
A Heuristic Algorithm for the Set Multicover
Problem with Generalized Upper Bound

Constraints

Shunji Umetani1(B), Masanao Arakawa2, and Mutsunori Yagiura3

1 Osaka University, Suita 565-0871, Japan
umetani@ist.osaka-u.ac.jp

2 Fujitsu Limited, Kawasaki 211-8588, Japan
arakawa.masanao@jp.fujitsu.com

3 Nagoya University, Nagoya 464-8601, Japan
yagiura@nagoya-u.jp

Abstract. We consider an extension of the set covering problem (SCP)
introducing (i) multicover and (ii) generalized upper bound (GUB) con-
straints that arise in many real applications of SCP. For this problem,
we develop a 2-flip neighborhood local search algorithm with a heuristic
size reduction algorithm, in which a new evaluation scheme of variables
is introduced taking account of GUB constraints. According to compu-
tational comparison with the latest version of a mixed integer program-
ming solver, our algorithm performs quite effectively for various types of
instances, especially for very large-scale instances.

1 Introduction

The set covering problem (SCP) is one of representative combinatorial optimiza-
tion problems. We are given a ground set of m elements i ∈ M = {1, . . . , m},
n subsets Sj ⊆ M (|Sj | ≥ 1) and costs cj(> 0) for j ∈ N = {1, . . . , n}. We
say that X ⊆ N is a cover of M if

⋃
j∈X Sj = M holds. The goal of SCP is

to find a minimum cost cover X of M . The SCP is formulated as a 0–1 integer
programming (IP) problem as follows:

min.
∑

j∈N

cjxj

s.t.
∑

j∈N

aijxj ≥ 1, i ∈ M,

xj ∈ {0, 1}, j ∈ N,

(1)

where aij = 1 if i ∈ Sj holds and aij = 0 otherwise, and xj = 1 if j ∈ X holds
and xj = 0 otherwise, respectively.

The SCP is often referred in the literature that it has many important appli-
cations [2], e.g., crew scheduling, vehicle routing, facility location, and logical
analysis of data. However, it is often difficult to formulate problems in real

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 75–80, 2013.
DOI: 10.1007/978-3-642-44973-4 9, c© Springer-Verlag Berlin Heidelberg 2013

76 S. Umetani et al.

applications into the SCP, because they often have additional side constraints
in practice. Most practitioners accordingly formulate them into general mixed
integer programming (MIP) problem and apply general purpose solvers, which
are usually less efficient compared to solvers specially tailored to SCP.

In this paper, we consider an extension of SCP introducing (i) multicover
and (ii) generalized upper bound (GUB) constraints, which arise in many real
applications of SCP. The multicover constraint is a generalization of covering
constraint, in which each element i ∈ M must be covered at least bi ∈ Z+ (Z+ is
the set of non-negative integers) times. GUB constraint is defined as follows. We
are given a partition {G1, . . . , Gk} of N (∀h �= h′, Gh ∩ Gh′ = ∅,

⋃k
h=1 Gh = N).

For each block Gh ⊆ N (h ∈ K = {1, . . . , k}), the number of selected subsets Sj

(j ∈ Gh) is constrained to be at most dh(≤ |Gh|). We call this problem the set
multicover problem with GUB constraints (SMCP-GUB).

The SMCP-GUB is NP-hard, and the (supposedly) simpler problem of judg-
ing the existence of a feasible solution is NP-complete. We accordingly consider
the following formulation of SMCP-GUB that allows violations of the multi-
cover constraints and introduces a penalty function with a penalty weight vector
w = (w1, . . . , wm) ∈ R

m
+ :

min. z(x) =
∑

j∈N

cjxj +
∑

i∈M

wiyi

s.t.
∑

j∈N

aijxj + yi ≥ bi, i ∈ M,

∑

j∈Gh

xj ≤ dh, h ∈ K,

xj ∈ {0, 1}, j ∈ N,
yi ∈ {0, . . . , bi}, i ∈ M.

