preferences, which has been designed to
deal with the following characteristics of the knowledge base used for priority-
based resource allocation: (1) it is usually distributed in different heterogeneous
repositories such as a process log, an organizational model and an Enterprise
Resource Planning (ERP) system; (2) it is dynamic in the sense that some of its
repositories are continously changing (e.g., the worklist of each resource); and
(3) computing the value of a domain concept for a resource can be a complex
operation. For instance, computing the availability of a resource may involve
checking his/her agenda, a calendar of the holidays of the country in which s/he
works and the worklist of his/her pending tasks.

Reflecting these characteristics, we separate the evaluation of a domain con-
cept for a resource from the ordering of the resources according to this evaluation.
The first task is solved by defining a function evalKB

P that is specific for each
domain concept and for each knowledge base and can be defined as follows.

382 C. Cabanillas et al.

Definition 3 (Domain concept evaluation). Let KB be a knowledge base,
P = (C, <P) be an atomic preference, and R be the set of resources of the
organization.

– If the domain concept C represents a quantitative property, then we define the
evaluation as a function evalKB

P : R → R, such that it returns a real number
that represents the value of the domain concept for the given resource.

– If the domain concept C represents a qualitative property, then we define the
evaluation as a function evalKB

P : R → {false, true}, such that it returns a
boolean that represents whether the value of the domain concept belongs to
the set specified in the preference.

For instance, the evaluation of the quantitative concept size of the worklist
for a resource r is the size of the worklist of resource r. Similarly, the evalua-
tion of the qualitative concept resource expression with operand IS PERSON
RESPONSIBLE FOR ACTIVITY Create Resolution Proposal (which is a RAL
expression) for a resource r is true if, according to the organizational model, r
is a person responsible for that activity.

The second task that must be performed involves applying the partial order
specified by the type of a preference to the result of an evaluation. This is done
by defining for each type of preference, a function that compares these results.

Definition 4 (Greater-than comparison). Let KB be a knowledge base with
information about the domain concepts used in the preferences, P be an atomic
preference such that P = (C, <P), and D be the range of function evalKB

P for
such preference. We define a greater-than comparison for partial order <P as a
function gt<P : D × D → {false, true} such that gt<P (di, dj) returns true if di
is greater than dj according to <P , i.e., if di is preferred over dj .

The implementation of this function can be straightforwardly derived from
the type of the preference it corresponds to. For instance, if <P corresponds to
the type Higher, then gtHigher(n, n′) is true iff n > n′. The same procedure can
be applied to all of the other types of atomic preferences.

Using these two functions it is easy to provide an implementation of a generic
ranking mechanism of atomic preferences as depicted in Algorithm 1. The algo-
rithm simply iterates over the list of resources provided to the ranking mechanism
and adds an edge r → r′ to the graph if r′ is preferred to r according to the pref-
erence P and the information in the knowledge base KB . Note that it is possible
to provide more efficient implementations by means of domain-specific ranking
mechanisms that leverage capabilities of the repositories of the knowledge base.
However, a discussion of the different implementations of ranking mechanisms
that can be developed is out of the scope of this paper.

Regarding ranking mechanisms for composite preferences, a similar approach
could be followed. For instance, a ranking mechanism for composite preference
Prioritized could be implemented using the same algorithm as Algorithm 1
but changing function gt<P for a function that uses the ranking mechanisms
of its composed preferences to obtain partial results and, then, composes all of
them together according to the semantics of Prioritized.

Priority-Based Human Resource Allocation in Business Processes 383

Algorithm 1 . Generic ranking mechanism of atomic preferences

1: IN: A knowledge base KB , an atomic preference P = (C, <P) and a set of potential
performers R

2: OUT: A strict partially ordered set of resources POSET
3: add all resources R as nodes of POSET
4: for all r ∈ R do
5: for all r′ ∈ R \ {r} do
6: add edge r → r′ to POSET if gt<P (evalKB

P (r′), evalKB
P (r))

7: end for
8: end for

Finally, having all of these ranking mechanisms, the priority-based allocation
for an activity A of a BP just involves using the appropriate ranking mechanism
with the allocation preferences of such an activity and the set of resources se-
lected during the resource assignment as inputs. Then, from the partially ordered
set obtained by the ranking mechanism it is easy to derive a total order that
is a linear extension of the partial order using well-known topological sorting
algorithms [14]. Note that preferences define a strict partial order amongst the
resources. This means that given two resources r1 and r2 it may not be possible
to establish a preference between them. In that case, the resources are randomly
ordered.

4 Evaluation

To validate our proposal, we have developed a proof-of-concept implementation4

for priority-based allocation and we have applied it to the scenario detailed in
Section 2.1. The implementation can be divided into a domain-independent part
and a domain-specific part. The first part is based on PURI [6], a preference
framework that provides the building blocks to implement new ranking mecha-
nisms and also provides an implementation of the ranking mechanisms of all of
the composite preferences. For our proof-of-concept, we implemented the generic
ranking mechanism for both the atomic preferences and for all gt functions based
on the preference types defined in SOUP. The second part involves two steps: (1)
identifying the domain concepts used to prioritize resources and modeling the
preferences for each activity of the process, and (2) identifying the knowledge
base and implementing the eval functions to evaluate the domain concepts. We
discuss these two steps in the following.

4.1 Modeling the Preferences

Modeling the preferences specified for each of the activities of the scenario in-
volves identifying the domain concepts used to prioritize resources, and using the
SOUP metamodel to express the preferences regarding such domain concepts.

4 Available at http://www.isa.us.es/cristal

http://www.isa.us.es/cristal

384 C. Cabanillas et al.

Request Report to CB/LD: Assigned to persons with position T-IAAP.

The preference is balanced between low cost and short worklist.

iaap:RequestReport a bp:Activity ;

bp:hasResourceAssignment [

a ral:Expression ;

ral:expr "HAS POSITION T-IAAP"

] ;

bp:hasPreference [

a soup:BalancedPreference ;

soup:hasOperands

[a soup:LowestPreference ; soup:refersTo org:cost] ,

[a soup:LowestPreference ; soup:refersTo worklist:size]

] .

Update Resolution Proposal: Assigned to people with positions T-IAAP,

T-CB or T-LD. The preferred person is that who did the initial proposal.

iaap:UpdateProposal a bp:Activity ;

bp:hasResourceAssignment [

a ral:Expression ;

ral:expr "HAS POSITION T-IAAP OR HAS POSITION T-CB OR

HAS POSITION T-LD"

] ;

bp:hasPreference [

a soup:FavoritesPreference ;

soup:refersTo ral:Expression ;

soup:hasFavorites "IS PERSON RESPONSIBLE FOR ACTIVITY

Create Resolution Proposal Draft"

] .

Fig. 4. Examples of preferences expressed in RDF/Turtle syntax

Due to space constraints, we illustrate how these two tasks have been done with
regard to activities Request Report to CB/LD and Update Resolution Proposal.
The same approach can be used with the remaining activities.

Fig. 4 depicts the resource assignment (bp:hasResourceAssignment) and the
preferences (bp:hasPreferences) for the aforementioned activities expressed in
SOUP using RDF/Turtle syntax. For activity Request Report to CB/LD the pref-
erence is composite because it balances two atomic preferences: lowest cost and
shortest worklist. Therefore, the composite preference is represented by means
of an element of type soup:BalancedPreference, which is the type of com-
posite preference that best suits the intention of the modeler. Regarding the
atomic preferences, they are connected with the composite preference by means
of relation soup:hasOperands. Both atomic preferences are of the same type
(soup:LowestPreference). However, the former refers to the domain concept ex-
pressed with org:cost, which represents the cost of the resource, whereas the
latter refers to the domain concept expressed with worklist:size, which rep-
resents the size of the worklist of the resource. Note that these two domain

Priority-Based Human Resource Allocation in Business Processes 385

concepts must have an eval function implemented for them so that they can be
evaluated for each resource.

The preference for activity Update Resolution Proposal is also atomic. How-
ever, it refers to the organizational information stored about each resource. In
particular, it sets a qualitative preference stating that it prefers the people that
fulfill the condition stated by property soup:hasFavorites.

4.2 Identifying the KB and Implementing eval Functions

In our scenario, there are three repositories that store the values of the proper-
ties used for the prioritization of resources. The organizational repository stores
personal information of all members of the company along with their positions,
roles, and units within the organization, information about skills, salary or hiring
date, and all the data that is not related to participation in BP activities. The
worklist repository stores the worklists of all resources in the organization. Fi-
nally, the history repository stores the event log of past process executions. The
organizational repository is manually updated, whereas the worklist repository
and the history repository are updated by the BPMS, which in our implemen-
tation is Activiti. The eval functions can be divided into the following four
categories according to the repository they use to evaluate the domain concept:

Quantitative organizational evaluations: Theyareused to evaluate concepts
that represent quantitative properties stored in the organizational repository
such as personal (e.g., age) or professional information (e.g., salary).

Qualitative organizational evaluations: They are used to evaluate concepts
that represent qualitative properties stored in the organizational repository
including organizational information and skills. The implementation of this
type of evaluations leverages CRISTAL [5] to resolve RAL expressions and
obtain the set of resources.

Worklist evaluations: They are used to evaluate concepts that represent quan-
titative properties related to the size of the worklist. They interact with the
BPMS to obtain the information about them.

History evaluations: They are used to evaluate concepts that represent quan-
titative properties about the participation of resources in past process activ-
ity executions. This evaluation also accesses the history of the BP.

5 Related Work

We next present a summary of the pros and cons of the current approaches
for preference modeling in different domains, followed by an analysis of current
support for resource prioritization in Business Process Management (BPM).

Preference Modeling. There are several formalisms that can be used to rep-
resent preferences in different fields [15]. Quantitative preferences modeled as
utility or scoring functions have been widely used in economics and operations

386 C. Cabanillas et al.

research [16, 17], as well as in web systems [18, 19]. This approach solves the
multiple criteria decision making by transforming it to aggregated scoring func-
tions. However, these functions are difficult to define by users, and not all the
preferences that are strict partial orders can be represented [20]. In artificial
intelligence research, solutions have been focused on defining preferences in a
qualitative way, easier to understand and more natural to define by humans [21].
These preference models offer facilities to define preferences as a set of statements
or terms that are contextually related. In database research, there are also sev-
eral solutions, for instance, using top-k or skyline algorithms to obtain the best
search items according to a stated preference [22, 20]. These preference models
usually offer qualitative facilities to define preferences, though their implementa-
tion usually leads to large result sets that do not discriminate well between items
to be ordered [15]. We have chosen SOUP [4] because it is a hybrid approach, as
it combines quantitative and qualitative facilities to define preferences. Further-
more, it is independent of the domain, so it is suitable for resource prioritization.
Indeed, the expressiveness of the model is semantically close to BP modeling,
which enables its interoperability with other resource allocation solutions.

Resource Prioritization in Business Processes. Regarding the prioritization of
resources in BPM, we have studied the support provided by the specifications
BPMN 2.0, BPEL4People and WS-HumanTask; the BPMS Activiti and YAWL
[10]; and the product suites WebSphere MQ and ARIS systems, concerning pref-
erence definition and resource ranking. We find that they neither provide support
for preference specification nor for ranking of potential performers in order to
prioritize resource allocation. Crowdsourcing systems, which outsource the exe-
cution of activities to the crowd, usually rely on a fixed set of features such as
skills, location, certification, cost or reputation to implement priotization [23],
or they use some auction or competition mechanism to select the best worker
[24]. However, the prioritization mechanism is defined in the system for all the
activities and cannot be customized according to other criteria.

The importance of ranking resources is also emphasized in other recent work.
In [25], the authors define a resource visualization concept that is aimed to sup-
port resource allocation using three different metrics to recommend work distri-
bution. The distribution of work is addressed in [26] trying to keep the balance
between quality and performance. In [27], six resource allocation mechanisms
are compared with regard to suitability, urgency, conformance and availability.
Although all of them agree on the need of dynamic work allocation to adapt to
the evoluting needs of organizations, they do not deal with preference modeling
itself. Some other solutions approach this problem from a process mining per-
spective, focusing on providing recommendation from information inferred from
event logs [28–31]. A resource manager is finally responsible for making the final
decisions for allocation. Altogether, the work presented in this paper generalizes
and complements the current support in the field of BPM regarding preference
modeling. It would be interesting to combine it, e.g., with visualization support
as proposed in [25, 31].

Priority-Based Human Resource Allocation in Business Processes 387

6 Conclusions and Future Work

In this paper, we addressed the problem of integrating priorities into resource
assignment and allocation. To this end, we extended concepts from preference
modeling and combined them with resource management techniques.

The main advantage of our solution is that it provides a mechanism to define
a wide variety of different types of preferences while being independent of both
the properties used in the preferences and the knowledge base that contains
the information about them. These features make it easier to accommodate
the different requirements several organizations may have. This is a significant
difference with respect to the support provided by current systems, which are
defined to deal with a specific set of properties. Furthermore, the expressiveness
of the preferences that can be defined with our approach outperforms the current
support in the BPM field regarding priority-based allocation.

We plan to extend the preference model to support complex cases involving
the agenda of the resources in order to allow expressing and using preferences
referring to the expected end time of an activity. We also want to explore how a
similar technique could be applied to the distribution of work to resources, i.e.,
in the opposite direction. Activity priority might be considered in that case.

References

1. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor, Ó.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Inf. Syst. 30(4), 245–275 (2005)

3. Tan, H., van der Aalst, W.M.P.: Implementation of a YAWL Work-List Handler
based on the Resource Patterns. In: CSCWD 2006, pp. 1–6 (2006)

4. Garćıa, J.M., Ruiz, D., Ruiz-Cortés, A.: A Model of User Preferences for Semantic
Services Discovery and Ranking. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten
Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part
II. LNCS, vol. 6089, pp. 1–14. Springer, Heidelberg (2010)

5. Cabanillas, C., del Ŕıo-Ortega, A., Resinas, M., Ruiz-Cortés, A.: CRISTAL: Collec-
tion of Resource-centrIc Supporting Tools And Languages. In: BPM 2012 Demos,
vol. 940, pp. 51–56 (2012)

6. Garćıa, J.M., Junghans, M., Ruiz, D., Agarwal, S., Ruiz-Cortés, A.: Integrating
Semantic Web Services Ranking Mechanisms Using a Common Preference Model.
Knowledge-Based Systems 49, 22–36 (2013)

7. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Defining and Analysing Resource As-
signments in Business Processes with RAL. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 477–486. Springer, Heidel-
berg (2011)

8. Strembeck, M., Mendling, J.: Modeling process-related RBAC models with ex-
tended UML activity models. Inf. Softw. Technol. 53, 456–483 (2011)

9. Awad, A., Grosskopf, A., Meyer, A., Weske, M.: Enabling Resource Assignment
Constraints in BPMN. tech. rep., BPT (2009)

10. Adams, M.: The Resource Service. In: Modern Business Process Automation, pp.
261–290 (2010)

388 C. Cabanillas et al.

11. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press (2002)

12. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: RAL: A high-level user-oriented re-
source assignment language for business processes. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 50–61.
Springer, Heidelberg (2012)

13. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.M.P.: Workflow Re-
source Patterns. tech. rep., BETA, WP 127, Eindhoven University of Technology
(2004)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2001)

15. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in ai: An overview.
Artif. Intell. 175(7-8), 1037–1052 (2011)

16. Fishburn, P.C.: Utility theory for decision making. Wiley (1970)
17. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value

tradeoffs. Cambridge Univ Press (1993)
18. Agrawal, R., Wimmers, E.L.: A Framework for Expressing and Combining Prefer-

ences. In: SIGMOD Conference, pp. 297–306 (2000)
19. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:

QoS-Aware Middleware for Web Services Composition. IEEE Trans. Software
Eng. 30(5), 311–327 (2004)

20. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database
Syst. 28(4), 427–466 (2003)

21. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A
Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference
Statements. J. Artif. Intell. Res (JAIR) 21, 135–191 (2004)

22. Kießling, W.: Foundations of Preferences in Database Systems. In: VLDB, pp.
311–322 (2002)

23. Vukovic, M.: Crowdsourcing for Enterprises. In: SERVICES, pp. 686–692 (2009)
24. Satzger, B., Psaier, H., Schall, D., Dustdar, S.: Auction-based crowdsourcing sup-

porting skill management. Inf. Syst. 38(4), 547–560 (2013)
25. De Leoni, M., Adams, M., van der Aalst, W.M.P., Ter Hofstede, A.H.M.: Visual

support for work assignment in process-aware information systems: Framework
formalisation and implementation. Decis. Support Syst. 54(1), 345–361 (2012)

26. Kumar, A., van der Aalst, W.M.P., Verbeek, E.M.W.: Dynamic Work Distribution
in Workflow Management Systems: How to Balance Quality and Performance. J.
Manage. Inf. Syst. 18(3), 157–193 (2002)

27. Reijers, H.A., Jansen-Vullers, M.H., zur Muehlen, M., Appl, W.: Workflow man-
agement systems + swarm intelligence = dynamic task assignment for emergency
management applications. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 125–140. Springer, Heidelberg (2007)

28. Liu, T., Cheng, Y., Ni, Z.: Mining event logs to support workflow resource alloca-
tion. Know.-Based Syst. 35, 320–331 (2012)

29. Liu, Y., Wang, J., Yang, Y., Sun, J.: A semi-automatic approach for workflow staff
assignment. Comput. Ind. 59(5), 463–476 (2008)

30. Rinderle-Ma, S., van der Aalst, W.M.P.: Life-Cycle Support for Staff Assignment
Rules in Process-Aware Information Systems. Department of Technology Manage-
ment, Eindhoven University of Technology (2007)

31. Bose, R.P.J.C., van der Aalst, W.M.P.: Process Mining Applied to the BPI Chal-
lenge 2012: Divide and Conquer While Discerning Resources. In: La Rosa, M.,
Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 221–222. Springer,
Heidelberg (2013)

Prediction of Remaining Service Execution Time
Using Stochastic Petri Nets with Arbitrary Firing Delays

Andreas Rogge-Solti and Mathias Weske

Business Process Technology Group,
Hasso Plattner Institute, University of Potsdam, Germany

{andreas.rogge-solti,mathias.weske}@hpi.uni-potsdam.de

Abstract. Companies realize their services by business processes to stay com-
petitive in a dynamic market environment. In particular, they track the current
state of the process to detect undesired deviations, to provide customers with
predicted remaining durations, and to improve the ability to schedule resources
accordingly. In this setting, we propose an approach to predict remaining process
execution time, taking into account passed time since the last observed event.

While existing approaches update predictions only upon event arrival and sub-
tract elapsed time from the latest predictions, our method also considers expected
events that have not yet occurred, resulting in better prediction quality. Moreover,
the prediction approach is based on the Petri net formalism and is able to model
concurrency appropriately. We present the algorithm and its implementation in
ProM and compare its predictive performance to state-of-the-art approaches in
simulated experiments and in an industry case study.

Keywords: business process performance, remaining time prediction, stochastic
Petri nets, generally distributed durations, conditional probability.

1 Introduction

Organizations provide services to their customers. To provide a high degree of flexibil-
ity, these services are implemented by business processes. As a result, business process
management (BPM) plays an important role to improve the performance and quality of
business processes [22]. Customers and clients compare the range of goods and services
of competitors in a world-wide market, increasing the pressure on companies to conduct
their business efficiently and effectively. In particular, a company needs to monitor and
control its processes in case of delays, or other unexpected events, to meet given service
level agreements.

Predicting the remaining process duration and detecting and preventing risks has
spawned much interest recently [13,4,8,18]. The motivation is to ensure customer sat-
isfaction by increasing the overall ratio of services that complete within defined thresh-
olds. Accurate prediction methods are essential to prevent exceptionally long service
times. Predictions of remaining service times of a running case can be used in other
scenarios, as well. One scenario is to provide customers with information about the
progress and expected duration of their case. Further, the predicted remaining duration
can be used internally, e.g., for resource scheduling.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 389–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

390 A. Rogge-Solti and M. Weske

Several models exist for prediction purposes. Often, the simplifying assumption of
exponentially distributed durations is made [17], because the resulting models can be
analyzed efficiently. However, if we also want to capture deterministic time-outs or ir-
regularities like multiple modes of distributions, we need more expressive performance
models. Current prediction algorithms proposed in [4,8] only update the predictions
upon arrival of events, or are based on exponential distributions [25]. In contrast to this,
we take advantage of passed time as an influencing and restricting factor of predictions.
In other words, we make use of knowledge about expected events not observed yet, and
thereby significantly improve the prediction accuracy. To our knowledge, the approach
presented in this paper is the first to rely on Petri nets for remaining time prediction of
already running cases, which allows us to treat concurrent activities appropriately.

Based on a stochastic model of a business process that can be obtained by expert’s
knowledge or historical performance information extracted from event logs, this paper
introduces a novel prediction algorithm. The prediction algorithm can cope with both
non-parametric stochastic models and parametric models of known shape. It is imple-
mented and available as open-source plug-in in the process mining framework ProM [2].

We compare the results of the prediction approach with state-of-the-art approaches [4],
and with a model using exponentially distributed durations. As basis for comparison we
use a simulated experiment and a case-study based on real container tracking data from
a Dutch logistics service provider.

The remainder of this paper is structured as follows. In Sect. 2, we provide prelimi-
nary definitions used throughout this work. Subsequently, Sect. 3 describes the proposed
method’s theoretical background and the implemented solution. Afterwards, in Sect. 4,
we evaluate the predictions of different existing approaches to our approach and dis-
cuss the findings. In Sect. 5, we compare our work with related methods and highlight
conceptual differences. Finally, we conclude in Sect. 6.

2 Preliminaries

In the following, we describe the concepts, on which the prediction algorithm is based.
Our goal is to predict the remaining time until completion of a certain business process
instance. We use the terms instance, and case interchangeably in the remainder of the
paper.

Basically, the prediction uses historical information (i.e., information on how similar
cases have performed in the past), and all the information that we have about the cur-
rent case. First, the prediction algorithm makes the basic assumption that historical and
current process execution information (i.e., the start or end of activities) are stored as
events with timestamps. We call a collection of events belonging to a process an event
log, or simply log in the remainder of this paper.

Events are correlated to the activities of a certain case of a process. We group events
of a particular case into a trace and order the events by the timestamp of occurrence.
Note that a trace can be either complete (i.e., the events of a completed case are all in the
trace), or still running (i.e., some events are still expected). In order to distinguish these
cases and to be able to define the behavior of the process, business process models
are widely used in companies [22]. These models serve other purposes as well, e.g.,

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 391

analysis, simulation, ground for common understanding of processes, implementation
specification.

In this work, we use business process models to capture performance criteria of a
business process. In fact, we use Petri nets as modeling basis in this paper. Petri nets
cover the most important control flow constructs of business processes like sequential
execution, exclusive choice, parallelism, and synchronization. Furthermore, they have
a well-defined semantics and can be verified for correctness [1]. In practice, high-level
process modeling languages are common, e.g., the industry standard BPMN, but most
of those models can be transformed into Petri nets [15]. We employ an extended Petri
net formalism to capture performance aspects, but let us revisit the plain form, first:

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T, F,M0) where:
– P = {p1, p2, . . . , pm} is a set of places.
– T = {t1, t2, . . . , tn} is a set of transitions.
– F ⊆ (P × T) ∪ (T × P) is a set of connecting arcs representing flow relations.
– M0 ∈ P→ IN+0 is an initial marking.

We restrict the Petri net models to be sound WF-nets, i.e., having an input and output
place with every transition on a path between these two places and no dead locks or live
locks, cf. [1]. Soundness also requires the output place to be reached eventually from
all markings, s.t., no tokens remain in the net. The models do not need to be structured
or free-choice, because we use a simulation-based approach to prediction. In this work,
we enrich this model with additional stochastic timing information to be able to make
predictions of remaining durations.

Definition 2 (GDT_SPN). A stochastic Petri net with generally distributed transitions
(GDT_SPN), is a seven-tuple: GDT_SPN = (P, T,P,W, F,M0,D), where (P, T, F,M0)
is the basic underlying Petri net. Additionally:

– The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt.

– P : T → IN+0 is an assignment of priorities to transitions, where ∀t ∈ Ti : P(t) ≥ 1
and ∀t ∈ Tt : P(t) = 0.

– W : Ti → IR+ assigns probabilistic weights to the immediate transitions.
– D : Tt → D is an assignment of arbitrary probability distributions D to timed

transitions, reflecting the durations of the corresponding activities in the real world.

GDT_SPN models rely on the well-known notion of generalized stochastic Petri nets
(GSPN) by Marsan et al. [17]. The key difference to GSPNs is that we do not enforce
the Markovian property, i.e., memorylessness, which restricts transition delays to be
exponentially distributed in the continuous case. Typically, real world processes ex-
hibit duration distributions, that are not exponential. For instance, services can contain
deterministic time-outs, or durations of activities can belong to normal or log-normal
classes, e.g., surgery durations are assumed to follow a log-normal distribution [21]. Ac-
cordingly, we allow to use any parametric or non-parametric distribution, as long as we
can draw samples from it. In comparison to GSPNs, which have the convenient prop-
erty that they are isomorphic to Markov processes, we lose the possibility to calculate
expected durations analytically and efficiently, but resort to analysis by Monte Carlo
simulation instead [6].

392 A. Rogge-Solti and M. Weske

When lifting the Markov assumption, an execution semantics needs to be selected [16].
We use race-semantics with enabling memory, as defined in [16] and used in [25], too.
Firing rights between concurrently enabled immediate transitions are resolved proba-
bilistically based on their weights. When immediate and timed transitions are enabled,
immediate transitions fire first, due to higher priority. When only timed transitions are
enabled, they race for the right to fire first. This allows to model time-outs. The enabling
memory semantics specifies that concurrent non-conflicting activities do not lose their
progress when another transition fires. However, if a transition gets disabled, it has to
restart its work the next time it becomes enabled. The class of GDT_SPN models allows
to model most reasonable business processes with their specific timing properties.

Now, how do we obtain GDT_SPN models with duration distributions for every
transition? If the process models to be enriched with performance information are not
known in advance, algorithms from process mining can be used to infer the Petri net
models that capture the observed behavior in the log [5,2].

In previous work [19], we described a method based on replaying event logs on
Petri nets using the notion of alignments [3]. By aligning the historical traces to the
model and by calculating activity durations for each transition, we gain statistical timing
information. Statistical information collected in this way can be used to fit statistical
parametric distributions (e.g., normal, log-normal, exponential, phase-type), and non-
parametric distributions [11]. Non-parametric techniques might prove more accurate, if
the durations contain irregularities, such as two peaks, but are also subject to overfitting.

Preferably, in latter cases, it would help to find the reasons for such irregularities,
and thus be able to separate cases belonging to one heap from those belonging to the
other heap. Machine learning methods, e.g., classification algorithms, are frequently
used for this task. Example applications are described in [7], where the authors used
non-parametric regression techniques on case attributes such as the amount of the in-
surance claim that proved well as indicator for case duration. However, these additional
approaches are out of scope of this work, and we focus on the case, where no additional
information is present in the log.

3 Prediction during Process Execution

In this section the core contribution of this paper is introduced and the prediction algo-
rithm is presented. Given the preliminaries described in the previous section, we first
introduce the key concept that the prediction is based on, i.e., constrained activity dura-
tions.

3.1 Constrained Activity Durations

An important assumption for our work is that the system detects process relevant events
if they happen—i.e., the events are always recorded in the system—and that the time
from occurrence to detection is negligible. This assumption applies especially for pro-
cesses that are supported by process aware information systems. It allows us to use
information that goes beyond the mere detection of observed events. We can use the
information that an enabled activity has not been completed yet at a given point in time,
if the event for completion of the task was not observed yet.

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 393

The concept is illustrated with an example. Consider the GDT_SPN model of an in-
surance claim process in Fig. 1. In this process, there are two options for proceeding after
the Check case activity. Either the case will be handled with a 70% chance or it will be

Fig. 1. Model of a simplified insurance process. The
current trace contains only the event indicating that ac-
tivity Check case has finished.

rejected in the remaining 30% of
the cases. In the model, these prob-
abilities are depicted as annotated
weights of the immediate transi-
tions, shown as black bars com-
peting for one token. The delay
distributions are specified in a para-
metric form in day units, e.g., the
Check case transition is exponen-
tially (exp) distributed with a firing
rate parameter λ=2 days, and the
Handle case transition is normally (norm) distributed with a mean of five days and
a standard deviation of one day. After either the handling or the rejection of the case,
this simple process is completed, i.e., the token reaches the output place.

In the current situation depicted in Fig. 1, the case was checked and awaits a decision.
Without loss of generality, we assume the upper branch was chosen and align the time
axis of the density function of the duration of the Handle case transition to be zero
when it becomes enabled.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t0

fδ(t | t ≥ t0) ≈ fδ(t)

pr
ob

ab
ili

ty
de

ns
ity

time t (days)

fδ(t) = N (5,12)

(a) After one day, the truncated density is al-
most unchanged

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t0

fδ(t | t ≥ t0)

pr
ob

ab
ili

ty
de

ns
ity

time t (days)

fδ(t) = N (5,12)

(b) After 4.5 days, the truncated density is sig-
nificantly different from the original density

Fig. 2. Truncated probability density functions of the duration of activity Handle case, i.e., con-
strained to (a) being greater than one day, and (b) being greater than 4.5 days.

Figure 2 shows the resulting distribution of the Handle case transition at two later
points in time. Fig. 2(a) depicts the normally distributed probability density, which is
the well-known bell-shaped curve, where after one day, activity Handle case was not
yet completed. Note that this observation does not change the original distribution sig-
nificantly, as it is unlikely that the activity is completed earlier than after one day.

Fig. 2(b) shows the the same situation, but more time has passed without detecting
the end of the activity. Let δ ∈ D be the duration distribution of the Handle case activity.
In dashed grey the probability density function of the original duration fδ(t) is depicted.
The vertical line shows the current time t0 that advances from left to right, as time

394 A. Rogge-Solti and M. Weske

proceeds. The thick black curve fδ(t | t ≥ t0) is the truncated density of the remaining
cases. It depicts the conditional probability density of the duration excluding the non-
consistent cases (crossed out area left from t0).

More generally, let τ ∈ Tt be a timed transition with the assigned duration distribution
δ = D(τ). Then, fδ(t) is the probability density function and Fδ(t) =

∫ t

−∞ fδ(t)dt is the
probability distribution function of the duration of τ. Let TD be the time domain. Let
t0 ∈ TD, t0 ≥ 0 be the current time since enabling of τ. Let further δDirac denote the
Dirac delta function which captures the whole probability mass at a single point. Then
we define the density function of the truncated distribution as:

fδ(t | t ≥ t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t < t0 Fδ(t0) < 1
fδ(t)

1−Fδ(t0) t ≥ t0, Fδ(t0) < 1
δDirac(t − t0) Fδ(t0) = 1

(1)

The part of the density function that is above the threshold t0 is rescaled such that it
integrates to 1, which is a requirement for probability density functions. Note that in
the exceptional case that Fδ(t0) = 1 (i.e., the current time t0 progressed further than the
probability density function’s support), we use the Dirac delta function with its peak at
t0. In this case, the activity is expected to finish immediately at t0.

The intuition is as follows. We base our predictions on a stochastic model describ-
ing the distribution of a large amount of cases. From that distribution, we discard the
fraction of the cases that is not consistent with our observation for the current activ-
ity’s duration, i.e., those cases that would have already completed the running activity
before the current time. In contrast to using conditional probability density functions,
traditional methods predict the remaining duration of a case only on event arrival, and
subtract elapsed time from the predicted duration at later points in time.

Note that the presented approach is improving the prediction of running activity dura-
tions. Therefore, it is most effective in processes, where some activities have a relatively
high impact on the process duration.

3.2 Prediction Algorithm

Besides the already mentioned assumption of immediate detection of events by the
prediction framework, we consider each activity duration in isolation, independently
from other activities. This is a common simplifying assumption that we share with all
analytical approaches to prediction.

In order to make predictions for a single case, the current state of the case and the
model that captures experiences about the behavior of the process needs to be known.
The prediction algorithm takes four inputs: (1) the GDT_SPN model of the business
process, cf. Definition 2 in Sect. 2, (2) the current trace of the case, i.e., all observed
events up to time t0, (3) the current time t0, and (4) the number of simulation iterations
indicating the precision of the prediction. Algorithm 1 describes the procedure.

The algorithm is straightforward. It starts by finding the appropriate current state, i.e.,
the marking, in the model by replaying the available observed events of the case in the
model. We assume that a workflow engine is in charge of controlling the process flow,
which facilitates replay of observed events in the log. If this is not the case, an extension
based on techniques from [3] can be used to align non-fitting traces with the model.

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 395

Algorithm 1. Prediction algorithm
1: procedure Predict(model, trace, current_time, iterations)
2: currentMarking ← replay(trace,model) � replay the observed events in the model
3: times← new List() � used to collect results
4: for all i ∈ iterations do
5: time← simulateConstrained(model, currentMarking, current_time)
6: times.add(time)
7: end for
8: return getMean(times) � the average of the simulated values
9: end procedure

As a second step the algorithm collects simulation results, i.e., completion times,
of a given number of simulation iterations in a list. Each simulation run represents
a sample from the possible continuations of the process according to the model. The
simulateConstrainedmethod simulates continuations of the trace for the GDT_SPN
model, but instead of sampling from the original transition distributions Fδ(t), it sam-
ples from the truncated distributions conditioned on the current time Fδ(t | t ≥ t0), as
described in Sect. 3.1. The completion times of all simulated continuations of the case
are collected and the algorithm returns the mean of these sample values.

Note that the accuracy of a prediction based on simulated samples depends on both
the number of computed samples, as well as the standard deviation within the samples.
Therefore, we also support the mode, where instead of a sample size, the user can set
required accuracy thresholds. For example, the simulation continues taking samples,
until the 99 percent confidence interval on the prediction lies within ± 3 percent of the
predicted value.

3.3 Open-Source Implementation

We implemented the prediction algorithm in the process mining framework ProM as
a plugin1. The method to enrich a Petri net with historical performance data extracted
from a log is also available in that plugin. It is possible to learn different kind of para-
metric models, e.g., normally distributed durations, as well as nonparametric models,
e.g., simple histograms, or kernel density estimators. If the learned models are used
only for prediction, simple histograms based on the observed samples suffice for mak-
ing predictions. In this latter case of histograms, the sampling method can simply pick
one of the past observations randomly. We exclude the observations that do not meet the
constraint of being greater or equal to the current time t0. There might be cases, when
the current instance takes longer for an activity than all previously observed cases. In
this cases, the histogram based sampling returns the constraint t0 itself.

When expert estimates exist and parametric probability distributions are used in the
GDT_SPN model, e.g., normal, exponential, or lognormal distributions, we use rejec-
tion sampling. Rejection sampling is simple: we draw a sample from the original distri-
bution and check, whether it meets the given constraints. If not, we reject the sample
and repeat the process until we get a sample that meets the constraints.

1 Implementation provided open-source in the StochasticPetriNet package of ProM.
Available at http://www.processmining.org

http://www.processmining.org

396 A. Rogge-Solti and M. Weske

In our case, rejection sampling becomes inefficient, if the current time has progressed
beyond most of the distribution’s probability mass, as almost all samples will be re-
jected. For such cases, we also implemented a slice sampling method that samples di-
rectly from the conditional probability density fδ(t | t ≥ t0) in Equation 1 by a random
walk under the density function. Slice sampling can be used to sample from any distri-
bution as long as we can compute the corresponding density function.

4 Evaluation

In the following evaluation, we analyze the quality and run time of our approach. To
assess prediction quality, we compare our approach to the related prediction method de-
scribed in [4], and an analytical method based on regular GSPNs. We further investigate
how the presented approach scales in terms of run time for different model sizes. We
start with the evaluation of the prediction quality. Therefore, we use both a simulated
model, and real data from a logistics provider in the Netherlands. First, we explain the
experimental setup.

4.1 Experimental Setup

The experimental setup is depicted in Fig. 3. In the synthetic cases a GDT_SPN model
that contains both the control flow structure definition and the performance specification
in form of duration distributions is used. From this model 10000 traces of execution are
generated and stored in the simulated log. Besides the simulated log, also the Petri net
model (i.e., the underlying Petri net of the GDT_SPN model), is used as input. In real
settings, we have a Petri net and a log given as input. To evaluate the prediction quality, a
10-fold cross validation is performed. Therefore, the log is split into ten evenly divided
parts and nine of them are used as the training log to learn the performance behavior
and the remaining part as test log to test the prediction accuracy. We iterate over these
parts, such that each of them is used once as test log. The Petri net is enriched to a
GDT_SPN by collecting the performance data of the training log, as described in [19].

We are interested in the different prediction methods’ accuracy to predict the remain-
ing duration of a case any time during the process. Therefore, we trigger the predictions

Fig. 3. Experimental setup for evaluating the prediction quality of the algorithm

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 397

(a) A GDT_SPN process model with four par-
allel activities A, B, C, D and a final activity E,
with annotated duration distributions.

0 10 20 30 40

0
2

4
6

8
R

oo
tm

ea
n

sq
ua

re
er

ro
r(

R
M

S
E

)i
n

m
in

of monitoring iteration

Average remaining time
Last single obs. event state
List of obs. events state
Set of obs. events state
GSPN model
Constr. Petri net simulation

(b) Root mean square errors (RMSE) in min-
utes at 40 periodic predictions. Mean duration:
17.32 minutes.

Fig. 4. A model with four parallel branches (a) and corresponding prediction errors (b) using 10-
fold cross-validation with 40 periodic predictions, s.t. the 20th iteration is at the mean duration

periodically. The length of such a period is based on the mean process duration that is
obtained from the training log. More precisely, 2N periodic predictions are made for
each instance in the test log, such that the Nth snapshot is at the mean duration of the
process. This means that while initially all instances still run, some instances will be
finished at later prediction iterations. Note that only predictions for still running cases
are added to the resulting statistics.

The evaluation proceeds for each trace in the test log as follows. At each iteration
of the periodic prediction, we compute the relative time t0 to the trace start and pass t0
and the partial trace containing the events of the case with time ≤ t0 to the prediction
algorithm described in Sect. 3. The predicted duration for different prediction methods
are computed and compared to the actual duration of the trace from time t0. The simplest
method for prediction is using the average remaining time, which is simply the mean pro-
cess duration gathered from the training set minus the elapsed time t0. Additionally, we
compare against the state transition systems approach [4] with different configurations.
Predictions based on the history sharing (i) the last observed event only, (ii) the list of
all previous observed events, and (iii) the set of all previous observed events. Finally, we
also compare our approach against a regular GSPN based approach, i.e., an approach
where only exponential distributions are allowed in timed transitions of the model.

Note that if any of the methods predicts a negative remaining time, i.e., that the
current case should have completed already at time t0, the predicted duration is set to 0.

4.2 Results of a Simulated Experiment

Figure 4 shows (a) an example model containing four parallel branches that is used for
the simulated experiment, and (b) the root mean square error (RMSE), for each of the 40
periodic predictions mentioned above. The RMSE is an error measure for quantifying

398 A. Rogge-Solti and M. Weske

the error between a predicted and a real value, cf. [9]. The smaller the RMSE, the better
is the prediction in average. All prediction algorithms perform similarly at the start of
an instance, except the GSPN model which fits exponential distributions to all timed
transitions. Although the prediction quality of the GSPN model is worse than that of
the comparison models, it can be analyzed efficiently. After some time has progressed,
however, the prediction based on the constrained Petri net simulation, introduced in
Sect. 3, outperforms the other approaches significantly.

4.3 Results of an Industry Case Study

We conducted the experiment described in Sect. 4.1 also for real data from a logistics
provider in the Netherlands. Fig. 5 shows (a) the process model, and (b) the prediction
errors side by side. The event log of the logistics process contains entries for arrival of a
seavessel, discharge of the container, and the date of picking up the container by inland
transport in a sequential order. It contains 784 cases over the year 2011.

In this case study, the different abstraction levels of the comparison method [4] col-
lapse to the same results, cf. Fig. 5(b), because the process is sequential. The GSPN
method yields comparable results as the benchmark methods in [4]. But we can ob-
serve that our presented approach produces more accurate predictions of the remaining
process duration than the benchmarks.

To summarize the results of the evaluation of prediction quality, we highlight the
following characteristics of our approach:

– At early prediction periods the approach performs about as well as the benchmarks.
– The improvements become more significant as time proceeds.
– The approach is most valuable for long running cases, which are critical to be de-

tected and avoided.

(a) Model of a sequential logistics process cap-
turing the arrival of seavessels, container dis-
charges and further inland shipping.

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

R
oo

tm
ea

n
sq

ua
re

er
ro

r(
R

M
S

E
)i

n
da

ys

of monitoring iteration

Average remaining time
Last single obs. event state
List of obs. events state
Set of obs. events state
GSPN model
Constr. Petri net simulation

(b) RMSE in days for the logistics process at
40 periodic predictions. Mean duration: 4.03
days.

Fig. 5. Model (a) and prediction errors (b) for the logistics provider case study using 10-fold cross
validation with 40 periodic predictions, s.t. the 20th iteration is at the mean duration.

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 399

4.4 Scalability Analysis

1 3 10 30 100 1000 10000

1
m

s
1

0
m

s
1

0
0

m
s

1
s

1
0

s
1

0
0
s

of transitions in the model

d
u

ra
tio

n
 o

f
p

re
d

ic
tio

n

●
● ●

●
● ●

●

●

●
● lognormal

Gaussian kernels
normal
uniform

Fig. 6. Prediction durations for differently sized
randomly generated, acyclic GDT_SPN models.
Axes in log-scale.

We propose to use simulation as means
to predict the remaining service execu-
tion time for a running case. Therefore,
it is interesting to see, how long the pre-
diction approach takes to simulate the re-
maining behavior of the process. To test
for scalability, we conduct the following
experiment.

First, we randomly generate struc-
tured, acyclic GDT_SPN models of dif-
ferent sizes by iterative insertion of
sequential, parallel, and exclusive blocks,
until we reach the desired node size
of the net. For each timed transition
we specify a distribution, i.e., uniform,
normal, or lognormal distributions, or
non-parametric Gaussian kernel density
estimators based on a random number of observations. In general, the run time of the
prediction algorithm depends on multiple factors:

– The average number of transitions that need to fire to reach the end of the process,
influenced by the size of the net, the progress of the current case, and potential
cycles.

– The kind of transition distributions, as there exist distributions that are rather costly
to draw samples from, e.g., complicated non-parametric models, as well as simple
models, e.g., the uniform distribution.

– The requested accuracy of the prediction. Besides the fact that computing a nar-
row confidence interval takes more samples than allowing more sampling error, the
variance of the process durations also influences the number of samples required to
achieve the requested precision.

– The computing power of the system running the simulation.
For our experiments, we fixed the requested accuracy to a 99 percent confidence inter-
val within maximum ±3 percent of error of the mean remaining duration. Regarding
computing power, we used a regular laptop computer with a Pentium i7 620M (2.66
GHz cores) equipped with 8GB of ram. We varied the other two factors, i.e., the aver-
age number of transitions and the kinds of distributions used. Fig. 6 depicts the average
time taken for remaining time prediction of acyclic GDT_SPN models based on the
number of transitions in the model in log-scale. For example, predicting the duration
of a medium sized model (100 transitions) takes around 300 milliseconds for rather ex-
pensive non-parametric Gaussian kernel density estimation. Prediction of models with
lognormally distributed values takes long because of higher variance. Note that a pre-
diction of a model with 10000 transitions still is feasible in less than 100 seconds with
these configurations.

In our experience, most business processes involving human activities take hours,
days, or sometimes even months to complete. In these situations, the quality of the

400 A. Rogge-Solti and M. Weske

prediction is more important than the performance of the prediction approach. If perfor-
mance is critical however, the approach could be extended to provide a fall back option
to an analytical method based on GSPN models, as implemented in [25].

5 Related Work

A lot of related work exists that deals with prediction based on historical observations.
Common are predictions based on time-series data, e.g., for the stock market or for
sales numbers of a company. Whereas in time series data, the individual values tend
to depend strongly on the previous values, in a business process, these dependencies
are less common. Therefore and due to space limitations, we refer to the overview of
existing forecasting methods in [9]. Work on the analysis of trends and change points
in processes can for example be found in [23]. However, for this work, we assume
that the current model of the process performance is representing the current real world
performance. So either the process is in a steady state, or mentioned methods, as in [23],
are used to keep the model up to date.

5.1 Process Related Predictions

There has been work on prediction of case durations based on historical observations.
In their work, van der Aalst et al. use the available information in logs to predict the
remaining duration based in observed durations in the past [4]. They create an annotated
state transition system for the logs, which can be calibrated in terms of abstraction, and
collect remaining durations for each state from the log. Our approach is similar in the
sense that it also abstracts from data and resources, but uses GDT_SPN models instead
of transition systems, making our approach more accurate when parallelism exists in
the process. The work in [4] serves as one of the benchmarks for our prediction method
in the next section.

Building on the work in [4], Folino et al. [8] present an improvement based on pre-
dictive clustering. They make use of additional contextual information of a trace, e.g.,
the current workload, to perform clustering. The idea is to group similar traces and base
predictions on such subsets of the log for new ones with similar features. They use the
predictions to warn in case of a predicted transgression of a threshold. Our prediction
method could substitute the state-transition based method in [8], improving the results
for processes with parallelism, and during execution of the instances.

Other work for prediction of performance was presented by Hwang et al. [10] and
similarly Zheng et al. [24]. They use formulae to compute quality of service criteria,
such as expected durations of compositions. Typically, these works assume the service
compositions to be composed of building blocks. The methods proposed can be used for
business processes, too. However, the block-structured assumption is lifted in this work,
allowing for more complex models, and we also consider already running instances.

The work presented by Leitner et al. [14] considers already running instances, too.
They use regressions for durations between two-point measures in the process. The pre-
dictions are then used to identify whether a service level agreement will be violated.
Similarly, Pika et al. [18] define indicators for the risk of deadline violations. They

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 401

search for patterns, such as abnormal activity durations, and use that information for
predicting whether a case will be late. By contrast, our work includes knowledge of the
whole business process model to make predictions and we use the elapsed time since the
last event as constraining factor. Kang et al. [13] advocate also business process mon-
itoring in real-time. Their approach is based on classifying historical traces in correct
and incorrect traces by inductive data mining techniques, e.g., support vector machines.
Similarly as in our motivation, their goal is to predict and classify current instances,
e.g., if they are likely to produce failures. However, their approach is only capturing
sequential processes, and event’s timestamps are not considered in the prediction.

Simulation has also been proposed and used for operational decision making by Roz-
inat et al. [20]. The idea is to set up a simulation environment capturing the current
situation and start a short-term simulation from this state with different simulation pa-
rameters. Their use of simulation is for operational decision support and is focused on
the overall performance of business processes. In contrast, we use simulation to make
a prediction for the current instance only and use the current elapsed time as additional
input to the simulation which allows to improve single predictions.

Analysis of stochastic Petri nets with generally distributed firing times, i.e, GDT
_SPN models in this paper, has already been done before. Monte Carlo simulation is
the preferred choice for analysis, e.g., in [25]. However, those works rather focus on
transient analysis, e.g., average throughput and waiting times, instead of predicting re-
maining durations of single instances with conditional probability densities based on
the current prediction time.

5.2 Quality of Service Related Forecasting

Jiang et al. [12] handle time series in business activity monitoring and focus on detecting
outliers and change points. Their approach does not consider the process structure, but
they only consider specific features of a process, such as customer usage profiles, and
within those features they focus on adapting the prediction model to observed trends and
changes. Another approach by Zeng et al. [23] applies the ARIMA forecasting method
to predict performance criteria for event sequences (corresponding to traces in our ter-
minology) and thus support seasonality of changes. They do not use that approach for
single instances, but rather for aggregated key performance indicators (KPIs). Their pre-
diction can be mapped to the prediction approach in [4] with the states distinguished as
lists of ordered events. Based on that model the values are classified by regression to
separate them in those that meet the KPIs, and those that violate them. There is a draw-
back to using event sequences for prediction in processes with parallelism, as there is a
combinatorial state space issue with the interleavings, such that for a single prediction
much otherwise useful training data are spread to other interleaving sequences and do
not influence the prediction for the current sequence. Compared to that, our work im-
proves on the aspect of prediction of a single case in real-time and is less likely to suffer
from sparse training data issues in processes with parallelism.

Trend aware forecasting methods are out of scope of this paper, because we assume
the process to be in steady state. If the process performance is subject to seasonality or
trends, an integration of methods like ARIMA seems promising, however. To the best

402 A. Rogge-Solti and M. Weske

of our knowledge, the main contribution of this work, i.e., using temporal restrictions
to make predictions more accurate, has not been proposed in literature before.

6 Conclusion

We described a relevant and common setting for the prediction of remaining process
duration, where a process aware information system is aware of changes in process
instances immediately. Based on this setting, we isolated one important aspect, i.e., the
conditional duration distributions based on passed time and investigated the effects on
prediction accuracy. We compared our results with state-of-the-art approaches devised
for similar settings, and with the results of efficiently analyzable GSPN models.

The presented prediction approach is able to capture parallelism in business pro-
cesses naturally, because it is based on Petri nets, as opposed to techniques based on
state transition systems [4,8]. Another advantage of Petri nets is that they are able to
capture resources in a native way. As future work, we want to integrate the resource
perspective to make the prediction account for dependencies between instances of the
process.

Further, we plan to lift the independence assumption and take correlations between
activity durations into account. Classification based on case attributes has shown much
potential to improve predictions, cf. [8], and we expect similar gains in prediction accu-
racy when combined with this method. In this paper, we assumed the model to represent
the current state accurately, which in reality is often not the case, because the process
might be subject to changes, e.g., changes due to seasonality, resource situation or pro-
cess redesign. The integration of a mechanism to detect such changes and adapt the
model accordingly would further increase the accuracy of predictions.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process mod-
els for conformance checking and performance analysis. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2, 182–192 (2012)

4. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process
mining. Information Systems 36(2), 450–475 (2011)

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In:
Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–
483. Springer, Heidelberg (1998)

6. Bobbio, A., Telek, M.: Computational restrictions for SPN with generally distributed transi-
tion times. In: Echtle, K., Powell, D.R., Hammer, D. (eds.) EDCC 1994. LNCS, vol. 852, pp.
131–148. Springer, Heidelberg (1994)

7. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: When will this
case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331,
pp. 319–336. Springer, Heidelberg (2008)

Prediction of Remaining Service Execution Time Using Stochastic Petri Nets 403

8. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting
business process performances. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS,
vol. 7565, pp. 287–304. Springer, Heidelberg (2012)

9. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International Journal of
Forecasting 22(3), 443–473 (2006)

10. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and
estimating the QoS of web-services-based workflows. Information Sciences 177(23), 5484–
5503 (2007)

11. Härdle, W.: Applied nonparametric regression. Cambridge University Press (1990)
12. Jiang, W., Au, T., Tsui, K.L.: A statistical process control approach to business activity mon-

itoring. IIE Transactions 39(3), 235–249 (2007)
13. Kang, B., Kim, D., Kang, S.H.: Periodic performance prediction for real-time business pro-

cess monitoring. Industrial Management & Data Systems 112(1), 4–23 (2011)
14. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Runtime

prediction of service level agreement violations for composite services. In: Dan, A., Gittler,
F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 176–186. Springer,
Heidelberg (2010)

15. Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes
– A survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp.
46–63. Springer, Heidelberg (2009)

16. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of exe-
cution policies on the semantics and analysis of stochastic Petri nets. IEEE Transactions on
Software Engineering 15(7), 832–846 (1989)

17. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM TOCS 2(2), 93–122 (1984)

18. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting
deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Work-
shops. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)

19. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with
arbitrary delay distributions from event logs. In: BPM Workshops. Springer, Heigelberg (to
appear)

20. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.: Workflow
simulation for operational decision support. Data & Knowledge Engineering 68(9), 834–850
(2009)

21. Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure times:
Comparison of log-normal and normal models. Anesthesiology 92(4), 1160–1167 (2000)

22. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

23. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-driven quality of service prediction. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 147–
161. Springer, Heidelberg (2008)

24. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions
based on probabilistic QoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) IC-
SOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011)

25. Zimmermann, A.: Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In:
2012 6th International Conference on Performance Evaluation Methodologies and Tools
(VALUETOOLS), pp. 54–63. IEEE (2012)

Entity-Centric Search for Enterprise Services

Marcus Roy1,2,3, Ingo Weber2,3, and Boualem Benatallah3

1 SAP Research, Sydney, Australia
2 NICTA, Sydney, Australia�

3 School of Computer Science and Engineering, Sydney, Australia
{m.roy,ingo.weber,boualem}@cse.unsw.edu.au

Abstract. The consumption of APIs, such as Enterprise Services (ESs)
in an enterprise Service-Oriented Architecture (eSOA), has largely been
a task for experienced developers. With the rapidly growing number of
such (Web)APIs, users with little or no experience in a given API face the
problem of finding relevant API operations – e.g., mashups developers.
However, building an effective search has been a challenge: Information
Retrieval (IR) methods struggle with the brevity of text in API descrip-
tions, whereas semantic search technologies require domain ontologies
and formal queries. Motivated by the search behavior of users, we pro-
pose an iterative keyword search based on entities. The entities are part
of a knowledge base, whose content stems from model-driven engineer-
ing. We implemented our approach and conducted a user study showing
significant improvements in search effectiveness.

1 Introduction

In many enterprise-level efforts of application development or integration, the
search and use of APIs has traditionally been a task performed by internal and
experienced developers. However, recently there has been a significant increase in
providing publicly available APIs, particularly on the Web1. As a consequence,
the level of experience a user can have with any given API decreases on average.
Thus, finding the desired functionality within an API becomes more challeng-
ing. Examples of users who are typically inexperienced in a given API include
Mashup developers wanting to create new composite applications; and consul-
tants developing business scenarios on the basis of existing functionality. Hence
we expect users to neither be experts in the API-related domain nor to know
a specific query language to express their information need. We therefore be-
lieve it is crucial to provide such users with a highly effective, ad-hoc keyword
search over API operations. In this paper, we consider a specific class of Web
APIs, namely Enterprise Services (ESs): enterprise-class Web services [5], as
are common in an eSOA. ESs are usually advertised through specific reposito-
ries, e.g. SAP’s Enterprise Service Workplace and Registry (ESW) [18] or IBM’s

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

1 http://blog.programmableweb.com/2012/11/26/

8000-apis-rise-of-the-enterprise, accessed 12/12

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 404–412, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://blog.programmableweb.com/2012/11/26/8000-apis-rise-of-the-enterprise
http://blog.programmableweb.com/2012/11/26/8000-apis-rise-of-the-enterprise

Entity-Centric Keyword Search for Enterprise Services 405

WebSphere Service Registry and Repository (WSRR2), which can easily contain
thousands of services [16].

To understand how users formulate free text queries, we investigated search
logs from SAP’s ESW. An initial analysis hereby revealed some common search
patterns, i.e. users often started their search with a short query text using key
business-related entities, e.g., “employee” and actions performed on these enti-
ties, e.g. “find employee”. Motivated by the observations that users articulate
their search needs using a small number of keywords [19] representing business
entities or actions, and that they exhibit browsing-like behavior [7], we aim at
providing an iterative keyword search over entities linked to ESs.

In this work, we tackle the difficult challenge to support keyword search over
ES repositories: linking keywords used by users to concepts used by the ser-
vice repository infrastructure to index and represent services, for which textual
documentation is not always available. The proposed search technique relies on
knowledge from model-driven engineering, including business entities consumed
or generated by services and service operation patterns (e.g., create and read on
business entities). In the following, we refer to the superset of business entities
and action expressions as entities. In previous work, we presented an approach
to automatically extract such entities [16] and learn naming conventions [17]
from ES operation names, referred to as signatures. Using service design knowl-
edge as an index over an ESs repository, we propose a ranking based on four
different ranking measures related to entities. We implemented and evaluated
the proposed keyword search and compared it to a state of the art IR-based
search used at SAP, with significantly better results in terms of precision and
recall3. In summary, the contributions are as follows: (i) an iterative search using
entities extracted from service design knowledge, and (ii) an entity ranking using
four different ranking measures related to entities.

2 Representing Service Design Knowledge

This section briefly revisits a formal representation of service design knowledge;
for more details, we refer to [16]. To summarize the abstract representation of
service design principles, we refer to a specific example of service design used
in SAP, largely consisting (i) a business meta-data model, (ii) service design
patterns and (iii) naming conventions as described hereinafter.

First, the business meta-data model generally defines a model of business enti-
ties, e.g. ‘Sales Order’, ‘Customer’ etc., used by both business and development
departments. We describe this model using the MOF4 layers from model-driven
engineering. The M2-Model refers to metadata objects (and their relationship),
e.g., ‘Business Object’ (BO), which describes corresponding data objects (and
their relationship) in the M1-Model, e.g., ‘Sales Order’ as instances of BO.

Second, service design patterns are used during service development to de-
scribe the management of business entities and the behavior of respective ESs.

2 http://www-01.ibm.com/software/integration/wsrr, accessed 08/12.
3 A detailed description of the evaluation experiment and result can be found in [15]
4 Meta-Object-Facility (MOF) : http://www.omg.org/mof/, accessed 08/12.

http://www-01.ibm.com/software/integration/wsrr
http://www.omg.org/mof/

406 M. Roy, I. Weber, and B. Benatallah

Similar to the business meta-data model, models of service design patterns can
be defined on M2-level to describe specific service design patterns on M1-level,
e.g. ‘Change’ as an instance of the ‘Operation Pattern’ (OP).

In order to make this information usable for an entity ranking, we first abstract
meta-data models and data models into type graphs and entity graphs ; with en-
tities referring to data objects and types to meta-data objects respectively. For
this, we use directed acyclic graphs (DAGs) to describe entities, types and edges
between entities and types representing “belongTo” relationships. We hereby
explicitly distinguish between entities and types to facilitate the definition of
separate ranking measures (see Section 3). Finally, we define a service advertise-
ment as a set of entities linked to an ES. In the following, we formally describe
(a) an entity graph, (b) a type graph, (c) a mapping to link entities to types and
(d) a mapping to link signatures to entities.

Definition 1 (Type Graph GC). We define a directed acyclic type graph
GC := (C,RC) with C representing a set of types c ∈ C and RC ⊆ C × C
denoting a set of directed edges between types.

Definition 2 (Entity Graph GE). We define a directed acyclic entity graph
GE := (E,RE) with E representing a set of entities e ∈ E and RE ⊆ E × E
denoting a set of directed edges between entities.

Definition 3 (Entity-Type Mapping Φ). We define a mapping Φ : E → C,
Φ(e) = c for e ∈ E, with ∀e ∈ E : ∃c ∈ C : Φ(e) = c. Furthermore, for
each c ∈ C we denote the (possibly empty) subset Ec ⊆ E such that ∀c ∈ C :
∀e ∈ Ec : Φ(e) = c. Obviously these subsets are distinct for different c, i.e.
∀ci, cj ∈ C : ci �= cj ⇒ Eci ∩ Ecj = ∅

Definition 4 (Signature-Entity Mapping Ψ). We define a set of signatures
s ∈ S and a mapping Ψ : S → 2E, Ψ(s) = ED for ED ⊆ E.

Third, service design includes naming conventions for the purpose of consis-
tency: they prescribe in which order(s) the types and entities mentioned above
should be assembled when forming ES signatures. We use non-deterministic au-
tomata with ε-moves (NFA-ε) to represent naming conventions, describing a
language of valid ESs signatures. For instance, the partial naming convention
‘BO-BON’ expects type BO to be followed by type BON – e.g. ‘SalesOrderItem’
(rather than ‘ItemSalesOrder’). Note that the construction of the NFA-ε can
be done automatically by learning it from a sufficiently large set of existing
ESs [17]. A formal definition and examples are given in [16].

3 Keyword-Based Search Using Entity Ranking

In this section, we describe the keyword-based search and entity ranking. Fig. 1
shows a flowchart of involved functionalities, i.e. (i) Entity Detection, (ii) Entity
Ranking and (iii) Entity Suggestion and ES Query as described in the following.

Entity-Centric Keyword Search for Enterprise Services 407

Epartial

Ematch

Entity Detection

Related
Types Cmatch

Type
Occurrence
Matrix A

En
tit

y
R

an
ki

ng

Type
Preference

Query
ωservice

ES Ranking

ωentity

Type
Co-occurence

Entity Suggestion

Types Entities

ES Query

ωocc

ωpref

Entity
Frequency

Entity Name
Similarity

ωfreq

ωsim

Fig. 1. Entity Suggestion and ES Query using Proposed Entity Ranking

3.1 Entity Detection

The entity detection function analyzes the free text query and identifies a list of
completely and partially matched entities from the entity graph GE . For this,
the user input is first pruned to a list of noun and verbs, generally referred to as
tokens. Each token is then normalized using the porter stemming algorithm5. We
hereby understand the user input as a sequence of normalized tokens referred to
as term string t. The term string t is then used to determine all possible token
n-grams, i.e., token subsequences, using the following notation: t = abc, where
a, b, and c are tokens. From t, we construct t̃ := {t̃1, . . . , t̃6} = {a, b, c, ab, bc, abc},
where the t̃i are the n-grams from t. For instance, for t ≡ Sales Order we have
t̃ = {Sales, Order, Sales Order}. In a final step, we check all t̃i ∈ t̃ against
the entity graph GE for complete entity matches Ematch ⊆ E defined as follows:

Ematch(t) := {e ∈ E | ∃t̃i ∈ t̃ : t̃i = e} (1)

In a second step, we check all n-grams t̃i against the entity graph GE to find
partially matching entities. A partial match is a “sufficiently good” match be-
tween term n-grams t̃i and entity n-grams ẽj , where ẽj is constructed from e ∈ E
as t̃i from t. This is expressed in a entity similarity measure, ωsim(t, e), between
term string t and entity e, which we formally define in Section 3.2. Roughly
speaking, this similarity score is a normalized accumulation of the pairwise sim-
ilarity of n-grams (t̃i and ẽj), which is, in turn, calculated as the edit distance
(or Levenshtein distance) [12] between the respective n-grams. The similarity is
sufficiently high if ωsim(t, e) exceeds a custom threshold ρtr. The set of partially
matching entities Epartial(t) for t thus is defined as

Epartial(t) := {e ∈ E | ωsim(t, e) > ρtr}. (2)

5 Porter Stemmer: http://tartarus.org/martin/PorterStemmer, accessed 08/12.

http://tartarus.org/martin/PorterStemmer

408 M. Roy, I. Weber, and B. Benatallah

3.2 Entity Ranking

We propose an entity ranking as a combination of four different ranking mea-
sures: (i) an entity similarity ranking, (ii) an entity frequency ranking, (iii) a
type preference ranking and (iv) a type co-occurrence ranking. The following
subsections describe these ranking measures and how they are aggregated into
a single ranking score for entities.

Entity Similarity. In order to rank matches of terms and entities, we adopted
the similarity ranking for terms used in [3]. This measure first computes a weight
ωq to describe how much of the term string t is covered by an n-gram t̃i ∈ t̃:

ωq(t̃i) :=
|t̃i|
|t|

Second, the ranking calculates a similarity score ωs between a term n-gram
t̃i ∈ t̃ and an entity n-gram ẽj ∈ ẽ using the edit distance function sim(t̃i, ẽj):

ωs(t̃i, ẽj) :=
1

sim(t̃i, ẽj) + 1
(1− min(sim(t̃i, ẽj), |ẽj |)

|ẽj|
)

The second factor represents the overall similarity of t̃i and ẽj , which returns
zero if the edit distance sim(t̃i, ẽj) exceeds the size of ẽj . The first factor is used
to reduce the weight of high edit distances, thus favouring shorter matches. The
similarity value, ωt(t, e), over all n-grams t̃ and ẽ is defined as follows:

ωt(t, e) :=
∑
t̃i∈t̃

ωq(t̃i) ∗
∑
ẽj∈ẽ

ωs(t̃i, ẽj)

Finally, we normalize the similarity score ωsim(t, e) over similarity values ωt:

ωsim(t, e) :=
ωt(t, e)

max({ωt(t, ek)|ek ∈ E}) (3)

Entity Frequency. Second, we compute an entity frequency ωfreq. This is
essentially “DF” from the standard TF/IDF ranking used in IR [12]: ωfreq dis-
regards TF and basically reverses IDF, to capture how frequently signatures
s ∈ S link to a particular entity e ∈ E. As ES signatures have defined syntax,
i.e., the naming conventions, they rarely contain entities of the same kind – mak-
ing the TF part in TF/IDF obsolete. Also due to the clearly defined vocabulary,
redundancy in terms is virtually non-existent – removing the need to prune them
with IDF from TF/IDF. In contrast, we assign a higher importance to entities
which are often linked to ES signatures. We argue that, for an entity-centric
search, it is favorable to rank entities higher if more operations refer to them.
We hereby contextualize the frequency of entities according to their type asso-
ciation, i.e. the frequency of an entity e in a corpus of ESs is normalized by the
number of all ESs linked to an entity referring to the same type as e. To mitigate
the effect of outliers, we apply a logarithm function (as defined in Sec. 2, Φ is
the projection of entities to types, and Ψ the projection of signatures to sets of

Entity-Centric Keyword Search for Enterprise Services 409

entities). Finally, we normalize the frequency score ωfreq(e) over all ωf (analog
to Eq. 3).

ωf (e) :=
log(|{s ∈ S | e ∈ Ψ(s)}|+ 1)

log(|{s ∈ S | ∀ei ∈ E,Φ(e) = Φ(ei) : ei ∈ Ψ(s)}|+ 1)

Type Preference. In contrast to previously described, entity-related ranking
measures, the type preference uses a probabilistic distribution of preferred types
of entities from existing ES search queries. For this, we reuse search logs collected
from SAP over a period of three months, from which we identified user queries
that contained exact matches of entities as defined in Eq. 1. In the following, we
refer to the set of matched query term strings as Tq. Each query term tq ∈ Tq

hereby contains at least one entity. Using Tq, we extract the matched entities,
infer their associated types and aggregate the frequency of identical types. At
this stage, we only consider exact matches of entities to reduce the ambiguity of
associated types. We then define the type preference ωpref (c) for a type c ∈ C as
the frequency of entities related to c, divided by total number of entities extracted
from Tq. Finally, we use a logarithm function to mitigate outliers. Finally, we
normalize the type preference score ωpref (c) over ωp (analog to Eq. 3).

ωp(c) :=
log(|{e | tq ∈ Tq, e ∈ Ematch(tq), Φ(e) = c}|+ 1)

log(|{e | tq ∈ Tq, e ∈ Ematch(tq)}|+ 1)

Type Co-Occurrence. The type co-occurrence ωocc(t, c) determines the like-
lihood of a type c to occur with a set of types matched by the query term string
t. Types are referred to by transitions in the corresponding automaton [17]. In
that context, a type is considered co-occurring if it appears along an accepting
path containing one or more types already matched to the user search query. To
rank co-occurring types, we measure the frequency of their occurrence among all
accepting paths, weighted by the number of contained matched types. The result
of the ranking is a list of types which often appear with types identified in the
user input. A detailed description of the type co-occurrence ranking component
ωocc(t, c) can be found in [15].

Combined Ranking Score. To calculate a single ranking score for entities,
we use a weighted average over all ranking measures. For this, we refer to the
set of ranking measures as ω(t, e) ∈ Ω(t, e) = {ωsim(t, e), ωfreq(e), ωpref (c =
Φ(e)), ωocc(t, c = Φ(e))}. We define a weight function p : Ω → R for the rank-
ing measures ω(t, e) ∈ Ω(t, e): increasing the weight means increasing the rela-
tive importance of the respective ranking measure. The weighted average score
ωentity(t, e) is then computed for a query term string t and an entity e ∈ E:

ωentity(t, e) :=

∑
ω(t,e)∈Ω(t,e)

p(ω(t, e)) ∗ ω(t, e)∑
ω(t,e)∈Ω(t,e)

p(ω(t, e))
(4)

410 M. Roy, I. Weber, and B. Benatallah

3.3 Entity Suggestions and ES Queries

For the purpose of generating suggestions and querying related ESs, we refer
to the workflow as shown in Figure 1. After the entity detection, we receive a
(possibly empty) set of complete and partial entity matches Ematch and Epartial.
With Ematch, we infer a set of related types and rank any co-occurring types
using ωocc and ωpref . With Epartial, we use entity name similarity ωsim and
calculate their entity frequency ωfreq. Finally, we calculate the entity ranking
score ωentity (cf. Eq. 4) and use the list of ranked entities in two ways: to provide
suggestions to the user, i.e., displaying the top-x-ranked entities; and to find and
rank ESs. The latter requires an additional ranking score, to derive an ES ranking
from the entity ranking. As such, we use the ratio of completely and partially
matched entities to all entities associated to an ES. The score for each ES is
the accumulation of the ranking scores of entities associated to the ES, divided
by the total number of associated entities. Complete matches are counted as 1,
partial matches as ωentity , and unmatched entities as 0 (denoted as val(t, e)).
We define the ranking score for an ES s ∈ S and a query term t as follows:

val(t, e) =

⎧⎪⎨⎪⎩
1, if e ∈ Ematch

ωentity(t, e), if e ∈ Epartial

0, otherwise

ωservice(t, s) :=
1

|Ψ(s)| ∗
∑

e∈Ψ(s)

val(t, e) (5)

4 Related Work

The search approach proposed in this paper can be seen as a combination of
existing IR methods and additional domain knowledge – see e.g., [10] for an
overview. For brevity, we omit some details here, which can be found in the TR.
First, keyword-based searches can utilize additional knowledge in form of ontolo-
gies and/or linguistic knowledge to refine/expand free text queries and enhance
the ranking of different types of documents, e.g., structured documents (e.g.,
Semantic Web [6,20]) or unstructured documents (e.g., Web [2,4,3]). In contrast
to our goals, these approaches require larger documents. However, some ranking
measures in our work are inspired by approaches in this category, e.g., entity
similarity ranking [3], entity ranking based on lexical or domain knowledge [2,4],
entity relationship-based ranking [1]. In a similar context, we consider the rela-
tionship defined in automata to rank types of entities and use entity frequency
to identify key ESs. Second, our iterative querying paradigm is inspired by [13].
ActiveObjects [11] advocates the learning of actions on entities extracted from
Web search logs – intriguing for Web queries, less applicable for service design
with a well defined action vocabulary. QueryFeature-Graph [8] links queries to
features of a system, e.g., captured from query logs, which could be used to fur-
ther bridge the gap between user and system terminology. In the area of code
search, Portfolio [14] provides a search for API functions using a combination

Entity-Centric Keyword Search for Enterprise Services 411

of word similarity and word occurrences. Exemplar [9] describes an approach
to enhance code search using API documentation. Neither makes use of models
from model-driven engineering.

5 Conclusion and Future Work

We presented an iterative keyword search for ESs based on entities. As such,
we proposed an entity ranking combining different ranking measures applied to
entities and their associated types. The ranking returns a list of ranked entities,
which we use as suggestions to the user as well as to find a set of relevant ESs
related to these entities. Based on our user study, we conclude that such an
entity-centric keyword search indeed increases the effectiveness of ES search:
while the average number of search attempts increases slightly, precision and
recall amongst the top ten search results increased steeply over a traditional IR
method – for more details on the evaluation, we refer to [15]. In future work, we
aim at (i) utilizing ES documentation in the search as another ranking measure;
and (ii) deriving additional knowledge from previous searches.

References

1. Aleman-Meza, B., Arpinar, I., Nural, M., Sheth, A.: Ranking Documents Seman-
tically Using Ontological Relationships. In: ICSC 2010 (2010)

2. Burton-Jones, A., Storey, V.C., Sugumaran, V., Purao, S.: A Heuristic-Based
Methodology for Semantic Augmentation of User Queries on the Web. In: Song,
I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813,
pp. 476–489. Springer, Heidelberg (2003)

3. Brauer, F., Huber, M., Hackenbroich, G., Leser, U., Naumann, F., Barczynski,
W.M.: Graph-Based Concept Identification and Disambiguation for Enterprise
Search. In: WWW, Raleigh, NC, USA. ACM (2010)

4. Conesa, J., Storey, V.C., Sugumaran, V.: Improving Web-Query Processing
Through Semantic Knowledge. DKE 66(1), 18–34 (2008)

5. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The Next Step in
Web Services. Commun. ACM 46, 29–34 (2003)

6. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web. In:
Conference on Information and Knowledge Management, CIKM 2004 (2004)

7. Dong, X., Halevy, A.: Indexing dataspaces. In: ACM SIGMOD (2007)
8. Fourney, A., Mann, R., Terry, M.A.: Query-feature graphs: bridging user vocabu-

lary and system functionality. In: UIST, pp. 207–216 (2011)
9. Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., Cumby, C.: A Search

Engine for Finding Highly Relevant Applications. In: ICSE 2010 (2010)
10. Hoang, H.H., Tjoa, A.M.: The State of the Art of Ontology-based Query Systems:

A Comparison of Existing Approaches. In: ICOCI 2006 (2006)
11. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active Objects: Actions

for Entity-centric Search. In: WWW 2012 (2012)
12. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.

Cambridge Univ. Press (2008)

412 M. Roy, I. Weber, and B. Benatallah

13. Mass, Y., Ramanath, M., Sagiv, Y., Weikum, G.: IQ: The Case for Iterative Query-
ing for Knowledge. In: CIDR, pp. 38–44 (2011)

14. McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C.: Portfolio: finding
relevant functions and their usage. In: ICSE 2011 (2011)

15. Roy, M.: Facilitating Enterprise Service Management Using Service Design Knowl-
edge. PhD thesis, CSE, UNSW (under review, 2013)

16. Roy, M., Suleiman, B., Schmidt, D., Weber, I., Benatallah, B.: Using SOA Gov-
ernance Design Methodologies to Augment Enterprise Service Descriptions. In:
Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 566–581.
Springer, Heidelberg (2011)

17. Roy, M., Weber, I., Benatallah, B.: Extending Enterprise Service Design Knowl-
edge Using Clustering. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service
Oriented Computing. LNCS, vol. 7636, pp. 142–157. Springer, Heidelberg (2012)

18. SAP. Enterprise Services Workplace (August 2012), http://esworkplace.sap.com
19. Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the Web: The

public and their queries. JASIST 52(3), 226–234 (2001)
20. Toch, E., Gal, A., Reinhartz-Berger, I., Dori, D.: A Semantic Approach to Approx-

imate Service Retrieval. ACM Trans. Inter. Tech. (2007)

http://esworkplace.sap.com

Tactical Service Selection with Runtime Aspects

Rene Ramacher and Lars Mönch

Chair of Enterprise-wide Software Systems
Univerity of Hagen, 58084 Hagen, Germany

{Rene.Ramacher,Lars.Moench}@FernUni-Hagen.de

Abstract. The quality of service (QoS) of a service composition is ad-
dressed by a QoS-aware service selection. In the presence of sophisti-
cated service charging models a cost-minimized service selection can be
obtained related to a number of requests expected for a service composi-
tion in a predefined planning horizon. A service selection that is used to
execute requests throughout an entire planning horizon is called tactical.
The majority of service selection models assume a deterministic service
execution and therefore the need for runtime adaptions of a service com-
position to react on service failures or deviating QoS values is neglected.
The challenge that is addressed with this paper is to develop a tactical
service selection approach that anticipates runtime adaptions of a ser-
vice composition. It is shown that the tactical service selection can be
efficiently combined with an existing service reconfiguration method to
achieve both runtime-related goals and tactical objectives.

Keywords: QoS-aware Service Selection, Uncertain QoS, Distributed
Decision Making.

1 Introduction and Related Work

The QoS and the cost of a service composition are addressed by a QoS-aware
service selection. In the literature related to service marketing sophisticated ser-
vice charging models, including subscription-based charging, service bundling,
and quantity discounts, are proposed. A QoS-aware service selection model for a
cost-minimized service selection in the presence of sophisticated service charging
models is presented in [5]. The cost-minimized service selection is related to an
expected number of service invocations in a planning horizon to fairly compare
a service charged on a subscription base and a service charged on a transaction
base. The cost-minimization objective is a tactical objective because it is related
to a set of service invocations that occur in the planning horizon. Accordingly,
a service selection model that pursues tactical objectives is called tactical.

The tactical service selection model presented in [5] relies on the assumption
of a deterministic service execution which is not realistic because in a real en-
vironment service failures occur and some of the QoS attributes are uncertain.
Service reconfiguration approaches are proposed to deal with volatile and un-
certain execution environments. Canfora et al. [3] propose the reconfiguration
of a service composition to react on service failures and on QoS values that

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 413–420, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

414 R. Ramacher and L. Mönch

deviate from their expected ones. Li et al. [4] propose a service reconfiguration
approach that focuses on service failures. The efficiency of an online performed
service reconfiguration is addressed. The approach of Canfora et al. is extended
by Ramacher and Mönch in [6] to the reconfiguration of time-critical service
compositions that suffer from uncertain response times. In contrast to a tactical
service selection, a service reconfiguration is called an operative service selec-
tion because it is always related to the execution of a certain request. Because
of this request-centric point of view, operative service selection models cannot
account for tactical objectives as e.g. the cost minimization in the presence of
sophisticated service charging models.

This paper proposes a tactical service selection that accounts for a volatile and
uncertain environment by anticipating the operatively executed service reconfig-
uration. Using a general framework for distributed decision making systems [7],
the tactical service selection aligns the service reconfiguration to the tactical
objectives. This alignment is carried out in terms of restrictions concerning the
services that are considered by the service reconfiguration. The generality of the
proposed alignment allows the integration of any of the aforementioned service
reconfiguration approaches within the proposed tactical service selection.

The remainder of this paper is organized as follows. Section 2 introduces
the service selection model. The proposed tactical service selection approach is
presented in Section 3. Afterwards, a solution approach for the tactical service
selection is developed in Section 4. Section 5 briefly summarizes the experiments
performed to evaluate the approach. Finally, Section 6 concludes the paper and
provides future research topics.

2 Service Selection Model

The structure of a service composition is defined in terms of a process model that
consists of abstract tasks T = {t1, ..., tn}. This paper considers only sequential
process models in which the tasks t1, ..., tn are executed successively. The execu-
tion starts by task t1 and ends with tn. The processing of a task ti+1 can only be
started after the execution of ti is completed. Extending the ideas of this paper
to more general process models that also contain conditional branches and flow
constructs is possible by adopting the concepts presented in [6,8].

The functional requirements of a task have to be fulfilled by a concrete service
that is used to execute the task. A service class Si consists of the services that
fulfill the functional requirements of ti. Hence, establishing the service classes
corresponds to a service selection with respect to functional requirements. The
service classes can be determined manually or by reasoning techniques that rely
on semantically enriched service interfaces. The set of all services is denoted as
S =

⋃
ti∈T Si. A service binding b determines the service b(ti) ∈ Si that is used

to execute the task ti. Hence, the service binding b is defined as the mapping:

b : T → S, ti → b(ti) ∈ Si. (1)

In the remainder, we abbreviate the service b(ti) that is bound to ti with bi.

Tactical Service Selection with Runtime Aspects 415

The cost of a service consists of its invocation-dependent transaction cost and
its associated periodic fees. The transaction cost c(s) ∈ R+ for a service s ∈ S
is charged each time s is invoked. The periodic fee S(s) ∈ R+ is an invocation-
independent cost that has to be considered to use a service throughout a period.
A service s is charged transaction-based when c(s) > 0 and S(s) = 0 holds, while
a subscription-based charging is applied for s ∈ S in the case of c(s) = 0 and
S(s) > 0. A reasonable service selection that deals with services that are charged
on a transaction base and services that are charged on a subscription base needs
to take into account the expected number of service invocations. The quantity
Q is the number of requests that are expected for the service composition within
a predefined planning horizon.

The actual response time of a service s ∈ S is r(s) ∈ R+. Since this time is
only known after a service was executed, an expected response time r̃(s) ∈ R+

is used for an ex-ante performed service selection. In the presence of a globally
constrained execution time e, a service binding b is determined such that the
execution time restriction is met by taking into account the expected response
times by: ∑

ti∈T

r̃(bi) ≤ e. (2)

In (2), r̃ represents an expected response time that can be obtained e.g. by
a quantil-based measure [6]. A service binding b is called the primary service
binding if b is determined prior to the execution of a request. Because it is
likely that the actual response time of a service will deviate from the estimated
one, a service binding needs to be adjusted by a service reconfiguration during
the execution of a request to avoid the violation of the end-to-end constrained
execution time. The reconfiguration adjusts the currently applied service binding
b to take into account the actual execution process and the realization of the
QoS attributes. An adjusted service binding is thus always related to a certain
request and is therefore called operational. The operational service binding that
is related to the request ρ is denoted with bρ. Initially, the operational service
binding is the primary service binding.

3 Hierarchical Tactical Service Selection

The integration of the tactical service selection and the operative service recon-
figuration is carried out by utilizing the hierarchical architecture of distributed
decision making (DDM) systems. According to Schneeweis [7], a two-stage DDM
system is divided into a top- and a base-level. The coupling between the top-
and base-level is carried out by an instruction. The top-level determines an
instruction that influences the base-level’s decision. The top-level exploits an
anticipation of the base-level to support the decision making. The anticipation
is used to represent the characteristics of the base-level that are relevant to the
top-level [7]. Top-, base-, and the anticipated base-level are defined in terms of
their action space, criterion, and information status.

416 R. Ramacher and L. Mönch

The tactical service selection (TSS) corresponds to the top-level while the
service reconfiguration is represented by an operative service selection (OSS)
that corresponds to the base-level. The TSS uses an instruction to align the
OSS to the tactical objectives. An instruction is a vector of operational service
classes Ŝi ⊆ Si. The OSS selects the service bρi from the operational service class

Ŝi that is used to execute the task ti during request ρ is processed.
The decision making of the TSS is supported by an anticipation of the OSS.

The anticipation captures the assumption of the TSS concerning the OSS’s ser-
vice selection for a task in a certain situation. The operational service classes
are determined by the TSS such that the periodic cost and the cost expected
for Q invocations of the service composition are minimized. In the following, the
action space, the criterion, and the information status of the top-, base-, and the
anticipated base-level are introduced.

The action space of the TSS is defined as:

AT = P (S1)× ... × P (Sn) (3)

where P (Si) denotes the power set of the service class Si. According to the

definition of the action space, an action Ŝ ∈ AT is represented by the vector
Ŝ = (Ŝ1, ..., Ŝn) of operational service classes. The information status of the TSS
at the decision time t0 is ITt0 = Q where Q is the number of requests expected
for the service composition.

The criterion of the TSS is divided into a private criterion CTT and a bottom-
up criterion CTB [7]. The bottom-up criterion represents the influence of the
anticipated OSS on the decision making process of the TSS. The private criterion
of the TSS is to minimize the periodic cost of the services that are included in
the operational service classes. The periodic costs are determined as the sum of
the periodic fees of the services selected by an action Ŝ, i.e.

CTT (Ŝ) =
∑
ti∈T

∑
sij∈Ŝi

S(sij). (4)

The bottom-up criterion concerns the transaction costs of the service invoca-
tions to execute Q requests of the service composition. Since the decision which
service sij ∈ Ŝi is actually invoked to execute the task ti is related to the OSS, an
anticipated number of service invocations q̃ij is considered. Taking into account

the anticipation AF (IN) of the OSS with respect to the instruction IN = Ŝ,
the bottom-up criterion is stated as:

CTB(AF (IN)) =
∑
ti∈T

∑
sij∈Ŝi

c(sij)q̃ij . (5)

The action space of the OSS is defined as the set of mappings between the
tasks T and the operational service classes Ŝ identified by the TSS:

AB = Map(T, Ŝ) =

{
b | b : T →

n⋃
i=1

Ŝi, ti → b(ti) ∈ Ŝi, ti ∈ T

}
. (6)

Tactical Service Selection with Runtime Aspects 417

The information status IBΨ = tcur of the OSS captures the time Ψ elapsed
since the processing of a request has been started and the task tcur ∈ T to be
processed next.

The goal of the OSS is to obtain a service binding b ∈ Map(T, Ŝ) that ensures
a reliable execution of the service composition with respect to its end-to-end
constrained execution time. Considering Ψ and tcur, the service binding b is
determined such that the execution time restriction will be met, i.e.

Ψ +

n∑
i=cur

r̃(bi) ≤ e. (7)

The OSS applies a cost-minimizing objective concerning the transaction costs.
The criterion of the OSS is given by:

CB
Ψ (b) =

n∑
i=cur

c(bi). (8)

The service selection of the OSS is anticipated by the TSS. The service selec-
tion bρi of the OSS relies on the start time of the task ti during the execution
of the request ρ. The actual start time of ti is unknown to the TSS because
it depends on the actual response times of the services invoked to execute the
tasks prior to ti. Hence, a set of response time scenarios Ω is used to obtain
a reasonable anticipation. A scenario ω ∈ Ω represents a certain response time
rω(sij) for each sij ∈ S. The response time rω(sij) is sampled from a response
time distribution of the service sij .

The anticipated information status is given as ĨBt0 = (Ω,Q). The goal of the
anticipated OSS is to determine a service binding for each ω ∈ Ω such that the
execution time restriction of the service composition is met. Hence, the action
space of the anticipated OSS is Map(T, Ŝ)|Ω|. Let b ∈ Map(T, Ŝ)|Ω| be an action

of the anticipated OSS. Then bω : T →
⋃n

i=1 Ŝi is the operational service binding

for scenario ω and bωi ∈ Ŝi is the service used to execute the task ti in ω.
The anticipated criterion of the OSS considers the transaction cost resulting

from the execution of all scenarios. For an action b ∈ Map(T, Ŝ)|Ω|, the criterion
is stated as:

C̃B(b) =
∑
ω∈Ω

∑
ti∈T

c(bωi). (9)

Moreover, the execution time restrictions for the scenarios in Ω are state as:∑
ti∈T

rω(bωi) ≤ e, ω ∈ Ω. (10)

The anticipated number of invocations q̃ij of the service sij is derived from
the decision of the anticipated OSS as:

q̃ij =
Q

|Ω| ·
∑
ω∈Ω

eiω(sij) (11)

where eiω(sij) = 1 when bωi = sij and otherwise 0.

418 R. Ramacher and L. Mönch

4 Integrated Solution Approach

This section presents a solution approach used to obtain the operational service
classes such that the objectives of the TSS, stated by (4) and (5), are achieved.
A possible implementation of the OSS is described in [1,6,8].

The scenarios used to capture the uncertainty of the response times are linked
together by nonanticipativity constraints [2]. The nonanticipativity constraints
ensure that the same decisions are taken in all scenarios that are indistinguish-
able at the decision time. Two scenarios ω and ω′ are indistinguishable in the
case of an operational service selection if the difference of the start time of ti in
ω and ω′ is less than a threshold τ used to initiate a service reconfiguration. In
this situation, the same service has to be selected for task ti in ω and ω′.

The TSS is implemented as the mixed integer program (MIP) formulated
through (12)-(21). In the MIP, the service selection is captured by the binary
decision variables eij and zωij . The variables eij represent the decision of the TSS.
The value of eij is 1 if the service sij ∈ Si is included in the operational service

class Ŝi, otherwise it is 0. The operational service selection in scenario ω ∈ Ω
is captured by the variables zωij . The variable zωij is set to 1 if the service sij
is used to execute the task ti in the scenario ω, otherwise zωij is set to 0. The
real-valued decision variables q̃ij represent the expected number of invocations
of the service sij according to (11). The start time of a task ti in a scenario ω is
modeled by the real-valued decision variable aωi . The binary decision variables

σω,ω′
i are used to implement the nonanticipativity constraints. The value of σω,ω′

i

is 1 if the difference of the start time of ti in the scenarios ω and ω′ is larger
than the threshold τ , otherwise it is 0. We obtain:

min
∑
ti∈T

∑
sij∈Si

S(sij)eij +
∑
ti∈T

∑
sij∈Si

c(sij)q̃ij (12)

subject to: ∑
sij∈Si

zωij = 1, ∀ω ∈ Ω, ti ∈ T (13)

aωi ≥ 0, ∀ω ∈ Ω, ti ∈ T (14)

aωi+1 ≥ aωi +
∑

sij∈Si

rω(sij)z
ω
ij , ∀ω ∈ Ω, ti ∈ T \ {tn} (15)

∑
ti∈T

∑
sij∈Si

rω(sij)z
ω
ij ≤ e, ∀ω ∈ Ω (16)

zωij ≤ eij , ∀ω ∈ Ω, i ∈ T, sij ∈ Si (17)

q̃ij =
Q

|Ω|
∑
ω∈Ω

zωij , ∀ti ∈ T, sij ∈ Si (18)

aωi − aω
′

i − τ ≥ M(σωω′
i − 1), ∀ω, ω′ ∈ Ω, i ∈ T (19)

Tactical Service Selection with Runtime Aspects 419

zωij − zω
′

ij ≤ σω,ω′
i + σω′,ω

i , ∀ω, ω′ ∈ Ω, ti ∈ T, sij ∈ Si (20)

zωij , eij ∈ {0, 1}, ∀ω ∈ Ω, ti ∈ T, sij ∈ Si. (21)

The objective function (12) concerns the total cost resulting from the periodic
fees of the services that are included in the operational service classes and the
transaction costs incurred by Q service invocations according to (4) and (5).

The constraints (13)-(16) account for the operational service selection. First,
the equations (13) ensure that exactly one service is selected for each task in
each scenario. According to the inequalities (14), the start time of each task has
to be non-negative. In addition, the start time of a task ti+1 is determined by
the completion time of its preceding task ti which is ensured by the inequalities
(15). In (15), the completion time of the preceding task ti is calculated as the
sum of its start time and the scenario-related response time of the service that
is selected to execute ti. The inequalities (16) account for the execution time
restriction that has to be fulfilled for each scenario ω ∈ Ω according to (2).

The inequalities (17) and (18) are the constraints to couple the TSS with the
action space of the anticipated OSS. According to (17), the service sij can be
selected to execute task ti only if sij is element of the operational service class

Ŝi. The equations (18) are used to obtain the estimated number of invocations
q̃ij of each service sij .

The inequalities (19) and (20) are the nonanticipativity constraints. According

to (19), the value of σω,ω′
i is 1 only if the difference of the start time of task ti

in the scenarios ω and ω′ exceeds the threshold τ . If this is the case then the
left-hand side will be positive and σω,ω′

i is set to 1. Otherwise, the value of σω,ω′
i

has to be 0. With respect to (20) a different service can be selected in ω and ω′

for ti only if either σω,ω′
i or σω′,ω

i takes a value of 1. Otherwise, the right-hand
side of (20) is 0 forcing that the same service is selected for ti in ω and ω′.

5 Computational Experiments

Experiments are conducted to evaluate the TSS model with respect to its com-
putational tractability and the anticipation of the operational service selection.
The experiments are performed on randomly generated problem instances. A
detailed description of the experiments is not included due to space restrictions.
The experiments show that a tactical service selection can be obtained for ser-
vice compositions containing up to 20 tasks in less than one hour of computing
time. An anticipation with 30 scenarios allows a successful execution for almost
all requests. In contrast, the number of successfully executed requests decreases
dramatically when no anticipation is used by the TSS. The quality of the antici-
pation with respect to the transaction cost increases with an increasing number
of scenarios. However, the number of scenarios is restricted by an increasing
computational burden that is required to solve the TSS model.

420 R. Ramacher and L. Mönch

6 Conclusion

A tactical service selection is presented that addresses a cost-minimized service
selection in the presence of sophisticated service charging models. Exploiting the
concepts of DDM systems, the proposed tactical service selection integrates an
operatively performed service reconfiguration by anticipation to consider uncer-
tain response times and their impact on an end-to-end constrained execution
time. The service reconfiguration is aligned to the tactical objectives and a suc-
cessful service execution is ensured. In future research, an approach based on a
metaheuristic will be developed to decrease the computational burden required
to solve the TSS model for large scale service compositions.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Software Engineering 33(6), 369–384 (2007)

2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Series in Op-
erations Research and Financial Engineering. Springer (1997)

3. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of
composite web services. In: Proceedings of the IEEE International Conference on
Web Services, pp. 121–129 (2005)

4. Li, J., Ma, D., Mei, X., Sun, H., Zheng, Z.: Adaptive QoS-aware service process
reconfiguration. In: Proceedings of the 8th International Conference on Services
Computing (SCC), pp. 282–289. IEEE Computer Society, Washington, DC (2011)

5. Ramacher, R., Mönch, L.: Cost-minimizing service selection in the presence of end-
to-end QoS constraints and complex charging models. In: Proceedings of the 9th
International Conference on Services Computing (SCC), pp. 154–161 (2012)

6. Ramacher, R., Mönch, L.: Reliable service reconfiguration for time-critical service
compositions. In: Proceedings of the 10th International Conference on Services Com-
puting (SCC), pp. 184–191 (2013)

7. Schneeweiss, C.: Distributed Decision Making. Springer (2003)
8. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with

end-to-end QoS constraints. ACM Transactions on the Web (TWeb) 1(1) (2007)

Online Reliability Time Series Prediction

for Service-Oriented System of Systems

Lei Wang1,2, Hongbing Wang1,�,
Qi Yu3, Haixia Sun1, and Athman Bouguettaya4

1 School of Computer Science and Engineering, Southeast University, China
2 Dept. of Management Science and Engineering, Nanjing Forestry University, China

{leiwang,hbw,haixiasun}@seu.edu.cn
3 College of Computing and Information Sciences, Rochester Institute of Tech, USA

qi.yu@rit.edu
4 School of Computer Science and Information Technology, RMIT, Australia

athman.bouguettaya@rmit.edu.au

Abstract. A Service-Oriented System of System (or SoS) considers sys-
tem as a service and constructs a value-added SoS by outsourcing exter-
nal systems through service composition. To cope with the dynamic and
uncertain running environment and assure the overall Quality of Service
(or QoS), online reliability prediction for SoS arises as a grand chal-
lenge in SoS research. In this paper, we propose a novel approach for
component level online reliability time series prediction based on Proba-
bilistic Graphical Models (or PGMs). We assess the proposed approach
via invocation records collected from widely used real web services and
experiment results demonstrate the effectiveness of our approach.

1 Introduction

A SoS pools computing resources together to create a new, value-added, and
more complex system. As a new computing paradigm that has attracted sig-
nificant popularity, Service-Oriented Architecture (SOA) provides a principled
mechanism to construct a SoS [1, 5] by dynamically integrating its component
systems through service composition. It is anticipated that a service-oriented SoS
runs under a complicated and highly dynamic environment. Hence, the runtime
QoS assurance is of significant importance for a service-oriented SoS.

Proactive Fault Management (or PFM) offers an effective mechanism to en-
hance the reliability of software systems [6]. Nonetheless, to achieve PFM in
service-oriented SoSs, a central challenge lies in automatic and accurate predic-
tion of the reliability of the SoS. In particular, a self-* (configuration, healing,
optimization, or protection) SoS demands online reliability prediction that ac-
curately predicts the reliability of the SoS in nearly realtime to deal with the

� This work is partially supported by NSFC (No.61232007) and Doctoral Fund of
Ministry of Education of China (No.20120092110028) and JSNSF (No.BK2010417)
and PSSF of higher education in Jiangsu Prov. (No.2013SJB6300051).

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 421–428, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

422 L. Wang et al.

highly dynamic running environment. As illustrated in Figure 1, online reliabil-
ity prediction estimates the system’s reliability in the “near future” (i.e., the
prediction time period of Δtp). More specifically, Δtl is defined as the leading
time, which starts from t and ends when a user invokes a SoS. Δtp is defined as
the prediction period, which corresponds to a future invocation time period. Δtd
is the data window size for historic records.

t
td

tl

tp

futurehistory

t+ tl

prediction- period

Fig. 1. Schematic View of Online Reliability Prediction

In a service-oriented SoS, the prediction period Δtp is determined by the
execution period of component level systems and the unstable communication
links. Hence, the length of invocation is usually uncertain, which makes the
length of Δtp vary from one user’s requirement to another [3]. As most existing
online failure prediction methods are designed for failure probability prediction
in a fixed time period, they are not directly applicable for a varied prediction
period. In contrast, a viable reliability prediction approach for a service-oriented
SoS should capture the changes of reliability during a variable prediction period.
Assume that Δtp is long enough for most user requirements. The key idea of
reliability prediction for a service-oriented SoS is to predict the reliability time
series during the period of Δtp.

To our best knowledge, this is the first work on online reliability time series
prediction for service-oriented SoS. It is fundamentally different from relevant
existing works, including online failure prediction for traditional computer sys-
tems [6] and reliability prediction in service computing [11]. Despite the running
environment of a service-oriented SoS is complex and highly dynamic, the reli-
ability of the overall system is mainly affected by several major factors, which
include (1) the unstable communication links between the component systems,
(2) the internal working status of component systems, and (3) the loading capac-
ity of component systems under the current throughput. It is always difficult and
sometimes even impossible to directly collect a outsourced from third-party ser-
vice providers remote system’s performance parameters. Nonetheless, the above
factors also significantly affect the throughput and response time of component
systems. More importantly, parameters like throughput and response time can
be easily obtained via client-side evaluation of the target component systems.
This key observation allows us to analyze the component level system’s reliabil-
ity along with its throughput and response time, which provides a holistic view
of the system’s running state and its surrounding environment.

