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Abstract. The Multi-points Expected Improvement criterion (or q-EI)
has recently been studied in batch-sequential Bayesian Optimization.
This paper deals with a new way of computing q-EI, without using
Monte-Carlo simulations, through a closed-form formula. The latter
allows a very fast computation of q-EI for reasonably low values of q
(typically, less than 10). New parallel kriging-based optimization strate-
gies, tested on different toy examples, show promising results.
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1 Introduction

In the last decades, metamodeling (or surrogate modeling) has been increasingly
used for problems involving costly computer codes (or “black-box simulators”).
Practitioners typically dispose of a very limited evaluation budget and aim at
selecting evaluation points cautiously when attempting to solve a given problem.

In global optimization, the focus is usually put on a real-valued function f
with d-dimensional source space. In this settings, Jones et al. [1] proposed the
now famous Efficient Global Optimization (EGO) algorithm, relying on a kriging
metamodel [2] and on the Expected Improvement (EI) criterion [3]. In EGO, the
optimization is done by sequentially evaluating f at points maximizing EI. A
crucial advantage of this criterion is its fast computation (besides, the analytical
gradient of EI is implemented in [4]), so that the hard optimization problem is
replaced by series of much simpler ones.

Coming back to the decision-theoretic roots of EI [5], a Multi-points Expected
Improvement (also called “q-EI”) criterion for batch-sequential optimization was
defined in [6] and further developed in [7,8]. Maximizing this criterion enables
choosing batches of q > 1 points at which to evaluate f in parallel, and is of
particular interest in the frequent case where several CPUs are simultaneously
available. Even though an analytical formula was derived for the 2-EI in [7], the
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Monte Carlo (MC) approach of [8] for computing q-EI when q ≥ 3 makes the
criterion itself expensive-to-evaluate, and particularly hard to optimize.

A lot of effort has recently been paid to address this problem. The pragmatic
approach proposed by Ginsbourger and Le Riche [8] consists in circumventing a
direct q-EI maximization, and replacing it by simpler strategies where batches
are obtained using an offline q-points EGO. In such strategies, the model updates
are done using dummy response values such as the kriging mean prediction (Krig-
ing Believer) or a constant (Constant Liar), and the covariance parameters are
re-estimated only when real data is assimilated. In [9] and [10], q-EI optimiza-
tion strategies were proposed relying on the MC approach, where the number of
MC samples is tuned online to discriminate between candidate designs. Finally,
Frazier [11] proposed a q-EI optimization strategy involving stochastic gradient,
with the crucial advantage of not requiring to evaluate q-EI itself.

In this article we derive a formula allowing a fast and accurate approxi-
mate evaluation of q-EI. This formula may contribute to significantly speed up
strategies relying on q-EI. The main result, relying on Tallis’ formula, is given
in Sect. 2. The usability of the proposed formula is then illustrated in Sect. 3
through benchmark experiments, where a brute force maximization of q-EI is
compared to three variants of the Constant Liar strategy. In particular, a new
variant (CL-mix) is introduced, and is shown to offer very good performances
at a competitive computational cost. For self-containedness, a slightly revisited
proof of Tallis’ formula is given in appendix.

2 Multi-Points Expected Improvement Explicit Formulas

In this section we give an explicit formula allowing a fast and accurate determin-
istic approximation of q-EI. Let us first give a few precisions on the mathemat-
ical settings. Along the paper, f is assumed to be one realisation of a Gaussian
Process (GP) with known covariance kernel and mean known up to some linear
trend coefficients, so that the conditional distribution of a vector of values of the
GP conditional on past observations is still Gaussian (an improper uniform prior
is put on the trend coefficients when applicable). This being said, most forth-
coming derivations boil down to calculations on Gaussian vectors. Let Y :=
(Y1, . . . , Yq) be a Gaussian Vector with mean m ∈ R

q and covariance matrix Σ.
Our aim in this paper is to explicitly calculate expressions of the following kind:

E

[(
max

i∈{1,...,q}
Yi − T

)
+

]
(1)

where (.)+ := max(., 0). In Bayesian optimization (say maximization), expecta-
tions and probabilities are taken conditional on response values at a given set of
n points (x1, . . . ,xn) ∈ X

n where X is the input set of f (often, a compact subset
of Rd, d ≥ 1), the threshold T ∈ R is usually the maximum of those n available
response values, and Y is the vector of unknown responses at a given batch of q
points, Xq := (xn+1, . . . ,xn+q) ∈ X

q. In such framework, the vector m and the
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matrix Σ are the so-called “Kriging mean” and “Kriging covariance” at Xq and
can be calculated relying on classical Kriging equations (see, e.g., [12]).

