
Giuseppe Nicosia
Panos Pardalos (Eds.)

 123

LN
CS

 7
99

7

7th International Conference, LION 7
Catania, Italy, January 7–11, 2013
Revised Selected Papers

Learning
and Intelligent
Optimization

Lecture Notes in Computer Science 7997

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

http://www.springer.com/series/7407

Giuseppe Nicosia • Panos Pardalos (Eds.)

Learning and Intelligent
Optimization

7th International Conference, LION 7
Catania, Italy, January 7–11, 2013
Revised Selected Papers

123

Editors
Giuseppe Nicosia
Department of Mathematics

and Computer Science
University of Catania
Catania
Italy

Panos Pardalos
Department of Industrial and Systems

Engineering
University of Florida
Gainesville, FL
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-44972-7 ISBN 978-3-642-44973-4 (eBook)
DOI 10.1007/978-3-642-44973-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955073

CR Subject Classification (1998): F.2, G.1.6, G.2, F.1, I.2, G.1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

By bringing together scientists working in optimization and machine learning, LION
aims to provide delegates with the opportunity to learn more about other research
areas, where the algorithms, methods and theories on show are likely to be relevant to
their own research.

Optimization and machine learning researchers are now forming their own com-
munity and identity. The International Conference on Learning and Optimization is
proud to be the premiere conference in the area. As its organizers, we are honored to
have such a variety of innovative and original scientific articles presented this year.

LION 2013 is the seventh international conference dedicated entirely to the field of
optimization and machine learning. It was held in Catania - Italy, during January
7–11, 2013.

There were three plenary lectures:

Youssef Hamadi, Microsoft Research - UK
Mauricio G.C. Resende, AT&T Labs Research - USA
Qingfu Zhang, University of Essex - UK,

and four tutorial speakers:

Paola Festa, University of Napoli ‘‘Federico II’’ - Italy,
Mario Guarracino, CNR - Italy,
Boris Goldengorin, National Research University, Moscow, Russia,
Yaroslav D. Sergeyev, University of Calabria, Italy.

We had more submissions than ever this year, each manuscript was independently
reviewed by at least three members of the Programme Committee in a blind review
process. So, in these proceedings there are 49 research articles written by leading
scientists in the field, from 47 different countries on 5 continents, describing an
impressive array of ideas, technologies, algorithms, methods and applications in
Optimization and Machine Learning.

We couldn’t have organized this conference without these researchers, so we thank
them all for coming. We also couldn’t have organized LION without the excellent
work of all of the Programme Committee members, the session chair Giovanni
Stracquadanio, the publicity chair, and the chair of the local Organizing Committee,
Patrizia Nardon.

We would like to express our appreciation to the keynote and tutorial speakers who
accepted our invitation, and to all authors who submitted research papers to LION 2013.

January 2013 Giuseppe Nicosia
Panos Pardalos

v

Organization

LION 2013 Committees

Conference and Technical Program Committee Co-chairs

Giuseppe Nicosia University of Catania, Italy
Panos Pardalos University of Florida, USA

Special Session Chair

Giovanni Stracquadanio Johns Hopkins University, USA

Local Organization

Patrizia Nardon Reactive Search srl, Trento, Italy

Liaison with Springer

Thomas Stuetzle University Libre de Bruxelles, Belgium

LION 2013 Website

Marco Dallariva Reactive Search SrL

Publicity Chair

Mauro Brunato Reactive Search srl, Catania, Italy

vii

Technical Program Committee

Hernan Aguirre Shinshu University, Japan
Ethem Alpaydin Bogazici University, Turkey
Dirk Arnold Dalhousie University, Canada
Luigi Barone SolveIT Software, Adelaide, Australia
Julio Barrera CINVESTAV-IPN, San Pedro Zacatenco, Mexico
Roberto Battiti University of Trento, Italy
Mauro Birattari University Libre de Bruxelles, Belgium
Christian Blum Universitat Politecnica de Catalunya, Spain
Juergen Branke University of Warwick, UK
Dimo Brockhoff Inria, Lille, France
Mauro Brunato University of Trento, Italy
Philippe Codognet Université Pierre et Marie Curie, Paris 6, France
Carlos Coello Coello CINVESTAV-IPN, San Pedro Zacatenco, Mexico
Pierre Collet Université de Strasbourg, France
Carlos Cotta Universidad de Malaga, Spain
Clarisse Dhaenens Flipo Laboratoire LIFL/Inria Villeneuve d’Ascq, France
Luca Di Gaspero University of Udine, Italy
Federico Divina Pablo de Olavide University, Seville, Spain
Karl F. Doerner University of Vienna, Austria
Marco Dorigo Université Libre de Bruxelles, Belgium
Talbi El-Ghazali Polytech Lille, France
Michael Emmerich LIACS Leiden University, The Netherlands
Andries Engelbrecht University of Pretoria, South Africa
Valerio Freschi University of Urbino, Italy
Xavier Gandibleux The University of Nantes, France
Pablo Garcia Sanchez University of Granada, Spain
R. Ruiz Garcia Universidad Politècnica de Valencia, Spain
Deon Garrett Icelandic Institute for Intelligent Machines, Reykjavík,