The major contribution of the paper centers around using Probabilistic
Graphical Models (PGMs) to analyze historical and current system parame-
ters, including Reliability, Throughput and Response Time. The Markov chain

Online Reliability Time Series Prediction for Service-Oriented SoSs 423

rules are employed to capture the causal relationships between adjacent time
series of the system parameters, which represented as Conditional Probability
Tables (CPTs). These CPTs will be used together with the PGM to make on-
line reliability prediction based on the current system parameters. Experiments
conducted over real-world web services justify the effectiveness of our approach.

2 Related Work

It has been discovered that the arrival times of atomic web services reliability
follow an Erlangian distribution because the failures’ arrival times are dependent
on the operating states (e.g. idle and active states) [4]. Collaborative filtering
based approaches have been widely employed in service computing to predict the
QoS (including reliability) of previously unknown services [8–11]. As an example,
a matrix factorization based approach is used to predict the missing values in
service component’s user-item failure probability matrix. With the component
level service reliability prediction results, the system level reliability is aggregated
by the composition structures [12].

Online failure prediction in traditional computer systems aims to identify
during runtime whether a failure will occur in the near future. A taxonomy for
existing online failure prediction approaches mainly include three categories [6],
which are Failure tracking, Symptom monitoring and Detected error reporting.
All of these methods depend on a directly server side observation on system
working status or system log files.

3 Online Reliability Time Series Prediction

In this section, a Probabilistic Graphical Models based Reliability Time Se-
ries Online Prediction for component level service-oriented System of Systems
(PGMs-RTSOP) is proposed.

The typical PGMs model supporting dynamic changes of the time, which
is Dynamic Bayesian Networks (DBNs) model [2]. The changes from adjacent
time points of historic system parameters studied in this paper exist no obvi-
ously causality, due to the dynamics of the SoS runtime environment. While
the regulation of changes from continuous system parameters time series (time
series is composed of a plurality of time points) can often reflect a specific event
(such as software version upgrade). The continuous change of the SoS system
parameters time series satisfy the Markov chain rules.

In this paper, we proposem DBNs (see Figure 2), an augmentation of the tra-
ditional DBNs that uses the Markov chain rule to model the causal relationship
between adjacent system parameters (e.g., the current time series t and the near
future time series t+1). The nodes in the m DBNs correspond to the system pa-
rameters, including Response Time (RT), Throughput (T) and Reliability (R).
The parameters are represented by the time series patterns, which are referred
to as motifs [7], discovered from historical data to facilitate the prediction of
future time series.

424 L. Wang et al.

Since both Response Time and Throughput are easy to measure, they can be
regarded as observed variables for the current time series t. On the other hand,
directly measuring Reliability is difficult so its state is usually derived based on
Response Time and Throughput. Hence, Reliability can be regarded as a hid-
den variable whose value is affected by both RT(t) and T(t). The dependencies
between different nodes are denoted by the arcs in the m DBNs.

Using the proposed PGMs-RTSOP for online reliability time series prediction
consists of the following four major steps.

1. Motifs Discovery: Motifs discovery is to identify the featured patterns of
time series from parameters of RT, T and R of a component system. We
divide the historic parameter into two different time series. Hence, motifs
for each parameter can be divided as two categories: motifs for current time
t and motifs for near future t+1. To achieve motifs discovery, we group
together similar time series in historic parameters (RT, T, R) through a
clustering algorithm (e.g., K-means). Consequently, motifs are defined as
the centroids of the resultant clusters. We will use RT as an example.
Assume that the length of each time series is Δtp so the n time series of
RT is given by RTt−nΔtp , · · · , RTt−2Δtp , RTt−Δtp , RTt. Specifically, the i-th

time series of RT is defined as: RT (i) =
−−−−−−−−−−−−−−−−−−−−−−−→
RT((t−(n−i−1))Δtp,(t−(n−i))Δtp),

where i = 1, · · · , n. We further assume that s is the time interval that RT
is collected. Hence, each time series can be represented by a vector with
size

Δtp
s and the distance between two time series RT (i) and RT (j) can be

calculated as

dis(RT (i), RT (j)) =

√√√√√Δtp
s∑

k=1

(RT (i)k−RT (j)k)
2

(1)

The motifs are calculated as the centroids of the clusters.
We re-divide the time period for parameter RT and get the near future
system parameters. We choose the time period after Δtl for each RT (i),
which is defined as RT (i)t+Δtl . We will use the motifs discovery method
presented for RT(i) to discover motifs in RT (i)t+Δtl .

2. Motifs based Time Series Representation: In this step, we label system
parameters by the discovered motifs. In particular, each time series of a sys-
tem parameter will labeled by the nearest motifs discovered in the previous
step. Again, we will use RT as an example and the same process applies to
other parameters. Given the k motifs for RT, RT motifs(j), j = 1, · · · , k.
we label RT (i) by RT motifs(m). i.e.,

RT (i) ← Label of(RT motifs(m)), where (2)

dis(RT (i), RT motifs(m)) ≤ dis(RT (i), RT motifs(j)), j �= m (3)

3. Conditional Probability Table Construction: In the proposed
m DBNs, we define its original state B0 by the motifs of system param-
eter time series at time t. The m DBNs captures the transition model of

Online Reliability Time Series Prediction for Service-Oriented SoSs 425

Predicted
time series

Current time
series

RT(t)

T(t)

R(t) R(t+1)

T(t+1)

RT(t+1)

m
o
t
i
f
s

near futurehistory

B0 B

time
Motifs(RT(i+1)) Motifs(RT(i+2))

time
Motifs(T(i)) Motifs(T(i+1)) Motifs(T(i+2))

time

Motifs(RT(i))

RT_motifs(i), T_motifs(j)
(1 ≤ i, j ≤ k)

_ (1)
lt tRT motifs _ ()

lt tRT motifs k

(())
lt tMotifs RT i ((1))

lt tMotifs RT i ((2))
lt tMotifs RT i

...

...

CPT

CPT

CPT
CPT

CPT

CPT

Fig. 2. The Construction Process of the CPTs

causal relations for the system parameter time series from time t to time
t+1, i.e., the state transition B→ from current state to the near future.
Each node in the m DBNs model is associated with a conditional probability
table (or CPT). As an example, the CPT for node RT (t + 1) is shown in
Figure 2. Each row in the CPT corresponds to one possible combinations of
values (represented by motifs) taken by its dependent nodes (or conditional
nodes) (i.e., RT (t) and T (t)). Each column denotes one of the k motifs of
RT (t+ 1), .i.e., RTt+Δtl motifs(1), · · · , RTt+Δtl motifs(k).
We analyze the labeled historical parameters to gather statistics on his-
toric parameters to construct the CPTs for each node. Let motifs(RT (i))=
RT motifs(α), motifs(T (i)) = T motifs(β) and motifs(RTt+Δtl(i)) =
RTt+Δtl motifs(δ). The probability from all of the causal relation satis-
fies (RT motifs(α), T motifs(β))→RTt+Δtl motifs(δ) will be the value
of the cell at the intersection of the row (RT motifs(α), T motifs(β)) and
column RTt+Δtl motifs(δ).

4. Online Reliability Time Series Prediction: The prediction is carried
out through the m DBNs model using the following three steps:
(a) The real-time system parameters RT (t), T (t) will be labeled by their

nearest motifs, which results in RT (t) motifs(α) and T (t) motifs(β).
(b) The motifs of RT (t) and T (t) will be the conditional item in the CPT

of RT (t + 1) and T (t + 1). Hence, the prediction results for parameter
RT (t+1) and T (t+1) will be the motifs holding the maximal probability
by the conditional item of RT (t) motifs(α) and T (t) motifs(β).

(c) The predicted motifs of RT (t+ 1) and T (t+ 1) will be substituted into
the CPT of R(t + 1) as the conditional items to get the cell holding
the maximal probability value. The prediction result for reliability time
series of R(t + 1) will be the motifs of the cell’s column name.

4 Experiments

We conduct a set of experiments to assess the effectiveness of the proposed
PGMs-RTSOP. Since there is no sizable service dataset that provides continuous

426 L. Wang et al.

observation on system parameters RT, T and R, we build our own dataset
by invoking a selected set of web services and recording the Response Time,
Throughput and Reliability of the service invocations.

4.1 Data Set Description

To build our dataset, we download the WSDL files of web services, including:
(1) the well-known popular web services, such as bing, SalesForce, PayPal, ebay,
Google Search, Amazon; (2) web services from WebserviceX service repository;
and (3) three popular web services published in China: Weather, QQ Online, and
DomesticAirline. We convert the WSDL files into java classes and generate java
test files using Axis2. Finally, service invocation requests for a selected API of
each web services are sent out every 200ms from our PC client and the response
time, the size of the returned data (bit), and return type of the HTTP message
are collected. Let the data size for the returned message from a remote web
service be res size. We represent the Throughput as the data size successfully
transmitted within a unit time from the web service, i.e., res size

RT∗1000 (kbps). We
set an upper limit for the response time of a service invocation as 1000ms. If the
response time goes beyond the limit, it will be considered as a timeout error. We
collect the system parameters continuously for 24 hours.

We preprocess to the collected system parameters as follows. We define the
time interval for continuous 10 returned messages as a time series point. Since a
service request is sent every 200ms, a time slide is set to 2s, so each time series

contain 10 time points. Then, for a given time point, RT = (
10∑
i=1

RTi)/10, T =

(
10∑
i=1

Ti)/10, R = e−γ.t. where, RTi is the Response Time and Ti is Throughput

parameter for each invocation during the time point. γ is the proportion of
failure invocations and t = 2s. We set Δtp = 20s and Δtl = 4s. The historic
time series parameters for time t and t+1 is built separately. More specifically,
the time series for time t : the collected 24-hour Response Time, Throughput and
Reliability system parameters are divided into 4320 (= 24 ∗ 60 ∗ 3) continuous
time series, which are represented as RT j(i), T j(i), T j(i), where j indexes web
services and i indexes time series. To generate the time series for time t+1, we
move right for two time points (i.e. the time span of Δtl), also each 10 continuous
time points as a time series, represented as RT j

t+Δtl
(i), T j

t+Δtl
(i), Rj

t+Δtl
(i).

4.2 Approaches to Compare

We implement four different reliability time series online prediction methods to
compare with our approach. Specifically, the four comparison approaches include:

– Average Value of Historic Reliability (AVHR): The 10 points of the predicted
time series result all equals the historic average reliability value.

– Regression (Reg): A least square fitting function is calculated according to
historical reliability time series parameter. The fitting function is used to
predict the near future reliability time series.

Online Reliability Time Series Prediction for Service-Oriented SoSs 427

– Similarity based Prediction (SP): Let the real-time observed reliability time
series be Rt. Rt+Δtl(i) will be the reliability time series prediction result,
when R(i) is the nearest historic (in time t) Reliability time series to Rt.

– Bayes’ Rules (BR): We collect the statistics on the conditional probability of
motifs for the historic parameter R, i.e., P (R(t)t+Δtl motifs|R(t) motifs).
With the conditional item of real-time system parameter of R (labeled
by its motifs), the motifs will be the prediction result, which makes
R(t)t+Δtl motifs obtain a maximal probability.

4.3 Performance Comparison

We set the number of motifs as k=20 and k=25 in PGMs-RTSOP and BR and
compare the averaged MAE (Mean Absolute Error) [11] of different prediction
methods for 10, 50, 100, 200, 300 and 400 number of predictions. The experi-
mental results are shown in Figure 3 (a-b).

(a) (b) (c) (d)

Fig. 3. The Prediction Performance Comparison. (a) MAE, k=20; (b) MAE, k=25;
(c) MAE, N=50; (d) MAE, N=200.

As can be seen from the results, for BR and the proposed PGMs-RTSOP, the
prediction accuracy increases slightly with the increasing of prediction times,
while the approaches of AVHR, Reg and SP change differently as the number of
predictions increases. In addition, the curves of the PGMs-RTSOP and BR are
closer to a straight line whereas those of AVHR and SP show obvious fluctua-
tions. This observation demonstrates the robustness of prediction performance
of PGMs-RTSOP and BR. This is mainly due to that the dependency between
adjacent motifs have certain patterns as the system parameters change, which
makes the proposed m DBNs model more suitable to carry out online reliability
time series prediction.

In the second set of experiments, we vary the number of motifs for from 5
to 30. Each method is executed 50 and 200 times, respectively. Also, in the BR
method, the number of motifs is the same with our PGMs-RTSOP method. As
can be seen from Figure 3 (c-d), the motifs number exhibits a significant impact
on both PGMs-RTSOP and BR. The larger value of k results in a smaller MAE.
When k ≥ 20, the improvement of prediction accuracy slows down. Since the
AVHR, Reg and SP do not exploit motifs, their MAE values remain constant
over different k values. When k≥20, the prediction accuracy of PGMs-RTSOP
significantly outperforms all other four approaches.

428 L. Wang et al.

5 Conclusion

In this paper, we present an online reliability time series prediction approach,
referred to as PGMs-RTSOP for service-oriented SoS. The proposed approach
integrates motifs into the traditional dynamic Bayesian Networks, resulting in
an m DBNs model, to deal with the uncertain SoS runtime environment. We
conduct experiments on real-world web services to evaluate the effectiveness of
the proposed approach. Four other reliability prediction approaches are imple-
mented for comparison purpose. The experimental results demonstrate the high
prediction accuracy and the robust prediction performance of PGMs-RTSOP.
The proposed online reliability time series prediction approach is instrumental
to achieve online fault removal and fault tolerance recovery mechanisms under
a complicated and changing environment.

References

1. Cook, T.S., Drusinksy, D., Shing, M.T.: Specification, validation and run-time
monitoring of soa based system-of-systems temporal behaviors. In: IEEE Interna-
tional Conference on System of Systems Engineering, SoSE 2007, pp. 1–6. IEEE
(2007)

2. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

3. Lelli, F., Maron, G., Orlando, S.: Client side estimation of a remote service execu-
tion. In: 15th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, MASCOTS 2007, pp. 295–302. IEEE
(2007)

4. Mansour, H.E., Dillon, T.: Dependability and rollback recovery for composite web
services. IEEE Transactions on Services Computing 4(4), 328–339 (2011)

5. Rothenhaus, K.J., Michael, J.B., Shing, M.T.: Architectural patterns and auto-
fusion process for automated multisensor fusion in soa system-of-systems. IEEE
Systems Journal 3(3), 304–316 (2009)

6. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Computing Surveys 42(3), 10:1–10:42 (2010)

7. Shellman, E.R., Burant, C.F., Schnell, S.: Network motifs provide signatures that
characterize metabolism. Molecular BioSystems 9(3), 352–360 (2013)

8. Yu, Q.: Decision tree learning from incomplete qos to bootstrap service recom-
mendation. In: Proc. 19th IEEE International Conference on Web Services, ICWS
2012, pp. 194–201 (2012)

9. Yu, Q.: Qos-aware service selection via collaborative qos evaluation. World Wide
Web Journal (accepted to appear, 2013)

10. Yu, Q., Zheng, Z., Wang, H.: Trace norm regularized matrix factorization for service
recommendation. In: Proc. 20th IEEE International Conference on Web Services,
ICWS 2013 (2013)

11. Zheng, Z., Lyu, M.R.: Collaborative reliability prediction of service-oriented sys-
tems. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, ICSE 2010, pp. 35–44. ACM (2010)

12. Zheng, Z., Ma, H., Lyu, M., King, I.: Collaborative web service qos prediction via
neighborhood integrated matrix factorization (early access articles). IEEE Trans-
actions on Services Computing (2012)

Multi-level Elasticity Control of Cloud Services�

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{e.copil,d.moldovan,truong,dustdar}@dsg.tuwien.ac.at

Abstract. Fine-grained elasticity control of cloud services has to deal
with multiple elasticity perspectives (quality, cost, and resources). We
propose a cloud services elasticity control mechanism that considers the
service structure for controlling the cloud service elasticity at multiple
levels, by firstly defining an abstract composition model for cloud services
and enabling multi-level elasticity control. Secondly, we define mecha-
nisms for solving conflicting elasticity requirements and generating action
plans for elasticity control. Using the defined concepts and mechanisms
we develop a runtime system supporting multiple levels of elasticity con-
trol and validate the resulted prototype through experiments.

1 Introduction

Cloud services1 are designed in a fashion that they typically use as many as pos-
sible resource capabilities from cloud providers and are distributed on different
virtual machines consuming various types of services offered by cloud providers,
possibly from different cloud infrastructures. Therefore, requirements for them
would differ from the traditional applications, and potentially, they can achieve
elasticity not only in terms of resources but also of cost and quality.

1.1 Motivation

In our previous work we have developed SYBL [1], a language for elasticity
requirements specification which enables the user to define: (i) monitoring spec-
ifications for specifying which metrics need to be monitored, (ii) constraints for
specifying acceptable limits for the monitored metrics, (iii) strategies for spec-
ifying actions to be taken under certain conditions, and (iv) priorities for the
previous specifications. Listing 1.1 shows a cost-related elasticity requirement
specified by, e.g., the service designer, using SYBL, stating that when the total
cloud service price is higher than 800 Euro, a scale-in action is needed.

� This work was supported by the European Commission in terms of the CELAR FP7
project (FP7-ICT-2011-8 #317790).

1 In this paper, cloud service refers to the whole cloud application, including all of its
own software artifacts, middleware and data, that can be deployed and executed on
cloud computing infrastructures.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 429–436, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

430 G. Copil et al.

Listing 1.1. SYBL elasticity directives

@SYBL_ServiceUnitLevel(Id="CloudService",strategies=
"St1: STRATEGY CASE total_cost>800 Euro : ScaleIn")

@SYBL_CodeRegionLevel(Id="AnalyticsAlgorithm",constraints=
"C1: CONSTRAINT dataAccuracy>90%;
C2: CONSTRAINT dataAccuracy>95% WHEN total_cost>400;
C3: CONSTRAINT total_cost<800;"

priorities="Priority(C2)>Priority(C1);Priority(C3)>Priority(C1);")

While elasticity requirements can be specified at different levels, current elasticity
control techniques do not support controlling different parts of the cloud service
(i.e., elasticity requirement on service unit, on groups of service units) and from
a multi-dimensional perspective. Controlling the cloud service at multiple levels
enables a finer-grained control according to described elasticity requirements.
On the other hand, multiple levels of elasticity requirements could give rise to
conflicts on cross-level or even on the same levels. Therefore, we need solutions for
overcoming cross-level conflicting elasticity requirements and generating plans
for multi-level elasticity control.

1.2 Related Work

Controlling cloud services elasticity in the contemporary view has been tar-
geted by both research and industry. Several authors propose controllers for the
automatic scalability/elasticity of entire cloud services [2] or just parts of the
cloud service (i.e., cloud service data-end) [3]. Guinea et al. [4] develop a system
for multi-level monitoring and adaptation of service-based systems by employ-
ing layer-specific techniques for adapting the system in a cross-layer manner.
Kranas et al. [2] propose a framework for automatic scalability using a deploy-
ment graph as a base model for the application structure and introduce elasticity
as a service cross-cutting different cloud stack layers. Cloud providers offer tools
for automatic scalability like AutoScale2 or SmartCloud initiative3, automati-
cally scaling resources depending on user’s detailed resource-level policies. How-
ever, these approaches do not control the cloud service on multiple levels taking
into consideration the complex service structure, or the multiple dimensions of
elasticity (quality, resources, and cost) [5].

1.3 Contributions

In this paper, we propose a system for multi-level cloud services elasticity control
by considering the service complex structure and supporting multi-dimensional
elasticity. We present the following contributions: (i) a generic composition model
of cloud services for enabling the fine-grained control aware of the structure of the
cloud service and (ii) a fine-grained, multiple levels automatic elasticity control
of cloud services.
2 http://aws.amazon.com/autoscaling/
3 http://www.ibm.com/cloud-computing/us/en/index.html

http://aws.amazon.com/autoscaling/
http://www.ibm.com/cloud-computing/us/en/index.html

Multi-level Elasticity Control of Cloud Services 431

The rest of this paper is organized as follows: Section 2 defines our generic
composition model. Section 3 presents our techniques supporting multi-level elas-
ticity control while Section 4 presents experiments. Section 5 concludes the paper
and outlines our future work.

2 Mapping Service Structures to Elasticity Metrics

2.1 Elasticity Metrics

Cloud service metrics differ on the service type, the service unit targeted by the
metric, or the environment in which the service resides. Resource-level metrics
are the most encountered in cloud IaaS APIs (e.g., IO cost, CPU utilization, disk
access, memory usage). Service unit-level metrics refer to service units (e.g. web
server, or database server) and are used for having a higher level view and being
able to determine the unit’s health or performance (e.g., request queue length,
response time, price). Going higher into the abstraction level, when evaluating
the performance of the cloud service one usually considers cloud service-level
metrics like the whole cloud service response time or number of users per day.
In elasticity control, these metrics can be associated to different cloud service
parts (e.g., the whole cloud service, service unit or a group of service units),
usually, metrics from higher levels (e.g., cloud service level) aggregating metrics
from lower levels.

2.2 Abstracting Cloud Services

For obtaining highly granular control of cloud services and being aware of what
service unit is being controlled, a model for structuring service-related informa-
tion is needed. Our proposed model shown in Figure 1 has the form of a graph,
with various types of relationships and nodes, representing both static and run-
time description of the cloud service and aims at supporting different types of
cloud services (e.g. queue-based applications, or web applications):

– Cloud Service, e.g., is a web application, or a scientific application. The cloud
service represents the entire application/system, and can be further decom-
posed into service topologies and service units. The term is in accordance
with existent architectures and standards (e.g., IBM [6] and TOSCA [7]).

– Service Unit [8], e.g., is a database, or a load balancer. The service units are
modules or individual services offering computation or data capabilities.

– Code Region, e.g., is a data or a computation intensive code sequence. A code
region is a code sequence for which the user has elasticity requirements.

– Service Topology, e.g., is a business tier, data tier, or a part of a workflow.
A cloud service topology represents a group of service units that are seman-
tically connected and that have elasticity capabilities as a group.

– OS Process, e.g., is a web server process or any process of the cloud service.
– Elasticity Metric, e.g., is cost vs. throughput, or cost vs. availability. Elastic-

ity metrics can be associated with any cloud service part (e.g., service unit,
service topology, or code region).

432 G. Copil et al.

Fig. 1. Cloud service abstraction model

– Elasticity Requirement, e.g., is a SYBL directive. They can be specified
through any language (e.g. SYBL) and are linked to any cloud service part.

– Elasticity Capability, e.g., is the elastic reconfiguration for higher availability,
or the creation of new processing jobs for a map-reduce application.

– Elasticity Relationship, e.g., is a connection between any two cloud service
parts, which can be annotated with elasticity requirements.

In order to describe the cloud service during runtime, a dependency graph
(Figure 2) is used. The dependency graph is an instantiation of the described
model, capturing all the information concerning structure and runtime informa-
tion like metrics and associated virtual machines.

If we take the example of a Web service (the left side of Figure 2),the cloud
user views his/her Web service as a set of services, the metrics targeted in users
elasticity requirements being high level metrics. At runtime, the dependency
graph is constructed (right part of the figure), service instances being deployed
on virtual machines, in different virtual clusters, and the accessible metrics are
low level ones. These two views on metrics (cloud user and control system)
are mapped by our elasticity control runtime, aggregating low-level metrics for
computing higher level ones.

Fig. 2. Constructing runtime dependency graph

Multi-level Elasticity Control of Cloud Services 433

Fig. 3. Elasticity control: from directives to enforced plans

Algorithm 1. Solving single-level and cross-level elasticity requirements conflicts

1: function SolveSingleLevelConflicts(graphi)
2: for each l in cloudServiceAbstractionLevels do
3: confConstraints= getConflictingConstraints(graphi,l)
4: graphi.removeConstraints(confConstraints)
5: for each constraintSet in confConstraints do
6: newGeneratedConstraintsLevel.add(constraintSolving(confConstraints))
7: end for
8: graphi.addConstraints(newGeneratedConstraintsLevel)
9: end forreturn grapho = graphi

10: end function
11: function SolveCrossLevelConflicts(graphi)
12: for each level1 in cloudServiceAbstractionLevel do
13: for each level2 in cloudServiceAbstractionLevel do
14: if level1 �= level2 then
15: conflictingConstraints.add(getConflictingConstraints(level1,level2))
16: end if
17: end for
18: graphi.removeConstraints(conflictingConstraints)
19: graphi.addConstraints(translateToHigherLevel(conflictingConstraints))
20: end forreturn grapho=SolveSingleLevelConflicts(graphi)
21: end function

3 Multi-level Elasticity Control Runtime

Considering the model of the cloud service described through the abstract model
presented in the previous section, we enable multiple levels elasticity control of
cloud services, based on the flow shown in Figure 3. The elasticity requirements
are evaluated and conflicts which may appear among them are resolved. After
that, an action plan is generated, consisting of actions which would enable the
fulfillment of specified elasticity requirements.

3.1 Resolving Elasticity Requirements Conflicts

We identify two types of conflicts: (i) conflicts between elasticity requirements
targeting the same abstraction level, and (ii) conflicts which appear between
elasticity requirements targeting different abstraction levels. For the first type,
as shown in function SolveSingleLevelConflicts from Algorithm 1, sets of con-
flicting constraints are identified and a new constraint overriding previous set is
added to the dependency graph for each level (lines 3-10). In the second type of
conflicts (see Algorithm 1, function SolveCrossLevelConflicts) the constraints
from a lower level (i.e., service unit level) are translated into the higher con-
straint’s level (i.e., service topology level), by aggregating metrics considering

434 G. Copil et al.

Algorithm 2. Generating the action plan enforcing the constraints
Input: graph - Cloud Service Dependency Graph
Output: ActionPlan

1: while getNumberOfViolatedConstraints(graph) > 0 do
2: for each level in cloudServiceAbstractionLevel do
3: actionSet=evaluateEnabledActions(graph, getViolatedConstraints(graph,level)
4: Action=findAction(actionSet) with max(constraints fulfilled - violated)
5: addAction(ActionPlan,Action)
6: end for
7: end whilereturn ActionPlan

the dependency graph. Since the problem is reduced to same-level conflicting
directives, we use the approach for the same-level conflicting directives and com-
pute a new directive from overlapping conditions. In both (i) and (ii) it can be
the case of conflict for directives that are targeting different metrics which influ-
ence each other (i.e., cost and availability- when availability increases, the cost
increases as well). However, knowing how one metrics’ evolution affects the other
is a research problem itself which we envision as future work.

3.2 Generating Elasticity Control Plans

For generating the action plan, we formulate the planning problem as a maximum
coverage problem: we need the minimum set of actions which help fulfilling
the maximum set of constraints. Since maximum coverage problem is an NP-
hard problem, and our research does not target finding the optimal solution
for it, we choose the greedy approach which offers an 1− 1

e approximation. The
greedy approach shown in Algorithm 2 takes as input the dependency graph and
returns the action plan for enforcing the constraints. The main step of the plan
generation loop (lines 2-9) consists of finding each time the action for fulfilling
the most constraints. For evaluating this, each action has associated the metrics
affected and the way in which it affects them (i.e., scale out with VM of
type x increases the cost with 200 Euro). The number of fulfilled constraints
through action enforcement is defined as the difference between the number of
constraints enforced and the number of constraints violated.

4 Experiments

We have implemented elasticity control as a service based on SYBL engine [1]
for supporting multi-level, cloud service model aware elasticity control of cloud
services4. Figure 4 shows the elasticity requirements and the experimental cloud
service which is a data-oriented application with two main topologies: a data ser-
vicing oriented topology and a data analytics oriented topology. For the YCSB 5

client we generate the workload as a continuous alternation of combinations

4 Prototype, full paper and further details: http://www.infosys.tuwien.ac.at/
research/viecom/SYBL/index.html

5 https://github.com/brianfrankcooper/YCSB/wiki

http://www.infosys.tuwien.ac.at/research/viecom/SYBL/index.html
http://www.infosys.tuwien.ac.at/research/viecom/SYBL/index.html
https://github.com/brianfrankcooper/YCSB/wiki

Multi-level Elasticity Control of Cloud Services 435

Table 1. Cost and execution time for Data Service Topology units

Configuration Controllers DB Nodes Total execution time Cost
Config1 1 3 578.4 s 0.48
Config2 1 6 472.1 s 0.91
Config3 2 2 382.4 s 0.42
Config4 3 7 372.2 s 0.72

Fig. 4. Current cloud service structure and elasticity directives

Fig. 5. Metrics (CPU usage, cost and latency) and elasticity actions for service units
in Data Service Topology

of the enumerated types of workloads run in parallel. The Hadoop cluster to
processes large data-sets using Mahout machine learning library6.

For reflecting the importance of higher level elasticity control in addition
to the obvious low level one, Table 1 presents performance and cost data on
different Data Service Topology configurations. We assume each virtual machine
costs 1 EUR/hour. Although scale out actions at service unit level do manage
to increase performance (i.e., Config2 vs. Config1 increase in performance of
18.37%), they also enable a considerable cost increase (90 % increase in costs
for Config2 vs Config1). In contrast with this action level, a scale out action
on Cassandra topology (Config3) offers a performance improvement in time
of 33.88% over Config1, and a cost improvement of 12.03%. This is due to

6 http://mahout.apache.org/

http://mahout.apache.org/

436 G. Copil et al.

the fact that more controllers also increase the parallelism of requests, eliminate
bottlenecks and facilitate the workload to finish in less time. However, when
considering the difference of performance and cost between configurations 3 and
4, it is obvious that the dimension of the cluster and the number of clusters
necessary are strongly dependent on the workload characteristics.

Figure 5 shows how the elasticity control engine can scale the Data Service
Topology both at service unit and at service topology level, when directives
shown in Figure 4 require such actions (e.g. scale out for Cassandra DB fixing
”Co4” and scale out for Cassandra topology fixing ”Co4” and ”Co7”).

5 Conclusions and Future Work

We have presented an elasticity control system which enables multi-level
specification of elasticity requirements and execution of automatic elasticity of
cloud services.

With cross multi-level elasticity control capabilities, cloud providers could sell
elasticity as a service to cloud consumers, allowing application code designers
to specify elasticity in a high level manner and enforcing elasticity requirements
for them while cloud consumers can deploy elastic services pre-packed with our
techniques, which will automatically scale application components when needed.

References

1. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an Extensible Language
for Controlling Elasticity in Cloud Applications. In: 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119. IEEE
Computer Society (2013)

2. Kranas, P., Anagnostopoulos, V., Menychtas, A., Varvarigou, T.: ElaaS: An Innova-
tive Elasticity as a Service Framework for Dynamic Management across the Cloud
Stack Layers. In: 2012 Sixth International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), pp. 1042–1049 (July 2012)

3. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. In:
2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 34–41. IEEE Computer Society (2013)

4. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

5. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of Elastic Processes.
IEEE Internet Computing 15(5), 66–71 (2011)

6. IBM: IBM Cloud Computing Reference Architecture v3.0
7. OASIS Group: TOSCA Specification, v1.0 (2013)
8. Tai, S., Leitner, P., Dustdar, S.: Design by Units: Abstractions for Human and

Compute Resources for Elastic Systems. IEEE Internet Computing 16(4), 84–88
(2012)

Reasoning on UML Data-Centric Business

Process Models

Montserrat Estañol1, Maria-Ribera Sancho1,2, and Ernest Teniente1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Barcelona Supercomputing Center, Barcelona, Spain
{estanyol,ribera,teniente}@essi.upc.edu

Abstract. Verifying the correctness of data-centric business process
models is important to prevent errors from reaching the service that
is offered to the customer. Although the semantic correctness of these
models has been studied in detail, existing works deal with models de-
fined in low-level languages (e.g. logic), which are complex and diffi-
cult to understand. This paper provides a way to reason semantically
on data-centric business process models specified from a high-level and
technology-independent perspective using UML.

1 Introduction

Modeling business processes correctly from their early stages is key to the success
of an organization, in order to avoid the propagation of errors to the final service
that is offered to the customer. At the same time, these models should be easy to
understand for the people involved in the process. One way of modeling business
processes is by means of the data-centric approach, in which data plays a key
role. In a nutshell, business artifacts model key business-relevant entities which
are updated by a set of services that implement the business process tasks.

Automated reasoning on data-centric BPM has attracted a lot of research
in recent years and several promising techniques have been proposed [2, 5, 8].
However, all these proposals specify the business process model in some variant
of logic, resulting in a specification that is low-level and complex, and therefore
difficult to understand and unpalatable for business people.

Our work in this paper is aimed at providing semantic reasoning on data-
centric business process models specified from a technology-independent and
high-level perspective using UML/OCL [7]. We then translate the UML speci-
fication into a data-centric dynamic system (DCDS) [2] which can be reasoned
with in order to determine the correctness of the original specification.

2 Basic Concepts

This section presents briefly presents the UML models that we use for the initial
specification and the target language that provides the reasoning capabilities.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 437–445, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

438 M. Estañol, M-R. Sancho, and E. Teniente

2.1 UML Data-Centric Business Process Models

We assume that each dimension of the BALSA framework used to model a data-
centric BPM is represented by means of UML and OCL, as proposed in [7].

Business Artifacts. Business artifacts are intended to hold all the information
needed to complete business process execution. We represent business artifacts
by means of UML class diagrams. Figure 1 shows the UML class diagram of our
running example which summarizes a generic process of lending a book from a
library. CopyRequest is the key business artifact in this process since it records
the information regarding copies of books requested by the users. A CopyRequest
may be either a Reservation or a Loan. The rest of the classes in the diagram are
those business artifacts required to hold all the information necessary to request
a copy of a book: User, Book and Copy (of a book).

 isbn : Natural

 title : String

 author : String

 publicationDate : Date

 callNo : String

 publisher : String

 edition : Natural

Book

 id : String

 name : String

 address : String

 telephone : Natural

User

 barcode : Natural

Copy

 date : Date

Reservation

 startDate : Date

 dueDate : Date

Loan

CopyRequest

type

1..*

1

0..40..12

{disjoint,complete}

CopyRequest

^ has

Fig. 1. Class diagram for a library

Reservation Loan

Reserve Book [success] Get Book on a Loan [success]

Cancel Reservation

Pick Up Book [success]

Return Book

Fig. 2. State machine diagram of
CopyRequest

The additional integrity constraints for Figure 1 are shown below.

1. Key constraints: Book -> ISBN, User -> id, Copy -> barcode.
2. A Copy may not be in more than three CopyRequests of subtype Reservation.
3. A Copy may not be in more than one CopyRequests of subtype Loan.

Lifecycle. The lifecycle of a business artifact states the key, business-relevant,
stages in the possible evolution of the artifact. We represent lifecycles through
UML state machine diagrams. Figure 2 shows the lifecycle of the main artifact
in our example, CopyRequest. A CopyRequest is created as a Reservation or
as a Loan, depending on whether the user has asked to reserve a copy of a
book or to get it on a loan. When a Reservation is picked up by the user, then
the CopyRequest becomes a Loan. Finally, a CopyRequest is deleted when the
reservation is canceled or the book on loan is returned.

Associations. Transitions in the UML state machine diagram are decomposed
into several tasks that must be performed in order for the transition to take
place. Associations are used to establish the conditions under which these tasks
can be executed and we represent them in activity diagrams. Therefore, we will
have one such diagram for each transition. Figure 3 shows the activity diagram

Reasoning on UML Data-Centric Business Process Models 439

Pick Up Book

R
es

er
v.

Lo
an

Check Correct
Reservation

Create Loan
for Book

<<participant>>
<<succeed>>

[not null]

[null]
<<fail>>

Fig. 3. Activity diagram of Pick
Up Book

action CreateLoanForBook (r: Reservation)
localPost: r.oclIsTypeOf(Loan) and

r.startDate=today() and
r.dueDate=getDueDate() and not
r.oclIsTypeOf(Reservation)

Listing 1. Code for service
CreateLoanForBook

corresponding to PickUpBook. First of all, it must be checked whether the Reser-
vation provided by the user is correct and that the copy is available. If it is, the
Loan for the book is created and the transition ends successfully. Otherwise, the
transition cannot take place.

Services. A service (or task) encapsulates an atomic unit of work meaningful to
the business process. The execution of services makes business artifacts evolve.
We use OCL operation contracts (defined by means of a precondition and a
postcondition) to state their effect. Listing 1 shows the OCL operation contract
for CreateLoanForBook, stating how the Reservation becomes a Loan.

2.2 Data-Centric Dynamic Systems

A relational data-centric dynamic system (DCDS) is a tuple S = 〈D,P〉, where D
corresponds to the data layer and P to the process layer. More specifically, the
data layer D is defined as a tuple D = 〈C,R, E ,I0〉, such that C is a set of values,
R is a database schema containing a finite set of tables, E is a finite set of equality
constraints and I0 represents the initial instance of the database schema.

On the other hand, the process layer is a tuple P = 〈F ,A, �〉 such that:

– F is a finite set functions. They represent the interface to external services.
– A is a finite set of actions. They are in charge of evolving the data layer.

They are executed sequentially and are atomic. An action α ∈ A has the
form α(p1, ..., pn) : {e1, ..., em}, where:
• α is the action’s name and p1, ..., pn represent input parameters.
• {e1, ...em} is a set of effects. They take place simultaneously.

– � is a finite set of condition-action rules, defined as Q �→ α. Q is a first-order
query over R. Its free variables are the parameters of α. α is an action in A.

3 Translating a UML Data-Centric BPM to a DCDS

This section presents the translation process from an initial model defined in
UML/OCL into a Data-centric Dynamic System (DCDS). As it may be seen
in Table 1, each of the UML models (columns) is translated into one or more
elements in the DCDS (rows). Notice that the database schema is used to hold
static information, not only from the class diagram, but also from the state ma-
chine and the activity diagram. Condition-action rules are used to represent the
dynamic evolution in both the state machine and the activity diagram, whereas
actions are the ones in charge of making the actual changes in the system.

440 M. Estañol, M-R. Sancho, and E. Teniente

Table 1. Overview of the elements involved in the translation

Class Diagr. State Mach. Diagr. Act. Diagr. Op. Contracts

DB Schema DBo DBi DBf

CA Rules CAo CAi CAf

Actions Ao Af

3.1 Business Artifacts in a Class Diagram

As the business artifacts hold static information and are represented in a class di-
agram, we will translate the diagram into a database schema, and the remaining
integrity constraints will be translated into equality constraints. This translation
is performed according to well-known techniques of database design [12].

Figure 4 shows the database schema corresponding to the class diagram in
Figure 1. There is one table for each class; class identifiers correspond to the pri-
mary key1 of the corresponding tables. Associations are represented by adding
attribute(s) to the linked tables or by creating an additional table for the associ-
ation itself. Finally, the class hierarchy between CopyRequest with Reservation
and Loan in the original example has been implemented through foreign keys
from the subclasses to the superclass. The remaining constraints (disjoint and
complete, shown in the class diagram, and textual constraints numbers 2 and
3), should be translated into equality constraints. Due to space limitations, we
cannot show their translation here.

Book

PK isbn

 title
 author
 publicationDate
 callNo
 publisher
 edition

Copy

PK barcode

FK1 isbn

User

PK id

 name
 address
 phone

Reservation

PK,FK1 barcode
PK,FK1 userId

 date

Loan

PK,FK1 barcode
PK,FK1 userId

 startDate
 dueDate

CopyRequest

PK,FK2 barcode
PK,FK1 userId

Fig. 4.Translation of the class diagram
into a database schema

CopyRequest

PK barcode
PK userId

CRStatus

PK,FK1 barcode
PK,FK1 userId

 state
 transition

PickingUpBook

PK,FK1 barcode
PK,FK1 userId

 lastTask

ReturningBook

PK,FK1 barcode
PK,FK1 userId

 lastTask

CancelingReservation

PK,FK1 barcode
PK,FK1 userId

 lastTask

lastTask is
either ‘none’

or
‘CheckedRes’

state is
either

‘Reservation’
or ‘Loan’

transition is
either ‘none’,
‘Returning’,

‘PickingUp’ or
‘Canceling’

Fig. 5. Keeping track of the status of
CopyRequest and Pick Up Book

3.2 Lifecycles in a State Machine Diagram

The translation of the state machine diagram into a DCDS requires the following:
adding a table to the database schema, defining CA rules, and specifying the
details of the actions in the previously defined CA rules. The table that is added

1 Primary and foreign keys should be defined as equality constraints in the DCDS.
However, for the sake of understanding, we show them graphically in the figure.

Reasoning on UML Data-Centric Business Process Models 441

to the database schema is used to keep track of the status of the artifact BA
associated to the state machine diagram. It will contain the primary keys of BA
and two attributes: state and transition. Attribute state represents the current
state of the artifact, and transition indicates, if any, the transition whose effects
the artifact is under. Attribute transition is used to prevent the execution of two
transitions simultaneously. See Figure 5 for an example.

For each transition in the state machine diagram we will define a CA rule.
These rules will indicate the actions which may be carried out when the artifact
is in a certain state by referring to the BAStatus table. As transitions that create
the artifact have no source state, the left-hand side of the corresponding rules will
indicate that they can be executed anytime using condition true. The action’s
parameters will be the primary key of the business artifact for which the state
machine diagram is defined, except for actions that create the business artifact,
which will have none.

For instance, rule 1 states that GetBookOnALoan can be executed anytime.
Rule 2 states that, to execute the action PickUpBook, the artifact must be in
state Reservation and it cannot be undergoing any transition.

true �→ GetBookOnALoan() (1)

CRStatus(bc, id, ‘Reservation’, ‘none’) �→ PickUpBook(bc, id) (2)

3.3 Associations in an Activity Diagram

In order to translate the associations, for each activity diagram we will need to
define an additional DB schema table and several CA rules. The table will be used
to keep track of the last task (or service) that has been executed in the activity
diagram by means of attribute lastTask. In addition, it will reference BAStatus
and will include BAStatus ’s primary key. Figure 5 shows the additional tables
we require in our example.

Now that we have added these tables, we are able to specify the effect of the
DCDS actions required by the condition-action rules that we defined for the state
machine diagram. First of all, they need to insert a new element in the table corre-
sponding to the activity diagram of its transition to indicate that the execution of
the activity diagram can begin. They should also update the information in BAS-
tatus to indicate that a transition is taking place. Lastly, they should copy the rest
of the contents of every table, as the semantics of the DCDS establish that con-
tent that is not explicitly copied is lost [2]. Action PickUpBook(bc,id) is specified
below. Although not shown, it would also copy the contents of all tables except
CRStatus with barcode bc and userId id :

true� PickingUpBook(bc, id, ‘none’)

CRStatus(bc, id, ‘Res.’, ‘none’)� CRStatus(bc, id, ‘Res.’, ‘PickingUp’)

Finally, condition-action rules will be used to establish when a service can be
executed. The condition of each rule will indicate the service that must have

442 M. Estañol, M-R. Sancho, and E. Teniente

been executed for the next service to take place (referencing the table created
earlier) and will include the precondition of the service that may be executed (a
service cannot be executed if the precondition is false).

Moreover, activity diagrams may include decision nodes and guard conditions
that restrict the execution of the next service. We will only deal with decision
nodes that depend on the result of the previous service and in which one of the
conditions causes the end of the execution of the diagram so that they do not
require additional conditions on the CA rule.

According to these rules, the translation of transition PickUpBook results
in the CA rules below. The two actions correspond to the atomic tasks of the
activity diagram. The first rule indicates that no task has been performed yet,
while the second one will only fire if the reservation has been correctly checked.

PickingUpBook(bc, id, ‘none’) �→ CheckCorrectReservation(bc, id)

PickingUpBook(bc, id, ‘CheckedRes’) �→ CreateLoanForBook(bc, id)

3.4 Services (Tasks) in Operation Contracts

The evolution of business artifacts in our framework is driven by the specification
of the atomic services (tasks) that are carried out in an activity diagram, while
this is achieved by actions in DCDS. Therefore, it naturally follows that we
should translate our tasks into DCDS actions.

A DCDS action α has the form α(p1, ..., pn) : {e1, ..., em}. In our translation,
p1, ..., pn will correspond to the primary keys of the main business artifact which
is being modified. DCDSs use functions to represent input from a user and
they can only be a part of ei. Because of this, we do not include the oper-
ation’s input parameters as part of the action’s parameters pi. For instance,
for service CreateLoanForBook, the action’s signature will be the following:
CreateLoanForBook(barcode, id).

e1, ..., em are the effects of the DCDS action. Each ei has the form q+i ∧Q−
i � Ei.

q+i ∧Q−
i represents the information that must be in the database schema in order

for the Ei to take place. Those changes that are made regardless of any condition
will have true as their q+i ∧Q−

i .
In order to translate the OCL postconditions into logic we will base our work

on [10]. The authors identify a set of OCL constructs that indicate when a class,
relationship or attribute is created, deleted or modified. Bearing this in mind,
the translation of these constructs into a set of effects ei has the following form:

– Insertion:
true� TableINSi(...)

– Deletion:
Tablei(pk

′
i, ...) ∧ ¬(pki = pk′

i)� Tablei(pk
′
i, ...)

TableRELj (pk
′
j , ...) ∧ ¬(pkj = pk′

j)� TableRELj (pk
′
j, ...), where TableREL refers

to tables which are affected by the deletion of an element.

Reasoning on UML Data-Centric Business Process Models 443

– Attribute change:
TableATTi(pk, ..., xj)� TableATTi(pk, ..., yj)

TableATTi(pk
′, ...) ∧ ¬(pk = pk′)� TableATTi(pk

′, ...)

If any of the attributes/columns in these tables are given the value of input
parameters in the operation contract, then the translated action will include
the corresponding call to a function in their translation. We also need to make
additional changes to the tables to reflect the evolution through the activity
diagram. There are two cases: either the service is the last one in the activity
diagram, or not.

If it is the last service in the activity diagram AD, it will delete the row in
the table that corresponds to the activity diagram AD with the primary key
of the artifact that has been manipulated. It will also change table BAStatus:
BAStatus(pk, oldState, x) � BAStatus(pk, newState, ‘none’). If it is not the last
service in the activity diagram AD, it will change the corresponding row in the
table that corresponds to activity diagram AD, indicating that the service has
already been executed.

Finally, we need to add rules to copy the contents of all non-modified tables.
In our example, the translation of service CreateLoanForBook results in:

true� Loan(barcode, id, today(), dueDate()) (3)

Reservation(barcode′, id′, x1) ∧ ¬(barcode = barcode′ ∧ id = id′)

� Reservation(barcode′, id′, x1)
(4)

CRStatus(barcode, id, x1, x2)� CRStatus(barcode, id, ‘Loan’, ‘none’) (5)

CRStatus(barcode′, id′, x1, x2 ∧ ¬(barcode = barcode′ ∧ id = id′)

� CRStatus(barcode′, id′, x1, x2)
(6)

PickingUpBook(barcode′, id′, x) ∧ ¬(barcode = barcode′ ∧ id = id′)

� PickingUpBook(barcode′, id′, x)
(7)

First of all, the translated action deletes the Reservation (4) and turns it into
a Loan (3). Moreover, as CreateLoanForBook is the last service in its activity
diagram it updates CRStatus (eqs. (5) and (6)) and deletes the corresponding
row in PickingUpBook (7). Due to space limitations, we do not show the rules
that copy the content of the rest of tables.

4 Reasoning on a UML Data-Centric BPM

After obtaining the DCDS, it can be used to reason semantically (i.e. check
if the model satisfies the business requirements) about the original UML/OCL
specification. Comparing the answers provided by the DCDS with those expected
will help ensure that the model represents the required behavior. We assume that
the model is structurally correct.

Given a DCDS S = 〈D,P〉, with a data layer D = 〈C,R, E ,I0〉 (notice that it
includes an initial database instance I0) and a process layer P = 〈F ,A, �〉, and a

444 M. Estañol, M-R. Sancho, and E. Teniente

property Φ expressed in μLP (a variant of μ-calculus), we can check whether S
satisfies Φ by using the technique in [2]. For instance, in our example, we could
check if a user is forbidden to have two simultaneous reservations of different
copies of the same book. Formally2:

νX.(∀bc1, bc2, id, isbn1, isbn2.Reservation(bc1, id) ∧Reservation(bc2, id)∧
Copy(bc1, isbn1) ∧ Copy(bc2, isbn2) ∧ (bc1 �= bc2)

→ (isbn1 �= isbn2)) ∧ [−]X

In this case, we would get a negative answer, because the property is not
guaranteed in the process’s specification. Therefore, the designer should make the
necessary corrections (he has probably forgotten to add an integrity constraint).

5 Related Work

When it comes to semantic reasoning on data-centric BPM, many of the existing
approaches are close to [2], our target system of representation. The distinctive
characteristic of [1] is that it uses a Knowledge and Action Base defined in a
variant of Description Logic to represent the artifacts. [3] maps an ontology, rep-
resenting the artifacts, to a DCDS in order to verify certain properties expressed
in a variant of μ-calculus. [5] uses variables to represent artifacts, which are
updated by services defined in first-order logic. The properties that the model
should fulfill are defined in LTL-FO. [8] goes as far as to define a specification
language, ABSL, based on CTL, to specify the artifacts’ lifecycle behavior and
checks the fulfillment of properties defined in ABSL. In contrast to our work,
none of these proposals provide a higher level of representation for the dynamic
aspects of the DCDS, and CTL and LTL-FO are not as powerful as μ-calculus.

On the subject of reasoning on UML diagrams, research has either focused
on one particular type of diagram or on the consistency between some of them.
Examples of approaches that fall in the first category are [10, 11] for the class
diagram, [4] for the state-machine diagram or [6] for the activity diagram.

[9] reviews approaches in the second category. About half of the analyzed
works deal with semantic consistency across different UML models; however,
none of them deal with class, activity, state machine diagrams and operation
specifications at the same time.

In summary, existing data-centric BPM proposals that deal with reasoning do
not use high-level languages to represent the models. On the other hand, none
of the proposals that reason on UML diagrams are able to handle at the same
time the different diagrams we need for modeling the four BALSA dimensions.

6 Conclusions

Starting from the UML models we used in [7] to represent business process
models from a data-centric perspective, in this paper we have shown a way

2 In order to simplify the definition of the properties we have abused notation and
included only the minimum number of variables representing each table’s attributes.

Reasoning on UML Data-Centric Business Process Models 445

to translate them into a data-centric dynamic system (DCDS) [2] in order to
determine their semantic correctness before they are put into practice. UML is
a standard, high-level and widely used language, and consequently it is easier to
understand than logic. DCDSs, on the other hand, are grounded on logic, and
therefore it is possible to perform automatic reasoning on them in order to check
the correctness of the model. Moreover, DCDSs are able to represent and deal
with the static and dynamic components, including non-deterministic services.

To the best of our knowledge, our proposal is the first to show a way to reason
with data-centric process models defined at a high level of abstraction. Therefore,
it bridges the gap between specifications defined in a high-level language but
which are not possible to verify, and specifications which can be checked but are
low-level and difficult to understand.

Acknowledgments. This work has been partially supported by the Ministe-
rio de Ciencia e Innovación under projects TIN2011-24747 and TIN2008-00444,
Grupo Consolidado, the FEDER funds and Universitat Politècnica de Catalunya.

References

1. Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis,
R., Felli, P.: Description logic knowledge and action bases. J. Artif. Intell. Res
(JAIR) 46, 651–686 (2013)

2. Bagheri Hariri, B., et al.: Verification of relational data-centric dynamic systems
with external services. In: PODS, pp. 163–174. ACM (2013)

3. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-
based governance of data-aware processes. In: Krötzsch, M., Straccia, U. (eds.) RR
2012. LNCS, vol. 7497, pp. 25–41. Springer, Heidelberg (2012)

4. Choppy, C., Klai, K., Zidani, H.: Formal verification of UML state diagrams: a
Petri net based approach. ACM SIGSOFT Soft. Eng. Notes 36(1), 1–8 (2011)

5. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Transactions on Database Systems 37(3), 1–36 (2012)

6. Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15(1), 1–38 (2006)

7. Estañol, M., Queralt, A., Sancho, M.-R., Teniente, E.: Artifact-centric business
process models in UML. In: Yao, S.B., Weldon, J.L., Navathe, S., Kunii, T.L.
(eds.) Data Base Design Techniques 1978. LNCS, vol. 132, pp. 292–303. Springer,
Heidelberg (1982)

8. Gerede, C.E., Su, J.: Specification and verification of artifact behaviors in business
process models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 181–192. Springer, Heidelberg (2007)

9. Lucas, F.J., Molina, F., Álvarez, J.A.T.: A systematic review of UML model consis-
tency management. Information & Software Technology 51(12), 1631–1645 (2009)

10. Queralt, A., Teniente, E.: Reasoning on UML conceptual schemas with operations.
In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp.
47–62. Springer, Heidelberg (2009)

11. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)

12. Teorey, T., Lightstone, S., Nadeau, T.: Database Modeling and Design, 4th edn.
Morgan Kaufmann, San Francisco (2006)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 446–455, 2013.
© Springer-Verlag Berlin Heidelberg 2013

QoS-Aware Multi-granularity Service Composition
Based on Generalized Component Services

Quanwang Wu, Qingsheng Zhu, and Xing Jian

Computer College, Chongqing University, Chongqing, China
{wqw,qszhu,jx}@cqu.edu.cn

Abstract. QoS-aware service composition aims to maximize overall QoS val-
ues of the resulting composite service. Traditional methods only consider ser-
vice instances that implement one abstract service in the composite service as
candidates, and neglect those that fulfill multiple abstract services. To over-
come this shortcoming, we present the concept of generalized component ser-
vices to expand the selection scope to achieve a better solution. The problem of
QoS-aware multi-granularity service composition is then formulated and how to
discover candidates for each generalized component service is elaborated. A
genetic algorithm based approach is proposed to optimize the resulting compo-
site service instance. Empirical studies are performed at last.

1 Introduction

Service composition is staged at two phases: at first, the abstract composite service,
consisting of a collection of abstract services orchestrated by kinds of workflow pat-
terns, is defined, and then at running time, it is instantiated and executed by binding
abstract services to concrete ones. Since many service instances could provide equiva-
lent functionality with different Quality of Service (QoS) values, an efficient optimiza-
tion approach for automatic service composition is required to optimize the overall QoS
and meet global QoS constraints. This so-called QoS-aware service composition prob-
lem is a hot research topic and a lot of efforts have been devoted to it in recent years.
Zeng et al. [1] use integer programming to find the optimal solution but the approach
suffers from poor scalability due to its exponential computational complexity. Canfora
et al. [2] present a genetic algorithm based approach to enhance the efficiency. The
overall QoS reflected by the fitness value of the genome increases from generation to
generation and the best one is returned as the solution. Other technologies are also ap-
plied to tackle this problem such as skyline query [3] and ant colony optimization [4].

However, current methods mostly lack flexibility of selection. That is, they only
consider service instances that implement one abstract service in the composite ser-
vice as candidates, and neglect those that fulfill multiple abstract services. To illu-
strate, consider a composite service consisting of three abstract services s1, s2 and s3,
which are executed in sequence. Assume there are service instances si1, si2 and si3
which fulfill the functionality of services s1, s2 and s3, respectively, and meanwhile
there exists another service instance si4, which implements the functionalities of s1
and s2 in sequence. Current composition approaches will limit candidates to si1, si2

 QoS-Aware Multi-granularity Service Composition Based on GCS 447

and si3, but not consider si4 even if its QoS is better than the aggregated QoS of si1
and si2, as the process definition of the composite service does not contain a single
service that can accommodate si4.

To the best of our knowledge, only a few works have tried to overcome this short-
coming. Barakat et al. [5] utilize the planning knowledge hierarchy to allow the ex-
pression of multiple decompositions of tasks, but how to construct the hierarchy
among tasks automatically is not mentioned. Zhou et al. [6] present the problem of
QoS-based multi-granularity service selection, and propose an integer programming
based method. They only consider composite services orchestrated in the sequence
pattern and do not explain how to discover candidates in various granularities. Feng et
al. [7] study how to produce a new service composition plan with better QoS, while
preserving its original behaviors, by replacing the service with another service or a set
of services of finer or coarser grain.

In this paper, we present the concept of generalized component services (GCSs) to
expand selection scope for service composition to achieve a better solution. The GCS
is defined in a semantic manner, and the QoS-aware multi-granularity service compo-
sition model is formulated on the basis of this concept. In this model, any service
instance which can fulfill partial functionality of the composite service with the same
execution sequence can be discovered and employed for composition. A genetic algo-
rithm based approach is presented to tackle this optimization problem and how the
proposed approach outperforms the traditional one is described.

2 QoS-aware Multi-granularity Service Composition Model

2.1 Preliminaries

The functionality description of a semantic service can be denoted as a quadruple (I,
O, P, E), such as in OWL-S1, where:

(1) I and O are the inputs and outputs of the service. I and O consist of one or
multiple parameter types and a parameter type is associated to a concept of a shared
ontology. Two types C1 and C2 can either be equal (C1≡C2), in a subclass relationship

(C1 ⊑C2) or not related.
(2) P is the precondition which must hold before service execution and E is the

effect which holds after service execution. P and E can be expressed by rule syntaxes
such as SWRL2.

Apart from the functional description, a service instance3 owns a non-functional
description: QoS. QoS attributes can be classified into two categories: positive
and negative (denoted as Q+ and Q-). For the former, larger values indicate better
performance (e.g. reliability and availability) while for the latter, smaller values indi-
cate better performance (e.g. price and response time).

1 http://www.w3.org/Submission/OWL-S
2 http://www.w3.org/Submission/SWRL
3 In our discussion the term service refers to the abstract functionality and the term service can-

didate or instance refers to a concrete service provided to be consumed (e.g. web service).

448 Q. Wu, Q. Zhu, and X. Jian

Definition 1: Composite Service. A composite service is a value-added service,
formed as a number of component services orchestrated according to a set of control-
flow and data-flow dependencies.

From the view of process orchestration, a composite service can be represented as
a directed acyclic graph (VG, EG), where, VG is the set of vertices including services,
gateways, the source and sink vertices, and EG is the set of edges including control
edges and data edges. Gateways encode the routing logic of control-flow dependen-
cies. A split gateway has a single incoming control edge and multiple outgoing con-
trol edges, while a join gateway has multiple incoming control edges and a single
outgoing control edge. We assume the process orchestration is structured, i.e., for
each split gateway, there exists a corresponding join gateway merging the forked
flows (e.g. XOR-join to XOR-split, AND-join to AND-split).

Control edges represent logical dependencies between services by specifying the
order of interactions, and together with gateways, control edges determine the execu-
tion flow of the composite service. At the same time, data edges represent data de-
pendencies between services and a data edge is a 3-tuple (sfrom, sto, C) meaning that
the service sfrom supplies the concept C to sto. This supply relation holds, iff:

(. ,) (. ,)from too s O o C i s I C i∃ ∈ ∧ ∃ ∈

To ensure uniqueness of traversal sequence on the vertices VG in the following sec-
tions, let τ be a topological ordering of VG, which should always be followed during
traversing. Fig. 1 depicts the process orchestration of a composite service for illustra-
tion and the topological ordering τ can be as follows: s1⊕s2s3⊕s4⊗s5s6⊗ (the source
and sink vertices are omitted here).

Fig. 1. Process orchestration of a composite service

Meanwhile, from the view of the functional description, a composite service can
also be represented as (I, O, P, E) like a common service. Each element of the
quadruple can be deduced from component services and the process orchestration.
The data in data edges from the source vertex are the inputs, and the data in data
edges to the sink vertex are the outputs. P can be deduced by aggregating the precon-
ditions of the first-executed services in the composite service, and E can be deduced
by aggregating the effects of the last-executed services. For a concrete composite
service instance, it also has the non-functional attribute QoS and the QoS values are
determined by QoS values of its concrete components and orchestration patterns. The
detailed aggregation functions can be found in [2, 8, 9].

 QoS-Aware Multi-granularity Service Composition Based on GCS 449

2.2 Granularity Model for Service Composition

Definition 2: Generalized Component Service (GCS). A generalized component ser-
vice represents the functionality of a well-formed substructure in the composite ser-
vice and in turn it can be used to compose this composite service as a component. The
substructure can contain one or more services and it is well-formed if:

(1) all the services in it are connected via gateways and control edges;
(2) for each service, all its data edges are included;
(3) for any split gateway contained by the substructure, its corresponding join ga-

teway is also included and vice versa; furthermore, all the vertices between them are
included as well.

The first two requirements are intuitive and the reason to add the third one is to ob-
viate GCSs that can not be used to compose the original composite service due to the
violation of the control-flow dependencies. Take the substructure of s1 and s2 ex-
ecuted in sequence in Fig. 1 as an example: because of lack of s3, which is also be-
tween the split & join gateways like s2, this substructure is not well-formed.

GCS can also be expressed as (I, O, P, E), and each element can be deduced from
the included services and the process orchestration. For example, if the source (sink)
vertex is in the substructure, the data in data edges from the source (sink) vertex are
the inputs (outputs). Otherwise, the data in data edges which have no starting (ending)
vertices are the inputs (outputs).

For two GCSs from a specific composite service, if their included services are ex-
actly the same, their functionality will be also completely the same according to the
definition and requirements of GCSs. Thus, for a GCS, its set of services can be uti-
lized as its identity and representation. Examples of GCSs in Fig. 1 are as follows:
gcs1 = {s2, s3}, gcs2 = {s1, s2, s3}, gcs3 = {s4, s5, s6}, gcs4 = {s1}. There are always
many ways to decompose a composite service into multiple GCSs. For example, the
composite service in Fig. 1 can be decomposed into gcs2 and gcs3, or into gcs4, gcs1
and gcs3, and so on.

Definition 3: GCS Granularity. The granularity of a GCS is defined as the number of
services it contains and it is denoted as gra(GCS). For example, gra(gcs1) = 2,
gra(gcs2) = 3, gra(gcs4) = 1. A GCS is called fine-grained if its granularity is equal to
1, and otherwise it is called coarse-grained.

2.3 Problem Formulation

The target for QoS-aware service composition is to optimize overall QoS of the re-
sulting composite service. The simple additive weighting (SAW) is adopted as the
QoS utility function to facilitate ranking of composite service instances in terms of
QoS. According to SAW, the QoS utility of a composite service instance csik can be
calculated in Eq. 1, where, wt is the preference weight and qt(csik) is the aggregated
value of the tth QoS attribute of csik, and qt,max, qt,min denote the minimal and maximal
possible aggregated values of the tth QoS attribute, respectively.

,max ,min

,max ,min ,max ,min

() ()
() . .

t t

t t k t k t
k t t

q Q q Qt t t t

q q csi q csi q
U csi w w

q q q q− +∈ ∈

− −
= +

− − (1)

450 Q. Wu, Q. Zhu, and X. Jian

Besides, users may impose global constraints on QoS attributes, e.g., the reliability
should be larger than 95%. Hence, the QoS-aware multi-granularity service composi-
tion problem can be summarized as a two-step process:

1. When the user request for a specific composite service is received, the composi-
tion engine first identifies all the GCSs of the composite service, and then starts to
discover instances for each GCS through the service registry using functional match-
ing based on semantic descriptions;

2. With a number of service instances available for each GCS, the composition en-
gine instantiate the composite service to a concrete one who is the optimal in terms of
QoS utility and satisfies user’s global QoS constraints.

In this context, the traditional QoS-aware service composition problem can be re-
garded as a special kind of our problem, where, granularity of GCSs is limited to 1.

3 Identification of GCSs and Discovery of Service Instances

In order to discover service instances in various granularities for the composite ser-
vice CS, all its generalized component services should be first identified. Since in a
GCS the set of services can be utilized as its indicator, an intuitive method is to enu-
merate all the combinations of services in CS and check whether requirements of
GCSs are satisfied. However, the time complexity of this method is exponential, as
the number of all the combinations is 2n provided that the number of services is n.

Algorithm 1 constructGCS(CS,startId,endId,GCSSet)
for i=startId; i≤endId; i++ do
 v1=CS.VG.get(i,τ);
 if(isService(v1)) then
 constructRest(CS,i+1,endId,GCSSet,v1);
 else if(isSplit(v1)) then
 nestDepth=0; branchStart=i+1; SComb.clear();
 for i=i+1; i≤ endId; i++ do
 v2=CS.VG.get(i,τ);
 if(isService(v2)) then
 SComb.append(v2);
 if(nestDepth==0 && pointToJoin(v2)) then
 constructGCS(CS,branchStart,i,GCSSet);
 branchStart=i+1;
 end if
 else if(isSplit(v2)) then
 ++nestDepth;
 else if(isJoin(v2) && nestDepth--==0) then
 break;
 end if
 end for
 constructRest(CS,i+1,endId,GCSSet,SComb);
 end if
end for

 QoS-Aware Multi-granularity Service Composition Based on GCS 451

Hence, we use the three requirements to construct GCSs, which is shown in Algo-
rithm 1. constructGCS is a recursive function, startId and endId represent the indexes
of the first and last vertex in CS, respectively, and GCSSet stores the constructed
GCSs. The function first traverses vertices of CS from startId to endId successively
following the topological ordering τ. If the vertex v1 is a service, the function con-
structRest is invoked, which constructs GCSs whose initial part is fixed to v1. If it is a
split gateway, the traverse of vertices is continued in order to find each branch be-
tween this pair of split & join gateways. Inside this pair of gateways there may be
nested with other split gateways, and thus nestDepth is used to measure the depth of
nesting. It ascends when another split gateway is encountered and descends when the
join gateway is encountered. A branch is determined when the outgoing control edge
from the vertex v2 points to a join gateway and nestDepth is equal to 0, and then the
function recurs for each branch. When the corresponding join gateway to this split
gateway is found, this inner traverse breaks. For all the services between this pair of
split & join gateways, stored in SComb, constructRest is also invoked.

The function constructRest(CS, startId, endId, GCSSet, SComb) focuses on how to
construct the rest part of a GCS when its initial part is fixed to the service combina-
tion SComb. Since the current SComb is a well-formed GCS itself, it is added into
GCSSet first. Then vertex traverse is started from startId to endId successively, also
following τ. When the vertex is a service, it is appended into SComb, and when the
depth of nest is equal to 0 and the vertex is a join gateway or a service, SComb is
added to GCSSet as a well-formed GCS.

After GCSSet is identified, the composition engine looks up for instances from the
registry for each GCS in it. A service instance si is categorized as a candidate of a gcs,
if its functionality exactly matches gcs with respect to logic-based equivalence of
their formal semantics [10]. The matching in terms of inputs and outputs exploits
defined semantics of the associated concepts as values of service parameters and the
exact matching between si and gcs is formally expressed as:

1 2 1 2 1 2 1 2. , . : . , . :i si I i gcs I i i o gcs O o si O o o∀ ∈ ∃ ∈ ≡ ∧ ∀ ∈ ∃ ∈ ≡

The relaxed matching levels in terms of inputs and outputs such as subsuming and
plugging in can be considered depending on the application requirement. Besides, the
matching in terms of the precondition and effect can also be performed if necessary
[11]. After service discovery, each GCS has a list of service candidates and cnd(gcsi)
is used to denote all the discovered instances of gcsi.

4 Genetic Algorithm for Optimizing Service Composition

Ahead of optimization, we first present the concept of generalized candidates to asso-
ciate instances for GCSs in various granularities to services in the composite service.

Definition 4: Generalized candidates. Let gs(si) denote the set of GCSs in GCSSet,
whose first-traversed service is si. The generalized candidates gcnd(si) of si represents
the union set of cnd(gcsk) whose GCS gcsk belongs to gs(si). Formally, it is defined as:

()
() ()

k igcs
i k

gs s

gcnd s cnd gcs
∈

=

452 Q. Wu, Q. Zhu, and X. Jian

Therefore, gcnd(si) contains candidates in varying granularities for si and the gra-
nularity of the candidate determines how many services from si in the composite
service it can fulfill. Let si,j represent the jth candidate in gcnd(si). For example, if
gra(si,1) = 1, it indicates si,1 can only fulfill the functionality of si, and if gra(si,1) = 3,
si,1 can fulfill not only the functionality of si, but also that of si+1 and si+2. Fig. 2 de-
picts services in Fig. 1 associated with their generalized candidates.

Fig. 2. Services and their generalized candidates

4.1 Genetic Encoding and Fitness Function

A concrete composite service instance is encoded as a genome for our problem. The
genome is represented by an array with its length equal to the number of component
services and the ith entry in the array refers to the selection result of the ith service.
That is to say, given that the value of the ith entry is j, it indicates that si,j is selected to
execute si.

When a coarse-grained instance si,j from gcnd(si) with the granularity of k is se-
lected for si, it can not only fulfill the functionality of si, but also fulfill the functional-
ity of si+1, si+2, …, si+k-1. In this case, it is not necessary to select instances for those
services, and the corresponding genes in the genome are filled with the pound sign
“#” to indicate that these services have been implemented. Based on this representa-
tion rule, each service in the composite service is implemented by and only by one
service instance in the composite service instance represented by a valid genome. Fig.
3 depicts an example of the genome. In the composite service instance represented by
this genome, there are five service instances: s1,3, s2,9, s4,2, s5,5, s6,4, where s2,9 imple-
ments the tasks of s2 and s3, and s6,4 implements the tasks of s6, s7 and s8.

 Fig. 3. An example of the genome Fig. 4. An example of crossover

The fitness function measures the fitness of the represented solution. As clarified in
Subsection 2.3, the fitness of a composite service instance csik relies on its QoS utili-
ty, and if QoS constraints are satisfied. Thus, it is defined as the sum of QoS utility

 QoS-Aware Multi-granularity Service Composition Based on GCS 453

value and penalty for violations of QoS constraints. Eq. 2 is the fitness function,
where pnl is negative, representing the penalty value for one violation, and xt is a
binary value defined in Eq. 3, denoting whether the tth QoS constraint qct is satisfied.

| |

1
() ()

Q

k k tt
F csi U csi pnl x

=
= + × (2)

1 () ()

0
t t k t t t k t

t

if q Q and q csi qc or q Q and q csi qc
x

else

+ − ∈ ≤ ∈ ≥
=

 (3)

4.2 Genetic Operators

To guarantee that the representation rule of coarse-grained instances is always fol-
lowed during the evolution of GA (i.e., to keep the genome valid), we extend each
genetic operator with special adaptation.

Initialization Operator: An empty array with the length equal to the number of ser-
vices is initialized and the random assignment is performed from the first gene to the
last. An instance c from the generalized candidates gcnd(s1) of s1 is randomly selected
and bound to the first gene. If gra(c) ≥ 2, the following gra(c)-1 genes are assigned
with “#”. Then the ith gene (i = 1+gra(c)) is selected to be assigned and this process
loops until the last gene is assigned.

Crossover Operator: For a genome with a length of n, there are totally n-1 splitting
points. However, choosing some of them as splitting points will render the resulting
genome invalid after crossover, and thus in a genome, the genes belonging to the
same coarse-grained service instance should not be split. Let sp1 be the set of feasible
splitting points in parent1, and sp2 for parent2. The splitting points the crossover oper-
ator can use are limited to the intersection of sp1 and sp2. For instance, in Fig. 4, sp1 is
{1, 3, 4, 5, 6}, sp2 is {1, 2, 3, 7}, and thus feasible splitting points is {1, 3}.

Mutation Operator: Traditionally, each gene in the genome is selected and mutated
with the same probability and in this case, coarse-grained service instances will be
more likely to be replaced. Therefore, instead, a service instance is randomly selected
with the same probability from all the service instances contained in the represented
solution. The corresponding genes of the selected instance are then reassigned while
complying with the representation rule.

4.3 Empirical Studies

A composite service with n abstract services is simulated and there are m1/n service
instances for each fine-grained GCS in it, m2 instances totally for all coarse-grained
GCSs of various granularities. Let λ represent the ratio that the number of
course-grained candidates divided by that of fine-grained candidates, i.e., λ=m2/m1.
The QWS dataset [12] is adopted to associate the service candidates. For a candidate
with the granularity of k, k pieces of QoS data randomly selected from QWS dataset
are first aggregated and then the aggregated datum is associated to the candidate.

454 Q. Wu, Q. Zhu, and X. Jian

Fig. 5. Enhanced utility w.r.t. n

We evaluate the effectiveness of the proposed GA by comparing it with the tradi-
tional GA from [2], which only considers instances of fine-grained GCSs as candi-
dates. The effectiveness is measured by using the enhanced percentage of the QoS
utility value in the best solution and it is defined as 1 – utraditionalGA / uGA. Figure 5 de-
picts values of enhanced utilities in three case of λ=0.5, 1 and 2, with n growing from
8 to 18 and m1 set to 5*n. When λ becomes larger, i.e., the number of service in-
stances for coarse-grained GCSs grows, the enhanced utility ascends. This value also
goes up with the increase of n. Our approach outperforms the traditional one because
the selection scope for service composition is expanded.

5 Conclusions

Traditional approaches for QoS-aware service composition lacks flexibility of selec-
tion, as only service instances which have corresponding functionality specified in the
composite service via a single service are considered as candidates. This paper
presents the concept of generalized component services to expand the choice space
for QoS-aware service composition, and then proposes GA to solve the problem. The
effectiveness is shown at last via empirical studies.

References

1. Zeng, L., et al.: QoS-aware middleware for Web Services Composition. IEEE Transactions
on Software Engineering 30(5), 311–327 (2004)

2. Canfora, G., et al.: An approach for QoS-aware service composition based on genetic algo-
rithms. In: Proceedings of GECCO 2005, pp. 1069–1075 (2005)

3. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service
composition. In: Proceedings of WWW 2010, pp. 11–20 (2010)

4. Wu, Q., Zhu, Q.: Transactional and QoS-aware dynamic service composition based on ant
colony optimization. Future Generation Computer Systems 29(4), 1112–1119 (2013)

5. Barakat, L., Miles, S., Poernomo, I., Luck, M.: Efficient multi-granularity service compo-
sition. In: 2011 IEEE International Conference on Web Services, ICWS (2011)

6. Zhou, B., Yin, K., Jiang, H., Zhang, S., Kavs, A.J.: QoS-based selection of multi-
granularity web services for the composition. Journal of Software 6(3), 366–373 (2011)

 QoS-Aware Multi-granularity Service Composition Based on GCS 455

7. Feng, Z., et al.: QoS-aware and multi-granularity service composition. Information Sys-
tems Frontiers 15(4), 553–567 (2013)

8. Jaeger, M.C., et al.: Qos aggregation for web service composition using workflow patterns.
In: International Enterprise Distributed Object Computing Conference, pp. 149–159 (2004)

9. Xia, Y., Luo, X., Li, J., Zhu, Q.: A Petri-Net-Based Approach to Reliability Determination
of Ontology-Based Service Compositions. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems 43(5), 1240–1247 (2013)

10. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service mat-
chmaker for OWL-S services. Web Semantics: Science, Services and Agents on the World
Wide Web 7(2), 121–133 (2009)

11. Bartalos, P., Bieliková, M.: Qos aware semantic web service composition approach consi-
dering pre/postconditions. In: IEEE International Conference on Web Services (ICWS),
pp. 345–352 (2010)

12. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: Pro-
ceeding of WWW 2008, pp. 795–804 (2008)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 456–464, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evaluating Cloud Services Using a Multiple Criteria
Decision Analysis Approach

Pedro Costa1, João Carlos Lourenço2, and Miguel Mira da Silva1

1 Department of Computer Science and Engineering, Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal

2 Centre for Management Studies of IST (CEG-IST), Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal

{pedro.c.costa,joao.lourenco,mms}@ist.utl.pt

Abstract. The potential of Cloud services for cost reduction and other benefits
has been capturing the attention of organizations. However, a difficult decision
arises when an IT manager has to select a Cloud services provider because there
are no established guidelines to help make that decision. In order to address this
problem, we propose a multi-criteria model to evaluate Cloud services using the
MACBETH method. The proposed method was demonstrated in a City Council
in Portugal to evaluate and compare two Cloud services: Google Apps and Mi-
crosoft Office 365.

Keywords: Cloud Services, IT Services, Multiple Criteria Decision Analysis,
MACBETH, Service Quality.

1 Introduction

IT industry is evolving and there is a new business model, which is revolutionizing
and changing it: Cloud services. Organizations can now contract services from the
Cloud rather than owning the assets to provide those services [1-2]. However, despite
the growing adoption of Cloud services, most decision-makers continue to express
some concerns [3], because these services are still in their beginning and quite far
from maturity. In fact, decision-makers have doubts about what, when, and how they
should migrate to the Cloud, because there are no clear guidelines in this area [4]. In
addition to this, decision-makers may not have the knowledge about the real benefits,
risks, and costs associated with Cloud solutions, which may lead them to postpone the
decision to migrate to Cloud. Therefore, organizations need a systematic tool to
evaluate and review their business needs and weigh the potential gains and opportuni-
ties by the Cloud against the challenges and risks, to make a well-planned and under-
stood strategy [4].

In this paper we study how to help a decision-maker (DM) to evaluate Cloud solu-
tions. To address this problem we propose a Multiple Criteria Decision Analysis
(MCDA) approach [5], based on the MACBETH method [6-7], to build a multi-
criteria value model [8-9] to evaluate Cloud services. Complementary, our proposal

 Evaluating Cloud Services Using a Multiple Criteria Decision Analysis Approach 457

should also: (i) clarify DMs doubts and fears about Cloud Computing; (ii) be easy to
apply and not requiring specialized expertise; (iii) be able to provide understandable
results; and (iv) be less expensive than current solutions.

This paper describes the building process of the proposed multi-criteria evaluation
model that was demonstrated in a Portuguese City Council that wanted to migrate
their productivity software (mail and office) to the Cloud. The Cloud services evalu-
ated and compared were Google Apps and Microsoft Office 365. At the end of the
process we obtained an overall value score for each of these options, which depicted
their overall attractiveness for the City Council. We used the feedback of the DM
during the process and the Moody and Shanks Framework [10] to evaluate our pro-
posal, which showed that it is suitable for evaluating Cloud services.

This study was conducted by using Design Science Research Methodology
(DSRM) that aims at creating a commonly accepted framework for research in Infor-
mation Systems (IS) as well as creating and evaluating artefacts to solve relevant
organization problems [11]. The steps of DSRM that were used to organize the paper
are: problem identification and motivation; objectives of a solution definition; design
and development; demonstration; evaluation; and communication [12].

2 Related Work

A decision problem typically involves balancing multiple, and often conflicting, crite-
ria. MCDA consists in “a collection of formal approaches which seek to take explicit
account of multiple criteria in helping individuals or groups explore decisions that
matter” [5]. In this section we are going to explain briefly some of the most used
MCDA methods.

Outranking Methods. Outranking methods are applied directly to partial preference
functions, which are defined for each criterion. These preference functions may corre-
spond to natural attributes on a cardinal scale, or may be constructed in some way, as
ordinal scales, and do not need to satisfy all of the properties of value functions, only
the ordinal preferential independence would still necessary. In outranking methods,
for two options a and b, where zi(a) ≥ zi(b) for all criteria i, we can say that option a
outranks option b if there is sufficient evidence to justify a conclusion that a is least as
good as b, taking all criteria into account [5].

Analytical Hierarchy Process (AHP). AHP is a method based on evaluating options
in terms of an additive preference function. The initial steps in using the AHP are to
develop a hierarchy of criteria (value tree) and to identify options. AHP uses pairwise
comparisons of options to score the options on each criterion and uses pairwise com-
parison of criteria to weight the criteria, assuming ratio scales for all judgments. The
overall score of an option is obtained by the weighted summation of its scores on the
different criteria [5], [13].

MACBETH. MACBETH (Measuring Attractiveness by a Categorical Based Evalua-
tion Technique) is an approach for multi-criteria value measurement [8-9]. It uses
semantic judgments about the differences in attractiveness of several stimuli to help a

458 P. Costa, J.C. Lourenço, and M. Mira da Silva

DM quantify the relative attractiveness of each option. It employs an initial, iterative,
questioning procedure that compares two elements at a time, requesting only a quali-
tative preference judgment. As the answers are entered into the MACBETH decision
support system [14] it automatically verifies their consistency. It subsequently gener-
ates a numerical scale, by solving a linear programming problem, which is representa-
tive of the DM’s judgments. Through a similar process it permits the generation of
weighting scales for criteria [7].

Outranking methods differ from the others in that there is no underlying aggrega-
tive value function, so they do not produce an overall preference scale for the options.
AHP generates global scores to represent the overall preference upon the options,
which is a wanted feature. However, there are known issues regarding this method
concerning, for example, the appropriateness of the conversion from the semantic to
the numeric scale used in AHP [15-16]. A MACBETH advantage over other methods
for multi-criteria value measurement is that it only requires qualitative judgments to
score options and to weight criteria. Furthermore, its decision support system (M-
MACBETH) is able to compute the overall value scores of the options by applying
the additive model, and to make extensive sensitivity and robustness analysis.

3 Proposal

To address the problem specified in Section 1 multiple independent criteria must be
taken into account to evaluate the Cloud services. In our proposal, we use the
MACBETH method to evaluate the options against the criteria previously approved
by the DM. Our method consists in three main steps summarized below:

A) Structuring the Model. The decision-making process begins by structuring the
problem, which consists in identifying the issues of concern for the DM. The DM’s
fundamental points of view should be taken as evaluation criteria. Each criterion
should be associated with a (qualitative or quantitative) descriptor of performance, to
measure the extent to which the criterion can be satisfied. Two reference levels (e.g.
“neutral” and “good”) must be defined on each descriptor of performance. Then, other
performance levels may be added to the descriptor, if needed. We created a template
with the reference levels of performance for all Cloud services evaluation criteria
presented in [17] (see Table 1). In any case, a DM may always select other evaluation
criteria or descriptors of performance in order to meet specific organization’s needs.

B) Evaluating the Options. In the second step the DM is asked about his prefer-
ences in order to build a value function for each criterion and to weight the criteria.
To build a value function for a criterion the DM is asked to judge the differences in
attractiveness between each two levels of performance by choosing one (or more) of
the MACBETH semantic categories: very weak, weak, moderate, strong, very strong,
or extreme. Then, M-MACBETH uses a linear programming problem [7] to generate
a numerical value scale compatible with the DM’s judgments, which should be vali-
dated in terms of the proportions of the resulting scale intervals.

 Evaluating Cloud Services Using a Multiple Criteria Decision Analysis Approach 459

Table 1. Evaluation criteria with their respective reference levels

Criteria
Reference Levels

Good Neutral

Client Support

The service provider has defined methods

to support the client but is not able to

communicate and report service failures

The service provider has no defined meth

ods to support the client but is able to

communicate and report service failures

Compliance with Standards
The service provider follows all the stand

ards, processes and policies

The service provider follows some of the

standards, processes, and policies

Data Ownership 90% of levels of rights 50% of levels of rights

Service Level Agreements

Capacity

The service provider is able to negotiate

 all terms of the SLAs

The service provider is able to negotiate

some terms of the SLAs

Adaptability to Client Re-

quirements

The service provider is able to include

core or important client requirements in

the service

The service provider is able to include

client requirements if they not require any

modification in the service

Elasticity 100% of level of added resources 50% of level of added resources

Portability
The service can be ported to other service

provider without disruption

The service can be ported to other service

provider but can not move all the data

Availability
99% amount of time without interruptions

per day

97% amount of time without interruptions

per day

Maintainability
The service maintenance does not affect

the service up time
The service maintenance stops the service

Reliability

The service can operate without failures

under common unfavorable conditions

(e.g. power failure)

The service can operate under unfavorable

conditions but some components may not

work

Risks

The service provider has an effective risk

identification and treatment but no contin-

gency plan

The service provider has o risk identifica-

tion, no risk treatment, and no contingen-

cy plan

Acquisition and Transaction

Cost
€0 €1000

Cost €10 €20

Laws and Regulations

The service is subject to laws and regula-

tions to protect clients against all kind of

irregularities in the provider’s country

The service is subject to laws and regula-

tions only to protect clients against data

losses in the provider’s country

Innovation

The service is able to make all updates to

new technologies and to include innova-

tive features automatically

The service is able to make updates to

new technologies but not automatically

Interoperability
The service is able to interact with other

services

The service is able to interact only with

services from the same service provider

Service Response Time 0.5 seconds 2 seconds

Confidentiality and Data Loss

The information is restricted to authorized

people and a failure is promptly detected

but no reported

The information is restricted to authorized

people but there is no detection and

reported failures

Data Integrity
The data stored is accurate and valid and

backups are updated to the second

The data stored is accurate and valid and

backups are updated monthly

460 P. Costa, J.C. Lourenço, and M. Mira da Silva

To weight the criteria, the DM ranks the neutral–good swings of the criteria by
their overall attractiveness. Afterwards, the DM is asked to judge the difference in
attractiveness between each two neutral–good swings using the MACBETH semantic
categories, and his answers are used by M-MACBETH to create a weighting scale.
Finally, the DM should validate the proposed weights and adjust them if necessary.

C) Analysing the results. In this step the performances of the options (factual
data) are converted into value scores, using the value functions previously built for
the criteria, and an overall value score is calculated for each option by weighted
summation of its value scores. A final ranking of the options is then achieved using
their overall scores. Before giving a selection recommendation it is wise to perform
sensitivity and robustness analyses, to know how sensitive or robust is the ranking
obtained to “small” changes in the parameters of the model.

4 Demonstration

The main objective of this proposal is to construct a tool that enables any organization to
evaluate Cloud services options. Based on this, we have selected a City Council in Portu-
gal, whose CIO (the DM in this case) had doubts about what Cloud service he should
purchase. Due to the advantages of Cloud Computing, the DM wished to migrate some
services (e-mail and productivity) to the Cloud. However, he did not know how to choose
the most adequate service option for the City Council. Only two services covered the
City Council needs: Google Apps and Microsoft Office 365. We acted as a decision ana-
lyst guiding the decision process in order to help the DM. The M-MACBETH decision
support system was used to display the model being developed.

A) Structuring the Model. This first step began with some meetings with the City
Council’s DM in order to understand the decision context and to identify the evalua-
tion criteria that should be used in the model. The DM accepted all criteria listed in
Table 1 as the essential criteria to their problem. Then the DM was asked to validate
for each criterion a “neutral” reference level (i.e. a performance that would be neither
positive nor negative in the linked criterion) and a “good” reference level (i.e. a per-
formance level considered significantly attractive in the light of the criterion). For
example, the “neutral” and “good” reference levels defined for the criterion “Avail-
ability” were 97% and 99%, respectively (Table 1). Afterwards, more performance
levels were added such that each criterion had at least three performance levels
equally spaced.

B) Evaluating the Options. A value function was built for each criterion by ask-
ing the DM to judge the differences in attractiveness between each two levels of per-
formance, choosing one of the MACBETH semantic categories. Figure 1a presents
the DM’s judgments matrix for the criterion “Availability”, where we can see, for
example, that the difference in attractiveness between 100% and 99% amount of time
without interruptions per day was judged “weak”, whereas the differences between
99% and 98%, 98% and 97%, and 97% and 96% were deemed “moderate”, which
means that the DM values less the difference between 100% and 99% than the other

 Evaluating Cloud Service

mentioned differences. The
els “neutral” and “good” to
tively. The M-MACBETH
based on the set of qualita
linear programming. The
analysis in terms of proport
value function obtained for
18 criteria were built in a si

(a)

Fig. 1. MACBETH judgeme

Afterwards, the relative
MACBETH weighting proc
good swings by their overa
the 19 criteria, if you could
good performance which cr
criterion with the highest w
ranking of neutral-good sw
difference in attractiveness
judgments inputted in the
shown in Figure 2. Then th
ample, he was asked if the
times the neutral–good swin
DM agreed.

Fig. 2. Weig

es Using a Multiple Criteria Decision Analysis Approach

e numerical value scale was anchored on the reference l
o which were assigned the value scores 0 and 100, resp
decision support system proposed a numerical value sc

ative judgments inputted in the matrix of judgments us
proposed MACBETH scale was then subjected to D
tions of the resulting scale intervals. Figure 1b presents
r criterion “Availability”. The value functions for the ot
imilar manner.

(b)

ents matrix (a) and value function (b) for criterion “Availability

e weights for the 19 criteria were assessed using
cedure. The DM was first asked to rank the criteria neut

all attractiveness. We started by asking the question: “Fr
d choose just one to move from a neutral performance t
riterion would you select?” The DM’s answer identified
weight. The questioning procedure continued until the fi
wings was achieved. Next, the DM was asked to judge
s between each two neutral-good swings. With the DM

weighting matrix M-MACBETH generated the weig
he DM validated the proposed MACBETH scale. For
e neutral-good swing on criterion “Integrity” is worth t
ng on criterion “Confidentiality and Data Loss”, which

ghting scale obtained for the evaluation criteria

461

lev-
pec-
cale
sing
DM
the

ther

y”

the
tral-
rom
to a
the

final
the

M’s
ghts
ex-
two
the

462 P. Costa, J.C. Louren

C) Analysing the Resu
Office 365 upon each of th
transformed the performanc
value functions previously
column “Overall” in Figur
and Microsoft Office 365 r
obtained an overall score h
all” (i.e. a fictitious option
shows that Google Apps is
Office 365 also is an attrac
of the hypothetical option
“Neutral at all”. Observe in
Apps only in two criteria: “
analysis on the weight of c
would need to be increase
ranked first. A similar ana
and Data Loss” would nee
Office 365 as the winner o
changes on the weights. A
simultaneous variations of
negative weights, revealed
tion.

Fig

To conclude the proces
Google Apps, because it is
and the judgments of prefe
robustness analyses showed

5 Evaluation

The Moody and Shanks Qu
the quality of data models
asking the DM about these
completeness: the proposal
vices are present; (ii) integ

nço, and M. Mira da Silva

ults. The performances of the Google Apps and Micro
he criteria were inputted in M-MACBETH. The softw
ces into the value scores, presented in Figure 3, using
built, and calculated the overall scores for the options (

re 3). Google Apps ranked first with 102.08 overall u
ranked second with 81.21 overall units. Only Google A
higher than the score of the hypothetical option “Good
ns that has a good performance in all the criteria), wh
s a very attractive option for the City Council. Micro
ctive option, because its overall score is closer to the sc
“Good at all” than to the score of the hypothetical opt
n Figure 3 that Microsoft Office 365 is better than Goo
“Risks” and “Confidentiality and Data Loss”. A sensitiv
criterion “Risks” showed that the weight of this criter

ed from 1.74% to 18.7% to see Microsoft Office 365
lysis showed that the weight of criterion “Confidentia

ed to be increased from 6.43% to 13.6% to see Micro
option. However, the DM did not consider plausible th
robustness analysis made with M-MACBETH consider
±3% on the weights of all criteria, though not allow
that Google Apps continued to be the most attractive

g. 3. Overall value scores of the options

s, we recommended to the City Council the selection
the better option taking into account all the defined crite

ference made by the DM. In addition, the sensitivity
d that Google Apps is a robust choice.

uality Framework propose eight quality factors to evalu
[10]. We applied this framework to the demonstration

e eight quality factors. The results were the following:
l is complete since the main criteria to evaluate Cloud

grity: there is no business rule that prevents errors defin

soft
ware

the
(see

units
Apps

d at
hich
soft
core
tion
ogle
vity
rion
5 be
ality
soft

hese
ring

wing
op-

n of
eria
and

uate
n by
: (i)
ser-

ning

 Evaluating Cloud Services Using a Multiple Criteria Decision Analysis Approach 463

the criteria and their descriptors of performance of the proposal since it relies on in-
terviews and observations; (iii) flexibility: a DM can add or remove criteria to adjust
the evaluation model to his organization’s businesses and strategies; (iv) understand-
ability: the proposal is easy to understand since their language is close to the tradi-
tional usage in Cloud services, but the DM do not know the decision analysis process
and this phase is more difficult without a guide; (v) correctness: the proposal is cor-
rect and valid for their intentions; (vi) simplicity: the proposal is simple to follow and
we verified that is simple to apply; (vii) integration: the proposal is consistent with
the problem and help organizations to make the best decision; and (viii) implement-
ability: the proposal implementability is dependent on the law and policies in each
organization. The City Council’s CIO admitted to use it as an auxiliary tool.

This demonstration allowed us to test our proposal in the research problem stated.
The City Council suffered from the same problem, as we found in literature, and our
proposal helped them to overcome it. The field case revealed that the method devel-
oped is a suitable tool for evaluating Cloud services.

6 Conclusion

The research literature and publications from consulting enterprises consider that
Cloud Computing has benefits, risks, challenges and issues. But all agree that organi-
zations suffer when choosing which Cloud services they would contract, which re-
veals a generic and important problem: typically, DMs are not prepared to evaluate
Cloud services. To address this problem, we propose to evaluate Cloud services with
an MCDA method called MACBETH that simplifies the decision-making process in
organizations adopting Cloud services.

This paper has a particular focus on the multi-criteria evaluation process and its
application to a City Council in Portugal, where two Cloud services (Google Apps
and Microsoft Office 365) were evaluated. With this demonstration we conclude that
our proposal is suitable and can be applied to evaluate Cloud services. The Moody
and Shanks evaluation we performed supports this conclusion, as almost all quality
factors were accomplished.

Regarding future work, more research effort related to the different Cloud models
could be used in order to create criteria catalogues that could be applied to different
Cloud models, such as SaaS, PaaS, and IaaS. In addition, our proposal can be further
improved by developing a software tool specific for Cloud services evaluation.

References

1. Willcocks, L., Lacity, M.: The New IT Outsourcing Landscape – From Innovation to
Cloud Services. Palgrave Macmillan, Basingstoke (2012)

2. McAfee, A.: What Every CEO Needs to Know About the Cloud. Harv. Bus. Rev. 89, 124–
132 (2011)

3. IDC Portugal: Situação Actual e Tendências de Adopção de Serviços Cloud Computing
em Portugal (in Portuguese), IDC Survey (2012)

464 P. Costa, J.C. Lourenço, and M. Mira da Silva

4. Conway, G., Curry, E.: Managing Cloud Computing: A Life Cycle Approach. In: 2nd In-
ternational Conference on Cloud Computing and Services Science (CLOSER), Porto, Por-
tugal (2012)

5. Belton, V., Stewart, T.J.: Multiple Criteria Decision Analysis: An Integrated Approach.
Kluwer Academic Publishers, Boston (2002)

6. Bana e Costa, C.A., Vansnick, J.C.: The MACBETH approach: Basic Ideas, Software, and
an Application. In: Meskens, N., Roubens, M.R. (eds.) Advances in Decision Analysis,
vol. 4, pp. 131–157. Kluwer Academic Publishers, Dordrecht (1999)

7. Bana e Costa, C.A., De Corte, J.M., Vansnick, J.C.: MACBETH. Int. J. Inf. Technol. De-
cis. Mak. 11, 359–387 (2012)

8. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tra-
deoffs. John Wiley & Sons, New York (1976)

9. von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cam-
bridge University Press, Cambridge (1986)

10. Moody, D.L., Shanks, G.G.: Improving the Quality of Data Models: Empirical Validation
of a Quality Management Framework. Inf. Syst. 28, 619–650 (2003)

11. Hevner, A.R., March, S.T., Park, J.: Design Science in Information Systems Research.
MIS Q. 28, 75–105 (2004)

12. Peffers, K., Tuunamen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Re-
search Methodology for Information Systems Research. J. Manage. Inf. Syst. 24, 45–77
(2008)

13. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Alloca-
tion. McGraw-Hill (1980)

14. Bana e Costa, C.A., De Corte, J.M., Vansnick, J.C: M-MACBETH Version 1.1 User’s
Guide (2005), http://www.m-macbeth.com/ (retrieved)

15. Bana e Costa, C.A., Vansnick, J.C.: A Critical Analysis of the Eigenvalue Method used to
Derive Priorities in AHP. Eur. J. Oper. Res. 187, 1422–1428 (2008)

16. Dyer, J.S.: Remarks on the Analytic Hierarchy Process. Manage. Sci. 36, 249–258 (1990)
17. Costa, P., Santos, J., Mira da Silva, M.: Evaluation Criteria for Cloud Services. In: IEEE

6th International Conference on Cloud Computing, Santa Clara Marriott, CA, USA (2013)

An Approach for Compliance-Aware Service

Selection with Genetic Algorithms

Fatih Karatas1 and Dogan Kesdogan2

1 Chair for IT Security Management, University of Siegen, D-57072 Siegen, Germany
2 Chair for Management Information Systems IV, University of Regensburg,

D-93055 Regensburg, Germany
karatas@wiwi.uni-siegen.de, kesdogan@ur.de

Abstract. Genetic algorithms are popular for service selection as they
deliver good results in short time. However, current approaches do not
consider compliance rules for single tasks in a process model. To address
this issue, we present an approach for compliance-aware service selection
with genetic algorithms. Our approach employs the notion of compli-
ance distance to detect and recover violations and can be integrated into
existing genetic algorithms by means of a repair operation. As a proof-
of-concept, we present a genetic algorithm incorporating our approach
and compare it with related state-of-the-art genetic algorithms lacking
this kind of check and recovery mechanism for compliance.