In order to obtain a tractable analytical formula for Expression (1), not
requiring any Monte-Carlo simulation, let us first give a useful formula obtained
by [13], and recently used in [14] for GP modeling with inequality constraints:

Proposition 1 (Tallis’ formulas). Let Z := (Z1, . . . , Zq) be a Gaussian Vec-
tor with mean m ∈ R

q and covariance matrix Σ ∈ R
q×q. Let b = (b1, . . . , bq) ∈

R
q. The expectation of any coordinate Zk under the linear constraint (∀j ∈

{1, . . . , q}, Zj ≤ bj) denoted by Z ≤ b can be expanded as follows:

E(Zk|Z ≤ b) = mk − 1
p

q∑
i=1

Σik ϕmi,Σii
(bi) Φq−1 (c.i, Σ.i) (2)

where:

– p := P(Z ≤ b) = Φq(b − m, Σ)
– Φq(u, Σ) (u ∈ R

q, Σ ∈ R
q×q, q ≥ 1) is the c.d.f. of the centered multivariate

Gaussian distribution with covariance matrix Σ.
– ϕm,σ2(.) is the p.d.f. of the univariate Gaussian distribution with mean m and

variance σ2

– c.i is the vector of Rq−1 with general term (bj − mj) − (bi − mi)
Σij

Σii
, j �= i

– Σ.i is a (q − 1)× (q − 1) matrix obtained by computing Σuv − ΣiuΣiv

Σii
for u �= i

and v �= i. This matrix corresponds to the conditional covariance matrix of
the random vector Z−i := (Z1, . . . , Zi−1, Zi+1, . . . , Zq) knowing Zi.

For the sake of brevity, the proof of this Proposition is sent in the Appendix.
A crucial point for the practical use of this result is that there exist very fast
procedures to compute the c.d.f. of the multivariate Gaussian distribution. For
example, the work of Genz [15,16] have been used in many R packages (see,
e.g., [17,18]). The Formula (2) above is an important tool to efficiently compute
Expression (1) as shown with the following Property:

Proposition 2. Let Y := (Y1, . . . , Yq) be a Gaussian Vector with mean m ∈
R

q and covariance matrix Σ. For k ∈ {1, . . . , q} consider the Gaussian vectors
Z(k) := (Z(k)

1 , . . . , Z
(k)
q ) defined as follows:

Z
(k)
j := Yj − Yk , j �= k

Z
(k)
k := − Yk

Denoting by m(k) and Σ(k) the mean and covariance matrix of Z(k), and defining
the vector b(k) ∈ R

q by b
(k)
k = −T and b

(k)
j = 0 if j �= k, the EI of Xq writes:

EI(Xq) =
q∑

k=1

(
(mk − T )pk +

q∑
i=1

Σ
(k)
ik ϕ

m
(k)
i ,Σ

(k)
ii

(b(k)i )Φq−1

(
c(k).i , Σ

(k)
.i

))

(3)
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where:

– pk := P(Z(k) ≤ b(k)) = Φq(b(k) − m(k), Σ(k)).
pk is actually the probability that Yk exceeds T and Yk = maxj=1,...,q Yj.

– Φq(., Σ) and ϕm,σ2(.) are defined in Proposition 1
– c(k).i is the vector of Rq−1 constructed like in Proposition 1, by computing

(b(k)j − m
(k)
j ) − (b(k)i − m

(k)
i )

Σ
(k)
ij

Σ
(k)
ii

, with j �= i

– Σ
(k)
.i is a (q − 1) × (q − 1) matrix constructed from Σ(k) like in Proposition

1. It corresponds to the conditional covariance matrix of the random vector
Z(k)

−i := (Z(k)
1 , . . . , Z

(k)
i−1, Z

(k)
i+1, . . . , Z

(k)
q ) knowing Z

(k)
i .