(2)

For a given x ∈ {0, 1}n, we can easily compute an optimal y by yi = max{bi −∑
j∈N aijxj , 0}. We note that when y∗ = 0 holds for an optimal solution (x∗,y∗)

of SMCP-GUB under the soft multicover constraints, x∗ is also optimal under
the original (hard) multicover constraints. Moreover, for an optimal solution
x∗ under hard multicover constraints, (x∗,0) is also optimal with respect to
soft multicover constraints if the values of wi are sufficiently large, e.g., if
wi >

∑
j∈N cj holds for all i ∈ M . We accordingly set wi =

∑
j∈N cj + 1

for all i ∈ M .
In this paper, we proposes a 2-flip neighborhood local search algorithm with

an efficient mechanism to find improved solutions. The above generalization of
SCP substantially extends the variety of its applications. However, GUB con-
straints often make the pricing method less effective (which is known to be very
effective for large-scale instances of SCP), because GUB constraints prevent solu-
tions from containing highly evaluated variables together. To overcome this, we
develop a heuristic size reduction algorithm, in which a new evaluation scheme
of variables is introduced taking account of GUB constraints.

A Heuristic Algorithm for the Set Multicover Problem 77

2 Lagrangian Relaxation and Subgradient Method

For a given vector u = (u1, . . . , um) ∈ R
m
+ , called the Lagrangian multiplier

vector, the Lagrangian relaxation of SMCP-GUB is defined as follows:

min. zLR(u) =
∑

j∈N

cjxj +
∑

i∈M

wiyi +
∑

i∈M

ui

⎛

⎝bi −
∑

j∈N

aijxj − yi

⎞

⎠

=
∑

j∈N

(

cj −
∑

i∈M

aijui

)

xj +
∑

i∈M

yi(wi − ui) +
∑

i∈M

biui (3)

s.t.
∑

j∈Gh

xj ≤ dh, h ∈ K,

xj ∈ {0, 1}, j ∈ N,

yi ∈ {0, . . . , bi}, i ∈ M,

where we call c̃j(u) = cj − ∑
i∈M aijui the Lagrangian cost associated with

column j ∈ N . For any u ∈ R
m
+ , zLR(u) gives a lower bound on the optimal

value of SMCP-GUB z(x∗). The problem of finding a Lagrangian multiplier
vector u that maximizes zLR(u) is called the Lagrangian dual problem.

A common approach to compute a near optimal Lagrangian multiplier vec-
tor u is the subgradient method. When huge instances of SCP are solved, the
computing time spent on the subgradient method becomes very large if a naive
implementation is used. Caprara et al. [1] developed a variant of pricing method
on the subgradient method. They define a dual core problem consisting of a
small subset of columns Cd ⊂ N (|Cd| � |N |), chosen among those having the
lowest Lagrangian costs c̃j(u) (j ∈ Cd), and iteratively update the dual core
problem in a similar fashion to that used for solving large scale LP problems.
In order to solve huge instances of SMCP-GUB, we also introduce their pricing
method into the basic subgradient method (BSM) described in [3].

3 The 2-flip Neighborhood Local Search Algorithm

The local search (LS) starts from an initial solution x and repeats replacing x
with a better solution x′ in its neighborhood NB(x) until no better solution
is found in NB(x). For a positive integer r, the r-flip neighborhood NBr(x) is
defined by NBr(x) = {x′ ∈ {0, 1}n | d(x,x′) ≤ r}, where d(x,x′) = |{j ∈ N |
xj �= x′

j}| is the Hamming distance between x and x′. In other words, NBr(x) is
the set of solutions obtained from x by flipping at most r variables. In our LS,
the r is set to 2. In order to improve efficiency, our LS searches NB1(x) first,
and NB2(x) \ NB1(x) only if x is locally optimal with respect to NB1(x).