Keywords: Service-oriented Computing, Service Selection, Compliance,
Multi-objective Optimization, Genetic Algorithms.

1 Introduction

Service-oriented computing (SOC) is a favored approach for developing dis-
tributed applications by orchestrating loosely coupled services according to a
process model [1]. Each service realizes a well-defined task at a certain Quality-
of-Service (QoS) level. In this regard, service selection algorithms are employed
to determine service compositions for given process models. Mathematically this
problem is usually represented as Multidimensional Multiple-choice Knapsack
Problem (MMKP) [2]. As MMKP is NP-hard [3], heuristic approaches (e.g. ge-
netic algorithms, GAs) are favored to find near-optimal solutions in short time.

Processes need to be compliant with rules originating from sources such as the
Health Insurance Portability and Accountability Act (HIPAA) and ISO 27001.
These issues are usually considered to be part of process definition and execution
[4]. However, certain aspects of compliance such as location of execution can be
compromised by heuristic service selection (see section 3.1). Proposed approaches
for service selection based on GAs such as [5–7] do not address this issue.

This paper contributes the following: 1) To our best knowledge the first dis-
cussion which compliance aspects (see section 2) might be violated by heuristic
service selection, 2) a method to detect and recover compliance violations in
heuristically determined service compositions utilizing the notion of compliance

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 465–473, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

466 F. Karatas and D. Kesdogan

Fig. 1. Sample workflow with compliance annotations

distance as introduced by Sadiq et al. [8] and 3) a GA called COMPAGA based
on NSGA-II which incorporates our method by means of a repair operation. This
algorithm is tested against several state-of-the-art GAs (see section 4).

The remainder of this paper is structured as follows. Section 2 motivates the
presented work. Our approach is presented in Section 3 and evaluated in Section
4. Section 5 covers related works. Finally, the paper is concluded in Section 6.

2 Motivation

Fig. 1 shows a sample process model which is the starting point for service com-
position. The aim of QoS-aware service selection is to determine compositions
which fulfill the QoS constraints of a process model. While for small and medium
size problems exact solutions can be determined, it is not feasible for real-world
problems. GAs (see e.g. [5–7]) proved to deliver good results in short time.

Processes might also be subject to semantic constraints arising from e.g. stan-
dards and regulations. Semantic constraints are called compliance rules and can
refer to one or more compliance aspects (see below). A process is called com-
pliant if it does not violate any of its compliance rules [9]. In the following we
will introduce the five compliance aspects differentiated in the literature (e.g.
[9–11]), name the primary question which each addresses and cite and example
from either HIPAA or the German Federal Data Protection Act (BDSG):

– Activities: Which tasks are performed in which sequence? (BDSG:4) re-
quires user agreement to personal data collection prior to any such action.

– Data: What data objects are produced and consumed and which manage-
ment rules are applied? (BDSG:3a) requires anonymization or psudonymiza-
tion of personal data if there is no need to access such data in plain.

– Location: Where are tasks performed? (BDSG:4b) requires that personal
data might be transferred to 3rd parties outside of Germany only if an ap-
propriate level of protection can be assured by the 3rd party.

– Resources: By whom are tasks performed? (HIPAA:164.530.a.1.ii) requires
that institutions implementing HIPAA must appoint a person or office re-
sponsible for receiving privacy complaints.

– Time limits: Within which time constraints are tasks being performed?
(HIPAA:164.524.a.1; HIPAA:164.524.b.2.i) empowers patients to be informed
about their stored protected health infomration (PHI) within 30 days.

Compliance-Aware Service Selection with Genetic Algorithms 467

3 Approach

In this section we first discuss which compliance aspects might be violated by
heuristic service selection. Next we present our approach for detecting compli-
ance violations and finally our algorithm for recovering compliance.

3.1 Impact of Compliance Aspects on Heuristic Service Selection

Activities: The sequence of tasks is defined by the process modeler. As service
selection algorithms take process models as input to determine suiting compo-
sitions, this aspect is out of scope for service selection. A number of approaches
exist to ensure the compliance of process models during design time (see section
5). Thus in the following we assume process models to be compliant regarding
the sequence of activities when service selection is performed.

Data: Depending on the type of data, services might be required to fulfill a min-
imum of security measures (e.g. encryption strength). This leads to the necessity
to consider these requirements as local constraints. Thus this aspect needs to be
considered by service selection algorithms.

Location: Depending on the type of data, processing might be restricted to
certain countries and/or regions. This usually applies to single tasks and thus
needs to be considered as local constraint in service selection.

Resources: Ensuring that certain tasks are restricted to certain entities can
be achieved e.g. utilizing credentials. This assignment of entities to tasks needs
to be performed by the process modeler. Restricting invocation of services to
authorized entities is mainly a question of configuration and thus out of scope.

Time limits: Processes might contain non-human as well as human tasks. For
human tasks, process designers usually allot a certain amount of time for com-
pletion. Thus, service selection for sub-processes subject to time limits needs to
consider the time limit as well as alloted times for human tasks.

3.2 Detecting Compliance Violations

Compliance of service compositions is measured utilizing compliance distance as
introduced by Sadiq et al. [8]. Compliance distance is a quantitative measure
which in its basic form counts the number of compliance violations in a process
instance. Here it is adapted for service selection and counts the number of vi-
olations caused by selected services in a composition. This basic view assumes
that consequences of compliance violations are equally bad. Sadiq at al. pointed
out that a more sophisticated approach is to associate a cost with each violation
and to define compliance distance as the sum of violation costs [8]. For the sake
of simplicity we will use the basic measure in the following.

Data and location violations can be detected locally. Time limit scopes may
be nested and be composed of human as well as non-human tasks. Thus a data
structure timeScopes is defined containing one list scope per time scope in a

468 F. Karatas and D. Kesdogan

process model as well as its time limit. Given a process model P and a service
composition SC, the compliance distance of SC can be determined in two steps.
First, for each task p ∈ P it is checked if the selected service in SC fulfills data
and location requirements defined in P . If this is not the case, the index of p
is stored in a list V . In case that p is part of one or several time scopes, the
index of p is stored in all respective lists scope ∈ timeScopes. Secondly, all lists
scope ∈ timeScopes are iterated to sum up times allotted to human tasks as
well as response times of selected services in SC. If a sum is greater than the
time limit assigned to scope, all elements p ∈ scope . p /∈ V ∧¬p.isHumanTask
are added to V . The compliance distance of SC then equals |V |. Algorithm 1
shows the pseudo-code for this operation.

3.3 Recovering Compliance

In order to replace services efficiently in logarithmic time, the set of service al-
ternatives is clustered with three levels. The first level clusters services according
to service class Si, the second to data class and the third to location where the
latter two are interchangeable (see fig. 2).

Given such a clustering, P , V , and a non-compliant SC, the repair operation
works as follows. For each violation v ∈ V the corresponding service class Sv

as well as the set C of data and location constraints are determined. Then the
clustering is searched for a service of class Sv which has a) at least the required

Algorithm 1. Detect Compliance Violations(P , SC)

1 V := empty list;
2 timedScopes := data structure with one list per time scope and its time limit ;
3 foreach p ∈ P do
4 C := p.getConstraints;
5 foreach c ∈ C do
6 if c.isDataAnnotation ∨ c.isLocationAnnotation then
7 Check if SC[p] meets compliance requirement c;
8 if SC[p] does not meet c then add p to V

9 else if c.isT imeConstraint then
10 Add p to all corresponding lists in timedScopes;
11 end

12 end

13 end
14 foreach scope ∈ timedScopes do
15 if Σ human processing times + Σ response times > scope.timeLimit then
16 foreach p ∈ scope . p /∈ V ∧ ¬p.isHumanTask do
17 Add p to V ;
18 end

19 end

20 end
21 return V ;

Compliance-Aware Service Selection with Genetic Algorithms 469

S1

S2

Sn

Secret

Top Secret

Brazil

Germany

s15

s12

Root

...

· · ·

· · ·

...

...

Fig. 2. Service clustering

data class, b) the required location and c) minimum response time. If such as
candidate exists, it replaces the old service of class Sv in SC (see algorithm 2).

The success of the repair operation depends on the existence of suiting service
alternatives. As such it cannot be guaranteed that a non-compliant SC becomes
compliant afterwards. Time limit constraints are addressed implicitly by picking
services with minimum response time. Explicit addressing would again require a
two-step approach as in algorithm 1. Our approach will lead to a compliant SC
in terms of time limits if suiting service alternatives exist. Otherwise time limit
constraints cannot be met without violating another local constraint. Therefore
a more sophisticated approach is not necessary.

To test our repair operation, we implemented a GA based on NSGA-II [12]
called COMPliance-Aware GA (COMPAGA). COMPAGA first generates a ran-
dom initial population and then iteratively performs selection, crossover and
mutation operators on this population. Next it calculates the compliance dis-
tance of the new offspring with algorithm 1. If the compliance distance of the
offspring is ≥ 1, the repair operation (see algorithm 2) is performed with a prob-
ability of prep. Experiments with different values for prep showed 75% to be a
good compromise between runtime and average compliance distance of obtained
solutions (see section 4.2).

Algorithm 2. Repair operation(P , SC, V)

1 Clustering := Three-level clustering of service alternatives;
2 foreach v ∈ V do
3 Sv := service class of v;
4 C := data and location constraints for Sv in P ;
5 cand := Clustering.pick(s ∈ Sv . s.data ≥ C.data ∧ s.location = C.location
6 ∧ s.responseT ime = min);
7 if cand �= ∅ then
8 SC[Sv] := cand;
9 end

10 end
11 return SC;

470 F. Karatas and D. Kesdogan

4 Evaluation

4.1 Experimental Setup

All experiments were performed on a machine with a 2.67 GHz Intel Core i5
CPU, 2 GB RAM and running Windows 7 (32 Bit). The simulation environment
was written in Java 1.6 using the jMetal 4.0 framework [13].

The settings for each algorithm were the same. Population size was always 100.
Workflow lengthwas varied from10 to 80with a stepping of 10. Before each simula-
tion run, a process model with local constraints was randomly generated. For each
task 20 random service alternatives were generated containing the QoS attributes
price ∈]0, 5], responseT ime ∈]0, 500], location ∈ {Brazil, Germany, USA} and
encryption ∈ {None,AES − 64, AES − 128, AES − 256}. Next, this service set
was clustered as discussed in section 3.3.After that, each algorithmperformedopti-
mization on this setting 100 times with an allowedmaximumof 25,000 evaluations.
The algorithms had to minimize a total of three objectives: Price, Response Time
and Compliance Distance.

We selected a number of state-of-the-art GAs (IBEA [14], NSGA-II [12] and
SPEA2 [15]) which provide overall good results for most optimization problems.
Besides, a random approach was utilized to obtain an approximate baseline for
our experiments. These algorithms are shipping with jMetal.

4.2 Results

In our experiments we investigated the influence of workflow length on the run-
time of each algorithm as well as the average compliance distance, response time
and price of determined solutions (see fig. 3).

Runtime: The random approach was naturally the fastest and IBEA the slow-
est. The runtime of SPEA2 was roughly the median of the random approach and
IBEA. Second fastest was NSGA-II. The runtime of COMPAGA was slightly
higher than NSGA-II due to the additional repair operation. This difference
increased with increasing workflow length due to higher repair efforts.

Compliance distance: Average compliance distance generally increased for
increasing workflow length except of COMPAGA which delivered significantly
better results. IBEA, NSGA-II and SPEA2 yielded similar results with IBEA
being slightly better than the other. The random approach performed worst.

Response time: Again, the random approach performed worst. IBEA, NSGA-
II and SPEA performed similar with IBEA delivering slightly better solutions.
COMPAGA outperformed the remaining algorithms increasingly for increasing
workflow length. The reason seams obvious as time constraints are a compliance
aspect addressed by the repair operation. Therefore the reduced response time
is considered as a side effect of minimizing compliance distance.

Price: The random approach performed worst while the GAs delivered similar
results. COMPAGA performed slightly better for workflow lengths ≥ 40. This
seems odd as the price of each service alternative is random. Our explanation

Compliance-Aware Service Selection with Genetic Algorithms 471

 0

 2000

 4000

 6000

 8000

 10000

10 20 30 40 50 60 70 80

A
ve

ra
ge

 R
un

tim
e

[m
s]

Workflow length

Random
IBEA

NSGA-II
SPEA2

COMPAGA

(a) Runtime vs. workflow length

 0

 5

 10

 15

 20

 25

 30

10 20 30 40 50 60 70 80

A
ve

ra
ge

 C
om

pl
ia

nc
e

D
is

ta
nc

e

Workflow length

Random
IBEA

NSGA-II
SPEA2

COMPAGA

(b) Compliance Distance vs. workflow
length

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

10 20 30 40 50 60 70 80

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

Workflow length

Random
IBEA

NSGA-II
SPEA2

COMPAGA

(c) Response time vs. workflow length

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

10 20 30 40 50 60 70 80

A
ve

ra
g

e
 P

ri
ce

Workflow length

Random
IBEA

NSGA-II
SPEA2

COMPAGA

(d) Price vs. workflow length

Fig. 3. Evaluation results

is that solutions with lower compliance distance also had a lower price than the
other solutions. Therefore we do not attribute this to COMPAGA.

5 Related Work

Approaches for checking process compliance can roughly be divided into three
categories: 1) design time approaches for process models, 2) approaches that
check compliance during or after system configuration and 3) approaches to ver-
ify the compliance of process instances during and after execution. The first
group ranges from guiding approaches based upon compliant process patterns
(e.g. [16]) to methods for statically checking properties of process models, e.g.
based on rule Petri nets (RPNs) (e.g. [17]). Governatori et al. provide a frame-
work which produces a detailed report whether a process model (partly) fulfills
compliance rules expressed using the Formal Contract Language (FCL) [18].

Approaches of the second group include formal methods for compliance-aware
service composition such as [19]. Another research direction are approaches for
verification of service compositions such as [20, 21]. [20] focuses on reachability,
liveness and deadlocks. The authors of [21] propose a specification language for
compliance properties as well as a verification framework for service compositions

472 F. Karatas and D. Kesdogan

in BPEL. Conceptually our work (and service selection in general) belongs to
this group as well. While the aforementioned works represent exact approaches
which can be utilized for small and medium-size process models, our approach
aims at scenarios with either a) very large process models or b) situations with
hard time constrains which require quick reconfiguration of compositions by
exchanging services. Although GAs are very common to find near-optimal service
compositions in a short period of time (see e.g. [5–7]), it is surprising that to our
best knowledge no approach considers compliance issues.

The third group finally consists of approaches which are based upon analyzing
data such as logs. This analysis forms the basis for deciding whether a process
instance is in conformance with compliance rules or not (see e.g. [22]).

6 Conclusion and Outlook

We discussed which compliance aspects may be effected by service selection with
GAs and found that data, location and time limits need to be considered. We
then presented an approach to determine compliance violations as well as a
method to recover compliance of service compositions based upon the notion of
compliance distance. The approach was tested by means of a repair operation
with a custom GA called COMPAGA which is based on NSGA-II. Comparisons
of COMPAGA with related state-of-the-art GAs on service selection problems
showed that COMPAGA clearly outperformed the other GAs in terms of average
compliance distance and response time.

Up to this point, COMPAGA differs from NSGA-II only by a repair operator.
For the future we want to investigate the potential for improvement by utilizing
customized genetic operators that leverage domain-specific knowledge regarding
compliance. Since the runtime of COMPAGA increases faster than the runtime of
other GAs, increasing the performance of COMPAGA is essential for dealing with
workflow lengths >> 80 efficiently. Another important field of future research
is the question of guaranteeing compliance or to conclude that no compliance is
possible for given process models and service alternatives.

Acknowledgments. This work is supported by the German Federal Ministry
of Education and Science (BMBF) under grant no. 13N10964 in the project
ReSCUeIT. We particularly thank Marcel Heupel and the anonymous reviewers
for informative and thorough reviews.

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. Computer 40(11), 38–45 (2007)

2. Yu, T., Lin, K.J.: Service selection algorithms for web services with end-to-end qos
constraints. In: Proc. IEEE Intl. Conf. on E-Commerce Tech., pp. 129–136 (2004)

3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

4. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.M.P.: Business
process compliance checking: Current state and future challenges. In: Loos, P.,
Markus, Nüttgens, et al (eds.) MobIS. LNI, vol. 141, pp. 107–113. GI (2008)

Compliance-Aware Service Selection with Genetic Algorithms 473

5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: Proc. Conference on Genetic
and Evolutionary Computation (GECCO), pp. 1069–1075 (2005)

6. Jaeger, M.C., Mühl, G.: Qos-based selection of services: The implementation of a
genetic algorithm. In: Communication in Distributed Systems (KiVS), 2007 ITG-
GI Conference, pp. 1–12 (2007)

7. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based qoS-aware service com-
positions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)

8. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

9. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems. Springer (2012)

10. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Communications of the
ACM 35(9), 75–90 (1992)

11. Stohr, E.A., Zhao, J.L.: Workflow automation: Overview and research issues. In-
formation Systems Frontiers 3(3), 281–296 (2001)

12. Deb, K., Pratab, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)

13. Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42(10), 760–771 (2011)

14. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN VIII, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et
al. (eds.) Evolutionary Methods for Design, Optimisation, and Control, CINME,
Barcelona, Spain, pp. 95–100 (2002)

16. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

17. Accorsi, R., Lowis, L., Sato, Y.: Automated certification for compliant cloud-based
business processes. BISE 3(3), 145–154 (2011)

18. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory com-
pliance for business process models through semantic annotations. In: Ardagna,
D., Mecella, M., Yang, J. (eds.) RGU 1974. LNBIP, vol. 17, pp. 5–17. Springer,
Heidelberg (1974)

19. Bernardi, G., Bugliesi, M., Macedonio, D., Rossi, S.: A theory of adaptable
contract-based service composition. In: Proc. 2008 10th Intl. Symp. on Symbolic
and Numeric Algorithms for Scientific Computing. SYNASC 2008, pp. 327–334.
IEEE Computer Society, Washington, DC (2008)

20. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composi-
tion of web services. In: Proc. 11th Intl. Conf. on World Wide Web (WWW), pp.
77–88 (2002)

21. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property
specification and verification for service composition. In: Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp.
156–168. Springer, Heidelberg (2006)

22. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 474–482, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Decomposing Ratings in Service Compositions

Icamaan da Silva1 and Andrea Zisman2

1 Department of Computer Science, City University London, United Kingdom
icamaan.silva.1@city.ac.uk

2 Computing Department, The Open University, United Kingdom
Andrea.Zisman@open.ac.uk

Abstract. An important challenge for service-based systems is to be able to
select services based on feedback from service consumers and, therefore, to be
able to distinguish between good and bad services. However, ratings are
normally provided to a service as a whole, without taking into consideration
that services are normally formed by a composition of other services. In this
paper we propose an approach to support the decomposition of ratings provided
to a service composition into ratings to the participating services in a
composition. The approach takes into consideration the rating provided for a
service composition as a whole, past trust values of the services participating in
the composition, and expected and observed QoS aspects of the services. A
prototype tool has been implemented to illustrate and evaluate the work. Results
of some experimental evaluation of the approach are also reported in the paper.

Keywords: Rating decomposition, rating propagation, trust values, feedback.

1 Introduction

In a highly competitive environment where anyone can become a service provider and
the number of similar services available increases quickly, it is crucial for a system to
be capable of choosing the most suitable service for a particular user. Trust and
reputation have been the focus of research in several open systems such as e-
commerce, peer-to-peer, and multi-agent systems [5][10][11]. Some trust and
reputation approaches have also been suggested for web-service systems [7][13][14],
and have been used in several e-marketplaces applications such as eBay [2],
GooglePlay [4], and Amazon [1]. In general, trust and reputation web-services based
approaches are limited and immature [14]. For example, these approaches (i) assume
that information given by service providers can be trusted; (ii) assume that feedbacks
provided can always be trusted; (iii) demand a large number of interactions or non-
intuitive information from users; and (iv) do not properly handle the existence of
malicious users when considering their feedback.

An important feature of service-based systems is the fact that services are formed
by the composition of other services and in many situations the existence of several
services is transparent for service consumers; i.e., service consumers do not know if
they are using a single service or a composition of services. In this context, service
consumers normally provide feedback to the composition as a whole without

 Decomposing Ratings in Service Compositions 475

considering that the service is composed of several resources. The participating
services in a composition, and the way they interact with each other, may influence
the feedback associated with the composition. When creating new service
compositions it is necessary to distinguish between “good” and “bad” services and to
consider the reputation of the individual services. In a competitive market, service
providers should also know about the reputation of their services to improve them.

It is essential to have ways to decompose provided ratings and trust values of a
composition to the individual services in the composition. However, an approach in
which a rating given for a composition is replicated to, or averaged with, the services
participating in the composition is not appropriate since it will not provide fair ratings
to the participating services. For example, some participating services that performed
well may be penalised by other services in the composition that performed badly.

In this paper we present a framework to support the decomposition of service
ratings to individual services participating in a service composition. The framework
uses a rating decomposition approach that considers (i) rating provided by a user to a
service composition as a whole, (ii) previous trust values associated with the
individual services in the composition, (iii) the values of QoS aspects that
the individual services took to perform their tasks (observed QoS values), and (iv) the
QoS values specified for the services in the composition by their respective service
providers (expected QoS values). The previous trust values associated with individual
services are calculated based on a trust model that we have previously proposed [12].

Motivating Example. As an experiment to illustrate how the decomposition process
impacts on the trust values of the services in a composition, we present in Table 1 an
example in which a user provides ratings (R) in different intervals to a service
composition with two services s1 and s2. Assume the initial trust values associated
with s1 and s2 as 0.7 and 0.3 respectively. We run the experiment for 25 interactions.
Table 1 shows the final trust values associated with s1 and s2 after the 25 interactions
using an approach as the one we are suggesting and an approach in which the ratings
are replicated. The results presented in the table show that replicating the ratings
provided to the service composition to the participating services tend to penalize the
services with higher trust values and favour the services with lower trust values. After
the 25th interaction the trust values associated with s1 and s2 are nearly the same when
we replicate the ratings provided to the service composition. This is not the case when
using the approach described in this paper, since the different rating values calculated
to the individual services provide distinct new trust values to the services.

Table 1. Trust values of services with s1 and s2 for different decomposition approaches

 Our approach Replication of R
Ratings provided Trust Values – s1 Trust Values – s2 Trust Values – s1 Trust Values – s2

[0.0, 2.5[0.20 0.09 0.14 0.12
[2.5, 5.0[0.53 0.23 0.39 0.36
[5.0, 7.5[0.86 0.37 0.59 0.57

[7.5, 10.0] 0.98 0.61 0.85 0.82

The rest of this paper is structured as follows. In Section 2 we present our rating
decomposition process. In Section 3 we discuss implementation and evaluation aspects.
In Section 4 we give an account of related work. In Section 5 we present final remarks.

476 I. da Silva and A. Zisman

2 Rating Decomposition

In this section, we describe the mechanisms used to decompose a rating R, provided
by a user, to a service composition, into ratings associated with individual services
participating in the composition. We also present a trust model to calculate trust
values of individual services participating in a composition.

Our framework deals with service compositions that are transparent to the users.
This means that users of a particular service composition do not distinguish whether
they are accessing a composition of services or only a single service component. The
users are not able to provide ratings to the individual services in a composition or to
specify different levels of importance to the individual services in a composition.

The rating decomposition approach used in our framework considers (i) the rating
provided by a user U to a service composition, (ii) the previous trust values associated
with the participating services, (iii) the observed QoS values of the participating
services, and (iv) the expected QoS values specified for the participating services by
their respective service providers. For illustrative purpose, in this paper we
concentrate on response times QoS values. In the approach, the values for ratings
associated with services in a composition are within the interval [0.0, 10.0], as are the
ratings provided for a service composition by the users. More specifically, the
decomposed rating for a service si in a composition is given by the equation below:))∑) ∑ , ,)

 (1)

with

, ,)
 0.0 0.1 0.1 1.0 0.5 1.0 0.5 2

 (2)

where:

• si: is a service participating in a service composition;
• r(si): is the final rating calculated for service si;
• R: is the rating provided by a user for the service composition;
• T(si): is the trust value calculated for service si;
• n: is the number of component services in the service composition;
• l: is an index representing all the services in the composition (1 <= l <= n);
• p(s, t, t’): is a recompense function (penalty score) calculated for a service s based

on the QoS value of s to perform its task and the QoS value specified for s;
• t’: is the QoS specified for si by the service provider (expected);
• t: is the actual QoS value that si took to perform its task (observed);

 Decomposing Ratings in Service Compositions 477

• m: is the number of considered QoS values;
• j: is an index representing all the considered QoS values (1 <= j <= m).

We use trust values of the participating services in a composition to calculate the
individual ratings of the services in order to analyse how well a service has performed
when compared to the other services participating in the composition. We assume that
a service with a high trust value has performed well in the past, while a service with a
low trust value has performed poorly. Nepal, et al. [9] believes that taking into
consideration past trust values of participating services when decomposing a rating
offers a certain level of consistency. In his view, when a service has performed better
than other services in the past, then this service tends to continue to perform better.

As shown in equation (1), the approach considers a recompense function (p(s,t,t’))
during the rating decomposition process. As the name suggests, the recompense
function is intended to reward a service in case its performance is better than what it
was stated by its service provider (in terms of QoS values), or penalize the service
otherwise. For a service si, the function has as input parameters the QoS values stated
by the service provider, and the actual QoS value that the service took to perform a
task when it was invoked. Positive values for the recompense function signify a
reward to the service, while negative values signify a penalty to the service.

Given that several aspects may cause variations on the QoS values of a service
(e.g., number of requests at a time, quality of the network connection), we have
limited the possible result values for this function. This is to prevent the recompense
function to cause a high influence in the rating decomposition process, since the
function is only intended to reward or penalize a participating service. For example,
the highest possible value as output is 1.0 (similarly a penalty of -1.0) when the
difference between the actual QoS value is at least 50% lower than the QoS value
stated by the service provider (similarly when the actual QoS value is at least 50%
higher than the one stated by the provider). We also consider that small variations
between the actual QoS value of a service and the QoS value stated by the service
provider should not be rewarded or penalized. In this case, we consider a difference of
10% between the actual and given QoS values as being a small variation. The values
above were identified after running some experiments with different variations.

Trust Value Calculation. The decomposition of ratings relies on trust values
associated with the services in a composition. In the approach, trust values are
calculated based on past ratings identified for the participating services. The trust
values associated with a service are values in the interval [0.0, 1.0]. In the case in
which a service s does not have associated past ratings to calculate the trust value of s,
the approach assumes a trust value of 0.5 for s. This value represents the average of
possible rating values. The trust model used to calculate the trust values associated
with the participating services is based on the trust model we have described in [12].

The calculation of trust values is based on the Dirichlet probability distribution
expected value [8]. The ratings given to the composition and decomposed into the
participating services are continuous values between 0.0 and 10.0. Each rating
calculated for a service is mapped into a 5-component variable (v1, … , v5) based on
the calculation of the level of membership (m(c, vi)) of a continuous rating, according
to the equation described by Josang et al. [6]. The levels of memberships of the 5-
component variable are represented as a vector of size five (). For example, consider

478 I. da Silva and A. Zisman

the situation in which the decomposed rating of a service is 7.0. In this case, the
membership vector () would be calculated as [0, 0, 0.2, 0.8, 0].

To calculate the trust value associated with a particular service the membership
vectors are aggregated through a weighted sum. In order to weight each rating
(membership vector) an aging factor component is used. The aging factor is intended
to give more importance to recent ratings than old ones. As defined in [5], the trust
value of a service based on ratings is calculated by the function below:

) ∑ with

(3)

)) ∑) ∑ ∆ (4)

where:

• : is the aggregated vector calculated by the weighted sum of all the vectors ;
• : is the membership vector mapping a decomposed rating to a service s;
• n: is the total number of ratings decomposed for the participating service s;
• k: is the size of (k=5);
• ρj: is a value assigned to each component v1,…,vk to give a value in an interval;
• C: is a constant used to ensure that all values in the elements of the vector are

greater than 0, to allow a posterior analysis of the Dirichlet distribution;
• αΔt: is the aging factor, where α is a constant and Δt is the difference in terms of

time between the available ratings for s (Δt ∈ ℕ, ℕ is the set of natural numbers).

In order to illustrate, consider the scenario in which a participating service has
three available ratings to calculate its level of trust: 7.0, 8.0, and 6.0. The membership
vectors for the three ratings are = [0, 0, 0.2, 0.8, 0], = [0, 0, 0, 0.8, 0.2], and =

[0, 0, 0.6, 0.4, 0]. Then, applying equations (4) the aggregated vector is = [0, 0, 0.8,
2.0, 0.2] (considering Δt = 0, which means all received ratings were received in the
same period of time). Finally, the trust value associated with the participating services
is T(s) =0.67 (considering C = 0.1).

3 Implementation Aspects and Evaluation

A prototype tool has been implemented in order to evaluate the main aspects of the
approach. The tool has two main modules, namely (i) rating decomposition module
and (ii) trust calculation module. To evaluate the approach, we also implemented a
simulator to generate ratings for the evaluation. The prototype and simulator were
implemented using Java. The proposed approach has been evaluated in terms of two
different cases: case (1) - the impact that the ratings provided for a composition have
in the rating decomposition process; case (2) - the impact that the observed QoS
values of the services have in the rating decomposition process.

Case (1): In this case we want to evaluate the effects that the trust values associated
with the participating services in a composition have in the rating decomposition
process, as well as the impact that the ratings provided for the composition have in the
rating decomposition process. More specifically, we want to analyse how the rating

decomposition process con
given service composition
compositions may be forme
considered when decompos

In the experiments we co
s3, and s4) with trust value
provide an average trust
calculated based on a histo
participating services. In th
steps), and that the servic
distribution in every time-s
and that the difference betw
is less than or equal to 10%

Fig. 1. Propa

We executed the expe
C1.4), differing on the inter
time-step. Case C1.1 cons
interval [0.0, 2.5[; while ca
[2.5, 5.0[, [5.0, 7.5[, and [7
(propagated) for each servic
1 shows the results of the ex

As shown in Fig. 1, in a
for the services. The results
decomposed ratings have a
the values of the decompo

Decomposing Ratings in Service Compositions

nsiders services with different trust values and differ
n ratings. This experiment is important because serv
ed by services with different trust values, which need to
sing a rating provided for a whole composition.
onsidered a service composition with four services (s1,
es of 0.26, 0.50, 0.74, and 0.98, respectively. These val
value of 0.62. We assumed that the trust values w

ory of ten ratings previously decomposed for each of
he experiments we also considered 25 units of times (tim
ce composition received ratings are based on a unifo
tep. We also considered response times as the QoS aspe

ween the expected and observed response times of a serv
% (i.e., recompense function p = 0.0, as per equation (2)).

agated ratings to participating services (Case (1))

riments for four different cases (C1.1, C1.2, C1.3,
rval of ratings provided to the service composition in e

siders ratings provided to the service composition in
ases C1.2, C1.3, and C1.4 consider ratings in the interv
7.5, 10.0], respectively. We measure the rating decompo
ce in each time-step using our decomposition process. F
xperiments for the four cases C1.1 to C1.4 above.
all cases, there is an oscillation in the ratings decompo
s also show that in cases C1.2 and C1.3 the curves for
a similar behaviour for all the four services. In case C
osed ratings for services s3 and s4 are similar since

479

rent
vice
o be

 s2,
lues

were
the

me-
orm
ects
vice
.

and
each

the
vals
osed
Fig.

osed
the

1.4,
the

480 I. da Silva and A. Zisman

services cannot have ratings higher than 10.0. In case C1.1, when the rating provided
for the composition is close to 0.0, the decomposed ratings are also quite similar.

Case (2): In this case we want to analyze the effect of the recompense function in the
rating decomposition process. More specifically, we are interested in the comparison
on how the expected and observed QoS values for services participating in a
composition can influence the ratings decomposed to these services. This experiment
is important because service compositions may be formed by services that performed
in different ways and, therefore, these services need to be penalised or rewarded.

In the experiments we considered a service composition with five services (s1, s2,
s3, s4, and s5) and the response time as the QoS aspect. We assume that all the
participating services have not received previous ratings and, therefore, they have the
same trust values (0.5) in the first time-step. We consider the five services with
different probabilities of exceeding the expected response times. These probabilities
are 0%, 25%, 50%, 75%, and 100% for services s1, s2, s3, s4, and s5 respectively. For
example, while service s5 will always exceed its expected response time, services s2
and s3 will exceed their expected response times in 25% and 50% of the cases
respectively, and service s1 will never exceed its expected response time. Given that
we are considering observed response times that exceed the expected response times,
the values for p will be between [-1.0, 00] (see equation (2)). In the experiments, the
values of the exceeded expected response times for the participating services are
based on a uniform distribution in the interval [0.1, 0.5] of the exceeded percentage
value (e.g., 0.1 means that the component service exceeded its expected time in 10%).

Similarly to Case 1, we considered 25 units of times (time-steps), and that the
service composition receives ratings based on a uniform distribution in every time-
step. We executed the experiments for four different cases (C2.1, C2.2, C2.3, and
C2.4), differing on the interval of ratings provided to the service composition in each
time-step. Case C2.1 considers ratings provided to the service composition in the
interval [0.0, 2.5[; while cases C2.2, C2.3, and C2.4 consider ratings in the intervals
[2.5, 5.0[, [5.0, 7.5[, and [7.5, 10.0], respectively. For each case, we measure the
rating decomposed (propagated) for each service in each time-step using our
decomposition process. Fig. 2 shows the results of the experiments for the four cases.

As shown in the Fig. 2, after a few numbers of time-steps, except for service s1, the
curves of the decomposed (propagated) ratings are very close to each other, making it
hard to differentiate the one with higher rating. This is due to the fact that any service
can get a higher decomposed rating since, in this experiments, (a) we do not
differentiate the past trust values of the services and (b) the probability of a service
exceeding its response time does not interfere with the differences between the
observed and expected response times. For example, although s5 is always exceeding
its expected response time, the difference between the expected response time and the
observed response time can be small; while service s2 that exceeds its expected
response time in only 25% of the cases could have an observed response time much
higher than its expected one, which will cause s5 to have a higher decomposed rating
than s2. Even service s1 could receive decomposed ratings similar to the other
services, as it is in case C2.1 for the first and second time-steps, in which services s1,
s2, and s3 have the same decomposed ratings.

Another point to be highlighted is the fact that the results in the experiments in
Case 2 show that the differences between the decomposed ratings of the services are

smaller than the differences
is due to the fact that in
considered - all the service
values of the services have
(or reward) given for the ex

Fig. 2. Propa

4 Related Work

Several approaches have
reputation management ove
focus on reputation manag
the fact that services are
reputation scores need to be

Although rating decomp
disciplines such as Busine
Science, there are few appro
systems [3][9]. Nepal et. al
to a service composition int
account the trust values of t
consumers are aware of the
[3] propose an approach ba
which rated objects are r
between positive and negat
appreciation of an object, b

Decomposing Ratings in Service Compositions

s of the decomposed ratings of the services in Case 1. T
n Case 2 the trust values of the services are not be
es have the same past values of 0.5. Moreover, the tr
a bigger impact in the decomposed ratings than the pena

xpected and observed response times.

agated ratings to participating services (Case (2))

been proposed to support service selection, trust,
er the last years [5][9][10][11]. Most of these approac

gement aspects [5][10][11]. Very few approaches consi
composed by other individual resources (services)

e reflected in the individual services [9].
position is an area that has been investigated in differ
ess, Cognitive Psychology, Mathematics, and Compu
oached that supports rating decomposition in service-ba
l. [9] propose a methodology to propagate ratings provi
to participating services. Similarly, the approach takes i
the participating services. However, it assumes that serv
e participating services in a composition. Goldberg et.

ased on Singular Value Decomposition (SVD) technique
represented as latent variables that allow discriminat
tive ratings. This technique is effective to predict the u
but it does not provide ways of discriminating the resou

481

This
eing
rust
alty

and
ches
ider
and

rent
uter
ased
ided
into
vice
. al.
e in
ting
user
urce

482 I. da Silva and A. Zisman

that affects the rating of the whole object. Srivastava and Sorenson [13] describe an
approach to service selection based on user’s perception of the QoS attributes, rather
than the actual attribute values. They propose an interactive approach to find out the
most appropriate values for each QoS attribute. The framework and process described
in this paper complement existing trust-based approaches by providing a way of
decomposing ratings given to a whole composition into ratings for individual
services, and considering past trust values, and observed and expected QoS values of
the individual services in a composition.

5 Final Remarks

We describe a framework that considers ratings provided for a composition as a
whole and decomposes this rating based on past trust values of the services in the
composition, as well as expected and observed QoS aspects of the services. The
decomposed ratings of the participating services are also used to calculate new trust
values for the services based on a trust model approach that we have developed. We
are currently extending the framework to consider ratings received by a service when
this service is invoked in isolation, together with the rating received for a composition
in which the service is participating. We are expanding the framework to consider
dependencies between services in a composition, since a service can have different
ratings depending on how well it interacts with other services in a composition.

References

[1] Amazon, http://amazon.com
[2] eBay, http://ebay.com
[3] Goldberg, K., et al.: Eigentaste: A Constant Time Collaborative Filering Algorithm

Information retrieval 4(2) (2001)
[4] GooglePlay, http://googleplay.com
[5] Josang, A., Haller, J.: Dirichlet Reputation Systems. In: 2nd International Conference

on Availability, Reliability and Security (ARES 2007), Vienna (April 2007)
[6] Josang, A., Luo, X., Chen, X.: Continuous Ratings in Discrete Bayesian Reputation

Systems. In: Proceedings of the IFPIM (2008)
[7] Liu, Y., Ngu, A., Zheng, L.: QoS computation and policing in dynamic web service

selection. In: Proc. of World Wide Web Conference (2004)
[8] Marden, J.I.: Mathematical Statistics: Old School. University of Illinois (2012)
[9] Nepal, S., Malik, Z., Bouguettaya, A.: IEEE Int. Conf. on Web Services ICWS (2009)

[10] Ruohomaa, S., Kutvonen, L.: Trust management survey. In: Herrmann, P., Issarny, V.,
Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 77–92. Springer, Heidelberg (2005)

[11] Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering
Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive
Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

[12] da Silva, I., Zisman, A.: A framework for trusted services. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 328–343. Springer,
Heidelberg (2012)

[13] Srivastava, A., Sorenson, P.G.: Service Selection based on customer Rating of Quality
of Service Attributes. In: IEEE International Conference on Web Services (2010)

[14] Wang, Y., Vassileva, J.: Towards Trust and Reputation Based Web Service Selection: A
Survey. International Transaction Systems Science and Applications 3(2) (2007)

Automatic Generation of Test Models

for Web Services Using WSDL and OCL

Maćıas López1, Henrique Ferreiro1,
Miguel A. Francisco2, and Laura M. Castro1

1 MADS Group, University of A Coruña, Spain
{macias.lopez,henrique.ferreiro,laura.castro}@madsgroup.org

2 Interoud Innovation S.L, Spain
miguel.francisco@interoud.com

Abstract. Web services are a very popular solution to integrate com-
ponents when building a software system, or to allow communication
between a system and third-party users, providing a flexible, reusable
mechanism to access its functionalities.

To ensure these properties though, intensive testing of web services
is a key activity: we need to verify their behaviour and ensure their
quality as much as possible, as efficiently as possible. In practise, the
compromise between effort and cost leads too often to smaller and less
exhaustive testing than it would be desirable.

In this paper we present a framework to test web services based on
their WSDL specification and certain constraints written in OCL, follow-
ing a black-box approach and using property-based testing. This com-
bination of strategies allows us to face the problem of generating good
quality test suites and test cases by automatically deriving those from
the web service formal description. To illustrate the use of our frame-
work, we present an industrial case study: a distributed system which
serves media contents to customers’ TV screens.

Keywords: Property-Based Testing, Web Services, WSDL, OCL.

1 Introduction

The need to provide access to different kind of systems across the web has be-
come critical. The usual way to do it is through web services, which aim to
provide a means for interaction among software systems, or systems and final
users over the network. There are multiple ways for describing these interactions,
one commonly used being WSDL (Web Services Description Language) [5], an
XML-based language to specify the operations offered by a web service. The
WSDL standard operates at the syntactic level and does not represent the re-
quirements or operational constraints of the web service. Thus, in order to add
semantic information to web service description, the WSDL description must be
completed. A number of choices have been proposed to do this, such as WSDL-
S (Web Services Semantics) [6], SWRL (Semantic Web Rule Language) [4], or
OCL (Object Constraint Language) [2].

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 483–490, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

484 M. López et al.

To ensure the quality of a web service [13], we need to guarantee that the
operations work as their specification require, this is, that the semantic informa-
tion is not violated. Based on previous work [16] which used UML descriptions
together with OCL properties to perform automatic testing of software compo-
nents, we propose to apply property-based testing (PBT) [12] to perform auto-
matic testing of web services. When using PBT, testers have to write properties
that the system under test (SUT) needs to satisfy, rather than specific test cases.
From the properties description, tools can produce the specific test cases auto-
matically. Using this technique, we have a black-box model which describes the
functional properties of the SUT and use it for testing purposes. In particular,
given a WSDL description of a web service and its OCL semantic definition, we
generate the model instead of writing it manually.

2 Property-Based Testing and QuickCheck

As an alternative to manually producing tests from a high-level natural-language
specification, or writing a formal model to describe a system or component,
PBT uses declarative statements to specify properties that the software needs
to satisfy according to its specification. Using this approach, test cases can then
be generated from those properties, a process that can be automated, allowing
to run many tests for each written property.

In our work, we have used QuickCheck, a PBT tool that automates generation,
execution and evaluation of test cases. This allows us to run lots of tests with
very little effort, checking whether the defined properties hold or not.

For testing complex systems, however, isolated properties are not expressive
nor powerful enough. Instead of sequences of independent test cases, we want to
test sequences of calls which modify the state of the service, checking that some
conditions hold before and after each interaction, and that the global state of
the service remains coherent with its expected behaviour call after call.

3 Test Approach: From WSDL+OCL to Properties

The requirements of a system represent the needs that it must fulfil, and they
are usually specified in an abstract way, without technical details. As we want
to use PBT to test the web services behind the WSDL specification, we need
to have the appropriate properties which describe the requirements of the SUT.
To do that, we get information both from the WSDL and the OCL constraints,
and the combination of both allows us to automatically build our test model,
composed by properties. Depending on the requirements of the web service, the
test model can differ: for stateless web services, universally quantified properties
are generated; for stateful ones, the requirements are modelled into a state ma-
chine. Either from the properties or from the state machine modelling the web
service, QuickCheck derives the specific test cases, and then, using an HTTP

Test Models for Web Services with WSDL and OCL 485

adapter (generated from the WSDL specification), we feed the SUT. Thus, using
our framework, the testers do not need to know any specific details about web
services implementation languages.

WSDL
parser

WSDL
le

OCL
constraints

Type information
(data + services)

OCL
parser

QuickCheck
properties/model

Semantic information
(services)

SUT

test
cases adapter

Fig. 1. Proposed testing architecture

In addition, if the same API is pre-
served, different implementations of a web
service can be tested with the same test
properties. The general architecture of our
framework is shown in Figure 1.

Firstly, we need to retrieve informa-
tion from the WSDL file, so a WSDL
parser has been developed. We decided to
implement our own because we need to
integrate the semantic information pro-
vided as OCL constraints, writing it as
an easy-to-manage structure to transform
into properties. For instance, from the
WSDL for a calculator we need: the name
of the web service from the service tag;
the name of each operation from the
operation tag, contained in interface;
the name of input and output tags for
each operation; the types referred by each
input and output elements; the endpoint and the operation from the binding
tag to get the URL; and the modelReference attribute referring the OCL file.

Then, we have to parse the referred OCL file and check if there is semantic
information associated to any of the operations retrieved in the second item
before. As in the previous case, we found several tools to parse OCL files, but in
all cases the parsing functionality has to be executed associating a UML model
to the OCL. This led us to develop our own OCL parser, taking advantage from
the work made by the OCLNL project [3]: a labelled BNF grammar [15] for
OCL. This grammar was fed to the BNF compiler (BNFC) [1] to produce the
abstract syntax tree, lexer and parser which we used.

Finally, when the required information from the WSDL and OCL file is re-
trieved, it is time to build the properties for testing.

3.1 Stateless web Services

Stateless services or systems do not have an internal state that affects the out-
come of a sequence of calls to their API, so the response returned by a specific
call is independent of the specific moment when it is executed. In this case, the
name of the operation to be tested and the type of its result and arguments is
parsed from the WSDL file; in turn, the test oracle is built out of the constraints
specified in the OCL file.

For the calculator example, we could generate the following property:

prop_pow() ->
?FORALL({A, B}, {ocl_gen:int(), ocl_gen:nat()},

mathUtils:pow(A, B) == ocl_seq:iterate(fun (I, Acc) -> Acc * A end, 1, ocl_seq:new(1, B))).

486 M. López et al.

QuickCheck can run this property and produce specific test cases; this way,
instead of specifying input data manually, data generators are used to gener-
ate data of the corresponding data type. This approach leads to a significant
improvement over traditional tests [21] and most of the research in the state
of the art [8–11, 17, 19, 22, 24], since instead of specific values, we define types,
ranges, and conditions that the input data has to meet, which are then produced
automatically instead of manually listed. So, for each pair of an integer and a
natural number that is generated, they are used by the HTTP adapter to make
a call to the web service under test, getting the URL from the WSDL file. The
value returned by the web service is finally checked in the property body.

With QuickCheck we can not only generate a large amount of specific test
cases derived from properties and executed against the real SUT. Another very
interesting QuickCheck feature is that, when a failing test case is found, the
tool automatically shrinks it to the smallest equivalent counterexample it can
find, making it easier to understand the reason of the failing case [23], and thus
improving also the debugging process.

3.2 Stateful Web Services

In opposition to stateless components, in which each action is independent of
each other, many systems have a behaviour that depends on which actions were
previously performed. In order to test these systems, the internal state has to be
taken into account in the test process. QuickCheck has support for testing this
kind of systems by using state machines. Instead of specifying general properties,
the state machine behaviour is specified by defining an initial state and a state
transition function. Additionally preconditions and postconditions are used to
verify state-related properties in each step. The generated tests cases consist
in random sequences of state transitions where, at each state, both pre- and
postconditions are checked [7]. Our case study, explained in the next section,
falls in this category of stateful web services.

4 Case Study: VoDKATV

VoDKATV is an IPTV/OTT middleware that provides end-users access to dif-
ferent services on a TV screen, tablet, smartphone, PC, etc., allowing an ad-
vanced multi-screen media experience. Architecturally, it is a distributed system
composed by several components, which are integrated through web services.

Among other things, VoDKATV stores information about the users and de-
vices that can access the system. Devices are identified by a MAC address, and
they are associated to a household (room, in VoDKATV nomenclature). Thus,
when a new user is registered, a new household must be created and the devices
of that user must be registered to that household. This particular subset of VoD-
KATV functionalities is offered by one single administration web service, which
we have chosen as case study. The web service offers, among others, operations
to create, modify, update and delete households and devices.

Test Models for Web Services with WSDL and OCL 487

The operation used to create a new household is specified in WSDL as:

<wsdl:operation name="CreateRoom"
pattern="http://www.w3.org/ns/wsdl/in-out"
style="http://www.w3.org/ns/wsdl/style/iri" wsdlx:safe="true">
<wsdl:input element="msg:createRoomParams"/>
<wsdl:output element="msg:createRoomResponse"/>

</wsdl:operation>

where createRoomParams specifies the parameters received by the web service
(roomId and description):

<xsd:element name="createRoomParams">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="roomId" type="xsd:string" />
<xsd:element name="description" type="xsd:string" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

and createRoomResponse is the response returned by the web service:

<xsd:element name="createRoomResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="roomId" type="xsd:string" />
<xsd:element name="description" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="error" type="tns:error" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="error">
<xsd:sequence>

<xsd:element name="code" type="xsd:string" />
<xsd:element name="params" type="tns:errorParams" minOccurs="0" maxOccurs="1"/>
<xsd:element name="description" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="errorParams">
<xsd:sequence>
<xsd:element name="param" type="tns:errorParam" minOccurs="1" maxOccurs="unbound"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="errorParam">
<xsd:attribute name="name" type="xsd:string" />
<xsd:attribute name="value" type="xsd:string" />

</xsd:complexType>

Our approach requires to specify the behaviour of the web service so that the
test cases can be generated automatically. The specification of the CreateRoom

operation is:

– if the specified household identifier (roomId) is empty, the web service must
return a required error;

– if the specified household identifier (roomId) already exists in the VoDKATV
system, the web service must return a duplicated error;

– otherwise, the household must be created, and its identifier (roomId) and
description (description) must be returned by the web service.

488 M. López et al.

This specification is written using OCL pre- and postconditions. For instance,
the specification for the CreateRoom operation can be written in OCL with the
following code, where state_rooms represents the internal test state:

context VoDKATVInterface::CreateRoom(roomId:String, description:String): CreateRoomResponse
post CreateRoom:

if ((roomId = ’’) or (roomId = null)) then
(self.state_rooms = self.state_rooms@pre and

result.errors->size() = 1 and
result.errors->at(0).code = ’required’)

else if (self.state_rooms->select(room | room.roomId = roomId)->notEmpty()) then
(self.state_rooms = self.state_rooms@pre and

result.errors->size() = 1 and
result.errors->at(0).code = ’duplicated’)

else self.state_rooms = self.state_rooms@pre->including(
Tuple {

roomId:String = roomId,
description:String = description

}) and
result.roomId = roomId and
result.description = description

endif
endif

This OCL specification, together with the WSDL, is used by our framework to
generate QuickCheck properties. To do that, we use the same approach described
in [16], but using WSDL and OCL to generate QuickCheck code. In addition,
during test execution, the newly generated QuickCheck model uses the HTTP
adapter, which is also generated by our tool from the WSDL. Thus, when an
operation is executed, the corresponding web service operation will be invoked,
and the result is analysed by the corresponding postcondition. For example, this
is part of the code generated to check that a required error is returned when
the household identifier is empty:

postcondition(PreState, AfterState,
{call, vodkaTV, createRoom, [RoomId, Description]}, Response) ->

case RoomId of
"" ->

ocl_seq:eq(AfterState#state_rooms, PreState#state_rooms)
andalso ocl_string:eq(ocl_datatypes:get_property(code, Response), "required")

end;

where ocl_seq, etc. are ancillary modules that implement utility functions.
Therefore, as a result, we have a QuickCheck test model automatically gen-

erated by our tool from the WSDL and the OCL constraints. This test model
checks that the web service described by the WSDL satisfies the constraints
specified with OCL.

4.1 Analysis of Results

QuickCheck generates specific test cases from the generated test model, i.e.,
random sequences of commands with random parameter values that satisfy the
preconditions. As a second step, QuickCheck executes these commands, invoking
the corresponding operations of the web service, and checks if the SUT fulfils
the postconditions.

Test Models for Web Services with WSDL and OCL 489

Although we have not found any errors in the web service used as case study
(which, considering the system has been in production for a number of years,
was to be expected), we have introduced a number of errors to empirically verify
the effectiveness of our methodology. We have real error reports of VODKATV
as source of inspiration, thus demonstrating that all of them were exposed imme-
diately using the generated QuickCheck model and proposed test architecture.
Besides, thanks to QuickCheck shrinking capabilities, the counterexamples found
were qualified, when shown to the developers who fixed the error corresponding
reports, as very valuable, had it been in place when they had to diagnose them.

5 Conclusions and Future Work

In this paper we have presented a test framework to build test models for web
services using a PBT tool, where semantics are added to WSDL using OCL con-
straints. Using this black-box approach, properties are automatically generated
from one WSDL specification, and specific test cases are automatically gener-
ated and executed. Our framework can generate properties for both stateless
and stateful web services, using declarative statements in the first case and state
machines models in the second. In all cases, the test model produced by the
framework can be used as an updated specification of the SUT with the shape
of an executable model.

One of the main advantages of our approach is the use a PBT tool like
QuickCheck to generate and run the test cases, because it automatically gen-
erates complex testing sequences which stress-test the real system in a more
objective and efficient way than any human tester could [14, 18, 20]. We remove
the need to think of specific test cases, rather the general behavioural properties.
Another important aspect of QuickCheck is its shrinking and counterexample
capabilities, a very valuable asset to fault debugging.

We have used a standard specification language, OCL, so testers need not
learn a specification language to write test cases, because properties are auto-
matically generated from the OCL specification. Another advantage of using
PBT instead of hand-written tests is that properties are independent of the im-
plementation details of the SUT. This means that an evolving code base does not
force rewriting the test model, maintaining an intact, updated and executable
specification of the SUT.

As future work, we should be able to trace back the conditions that have
failed when QuickCheck generates a counterexample, showing the specific piece
of OCL code that has produced the error. Furthermore, nowadays a particular
kind of web services is most popular: RESTful web services; we plan to extend our
framework to adapt specifically to the intrinsic properties of these web services.

References

1. BNFC, http://bnfc.digitalgrammars.com/
2. Object Constraint Language (OCL), http://www.omg.org/spec/OCL/2.3.1/

http://bnfc.digitalgrammars.com/
http://www.omg.org/spec/OCL/2.3.1/

490 M. López et al.

3. OCLNL, http://www.key-project.org/oclnl/
4. Semantic Web Rule Language (SWRL), http://www.w3.org/Submission/SWRL/
5. Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl/
6. Web Services Semantics (WSDL-S), http://www.w3.org/Submission/WSDL-S/
7. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with

Quviq QuickCheck. In: ACM SIGPLAN Workshop on Erlang., pp. 2–10 (2006)
8. Askarunisa, A., Abirami, A., Mohan, S.: A test case reduction method for semantic

based web services. In: International Conference on Computing, Communication
and Networking Technologies, pp. 1–7 (2010)

9. Bai, X., Lee, S., Tsai, W., Chen, Y.: Ontology-based test modeling and partition
testing of web services. In: IEEE International Conference on Web Services, pp.
465–472 (2008)

10. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: WS-TAXI: A WSDL-based
testing tool for web services. In: International Conference on Software Testing,
Verification, and Validation, pp. 326–335 (2009)

11. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pp. 141–150 (2009)

12. Derrick, J., Walkinshaw, N., Arts, T., Benac Earle, C., Cesarini, F., Fredlund, L.-
A., Gulias, V., Hughes, J., Thompson, S.: Property-based testing - the ProTest
project. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 250–271. Springer, Heidelberg (2010)

13. Emmerich, W.: Managing web service quality. In: International Workshop on Soft-
ware Engineering and Middleware, pp. 1–1 (2006)

14. Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assur-
ance. SIGSOFT Software Engineering Notes 22(4), 74–80 (1997)

15. Forsberg, M., Ranta, A.: Labelled BNF: a highlevel formalism for defining well-
behaved programming languages. Estonian Academy of Sciences: Physics and
Mathematics 52, 356–377 (2003)

16. Francisco, M.A., Castro, L.M.: Automatic generation of test models and properties
from UML models with OCL constraints. In: International Workshop on OCL and
Textual Modelling, pp. 49–54 (2012)

17. Lampropoulos, L., Sagonas, K.F.: Automatic WSDL-guided test case generation
for proper testing of web services. In: International Workshop on Automated Spec-
ification and Verification of Web Systems, vol. 98, pp. 3–16 (2012)

18. Mouchawrab, S., Briand, L.C., Labiche, Y., Di Penta, M.: Assessing, comparing,
and combining state machine-based testing and structural testing: A series of ex-
periments. IEEE Transactions Software Engineering 37(2), 161–187 (2011)

19. Noikajana, S., Suwannasart, T.: An improved test case generation method for web
service testing from WSDL-S and OCL with pair-wise testing technique. In: Inter-
national Computer Software and Applications Conference, pp. 115–123 (2009)

20. Farrell-Vinay, P.: Managing Software Testing. Auerbach Publishers (2008)
21. Petrenko, A.: Why automata models are sexy for testers (Invited talk). In: Vir-

bitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 26–26. Springer,
Heidelberg (2007)

22. Timm, J., Gannod, G.: Specifying semantic web service compositions using UML
and OCL. In: IEEE International Conference on Web Services, pp. 521–528 (2007)

23. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

24. Zheng, Y., Zhou, J., Krause, P.: An automatic test case generation framework for
web services. Journal of Software 2(3), 64–77 (2007)

http://www.key-project.org/oclnl/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/wsdl/
http://www.w3.org/Submission/WSDL-S/

An Incentive Mechanism

for Game-Based QoS-Aware Service Selection

Puwei Wang� and Xiaoyong Du

Key Laboratory of Data Engineering and Knowledge Engineering of Ministry
of Education, Renmin University of China

School of Information, Renmin University of China
Beijing, China, 100872
wangpuwei@ruc.edu.cn

Abstract. QoS-aware service selection deals with choosing the service
providers from the candidates which are discovered to fulfill a require-
ment, while meeting specific QoS constraints. In fact, the requester and
its candidate service providers usually are autonomous and self-interested.
In the case, there is a private information game of the service selection
between a requester and its candidate providers. An ideal solution of the
game is that the requester selects and reaches agreement about the in-
terest allocation with the high-QoS and low-cost service providers. This
paper proposes an approach to design a novel incentive mechanism to
get the ideal solution of the game. The incentive mechanism design is
solved as a constrained optimization problem. Finally, the experiments
are performed to show the effectiveness of the incentive mechanism.

Keywords: QoS-aware Service Selection, Game Theory, Incentive
Mechanism, Contract.

1 Introduction

Service-Oriented Computing (SOC) is a computing paradigm that utilizes
self-contained and platform-independent services as computational elements for
developing software applications distributed within and across organizational
boundaries. Currently, QoS-aware service selection is an important problem. Ex-
isting approaches of QoS-aware service selection usually focuses on the develop-
ment of various QoS metrics. The work [1] proposes the QoS ontology for
annotating service with QoS data, and finds optimal services by matching QoS
constraints against candidate services’ QoS data. In their views, the requester that
offers an application requirement is considered as a controller that could choose the
service providers using QoS constraints and command the selected providers to re-
alize the requirement. In fact, the requester and the service provider usually are
autonomous, rational and self-interested in nature. In the case, the requester pub-
lishes an application requirement and the service provider actively discovers the
requester’s requirement. The requester gets a benefit while its requirement is re-
alized under the QoS constraints by the service providers. To motivate the service
providers to realize the requirement, a part of the benefit should be regarded as a

� Corresponding author.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 491–498, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

492 P. Wang and X. Du

transfer payment to the service providers. Generally, the requester prefers to pay
little transfer payment to its service providers, while each service provider prefers
to get high transfer payment. Thus, in the scenario, the requester and its candi-
date provider have a common interest for realizing the requirement, but they have
a conflicting interest over the transfer payment.

By relying on the game theory [2], this scenario could be modeled as a game.
For a candidate service provider, its profit is the difference between the transfer
payment and its service cost. In the game, its strategy explicitly is for maxi-
mizing its profit. For a requester, its profit is the difference between the benefit
from its satisfied requirement and the transfer payment to its service providers.
Considering the service providers which could gain same profit, the requester
could pay less transfer payment to the service providers which have lower cost.
Moreover, the higher QoS constraints, such as short response time and high
availability, could bring the more benefit to the requester. The strategy of the
requester thus is to find such service providers that could have high QoS and
relatively low service cost (called the efficient service providers in this paper).
Obviously, the QoS and service cost are the critical information in the game.
Because that the QoS of a service provider is verifiable at run time, we suppose
that the service provider will report its actual QoS to the requester. So, the QoS
is the open information for the requester and its providers. However, the service
cost of a service provider is not verifiable by the requester at any time, and the
service provider definitely is not willing to expose its actual cost. Hence, there
is a private information game between a requester and its candidate providers.

This paper proposes an approach to design an incentive mechanism to get an
ideal solution of the private information game. We propose that the ideal solution
is: 1) the requester and the efficient providers among the candidate providers
could reach agreement about the QoS constraints and transfer payments; 2) in
the service providers which reach agreement with the requester, the efficient
provider gets more profit than that the relatively inefficient provider gets and 3)
the more efficient the candidate providers are, the more profit the requester could
get. The solution ensures that the efficient providers are willing to participate
in the game and inefficient ones are motivated to improve their efficiency. The
requester also is willing to offer their requirements in the game.

2 The Game of Service Selection

In the set up game, there involves two kinds of players: i) a requester and ii)
the candidate service provider. The requester publishes a functional requirement,
and the candidate service providers, which meet the functional requirement, have
different QoS and different service costs. The basic model of the requester and
the service provider are given as follows.

2.1 Requester and Service Provider

The functional requirement Fr is described as a finite set of desired state tran-
sitions Fr = {ti|i ∈ [1, n]}. For different desired state transition, the requester

An Incentive Mechanism for Game-Based QoS-Aware Service Selection 493

could have different QoS constraints, such as response time and availability, etc.
The work [3] proposes using a single QoS value to be a measurement of the QoS
constraints. Based on the work, we could use a single QoS value to represent
the QoS constraints of a desired state transition. The benefit that the requester
r could get from a desired state transition t is described as Ot(q), in which
q ∈ (0,+∞) is the QoS of executing the desired state transition t.

The functional description of a service provider s ∈ S also is given as a finite
set of state transitions Fs. We suppose that the provider discovers the requester’s
functional requirement Fr while it could meet the requirement (Fs = Fr), and
its QoS is configurable, such as the work [6], i.e., the provider is able to adjust its
QoS to meet the requester’s QoS constraint. According to economics, besides the
QoS, the cost also depends on another factor, marginal cost. The marginal cost,
an economic concept, depicts the change in cost that arises while the quality
improves by one unit [4]. In other words, the smaller the marginal cost is, the
service cost increases less, while the QoS improves by one unit. It could be
concluded that the efficient providers, i.e., those have high QoS and low cost,
have small marginal cost. Thus, it is the marginal cost of service provider that
the requester wants to know in the game. In the paper, the marginal cost is
called the type of service provider. Without loss of generality, we suppose that
the fixed cost of a service provider is zero. The cost function of a provider for
executing a state transition has two parameters: QoS and type of the provider.
Formally, for a state transition t ∈ Fs, the cost function of the provider s is
described as Ct(q, θ), in which q is the QoS of executing the state transition t
and θ is the type of the provider s.

Generally, although the requester does not know the exact service costs of
its candidate providers, the requester still could find out that the type of ser-
vice provider follows a kind of probability distribution. Formally, the type of
service provider follows a continuous probability distribution Γ over the in-
terval (0,+∞), with a probability function f(θ) > 0. For an interval [θi−1,

θi] ⊂ (0,+∞), a cumulative probability function is P [θi−1, θi] =
∫ θi
θi−1

f(θ)dθ.

2.2 Procedure of the Private Information Game

In the procedure of the QoS-aware service selection, as shown in Fig.1, there is
a set of candidate providers whose types follows a continuous probability dis-
tribution Γ over the interval (0,+∞). There is a requester whose functional
requirement is described as a set of desired state transitions Fr. The requester
could know the benefit and cost functions of the desired state transitions in Fr,
but is not aware of the exact types of the candidate providers. Based on the
distribution Γ and the benefit and cost functions of Fr, the requester makes and
offers a set of contracts for its desired state transitions Fr (step 1). The contracts
are made to create the mutuality of obligation concerning the QoS constraints
and the promised transfer payments about the desired state transitions. The can-
didate providers accept or reject the contracts by using a proposed contracting
process (step 2). If all contracts are accepted by some of the candidate providers,

494 P. Wang and X. Du

Candidate Providers

Requester

Distribution of Types

investigates

follows

t1
t2

t3

t4
t8t5

t7

t6

Desired State
Transitions

has
Benefit function

and Cost Function

Step 1: makes and
offers the contracts

Step 2: contracting process

accepted? Step 3: solution
is obtained

N
loop: requester

does again

Contracts

Y

Fig. 1. Procedure of the Private Information Game

a solution of the service selection is obtained (step 3). A solution of the game of
service selection thus is a situation where each contract offered by the requester
is accepted by at least a candidate provider. If the contracts are not accepted,
there exists a loop where the requester revises and offers the contracts again.
The loop continues until that the revised contracts are accepted by some of the
candidate providers.

3 Incentive Mechanism

In the incentive mechanism, we propose a two-phase contracting process between
requester and provider. A requester r has a functional requirement Fr. Given m
candidate providers S = {s1, ..., sm}, the requester r does not know the candi-
date provider’s type, but it knows that the provider’s type follows a probability
distribution Γ .

3.1 Two-Phase Contracting

First Phase. The requester firstly makes a set of contracts for its desired sate
transitions according to the benefit and cost functions of the desired state tran-
sitions and the probability distribution of the provider’s type. Concretely, the
requester decides a set of partition points Θ = {θ0, θ1, ..., θn}, and gets the
intervals of provider’s type {(θ0, θ1], ..., (θn−1, θn]}. The requester makes a set
of contracts {〈t(θ1), q(θ1), δ(θ1)〉, ..., 〈t(θn), q(θn), δ(θn)〉} based on the intervals.
In a contract 〈t(θi), q(θi), δ(θi)〉, δ(θi) denotes a transfer payment to the ser-
vice provider whose type is in (θi−1, θi] (the provider is also called the (θi−1, θi]
provider in this paper) which executes the desired state transition t(θi) ∈ Fr at
the QoS q(θi) ∈ (0,+∞).

The requester does not know its candidate provider’s type, but it could figure
out the probability that the provider’s type is in a given interval based on the
probability distribution. Let P (·, ·) be the cumulative probability function of
the distribution. For a contract 〈t(θi), q(θi), δ(θi)〉, the profit that the requester
could get from the contract is V (θi) = Ot(θi)(q(θi))− δ(θi). The probability that
there exists at least a provider whose type is in the interval (θi−1, θi] among the

An Incentive Mechanism for Game-Based QoS-Aware Service Selection 495

m providers is denoted as ρ(θi). The expected profit in the phase is described
as Efirst(V (θi)) = ρ(θi) · V (θi). In the phase, a service provider is permitted
to choose and accept a contract. If a provider accepts a (θi−1, θi] contract, the
requester then knows that the provider’s type is in (θi−1, θi]. In this way, the
requester could know the scope of the most efficient candidate provider’s type.

Second Phase. While there are the contracts which are not accepted in the
first phase, there is a second phase. Since the requester knows the scope of the
most efficient provider’s type, the requester could revise the remanent unac-
cepted contracts to the most efficient provider. Concretely, while the (θk−1, θk]
provider does not exist among the candidates and the (θi−1, θi] provider is the
most efficient provider among the candidates in the first phase (the probabil-
ity of the situation is described as ρ(θk, θi)), the requester revises the contract
〈t(θk), q(θk), δ(θk)〉 to be 〈t(θk), qθk(θi), δθk(θi)〉 in the second phase. The revised
contract 〈t(θk), qθk(θi), δθk(θi)〉 promises that if the (θi−1, θi] provider realizes
the desired state transition t(θk) at the QoS qθk(θi), the provider will get the
transfer payment δθk(θi). The requester could get the profit from the revised
contract as Vθk(θi) = Ot(θk)(qθk(θi)) −δθk(θi). The expected profit in the phase
then is described as Esecond(Vθk(θi)) = ρ(θk, θi) · Vθk(θi).

Expected Profit Function of Requester. By adding the expected profits in
the two phases, the expected profit of the requester r is described as �Φ,Γ .

3.2 Constraints in the Mechanism

Participation Constraint. A service provider will quit the game, if it will get a
negative profit from the contract. Thus, a contract is acceptable at least provider
could get a non-negative profit. Formally, given a contract 〈t(θi), q(θi), δ(θi)〉 ∈
Φ, the participation constraint that ensures the (θi−1, θi] provider participates in
the game is described as follows: U(θi) = δ(θi)−Ct(θi)(q(θi), θi) � 0. A requester
will quit the game, if it will get a negative expected profit. The participation
constraint that ensures the requester to participate in the game is described as
follows: �Φ,Γ � 0.

Incentive Compatibility Constraint. The requester makes a contract based
on an interval of provider’s type. While the requester does not know the provider’s
type, the incentive compatibility constraint is to ensure that the provider whose
type is in the interval is willing to accept the contract and the other providers
whose types are out of the interval are unwilling to do so.

Constrained Optimization Problem. A set of contracts is feasible if it sat-
isfies both participation and incentive compatibility constraints. The problem to
make a feasible set of contracts that bring the requester a maximum profit be-
comes a constrained optimization problem. The constrained optimization prob-
lem to maximize the expected profit �Φ,Γ under the constraint (7) is given.

max
{〈t(θi),q(θi),δ(θi)〉|i∈[1,n]}

�Φ,Γ (1)

subject to the set of contracts is feasible

496 P. Wang and X. Du

The solution of the optimization problem is an optimal feasible set of contracts
Φ. The requester offers the optimal feasible set of contracts to its candidate
providers. If the contracts are accepted, a solution of the game is obtained.

4 Experimental Results

A prototype system of the QoS-aware service selection using the incentive mech-
anism is implemented in Java. Matlab is a numerical computing environment
and the interior point algorithm [5] that is proposed for solving the constrained
nonlinear optimization problem has been realized in the Matlab environment.
The interior point algorithm in the Matlab is directly used for solving the opti-
mization problem (5) to make an optimal feasible set of contracts.

A repository of 100,000 state transitions and their benefit and cost functions
are generated randomly and the cost functions are sensitive to the provider’s
type. In real world, the most efficient and inefficient service providers usually are
very few and there are many average service provider. Thus, we use the gamma
distribution to imitate the probability distribution of the provider’s type. As the
experimental data, the requester’s requirement is generated randomly as a set
of desired state transitions from the repository. Each requester has 30 candidate
providers whose types are generated randomly from the gamma distribution.

The gamma distribution has a shape parameter. The smaller the parameter is,
the more efficient providers there exist in the candidates. The number of desired
state transitions of a requester is set to be 10. Fig.2(a) plots the average expected
profit of 100 requesters, while the shape parameter of the gamma distribution is
set to be from 6.5 to 5.5. The result shows that the more efficient the candidate
providers are, the more profit the requester could get.

We also compare our approach with a service selection without using the
incentive mechanism. In this kind of service selection, the requester and its can-
didate providers still follow our proposed two-phase contracting process. But the
expected profit function of a requester is figured out without consideration of
the incentive compatibility constraint. The contracts also are made by solving
the problem to maximize the expected profit. In the experiments, the shape pa-
rameter of the gamma distribution is set to be 6 and the number of desired state
transitions in an requester is set to be from 1 to 25. Fig.2(b) plots the average
expected profit of 100 requesters. The result shows that it is clearly better while
the mechanism is employed and the expected profit increases while the number
of desired transitions increases. In the game of service selection, Fig.2(c) plots
the average actual profit of the 100 requesters. The result shows that the actual
profit are mainly in accord with the expected profit. The selected providers of the
100 requesters also get their profits in the game. Fig.2(d) plots the average ac-
tual total profit of the selected providers. The result shows that the actual total
profit of the selected providers also is better while the mechanism is employed.

The reason is that the incentive mechanism motivates the efficient providers
to contract with the requester. The desired state transitions of the requester
could be fulfilled at the high QoS by the efficient providers which have relatively

An Incentive Mechanism for Game-Based QoS-Aware Service Selection 497

5.55.65.75.85.966.16.26.36.46.56.5
100

200

400

600

800

shape parameter

ex
pe

ct
ed

 p
ro

fit

(a) Expected Profit of Requester
with Different Distributions

0 5 10 15 20 25
0

200

400

600

800

1000

1200

number of desired state transitions

ex
pe

ct
ed

 p
ro

fit

using the
mechanism
without using
the mechanism

(b) Expected Profit of Requester
with Different Number of Desired
State Transitions

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

number of desired state transitions

ac
tu

al
 p

ro
fit

using the
mechanism
without using
the mechanism

(c) Actual Profit of Requester

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

number of desired state transitions

ac
tu

al
 to

ta
l p

ro
fit

using the
mechanism
without using
the mechanism

(d) Actual Total Profit of Se-
lected Service Providers

Fig. 2. Expected and Actual Profit of Requester and Selected Service Providers

low cost. As a result, the requester and its selected service providers both are
benefited from our proposed incentive mechanism.

5 Related Work and Conclusion

The QoS in Web services is an important research issue. Various QoS mod-
els are proposed for capturing non-functional features of Web services [3]. The
service selection then relys on that the services are differentiated based on the
well-defined QoS attributes. Zeng [6] proposes a planning algorithm for the Web
service selection with QoS constraints. But, with more and more services are
deployed, the requirement begin to have the computational burden to get a so-
lution satisfying the QoS constraints. Serhani [7] proposes the third-party broker
for service registry which helps the requester conveniently knowing the services.
The broker balances the burden of the requester.In the approaches, the requester
takes the responsibility to choose services based on QoS constraints and com-
mand the selected services to realize its requirement. Considering the service
provider’s autonomy, agent-based approach is proposed. Tang [8] proposes that
service providers, acting as agents, collaborate with requesters on their own
initiative. The work does not focus on the incentives for requester and service
provider. Recently, some incentive mechanisms are designed relying on monetary
rewards. Jurca et al. [9] design the incentives for the participants according to

498 P. Wang and X. Du

their reputations. In the approaches, the reputation could be observable in ad-
vance and it is the open information for all players. In fact, the service cost is the
critical and private information of the provider, there is a private information
game of the service selection.

The requester and its candidate providers are autonomous and self-interested.
There is a private information game between a requester and its candidate
providers in the QoS-aware service selection. The main contribution of this pa-
per is the novel incentive mechanism which coordinates the interests of the re-
quester and its candidate providers in the private information game to get a
ideal solution. The incentive mechanism ensures that in the ideal solution, i) the
requester contracts with the efficient providers, ii) the more efficient the candi-
date providers are, the more profit the requester gets and iii) in the providers
which are under contract to the requester, the efficient provider gets more profit
than that the relatively inefficient provider gets. In the future work, the multilat-
eral negotiation among the requester and its candidate providers in the private
information game will be into consideration.

Acknowledgement. This work is supported by the National Fundamental Re-
search and Development Program of China (973 Program) under Grant
No.2012CB316205 and the National Natural Science Foundation of China under
grant No.61003084 and No.61232007.

References

1. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

2. Conitzer, V.: Computing game-theoretic solutions and applications to security. In:
The Conference on Artificial Intelligence (AAAI 2012), pp. 2106–2112 (2012)

3. Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS Computation and Policing in Dynamic Web
Service Selection. In: International World Wide Web Conference (WWW 2004), pp.
66–73 (2004)

4. Laffont, J.J., Martimort, D.: The Theory of Incentives: The Principal-Agent Model.
Princeton University Press (2001)

5. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Society for Industrial and Applied Mathematics (1995)

6. Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-aware middleware for Web services
composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)

7. Serhani, M.A., Dssouli, R., Hafid, A., et al.: A QoS broker based architecture for
efficient web services selection. In: ICWS 2005, pp. 113–120 (2005)

8. Tang, J., Jin, Z.: Assignment Problem in Requirement Driven Agent Collaboration
and its Implementation. In: AAMAS 2010, pp. 839–846 (2010)

9. Zhang, Y., van der Schaar, M.: Reputation-based incentive protocols in crowdsourc-
ing applications. In: INFOCOM 2012, pp. 2140–2148 (2012)

Goal Oriented Variability Modeling

in Service-Based Business Processes

Karthikeyan Ponnalagu1,3, Nanjangud C. Narendra2, Aditya Ghose3,
Neeraj Chiktey1,4, and Srikanth Tamilselvam1

1 IBM Research India, Bangalore, India
{pkarthik,srikanth.tamilselvam}@in.ibm.com

2 IBM India Software Lab, Bangalore, India
narendra@in.ibm.com

3 University of Wollongong, Australia
aditya.ghose@gmail.com

4 International Institute of Information Technology, Hyderabad, India
chikteyneeraj@yahoo.co.in

Abstract. In any organization, business processes are designed to ad-
here to specified business goals. On many occasions, however, in order
to accommodate differing usage contexts, multiple variants of the same
business process may need to be designed, all of which should adhere to
the same goal. For business processes modeled as compositions of ser-
vices, automated generation of such goal preserving process variants is
a challenge. To that end, we present our approach for generating all
goal preserving variants of a service-based business process. Our ap-
proach leverages our earlier works on semantic annotations of business
processes and service variability modeling. Throughout our paper, we
illustrate our ideas with a realistic running example, and also present a
proof-of-concept prototype.

Keywords: Business Process, SOA, service variability modeling, goal
semantics.

1 Introduction

In general, a business process is derived based on a specified business goal. How-
ever, there are many occasions , where multiple variants of the business process
need to be derived to address different usage contexts. At the same time, how-
ever, each such variant needs to adhere to the same business goal [7]. We call such
variants goal-preserving variants of a business process. In existing business pro-
cess design approaches [11], business processes are usually designed and stored
separately from the goals from which they were derived. As a result, derivation of
multiple goal-preserving variants becomes a costly and time-consuming exercise.
To that end, in this paper, we present a novel approach by which variability mod-
eling and subsequent derivation of goal preserving variants is completely driven

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 499–506, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

500 P. Karthikeyan et al.

by goal decomposition models. In this paper, we assume the following inputs:
(a) a goal model (e.g., as depicted in Fig. 2) with goals and associated decompo-
sition of sub goals (AND, OR) represented as a collection of boolean conditions
in conjunctive normal form (CNF) [6]; (b) a capability library containing a set
of services with semantically annotated effects [11]; and (c) a semantically anno-
tated process design created with the composition of such services, said process
design adhering to the goal model. Our proposed approach works as follows.
First, an initial business process is generated from the goals as per our earlier
work [8]. Second, based on the effect annotations, we derive the goal-based vari-
ability analysis model (VAM) for the services participating in a business process.
This model extends our earlier work on service variation modeling [14], to de-
termine all possible variants of the services that adhere to their mapped goals.
Third, using the VAM, we generate the required goal-preserving variants for the
original process.

This paper is organized as follows. We present related work in Section 2. Sec-
tion 3 discusses our running example, which is drawn from the insurance domain.
In Section 4 we provide some basic definitions and also show how goals can be
established as a foundation for variability analysis. We present and discuss our
prototype implementation in Section 5, and conclude the paper with suggestions
for future work in Section 6.

2 Related Work

In Product Line Engineering (PLE) based approaches [2,4], variability of prod-
ucts is systematized in terms of variability identification, modeling, conflict res-
olution and finally instantiation. But in SOA, a custom developed SOA based
application could comprise services and processes developed by different orga-
nizations [5]. These services and processes need to be modified for supporting
different user contexts, using valid variations that satisfy the corresponding orga-
nization goals. Approaches for process variability support such as Provop [9], fo-
cus on managing large collections of process variants of a single process model.On
similar lines, the citation [13] describes an approach to quantitatively calculate
similarity between any two variants of a business process, so that activities such
as process reuse, analysis and discovery can be facilitated. This is done via the
modeling of process constraints on tasks, such as which tasks should (or should
not) execute together. Such methods undoubtedly possess effective variability
management techniques, but without alignment between the goal model and
business process model. In works such as [10], the process goals are proposed as
a collection of tasks with specific input and output parameters, and are matched
against existing tasks in a capability library; the matching is accomplished via AI
planning techniques. In declarative workflow based approaches [16], constraint
satisfaction is employed to address the different types of process flexibility such
as differing a modeling decision to a later phase of the process life cycle, accom-
modating changes to the process design or deviating the process execution from

Goal Oriented Variability Modeling 501

Fig. 1. Insurance Claims Process - Solution Pr1

modeling time decisions. It requires the constraints to be specified in a declara-
tive language such as DecSerFlow [17], leading to challenges such as management
of large collection of process variants in the repository [1]. Our proposed work,
on the other hand, provides a more realistic and practical approach wherein we
provide the necessary facility for the business analyst to specify process and ser-
vice goals at a level of abstraction comfortable for him/her. We then provide
an approach to decompose the goals into sub-goals until there is an ontological
match between them and the semantically annotated effects of services in the ca-
pability library. Subsequently the goal-linked process and services are subjected
to variability analysis for checking and generating valid variations that continue
to preserve the goals but satisfy changing user requirements.

3 Running Example

Our running example depicts a goal decomposition model for an organization
dealing with different types of insurance claims as illustrated in Fig. 2. The Goal
Process Accident Claims is primarily decomposed into four mandatory sub-
goals Receive Claim, Verify Claim, Record Claim and Analyze Injuries.
Each of these sub goals, contains both mandatory and optional leaf level sub-
goals that the organization expects to be addressed by different insurance claim
business processes. Let us consider an accident claim process Pr1 as illustrated
in Fig. 1. The inputs to this process are the details of the customer requesting
the claim, and the details of the claim. The outputs of this process are the ac-
ceptance/rejection of the claim, along with the claim amount to be paid to the
customer (which will be zero in case of rejection). Pr1 consists of four major
sub-processes - (i) Record Claim (RC), (ii) Verify Claim (VC), (iii) Analyze
Injuries (AC) and (iv) Report (RP). In Verify Claim sub-process, the De-
termineLiability (DL) and PotentialFraudCheck (PF) services are first executed
in parallel, and then their results are combined and sent to ClaimInvestigation
(CI) service. A final review of the verified claim is then implemented by Final-
Review (FR) service. A variant of Pr1, adhering to the goal model in Fig. 2

502 P. Karthikeyan et al.

Fig. 2. Insurance Claims Process - Goal Model

by satisfying all the mandatory sub-goals (along with a different combination of
optional sub-goals) as Pr1, could be Pr2.The process Pr2 contains the following
differences from Pr1: DL and PF services are serialized (satisfying the optional
sub-goal G81); PF service is modified (satisfying the optional sub-goal G91) to
also consider the extent of liability from the service DL along with the customer
and claim details to determine the possibility of occurrence of fraud. In the rest
of this paper, we discuss how our variability analysis model can help generate
the goal-preserving variants of Pr1, such as Pr2.

4 A Goal-Oriented Approach to Variability Analysis

In this section, we argue for the centrality of goals in variability analysis.
In our earlier paper [8], we proposed a goal refinement procedure based on

the KAOS methodology [3]. With this procedure, we asserted that the set of
sub-goals for a goal will achieve the goal (entailment); it will be the smallest
set of sub-goals to achieve the goal (minimality); and it will never be incorrect
(consistency). In our proposed approach in this paper, we leverage such a refined
goal model as illustrated in Fig. 2 to identify the set of minimally required sub-
goals to entail the overall process goal.

Let us consider the process Pr1 from our running example. The goal model
for G depicted in Fig. 2 can be expressed in CNF form as G = G5 ∧ G8 ∧ G9 ∧
G10∧G6∧G7∧G4. Let us assume the mapping of the services in Pr1 with the
goal model as follows: Pr1 (G,RC (G5, V C (G2, RP (G3, AI (G4, DL (
G8, PF (G9, FR (G10, CI (G411. Now as an illustration, leveraging these
variability mappings, the following variability analysis for the services DL and
PF can be established: The service DL can have both interface and implementa-
tion level variations that could preserve either the Goals G8 or G81. Similarly the

Goal Oriented Variability Modeling 503

service PF can have both interface and implementation level variations preserv-
ing either of goals G9, G91, G92 and G93. For example to support the variant
Pr2 of Pr1, we can leverage the variations satisfying G81 and G91 respectively
by the services DL and PF . This enables generation of goal-preserving variants.

We therefore establish that a service or process variant is goal preserving
only if it eventually adheres to the same goal that the base service adheres to.
We discuss the different scenarios in which this goal adherence can be verified.
We assume that the existing variant(s) of the service are also available in the
capability library and are semantically annotated with end effect scenarios.

Let us consider a service sj to be a variant of si. Let ei and ej be the corre-
sponding effect annotations of si and sj respectively. Let ei = {c1, c2, ..., cm} and
ej = {cj1, cj2, ..., cjn}. Let Gi == {ca, cb, ..., ck} be a sub goal of G. Let the ser-
vice si entail Gi. Then the following condition needs to be met: {ca, cb, ..., ck} ∈
ei. This can be illustrated using our running example as follows: consider the
Goal G8, which contains the following literal: DetermineLiability = ’yes’.
Now to establish that the service DL satisfies the goal G8, we expect the above
literals to be part of the end effects of DL such that DL = DetermineLiability

= ’yes’, match-past record = ’yes’ . Now to establish that sj is a goal-
preserving variant of si, one of the three following scenarios have to be met:

1. The service si satisfies the AND sub-goalGi andGi does not contain a disjunc-
tive clause. In this case, the service sj can be established as a goal preserving
variant of si, only if the following condition is satisfied: {ca, cb, ..., ck} ∈ ej .
This also implies Gi ∈ {ei ∩ ej}. To illustrate, let us assume a variant DL′ of
serviceDL, which has the end effects as follows:DL′ = DetermineLiability

= ’yes’,examine-vehicle= ’yes’.We can establish thatDL′ also entails the
goal G8 and hence DL′ is a goal preserving variant of DL.
Now for the remaining two scenarios, let us assume an AND sub-goal Gi,
such that Gi can be expressed as {Gi1 ∨ Gi2}. Let Gi = {ca, cb, ..., ck},
Gi1 = {ca, cb, ..., ck, ck+1...cm} and Gi2 = {ci, cj, ..., ck, ck+1...cn}.

2. Let the service si satisfy the AND sub-goal Gi, which contains a disjunctive
clause. Then the service sj can be established as a goal preserving variant of
si, only if at least one of the following conditions is satisfied: {ci, cj , ..., ck} ∈
ej , {ci, cj , ..., ck, ck+1...cm} ∈ ej , {ci, cj , ..., ck, ck+1...cm} ∈ ej . This also im-
plies Gi ∈ {ei∩ ej} like the previous condition. This can be again illustrated
from the running example using the service PF and the goal G9. We ob-
serve that G9 can be expressed as {G91∨G92∨G93}. Let the service PF =
Determine Fraud = ’yes’, Spot Investigation = ’yes’ entail the goal
G9 = Determine Fraud = ’yes’. Let a service PF ′ = Determine Fraud

= ’yes’, Utilize Liability = ’yes’, Inspect Vehicle = ’yes’ be a
variant of service PF , that uses the liability information to check for fraud
in process Pr2. We see that PF ′ entails the goal G91 = Determine Fraud

= ’yes’, Utilize Liability = ’yes’, as it satisfies the above condition.
3. Let a service si satisfy the OR sub-goal Gi1. Then the service sj can be

established as a goal preserving variant of si, only if at least one of the

504 P. Karthikeyan et al.

Fig. 3. The Generation of Process Pr1 in CNF

following conditions is satisfied: {ca, cb, ..., ck} ∈ ej , {ca, cb, ..., ck, ck+1...cm} ∈
ej , {ca, cb, ..., ck, ck+1...cn} ∈ ej . This implies {Gi1∨Gi} ∈ {ei∩ej} . This can
be illustrated similarly using the services PF ′ and PF . Now given that PF ′

preserves the OR sub-goal G91, we can establish that PF is a goal preserving
variant of PF ′, as it satisfies G9.

5 Implementation and Experimentation

For running the experiment to demonstrate goal driven variability analysis,
we have developed an Eclipse plugin1 that helps represent the goal model as
a goal-graph. The goal model of the business process depicted in Fig. 2 can
be refined as G = {G5, G8, G9, G10, G6, G7, G4} using our goal refinement
procedure. The CNF form that we have generated from this goal model us-
ing our tool is expressed as G → G4 ∧ G5 ∧ G6 ∧ G7 ∧ G8 ∧ G9 ∧ G10. Let
X = {xi | i = 1, 2...50} be a list of Boolean literals. Each of these sub goals of G
are defined as G4 → x1∨x3∨x42, G5 → x4∨x5∨x6∨x7, G6 → x5∨¬x2∨¬x6,
G7 → ¬x10 ∨ x49 ∨ x39, G8 → x11 ∨ ¬x12 ∨ x13, G9 → x14 ∨ x15 ∨ x16 and
G10 → ¬X28. Similarly we represent the process Pr1 with semantic end ef-
fect annotations. We can also observe from the CNF expressions of G and Pr1,
that Pr1 satisfies G as illustrated in Fig. 3. In addition to illustrating the im-
plementation with our running example, we also ran an additional experiment
with increasing scale of complexity as follows: let us express a process P as

1 Demo video accessible from http://variabilitymodelling.wordpress.com

http://variabilitymodelling.wordpress.com

Goal Oriented Variability Modeling 505

P → T 1∧T 2∧T 3∧T 4∧T 5∧T6. The tasks are defined as : T 1 → x1∧x10∧¬x50,
T 2 → x20 ∧ ¬x12 ∧ x39, T 3 → x14 ∧ ¬x50 ∧ x34, T 4 → x7 ∧ ¬x19 ∧ x45,
T 5 → ¬x2 ∧ x34 ∧ x15, T 6 → ¬x28. We ran the CNF form of G using the
WinSat tool [15]. We observed that there were 36 different solutions that could
satisfy G. Now for each service T 1 through T 6, we derived the following map-
pings to the sub-goals of G: T 1 (G4, T 2 (G7, T 3 (G9, T 4 (G5, T 5 (G6,
T 6 (G10. We can conclude from this that P (G. Now for each of the services
associated with a sub-goal of G, we can perform the variability analysis. For
example, for T 1, the respective goal preserving variants that can be derived are
as follows: T 11 → x42, T 12 → x3, T 13 → x1, T 14 → x1∧x42, T 15 → x42∧x3,
T 16 → x1 ∧ x3. We can see that each of the variants of T 1 still satisfy the sub
goal G4. Similarly we could have goal preserving variants for the other services
as well. Similarly, the variants for T 2 are : T 21 → x39∧¬x12; T 22 → ¬x10∧x11.
And the variants for T 3 are: T 31 → x15∧¬x27; T 32 → x15∧x16, while the vari-
ants for T 4 are: T 41 → x4∧x5; T 42 → x7. The variants for T5 are : T 51 → ¬x6;
T 52 → x5∧¬x2. Hence these variants still preserve their mappings with the sub
goals and thus the process P (G. Now given all the goal preserving variants
for each of these services, we could generate goal preserving variants of P. This
addresses the first objective of our proposed approach, which is goal driven vari-
ability analysis. Now suppose we already have existing candidate variants, we
can validate whether these variants satisfy the respective goal or not. For ex-
ample suppose we have an existing variant of T3, T 32 → x20 ∨ x31. Since T 3
entails G9 (G9 → x14∨x15∨x16), we could infer that T 32 is not a valid variant
of T 3 as T 32 could not satisfy the mapping T 3 (G9. This addresses the second
objective of our proposed approach, which is validating existing variants for their
goal preserving nature. Let process P’ be a variant of P and be defined as: P ′ →
(x1∨x3)∧(x20∨¬x12∨x39)∧(x15∨¬x27)∧(x7∨¬x19∨x45)∧(¬x2∨x34∨x15).
From the list of goal preserving variants and the original services, we can estab-
lish that P ′ → T 16∧ T 2∧ T 31∧ T 4∧ T 5. Since each of the service variants are
goal preserving we can infer that P ′ (G.

6 Conclusions

In this paper, we have looked at variability in service-based business processes
through a goal-oriented lens. In particular, we have shown how, given a business
processs, its goal model, and a set of services (and variants thereof) as part of
a capability library, all goal-preserving variants of the business process can be
generated. Generating such variants is crucial in cases when organizations need
to generate multiple variants of the same business process in order to cater to
varying user requirements. We have also presented the conditions under which
such goal-preserving variants can be generated. As part of future work, we will
address co-evolution of goal models and business process models by integrating
ideas from this paper with those from an earlier work [12].

506 P. Karthikeyan et al.

References

1. Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time
flexibility for process families: Open issues and research challenges. In: La Rosa,
M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 477–488. Springer,
Heidelberg (2013)

2. Chen, L., Babar, M.A., Ali, N.: Variability management in software product lines:
a systematic review. In: Proceedings of the 13th International Software Product
Line Conference, pp. 81–90. Carnegie Mellon University (2009)

3. Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven re-
quirements elaboration. SIGSOFT Software Engineering Notes 21, 179–190 (1996)

4. Deelstra, S., Sinnema, M., Nijhuis, J., Bosch, J.: Cosvam: A technique for assessing
software variability in software product families. In: ICSM, pp. 458–462 (2004)

5. Thomas Erl. Service-oriented Architecture: Concepts, Technology, and Desing.
Pearson Education India (2006)

6. Carbonell, J., et al.: Context-based machine translation. In: Proceedings of the 7th
Conference of the Association for Machine Translation in the Americas, pp. 19–28
(2006)

7. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

8. Ghose, A.K., Narendra, N.C., Ponnalagu, K., Panda, A., Gohad, A.: Goal-driven
business process derivation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R.
(eds.) ICSOC 2011. LNCS, vol. 7084, pp. 467–476. Springer, Heidelberg (2011)

9. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the provop approach. J. Softw. Maint. Evol. 22, 519–546 (2010)

10. Heinrich, B., Bolsinger, M., Bewernik, M.: Automated planning of process models:
The construction of exclusive choices. In: ICIS, page Paper 184 (2009)

11. Hinge, K., Ghose, A., Koliadis, G.: Process seer: A tool for semantic effect anno-
tation of business process models. In: Proceedings of the 2009 IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2009, pp. 54–63.
IEEE Computer Society, Washington, DC (2009)

12. Hoesch-Klohe, K., Ghose, A.K., Dam, H.K.: Maintaining motivation models (in
BMM) in the context of a (WSDL-S) service landscape. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 582–590. Springer,
Heidelberg (2012)

13. Lu, R., Sadiq, S.W., Governatori, G.: On managing business processes variants.
Data Knowl. Eng. 68(7), 642–664 (2009)

14. Narendra, N.C., Ponnalagu, K.: Towards a variability model for soa-based solu-
tions. In: IEEE SCC, pp. 562–569 (2010)

15. Qasem, M., Prügel-Bennett, A.: Learning the large-scale structure of the max-sat
landscape using populations. Trans. Evol. Comp. 14(4), 518–529 (2010)

16. Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems.
Springer (2012)

17. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 507–514, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Cooperative Management Model for Volunteer
Infrastructure as a Service in P2P Cloud

Jiangfeng Li and Chenxi Zhang∗

School of Software Engineering, Tongji University, Shanghai, P.R. China
lijf@tongji.edu.cn, zhangcx2000@163.com

Abstract. IaaS model in the Cloud Computing provides infrastructure services
to users. However, the provider of such centralized Cloud requires notable in-
vestments to maintain the infrastructures. P2P Cloud, whose infrastructures are
provided by multiple volunteer nodes in the P2P network, gives a low cost op-
tion to the provision of Cloud Computing. In this paper, a decentralized P2P
infrastructure cooperative management model is proposed to offer autonomic
infrastructure management and on-demand resource allocation as a service. The
model supports nodes to manage complex and various computational resources
in P2P infrastructure. Overlay self-configuration service is proposed to dynami-
cally configure the connectivity of nodes in decentralized environments. Task
assignment service is designed to allocate resources to run tasks submitted by
individual users. Moreover, on-demand resource aggregation mechanism pro-
vides service of resource aggregation under user-defined criteria.

Keywords: Decentralized Cooperative Management, Volunteer IaaS, Virtua-
lized Resource Aggregation, Resource Allocation, P2P Cloud System.

1 Introduction

Cloud Computing has attracted interest from both the research community and com-
mercial world. It relies on sharing of resources that can be rapidly provisioned and
released with minimal management effort or service provider interaction [1]. In a
Cloud system, on-demand self-service allows users to obtain, configure and deploy
cloud services.

The three main services are provided by the Cloud computing architecture accord-
ing to the needs of customers [2]. Firstly, Software as a Service (SaaS) provides
access to application software as a service, such as Customer Relationship Manage-
ment (CRM) [3]. Secondly, Platform as a Service (PaaS) provides a platform for de-
veloping applications on top of it, such as the Google App Engine (GAE) [4]. Finally,
Infrastructure as a Service (IaaS) provides computers (physical or virtual), and other
resources, such as Amazon EC2 [5]. Technically, IaaS offers incremental scalability
of computing resources and on-demand storage [6].

∗ Corresponding author.

508 J. Li and C. Zhang

In industry, a lot of services have been provided by Cloud systems from plenty of
companies. However, for the reason that data centers of a Cloud system belong to a
single company, it has the possibility that the company go bankrupt, which makes
“single point of failure” for customers. In addition to, the centralized Cloud may cost
too much to maintain and manage. The Cloud provider needs to effort a lot not only in
notable investments of maintaining a cloud center, but also in managing the complex
and large size of cloud components.

In this paper, we propose a P2P Infrastructure Cooperative Management (P2PICM)
model to manage resources in the P2P infrastructure. The P2PICM model is a fully
decentralized model without any server to provide central services. It supports mul-
tiple resource providers, which is different from the feature of single resource provid-
er in the IaaS Cloud architecture. On the other hand, it is different from models in
Volunteer Computing. Firstly, our proposed model can be used in both local and geo-
graphic scale, while the Volunteer Computing is only used in geographic scale.
Moreover, there is no central repository of tasks in our proposal while it exists in the
Volunteer Computing systems.