Proof 1. Using that 1{maxi∈{1,...,q} Yi≥T} =
∑q

k=1 1{Yk≥T, Yj≤Yk ∀j �=k}, we get

EI(Xq) = E

[(
max

i∈{1,...,q}
Yi − T

) q∑
k=1

1{Yk≥T, Yj≤Yk ∀j �=k}

]

=
q∑

k=1

E
(
(Yk − T )1{Yk≥T, Yj≤Yk ∀j �=k}

)

=
q∑

k=1

E

(
Yk − T

∣∣∣Yk ≥ T, Yj ≤ Yk ∀j �= k
)
P (Yk ≥ T, Yj ≤ Yk ∀j �= k)

=
q∑

k=1

(
−T − E

(
Z

(k)
k

∣∣∣Z(k) ≤ b(k)
))

P

(
Z(k) ≤ b(k)

)

Now the computation of pk := P
(
Z(k) ≤ b(k)

)
simply requires one call to the Φq

function and the proof can be completed by applying Tallis’ formula (2) to the
random vectors Z(k)( 1 ≤ k ≤ q).

Remark 1. From Properties (1) and (2), it appears that computing q-EI requires
a total of q calls to Φq and q2 calls to Φq−1. The proposed approach performs
thus well when q is moderate (typically lower than 10). For higher values of q,
estimating q-EI by Monte-Carlo might remain competitive. Note that, when q
is larger (say, q = 50) and when q CPUs are available, one can always distribute
the calculations of the q2 calls to Φq−1 over these q CPUs.

Remark 2. In the particular case q = 1 and with the convention Φ0(., Σ) = 1,
Eq. (3) corresponds to the classical EI formula proven in [1,5].

Remark 3. The Multi-points EI can be used in a batch-sequential strategy
to optimize a given expensive-to-evaluate function f , as detailed in the next
Section. Moreover, a similar criterion can also be used to perform opti-
mization based on a Kriging model with linear constraints, such as the
one developed by Da Veiga and Marrel [14]. For example expressions like:
E

[(
maxi∈{1,...,q} Yi − T

)
+

|Y ≤ a
]
,a ∈ R

q, can be computed using Tallis’ for-
mula and the same proof.
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3 Batch Sequential Optimization Using Multi-Points EI

Let us first illustrate Proposition 2 and show that the proposed q-EI calculation
based on Tallis’ formula is actually consistent with a Monte Carlo estimation.
From a kriging model based on 12 observations of the Branin-Hoo function [1],
we generated a 4-point batch (Fig. 1, left plot) and calculated its q-EI value
(middle plot, dotted line). The MC estimates converge to a value close to the
latter, and the relative error after 5 ∗ 109 runs is less than 10−5. 4-point batches
generated from the three strategies detailed below are drawn on the right plot.

Fig. 1. Convergence (middle) of MC estimates to the q-EI value calculated with Propo-
sition 2 in the case of a batch of four points (shown on the left plot). Right: candidate
batches obtained by q-EI stepwise maximisation (squares), and the CL-min (circles)
and CL-max (triangles) strategies.

We now compare a few kriging-based batch-sequential optimization methods
on two different functions: the function x �→ − log(−Hartman6(x)) (see, e.g., [1]),
defined on [0, 1]6 and the Rastrigin function [19,20] in dimension two restricted
to the domain [0, 2.5]2. The first function in dimension 6 is unimodal, while
the second one has a lot of local optima (see: Fig. 2). The Rastrigin function is
one of the 24 noiseless test function of the Black-Box Optimization Benchmark
(BBOB) [19].

For each runs, we start with a random initial Latin hypercube design (LHS)
of n0 = 10 (Rastrigin) or 50 (Hartman6) points and estimate the covariance
parameters by Maximum Likelihood (here a Matérn kernel with ν = 3/2 is
chosen). For both functions and all strategies, batches of q = 6 points are added
at each iteration, and the covariance parameters are re-estimated after each
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Fig. 2. Contour lines of the Rastrigin function (grayscale) and location of the global
optimizer (black triangle)

batch assimilation. Since the tests are done for several designs of experiments,
we chose to represent, along the runs, the relative mean squared error:

rMSE =
1
M

M∑
i=1

(
y
(i)
min − yopt

yopt

)2

(4)

where y
(i)
min in the current observed minimum in run number i and yopt is the real

unknown optimum. The total number M of different initial designs of experi-
ments is fixed to 50. The tested strategies are:

– (1) q-EI stepwise maximization: q sequential d-dimensional optimizations are
performed. We start with the maximization of the 1-point EI and add this
point to the new batch. We then maximize the 2-point EI (keeping the first
point obtained as first argument), add the maximizer to the batch, and iterate
until q points are selected.

