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Abstract. Designing customized optimization problem instances is a
key issue in optimization. They can be used to tune and evaluate new
algorithms, to compare several optimization algorithms, or to evaluate
techniques that estimate the number of local optima of an instance. Given
this relevance, several methods have been proposed to design customized
optimization problems in the field of evolutionary computation for con-
tinuous as well as binary domains. However, these proposals have not
been extended to permutation spaces. In this paper we provide a method
to generate customized landscapes in permutation-based combinatorial
optimization problems. Based on a probabilistic model for permutations,
called the Mallows model, we generate instances with specific character-
istics regarding the number of local optima or the sizes of the attraction
basins.
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1 Introduction

Generating instances of combinatorial optimization problems (COPs) is an essen-
tial factor when comparing and analyzing different metaheuristic algorithms,
and when evaluating algorithms that estimate the number of local optima of an
instance. The design of a tunable generator of instances is of high relevance as
it allows to control the properties of the instances by changing the values of the
parameters.

Given the significance of this topic, several proposals have been presented in
the literature. For example, a generator for binary spaces is proposed in [1], or
a more recent work [2] shows a software framework that generates multimodal
test functions for optimization in continuous domains. Particularly, the study
developed in [3] has high relevance with our paper. The authors proposed a
continuous space generator based on a mixture of Gaussians, which is tunable by
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a small number of user parameters. Based on that work we propose a generator of
permutation-based COPs instances based on a mixture of a probabilistic model
for permutations called the Mallows model.

The rest of the paper is organized as follows. The Mallows model is explained
in Sect. 2. In Sect. 3 we present our generator of instances of COPs based on
permutations. Finally, future work is given in Sect. 4.

2 Mallows Model

The Mallows model [4] is an exponential probability model for permutations
based on a distance. This distribution is defined by two parameters: the central
permutation σ0, and the spread parameter θ. If Ω is the set of all permutations
of size n, for each σ ∈ Ω the Mallows distribution is defined as:

p(σ) =
1

Z(θ)
e−θd(σ0,σ)

where Z(θ) =
∑

σ′∈Ω e−θd(σ0,σ′) is a normalization term and d(σ0, σ) is the
distance between the central permutation σ0 and σ. The most commonly used
distance is the Kendall tau. Given two permutations σ1 and σ2, it counts the
minimum number of adjacent swaps needed to convert σ1 into σ2. Under this
metric the normalization term Z(θ) has closed form and does not depend on σ0:

Z(θ) =
n−1∏

j=1

1 − e−(n−j+1)θ

1 − e−θ
.

Notice that if θ > 0, then σ0 is the permutation with the highest probability.
The rest of permutations σ′ ∈ Ω −{σ0} have probability inversely exponentially
proportional to θ and their distance to σ0. So, the Mallows distribution can be
considered analogous to the Gaussian distribution on the space of permutations.

3 Instance Generator

In this section we show a generator of instances of COPs where the solutions
are in the space of permutations. Our generator defines an optimization function
based on a mixture of Mallows models.

The generator proposed in this paper uses 3m parameters: m central permu-
tations {σ1, ..., σm}, m spread parameters {θ1, ..., θm} and m weights {w1, ..., wm}.
We generate m Mallows models pi(σ|σi, θi), one for each σi and θi, ∀i∈ {1, ...,m}.
The objective function value for each permutation σ ∈ Ω is defined as follows:

f(σ) = max
1≤i≤m

{wipi(σ|σi, θi)}.

Landscapes with different properties, and hence different levels of complexity,
are obtained by properly tuning these parameters.
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Some of these interesting properties are analyzed here. The first relevant
factor we consider is that all central permutations σi’s were local optima. Clearly,
in order to be local optima, {σ1, ..., σm} have to fulfill that d(σi, σj) ≥ 2, ∀i �= j.
A second constraint is that the objective function value of σi has to be reached
in the ith Mallows model, i.e.:

f(σi) = max
1≤k≤m

{wkpk(σi|σk, θk)} = wipi(σi|σi, θi) = wi
e−θid(σi,σi)

Z(θi)
=

wi

Z(θi)
(1)

Moreover, in order to be σi a local optimum the following constraint has to
be fulfilled:

f(σi) > f(σ), ∀σ s.t. d(σi, σ) = 1. (2)

To satisfy (2), and taking into account the constraint (1), we need to comply
with:

∀j = 1, ...,m,
wi

Z(θi)
> wjpj(σ), ∀σ s.t. d(σi, σ) = 1.