The rest of this paper is organized as follows. In Section 2 we briefly review the re-
lated works. The system model and proposed services are presented in Section 3.
Section 4 evaluates the simulation results. Conclusions and future works are discussed
in Section 5.

2 Related Works

In recent years, several authors have recognized the potential benefits of P2P architec-
tures. In [7], the authors proposed an autonomic cooperative model to find the availa-
ble resources in grid systems. The model is based on P2P unstructured architecture.
[8] used P2P hybrid architecture to discover useful grid resources inside or outside the
domain. However, resources in those proposals are physical resources instead of vir-
tualized resources. Moreover, different resources cannot be aggregated to run one
task.

A different distributed paradigm is Volunteer Computing. In the Volunteer Com-
puting, volunteers donate resources for running scientific projects with significant
computational requirements. BONIC[9], SETI@home[10], Folding@home[11] are
some of the popular projects running on Volunteer Computing systems. In [12], the
authors developed a proximity-aware resource discovery architecture for peer-to-peer
based volunteer computing systems. The proposed resource discovery algorithm se-
lects resources based on the requested quality of service, current load of peers, and
communication delay.

P2P Cloud system [13], a fully distributed decentralized system, provides infra-
structure services without any centralized problems that the Cloud is facing. Infra-
structures in a P2P Cloud system come from the volunteer nodes in the network.
Cloud@Home [14][15] is a hybrid system which combines features from the Volun-
teer Computing model and Cloud Computing paradigm. Cloud@Home architecture
relies on centralized components, while allowing end users to contribute additional
resources.

 A Cooperative Management Model for Volunteer Infrastructure 509

3 Proposed Model and Services

3.1 System Model

We construct a P2P Infrastructure Cooperative Management (P2PICM) model to
manage resources in the P2P infrastructure. The model can allocate on-demand re-
sources to run tasks submitted by users. Such resources may be CPU, memory, hard
disk, bandwidth, or a combination of them. Fig. 1 shows the P2PICM model.

The P2PICM model is a two-level model. The P2P Infrastructure Level stores re-
sources of P2P infrastructures. The Peer Manager Level, which consists of several
Peer Managers (PMs), deals with the requests from individual users through the User
Interface. In this sense, a node contains two main parts, 1) infrastructure resources,
and 2) PM that manages the infrastructure resources.

A PM is composed of components of Local Resource, Neighbor Table, Cache, and
Task List. Local Resource includes both the individual and summarized information
of resources that the PM manages. Neighbor Table holds the IDs of neighbor PMs.
Cache preserves system-wide PM information. Task List contains tasks that are wait-
ing for being executed and tasks that are being executed.

Concentrating on CPU-intensive applications, PMs are interested in resources with
high CPU processing power. Fig. 2 shows an example of PM structure used in a CPU-
intensive application. In the CPU-intensive environment, the ith Resource Capacity is
the speed of the ith CPU. The value of the ith Free Resource is defined by Equation
(1). In the Equation, a weight of 0.01 is used to make the two measurements compa-
rable. 1) 100% / 0.01 (1)

3.2 Overlay Self-configuration Service

The Overlay Self-configuration Service is able to dynamically configure the connec-
tivity of PMs in the network under preferences of the PMs. According to the cache
information, a PM selects the best n PMs which have the largest free resource, nearest
location, and connects them as neighbors. Every unit time, each PM updates Cache by
exchanging information of Local Resource and Cache with all the neighbors. Thus,
the overlay will reconfigure after each PM changes neighbors.

In order to prevent PM from consuming too much resource in communicating with
its neighbors, the number of a PM’s neighbors has an upper bound. The upper bound
of ’s neighbor number is defined by Equation (2).

 _ _ / (2)

where is the max percentage of resources that allows to use in communi-
cation with neighbors, _ is the PM Total Resource Capacity, and is
the resource consumption of communicating with one neighbor.

510 J. Li and C. Zhang

Fig. 1. The structure of the P2PICM model. Fig. 2. An example of PM structure in a CPU-
intensive application

In the processes of information exchange in a PM and one of its neighbor, merging

caches of the PM (LocalPM) and the neighbor (NeighborPM) is the main function. In
the merge operation, a temporary cache is used for the LocalPM to store information
of NeighborPM and other PMs which are stored in NeighborPM’s Cache. The Lo-
calPM selects a number of PMs in the temporary cache according to its preference. It
stores the information of PMs having closer Time Stamps to the current time and
larger Free Resources in its cache.

3.3 Task Assignment Service

Task Assignment Service allocates resources to run tasks submitted by the users. As
each task has two resource requirements: 1) Least Resource Capacity (LRC), and 2)
Least Resource Number (LRN), the PM will allocate resources that satisfy the re-
quirements of both Least Resource Capacity and Least Resource Number.

Suppose there are m resources whose Free Resources are larger than LRC in the a
PM’s Local Resource. If m is no less than LRN, the task will be run in the PM. How-
ever, it has a high probability that m is less than LRN. At this time, the PM requests
other PMs to provide at least LRN-m resources to run the task.

Firstly, the requested PM searches for the additional resources according to re-
source information stored in its Cache. Those m’ (>=LRN-m) resources that satisfy
the requirement of least resource capacity are marked as candidates. Then, the PM
checks whether the information of each candidate stored in the Cache is accurate, by
the assistant from the PM that manages the candidate. Next, if the candidate informa-
tion is correct, those m+m’ resources (m resources managed the requested PM and m’
resources provided by other PMs) will be aggregated together and formed as a Sub-
Cloud by On-demand Resource Aggregation Service, which will be introduced in
section 4.3.

Contrarily, if some candidate information is incorrect, it means currently there are
not enough resources to run the task. The PM will continue finding suitable resources
for the task. The finding process will be terminated when either suitable resources are
found or there is no suitable resource for the task.

 A Cooperative Management Model for Volunteer Infrastructure 511

Finally, the task will be run using resources in the SubCloud, or go on staying in
the Waiting Queue, and be assigned after a given time.

3.4 On-Demand Resource Aggregation Service

The On-demand Resource Aggregation Service is used to request SubClouds of the
whole P2P Cloud to some user-defined criteria, e.g., a group of resources belong to 10
different nodes, the top 3 nearest nodes. When a task requests the allocation of some
resources according to a specific metric, the resource aggregation ranks the resources
according to that metric, and returns the set of resources matching the query. Next, the
selected resources are bound together by linking all nodes that own the resources with a
separate overlay (separate from the overlay of PMs). Such resources and the overlay
form a SubCloud in the P2P Cloud. We use a ring overlay to link the nodes in the Sub-
Cloud. Each node of the SubCloud has a direct link to its predecessor and successor.

Every SubCloud elects a node as the coordinator using bully election algorithm. To
keep the robustness of the SubCloud, the coordinator is used to maintain the ring
overlay of the SubCloud. So, a task can be running in the resources in the SubCloud,
even if nodes in the SubCloud leave the network or fail. Too many nodes leave or fail
may cause suspension of running the task because the number of resources in the
SubCloud is less than LRN. At this time, the coordinator will ask the requested PM
allocate additional more resources. To prevent the task from being suspended because
of resource shortage frequently, the number of resources in the SubCloud is set as 1) . is a parameter between 0 and 1. It is adjusted according to the
average probability of nodes leave from the network.

4 Simulation Evaluation

We use Peersim [16] to simulate the P2PICM model. The simulation runs a cycle
every unit time. Four different task arrival rates are used to conduct four loading envi-
ronments – low, medium, high and very high, in which 25%, 50%, 80%, and 90% of
resources were loaded. Table 1 shows the parameters of the simulation.

Table 1. Parameters of simulations

Parameters Values Parameters Values
Cycles 100 CacheSize 200, 600, 1024, 2048

PM Number 2048 NeighborNumber 2, 5, 10, 20
Task Running

Time ∑
Resource Number
managed by a PM

1-15

Task LRN 1-8 Resource Capacity 10-300
Task LRC 1-300 Tasksize Distribution Poisson Distribution

Task Size 32-4096
Task Arrival Rate

(number per unit time)
400, 1000 , 2000, 3000

512 J. Li and C. Zhang

Since every PM uses its cache information to select new neighbors and assign
tasks, the accuracy of information in every cache influences on the performance of the
system. Fig. 3 shows the average percentage of correct elements per cache. The figure
indicates that smaller cachesize has higher percentage of correct elements. This re-
sults from the fact that information in a cache is sorted by the time stamp. The infor-
mation which has a higher time stamp is put into a toper element in the cache. So, no
matter how large a cachesize is, the upper elements have higher accuracy than the
lower elements. On the other hand, information stored in the bottom of the cache has
higher possibility that the information is out of date, which reduces the information
accuracy.

(a) (b)

(c) (d)

Fig. 3. Average percentages of correct elements per cache. The simulation runs in four loading
environments – low (a), medium (b), high (c) and very high (d).

Fig. 4 shows the Task Execution Response Time and Fig. 5 shows the Task
Wrongly Assign Number of the P2PICM model in the simulation. In the figure, 200
cachesize has the highest Task Execution Response Time, and the lowest Task
Wrongly Assign Number, in the four loading environments. It is attributed to the fact
that smaller cachesize makes a cache has higher percentage of correct elements,
which is confirmed by the above simulation result (Fig. 3). The higher percentage of
correct elements means that a task is less likely assigned to a wrong PM, so the Task
Wrongly Assign Number reduces. However, the lower cachesize makes tasks, espe-
cially those tasks which require large resources to run, have less chance to be as-
signed. Such a task needs to wait for a long time before it is assigned, so it increases
the Task Execution Response Time.

 A Cooperative Management Model for Volunteer Infrastructure 513

Besides the cachesize, the number of a PM’s neighbors significantly impact on the
performance through the accuracy of the information in cache. Fig. 6 shows the aver-
age accuracy rate of the information in cache (Cachesize is 200). In the figure, the
more neighbor number is, the higher accuracy is. The accuracies when the neighbor
number is more than 5 have little difference, but much higher than when neighbor
number is 2.

Fig. 4. Task execution re-
sponse time

Fig. 5. Task wrongly assign
number

Fig. 6. Average accuracy rate
of the information per cache

5 Conclusion and Future Work

We present a P2P Infrastructure Cooperative Managements model. In the model,
cache information is used for a PM to select a number of best PMs as neighbors under
its preference. The overlay self-configures every unit time by PMs changing their
neighbors. A PM allocates a group of suitable resources which satisfy the task re-
quirements to run the task. Those resources are aggregated as a SubCloud for running
the task. The future work aims to solving multi-resources in P2P Cloud system, while
restrictions on the order of running tasks are considered.

Acknowledgments. The research is supported by National Basic Research Program
of China (No. 2010CB328106).

References

1. Panzieri, F., Babaoglu, O., Ferretti, S., Ghini, V., Marzolla, M.: Distributed Computing in
the 21st Century: Some Aspects of Cloud Computing. In: Jones, C.B., Lloyd, J.L. (eds.)
Dependable and Historic Computing. LNCS, vol. 6875, pp. 393–412. Springer, Heidelberg
(2011)

2. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Broberg, I.: Cloud Computing and Emerg-
ing IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility.
Future Generation Computer Systems 25(6), 599–616 (2009)

3. Cusumano, M.: Cloud Computing and SaaS as New Computing Platforms. Communica-
tions of the ACM 53(4), 27–29 (2010)

4. Ciurana, E.: Developing with Google App Engine. Apress, Berkeley (2009)
5. Varia, J.: Best Practices in Architecting Cloud Applications in the AWS Cloud. In: Cloud

Computing: Principles and Paradigms, pp. 459–490. Wiley Press (2011)

514 J. Li and C. Zhang

6. Garg, S.K., Versteeg, S., Buyya, R.: A Framework for Ranking of Cloud Computing Ser-
vices. Future Generation Computer Systems 29(4), 1012–1023 (2013)

7. Li, J., Zhang, C.: A Domain Based Two-Layer Autonomic Management Model in Grid
Systems. In: 2nd International Conference on Computational Intelligence and Software
Engineering, Wuhan, China, pp. 1–4 (2009)

8. Li, J., Zhang, C.: A Decentralized Cooperative Autonomic Management Model in Grid
Systems. In: 4th International Conference on Frontier of Computer Science and Technolo-
gy, Shanghai, China, pp. 112–118 (2009)

9. Elwaer, A., Harrison, A., Kelley, I., Taylor, I.: Attic: A Case Study for Distributing Data in
BOINC Projects. In: IEEE International Parallel & Distributed Processing Symposium,
Shanghai, China, pp. 1863–1870 (2011)

10. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: An
Experiment in Public-resource Computing. Communications of the ACM 45(1), 56–61
(2002)

11. Beberg, A.L., Ensign, D.L., Jayachandran, G., Khaliq, S., Pande, V.S.: Folding@home:
Lessons from Eight Years of Volunteer Distributed Computing. In: IEEE International
Symposium on Parallel and Distributed Processing, Rome, Italy, pp. 1–8 (2009)

12. Ghafarian, T., Deldari, H., Javadi, B., Yaghmaee, M.H., Buyya, R.: CycloidGrid: A Prox-
imity-Aware P2P-based Resource Discovery Architecture in Volunteer Computing Sys-
tems. Future Generation Computer Systems 29(6), 1583–1595 (2013)

13. Babaoglu, O., Marzolla, M., Tamburini, M.: Design and Implementation of a P2P Cloud
System. In: 27th ACM Symposium on Applied Computing, Trento, Italy (2012)

14. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Cloud@Home: Bridging the Gap
between Volunteer and Cloud Computing. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang,
H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 423–432. Springer, Heidel-
berg (2009)

15. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer Computing and Desktop
Cloud: the Cloud@Home Paradigm. In: IEEE International Symposium on Network Com-
puting and Applications, Los Alamitos, CA, USA, pp. 134–139 (2009)

16. Peersim, http://peersim.sourceforge.net

Process Refinement Validation and Explanation

with Ontology Reasoning

Yuan Ren1, Gerd Gröner2, Jens Lemcke3, Tirdad Rahmani3, Andreas Friesen3,
Yuting Zhao1, Jeff Z. Pan1, and Steffen Staab4

1 University of Aberdeen
2 PALUNO – University of Duisburg-Essen

3 SAP AG
4 University of Koblenz-Landau

Abstract. In process engineering, processes can be refined from simple
ones to more and more complex ones with decomposition and restructur-
ing of activities. The validation of these refinements and the explanation
of invalid refinements are non-trivial tasks. This paper formally defines
process refinement validation based on the execution set semantics and
presents a suite of refinement reduction techniques and an ontological rep-
resentation of process refinement to enable reasoning for the validation
and explanation of process refinement. Results show that it significantly
improves efficiency, quality and productivity of process engineering.

1 Introduction

It is germane in process management to represent processes at different levels
of abstraction, ranging from abstract processes (coarse description) to specific
processes (fine-grained characterisation). Due to the different levels of abstrac-
tions, it is not obvious to determine whether or not a refined process reflects
the intended behaviour of the original process. This makes the validation of re-
finements and the explanation of sources for invalidity crucial issues. Manual
validation is usually error-prone, time-consuming and increases the cost of pro-
cess engineering. Existing (semi-) automatic methods still limit the flexibility in
process refinement. In this paper, we make the following contributions to the
automatic validation of process refinement.1

– Based on the classic execution set semantics, we propose a formal and intu-
itive semantics of process refinement (Sec. 2).

– Based upon the above semantics, we propose a novel approach to automati-
cally validate and explain process refinements (Sec. 3) by combining graph-
based transformation and ontology reasoning.

– We implemented our approach and conducted evaluations in terms of perfor-
mance and usefulness (Sec. 4). Experiments show that realistic refinement
scenarios can be validated below one minute and average-sized problems in
a split second. This significantly improves the quality and productivity of
process engineering.

1 Detailed proofs of all theorems can be found in our online technical report:
http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/ProcessRefinement.pdf

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 515–523, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/ProcessRefinement.pdf

516 Y. Ren et al.

2 Problem Description

A process (or process model) is a directed graph P = 〈V,E〉 without multiple
edges between two vertices. Vertices (V) include activities and gateways (A,G ⊆
V). The start and end events (vS, vE ∈ A) are two special activities, e.g., process
P1 in Fig. 1 consists of two activities A and B between the start and end events.
No activity is allowed twice in a process model.

A gateway is either opening or closing (GO,GC ⊆ G), and either exclu-

sive or parallel (G ,G ⊆ G). Process P3 contains parallel gateways and
exclusive gateways. Exclusive gateways can be used to construct loops, e.g.,
in P1, A and B can be repeatedly executed. The set of edges (E) is a bi-
nary relation on V. For each v1 ∈ V, we know its direct predecessors (succes-
sors) pre(v1) := {v2 ∈ V | (v2, v1) ∈ E} (suc(v1) := {v3 ∈ V | (v1, v3) ∈
E}). Given a valid process model P = 〈V,E〉 with |pre(vS)| = |suc(vE)| =
0, |suc(vS)| = |pre(vE)| = 1; ∀o ∈ GO (c ∈ GC), |pre(o)|(= |suc(c)|) = 1;
∀a ∈ A \ {vS, vE}, |pre(a)| = |suc(a)| = 1, we define gateway-free predecessor as
PS(v1) := {v2 ∈ A\{vS} | v2 ∈ pre(v1) or ∃u ∈ G, u ∈ pre(v1) and v2 ∈ PS(u)}
and successor as SS(v1) := {v3 ∈ A \ {vE} | v3 ∈ suc(v1) or ∃u ∈ G, u ∈
suc(v1) and v3 ∈ SS(u)}. These two definitions make gateways “transparent”,
e.g., in P2, SS(A1) = {A2, B1}. In the following, we refer to elements of PS
(SS) as predecessors (successors) for short.

Fig. 1. A chain of process refinements

A process refinement is a transformation from an abstract process into a more
specific one. An example of a chain of several process refinements is depicted in
Fig. 1, in which P2 refines P1 by decomposing activity A into A1, A2 and A3, B
into B1 and B2. P2 is further refined by P3, in which A2 is further decomposed
into A21, A22 and A23, B2 into B21 and B22 and so on.

The semantics of a process is based on its executions. An execution is a proper
sequence of activities ai ∈ A: [a1a2 . . . an]. It starts from one of the successors
of vS and continues with subsequent activities. The ordering relations among
activities must be obeyed, i.e., an activity a must be appended to the sequence
before all SS(a) and after all PS(a). When it comes to an exclusive gateway (),
a proper sequence can go through exactly one exclusive branch. For example in

Process Refinement Validation and Explanation with Ontology Reasoning 517

P1, after appending A, a sequence can be either terminated by vE, or continued
by B. When it comes to a parallel gateway (), a proper sequence must go
through all parallel branches. For example in P3, after appending A21, a sequence
must append both A22 and B21 before making a choice between B22 and A23.
The ordering between A22 and B21 can be arbitrary. The result is a proper
sequence of activities—an execution:

Definition 1 (Execution Set). The execution set of a process P , denoted by
ESP , is the (possibly infinite) set of all executions of P .

For example, ESP1 for process P1 in Fig. 1 is {[A], [ABA], [ABABA], . . . }.
Process P3 contains parallel gateways to express that some activities can be exe-
cuted in any order: ESP3 = {[A1A21A22B21A23A3], [A1A21B21A22A23A3], . . . }.

The MIT business process handbook [1] characterises the behaviour of a pro-
cess in terms of its execution set semantics, and the refinement is specified by the
comparison of the execution sets of an abstract and a specific process. A process
P subsumes another process Q under the maximal execution set semantics iff
ESQ ⊆ ESP . However, architects might use different activity names in abstract
and specific processes. Thus, the process architect has to declare which activi-
ties of the specific process refine which activity of the abstract process. This is
denoted by the orig-function, e.g., orig(A1) = orig(A2) = A., The orig-function
is extended to executions and execution sets, e.g., applying this to P2 yields
orig(ESP2) = orig({[A1A2A3], [A1A2B2A2A3], . . . }) = {[AAA], [AABAA], . . . }.
Furthermore, an activity of the abstract process might be decomposed into mul-
tiple activities in the specific process. Even if we discard the different names,
the specific activities still outnumber their origins. For example, process P , con-
sisting of a single activity A, is refined into a process Q with consecutive sub-
activities A1, . . . , An. Intuitively, Q is a valid refinement of P but the execution
of P has length 1 and the execution of Q has length n. To resolve this, we define
the decomposable process PD of P that is constructed from P by constructing a
loop around every activity of P, except the start and end event.

3 Validation and Explanation with Ontologies

The definition of valid refinement is intuitive without parallel gateways since
all orderings are explicitly stated. Accordingly, we first present the validation of
parallel-free process refinements. Afterwards, we extend our approach to incor-
porate parallel gateways.

3.1 Validating Parallel-Free Process Refinement

For parallel-free refinements, we use (Description Logics) ontologies and reason-
ing to validate and explain refinements. A Description Logics (DL) ontology
consists of a terminology box (TBox) and an assertion box (ABox). The TBox
describes the schematic knowledge with concepts and roles. In this paper, the
ontology will be built in the DL fragment ALC. Concepts are inductively defined

518 Y. Ren et al.

by the following constructs:) | ⊥ | A | ¬C | C � D | C � D | ∃r.C | ∀r.C, in
which) denotes the universal set of the domain, ⊥ denotes the empty set, A is
a named concept, C and D are arbitrary concept expressions. R and S are roles.
¬C is the negation of C, � and � the conjunction and disjunction. ∃r.C and
∀r.C represent the set of individuals who have an r relation to some instance of
C, or r relations only to instances of C. The subsumption between two concepts
C and D is depicted as C $ D. Two concepts are disjoint if C�D $ ⊥. We write
Disjoint(C1, C2, . . . , Cn) to denote that any two Ci, Cj (1 ≤ i, j ≤ n, i �= j) are
mutually disjoint with each other. If an axiom α can be inferred from an ontol-
ogy O, we say O entails α, denoted by O |= α. We mainly use the subsumption
checking reasoning service, i.e., checking if O |= C $ D.

The abstract process restricts the set of “allowed” predecessors and successors,
while the specific process states the “existing” predecessors and successors after
the refinement. We restrict predecessor and successor relations in the abstract
process by universal restrictions (∀), and existential quantifications (∃) describe
predecessors and successors of activities from the specific process. For both pro-
cess models, we use the same roles to and from for successor and predecessor
relationships. Formally, the ontology O is built as follows:

Definition 2 (Refinement Ontology). Let S be a set of predecessors or suc-
cessors, respectively, we define four operators for translations as follows:
– Pre-refinement-from operator Prfrom(S) = ∀from.

⊔
x∈S x

– Pre-refinement-to operator Prto(S) = ∀to.
⊔

y∈S y
– Post-refinement-from operator Psfrom(S) =

�
x∈S ∃from.x

– Post-refinement-to operator Psto(S) =
�

y∈S ∃to.y

For conciseness, we always have one abstract process P and one specific pro-
cess Q. In order to detect invalid refined activities, we introduce the concept
Invalid. Then, we construct an ontology OP→Q with the following patterns.
The refinement from P1 to P2 in Fig. 1 is used as an example.

1. For each activity X ∈ AQ with orig(X) = Z, we use X $ Z to represent the
composition of activities, which covers the activity origin.

2. For each activity X ∈ AP , we use X $ Invalid �Prfrom(PSPD (X)), X $
Invalid � Prto(SSPD (X)) to describe the activities in the pre-refinement
process. Due to possible decompositions of activities, we use the decompos-
able process to characterise the predecessor and successor sets, e.g., A $
Invalid � ∀from.(Start � A � B), A $ Invalid � ∀to.(End � B � A), B $
Invalid�∀from.(B�A), B $ Invalid�∀to.(A�B). The pre-refinement pro-
cess restricts allowed predecessor and successor activities. Thus, the Invalid
concept is added as an alternative, implying that if any component of X
does not satisfy the ordering constraints of X , it will become Invalid.

3. For each activityX ∈ AQ, we useX $ Psfrom(PSQ(X)),X $ Psto(SSQ(X))
to represent predecessor and successor sets of it in the specific process.

4. Disjoint(X |X ∈ AQ), orig(X) = Z (for X ∈ AQ). These axioms represent
the uniqueness of all activities with the same origin, e.g.,Disjoint(A1, A2, A3).

Process Refinement Validation and Explanation with Ontology Reasoning 519

5. Disjoint(X |X ∈ AP). This axiom represents the uniqueness of all the activ-
ities in the abstract process, e.g., Disjoint(Start, End,A,B).

With the above axioms, ontology OP→Q is a representation of the refinement
from P to Q. All executions of Q can be represented by some existential re-
strictions (∃). Given the subsumption of activities, these ∃ chains must satisfy
the universal restrictions (∀) in OP→Q to fulfill the executions of PD. Due to
the uniqueness of concepts, an invalid refinement between PD and Q will make
invalid refined activities to be subsumed by Invalid. This helps to pinpoint the
source of an invalid refinement.

Theorem 1. For any parallel-free refinement from P to Q, the refinement is
invalid due to activity A ∈ AQ, iff OP→Q |= A $ Invalid.

3.2 Extending Processes with Parallel Gateways

The presence of parallel gateways requires some pre-processing steps on the
abstract and/or specific processes before building the refinement ontology.

If the specific process contains parallel gateways, e.g., the refinement from P2

to P3 in Fig. 1, we observe that parallel branches implicitly describe different
possible executions among activities in sibling branches. E.g., in P3, there are
two parallel branches, each of them contains one activity (A22 or B21). The
implicit executions of the parallel sibling activities A22 and B21 are [A22B21] and
[B21A22], i.e., either activity A22 is executed before B21 or B21 before A22. For
the validation, we have to take all these implicit executions of parallel branches
into account. To remedy this, we replace all parallel gateways with exclusive
gateways and connect the input and output of all previously parallel activities
(with the help of exclusive gateways). Fig. 2 illustrates a replacement of P3.

Fig. 2. PR
3 : Replaced process P3

If the abstract process contains parallel gateways, as in the refinement from
P3 to P4, we observe: (i) Activities A22 and B21 of the abstract process P3 are
in parallel. According to the execution set semantics, activities A22 and B21 can
be executed in any order. (ii) The decomposition principle allows for an infinite
repetition of activities. Thus, in the specific process P4, this implies that the
ordering relations between decompositions of A22 and B21, e.g., A221, B211, etc.
in P4, do not affect the validity of the refinement from P3 to P4. To remedy
this, the sibling parallel activities A22 and B21 can be regarded as “transparent”
to each other in the refinement checking. Activities of parallel sibling branches

520 Y. Ren et al.

(e.g., A22 or B21) are removed in the abstract process, and their corresponding
decomposed activities are removed in the specific process, respectively. Thus,
execution relations of activities in parallel sibling branches are neglected in the
abstract process. We refer to this reduction as parallel branch break-down.

4 Evaluation

The technical performance of our approach is influenced by the run-time of
DL reasoning. We implemented a generator that simulates arbitrarily complex
refinement scenarios with different characteristics. We used a standard laptop
with a 2.67 GHz dual core, four-threads CPU with 8 GB RAM using Java 1.6
and TrOWL v0.5.1 (http://trowl.eu). Fig. 3 suggests that the reasoning time
of arbitrary parallel-free refinements (dotted graph in the left figure) grows less
than exponentially (less than a straight line on a logarithmic scale) compared
to the number of activities. The parallel branch break-down contributes most
to performance degradation. We generated sequences where each sequential step
consists of two parallel activities. As the combination of all branches has to be
considered separately, the left figure shows exponentially growing run-times.

To estimate the performance in practice, we generated processes with 25%
parallel flow, 50% exclusive flow, and 25% loops because that ratio appeared
most natural. The validation run-times are plotted on the right of Fig. 3. In [2],
IBM examined 735 industrial business processes from different domains. The
processes contained 17 activities on average. The maximum was 118. Thus, a
realistic refinement scenario would contain about 34 activities on average and
236 at maximum. As can be seen from the figure, the corresponding run-times
of our approach would be 0.062s for the average and about 40s for the largest
process.

In addition to the technical performance, we also assessed the business value
(productivity and quality) of refinement validation. To quantify the (1) produc-
tivity and (2) quality improvements through automatic refinement validation,
we conducted a multiple choice test with 13 experts from model-driven software
development. The test consists of two sets of 20 questions. Each question refers
to three different processes P1, P2, and P3 from [3], where P1 refines P2 and P2

refines P3. Each question has between two and four answer options where none
or multiple answers can be correct. For the one set of 20 questions, denoted by
S for “support”, the result of the refinement validation is highlighted in the pro-
cess models. The other set, denoted by N for “no support”, has to be answered
without support. We measured the number of correct and wrong answers per set
(CS ,WS , CN ,WN) and the times for each set (tS , tN). The whole test took about
1.5 hours. We calculate each person’s quality of answers as Qx = Cx/(Cx +Wx)
and productivity as Px = Cx/tx, where x ∈ {S,N}. In order to abstract from
personal work styles and experiences, we calculate the per-person improvement
in quality as QI = QS

QN
− 1 and in productivity as PI = PS

PN
− 1. Our test reveals

an average per-person improvement in quality of QI = 70% and in productivity
of PI = 378%, which shows the potential cost savings through our approach.

http://trowl.eu

Process Refinement Validation and Explanation with Ontology Reasoning 521

0.01

0.1

1

10

100

0 100 200 300 400

Re
as

on
in

g
tim

e
in

 s

Number of total activities

Parallel-free

Loop br. bd.
Parallel br. bd.

0.01

0.1

1

10

100

0 100 200 300 400

Re
as

on
in

g
tim

e
in

 s

Number of total activities

Fig. 3. Reasoning times on logarithmic scale

5 Related Work

The business process management community investigates the analysis of in-
teraction properties [4], the difference analysis between process models [5], the
recognition of equivalent fragments [6] and the validation of consistency-aware
changes of a process model with respect to a process template [7]. However,
none of these approaches considers the problem of process refinement given an
abstract and a specific process.

Behavioural profiles [8] describe processes by characteristic relations. They
are used for measuring the compliance of process executions, which are given by
logs, with respect to their models [9]. Behavioural profiles offer an alternative
representation compared to our predecessor and successor relationships. However,
according to our notion of refinement, there are some particular cases like the
occurrence of two exclusive activities in the same branch of a loop, which is
differently handled in our loop break-down compared to the behavioural profiles.

A bunch of works [10–12] considers process model abstraction. A process
model abstraction provides a more abstract and higher-level view by aggregat-
ing and eliminating activities of the original (more detailed) process model. In
contrast to our work, several rules are used to preserve the execution order, while
we allow for an arbitrary refinement and check the validity afterwards. Refine-
ment of actions is modelled by operators in [13]. These operators preserve the
semantic correctness by taking the relations into account. Our refinement notion
differs in two aspects. First, we do not use refinement operators and therefore,
we cannot ensure correctness by construction. Thus, a key part of our contribu-
tion is the validation of refinements. Second, our semantics rather refers to the
interleaving semantics, where the behaviour is given by sequences of activities,
while in [13] the causal semantics is used.

Work on process equivalence is faced with a related problem of formalising and
comparing the behaviour of processes. A formalisation of equivalence for BPMN
like process models is presented in [14]. The equivalence of process models, e.g.,
of a reference and a specific process, is analysed in [15], where equivalence is
expressed by a degree of similarity between two processes.

522 Y. Ren et al.

Process algebra, rooted in transition and communication system modelling,
serves as a formal specification of process behaviour in several works [16, 17].
Based on this formalisation, simulation and bisimulation allow the comparison
of process behaviour regarding abstraction, specialisation and equivalence. Pro-
cess decompositions, are limited to structured blocks. Thus, not all kinds of
refinements in our work can be expressed by these formalisms.

6 Conclusion

In this paper, we have defined a formal semantics of process refinement based on
the execution set semantics and presented an ontological solution to a process
refinement problem and several reduction techniques to enable the refinement
validation and explanation using standard reasoning services. The evaluation
shows that our approach significantly improves the efficiency and correctness of
process engineering.

Acknowledgement. This work was partially supported by the European Union’s
Seventh Framework Programme under grant agreement 604123 (FIspace).

References

1. Wyner, G.M., Lee, J.: Defining specialization for process models. In: Organizing
Business Knowledge: The MIT Process Handbook, pp. 131–174. MIT Press (2003)

2. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 278–293. Springer, Heidelberg (2009)

3. Curran, T.A., Ladd, T., Ladd, A.: SAP R/3 Business Blueprint: Understanding
Enterprise Supply Chain Management, 2nd edn. Prentice Hall International (1999)

4. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting WS-
BPEL Processes using Flexible Model Generation. DKE 64, 38–54 (2008)

5. Dijkman, R.: Diagnosing differences between business process models. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277.
Springer, Heidelberg (2008)

6. Gerth, C., Luckey, M., Küster, J.M., Engels, G.: Detection of Semantically Equiv-
alent Fragments for Business Process Model Change Management. In: IEEE Inter-
ational Conference on Services Computing, pp. 57–64 (2010)

7. Sadiq, S., Orlowska, M., Sadiq, W.: Specification and Validation of Process Con-
straints for Flexible Workflows. Information Systems 30(5), 349–378 (2005)

8. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based
on Behavioral Profiles of Process Models. IEEE Trans. Software Eng. 37(3), 410–
429 (2011)

9. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process Com-
pliance Analysis based on Behavioural Profiles. Inf. Syst. 36(7), 1009–1025 (2011)

10. Smirnov, S., Reijers, H., Weske, M., Nugteren, T.: Business Process Model Ab-
straction: A Definition, Catalog, and Survey. Distributed and Parallel Databases,
1–37 (2012)

Process Refinement Validation and Explanation with Ontology Reasoning 523

11. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data & Knowledge
Engineering 64(2), 419–438 (2008)

12. Liu, D., Shen, M.: Workflow Modeling for Virtual Processes: An Order-preserving
Process-view Approach. Information Systems 28(6), 505–532 (2003)

13. van Glabbeek, R., Goltz, U.: Refinement of Actions and Equivalence notions for
Concurrent Systems. Acta Inf. 37(4/5), 229–327 (2001)

14. Lam, V.: Equivalences of BPMN Processes. Service Oriented Computing and Ap-
plications 3, 189–204 (2009)

15. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process Equiva-
lence: Comparing Two Process Models Based on Observed Behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

16. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
17. Sangiorgi, D.: Bisimulation for Higher-Order Process Calculi. Information and

Computation 131, 141–178 (1996)

Automated Service Composition

for on-the-Fly SOAs

Zille Huma1, Christian Gerth1, Gregor Engels1, and Oliver Juwig2

1 Department of Computer Science, University of Paderborn, Germany�

{zille.huma,gerth,engels}@upb.de
2 HRS-Hotel Reservation Service, Germany

Oliver.Juwig@hrs.de

Abstract. In the service-oriented computing domain, the number of
available software services steadily increased in recent years, favored
by the rise of cloud computing with its attached delivery models like
Software-as-a-Service (SaaS). To fully leverage the opportunities provided
by these services for developing highly flexible and aligned SOA, integra-
tion of new services as well as the substitution of existing services must
be simplified. As a consequence, approaches for automated and accurate
service discovery and composition are needed. In this paper, we propose
an automatic service composition approach as an extension to our ear-
lier work on automatic service discovery. To ensure accurate results, it
matches service requests and available offers based on their structural as
well as behavioral aspects. Afterwards, possible service compositions are
determined by composing service protocols through a composition strat-
egy based on labeled transition systems.

1 Introduction

Service-oriented computing (SOC) has emerged as a promising trend to enable
the vision of large-scale, heterogeneous and flexible software systems at enter-
prise level through service-oriented architecture (SOA). For this purpose, a SOA
developer defines a service request to discover and compose the services that
are developed and published on service markets by service providers in terms of
service offers.

With the advent of cloud computing, the growing plethora of available ser-
vices provides enormous opportunities for the development of future On-The-Fly
SOAs that are highly flexible and can be aligned more easily to meet constantly
changing requirements. To make this vision come true, accurate and automated
service discovery and composition mechanisms are needed that have to face sev-
eral challenges.

First of all, to enable an efficient and precise identification, services must be
described in a suitable way by rich service specifications that comprise structural
as well as behavioral aspects of requested and offered services.

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 524–532, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Service Composition for on-the-Fly SOAs 525

Secondly, service discovery and composition mechanisms must deal with the
existing multifaceted heterogeneity of the involved service partners, such as
their independent domain ontologies, selection of different languages/notations
to specify service descriptions, and different granularity levels of the service de-
scriptions as a result of their independent domain knowledge, etc. To overcome
these challenges, we proposed a UML-based rich service description language
(RSDL) [6] and an automatic service discovery mechanism for RSDL-based ser-
vice descriptions [5]. An application scenario for our proposed approach came
from our industrial partners Hotel Reservation Service (HRS)1. In this scenario,
potential new hotel services shall be automatically discovered and connected to
provide end users with booking facilities for these hotels.

In this paper, we extend our approach by a service composition mechanism,
which enables the composition of multiple services each offering various opera-
tions in order to fulfill a service request. Our proposed mechanism ensures precise
service composition results as it comprehensively covers different elements in ser-
vice offers and requests, such as operation signatures, operation semantics (pre-
and post-conditions), and service protocols to discover and compose potential
service offers that satisfy a request.

In the next section, we briefly introduce our proposed language for compre-
hensive service specifications and our service discovery mechanism. In Section
3, we describe our service composition mechanism in detail. Section 4 briefly
introduces our tool support. In Section 5, we discuss related work and finally,
we conclude the paper and give an outlook on future work in Section 6.

2 Foundations

To realize our vision of a comprehensive service specification, we proposed a
UML-based rich service description language (RSDL) [6]. Our RSDL provides
notations to describe the structure and the behavior of service requests and
offers. Figure 1(a) shows a RSDL-based service request of HRS consisting of
three parts. (A) specifies operation signatures, i.e., findRoom(), viewDetails(),
bookRoom(), ..., using the Web Service Description Language (WSDL) [17]. (B)
specifies operation semantics in terms of pre- and post-conditions for individual
operations specified using UML-based visual contracts (VC) [9]. A VC describes
the system state before and after the invocation of an operation in terms of
UML object diagrams that are typed over the ontologies of the service partners.
Finally, a desired invocation sequences is specified in (C) in terms of a requestor
protocol as UML sequence diagram. Similarly, Figure 1(b) shows a RSDL-based
service offer of the hotel service HotelX. The specification consists of (A): op-
eration signatures searchRoom(), makeRoomReservation(), ... , (B): VCs typed
over the ontology of HotelX, and (C): a provider protocol as UML statechart
diagram. In case of a service offer, multiple invocation sequences of provided
operations shall be possible, which we specify using a UML statechart diagram.
A more detailed description of our RSDL is given in [7].

1 http://www.hrs.com

http://www.hrs.com

526 Z. Huma et al.

(a) HRS Service Request
findRoom(…)
viewDetails(…)
bookRoom(…)

k P t()

(A)

(b) HotelX Service Offer
searchRoom(…)
makeRoomReservation(…)
arrangeEvent(…)
bookHotelForEvent()

(A)
notifyPerEmail(…)
validateCredentials(…)
cancelBookingProcess(…)

makePayment(…)

(B)

VC: findRoom()

: ProfileType : BasicPropertyInfoType : ProfileType

bookHotelForEvent(…)

(B)

VC: searchRoom()

: Client
: Accomodation

: RoomPackage

: Client

…
(B)

: RoomStayType …
() g

: Unit: Facility : Price

s1

(C) HRS Service

findRoom()

viewDetails()

(C)

Zustand3

Zustand1

Ready

searchRoom()

cancelBookingProcess()

s1.1 s1.2

s1.3

validateCredentials()

makeRoomReservation()

s1.4
notifyPerEmail()

bookRoom()

makePayment() Zustand4

Zustand2

s2arrangeEvent()
cancelBookingProcess()

s5

s2.1 s2.2
validateCredentials()

bookHotelForEvent()

notifyPerEmail()
s2.3 s2.4

notifyPerEmail()

Fig. 1. (a) RSDL-based Service Request of HRS and (b) RSDL-based Service Offer of
HotelX

To enable an automated service discovery and composition for such RSDL-
based service requests and offers, we proposed a multi-step approach, whose
overview is given in [7]. Here it is important to mention that the first three steps
are part of our earlier work and the details of these steps along with examples
are provided in [5,7]. In this paper, our main focus is on service composition,
which we will discuss in detail in the next section.

After operation matching phase (Step 3), the result is a set of 1 : 1, 1 : n,
n : 1 and (partially) n : m mappings between requested operations in a service
request and offered operations in available service offers. A mapping in this set
is represented as (mr, mo), where mr is an operation or a sequence of operations
in the service request r, which is mapped to mo, which is an operation or a
sequence of operations in a service offer o.

As an example, the operation mappings obtained by matching the service
request of HRS and the service offer of HotelX and two further service offers of
HotelY and PayOnline are shown in Figure 2. One mapping for HRS is the n : 1
operation mapping (findRoom() → viewDetails(), searchRoom()) that maps
the sequence of requested operations to an offered operation of HotelX. Based
on the operation mappings, we compose the operations of the service offers to
satisfy the service request in the next section.

3 Automated Service Composition

To compose service offers, our approach compares and composes the protocol
of a service request and the protocols of service offers that contain matched
operations. For that purpose, we evaluate whether the mapped operations of
the offered service can be invoked in the desired order resulting in valid service

Automated Service Composition for on-the-Fly SOAs 527

Requestor
HRS

HotelX PayOnlineHotelY
Providers

findRoom()
viewDetails

searchRoom()
(n:1)

bookRoom() validateCredentials()

getAvailableRoom()
(n:1)

reserve()

signIn() payDues()

bookRoom() makeRoomReservation()
notifyPerEmail()

(1:n)

reserve()
(1:1)

makePayment()
signIn() payDues()

generateReceipt() signOut()
(1:n)

Fig. 2. Operation Mappings between the HRS Request and three available Service
Offers

compositions. The service composition consists of three main tasks: Translation
of the protocols to labeled transition systems (LTS), composition of LTSs, and
an analysis of the composed LTS. Due to space constraints, the details of the
first task are described in [7]. Its outcome are LTSs for the service protocols that
are shown in Figure 3. In the following sections, we discuss the last two tasks in
detail.

HotelX (LTS) HotelY (LTS)HRS (LTS) PayOnline(LTS)

Requestor Providers

HotelX (LTShotelX) HotelY (LTShotelY)HRS (LTShrs) PayOnline(LTSpayOnline)

s1 s2 s3
fr vd

s1

s2 s5

sr ae
s1

si su

si

s4

br

mp

s1 s2 s3
gar res2

s3 s6

vc vc

cb

cb cb

cb

s3 s2

s4

pd

si

so

s5

s8

bh

ne

s4

mr

s7

ne

cb
cb

s5

so

gr

so

so
se

s6

so

s8
s7

fr findRoom()

vd viewDetails()

br bookRoom()

sr searchRoom()

ae arrangeEvent()

cb cancelBookingProcess()

si signIn()

su signUp()

pd payDues()

gar getAvailableRoom()

re reserve()

br bookRoom()

mp makePayment()

cb cancelBookingProcess()

mr makeRoomReservation()

bh bookHotelForEvent()

ne notifyPerEmail()

pd payDues()

gr generateReceipt()

se sendEmail()

so signOut()

vc validateCredentials()

Fig. 3. LTSs for the Service Partners in our Running Example

LTS Composition: In order to automatically detect possible service composi-
tions, we compose the LTSs of a service request and service offers by overlapping
them on the basis of the operation mappings determined earlier. As output our
algorithm returns a set of possible service compositions or a failure notification
in case of no possible service composition. In this case, the requestor is pro-
vided with suggestions to restructure his/her request based on identified partial
compositions. In the following, we describe our algorithm given in Listing 1.

1. A composed state scomp, i.e, a composition of the initial states of all partic-
ipating LTSs, is created and added to the yet empty composed LTS ltscomp.

528 Z. Huma et al.

Figure 4 shows a partially composed ltscomp for our running example with
cs1 as its initial state.

2. Next, the while-loop traverses over the states of the composed LTS ltscomp

and constructs it further until there are no more states to be traversed.
3. For every currently traversed state scur, the invocable operation mappings

from OpMapr are determined. An operation mapping is invocable in a com-
posed state s, if its comprising operation sequences can be directly invoked
in s. For instance, for cs1 in Figure 4, one of the two invocable mappings
in OpMaphrs is (hrs.findRoom() → hrs.viewDetails() , hotelX.search-
Room()) as hrs.findRoom() → hrs.viewDetails() can be invoked from
hrs.s1 and hotelX.searchRoom() can be invoked from hotelX.s1.

rangeEvent()

cs1
(hrs.s1,

hotelY.s1,
hotelX.s1,

O li 1)

hotelX.arrange

payOnline.signIn() LTShrs LTShotelX

Overlapping Parts

payOnline.s1)

hrs.findRoom() hrs.viewDetails()
||

hotelY.getAvailableRoom()

hrs.findRoom() hrs.viewDetails()
||

hotelX.searchRoom()

s1 s2 s3
fr vd s1

s2

sr

fr findRoom()
hR ()

cs2
(hrs.s3,

hotelY.s2,
hotelX.s1,

O li 1)

cs5
(hrs.s3,

hotelY.s1,
hotelX.s2,

payOnline s1)

vd viewDetails() sr searchRoom()

payOnline.s1) payOnline.s1)

Fig. 4. Composed LTS after the first Iteration

4. For every invocable operation mapping map of scur, ltscomp is further con-
structed by composing the parts of the participating LTSs that overlap on the
basis of map. For example, the overlapping parts of LTShrs and LTShotelX

for the invocable mapping mentioned earlier are shown in the right-hand side
of Figure 4.

5. Similarly, a composed transition tcomp is added between scur and star, which
represents the parallel invocation of the overlapping transitions. For example,
the composed transition between cs1 and cs5 in Figure 4 represents the
parallel invocation of hrs.findRoom() → hrs.viewDetails() and hotelX.-
searchRoom()in LTShrs and LTShotelX , respectively.

6. Analogously, the composed states cs2 and cs5 are traversed and as a result,
ltscomp is further constructed until there are no more states to be traversed.
Figure 5 shows the completely composed LTS ltscomp of our running exam-
ple, which is analyzed to determine any possible service compositions in the
next subsection.

A salient feature of the proposed algorithm is its selective composition strategy
where the LTS composition is moderated through the LTS of the requested
service protocol. That means, only those parts of the LTSs of offered service
protocols are considered that overlap with the LTS of requested protocol and
hence are relevant for the requestor based on the identified operation mappings.
As a result, the composed LTS is smaller in size and easier to analyze as compared

Automated Service Composition for on-the-Fly SOAs 529

Listing 1. Algorithm to compose LTSs of the service partners

Input: LTS of Service Request ltsr
Input: Set of LTSs of selected offers{ltso1 , ..., ltsok}
Input: Set of operation mappings OpMapr for r
Output: Set of possible service compositions Resultcomp OR Failure

Notification

findServiceCompositions(ltsr , {ltso1 , ..., ltsok}, OpMapr)
define scomp:(r.s0, o1.s0, ..., ok.so); // ①

add scomp as initial state to the composed LTS ltscomp;

while ltscomp.hasMoreStates() do // ②

scur=ltscomp.nextState(), where scur:(r.sc, o1.sc, ...ok.sc) ;

while scur.hasInvocableMappings() do // ③

map=scur.nextInvocableMapping(), where map : (mr,mo) AND
o ∈ {o1, ..., ok}; // ④

add star:(r.st, o1.st, ...ok.st) to ltscomp, where r.sc
mr−−→ r.st AND

o.sc
mo−−→ o.st; // ⑤

add tcomp to ltscomp, where tcomp=scur
mr‖mo−−−−−→ star; // ⑥

end

end

if ltscomp.hasCompleteTraces() then // ⑦
Resultcomp= ltscomp.completeT races() return Resultcomp

end
else return Failure Notification

end

to a conventionally composed LTS. For example, a conventional LTS composition
mechanism may include some other transitions in the composed LTS, e.g., from
cs1, some other possible transitions are hotelX.arrangeEvent() or payOnline.-
signIn().

Analysis of the Composed LTS: In our given example, cs1 → cs2 → cs3 →
cs4 and cs1 → cs5 → cs6 → cs7 represent two possible service compositions (see
Figure 5). Based on these results, a service requestor (e.g. HRS) may decide for
a particular composition based on quality attributes of the provided services,
which can be easily added by extending our rich service specification language.

The algorithm notifies a failure in finding a valid service composition, if ltscomp

does not have any complete trace. In this case, the service requestor gets feed-
back in terms of the partially composed LTS and the particular points where a
composition failed. On the basis of this feedback, the requestor may restructure
his/her service request. A detailed example for such a failure scenario is specified
in [7]. Finally, a set of possible service compositions is obtained that satisfy the
service request or a failure notification with feedback for a requestor is returned.

530 Z. Huma et al.

cs1
(hrs.s1,

hotelY.s1,
hotelX.s1,

payOnline.s1)

cs2
(hrs.s3,

hotelY.s2,
hotelX.s1,

payOnline.s1)

cs5
(hrs.s3,

hotelY.s1,
hotelX.s2,

payOnline.s1)

cs3
(hrs.s4,

hotelY.s3,
hotelX.s1,

payOnline.s1)

cs4
(hrs.s5,

hotelY.s3,
hotelX.s1,

payOnline.s7)

cs6
(hrs.s4,

hotelY.s1,
hotelX.s8,

payOnline.s1)

cs7
(hrs.s5,

hotelY.s1,
hotelX.s8,

payOnline.s7)

hrs.findRoom() hrs.viewDetails()
||

hotelY.getAvailableRoom()

hrs.findRoom() hrs.viewDetails()
||

hotelX.searchRoom()

hrs.bookRoom()
||

hotelY.reserve()

hrs.bookRoom()
||

hotelX.validateCredentials()
hotelX.makeRoomReservation()

hotelX.notifyPerEmail()

hrs.makePayment()
||

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

hrs.makePayment()
||

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

Fig. 5. Completely Composed LTS of our running Example

4 Tool Support

We have implemented a tool, called RSDL Workbench as a part of the service
computing platform developed at the Collaborative Research Center (CRC 901)
“On-The-Fly Computing”2. It provides an editor and matcher for service part-
ners to specify and automatically match their RSDL-based service descriptions.

The RSDL Workbench has been realized as an Eclipse plugin and is imple-
mented using EMF, GMF, and Henshin3. For more detailed information, the
interested reader is referred to [7].

5 Related Work

For this section, our particular focus is on the workflow-based approaches for
automatic service composition[14].

Concerning service request and offer matching, none of these approaches
[2,8,11,1,3,15,13] are comprehensive enough. Some [2,8,11] examine operation
signatures and operation semantics assuming that the requested/offered ser-
vice consist of a single operation and hence, do not consider service protocols.
Similar to our approach, [11] specifies the operation semantics in terms of vi-
sual contracts. On the contrary, METEOR-S [1], which allows service discovery

2 http://sfb901.uni-paderborn.de
3 http://www.eclipse.org/modeling/emft/henshin/

http://sfb901.uni-paderborn.de
http://www.eclipse.org/modeling/emft/henshin/

Automated Service Composition for on-the-Fly SOAs 531

and composition of WSDL-S-based [10] service descriptions, only considers a
requested service protocol and offered services are assumed to provide only a
single operation. Similarly, [3,15,13] propose service composition mechanisms
for OWL-S [12] and UML-based service descriptions based on the operation sig-
natures and service protocols but do not consider operation semantics. In this
context, [16] comprehensively matches OWL-S-based service specifications but
has certain shortcomings in terms of heterogeneity resolution features, which we
will discuss shortly.

Concerning the resolution of the multifaceted heterogeneity of service part-
ners, some approaches [2,1,4] realizes the need for ontological heterogeneity reso-
lution and come up with mechanism for this purpose. For instance, in [1] semantic
annotation for WSDL elements are described, which can support an ontological
heterogeneity resolution mechanism, whereas an elaborate mediator-based mech-
anism is used in [4]. The resolutions of linguistic heterogeneity is considered in
[15]. Other service composition approaches either do not address the underly-
ing heterogeneity [11,16] or they [8,3,13] assume the existence of a resolution
mechanism and therefore avoid major complexities of the problem at hand.

We claim that our approach overcomes the weaknesses of most of the ap-
proaches discussed here and hence is a promising approach for On-The-Fly
SOAs.

6 Conclusion and Future Work

To enable the vision of On-The-Fly SOAs, we proposed an automated composi-
tion mechanism based on our earlier work on rich service descriptions and auto-
matic service discovery [5,6]. Our proposed mechanism ensures accurate results
as it relies on comprehensive matching and composition of the service request
and offers based on their structural as well as behavioral features. We have im-
plemented the RSDL Workbench and evaluated our approach on a real-world
case study of our industrial partner HRS.

In future, we aim to evaluate the effectiveness of our approach more exten-
sively through further case studies in the CRC environment. We also aim to
further strengthen our heterogeneity resolution mechanism with features, such
as, complex mappings between ontologies.

References

1. Aggarwal, R., Verma, K., Miller, J.A., Milnor, W.: Constraint Driven Web Ser-
vice Composition in METEOR-S. In: IEEE International Conference on Services
Computing (SCC 2004), pp. 23–30. IEEE Computer Society (2004)

2. Bartalos, P., Bieliková, M.: QoS Aware Semantic Web Service Composition Ap-
proach Considering Pre/Postconditions. In: Proceedings of IEEE Int. Conf. on Web
Services (ICWS 2010), pp. 345–352. IEEE Comp. Soc. (2010)

3. Brogi, A., Corfini, S., Popescu, R.: Semantics-based Composition-oriented Discov-
ery of Web Services. ACM Trans. Internet Technol. 8(4), 19:1–19:39 (2008)

532 Z. Huma et al.

4. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic
Service-Oriented Architecture. In: IEEE International Conference on Web Services
(ICWS 2005), pp. 321–328. IEEE Computer Society (2005)

5. Huma, Z., Gerth, C., Engels, G., Juwig, O.: Towards an Automatic Service Discov-
ery for UML-based Rich Service Descriptions. In: France, R.B., Kazmeier, J., Breu,
R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 709–725. Springer,
Heidelberg (2012)

6. Huma, Z., Gerth, C., Engels, G., Juwig, O.: UML-based Rich Service Description
and Discovery in Heterogeneous Domains. In: Proceedings of the Forum at the
Conference on Advanced Information Systems Engineering (CAiSE 2012). CEUR
Workshop Proceedings, vol. 855, pp. 90–97. CEUR-WS.org (2012)

7. Huma, Z., Gerth, C., Engels, G., Juwig, O.: Automated Service Discovery and
Composition for On-the-Fly SOAs. Tech. Rep. TR-RI-13-333, University of Pader-
born, Germany (2013),
http://is.uni-paderborn.de/uploads/tx_sibibtex/tr-ri-13-333.pdf

8. Kona, S., Bansal, A., Blake, M.B., Gupta, G.: Generalized Semantics-Based Service
Composition. In: IEEE International Conference on Web Services (ICWS 2008),
pp. 219–227. IEEE Computer Society, Washington, DC (2008)

9. Lohmann, M.: Kontraktbasierte Modellierung, Implementierung und Suche von
Komponenten in serviceorientierten Architekturen. Ph.D. thesis, University of
Paderborn (2006)

10. LSDIS Lab: Web Service Semantics,
http://lsdis.cs.uga.edu/projects/WSDL-S/wsdl-s.pdf

11. Naeem, M., Heckel, R., Orejas, F., Hermann, F.: Incremental Service Composition
based on Partial Matching of Visual Contracts. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 123–138. Springer, Heidelberg (2010)

12. OWL-S Coalition: OWL-based Web Service Ontology (2006),
http://www.ai.sri.com/daml/services/owl-s/1.2/

13. Pathak, J., Basu, S., Honavar, V.: Modeling Web Service Composition using Sym-
bolic Transition Systems. In: Proceedings of AAAI Workshop on AI-Driven Tech-
nologies for Service-Oriented Computing. AAAI Press, California (2006)

14. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

15. Spanoudaki, G., Zisman, A.: Discovering Services during Service-Based System
Design Using UML. IEEE Trans. on Softw. Eng. 36(3), 371–389 (2010)

16. Vaculin, R., Neruda, R., Sycara, K.: The process mediation framework for semantic
web services. Int. J. Agent-Oriented Softw. Eng. 3(1), 27–58 (2009)

17. W3C: Web Service Description Language (WSDL) (2007),
http://www.w3.org/TR/wsdl20/

http://is.uni-paderborn.de/uploads/tx_sibibtex/tr-ri-13-333.pdf
http://lsdis.cs.uga.edu/projects/WSDL-S/wsdl-s.pdf
http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.w3.org/TR/wsdl20/

Deriving Business Process Data Architectures
from Process Model Collections

Rami-Habib Eid-Sabbagh, Marcin Hewelt, Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{rami.eidsabbagh,marcin.hewelt,andreas.meyer,

mathias.weske}@hpi.uni-potsdam.de

Abstract. The focus in BPM shifts from single processes to process interactions.
Business process architectures were established as convenient way to model and
analyze such interactions on an abstract level focusing on message and trigger
relations. Shared data objects are often a means of interrelating processes. In
this paper, we extract hidden data dependencies between processes from process
models with data annotations and their object life cycles. This information is used
to construct a business process architecture, thus enabling analysis with existing
methods. We describe and validate our approach on an extract from a case study
that demonstrates its applicability to real world use cases.

1 Introduction

The last decade has seen widespread adaptation of business process management re-
sulting in large process model collections. Although process models often need to
interact to deliver services or produce goods, they generally are elicited in isolation,
prone to miss the interdependencies with other processes. Business process architec-
tures (BPAs) have been proposed to provide an abstracted view on interrelated process
models (see [1] for a survey of BPA approaches). Our BPA approach [2, 3] relates pro-
cesses by trigger and message flows, allows for multiple process instances, n-to-m com-
munication, and offers formal verification.

While previous work dealt with modeling and verification of BPAs, this contribution
extracts data dependencies between processes. Even if the interaction of processes is
not modeled explicitly, process relations can be deduced by looking at the data objects
and how processes manipulate them. If one process produces a certain data object which
another process consumes, then those processes have to be carried out in sequence. We
summarize identified dependencies for several data objects in a process data depen-
dency matrix (PDM) and use it to construct a business process data architecture (data
BPA), which reveals and depicts hidden data-related interdependencies and thus eases
the management of process model collections. The resulting data BPA can be verified
with the method presented in [3] unveiling erroneous process interaction due to data.

Aside BPAs, several techniques have been introduced to depict business process in-
teractions, e.g., choreography diagrams in BPMN [4], service interaction patterns [5],
or Proclets [6]. The mentioned alternatives focus on the interaction behavior between
processes or services by modeling the message exchange. A BPA represents relations
between processes giving them a partial ordering with respect to process execution.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 533–540, 2013.
© Springer-Verlag Berlin Heidelberg 2013

534 R.-H. Eid-Sabbagh et al.

In contrast to all aforementioned techniques, we utilize relations between data objects
utilized in multiple processes to determine the relations between these processes. This
naturally leads to the object-centric process modeling paradigm, e.g., [7], where a pro-
cess is modeled by the involved data objects and synchronization follows from data
state changes represented in object life cycles. This synchronization between multiple
object life cycles induces the partial ordering of all data object changes and therefore
the execution. Although architectures can be build based on this paradigm by synchro-
nizing object life cycles, no approach exists describing this procedure. Additionally, the
control flow view is only provided implicitly, whereas the combination of our approach
and our earlier work shows both perspectives. A first step towards integration of con-
trol flow and data was presented by Fahland et al. [8], who utilize Proclets to model
object-centric processes.

2 Scenario

Throughout the paper, we will use the following scenario taken from a case study on
order and delivery processes. Figures 1 to 3 present the five process models of our
scenario. Process p1 (Fig. 1) first analyses a verified order and checks if the ordered
products are in stock. If this is the case, they are shipped, the invoice is sent, and the
payment is received. Otherwise the products are built. Process p2 (Fig. 2a) is similar
to process p1 in Fig. 1, except that it sends the product only after the payment was
received and allows to reject an unconfirmed order. Process p3 (Fig. 2b) archives a
processed order. Process p4 (Fig. 3a) verifies the customer and may reject his order.
Finally, process p5 (Fig. 3b) handles invoicing and payment.

These processes utilize the two data objects “order” and “product”. Hence two object
life cycles (OLCs) are required. An OLC describes the manipulations allowed to be
performed upon the corresponding data object. The utilized OLCs will be presented
as part of the description of our approach in Section 4. All process models satisfy the
notion of weak conformance [9] with respect to the utilized data objects, i.e., process
models and OLCs do not contradict.

Analyze
order (a1)

Check
stock (a2)

Order
[verified]

Order
[confirmed]

Product
[not in stock]

Product
[in stock]

Make
production
plan (a4)

Purchase
raw material

(a3)

Product
[not in stock]

Manufacture
product (a5)

Ship
product

(a7)

Send
invoice

(a8)

Receive
payment

(a9)

Product
[manu-

factured]

Product
[in stock]

Product
[shipped]

Order
[shipped
on acc]

Order
[billed

on acc]

Order
[paid

on acc]

Stock-up
warehouse

(a6)

Product
[in stock]

Product
[not in stock]

Order
[confirmed]

Fig. 1. Process model p1: Order handling, delivery on account (on acc.)

Deriving Business Process Data Architectures from Process Model Collections 535

Check
order
(b1) Reject

order
(b5)

Order
[verified]

Order
[confirmed]

Order
[unconfirmed]

Order
[rejected]

Ship
product

(b4)

Product
[packed]

Product
[shipped]

Order
[shipped
in adv]

Product
[in stock]

Pack
product

(b3)

Order
[paid

in adv]

Check
stock (b2)

(a) Process p2: Order handling, payment in advance (in adv.)

Archive
order (c1)

Order
[shipped
in adv]

Order
[rejected]

Order
[archived]

Order
[paid

on acc]

(b) p3: Archiving

Fig. 2. Process models p2 and p3

Verify
customer

(d1)

Order
[verified]

Order
[unverified]

Order
[received]

Reject
order
(d2)

Order
[rejected]

(a) Process p4: Customer verification

Send
invoice

(e1)

Receive
payment

(e2)

Order
[billed
in adv]

Order
[confirmed]

Order
[paid

in adv]

(b) Processp5: Invoice handling

Fig. 3. Process models p4 and p5

3 Foundations

Data in process models can be represented by a set of data objects and their states. A
data object is an entity processed during process execution and is characterized by states
and state transitions. At any point in time, a data object is in exactly one state which
constitutes a business situation. We formalize data objects as object life cycles (OLCs)
which consist of a set of states S, a set of state transitions T ⊆ S × S, an initial, and a
final state. Note, that we consider only acyclic OLCs for now.

A process model consists of a set of control flow nodes and a relation defining the
partial ordering of activities performed during process execution. Further, activities can
be annotated with data objects, which represent pre- and postconditions for activities
and determine when an activity is enabled (in addition to control flow) as well as their
expected outcome. For each process model, we assume that it is structurally sound
and that it weakly conforms to all utilized data objects [9], i.e., for each data object
modification by an activity there exists a corresponding path in the OLC of this object.
We assume that all activities’ data object accesses are modeled and that no activity
writes a data object it has not read before.

BPA describe all processes of an organization and their interdependencies. Each pro-
cess is understood as a sequence of events, which are interconnected by message and
trigger flows, depicting process interaction on an abstract level. BPAs allow to model
multiplicities, a term subsuming the sending and receiving of variably many messages
and triggers to and from multiple process instances of several processes. [3] proposed

536 R.-H. Eid-Sabbagh et al.

correctness criteria for BPAs as well as a transformation into Open nets which allows
to model check the criteria.

Definition 1 (Business Process Architecture, based on [2, 3]). A Business Process
Architecture is a tuple (E,V,L, I,χ,μ,=), where E is a set of events, partitioned in start
events, ES , end events EE , intermediate throwing events ET , and intermediate catching
events EC and V is a partition of E representing a set of business processes with v ∈ V
being a sequence of events v = ⟨e1, ..., en⟩ such that e1 ∈ ES is a start event, en ∈ EE

an end event, and ei ∈ EC
∪ ET for 1 < i < n are intermediate events. L ⊆ (ET

∪

EE
)×EC is the message flow relation, I ⊆ (ET

∪EE
)×ES is the trigger relation, and

χ ⊆ {((e, e1), (e, e2)) ∣ (e, e1), (e, e2) ∈ L∪I} is a conflict relation indicating flows that
are mutually exclusive. Function μ ∶ E → P (N0) denotes the multiplicity set of an event
and =⊆ (ET

×EC
) ∪ (EC

×ET
) is an equivalence relation between events of the same

process demanding that they send respectively receive the same number of messages. ◇

The conflict relation χ relates different flows from one event e which exclude each
other. Assume sending event e has three flows (e, e1), (e, e2) ∈ L, (e, e3) ∈ I and
(e, e1)χ (e, e2). Then it sends a trigger signal to e3 and a message to either e1 or e2.

4 Data Dependencies

In this section, we show how to extract data dependencies from process models and
OLCs, derive the Process Data Relation Matrix (PDM), and construct a Business Pro-
cess Data Architecture (data BPA).

4.1 Deriving the Process Data Relation Matrix

Annotating the Object Life Cycle. Activities in process models can read or modify data
objects. A modifying access changes the state of the data object, corresponding to a state
transition in the OLC. We label the state transitions with pairs of process and activity to
record their originator. This defines a relation map ⊆ (S ×P ×A× S), where P andA
are sets of process models and activities. The map is visualized as arc inscriptions, e.g.,
the modifying access is reflected by the inscription p2[b3] on the arc between states
“in stock” and “packed” in Fig. 4. The modifications performed by activities are not
limited to directly succeeding data states, but can comprise multiple state transitions,
as long as there exists a path in the OLC. Activity p1[a7] for example transforms data
object “product” from state “in stock” to state “shipped” omitting the intermediary state
“packed”. In this case an additional dashed arc is added to the annotated OLC. Activities
which only read data object state are also annotated, depicted by an arc originating from
the read state. For example Fig. 4 indicates that state “not in stock” is read by activities
a3 and a4 of process p1.

From the annotated OLC, one can deduce direct data dependencies between activities
by looking at consecutive state transitions. Two activities from two different processes
are dependent (p[ai] �→∎ p′[aj]) if one activity p′[aj] reads or modifies a data object that
another activity p[ai] has modified before. For example the transition “unverified” p4[d2]

���→

“rejected” of data object “order” is followed by the transition “rejected”p3[c1]
���→ “archived”.

Because c1 modifies a state written by d2 it can only occur afterwards.

Deriving Business Process Data Architectures from Process Model Collections 537

i

in stockP1[a2]
P2[b2]

not in stock manufactured

packed shippedP2[b3]

P1[a5]

P1[a6]
P1[a2]

P1[a3]
P1[a4]

P2[b4]

P1[a7]

Fig. 4. Annotated product object life cycle

Additionally, we define the conflict
relation ⊗. Two annotated state tran-
sitions ∈ map are in conflict, when
they originate in the same source state
and belong to different processes. In
the OLC of “product” both p2[b3] and
p1[a7] originate in state “in stock” and
hence are in conflict.

Deriving Process Relations. The two base relations �→∎ and ⊗ on activity level are
lifted to process level, as follows. To determine the relation between two processes, all
direct relations between their activities need to be considered along all paths of the OLC
of shared data objects because different paths might show contradicting relations.

To determine exclusive processes it suffices that one pair of activities be in conflict
relation. The OLC in Fig. 5 implies p1[a2]⊗p2[b2] (because both originate in the same
state) and hence processes p1 and p2 are exclusive (p1#p2). The exclusive relation is
dominant, in the sense that it overrules other relations in ambiguous situations. Two pro-
cesses p and p′ are called completely exclusive (p[#]p′) if a conflict relation involving
their activities occurs along each path of the OLC.

Process p′ sequentially depends on process p with respect to a particular data object
D (written as p →D p′), if all data accesses of p happen before p′ accesses D for the
first time on any path of the corresponding OLC. Additionally, there must exist at least
one direct data dependency p[x] �→∎ p′[y]. Regarding the data object “order” process
p3 sequentially depends on p4 as can be seen from Fig. 5.
We define two variants of the sequential relation. Two processes p and p′ are sequen-
tially overlapping (�→↑) if p → p′ and p additionally reads the last state it has modi-
fied in parallel with process p′ on handover. A process p′ follows (�→↑ ↑↑) a process p, if
p′ only reads the modifications performed on a data object by process p, i.e. if there
are activities x1, . . . , xk of p and y1, . . . , yl of p′ such that p[xi] �→∎ p′[yj] for some
1 ≤ i ≤ k,1 ≤ j ≤ l and each yj has only reading access.

Two processes p, p′ are interacting (�→�→∨∨) if on some path of an OLC direct data de-
pendencies between activities of p and p′ occur and vice versa, i.e. p[xi] �→∎ p′[yj] and
p′[yk] �→∎ p[xl] for some activities xi, xl of p and yj, yk of p′. Additionally xi < xl

and yj ≤ yk have to hold regarding the behavioral profiles of p and p′. Because process
p induces the first data dependency on the path it is the initiator of the interaction. If the
condition for interacting processes holds on different paths of an OLC the initiator has to
be the same process on each path. Otherwise the processes are considered contradicting
(�). Generally, interacting means that two processes take turns operating on a data object.

received

confirmed shipped on acc billed on acc paid on acc

archived

rejected

P1[a1]
P2[b1] P1[a7] P1[a8] P1[a9]

P3[c1]

P2[b1] P3[c1]

billed in adv paid in adv shipped in adv
P5[e1] P5[e2] P2[b4]

P3[c1]

unconfirmed P2[b5]

P1[a2]
P2[b2]

verified

unverified

P4[d1]

P4[d1]
P4[d2]

P2[b3]

Fig. 5. Annotated order object life cycle

538 R.-H. Eid-Sabbagh et al.

In the OLC of data object “order”, we find direct data dependenciesp2[b1] �→∎ p5[e1]
and p5[e2] �→∎ p2[b3] (on the top path “verified”–“confirmed”–“billed in advance”–
“paid in advance”–“shipped in advance”), and b1 < b3 as well as e1 < e2 hold. Therefore
we can deduce that p2 �→�→∨∨ p5.

Aggregation of Process Relations. So far we considered only single data objects to
determine process relations. However, as processes might be related via several data
objects we need to consider the cases in which the determined relations differ.

If the sequential relations for two processes agree in regard to all data objects they
both accesss, the processes are said to be sequentially dependent (→). Similarly, this
applies for sequentially overlapping and following relations. If, on the other hand, the
sequential relation differs for data objects D and D′, e.g. p →D p′ and p′ →D′ p, then
processes p, p′ are interacting, except when their behavioral profiles contradict. This
happens for example, when p[a] �→∎ p′[b1] in the OLC of D, p′[b2] �→∎ p[a] in the
OLC of D′ and b1 < b2 in the behavioral profile of p′ all hold.
Two processes are contradicting, if they are contradicting for at least one data object. A
PDM with contradicting processes when turned into a data BPA will fail to terminate,
because of deadlocks during execution. If two processes p and p′ are exclusive in regard
to one data object, while the other data objects yield different relations, we assume their
overall relation to be contradicting. However, processes we identified as contradicting
might succeed for some process traces, because activities causing the contradiction were
not executed in this trace. In such ambiguous cases, process traces need to be considered
which will be part of future work.

Table 1. PDM for scenario

Processes p1 p2 p3 p4 p5

p1 – # → ← #
p2 # – → ← �→�→∨∨

p3 ← ← – ← –
p4 → → → – –
p5 # ←�

←�∨∨ – – –

Table 1 shows the PDM for the running ex-
ample, which defines the coarse structure of the
data BPA that must conform to the identified re-
lations. As processes p3, p4, and p5 only access
the data object “order”, their relations are deter-
mined by this data object. Processes p1, p2 and
p3 sequentially depend on process p4, process p3

additionally is sequentially dependent on both p1

and p2. Processes p1 and p2 use both data ob-
jects, but because their relation is exclusive for
both, we can unambiguously identify their over-
all relation as exclusive in the PDM. Processes p1 and p5 are also exclusive because of
p1.[a7] ⊗ p5.[e1] in the OLC of the data object “order”.

4.2 Extracting the Business Process Data Architecture

The data dependencies represented in the annotated OLCs constitute an architecture
of their own, expressible as data BPA. Although the process relations identified in the
PDM (see Table 1) determine the overall structure of the data BPA, e.g. process prece-
dence, or exclusivity, they are too coarse-grained to determine the type and order of
events and relations in the BPA. Therefore, data BPA extraction requires the annotated
OLCs as well as behavioral profiles [10] of the process models.

From Activities to Events. To create a BPA, activities in the process models need to
be mapped onto events, β ∶ A ↦ E. However, there is no one-to-one mapping because

Deriving Business Process Data Architectures from Process Model Collections 539

internal activities are ignored. Only those activities are mapped, that occur in the data
dependency relation (domain(β) = {x ∣x �→∎ y or y �→∎ x}). Each pair x �→∎ y be-
comes a sending event β(x) and a receiving event β(y), which are related in the BPA.
Consider the annotated OLC of data object “order” in Fig. 5. Activity p2[b1] modifies
the state from “verified” to “confirmed”, a state which is read by activity p5[e1]. Pro-
cesses p2 and p5 have further data dependencies p2[b1] �→∎ p5[e1], p5[e2] �→∎ p2[b3]
and p5[e2] �→∎ p2[b4], which each turn into a pair of a sending and a receiving event.
Activity p2[b4] is furthermore in data dependency with p3[c1], meaning that β(b4) and
β(c1) are in relation. Since in the BPA formalism no event can be both sending and
receiving, a second event is introduced for b4 such that technically β ∶ A↦ 2E .

The Order of Events. To determine the types of relations and events and to order the
events inside BPA processes, we employ behavioral profiles [10]. If according to the
behavioral profile an activity a is minimal, i.e. it is the first activity in the process
model, β(a) is a start event. If a is maximal, i.e. the last activity, β(a) is an end event,
otherwise it is an intermediary event. The type of relation is now easy to decide, as all
flows ending in a start event are trigger flows, and otherwise are message flows. In the
running example, d1 is the last activity in p4 and hence β(d1) becomes an end event.
Activity a1 is minimal and hence mapped to a start event. The flow (β(d1), β(a1))

therefore is a trigger flow ∈ I . Since receiving event β(b3) is neither the first nor the
last activity of p2, it becomes an intermediate catching event ∈ EC and (β(e2), β(b3))
becomes a message flow ∈ L.

The data BPA process p2 contains several events, start event β(b1), intermediate
throwing event β(b2), intermediate catching events β(b3) and β(b4) and the end event
β(b4). To determine the order of the events we consult the behavioral profile and get
b1 < b2 < b3 < b4. This order on the activities translates into an order on the BPA events.

Conflicting Processes. The conflict relation ⊗ affects the creation of the data BPA in
the following way. In Fig. 5, activities p1[a1] and p2[b1] both transform data object
“order” from state “verified” to “confirmed”. Hence, those activities are conflicting and
the data BPA must prevent the processes, to which β(a1) and β(b1) belong, to be
instantiated at the same time. To achieve this, the trigger flows which instantiate ex-
clusive processes need to be in the BPA conflict relation χ. In the running example

Fig. 6. Resulting data BPA

both β(a1) and β(b1) are the start
events of their respective processes and
are both triggered by β(d1), because
of d1 �→∎ a1 and d1 �→∎ b1. For the
data BPA, this means that trigger flows
(β(d1), β(a1)), (β(d1), β(b1)) ∈ χ.
Graphically, this is depicted as a XOR
gateway in the resulting data BPA in Fig. 6.

Multiplicity. As described in Section 3, an activity a might have several data objects
as its precondition, e.g. data object “D” in state “s” and data object “E” in state “t”.
Assume that “D[s]” is written by p1[b] and “E[t]” is written by p2[c] and that p1 and p2

are non-exclusive, hence implying data dependencies b �→∎ a and c �→∎ a. In the BPA
this translates into sending events β(b) and β(c) both in flow relation with receiving
event β(a). Since a needs data objects from both b and c, also β(a) needs messages

540 R.-H. Eid-Sabbagh et al.

from both β(b) and β(c). To express this condition, the multiplicity of β(a) is set to
the total number of activities on which a depends, in this case μ(β(a)) = {2}.

However, the situation looks different if a has “D” in state “s” and “D” in state “t” as
its precondition. Because now either state would suffice to enable a, the receiving event
β(a) would need a message from either p1 or p2, and the multiplicity would be trivial.

5 Conclusion

In this contribution, we presented an approach to extract data interdependencies be-
tween a set of process models and vizualize them as business process data architecture
(data BPA). Our approach assumes that process models are annotated with data objects
and that weakly conforming object life cycles (OLCs) for this objects are given.

The data modifications performed by process activities are annotated in the OLCs
to derive direct data dependencies (�→∎ and ⊗) between activities. Based on that, we
extract relations between processes for single and multiple data objects and summarize
them in the process data dependency matrix (PDM). Another result is the data BPA,
which visualizes found interdependencies and allows formal analysis.

To unambiguously determine some process relations it is required to consider execu-
tion traces of process models, which was not part of this contribution. In future work
we will also work on lifting the restriction of acyclic OLCs. Our next goal is to com-
bine the data BPAs from this contribution with control flow based BPAs and check their
conformance, to accurately represent interdependencies in process model collections.

References

1. Dijkman, R., Vanderfeesten, I., Reijers, H.A.: The Road to a Business Process Architecture:
an Overview of Approaches and their Use. Technical Report WP-350, Eindhoven University
of Technology (2011)

2. Eid-Sabbagh, R.-H., Dijkman, R., Weske, M.: Business Process Architecture: Use and Cor-
rectness. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 65–81.
Springer, Heidelberg (2012)

3. Eid-Sabbagh, R.-H., Hewelt, M., Weske, M.: Business Process Architectures with Multiplic-
ities: Transformation and Correctness. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 227–234. Springer, Heidelberg (2013)

4. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)
5. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Patterns, Formal-

ization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

6. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. International Journal of Cooperative Informa-
tion Systems 10(4), 443–481 (2001)

7. Cohn, D., Hull, R.: Business Artifacts: A Data-centric Approach to Modeling Business Op-
erations and Processes. IEEE Data Engineering Bulletin 32(3), 3–9 (2009)

8. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking
of Interacting Processes with Overlapping Instances. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 345–361. Springer, Heidelberg (2011)

9. Meyer, A., Polyvyanyy, A., Weske, M.: Weak Conformance of Process Models with respect
to Data Objects. In: Services and their Composition (ZEUS), pp. 74–80 (2012)

10. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based on Behav-
ioral Profiles of Process Models. IEEE Trans. Software Eng. 37(3), 410–429 (2011)

A Case Based Approach to Serve Information Needs
in Knowledge Intensive Processes

Debdoot Mukherjee1, Jeanette Blomberg2, Rama Akkiraju2, Dinesh Raghu1,
Monika Gupta1, Sugata Ghosal1, Mu Qiao2, and Taiga Nakamura2

1 IBM Research – India
{debdomuk,diraghu1,monikgup,gsugata}@in.ibm.com

2 IBM Almaden Research Center, USA
{blomberg,akkiraju,taiga,mqiao}@us.ibm.com

Abstract. Case workers who are involved in knowledge intensive business pro-
cesses have critical information needs. When dealing with a case, they often need
to check how similar case(s) were handled and what best practices, methods and
tools proved useful. In this paper, we present our Solution Information Man-
agement (SIM) system developed to assist case workers by retrieving and offer-
ing targeted and contextual content recommendations to them. In particular, we
present a novel method for intelligently weighing different fields in a case when
they are used as context to derive recommendations. Experimental results indi-
cate that our approach can yield recommendations that are approximately 15%
more precise than those obtained through a baseline approach where the fields in
the context have equal weights. SIM is being actively used by case workers in a
large IT services company.

1 Introduction

Case Management [23] has emerged as the discipline for supporting flexible and knowl-
edge intensive business processes, which may require significant human judgment and
decision making. Unlike traditional Business Process Management (BPM), which has
focused on automating process workflows, Case Management is aimed at equipping
knowledge workers1 efficiently steer processes toward completion. Since, knowledge
workers add significant economic value to an enterprise and their contributions are espe-
cially critical in growing the services economy, the demand for Case Management tools
has been growing [1]—especially in domains such as customer relationship manage-
ment, IT service management, healthcare, legal, insurance and citizen services. When
knowledge workers begin to work with a case they often ask—Did we handle such a
case before? If so, how? What best practices are available to solve similar cases? To get
answers to such questions, they often search in enterprise repositories. However, knowl-
edge workers are frustrated with the inability of the available knowledge management
tools in finding the information they need, when they need it, due to the poor state of the
art of enterprise search. Studies report that they may spend 15% to 35% of their time

1 The term, knowledge worker, was first coined by Peter Drucker to denote those who develop
or apply knowledge in the workplace. [16] discusses different roles of knowledge workers.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 541–549, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

542 D. Mukherjee et al.

Fig. 1. Sample Fields from SIM’s Case Model

searching for information and are successful in finding relevant information less than
50% of the time [7,5]. In practice, what works better is reaching out to subject matter
experts in the organization through informal networks. But, identifying the right person
often requires numerous phone calls and email exchanges, which takes up precious,
productive time of knowledge workers. Our study of knowledge workers at a large IT
services organization reveals that a multitude of technical and organizational challenges
currently make it extremely difficult for case workers to find the information necessary
for their daily work. Clearly, developing technologies for effectively aggregating and
disseminating case knowledge is a strong business imperative for next generation Case
Management [13,20,22] and Social BPM [21] products.

In this paper, we describe how information retrieval guided by the context of the
case-at-hand and the semantics of the case domain generates useful content recommen-
dations for the knowledge workers. We discuss a knowledge management application
called Solution Information Management (SIM), which was developed to serve infor-
mation needs arising in the Opportunity-To-Order process (i.e., the sales lifecycle) at
an IT services company. SIM mines contextual and targeted information by search-
ing a federated set of repositories. The repositories store solution design documents
created during past opportunities as well as best-practice reference materials about of-
ferings, delivery capabilities, lessons learned and engagement processes. A case in SIM
uniquely identifies an IT service deal that was pursued in the past. For each case, we
catalog all information related to the deal as fields in a case model; Figure 1 shows a
sample of fields in SIM’s case model. We apply an array of information extractors to
resolve contents of different case fields from the unstructured documents created in a
deal. Then, the richly fielded case models are indexed such that one can execute tar-
geted semantic queries and not just full text keyword search. Suppose, a case worker is
looking for existing prior assets or lessons learned on “low cost data center consolida-
tion solutions in financial service industry in Western Europe”. In SIM, one can create
a complex query to address such a requirement—Geography : “Western Europe”, Of-
fering : “data center consolidation”, Win-Theme : “Low Cost”, Industry : “Financial
Services”. The results obtained from a such a query are much more precise than what a
keyword search would yield. Further, the SIM system can generate content recommen-
dations for the information needs in different process steps based on the already known
fields in the case or the context of the case. An interesting question that arises is how
to weigh the affect of different fields in the context. In the above example, suppose the
case worker is now interested in recommendations for potential risks underlying the so-
lution. How do we weigh the four query clauses as we look to retrieve cases with Risks
that can be of interest? Do we weigh the clause on Offering more than the others or is a
match of the Industry more important to fetch relevant Risks? Resolving an appropriate

A Case Based Approach to Serve Information Needs 543

weighting of the different query clauses is crucial in order to maximize the relevance
of recommendations. It is a complex problem since there are hundreds of fields in in-
dustrial case repositories and manually specifying weighting schemes is infeasible. We
propose an automated approach, named Correspondence Analysis, which infers how
one case field can influence recommendations for another case field. Correspondence
scores dictate the weights of different query clauses in generating recommendations.

We conduct experiments where we assess the relevance of recommendations on two
different case fields, obtained from a corpus of 715 cases. The relevance of recommen-
dations obtained through our approach is significantly better than that from a baseline
approach which assumes equal weights for all fields in context. Improvement observed
in standard IR metrics like Precision@K and nDCG is as high as 15%.

2 System Overview: Solution Information Management

In this section, we describe Solution Information Management (SIM), a tool that as-
sembles content from a variety of data sources relevant to case domain, indexes the
information after converting it into a semantic format, and then delivers relevant infor-
mation to the case worker depending upon the context of a case. Figure 3 shows the
different stages in the knowledge engineering pipeline in SIM. Here, we briefly outline
the function of each stage. Refer to our technical report [25] for a detailed overview.

Crawl & Parse: We configure crawlers in SIM that periodically download the contents
of the different repositories. The crawlers output files in their native, binary formats,
e.g., .pdf, .ppt, .xls, .doc. The next step is to parse formatted text from such files. Also,
we export pages and slides as images; these images show up alongside search results to
enable a preview feature.

Annotate: The Annotate stage creates semi-structured case models with information
extracted from dense, unstructured documents associated with historical cases. The Seg-
menter module takes as input the formatted text parsed from the documents. It distin-
guishes the headings in the documents from any other text based on their special for-
matting or font-styles. Next, it feeds the words in an inferred heading to a trained text
classifier model which predicts the case semantic implied by that heading. Once we de-
termine the case semantic for a heading, we extract the text from the region following
the heading into a field in a case model. Additionally, we compute a Quality Score and
a Summary for every text field. The Quality Score assesses the amount of information
present in the case field relative to that present in the same field in other cases in the
corpus. Such a score helps penalize sparse fields as we generate recommendations. A
Summary for a case field is obtained by applying the Maximal Marginal Relevance tech-
nique [4] to choose a small number of sentences that convey the maximum information.
Summaries help users do a quick evaluation of case fields.

Index: The case models created in the Annotate stage are imported into a full text index
of a search engine. SIM uses Apache Solr as the foundation for indexing and search.

Query & Search: To generate recommendations for a field of a case being worked
upon, SIM creates an OR-ed construct of query clauses, where each clause is generated
from the contents of a known field in the case. A key question that arises is how do we

544 D. Mukherjee et al.

Fig. 2. Visualizing Results in SIM

Fig. 3. Knowledge Engineering Pipeline in SIM

1: function CORRESPONDENCE-ANALYSIS

Input: Case Corpus, C; Set of Fields, F
Output: Corr - |F | × |F | matrix

2: Initialize Σ - |C|2 × |F | observation matrix
3: for all (ci, cj) ∈ C × C, i �= j do
4: Initialize observation vector, σ
5: for all Field fk ∈ F do
6: σk ← Sim(ci.fk, cj .fk)
7: Add σ to Σ
8: end for
9: end for
10: for all Field fi ∈ F do
11: Build a regression model, M , from Σ to model

column i using other columns as features.
12: for all Field fj ∈ F do
13: Corr(j, i) ← Coeff. of feature j in M
14: end for
15: end for
16: end function

Fig. 4. Correspondence Analysis

weigh the matches of the different query clauses to maximize relevance of recommen-
dations. To address this issue, we develop Correspondence Analysis, a technique that
helps us ascertain the weight of each query clause. We discuss it in detail in Section 2.1.
Further, the relevance score for any result is boosted based on different factors such as
users’ rating, document age, the number of previous hits on the result, Quality Score for
the result field and others domain specific rules (e.g., boost if the deal was won).

Visualize: Figure 2 illustrates how recommendations are visualized in the SIM tool.
On the left-hand pane, one finds a list of key topics that are obtained by clustering the
recommendations generated for a particular case field. In the middle pane, we present
the recommended case models as well as relevant reference materials. For each result,
one can view the summaries of different case fields. Also, one may open up a document
preview for a case field, which shows snapshots of the document regions where the field
is documented. SIM also helps users visually discover interesting associations within
selected cases through interactive graph visualizations.

2.1 Correspondence Analysis

As we derive content recommendations for a certain field of a case (henceforth referred
to as the target field), it is important to understand what other fields in the case can
serve as context. For instance, as we seek recommendations on the case field, Risks,

A Case Based Approach to Serve Information Needs 545

does it make sense to search for Risks in cases from the same Industry or cases with the
same Solution Offering? If both Industry and Solution Offering appear to lend context
to Risks, then how does one weigh the influence of each of these fields? Turns out that
even domain experts are unable to conclusively answer such questions. Again, assign-
ing equal weights to the affect of each field in the context does not appear to be ideal
(See Section 3). Moreover, since there could be hundreds of fields in case repositories,
manually defining weighting schemes may not be feasible. Here, we describe Corre-
spondence Analysis2, an automated approach that analyzes the case corpus to infer how
similarities in different case fields correlate with each other. The correspondence output
can be used for defining preferential weighting for fields in SIM queries.

For each pair of case fields, say α and β, we define Correspondence, Corr(α, β), as
the degree to which similarity in α corresponds to similarity in β across pairs of cases.
A high value for Corr(α, β) suggests that α is a good candidate to serve as context
for β because if we are able to retrieve cases with similar α, then it is likely that the
contents of β in those cases may recur in the current case. For the above example, if
our analysis of the case corpus shows that cases with the same Offering often exhibit
similar Risks, then a case worker would be interested to find Risks in past cases that
have the current Offering. Thus, it may be worthwhile to assign a high weight for the
query clause with Offering. Now, when deriving recommendations for a target field, it
is important to have the “right” relative weighting for all other fields in the context. We
use multiple linear regression as a tool to determine the relative impact that fields in the
context can have upon the target field.

Figure 4 discusses the algorithm for correspondence analysis. We sample pairs of
cases from the case corpus to observe how the different fields are similar across the
case pairs. For each pair of cases, we create an observation vector where each obser-
vation measures the similarity of a particular field across the two cases. The similarity
function, Sim, depends on the type of field. We use boolean similarity for categorical
fields, cosine similarity3 for text fields and inverse of euclidean distance4 for numeric
fields. Next, in order to assess how similarity of a target field may be influenced by
similarities in other fields, we regress the observations from all other fields against the
corresponding observations for the target field. The coefficients obtained from a lin-
ear regression model can be indicative of how similarities in different fields influence
similarity in the target field.

3 Experiments on Contextual Search

In this section, we report experiments conducted to assess the efficacy of our proposed
approach in finding the “right” context in order to maximize relevance of recommenda-
tions. As discussed in Section 2, when seeking recommendations for a target case field,
we weigh the query clauses created from the contents of other fields by their respective

2 Not to be confused with the multi-variate statistical technique with the same name that sum-
marizes categorical data in a two dimensional graphical format

3 http://en.wikipedia.org/wiki/Cosine_similarity
4 http://en.wikipedia.org/wiki/Euclidean_distance

http://en.wikipedia.org/wiki/Cosine_similarity
http://en.wikipedia.org/wiki/Euclidean_distance

546 D. Mukherjee et al.

Correspondence scores with the target case field. Our experiments measure the useful-
ness of such a weighting in improving relevance of recommendations over a baseline
approach where equal weights are assigned to each clause in the contextual query.

3.1 Experimental Set-Up

In our experiments, we use a case corpus of 715 case models cataloged from infor-
mation created during sales engagements at a large IT services company. Each case
model was created by aggregating information about a single deal from three different
databases within the company. The schema for our integrated case models consisted of
314 fields of different types (e.g., categorical, text, numeric, dates). However, not all
case models had all 314 fields; in fact most of them were sparsely populated. For the
purposes of our experiments, we choose Risks and Assumptions as the two target fields
for which we generate recommendations. Both of these fields are free text fields; often
their contents are organized as a bulleted list of items, sometimes even over a hundred
items in a single case. Such lists of Risks and Assumptions are particularly useful to
conduct quality assurance reviews and are a necessary input for crafting clauses in the
legal contract when closing a deal.

Competing Approaches: We investigate the efficacy of two approaches of leveraging
context in deriving relevant recommendations for a target field. First, we evaluate a
baseline approach where we construct query clauses out of the contents all non-empty
fields in a case model except the target field. In this approach, the matches for all the
query clauses are weighed equally while generating recommendations. Second, we ap-
ply the weighted approach, where we create query clauses from a select set of fields
that have a high correspondence score with the target fields. Further, the query clauses
are weighed in proportion to the correspondence scores of the respective fields.

Generating Recommendations: We randomly select 8 case models from the case cor-
pus where the fields, Risks and Assumptions are non-empty. For each case, we construct
two queries following the two approaches described above. We execute the queries with
Apache Lucene to obtain a ranked list of case models in the corpus with similar con-
texts. Finally, we retrieve the contents of the target fields in the result case models and
present them to an expert who assigns relevance judgments as described below.

Judging Relevance: Judging relevance of a recommendation is hard for anyone who is
not actually involved in the case and getting time from case workers to run controlled
experiments is always a challenge. However, we manage to work around this issue in the
following manner. Note that the case models from which queries were created already
have the target fields filled up, so we can use their contents as ground truth. Now, the
task of comparing two items is much easier than deciding the relevance of a recommen-
dation to a given context. Thus, we ask an expert user who understands the vocabulary
of the case domain to compare the recommendation results obtained for a query with
its ground truth. The expert chooses one of the 3 labels for each recommendation—0 :
“Not Related”; 1 : “Somewhat Related”, 2 : “Related”. If there is an exact match of
any Risk or Assumption item listed in the recommendation to any item in the ground
truth, then it is labeled as “2”. If there is some topical match, then the recommendation

A Case Based Approach to Serve Information Needs 547

Baseline Weighted
Field nDCG P@20 nDCG P@20
Risks 0.504 0.312 0.668 0.456
Assumption 0.57 0.325 0.688 0.49

Overall 0.535 0.318 0.678 0.473

Fig. 5. Summary of Results Fig. 6. Precision@K

is marked as “1”. Such a labeling strategy helped us collect relevance judgments for
each of the top 20 recommendation results derived for the two competing approaches
across eight queries for the two chosen target fields; totaling to 640 judgments.

Collecting Metrics: The relevance judgments are used to compute two metrics: Pre-
cision@K and Normalized Discounted Cumulative Gain (nDCG). For computing pre-
cision, a relevance label of 0 is considered irrelevant, labels of 1 and 2 are considered
relevant. Now, Precision@K is defined as the fraction of relevant results for the top-K
ranked recommendations. nDCG [8] is often used as a measure for evaluating a ranked list
with multiple relevance levels. The premise behind Discounted Cumulative Gain (DCG)
is that highly relevant documents appearing lower in a search result list should be penal-
ized as the graded relevance value is reduced logarithmically proportional to the position
of the result. For a judgment vector of length p, we compute DCGp as follows:

DCGp =

p∑
i=1

2reli − 1

log2(i + 1)

Next, we re-compute DCGp after sorting the judgment vector and call it Ideal DCG
(IDCGp). Finally, nDCG for the judgment vector is defined as DCGp expressed as a
fraction of IDCGp.

3.2 Experimental Results

Figure 5 summarizes the metrics nDCG and Precision@20 as observed for the two
competing approaches on our dataset. For Risks, the weighted approach records an im-
provement of 16.4% in nDCG and 14.4% in Precision@20 over the baseline approach.
For Assumptions, we find increases of 11.8% and 16.5% in nDCG and Precision@20
respectively. Thus, on average, across the two case fields, both metrics show an im-
provement of ≈ 15%. Figure 6 plots the values of Precision@K for K = 1 through
20 for the two approaches, baseline and weighted. For the recommendations on Risks,
the values of Precision@K for the weighted approach are are consistently higher than
those recorded by the baseline approach. For Assumptions, the curve for the weighted
approach is seen to be lagging at K=1,2 but then it surges ahead and thereafter leads
the baseline’s curve. These results clearly indicate that an intelligent weighting of the
different fields in context can improve the relevance of recommendations and that Cor-
respondence Analysis can be a viable approach for choosing the weights.

548 D. Mukherjee et al.

4 Related Work

Recently, there has been a lot of research on Adaptive Case Management and Social
BPM technologies for handling ad hoc business processes [23,13,22,21,10]. However,
these efforts have largely focused on developing better case modeling techniques to en-
hance the level of collaboration between case workers in order to increase the throughput
of case processing. We believe that research in case management should also attend to
the problem of serving information needs of case workers since cases often get stalled
because case workers do not have adequate information. Our work is a first step in this
direction.

In the past, reuse of business process information, including formal models and im-
plementation artifacts; has found interest in the BPM community [24]. RepoX [19] and
MIT Process Handbook [11] allow storage of business process models with free text
search and structured search capabilities. Our past work [6] introduced the notion of
contextual search and demonstrated its benefit for requirement gathering activities in
SAP engagements. This paper improves upon [6] in the following ways. Unlike the
work in [6] that only dealt with textual artifacts, the approach presented in this pa-
per can infer an appropriate weighting of context with different types of fields—text,
numeric and categorical. Further, the computation of the strength of an associative rela-
tionship between two fields in [6] ignored the influence of other case fields; we address
this limitation through the multi-variate modeling in Correspondence Analysis. More-
over in [6], the results were not evaluated with the help of relevance judgments from
experts. Related work in other academic communities include the literature on Knowl-
edge Management [14,12,3] and research on Case Based Reasoning [2,17].