– (2) Constant Liar min (CL-min): We start with the maximization of the 1-
point EI and add this point to the new batch. We then assume a dummy
response (a“lie”) at this point, and update the Kriging metamodel with this
point and the lie. We then maximize the 1-point EI obtained with the updated
kriging metamodel, get a second point, and iterate the same process until a
batch of q points is selected. The dummy response has the same value over
the q − 1 lies, and is here fixed to the minimum of the current observations.

– (3) Constant Liar max (CL-max): The lie in this Constant Liar strategy is
fixed to the maximum of the current observations.



Calculation of the Multi-Points EI Relying on Tallis’ Formula 65

– (4) Constant Liar mix (CL-mix): At each iteration, two batches are generated
with the CL-min and CL-max strategies. From these two “candidate” batches,
we choose the batch with the best actual q-EI value, calculated based on
Proposition 2.

– (5) Random sampling.

Note that CL-min tends to explore the function near the current minimizer
(as the lie is a low value and we are minimizing f) while CL-max is more
exploratory. Thus, CL-min is expected to perform well on unimodal functions.
On the contrary, CL-max may perform better on multimodal functions. For all
the tests we use the DiceKriging and DiceOptim packages [4]. The optimizations
of the different criteria rely on a genetic algorithm using derivatives, available
in the rgenoud package [21]. Figure 3 represents the compared performances of
these strategies.
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Fig. 3. Compared performances of the five considered batch-sequential optimization
strategies, on two test functions.

From these plots we draw two main conclusions. From these plots we draw the
following conclusions: first, the q-EI stepwise maximization strategy outperforms
the strategies based on constant lies, CL-min and CL-max. However, the left
graph of Fig. 3 points out that the CL-min strategy seems particularly well-
adapted to the Hartman6 function. Since running a CL is computationally much
cheaper than a brute fore optimization of q-EI, it is tempting to recommend the
CL-min strategy for Hartman6. However, it is not straightforward to know in
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advance which of CL-min or CL-max will perform better on a given test case.
Indeed, for example, CL-max outperforms CL-min on the Rastrigin function.

Now, we observe that using q-EI in the CL-mix heuristic enables very good
performances in both cases without having to select one of the two lie values
in advance. For the Hartman6 function, CL-mix even outperforms both CL-
min and CL-max and has roughly the same performance as a brute force q-
EI maximization. This suggests that a good heuristic might be to generate, at
each iteration, candidate batches obtained with different strategies (e.g. CL with
different lies) and to discriminate those batches using q-EI.

4 Conclusion

In this article we give a closed-form expression enabling a fast computation of
the Multi-points Expected Improvement criterion for batch sequential Bayesian
global optimization. This formula is consistent with the classical Expected
Improvement formula and its computation does not require Monte Carlo sim-
ulations. Optimization strategies based on this criterion are now ready to be
used on real test cases, and a brute maximization of this criterion shows promis-
ing results. In addition, we show that good performances can be achieved by
using a cheap-to-compute criterion and by discriminating the candidate batches
generated by such criterion with the q-EI. Such heuristics might be particularly
interesting when the time needed to generate batches becomes a computational
bottleneck, e.g. when q ≥ 10 and calls to the Gaussian c.d.f. become expensive.

A perspective, currently under study, is to improve the maximization of q-EI
itself, e.g. through a more adapted choice of the algorithm and/or an analytical
calculation of q-EI’s gradient.
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Appendix: Proof for Tallis’ Formula (2)

The proof proposed here follows exactly the method given in [13] in the particular
case of a centered Gaussian Vector with normalized covariance matrix (i.e. a
covariance matrix equal to the correlation matrix). Here, the proof is slightly
more detailed and applies in a more general case.