Yagiura et al. [4] developed an LS with the 3-flip neighborhood for SCP. They
derived conditions that reduce the number of candidates in NB2(x) \ NB1(x)
and NB3(x) \ NB2(x) without sacrificing the solution quality. However, those
conditions are not applicable to the 2-flip neighborhood for SMCP-GUB because

78 S. Umetani et al.

of GUB constraints. We therefore propose new conditions that reduce the number
of candidates in NB2(x)\NB1(x) taking account of GUB constraints. As a result,
the number of solutions searched by our algorithm becomes O(n + kν + n′τ)
while the size of NB2 is O(n2), where ν = maxj∈N |Sj |, n′ =

∑
j∈N xj and

τ = maxj∈N

∑
i∈Sj

|Ni| for |Ni| = {j ∈ N |i ∈ Sj}.
Since the region searched in a single application of LS is limited, LS is usually

applied many times. When a locally optimal solution is obtained, a standard
strategy of our algorithm is to update penalty weights and to resume LS from
the obtained locally optimal solution. We accordingly evaluate solutions with an
alternative evaluation function ẑ(x), where the original penalty weight vector w
is replaced with ŵ = (ŵ1, . . . , ŵm) ∈ R

m
+ . Our algorithm iteratively applies LS,

updating the penalty weight vector ŵ after each call to LS.
Starting from the original penalty weight vector ŵ ← w, the penalty weight

vector ŵ is updated as follows. Let xbest denote the best feasible solution with
respect to the original objective function z(x). If the previous locally opti-
mal solution x satisfies ẑ(x) ≥ z(xbest), our algorithm uniformly decreases the
penalty weights ŵi (i ∈ M). Otherwise, our algorithm increases the penalty
weights ŵi (i ∈ M) in proportion to the amount of violation of the ith multi-
cover constraint.

4 Heuristic Reduction of Problem Sizes

For a near optimal Lagrangian multiplier vector u, the Lagrangian costs c̃j(u)
give reliable information on the overall utility of selecting columns j ∈ N for
SCP. Based on this property, the Lagrangian costs c̃j(u) are often utilized to
solve huge instances of SCP, e.g., several heuristic algorithms successively solve
a number of subproblems, called primal core problems, consisting of a small
subset of columns Cp ⊂ N (|Cp| � |N |), which are chosen among those having
low Lagrangian costs c̃j(u) [1,2,4].

The Lagrangian costs c̃j(u) are unfortunately unreliable for selecting columns
j ∈ N for SMCP-GUB, because GUB constraints often prevent solutions from
containing more than dh variables xj with the lowest Lagrangian costs c̃j(u). To
overcome this, we develop an evaluation scheme of columns j ∈ N for SMCP-
GUB taking account of GUB constraints. The main idea of our algorithm is
that we modify the Lagrangian costs c̃j(u) to reduce the number of redundant
columns j ∈ Cp resulting from GUB constraints.

For each block Gh (h ∈ K), let γh be the value of the (dh + 1)st lowest
Lagrangian cost c̃j(u) among those for columns in Gh, where we set γh ← 0
if dh = |Gh| holds. We then define a score ĉj(u) for a column j ∈ Gh by
ĉj(u) = c̃j(u) − γh if γh < 0 holds, and ĉj(u) = c̃j(u) otherwise. That is, we
normalize the Lagrangian costs c̃j(u) so that at most dh columns have negative
scores ĉj(u) < 0 for each block Gh (h ∈ K). Let n′ =

∑
j∈N xj be the number of

selected subsets for a solution x. Given a solution x and a Lagrangian multiplier
vector u, a primal core problem is defined by a subset Cp ⊂ N consisting of (i)
columns j ∈ Ni with the bi lowest scores ĉj(u) for each i ∈ M , and (ii) columns
j ∈ N with the 10n′ lowest scores ĉj(u).

A Heuristic Algorithm for the Set Multicover Problem 79

Table 1. The benchmark instances for SMCP-GUB and time limits for our algorithm
LS-SR and the MIP solver CPLEX (in seconds)