5 Conclusions and Future Work

The SIM tool is being actively used in the Opportunity-To-Order process at a large
IT Services company and has received positive feedback from its users. They believe
that this domain-specific knowledge management system delivers much more precise
and contextual results than the enterprise-wide search system they used before. The
users suggest that the tool reduces dependencies on personal networks and and yields
significant productivity improvements as it jump-starts the case work with relevant in-
formation. In this paper, we present a controlled experiment to evaluate the efficacy of a
key aspect of our system–generating preferentially weighted contextual queries. Future
work can look at design of experiments to study the holistic effect of SIM on knowledge
worker productivity. Also, we are currently extending our solution along a number of
dimensions to deliver more precise recommendations and enrich the user experience for
case workers. Our on-going efforts include: construction of large graphs that link infor-
mation from different sources, development of stocastic graph inference techniques to
answer queries on the graphs and a cognitive system to parse natural language queries.

References

1. Case Management - Combining Knowledge with Process, http://bit.ly/cErahE (ac-
cessed: May 29, 2013)

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. AI Communications 7(1), 39–59 (1994)

http://bit.ly/cErahE

A Case Based Approach to Serve Information Needs 549

3. Alavi, M., Leidner, D.E.: Knowledge management and knowledge management systems:
Conceptual foundations and research issues. MIS Quarterly 25(1), 107–136 (2001)

4. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In: Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336.
ACM (1998)

5. Feldman, S., Sherman, C.: The high cost of not finding information. Information Today Inc.
(2004)

6. Gupta, M., Mukherjee, D., Mani, S., Sinha, V.S., Sinha, S.: Serving information needs in
business process consulting. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 231–247. Springer, Heidelberg (2011)

7. IDC. Quantifying Enterprise Search (2002)
8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans.

Inf. Syst. 20(4), 422–446 (2002)
9. Kim, J., Xue, X., Croft, W.B.: A probabilistic retrieval model for semistructured data. In:

Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478,
pp. 228–239. Springer, Heidelberg (2009)

10. Liptchinsky, V., Khazankin, R., Truong, H.-L., Dustdar, S.: A novel approach to modeling
context-aware and social collaboration processes. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 565–580. Springer, Heidelberg (2012)

11. Malone, T.W., Crowston, K., Herman, G.A.: Organizing business knowledge. MIT Press
(2003)

12. McDermott, R.: Why information technology inspired but cannot deliver knowledge man-
agement. California Management Review 41(4), 103–117 (1999)

13. Motahari-Nezhad, H.R., Bartolini, C., Graupner, S., Spence, S.: Adaptive case management
in the social enterprise. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 550–557. Springer, Heidelberg (2012)

14. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization Science
15. Osiriski, S., Stefanowski, J., Weiss, D.: Lingo: Search results clustering algorithm based on

singular value decomposition. In: Proceedings of the Intelligent Information Processing and
Web Mining, IIPWM, vol. 4, pp. 359–368 (2004)

16. Reinhardt, W., Schmidt, B., Sloep, P., Drachsler, H.: Knowledge Worker Roles and Actions:
Results of Two Empirical Studies. Knowledge and Process Management 18(3), 150–174
(2011)

17. Rissland, E.L., Daniels, J.J.: A hybrid cbr-ir approach to legal information retrieval. In: Pro-
ceedings of the Fifth International Conference on Artificial Intelligence and Law (ICAIL)

18. Robertson, S., Zaragoza, H., Taylor, M.: Simple bm25 extension to multiple weighted fields.
In: Proceedings of the Thirteenth ACM International Conference on Information and Knowl-
edge Management, pp. 42–49. ACM (2004)

19. Song, M., Miller, J.A., Arpinar, I.B.: Repox: An xml repository for workflow designs and
specifications. PhD thesis, Citeseer (2001)

20. Swenson, K.D.: Mastering the Unpredictable. Meghan-Kiffer Press (2010)
21. Swenson, K.D., Palmer, N., Kemsley, S., et al.: Social BPM. Future Strategies Inc. (2011)
22. Swenson, K.D., Palmer, N., et al.: How Knowledge Workers Get Things Done. Future Strate-

gies Inc. (2012)
23. Van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business

process support. Data & Knowledge Engineering 53(2), 129–162 (2005)
24. Yan, Z., Dijkman, R., Grefen, P.: Business process model repositories–framework and survey.

Information and Software Technology 54(4), 380–395 (2012)
25. Mukherjee, D., et al.: A Case Based Approach to Serve Information Need. Knowledge In-

tensive Processes. IBM Technical Report (2013)

Patience-Aware Scheduling for Cloud Services:
Freeing Users from the Chains of Boredom�

Carlos Cardonha1, Marcos D. Assunção1, Marco A.S. Netto1,
Renato L.F. Cunha1, and Carlos Queiroz2

1 IBM Research Brazil
2 IBM Research Australia

Abstract. Scheduling of service requests in Cloud computing has tra-
ditionally focused on the reduction of pre-service wait, generally termed
as waiting time. Under certain conditions such as peak load, however,
it is not always possible to give reasonable response times to all users.
This work explores the fact that different users may have their own levels
of tolerance or patience with response delays. We introduce scheduling
strategies that produce better assignment plans by prioritising requests
from users who expect to receive results earlier and by postponing ser-
vicing jobs from those who are more tolerant to response delays. Our
analytical results show that the behaviour of users’ patience plays a key
role in the evaluation of scheduling techniques, and our computational
evaluation demonstrates that, under peak load, the new algorithms typi-
cally provide better user experience than the traditional FIFO strategy.

1 Introduction

Traditionally, job schedulers do not take into account how users interact with
services. They optimise system metrics, such as resource utilisation and energy
consumption, and user metrics such as response time. However, understanding
interactions between users and a service provider over time allows for custom
optimisations that bring benefits for both parties.

In this article we propose scheduling strategies that take into account users’
expectations regarding response time and their patience when interacting with
Cloud services. Such strategies are relevant mainly to handle peak load condi-
tions without the need to allocate additional resources for the service provider.
Although elasticity is common in a Cloud setting, resources may not be available
quickly enough and their allocation can incur additional costs that may be avoid-
able. The main contributions of this paper are: (i) a Patience-Aware Schedul-
ing (PAS) strategy and an Expectation-Aware Scheduling (EAS) strategy
for Cloud systems; (ii) Analytical comparisons between the EAS strategy and
the traditional First-In, First-Out (FIFO) scheduling strategy; (iii) Evalua-
tion of the proposed strategies and a discussion on when they bring benefits for
users and service providers.
� Extended version of this paper is available at arxiv.org

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 550–557, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

arxiv.org

Patience-Aware Scheduling for Cloud Services 551

2 Proposed Scheduling Strategies

This work considers Cloud services that support applications running on mobile
devices and desktops, most of which are highly interactive and iterative. Service
performance over time usually shapes the users’ expectations on how it is likely
to perform in the future. The provider stores information on how its service
responded to user requests and uses this information to gauge her expectations
and patience.

PAS and EAS utilise user expectation to schedule service requests. Both
strategies share the following common goals: (i) minimise the number of users
abandoning the service; (ii) maximise the users’ level of happiness with the
service; and (iii) perform such optimisations without adding new resources to the
service. An incoming job request will be directly assigned if there are available
resources in the service provider. Therefore, choosing among FIFO, PAS, and
EAS becomes more crucial during peak load.

PAS has the goal of serving first users whose patience levels are the lowest
when interacting with the Cloud service. When new requests arrive, the algo-
rithm sorts the tasks in its waiting queue according to the Patience of their
users (in ascending order), and when a new resource is freed, the request posi-
tioned in the head of the waiting list is assigned to it. An adequate estimate
of how the user’s happiness level and the user’s tolerance curves behave is very
important for the evaluation of the proposed strategies. In our implementation
of PAS and in our computational evaluation, we employed the definition of
Brown et al. [6], where patience is given by the ratio of the time a user expects
to wait for results to the time the user actually waits for them.

EAS has the goal of serving first requests from users whose response time
expectations are translated into “soft” deadlines that are positioned earlier in
time. The difference between EAS and traditional deadline-based algorithms
lies in the nature of the “buffer” adding to the minimum response time, as it
changes over time and is related to users’ patience. EAS sorts service requests
in the waiting queue according to their users’ expectation, which is the sum of
arrival time and expected response time, where arrival time is the time at which
the job arrived on the waiting queue and expected response time is the time that
the service provider need to complete the task. EAS, then, schedules the job
with the least expectation when a new resource is freed.

2.1 Analytical Investigation of the EAS Strategy

Let U be the set of users of a service provider. Let T denote the sequence of job
requests being submitted, where each t ∈ T arrives at time a(t) ∈ R+ and has
processing time Δ(t) ∈ R. Task t is submitted by user u(t), who is expecting to
wait an amount of time w(u(t)) ∈ N in addition to Δ(t), i.e., w(u) denotes u’s
tolerance with response delays. The service provider has a dispatching algorithm
responsible for the assignment of each incoming task to one of its m processors.

Let us denote by s(t) ∈ R+ the time at which task t starts to be processed.
The response time for task t is given by r(t) = (s(t)−a(t))+Δ(t), and e(u(t), t) =

552 C. Cardonha et al.

r(t) − (Δ(t) + w(u(t))) denotes the amount of time by which the response time
differs from u(t)’s original expectation.

We denote user u’s level of happiness by h(u) ∈ [0, 1], a linear scale where
h(u) = 0 and h(u) = 1 indicates that u is absolutely discontent and happy,
respectively. We assume that u stops sending requests as soon as h(u) is below
some critical value c(u) in [0, 1]. User u is active if h(u) > c(u). The impact
that e(u, t) has on h(u) is formulated by function i : U ×R → R, and the impact
that e(u, t) has on w(u) is described by some function j : U × T ×R → R. If we
assume that i(u, e(u, t)) and j(u, t, e(u, t)) are addictive factors, then, after the
computation of some task t, the happiness level of user u(t) will be given by h(u)+
i(u, e(u, t)), while u(t)’s patience level becomes w(u(t)) + j(u(t), t, e(u(t), t)).

Optimisation Criteria. Let Z denote the closed interval [0, 1] ⊂ R. We say that
a vector s ∈ Z |U| denotes a service provider’s user happiness state if sx = h(ux)
∀ux ∈ U , 1 ≤ x ≤ U . In order to evaluate and compare different scheduling
strategies, we have to define a cost function c : Z |U| → R. The definition of a
proper cost function depends on the optimisation criteria one wants to establish.
We will consider two optimisation goals. The first one is the maximisation of
the overall happiness of users, where service providers should try to reach states
s ∈ Z |U| of maximal L1-norm. The other criteria consists of the maximisation of
active users, where service providers try to keep as many active users as possible.
Formally, a state s ∈ Z |U| satisfying this second goal is associated to a vector
s′ ∈ Z |U| such that s′x = sx if sx ≥ c(ux), s′x = 0 otherwise, and ||s′||0 is
maximal.

Batch Requests. We consider initially how scheduling strategies affect the user
happiness states when we take into account a single batch of job requests. We
assume here that each user submits a single request, and therefore we do not
investigate variations of w(u). The optimisation criteria in this section will be
the L1-norm of the user happiness state vector. Let us consider the family of
scenarios where each task in T consumes time Δ, and let tx, ty ∈ T be such that
x + m < y and a(tx) + w(ux) > a(ty) + w(uy).

If FIFO is employed, the scheduling plan P will have each request t serviced
according to arriving time a(t). In particular, tx will be processed before ty
according to P and in different moments in time (i.e., they will not be serviced
in parallel).

For the same sequence T , because a(tx) + w(ux) > a(ty) + w(uy), EAS
would invert the order in which tasks tx and ty are processed, so let us consider
the plan P ′ that is almost equal to P , having only the positions of tx and ty
exchanged. Because all the tasks consume the same amount of time, it is clear
that we can transform plan P into plan P ∗ that would be generated by EAS if
we apply the same exchange technique sequentially until every pair of requests
is positioned accordingly.

Let s and s′ be the user happiness state vectors of p after the execution
of plans P and P ′, respectively, and let fx and fy be the times at which tx
and ty have their processing tasks finished according to plan P , respectively

Patience-Aware Scheduling for Cloud Services 553

(i.e., fx < fy). Let us refer to e(tx) and e(ty) as e1(tx) and e1(ty) for FIFO,
respectively, and as e2(tx) and e2(ty) for EAS, respectively.

Finally, let qx,y : R×R → R be the function parameterized by e(tx) and e(ty)
denoting the sum of the changes in the happiness levels of users ux and uy after
tasks tx and ty have been serviced, respectively. It is clear that qx,y depends on
the behaviour of i.

Proposition 1. If qx,y is always the same ∀x, y ∈ U , is monotonic, and respects
exactly one of the following scenarios, then it is possible to decide if either EAS
or FIFO yields a plan resulting in a user happiness state s with maximal ||s||1:

– fx,y(a, b) ≥ fx,y(c, d) whenever |a|+ |b| ≥ |c|+ |d|; or
– fx,y(a, b) ≤ fx,y(c, d) whenever |a|+ |b| ≥ |c|+ |d|; or
– fx,y(a, b) = fx,y(c, d) whenever |a|+ |b| ≥ |c|+ |d|.

Proof. Simple inspection shows that a(tx)+Δ+w(ux), a(ty)+Δ+w(uy), fx, and
fy can appear in six different relative ordering schemes (e.g., ay +Δ+w(uy) <
ax+Δ+w(ux) < fx < fy is one of them)1. Moreover, one can also see that e1(tx)+
e1(ty) = e2(tx) + e2(ty) and that max(e1(tx), e

1(ty)) > max(e2(tx), e
2(ty)) in

each of these cases. Therefore, we have |e1(tx)|+ |e1(ty)| ≥ |e2(tx)|+ |e2(ty)|.
Based on these observations and on our hypothesis, we have the following

situations:

– if fx,y(a, b) ≥ fx,y(c, d) whenever |a|+ |b| ≥ |c|+ |d|, then c(s) ≥ c(s′);
– if fx,y(a, b) ≤ fx,y(c, d) whenever |a|+ |b| ≥ |c|+ |d|, then c(s) ≤ c(s′); and
– if fx,y(a, b) = fx,y(c, d) whenever |a|+ |b| ≥ |c|+ |d|, then c(s) = c(s′).

Therefore, P ′ is better than, equal to, or worse than P if fx,y has the first, the
second, or the third property, respectively.

Finally, if we assume that fx,y is always the same ∀x, y in U , the resulting
user happiness state associated to P ∗ is better than, equal to, or worse than P
if fx,y has the first, the second, or the third property, respectively. ��

Other propositions comparing the proposed and FIFO strategies are pre-
sented in the extended version of the paper [7].

3 Evaluation

A discrete event simulator was used to evaluate the performance of the schedul-
ing strategies. To model the load of a Cloud service, we crafted three types of
workloads with variable numbers of users over a 24-hour period: normal day,
flat day, and peaky day. More detail on the workloads is given in the extended
version of this work [7].

For each workload we vary the number of resources used by the Cloud service,
thus allowing for evaluating the system under different stress levels. When using
the system, a user makes a request and waits for its results before making a new
1 Recall that a(tx) +Δ+w(ux) is already defined as greater than a(ty) +Δ+w(uy).

554 C. Cardonha et al.

(a) Flat. (b) Normal.

(c) Peaky.

Fig. 1. Patience index under different workloads

request, with a think time between receiving results and making another request
uniformly distributed between 0 and 100 seconds. To facilitate the analysis and
comparison among the techniques, the length of jobs is constant (10 seconds).

Previous interactions with the service are used to build a user’s expectation on
how the service should respond, and how quickly a request should be processed.
The model that defines a user’s expectation on the response time of a request uses
two moving averages, (i) an Exponential Weighted Moving Average (EWMA) of
the previous 20 response times, with α = 0.8; and (ii) an average of the past
4 response times, used to eliminate outliers. When a request completes, if the
response time is 30% below the average of the past 4 response times, then the
EWMA is not updated, though the value is considered in future iterations. In
essence, this model states that the user expects the service to behave similar
to previous interactions, with a higher weight to more recent requests. Even
though changes in response time affect the user’s perception of the service, she
disregards large deviations in service quality; unless they become common. As
we believe that in real conditions, users would not correctly average their past
response times (i.e. they may not recall past experiences well) we add a tolerance
of 20% to the estimate of response time provided by the model.

Patience-Aware Scheduling for Cloud Services 555

0

10

20

30

r4 r6 r8 r10 r12 r14 r16 r18 r20
Resources

R
e

q
s

w
ith

 P
I

→
0

 (
%

)

FIFO EAS PAS

(a) Flat.

0

10

20

30

r4 r6 r8 r10 r12 r14 r16 r18 r20
Resources

R
e

q
s

w
ith

 P
I

→
0

 (
%

)

FIFO EAS PAS

(b) Normal.

0

10

20

30

r4 r6 r8 r10 r12 r14 r16 r18 r20
Resources

R
e

q
s

w
ith

 P
I

→
0

 (
%

)

FIFO EAS PAS

(c) Peaky.

Fig. 2. Percentage of requests whose patience index tends to 0

Users patience thresholds—i.e. the maximum response time that she consid-
ers acceptable—is randomly selected between 40 seconds and 60 seconds. The
provider tracks how it served previous requests made by a user and users the
same model described above to compute an estimate of what it believes the
user’s expectation to be. 60 seconds is also what the provider considers to be
the maximum acceptable response time that satisfies the service users. However,
for EAS and PAS, if a request’s response is above 60 seconds, the EWMA is
updated with 40 seconds, which may give the user priority the next time she
submits a request. It is a way the scheduler finds to penalise itself for yielding a
response time too far from what it believes the user’s expectation to be.

Figure 1 depicts the Patience Indexes (as defined in Section 2) of requests
when below 1.0 for flat, normal, and peaky workloads. The lower the values the
more unhappy the users. We observe that for high and low system load (i.e.
r4–6 and r16–20), all strategies perform similarly, whereas for the other loads
PAS and EAS produce higher Patience Indexes than FIFO. Under high loads,
most requests are completed after the expected response time, thus not allowing
the scheduler to exchange the order of the requests in the waiting queue in
subsequent task submissions. On the other hand, a very light system contains a
short (or empty) waiting queue; hence not having requests to be sorted.

556 C. Cardonha et al.

The impact of the scheduling strategies becomes evident when the system
is almost fully loaded, i.e. when the waiting queue is not empty and there are
requests that can quickly be assigned to resources. In this scenario, requests with
longer response time expectations can give room to tasks from impatient users.
The FIFO strategy does not explore the possibility of modifying the order of
requests considering user patience.

Figure 2 presents the percentage of requests that were served considerably
later than the expected response time, that is, when their Patience Index tends
to zero. Such requests represent the stage where users’ level of happiness is
decreasing considerably. The percentage was normalised by the total number
of requests for each resource setting for all strategies. The behaviour of this
metric follows the patience indexes, but it highlights the impact of the proposed
strategies have on users with very low patience levels.

4 Related Work

Commonly used algorithms in resource management include First-In First-Out,
priority-based, deadline-driven, some hybrids using backfilling techniques [18],
among others [5,10]. Besides priority and deadline, other factors have been con-
sidered, such as fairness [9], energy-consumption [16], and context-awareness [2].
Moreover, utility functions were used to model how the importance of results to
users varies over time [4, 14] and attention scarcity was leveraged to determine
priority of service requests in the Cloud [15].

User behaviour has been explored for optimising resource management in the
context of Web caching and page pre-fetching [1, 3, 8, 11]. The goal is to under-
stand how users access web pages, investigate their tolerance level on delays, and
pre-fetch or modify page content to enhance user experience. Techniques in this
area focus mostly on web content and minimising response time of user requests.

Service research has also investigated the impact of delays on users’ behaviour.
For instance, Taylor [17] described the concept of delays and surveyed passengers
affected by delayed flights to test their hypotheses. Brown et al. [6] and Gans et
al. [12] investigated the impact of service delays in call centres. In behavioural
economics, Kahneman and Tversky [13] introduced prospect theory to model
how people make choices in situations that involve risk or uncertainty.

5 Conclusions

We presented PAS and EAS that use estimates on users’ level of tolerance
or patience to define the order in which resources are assigned to requests. Our
analysis identified that it is not trivial to choose between EAS and FIFO as
the quality of their schedules depends strongly on users’ happiness with a service
and tolerance to delays. Our computational evaluation shows that both PAS
and EAS perform better than FIFO under peak load scenarios, and that PAS
is slightly better than EAS.

Patience-Aware Scheduling for Cloud Services 557

References
1. Alt, F., Sahami Shirazi, A., Schmidt, A., Atterer, R.: Bridging waiting times on

web pages. In: 14th Int. Conf. on Human-computer Interaction with Mobile Devices
and Services (MobileHCI 2012), pp. 305–308. ACM, New York (2012)

2. Assunção, M.D., et al.: Context-aware job scheduling for cloud computing environ-
ments. In: 5th IEEE Int. Conf. on Utility and Cloud Computing, UCC (2012)

3. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In: 15th Int. Conf.
on World Wide Web (WWW 2006), pp. 203–212. ACM, New York (2006)

4. AuYoung, A., et al.: Service contracts and aggregate utility functions. In: 15th
IEEE Int. Symp. on High Performance Distributed Computing, HPDC 2006 (2006)

5. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., et al.: A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous dis-
tributed computing systems. Journal of Parallel and Distributed Computing 61(6),
810–837 (2001)

6. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.:
Statistical analysis of a telephone call center: A queueing-science perspective. Jour-
nal of the American Statistical Association 100, 36–50 (2005)

7. Cardonha, C., et al.: Patience-aware scheduling for cloud services: Freeing users
from the chains of boredom. arXiv preprint cs/1308.4166 (2013)

8. Cunha, C.R., Jaccoud, C.F.B.: Determining www user’s next access and its appli-
cation to pre-fetching. In: 2nd IEEE Symp. on Computers and Communications
(ISCC 1997), Washington, DC, USA, p. 6 (1997)

9. Doulamis, N.D., Doulamis, A.D., Varvarigos, E.A., Varvarigou, T.A.: Fair schedul-
ing algorithms in grids. IEEE Transactions on Parallel and Distributed Sys-
tems 18(11), 1630–1648 (2007)

10. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-
WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997)

11. Galletta, D.F., Henry, R.M., McCoy, S., Polak, P.: Web site delays: How tolerant
are users? Journal of the Association for Information Systems 5(1), 1–28 (2004)

12. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: Tutorial, review, and
research prospects. Manufacturing & Service Operations Management 5(2), 79–141
(2003)

13. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk.
Econometrica: Journal of the Econometric Society, 263–291 (1979)

14. Precise and Realistic Utility Functions for User-Centric Performance Analysis of
Schedulers (2007)

15. Netto, M.A.S., Assunção, M.D., Bianchi, S.: Leveraging attention scarcity to im-
prove the overall user experience of cloud services. In: Proceedings of the IFIP 9th
International Conference on Network and Service Management, CNSM 2013 (2013)

16. Pineau, J.F., Robert, Y., Vivien, F.: Energy-aware scheduling of bag-of-tasks ap-
plications on master–worker platforms. Concurrency and Computation: Practice
and Experience 23(2), 145–157 (2011)

17. Taylor, S.: Waiting for service: the relationship between delays and evaluations of
service. The Journal of Marketing, 56–69 (1994)

18. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Transactions on Parallel and
Distributed Systems 18(6), 789–803 (2007)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 558–566, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MaxInsTx: A Best-Effort Failure Recovery Approach
for Artifact-Centric Business Processes

Haihuan Qin, Guosheng Kang, and Lipeng Guo

School of Computer Science, Fudan University, China
{09110240015,12110240015,10110240002}@fudan.edu.cn

Abstract. Process instances may overlap and interweave with each other. This
significantly complicates the failure recovery issue. Most of existing mechanis-
ms assume a one-to-one relationship between process instances, which will cause

unnecessary recovery in such context. Artifact-centric business process models
give equal consideration on both data and control flow of activities, thus facilit-
ate addressing this issue. In this paper, we propose a best-effort failure recovery
approach MaxInsTx: a transactional artifact-centric business process model
with complex cardinality relationships and correlations considered; a recovery
mechanism to resolve the impact of the failed process on concurrent processes
meanwhile protect maximal instances involved in failures from failure impact.

1 Introduction

Business processes (BPs) have become a necessity for modern organizations to stay
competitive. In real life, instances of one BP may be split or merged into instances of
another BP due to business needs [1-3]. For example, an online shop, acting as a

broker, may divide its orders into multiple purchase orders, one pur supplier, and
merge items of (different) orders from the same supplier into one purchase order for

bulk purchases, as shown in Fig.1. The cardinality between order process and purchase
order process is many-to-many and correlations among their instances are complex.
We call such scenarios relevant business scenarios. The fabric instances complicates
problems and attracts increasing attention [1-3]. No works has been done on the

recovery issue yet.
Most of existing workflow transactions simply assume a one-to-one relationship

between BP instances (e.g., [4]), and resolve the impact of a failed BP on concurrent BPs
through handling dirty reads and dirty writes [5]. Once a failed BP is recovered, all side

effects of its committed tasks are semantically undone. However, in the context of rel-
evant business scenario, such recovery is an
“over-recovery” and no longer applicable.

Fig.2 illustrates a relevant business scenario for
an online store represented by artifact-centric BP
models. This modeling language is used since
business data and runtime data gathered in artifacts
facilitate modeling instance level correlation [3]. Fig. 1. A relevant business scenario

 MaxInsTx: A Best-Effort Failure Recovery Approach for Artifact-Centric BPs 559

Three (key) artifacts are involved: Order, Purchase Order (PO) and Ship Order (SO).
Fig. 2(a) shows their information models and Fig. 2(b) their workflows. Attributes of an
artifact can be simple or relation-typed (denoted by “[]”) with nested attributes. Once
receiving a customer order, the store initiates an Order. After receiving payment, the
Order create a PO by sending a message to RPO, and its task GA cannot be initiated
until receives the message from PO, i.e., there exist creation and synchronization (sync
for short) dependencies between instances of Order and PO. An Order may create
multiple POs, one pur supplier, meanwhile multiple Orders may be merged into one
PO for bulk purchases. Similar splitting and merge exist among Orders and SOs. The
relationships between these artifacts are m-to-m, as shown in Fig. 2(c), and nested
attribute OrderID contained in PO (or SO) indicates correlations among them.

Several issues are worthy of attention. First, creation dependencies cannot be covered

by traditional transactions. For example, an Order o1 creates a PO po1, po1 should be
rolled back when o1 is canceled, which is similar to dirty reads problem [5]. However, if
po1 is rolled back for items are out of stock, o1 also needs to be recovered for it cannot
be accomplished. Second, it is too costly to recover all dependent artifacts of a failed
artifact when dependencies can be m-to-m. For example, if o1 is canceled, po1, po2 and
po3 will be affected and recovered, however, the entire recovery of po2 and po3 will
further cause other normal cases o2 and o3 to be affected and recovered. To avoid such
over-recovery, the affected parts of po2 and po3 need to be identified, and fixed (i.e.,
partially rolled back) without affecting o2 and o3 as well as their purchases.

To solve above questions, we propose a best-effort failure recovery approach
MaxInsTx and make two contributions: (1) we develop a transactional artifact-centric
BP model with creation dependencies considered and cardinality types of dependen-
cies distinguished; (2) we propose an approach to resolve the impact of the failed BP on
concurrent BPs, avoiding unnecessary recoveries through overlap evaluation.

This paper is organized as follows. The transactional model and the failure recovery
mechanism are presented in Section 2 and 3 (resp.). Section 4 discusses effectiveness
and feasibility. Section 5 discusses related work and Section 6 concludes this paper.

(a) Information models (b) Example workflows of Order, PO and SO (c) Cardinality

Fig. 2. Workflows involved in the online store example and cardinality between them

560 H. Qin, G. Kang, and L. Guo

2 A Transactional Model for Relevant Artifact-Centric BPs

2.1 Preliminaries

In EZFlow [6], a BP is represented by artifact classes, tasks, repositories and workflow

schemas, with a core artifact carrying both data and the enactment. Each artifact class is
a tuple A = (name, Atts), where name is its name, Atts is a set of attributes. Each class
always contains the attribute ID to hold the unique identifier of its instances.

Definition 2.1: An EZFlow schema is a tuple (, , , M, T, , G), where

- C is the core artifact class, is a set of auxiliary artifact classes; R is a set of
repositories; M is a set of message types; T is a set of tasks;

- F maps each task t in T to a pair (mi; Mo), where mi is the message type that
triggers t and Mo is the set of message types produced by t. Each message type is
produced by at most one task and can be used to trigger at most one task;

- G is a set of triples (u, v, g) where (1) either ∈ and ∈ or ∈ and ∈ ; and (2) g is a guard on the edge (u, v).

EZFlow uses snapshots to represent the system state of a workflow at time instants,
which contains tables for artifact classes, workflow enactments, etc. A workflow
moves from one snapshot to another when an external message arrives or a triggered
task completes its execution, evolving the artifact along its lifecycle. The enactment of
a workflow is an alternating sequence of system states and tasks s0t0s1t1..tn-1sn such that
s0 is the initial state and each si+1 is derived from si through ti (0 i).

2.2 Correlations and Dependencies of Artifacts

Correlations combine individual BPs into relevant business scenarios. We use a corre-
lation graph to present correlations between artifacts. Correlation conditions are defin-

ed by projection operation and intersection predicate . The projection ,…,)

restricts artifact to its attributes set { , … , . The predicate checks whether two
input sets have overlap. If overlap exists, the expression will be true. An atomic
correlation condition is an intersection expression applied to projection expressions.

Definition 2.2: A correlation graph G is a tuple (, E, ,), where

- is a nonempty set of artifacts closed under references (through attributes).
Artifacts in are called nodes of the graph;

- is a set of edges which denotes correlations among artifacts;
- : is a mapping that assigns each edge a correlation condition, i.e., a

set (conjunction) of atomic conditions; and
- : is a mapping from E to {1:1, 1:m, m:1, m:m} specifying cardinality

relationship between artifacts of source node and end node of an edge.

Above definition adapts the correlation graph in [3] to support m-to-m cardinality
relationship. Instances of two correlated artifacts are correlated if the correlation con-
dition is true on these instances. For example, suppose correlation condition of Order

 MaxInsTx: A Best-Effort Failure Recovery Approach for Artifact-Centric BPs 561

and PO is , .) . , .), o1 and po1 are
instances of Order and PO, resp., o1 is correlated with po1 if con is true on o1 and po1.

Only correlated artifacts may exchange messages. Thus, we define messages among
artifacts with respect to correlation graph, using “ext” to denote external environment.

Definition 2.3: Given a correlation graph G = (, E, ,), a message type msg
among artifacts wrt G is a tuple (, , , ,), where

- N is a distinct message name; Atts is a set of attributes of the message;
- and denotes the sender and receiver (resp.), satisfying at most one of them

can be “ext”, and if both are artifacts, they must be correlated;
- indicates whether the sender creates an instance of the receiving artifact when a

message instance arrives, “yes” means creation, “no” means no creation.
Correlated artifacts along with these msgs form a relevant business scenario.

Definition 2.4: A relevant artifact-centric BPs schema RW is a tuple (G, Msg), where
G is a correlation graph, and Msg is a set of message types wrt G.

Dependencies exist between two artifacts and if they are correlated. Basicall-
y, there are two categories of dependencies: creation dependency and sync dependency.

 has creation dependency on if contributes to the creation of (i.e., sends
a message whose is “yes” to). has sync dependency on if cannot proce-
ed until the message from arrives (i.e., sends a message whose is “no” to).

Instance level dependencies are created at runtime. Given instances of and
 of , we use notations and to denote the instances of

which are created by and the instances of which contribute to the creation of
, resp; and Rv(, msg) and Sd(, msg) to denote the instances which receive the

message msg sent from and the instances which send the message msg received by
, resp. Instance level dependencies are defined as follows.

Definition 2.5: Given artifacts and and their instances of and of ,
 is creation dependent on if is creation dependent on and ∈

. Cardinality type of this dependency is: 1-to-1 if | |=| |=1;
1-to-m if | | >1 and | | =1; m-to-1 if | | =1 and | |>1; or m-to-m if | | >1 and | |>1.

Definition 2.6: Given artifacts and and their instances of and of ,
 is sync dependent on if is sync dependent on and ∈ ,).

Cardinality type of this dependency is: 1-to-1 if | ,)| =| ,)|=1;
1-to-m if | ,)| >1 and | ,)|=1; m-to-1 if | ,)|=1 and | ,)|>1; or m-to-m if | ,)| >1 and | ,)|>1.

2.3 EZFlow-Tx: A Transactional Artifact-Centric BP Model

To avoid unnecessary recovery, we relax the atomicity property: besides “all” or
“nothing”, we allow an artifact be in a new state “fixed committed”, i.e., the artifact is
fixed by eliminating its error parts and preserving other parts.

562 H. Qin, G. Kang, and L. Guo

In detail, we define the following transactional states of an artifact: initial, active,
committed, compensated, fixed-running, and fixed committed. An artifact can correctly
evolve to state committed, or to state compensated via rolling back operation.
Especially, an artifact reaches state fixed-running if some parts of it fail and are fixed.
After its execution resumes, it will finally reach state fixed committed. At the same
time, we define two transactional states for the relation-typed attributes of an artifact:
normal and compensated, representing whether sub-tuples of the attribute is affected
by certain errors. Consequently, we add attribute txState to an artifact, and rstate to
each relation-type attribute to record their transactional state resp.

Definition 3.7: A transactional artifact-centric BP schema W is a tuple (EZ, Tx), where
EZ is an EZFlow, and

- Tx defines transactional attributes, it maps each task t in T to a tuple (rec, comp,
fix) where rec=trivial | compensatable, trivial means t has no need to be recovered;
and compensatable means the side effects of t can be semantically undone by its
compensating task comp or its partial side effects corresponded to the failed parts
can be semantically undone through its error fixing task fix after its completion.

In normal execution, the enactment of the transactional workflow is similar to that of
EZFLow. The sequence of tasks in the enactment t0t1..tn-1 forms a workflow
transaction, wherein each task is a sub-transaction that keeps CID properties. When a
task t fails, backward recovery will be initiated unless task t is trivial.

Now we describe the recovery procedure. When an artifact If fails and is recovered,
its dependent artifacts will be identified. Suppose artifact Ir depends on If with the
cardinality type of m-to-1 or m-to-m, i.e., If only contributes to parts of Ir, we will (1)
invoke the fixing task fix of Ir to fix the parts affected by If and preserve unaffected
parts. After fixing, sub-transaction of fixed tasks are set to fixed committed, rstate of
the fixed sub-tuples are set to compensated, and txState of Ir is set to fixed-running; then
(2) resume the execution of Ir to handle its normal parts upon recovery completion. If
the executions of rest tasks of Ir are successfully committed, txState of Ir will be set to
fixed committed. Note that cardinality and correlations are used to determine the failure
parts of Ir. If an artifact is entirely affected, it will be wholly compensated, the txState
of the artifact together with the rstate of all its sub-tuples will be set to compensated.

The transaction of a relevant scenario is correct if every failed transaction has been
semantically undone or fixed, and artifacts, which have creation/created or sync
dependency on it, have also been semantically undone or fixed.

3 A Recovery Mechanism for Relevant BPs

Here, we outline a creation/sync dependency discovery method and a recovery mech-
nism for keeping data consistency of relevant business scenario when failure occurs.

3.1 Creation/Sync Dependency Discovery and Overlaps

To discover dependencies among artifacts, we design two relations: (1) instances crea-
tion record InstCre(cre, cred, msg, pdT, rvT, ts) where cre is an artifact which sends the

 MaxInsTx: A Best-Effort Failure Recovery Approach for Artifact-Centric BPs 563

message msg through task pdT, cred is an artifact created by task rvT at the time the
msg arrives, ts represent the execution time of rvT; (2) instances sync record SynDepd
(sd, syn, msg, pdT, rvT, ts) where sd and syn are artifacts that sends and receives the me-
ssage msg resp. When a task is triggered by a message msg, a tuple will be added into
InstCre if msg has “yes” as value of , otherwise, a tuple will be added into SynDepd.

When an instance Ii of artifact fails and is recovered, its dependent artifacts can be

derived as follows: (1) artifacts with creation dependency:)); (2)
artifacts with created dependency:)); and (3) artifacts with sync

dependency:)). For every dependent instance Ix, we can similarly
compute the number of artifacts on which it is creation/created or sync dependent, thus,
the cardinality type of dependency between Ii and Ix can be determined.

When cardinality type of dependency between Ix and Ii is not 1-to-1, we need to fix
the error parts of Ix which overlap Ii rather than wholly roll back. The error parts can be

computed by), where is the artifact class of Ix, and is constructed as
follows. First, get correlation condition between and from correlation graph G,
construct an equation expressions for each pair of projection attributes of each intersec-
tion expression in turn. Then construct two equation expressions . and . to filter the result. is a conjunction of all these equation expressions.

For example, when the Order instance o3 in Fig. 2(c) fails, po3 will need to be fixed
for ∈ and cardinality type of the dependency is m-to-1. Suppose
Order and PO are correlated and the correlation condition is , .). , .) . The failed parts of po3 can be computed by).

3.2 A Mechanism for Handling Cascaded Recovery

Cascaded recovery needs to be considered because isolation is relaxed. When an instan-
ce Ii fails, its dependent instances ID will be identified. However, dependencies do not
necessarily indicate being affected. To avoid over-recovery, we use overlaps to determ-
ine if an instance ∈ is really affected. Different overlap degrees have different
recovery strategies: (1) no overlap: resume its execution; (2) complete overlap: entirely
recover it; (3) partial overlap: fix the parts that overlap the failed instance, then resu- me
its execution to handle the rest normal parts upon recovery completion. When Id needs
to be recovered, it may cause its dependent instances to be cascaded recovered.

We construct a directed acyclic graph Artifact Dependency Graph (ADG) for Ii,
containing all its dependent instances which overlap its failed parts. Each node in an
ADG represents an artifact. Its structure contains: (1) cID: artifact identifier, denoted
by Ii; (2) deFrom<cID, type>: a list records artifacts that directly cause Ii to be
recovered and corresponding affecting type; (3) failedPart: the failed parts of Ii; and
(4) bkRecCmd: recovery command for Ii, which can be “compensate” or “fix”. Each
edge represents dependency between nodes with solid line for creation dependency and
dash line for sync dependency. If a node Ix depends on node Iy, there will be an edge
from Ix to Iy. The structure of an edge is a tuple e=(source, target, type) where type
describes dependency type between source and target nodes, i.e., “create”, “created” or
“sync”.

564 H. Qin, G. Kang, and L. Guo

When building an ADG for the failed instance If, instances with creation/created or
sync dependency on If are identified, and those ones overlap its failed parts are added
into the graph. For a creation dependent instance Icd, only instances that have sync or
creation dependencies on it meanwhile overlap its failed parts are affected and need to
be added. For a created dependent instance Ic, only instances which have sync or
created dependencies on it meanwhile overlap its failed part need to be added. The
recovery of a sync dependent instance Isd is similar to that of the failed instance.

If Ii is affected by one instance, its failedPart is the intersection between Ii and the
failedPart of that instance. If Ii is affected by multiple instances, overlaps between Ii and

these instances will be computed resp., and the failedPart is the union of these overlaps.
With regard to instances that may depend on each other, we use the following rules to
avoid creating a cycle. Given two nodes Ix and Iy, Iy is dependent on Ix and overlaps its
failedPart. Iy will be added as a dependent instance of Ix if Iy has not existed in the
ADG. Otherwise, missing nodes affected by Iy should be added, and failedPart should
be adjusted for Iy and all instances derived from it. For each derived instance Iz with

creation type, if overlap between failedPart of Iy and Iz contains Iz’s failedPart, similar
failedpart adjustment should be done for Iz. The overlap adjustment is iteratively
handled until there is no change to the intersection or there is no overlap with other
instances. In this way, cycling dependency is avoided, and the recovery of Iy does not
miss any affected parts since the impact of Ix’s failure on Iy has been handled.

The ADG construction algorithm builds an ADG for the failed instance If. The
algorithm has two inputs: If and its fail parts failedPart. An ADG is represented by a
set of nodes N and a set of edges E. The algorithm is outlined as follows.

1. Create two assisting lists: (1) affLi<aff, deFrom, dp> to store affected instances and iterate
through different level of a ADG, where aff is derived from deFrom with dependency type
dp; (2) tempLi to temporarily store the affected instances of instances in affLi.

2. Construct a node for If and add it into affLi to start ADG construction.
3. For each element el in affLi,

3.1. If el.aff does not exist in N, add an edge from el.deFrom to el.aff into E, add every
affected instances of el.aff into tempLi.

3.2. Else retrieve el.aff into Im (affected by multiple instances. No cycle). If NotContain
(Im.deFrom.type, el.dp) or NotEmptyDifferenceSet(el.aff.failedPart, Im.failedPart), add
missing instances affected by el.aff into tempLi, adjust failedpart of all affected instances.

4. After processing all elements of affLi, empty affLi and move instances from tempLi to affLi to
start next level construction. If affLi is not empty, repeat step 3.

Fig.3 shows a sample ADG1 for If containing ten concurrent BPs I1-I10.
The ADG is used to conduct cascaded recovery. When a BP If fails, its dependent

BPs will be identified and suspended for overlap evaluation, while independent BPs
keep running. Then the recovery procedure invokes the ADG construction algorithm to
construct an ADG for If, with failed parts of each affected instance computed, and
finally traverse the ADG to recover each affected instance Ia according to its recovery
command bkRecCmd, which is set to “compensate” when its failed parts equal to its
contents, or set to “fix” when its failed parts are a proper subset of its contents. Due to
space limit, algorithm details are ignored here.

 MaxInsTx: A Best-Effort Failure Recovery Approach for Artifact-Centric BPs 565

Fig. 3. Sample ADG1 for If Fig. 4. Success rate comparison Fig. 5. Time cost

4 Evaluation of Effectiveness and Feasibility

To evaluate the effectiveness, we compare the BP success rate of MaxInsTx with that
of traditional approach (all or nothing). Experiment is conducted on m Orders and n
POs, where m=100, n=20. We assign [1,5] items to each Order with uniform
distribution. The probability that an item in an Order belongs to a certain PO is 1/n.

Fig. 4 shows the success rate of Orders and POs. In Fig. 4(a), the success rate of
Orders of MaxInsTx decrease linearly because only the failed Orders will fail. In Fig.
4(b), the success rate of POs of MaxInsTx shows no impact when the number of failed
Orders varies from 1 to 54, because POs will fail only when they become empty due to
the failed Orders. After that, the SRPO decreases gradually for a while and then
decreases dramatically in the last period. However, both the success rate of Orders and
POs of traditional approach decrease dramatically, since other Orders and all the POs
correlated with the failed Orders will fail. Obviously, MaxInsTx has much better
performance, which verifies its effectiveness.

Next, we analyze the time cost of MaxInsTx. In this experiment, the number of
failed Orders varies from 200 to 1000, the number of total Orders varies from 1000 to
4000, and the number of POs is fixed to 20. The configuration of our microcomputer is
as follows: 3.2 GHz Dual Core processor, 2 GB memory, Windows XP OS.

Fig. 5 shows that the time cost is affected by both the number of failed Orders and
total Orders. The time cost curve increases slowly with the increasing of the number of
failed Orders. The overall time cost is very small. Hence MaxInsTx is feasible.

5 Related Work

Many works have addressed the issue of long-live transaction coordination through
ACID relaxation. One of the representative approaches is proposed in [4] which allows
relaxing any attributes of ACID through introducing a “pre-commit” phase and a
“negotiation” phase. Xiao et al [5] further address the issue of concurrency control.
They propose a rule-based approach to resolve the concurrency issue through
analyzing write dependency and potential read dependency among BPs.

None of the above works take the impact of complex cardinality relationships into
consideration. In practice, the existing of m-to-m relationships among BPs complicates
many problems and attracts increasing attention. Fahland et al [1] address the behavioral
conformance checking problem complicated by the fabric of BP instances. Zhao et al
[2] focus on managing instance correspondence through correlations attached to each

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of failed Orders
(a)

S
u
c
c
e
s
s
 r

a
te

 o
f

O
rd

er

Traditional approach

MaxInsTx

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of failed Orders
(b)

S
u
c
c
e
s
s
 r

a
te

 o
f

P
O

Traditional approach

MaxInsTx

200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

Number of failed Orders

T
im

e
 c

o
s
t

(m
s
)

1000 orders

2000 orders

3000 orders

4000 orders

566 H. Qin, G. Kang, and L. Guo

instance. Sun et al [3] develop a choreography language which supports instance level
correlations and cardinality constraints. Different from these works, our research focus-
es on solving the recovery issue for the fabric BPs. A recovery approach is proposed to
resolve the impact of a failed BP on concurrent BPs meanwhile avoid over-recovery.

6 Conclusion

This paper proposed a best-effort failure recovery approach MaxInsTx for relevant
business scenarios, supporting complex dependencies between artifacts. We relax the
atomicity property of transactions, allowing an artifact be partially fixed such that its
unaffected parts are preserved as much as possible. A failure recovery mechanism is
proposed with the advantage of avoiding unnecessary recoveries.

Acknowledgment. This work is partially supported by NSFC grant 60873115.

References

1. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking
of Interacting Processes with Overlapping Instances. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 345–361. Springer, Heidelberg (2011)

2. Zhao, X., Liu, C., Yang, Y., Sadiq, W.: Handling instance correspondence in
inter-organisational workflows. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007.
LNCS, vol. 4495, pp. 51–65. Springer, Heidelberg (2007)

3. Sun, Y., Xu, W., Su, J.: Declarative Choreographies for Artifacts. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 420–434. Springer,
Heidelberg (2012)

4. Khachana, R.T., James, A., Iqbal, R.: Relaxation of acid properties in AuTra, the adaptive
user-defined transaction relaxing approach. Future Gener. Comput. Syst. 27(1), 58–66 (2011)

5. Xiao, Y., Urban, S.D.: Using rules and data dependencies for the recovery of concurrent
processes in a service-oriented environment. IEEE Transactions on Services Computing 5(1),
59–71 (2012)

6. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An Artifact-Centric Approach to Dynamic
Modification of Workflow Execution. In: Meersman, R., et al. (eds.) OTM 2011, Part I.
LNCS, vol. 7044, pp. 256–273. Springer, Heidelberg (2011)

Extending WS-Agreement to Support

Automated Conformity Check on Transport
and Logistics Service Agreements�

Antonio Manuel Gutiérrez1, Clarissa Cassales Marquezan2, Manuel Resinas1,
Andreas Metzger2, Antonio Ruiz-Cortés1, and Klaus Pohl2

1 School of Computer Engineering
University of Seville

{amgutierrez,resinas,aruiz}@us.es
2 Paluno - University of Duisburg-Essen, Essen, Germany

{clarissa.marquezan,andreas.metzger,klaus.pohl}@paluno.uni-due.de

Abstract. Checking whether the agreed service quality attributes are
fulfilled or maintained during the service life-cycle is a very important
task for SLA (Service Level Agreement) enforcement. In this paper, we
leverage conformance checking techniques developed for computational
services to automate the conformity checking of transport & logistics
services. Our solution extends the WS-Agreement metamodel to support
the definition of frame and specific SLAs. With this extension, we define a
new validation operation for the conformity check of transport & logistics
SLAs based on CSPs solvers. The key contribution of our work is that, as
far as we know, it is the first definition of an automated conformity check
solution for long term agreements in the transport & logistics domain.
Nonetheless, other domains in which similar SLAs are defined can also
benefit from our solution.

1 Introduction

Service Level Agreements (SLAs) are essential in service provision because they
define the quality attributes of services meeting consumers and providers prefer-
ences. These quality attributes or SLOs (Service Level Objectives) describe in a
measurable way how the service should behave during its life-cycle or what the
basic requirements for its execution are. Checking whether the agreed SLOs are
fulfilled or maintained is a very important task for SLA enforcement.

In transport & logistics services, one type of SLA commonly used by large
companies establishes an interval of time in which multiple executions of the
same service will be requested by the Logistic Service Client (LSC) and exe-
cuted by the Logistic Service Provider (LSP). This type of SLA comprises one

� This work was partially supported by the European Union’s Seventh Framework
Programme (FP7/2007-2013), the European Commission (FEDER), the Spanish and
the Andalusian R&D&I programmes (grant agreements 215483 (S-Cube), 285598
(FInest) and 604123 (FIspace), TIN2012-32273 (TAPAS), TIC-5906 (THEOS)).

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 567–574, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

568 A.M. Gutiérrez et al.

frame agreement document and multiple “child” agreements, i.e., for each LSC
request a new agreement will be created eventually containing the same SLOs
from its parent frame agreement. Currently, a manual process is used to check
whether the SLOs of “child” agreements (called specific agreements) conform
with the SLOs of the frame agreement. Numbers from a large company from the
transport & logistics domain [8] show that in a random month approximately
100,000 transportations happen. We can say that each transportation might be
associated with a specific agreement. This means that the number of specific
agreements to be checked by a large company could reach up to 100,000 docu-
ments per month. Thus, our goal is to automate this checking by proposing a
conformity check solution for SLAs in the transport & logistics domain.

Conformity checks in SLAs of computational services, like Cloud services and
SBAs (Service Based Applications), have been extensively proposed. Two main
groups of proposals can be found: One group aims at checking whether the ex-
ecution of a service conforms with the SLOs on the SLA document [2]. The
other group focuses on supporting consistent SLA definition, avoiding errors or
inconsistent terms between documents [10,4]. Nevertheless, when it comes to
SLAs of real physical services like shipment of goods in the transport & logistics
domain, the current conformity check solutions lack a proper handling of this
type of SLAs. The main reason for this are the differences between SLAs in
the transport & logistics and computational SLAs: the existence of two levels of
agreements and the need to aggregate information between these levels to per-
form conformity check. Current works fall short on addressing these differences.

In this paper, we propose a solution able to handle the aforementioned dif-
ferences and provide the automated conformity check of SLAs in transport &
logistics domain. Our proposal is based on WS-Agreement which is a standard
that is widely used and that has been successfully applied in the computational
domain [10]. However, it currently lacks the necessary formalization to represent
the relationship among the two levels of SLAs in transport & logistics, i.e., frame
and specific agreements. Therefore, we extend the WS-Agreement metamodel to
fill this gap. With these extensions, we can define a new validation operation for
the conformity check of transport & logistics SLAs. This new operation extends
previous work [10,9] which were targeted only at computational SLAs. In that
work, SLOs are mapped to Constraints Satisfaction Problems (CSPs) and the
conformity check is achieved using CSP solvers. We validate our proposal with
the implementation of a tool1. The key contribution of our work is that, as far
as we know, it is the first definition in the literature of an automated conformity
check solution for SLAs in the transport & logistics domain. Furthermore, since
our conformity checking is domain independent, other domains in which similar
long-term agreements are defined can also benefit from our solution.

The remaining of this paper is organized as follows. In Section 2 we describe
the related work. Section 3 presents the WS-Agreement extension proposed in
this paper. Section 4 presents the new operations defined in order to perform
the conformity check. In Section 5 we discuss the conclusions and future work.

1 http://www.isa.us.es/tlcc

http://www.isa.us.es/tlcc

Extending WS-Agreement to Support Automated Conformity Check 569

2 Related Work

In the past years, there has been an increasing amount of research efforts try-
ing to bring into the transport & logistics domain technical solutions based on
Service Oriented Computing2. Nevertheless, when it comes to SLAs and confor-
mity check in this domain, there is a limited amount of work. The solution of
Augenstein et al. [1] introduce a platform based on a service-oriented approach
for managing contracts on 4PL business3. The proposed solution itself is mainly
focused on coordinating the business process conducted among these different
partners. Another example is the work introduced by Bing and Zhongying [3].
They use mathematical terms to define the parameters of a contract in trans-
port & logistics collaborative business process. Mai and Teo [7] also followed a
mathematical approach to define and analyze contracts in the collaborative busi-
ness process in transport & logistics. Nevertheless, none of the aforementioned
solutions focus on the conformity check of the agreements among the partners.

As previously discussed, the major differences between services in transport
& logistics to computational services are the existence of two levels of agree-
ments and the need to aggregate and compare information between these levels
to perform conformity check. In this section, we show how current works on
conformity check fall short on addressing these differences. The work proposed
by Leitner et al. [6] aims at predicting SLA violations in business process. The
authors consider two types of SLOs: instance-level, associated with each instance
of a business process in isolation; and aggregated, representing the execution of
several instances of the same type of business process. The violation prediction
of aggregated SLOs is performed on values at the same SLA level, i.e., the same
type of document describing the SLOs of a business process. In our case, we need
to aggregate information at the same level, but in contrast, we need to compare
this information to a different level of SLA document. This will be discussed in
detail in the next section.

Bartoline et al. [2] proposed to monitor the QoS attributes of service chore-
ographies to detect violations on the choreography SLA. The authors present a
new approach to annotate the BPMN Choreography Diagram with functional
and non-functional constraints that need to be fulfilled by a service entering the
choreography. At design time, these constraints are analyzed and translated into
monitoring rules to be used during runtime. Goel et al. [5] use temporal logics of
safety (DSF - Deterministic Safety Formula) to formalize the SLOs and model
checking to support the monitoring conformance of SLAs. Their solution is able
to detect and present to the user the occurrence of violations of the specified
SLA. The aforementioned approaches do not deal with the conformance check-
ing between frame and specific agreements and they have limited support for
expressing aggregate information in SLOs.

2 http://www.finest-ppp.eu/files/deliverables/d08/finest_d8_1_final.pdf
3 4PL business (4th Party Logistics) or 3PL (3rf Party Logisitcs) are types of business
processes that result in a supply chain with collaborative tasks executed by different
logistics partners.

http://www.finest-ppp.eu/files/deliverables/d08/finest_d8_1_final.pdf

570 A.M. Gutiérrez et al.

3 Modelling Long Term Transport and Logistics
Agreements

The first step towards supporting automated checks is to model frame and spe-
cific agreements so that their constraints can be checked by a software compo-
nent. A limitation of the AS-IS situation in transport & logistics is that there is
no explicit mechanism to represent the aggregation of specific agreements by the
frame agreement. However, as introduced in Section 1, some types of SLO values
defined in the specific agreements are actually constrained by the SLOs defined
in the frame agreement and the SLOs of the specific agreements that have been
already signed. This is the case of, e.g., an SLO “maximum containers” speci-
fied in a frame agreeement to limit the total amount of containers transported
in a time period. This SLO affects to SLOs related to number of containers
transported in every specific agreement under the frame agreement context.

We propose modelling the relationship between the SLOs of frame agree-
ments and specific agreements by clearly defining the existence of what we called:
atomic and aggregated SLOs. The SLO type defines which kind of constraints
have to be applied during the conformity check and this allows to identify and
create the explicit link between frame and specific agreement. All types of con-
tracts have atomic attributes. Values are assigned to these attributes at the
contracting phase of the service and do not change over time unless they are ex-
plicitly renegotiated by the parties. In contrast, aggregated attributes are only
associated with frame agreements and their values depend on the values of atomic
attributes from specific agreements associated with the frame agreement.

WS-Agreement specification provides an agreement document schema so it
can be used to define frame and specific agreement. Specific agreements and
atomic SLOs can be directly defined with this model. For instance, Figure 1
depicts an specific agreement modelled in WS-Agreement. However, there is no
mechanism to model which specific agreements are associated with the frame
agreement nor to define aggregated SLOs so frame agreements cannot be di-
rectly modelled with WS-Agreement. Therefore, in this proposal we extend WS-
Agreement to be able to model frame agreements.

First, we extend the WS-Agreement context with one additional section (cf.
Figure 1) to include all the specific agreements validated in the frame agreement

Fig. 1. WS-Agreement modelling of Frame Agreements and Specific Agreements

Extending WS-Agreement to Support Automated Conformity Check 571

context. Second, in order to define aggregated SLOs, accumulative operators are
introduced. Thus, the example “maximum containers” SLO could be defined as:

Guarantee Terms: Maximum Containers: Provider guarantees

SUM (SpecificAgreement.Containers) < 1000

where SpecificAgreement refers to the specific agreements whose conformity with
this frame agreement has been evaluated and SUM is the summation operator.
A set of aggregation operators such as COUNT, MAX and MIN could be used.
These extensions enable the definition of the aggregation SLOs (Figure 1).

4 Automated Validation of Specific Agreements

The validation of a specific agreement in the context of a frame agreement in-
volves checking their conformity. Automating conformity checking between frame
agreement and specific agreement makes possible to detect errors in early stages.
So, once a frame agreement has started its validity period, each time a new
specific agreement is signed, the conformity between its SLA terms and frame
agreement can be checked. This check operation is described in this section.

Two types of conformance issues may appear between specific and frame
agreements. On one hand, specific agreements may include atomic SLOs that
violate atomic SLOs defined in the frame agreement (e.g. if the frame agreement
determines a transit time limit of 25 days, a transit time of 30 days in specific
agreement would not be conform). On the other hand, specific agreements may
also violate aggregated SLOs (e.g. if the frame agreement defines an aggregation
SLO “maximum containers = 100”, specific agreements with SLO “containers”
are not conform to the frame agreement if its atomic SLO “containers” plus the
atomic SLO “containers” from previous specific agreements is more than 100).

From this discussion, we conclude that valid values for any service property
used in specific agreement SLOs have to be also valid for frame agreement SLOs
(not the opposite). Consequently, the conformance between a specific and a
frame agreement conformity can be informally defined as follows: “a specific
agreement conforms to a frame agreement if the set of possible values for the
service properties used in its SLOs is a subset of the possible values for the
service properties used in the SLOs in the frame agreement”.

CSP Mapping. Following this notion of conformance, we follow an approach
similar to [10] to automate its checking. The procedure involves mapping both
the frame agreement and the specific agreement into a Constraint Satisfaction
Problem (CSP) and use a CSP solver to check the conformance between them.
The difference being that, in our case, it is necessary to take the aggregated
SLOs and previous specific agreements into account.

There are several reasons for choosing CSPs to automate this checking. First,
an important part of the agreement (SDT and GT) are described as constraints

572 A.M. Gutiérrez et al.

INPUT: A specific agreement SA, a frame agreement FA
OUTPUT: A CSP (V, D, C)

FOR each Specific Agreement SA’ created in the context of FA
FOR each Service Property SP in SA’ Service Property Section
IF SP is in FA Aggregated SLOs

V ← V ∪ μ(SP)
D ← D ∪ domain(SP)

FOR each Guarantee Term GT in SA’ Guarantee Terms Section
SLO ← SLO of guarantee term GT
IF SP in SLO is in FA Aggregated SLOs

C ← C ∧ μ(SLO)

FOR each Service Property SP in SA Service Property Section
V ← V ∪
D ← D ∪ domain(SP)

FOR each Guarantee Term GT in SA Guarantee Terms Section
SLO ← SLO of guarantee term GT
C ← C ∧ SLO

Fig. 2. Algorithm for mapping specific agreements into CSPs

on properties and attributes so it can be described as CSP constraints in a
straight way. Second, similar mappings have been successfully used to automate
conformance tasks between agreement offer and templates [10]. Finally, there is a
plethora of off-the-shelf CSP solvers that can be used to automate this checking4.

The mapping step of the procedure involves two different mappings to CSP.
One for the specific agreement whose conformance is being checked and the
previous specific agreements that have been created in the context of the same
frame agreement and another one for the frame agreement itself.

The mapping for specific agreements is depicted in Figure 2. The variables of
the CSP are the service properties specified in the agreements and their domains
are the domains of the service properties. Regarding the constraints, they are the
content of the SLOs of the specific agreements (in the case of previous specific
agreements, only of those SLOs that include service properties used in aggregated
SLOs in the frame agreement). Note that variables are processed by function
μ(X), which renames service properties according to the agreement it belongs
(i.e.: μ(transittime <= 30) in specific agreement 1 returns ‘transittime1 <=
30′) to avoid collisions of names between the different specific agreements.

The algorithm depicted in Figure 3 applies the same mapping, but now to the
elements of the frame agreement. However, in this case, if the SLO uses the ag-
gregation operation, then it is previously processed by a function α(SLO), which
unfolds aggregation operations in SLOs according to the specific agreements re-
lated to the service property used in the SLO (i.e.: α(SUMcontainers < 1000)
returns containers1 + containers2 + ... < 1000)).

The CSPs obtained applying both mappings to example specific agreements
and frame agreement is displayed in Table 1. Finally, with these CSP mappings,
conformance between specific and frame agreement can be defined as follows:

Definition 1. Let SA be a specific agreement,FA a frame agreement, (Vs, Ds, Cs)
the CSP obtained after mapping SA and previous specific agreements created in the

4 http://www.emn.fr/z-info/choco-solver/

http://www.emn.fr/z-info/choco-solver/

Extending WS-Agreement to Support Automated Conformity Check 573

INPUT: A frame agreement FA
OUTPUT: A CSP (V, D, C)

FOR each Service Property SP in FA Service Property Section
V ← V ∪ SP
D ← D ∪ domain(SP)

FOR each Guarantee Term GT in FA Guarantee Term Section
SLO ← SLO of guarantee term GT
IF SLO uses Aggregation operation

C ← C ∧ α(GT)
ELSE

C ← C ∧ SLO

Fig. 3. Algorithm for mapping frame agreements into CSPs

Table 1. Mapping for Example

Agreement CSP Mapping
Specific Agreements
(Current and A1)

V ← A1Containers, Containers, TransitT ime
D ← [0, 1000], [0, 1000], [0, 365]
C ← A1Containers = 500 ∧ Containers = 600 ∧ TransitT ime = 23

Frame Agreement V ← Containers, TransitT ime,
D ← [0, 1000], [0, 365]
C ← TransitT ime < 30 ∧A1Containers + Containers <= 1000

context of FA, and (Vf , Df , Cf) the CSP obtained after mapping FA. The current
specific agreement conforms with the frame agreement if:

conforms(SA, FA) ⇔ ¬sat(Vs ∪ Vf , Ds ∪ Df , Cs ∧ ¬Cf)

The rationale for this definition is as follows. According to the intuitive def-
inition stated above, a specific agreement conforms to a frame agreement if the
set of possible values for the service properties used in the SLOs in the specific
agreement is a subset of the possible values for the service properties used in the
SLOs in the frame agreement. In terms of CSP this can be expressed as:

conforms(SA, FA) ⇔ ∀−→x ∈ Vs ∪ Vf · satisfies(x,Cs) ⇒ satisfies(x,Cf)

which can be rewritten as:

conforms(SA, FA) ⇔ ¬∃−→x ∈ Vs ∪ Vf · ¬(¬satisfies(x,Cs) ∨ satisfies(x,Cf))

Finally, as satisfiability operation holds if exists solution for a boolean formula,
we can write:

conforms(SA, FA) ⇔ ¬sat(Vs ∪ Vf , Ds ∪ Df , Cs ∧ ¬Cf)

With this definition, the result of validation for the example in Table 1 is false
since ¬(A1Containers+Containers <= 1000) ≡ 600+500 > 1000 is satisfiable.
Therefore, conforms(SA, FA) ≡ false.

These operations have been implemented in the ADA (Agreement Document
Analyser) Framework using JAVA language and CHOCO solver. The prototype
can be accessed in the project URL: http://www.isa.us.es/tlcc.

http://www.isa.us.es/tlcc

574 A.M. Gutiérrez et al.

5 Conclusions

In this paper, the Transport & Logistics compliance checking has been auto-
mated using computational service model, as WS-Agreement specification, and
techniques as CSP transforming and solvers. However, the complex artifacts in
scenario, as frame agreements, which define rules for consequent specific agree-
ments, require extending WS-Agreement specification with enhanced models to
support frame agreements and specific agreements. As new models are defined,
new mappings have been introduced to solve the compliance checking with CSP
solvers. This proposal supports conformity checking for frame agreement and
specific agreement in Transport & Logistics but as these artifacts appear nat-
urally in other computational and non-computational scenarios. Therefore the
enriched model can be the basis to solve other two-level SLA scenarios.

References

1. Augenstein, C., Ludwig, A., Franczyk, B.: Integration of service models - prelim-
inary results for consistent logistics service management. In: 2012 Annual SRII
Global Conference (SRII), pp. 100–109 (2012)

2. Bartolini, C., Bertolino, A., De Angelis, G., Ciancone, A., Mirandola, R.: Apprehen-
sive qos monitoring of service choreographies. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC 2013, pp. 1893–1899. ACM, New
York (2013)

3. Bing, W., Zhongying, L.: Decision-making in optimizing the contract of third party
logistic. In: 6th International Conference on Service Systems and Service Manage-
ment, ICSSSM 2009, pp. 444–449 (2009)

4. Braga, C., Chalub, F., Sztajnberg, A.: A formal semantics for a quality of service
contract language. Electronic Notes in Theoretical Computer Science 203(7), 103–
120 (2009)

5. Goel, N., Kumar, N., Shyamasundar, R.K.: SLA monitor: A system for dynamic
monitoring of adaptive web services. In: 2011 Ninth IEEE European Conference
on Web Services (ECOWS), pp. 109–116 (2011)

6. Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-driven and automated
prediction of service level agreement violations in service compositions. Distributed
and Parallel Databases 31(3), 447–470 (2013)

7. Hua Mai, Y., Xin Miao, L., Teo, C.P., Qingqing, X.: Geometric approach for lo-
gistics outsoursing contracting. In: 2010 8th International Conference on Supply
Chain Management and Information Systems (SCMIS), pp. 1–7 (2010)

8. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous
service-oriented business networks: The transport and logistics case. In: Service
Research and Innovation Institute Global Conference (SRII 2012). Conference Pub-
lishing Service (CPS). IEEE Computer Society (2012)

9. Müller, C., Resinas, M., Ruiz-Cortés, A.: Automated analysis of conflicts in ws-
agreement. IEEE Transactions on Services Computing PP(99), 1 (2013)

10. Müller, C., Resinas, M., Ruiz-Cortés, A.: Explaining the non-compliance between
templates and agreement offers in WS-agreement. In: Baresi, L., Chi, C.-H., Suzuki,
J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 237–252. Springer, Hei-
delberg (2009)

Automatic Composition of Form-Based Services

in a Context-Aware Personal Information Space

Rania Khéfifi1, Pascal Poizat2, and Fatiha Säıs1

1 LRI, CNRS and Paris Sud University
{rania.khefifi,fatiha.sais}@lri.fr

2 LIP6, CNRS and Paris Ouest University
pascal.poizat@lip6.fr

Abstract. Personal Information Spaces (PIS) help in structuring, stor-
ing, and retrieving personal information. Still, it is the users’ duty to
sequence the basic steps in different online procedures, and to fill out
the corresponding forms with personal information, in order to fulfill
some objectives. We propose an extension for PIS that assists users in
achieving this duty. We perform a composition of form-based services in
order to reach objectives expressed as workflow of capabilities. Further,
we take into account that user personal information can be contextual
and that the user may have personal information privacy policies. Our
solution is based on graph planning and is fully tool-supported.

Keywords: Service Composition, Ontologies, Contextual Data, Personal
Information, Privacy, Graph Planning.

1 Introduction

Personal Information Spaces (PIS) support users in structuring, storing, and re-
trieving their personal information. However, with regards to online procedures,
e.g., administrative processes, users are left alone to find out which services can
be used to achieve parts of the procedures, how to sequence parts of these ser-
vices, and how to fill the service forms using their personal information. Service
composition [8,2] supports the realization of business processes out of the au-
tomatic assembly of online services. Still, a first issue is to deal with data at
the good level of abstraction. Service composition algorithms that support data
do it at the type level. If some service requires a data of type d, any value will
be ok. This is not realistic in a PIS where data is contextual. Depending on a
context of interest, not all possible values for data type d are equivalent and/or
valid to be used as a service input. A second issue is that personal information
is sensitive. Users should be able to specify access policies to be endorsed while
passing data to the composed services.

Contributions.We present in this paper a service composition approach for the
realization of online procedures that are expressed as workflows. This approach is
context-aware. It considers the contextual usability of user personal information
that are to be transmitted in online service forms. Further, it supports personal

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 575–583, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

576 R. Khéfifi, P. Poizat, and F. Säıs

information access policies while computing the compositions. Our approach
is automatic and tool-supported through the use of semantic annotations, the
encoding of the composition requirements into an AI planning problem, and an
extension of a state-of-the-art graph planning algorithm.

Related Work. Several service composition approaches have used context infor-
mation, e.g., [9,13,10]. Most of them consider context with a technical perspec-
tive (e.g., device type, battery charge, GPS information) that is used to select
functionality (services). We consider contexts in a more general sense, together
with possible relations (subsumption, disjointness) between them that enable
contextual reasoning. We do not only use contexts to select services but also to
select the best (in terms of usability) data to give to these services. Some ap-
proaches [5,1,4] take into account policies in the composition process. While [5]
supports them after composition generation and [1,4] at execution time, we con-
sider policies directly in the composition process. In a previous work [11] we
have developed a service composition approach based on graph planning. The
work we present here can be seen as an extension of it that supports contexts
and access policies.

Outline. After giving preliminaries on graph planning in Section 2, our models
are introduced in Section 3. The description of the way the composition issue
can be solved using an extension of graph planning is presented in Section 4. We
end with conclusions and perspectives in Section 5. Due to lack of room, it was
not possible to put all details in this paper. An extended version that includes
a detailed example is available online in the authors’ Web pages.

2 Preliminaries

Planning is “the task of coming up with a sequence of actions that will achieve
a goal” [12]. A (propositional) planning problem can be modeled by a tuple
Π = (P,A, I,G), where P is a set of propositions, A is a set of actions, each
action a ∈ A with a set of preconditions Pre(a) ⊆ P, a set of negative effects
Eff−(a) ⊆ P, and a set of positive effects Eff+(a) ⊆ P such that = Eff−(a) ∩
Eff+(a) = ∅, also denoted with a = (Pre(a),Eff−(a),Eff+(a)), I ⊆ P is the
input, or initial state, of the problem, and G ⊆ P is the goal of the problem.

Two actions a and b are independent iff Eff−(a) ∩ (Pre(b) ∪ Eff+(b)) = ∅
and Eff−(b)∩ (Pre(a)∪Eff+(a)) = ∅. A set of actions is independent when its
actions are pairwise independent.

Among the different techniques to solve planning problems, Graphplan [3] is a
technique that yields a compact representation of relations between actions and
represent the whole problem world. It has proven to be very efficient and has
been applied with success to Web service composition [11] and to composition
repair [14]. The Graphplan algorithm is based on the computation of a planning
graph (Fig. 1), which is a directed acyclic graph composed of interleaved layers
called proposition layers PLi ⊆ P and actions layers ALi ⊆ A.

The first proposition layer, PL0, is made up of the propositions in I. The
Graphplan algorithm then performs graph expansion. Given a proposition layer

Composition of Form-Based Services in a Context-Aware PIS 577

a proposition

U action U
invalid
action

c U precondition

c U
negative
effect

cU
positive
effect

eY backtrack
from solution

a
no-op

U

Z

a

c

d

b

U

Z

Y

S

a

c

b

d

e

 Actions (Pre, Eff-, Eff+):
 U = ({a}, {a}, {b,c}), Z = ({a}, {a}, {b,d})
 Y = ({b}, { }, {e}), S = ({c, d}, { }, {e})
Init: {a}
Goal: {e}

PL0 AL1 PL1 AL2 PL2

mutex

bUa

Fig. 1. Graphplan example

PLi, an action a is added in ALi if its preconditions and negative effects are
in PLi. If so, all positive effects of a are added in PLi, and a is connected
with precondition arcs (resp. negative effect arcs) to its preconditions (resp.
negative effects) in PLi−1 and with positive effect arcs to its positive effects in
PLi. Specific actions (no-ops) are used to keep propositions from one layer to
the next one. Graph planning also introduces the concept of mutual exclusion
(mutex) between non independent actions. Mutual exclusion is reported from a
layer to the next one while building the graph.

The expansion phase stops either when the objective is reached, i.e., if G is
included in PLi, without mutex between elements in G, or with a fix-point, i.e.,
if PLi = PLi−1. In second case there is no solution to the planning problem.
In the first case, the Graphplan algorithm then performs a backtrack from the
goal propositions in PLi to the initial proposition layer PL0. Planning graphs
whose computations have stopped at level k enable to retrieve all solutions up to
this level. Additionally, planning graphs enable to retrieve solutions in a concise
form, taking benefit of actions that can be done in parallel (denoted ||).

An example is given in Figure 1. The extraction phase gives plans U;Y, Z;Y,
and (U||Z);S. However, U and Z are in mutual exclusion. Accordingly, since
there is no other way to obtain c and d than with exclusive actions, these two
propositions are in exclusion in the next proposition layer, making S impossible.
The only possible solution plans are therefore U;Y and Z;Y. Note that other
nodes are indeed in mutual exclusion but we have not represented this for clarity.

3 Modeling of the Composition Problem

In this section, we formalize the problem of composing form-based services in
context-aware personal information spaces. We will present the different inputs
of this composition problem. In Section 4 we will then address how this problem
can be solved automatically using an extension of graph planning.

578 R. Khéfifi, P. Poizat, and F. Säıs

3.1 Ontologies

An ontology can be denoted by a tuple O = (C,P ,R) where C are classes (se-
mantic concepts), P are properties of concepts (either other concepts or literal
values), and R are relations between concepts. We consider four possible kinds
of relations in R: subsumption (,), part-whole relationship (�), equivalence, or
synonymy relationship (≡), and disjunction (⊥). Disjunction respects subsump-
tion, i.e., ∀c1, c′1, c2, c′2 ∈ C, c2 , c1, c

′
2 , c′1, c1⊥c′1 ⇒ c2⊥c′2. Further, ,∗ denotes

the transitive closure of ,. In this work we sometimes rely on simpler ontologies,
with only classes and a subsumption relation. In such a case we have O = (C,,).

3.2 Semantic Structures

In [6], we have developed the notion of semantic context-aware PIS based on
three principles: modeling, contextualization, and instantiation of personal in-
formation. Modeling is achieved using an ontology, O = (C,P ,R), that describes
the personal information types (PIT), their properties, and relations. Contexts
are also described with an ontology, OCont = (CCont,,Cont). Given two contexts
c1 and c2, c2 , c1 means that all property values that are valid for c1 are also
valid for c2. To instantiate the user’s personal information we have considered
that a property value for a property p is defined by a tuple pv = (v, c, δ) where
v is the value, c is a context of the context ontology, and δ is a real number in
[0..1] that represents the usability of value v for property p in context c.

To foster automation of the composition process, we further assume that the
user structures the PIS with reference to categories of personal information using
an ontology OInfo = (CInfo,,Info). On the other side, within the context of a
research project1, we are working with an SME partner that develops services
for administrations and enterprises. Each service is semantically annotated with
semantic information for the forms fields, for the outputs it can produce, and with
the set of functionalities, or capabilities, it achieves. The first two correspond to
the PIT ontology. For the later we rely on an ontology of capabilities, OCap =
(CCap,,Cap). Finally, services can be organized in categories too. For this we
assume an ontology of service categories, OServ = (CServ,,Serv)

3.3 Policies

The user may express policies on the use of the personal information to be given
to services. Given a personal information category x (from CInfo) and a service
category y (from CServ), a policy authorization (or authorization for short) is a
couple (x, y), also denoted by x�y. Its meaning is that any personal information
of a category that is x or subsumes it can be given to any service of a category
that is y or subsumes it. A policy set, or policy for short, is a set of authorizations.

1 Personal Information Management through Internet
http://genibeans.com/cgi-bin/twiki/view/Pimi/WebHome

http://genibeans.com/cgi-bin/twiki/view/Pimi/WebHome

Composition of Form-Based Services in a Context-Aware PIS 579

3.4 Workflows and Procedures

Workflows capture the behavioral aspects of online procedures. Given a set of
names A, used to label the basic activities, a simple (yet expressive) kind of
workflow over A, WFA, can be modeled following [7] by a tuple (N,→, λ). N is
the set of workflow nodes. It can be further divided into disjoint sets N = NA ∪
NSO∪NSA∪NJO∪NJA, where NA are basic activities of the workflow, NSO are
XOR-split nodes, NSA are AND-split nodes, NJO are XOR-join nodes, and NJA

are AND-join nodes. XOR-split and XOR-join nodes enable to model exclusive
choice, while AND-split and AND-join nodes enable to model parallelism. →⊆
N × N denotes the control flow, and λ : NA → A is a function assigning names
to activity nodes. We note •x = {y ∈ N | y → x} and x• = {y ∈ N | x → y}. We
require that workflows are well-structured and without loop. A signicant feature
of well-structured workflows is that the XOR-splits and the OR-Joins, and the
AND-splits and the AND-splits appear in pairs. Moreover, we require | • x| ≤ 1
for each x in NA ∪ NSA ∪ NSO and |x • | ≤ 1 for each x in NA ∪ NJA ∪ NJO.

A procedure is the specification of functionalities that should be achieved to
reach some goal. These functionalities correspond to capabilities that will be
realized through the use of one or several form-based services. We may then
model a procedure by a workflow labelled by capabilities, i.e., defined over CCap.

3.5 Services

Services require a set of inputs in order to produce outputs and achieve their
capabilities. They are organized in categories. Given the ontologies introduced
in 3.2, we model services as a tuple w = (u, I, O,K,C) where u is the service
URI (address of the service form), I ⊆ P are the service inputs, O ⊆ P are
the service outputs, K ⊆ CCap are the service capabilities, and C ∈ CServ is the
service category. In the sequel we suppose a set of services W being available to
the user. Services may not have capabilities. These correspond for example to
transformational services (e.g., to retrieve a postal code from a city name).

3.6 Composition Requirement

The requirement of composition is to find out a correct sequence of groups of
services, possibly executed in parallel, i.e., a plan in the sense of planning, that
altogether are able to achieve some procedure using only the data they produce
and the personal information the user agrees to provide them with. Further,
one may precise a specific context in which the procedure is to be executed and
a minimal usability value for contextualized information (below this threshold
information is not relevant). Given the ontologies introduced in 3.2, a compo-
sition requirement is a tuple Req = (Proc, c, ε,W, PIS, Pol) where Proc is the
procedure one wants to achieve, c ∈ CCont is the context in which we apply the
procedure () for none), ε ∈ [0..1] is the minimal acceptable usability degree, W
are the available services, PIS is the user PIS (i.e., the set of contextualized
property values it contains), and Pol is the user policy set.

580 R. Khéfifi, P. Poizat, and F. Säıs

4 Automatic Encoding and Resolution of the
Composition Problem

In Section 3, we have formalized the composition problem that we address. In
this section, we present how it can be automatically solved using a planning
problem encoding and by extending the Graphplan algorithm. The approach we
follow is first to encode the procedure and the services as planning actions.

4.1 Procedure Encoding

We reuse here a transformation from workflows to Petri nets defined in [7] that
has been modified to map planning actions in [11]. The behavioral constraints
underlying the workflow semantics (e.g., an action being before/after another
one) are supported through two kinds to propositions: rx,y and cx,y. We also
have a proposition for initial states, and a proposition

√
for correct termination

states. We may then define actions:

– for each x ∈ NSA, we have an action a = ⊕x, for each x ∈ NJA, we have an
action a = ⊕x, and for each x ∈ NA, we have an action a = [λ(x)]x. In all
three cases, we set:
Pre(a) = Eff−(a) =

⋃
y∈•x{rx,y}, and Eff+(a) =

⋃
y∈x•{cx,y}.

– for each x ∈ NSO, for each y ∈ x•, we have an action a = ⊗x, y and we set:
Pre(a) =Eff−(a) =

⋃
z∈•x{rx,z}, and Eff+(a) ={cx,y}.

– For each x ∈ NJO, for each y ∈ •x, we have action a = ⊗x, y and we set:
Pre(a) = Eff−(a) ={rx,y} and Eff+(a) =

⋃
z∈•x{cx,z}

– for each x → y, we have an action a =� x, y and we set:
Pre(a) =Eff−(a) = {cx,y} and Eff+(a) = {ry,x}.

– additionally, for any initial action a we add in Pre(a) and Eff−(a).
– additionally, for any final action a we add

√
in Eff+(a).

The procedure and the services are inter-related by ordering constraints over
the capabilities. Let us suppose a simple procedure with two capabilities in
a sequence k1 → k2, a service w1 with capability k1, and a service w2 with
capability k2. w1 should not be put in an action layer before capability k1 is
enabled. This is achieved after putting the action corresponding to step k1 in
the encoding of the procedure in an action layer. In turn, the actions encoding
the following steps of the procedure (here only the� action, that will enable the
action for k2 later on) should be blocked until capability k1 has been planned,
i.e., here, w1 has been put in an action layer. For this we propose to rely on two
propositions for each capability k in CCap: enabledk and donek. In the encoding
of the procedure workflow, we then replace any action a = [k]x by two actions a′

and ā′ and we set Pre(a′) = Pre(a), Eff−(a′) = Eff−(a), Eff+(ā′) = Eff+(a),
Eff+(a′) = {enabledk, linkx}, and Eff−(ā′) = {donek, linkx}, with linkx

ensuring the correct ordering between a′ and ā′.

Composition of Form-Based Services in a Context-Aware PIS 581

4.2 Service Encoding

A service can be executed only if all its inputs are available and if its ca-
pacities are enabled by the current state of execution of the procedure. The
service then generates its outputs and indicates that the capacities have been
achieved. Each service w = (u, I, O,K,C) is therefore encoded as an action
a = (Pre(a),Eff−(a),Eff+(a)) with Eff−(a) =

⋃
k∈K{enabledk}, Eff+(a) =

O ∪
⋃

k∈K{donek}, and Pre(a) = I ∪Eff−(a).

4.3 Resolution of the Composition Problem

Once we have encoded the procedure and the services as planning actions, we
can apply the 2-step Graphplan algorithm: graph expansion and then backtrack-
ing (see Sect. 2). The second step is the same as in the original algorithm [3].
However, due to the contextualization of data and the use of policies, the first
step has to be modified as follows.

Contextual Propositions. As far as the encoding of personal information is
concerned, we replace basic propositions by tuples (p, c, δ) corresponding to the
PIS property values. Such a tuple denotes that some value for property p in
known for context c (the context used in the composition requirements) with
usability degree δ. Other propositions, e.g., corresponding to the encoding of
the procedure, are regular with reference to graph planning.

Filtering Out. A preliminary optimizing step is to filter out any proposition
corresponding to personal information p for which there is no enabling policy
(some x′ � ∈ Pol where x, x,Info

∗x′, denotes the category of p). We also
remove actions corresponding to services that are not allowed to use some of
their inputs, i.e., a service w with at least an input p ∈ I(w) such that there is
no x′ � y′ ∈ Pol, with x, x,Info

∗x′, being the category of p and y, y,Serv
∗y′,

being the category of w.

Initialization - PL0. The first proposition layer contains the initial proposition
for the procedure, , together with propositions for the contextual property values
in the PIS. For the later, for each property value (v, c, δ) for p, we compute a
contextual proposition (p, c, δ′) where δ′ is equal to δ × ΔOCont

c,c with δ ×ΔOCont
c,c

being the semantic similarity measure between two concepts in the ontology
OCont (see [6] for the way we compute this for contextual data querying). We
put in PL0 all the (p, c, δ′) where δ′ is maximal.

Expansion Basic Step. What changes here with reference to [3] is the con-
dition and effect of adding an action a related to some service w in an action
layer. First w should be authorized to use its input data. This is ensured by the
filtering step, above. Second, all inputs required for w should be available in the
current proposition layer with a degree higher than the threshold, i.e., for each p
in I(w), there is some (p, c, δ) in PLi−1 such that δ ≥ ε. If so, for each p in O(w),

582 R. Khéfifi, P. Poizat, and F. Säıs

we add (p, c, δ′) in PLi, where δ′ is the minimal value of δ for all the inputs of w
in PLi−1. Further, for every k in K(w), we require enabledk ∈ PLi−1 and we
add donek in PLi. Since several services may produce the same data, at each
step of the expansion we perform a cleaning by keeping in PLi only the tuples
with the maximal δ, i.e., if we have (p, c, δ1) and (p, c, δ2) in PLi, with δ1 ≥ δ2,
we keep only the first one.

Nothing changes for actions related to the procedure encoding. Given such an
action a, we should have Pre(a) ⊆ PLi−1, Eff−(a) ⊆ PLi−1, and then we add
Eff+(a) in PLi−1. Non independent actions are treated as in [3], using mutex.

Expansion Termination. Expansion stops with a fix point or with success.
The later is reached when there is the

√
proposition in the current proposition

layer, which means that we have successfully completed the procedure. In such
as case a solution can be obtained using backtrack. Fix point is if the current
proposition layer PLi add no new proposition with reference to PLi−1. In order
to support data contextualization, we consider a tuple (p, c, δi), δi ≥ ε, to be a
new proposition either if there is no tuple (p, c,) in PLi−1 or if there is a tuple
(p, c, δi−1) such that δi−1 < ε. This is because having a new contextual value
with a degree above the requirement threshold may yield new possibilities for
service-related actions.

4.4 Tool Support

We have defined an Eclipse Modeling Framework model for the models pre-
sented in this paper, namely composition requirements with their constituents,
and planning problems. Using an ATL model-to-model transformation, we trans-
form the former into the later and then dump the planning problem into a text
file using an Acceleo model-to-text transformation. We have implemented our
modifications to the graph planning expansion structure in a Java implementa-
tion of the Graphplan algorithm2. This operates on the textual planning problem
file to retrieve solution plans. We are currently packaging our tool support to
make it freely available.

5 Conclusion

In this paper we have presented a service composition approach that supports
the contextualization of personal information and related user policies. This is
achieved using an encoding as a planning problem and the extension of a graph
planning technique, which provides full automation of the process. As future
work, we plan to study the joint use of several contexts and the contextualization
of services, i.e., enabling context-oriented constraints for input and output data
in online services. The usability degree we use can be seen as a form of non-
functional information used in composition. We plan to study the combination
of it with user-specific preferences over non-functional service attributes.

2 http://sourceforge.net/projects/jplan/

http://sourceforge.net/projects/jplan/

Composition of Form-Based Services in a Context-Aware PIS 583

Acknowledgement. This work is supported by project ”Personal Information
Management through Internet” (PIMI-ANR-2010-VERS-0014-03) of the French
National Agency for Research.

References

1. Anand, P., Vladimir, K., Lalana, K., Anupam, J.: Enforcing policies in pervasive
environments. In: Proc. of MobiQuitous (2004)

2. Bartalos, P., Bieliková, M.: Automatic Dynamic Web Service Composition: A Sur-
vey and Problem Formalization. Computing and Informatics 30(4), 793–827 (2012)

3. Blum, A., Furst, M.L.: Fast Planning Through Planning Graph Analysis. Artificial
Intelligence 90(1-2), 281–300 (1997)

4. Dulay, N., Damianou, N., Lupu, E.C., Sloman, M.: A policy language for the man-
agement of distributed agents. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.)
AOSE 2001. LNCS, vol. 2222, pp. 84–100. Springer, Heidelberg (2002)

5. Hutter, D., Volkamer, M.: Information Flow Control to Secure Dynamic Web Ser-
vice Composition. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.)
SPC 2006. LNCS, vol. 3934, pp. 196–210. Springer, Heidelberg (2006)

6. Khéfifi, R., Poizat, P., Säıs, F.: Modeling and Querying Context-Aware Personal
Information Spaces. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.)
DEXA 2012, Part II. LNCS, vol. 7447, pp. 103–110. Springer, Heidelberg (2012)

7. Kiepusewski, B.: Expressiveness and suitability of languages for control flow mod-
elling in workflows. Queensland University of Technology, Brisbane (2003)

8. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

9. Mostéfaoui, S.K., Hirsbrunner, B.: Towards a Context-Based Service Composition
Framework. In: Proc. of ICWS (2003)

10. Mrissa, M., Benslimane, D., Maamar, Z., Ghedira, C.: Towards a semantic- and
context-based approach for composing web services. IJWGS 1(3/4), 268–286 (2005)

11. Poizat, P., Yan, Y.: Adaptive Composition of Conversational Services through
Graph Planning Encoding. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part
II. LNCS, vol. 6416, pp. 35–50. Springer, Heidelberg (2010)

12. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intel-
ligence: A Modern Approach. Prentice hall, Englewood Cliffs (1995)

13. Sheshagiri, M., Sadeh, N., Gandon, F.: Using Semantic Web Services for Context-
Aware Mobile Applications. In: Proc. of MobiSys (2004)

14. Yan, Y., Poizat, P., Zhao, L.: Repair vs. Recomposition for Broken Service Com-
positions. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010.
LNCS, vol. 6470, pp. 152–166. Springer, Heidelberg (2010)

Synthesizing Cost-Minimal Partners for Services

Jan Sürmeli and Marvin Triebel

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, D-10099 Berlin, Germany

{suermeli,triebel}@informatik.hu-berlin.de

Abstract Adapter synthesis bridges incompatibilites between loosely
coupled, stateful services. Formally, adapter synthesis reduces to partner
synthesis. Beside an adapter, a partner could be a configurator or serve as
an ingredient in solutions for discovery and substitution. We synthesize a
cost-minimal partner for a given service based on additional behaviorial
constraints. We consider the worst case total costs, specifying individual
transition costs as natural numbers. In this paper, we sketch our formal
approach, and briefly discuss our implementation.

Keywords: Service-orientation, partner synthesis, controller synthesis,
adaptation, non-functional properties, cost-optimization, formal methods.

1 Introduction

A stateful service [1] implements a complex task involving interaction with other
services. We study loosely coupled, asynchronously interacting stateful services
and their composition. In this setting, two services N and P do not necessarily
cooperate optimally: N and P may have incompatible data types, run into a
deadlock, or cause unnecessarily high costs. Adapter synthesis addresses this
problem: An automatically constructed adapter A for N and P is a a service
ensuring that the composition of N , A and P is optimal.

Adapter synthesis reduces to partner synthesis [2]. Partner synthesis is the
task to automatically construct a partner service P for a service N , such that
their composition N ⊕ P satisfies given requirements and is optimal regarding
given preferences. Partner synthesis may additionally be applied in other settings,
such as service configuration [3], service discovery [4] and service substitution [5].
As sketched above, requirements and preferences may be defined on different
levels [6], such as syntax, behavior and non-functional properties. There exist
solutions for partner synthesis for selected behavioral [7] and non-functional
requirements [8].

We tackle partner synthesis for the non-functional requirement of
cost-boundedness and the preference of cost-minimality. A cost-bounded (cost-
minimal) partner P of a service N ensures finite (minimal) costs in N ⊕ P
regarding N . In the setting of adaptation, a cost-minimal adapter may reduce
the adaptation costs, the costs of each adapted service, or overall costs. In our
cost model, we consider worst case total costs ; that is, the supremum of the

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 584–591, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Synthesizing Cost-Minimal Partners for Services 585

caused costs in all runs. We aim at modeling non-functional aspects such as ex-
ecution costs, energy consumption, execution time, carbon dioxide emissions or
labor costs. Therefore, we formalize costs as natural numbers.

We explain all core concepts by means of examples in Sect. 2. Based thereon,
we sketch our approach to synthesize a cost-minimal partner in Sect. 3 and briefly
evaluate our prototypical implementation thereof in Sect. 4. Finally, we discuss
related work in Sect. 5 and conclude our work in Sect. 6.

2 Cost-Minimal Partners for Services

We formally model services as weighted nets [8]: A weighted net is a Petri net [9],
modeling the behavioral aspects, augmented with a cost function, modeling the
non-functional aspects. We omit a formal description of weighted net syntax and
semantics, but informally introduce the core concepts by means of examples. For
more detailed definitions, we kindly point the reader to [10].

Figure 1 shows the five weighted nets N, P0, P1, P2 and N⊕P0. A circle repre-
sents a buffer which may hold tokens, modeling the state of the service. A token
represents a message or other information. As we do not distinguish between
individual tokens, we represent each token as a black dot. A rectangle represents
a transition that consumes from and produces tokens on buffers according to the
arrows. If considered, we inscribe a transition with its costs. A dashed line marks
the interface, which consists of one buffer for each exchanged message type.

Figure 1(a) shows a model of a buyer service N with the interface {!Order,
?COD, ?Parcel}; that is, N sends messages of type Order and receives messages
of types COD and Parcel. Initially, N may either terminate causing costs of 3 or
may place an order by sending a message Order. In the latter case, N waits for
an incoming message which may either be COD or Parcel. Thereby, COD and
Parcel mean that the product will be sent by cash on delivery and parcel post,
respectively. Receiving a COD-message or Parcel-message yields the initial state
and causes costs of 2 or 0, respectively. The idea is that cash on delivery carries
a fee whereas parcel post does not.

Figure 1(b) shows service P0 with interface {?Order, !COD, !Parcel}: An on-
line shop that non-deterministically chooses between answering an Order-message
with either a COD-message or a Parcel-message. Figure 1(c) shows P1 which dif-
fers from P0 in the possible answers to an Order-message: P1 only answers with
Parcel. Figure 1(d) shows another variation P2 of P0, which may choose COD only
twice. We only consider the costs of N and omit costs in P0, P1 and P2.

We observe that the interfaces of N and P0 match. Therefore, we may compose
N and P0, resulting in the weighted net N ⊕ P0 shown in Fig. 1(e). Regarding
behavior, we observe that N ⊕ P0 satisfies the behavioral requirements of weak
termination with message bound 1 (wt1); that is, N ⊕ P0 is free of deadlocks
and livelocks, and for each message type, there is always at most one pending
message. Thus, we call P0 a wt1-partner of N. Inspecting the compositions N⊕P1
and N⊕ P2, we additionally observe that both P1 and P2 are wt1-partners of N.
In the remainder, we write partner instead of wt1-partner to increase readability.

586 J. Sürmeli and M. Triebel

0

2

0

3

Order

COD

Parcel

(a) N (b) P0 (c) P1 (d) P2

0

2

0

3

(e) N ⊕ P0

Service S Costs 〈S〉 of S

N ⊕ P0 ∞
N ⊕ P1 3
N ⊕ P2 7

(f) Costs

Fig. 1. A service N, three partners P0, . . . ,P2 of N; the composition N ⊕ P0 of N and
P0, and the costs of the composition of N with its depicted partners

We switch from the behavioral to the non-functional perspective. In this pa-
per, we apply the model of worst case total costs : We define the costs 〈N ⊕ P 〉
of a weighted net N ⊕P by totaling the costs along each run, and then selecting
the supremum of those values. Thereby, a run is a finite sequence of consecutive
transitions. As we only consider costs as natural numbers, each run causes finite
costs. As there are generally infinitely many runs of arbitrary length, the supre-
mum of the costs of all runs may either be a natural number or infinite. In the
case 〈N ⊕ P 〉 is finite, we call N ⊕ P cost-bounded.

Table 1(f) in Fig. 1 summarizes the costs of the aforementioned composi-
tions. Based on these values, we illustrate the concepts of cost-bounded control-
lability and k-cost-bounded controllability. Additionally, we introduce the term
cost-minimal partner. We start with N⊕P1. Regardless of the number of sent Or-
der-messages, only Parcel-messages are received. As the reception of Parcel does
not cause costs, 〈N ⊕ P1〉 is finite. Thus, we call N cost-boundedly controllable,
because there exists a partner causing finite costs. More specifically, it holds
〈N ⊕ P1〉 = 3, caused by the termination of N with costs of 3. Consequently, we
call N also k-cost-boundedly controllable for k = 3. Because these costs of 3 are
inevitable, for all partners P , we find 〈N ⊕ P 〉 ≥ 3. Thus, P1 is a cost-minimal
partner of N. Although 〈N ⊕ P2〉 is finite as well, we find that P2 is no cost-
minimal partner of N: In contrast to P1, P2 may send a COD-message up to two
times, thus rising the supremum from 3 to 2 + 2 + 3 = 7. Inspecting N ⊕ P0,
we find 〈N ⊕ P0〉 is infinite; that is, costs may rise arbitrarily in N ⊕ P0: N may
send arbitrarily many Order-messages and P0 may answer arbitrarily many of
them with COD. Summarizing, a service N is (1) k-cost boundedly controllable,

Synthesizing Cost-Minimal Partners for Services 587

if there exists a partner P , such that 〈N ⊕ P 〉 ≤ k, and (2) cost-bounded control-
lable, if there is some k, such that N is k-cost-boundedly controllable. A partner
P is cost-minimal, if for all partners P ′ it holds 〈N ⊕ P 〉 ≤ 〈N ⊕ P ′〉.

Imagine a variation N′ of N, where receiving Parcel inflicts costs of 1. Every part-
ner of N′ causes unbounded costs and thus N′ is not cost-boundedly controllable:
In order to avoid deadlocks, a partner must answer each Order-message. If a high
level of abstraction is the reason for such a lack of cost-bounded controllability,
we propose to regard use case costs instead of total costs. Regarding our example,
consider sending Order and receiving either Parcel or COD as the use case. The use
case costs are the costs of the most expensive complete occurrence of the use case,
ignoring all costs outside the use case. If the use case is acyclic, the use case costs
are always finite, and we also may reduce partner synthesis w.r.t. use case costs to
partner synthesis w.r.t. total costs. Regarding the example, a cost-minimal part-
ner always answers Parcel, yielding use case costs of 1.