Iceland
Michel Gendreau Ecole Polytechnique de Montreal, Canada
Tobias Glasmacher Ruhr-University Bochum, Germany
Martin C. Golumbic CRI Haifa, Israel
Salvatore Greco University of Catania, Italy
Walter J. Gutjahr University of Vienna, Austria
Youssef Hamadi Microsoft Research, UK
Jin-Kao Hao University of Angers, France
Simon Harding University of Bristol, UK
Richard Hartl University of Vienna, Austria
Geir Hasle SINTEF Applied Mathematics, Norway
A. G. Hernandez-Diaz Pablo de Olavide University, Spain
Francisco Herrera University of Granada, Spain
Tomio Hirata Nagoya University, Japan
Frank Hutter University of British Columbia, Canada

viii Organization

Hisao Ishibuchi Osaka Prefecture University, Japan
Yaochu Jin University of Surrey, UK
Laetitia Jourdan LIFL University of Lille 1, France
Narendra Jussien Ecole des Mines de Nantes, France
Tanaka Kiyoshi Shinshu University, Nagano, Japan
Zeynep Kiziltan University of Bologna, Italy
Dario Landa-Silva University of Nottingham, UK
A. J. Fernandez Leiva Universidad de Malaga, Spain
Arnaud Liefooghe Inria, Villeneuve d’Ascq, France
Manuel Lopez-Ibanez Université Libre de Bruxelles, Belgium
Antonio Lopez-Jaimes CINVESTAV-IPN, San Pedro Zacatenco, Mexico
Thibaut Lust Université Catholique de Louvain, Belgium
Dario Maggiorini University of Milan, Italy
Ogier Maitre University of Strasbourg, France
Vittorio Maniezzo University of Bologna, Italy
Francesco Masulli University of Genoa, Italy
Basseur Matthieu LERIA Angers, France
J. J. Merelo Universidad de Granada, Spain
Bernd Meyer Monash University, Australia
Zbigniew Michalewicz University of Adelaide, Australia
Nenad Mladenovic Brunel University, London, UK
M. A. Montes de Oca IRIDIA, Université Libre de Bruxelles, Belgium
Antonio M. Mora Garcia University of Granada, Spain
Amir Nakib Université Paris Este Creteil, France
Giuseppe Nicosia University of Catania, Italy
Gabriela Ochoa University of Nottingham, UK
Yew-Soon Ong Nanyang Technological University, Singapore
Djamila Ouelhadj University of Portsmouth, UK
Patricia Paderewski University of Granada, Spain
Natalia Padilla-Zea LIVE - GEDES, University of Granada, Spain
Luis Paquete CISUC, University of Coimbra, Spain
Panos M. Pardalos University of Florida, USA
Andrew Parkes University of Nottingham, UK
Marcello Pelill University of Venice, Italy
Diego Perez University of Essex, UK
Vincenzo Piuri University of Milan, Italy
Silvia Poles Enginsoft Srl, Trento, Italy
Mike Preuss TU Dortmund, Germany
Gunther R. Raidl Vienna University of Technology, Austria
Franz Rendl University of Klagenfurt, Austria
Celso C. Ribeiro Universidade Federal Fluminense, Brazil
Florian Richoux University of Nantes, France
Laura Anna Ripamonti University of Milan, Italy
Andrea Roli Alma Mater Studiorum University of Bologna, Italy
E. Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Samuel Rota Bulò Ca’ Foscari University of Venice, Italy