However, taking into account that if σ ∈ Ω is s.t. d(σi, σ) = 1, then d(σj , σ) =
d(σj , σi) − 1 or d(σj , σ) = d(σj , σi) + 1, Eq. (2) can be stated as:

wi

Zi(θi)
>

wj

Zj(θj)
e−θj(d(σi,σj)−1) , ∀j ∈ {1, 2, ...,m}, i �= j. (3)

Notice that once the parameters θi’s have been fixed, the previous inequalities
are linear in wi’s. So the values of wi’s could be obtained as the solution of
just a linear programming problem. However, we have not defined any objective
function to be optimized in our linear programing problem. This function can be
chosen taking into account the different desired characteristics for the instance.

For example, one could think about a landscape with similar sizes of attrac-
tion basins. In this case, and without loss of generality, we consider that σ1 is
the global optimum and that σm is the local optimum with the lowest objective
function value. Our objective function tries to minimize the difference between
the objective function values of these two permutations (and implicitly minimize
the difference of the objective function values of all the local optima). In addi-
tion we have to include new constraints to comply with these properties in the
objective function values. This landscape can be generated as follows:

1. Choose uniformly at random m permutations in Ω: σ1, σ2, ..., σm, such that
d(σi, σj) ≥ 2, ∀i, j ∈ {1, ...,m}, i �= j.

2. Choose uniformly at random in the interval [a, b] (with b > a > 0) m spread
parameters : θ1, θ2, ..., θm.

3. Solve the linear programming problem in the weights wi’s:

min
{

w1

Z(θ1)
− wm

Z(θm)

}
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wi

Z(θi)
>

wi+1

Z(θi+1)
(∀i ∈ {1, 2, ...,m − 1})

wi/Z(θi) > wj
e−θj(d(σi,σj)−1)

Z(θj)
(∀i, j ∈ {1, 2, ...,m}, ?i > j)

4. Assign to each σ ∈ Ω the objective function value:

f(σ) = max
i

{wi
e−θid(σi,σ)

Z(θi)
}

4 Conclusions and Future Work

In this paper we introduce a framework to generate instances of COPs with
permutation search spaces that is based on [3]. We create the landscapes based on
a Mallows mixture. The aim is to obtain different kinds of instances depending on
the central permutations σ1, ...σm, the values of the spread parameters θ1, ..., θm

and the values of the weights w1, ...wm.
Once the values of θi’s are fixed, and the σi’s are chosen, some linear con-

straints in wi’s have to be fulfilled in order to be all σi’s local optima. These
constraints can be accompanied by a function to be optimized, and therefore wi’s
can be obtained as solutions of a linear programming problem. This optimization
function is a key element when creating the instances under desired characteris-
tics. One function is explained in Sect. 4, but obviously one could think of many
other functions. For example, if we want to create an instance with a big size of
attraction basin of the global optimum σi, our intuition leads us to think that
we have to maximize the difference between the objective function value of σi

and the other local optima, where σi is the local optimum that is further to the
rest of local optima. However, if we want a global optimum σi with a small size
of attraction basin, we could think about minimizing the difference between the
objective function value of σi and the value of its neighbors, where σi has to be
the local optimum that is nearer on average to the other local optima.

A remarkable point is that in the example we have taken the local optima
uniformly at random. However, they can be chosen taking into account different
criteria, such as the distance between them. For example, we can choose all the
local optima as close as possible, or choose them maintaining the same distance,
while the global optimum is far from them.

A more tunable model, and therefore more interesting when trying to
create instances with different levels of complexity, can be obtained using the
Generalized Mallows model [5]. This model uses a decomposition of the
Kendall-tau distance and different spread parameters are assigned to each of
the index i ∈ {1, 2, ..., n}, where n is the size of the permutations. So the para-
meters of the model ascend to 2m + n ∗ m. Apart from that, the Mallows model
can be used with other distances such as the Hamming distance, the Cayley
distance, etc.

We believe that by controlling the parameters we would we able to create
instances with similar characteristics to those existing for famous COPs, such as
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the Traveling Salesman Problem, the Flowshop Scheduling Problem, the Linear
Ordering Problem, etc. Moreover, we think that the model could be flexible
enough to represent the complexity of real-world problems.
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