3 Synthesizing Cost-Minimal Partners

In this section, we merely sketch our synthesis approach. For a more detailed, for-
mal description, we kindly point the reader to [10]. We synthesize a cost-minimal
partner for a given service N in two steps: First, we compute the minimal cost
bound of N , second, we synthesize a partner for N based thereon. The mini-
mal cost bound mb(N) of N is the least k, such that N is k-cost-boundedly
controllable. Formally, we define mb(N) ∈ N0 ∪ {∞} by

mb(N) := min({〈N ⊕ P 〉 | P is a partner of N}). (1)

We observe that mb(N) is finite iff N is cost-boundedly controllable. If mb(N) is
known, synthesizing a cost-minimal partner either reduces to synthesizing an ar-
bitrary partner (if mb(N) is infinite) or a k-cost bounded partner for k = mb(N)
(if mb(N) is finite). Both problems are solvable: The synthesis of an arbitrary
partner is decribed in [7]; for k = mb(N) the synthesis of an k-cost-bounded
partner may be solved by applying the synthesis procedure in [8]. We sketch
our computation strategy for mb(N). First, we decide cost-bounded controlla-
bility. In order to decide cost-bounded controllability, we reduce cost-bounded
controllability to the decidable problem of k-cost bounded controllability [8].
The reduction is non-trivial, as cost-bounded controllability only implies k-cost-
bounded controllability for all k ≥ mb(N). Our idea is to find a canonical k,
such that N is cost-bounded controllable iff N is k-cost-bounded controllable.
Finally, we find mb(N) in the interval 0, . . . , k.

To this end, we analyze the composition of N and its most-permissive partner
mp(N). Intuitively, mp(N) yields the maximal behavior of N in the composition
with an arbitrary partner. A computation procedure for mp(N) is given in [7].
The cost discriminant dis(N) ∈ N0 of N equals the supremum of the costs of all
acyclic runs of N ⊕mp(N). In our running example P0 (Fig. 1(b)) is the most-
permissive partner of N (Fig. 1(a)). The only acyclic run of their composition
(Fig. 1(e)) is the run where N directly terminates, which costs 3: All other runs

588 J. Sürmeli and M. Triebel

visit the initial state at least twice. Thus, we conclude dis(N) = 3. We omit a
formal definition of dis(N) in this paper. Instead, we repeat its most important
property in the following proposition.

Proposition 1 ([10]). If mb(N) is finite, then mb(N) ≤ dis(N).

That is, dis(N) is an upper bound for mb(N) if N is cost-boundedly con-
trollable. Please note that the inverse trivially holds, because then mb(N) is
infinite and thus dis(N) < mb(N). Based on Proposition 1, we may conclude
that N is cost-boundedly controllable iff N is k-cost-boundedly controllable with
k = dis(N).

Theorem 1. Let k = dis(N). Then, k-cost-bounded controllability of N coin-
cides with cost-bounded controllability of N .

Proof. If N is k-cost-boundedly controllable for any k ∈ N0, then N is obviously
also cost-boundedly controllable. If N is not k-cost-boundedly controllable with
k = dis(N), then mb(N) > dis(N). By Proposition 1, mb(N) is infinite. ��

In previous work [8], we have shown that k-cost-bounded controllability is
decidable. Then, by Theorem 1, cost-bounded controllability is decidable as well.
Because either mb(N) ∈ {0, . . . , dis(N)} or mb(N) is infinite, mb(N) is com-
putable. In our running example, N is k-cost-boundedly controllable for k = 3: P1
is a partner yielding costs of 3 (Table 1(f)). However, N is not k-cost-boundedly
controllable for k = 2, because no partner could prevent N from terminating
with costs of 3. Therefore, mb(N) = 3 and P1 is a cost-minimal partner of N.

4 Implementation and Experimental Results

With our tool Tara1 we synthesize a cost-optimal partner for a given weighted
net following our approach from Sect. 3. Thereby, we compute (1) mp(N), (2)
dis(N), (3) mb(N), (4) a cost-optimal partner of N . We solve (1) by calling the
partner synthesis tool Wendy [11]. For task (2), we first construct the state space
of N ⊕mp(N) applying the state space analyzer LoLA [12]. Then, we compute
an over-approximation k ≥ dis(N) from the state space, because computing the
exact cost discriminant dis(N) is very expensive. Task (3) begins with deciding
cost-bounded controllability as explained in Theorem 1, applying techniques
from [8]. If N is not cost-boundedly controllable, we conclude that mb(N) is
infinite. Otherwise, we find mb(N) in the discrete interval [0, . . . , k]. There, we
apply a binary search, reducing the number of probes to log(k). Finally, we solve
task (4) applying techniques from [8].

The implementation is prototypical and lacks an elaborate evaluation until
now. We present some experimental results in Table 1. We obtained Petri net
models from given BPEL models with BPEL2oWFN [13] and some mostly aca-
demic examples from literature. We added randomly determined cost functions
1 In order to try Tara, please visit: http://service-technology.org/tara

http://service-technology.org/tara

Synthesizing Cost-Minimal Partners for Services 589

Table 1. Experimental results of Tara

Weighted net Origin |state space| time (sec)

Beverage machine Literature [4] 37 < 0.01
Loan approval BPEL specification [14] 43 0.04
Olive oil ordering Literature [15] 50 < 0.01
Online shop 2 Literature [13] 77 0.12
Online shop 1 Literature [13] 137 0.10
Travel service 1 BPEL specification [14] 192 0.06
3 Dining philosophers Literature [16] 499 0.06
Purchase order BPEL specification [14] 1032 0.31
SMTP Communication protocol 1042 0.84
Travel service 2 BPEL specification [14] 1440 0.90
Registration (abstract) Consultant company 2239 2.37
Registration Consultant company 27372 10.20
5 Dining philosophers Literature [16] 43848 24.07

to formerly unweighted models. For each model N , column |state space| shows
the number of reachable states of the composite N⊕mp(N), respectively. Column
time (sec) shows the computation time for synthesizing a cost-optimal partner.
As Tara delivered results in less than a second for most of our test cases, we
believe that our approach is valid in principal. However, there were also results
with computation times of over ten seconds for a real world service, namely Reg-
istration. Thus, we believe that there is much room for optimization targeting
models with large state spaces. Here, we plan to evaluate the applicability of
existing approaches, in particular techniques from the field of process analysis.

5 Related Work

We extend our previous work [8] by synthesizing cost-minimal partners instead of
k-cost-bounded partners for a given k. Weighted nets are inspired by weighted au-
tomata [17,18] over arbitrary semirings. We restrict ourselves to a cost model sim-
ilar to the semiring known as max plus algebra. In general, our techniques can be
applied for any semiring which is isomorphic to the max plus algebra. Weighted
timed automata extend weighted automata by clocks and costs for staying in-
side one state. Weighted timed automata are a very complex model class (see
for instance [19]) and we are not aware of partner synthesis approaches for this
formalism. Q-Automata [20] constitute another model to capture non-functional
requirements in behavioral models. Here, the focus is on composition of compo-
nent models, making the setting very similar to ours. The approaches deviate
in the communication model: Interaction of Q-Automata means synchroniza-
tion of concurrent actions. Asynchronous communication between Q-automata
may be realized by a buffer system in between. We compose open systems by
means of asynchronous message exchange without a buffer system. The aim of

590 J. Sürmeli and M. Triebel

Q-Automata is enabling analysis of compositions of open systems. To our knowl-
edge, there does not exist a partner synthesis approach for Q-Automata.

In the area of service-oriented architectures, Oster et al. [21] present a frame-
work to synthesize service compositions regarding non-functional preferences by
applying model checking. In contrast to our approach, the composite is built from
existing services. We consider the case where only one service is known before-
hand. Zeng et al. [22] find an optimal composition of non-interacting atomic tasks
each implemented by a web service. We consider interacting systems. In [23], the
authors extend timed Petri nets with a cost model. The authors study the issue
of minimal cost reachability and coverability. The formalism considers closed
systems in contrast to our research of open systems.

6 Summary and Future Work

In this paper, we addressed the problems of (1) deciding cost-bounded control-
lability of and (2) synthesizing a cost-minimal partner for a given service. We
reduced (1) and (2) to the solvable problems of deciding k-cost-bounded control-
lability and of synthesizing a k-cost-bounded partner, respectively. We consid-
ered transitions costs modeled by natural numbers and studied the worst case
total costs of a service composite. We presented some first experimental results
of our prototypical implementation.

For future work, we plan to investigate cost models concerned with average
costs. To this end, we plan to adopt algorithms from the field of mean-payoff
games [24,25]. Another promising direction is to combine our techniques with
timed or probabilistic models. Additionally, we would like to evaluate our ap-
proach with more realistic examples. In particular, we aim at checking the feasi-
bility of our approach in the field of adaptation and substitutability. We believe
that the runtime of the synthesis approach could be improved by developing a
new synthesis algorithm for our problem class, instead of reducing our problem
to another problem class.

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (2007)

2. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.
IEEE T. Services Computing 5(1), 72–85 (2012)

3. van der Aalst, W.M.P., Lohmann, N., Rosa, M.L.: Ensuring correctness during
process configuration via partner synthesis. Inf. Syst. 37(6), 574–592 (2012)

4. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

5. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services
with operating guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC
II. LNCS, vol. 5460, pp. 172–191. Springer, Heidelberg (2009)

Synthesizing Cost-Minimal Partners for Services 591

6. Papazoglou, M.P.: What’s in a Service? In: Oquendo, F. (ed.) ECSA 2007. LNCS,
vol. 4758, pp. 11–28. Springer, Heidelberg (2007)

7. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) ToPNoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

8. Sürmeli, J.: Service discovery with cost thresholds. In: ter Beek, M.H., Lohmann,
N. (eds.) WS-FM 2012. LNCS, vol. 7843, pp. 30–48. Springer, Heidelberg (2013)

9. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science. An EATCS Series, vol. 4. Springer (1985)

10. Sürmeli, J., Triebel, M.: Cost-optimizing compositions of services - analysis and
synthesis. Informatik-Berichte 242, Humboldt-Universität zu Berlin (2013)

11. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services.
Fundam. Inform. 113(3-4), 295–311 (2011)

12. Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

13. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting ws-bpel
processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54 (2008)

14. Alves, A., et al.: Web services business process execution language version 2.0
(2007)

15. Fisteus, J.A., Fernández, L.S., Kloos, C.D.: Applying model checking to bpel4ws
business collaborations. In: Proceedings of the 2005 ACM Symposium on Applied
Computing, SAC 2005, pp. 826–830. ACM, New York (2005)

16. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115–138
(1971)

17. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer Publishing Company, Incorporated (2009)

18. Buchholz, P., Kemper, P.: Model checking for a class of weighted automata. Dis-
crete Event Dynamic Systems 20, 103–137 (2010)

19. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Information Processing Letters 98(5), 188–194 (2006)

20. Chothia, T., Kleijn, J.: Q-automata: Modelling the resource usage of concurrent
components. Electronic Notes in Theoretical Computer Science 175(2), 153–167
(2007); Proceedings of the Fifth International Workshop on the Foundations of
Coordination Languages and Software Architectures (FOCLASA 2006)

21. Oster, Z.J., Ali, S.A., Santhanam, G.R., Basu, S., Roop, P.S.: A service composition
framework based on goal-oriented requirements engineering, model checking, and
qualitative preference analysis. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
ICSOC 2012. LNCS, vol. 7636, pp. 283–297. Springer, Heidelberg (2012)

22. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. IEEE Trans. Software
Eng. 30(5), 311–327 (2004)

23. Abdulla, P.A., Mayr, R.: Minimal Cost Reachability/Coverability in Priced Timed
Petri Nets. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 348–363.
Springer, Heidelberg (2009)

24. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158, 343–359 (1996)

25. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.F.: Faster algorithms
for mean-payoff games. Form. Methods Syst. Des. 38(2), 97–118 (2011)

An Architecture to Provide Quality of Service

in OGC SWE Context

Thiago Caproni Tavares, Regina Helenna Carlucci Santana,
Marcos José Santana, and Júlio Cezar Estrella

Institute of Mathematics and Computer Science, ICMC/USP,
Avenida Trabalhador São Carlense, 400 - São Carlos, Brasil

{thiagocp,rcs,mjs,jcezar}@icmc.usp.br

http://www.icmc.usp.br

Abstract. The aim of this paper is to describe an architecture named
SWARCH (Sensor Web Architecture) that provides quality of service in
the context of Sensor Web Enablement (SWE) standards. Sensor Web
Enablement is a set of standards proposed by OGC (OpenGis Consor-
tium). These standards provide a transparent and interoperable way to
access data measured by sensors. Thus, SWARCH adds to these features
of the SWE standard ways of service selection that meet several quality
requirements such as response time, availability of sensors, measurement
reliability, among others. Quality requirements are defined by users and
a broker in the architecture. This broker allows appropriate selection of
the sensor network that matches to the QoS parameters. To validate our
results, a case study showing reductions up to 50% and 25% in access
times to SOS and SES services are presented.

Keywords: Web service, Sensor Networks, Performance Evaluation.

1 Introduction

A sensor network is composed of sensors that monitors one or a set of phenomena,
and whose results are sent to an application or a final user [1,11]. A challenge
in sensor networks utilization is in the feasibility of managing and provision the
necessary information use in different applications. On the one side, we have the
infrastructure composed by the sensors and the use of these sensors and strategies
of the information obtained through them. On the other side, some applications
or observers need to receive and process the information. Thus, sensor networks
must have an infrastructure for communication, between sensors and between
network and its observers. Middlewares that provides tools to manage these
communications can be developing to facilitate the use of sensor networks [10].

An approach that has been proposed in the literature considers the sensor
network as a Web Service [4]. Besides, middlewares using the concepts of service
oriented architecture (SOA) have been widely discussed in the literature [6,5].
The Open Geospatial Consortium (OGC) has been working on the definition
of standards and programming frameworks [7]. In this context, SWE (Sensor

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 592–599, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.icmc.usp.br

An Architecture to Provide Quality of Service in OGC SWE Context 593

Web Enablement) was proposed. It consists in a set of standards, protocols
and interfaces that provides a framework to create sensor system following the
principles of service-oriented architectures. Nevertheless, a gap in studies of sen-
sor networks exposed as a service-oriented architecture was found. Mechanisms
of Quality of Service are underexplored. Thus, this work presents architecture,
named SWARCH, which allows the quality of service provisioning to the context
of SWE standards.

This paper is organized as follows. Section 2 shows the SWE standards and
a gap regard to quality of service. Section 3 presents the architecture to guar-
antee QoS in the SWE context. Section 4 discusses a case study to validate the
SWARCH. Finally, Section 5 shows conclusion and future work which can be
developed from the present work.

2 Background

The SWE defines sensor as devices discovered and accessed by means of a stan-
dardization of protocols and interfaces. It can be defined as an infrastructure that
enables the integration of sensing resources. Applications or users can discover,
access, modify and register sensing and alert services through a standardized
way using sensor Web infrastructure. In [2], it is presented an overview of these
patterns that are divided in two models. The information model comprises a
set of standards that defines data models. These data models are used for the
encoding of sensor observations as well as for its metadata. Two patterns are
highlighted in information model: Observation & Measurements ((O&M)) and
Sensor Model Language (SensorML). The SensorML determines a XML encod-
ing to the description of sensors. It defines the location, input and output data,
and the phenomena that is observed by the sensors. In turn, O&M standard
defines a schema for the description of observations carried out by sensors. The
interface models are used to provide an access mechanism to measured data from
sensors through Web service interfaces. Thus, four main services are defined in
SWE. The Sensor Observation Service (SOS) is a service that allows to insert
and to retrieve sensing data. The Sensor Event Service (SES) is service that al-
lows the registration of users and/or applications in an alert system. The Sensor
Planning Service (SPS) is used to modify settings of the sensors into the sensor
network. Finally, the Web Notification Service (WNS) is a service that provides
an asynchronous notification mechanism between SWE services and clients or
between other SWE services.

Additionally, it is being discussed by the community a standard of sensor
discovery, which are referred to as SOR (Sensor Observation Registry) and SIR
(Sensor Instance Registry). These registry services still have not become SWE
standards. A gap found in the SWE specifications refers to QoS constraints. SWE
standards do not treat this question in their specifications. The OGC itself as-
sumes this gap considering it as a challenge to be achieved. “OGC standards
provide an important framework for addressing semantics, but more work needs
to be done to enable fusion of data from diverse sensor types. Data quality and

594 T.C. Tavares et al.

quality of service are important issues to be addressed in sensor web standards
development activities” [8]. In [4], it is presented a survey of abstraction mech-
anisms of sensor networks. The authors conclude that QoS treatments are still
little explored in this area.

A work considering QoS criteria in the context of the standards SWE is pre-
sented in [9]. The authors provide a search service that take into account non-
functional and functional requirements in service selection. The search engine
used by the authors does not perform a direct association with the services
specifications provided by SWE such as SIR, SOS, and SES. The authors pro-
pose an abstract registry that is used to store the functional and nonfunctional
requirements. The approach to provide quality of service presented in this paper
differs in various aspects in relation to the proposal presented in [9]. Section 3
describes the architecture for QoS provision in the sensor network context and
details each component of SWARCH.

3 SWARCH Description

The reference architecture of SWE standards follows a model where there are a
client, a registry, and a server. In this model, the client searches a sensor system
in the registry. So, the registry returns the sensors that can meet it, functionally.
In turn, the client, after discovering service, performs some interaction with it.
The aim of the proposed architecture in this work adds the features already
implemented in the standard SWE architecture with the selection of services
through QoS criteria. The SWARCH, presented in Figure 1, is composed by
four components: Client, Broker, Registry, and Services. In short, clients send
requests to the Broker that has the responsibility to find services with a specific
QoS provisioning. A set of messages that are mostly defined by the SWE stan-
dards is used in SWARCH. The exception occurs only for the message 2 that is
a composition of the SIR search message where is added an element of quality
of service. Therefore, regarding other messages we can highlight the message 1
that represents a request to insert the sensor system description, and it must
be held by the service provider. Additionally, message 3 corresponds to a search
message that is submitted to the service registry. The Broker in SWARCH ex-
tracts message 3 from the message 2. Messages 4 and 5 are messages that carry
measurements and alert notifications of sensors, respectively.

The Broker is divided into four major modules. The first interaction is made
between Client and WSModule on Broker (message 2). The Client sends a SOAP
message that contains two information. The first one sets the search message that
will be used for the query in the SIR. In turn, the second information defines the
QoS parameters that will be used in the selection of the service. The WSModule
receives the SOAP message from the Client. So, WS-Module extracts the en-
capsulated information and forwards to SearchModule. After, the SearchModule
uses the message to make the search query in the SIR, and returns the response
message sent by the registry in an array. This array contains the sensor system
descriptions (SensorML) of services found in SIR. In sequence, the SearchModule

An Architecture to Provide Quality of Service in OGC SWE Context 595

Fig. 1. Swarch Components

updates the array with descriptions of sensors that are cached in the TestMod-
ule. The TestModule, upon receiving this query, updates the information from
sensors that were not yet inserted into the cache. However, the TestModule re-
turns only the sensors that were present in the cache prior to accepting this new
update, and this must be done due to the fact that there is no time to return
QoS information of sensors that are not in the cache. The returned array cannot
have sensor descriptions, i.e. the size of array is zero. Furthermore, array with
size higher than zero means that there is quality of service information to at
least one sensor in cache. In this way, the SearchModule prompts the Selection-
Module to return the service that best meets the QoS parameters specified by
the Client. In contrast, there is a random service selection, since no QoS infor-
mation is registered in cache. However, the Broker will contain information of
quality of service of these services in the next search. Finally, the SearchMod-
ule encapsulates service description document in a SOAP response message and
sends it to the Client. The architecture presented in this Section is implemented
in a prototype to validate the idea in inserting a QoS Broker in SWE context.
The prototype has been implemented using the software components provided
by 52o North Initiative. Section 4 presents a validation of this prototype.

4 Case Study

The use of a mechanism that supports service discovery based on quality of
service criteria is justified for the following scenario. Several companies provide
sensing data over the Web using the standards of the SWE. These companies
offer a natural disaster sensing service that monitors water level concentration
in a specific city. Thus, developers can implement several types of applications
that may have different restrictions regarding quality of service. In this case, the
architecture proposed in this work selects not only functional aspects of sensing
system, but also nonfunctional aspects. The validation of proposal architecture
in this work is developed by simulating a scenario where 12 companies (each
one offering the same service and data types) provide sensing information of
level of water concentration to a particular region. The Section 4.1 presents the
evaluation scenario used to validate our approach.

596 T.C. Tavares et al.

4.1 Evaluation Scenario

The 12 companies were instantiated on 12 virtual machines that are instantiated
on 3 real machines in a cluster of computers. The real machines have the following
characteristics: Intel(R) Core(TM)2 Quad CPU Q9400 of 2.66GHz, memory of
8 GB RAM DDR 3, and disk size of 500 GB. In turn, the 12 virtual machines
have different settings. The virtual machines with low capability are configured
with 1 processor and 512 MB of memory. On other hand, medium machines
are configured with 1 processor and 1GB of memory. Finally, high machines are
configures with 2 processor and 2 GB of memory.

The SOS services configured on virtual machines contain a data base with
the levels of concentration of water. The insertion of the observations in the
data base mimics the behavior of sensor networks that sends an observation to
the service every 5 minutes to SOS during one month. In this validation it is
used an observation filter that restricts the observation period into 3 days. It is
considered two factors in validation: Broker utilization and amount of threads
(clients). The response time is the metric utilized in experiments. Two types of
experiments were performed. The first experiment accesses SWE services (SOS
and SES) without Broker intermediation, i.e. the search of the sensors is sent
directly to the SIR. It is important to note that the client searches for observable
properties that are registered in all virtual machines configured for the imple-
mentation of validation. In first experiment, the SIR service returns a list of
12 possibilities of services to the clients. Then, the threads select a service to
submit requests randomly. Otherwise, the second experiment takes into account
Broker utilization in the service discovery process. In this case, a QoS parameter
is sent together with the search message, and unlike the first experiment, the re-
turn message from the Broker reports only one service. The Broker returns only
the service that meets client QoS criteria. Twenty experiments were executed
considering ten amounts of threads and versions with and without Broker. Each
experiment is replicated 30 times to obtain a statistical validity. It is important
to note that obtained response times in the experiments consider interaction
between clients and providers, after the service selection. Section 4.2 discusses
the obtained results.

4.2 Results

The results obtained for the completion of the validation presented in this section
are represented in two types of charts. Response time charts present the variation
of average response times in relation to increasing of workloads. The confidence
intervals are calculated using an alpha of 0.05 (95% confidence interval). In
turn, Pareto charts show the influences of each of the factors in the tests. In
contrast to response time charts, the Pareto charts show an analysis considering
a workload only to 10 and 100 threads. This analysis consists in calculating
a linear regression model that considers two factors with two levels, such as:
Broker utilization (with and without Broker) and workload (10 and 100
threads). The method of calculation is presented in [3].

An Architecture to Provide Quality of Service in OGC SWE Context 597

Fig. 2. SES: Response Times Fig. 3. SES: Factor Influence

Fig. 4. SOS: Response Times Fig. 5. SOS: Factor Influence

The chart in Figure 2 shows the results of experiments conducted on the SES
service. The Broker intermediation improves response times for up to 21.6% on
experiments of SES service. The Figure 3 shows a Pareto chart that defines the
number of threads as the most influential factor in the tests, followed by the Bro-
ker factor. The use of the threads has significant influence in experiments since
the values for the Broker in Pareto chart overtook vertical line. So, the experi-
ments demonstrate that the Broker provides better performance when there is an
increase on workload service. In the experiments conducted on the SOS service
(Figure 4), it is also possible to observe that the improvement in response times,
using the Broker intermediation, is higher regarding SES services. Furthermore,
the Broker, used as an intermediary in the selection of the SOS service, decreases
response times in approximately 46% compared to its non-use. Regarding to the
influence, demonstrated in Figure 5, it is noticeable that amount of threads is
the most influential factor. However, the Broker intermediation has a consider-
able influence. Thus, important information that must be highlighted for both
SOS and SES services is related to the confidence interval obtained on Broker
experiments. The standard deviation of the experiments without the Broker is
higher when compared to the standard deviation of the experiment including
the Broker. So, these results show that the use of the Broker makes the service
access more stable.

598 T.C. Tavares et al.

Fig. 6. Broker: Response Times Fig. 7. Broker: Factor Influence

Finally, experiments to verify influence of the Broker in service select were
conducted. These experiments consider the response time in service selection
through Broker and through SIR directly. In this case, it is not considered the
time access on SOS/SES services. It is considered only the direct searches on
SIR and search on Broker. The Broker has another cache system that optimizes
searches on SIR. This is made by means of a storing search messages in memory.
Every sensor system has identification in SIR service. So, a search message can
return one or more sensor IDs. The identifications are stored in an array that
is associated with some search message. When a search message reaches to the
Broker, and this message is stored in cache, the Broker changes this message for
a search by ID. ID searches are faster than searches by other criteria. However,
we considered in the Broker experiments a cache hit rate of 40%. The chart of
Figure 6 demonstrates the response times for the selection service. It can be
observed that response times in Broker experiments are lower and more stable.
Additionally, Pareto chart presented in Figure 7 shows the broker with almost the
same influence of the amount of threads. That is, the Broker impacts significantly
on response times of service selection. Section 5 presents the conclusion and
future work of our approach.

5 Conclusion and Future Work

This paper presents architecture to provide QoS support in SWE context, high-
lighting specifically the SOS and SES services. Therefore, the proposed archi-
tecture has, as a main element, a Broker that periodically monitors the QoS
parameters on SWE services. The QoS provisioning was implemented by means
of an insertion of a quality of service element in a SIR search message, and
this QoS element is used to guide the Broker in a service selection that meets
application with quality of service constraints. The validation of the architec-
ture presented in this paper evaluates response times on service access using
a Broker as intermediary component in SWE services selection. Furthermore,
it also evaluates response times in service access through experiments planning
that indicates statically the architecture efficiency. Additionally, the insertion of

An Architecture to Provide Quality of Service in OGC SWE Context 599

the Broker in the process of service selection improves significantly the response
times in access to the considered services.

Future work should add functionality to improve the specifications of qual-
ity of service parameters. Thus, the implementation of this feature may be used
more formal mechanism for the determination of QoS parameters such as WSLA
(Web Service Level Agreement). The use of this type of specification can assist
in maintaining interoperability of SWARCH with the protocols and languages
defined in SWE. In addition, it is intended to extend the tool for use in cloud
computing. In this case, the Broker would have function to check the QoS pa-
rameters to manage the elasticity of the resources available in the processing of
the SWE services configured in a cloud infrastructure.

Acknowledgements. The authors would like to thank the financial support of
FAPESP (São Paulo Research Foundation), FAPEMIG (Minas Gerais Research
Foundation), and IFSULDEMINAS/Campus Inconfidentes (Federal Institute of
Education, Science and Technology of Southern of Minas Gerais).

References

1. Akyildiz, I., Vuran, M.C.: Wireless Sensor Networks. John Wiley & Sons, Inc., New
York (2010)

2. Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang,
S., Lemmens, R.: New generation sensor web enablement. Sensors 11(3), 2652–2699
(2011), http://www.mdpi.com/1424-8220/11/3/2652

3. Jain, R.K.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley (April 1991)

4. Laukkarinen, T., Suhonen, J., Hännikäinen, M.: A survey of wireless sensor network
abstraction for application development. IJDSN 2012 (2012),
http://dblp.uni-trier.de/db/journals/

ijdsn/ijdsn2012.html#LaukkarinenSH12

5. Mohamed, N., Al-Jaroodi, J.: Service-oriented middleware approaches for wireless
sensor networks. In: 2011 44th Hawaii International Conference on System Sciences
(HICSS), pp. 1–9 (2011)

6. Neto, F.C., Ribeiro, C.M.F.A.: Dynamic change of services in wireless sensor net-
work middleware based on semantic technologies. In: International Conference on
Autonomic and Autonomous Systems, pp. 58–63 (2010)

7. OGC: Ogc standards and specifications (December 2013),
http://www.opengeospatial.org/standards (last access: May 06, 2013)

8. OGC: Why is the ogc involved in sensor webs? (2013),
http://www.opengeospatial.org/domain/swe (last access: May 09, 2013)

9. Parhi, M., Acharya, B.M., Puthal, B.: Discovery of sensor web registry services for
wsn with multi-layered soa framework. In: 2011 2nd International Conference on
Computer and Communication Technology (ICCCT), pp. 524–530 (2011)

10. Wang, M., Cao, J., Li, J., Das, S.K.: Middleware for wireless sensor networks: A
survey. J. Comput. Sci. Technol. 23(3), 305–326 (2008)

11. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput.
Netw. 52(12), 2292–2330 (2008)

http://www.mdpi.com/1424-8220/11/3/2652
http://dblp.uni-trier.de/db/journals/ijdsn/ijdsn2012.html#LaukkarinenSH12
http://dblp.uni-trier.de/db/journals/ijdsn/ijdsn2012.html#LaukkarinenSH12
http://www.opengeospatial.org/standards
http://www.opengeospatial.org/domain/swe

Verification of Semantically-Enhanced Artifact Systems�

Babak Bagheri Hariri, Diego Calvanese, Marco Montali,
Ario Santoso, and Dmitry Solomakhin

KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano
lastname@inf.unibz.it

Abstract. Artifact-Centric systems have emerged in the last years as a suitable
framework to model business-relevant entities, by combining their static and dy-
namic aspects. In particular, the Guard-Stage-Milestone (GSM) approach has
been recently proposed to model artifacts and their lifecycle in a declarative way.
In this paper, we enhance GSM with a Semantic Layer, constituted by a full-
fledged OWL 2 QL ontology linked to the artifact information models through
mapping specifications. The ontology provides a conceptual view of the domain
under study, and allows one to understand the evolution of the artifact system
at a higher level of abstraction. In this setting, we present a technique to spec-
ify temporal properties expressed over the Semantic Layer, and verify them ac-
cording to the evolution in the underlying GSM model. This technique has been
implemented in a tool that exploits state-of-the-art ontology-based data access
technologies to manipulate the temporal properties according to the ontology and
the mappings, and that relies on the GSMC model checker for verification.

1 Introduction

In the last decade, the marriage between processes and data has been increasingly
advocated as a key objective towards a comprehensive modeling and management of
complex enterprises [10]. This requires to go beyond classical (business) process spec-
ification languages, which largely leave the connection between the process dimension
and the data dimension underspecified, and to consider data and processes as “two
sides of the same coin” [21]. In this respect, artifact-centric systems [19,16] have lately
emerged as an effective framework to model business-relevant entities, by combining
in a holistic way their static and dynamic aspects. Artifacts are characterized by an ”in-
formation model”, which maintains the artifact data, and by a lifecycle that specifies
the allowed ways to progress the information model. Among the different proposals
for artifact-centric process modelling, the Guard-Stage-Milestone (GSM) approach has
been recently proposed to model artifacts and their lifecycle in a declarative, flexible
way [17]. GSM is equipped with a formal execution semantics [13], which unambigu-
ously characterizes the artifact progression in response to external events. Several key
constructs of the OMG standard on Case Management and Model Notation 1 have been
borrowed from GSM.
� This research has been partially supported by the EU under the ICT Collaborative Project

ACSI (Artifact-Centric Service Interoperation), grant agreement n. FP7-257593.
1 http://www.omg.org/spec/CMMN/

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 600–607, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.omg.org/spec/CMMN/

Verification of Semantically-Enhanced Artifact Systems 601

Despite the tight integration between the data and process component, the artifact in-
formation model typically relies on relatively simple structures, such as (nested) lists of
key-value pairs. This causes an abstraction gap between the high-level, conceptual view
that business stakeholders have of domain-relevant entities and relations, and the low-
level representation adopted inside artifacts. To overcome this problem, in [9] it is pro-
posed to enhance artifact systems with a Semantic Layer, constituted by a full-fledged
ontology linked to the artifact information models through mapping specifications. On
the one hand, the ontology allows one to understand the evolution of the artifact system
at a higher level of abstraction. On the other hand, mapping specifications allow one to
connect the elements present in the Semantic Layer with the concrete data in the artifact
information models, relying on the Ontology-Based Data Access (OBDA) [6].

We follow here an approach similar to [9], and which is based on specifying in terms
of the Semantic Layer dynamic/temporal laws that the system should obey, and that
need to be verified according to the evolution in the underlying artifact layer. Differ-
ently from [9], in which the Semantic Layer is mainly used to govern the progression
of artifacts, by forbidding the execution of actions that would lead to violation of the
constraints in the ontology, here we are primarily interested in exploiting the Semantic
Layer to ease the specification of the dynamic/temporal laws. In this light, we extend
the technique provided in [9] by relying on a more expressive verification formalism,
which supports first-order epistemic queries embedded into an expressive temporal lan-
guage, the first-order μ-calculus [15], while allowing for quantification across states.
The latter makes it possible to predicate over the temporal evolution of individuals, an
enhancement that is fundamental for capturing many practical scenarios. To specify
the ontology constituting the Semantic Layer, we adopt the OWL 2 QL profile [18] of
the standard Web Ontology Language (OWL) [4], since it enjoys so-called first-order
rewritability of query answering [8], which guarantees that conjunctive queries posed
over the ontology can be rewritten into first-order queries that incorporate the ontologi-
cal constraints, and thus do not require further inference for query answering.

This framework has led to the development of a tool called OBGSM, which relies
on GSM as the artifact model, and on state of the art technologies for dealing with the
ontology and the mappings, and for performing verification. We refer to an extended
version of this paper [3] for proofs and the application of OBGSM on a real case study.

2 Preliminaries

OWL 2 QL is a profile of the Web Ontology Language OWL 2 standardized by the W3C.
OWL 2 QL is specifically designed for building an ontology layer to wrap possibly
very large data sources. Technically, OWL 2 QL is based on the description logic DL-
LiteR, which is a member of the DL-Lite family [8], designed specifically for effective
ontology-based data access, and which we adopt in the following.

In description logics (DLs) [1], the domain of interest is modeled by means of con-
cepts, representing classes of objects, and roles, representing binary relations between
objects.2 In DL-LiteR, concepts C and roles U obey to the following syntax:

2 Without loss of generality, we do not distinguish between roles (OWL 2 object properties), and
attributes (OWL 2 data properties) - see [6]).

602 B.B. Hariri et al.

B ::= N | ∃U C ::= B | ∃U .B U ::= P | P−

P denotes a role name, and P− an inverse role, which swaps the first and second
components of P . N denotes a concept name, and B a basic concept, which is either
simply a concept name, or the projection of a role P on its first component (∃P) or
its second component (∃P−). In the concept ∃U .B, the projection on the first (resp.,
second) component of U can be further qualified by requiring that the second (resp.,
first) component of U is an instance of the basic concept B.

In DLs, the domain knowledge is split into an intensional part (TBox), and an
extensional part (ABox). Specifically, a DL-LiteR ontology is a pair (T,A), where
the TBox T is a finite set of (concept and role) inclusion assertions of the forms
B $ C and U1 $ U2, and of disjointness assertions of the forms disjoint(B1, B2)
and disjoint(U1, U2). The ABox A is a finite set of facts (membership assertions) of the
forms N(c1) and P (c1, c2), where N and P occur in T , and c1 and c2 are constants.

The semantics of a DL-LiteR ontology is given in terms of first-order interpretations
I = (ΔI , ·I), where ΔI is the interpretation domain and ·I is an interpretation function
that assigns to each concept C a subset CI ⊆ ΔI and to each role U a binary relation
UI ⊆ ΔI × ΔI , capturing the intuitive meaning of the various constructs (see [8] for
details). An interpretation that satisfies all assertions in T and A is called a model of
the ontology (T,A), and the ontology is said to be satisfiable if it admits at least one
model.

Queries. As usual (cf. OWL 2 QL), answers to queries are formed by terms denoting
individuals explicitly mentioned in the ABox. The domain of an ABox A, denoted by
ADOM(A), is the (finite) set of terms appearing in A. A union of conjunctive queries
(UCQ) q over a KB (T,A) is a FOL formula of the form

∨
1≤i≤n ∃!yi.conj i(!x, !yi) with

free variables !x and existentially quantified variables !y1, . . . , !yn. Each conj i(!x, !yi) in
q is a conjunction of atoms of the form N(z), P (z, z′), where N and P respectively
denote a concept and a role name occurring in T , and z, z′ are constants in ADOM(A)
or variables in !x or !yi, for some i ∈ {1, . . . , n}. The (certain) answers to q over (T,A)
is the set ans (q, T,A) of substitutions σ of the free variables of q with constants in
ADOM(A) such that qσ evaluates to true in every model of (T,A). If q has no free
variables, then it is called boolean and its certain answers are either true or false.

We compose UCQs using ECQs, i.e., queries of the query language EQL-
Lite(UCQ) [7], which is the FOL query language whose atoms are UCQs. An ECQ
over T and A is a possibly open formula of the form

Q := [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ. The answer to Q over (T,A) is the set ANS(Q, T,A) of tuples of con-
stants in ADOM(A) defined by composing the certain answers ans (q, T,A) of UCQs q
through first-order constructs, and interpreting existentials as ranging over ADOM(A).

Finally, we recall that DL-LiteR enjoys the FO rewritability property, which states
that for every UCQ q, ans (q, T,A) = ans (REW(q), ∅, A), where REW(q) is a UCQ
computed by the reformulation algorithm in [6]. Notice that this algorithm can be ex-
tended to ECQs [7], and that its effect is to “compile away” the TBox. Similarly, ontol-
ogy satisfiability is FO rewritable for DL-LiteR TBoxes [6], which states that for every

Verification of Semantically-Enhanced Artifact Systems 603

TBox T , there exists a boolean first-order query qunsat(T) such that for every non-empty
ABox A, we have that (T,A) is satisfiable iff ans (qunsat(T), T, A) = false.

Ontology-Based Data Access (OBDA). In an OBDA system, a relational database
is connected to an ontology representing the domain of interest by a mapping, which
relates database values with values and (abstract) objects in the ontology (cf. [6]). In
particular, we make use of a countably infinite set V of values and a set Λ of function
symbols, each with an associated arity. We also define the set C of constants as the union
of V and the set {f(d1, . . . , dn) | f ∈ Λ and d1, . . . , dn ∈ V} of object terms.

Formally, an OBDA system is a structure O = 〈R, T,M〉, where: (i) R =
{R1, . . . , Rn} is a database schema, constituted by a finite set of relation schemas;
(ii) T is a DL-LiteR TBox; (iii) M is a set of mapping assertions, each of the form
Φ(!x) � Ψ(!y,!t), where: (a) !x is a non-empty set of variables, (b) !y ⊆ !x, (c) !t is a
set of object terms of the form f(!z), with f ∈ Λ and !z ⊆ !x, (d) Φ(!x), which also
called as source query, is an arbitrary SQL query over R, with !x as output variables, and
(e) Ψ(!y,!t), which also called as target query, is a CQ over T of arity n > 0 without
non-distinguished variables, whose atoms are over the variables !y and the object terms!t.

Given a database instance I (made up of values in V and conforming to schema R)
and a mapping assertion m = Φ(x)� Ψ(y, t), the virtual ABox generated from I by m
is m(I) =

⋃
v∈eval(Φ,I) Ψ [x/v], where eval (Φ, I) denotes the evaluation of the SQL

query Φ over I, and where we consider Ψ [x/v] to be a set of atoms (as opposed to a con-
junction). The ABox generated from I by the mapping M is M(I) =

⋃
m∈M m(I).

As for ABoxes, the active domain ADOM(I) of a database instance I is the set of values
occurring in I. Given an OBDA system O = 〈R, T,M〉 and a database instance I for
R, a model for O wrt I is a model of the ontology (T,M(I)). We say that O wrt I is
satisfiable if it admits a model wrt I.

A UCQ q over an OBDA system O = 〈R, T,M〉 and a relational instance I for R
is simply an UCQ over (T,M(I)). To compute the certain answers of q over O wrt
I, we follow the standard three-step approach [6]: (i) q is rewritten to compile away
T , obtaining qr = rew(q, T); (ii) the mapping M is used to unfold qr into an SQL
query over R, denoted by UNFOLD(qr,M) [20]; (iii) such a query is executed over I,
obtaining the certain answers. For an ECQ, we can proceed in a similar way, applying
the rewriting and unfolding steps to the embedded UCQs. It follows that computing
certain answers to UCQs/ECQs in an OBDA system is FO rewritable. Applying the
unfolding step to qunsat(T), we obtain also that satisfiability in O is FO rewritable.

3 Semantically-Enhanced Artifact Systems

In this section we introduce Semantically-enhanced Artifact Systems (SASs), taking in-
spiration from the semantic governance framework introduced in [9]. Intuitively, SAS
models systems in which artifacts progress according to their lifecycles, and in which
the evolution of the entire system is understood through the conceptual lens of an
OWL 2 QL ontology. In accordance with the literature [14], it is assumed that artifacts
are equipped with a relational information model. More specifically, a SAS is consti-
tuted by: (i) A Relational Layer, which account for the (relational) information models
of the artifacts, and which employs a global transition relation to abstractly capture the

604 B.B. Hariri et al.

Semantic Layer Transition System

Relational Layer Transition System

s0

s1

s2

db

A0

T

s3

s0

s1

s2

s3

M

abox

A1

T

A2

T
A3

T

abox abox
abox

M

db

db

db

M M

ΥR
S

ΥS
S

D0

R
D1

R

D2

R

D3

R

Fig. 1. Sketch of the Relational and Semantic Transition System of a SAS

step-by-step evolution of the system as a whole. (ii) A Semantic Layer, which contains
an OWL 2 QL ontology that conceptually accounts for the domain under study. (iii) A
set of mapping assertions describing how to virtually project data concretely maintained
at the Relational Layer into concepts and relations modeled in the Semantic Layer, thus
providing a link between the artifact information models and the ontology.

In the following, we assume a countably infinite set of values V . Formally, a SAS S
is a tuple S = 〈R, I0,F , T,M〉, where: (i) R is a database schema that incorporates
the schemas of all artifact information models present in the Relational Layer; (ii) I0
is a database instance made up of values in V and conforming to R, which represents
the initial state of the Relational Layer,; (iii) F ⊆ Γ × Γ is the transition relation
that describes the overall progression mechanism of the Relational Layer, where Γ
is the set of all instances made up of values in V and conforming to R; (iv) T is a
DL-LiteR TBox; (v) M is a set of mapping assertions that connect R to T , following
the approach described in Section 2. The triple 〈R, T,M〉 constitutes, in fact, an OBDA
system. Thus, S can be seen as an OBDA system equipped with a transition relation that
accounts for the dynamics of the system at the level of R, starting from I0.

3.1 Execution Semantics

The execution semantics of a SAS S is provided by means of transition systems. While
the temporal structure of such systems is fully determined by the transition relation of
S, the content of each state in the system depends on whether the dynamics of SASs
is understood directly at the Relational Layer, or through the conceptual lens of the
Semantic Layer ontology. In the former case, each state is associated to a database
instance that represents the current snapshot of the artifact information models, whereas
in the latter case each state is associated to an ABox that represents the current state of
the system, as understood by the Semantic Layer.

Following this approach, the execution semantics of S is captured in terms of two
transition systems, one describing the allowed evolutions at the Relational Layer (Re-
lational Transition System - RTS), and one abstracting them at the Semantic Layer (Se-
mantic Transition System - STS). Figure 1 provides a graphical intuition about the RTS
and STS, and their interrelations.

Verification of Semantically-Enhanced Artifact Systems 605

RTS. Given a SAS S = 〈R, I0,F , T,M〉, its RTS ΥR
S is defined as a tuple

〈R,Σ, s0, db,⇒〉, where: (i) Σ is a set of states, (ii) s0 ∈ Σ, (iii) db is a function
that, given a state in Σ, returns a corresponding database instance (conforming to R),
(iv) ⇒⊆ Σ × Σ is the transition relation. The components Σ, ⇒ and db of ΥR

S are de-
fined by simultaneous induction as the smallest sets satisfying the following conditions:

– db(s0) = I0;
– for every databases instance I ′ such that 〈db(s), I ′〉 ∈ F :

• if there exists s′ ∈ Σ such that db(s′) = I ′, then s ⇒ s′;
• otherwise, if O = 〈R, T,M〉 is satisfiable wrt I ′, then s′ ∈ Σ, s ⇒ s′ and
db(s′) = I ′, where s′ is a fresh state.

The satisfiability check done in the last step of the RTS construction accounts for the
semantic governance (cf. Section 1): a transition is preserved in the RTS only if the target
state does not violate any constraints of the Semantic Layer, otherwise it is rejected [9].

STS. Given a SAS S = 〈R, I0,F , T,M〉, its STS Υ S
S is defined as a tuple

〈R,Σ, s0, db,⇒〉, which is similar to an RTS, except from the fact that states are at-
tached to ABoxes, not database instances. In particular, Υ S

S is defined as a “virtual-
ization” of the RTS ΥR

S = 〈R,Σ, s0, db,⇒〉 at the Semantic Layer: it maintains the
structure of ΥR

S unaltered, reflecting that the progression of the system is determined at
the Relational Layer, but it associates each state to a virtual ABox obtained from the ap-
plication of the mapping specification M to the database instance associated by ΥR

S to
the same state. Formally, the transition relation M is equivalent to the one of the S, and
the abox function of Υ S

S is defined as follows: for each s ∈ Σ, abox (s) = M(db(s)).

4 Verification of Semantically-Enhanced Artifact Systems

Given a SAS S, we are interested in studying verification of semantic dynamic/temporal
properties specified over the Semantic Layer, i.e., to be checked against the STS Υ S

S . As
verification formalism, we consider a variant of first-order μ-calculus [15,22], called
μLEQL

A [2,11]. We observe that μ-calculus is one of the most powerful temporal logics:
it subsumes LTL, PSL, and CTL* [12]. The logic μLEQL

A supports querying the states
of the STS through the first-order epistemic queries introduced in Section 2. In μLEQL

A ,
first-order quantification is restricted to objects present in the current ABox, and can be
used to relate objects across states. The syntax of μLEQL

A is as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | 〈−〉Φ | Z | μZ.Φ

Where Q is an ECQ over T , Z is a second-order variable denoting a 0-ary predicate, μ
is the least fixpoint operator, and the special predicate LIVE(x) is used to indicate that
x belongs to the current active domain, i.e., it is mentioned in some concept or role of
the current ABox. For a detailed semantics of μLEQL

A , refer to [2,11].
Given a SAS S, we show that verification of μLEQL

A properties over the STS Υ S
S can

be reduced to verification of μLA [10] properties over the RTS ΥR
S , where μLA is a

logic similar to μLEQL
A , except for the local formula Q, which is an (open) first-order

query over the database schema in the Relational Layer.

Theorem 1. For every SAS S and μLEQL
A property Φ, there exists a μLA property Φ′

such that Υ R
S satisfies Φ if and only if Υ S

S satisfied Φ′.

606 B.B. Hariri et al.

5 SAS Instantiation: The OBGSM Tool

The formal framework of SASs has led to the development of the OBGSM tool.
OBGSM assumes that the RTS is obtained from artifacts, specified using the Guard-
Stage-Milestone (GSM) approach. The main task accomplished by the tool is the refor-
mulation of temporal properties expressed over the ontology in terms of the underlying
GSM information model. In particular, OBGSM adopts: (i) The state of the art OBDA
system -ONTOP-3 to efficiently rewrite and unfold the epistemic queries embedded in
the temporal property to verify. (ii) the recently developed GSMC model checker for
GSM [5] to accomplish the actual verification phase. GSMC is currently the only model
checker able to verify temporal formulae over artifact systems.

Since the temporal formalism supported by GSMC is a variant of the first-order
branching time logic CTL [12] with a restricted form of quantification across states, the
μLEQL

A has been restricted accordingly in the tool 4. This, in turn, required to suitably
accommodate the mapping language so as to ensure that temporal formulae over the
Semantic Layer correspond, once rewritten and unfolded, to properties that can be pro-
cessed by GSMC. Furthermore, in accordance to -ONTOP-, both the temporal properties
and the mappings rely on the SPARQL query language to query the Semantic Layer.

For a more comprehensive description of the tool, and its application to a real-world
case study in the energy domain, developed within the ACSI Project, please refer to [3].

6 Discussion

The OBGSM tool works under the assumption that the Semantic Layer is used to en-
hance GSM, but not to govern it. In fact, the construction of the RTS is handled in-
ternally by GSMC, it is not possible (at least for the time being) to prune it so as to
remove inconsistent states. Hence, OBGSM must assume that all the states in the RTS
are consistent with the constraints of the Semantic Layer. This can be trivially achieved
by, e.g., avoiding to use negative inclusion assertions in the TBox, which are the only
source of inconsistency for OWL 2 QL. If inconsistent states can be generated by the
GSM specification, the strategy of delegating the verification to GSMC as a black box
cannot be followed directly. One possible solution to this is to minimally change the
GSMC implementation by introducing a test to detect states that should not be added to
the RTS during the construction, then implementing it as a satisfiability check wrt the
ontology. The other possible solution is to consider fragments of the verification logic,
and investigate whether the check for consistency can be embedded in the formula to
verify, so as to avoid any impact on GSMC. These scenarios provide us with interesting
problems for future investigation.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

2. Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., Felli, P.:
Description logic Knowledge and Action Bases. J. of Artificial Intelligence Research (2013)

3 http://ontop.inf.unibz.it/
4 Notice that CTL can be expressed in the alternation-free fragment of the μ-calculus [15].

http://ontop.inf.unibz.it/

Verification of Semantically-Enhanced Artifact Systems 607

3. Bagheri Hariri, B., Calvanese, D., Montali, M., Santoso, A., Solomakhin, D.: Verification of
semantically-enhanced artifact systems (extended version). CoRR (2013)

4. Bao, J., et al.: OWL 2 Web Ontology Language document overview, 2nd edn. W3C Recom-
mendation. World Wide Web Consortium (2012)

5. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based artifact-centric systems
through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 17–31. Springer, Heidelberg (2012)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.,
Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web
2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effec-
tive first-order query processing in description logics. In: Proc. of IJCAI 2007, pp. 274–279
(2007)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

9. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-based gov-
ernance of data-aware processes. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS,
vol. 7497, pp. 25–41. Springer, Heidelberg (2012)

10. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis: A
database theory perspective. In: Proc. of PODS 2013 (2013)

11. Calvanese, D., Kharlamov, E., Montali, M., Santoso, A., Zheleznyakov, D.: Verification of
inconsistency-tolerant knowledge and action bases. In: Proc. of IJCAI 2013 (2013)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)
13. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint se-

mantics for business artifacts with Guard-Stage-Milestone lifecycles. Information Systems
(2013)

14. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of ICDT 2009, pp. 252–267 (2009)

15. Emerson, E.A.: Model checking and the Mu-calculus. In: Immerman, N., Kolaitis, P. (eds.)
Proceedings of the DIMACS Symposium on Descriptive Complexity and Finite Models.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 185–214.
American Mathematical Society Press (1996) ISBN 0-8218-0517-7

16. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1152–1163.
Springer, Heidelberg (2008)

17. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F.T., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculin, R.: Business artifacts with
Guard-Stage-Milestone lifecycles: Managing artifact interactions with conditions and events.
In: Proc. of the 5th ACM Int. Conf. on Distributed Event-Based Systems, DEBS 2011 (2011)

18. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language profiles, 2nd edn. Tech. rep., W3C Recommendation (2012)

19. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems J. 42(3), 428–445 (2003)

20. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900,
pp. 133–173. Springer, Heidelberg (2008)

21. Reichert, M.: Process and data: Two sides of the same coin? In: Meersman, R., et al. (eds.)
OTM 2012, Part I. LNCS, vol. 7565, pp. 2–19. Springer, Heidelberg (2012)

22. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)

A Framework for Cross Account Analysis

Vugranam C. Sreedhar�

IBM TJ Watson Research Center,
Yorktown Heights, NY, 10598, USA

vugranam@us.ibm.com

Abstract. A key challenge of Strategic Outsourcing (SO) from a service
delivery perspective is trying to understand one key question: Why two
SO accounts that seemingly looks the same have very different cost struc-
ture? In this article we present a parameterized framework for modeling
and analysis of cross account behavior. We abstract certain key account
features as parameters and construct models for answering behavioral
characteristics of SO accounts. We use spectral graph clustering for de-
tecting similar accounts, and also develop parameterized clustering for
detecting coherent behavior of accounts. We have implemented a proto-
type of the approach and we discuss some preliminary empirical result
of cross account analysis.

Keywords: Data mining, spectral graphs, clusterning, Workload, Ef-
fort, Service Delivery.

1 Introduction

Strategic Outsourcing (SO) occurs when a company transfers the control of
one or more its business unit or Information Technology (IT) infrastructure
management to another company, so that it can focus on its core business. A
service provider, such as IBM, provides SO IT services for multiple different
customer accounts. A service provider focuses on two main business objectives
when delivering IT services: (1) Profit maximization by cutting cost of IT service
management, and (2) Service quality in par or better than what is negotiated
during contract phase via service level agreements (SLAs).

Large service providers, such as IBM, often put in place a process, such as the
lean process, to eliminate wastage, improve productivity and improve quality.
They often organize service delivery by creating one or more delivery center.
Each delivery center is further split into a set of delivery pools. A pool is made
of set of system administrators (SAs) who focus on one or two kinds of work
types, such as “Backup and Restore” or “Performance and Capacity”. Even with
in each work type one can identify complexity features, such as high, medium
and low. For instance, a pool may contain only SAs that do high complexity
“Security and Compliance” work type.

� I would like thank D. Rosu, M. Surendra, A. Paradkar, and K. Christiance for helping
me understand SO Delivery.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 608–615, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Framework for Cross Account Analysis 609

One question that is often asked by service provider executives is why does
it costs more to manage one account compared another “seemingly similar” ac-
count. To answer such a question requires an understanding on the behavior of
different kinds of account. There are human, process, policy, technology, loca-
tion, and other characteristics that makes one account more cost effective and
productive compared to another account. In this article we present a framework,
called CAAF (Cross Account Analysis Framework), to compare coherent behav-
ioral characteristics of accounts. We have identified certain key characteristics
that can be parameterized for modeling and analysis of account behavior. Given
a set of accounts and a set of features of the accounts, we identify a sub-set
of features and sub-set of accounts that exhibit coherent behavior. Using CAAF
project executives or other stakeholders can compare and contrast accounts that
are similar with respect to a sub-set of features. In other words, CAAF can pa-
rameterized with respect to a set of accounts and features that exhibit a coherent
behavior. We have prototyped an implementation of CAAF and we will highlight
some preliminary empirical results.

The rest of the article is organized as follow: Section 2 describes cross ac-
count modeling that forms the basis for CAAF. Section 3 describes cross account
analysis based on similarity and difference analysis. Section 4 presents prelimi-
nary empirical results. Section 5 highlights some of the related work. Finally we
conclude in Section 6.

2 Cross Account Modeling

Let A = {a1, a2, . . . , aN} be a set of N accounts. Each account ai has a set
of features F = {f1, f2, . . . fM}. Let H and H ′ be two sub-sets of features of
F . We say that the two sub-sets of features are similar, denoted as, H ∼ H ′,
if the distance Δ(H,H ′) ≤ ε, where ε ∈ /. We can use any of the classical
distance/similarity functions for Δ, such as Jaccard coefficient, cosine distance,
etc. We say two accounts ai and aj are similar, denoted as [ai ∼ aj]|H if H(ai) ∼
H(aj), where H(ai) is the set of features of ai.

2.1 Feature Modeling

We identify two main kinds of features: (1) nominal or categorical features, such
as geographies and sectors and (2) continuous features such as the number of
tickets per servers. For continuous features we can use counts or total values
such as total number tickets or servers. We can also use (normalized) ratio such
as “tickets per server”. When we discuss ticket related features we usually mean
total number of Severity 1 Tickets or total number of Incident Tickets

per Server. Assume that two accounts ai and aj are similar with respect to the
total number of Incident Tickets, but when we look at severity feature, say
Severity 1 Tickets, it is possible that the accounts may have two different
number of Severity 1 Tickets. We convert continuous variables into nominal
or categorical variables using binning by focusing on a range of values. For in-
stance, we create a ranges such as {0− 0.24, 0.25− 0.49, 0.5− 0.74, . . .} for the

610 V.C. Sreedhar

feature “tickets per server per month”. Once such range of values are created
by binning, we can say that two accounts are similar with respect to the feature
“tickets per server per month” if they both belong to the same bin. In the rest
of the article we only deal with nominal or categorical values. In our implemen-
tation when we bin, we also keep track of several statistics for each bin, such
as mean, standard deviation, median, first quartile, third quartile, maximum
value, and the minimum value. Often when we look for similarity between ac-
counts within a bin, we sometimes compare them with the statistics of the bin
to obtain more insights into their characteristics.

2.2 Cross Account Graph

Given the notion of maximal similarity and difference relation between accounts,
we represent them as a graph, called the Cross Account Graph (CAG), G =
(A,Es, Ed,W, F), whereA is the set of nodes representing accounts,Es is set edges
representing similarity relations between accounts, Ed is a set of edges represent-
ing difference relations between accounts, W ∈ / is the set of edge weights, and
F is set of all relevant features across all accounts. For nominal values one can use
either Jaccard coefficient or Cosine coefficient for similarity measure. The Jaccard
coefficient between two feature sets Hi and Hj is given by

ΔJC(Hi, Hj) =
|Hi ∩Hj |
|Hi ∪Hj |

(1)

We insert a similarity edge between accounts ai and aj only if ΔJC(Hi, Hj) > ε,
whereHi andHj are the feature sets of ai and aj , respectively. We use a threshold
ε = 0.15 for inserting a similarity edge between two account nodes.

3 Cross Account Analysis

Recall that our goal is to be able to answer some cross account differential
questions such as: Given two accounts that looks similar, why does it cost more
to manage one account compared to managing the other account? It is important
to keep in mind that we insert a similarity edge between two accounts ai and
aj only if the Jaccard coefficient between the feature sets of the two accounts is
greater than some threshold ε (which in our case is about 0.15). We label the
similarity edge between two accounts with the set σ(ai, aj) = Hi ∩Hj and label
the difference edge with the label the set δ(ai, aj) = ((Hi ∪ Hj) − (Hi ∩ Hj)),
where Hi and Hj are the feature sets of accounts ai and aj, respectively. In our
implementation of CAAF we do not have explicit similarity and difference edges,
we simply label edges using a triple (σ, δ, w) where σ is the similarity set, δ is
the difference set and w is the Jaccard coefficient.

We use spectral graph analysis for clustering CAG [1], where we represent
CAG using normalized Laplacian matrix. Let G = (A,Es,W) be an undirected
graph with nodes A, Es the set of labeled edges denoting similarity relation, and
W ∈ / is the set of weights associated with similarity edges. For our purpose

A Framework for Cross Account Analysis 611

Fig. 1. An example with 20 accounts and 5 features

we use Jaccard coefficient for weights. Let a, b ∈ A, and let a
s→ b ∈ Es, and

w(a, b) ∈ Ws be the weight of the edge a
s→ b. The degree d(a) of a node a is

the sum of edge weights incident on node a. The normalized Laplacian matrices
is defined as follows:

L(a, b) =

⎧⎪⎪⎨⎪⎪⎩
1− w(a,a)

d(a) if a = b and d(a) �= 0;

− w(a,b)√
d(a)×d(a)

if (a, b) ∈ Es;

0 otherwise

(2)

The eigenvalues of normalized Laplacian L are non-negative and real, and in fact
0 ≤ λ ≤ 2. We can use the eigenvalues and eigenvectors of L to cluster the cross
account graph [2]. A key aspect of our approach for cross account analysis is the
parameterization of the feature domain for clustering. In other words, given a
CAG and a feature set H that is of interest we calculate clusters for the CAG
with respect to the feature set H .

Example: Consider the example shown in Figure 1 that consists of 20 accounts
with 5 features. The feature ITPSBin corresponds to number of the number
of “incident tickets per server” that has been binned into two buckets. Simi-
larly the feature CTPSBin corresponds to binned number of “change tickets per
server”. The feature HPSCBin is the binned number of “effort per server”. Fig-
ure 2 illustrates the CAG for the accounts that are in NAmerica and SAmerica.
Using spectral graph clustering algorithm, we identify two clusters made of
{A001, A003, A004, A005} and {A002, A006, A007, A008, A009, A010}.

Consider the example shown in Figure 1. Figure 2(b) illustrates the CAG
for the last 10 accounts. The nodes colored in blue (nodes A011, A013, A015,
and A019) are accounts that are in Europe and belong to Finance sector. One
can see that for these accounts, which incidentally forms a nice cluster (spectral
clustering algorithm will create one cluster for these nodes), have different “effort
per server” as indicated by the feature HPSCBin.

612 V.C. Sreedhar

Fig. 2. CAG representation for (a) the first 10 accounts and (b) the last 10 ac-
counts shown in Figure 1. The edge weights are Jaccard’s coefficients, with thresh-
old ε = 0.15. As an example the similarity set for the edge A001 → A003 is
{SAmerica, Finance, ITPSB1, CTPSB1} and the difference set is {HPSCB1}.

Next consider the set of nodes made of A012, A014, and A016. All these
accounts are very similar with respect to all features, except HPSCBin. A service
delivery executive would want to know why account A014 has a different effort
compared to the other two similar accounts. We will come back to this point
later in Section 4.

4 Empirical Result

In this section we present some preliminary empirical result using data from over
60 accounts for Intel and Unix server management from the year 2009 and 2010.1

We identified over 80 different features by working closely with the delivery team.
Since much of the account specific information are business sensitive, we can only
provide some high level empirical results. For the 60 accounts, we selected about
30 different features for the prototype. We used binning to convert continuous
values to nominal values.

We implemented spectral clustering using Jaccard coefficient using 30 features
and generated 12 clusters. We then calculated Cramer’s V coefficient for accounts
in each cluster and identified features that provide Cramer’s V coefficient of
over 0.4. We used these sets of feature for parameterizing clusters to highlight
accounts that are similar but have cost differentials (see Figure 2).

Our results for cross account analysis are illustrated in Figure 3 and 4. We
identified three kinds of efforts: (1) Management effort that relate to project
management, attending meetings, etc. (2) Operational effort that relate to re-
solving tickets, investigating defects, etc. and (3) Claimed Effort that an SA can
claim. It is important to keep in mind that an SA can claim more or less than
the time spent working on various activities. There is a claiming process that
is put in place to charge the client for various tasks that are performed in an
account.

1 To protect the sensitive nature of the customer account data we have normalized
and anonymized the data and the result discussed in this section.

A Framework for Cross Account Analysis 613

Fig. 3. Cross account comparison. Y axis is the percentage effort in hours per SA per
week, and X axis is the binning of server count or volume.

Fig. 4. Problem tickets differentials between to similar accounts

The results are based on 2009/2010 data that was anonymized as accounts
A001 to A007. The X-axis shows server volume or count in different buckets or
bins. Y-axis is the effort in hours per week per SA as a percentage of the total
across various activities.

The accounts A003, A004, and A004 have different cost structures with in
the same bin of server volume. Working with the account team, we identified
few important reasons why the cost structure were different for these accounts.
For instance, focusing on operational effort, we found out that not all tickets are
routed to data repository where we collected the data for analysis in the case
of A004 account. In the case of A003 we found out that the account team had
put in place a better quality improvement programs in terms resolving tickets
and other activities. Finally, the difference between account A001 and A002
with respect to management effort is that this effort was not fully tracked and
logged for account A002, and so not all management claims were fully recorded.
Notice that for accounts A006 and A007 the two sets of bar graphs are quite
similar for the features illustrated in Figure 3. But when we drilled down to
“tickets per server” across problem and change tickets, we found differences.
This is illustrated in Figure 4. We found that significantly more effort is spent
in dealing with change tickets within A007, compared to A006. Also A007 had
fewer problem tickets and shorter resolution time per ticket.

614 V.C. Sreedhar

5 Related Work

Strategic Outsourcing (SO) especially for Infrastructure Technology (IT) server
management is a complex services business. Service providers, such as IBM, man-
age a large number of accounts. There are very few literature that provide some
deeper understanding of IT services acrossmultiple different accounts. To the best
of our knowledge ours is the first work that focuses on cross account analysis. Lech-
ner et al. describe a Service Delivery Portal (SDP) for IT infrastructure service
management [3]. The main focus of that work is design and development of SDP
that has been deployed across different account environment, and not cross ac-
count analysis. There are several work related to ticket analysis, where the main
focus is on identifying and reducing the number of tickets, or performing ticket to
server linkage via text analytics [4–6]. In our implementation we rely on ticket to
server linkage to obtain features related to effort performed in a service delivery
environment. Another thread of research within SO delivery is the automation for
eliminating repeatable work.2 Even though some of these related work focus on
improving the productivity across multiple accounts, the main focus once again
is not on developing a framework for cross account analysis. Another line of re-
search that cuts across multiple SO accounts is mapping of work order to system
administrators (SAs) [7]. Task assignment is an old problem that has been very
well studied in optimization and management science areas.

Two other past work that helped us to gain insight into service delivery are
that of Buco et al. and Diao and Heching [8, 9]. Buco et al. developed a method-
ology for instrumenting service delivery pools to get a fine grain effort spent by
SAs for improving IT delivery quality. We use the result of their work in captur-
ing some of the features related to effort performed and how much time SA spend
across different work order characteristics [8]. Diao and Heching discuss analysis
methods that were performed using service delivery operational data into order
understand managerial insight into a complex service delivery system [9]. In par-
ticular they collected service delivery data to develop metrics and measures of
interest to improve service delivery. We use some of their data, especially data
related to activity time that SAs spend on different kinds of activities for our
feature sets.

6 Conclusion

In this article we described a framework, called CAAF, for cross account analysis.
SO account executives and project executives can parameterize to obtain a fine-
grain result for cross account comparison. Our approach uses a combination
of clustering techniques and sub-set features to extract relevant information for
cross account analysis. We are currently working on to deploy the framework into
service delivery environment so that projective executives and delivery managers
can compare and contrast productivity and efficiency of several different SO
accounts.
2 http://www.ca.com/~/media/Files/technologybriefs/

automate-service-delivery-techbrief.pdf

http://www.ca.com/~/media/Files/technologybriefs/automate-service-delivery-techbrief.pdf
http://www.ca.com/~/media/Files/technologybriefs/automate-service-delivery-techbrief.pdf

A Framework for Cross Account Analysis 615

References

1. Chung, F.: Spectral Graph Theory. CBMS Reg. Conf. Ser. Math., vol. 92. American
Mathematical Society (1997)

2. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4),
395–416 (2007)

3. Lenchner, J., Rosu, D., Velasquez, N.F., Guo, S., Christiance, K., DeFelice,
D., Deshpande, P.M., Kummamuru, K., Kraus, N., Luan, L.Z., Majumdar, D.,
McLaughlin, M., Ofek-Koifman, S., Perng, D.P.C.-S., Roitman, H., Ward, C.,
Young, J.: A service delivery platform for server management services. IBM J.
Res. Dev. 53(6), 792–808 (2009)

4. Marcu, P., Grabarnik, G., Luan, L., Rosu, D., Shwartz, L., Ward, C.: Towards
an optimized model of incident ticket correlation. In: Proceedings of the 11th
IFIP/IEEE International Conference on Symposium on Integrated Network Man-
agement, IM 2009, pp. 569–576. IEEE Press, Piscataway (2009)

5. Khan, A., Jamjoom, H., Sun, J.: Aim-hi: a framework for request routing in large-
scale it global service delivery. IBM J. Res. Dev. 53(6), 820–829 (2009)

6. Symonenko, S., Rowe, S., Liddy, E.D.: Illuminating trouble tickets with sublan-
guage theory. In: Proceedings of the Language Technology Conference of the
NAACL, Companion Volume: Short Papers. NAACL-Short 2006, pp. 169–172.
Association for Computational Linguistics, Stroudsburg (2006)

7. Loewenstern, D., Pinel, F., Shwartz, L., Gatti, M., Herrmann, R.: A learning
method for improving quality of service infrastructure management in new tech-
nical support groups. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC
2012. LNCS, vol. 7636, pp. 599–606. Springer, Heidelberg (2012)

8. Buco, M.J., Rosu, D., Meliksetian, D.S., Wu, F., Anerousis, N.: Effort instrumen-
tation and management in service delivery environments. In: [10], pp. 257–260

9. Diao, Y., Heching, A.: Analysis of operational data to improve performance in
service delivery systems. In: [10], pp. 302–308

10. 8th International Conference on Network and Service Management, CNSM 2012,
October 22-26. IEEE, Las Vegas (2012)

DataSheets: A Spreadsheet-Based Data-Flow

Language

Angel Lagares Lemos, Moshe Chai Barukh, and Boualem Benatallah

SOC Group, University of New South Wales, Australia
{angell,moshe,boualem}@cse.unsw.edu.au

Abstract. We are surrounded by data, a vast amount of data that has
brought about an increasing need for combining and analyzing it in or-
der to extract information and generate knowledge. A need not exclusive
of big software companies with expert programmers; from scientists to
bloggers, many end-user programmers currently demand data manage-
ment tools to generate information according to their discretion. How-
ever, data is usually distributed among multiple sources, hence, it requires
to be integrated, and unfortunately, this process is still available just for
professional developers. In this paper we propose DataSheets, a novel ap-
proach to make the data-flow specification accessible and its representa-
tion comprehensible to end-user programmers. This approach consists of a
spreadsheet-based data-flow language that has been tested and evaluated
in a service-centric composition framework.

Keywords: Data-Flow, End-User Programming, Spreadsheets.

1 Introduction

During the next minute approximately 640,000Gb of global IP data will be
transferred; by 2016, the annual global Internet traffic will surpass the zettabyte
threshold, which means a growth rate of 29% yearly [1]. In 2013, the total digital
data created (and replicated) will reach 4ZB1. Data is getting ever vaster more
rapidly, yet data in turn may be combined to generate usable information. At
the same time, 8% of all U.S. jobs require programming skills often needed to
analyze data and generate reports relying just on simple personal productivity
software [2], involving many data transferring tasks (e.g., parse and reformat
strings passed between Web services) [3]. However since data is often distributed
over a multitude of systems in many different formats, these tasks often remain
complex requiring the ability of expert programmers.

For instance, data integration often demands the use of transformation func-
tions, which must be defined in the data-flow. However, (i) existing techniques
rely on languages such as XSLT2 or XQuery3, which are too complex for end-user
programmers [4], and (ii) while there had been multiple attempts to simplify data

1 http://goo.gl/9Ps63
2 http://www.w3.org/TR/xslt20/
3 http://www.w3.org/TR/xquery/

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 616–623, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://goo.gl/9Ps63
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xquery/

DataSheets 617

transformation languages, they have never been integrated in service composi-
tion languages, where creating a data flow to manipulate data sets still requires
a user to engage in some form of programming [5]. E.g., specifying data trans-
formation in BPEL is, in general, programmed using native BPEL expressions.

End-users require simple, easy to use and learn visual environments for data-
flow management. To address this we introduce the application of spreadsheets
which brings unrivalled advantages: (i) they are naturally tidy and uncluttered,
as opposed to data-flow visual languages [6], (ii) they offer a simple, but effective
formula language using spatial relationships that masks users from the low-level
details of traditional programming [7], (iii) a spreadsheet-user only needs to mas-
ter two concepts, namely cells as variables and functions for expressing relations
between cells. The benefits of using spreadsheet-based data-flow languages have
been proven and its suitability to EUP is undeniable. In fact, spreadsheet is the
most common EUP environment [8].

In light of the aforementioned, we propose DataSheets, a spreadsheet-based
data-flow language that aims to remove the complexity of expressing data-flows,
allowing users to design data integration and data quality processes without
having expertise in the underlying languages. The main contributions of this
paper are as follows:

– A spreadsheet-based data-flow language designed for specifying mappings
between different web services in a service composition environment. Unlike
traditional approaches which calls the need for programmers to be proficient
in complex data-flow and transformational languages such as XSLT, XPath,
etc., we have been motivated to choose a spreadsheet language since it is
already familiar to a vast majority of end-user programmers.

– The implementation and evaluation of a prototype that realizes the proposed
data-flow language.

2 Spreadsheet-Based Data-Flow

The specification of data-flow is a two-step process: schema matching and data
transformation. Schema matching requires a target and a set of sources and data
transformation demands transformation functions, both notions are included in
spreadsheets, where the cells can be either sources or targets and spreadsheet
functions can be applied to them. We rely on the notion of representing services
as forms based on our previous work [9], whereby we adopt the following: a
list of services corresponds to a sheet, where each service message (input and
output) corresponds to a column, and each field corresponds to a cell. A cell
accepts the following data types: integer, float, boolean, string, one-dimensional
array (e.g. {1,2,A7}) and two-dimensional array (e.g. {1,2,3;A1:A3}). In contrast
to spreadsheets, array values are not expanded along rows or columns; in our
approach a single cell can encapsulate these types.

The specification of the data-flow is performed per service, meaning just one
service message at a time, from where the data-flow for every target field is
specified (for short we call this service message ”target message” and the service

618 A. Lagares Lemos, M.C. Barukh, and B. Benatallah

Fig. 1. Data-Flow Specification - Main Areas

that contains it ”target service”). The target message has to be one of the input
messages (by definition an output message cannot play this role) of the services
in the composition. The sources consist of all the service message fields belonging
to the services that precede the target service within the control flow. The target
fields are editable cells, where the user can enter data-flow formulas. The source
fields are cells grouped by messages; each message is located in a column; and
the messages are grouped by services.

An example is depicted in Fig. 1, where the input message of the service “Fill
UNSW Reimbursement” is the target service (section A) and three messages
are shown as sources (section C). “Apple Store” service is one of the sources
represented in the spreadsheet, where column “A” contains the fields of the
input message and column “B” the fields of the output message. The fields are
the cells of the spreadsheet and can be identified in the same manner as cells are
in regular spreadsheet editors, for instance “B3” corresponds to the field “Price”
of the output message of “Apple Store” service.

2.1 Formulas

Formulas describe the operations that place the result in the target field. The
data-flow for target fields is to be specified by entering a formula the same way
as one would do it in a spreadsheet. Formulas can contain:

– Constant Values, such as “ ‘some text’ ”, “5”, “7.3”;
– References to single fields, such as “C7”, or to a range of fields, e.g., “B2:D5”

DataSheets 619

– 1-D and 2-D arrays, such as “{1,2;3,4}”
– Functions, such as “SUM”, “INDEX” (e.g. INDEX({1,2;3,4},2,1)).

While references in spreadsheets are absolute, here the references to source
fields are always relative. If the position of a service is modified in the control
flow, the fields of that service that were acting as sources and all the formulas
where they are used are updated automatically. As an example, let us consider
the formula for the field “Total” shown in Fig. 1 (Section B) that contains the
reference “B3” (field “Price” of “Apple Store” Output). If the service “Apple
Store”, previously preceding the service “Amazon Search”, swaps the position
with “Amazon Search”, the “Apple Store” service will change the position into
the list of sources and its output message will be in the column “D”; in conse-
quence, the reference “B3” would be automatically converted into “D3”.

To help the user in the task of building the formulas and maintain the con-
sistency with the spreadsheet analogy, this approach includes the concept of a
formula builder, where the user: (i) is presented a list of the sources used in
the formula with all the information to clearly identify them, (ii) is entitled to
edit the formula using a list of available functions and obtain feedback through
tooltips, and (iii) is able to simulate the result of the formula.

3 DataSheets Implementation

DataSheets has been implemented and integrated in an EUP process composition
platform, namely FormSys [9], as a proof-of-concept. The architecture presented
here shows the modules related to DataSheets (Fig. 2).

Their interaction occurs as follows: A user selects a set of Web services and
defines the control-flow. Then, the user specifies the data-flow via the Spread-
sheet Data-Flow interface, which is generated by the Spreadsheet Generator. The
Formula Parser evaluates the formulas by generating a tree of tokens from the

P
ro

ce
ss

 D
es

ig
n

er

U
I L

o
g

ic
G

U
I

Client

1
Control Flow

BPEL Generator

Spreadsheet
Data Flow

Programs
(Transformation

Functions)
Server 3rd Party BPEL Engine

Spreadsheet
Generator

Formula
Parser

User
Assistant

Tree
Transformer

Formula
Simulator

Pre-BPEL
Generator

Data-Control
Consistency

2

Transformation
Function WS

Fig. 2. DataSheets Architecture

620 A. Lagares Lemos, M.C. Barukh, and B. Benatallah

functions, references and constants extracted; if an error is found, it will be indi-
cated by the User Assistant. Data-Control Consistency maintains the coherence
between the control and data flow by means of a combined control and data-flow
directed graph that is evaluated using the Tarjan’s strongly connected compo-
nents algorithm [10]: in case a strongly connected component is detected, there
is an inconsistency and the user is warned. The Formula Simulator permits the
user to simulate the data-flows at the design time by means of consuming the
Transformation Function WS with testing values. Once the data-flow is defined,
the system translates it into a proprietary XML document using the Pre-BPEL
Generator and then into BPEL using the BPEL Generator. Finally the BPEL
code is deployed using a 3rd Party BPEL Engine.

Regarding the technologies used for the implementation, the system can be
split in two different parts: (i) the Process Designer and BPEL Generator, which
include all the modules for process modeling and BPEL code generation, has
been implemented in Symfony, a MVC framework for PHP, and jQuery; and (ii)
the 3rd Party BPEL Engine, which deploys and executes BPEL code, the engine
used is Intalio|Server.

4 Evaluation

We have conducted a user study, where we collected the participants’ experience
using DataSheets techniques, which were integrated in FormSys, and we com-
pared it with a state-of-the-art third party tool, Altova MapForce4 (MapForce
for short). We chose MapForce since it offers an interface, based on connecting
elements through arrows, which is considered an EUP technique. A total of 14
participants took part in the study, of which none of them knew how to program
in BPEL or any other process composition language.

Participants were required to use the tools by performing two tasks, both
required the specification of complex data-flows, including the application of
nested transformation functions. The first one was an introductory task to help
them in familiarizing with the tools. The second one involved a more complex
scenario and the user was asked to accomplish it without any other help than
the one the tools provide.

After competing the tasks, they were tested in a questionnaire. Also task
completion times were measured during the experiment, and notes gathered
from users thinking aloud.

With the aim of evaluating the benefits of the language proposed, through
this section we evaluate the veracity of the following hypothesis:

H1: DataSheets enables end-user programmers to specify composite services
that require complex data transformation.

H2: DataSheets is more familiar and expressive to users.
Completion and H1 Task 2 was completed in both tools by 85.7% of the

participants, just one participant did not complete it in both tools, and another
one did not complete it in MapForce.

4 http://www.altova.com/mapforce.html

http://www.altova.com/mapforce.html

DataSheets 621

Table 1. Completion

FormSys MapForce
Completed Second Att. f % %* f % %*

Yes
No 4 28.6 30.8 2 14.3 16.7
Yes 9 64.3 69.2 10 71.4 83.3
Total 13 92.9 100.0 12 85.7 100.0

No 1 7.1 2 14.3

Total 14 100.0 14 100.0

f=frequency, %=percent, %*=percent over completed

To evaluate H1 we carried out a binomial test using the one-tailed p-value.
We consider that if the tool succeeds by an average greater than 50%, H1 should
be considered true (hence, H1 : p > 0.5). The null hypothesis is H0 : p ≤ 0.5.

The value obtained from the binomial test was p = 0.00085. Considering a
standard criterion of α = 0.05, p is less than α, in consequence, H0 can be
rejected, which confirms that the results support H1.

Usability and H2 We consider that the combination of the results obtained
by the user interface and functionality questions gives a reasonable measure of
the tool usability. The comparison of the opinions from participants about the
tools is to be used to evaluate H2. The Wilcoxon signed rank sum test for paired
samples has been applied to test H0. The results are shown in table 2.

Table 2. Usability Comparison - Wilcoxon Signed Ranks Test

Ranks Test Statistics
N Mean

Rank
Sum of
Ranks

FormSys -
MapForce

Negative
Ranks

22a 51.89 1141.50 Z -8.512d

FormSys -
MapForce

Positive
Ranks

124b 77.33 9589.00 p-value
(2-t)

.000

Ties 88c

Total 234

a: FormSys(FS)<MapForce(MF). b: FS>MF. c: FS=MF. d: Based on negative ranks

The resulting p-value (0.000) is less than the significance level, it indicates a
difference statistically significant between the two groups and implies the rejec-
tion of H0. The evidences extracted from the test results support H2.

Discussion
The results reveal a number of positive trends in the current research and pointed
out enhancements to consider for future directions:

622 A. Lagares Lemos, M.C. Barukh, and B. Benatallah

– DataSheets facilitates defining and understanding data-flows. Quite signifi-
cantly, we note that, in fact, 92.9% of the participants solved task 2 without
any additional help provided; more so, even the two participants who had
never programmed before were able to solve the task.

– The spreadsheet-like representation has been proved to be more familiar to
end users. At the same time, the users found that the proposed language
allowed them to express formulas seamlessly.

– As to matters of improvement: the participants pointed out the excessive use
of vertical scrolling, which at times caused them to loose focus on the task;
as well as some participants felt the types of errors and their description we
not meaningful enough.

5 Related Work

Process-centric composition languages, amongst which BPEL4WS (collectively
known as BPEL) is considered the prevailing standard, are intended for profes-
sional programmers (e.g., business process developers) and beyond the scope of
non-programmers. Support tools for process management (e.g., Intalio BPM5,
Oracle BPEL Process Manager6) often provide a graphical interface from which
BPEL code is generated. While these graphical aids improve the productivity of
programmers, these tools remain complex for non-programmers.

Recently, authoritative research have argued for the need to integrate EUP
techniques and tools in BPM/SOA platforms [11] and slowly they are emerging,
specifically, business process composition platforms [12]. The most successful
EUP tools for Web service composition can be found in the area of mashups. In
this area, Marmite [5], introduced a linked data-flow/spreadsheet view, where
formulas are column references and transformation functions are represented
as new services, hence, the spreadsheet abstraction, opposite to DataSheets, is
applied rather loosely. Furthermore, (i) mashups are oriented to data aggregation
and they lack in techniques to provide a complete process-centric composition
environment, and (ii) they still require the understanding of data-flow related
programming concepts such as data and message passing [13].

In spite of the fact that spreadsheets are the most common EUP environment
and they have been applied in an ample number of EUP systems [14], to the best
of our knowledge, DataSheets is the first spreadsheet-based data-flow language
integrated in a BPM/SOA composition environment.

6 Conclusion

In this paper we focused on the problem of data-flow modeling for EUP. Based
on an approach using spreadsheets, we implemented and evaluated the approach.
The key contributions are: (i) an integrated data-flow tool, which, during the

5 http://www.intalio.com/bpm
6 http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

http://www.intalio.com/bpm
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

DataSheets 623

design time, gives the user the faculty to specify expressions to be used at run-
time, that determine the value of a target field from values of source fields using
a language similar to the one used to specify a cell formula in spreadsheets, and
(ii) a user study conducted to evaluate the effectiveness of the proposed lan-
guage, which results demonstrate that the research prototype where we applied
the proposed techniques can compete and even outperform state-of-the-art tools
on data-flow specification and representation.

References

1. Cisco Visual Networking Index: Forecast and methodology, 2009-2014. White pa-
per, CISCO, vol. 2 (June 2010)

2. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming
systems. In: IEEE Symposium on Visual Languages and Human Centric Comput-
ing, pp. 199–206 (2004)

3. Asavametha, A., Ayyavu, P., Scaffidi, C.: No application is an island: Using topes to
transform strings during data transfer. In: International Conference on Information
Science and Applications (ICISA), pp. 1–10. IEEE (2011)

4. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

5. Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user program-
ming for the web. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 1435–1444. ACM (2007)

6. Nunez, F., Blake, E.: Vissh: A data visualisation spreadsheet. In: Joint
Eurographics-IEEE TCVG Symposium on Visualization (VisSym), pp. 209–218.
The Eurographics Association (2000)

7. Jones, S., Blackwell, A., Burnett, M.: A user-centered approach to functions in
excel. In: Proceedings of the 8th ACM SIGPLAN International Conference on
Functional Programming, pp. 165–176. ACM Press (2003)

8. Panko, R.: Spreadsheet errors: What we know. What we think we can do. Arxiv
preprint arXiv:0802.3457 (2008)

9. Weber, I., Paik, H., Benatallah, B., Gong, Z., Zheng, L., Vorwerk, C.: Formsys:
form-processing web services. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 1313–1316. ACM (2010)

10. Tarjan, R.: Depth-first search and linear graph algorithms. In: 12th Annual Sym-
posium on Switching and Automata Theory, pp. 114–121. IEEE (1971)

11. Casati, F.: How end-user development will save composition technologies from their
continuing failures. In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 4–6.
Springer, Heidelberg (2011)

12. Mehandjiev, N., Namoune, A., Wajid, U., et al.: End user service composition: Per-
ceptions and requirements. In: Proceedings of the 8th IEEE European Conference
on Web Services, pp. 139–146. IEEE Computer Society (2010)

13. Namoun, A., Nestler, T., De Angeli, A.: Service composition for non-programmers:
Prospects, problems, and design recommendations. In: 8th European Conference
on Web Services (ECOWS), pp. 123–130. IEEE (2010)

14. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., et al.: The state of
the art in end-user software engineering. ACM Computing Surveys (CSUR) 43(3),
21 (2011)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 624–638, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Decision Making in Enterprise Crowdsourcing Services

Maja Vukovic and Rajarshi Das

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{maja,rajarshi}@us.ibm.com

Abstract. Enterprises are increasingly employing crowdsourcing to engage
employees and public as part of their business processes, given a promising,
low cost, access to scalable workforce online. Common examples include
harnessing of crowd expertise for enterprise knowledge discovery, software
development, product support and innovation. Crowdsourcing tasks vary in
their complexity, required level of business support and investment, and most
importantly the quality of outcome. As such, not every step in a business
process can successfully lend itself to crowdsourcing. In this paper, we present
a decision-making and execution service, called CrowdArb1, operating on
crowdsourcing tasks in the large global enterprise. The system employs
decision theoretic methodology to assess whether to crowdsource or not a
selected step of the knowledge discovery process. The system addresses the
challenges of trade-off between the quality and time of the crowdsourcing
responses, as well as the trade-off between the cost of crowdsourcing experts
and time required to complete the entire campaign. We present evaluation
results from simulations of CrowdArb in enterprise crowdsourcing campaign
that engaged over 560 client representatives to obtain actionable insights. We
discuss how proposed solution addresses the opportunity to close the gap of
semi-automated task coordination in crowdsourcing environments.

Keywords: Enterprise, Organizational Services, Crowdsourcing.

1 Introduction

Crowdsourcing aims to outsource tasks that are traditionally performed by designated
human agents to an often, undefined large group of humans online. Enterprise domain
is thriving with examples of innovative and successful examples of crowdsourcing, by
engaging both external and internal contributors. Models of crowdsourcing can be
found along the different stages of product and service lifecycle [1]: innovation [2],
design [3], development [4], quality management [5], and testing [6] to name a few.

Crowdsourcing appeals to enterprises due to the promise of low cost, access to
scalable workforce online. The focus of our work is on enterprise crowdsourcing
model where only in-house experts participate, as opposed to the “open-call” model
where tasks are open for contribution to external participants. We seed the
crowdsourcing campaign by selecting participants based on their expertise and enable
them to further route knowledge requests within their social work networks.

1 CrowbArb is short for Crowd Arbitrage.

 Decision Making in Enterprise Crowdsourcing Services 625

Fig. 1. Enablement of crowdsourcing capabilities in business processes

Figure 1. shows key actors and activities in setting up a crowdsourcing campaign.
The business team designs crowdsourcing tasks, identifies target crowd, and designs
the incentives. Business and development teams deploy the crowdsourcing tasks onto
the service of choice. Crowdsourcing service automates crowd management and
coordination of tasks and response consolidation. Business teams analyze the
responses, evaluate their quality and decide whether to re-approach the crowd.

Cost of crowdsourcing, aside from crowd engagement (incentives), includes task
design, campaign management, and quality assurance. The decision of whether the
tasks meet the quality expectations and whether to rerun the crowdsourcing task is
challenging and complex. Even when there are no tangible incentives involved,
expert’s time (away from their main job) is affected, and cost of re-engagement
increases over the time of crowdsourcing campaign; and at the same time it impacts
experts’ productivity in the on-going operational processes.

In this paper we present a decision-making service CrowdArb, which automates
the process of identifying whether a given activity should be crowdsourced or not.

The main contributions of this paper are:

1. Novel application of enterprise crowdsourcing to strategic insights.
2. The model for decision making for crowdsourcing service.
3. Evaluation results from the CrowdArb simulation with model parameters derived

from real-world enterprise crowdsourcing effort engaging over 560 experts.

Next section puts our work in the context of state of the art of decision-making
applications for crowdsourcing. Section 3 describes the business scenario, from which
we derive model parameters for CrowdArb. Section 4 presents the core functions of
the crowdsourcing service. Section 5 details the design of CrowdArb and evaluation
results from simulation runs, and discusses the expected utility of crowdsourcing
campaign. We conclude and outline future work in Section 6.

2 Related Work

Different parameters may affect the decision to crowdsource: availability of skilled
workers, budget, task complexity, time, contribution quality, etc. Research community

626 M. Vukovic and R. Das

is exploring applications of different decision-making mechanisms in crowdsourcing
processes, such as artificial intelligence (AI) and iterative learning.

Dai and Weld [8,9] develop a novel AI planner, called TURKONTOL, to optimize
and control crowdsourcing workflows. They demonstrate robustness of the planner in
a variety of simulated scenarios and parameter settings, showing how it performs with
higher utilities than previous, fixed policies. We evaluate CrowdArb based on model
insights derived from the real-world crowdsourcing process in a large enterprise.

Karger et al. [10,11] consider a general model of crowdsourcing tasks, and pose the
problem of minimizing the total price (i.e., number of task assignments) that must be
paid to achieve a target overall reliability. They propose a novel algorithm for
deciding which tasks to assign to which workers and for inferring correct answers
from the workers’ answers. Their algorithm, which is a based on based on low-rank
matrix approximation, outperforms majority voting and, in fact, is asymptotically
optimal through comparison to an oracle that knows the reliability of every worker.

Kittur et al. [12] present CrowdForge, a general-purpose framework for solving
complex problems through micro-task markets. CrowdForge manages the
coordination between workers so that complex artifacts can be effectively produced
by individuals contributing only small amounts of time and effort. The framework
provides a systematic and dynamic way to break down tasks into subtasks and
manage the flow and dependencies between them. The focus of this work is more on
the system support for crowdsourcing workflow management, and less on support for
time, quality and price tradeoff in the crowdsourcing process.

Other researchers [13,14] have looked into the relationship between financial
incentives and performance by marshalling ideas and methodologies available in
economic theory and social science. Mason and Watts [13] demonstrate that the
increased incentives incerased the quantity, but not the quality of work. They studied
the effect of financial incentives on performance in Amazon Mechanical Turk (AMT)
[15]. Crowd members who were paid more considered that their work was valued
more. As a result they were no more motivated to work harder than the crowd
members who were paid less. Mason and Watson suggest that the structure of the
incentives could result in better work for less pay.

Horton and Chilton [14] extend the work in [13] by developing a simple rational
model of labor supply in crowdsourcing systems. The model factors out the
reservation wage—the key parameter in a labor supply model—by making it invariant
with respect to the experimental parameters. In experiments in AMT, they find mixed
evidence for the rational model. Despite being sensitive to the price incentives
workers seemed to be insensitive to the magnitude of the task-completion time. The
authors explain the divergence between the theoretical predictions and experimental
results by showing that some of the workers followed a suboptimal strategy of aiming
to reach salient target earnings instead of maximizing their total earnings.

Decision making in crowdsourcing is a complex problem, necessarily
incorporating economic, social and AI mechanisms to capture crowd behavior,
incentives and crowdsourcing process targets (in terms of time, quality, etc.). One
challenge that remains is effective inference of parameters required for decision-
making in the context of the crowdsourcing task.

 Decision Making in Enterprise Crowdsourcing Services 627

3 Business Context

Knowledge about clients, their infrastructure and processes is in the collective
possession of business and technical teams working with a client. Sales and technical
teams collaborate with client to understand their requirements and propose technical
solutions. As a result different experts possess the knowledge about one or more
aspects of client profile (e.g. product and services that they have purchased, how these
are configured and customized to client’s needs, client industry knowledge, etc.).

In order to capture client’s pain points and potential sales opportunities, we employ
crowdsourcing to engage sales and technical to uncover details about the client, such
as their existing infrastructure. This data is the key input into decision-making process
for strategy discussion at the client-level. Once the data is collected, a team of
analysts performs quality assurance. Submitted data that doesn’t meet quality
expectations may be returned to experts for improvement. Once the data is of
acceptable quality, business team will decide whether to host an in-person workshop
engaging multiple client representatives. The outcome of the workshop is a set of
client strategies. Figure 2 captures the main steps in our scenario.

Fig. 2. Scenario: Client assessments using crowdsourcing

Client assessments were formed as a questionnaire consisting of 15 sections, ten of
which captures details about the workloads (types of software and services) that
clients are using, and the other five captured details about the infrastructure hosting
them. Workload section consisted of 15 questions capturing the details about the
offerings, and infrastructure section captured 10 questions about the infrastructure.
All questions were mandatory. To meet the minimum quality requirements users had
to enter five workloads and one data center section. Business analysts evaluated the
results daily and for the responses that did not meet the quality expectations would
have to manually reopen the task and reach back to the client team, requesting more

628 M. Vukovic and R. Das

details. Once all the client teams returned assessments that met quality expectations, a
workshop would be scheduled to further discuss strategies for supporting each client.

Figure 3. shows a snippet of a knowledge request for workloads (crowdsourcing
task). Each expert has a number of controls available at their hand, shown on top of
the figure. They can save draft of the knowledge request at any point in time, or
submit it once all mandatory questions have been answered. They can delegate all or
selected questions, where checkboxes next to the question indicate if the question is
selected for delegation. Asterisks next to the question number indicate that the
question is mandatory. A knowledge request can also include optional questions. If
two users are simultaneously working on the same task, they will be notified when the
other user has made a change and will be asked to refresh their form using the
“Refresh page” button. Administrator can cancel and delete any knowledge requests.
View button offers insights into the collaboration graph and delegation and response
history.

Fig. 3. Sample knowledge request for workload discovery

4 Enterprise Crowdsourcing Service

To implement principles of collaborative knowledge discovery we employ system
BizRay [7], a general-purpose, cloud-enabled, enterprise crowdsourcing self-service
that expedites delivery of crowdsourcing campaigns to discover critical tacit business
knowledge that is in collective possession of the experts. Knowledge requests are
captured as a distributed questionnaire, which consists of one or more sections, each
containing one or more questions. BizRay manages its lifecycle, similar to a
workflow system and facilitates delegation of requests. More than one expert can

 Decision Making in Enterprise Crowdsourcing Services 629

complete each questionnaire instance. If the information gathered is incomplete or
unidentified, the user can forward the request to another expert, asking for their help.

As experts contribute their knowledge, the system keeps track of their identity
resulting in the formation of communities around the object of that inquiry.
Crowdsourcing is an effective mechanism to engage multiple team members
concurrently to discover different pieces of a knowledge request. Furthermore it
allows for team members to engage others (Figure 4.), which is a useful feature if the
target client representative may have left the organization or moved to a different role.

Fig. 4. Collective Intelligence Approach to Knowledge Discovery [7]

Figure 5. shows the typical flow of operations in BizRay enterprise crowdsourcing
including the extensions for automated decisions (steps 5-7), which are the
contributions of this work. The operation starts with a system administrator
developing a questionnaire (step 1a), which entails design of a knowledge request
template consisting of questions that can be grouped into multiple sections.
Questionnaire is designed around a given entity, in our case that is a “client”. In step
1b, the system administrator assigns tasks to the initial expert crowd. In our scenario
the experts include client representatives and technical sales experts. In step 1c,
BizRay automatically sends a notification with a task assignment to target expert
group. At that point, experts either work and complete their tasks (step 2a), or if they
are unable to complete the request on their own they may delegate one or more
questions to team members in their social work network (step 2b). During the lifetime
of the crowdsourcing campaign system will periodically trigger reminders for pending
tasks, and escalations to management where appropriate (step 3). Administrator can
pull the reports with the current status and responses to evaluate the results (step 4).

In order to automate the decision-making process about the quality of the responses
and whether to engage crowd members again, we have extended BizRay to support
steps 5-7, which is one of the contributions of this paper. In step 5, CrowdArb
computes the quality of the responses received. Before the deployment system
administrator defines the quality rules (e.g. which questions have to be answered, or
count of completed questions or sections). These rules are used to identify low quality

630 M. Vukovic and R. Das

contributions. In step 6, low quality contributions and the cost of crowdsourcing are
used as parameters into the decision theoretic model. In step 7, selected tasks are
resent to the crowd for further refinement in order to improve the quality levels.