Let Z := (Z1, . . . , Zq) ∼ N (m, Σ) with m ∈ R
q and Σ ∈ R

q×q. Let b =
(b1, . . . , bq) ∈ R

q. Our goal is to calculate: E(Zk|Z ≤ b). The method proposed
by Tallis consists in calculating the conditional joint moment generating function
(MGF) of Z defined as follows:

MZ(t) := E(exp(t�Z)|Z ≤ b) (5)
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It is known (see, e.g., [22]) that the conditional expectation of Zk can be obtained
by deriving such MGF with respect to tk, in t = 0. Mathematically this writes:

E(Zk|Z ≤ b) =
∂MZ(t)

∂tk

∣∣∣∣∣
t=0

(6)

The main steps of this proof are then to calculate such MGF and its derivative
with respect to any coordinate tk.

Let us consider the centered random variable Zc := Z − m. Denoting h =
b−m, conditioning on Z ≤ b or on Zc ≤ h are equivalent. The MGF of Zc can
be calculated as follows:

MZc(t) :=E(exp(t�Zc)|Zc ≤ h)

=
1
p

∫ h1

−∞
. . .

∫ hq

−∞
exp(t�u)ϕ0,Σ(u)du

=
1
p
(2π)− q

2 |Σ|− 1
2

∫ h1

−∞
. . .

∫ hq

−∞
exp

(
−1

2
(
u�Σ−1u − 2t�u

))
du

where p := P(Z ≤ b) and ϕv,Σ(.) denotes the p.d.f. of the multivariate nor-
mal distribution with mean v and covariance matrix Σ. The calculation can be
continued by noting that:

MZc (t) =
1

p
(2π)−

q
2 |Σ|− 1

2 exp

(
1

2
t�Σt

)∫ h1

−∞
. . .

∫ hq

−∞
exp

(
−1

2
(u− Σt)� Σ−1 (u− Σt)

)
du

=
1

p
exp

(
1

2
t�Σt

)
Φq(h− Σt, Σ)

where Φq(., Σ) is the c.d.f. of the centered multivariate normal distribution with
covariance matrix Σ.

Now, let us calculate for some k ∈ {1, . . . , q} the partial derivative ∂MZc (t)
∂tk

in t = 0, which is equal by definition to E(Zc
k|Zc ≤ h).

p E(Zc
k|Zc ≤ h) = p

∂MZc(t)
∂tk

∣∣∣∣∣
t=0

= 0 + 1.
∂

∂tk

⎛
⎜⎝Φq

⎛
⎜⎝h − tk

⎛
⎜⎝

Σ1k

...
Σqk

⎞
⎟⎠ , Σ

⎞
⎟⎠

⎞
⎟⎠

∣∣∣∣∣
tk=0

= −
q∑

i=1

Σik

∫ h1

−∞
. . .

∫ hi−1

−∞

∫ hi+1

−∞
. . .

∫ hq

−∞
ϕ0,Σ(u−i, ui = hi)du−i

The last step is obtained applying the chain rule to x �→ Φq(x, Σ) at the
point x = h. Here, ϕ0,Σ(u−i, ui = hi) denotes the c.d.f. of the centered mul-
tivariate normal distribution at given points (u−i, ui = hi) := (u1, . . . , ui−1,
hi, ui+1, . . . , uq). Note that the integrals in the latter Expression are in dimen-
sion q − 1 and not q. In the ith term of the sum above, we integrate with respect
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to all the q components except the component i. To continue the calculation we
can use the identity:

∀u ∈ R
q, ϕ0,Σ(u) = ϕ0,Σii

(ui)ϕΣ−1
ii Σiui,Σ−i,−i−ΣiΣ

−1
ii Σ�

i
(u−i) (7)

where Σi = (Σ1i, . . . , Σi−1i, Σi+1i, . . . , Σqi)� (Σi ∈ R
q−1) and Σ−i,−i is the

(q−1)×(q−1) matrix obtained by removing the line and column i from Σ. This
identity can be proven using Bayes formula and Gaussian vectors conditioning
formulas. Its use gives:

p E(Zc
k|Zc ≤ h) = −

q∑

i=1

Σikϕ0,Σii
(hi)Φq−1(h−i − Σ−1

ii Σihi, Σ−i,−i − ΣiΣ
−1
ii Σ�

i )

= −
q∑

i=1

Σikϕmi,Σii
(bi)Φq−1(h−i − Σ−1

ii Σihi, Σ−i,−i − ΣiΣ
−1
ii Σ�

i )

which finally delivers Tallis’ formula, see Eq. (2).
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