Instance Rows Columns Density Instance types (dh/|Gh|) Time limit

(%) Type1 Type2 Type3 Type4 LS-SR CPLEX

G.1–G.5 1000 10,000 2.0 1/10 10/100 5/10 50/100 600 3600
H.1–H.5 1000 10,000 5.0 1/10 10/100 5/10 50/100 600 3600
I.1–I.5 1000 50,000 1.0 1/50 10/500 5/50 50/500 600 3600
J.1–J.5 1000 100,000 1.0 1/50 10/500 5/50 50/500 600 3600
K.1–K.5 2000 100,000 0.5 1/50 10/500 5/50 50/500 1200 7200
L.1–L.5 2000 200,000 0.5 1/50 10/500 5/50 50/500 1200 7200
M.1–M.5 5000 500,000 0.25 1/50 10/500 5/50 50/500 3000 18,000
N.1–N.5 5000 1,000,000 0.25 1/100 10/1000 5/100 50/1000 3000 18,000

5 Computational Results

We first prepared eight classes of random instances for SCP, where each class
has five instances. We denote instances in class G as G.1, . . . , G.5, and other
instances in classes H–N similarly. The summary of these instances are given
in Table 1, where the density is defined by

∑
i∈M

∑
j∈N aij/mn and the costs

cj are random integers taken from interval [1, 100]. For each SCP instance, we
generate four types of SMCP-GUB instances with different values of parameters
dh and |Gh| as shown in Table 1, where all blocks Gh (h ∈ K) have the same
size |Gh| and upper bound dh for each instance. Here, the right-hand sides of
multicover constraints bi are random integers taken from interval [1, 5].

We compared our algorithm, called the local search algorithm with the heuris-
tic size reduction (LS-SR), with one of the latest mixed integer program (MIP)
solver called CPLEX12.3, where they were tested on an IBM-compatible per-
sonal computer (Intel Xeon E5420 2.5 GHz, 4 GB memory) and were run on
a single thread. Table 1 also shows the time limits in seconds for LS-SR and
CPLEX12.3, respectively. We tested two variants of LS-SR: LS-SR1 evaluates
variables xj with the proposed score ĉj(x), and LS-SR2 uses the Lagrangian
cost c̃j(x) in the heuristic reduction of problem sizes. We illustrate in Fig. 1
their comparison for each type of SMCP-GUB instances with respect to the rel-
ative gap z(x)−zLP

zLP
× 100, where zLP is the optimal value of LP relaxation for

SMCP-GUB. The horizontal axis shows the classes of instances G–N, and the
vertical axis shows the average relative gap for five instances of each class.

We first observe that LS-SR1 and LS-SR2 achieve better upper bounds than
CPLEX12.3 for types 3 and 4 instances, especially large instances with 10,000
variables or more. One of the main reasons for this is that the proposed algo-
rithms evaluate a series of candidate solutions efficiently while CPLEX12.3 con-
sumes much computing time for solving LP relaxation problems. We also observe
that LS-SR1 achieves much better upper bounds than those of LS-SR2 and
CPLEX12.3 for types 1 and 2 instances.

80 S. Umetani et al.

Fig. 1. Comparison of LS-SR and CPLEX12.3 on each instance type

6 Conclusion

In this paper, we considered an extension of SCP called the set multicover prob-
lem with the generalized upper bound constraints (SMCP-GUB). For this prob-
lem, we develop a 2-flip neighborhood local search algorithm with a heuristic size
reduction algorithm, in which a new evaluation scheme of variables is introduced
taking account of GUB constraints. According to computational comparison on
benchmark instances with the latest version of a MIP solver called CPLEX12.3,
our algorithm performs quite effectively for various types of instances, especially
for very large-scale instances.

References

1. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem.
Oper. Res. 47, 730–743 (1999)

2. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann.
Oper. Res. 98, 353–371 (2000)

3. Umetani, S., Yagiura, M.: Relaxation heuristics for the set covering problem. J.
Oper. Res. Soc. Jpn. 50, 350–375 (2007)

4. Yagiura, M., Kishida, M., Ibaraki, T.: A 3-flip neighborhood local search for the set
covering problem. Eur. J. Oper. Res. 172, 472–499 (2006)

	A Heuristic Algorithm for the Set Multicover Problem with Generalized Upper Bound Constraints
	1 Introduction
	2 Lagrangian Relaxation and Subgradient Method
	3 The 2-flip Neighborhood Local Search Algorithm
	4 Heuristic Reduction of Problem Sizes
	5 Computational Results
	6 Conclusion
	References