BizRay is implemented as a Web-based service. It interfaces with LDAP-based
enterprise directory service to authenticate enterprise experts, and to obtain
organizational data. BizRay exposes REST-based APIs allowing for integration with
other systems and services. APIs allow for full task and questionnaire management
and reporting capabilities, including e-mail and notification triggers.

Fig. 5. Extension of BizRay using CrowdArb service for decision-making

5 Decision-Theoretic Approach and Evaluation Results

This section outlines the probabilistic graphical model we employ in CrowdArb
service for decision making in enterprise crowdsourcing service. The aim of the
CrowdArb is to solve the following decision problem. At the start of any decision
interval, the administrator is unsure about the state or the readiness of each of the
client representatives (agents) for inclusion in the workshop. The state of each client
representative evolves on its own every week as each agent works independently with
his or her client. If in any decision interval, the administrator believes that a sufficient
number of agents are ready for the workshop she can invite that subset of the agents
to the workshop. While inviting agents who are ready adds utility to the overall
business process, including agents to the workshop who are not ready has its own
costs. To reduce the uncertainty about the state of the agents, the administrator can
choose to run an email campaign in each decision cycle to contact the agents to get a
better understanding of their state of readiness. Since the email campaign has its own

 Decision Making in Enterprise Crowdsourcing Services 631

costs, the campaign has to be limited only to a subset of the agent population. It is
also worth noting that the email campaign itself may also change the state of the
contacted agents who may be more motivated to work expeditiously with his client.
Thus, given the cost of the email campaign, the problem for the administrator is to
determine which subset of client representatives to contact in each decision cycle so
as to maximize the overall expected utility.

CrowdArb models the above scenario as follows. In a given decision interval, the
administrator models the readiness of each client representative in completing a
questionnaire as a random variable X = {s1, s2, s3}. In total, an agent has to
complete 15 sections of which 10 are related to workloads and 5 are related to data
centers. In this model, the state s1 (= poor) indicates that the agent is unable to enter
four sections on workload and less than one section on data centers. An agent is in
state s2 (= fair) when she is able to provide information on at least four workloads and
one data center (5 sections completed). The state s3 (= good) equates to an agent
being able to complete sections on more than four workloads and more then one data
center (or cumulatively, complete more five sections). As noted earlier, the
administrator is uncertain about the value of X for each agent and maintains a
probability distribution over {s1, s2, s3}.

Table 1. Utility function U(X,A)

 Actions
 a1 a2

States
s1 0 -15
s2 0 10
s3 0 40

We define the administrator's action (decision) space for each agent by variable A
= {a1, a2}, where a1 denotes that the agent is not included in the workshop, and a2
denotes that the agent will be included the workshop. Agents who are in good state s3
or fair state s2 are in better position to contribute to the workshops than agents who
are in state s1. This is reflected in the systems utility function, which is given by
U(X,A) in Table 1. Costs in Table 1 are tied to cost of running of the workshop, but
have been anonymized so as not to expose directly underlying business model.

Based on historical data, our prototype records how the state of each agent evolves
over time as each agent works independently with her client. An agent who is in state
si proceeds to sj with a small probability in each time interval between successive
decision periods. A sample time-evolution matrix, TE, which can be used in our
CrowdArb prototype is given in Table 2.

Table 2. Time-evolution matrix

 States(t+1)
 s1 s2 s3

States(t)

s1 0.85 0.1 0.05
s2 0.05 0.85 0.1
s3 0.1 0.05 0.8

632 M. Vukovic and R. Das

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[s
1
, s

2
, s

3
] = [0 0 1] [s

1
, s

2
, s

3
] = [1 0 0]

[s
1
, s

2
, s

3
] = [0 1 0]

E
xp

. U
til

ity
 w

ith
ou

t E
m

ai
l C

am
pa

ig
n

0

5

10

15

20

25

30

35

40

Fig. 6. Expected utility without email campaign

The dynamics of the state of each agent between two successive decision intervals
can be represented as a vector field overlaid on a simplex as shown in Figure 6. The
color of each of the sampled X in the simplex represents the maximum expected
utility for the optimal action in that X: MEU[D[a*]] = Sum_a* (P(X|A) U(X,A)). For
example, for an agent with X = [1,0,0], that administrator can opt to not invite him to
the workshop, resulting in a maximum expected utility of zero. Instead, inviting an

Fig. 7. Influence Diagram

 Decision Making in Enterprise Crowdsourcing Services 633

agent with X = [0,0,1] results in a maximum expected utility of 40. The vector field
shows that due to the time-evolution matrix, the administrator’s uncertainty over X
grows over time even if there is absolute certainty of the initial value of X.
Consequently, the expected utility per agent also decreases over time.

Figure 7 shows the administrator's decision problem as an influence diagram (but
without the dashed arrows). If the administrator can avail of the Email Campaign,
then the influence diagram is extended to include the dashed arrows in Figure 7. As
noted earlier, the importance of the email campaign is twofold. First, agents who are
contacted via the email campaign are motivated to work with their respective clients
and improve their state of readiness. Second, if the agent then responds to the email
campaign, then the administrator has a better estimate of the readiness of the agent for
possible inclusion in the workshop. Based on historical data, the administrator can
define CPT_ec, a conditional probability table of an agent's state after the email
campaign given the agent's state before the email campaign. An example of CPT_ec
is given in Table 3.

Table 3. Conditional probability table for agent’s state after email campaign

 States(t+1)
 s1 s2 s3

States(t)
s1 0.8 0.05 0.15
s2 0.05 0.8 0.15
s3 0.05 0.15 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[s
1
, s

2
, s

3
] = [0 0 1] [s

1
, s

2
, s

3
] = [1 0 0]

[s
1
, s

2
, s

3
] = [0 1 0]

E
xp

. U
til

ity
 w

ith
 E

m
ai

l C
am

pa
ig

n

0

5

10

15

20

25

30

35

40

Fig. 8. Expected utility with email campaign

634 M. Vukovic and R. Das

Given a conditional probability table CPT_ec, the administrator computes a new
maximum expected utility MEU_ec[D[a*]] for each agent if she were to include the
agent in the email campaign. The distribution of MEU_ec over the unit simplex of X
is shown in Figure 8. The value of the email campaign, V_ec, can now be quantified
as the difference between MEU_ec and MEU without the email campaign. The
administrator can opt to contact the agent if the agent's V_ec exceeds the cost of
running the email campaign for that agent.

Figure 9 shows the distribution of V_ec over the unit simplex of states. Note that
V_ec is close to zero if the administrator is fairly certain about the state of the agent.
For example, for an agent with X is close to [0,0,1], the administrator knows that
given the time-evolution matrix, the agent's state X is not going to change
dramatically away from [0,0,1]. Since the agent's MEU at X = [0,0,1] is already near
the maximum value, and contacting the agent via the email campaign is not going to
result in a significantly higher MEU_ec. Similarly, when X is very close to [1,0,0],
the administrator finds that given the agent's extremely poor state of readiness, the
agent is unlikely to increase to significant increase in MEU_ec following an email
campaign. On the other hand, when the agent's state is less certain, for example X =
[0.66,0,0.33], V_ec is high as information gained through the email campaign is most
likely to impact the administrator's decision of whether to include the agent in the
workshop or not. Cost of email campaign per agent. C_ec was set to 3 utility units,
and an agent was contacted only if V_ec > C_ec.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[s
1
, s

2
, s

3
] = [0 0 1] [s

1
, s

2
, s

3
] = [1 0 0]

[s
1
, s

2
, s

3
] = [0 1 0]

V
al

ue
 o

f E
m

ai
l C

am
p

ai
gn

0

1

2

3

4

5

6

7

8

9

Fig. 9. Value of email campaign

 Decision Making in Enterprise Crowdsourcing Services 635

In practice, we find that not all agents who are contacted through the email
campaign are able to respond. Based on historical data, the response rate is typically
0.2. In our prototype, for agent's who do not respond to the email campaign (i.e., in
addition to those agent's who are not enrolled in the email campaign), the
administrator updates the states of the agents using the time-evolution matrix.

To quantify the efficacy of CrowdArb, we have performed simulations with model
parameters derived from real-world BizRay use-cases. In particular, CrowdArb
simulated 560 client representatives with known initial states as follows: 60% in poor
state of readiness (X = [1,0,0]), 30% in fair state of readiness (X = [0,1,0]), and 10% in
good state (X = [0,0,1]). We applied CrowdArb to decide whether to include each
agent in the email campaign each week for 20 consecutive weeks beginning at the
start of a financial quarter, and then decide whether or not to hold a workshop.

Figure 10. compares the sorted distribution of maximum expected utility (MEU) of
all the 560 agents obtained at the 20th decision cycle (to take one example) from two
cases: (a) when no email campaign was used, and (b) when CrowdArb determined
which agents to include in the email campaign based on the criterion V_ec > C_ec.
As expected, most of the additional utility derived from the email campaign arises not
from agents who are already having very high (or very low) expected utility, but from
those whose expected utility is 15 (corresponding to X = [0,1,0]) or less.

Fig. 10. Sorted distribution of maximum expected utility at 20th decision cycle

Instead of focusing only on one decision cycle Figure 11. compares the time series
of total expected utility obtained in the same two cases (i.e., without email campaign
and with email campaign) starting from the same initial configurations.

636 M. Vukovic and R. Das

Fig. 11. Time-series based comparison of total expected utility

We find that in both cases, there is an initial rise in the total expected utility for the
first 10 decision cycles. This rise can be attributed to the initial configuration of client
representatives 90% of whom were not in a good state readiness, who through the
natural time-evolution migrated to fair or good state.

However, when CrowdArb was used to manage the email campaign, the rise in
total expected utility was even higher. If this total expected utility crosses a
predetermined threshold (e.g., cost of organizing the workshop), the administrator can
choose to host the workshop by inviting agents with highest expected utility. For
example, if this threshold is set to, say, 9000 utility units, then with CrowdArb, the
administrator can choose to organize the workshop after the 12th decision cycle. On
the other hand, in the absence of CrowdArb and with the same initial configuration,
the administrator may choose to not organize the workshop since the total expected
utility never crossed the threshold in this example.

6 Summary and Future Work

For enterprises to benefit from crowdsourcing it is necessary to have a systematic
method to evaluate the tradeoffs between time and quality of crowd contributions and
available budget to execute crowdsourcing campaigns. In this paper we presented a
CrowdArb service for decision-making integrated with the enterprise crowdsourcing
service, which assesses whether to crowdsource a specific stage of business process or
not given a set of parameters. CrowdArb employs decision-theoretic methodology
that computes the expected utility for a decision problem D, given an action a; action

 Decision Making in Enterprise Crowdsourcing Services 637

being execution of crowdsourcing. CrowdArb takes into account probability of
achieving high-quality crowd contributions over a time period.

We demonstrated the effectiveness of CrowdArb in addressing the challenges of
trade-off between the quality of crowdsourcing tasks and the cost of engaging
crowdsourcing experts. We presented results from CrowdArb simulation based on the
model parameters derived from enterprise crowdsourcing campaign that engaged over
560 client representatives. Crowdsourcing tasks took the form of a complex
knowledge request, which was assigned to one or more team members working with a
client. We discussed how proposed solution addresses the opportunity to close the gap
of semi-automated task coordination in crowdsourcing environments.

Business processes are collections of activities with a defined flow of execution.
As process steps are considered for crowdsourcing, enterprises need to be able decide
whether to make an investment or not. Applications of the proposed approach go
beyond use case described in paper. For example, on-Cloud migration is one process
that can benefit of workflows of crowdsourcing campaigns and networks for experts.
By engaging network and system admins, application and business process owners,
business analysts and deployment teams we can efficiently discover the infrastructure
and financial characteristics of existing workloads and the underlying topology to
facilitate move of legacy applications to Cloud infrastructures.

Our future work will focus on a method for automatically identifying the
parameters required for decision-making in the context of generic crowdsourcing
services, irrespective of the crowdourcing task type and complexity.

References

1. Vukovic, M.: Crowdsourcing for Enterprises. In: SERVICES, pp. 686–692 (2009)
2. Bayus, B.L.: Crowdsourcing New Product Ideas over Time: An Analysis of the Dell

IdeaStorm Community. Management Science 59, 226–244 (2013) (published online before
print November 5, 2012), doi:10.1287/mnsc.1120.1599

3. Brabham, D.C.: Moving the crowd at Threadless: Motivations for participation in a
crowdsourcing application. Information, Communication & Society 13(8), 1122–1145
(2010)

4. Lakhani, K., Garbin, D., Lonstein, E.: TopCoder (A), Developing Software through
Crowdsourcing. Harvard Business School Case 610-032 (2009)

5. Vukovic, M., Natarajan, A.: Collective Intelligence for Enhanced Quality Management of
IT Services. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented
Computing. LNCS, vol. 7636, pp. 703–717. Springer, Heidelberg (2012)

6. Smith, R.: Using games to improve productivity in software engineering. In: Proceedings
of the ACM SIGKDD Workshop on Human Computation, HCOMP 2010 (2010)

7. Laredo, J., Vukovic, M., Rajagopal, S.: Service for Crowd-Driven Gathering of Non-
Discoverable Knowledge. In: Pallis, G., et al. (eds.) ICSOC 2011 Workshops. LNCS,
vol. 7221, pp. 283–294. Springer, Heidelberg (2012)

8. Dai, P., Mausam, Weld, D.S.: Decision-Theoretic Control of Crowd-Sourced Workflows.
In: AAAI 2010 (2010)

9. Weld, D.S., Mausam, Dai, P.: Execution control for crowdsourcing. In: Proceedings of the
24th Annual ACM Symposium Adjunct on User Interface Software and Technology
(UIST 2011 Adjunct), pp. 57–58. ACM, New York (2011)

638 M. Vukovic and R. Das

10. Karger, D.R., Oh, S., Shah, D.: Iterative Learning for Reliable Crowdsourcing Systems. In:
Neural Information Processing Systems, pp. 1953–1961 (2011)

11. Karger, D.R., Oh, S., Shah, D.: Budget-optimal Crowdsourcing Using Low-rank Matrix
Approximations. In: 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 284–291 (2011)

12. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing complex
work. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology (UIST 2011). ACM, New York (2011)

13. Mason, W., Watts, D.: Financial Incentives and the “Performance of Crowds”. In:
Proceedings of ACK SIGKDD Workshop on Human Computation, HCOMP (2009)

14. Horton, J., Chilton, L.: The Labor Economics of Paid Crowdsourcing. In: Proceedings of
the 11th ACM Conference on Electronic Commerce (2010)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 639–651, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards Optimal Risk-Aware Security Compliance
of a Large IT System

Daniel Coffman1, Bhavna Agrawal2, and Frank Schaffa2

1 Walker Digital LLC, Stamford, CT, USA
DanielMark.Coffman@walkerdigital.com

2 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
{bhavna,schaffa}@us.ibm.com

Abstract. A modern information technology (IT) system may consist of thou-
sands of servers, software components and other devices. Operational security
of such a system is usually measured by the compliance of the system with a
group of security policies. However, there is no generally accepted method of
assessing the risk-aware compliance of an IT system with a given set of security
policies. The current practice is to state the fraction of non-compliant systems,
regardless of the varying levels of risk associated with violations of the policies
and their exposure time windows. We propose a new metric that takes into ac-
count the risk of non-compliance, along with the number and duration of viola-
tions. This metric affords a risk-aware compliance posture in a single number. It
is used to determine a course of remediation, returning the system to an accept-
able level of risk while minimizing the cost of remediation and observing the
physical constraints on the system, and the limited human labor available. This
metric may also be used in the course of the normal operation of the IT system,
alerting the operators to potential security breaches in a timely manner.

Keywords: Risk-aware compliance, cloud computing, compliance metrics,
compliance optimization.

1 Introduction

Modern information technology (IT) systems are large, and disparate. They may con-
sist of thousands of servers, software components, networks, and other devices. They
may be located in one or several data centers. An IT system may contain resources
owned by a number of different organizations or individuals, but managed by a single
entity. Increasingly, the server systems may not even be physical systems themselves,
but may be hosted on a number of cloud servers; we designate the server systems as
endpoints to distinguish them from the cloud servers. Fig. 1 illustrates an IT system
consisting of ns endpoints, under the control of no operators. Additionally, there might
be a hierarchy of endpoints belonging to different clusters or clients in a complex
delivery center.

The proper operation of an IT system may be interrupted for a number of reasons.
Among them are hardware and software failures, resource limitations and malicious

640 D. Coffman, B. Agrawal, and F. Schaffa

attacks. The former will be addressed through the adoption of monitoring and best
practices, but the latter problems related to a system’s security, require special scruti-
ny. Most often, the managing entity will enumerate the potential threats to the sys-
tem and will develop and implement a set of policies as a first step of protection from
malicious attacks. Such policies may be common to all endpoints or unique to a par-
ticular set of endpoints.

Fig. 1. An IT system comprising ns endpoints under the control of no operators

It is the duty of the operators to ensure that each policy is respected on each rele-
vant endpoint. Evidently, not all endpoints will simultaneously be in compliance with
each policy. Frequently, there will be a contractual obligation that obliges the manag-
ing entity to maintain the endpoints at a certain level of compliance. However, there
is no generally adopted method for measuring this level of compliance as also pointed
out by authors in [1] and [2]. There are still more definitions available on the security
metrics [3,4] but not many for compliance. Savola [5] defines the compliance metrics
as a set of different factors, like number of policy exceptions requested/granted, cost
of control, number of security incidence, elapsed time from incident identification to
remediation etc., but it is not a single number.

The current practice for measuring compliance is for the operators to report the
fraction of the endpoints not in compliance with one or more policies [1,6]. This
approach, however, has at least three significant weaknesses. It ignores the fact that
some violations of policy may be of a much more serious nature than others. Further
it ignores the time-dependence of such a violation: some violations are initially not

Endpoints
hosted within
Cloud

Individual
Endpoint

.

.

.

Policies

.

.

.

n o
 O

pe
ra

to
rs

n s
 E

nd
po

in
ts

 Towards Optimal Risk-Aware Security Compliance of a Large IT System 641

terribly serious, but become much more serious as they are left unrepaired. Finally,
some policies may yield only a single result on a single endpoint, whereas others may
yield many results; this must be accounted for properly.

An example will prove illustrative. Consider the case of two policies: (i) that
passwords must expire after 90 days; and (ii) that on a UNIX system, only the root
user may write to the /sbin directory. Obviously, violations of policy ii are poten-
tially much more serious than violations of policy i. However, checking all accounts
on an endpoint according to policy i will yield Qi responses where Qi is the number of
user accounts with one response per account. On the other hand, checking an endpoint
for compliance with policy ii will yield only a single response. Finally, a password
being unchanged for a short time after its expiration date will probably cause no harm,
but the longer it remains unchanged, the greater the threat it represents that the end-
point’s security will be compromised.

Once some violations of the policies have been observed, the system must be
brought back into as compliant a state as possible. Again, there is no generally ac-
cepted way to accomplish this and only a few accounts of this in the literature. Levi
[7] presents a method for generating a prioritized list of vulnerabilities, but he does
not take into account the aggregation impact, which is when a large number of
slightly lower risk vulnerabilities might pose a higher risk than a single high risk vul-
nerability. Additionally, he does not account for the impact of time for which these
vulnerabilities are exposed as explained in the example above. Taraz [8] presents a
method of computing the vulnerability score of a single device, but not for a large
group of devices.

In the subsequent sections of this paper, we present a compliance metric that ad-
dresses these weaknesses. We develop a methodology using this metric for restoring
the IT system to maximal compliance within given constraint of resources and cost. In
addition, we show how this metric is used in the daily operations of the IT system.

2 Risk-Aware Compliance Metric

When calculating the rate of compliance of an IT system, the current practice ignores
the different risks associated with different types of violations. However, such violations
may be of very different characters in the risks they pose to the IT system. Evidently,
some violations may be much more serious if they are left uncorrected for a substantial
length of time. We propose a metric which takes these factors into account.

Consider a single policy k and a single endpoint l. We define P(Nkl, Qkl, Rk) as the
probability that the endpoint is safe according to policy k. P is given by the binomial
distribution:

 P(Nkl,Qkl, Rk) =
Qkl

n

n=0

Nkl

 Rk
n (1− Rk)Qkl −n

 (1)

Where

Nkl = number of responses indicating compliance with policy k on endpoint l
Qkl = Total number of responses from checking policy k on endpoint l

642 D. Coffman, B. Agrawal, and F. Schaffa

Rk = Risk factor associated with policy k (also a probability of compromise for a
single violation of policy k)

Here,

n

Qkl are the usual binomial coefficients. The risk factors, Rk, are assigned

values between 0 (lowest risk) & 1 (highest risk) based on the risk associated with the
policy. For the paper, we do ad hoc assignment, but in practice they are assessed by the
area specialists familiar with the various risks and policies. As an example, if the policy
requires “password never expires box should be unchecked”, there might be 10 user id’s
which are compliant, and 5 that are not, then the value of N will 10, and Q will be 15 for
this endpoint and this policy. Note that for Q =1, P(0,1, R) =1− R , that is the probabili-

ty of being safe (not being at risk) after the detection of a single violation.
Once we determine the probability of being safe from one policy violation on one

endpoint, we can combine these to determine the compliance metric for a larger system
of endpoints, governed by a number of policies. We define the risk-aware compliance
metric, Λ , as the product of these probabilities for all endpoints, and all policies:

 Λ = P(Nkl,Qkl, Rk)
l=1

ns

∏
k=1

np

∏ (2)

where np is the total number of policies being checked on each endpoint, and ns is the
total number of endpoints. This metric evaluates to 1 when all the endpoints are
compliant with all the policies, and tends to zero with a large number of violations.
Additionally, we note that Λ falls very rapidly with the number of detected violations
(=Q-N, non-compliant messages) from its maximum value of 1, particularly for high
risk violations. This is illustrated in Fig. 2, where this compliance metric is plotted
against the number detected violations for policies with different risk factors.

Fig. 2. Risk-aware Compliance Metric as a function of the number of detected violations for
three different risk factors

��

����

����

����

����

	�

��
� 	�� 	
� ��� �
�

��
�

��
�

��
��

��
�

��
��

��
��

�
��

���
�

�������� �!������"�#����$���

�������	
�������	�������
���
%�&'�����(���)�
��"��������(���)�
*�������(���
)�

 Towards Optimal Risk-Aware Security Compliance of a Large IT System 643

The metric may be extended to incorporate the duration of a detected violation, that
is, the time elapsed since the violating condition was first observed. We do this by
modifying the risk factors associated with the policies to include this duration

 Rk (ti) = Rk + (1− Rk)(1− e−ti /τ k) (3)

where ti is the time for which the detected violation has remained unrepaired, and τk is
the criticality time constant for this policy. Once again, the area specialists will be
able to specify the criticality time constants based on their experience and knowledge.
As we would expect, the risk factor increases from its original value to a maximum of
1 as the elapsed time increases, as depicted in Fig. 3a. Fig. 3b shows the correspond-
ing change of Λ , which slowly goes to zero from its original value as time goes by.
The results are plotted for a single detected violation for clarity of presentation, how-
ever, behavior is similar for multiple violations of multiple policies.

Fig. 3a. Risk factors as a function of time, for a time constant τ = 10 in arbitrary units

Fig. 3b. Compliance Metric as a function of time, for a single detected violation and three
different risk factors

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Ri
sk

 F
ac

to
rs

 (R
)

Time

Risk Factors Over Time

High Risk (0.8)
Medium Risk (0.4)
Low Risk (0.05)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Co
m

pl
ia

nc
e

M
et

ri
c

(L
am

bd
a)

Time

Risk aware Compliance Metric Over Time

Low Risk (0.05)
Medium Risk (0.4)
High Risk (0.8)

644 D. Coffman, B. Agrawal, and F. Schaffa

The risk-aware compliance metric is used in several different ways. It functions
first as a “tripwire”; the metric is calculated periodically and a message is sent to the
operators when the value of the metric falls below some predefined value. This typi-
cally indicates that some high risk violation has just been detected. Further, with the
incorporation of the duration of observed violations, the value of the metric will de-
grade even if no new violations are reported. Finally, by observing the pattern of the
measured values of the metric over time, it is possible to detect problems in the confi-
guration of the IT system: e.g. if the metric exhibits considerable scatter and disconti-
nuous behavior rather than varying smoothly over time, it is indicative of systematic
problems.

3 Optimal Risk-Aware Compliance

Once an IT system becomes non-compliant, the observed violations will need to be
remediated. In this section we describe an “optimal” way to bring system back to
maximal compliance given system and human resource constraints. The system itself
contains a finite set of resources such as network bandwidth. The endpoints also are
constrained by say their available memory or CPU cycles. Each remediation will con-
sume some portion of these resources. Similarly, each remediation will be accompa-
nied by a certain cost, system and human. Finally, the remediation will be performed
by human operators, each requiring a certain amount of time for each task and there-
fore a total time to complete all of their assigned tasks. The time required for the
remediation is the longest of these total times. An optimal course of remediation will
be accomplished in allowed time, at minimum cost, respecting all of the system re-
source constraints, and bringing the system back to maximum compliance.

We propose that the best remediation solution will maximize the risk-aware com-
pliance metric, Λ, described in the last section while simultaneously minimizing the
costs of such remediation and observing the constraints noted above. Let Δbe the set
of remediations to be performed, and if Λ can be written as a function of Δ , then
we can define the objective function as

 χ = −α ln(Λ(Δ))+ C(Δ) (4)

where C is the total cost of remediation and α is an empirical, non-negative scale

factor. Obviously maximizing)(ΔΛ is equivalent to minimizing))(ln(ΔΛ− . Hence,

we seek to minimize χ subject to the constraints. The value of α is used to adjust

the desired balance of risk and cost. We further define N as the initial number of
responses indicating compliance and N is the number of final compliance messages.
Hence, NN −=Δ .

The following subsections describe the cost and constraints for this objective
function.

 Towards Optimal Risk-Aware Security Compliance of a Large IT System 645

3.1 Cost

We use a linear approximation for defining cost,)(ΔC ,

 C(Δ) = CkΔk

k=1

np

 (5)

where np = number of policies, Ck is the cost to repair one violation of policy k and
Δk is the total number remediations performed according to policy k, which can be

further defined as:

 Δk = Δ jkl

l=1

ns

j=1

no

 (6)

where no is the number of operators, ns is the number of endpoints, and Δ jkl is the

number of remediations performed by operator j according to policy k on endpoint l.
While we use a linear approximation of cost, this is not a strict requirement, and

can be generalized without impacting the formulation and solution of the problem

The optimal system performance then consists in finding that set { }jklΔ=Δ

which maximizes)(ΔΛ while simultaneously minimizing)(ΔC subject to the

constraints.

3.2 Constraints

For each of the system resource, e.g. CPU, memory, disk space, etc., there is a con-
straint on the maximum amount available. The performance of all remediations on a
particular endpoint can never consume more than this amount. Furthermore, assuming
that there is a maximum time allowed for all remediation work to be completed (e.g.
total amount of time across all operators), the time required to perform the remedia-
tion must not exceed this maximum. We defined these two constraints below.

Resource Constraints
On endpoint l, there will be an amount of a resource of type m, say Gml. The amount
must be greater than the amount required by all of the desired remediations. That is

 Gml ≥ FkmΔkl

k=1

np

 (7)

 Δkl = Δ jkl

j=1

no

 (8)

where here, Fkm is the amount of a resource of type m to required for one remediation
according to policy k.

646 D. Coffman, B. Agrawal, and F. Schaffa

Time Constraints
Operator j will require a time tj to complete his or her work. With the assumption that
the individual tasks are completed sequentially, without interruption or overlap, this
time is given by

 t j = TkΔ jkl

k=1

np

l=1

ns

 (9)

where Tk is the time required to work on policy k.
The amount of time to complete all the remediations is obviously given by the

longest such time. If the maximum allowable time for all remediations is T then we
require

 T ≥ max
j

(t j) (10)

3.3 Optimization Function

Using the definition of cost and constraint functions defined above, the objective (mi-
nimization) function in Eq (4) can be re-written as (employing the standard technique
of combining constraints with objective function using Lagrange multipliers):

χ = −α ln(Λ(Δ))+ CkΔk +
k=1

np

 Lm (Gml − FkmΔkl)+ μ j (T − TkΔ jkl)
k=1

np

l=1

ns

j=1

no

k=1

np

l=1

ns

m=1

nR

 (11)

Where nR is the number of resource types, and Lm and μj are Lagrange multipliers. For
computational tractability, we approximate the first term. First, by definition (drop-
ping subscripts for simplicity of presentation)

 ln(Λ) = ln(P(N,Q, R))∏ = ln(P(N,Q, R)) (12)

Now consider

 ln(P(N,Q, R) = ln(
Q

n

n=0

N

 Rn(1− R)Q−n). (13)

In order to make the objective function more tractable, we approximate P by P̂ (a
quadratic function) where

 − ln(P̂(N,Q, R)) = C(Q − N)2 . (14)

We fix the value of C by requiring

 − ln(P̂(0,Q, R)) = − ln(P(0,Q, R)). (15)

 Towards Optimal Risk-Aware Security Compliance of a Large IT System 647

Now

 − ln(P̂(N,Q, R)) = − ln(1− R)

Q
(Q − N)2 (16)

The good agreement between the exact and approximate values is illustrated in Fig. 4.
We also note that even with larger values of Q, the difference between the exact and
approximate values is larger, but the agreement still holds.

Fig. 4. Exact and Approximate probabilities for a range of Q values

With this approximation, the objective function is quadratic in Δ and may be mi-
nimized as an integer programming problem using any of the several optimizer pack-
ages including CPLEX [9] and Gurobi [10].

4 Discussion

The optimization problem described above is an integer programming (IP) problem
with a quadratic objective function. It is well-known that such a problem is difficult
to solve exactly. However, for rather small sets of policies, and endpoints with only a
few operators, the problem is computationally tractable.

We present results first using an exact IP optimization for a system with two opera-
tors (no = 2), three policies (np = 3) and four endpoints (ns = 4). Further, violations
of the policies are of high, medium and low risk, respectively. The costs are taken to
be 10, 5 and 5 for remediations of these policies, with each remediation taking a time
of 8, 5 and 2, respectively; these values are obviously arbitrary, but can easily be
mapped to a real values. This system will require the determination of 24 values for
its complete optimization. These values are given in Fig. 5a for an optimization with
roughly equal weights given to the risk-aware metric and the cost function and no
constraint on the total time.

648 D. Coffman, B. Agrawal, and F. Schaffa

Fig. 5a. Optimal solution without time constraint. The first cell in row 2, 1/3(0,2), implies that
for Medium risk policy on endpoint 1, there were originally 1 out of 3 messages indicating
compliance, i.e. there were 2 deviations. For the optimal solution, operator 1 should remediate
0 and operator 2 should remediate 2 deviations. Note that the cells in gray have no violations.

The solution obtained through the optimization procedure above is in fact a course

of action. It represents the steps to be taken to render the IT system maximally com-
pliant at minimum cost within the allotted time. The result in the second cell of the
first row, for example means that operator 2 should perform 3 remediations of High
risk policy on endpoint 2. It is interesting to note that without the time constraint, the
remediations assigned to the operators require quite different times. Imposing a con-
straint that the total time be less than or equal to 45 yields a somewhat different solu-
tion, as illustrated in Fig. 5b. Now, the effort required of both operators is almost
exactly the same, whereas one fewer low risk violation can now be remediated.

This simple model may be explored further to reveal the dependence of the risk-
aware metric on the allotted time. Naturally, as less time is available to complete the
work, less can be done to bring the system into compliance and the metric will
achieve a lower value at the optimum point. This is shown in Fig. 6.

),...,(/ 10 klnklkl o
QN ΔΔΔ

Fig. 5b. Optimal solution with total time required to be less than 45

),...,(/ 10 klnklkl o
QN ΔΔΔ

 Towards Optimal Risk-Aware Security Compliance of a Large IT System 649

Fig. 6. Value of Risk-aware Compliance Metric at Optimum Point as a function of the time
allotted for remediation. Also shown is the negative logarithm of this quantity. Note that if all
violations were remediated by a single operator, this would require a time of 108, on this scale.

Also of interest is the appropriate value of α, the relative weight of the risk-aware
metric and the cost function in the objective function. Again, we can examine the
simple model here for some guidance. Let wC *))ln(max(/)max(Λ−=α ; clearly w,

the weight factor, should be of order unity. We optimize our model for a number of
values of this weight factor, with results presented in Fig. 7. At values greater than
one, the risk-aware metric dominates the objective function, while for values less than
one, the cost function is dominant; In this latter regime, the metric’s value plummets
as it is no longer cost-effective to remediate even high risk violations. We assert that
value of about 4 offers a good balance of cost and risk for this simple model.

The optimal solution pinpoints the resource or resources that constrain the perfor-
mance of the system overall. As noted above, if there is inadequate time available, the

Fig. 7. Value of the Risk-aware Compliance Metric at the optimum point, as a function of the
weight factor, w = α max(− ln(Λ)) / max(C)

Optimal Compliance Metric as a Function of Allotted Time

0

1

2

3

4

5

6

7

8

020406080100120140160180200

Allotted Time

Lambda

-ln(Lambda)

Optimal Metric as function of Weight Factor

0

0.5

1

1.5

2

2.5

3

3.5

012345678910

Weight Factor

Lambda

-ln(Lambda)

650 D. Coffman, B. Agrawal, and F. Schaffa

value of the risk-aware metric will be greatly reduced; thus, the optimization proce-
dure will enumerate the benefit to be obtained through the hiring of more personnel.
Similarly if, for example, one endpoint would benefit from additional RAM, that fact
will be reflected in the solution.

4.1 Extension to Large Systems

The IP techniques used so far are unfortunately not suitable for problems with very
large numbers of variables. Solving the simple model above requires only a few
seconds on a modern computer, but even a modest extension to 10 endpoints and 4
operators requires tens of minutes for its solution. Fortunately, for this work, a prova-
bly optimal solution is desirable but not necessary. Therefore, it is reasonable to
relax the constraint on the variables that they be integers and employ the machinery of
a linear programming (LP) optimizer. Ex post facto, we can apportion the results
among the operators if necessary.

Consider a model with 5 operators, 5 policies for high risk violations, 10 for me-
dium risk and 6 for low risk, and altogether 1000 endpoints. Using the same objective
function and constraints, this model may be optimized in just a few seconds with LP.
In this first investigation, we relax the time constraints. The results are shown in Fig.
8, in the same format used for the smaller model, solved through IP. We note that the
results are sensible --- the high risk violations are remediated in preference to the
lower risk violations --- and so on.

The difficulty with using LP techniques comes exactly when imposing the con-
straints. When the time constraint comes into play, the solution will sometimes favor
equal division of the work among the operators, say each being assigned 20% of a
task. Thus, we cannot adopt the LP solution without further work in parceling out
the work. However, this is not a worrisome state of affairs since the number of

Fig. 8. Extract of optimal results for a large model, solved using LP techniques

),...,(/ 10 klnklkl o
QN ΔΔΔ

 Towards Optimal Risk-Aware Security Compliance of a Large IT System 651

remediations required is normally quite large, in the tens of thousands, so that the
exact distribution of tasks is immaterial. The LP solution will, however, provide
reliable guidance on the exact mixture of tasks, that is remediations of high, medium
and low risk violations, that will lead to an optimally compliant system.

5 Further Work

There are several facets of this work which will be explored further. As mentioned
above, this work approximates the total cost of remediation with a simple linear func-
tion of the number of remediations performed. We wish to examine how this may be
relaxed without compromising the numerical properties desired for the optimization.

As mentioned above, we will examine techniques for apportioning the results from
LP optimization and adopt one which is numerically tractable and theoretically de-
fensible. Further, we will employ this technique on real data collected from data
centers to aid in the improvement of the compliance of the systems they support.

References

1. Jansen, W.: Directions in security metrics research. National Institute of Standards and
Technology, NISTIR 7564 (2010)

2. Julisch, K.: Security compliance: the next frontier in security research. In: Proceedings of
the 2008 Workshop on New Security Paradigms, pp. 71–74. ACM (2009)

3. First.org. A Complete Guide to the Common Vulnerability Scoring System Version 2.0 -
CVSS, http://www.first.org/cvss/cvss-guide

4. Pironti, J.P.: Developing Metrics for Effective Information Security Governance.
INTEROP, New York (September 2008), http://www.interop.com/newyork/
2008/presentations/conference/rc10-pironti.pdf

5. Savola, R.: Towards a security metrics taxonomy for the information and communication
technology industry. In: International Confernce on Software Engineering Advances,
ICSEA, Cap Estrel, France (August 2007)

6. Herrmann, D.S.: Complete guide to security and privacy metrics: measuring regulatory
compliance, operational resilience, and ROI. CRC Press (2007)

7. Levi, E.: Device, Method and Program Product for Prioritizing Security Flaw Mitigation
Tasks in a Business Service. U.S. Patent Application 12/361,279, Filed (January 28, 2009)

8. Taraz, R.: Method and apparatus for rating a compliance level of a computer connecting to
a network. U.S. Patent Application 11/289,740, Filed (November 29, 2005)

9. Cplex, IBM ILOG. 12.5 User’s Manual (2010),
ftp://public.dhe.ibm.com/software/websphere/ilog/
docs/optimization/cplex/ps_usrmancplex.pdf

10. Optimization, Gurobi. Gurobi optimizer reference manual (2012),
http://www.gurobi.com

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 652–666, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Behavioral Analysis of Service Delivery Models

Gargi B. Dasgupta, Renuka Sindhgatta, and Shivali Agarwal

IBM Research India
{gdasgupt,renuka.sr,shivaaga}@in.ibm.com

Abstract. Enterprises and IT service providers are increasingly challenged with
the goal of improving quality of service while reducing cost of delivery. Effec-
tive distribution of complex customer workloads among delivery teams served
by diverse personnel under strict service agreements is a serious management
challenge. Challenges become more pronounced when organizations adopt
ad-hoc measures to reduce operational costs and mandate unscientific transfor-
mations. This paper simulates different delivery models in face of complex cus-
tomer workload, stringent service contracts, and evolving skills, with the goal of
scientifically deriving design principles of delivery organizations. Results show
while Collaborative models are beneficial for highest priority work, Integrated
models works best for volume-intensive work, through up-skilling the population
with additional skills. In repetitive work environments where expertise can be
gained, these training costs are compensated with higher throughput. This return-
on-investment is highest when people have at most two skills. Decoupled models
work well for simple workloads and relaxed service contracts.

1 Introduction

Service-based economies and business models have gained significant importance
over the years. The clients and service providers exchange value through service inte-
ractions with the goal of achieving their desired outcomes. Given the focus on the
individual customer’s value and uniqueness of the customer’s needs, the service pro-
viders need to meet a large variety of expectations set by the customers. This is the
primary reason for the service delivery to be labor-intensive where human interven-
tion and interaction is unavoidable.

Service providers aim to maintain the quality of service by structuring their service
delivery (SD) operations as service systems (SS). A SS is an organization of resources
and processes that support and drive the service interactions so that the outcomes
meet customer expectations [22][19]. The size, complexity, and uniqueness of the
technology installations require specialists at provider’s end to support customer
needs. In addition, customers require multiple business functions, applications and
technologies to be supported. Hence their workload tends to be complex and dynamic.
The specialized service workers (SW) or human resources of a SS are teamed together
in order to serve the service requests (SR) or work of the customer.

We motivate the study by presenting the IT Service Management SS where a
service provider maintains complex systems and infrastructure of the customer as
described in detail by authors in [21]. When system interruption or degradation occurs

 Behavioral Analysis of Service Delivery Models 653

i.e., a server goes down or a network link is broken, the customers request for service
to be restored in the form of tickets or service requests (SR). In a typical IT infra-
structure set up, there are several dependencies between the supporting systems.
Hence, a ticket resolution often requires multiple systems to be analyzed and rectified.
Fig 1. depicts the dependencies between such systems. A single SR stating “Unres-
ponsive and slow Web server” would require service workers to check the web server,
the database server and the storage space to identify root cause and resolve the SR.

IT Infrastructure Management SS
Web

Server
Application

Server
Database

Server

Intel Server Unix
Server

Server Hardware

Application
Hosting

Storage Storage System

Operating
System

Server

Web Server Database Server StorageUnix

SS Team - DecoupledSS Team - Decoupled

SS Team – Integrated SS Team – Collaborative

Server Hardware

IT Infrastructure Management SS
Web

Server
Application

Server
Database

Server

Intel Server Unix
Server

Server Hardware

Application
Hosting

Storage Storage System

Operating
System

Server

Web Server Database Server StorageUnix

SS Team - DecoupledSS Team - Decoupled

SS Team – Integrated SS Team – Collaborative

Server Hardware

Fig. 1. Sample of IT Service Management Dependencies and Service Delivery Models

The SS team in a delivery organization can be arranged based on their skills and
competencies. We use SS team and team interchangeably in the paper. Each team has
skills in the domain of specialization. The customer work then gets delivered out of
one or more SS teams. We classify customer work as complex when it requires sup-
port of more than one skill domain or technology for its resolution. As complex cus-
tomer SR arrives at the delivery organization, it requires the different teams support-
ing it to work towards its resolution. Depending on how the SS teams have been or-
ganized, the following structures are imposed on the SR resolution workflows.

• Decoupled Workflow: When multiple teams work independently on a complex
customer SR, with each team only responsible for partial resolution of the issue,
it imposes a Decoupled structure on the SR resolution flow. No single team has
ownership of the SR and the work is completed sequentially by teams working on
parts of it. This often results in complex work taking longer to resolve as it tra-
verses multiple teams. The structure is prevalent when complex SR is handled by
different teams as shown in Figure 1.

• Collaborative Workflow: When the complex SR is handled by experts from mul-
tiple teams, working on the SR simultaneously, it imposes a Collaborative struc-
ture on the SR resolution flow. In this case effort of multiple people is locked in
parallel but the quality of work improves. As indicated in Figure 1, experts from
teams work together to complete the SR.

• Integrated Workflow: In cases where a team is composed of multiple skill specia-
lizations, the SR may be handled by multiple skills within the same team. Here
the SS team owns the SR and one or more multi-skilled people work towards its
resolution. This imposes an Integrated structure on the resolution flow. While
customer satisfaction is highest in this model due to tightly synchronized

654 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

workflow, the cost to the provider is higher from perspective of supporting mul-
tiple skills. Figure 1 depicts an integrated workflow where the team has both da-
tabase server skill and storage system skill required for resolving an SR.

The above workflows form the basic building blocks of any complex delivery envi-
ronment and define a Service Delivery Model (SDM) followed by the Service System
to meet the customer expectations. The choice of a particular SDM influences SLA
performance, costs, work completion times and learning. The teams, depending on
how they handle work, in turn cater to a particular SDM. Henceforth we focus our
analysis on the three SDMs. Since each has its pros and cons, a static one-time deci-
sion that is universally applied to all customers may not suffice. Especially with ser-
vices business revenue being close to a billion USD for major providers, its success is
strongly related to the trust and satisfaction of its existing customers. In the face of
customers’ unique expectations it is imperative to understand and weigh the design
choices at hand. This necessitates a superior decision process regarding which cus-
tomer workload, service contracts and skill distributions effectively map best to which
SDM in terms of efficient, timely and cost effective delivery for the provider.

Current literature in services delivery [8, 6] focus on optimizing staffing for simple
customer work following the Decoupled model, where work arrivals across technolo-
gy teams have very little or no correlation. When the work is complex, authors [21]
focus on improving SLA performance for higher priority work using the Collabora-
tive model, but the throughput of the high volume work noticeably suffers.

Contributions: In this paper, we aim to analyze different SDMs from the perspective
of performing complex work and focus on multiple performance parameters of SLA,
throughput and utilization. Learning is modeled in workers as they perform repeated
activities. The cost versus performance tradeoff for training on additional skills is
analyzed to understand the optimal number of skills workers should be trained on.
Different rework scenarios are studied that can lead to quality degradation. We define
the best SDM as one that: (a) has the best SLA performance, throughput and resource
utilization across all priorities of work (b) has least amount of degradation in the
performance parameters in the event of high rework (c) has the least cost of delivery.
The goal of this work is to establish insights into the best SDM under specific work-
load, SLA and learning environments and discern the improvements (if-any) that can
be achieved by adopting a hybrid model. To the best of our knowledge this is the first
work that addresses the above perspectives of service delivery design to this detail,
and offers key insights.

This paper is organized as follows: Section 2 describes the different aspects of
complex work and how they are affected by the SDMs. Section 3 introduces our si-
mulation model and the various parameters of interest. Section 4 presents the experi-
mental analysis and section 5 presents a review of the related work.

2 Complex Work in Service Systems

We now cover the background on the generalized service operations and present dif-
ferent aspects of delivery models for complex work resolution in service systems.
Depending on the teaming principles in place, a customer’s work could be supported

 Behavioral Analysis of Service Delivery Models 655

by one or multiple teams following different delivery models. An SS is typically
characterized by:

• A finite set of customers, denoted by ,C supported by the service system.

• A finite set of shifts, denoted by ,A across which the W service workers (SW)
are distributed.

• A finite set of skill domains, denoted by ,D with L levels in each skill.

• A finite set of priority levels, denoted by the set .P
• A finite set of service requests (SR) raised by the customer that arrives as work

into the SS
We next discuss the work arrivals, SLAs of the SR, and service times and skills of
workers in context of supporting complex customer work.

2.1 Work Arrivals

According to existing body of literature in the area of Service Delivery systems [8 6,
8], work arrives into a SS at a finite set of time intervals, denoted by T , where dur-
ing each interval the arrivals stay stationary. Arrival rates are specified by the map-
ping ℜ→×TC:α , assuming that each of the SR arrival processes from the vari-

ous customers iC are independent and Poisson distributed with)(, ji TCα specifying

the rate parameter. When there is a correlation between the work arrivals across dif-
ferent teams supporting a customer, it denotes a complex SR from the customer that
requires attention from multiple skill domains. In this case, the independence property
still holds for the first team where work is performed.

2.2 Service Level Agreements

SLA constraints, given by the mapping () 2,1,,,: 21 =ℜ∈→× irrrPC iγ is a

map from each customer-priority pair to a pair of real numbers representing the SR
resolution time deadline (time) and the percentage of all the SRs that must be resolved

within this deadline in a month. For example, () 95,4, 11 =PCustomerγ , denotes

that 95% of all SRs from customer1 with priority P1 in a month must be resolved
within 4 hours. Note that the SLAs are on the entire SR itself, which means for com-
plex work the targets apply to resolution across multiple SS teams.

2.3 Skill

In a multi-skill environment, given D domains of skills, let the vector
))(),...,(),((10 irrr dsdsdsSr = denote the required skill levels required for a SR

r , ,0, DiDdi ≤≤∈ where SRrDsr ∈→],1,0[: denotes the required skill

function that returns the level of skill required in each of the domains to complete the
service request r . Similarly, the possessed skill defined for each worker w is given

by))(),...,(),((10 iwww dsdsdsSw = , where ,],1,0[: WwDsw ∈→ returns a

real number between 0 and 1 representing the level of skill that agent w possesses,

656 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

relative to each domain element. Further, 0 denotes no skill and 1 denotes perfect
skill. Assuming at least two levels of expertise, 2: >=→ NDL returns the num-
ber of discrete levels defined for each domain (minimum two levels). Work assign-
ment via dispatching looks at the vectors Sr and Sw while deciding the best match
between work and resources. Fig. 2 shows two existing skills in the domain

={ }2,1 DD , each with two levels of skill = {High, Low}.

Fig. 2. An operational model of service systems (SS)

2.4 Cost

The cost of delivery is directly related to the cost of the resources working in the SS.
Let

lDCC − be the base cost of the resource in Decoupled model with single skill exper-

tise at level l. The base cost is assumed to be higher for higher skilled people (i.e.,
l2l1CC lDClDC >∀> −− ,21). In contrast, the Integrated model has multi-skilled

people who would need to be trained on each additional skill. Let lH be the highest
skill level of a resource in the Integrated model. We assume that the base cost of a
multi-skilled resource is dominated by the base cost of her highest expertise. (S)he
also has N additional skills, out of which ni skills are at level li. Let

ilδ the cost for

training for each skill to level li . Assuming a linear cost model of skills, the cost in-
curred by the Integrated model for training a multi-skilled resource is then given by:

 NnwherenCC
i

ilii

i
lDCINT H

=∗+= − ,δ (1)

Since
llDCC δ>− , i.e., the base cost is higher than the training cost, at lower values

of N, it makes sense to train the same resource on an additional skill rather than hire a
new resource. For higher N, it becomes more beneficial to hire a new SW.

 Behavioral Analysis of Service Delivery Models 657

2.5 Service Time

The time taken by a SW to complete an SR is stochastic and follows a lognormal
distribution for a single skill, where the parameters of the distribution are learned by
conducting time and motion exercises described in [6]. Service time distributions are
characterized by the mapping

1,1: σμτ →× DP , where 1μ and
1σ are the mean

and standard deviation parameters of the lognormal distribution and represent the time
a worker usually takes to do this work. The distribution varies by the priority of a SR
as well as the minimum skill-level required to service it. For complex work requiring
multiple skills ()iDD ,1 the total service time is an additive component of the indi-

vidual work completions and follows a shifted lognormal distribution [16].
Since complex work takes more time to complete, for the sake of maintaining

throughput, it becomes imperative to assign some work to people skilled below the

minimum skill-level. When lower skilled people ()ws do higher skilled work ()rs ,

where ,wr ss > the service times become longer. This increase in service time is ob-

tained from an adaptation of the LFCM algorithm (Narayanan et al. 2012), where the
service time),(rwn ssμ to finish the nth repetition of work requiring skill rs by work-

er with skill level ws is given by:

 ()

 +

−−

=
n

t

rwn

n

nss
log

1log
1

1,

γ
β

μμ (2)

where µ1 is the mean service time to execute the higher skilled work for the first time,

β is the learning factor, γ is the skill gap between levels ws and rs , nt is the time

spent by worker at level rs . Higher the gapγ , and lower the time spent nt , higher is

nμ . 1μ represents the longest time to do this type of work, but with work repetitions,

expertise is gained and nμ decreases [13]. In practice we bound the minimum value

of nμ at minμ , which is the lowest service time work rs can take. The parameters

min1 ,,, μγβμ are learned by conducting time and motion studies [16] in real SS to

measure the exclusive time spent by a SW on a SR. As given by Eqn. (2), slower
learning rates and bigger gaps in the skill required of a SR and skill possessed by a
SW, both contribute to longer service times.

2.6 Dispatching

The Dispatcher is responsible for diagnosis of the faulty component(s) as well as
work assignment to a suitable worker. For fault diagnosis the dispatcher intercepts
the complex SR to determine the most likely faulty component(s) and maps them to
skill domains that must be consulted (in sequence) for resolution. The SR then tra-
verses through the diagnosed list of teams. In Fig. 2, a SR dispatched with the tag

658 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

Route { }2,1 DD , needs to traverse through teams that support 1D and 2D . When

multiple domains of customers are supported, solving the fault-diagnosis without
ambiguity is non-trivial [24]. Dispatching errors are commonly termed as misroutes
and may result in wasted time and cause customer dissatisfaction. With more number
of supported components, the risk of misrouting is higher. This is exacerbated in the
Decoupled model. The Integrated model avoids this to some extent with multi-skilled
resources being able to handle complex issues within the team.

During work assignment, SWs are to SRs of the matching skill-level requirements.
When matching skills are not available higher or lower skilled SW may be utilized for
servicing a SR. This is referred to as swing and reverse swing respectively. Fig. 2
shows the Dispatcher routes complex customer work either through the Decoupled,
Integrated or Collaborative models and decides to turn on swing/reverse-swing poli-
cies based on feedback information from the system.

3 Simulation Based Evaluation

There are many challenges in real-life Service delivery operations that make analyti-
cal modeling of a SS a cumbersome exercise [6]. These include the aggregate SLAs
specified by customers, the inter-dependence of work queues, the variation of service
time distributions with the skill level of the worker, the random breaks taken by re-
sources and the complex preemption rules on the ground. Hence, we resort to simula-
tion as a tool to model the operational characteristics of SS and estimate the perfor-
mance of systems pertaining to the three SDM. There have been other comparisons of
analytical and simulation-based models that corroborate our choice of simulation as a
tool [11]. We propose a discrete-event simulation model for a SS according to its
definitions in Section 2 and the parameters defined below. The model is similar to the
one proposed in [6, 8] with the main that exception that both work and people can
have multiple skills. All our experiments have been conducted with data from SS in
server support area in the data-center management domain. The data is collected over
multiple years using tools [6] defined for IT service management.

Simulation Parameters
The SS simulated extend the definitions in Section 2 with the following specializa-
tions.

• T contains one element for each hour of week. Hence, |T| = 168.
• P = {P1, P2, P3, P4}, where, P1 > P2 > P3 > P4.

• We assume 3,3 == LD . The three different levels of expertise simulated are

{Low, Medium, High}, where, High > Medium > Low. Each level of expertise

has a least service time distribution ()minmin ,σμ associated with it (as in Table

1), which characterizes the minimum time this work type could take. The esti-
mates are obtained from real life time and motion studies [6].

 Behavioral Analysis of Service Delivery Models 659

• Swing: Swing is invoked when Low queue length>10, where low skilled work is
assigned to a high skilled resource. Service times remain same in this case.

• Reverse Swing: Reverse Swing is invoked when High and Medium queue
length>10, where high skilled work is assigned to a low skilled resource. Service
times become longer (Eqn. 2) in this case.

• Preemption: Preemption relation is the transitive closure of the tuples P1P2,

P2P3, P2P4.
• Transfer: In case of work requiring multiple skills and a Decoupled work struc-

ture, the work gets handed over from one team to another. The teams could be
geographically co-located (transfer time ~30min) or dispersed (> 30min). There
are no transfer rates in Integrated since multiple skills can be found in single
team. Collaborative has no transfer times.

• Lead Time: The time taken to synchronize the availability of multiple workers in
Collaborative flow.

• Rework: A percentage of the work is re-opened due to bad quality fixes. Occurs
when low skilled workers work on high skilled requests.

• Dispatching: Assigns work to resource with matching skill requirements if avail-
able. If not available, route to the worker with the lowest skill gap.

• Learning Factor: We assume a default moderate learning rate of β = 0.1 for each

SW. Table 1 shows the mean and standard deviation ()11,σμ for the maximum

service times taken by a resource at each skill level, when the work is executed
the first time. These estimates are obtained from the time and motion studies re-
ported in [6].

• Misroutes: Dispatching errors cause misroutes and are associated with wasted
effort in addition to the transfer-times. Thus they map to longer completion times.

• Utilization of SW: This is related to the productive hours or busy time spent in
work resolution.

The interplay of the above parameters and their combined effect is addressed in the
experimental analysis.

4 Experimental Analysis

In this section, we describe our experimental evaluation based on data from four real-
life SS in the server support area. The four skill domains supported include Operating
Systems, Storage, Database and Web Middleware. The Decoupled, Collaborative and
Integrated models of delivery are simulated with work arrivals, priority distributions
and SLA target times as shown in Table 1(left). In Decoupled and Collaborative
models, we create 4 teams, each supporting one skill domain. The resources in these
models predominantly possess medium and higher skill levels, as shown in Table
1(right), while in Integrated model the reverse is true. Every SR is dispatched with
multiple skill requirements. In the Decoupled model, complex work starts at the first
faulty component and transferred sequentially from one team to another. In the Colla-
borative model people from all teams work in parallel to solve the issue. In the Inte-
grated model, one team is created containing all the 4 skills. The skills are distributed

660 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

among the workers based on whether they have (2, 3 or 4) skills each. We assume a
SW in an Integrated team has only one skill in the highest level, and rest at low or
medium levels. Service times follow lognormal distribution for each skill and the
means get lower with repetitions according to Eqn. 2. Table 1(right) shows the mini-
mum and maximum service times at each level.

We employ the AnyLogic Professional Discrete Event simulation toolkit [4] for the
experiments. Up to 40 weeks of runs were simulated with measurements taken at end
of each week. No measurements were recorded during the warm up period of first
four weeks. In steady state the parameters measured include:

• SLA measurements at each priority level
• Completion times of work (includes queue waiting times, transfer times, and

service times)
• Throughput of the SS (work completed/week)
• Resource utilization (captures the busy-time of a resource)

For all the above parameters the observation means and confidence intervals are
reported. Whenever confidence intervals are wider, the number of weeks in simula-
tion is increased and reported values in the paper are within 95% confidence intervals.
We seed the simulation with a good initial staffing solution from the Optimizer kit
[15] which returned the optimal number of staff to handle the work.

Table 1. Experimental Parameters (Workload, Skills, Service Times)

4.1 Complex Multi-skill Work

We investigate the scenario of work requiring multiple skills and correlated ticket
arrivals across teams with experimental parameters given by Table1. First we handle
complex work that requires 2 skills and resources are either single skilled (Decoupled,
Collaborative) or have 2 skills (Integrated). The experiment assumes 10% misroutes
and 5-10% rework in the environment. The results in Fig. 3 show that mean values for
SLA performance with 95% confidence levels. The following observations stand-out:
(a) Collaborative model works well in terms of SLA performance for higher priority
work. This re-confirms the assumptions by authors [21]. The fact that experts simul-
taneously work on the multiple skills, and their service times are also the lowest re-
flects in the good performance of low volume, high priority work. However in case
of high volume lower priority work, the Collaborative model does not do well.

 Behavioral Analysis of Service Delivery Models 661

As multiple people’s effort is locked on higher priority work, lower priority work gets
queued up and ultimately affects SLA performance. (b) Decoupled does better than
Collaborative in case of P3 and P4 work. This is because Decoupled has the least
synchronization overhead among multiple skills, which works well for high volume
work. But this lack of tight integration in work resolution workflow, affects the P1, P2
SLA performance. (c) Integrated does the best across all severities, and clearly has the
right balance between tight synchronization of critical work and decoupling of larger
volume work. Interestingly, while people have lower skill levels in Integrated, and
may initially take longer to service; overall SLA performance is not affected as long
as there is some learning in the environment.

Fig. 4 presents performance of all the three models as the rework % increases. On-
ly the P3 performance plot is presented as a representative case, but similar trends are
observed at other priorities. The performance degradation in the Integrated model is
the least, as rework increases. This shows that this model has the best appetite to ab-
sorb additional work in case of error situations, without affecting performance. In
theory it can be argued that rework may be inherently higher in the Integrated model
as people have lower level of expertise that may result in poor quality of work and
higher rework % than the counterpart models. Fig. 4 shows that even if the rework in
Integrated model is higher by as much as 10% than the other two models, the SLA
performance of the highest volume P3 bucket is still better.

Rework=15%, Misroute =10%

0
0.2
0.4
0.6
0.8

1
1.2

P1 P2 P3 P4
Priorities (P)

SL
A

 P
er

fo
rm

an
ce

COLLAB

DECOUP

INT

Rework = 5%, Misroute = 10%

0

0.2

0.4

0.6

0.8

1

1.2

P1 P2 P3 P4
Priorities (P)

SL
A

 P
er

fo
rm

an
ce

COLLAB

DECOUP

INT

 (a) Rework = 5%, Misroute=10% (b) Rework = 10%, Misroute=10%

Fig. 3. SLA Performance in different Service Delivery Models

In Fig. 5, we repeat the similar experimentation with misroutes, while keeping the
rework at 10%. However as misroutes increase beyond 10%, the performance of all
models degrade uniformly. Since misrouting is related to dispatching errors, we con-
clude that beyond 10% of misrouting in the environment, no SDM performs well and
alternative methods for error diagnosis [24] are needed. Table2 presents the through-
put and resource utilizations of the different models. At 5% rework and 10% mi-
sroute, the mean throughputs of Collaborative are the lowest, while Decoupled and
Integrated are comparable. This is because in the Collaborative model multiple
people’s efforts are simultaneously blocked and the effort/SR is much higher.

Fig. 6 shows the drop in throughput for the different models as rework increases
which shows that beyond 15%, the drop in Decoupled throughput is more pro-
nounced. To understand the consistently lower throughput of Collaborative model, we
look at how long the work took to complete in the different models. Recall that

662 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

completion time measure both the queue waiting times as well as the service times.
Fig. 7 shows that at lower severities the completion times are comparable across all
models, while higher severities see an exponential increase in the completion times
for Collaborative. Completion times of Integrated are marginally higher than De-
coupled at all priorities. This can be attributed to the higher service times for multi-
skilled resources. But it does not translate to any obvious throughput disadvantages.

Performance Vs Rework (10% Misroute)

0.6

0.7

0.8

0.9

1

1.1

5 10 15 20
Rework (%)

SL
A

 P
er

fo
rm

an
ce

(P

3)

COLLAB

DECOUP

INT

Performance Vs Misroute

0.6

0.7

0.8

0.9

1

1.1

5 10 15 20

Misroute (%)

SL
A

 P
er

fo
rm

an
ce

 (P
3)

COLLAB

DECOUP

INT

 Fig. 4. Performance as Rework increases Fig. 5. Performance as Misroute increases

Drop in Thruput as Rework increases

700

900

1100

1300

1500

1700

20 15 10 5

Rework %

Co
m

pl
et

ed
 T

ic
ke

ts
/W

ee
k

INT

DECOUP

COLLAB

Fig. 6. Drop in Throughput as Rework in-
creases Utilizations (Rework = 5%, Mi-
sroute=10%)

Table 2. Weekly Throughput and Resource

Table 2 also shows higher resource utilizations for Collaborative for a lower net

throughput that can be attributed to the longer completion times. Fig. 8 plots the
change in utilization as rework in the SS increases. Decoupled has the best utiliza-
tions which is because of the lowest completion times. Integrated is slightly higher in
terms of utilization at a comparable throughput. Overall, Fig. 8 shows that even
across higher rework %, the utilizations of decoupled remains the best, with the Inte-
grated model following closely. A hybrid model that is Collaborative for (P1, P2)
work and Integrated for (P3, P4) achieves best of both and requires only partial ups-
killing of the population. Based on above results we summarize the following:

Observation 1: The Integrated model works well in terms of SLA performance,
throughput and resource utilization across all reasonable rework scenarios. With
some moderate learning in the environment, the higher service times in Integrated
have a lower impact on SS performance than the transfers in Decoupled. If the higher
priority work have tight SLAs and continues to be < 10% of the pool’s work, having a
hybrid model, can achieve best of both worlds: Collaborative for high priority com-
plex work enables high SLA performance for critical issues. For high volume, low

 Behavioral Analysis of Service Delivery Models 663

priority work, an Integrated model that up-skills only 20% of the population with an
additional low level skill can significantly improve performance and throughput of
lower priorities.

4.2 Skills and Learning

Having established the Integrated model with the most uniform performance across
the parameters of interest, we now experiment with some of the learning aspects of it.

Throughput

COLLAB COLLAB

COLLAB

DECOUP DECOUP DECOUP

DECOUP
INT

COLLAB

INTINT INT

0

200

400

600

800

1000

P1 P2 P3 P4

Priorities (P)

Co
m

pl
et

ed
 W

or
k/

W
ee

k

Resource Usage

COLLAB COLLAB
COLLAB COLLAB

DECOUP DECOUP DECOUP DECOUPINT INT INT
INT

0

20

40

60

80

5 10 15 20
Rework %

U
ti

l %

 Fig. 7. Completion Time across Priorities Fig. 8. Increase in Utilization with Rework

The biggest drawback of the Integrated scenario is the higher costs it entails, espe-
cially if the need to up-skill grows. Our next set of experiments investigates the bene-
fits of up-skilling a resource beyond 2 skills. Table 3 presents the SS parameters as
the work coming in becomes more complex (i.e. requires 3-4 skills and resources
possess (2, 3 or 4) skills. Results are shown in Table3. Rows 1 and 3 show that for
complex work, having SW with more skills does improve P1, P2 performance margi-
nally. Also since work now takes longer to complete, we expect throughputs to drop
uniformly in this scenario. Instead we notice that throughput drops are greater when
skills per SW are more. This interesting observation can be explained by the fact that
the people with more skills are now busier for longer, since the work resolution takes
more time. With certain skills being more in-demand, it results in unique skills in the
environment being tied up for too long, while incoming work in the queue waits for a
suitable SW to become available. This is confirmed by the higher resource utilizations
for lower throughput, when people have > 2 skills. Interestingly, the drop in through-
put is lowest, when people have only 2 skills. It is therefore more beneficial to split
highly complex work (requiring 3-4 skills) among multiple resources, than have one
multi-skilled SW do all aspects of it. The cost implications of having multi-skilled
SW are shown in the last column of Table3, computed as per Eqn. (1). A blended rate
(across skill levels) of 80K per SW per month and an up-skilling cost of 20K per
skill is assumed. We argue that since SLA performance at the higher priorities can be
independently improved by having a Collaborative model for the critical work, the
higher costs of multi-skilling a person beyond two skills has limited returns, especial-
ly since it comes with the risk of lowering throughput.

The sensitivity of the learning factor (β) on the performance of the Integrated mod-
el is shown in Table 4. Even with a small amount of learning in the system (0.07-
0.1), the performance of the SDM is good. With close to no learning in the system (<
0.03), however the deterioration in service times is pronounced and this affects the SS
parameters of throughput and utilization.

664 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

Observation 2: For complex work the return on investment for up-skilling is the max-
imum when resources have at most two skills. Up-skilling beyond that may result in
little or no benefit in performance. An Integrated SDM works well in most cases, giv-
en that there is some amount of learning in the environment.

4.3 Workload and SLA variations

Our final set of results in Table 5 show that all previous observations hold for other
workload variations and SLA ranges as well. We investigate both bursty traffic as
well as flat arrivals, with work coming in only on weekdays as well as throughout the
week. SLAs are varied in terms of stringency, by increasing the target times. Skill
distributions are modified in the work as well as resources. The results are presented
for the throughput and SLA performance parameter for a subset of the scenarios, but
are seen to hold for the rest as well. When the arrivals are bursty Decoupled perfor-
mance deteriorates. As the skill distributions change, the relative performance of the
models remains same. When SLAs are relaxed, Decoupled works relatively well for
P1 performance. However as seen from Table 5, Integrated continually performs bet-
ter than its counterparts across variations in arrival patterns, skill distribution and SLA
stringency.

 Table 3. Complex Work requiring >=2 skills Table 4. Learning factor sensitivity

Observation 3: The Integrated model consistently outperforms the others under a
reasonable set of workload arrivals, SLA targets and skill distributions.

Table 5. Performance comparison, with workload, SLA and skill distribution variations

 Behavioral Analysis of Service Delivery Models 665

5 Related Work

The concept of shared service has existed for a long time, for e.g., multiple depart-
ments within an organization shared services like HR, finance, IT etc. However, its
extension to shared delivery models for IT services has been gaining momentum from
the last decade [5]. A recent study [23] of global service delivery centers revealed that
shared services not only reduces costs, but also improves quality. A body of work
exists on organizational design principles underlying an effective service delivery
system [1] and resource hiring and training in such models [20]. However there is no
work on generalizing the service delivery models and evaluating the pros and cons
when presented with different kinds of workloads and work arrival patterns. This is
the gap that this work addresses. Learning and forgetting curves in production and
manufacturing industry [13] has received a lot of attention. The service delivery work,
being repetitive in nature can benefit from these results in modeling the effect of
learning and forgetting on service times. There is another line of work that studies the
effects of task assignment on long term resource productivity. This is because the task
assignment impacts mean learning rate, mean forgetting rate, mean prior expertise,
variance of prior expertise etc and thus has a direct consequence on productivity. This
paper incorporates some of the manufacturing domain results. The work in [18]
presents a heuristic approach for assigning work by taking into account all these
factors. How to staff, cross-train them and utilize multi-skill resources has also
received adequate attention in the past in the context of call-centers [7 9]. The work in
[12] advocates that a flexible worker should process a task s/he is uniquely qualified
for before helping others in shared tasks. This is advocated in work-in-process
constrained flow-lines staffed with partially cross-trained workers with hierarchical
skill sets. Experimental results from our simulation are in agreement with many of the
suggested best practices for multi-skilled resources. The effect of collaboration
between teams has also been studied in work in [21] which proposes the concept of
social compute unit. We have used this structure in the collaborative work flow model
in this paper. The paper [10] theorizes how task/team familiarity interact with team
coordination complexity to influence team performance.

6 Conclusion

We perform behavioral analysis of the different SDMs and present insights on their
performance for changing workload patterns, SLAs, learning and skill distribution
parameters. These insights have critical implications on optimized service delivery
and can be used to transform service providers’ work organization by helping deter-
mine which customer(s) work fits best into which SDM. In future we plan to create a
platform where these insights are used for automated transformation.

References

1. Agarwal, S., Reddy, V.K., Sengupta, B., Bagheri, S., Ratakonda, K.: Organizing Shared
Delivery Systems. In: Proc. of 2nd International Conference on Services in Emerging
Markets, India (2011)

666 G.B. Dasgupta, R. Sindhgatta, and S. Agarwal

2. Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket dis-
patch in an IT service environment. In: Proc. of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2012 (2012)

3. Alter, S.: Service System Fundamentals: Work System, Value Chain, and Life Cycle. IBM
Systems Journal 47(1), 71–85 (2008)

4. Anylogic Tutorial 2008, How to build a combined agent based/system dynamics model in
Anylogic. System Dynamics Conference (2008),
http://www.xjtek.com/anylogic/articles/13/

5. Assembly Optimization: A Distinct Approach to Global Delivery, IBM White Paper (2010)
6. Banerjee, D., Dasgupta, G.B., Desai, N.: Simulation-based evaluation of dispatching poli-

cies in service systems. In: Winter Simulation Conference 2011 (2011)
7. Cezik, M.T., L’Ecuyer, P.: Staffing multi-skill call centers via linear programming and si-

mulation. Management Science Journal (2006)
8. Diao, Y., Heching, A., Northcutt, D., Stark, G.: Modeling a complex global service deli-

very system. In: Winter Simulation Conference 2011 (2011)
9. Easton, F.F.: Staffing, Cross-training, and Scheduling with Cross-trained Workers in Ex-

tended-hour Service Operations. Manuscript, Robert H. Brethen Operations Management
Institute (2011)

10. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Familiarity, Complexity, and
Team Performance in Geographically Distributed Software Development. Organization
Science 18(4), 613–630 (2007)

11. Franzese, L.A., Fioroni, M.M., de Freitas Filho, P.J., Botter, R.C.: Comparison of Call
Center Models. In: Proc. of the Conference on Winter Simulation Conf. (2009)

12. Gel, E.S., Hopp, W.J., Van Oyen, M.P.: Hierarchical cross-training in work-in-process-
constrained systems. IIE Transactions 39 (2007)

13. Jaber, M.Y., Bonney, M.: A comparative study of learning curves with forgetting. In: Ap-
plied Mathematical Modelling, vol. 21, pp. 523–531 (1997)

14. Kleiner, M.M., Nickelsburg, J., Pilarski, A.: Organizational and Individual Learning and
Forgetting. Industrial and Labour Relations Review 65(1) (2011)

15. Laguna, M.: Optimization of complex systems with optquest. OptQuest for Crystal Ball
User Manual, Decisioneering (1998)

16. Lo, C.F.: The Sum and Difference of Two Lognormal Random Variables. Journal of Ap-
plied Mathematics 2012, Article ID 838397, 13 pages (2012)

17. Narayanan, C.L., Dasgupta, G., Desai, N.: Learning to impart skills to service workers via
challenging task assignments. IBM Technical Report. Under Review (2012)

18. Nembhard, D.A.: Heuristic approach for assigning workers to tasks based on individual
learning rates. Int. Journal. Prod. Res. 39(9) (2001)

19. Ramaswamy, L., Banavar, G.: A Formal Model of Service Delivery. In: Proc. of the 2008
IEEE International Conference on Service Computing (2008)

20. Subramanian, D., An, L.: Optimal Resource Action Planning Analytics for Services Delivery
Using Hiring, Contracting & Cross-Training of Various Skills. In: Proc. of IEEE SCC (2008)

21. Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L., Dustdar, S.: Who do you call?
Problem Resolution through Social Compute Units. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 48–62. Springer, Heidelberg (2012)

22. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps Toward a Science of Service Sys-
tems. IEEE Computer 40(1), 71–77 (2007)

23. Shared Services & Outsourcing Network (SSON) and The Hackett Group, “Global service
center benchmark study” (2009)

24. Verma, A., Desai, N., Bhamidipaty, A., Jain, A.N., Barnes, S., Nallacherry, J., Roy, S.:
Automated Optimal Dispatching of Service Requests. In: Proc. of the SRII (2011)

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 667–674, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Novel Service Composition Approach
for Application Migration to Cloud

Xianzhi Wang1, 2, Xuejun Zhuo1, Bo Yang1, Fan Jing Meng1, Pu Jin1, Woody Huang3,
Christopher C. Young3, Catherine Zhang3, Jing Min Xu1, and Michael Montinarelli4

1 IBM Research – China, Beijing, P.R. China
{wxianzhi,zhuoxuej,yangbbo,mengfj,jinpubj,xujingm}@cn.ibm.com

2 Harbin Institute of Technology, Harbin, Heilongjiang, P.R. China
xianzhi.wang@hit.edu.cn

3 IBM Research – Watson, Yorktown, NY, US
{ywh,ccyoung,cxzhang}@us.ibm.com

4 IBM Global Technology Services, Rochester, NY, US
mmonti@us.ibm.com

Abstract. Migrating business applications to cloud can be costly, labor-
intensive, and error-prone due to the complexity of business applications, the
constraints of the clouds, and the limitations of existing migration techniques
provided by migration service vendors. However, the emerging software-as-a-
service offering model of migration services makes it possible to combine
multiple migration services for a single migration task. In this paper, we
propose a novel migration service composition approach to achieve a cost-
effective migration solution. In particular, we first formalize the migration
service composition problem into an optimization model. Then, we present an
algorithm to determine the optimal composition solution for a given migration
task. Finally, using synthetic trace driven simulations, we validate the
effectiveness and efficiency of the proposed optimization model and algorithm.

Keywords: Cloud computing, modeling, migration, service composition.

1 Introduction

The increasingly wide adoption of cloud computing has witnessed huge demands for
migrating business applications to cloud. In 2012, IDC reported that more than 50%
of European larger companies stated that they have a strategy for IT infrastructure
refactoring to benefit from cloud economics, of which the cloud migration investment
is forecast to grow at 30.6% Compound Annual Growth Rate in the next 5 years [1].

In response to the huge migration demands, many migration service vendors have
emerged to offer diverse migration services. They can be categorized into three major
types: image-based migration, application-centric migration, and migration to
virtualized containers. The image-based migration technique, such as Racemi® [2]
and CohesiveFT [3], converts source serves into virtual images and imports them into
target cloud after necessary adjustments. Application-centric migration, such as

668 X. Wang et al.

AppZero [4] and CliQrTM [5], provisions a new application deployment environment
on the target by extracting and migrating the application artifacts, configurations, and
resources from the source. The migration to virtualized containers method, such as
Ravello [6] and CohesiveFT Software Defined Networking [3], migrates the source
VM without any modification to run in a virtualized container inside the target cloud.

However, migrating business applications to cloud is considered costly, labor-
intensive, and error-prone due to the complexity of the applications, the constraints of
the clouds, and the limitations of existing migration techniques provided by migration
service vendors[7]. It is extremely difficult or even impossible for single vendor to
migrate a complex application entirely on its own. Fortunately, the emerging
software-as-a-service model makes it possible to combine multiple migration services
to accomplish a single migration task. By consolidating the diverse migration
capabilities provided by multiple vendors, a more comprehensive and flexible
migration service can be provided. For example, Racemi® can provide server
migration services to the IBM® SmartCloud® Enterprise (SCE)[8] but cannot
remediate middleware and application configurations (e.g. hostname, IP address) after
migration; whereas the CohesiveFT can close the gap with the network virtualization
service. As can be seen, the application can be successfully migrated to IBM® SCE
by composing the services provided by the two vendors.

In this paper, we propose a novel service composition approach to provide an
application migration solution with a wide-spectrum of capabilities, by consolidating
diverse migration techniques offered by different vendors. The main contributions of
the paper are two-fold: 1) We formalize the migration service composition problem
into an optimization model; 2) We provide an algorithm to solve the optimization
problem and validate it using simulations.

The remainder of this paper is organized as follows. Section 2 introduces the
modeling of the basic concepts and the problem. The matching and optimization
algorithm is presents in Section 3 and evaluated in Section 4. Section 5 investigates
related work. Section 6 concludes the paper and discusses the future works.

2 Problem Definition and Modeling

In migration context, a business application can be modeled as state with a hierarchy
of components with valued configuration attributes and interdependencies. The
problem of determining an optimal cost-effective migration solution can be
considered as a state transition problem, aiming to find an optimal subset of vendor
services and their operation sequence so that they can collaboratively transform the
application from its initial state to a cloud-acceptable state.

2.1 Problem Definition

In this section, we consider scenarios where applications are migrated into a single
given cloud and formalize the basic concepts as follows.

 A Novel Service Composition Approach for Application Migration to Cloud 669

1 2(, ,...,)kc a a a : denotes an application component which can be migrated

separately as an individual unit, where , {1,..., }ia i k∀ ∈ are the detailed configuration

attributes attached to the component.

1 1 2 2(, ,...,)k kc a x a x a x= = = : denotes an instance of component c in which

, {1,..., }ia i k∀ ∈ have been set with specific values.

1 2{ , ,..., }lC c c c= : denotes all the components to be migrated in the application.
* *() (,)S C C D= : denotes a state of a set of application components *C C⊆ .

* * * *
1 2{ , ,..., }gC c c c= , which represents an instance of this set of components where

each component is attached with valued configuration attributes.
{(, ,{ . . })}from to from x to yD type c c c a c a= → → , which denotes the dependency relations

between components. The first parameter indicates the dependency type, e.g., runsOn,
connectsTo, includes, etc. The second parameter indicates the two components related
to this dependency. The last parameter indicates the detailed mapping relations
between the attributes of the corresponding components, if any.

Based on above definition, the problem-specific concepts are formalized as below:

() (,)ini ini iniS C C D= : denotes the initial state of the application to be migrated.
1 2() { (), (),..., ()}k

tgt tgt tgt tgtC S C S C S C=S : denotes a collection of all possible

acceptable target states of the application in the cloud, where () (,)i i i
tgt tgt tgtS C C D= is

an individual state in it.

1 2[, ,...,]nV v v v= : denotes a collection of migration services provides by vendors.

1 2[, ,...,]nM M M=M : denotes vendors’ migration capability. More specifically,

the capability of each vendor ()jv V∈ is represented by its enabled state transition

((), (), ())cond cond in mig out mig
j j j j j j jM S C S C S C= , where mig

jC is the component to be

migrated by jv , ()in mig
j jS C and ()out mig

j jS C are the input and output states of
mig

jC , respectively, while ()cond cond
j jS C is the requirements imposed by jv as

prerequisites on components other than ()mig cond
j jC C≠ . Note that a vendor can be

matched to multiple components within single migration task. For example, a vendor
which performs server-based migration may possibly be mapped to two separate
servers (regarded as different components), respectively.

1 2[(), (),..., ()]nCost v Cost v Cost v=Cost : denotes vendor-specific functions for

calculating migration cost, which are specific to the number of migrated components
plus operational cost.

1 2[(), (),..., ()]nH v H v H v=H : denotes the quantified measurement of human

efforts required by vendor services per usage based on historical experiences.

1 2[(), (),..., ()]nT v T v T v=T : denotes the predicted time consumed by each vendor

to perform migration per usage based on benchmark.

maxH : denotes the maximal human effort acceptable for application migration

maxT : denotes the maximal migration time acceptable for application migration

670 X. Wang et al.

(,)=G N E : is a directed acyclic graph which denotes a migration solution.

1 1 2 2[, ,...,]n nN v N v N v=N is a set of nodes, i.e., a repetitive set of vendors which are

selected to collaboratively accomplish the migration task, {0,1,..., }iN n∈ .

,{(, ,)}x y x yv v P=E is a set of edges, i.e., directed links (e.g., from xv to yv)

representing their precedent order in migration, and context information ,x yP .

2.2 Problem Modeling

The objective of the migration problem is to determine an optimal migration solution
denoted as a graph G which minimizes the overall migration and time-framed
operational cost under user specified constrains on time and human efforts. The
optimization problem is formally formulized as follows:

1

arg min ()
n

i i
i

N Cost v
=

G

 (1)

. . ((), (), ,) 1ini tgts t f S C C =S M G (2)

max
1

()
n

i i
i

N H v H
=

≤ (3)

max max(,)t T≤G T (4)

In Eq (2), 1f = if and only if G is a feasible migration solution, i.e., it is able to

transform application state from iniS to an acceptable target state in tgtS , by

collaboratively utilizing vendors’ migration capability represented by M . In Eq (4),

max (,)t G T is the maximum migration time for solution G estimated based on T .

3 The Algorithm

The migration problem defined in the last section can be reduced to the Subset Sum
problem with exponential set size which is proved to be NP-Hard. In this paper, we
propose an algorithm based on A-star algorithm with effective pruning strategies to
significantly reduce the solution space.

Firstly, we will introduce how to calculate Lower-Bound of Potential Cost (LBPC)
for each intermediate state. In particular, given any intermediate state S and a target

state i
tgtS , the corresponding LBPC is calculated as the maximum LBPC estimated for

each attribute of each component of the given application. Suppose A is a set of all
attributes of the application, ()x a and ()tgtx a are the current and target values of

()a A ∈ specified in ()S C and ()i
tgtS C , respectively. We define:

* *((), ()) max (:)i
tgt tgt

a A
Cost S C S C Cost a x x

∈
= → (5)

where *(() ())tgtCost x a x a→ is the estimated LBPC for transforming the value of a

single attribute a into a given target value, which can be further calculated as the

 A Novel Service Composition Approach for Application Migration to Cloud 671

minimum value among the minimal cost of value-change achieved directly by a single
vendor, and minimal cost achieved by multiple vendors.

* (:) min((:), (:))tgt idc tgt dc tgtCost a x x Cost a x x Cost a x x→ = → → (6)

idcCost contains at least two parts, the minimal cost for any vendor that accepts the
given attribute value, and the minimal cost for any vendor that can transform the
attribute into target value.

()idc fromX toTgtCost a Cost Cost= + (7)

For the value-change performed by single vendor, the LBPC is the minimal cost of
all vendors that enables the value-change, i.e.,

() min{ () | enables }dc tgtCost a Cost v v a : x x= → (8)

Also),(* i
tgtSSCost should be set ∞+ when any target value is unreachable.

The input are the initial and target states: iniS and tgtS , registered vendors

V represented with (, , ,)M Cost H T , and user specified constraints: maxH and maxT .

The output is the (,)=G N E as defined above. The detail procedure is as follows.

(1) Preprocessing stage
1 Identify all cloud-compatible target states tgtS and filter vendors

2 Calculate *(,)i
ini tgtCost S S for each i

tgt tgtS ∈S

3 */ { | (,) }i i i
tgt tgt tgt tgt tgt ini tgtS S Cost S S← ∈ ∧ = +∞S S S // Remove unreachable state

 // Heuristic 1: preordering and pruning target states

4 Sort the target states of tgtS in ascending order according to *(,)i
ini tgtCost S S

(2) Iteration stage
5 FOR the first element i

tgtS of sorted tgtS elements // get target states in order

6 Initialize { }iniOL S← , CL ← ∅ , () 0iniCost S ← , SFB ← +∞ , ()iniG S ← ∅

7 IF OL = ∅ , CONTINUE // this target state has been fully exploited

8 S ← Get the first element of OL

9 / { }OL OL S← , { }CL CL S← ∪ // Move S from OL to CL

10 FOR each vendor ()jv V∈

11 IF mig
jC cannot be tackled individually, CONTINUE // try next vendor

12 IF S does not support ()cond cond
j jS C or ()in mig

j jS C ,CONTINUE // try next vendor

13 ' jM
S S←⎯⎯ // generate new state from current state by jv

 // Initialize 'S ’s cost and corresponding (partial) solution as S ’s duplicate

14 (') ()S S←G G , (') () ()jCost S Cost S Cost v← +

 // Heuristic 2: pruning recurring ineffective states

15 IF ' () (')e e eS OL CL S S Cost S Cost S∃ ∈ ∪ ∧ = ∧ ≤ ,CONTINUE // try next vendor

16 Calculate *(',)tgtCost S S

 // Heuristic 3: pruning by so-far-the-lowest feasible cost as upper-bound

17 IF *(') (',)tgtCost S Cost S S SFB+ ≥ , CONTINUE // try next vendor

 // Build corresponding solution of 'S , i.e., (partial) solution from iniS to 'S

672 X. Wang et al.

18 (') (') { }jS S v← ∪N N // add jv into (')SG ’s node set

19 /i oV ← Find the vendors directly support ()in mig
j jS C in jv ’s matching with S

20 FOR each /i o
xv V∈

21 (') (') {(,)}j xS S v v← ∪E E // Add link to (')SG ’s edge set

22 ,{ / ,(,), }G G j x x jC C I O v v S← ∪ // Add to Global Context

 // ,x jS is a mediating state between xv and jv , satisfying

,(())out in mig
x j x j jS S S C⊆ ∩ ∧

/ /
, ,() ()

i o i o
x x

in
x j j x j

v V v V

S S S
∈ ∈

= ∧ = ∅

 END FOR

23 cV ← Find the vendors directly support ()cond cond
j jS C in jv ’s matching with S

24 FOR each c
yv V∈

25 IF (,) (')j yv v S∉ E , (') (') {(,)}j yS S v v← ∪E E

 END FOR

26 FOR each (, ,{ . . })from to from x to yd type c c c a c a= → → D∈

27 IF { | } { | }mig mig
x f rom x y f rom yv C C v C C′ ′⊆ ≠ ⊆ , , (')x yv v S∈ N

28 (') (') {(,)}x yS S v v← ∪E E

29 { ,(,), }G G x yC C dependency v v d← ∪

 END FOR/* End of solution building */

30 IF ' tgtS S= // have reached the target state

31 (')SFB Cost S← // now there must be *(',) 0tgtCost S S =

32 (')S←G G // this solution is currently the best

 CONTINUE //try next vendor

33 { '}OL OL S← ∪ // Insert 'S to OL , make sure it is still sorted after insertion

 CONTINUE //try next vendor

 END FOR

 END FOR

34 RETURN SFB and G // when all target states have been explored

4 Implementation and Evaluation

In this section, we validated our approach via synthetic trace driven simulations. The
settings of key parameters are shown in Table 1. Based on the parameter settings, we
randomly generated a cloud profile from which two target states are identified. We
evaluated the performance of the algorithm in term of computation time consumed to
obtain the optimal solution under different conditions.

Table 1. Parameter settings for performance evaluation

Type Parameter (range of) value
variable # of heterogeneous servers per application (NoHS) 1~16
variable # of components per server (NoC) 6~14
variable # of vendors per component type (NoV) 5, 10, 15

 A Novel Service Composition Approach for Application Migration to Cloud 673

Fig.1(a) shows the computation time of the algorithm with respect to NoHS and
NoV, under NoC=10. As can be seen, by adopting multiple effective pruning
strategies, the computation time of the algorithm is controlled within a reasonable
scale. Although the increasing speed of computation time tends to increase as scale of
the synthetic trace grows, the algorithm is proved to be able to handle scenarios with a
sufficiently large problem scale efficiently, i.e., 15*(1+12+12*10)=1995 vendors
when NoV=15, which is far more than existing vendors in realistic market. Under this
large scale scenario, our algorithm managed to find the optimal composition solution
within 25 minutes. This performance is apparently affordable in practical uses, given
that a real migration planning could usually take several hours or even days.

Fig.1(b) shows the computation time with respect to NoC and NoV, where NoHS is
set to 10. The results show that the computation time with respect to NoC increases
much slower than that w.r.t NoHS. Within certain scope, the curves are nearly linear,
e.g., when NoC varying between 8 and 12 with NoV =15, and NoC varying between
10 and 14 with NoV =10. These results reveal the fact that NoHS is inherently more
influential to the performance of the algorithm, since each new heterogeneous server
is likely to bring much more new types of intra-server components, which further
increases the complexity of the problem.

(a) computation time w.r.t. NoHS and NoV (b) computation time w.r.t. NoC and NoV

Fig. 1. Algorithm performance w.r.t. NoHS, NoC and NoV

Based on the above performance analysis with the simulated representative
synthetic data, we can conclude that the optimization model and algorithm are both
effective and efficient to be applied in the real business application migration cases.

5 Related Work

Migrating application to cloud has been widely studied from different perspectives,
which include frameworks and tools for migration execution [9], toolkits and models
to support decision making of migration feasibility [10], frameworks for target cloud
selection [11], techniques to discover application configuration for migration [12],
and etc. Specifically, in [9] the authors introduced the Darwin framework which
integrates set of tools that can enable smooth workload migration to cloud or non-
cloud environment. In [10], the authors proposed Cloud Transformation Advisor
which recommends an optimal application transformation solution based on
transforming patterns definition. However, all of these works only focused on

674 X. Wang et al.

particular application types, software stacks or target clouds and are hardly applied in
migrating applications with complicated topologies and software stacks individually.

Though service composition has been widely studied in services computing, being
orthogonal with these existing works, in this paper, we apply service composition to
solve the realistic and urgent challenges in cloud migration. To our best knowledge,
this is the first work proposing to solve the cloud migration problem by consolidating
different vendor services.

6 Conclusion and Future Work

In this paper, we presented a novel service composition based approach for business
application migration to cloud to accomplish the complicated migration tasks at lower
cost, which consolidates diverse capabilities offered by different migration vendors.
By capturing and formalizing the key concepts involved in cloud migration, we
formally modeled the problem and provided an efficient algorithm to solve its optimal
problem. Through synthetic trace driven simulations, the effectiveness and efficiency
of the modeling and algorithm have been validated. Besides the cost issue during
consolidating vendor services, we plan to conduct more factors such as network
performance and user preference in the future.

References

[1] Ahorlu, M.: European Cloud Professional Services, Cloud Management Services, and
Hosted Private Cloud 2012–2016 Forecast. In: IDC Market Analysis (November 2012)

[2] Racemi, http://www.racemi.com/
[3] Cohesive Flexible Technologies, http://www.cohesiveft.com/
[4] AppZero, http://www.appzero.com/
[5] CliQr Technologies, http://www.cliqr.com/
[6] Ravello Systems, http://www.ravellosystems.com/
[7] Frey, S., Hasselbring, W.: Model-Based Migration of Legacy Software Systems to

Scalable and Resource-Efficient Cloud-Based Applications: The CloudMIG Approach.
In: Intl Conf. on Cloud Computing, GRIDs, and Virtualization (November 2010)

[8] IBM SmartCloud Enterprise,
http://www-935.ibm.com/services/us/en/cloud-enterprise/

[9] Ward, C., et al.: Workload Migration into Clouds – Challenges, Experiences,
Opportunities. In: Proc. of Intl. Conf. on Cloud Computing, pp. 164–171 (June 2010)

[10] Chee, Y., Zhou, N., Meng, F.J., Bagheri, S., Zhong, P.: A Pattern-Based Approach to
Cloud Transformation. In: Proc. of Intl. Conf. on Cloud Computing, pp. 388–395 (2011)

[11] Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., Teregowda, P.: Decision Support
Tools for Cloud Migration in the Enterprise. In: Intl Conf. on Cloud Computing, pp.
541–548 (June 2011)

[12] Menzel, M., Ranjan, R.: CloudGenius: Decision Support for Web Server Cloud
Migration. In: Intl World Wide Web Conference, pp. 979–988 (April 2012)

PPINOT Tool Suite: A Performance

Management Solution for Process-Oriented
Organisations�

Adela del-Rı́o-Ortega, Cristina Cabanillas,
Manuel Resinas, and Antonio Ruiz-Cortés

Universidad de Sevilla, Spain
{adeladelrio,resinas,aruiz}@us.es, cristina.cabanillas@wu.ac.at

Abstract. A key aspect in any process-oriented organisation is the mea-
surement of process performance for the achievement of its strategic
and operational goals. Process Performance Indicators (PPIs) are a key
asset to carry out this evaluation, and, therefore, the management of
these PPIs throughout the whole BP lifecycle is crucial. In this demo
we present PPINOT Tool Suite, a set of tools aimed at facilitating and
automating the PPI management. The support includes their definition
using either a graphical or a template-based textual notation, their auto-
mated analysis at design-time, and their automated computation based
on the instrumentation of a Business Process Management System.

1 Defining and Analysing PPIs with PPINOT

Performance requirements on business processes (BPs) are usually specified in
terms of Process Performance Indicators (PPIs), which are quantifiable metrics
that can be measured directly by data that is generated within the process flow
and are aimed at evaluating the efficiency and effectiveness of business process.

The management of those PPIs is, thus, an important part of the BP lifecycle
that includes at least the definition of PPIs, their analysis to find relationships
between them, the instrumentation of the information systems that support the
BPs in order to take the measures that are necessary to calculate the PPIs, the
actual calculation of the PPIs during process execution, and the monitoring of
the PPIs fulfillment.

The PPINOT Metamodel [1] provides a foundation on which an automated
support for these activities can be built. It identifies the concepts that are nec-
essary for defining Process Performance Indicators (PPIs) such as the different
types of measures that can be used to compute the PPI value. It was defined
to address the challenge of providing PPI definitions that are unambiguous and

� This work was partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes (grants TIN2009-07366 (SETI),
TIN2012-32273 (TAPAS), TIC-5906 (THEOS)). The authors thank the PPINOT
development team at the ISA group, for their development work; concretely Ana
Belén Sánchez and Edelia Garćıa.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 675–678, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

676 A. del-Ŕıo-Ortega et al.

complete, traceable to the business process elements used in their definition, in-
dependent of the language used to model business processes (BP) and amenable
to automated analysis.

Two notations have been developed on top of the PPINOTMetamodel, namely
a graphical notation and a template-based textual notation [2]. The former ex-
tends BPMN to allow the graphical definition of PPIs together with their cor-
responding BPs. The latter provides a template for PPIs and a set of linguistic
patterns the user must follow to make the PPI definition easier [2]. Figure 1 shows
an example of a PPI defined using PPINOT. The left hand side corresponds to
a template-based definition, the right hand side depicts the corresponding XML
serialisation of the PPINOT Metamodel.

Fig. 1. An example of a PPI defined with PPINOT

The PPINOT Metamodel is also provided with formal semantics based on
Description Logics (DL). This enables leveraging reasoning operations imple-
mented by off-the-shelf DL reasoners to automatically extract information from
the relationships between PPIs and BP elements. This information can be used
to assist process analysts in the definition and instrumentation of PPIs [1].

In this paper, we give an overview of the PPINOT Tool Suite, which is a set
of tools based on the PPINOT Metamodel that automate or facilitate some of
the aforementioned PPI management activities.

2 PPINOT Tool Suite Overview

Figure 2 overviews the tools that compose the PPINOT Tool Suite. Rectangles
depict tools, their inputs and outputs are represented by documents linked with
dashed arrows, and the possible interconnections between tools is done by using
solid arrows. The tools can be used separately or sequentially, depending on the
user purposes. In the following we describe a possible way to use it.

Design. The PPINOT Tool Suite offers two different ways to define PPIs. On
the one hand, we can define them graphically together with the BPMN repre-
sentation of the BP using the PPINOT Graphical Editor, which is a web editor
that has been implemented as an extension of the Oryx platform [3]. On the
other hand, we can use the PPINOT Templates Editor to define PPIs using the
template-based textual notation. The tool guides the user by providing linguis-
tic patterns according to the selection performed in the different fields. In both

PPINOT Tool Suite: A Performance Management Solution 677

Business
Process
Editor

PPINOT
Templates

Editor

PPINOT
Analyser

PPINOT Graphical Editor

BPMS PPINOT
Instrumenter

PPINOT
ReporterCEP

PPI Database

BP+PPI
XML

Users

Process
Responsible

Process
Responsible

Process
Designer

s
ble

��
���

+�
�+

,�
��
���

	

�-
�.

/+
�

Fig. 2. PPINOT Tool Suite Overview

cases, an XML document with the PPI information together with the BP model
is obtained as output.

Analysis. After defining the PPIs, the PPINOT Analyser can be used. It uses the
DL formalisation of PPINOT metamodel to implement the analysis operations
that obtain information about the way PPIs and BP elements influence each
other. Concretely, two kinds of analysis operations are currently supported: (I)
BPElements involved, which allows answering the question Given a PPI, Which
are the process model’s elements involved?. This information is useful for instance
when a PPI must be replaced with others (maybe because it is very costly to
obtain its value) and it is necessary to assure that every element of the BP that
was measured before is measured in the new case; and (II) PPIs associated to
BPElement, which allows answering the question Given a BPElement, Which
are the PPIs associated or applied to it?. This information can assist during the
evolution of BPs (e.g., an activity is deleted) to identify which PPIs will be
affected and should be updated.

Execution. The last set of tools that can be used are those focused on the
execution of the BP. Before execution, the PPINOT Instrumenter configures
Activiti (an open source BPMS1) to send events to a Complex Event Processor
(CEP) and also configures the CEP to compute the values of the defined PPIs
from the events generated by Activiti during BP execution. The computed values
of the PPIs are stored in a PPI Database. Finally, the PPINOT Reporter can
be used to present the user these values2.

1 http://activiti.org.
2 In its current version this tool provides a simple list of values. An extension to
provide a proper report is planned.

http://activiti.org

678 A. del-Ŕıo-Ortega et al.

Further information about PPINOT Tool Suite, the description of the tools
and user instructions can be found at http://www.isa.us.es/ppinot.

3 Significance and Features

PPINOT Tool Suite has been developed from research results, and validated and
extended thanks to the feedback obtained from several real scenarios, both from
organisations and academia. To the best of our knowledge, there not exists any
similar tool for the definition and design-time analysis of PPIs. Concretely, we
can highlight the following features, from which the last four provide the novelty
to our proposal:

BPMN 2.0 compliant. PPIs can be defined over BP diagrams (BPDs) pre-
viously modelled using the de facto standard BPMN 2.0.

PPI values computation Taking as starting point any of the aforementioned
PPI definitions, PPINOT also provides the possibility to extract the infor-
mation required to calculate PPI values from Activiti, an open source BP
management platform, and to create reports with these values.

Graphical definition of PPIs. PPINOT Tool Suite supports the graphical
definition of PPIs using a graph-based graphical notation that is easily un-
derstandable by non-technical users, at the same time that it is supported
by a metamodel that assures the precise and complete definition of PPIs.

Template-based definition of PPIs. PPIs can be defined by fulfilling tem-
plates written in structured natural language, where the user only has to
properly introduce the missing information, assisted by linguistic patterns.

PPI definition mapping Graphical definition of PPIs can be mapped to their
corresponding templates in natural language.

Automated analysis of PPIs. The aforementioned analysis operations can
be automatically performed on PPI definitions.

References

1. del Ŕıo-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A.: On the Defini-
tion and Design-time Analysis of Process Performance Indicators. Information Sys-
tems 38(4), 470–490 (2012)

2. del-Ŕıo-Ortega, A., Resinas Arias de Reyna, M., Durán Toro, A., Ruiz-Cortés, A.:
Defining process performance indicators by using templates and patterns. In: Barros,
A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 223–228. Springer,
Heidelberg (2012)

3. Decker, G., Overdick, H., Weske, M.: Oryx - an open modeling platform for the bpm
community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 382–385. Springer, Heidelberg (2008)

http://www.isa.us.es/ppinot

SYBL+MELA: Specifying, Monitoring,

and Controlling Elasticity of Cloud Services�

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{e.copil,d.moldovan,truong,dustdar}@dsg.tuwien.ac.at

Abstract. One of the major challenges in cloud computing is to simplify
the monitoring and control of elasticity. On the one hand, the user should
be able to specify complex elasticity requirements in a simple way and to
monitor and analyze elasticity behavior based on his/her requirements.
On the other hand, supporting tools for controlling and monitoring elas-
ticity must be able to capture and control complex factors influencing
the elasticity behavior of cloud services. To date, we lack tools support-
ing the specification and control of elasticity at multiple levels of cloud
services and multiple elasticity metrics. In this demonstration, we will
showcase a system facilitating the multi-level and cross-layer monitoring,
analysis and control of cloud service elasticity.

1 Motivation

Simplifying the requirements specification and providing rich features for con-
trolling and monitoring elasticity is crucial for several stakeholders, e.g. software
service developers and providers, for exploiting the benefits of cloud systems.
So far, existing frameworks or tools demonstrate limited, still complex, elas-
ticity specification and controls, e.g., considering cost, or quality when decid-
ing for control actions for cloud services [1–3], without considering the multi-
dimensional nature of elasticity, and the fact that the cloud service developer
or provider would be interested in describing requirements for different parts
of his/her service, and at a high level, without worrying about virtual machine
level information. Moreover, there is a lack of elasticity monitoring tools that
support cross-layered, multi-dimensional elasticity of complex cloud services. In
our work, we overcome some of the above-mentioned limitations by developing
a system that performs multi-level monitoring data aggregation, analysis, and
control of cloud services, paving the way for truly elastic cloud services.

By demonstrating our system, we could show that, on the one hand, the service
providers or developers of the cloud services can easily monitor and specify elas-
ticity requirements for their services at different levels and perspectives. On the
other hand, we can discuss with other researchers how our control service takes
automatic decisions for adapting the cloud service, in order to meet specified

� This work was supported by the European Commission in terms of the CELAR FP7
project (FP7-ICT-2011-8 #317790).

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 679–682, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

680 G. Copil et al.

elasticity requirements. Such a demonstration, therefore, will be useful for us to
understand the complexity to develop novel solutions to simplify the specification
and support rich features for elasticity monitoring and control.

2 System Overview

The system to be demonstrated supports an integrated environment for speci-
fying, controlling and monitoring elasticity of cloud services. Depicted in Figure
1, our system receives the cloud service description together with its elastic-
ity requirements which are specified in SYBL [4]. When the cloud service is
executed, the Elasticity Control Service manages an internal representation of
the cloud service, which decomposes the cloud service into service topologies
(parts of the cloud service) which can be further decomposed into service units.
Each cloud service entity (e.g. service unit, service topology, virtual machines)
is associated with various runtime elasticity metrics and elasticity requirements.
The elasticity metrics are provided by the MELA Service which monitors the
elasticity behavior of service entities and conducts elasticity analysis. Based on
service structure, elasticity metrics and elasticity requirements, the Elasticity
Control Service decides suitable elasticity control actions in order to fulfill the
requirements.

Fig. 1. Monitoring and controlling elastic cloud services

Controlling Elasticity of Cloud Services: For the specification of elasticity
requirements we use SYBL language [4], which is a directive-based language en-
abling the description of high-level elasticity requirements and for the control of
elasticity we use the control mechanism detailed in [5]. SYBL has three types of
directives: monitoring, constraints and strategies, which can target
different levels of the cloud service. The Elasticity Control Service analyses the
elasticity requirements which can be conflicting or even contradicting, and pro-
duces new elasticity requirements on the basis of which it generates action plans
for elasticity control of cloud services. For example, elasticity requirements at
service topology level could be Co1: CONSTRAINT costPerClientPerHour
< 5 euro or Co2: CONSTRAINT responseTime < 0.5 s. The Elasticity
Control Service would evaluate these requirements, and in case one of them,
let’s say Co1, is violated, it would generate a new action plan consisting of a

Specifying, Monitoring, and Controlling Elasticity of Cloud Services 681

scaleout for a service unit inside the service topology, and a reconfigure(‘‘
highPerformance’’) for the service topology. For evaluating whether or not
the requirements are fulfilled and what would be the result of enforcing an action
the Elasticity Control Service uses information coming from the MELA Service.

Monitoring and Analyzing Elasticity: Our system collects monitoring data
from existing monitoring sources for different types of metrics, from virtual ma-
chine level metrics like memory, CPU, to application level metrics like response
time or throughput. It aggregates the monitored metrics into higher level met-
rics, composing metrics associated with different levels of the cloud service (e.g.
cloud service, service topology or service unit). A service unit can be deployed
over several virtual machine instances, and therefore metrics targeting this level
have be aggregated from metrics at virtual machine level. In the same man-
ner, a cloud service is composed of several service topologies which in turn are
composed of several service units and therefore metrics at cloud service level
need to be aggregated from metrics at service topology level, which are in turn
aggregated from service unit level. Moreover, we can have complex metrics as
is the case for the metric targeted in constraint Co1 which is aggregated by
dividing cost per hour at service topology level and number of clients for the
service topology. The cost at service level is the sum of the cost at service unit
level, which in turn can be aggregated from, e.g. cost per virtual machine, cost
for I/O operations or cost for network interface. The monitored metrics are an-
alyzed for detecting whether or not the cloud service is in elastic behavior (i.e.
fulfills all elasticity requirements), what could be the trend for the evolution of
the metrics and what is the correlation among them. All this information is fed
into the Elasticity Control Service for generating elasticity control action plans
in case the cloud service, or parts of the cloud service do not expose the expected
behavior, defined through elasticity requirements.

3 Demonstrating Cloud Services

We use a pilot, but realistic, Data-as-a-Service in an M2M (Machine-to-Machine)
cloud platform as the cloud service in our demonstration. Figure 2 shows a snap-
shot of our demonstration1 in which detailed service cloud structures together
with their runtime elasticity behaviors and elasticity control actions are analyzed
and presented to the developer/provider. Via a rich interface, the demonstra-
tion will show how elasticity requirements are described, how the cloud service
provider can view in real-time complex high level monitoring metrics understand-
ing their values and impact upon the cloud service and how the cloud service is
automatically controlled for elasticity using all this information.

The user can specify SYBL elasticity requirements at different levels, e.g.
in source code using Java annotations for service units, or in XML for service
topologies. After being started, the Elasticity Control Service processes informa-
tion from the monitoring service and takes elasticity control actions when the

1 The demo video can be found at dsg.tuwien.ac.at/research/
viecom/prototypes/demo/syblmelaicsoc.wmv

dsg.tuwien.ac.at/research/viecom/prototypes/demo/syblmelaicsoc.wmv
dsg.tuwien.ac.at/research/viecom/prototypes/demo/syblmelaicsoc.wmv

682 G. Copil et al.

Fig. 2. Example of monitoring and controlling elasticity

requirements are not fulfilled. The user (e.g. cloud service provider) can view
the monitoring interface during the application execution, for checking if the
behavior is the expected one, for seeing how metrics are aggregated from lower
to higher levels, and for learning how the application behaves under different
circumstances (e.g. how does adding more resources impact quality?).

References

1. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.:
Adaptation of service-based applications based on process quality factor analysis.
In: ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 395–404. Springer, Heidelberg
(2010)

2. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

3. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. In:
2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 34–41. IEEE Computer Society (2013)

4. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an Extensible Language
for Controlling Elasticity in Cloud Applications. In: 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119.
IEEE Computer Society (2013)

5. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level Elasticity Control
of Cloud Services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

Modeling and Monitoring Business Process Execution

Piergiorgio Bertoli1, Mauro Dragoni2, Chiara Ghidini2, Emanuele Martufi1,
Michele Nori1, Marco Pistore1,2, and Chiara Di Francescomarino2

1 SAYservice, Trento, Italy
{bertoli,martufi,nori,pistore}@sayservice.it

2 FBK—IRST, Trento, Italy�

{dragoni,ghidini,pistore,dfmchiara}@fbk.eu

Abstract. The growing adoption of IT systems to support business activities has
made available huge amount of data, that can be used to monitor the actual exe-
cution of business processes. However, in many real settings, due to the different
degrees of abstraction between business and technological layers and to informa-
tion hiding, the potentiality of this data cannot be fully exploited. The PROMO

tool, grounded on reasoning services, aims at reconciling the technical and the
business layer, in order to enable the effective monitoring and analysis of busi-
ness process instances in the face of abovementioned issues.

1 Introduction

Nowadays, huge quantities of data are made available by the growing capability of In-
formation Technology (IT) systems to trace and store business service and application
execution information. The potentiality of this data is enormous from a business point
of view, as it makes it possible (i) to observe the current evolution of ongoing pro-
cesses; (ii) to provide statistical analysis on past executions; (iii) to detect deviations of
real process executions from ideal process models (as envisaged in [1]); (iv) to identify
performance-specific or instance-specific problems; and hence also to improve busi-
ness process models based on analyses, deviations, bottlenecks and problems detected
inspecting real process executions. Indeed, a variety of Business Intelligence tools have
been proposed, even by major vendors, that aim at supporting business activity mon-
itoring (BAM) to different extent; for instance, Engineering’s eBAM [5], Microsoft’s
BAM suite in BizTalk [4], Oracle’s BAM [6], Polymita, WebSphere [7], to name a few.

However, business activity monitoring must deal with a significant difficulty, i.e.,
the gap existing between the business and the technological (IT) level. Indeed a perfect
mapping between modeled and IT-traced processes does not exist in the vast majority
of cases. For example, observation of process execution often brings (e.g., because of
manual activities or paper-based documentation) only partial information in terms of
which process activities have been executed and what data or artifacts they have pro-
duced so far. Moreover, even when IT information exists, it is not easy to associate it to

� This work is supported by “ProMo - A Collaborative Agile Approach to Model and Monitor
Service-Based Business Processes”, funded by the Operational Programme “Fondo Europeo
di Sviluppo Regionale (FESR) 2007-2013” of the Province of Trento, Italy.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 683–687, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

684 P. Bertoli et al.

a specific process instance execution. Indeed, IT-services can be shared among several
process classes and instances, and the traced information can be hard to disambiguate.
To the best of our knowledge, none of the aforementioned current approaches has com-
pletely tackled the above issues, rather relying on the strong simplifying assumption
that the business analyst can link directly IT information to business process activities.

In this demo we present PROMO1, a software tool which, exploiting reasoning ser-
vices, aims at reconciling the technical layer and the business one to enable the effective
monitoring, analysis and querying of business processes.

2 PROMO Approach and Tool

PROMO aims at providing a collaborative (involving domain experts and IT experts)
approach to model, monitor and analyze business processes, filling the unavoidable gap
existing between business and IT layers. To this purpose PROMO introduces an inter-
mediate layer (see Figure 1), which enables the communication between the business
and the technological one through an intermediate model. Such a model, able to for-
malize the relationships between the business models and the information extracted at
IT level, relies on the integrated representation of all the information collected about
the process execution (named IT-trace).

Fig. 1. PROMO overview

To accomplish its goal, PROMO integrates a modeling component and a monitor-
ing component. At the business level, the modeling component provides MOKIPRO, a
customized version of the MediaWiki-based2 tool MOKI [3] for the process and ontol-
ogy editing, which allows domain experts to design the business process control flow,
as well as the associated data representation and manipulation (by the process activi-
ties). MOKIPRO (i) customizes the ORYX editor3 for the BPMN modeling of business
processes and related data structures (see Figure 2); (ii) allows domain experts to spec-
ify the data structure and, for each process activity, the data that it creates or shows.

1 A video of the demo is downloadable from
https://dkmtools.fbk.eu/moki/icsocVideoDemo.zip

2 http://www.mediawiki.org
3 http://bpt.hpi.uni-potsdam.de/Oryx/

https://dkmtools.fbk.eu/moki/icsocVideoDemo.zip
http://www.mediawiki.org
http://bpt.hpi.uni-potsdam.de/Oryx/

Modeling and Monitoring Business Process Execution 685

Fig. 2. Process modeling in PROMO

At the IT-level PROMO provides (i) mapping and monitoring editors that allow IT
experts (taking advantage of the domain experts modeling) to specify, respectively, ag-
gregation/monitoring rules and the relationships between business models and the infor-
mation extracted at IT level; and (ii) a KPI-editor for the definition of interesting KPIs
to be monitored. In detail, the DomainObject language [2] is used for defining map-
ping properties, an ad-hoc rule language for the monitoring rules, while business KPIs
are defined as SPARQL [8] queries. It is possible for example to monitor how many
times process instances deviate from the “prescribed” behavior or a specific branch of
the model is executed, as well as the average time required for the process execution.

Fig. 3. Monitoring IT events in PROMO

At run-time, whenever an IT-level event occurs, the monitoring component captures
and takes care of it. In detail, the event is managed by the monitoring engine, which,
based on the specification and rules defined at design-time, correlates and aggregates
events, produces new control events, monitors and maps the events to the corresponding
one(s) at the business layer and eventually produces the IT-trace. Figure 3 shows a list
of events monitored (and produced) by the monitoring engine in a specific scenario,
which will be used in the demo.

686 P. Bertoli et al.

The information in the IT-trace, which in many cases is only partial with respect to
a complete execution flow of a designed process model, is hence passed to a reasoning
engine, which reconstructs missing information by applying model-driven satisfiability
rules. The reconstructed IT-trace is finally recorded in a semantic-based store to be
monitored at business level (according to the KPIs defined at designed time), or queried
(according to queries defined by domain experts), by the BP monitoring and analysis
component. For example, specific queries investigating the number of times in which a
business activity is executed by a given actor instance, or in which the activity provides
as output a data structure field with a given value, can be formulated.

3 PROMO Application

The PROMO tool has been applied, among other case studies, to an e-government one:
the Italian Birth Management procedure, characterized by a process containing 4 pools,
18 activities, 21 gateways, and 13 data structures (including in total 75 distinct fields).
Our demo will showcase PROMO on this case study.

At design time, domain experts and IT experts model the control flow (Figure 2
depicts the initial part of the Municipality pool), data structure and manipulation by
activities, as well as mapping definition and monitoring rules for the case study.

As an example, consider when, at run-time, a MunicipalityLogging event is registered
by the services at the IT layer, captured and analyzed by the monitoring engine. Then,
when another event related to the same process instance (e.g., RegisterDataMunicipality)
occurs (see Figure 3), the monitoring engine correlates and aggregates them, generating
a new IT event (MunicipalityRegistrationCompleted), used for IT-level monitoring. Further,
the (partial) IT-trace is generated and passed to the reasoning engine, which tries to re-
construct missing information according to the process model. For instance, the reason-
ing engine, aware of the process model control flow, can infer that the execution went
through either the ReceiveParentMunicipalityRecord or the ReceiveAPSSMunicipalityRecord
activity. Moreover, knowing the data associated with the two received events (the data
structure associated to the MunicipalityLogging activity does not contain the Fiscal Code
CF, while the one associated to the RegisterMunicipalityData activity does), as well as
the activities in charge to create or show them, the reasoning engine can infer that the
process execution actually went through the GenerateCFMunicipality activity. The recon-
structed trace is finally recorded by the storing component and the related KPIs updated.
Among the predefined KPIs of this case study, for instance, there is the number of times
in which the CF field has been filled by the Municipality rather than by another actor of
the procedure and the average time required to complete the whole birth practice.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes, 1st edn. Springer Publishing Company, Incorporated (2011)

2. Bertoli, P., Kazhamiakin, R., Nori, M., Pistore, M.: Smart: Modeling and monitoring support
for business process coordination in dynamic environments. In: Abramowicz, W., Domingue,
J., W ↪ecel, K. (eds.) BIS 2012 Workshops. LNBIP, vol. 127, pp. 243–254. Springer, Heidelberg
(2012)

Modeling and Monitoring Business Process Execution 687

3. Ghidini, C., Rospocher, M., Serafini, L.: Conceptual Modeling in Wikis: a Reference Archi-
tecture and a Tool. In: eKNOW 2012, Valencia, Spain, pp. 128–135 (2012)

4. Biztalk team: biztalk, biztalk server,
https://www.microsoft.com/en-us/biztalk/default.aspx

5. Eclipse team: ebam, extended business activity monitoring,
http://www.eclipse.org/ebam

6. Oracle team: Oracle bam, oracle business activity monitoring (oracle bam),
http://www.oracle.com/technetwork/
middleware/bam/overview/index.html

7. Websphere team: Websphere software, ibm,
http://www-01.ibm.com/software/websphere/

8. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2008), Latest version
available as http://www.w3.org/TR/rdf-sparql-query/

https://www.microsoft.com/en-us/biztalk/default.aspx
http://www.eclipse.org/ebam
http://www.oracle.com/technetwork/middleware/bam/overview/index.html
http://www.oracle.com/technetwork/middleware/bam/overview/index.html
http://www-01.ibm.com/software/websphere/
http://www.w3.org/TR/rdf-sparql-query/

A Tool for Business Process
Architecture Analysis

Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{rami.eidsabbagh,marcin.hewelt,mathias.weske}@hpi.uni-potsdam.de

Abstract. Business Process Architectures (BPA) are used for structur-
ing and managing process collections. For optimising business processes
a high level view on their interdependencies is necessary. BPAs allow to
capture message and trigger flow relations between processes and their
multiple process instances within a process collection. However, tools
that allow analysis of BPAs besides visualization do not exist. This con-
tribution presents a novel tool to model and to analyse the correctness
of a BPA by transforming it into open nets, translate the correctness
criteria into CTL formula and model check those using LoLA.

1 Introduction
With the advent of process model collections (PMC), their organisation and man-
agement came into focus. Modeling guidelines were introduced to improve and
harmonise the quality of process models created by different process modelers in
an organisation [1,2]. For single processes several tool-supported approaches ex-
ist which allow to check structural, behavioral, and linguistic properties. Lately,
these were also incorporated into modeling tools, e.g. the Signavio BPM tool1.

Similar approaches, taking a holistic view for assuring quality on a higher
abstraction level do not yet exist. In practice, often many processes of PMC
interact to deliver a service, or produce a good. Business Process Architectures
(BPA) and their correctness criteria present a novel approach to organize business
processes in a PMC and analyse them [3]. A BPA groups processes into different
subsets of which each is responsible for handling one specific business case. Each
BPA subset contains a set of processes together with trigger and message flow
relations. To model BPAs and to decide the correctness of such an interaction is
not supported by business process modeling tools.

In this contribution we present a novel and innovative tool to visually model
BPAs and analyse them for correctness. The tool consists of a BPA core module
that integrates existing applications, which we extended for our purpose of BPA
analysis. We plan to extend the tool to serve as the basis for PMC management,
so that business processes are abstracted into BPAs and visualized, allowing to
navigate to the actual process models. The analysis of BPAs provides a first step
1 http://signavio.com

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 688–691, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://signavio.com

A Tool for Business Process Architecture Analysis 689

for assuring further correctness and consistency properties on a more detailed
process layer.

The remainder of this paper is structured as follows, Section 2 presents the
architecture of the tool, Section 3 provides insights on the maturity of the tool
development, and Section 4 explains details of the planned tool demo.

2 BPA Tool Architecture

Our BPA tool extends and composes functionality of existing tools as depicted
in Fig. 1. The user interface for modeling BPAs and visualizing found errors is
provided by an extension to the Signavio Core Components (SCC)2They are the
open source components of the Signavio editor, a web based business process
modeling tool widely used for teaching in academia3 (BPM Academic Initiative)
and as commercial BPM tool4. Our extension introduced a new stencil set for
BPAs, which contains visual shapes and connections rules to draw BPA diagrams.
The Signavio Core Components were selected because they provide a web-based
editor, that is easy to extend and allows to export BPA diagrams as xml files.

The main program logic is implemented as a module for promnicat5, a tool
developed to perform analysis on large process model collections [4]. This BPA
module consists of a data model, the BPA Analyzer, and two transformation
modules. The data model defines the structure of a BPA, its processes, events,
and the trigger and flow relations between the events. The JsonToBPA trans-
former imports the xml file output by Signavio Core Components and creates
a BPA data structure to be used by the BPA Analyzer. This data structure is
the input for the BpaToPNML Transformer. It transforms the BPA into a set of
open nets according to the approach presented in [3]. Afterwards, the nets are
composed and the resulting net is serialized using the PNML standard6. This
module also generates a set of CTL formulae which express the correctness cri-
teria for the given BPA and are to be checked by LoLA7. The CTL formulae
are derived by examining the pre- and postsets of all events in the BPA, e.g.
if an end event has an empty postset, the event is considered part of the final
marking.

In addition we use the Petri net simulator Renew8to convert the PNML
file into the file format that LoLA requires for analysis and to visualize the
transformed net.The Renew module also provides a built-in LoLA integration
for the analysis. To this end it calls LoLA with the CTL formulae specified for
the correctness analysis. The result of the model checker is finally interpreted
and visualized in the Signavio module.
2 http://code.google.com/p/signavio-core-components
3 http://bpmai.org
4 http://signavio.com
5 http://code.google.com/p/promnicat
6 pnml.org
7 Low Level Petri net Analyzer, http://service-technology.org/lola
8 renew.de

http://code.google.com/p/signavio-core-components
http://bpmai.org
http://signavio.com
http://code.google.com/p/promnicat
pnml.org
http://service-technology.org/lola
renew.de

690 R.-H. Eid-Sabbagh, M. Hewelt, and M. Weske

BPA Analysis Tool

Business Process Architecture Core Signavio Core
Componets

BPA
Stencilset

Renew

BPA
ToPNML

Transformer

BPA Analyzer

JsonToBPA
Transformer

BPA Creator

BPA Modeler

Petri Net
Analyzer

LoLA

Petri Net
Visualizer

R

.net, PNML, .task .task, .PNML,BPA Data,.XML .XML

Fig. 1. BPA Tool Architecture

3 Maturity

The proposed tool is in a prototypic stage. The interaction with the integrated
tools, Signavio Core Components, Renew, and the LoLA model checker works
via files and command line calls. The BPA modeler is based on a widely used web
browser editor from Signavio, which itself is used as commercial application. Our
extension of the editor to allow the modeling of BPAs uses existing functionality
and adds visual shapes and connections rules for BPA elements. The export
feature was used as is. The Renew module used to transform BPAs into the
file format required for LoLA was already presented in [5]. Model checking the
correctness properties is performed by LoLA.

All core functionalities are implemented in the prototype. Our tool supports
modeling BPAs in a Web Browser, transforming them into open nets, analysing
their correctness, and visualizing the errors found. This version of the BPA tool
realizes the BPA analysis approach presented in [3,6].

We plan to extend the next version of the BPA tool with the feature to
(semi-)automatically extract BPAs from process model collections. Furthermore
we are working on the creation of BPAs from data annotated BPMN process
models and object life cycles.

4 Script

The demo showcases the features of our BPA tool beginning with the modeling of
BPA diagrams, continuing with their transformation into open nets, the analysis
with LoLA, and ending with the display of the results. Especially the possibility
to analyse multi-instance and multi-communication, which is novel and is not
supported by existing tools so far, will be a major focus of the demonstration.
The demo will consist of three steps in which we explain the capabilities of the
tool.

A Tool for Business Process Architecture Analysis 691

1. First a small use case from the public administration, e.g. the founding of
an enterprise, will be modeled as BPA with the extended BPA Signavio
Core Components. The BPA diagram shows the trigger and message flow
relations between the involved processes, compare Fig. 2(a). Importantly, we
will highlight the visualization of multi-instances and multi-communication
according to the multiplicities depicted in the BPA model.

2. The modeled BPA diagram is transformed into an open net which is visu-
alized in a separate window, compare Fig. 2(b). This step implements the
algorithm presented in [6], and extended for BPAs with multiplicities in [3].
All the processes together with trigger and message flow relations are mapped
to open net constructs, which are then composed into one net.

3. The resulting open net is the basis for the correctness analysis. Each cor-
rectness criterion from [3] (terminating run, no livelocks, no dead processes)
translates into a CTL formulae which is model checked by LoLA. If all for-
mulae yield a positive result, we know, that the BPA is correct. Otherwise
found errors are displayed in the BPA diagram.

(a) BPA Modeler (b) Open-net Visualizer

Fig. 2. Screenshots from the BPA Tool

References
1. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error

Prediction, and Guidelines for Correctness. LNBIP, vol. 6. Springer, Heidelberg (2008)
2. Mendling, J., Reijers, H., van der Aalst, W.: Seven Process Modeling Guidelines

(7PMG). Qut eprint. Queensland University of Technology (2008)
3. Eid-Sabbagh, R.-H., Hewelt, M., Weske, M.: Business Process Architectures with

Multiplicities: Transformation and Correctness. In: Daniel, F., Wang, J., Weber, B.
(eds.) BPM 2013. LNCS, vol. 8094, pp. 227–234. Springer, Heidelberg (2013)

4. Eid-Sabbagh, R.-H., Kunze, M., Meyer, A., Weske, M.: A Platform for Research
on Process Model Collections. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012.
LNBIP, vol. 125, pp. 8–22. Springer, Heidelberg (2012)

5. Hewelt, M., Wagner, T., Cabac, L.: Integrating verification into the PAOSE ap-
proach. In: Duvigneau, M., Moldt, D., Hiraishi, K. (eds.) Petri Nets and Software En-
gineering, PNSE 2011. CEUR Workshop Proceedings, vol. 723, pp. 124–135. CEUR-
WS.org (2011)

6. Eid-Sabbagh, R.-H., Weske, M.: Analyzing Business Process Architectures. In: Sali-
nesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 208–223.
Springer, Heidelberg (2013)

OpenTOSCA – A Runtime
for TOSCA-Based Cloud Applications

Tobias Binz1, Uwe Breitenbücher1, Florian Haupt1, Oliver Kopp1,2,
Frank Leymann1, Alexander Nowak1, and Sebastian Wagner1

1 IAAS, University of Stuttgart, Germany
2 IPVS, University of Stuttgart, Germany

firstname.lastname@informatik.uni-stuttgart.de

Abstract TOSCA is a new standard facilitating platform independent descrip-
tion of Cloud applications. OpenTOSCA is a runtime for TOSCA-based Cloud
applications. The runtime enables fully automated plan-based deployment and
management of applications defined in the OASIS TOSCA packaging format
CSAR. This paper outlines the core concepts of TOSCA and provides a system
overview on OpenTOSCA by describing its modular and extensible architecture,
as well as presenting our prototypical implementation. We demonstrate the use of
OpenTOSCA by deploying and instantiating the school management and learning
application Moodle.

Keywords: TOSCA, Cloud Applications, Automation, Management, Portability.

1 Background: TOSCA and TOSCA-Based Moodle

The Topology and Orchestration Specification for Cloud Applications [4] (TOSCA) is a
new OASIS standard to describe Cloud-based applications in a portable and interopera-
ble way. TOSCA standardizes the description of the structure and management aspects
(i. e., deployment, operation, termination) of applications. The structure of TOSCA-
based applications is defined by a topology—a graph of typed nodes and directed typed
edges. Nodes represent components forming an application and edges define the rela-
tions and dependencies between them. For instance, the topology of the Moodle appli-
cation (www.moodle.org) consists of the actual PHP module, an Apache Web Server, a
MySQL database, two operating systems (one for the Web server and one for the MySQL
database), and two virtual machines (Fig. 1). The relationships in this topology define,
for instance, that the Moodle application is “hosted on” a Web server and that the appli-
cation “connects to” the MySQL database. The types of nodes and relationships specify
their properties and management operations. The type “Apache Web Server” defines
properties, such as “port” or “version”, and management operations, such as “start” or
“deploy”. The actual implementation of a node is provided by one or many Deployment
Artifacts, e. g., a Linux VM image, an operating system package for the Apache Web
Server, or an archive containing the PHP files of Moodle. In addition, types may define
Implementation Artifacts that implement the management operations for the respective
element. The TOSCA topology and related artifacts are bundled into a Cloud Service
ARchive (CSAR), the standardized packaging format for TOSCA applications.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 692–695, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.moodle.org

OpenTOSCA – A Runtime for TOSCA-Based Cloud Applications 693

OsApache
(OperatingSystem)

VmApache
(Server)

Apache
(ApacheWebServer)

Moodle
(WebApplication)

PhpModule
(PhpModule)

OsMySQL
(OperatingSystem)

VmMySql
(Server)

MySql
(MySqlRDBMS)

MoodleDB
(MoodleDB)

(hosted on)

(connects to)
(depends on)

Fig. 1. Moodle Application Topology modeled using Vino4TOSCA [2]

TOSCA topologies can be processed by a TOSCA runtime in an imperative or declar-
ative way [5]: Imperative processing relies on the implementation of management plans
that can be executed fully automated to perform the desired management task, e. g., to
instantiate, backup, upgrade, or terminate an application. These high-level management
tasks are implemented by orchestrating low-level management operations provided by
Implementation Artifacts of nodes and relationships. Because management plans are typ-
ically implemented by the application developer, they enable operators to manage the
application by running pre-defined plans without the need to understand all the techni-
cal details of the management task [1]. Technically, management plans are implemented
as workflows. Thus, they inherit properties of workflow technology such as traceability,
recoverability, human interaction, and portability. Declarative processing, on the other
hand, shifts the deployment and management logic from plans to the runtime. To per-
form the aforementioned high-level management tasks, the runtime has to know the op-
erations that have to be called and their order. Declarative processing is well suited for
the deployment of simple applications but is not able to facilitate complex management
tasks for various kinds of application structures. For more details, including the TOSCA
role model, we recommend the TOSCA specification [4] and TOSCA primer [5].

In summary, TOSCA provides means to describe procedures for managing applica-
tions in a standardized way that enable automated and portable processing. With more
and more applications described in TOSCA it will enable more and more applications
to be hosted in the Cloud.

2 OpenTOSCA: Architecture and Demonstration

OpenTOSCA is a runtime supporting imperative processing of TOSCA applications. Im-
perative means that the deployment and management logic is provided by plans. The
key tasks of OpenTOSCA, addressed by the architecture depicted in Fig. 2, are to op-
erate management operations, run plans, and manage state. Requests to the Container
API are passed to the Control component, which orchestrates the different components,
tracks their progress, and interprets the TOSCA application. The Core component offers
common services to other components, e. g., managing data or validating XML.

Management operations of nodes and relationships are either provided by running
(Web) services, e. g., the Amazon EC2 API, or by Implementation Artifacts contained

694 T. Binz et al.

in the CSAR. In the latter case, the Implementation Artifact Engine is responsible to
run these artifacts in order to make them available for plans. Implementation Artifacts,
e. g., a SOAP Web service implemented as Java Web archive (WAR), are processed
by a corresponding plugin of the engine which knows where and how to run this kind
of artifact. The plugins deploy the respective artifacts and return the endpoints of the
deployed management operations to be stored in the Endpoints database.

The management plans contained in CSARs are processed by the Plan Engine, which
also employs plugins to support different workflow languages, e. g., BPMN or BPEL,
and their runtime environments. Plans only define abstractly which kind of service they
require but not their concrete endpoints. Therefore, the corresponding plan plugin binds
each service invoked by the plan to the endpoint of the management operation before it
deploys the plan to the respective workflow runtime. The service’s endpoint was added
to the endpoint database before by the Implementation Artifact Engine. This way of bind-
ing workflows ensures portability of management plans between different environments
and runtimes [1]. By using the Plan Portability API, management plans can access the
topology and instance information, e. g., the property values of nodes and relationships.

The plugin architecture of the Implementation Artifact Engine and Plan Engine en-
sure extensibility. Portability is ensured by the two engines working together when
binding management plans. Strict separation of architectural components through well-
defined OSGi interfaces enables the replacement of implementations of components.
This also allows each component to be scaled independently.

Demonstration. In the following, we demonstrate how the OpenTOSCA runtime de-
ploys CSARs and how instances of Cloud applications are created. After uploading
the CSAR to OpenTOSCA, the deployment of the TOSCA application follows three
steps: (i) First, the CSAR is unpacked and the files are put into the Files store, which
is backed either by the local file system or Amazon S3. (ii) Then, the TOSCA XML
files are loaded, resolved, validated, and processed by the Control component, which
calls the Implementation Artifact Engine and the Plan Engine. The Implementation Ar-
tifact Engine deploys the referenced Implementation Artifacts (cf. (a) in Fig. 2) and

a

b

Container API
Implementation Artifact

Runtime

Operation

Plan Portability API
Plan Runtime

Plug-Ins

Component

Ext. Systems

External APIs

Control

Core

Admin UI Self-Service
Portal

Modeling
Tool

Model Instance
data Files End-

points Plans

Management Plan

c

d Implementation
Artifact Engine …

Plugin

Plan Engine

Plugin

…

Fig. 2. OpenTOSCA Architecture Overview and Processing Sequence

OpenTOSCA – A Runtime for TOSCA-Based Cloud Applications 695

stores their endpoints in the Endpoints database. (iii) Finally, the Plan Engine binds and
deploys the application’s management plans (cf. (b) in Fig. 2). The endpoints of the
Moodle management plans are stored in the Plans database.

The deployed application can be instantiated by executing the build plan of the appli-
cation. This plan is either started through the Self-Service Portal, which provides an UI
for end user access to the deployed applications, or by sending a SOAP message to it.
Credentials (e. g., for Amazon EC2) or configurations (e. g., machine size) are passed
as input message to the workflow. The Plan Portability API acts as access point for the
plans to the container. By using this API, the topology model, endpoints, and instance
data, such as properties of nodes (e. g., the port of a Web server) and relationships, can
be read and written (cf. (c) in Fig. 2). Having these data available, the build plan orches-
trates the management operations of nodes and relationships to provision and configure
the Cloud application (cf. (d) in Fig. 2). To instantiate Moodle, the build plan first starts
two virtual machines with a Linux operating system and installs Apache Web Server
and MySQL on them. Then, it uses the respective management operations to install the
PHP application, import the database schema, and establish the database connection.
After completion, a build plan may return certain information, for example, the Web
address of the deployed application instance. The Moodle build plan returns the URL
of the running Moodle instance, which includes the public URL of the virtual machine
running the Apache Web Server. This demonstration is also featured in the OpenTOSCA
demo video (online at demo.opentosca.org).

Currently, OpenTOSCA is used together with the modeling tool “Winery” [3] in the
German government-funded projects CloudCycle and Migrate! as well as in industry
and research cooperations of our institute.

Next Steps. To deploy simple applications without the need to model build plans we
plan to add declarative processing of applications to OpenTOSCA. We are also working
on building a community around OpenTOSCA at www.opentosca.org.

Acknowledgments. This work was partially funded by the BMWi projects CloudCy-
cle (01MD11023) and Migrate! (01ME11055). We thank Christian Endres, Matthias
Fetzer, Markus Fischer, Nedim Karaoğuz, Kálmán Képes, Rene Trefft, and Michael
Zimmermann for their help with the implementation of OpenTOSCA.

References

1. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA. IEEE
Internet Computing 16(3), 80–85 (2012)

2. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA. In: Meersman, R., et al. (eds.) OTM
2012, Part I. LNCS, vol. 7565, pp. 416–424. Springer, Heidelberg (2012)

3. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – Modeling Tool for TOSCA-
based Cloud Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 702–706. Springer, Heidelberg (2013)

4. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
Version 1.0 Committee Specification 01 (2013)

5. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer
Version 1.0 (January 2013)

demo.opentosca.org
www.opentosca.org

iAgree Studio: A Platform to Edit and Validate
WS–Agreement Documents�

Carlos Müller, Antonio Manuel Gutiérrez, Manuel Resinas,
Pablo Fernández, and Antonio Ruiz-Cortés

University of Seville, LSI
ISA research group, http://www.isa.us.es/, Seville, Spain

{cmuller,amgutierrez,resinas,pablofm,aruiz}@us.es

Abstract. The widespread use of SLA-regulated Cloud services, in which the
violation of SLA terms may imply a penalty for the parties, have increased the
importance and complexity of systems supporting the SLA lifecycle. Although
these systems can be very different from each other, ranging from service mon-
itoring platforms to auto-scaling solutions according to SLAs, they all share the
need of having machine-processable and semantically valid SLAs. In this pa-
per we present iAgree studio, the first application, up to our knowledge, that is
able to edit and semantically validate agreement documents that are compliant
with the WS–Agreement specification by checking properties such as its consis-
tency, and the compliance between templates and agreement offers. In addition,
it reports explanations when documents are not valid. Moreover, it allows users
to combine the validation and explanation operations by means of a scenarios
developer.

1 Overview and Motivation

SLAs are widely used nowadays as a means to regulate the terms and conditions under
which a service is provided. As the use of SLAs in Cloud services and applications in
which the violation of SLA terms may imply a penalty for the parties increases, the
complexity and demand of systems supporting the SLA lifecycle also increases. These
systems include service monitoring platforms that use SLAs to decide which service
metrics should be monitored, auto-scaling solutions that automates the provisioning or
deprovisioning of resources according to the SLA, and billing components that calcu-
late the penalties incurred during the use of a service, amongst others. Although very
different from each other, all of these systems require having semantically valid SLAs
(i.e., without semantic errors) and defined in a machine processable manner.

WS–Agreement [1] is arguably the most widespread recommendation for defining
machine processable SLAs. It specifies a template-based agreement creation protocol
and an XML Schema that defines the basic structure of an SLA and the other documents
� This work was partially supported by the European Commission (FEDER), the Spanish and the

Andalusian R&D&I programmes (grants TIN2009–07366 (SETI), TIN2012–32273 (TAPAS),
TIC–5906 (THEOS)).

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 696–699, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.isa.us.es/

iAgree Studio: A Platform to Edit and Validate WS–Agreement Documents 697

Template AmazonS3 v e r s i o n 1 . 0
Prov ider Amazon as Responder ;

AgreementTerms
S e r v i c e AWS−S3 a v a i l a b l e a t . aws . amazon . com / s3 / / S e r v i c e r e f e r e n c e i n iAgr ee

Global d e s c r i p t i o n : / / S e r v i c e d e s c r i p t i o n t e r m i n iAgr ee
I n t e r f a c e ; / / e i t h e r SOAP or REST
RRS = F a l s e ; / / Reduced Redundancy S t o r a g e (RRS)
S t o r a g e S i z e ; / / S t o r a g e S i z e i n TB
F i r s t P r o j e c t ; / / Deno tes i f i t i s t h e f i r s t cus tom er p r o j e c t
T o t a l P r i c e , S t o r a g e P r i c e , S u p p o r t P l a n P r i c e ;

Monitorable P r o p e r t i e s / / S e r v i c e p r o p e r t i e s i n iAgr ee
g l o b a l :

MUP; / / Monthly Uptime P e r c e n t a g e , a k ind of AmazonS3 s e r v i c e a v a i l a b i l i t y
T r a n s f e r r e d G b ; ResponseTime ; ReadRequests , W r i t e R e q u e s t s ;
O n l i n e R e p o r t i n g S u p p o r t , P honeSuppor t ; / / Customer s u p p o r t f a c i l i t i e s
TurnAroundTime ; / / Minu te s t o s o l v e p r ob lems

Guarantee Terms
G1 : Prov ider guarant ees MUP >= 9 9 . 9 ;
G2 : Consumer guarant ees T r a n s f e r r e d G b < S t o r a g e S i z e ∗ 100

AND ReadReques t s > W r i t e R e q u e s t s ;
G3 : Prov ider guarant ees ResponseTime < 1000 ; o n l y I f (I n t e r f a c e = SOAP) ;
G4 : Prov ider guarant ees ResponseTime < 700 ; o n l y I f (I n t e r f a c e = REST) ;
G5 : One or More between :

G5 . 1 : Prov ider guarant ees O n l i n e R e p o r t i n g S u p p o r t = t r u e ;
G5 . 2 : Prov ider guarant ees TurnAroundTime = 1 5 ;
G5 . 3 : Prov ider guarant ees PhoneSuppor t = t r u e ;

Creat ion C o n s t r a i n t s :
C1 : S t o r a g e P r i c e = 0 .05 ∗ S t o r a g e S i z e ; o n l y I f RRS = t r u e ;
C2 : S t o r a g e P r i c e = 0 .12 ∗ S t o r a g e S i z e ; o n l y I f RRS = f a l s e ;
C3 : S t o r a g e S i z e <= 5000 TB ;
C4 : T o t a l P r i c e = S t o r a g e P r i c e + S u p p o r t P l a n P r i c e ;

o n l y I f (F i r s t P r o j e c t = f a l s e or S t o r a g e S i z e > 5) ;

Fig. 1. Template of AmazonS3 service scenario in iAgree

used in the agreement creation protocol like agreement templates and agreement offers.
However, WS–Agreement leaves open how the different elements of a WS–Agreement
document such as a Service Level Objective (SLO) must be specified.

iAgree [4] is a fully-fledged WS–Agreement-compliant language that completes the
WS–Agreement schema with a set of languages to describe all WS–Agreement ele-
ments. Figure 1 shows an iAgree template inspired in the Amazon Simple Storage Ser-
vice (AmazonS3) including: terms to describe the service (see service AWS-S3,
and Monitorable Properties) and guarantees (see G1-G5), terms compositors
to combine the terms (see G5), and creation constraints (see C1-C4). Moreover, iA-
gree supports expressive arithmetic-logic expressions within the service level objectives
(SLOs) (see G2), qualifying conditions (QCs) of conditional terms (see G3-G4), and
creation constraints (CCs) (see C2). In addition, an advantage of iAgree is that its va-
lidity criteria has been extensively researched [2,3,4] and algorithms for checking and
explaining the validity of iAgree documents have also been developed.

Based on those results, in this paper we present iAgree studio1, a web application
to edit and validate iAgree documents. In particular, it supports the kinds of conflicts
between terms and creation constraints presented in [3,4], and the non-compliance sit-
uations between templates and agreement offers exposed in [2].

1 Available at www.isa.us.es/iagreestudio/, including a screencast.

www.isa.us.es/iagreestudio/

698 C. Müller et al.

Fig. 2. Scenario to check and explain compliance problems

2 Novelties and Functions

The novelty of iAgree Studio is given by the following features2:

High WS–Agreement Compliance. iAgree studio supports to edit and validate WS–
Agreement documents with expressive terms including arithmetic-logic expres-
sions relating several service properties inside the SLOs, QCs, and CCs, and
supporting terms compositors defining agreement variants inside an agreement.
Other WS–Agreement-based solutions studied in [4] do not support these agree-
ment elements that are in the specification limiting their usefulness in real scenarios
in which many of these elements are commonly used.

Document Validation. iAgree studio is able to validate iAgree documents by checking
that they do not contain semantic errors, supporting the kinds of conflicts between
terms and creation constraints presented in [3,4], and the non-compliance situations
between templates and agreement offers exposed in [2]. Depending on the kind of
document, the validation comprise different properties.

Semantic Errors Explanations. iAgree studio provides an explanation report after the
documents validations when semantic errors are detected. Such reports include the
terms and creation constraints that are involved in the detected semantic error. For
instance, a contradiction between terms, or a non-compliance between offers and
template terms that make them non-compliant.

Scenarios Developer. iAgree studio incorporates a Scenarios developer that allows
users to combine the validation operations and explanation reports to obtain ad-
vanced and customisable validation scenarios. For instance, an interesting scenario

2 Note that iAgree studio is an ongoing work and it will be extended in a nearby future with
more features.

iAgree Studio: A Platform to Edit and Validate WS–Agreement Documents 699

may be to check the validity of agreement offers and templates before checking the
compliance between them. Such scenario is included in Figure 2 for a specific pair
of documents including the explanation reports if semantic errors are detected.

In addition, iAgree studio has been tested by our M.Sc students in an SLA learning
course and they suggested a number of user-friendly facilities that have been incorpo-
rated in current iAgree studio version such as: menus structure organised as in google
docs, coloured syntax to highlight iAgree keywords, undo-redo functions, documents
can be downloaded in iAgree or a serialised XML-based syntax, several samples pre-
sented in [3] are preloaded to try the iAgree studio functionality, etc.

3 Internal Structure

The automated checking and explanation for semantic errors included within iAgree
documents is performed by a Constraint Satisfaction Problems [5] (CSP)-based tech-
nique implemented within an iAgree Document Analyser (ADA) (cf. Figure 3). Such
an automated technique helps the parties involved in achieving an agreement during
the whole SLA-lifecycle as follows: when the documents are edited their validity can
be assured because the possible semantic errors are reported in the iAgree studio to be
solved; when the documents are interchanged at negotiation time, the validity of docu-
ments is also assured and the compliance between them can also be checked to ensure
their compliance; afterwards, the deployment of valid SLAs is granted.

CSP Solver

iAgree
Validator

CSP Adapter

iAgree
Studio

ADA components

iAgree Validity
Criteria Checker

CSP Mapping
ADA

Manager

Fig. 3. Structure of our approach

References

1. Andrieux, et al.: Web Services Agreement Specification (WS-Agreement) (v. gfd-r.192). OGF
- Grid Resource Allocation Agreement Protocol WG (2011)

2. Müller, C., Resinas, M., Ruiz-Cortés, A.: Explaining the Non-Compliance between Templates
and Agreement Offers in WS-Agreement. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 237–252. Springer, Heidelberg (2009)

3. Müller, C., Resinas, M., Ruiz-Cortés, A.: Automated Analysis of Conflicts in WS–Agreement
Documents. IEEE Transactions on Services Computing (2013),
http://dx.doi.org/10.1109/TSC.2013.9

4. Müller, C.: On the Automated Analysis of WS-Agreement Documents. Applications to the
Processes of Creating and Monitoring Agreements. International Dissertation, Universidad de
Sevilla (2013),
http://www.isa.us.es/sites/default/files/muller-Phd-PTB.pdf

5. Tsang, E.: Foundations of Constraint Satisfaction. A. Press (1995)

http://dx.doi.org/10.1109/TSC.2013.9
http://www.isa.us.es/sites/default/files/muller-Phd-PTB.pdf

Winery – A Modeling Tool for TOSCA-Based
Cloud Applications

Oliver Kopp1,2, Tobias Binz2, Uwe Breitenbücher2, and Frank Leymann2

1 IPVS, University of Stuttgart, Germany
2 IAAS, University of Stuttgart, Germany
lastname@informatik.uni-stuttgart.de

Abstract TOSCA is a new OASIS standard to describe composite ap-
plications and their management. The structure of an application is
described by a topology, whereas management plans describe the ap-
plication’s management functionalities, e. g., provisioning or migration.
Winery is a tool offering an HTML5-based environment for graph-based
modeling of application topologies and defining reusable component and
relationship types. Thereby, it uses TOSCA as internal storage, import,
and export format. This demonstration shows how Winery supports mod-
eling of TOSCA-based applications. We use the school management soft-
ware Moodle as running example throughout the paper.

Keywords: Cloud Applications, Modeling, TOSCA, Management,
Portability.

1 Introduction

The Topology and Orchestration Specification for Cloud Applications (TOSCA [6])
is an OASIS standard for automating provisioning, management, and termina-
tion of applications in a portable and interoperable way. To enable this, TOSCA
employs two concepts: (i) application topologies and (ii) management plans. An
application topology describes software and hardware components involved and
relationships between them. It is a graph consisting of nodes and relationships,
where each of them has a type: a node type or a relationship type. These types
offer management functionality, which is collected in node type and relationship
type implementations. Concrete implementations, such as shell scrips or WAR
files, are bundled through artifact templates, which can be referenced by multiple
implementations making them reusable. Management plans capture knowledge
to deploy and manage an application and are typically modeled as BPMN or
BPEL workflows. The topology, management plans, and all required software ar-
tifacts such as installables, business logic, and management logic are condensed
in an application package called TOSCA Cloud Service ARchive (CSAR for
short). As TOSCA is standardized, CSARs are portable across different TOSCA-
compliant runtime environments of different vendors.

To enable modeling of TOSCA-based applications in a tailored environment,
we have developed Winery, which supports Web-based creation of CSARs us-
ing standard Chrome and Firefox browsers. Therefore, no additional software

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 700–704, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Winery – A Modeling Tool for TOSCA-Based Cloud Applications 701

installation is required to use the tool on client side. Winery’s main features
are type management and graphical topology modeling where the defined types
are instantiated and interlinked. To facilitate collaboration, Winery not only
supports sharing of TOSCA topologies, but also supports sharing of all related
elements such as types or templates, which all are uniquely identified and accessi-
ble by URLs. This allows sharing information through passing simple references
rather than exchanging entire documents.

Winery itself does not include a TOSCA-compliant runtime environment.
One possible runtime environment is the OpenTOSCA system presented by
Binz et al. [1].

2 Winery System Overview and Use Case

The TOSCA meta model defines 45 elements in total which can be used to model
applications (cf. [4]). We subdivided this set into two classes: The first one contains
seven elements that are directly related to visual topology modeling—namely rela-
tionship template, relationship constraint, node template, deployment artifact, re-
quirement, capability, and policy. These elements are used in the Topology Modeler.
The second class contains all remaining elements that are used to define semantics
and configurations such as types, implementations, and policy templates. These
elements can be created, modified, and deleted exclusively by using the Element
Manager. This way, Winery separates concerns: The Topology Modeler eases mod-
eling of application topologies by depicting elements and combinations thereof visu-
ally. On the one hand, this helps architects, application developers, and operators
to understand and model applications without the need for technical insight into
the type implementations and configurations. On the other hand, technical experts
are able to provide and configure node types and relationship types by using the
Element Manager. Thus, Winery enables collaborative development of TOSCA-
based applications. As a consequence, Winery conceptually consists of three parts:
(1) the Topology Modeler, (2) the Element Manager, and (3) the Repository, where
all data is stored (see Fig. 1).

 Repository

Element Manager Topology Modeler

TOSCA Elements Files

GUI GUI HTML5 / JavaScript

Java / JSP

Java

Databases /
File System

Repository REST Interface

CSAR Exporter CSAR Importer

JAX-RS

Fig. 1. Components of Winery

702 O. Kopp et al.

Fig. 2. Moodle Application Topology. Adhering Vino4TOSCA [3], node templates are
depicted as rounded rectangles and relationship templates as arrows between the rect-
angles. The possible relationship types starting from a PHP node template are depicted
in the white box.

To create a TOSCA-based application, the first step is to create a new service
template that contains an application topology by using the Topology Modeler.
Therefore, Winery offers all available node types in a palette. From there, the
user drags the desired node type and drops it into the editing area. There, the
node type becomes a node template: a node in the topology graph. Node tem-
plates can be annotated with requirements and capabilities, property values, and
policies. Most importantly, nodes may define deployment artifacts, which provide
the actual implementation of the node template, e. g., a VM image, an operat-
ing system package for the Apache Web Server, or an archive containing a PHP
application’s files. Relations between node templates are called relationship tem-
plates. They can be created by clicking on a node template, which offers possible
relationship types supporting this node template as valid source. Selecting one
relationship type creates a new relationship template that has to be connected
to the desired target. Figure 2 shows the TOSCA application topology of our
use case—the Moodle1 scenario. Amazon EC2 is used to host two virtual ma-
chines: One is used to host a MySQL database, the other one to host an Apache
Web Server, which serves the Moodle PHP application. The PHP application
connects to the MySQL database, which is depicted as orange arrow.

The Element Manager (Fig. 3) may, for instance, be used to define new types if
required types are not provided by the community. For existing types, Winery’s
rendering information such as the border color and the icon can be configured.
The Element Manager also handles the management of artifact templates and

1 http://www.moodle.org

http://www.moodle.org

Winery – A Modeling Tool for TOSCA-Based Cloud Applications 703

Fig. 3. Element Manger Showing Available Node Types

related components: Files can be associated with an artifact template, which in
turn are referenced from implementations as concrete implementation.

Having the topology ready, the next step is to model management plans. Win-
ery does not support plan modeling by itself, but relies on other modeling tools
to create plans. We usually use the Eclipse BPEL Designer2 to model plans and
compress the workflow and related files into one archive. In the service template,
for each management plan, a plan element is created and the corresponding
archive is uploaded. For deployment, we attach a BPEL workflow that provi-
sions the Moodle application on Amazon EC2 virtual machines. The workflow
installs the applications as defined in the topology and establishes the “connect-
sTo” relation by assigning the IP address of the MySQL instance to the Moodle
configuration on the Apache Web Server.

After finishing modeling, the backend allows for exporting a CSAR file con-
taining all required definitions. The resulting CSAR file can be deployed on a
TOSCA-compliant runtime, which in turn deploys the implementation artifacts
and the management plans to appropriate runtime environments. Finally, the
user can start a build plan to instantiate an application instance. For more
details, we recommend the detailed overview by Binz et al. [2], the TOSCA
specification [6], and the TOSCA primer [7].

The Repository itself stores TOSCA models and enables managing their con-
tent. It offers importing existing CSARs into the Repository, which, for instance,
makes community-defined node types and relationship types available for topol-
ogy modeling. Winery is built to be integrated into other tool chains and projects
which can reuse Winery’s type repository, graphical modeling capabilities, or ex-
port functionality.

2 http://www.eclipse.org/bpel/

http://www.eclipse.org/bpel/

704 O. Kopp et al.

3 Conclusion and Outlook

We presented the open source TOSCA modeling tool “Winery”. It offers support
for the complete TOSCA standard: Most importantly, types can be defined in
the Element Manager and composed in the Topology Modeler. Although the
Moodle application topology consists of less than 10 nodes, it could be used to
show the basic concepts of Winery and TOSCA. Describing complex applications
and their management in existing infrastructures is not in this paper’s scope, but
part of our ongoing work.

The current prototype is under submission to the Eclipse Software Founda-
tion3 to ensure open development. The next step is to create a BPMN4TOSCA [5]
modeling component, which offers integrated topology and plan modeling: Each
BPMN Service Task may directly link to a node template, where it works on.

Acknowledgments. This work was partially funded by the BMWi project
CloudCycle (01MD11023). We thank Kálmán Képes, Yves Schubert, Timur Sun-
gur, and Jerome Tagliaferri for their work on the implementation of Winery.

References

1. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner,
S.: OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 694–697.
Springer, Heidelberg (2013)

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications. In: Advanced Web Services,
pp. 527–549. Springer (2014)

3. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
A Visual Notation for Application Topologies based on TOSCA. In: Meersman, R.,
et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 416–424. Springer, Heidelberg
(2012)

4. Kopp, O.: TOSCA v1.0 as UML class diagram (2013),
http://www.opentosca.org/#tosca

5. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-
Specific Language to Model Management Plans for Composite Applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52. Springer,
Heidelberg (2012)

6. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0 Committee Specification 01 (2013)

7. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer Version 1.0 (January 2013)

All links were last followed on August 26, 2013.

3 http://www.eclipse.org/proposals/soa.winery/

http://www.opentosca.org/#tosca
http://www.eclipse.org/proposals/soa.winery/

Barcelona: A Design and Runtime Environment
for Declarative Artifact-Centric BPM

Fenno (Terry) Heath, III1, David Boaz2, Manmohan Gupta3,
Roman Vaculı́n1, Yutian Sun4,�, Richard Hull1, and Lior Limonad2

1 IBM T.J. Watson Research Center, USA
{theath,vaculin,hull}@us.ibm.com

2 IBM Haifa Research Lab, Israel
{davidbo,lliori}@il.ibm.com
3 IBM Global Business Services, India
manmohan.gupta@in.ibm.com

4 University of California, Santa Barbara, USA
sun@cs.ucsb.edu

A promising approach to managing business operations is based on business artifacts,
a.k.a. business entities (with lifecycles) [8, 6]. These are key conceptual entities that are
central to guiding the operations of a business, and whose content changes as they move
through those operations. A business artifact type is modeled using (a) an information
model, which is intended to hold all business-relevant data about entities of this type,
and (b) a lifecycle model, which is intended to hold the possible ways that an entity of
this type might progress through the business. In 2010 a declarative style of business
artifact lifecycles, called Guard-Stage-Milestone (GSM), was introduced [4, 5]. GSM
has since been adopted [7] to form the conceptual basis of the OMG Case Management
Model and Notation (CMMN) standard [1]. The Barcelona component of the recently
open-sourced [2] ArtiFact system supports both design-time and run-time environments
for GSM. Both of these will be illustrated in the proposed demo.

The GSM approach will be illustrated in the demo using a simplified OrderToCash
scenario. Figure 1 shows a screen shot from Barcelona that provides a view of the design
editor for this scenario. The focus is on a single artifact type, called CustomerOrder.
The information model, which is essentially a record with scalar and nested relation
fields, is not illustrated in the figure, but is accessible from the tree on the left side. The
example focuses on the steps of Drafting a (customized) product based on an incoming
order; Submitting the draft for approval; and then Processing the order. These activities
are captured as top-level stages in the GSM schema for this example, which is illus-
trated in the right-hand portion of Figure 1. Stages may contain a single task (as is the
case with Drafting and Submitting), and may be nested (as is the case with Processing
and inside that, with Preparing). Stages may be executed once or repeatedly, and may
execute in parallel.

Launching of a stage execution is controlled by rules-based guards, designated using
blue diamonds on the right edge of the stage. These may be triggered by an external
event (in which case a yellow lightening bolt is included), or by internal events.

� This author supported in part by NSF grant IIS-0812578.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 705–709, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

706 F.(T.) Heath, III et al.

Fig. 1. Illustration of Barcelona graphical schema editor

Completion of a stage execution is controlled by rules-based milestones, indicated
by orange disks on the right-hand boundaries of stages. These, too, may be triggered by
external or internal events.

The Barcelona engine can support GSM schemas with multiple artifact types, and
can support large numbers of artifact instances. In typical applications the instances are
created programmatically, and progress through their lifecycles through responses to
automatic and manual steps. However, to illustrate the run-time operation of Barcelona,
and to inspect the status of artifact instances, we use the run-time editor, illustrated in
Figure 2. That figure shows a single instance of the CustomerOrder artifact type, at
some point in its progression through the business. The central area in the screen shows
the data currently held in the information model of this order. Both scalar and nexted
values are supported. On the right hand side is a schematic representation of the status
of stage executions for this artifact instance. This indicates that both the Drafting and
Submitting stage have executed once, and that the Processing stage is currently execut-
ing, with substage Preparing and inside that subsubstage Collecting all executing, and
that one occurrence of ResearchingOrdering has completed inside. This representation
supports hierarchy, to reflect the nesting of stages. If a stage is executed multiple times,
then it is listed multiple times in this listing.

The gray buttons at the upper right of the screen are used to simulate the arrival of
external events, so that the user can manually progress the artifact instance through its
lifecycle, for testing purposes.

The high-level architecture of Barcelona is shown in Figure 3. The following sum-
marizes the major features of the respective components.

Execution engine: Provides support for (1) management of business artifact instances;
instances stored in the relational database; (2) management of artifact lifecycles &
interactions (by means of service invocations or event subscriptions); (3) interaction

Barcelona: A Design and Runtime Environment 707

Fig. 2. Illustration of Barcelona runtime

with external environment via REST and WSDL service APIs; (4) management of
access control; (5) basic support for execution monitoring.

Solution Designer Editor: Provides functions for easy authoring of artifact-centric
business processes, including (1) design of information models (nested relational
structures); (2) design of artifact lifecycles, supporting both GSM and Finite-State-
Machine lifecycle models (in GSM supporting two condition languages, one based
on JEXL, and the other one based on extended OCL); (3) design of data services:
serve for providing access to arbitrary data queries over information model of ar-
tifact instances; (4) design of flow services, which are complex flows based on
flowcharts.

Default Runtime GUI: Supports execution of artifact-centric business processes in-
cluding (1) step through BOM executions; (2) inspection of the artifact instances
states (information model, lifecycle model). The tool is intended for testing, debug-
ging and support of rapid prototyping. In contrast, the Solution Builder application
[10] incorporates a special-purpose UI working on top of the Barcelona runtime
engine.

Additional Components: There are repositories for (1) Artifact Schemas, (2) Artifact
Instances, and (3) External Service specifications (which link to external REST and
WSDL services)

As noted above, Barcelona forms one component of the ArtiFact system. The other
components are Siena (which supports Finite-State-Machine lifecycles for artifacts),
and the ACSI Interoperation Hub (which supports interoperation between enterprises).
The ArtiFact system originated with the Siena system, developed at IBM Research start-
ing in 2006. The Barcelona component was added in the early 2010s, with several ex-
tensions in the past 2 years. A substantial portion of the Barcelona component, and all of
the Interopration Hub, were developed as part of the EU-funded Artifact-Centric Ser-
vices Interoperation (ACSI) project [9]. The ACSI project studied the artifact-centric

708 F.(T.) Heath, III et al.

Fig. 3. High-level Barcelona architecture

approach from a variety of perspectives, including conceptual modeling, verification,
process mining, systems, services interoperation, access controls, and practical applica-
tions; GSM was a starting point for most of these investigations.

The GSM model was used as a basis for the recently released OMG CMMN stan-
dard. While there are significant differences between GSM and CMMN, the Barcelona
component of the ArtiFact system can be used as a lightweight, open-source tool for
studying the basic approach underlying modern case management.

A preliminary version of Barcelona was demonstrated at the BPM 2011 conference.
The most important advances since that time include (a) the development of a graphical
design editor, (b) the development of the OCL-based condition language (which brings
the power of full first-order logic), and (c) the implementation of the operational se-
mantics as described in [3]. (That semantics has certain desirable properties, including
conformance to intuitive principles and equivalence to a fixpoint characterization.)

A demo video is available at this URL: http://goo.gl/YAvxd.

References

1. Boaz, D., Limonad, L., Gupta, M.: BizArtifact: Artifact-centric Business Process Management
(June 2013), http://sourceforge.net/projects/bizartifact/

2. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint semantics
for business artifacts with guard-stage-milestone lifecycles

3. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying business en-
tity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24.
Springer, Heidelberg (2011)

4. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: Managing artifact
interactions with conditions and events. In: ACM Intl. Conf. on Distributed Event-Based Sys-
tems, DEBS (2011)

5. Kumaran, S., Nandi, P., Terry Heath III, F.F., Bhaskaran, K., Das, R.: Adoc-oriented program-
ming. In: SAINT, pp. 334–343 (2003)

http://sourceforge.net/projects/bizartifact/

Barcelona: A Design and Runtime Environment 709

6. Marin, M., Hull, R., Vaculı́n, R.: Data centric BPM and the emerging case management stan-
dard: A short survey. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132,
pp. 24–30. Springer, Heidelberg (2013)

7. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Specification. IBM
Systems Journal 42(3) (2003)

8. Vaculı́n, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukavirirya, P.: Declarative business
artifact centric modeling of decision and knowledge intensive business processes. In: The
Fifteenth IEEE International Enterprise Computing Conference (EDOC 2011), pp. 151–160.
IEEE Computer Society (2011)

Author Index

Aalst, Wil M.P. van der 358
Agarwal, Shivali 177, 652
Agrawal, Bhavna 639
Akkiraju, Rama 541

Bagheri Hariri, Babak 600
Benatallah, Boualem 404, 616
Bertoli, Piergiorgio 683
Binder, Walter 69
Binz, Tobias 692, 700
Björkqvist, Mathias 69
Blomberg, Jeanette 541
Boaz, David 705
Bouguettaya, Athman 9, 421
Breitenbücher, Uwe 692, 700
Bucchiarone, Antonio 146

Cabanillas, Cristina 374, 675
Cai, Zhicheng 207
Calvanese, Diego 600
Candra, Muhammad Z.C. 313
Cardonha, Carlos 550
Carvalho, Renata Medeiros de 222
Cassales Marquezan, Clarissa 567
Castro, Laura M. 483
Chai Barukh, Moshe 616
Chen, Liang 162
Chen, Lydia 69
Chen, Shiping 343
Chiktey, Neeraj 499
Coffman, Daniel 639
Colman, Alan 192
Copil, Georgiana 429, 679
Costa, Pedro 456
Cunha, Renato L.F. 550

Das, Rajarshi 624
Dasgupta, Gargi B. 131, 177, 652
da Silva, Icamaan 474
da Silva, Miguel Mira 456
D. Assunção, Marcos 550
del-Ŕıo-Ortega, Adela 675
Demange, Anthony 114
De Masellis, Riccardo 54, 252
Di Francescomarino, Chiara 683

Dragoni, Mauro 683
Du, Xiaoyong 491
Dustdar, Schahram 313, 429, 679

Eid-Sabbagh, Rami-Habib 533, 688
Engels, Gregor 524
Estañol, Montserrat 437
Estrella, Júlio Cezar 592

Fan, Yushun 343
Fernández, Pablo 696
Ferreiro, Henrique 483
Francisco, Miguel A. 483
Friesen, Andreas 515

Garćıa, José Maŕıa 374
Georgantas, Nikolaos 23
Gerth, Christian 524
Ghezzi, Carlo 39
Ghidini, Chiara 683
Ghosal, Sugata 541
Ghose, Aditya 499
Goodwin, Richard T. 328
Gröner, Gerd 515
Guo, Lipeng 558
Gupta, Jatinder N.D. 207
Gupta, Manmohan 705
Gupta, Monika 541
Gutiérrez, Antonio Manuel 567, 696

Han, Jun 192
Harrer, Simon 99
Haupt, Florian 692
Heath, III, Fenno (Terry) 705
Hewelt, Marcin 533, 688
Huang, Keman 343
Huang, Woody 667
Hull, Richard 1, 705
Huma, Zille 524
Hussain, Farookh 237

Issarny, Valérie 23

Jian, Xing 446
Jin, Pu 667
Juwig, Oliver 524

712 Author Index

Kang, Guosheng 558
Kapuruge, Malinda 192
Karatas, Fatih 465
Kattepur, Ajay 23
Kesdogan, Dogan 465
Khéfifi, Rania 575
Kopp, Oliver 692, 700
Kumara, Indika 192

Lagares Lemos, Angel 616
Lemcke, Jens 515
Lenhard, Jörg 99
Leymann, Frank 692, 700
Li, Jiangfeng 507
Li, Xiaoping 207
Lima, Ricardo Massa Ferreira 222
Limonad, Lior 705
López, Maćıas 483
Lourenço, João Carlos 456
Lu, Jie 237

Marconi, Annapaola 146
Martufi, Emanuele 683
Mazzoleni, Pietro 328
Mendling, Jan 374
Meng, Fan Jing 667
Metzger, Andreas 567
Meyer, Andreas 533
Mezzina, Claudio Antares 146
Moha, Naouel 114
Moldovan, Daniel 429, 679
Mönch, Lars 413
Montali, Marco 252, 600
Montinarelli, Michael 667
Moustafa, Ahmed 298
Mukherjee, Debdoot 541
Müller, Carlos 696
Müller, Richard 358

Nakamura, Taiga 541
Nallacherry, Jayan 131
Narendra, Nanjangud C. 499
Nayak, Tapan K. 131
Nepal, Surya 343
Netto, Marco A.S. 550
Ng, Joanna 267
Ni, Yayu 343
Nori, Michele 683
Nowak, Alexander 692

Oliveira, César Augusto Lins 222
Omokpo, Amos 328

Pahl, Claus 84
Pan, Jeff Z. 515
Pezzè, Mauro 39
Pistore, Marco 146, 683
Pohl, Klaus 567
Poizat, Pascal 575
Ponnalagu, Karthikeyan 499
Pufahl, Luise 283

Qiao, Mu 541
Qin, Haihuan 558
Queiroz, Carlos 550

Raghu, Dinesh 541
Rahmani, Tirdad 515
Raik, Heorhi 146
Ramacher, Rene 413
Ramezani, Fahimeh 237
Rembert, Aubrey J. 328
Ren, Yuan 515
Resinas, Manuel 374, 567, 675, 696
Rogge-Solti, Andreas 389
Roy, Marcus 404
Ruiz, David 374
Ruiz-Cortés, Antonio 374, 567, 675, 696

Säıs, Fatiha 575
Sancho, Maria-Ribera 437
Santana, Marcos José 592
Santana, Regina Helenna Carlucci 592
Santoso, Ario 600
Schaffa, Frank 639
Shrinivasan, Yedendra 131
Silva, Natália Cabral 222
Sindhgatta, Renuka 177, 652
Solomakhin, Dmitry 252, 600
Spicuglia, Sebastiano 69
Sreedhar, Vugranam C. 608
Staab, Steffen 515
Stahl, Christian 358
Su, Jianwen 54
Sun, Haixia 421
Sun, Yutian 705
Sürmeli, Jan 584

Tamburrelli, Giordano 39
Tamilselvam, Srikanth 499

Author Index 713

Tan, Wei 343
Tavares, Thiago Caproni 592
Teniente, Ernest 437
Tessaris, Sergio 252
Tremblay, Guy 114
Triebel, Marvin 584
Truong, Hong-Linh 313, 429, 679

Upadhyaya, Bipin 267

Vacuĺın, Roman 705
Vukovic, Maja 624

Wagner, Sebastian 692
Wang, Hongbing 421
Wang, Lei 421
Wang, Puwei 491
Wang, Shaohua 267
Wang, Xianzhi 667
Wang, Yilun 162
Weber, Ingo 404
Weske, Mathias 283, 389, 533, 688
Westergaard, Michael 358
Wirtz, Guido 99

Wu, Jian 162
Wu, Quanwang 446

Xu, Jing Min 667
Xu, Lei 84

Yang, Bo 667
Yao, Jinhui 343
Ye, Zhen 9
Young, Christopher C. 667
Yu, Qi 162, 421

Zhang, Bin 84
Zhang, Catherine 667
Zhang, Chenxi 507
Zhang, Li 84
Zhang, Minjie 298
Zhao, Yuting 515
Zheng, Zibin 162
Zhou, Xiaofang 9
Zhu, Qingsheng 446
Zhu, Zhiliang 84
Zhuo, Xuejun 667
Zisman, Andrea 474
Zou, Ying 267

	Preface
	Organization
	Table of Contents
	Keynotes
	Data-Centricity and Services Interoperation
	1 Introduction
	2 Shared Vocabulary
	3 Entity Synonym Repositories
	4 Managing Entities across Services
	5 The Challenges Ahead
	References

	Research Track
	QoS-Aware Cloud Service CompositionUsing Time Series
	1 Introduction
	2 Related Work
	3 Use Case
	4 Time Series Group Search Approach
	4.1 QoS Model
	4.2 QoS Attribute of TSG
	4.3 QoS Relation for TSG
	4.4 Similarity Search of Time Series Groups

	5 Experiments and Results
	5.1 Brute-Force Approach
	5.2 Data Description
	5.3 Performance
	5.4 Comparison with Other Methods
	5.5 Scalability and Robustness

	6 Conclusion
	References

	QoS Analysis in Heterogeneous ChoreographyInteractions
	1 Introduction
	2 Interconnecting Heterogeneous Interaction Paradigms
	2.1 Interaction Paradigm Connectors
	2.2 eXtensible Service Bus (XSB)

	3 Modeling Quality of Service
	3.1 QoS Domains
	3.2 QoS Algebra

	4 QoS Analysis of Interactions
	4.1 QoS Model for Generic XSB Transactions
	4.2 Upgrading the API
	4.3 Model for QoS Propagation

	5 Results: QoS in Choreography Interactions
	5.1 Comparison of Tradeoffs
	5.2 Substituting Interactions

	6 Related Work
	7 Conclusions
	References

	Improving Interaction with Servicesvia Probabilistic Piggybacking
	1 Introduction
	2 Probabilistic Piggybacking: An Overview
	3 Motivating Example
	4 Probabilistic Piggybacking Explained
	4.1 Specifying Endpoints
	4.2 Inferring the Model
	4.3 Predicting Requests
	4.4 Instantiating Request Parameters

	5 Evaluation of Probabilistic Piggybacking
	6 Related Work
	7 Conclusions and Future Work
	References

	Runtime Enforcement of First-Order LTLProperties on Data-Aware Business Processes
	1 Introduction
	2 First-OrderLTL
	3 First-Order Automaton
	4 Time and Space Complexity
	5 Related Work
	6 Conclusions and Future Work
	References

	QoS-Aware Service VM Provisioning in Clouds:Experiences, Models, and Cost Analysis
	1 Introduction
	2 Capacity Variability of Service VM Configuration
	2.1 Experiment Setup
	2.2 (In)Sensitivity of Capacity Variability
	2.3 A Really Noisy Daemon

	3 Markov Chain Model for Service Cluster
	3.1 Single VM Node
	3.2 Continuous Markov Chain Modeling of the Cluster
	3.3 Trade-Off between Cost and Service Availability

	4 Choosing a VM Configuration
	4.1 Typical Case: Weaker VM Means a Bigger Cluster
	4.2 Counter Example: A Cluster of Weaker VMs Can Be Smaller

	5 Related Work
	6 Conclusion
	References

	Personalized Quality Prediction for Dynamic ServiceManagement Based on Invocation Patterns
	1 Introduction
	2 Service Invocation Pattern SIP
	3 Service Invocation Pattern Abstraction and Mining
	4 The QoS Prediction Based on SIP
	4.1The QoS Prediction Procedure Based on SIP
	4.2 Matching User Invocation Characteristics with Patterns

	5 QoS Prediction Based on Collaborative Filtering
	5.1 QoS Prediction Process Based on Collaborative Filtering
	5.2 Service Similarity Computation
	5.3 Predicting Missing Data
	5.4 Calculating the Pattern Similarity and Prediction

	6 Experimental Analysis
	7 Related Work
	8 Conclusion
	References

	Open Source versus Proprietary Software inService-Orientation: The Case of BPEL Engines
	1 Introduction
	2 Related Work
	3 Testing Approach
	3.1 Testing Setup
	3.2 Pattern Test Suite

	4 Results and Implications
	4.1 Commercial Engines
	4.2 Comparison of Proprietary and Open Source Engines

	5 Conclusion and Future Work
	References

	Detection of SOA Patterns
	1 Introduction
	2 Related Work
	3 Our Approach SODOP
	3.1 About the Service Component Architecture
	3.2 Description of the Earlier SODA Approach
	3.3 Description of the SODOP Approach
	3.4 Basic Service Pattern
	3.5 Facade Pattern
	3.6 Proxy Pattern
	3.7 Adapter Pattern
	3.8 Router Pattern

	4 Experiments
	4.1 Assumptions
	4.2 Analyzed Systems
	4.3 Process
	4.4 Results
	4.5 Discussion
	4.6 Threats to Validity

	5 Conclusion and Future Work
	References

	Optimal Strategy for Proactive Service DeliveryManagement Using Inter-KPI Influence Relationships
	1 Introduction
	2 Data Center Management Services
	3 KPI Analysis and Influence Estimation
	3.1 KPI Data Analysis
	3.2 Influence Estimation

	4 Outcome Prediction and System Transformation Model
	4.1 Outcome Prediction Using Multi-variate Regression Model with Time-Lag
	4.2 Budget Allocation Model
	4.3 Transformation Schedule

	5 Model Validation Using Interactive Visualization
	5.1 Relationship Visualization
	5.2 Relationship Validation and Prediction
	5.3 Exploring Improvement Plans

	6 Related Work
	7 Conclusions and Future Work
	References

	On-the-Fly Adaptation of Dynamic Service-BasedSystems: Incrementality, Reduction and Reuse
	1 Introduction
	1.1 Motivating Scenario: Car Logistics

	2 General Framework and Approach
	2.1 Modeling Artifacts
	2.2 On-the-Fly Adaptation Approach

	3 Formal Framework: Background
	3.1 Elements
	3.2 Execution Model
	3.3 Adaptation Need and Solution

	4 Formal Framework: Solution
	4.1 Adaptation Problem
	4.2 Plan or Reuse

	5 Experiments and Results
	6 Related Work and Conclusion
	References

	WT-LDA: User Tagging Augmented LDAfor Web Service Clustering
	1 Introduction
	2 Related Work
	3 WT-LDA Based Service Clustering
	3.1 Web Service Discovery Framework
	3.2 Data Preprocessing
	3.3 WT-LDA

	4 Tag Preprocessing Strategies
	4.1 Tag Recommendation
	4.2 High-Frequency Tags
	4.3 Tag Preprocessing Strategies

	5 Experiments
	5.1 Experiment Setup
	5.2 Evaluation Metric
	5.3 Performance of Web Service Clustering
	5.4 Evaluation of Tag Preprocessing Strategies

	6 Conclusion
	References

	Does One-Size-Fit-All Suffice for Service DeliveryClients?
	1 Introduction
	2 Why One Model May Not Fit All
	Formalizing the Service Delivery Model
	3.1 Service Level Agreements
	3.2 Service Time
	3.3 Dispatching
	3.4 Key Performance Indictors

	4 Simulation Based Evaluation
	4.1 Experimental Analysis

	5 Related Work
	6 Conclusion
	References

	Runtime Evolution of Service-Based Multi-tenant SaaSApplications
	1 Introduction
	2 Motivating Scenario and General Requirements
	3 Software Product Lines and Feature Model
	4 Product Line-Based Realization of SIMT SaaS Applications
	5 Runtime Evolution of Product Line-Based SIMT SaaS Applications
	5.1 Identification of Changes and Impacts
	5.2 Realization of Changes and Impacts

	6 Prototype Implementation
	7 Evaluation
	8 Related Work
	9 Conclusions and Future Work
	References

	Critical Path-Based Iterative Heuristic for Workflow Scheduling in Utility and CloudComputing
	1 Introduction
	2 Problem Description
	3 Proposed Heuristics
	3.1 Multiple Complete Critical Path Construction
	3.2 Critical Path Optimization
	3.3 The Proposed CPI Heuristic
	3.4 An Illustrative Example for CPI
	3.5 Complexity Analysis

	4 Computational Results
	4.1 Test Problems
	4.2 Comparison with Existing Algorithms

	5 Conclusions
	References

	REFlex: An Efficient Web Service Orchestratorfor Declarative Business Processes
	1 Introduction
	2 Declarative Processes
	3 Related Work
	3.1 Declarative Processes
	3.2 Web Service Composition

	4 REFlex Rule Engine
	4.1 Data-Aware Extension

	5 REFlex Orchestrator
	6 Case Study
	7 Conclusions
	References

	Task Scheduling Optimization in Cloud ComputingApplying Multi-Objective Particle Swarm Optimization
	1 Introduction
	2 Related Works for Task Scheduling Optimization
	3 A Multi-Objective Model for the Optimal Task Scheduling Problem
	4 MOPSO-Based Algorithm for Solving the Multi-Objective Task Scheduling Problem
	4.1 Multi-Objective Particle Swarm Optimization Method
	4.2 MOPSO-Based Algorithm

	5 Simulation Results
	5.1 Environment Description
	5.2 Implementation
	5.3 Evaluation

	6 Conclusion and Future Works
	References

	Verification of Artifact-Centric Systems:Decidability and Modeling Issues
	1 Introduction
	2 GSM Modeling of Artifact-Centric Systems
	2.1 Operational Semantics of GSM
	2.2 Undecidability in GSM

	3 Translation into Data-Centric Dynamic Systems
	3.1 Translating GSM into DCDS

	4 State-Bounded GSM Models
	5 Discussion and Related Work
	References

	Automatically Composing Services by Mining ProcessKnowledge from the Web
	1 Introduction
	2 Background
	2.1 How-to Instruction Web Pages
	2.2 Web Services
	2.3 Task Model

	3 Overview of Our Approach
	3.1 Extracting a Task Model from the Web
	3.2 Service Composition Based on the Task Model

	4 Case Study
	4.1 Setup
	4.2 Evaluate the Effectiveness of Our Approach to Extract Task Models
	4.3 Evaluate the Accuracy of Automatic SC Based on the Task Model
	4.4 Threats to Validity

	5 Related Work
	5.1 Mining Human Activities from the Web
	5.2 Web Service Composition
	5.3 User Interface Generation from Web Services

	6 Conclusion and Future Work
	References

	Batch Activitiesin Process Modeling and Execution
	1 Introduction
	2 Requirements of Integrating Batch Activities
	3 Integrate Batch Activities in Process Modeling and Execution
	3.1 Modeling and Configuration of a Batch Activity
	3.2 Execution of a Batch Activity
	3.3 Case Study

	4 Related Work
	5 Conclusion
	References

	Multi-Objective Service CompositionUsing Reinforcement Learning
	1 Introduction
	2 Problem Formulation
	3 Multi-Objective Reinforcement Learning for Service Composition
	3.1 Single Policy Multi-objective Service Composition
	3.2 Multiple Policy Multi-objective Service Composition

	4 Simulation Results and Analysis
	4.1 Experiment Setting
	4.2 Result Analysis

	5 Related Work and Discussion
	6 Conclusion
	References

	Provisioning Quality-Aware Social ComputeUnits in the Cloud
	1 Introduction
	2 Background
	2.1 Human-Based Compute Unit
	2.2 ICU Properties
	2.3 Social Connectedness

	3 Quality-Aware SCU Provisioning Framework
	3.1 Framework Overview
	3.2 Consumer Requirements

	4 Quality Control Strategies
	4.1 Assignments
	4.2 Local Fitness
	4.3 Objective Value of Solution
	4.4 Algorithms

	5 Evaluation
	5.1 Implementation
	5.2 Experiment Setup
	5.3 Experiment Result

	6 Related Work
	7 Conclusions and Future Work
	References

	Process Discovery Using Prior Knowledge
	1 Introduction
	2 Related Work
	3 Process Execution Logs
	4 Information Control Nets
	4.1 ICN Normal Form of
	4.2 Augmented ICN

	5 Dependency Extraction
	6 Experiments
	7 Summary and Future Work
	References

	Mirror, Mirror, on the Web, Which Is the MostReputable Service of Them All?
	1 Introduction
	2 Unified Reputation Network Model
	2.1 Heterogeneous Network Model
	2.2 Unified Reputation Propagation Model
	2.3 Model Simplification
	2.4 Initial Strategy

	3 Domain-Aware and Reputation-Aware Recommendation
	4 Empirical Study on ProgrammableWeb
	4.1 Experiment Data Set
	4.2 Evaluation Metrics
	4.3 Performance Comparison

	5 Related Work
	5.1 Reputation Based Trust for Recommendation
	5.2 Complex Network for Service Ecosystem

	6 Conclusion and Future Work
	References

	Service Discovery from Observed Behavior while Guaranteeing Deadlock Freedomin Collaborations
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 State Machines for Modeling Services
	3.2 Event Logs and Alignments

	4 Service Discovery from Observed Behavior
	4.1 Incorporating the Quality Dimensions
	4.2 A Finite Abstraction of the Search Space
	4.3 Algorithm and Implementation

	5 Experimental Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Priority-Based Human Resource Allocationin Business Processes
	1 Introduction
	2 Priority-Based Resource Allocation
	2.1 Motivating Scenario
	2.2 Requirements for Resource Prioritization

	3 Materializing Priority-Based Resource Allocation
	3.1 SOUP: A Metamodel to Define Preferences
	3.2 Modeling Priority-Based Resource Allocation with SOUP
	3.3 Ranking Resources According to SOUP Preferences

	4 Evaluation
	4.1 Modeling the Preferences
	4.2 Identifying the KB and Implementing

	5 Related Work
	6 Conclusions and Future Work
	References

	Prediction of Remaining Service Execution TimeUsing Stochastic Petri Nets with Arbitrary Firing Delays
	1 Introduction
	2 Preliminaries
	3 Prediction during Process Execution
	3.1 Constrained Activity Durations
	3.2 Prediction Algorithm
	3.3 Open-Source Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results of a Simulated Experiment
	4.3 Results of an Industry Case Study
	4.4 Scalability Analysis

	5 Related Work
	5.1 Process Related Predictions
	5.2 Quality of Service Related Forecasting

	6 Conclusion
	References

	Research Track Short Paper
	Entity-Centric Search for Enterprise Services
	1 Introduction
	2 Representing Service Design Knowledge
	3 Keyword-Based Search Using Entity Ranking
	3.1 Entity Detection
	3.2 Entity Ranking
	3.3 Entity Suggestions and ES Queries

	4 Related Work
	5 Conclusion and Future Work
	References

	Tactical Service Selection with Runtime Aspects
	1 Introduction and Related Work
	2 Service Selection Model
	3 Hierarchical Tactical Service Selection
	4 Integrated Solution Approach
	5 Computational Experiments
	6 Conclusion
	References

	Online Reliability Time Series Predictionfor Service-Oriented System of Systems
	1 Introduction
	2 Related Work
	3 Online Reliability Time Series Prediction
	4 Experiments
	4.1 Data Set Description
	4.2 Approaches to Compare
	4.3 Performance Comparison

	5 Conclusion
	References

	Multi-level Elasticity Control of Cloud Services
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Mapping Service Structures to Elasticity Metrics
	2.1 Elasticity Metrics
	2.2 Abstracting Cloud Services

	3 Multi-level Elasticity Control Runtime
	3.1 Resolving Elasticity Requirements Conflicts
	3.2 Generating Elasticity Control Plans

	4 Experiments
	5 Conclusions and Future Work
	References

	Reasoning on UML Data-Centric BusinessProcess Models
	1 Introduction
	2 BasicConcepts
	2.1 UML Data-Centric Business Process Models
	2.2 Data-Centric Dynamic Systems

	3 Translating a UML Data-Centric BPM to a DCDS
	3.1 Business Artifacts in a Class Diagram
	3.2 Lifecycles in a State Machine Diagram
	3.3 Associations in an Activity Diagram
	3.4 Services (Tasks) in Operation Contracts

	4 Reasoning on a UML Data-Centric BPM
	5 Related Work
	6 Conclusions
	References

	QoS-Aware Multi-granularity Service CompositionBased on Generalized Component Services
	1 Introduction
	2 QoS-aware Multi-granularity Service Composition Model
	2.1 Preliminaries
	2.2 Granularity Model for Service Composition
	2.3 Problem Formulation

	3 Identification of GCSs and Discovery of Service Instances
	4 Genetic Algorithm for Optimizing Service Composition
	4.1 Genetic Encoding and Fitness Function
	4.2 Genetic Operators
	4.3 Empirical Studies

	5 Conclusions
	References

	Evaluating Cloud Services Using a Multiple CriteriaDecision Analysis Approach
	1 Introduction
	2 Related Work
	3 Proposal
	4 Demonstration
	5 Evaluation
	6 Conclusion
	References

	An Approach for Compliance-Aware ServiceSelection with Genetic Algorithms
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Impact of Compliance Aspects on Heuristic Service Selection
	3.2 Detecting Compliance Violations
	3.3 Recovering Compliance

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion and Outlook
	References

	Decomposing Ratings in Service Compositions
	1 Introduction
	2 Rating Decomposition
	3 Implementation Aspects and Evaluation
	4 Related Work
	5 Final Remarks
	References

	Automatic Generation of Test Modelsfor Web Services Using WSDL and OCL
	1 Introduction
	2 Property-Based Testing and QuickCheck
	3 Test Approach: From WSDL+OCL to Properties
	3.1 Stateless web Services
	3.2 Stateful Web Services

	4 Case Study: VoDKATV
	4.1 Analysis of Results

	5 Conclusions and Future Work
	References

	An Incentive Mechanismfor Game-Based QoS-Aware Service Selection
	1 Introduction
	2 The Game of Service Selection
	2.1 Requester and Service Provider
	2.2 Procedure of the Private Information Game

	3 IncentiveMechanism
	3.1 Two-Phase Contracting
	3.2 Constraints in the Mechanism

	4 Experimental Results
	5 Related Work and Conclusion
	References

	Goal Oriented Variability Modelingin Service-Based Business Processes
	1 Introduction
	2 Related Work
	3 Running Example
	4 A Goal-Oriented Approach to Variability Analysis
	5 Implementation and Experimentation
	6 Conclusions
	References

	A Cooperative Management Model for VolunteerInfrastructure as a Service in P2P Cloud
	1 Introduction
	2 Related Works
	3 Proposed Model and Services
	3.1 System Model
	3.2 Overlay Self-configuration Service
	3.3 Task Assignment Service
	3.4 On-Demand Resource Aggregation Service

	4 Simulation Evaluation
	5 Conclusion and Future Work
	References

	Process Refinement Validation and Explanationwith Ontology Reasoning
	1 Introduction
	2 Problem Description
	3 Validation and Explanation with Ontologies
	3.1 Validating Parallel-Free Process Refinement
	3.2 Extending Processes with Parallel Gateways

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Automated Service Compositionfor on-the-Fly SOAs
	1 Introduction
	2 Foundations
	3 Automated Service Composition
	4 Tool Support
	5 Related Work
	6 Conclusion and Future Work
	References

	Deriving Business Process Data Architecturesfrom Process Model Collections
	1 Introduction
	2 Scenario
	3 Foundations
	4 Data Dependencies
	4.1 Deriving the Process Data Relation Matrix
	4.2 Extracting the Business Process Data Architecture

	5 Conclusion
	References

	A Case Based Approach to Serve Information Needsin Knowledge Intensive Processes
	1 Introduction
	2 System Overview: Solution Information Management
	2.1 Correspondence Analysis

	3 Experiments on Contextual Search
	3.1 Experimental Set-Up
	3.2 Experimental Results

	4 Related Work
	5 Conclusions and Future Work
	References

	Patience-Aware Scheduling for Cloud Services:Freeing Users from the Chains of Boredom
	1 Introduction
	2 Proposed Scheduling Strategies
	2.1 Analytical Investigation of the

	3 Evaluation
	4 Related Work
	5 Conclusions
	References

	MaxInsTx: A Best-Effort Failure Recovery Approachfor Artifact-Centric Business Processes
	1 Introduction
	2 A Transactional Model for Relevant Artifact-Centric BPs
	2.1 Preliminaries
	2.2 Correlations and Dependencies of Artifacts
	2.3 EZFlow-Tx: A Transactional Artifact-Centric BP Model

	3 A Recovery Mechanism for Relevant BPs
	3.1 Creation/Sync Dependency Discovery and Overlaps
	3.2 A Mechanism for Handling Cascaded Recovery

	4 Evaluation of Effectiveness and Feasibility
	5 Related Work
	6 Conclusion
	References

	Extending WS-Agreement to Support Automated Conformity Check on Transportand Logistics Service Agreements
	1 Introduction
	2 Related Work
	3 Modelling Long Term Transport and Logistics Agreements
	4 Automated Validation of Specific Agreements
	5 Conclusions
	References

	Automatic Composition of Form-Based Servicesin a Context-Aware Personal Information Space
	1 Introduction
	2 Preliminaries
	3 Modeling of the Composition Problem
	3.1 Ontologies
	3.2 Semantic Structures
	3.3 Policies
	3.4 Workflows and Procedures
	3.5 Services
	3.6 Composition Requirement

	4 Automatic Encoding and Resolution of the Composition Problem
	4.1 Procedure Encoding
	4.2 Service Encoding
	4.3 Resolution of the Composition Problem
	4.4 Tool Support

	5 Conclusion
	References

	Synthesizing Cost-Minimal Partners for Services
	1 Introduction
	2 Cost-Minimal Partners for Services
	3 Synthesizing Cost-Minimal Partners
	4 Implementation and Experimental Results
	5 Related Work
	6 Summary and Future Work
	References

	An Architecture to Provide Quality of Servicein OGC SWE Context
	1 Introduction
	2 Background
	3 SWARCHDescription
	4 Case Study
	4.1 Evaluation Scenario
	4.2 Results

	5 Conclusion and Future Work
	References

	Verification of Semantically-Enhanced Artifact Systems
	1 Introduction
	2 Preliminaries
	3 Semantically-Enhanced Artifact Systems
	3.1 Execution Semantics

	4 Verification of Semantically-Enhanced Artifact Systems
	5 SAS Instantiation: The OBGSM Tool
	6 Discussion
	References

	A Framework for Cross Account Analysis
	1 Introduction
	2 Cross Account Modeling
	2.1 Feature Modeling
	2.2 Cross Account Graph

	3 Cross Account Analysis
	4 Empirical Result
	5 Related Work
	6 Conclusion
	References

	DataSheets: A Spreadsheet-Based Data-FlowLanguage
	1 Introduction
	2 Spreadsheet-Based Data-Flow
	2.1 Formulas

	3 DataSheets Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Industry Track
	Decision Making in Enterprise Crowdsourcing Services
	1 Introduction
	2 Related Work
	3 Business Context
	4 Enterprise Crowdsourcing Service
	5 Decision-Theoretic Approach and Evaluation Results
	6 Summary and Future Work
	References

	Towards Optimal Risk-Aware Security Complianceof a Large IT System
	1 Introduction
	2 Risk-Aware Compliance Metric
	3 Optimal Risk-Aware Compliance
	3.1 Cost
	3.2 Constraints
	3.3 Optimization Function

	4 Discussion
	4.1 Extension to Large Systems

	5 Further Work
	References

	Behavioral Analysis of Service Delivery Models
	1 Introduction
	2 Complex Work in Service Systems
	2.1 Work Arrivals
	2.2 Service Level Agreements
	2.3 Skill
	2.4 Cost
	2.5 Service Time
	2.6 Dispatching

	3 Simulation Based Evaluation
	4 Experimental Analysis
	4.1 Complex Multi-skill Work
	4.2 Skills and Learning
	4.3 Workload and SLA variations

	5 Related Work
	6 Conclusion
	References

	Industry Track Short Paper
	A Novel Service Composition Approachfor Application Migration to Cloud
	1 Introduction
	2 Problem Definition and Modeling
	2.1 Problem Definition

	3 The Algorithm
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Demo Track
	PPINOT Tool Suite: A Performance Management Solution for Process-OrientedOrganisations
	1 Defining and Analysing PPIs with PPINOT
	2 PPINOT Tool Suite Overview
	3 Significance and Features
	References

	SYBL+MELA: Specifying, Monitoring,and Controlling Elasticity of Cloud Services
	1 Motivation
	2 System Overview
	3 Demonstrating Cloud Services
	References

	Modeling and Monitoring Business Process Execution
	1 Introduction
	2 PROMO Approach and Tool
	3 PROMO Application
	References

	A Tool for Business ProcessArchitecture Analysis
	1 Introduction
	2 BPAToolArchitecture
	3 Maturity
	4 Script
	References

	OpenTOSCA – A Runtimefor TOSCA-Based Cloud Applications
	1 Background: TOSCA and TOSCA-Based Moodle
	2 OpenTOSCA: Architecture and Demonstration
	References

	iAgree Studio: A Platform to Edit and ValidateWS–Agreement Documents
	1 Overview and Motivation
	2 Novelties and Functions
	3 Internal Structure
	References

	Winery – A Modeling Tool for TOSCA-BasedCloud Applications
	1 Introduction
	2 Winery System Overview and Use Case
	3 Conclusion and Outlook
	References

	Barcelona: A Design and Runtime Environmentfor Declarative Artifact-Centric BPM
	References

	Author Index