Organization ix

Wheeler Ruml University of New Hampshire, USA
Ilya Safro Argonne National Laboratory, USA
Horst Samulowitz National ICT Australia, Sydney, Australia
Hiroyuki Sato The University of Electro-Communications, Tokyo,

Japan
Frederic Saubion University of Angers, France
Andrea Schaerf University of Udine, Italy
Marc Schoenauer Inria Saclay, France
Oliver Schettze CINVESTAV-IPN, San Pedro Zacatenco, Mexico
Yaroslav D. Sergeyev University of Calabria, Italy
Patrick Siarry University Paris-Est Creteil, France
Ankur Sinha Aalto University, Helsinki, Finland
Christine Solnon University of Lyon, France
Theo Stewart University of Cape Town, South Africa
Giovanni Stracquadanio Johns Hopkins University, Baltimore, USA
Thomas Stutzle Université Libre de Bruxelles, Belgium
Ke Tang University of Science and Technology of China, China
Julian Togelius IDSIA, Lugano, Switzerland
Shigeyoshi Tsutsui Hannan University, Osaka, Japan
Pascal Van Hentenryck Brown University, Providence, USA
Sebastien Verel Inria, Calais Cedex, France
Stefan Voss University of Hamburg, Germany
Markus Wagner University of Adelaide, Australia
Toby Walsh NICTA and UNSW, Australia
David L. Woodruff University of California, Davis, USA
Petros Xanthopoulos University of Central Florida, USA
Ning Xiong Mälardalen University, Västerås, Sweden

x Organization

Contents

Interleaving Innovization with Evolutionary Multi-Objective Optimization
in Production System Simulation for Faster Convergence 1

Amos H.C. Ng, Catarina Dudas, Henrik Boström, and Kalyanmoy Deb

Intelligent Optimization for the Minimum Labelling
Spanning Tree Problem . 19

Sergio Consoli, José Andrés Moreno Pérez, and Nenad Mladenović

A Constraint Satisfaction Approach to Tractable Theory Induction 24
John Ahlgren and Shiu Yin Yuen

Features for Exploiting Black-Box Optimization Problem Structure 30
Tinus Abell, Yuri Malitsky, and Kevin Tierney

MOCA-I: Discovering Rules and Guiding Decision Maker in the Context
of Partial Classification in Large and Imbalanced Datasets 37

Julie Jacques, Julien Taillard, David Delerue, Laetitia Jourdan,
and Clarisse Dhaenens

Sharing Information in Parallel Search with Search Space Partitioning 52
Davide Lanti and Norbert Manthey

Fast Computation of the Multi-Points Expected Improvement
with Applications in Batch Selection. 59

Clément Chevalier and David Ginsbourger

R2-EMOA: Focused Multiobjective Search Using
R2-Indicator-Based Selection . 70

Heike Trautmann, Tobias Wagner, and Dimo Brockhoff

A Heuristic Algorithm for the Set Multicover Problem with Generalized
Upper Bound Constraints . 75

Shunji Umetani, Masanao Arakawa, and Mutsunori Yagiura

A Genetic Algorithm Approach for the Multidimensional Two-Way
Number Partitioning Problem . 81

P.C. Pop and O. Matei

xi

http://dx.doi.org/10.1007/978-3-642-44973-4_1
http://dx.doi.org/10.1007/978-3-642-44973-4_1
http://dx.doi.org/10.1007/978-3-642-44973-4_2
http://dx.doi.org/10.1007/978-3-642-44973-4_2
http://dx.doi.org/10.1007/978-3-642-44973-4_3
http://dx.doi.org/10.1007/978-3-642-44973-4_4
http://dx.doi.org/10.1007/978-3-642-44973-4_5
http://dx.doi.org/10.1007/978-3-642-44973-4_5
http://dx.doi.org/10.1007/978-3-642-44973-4_6
http://dx.doi.org/10.1007/978-3-642-44973-4_7
http://dx.doi.org/10.1007/978-3-642-44973-4_7
http://dx.doi.org/10.1007/978-3-642-44973-4_8
http://dx.doi.org/10.1007/978-3-642-44973-4_8
http://dx.doi.org/10.1007/978-3-642-44973-4_9
http://dx.doi.org/10.1007/978-3-642-44973-4_9
http://dx.doi.org/10.1007/978-3-642-44973-4_10
http://dx.doi.org/10.1007/978-3-642-44973-4_10

Adaptive Dynamic Load Balancing in Heterogeneous Multiple
GPUs-CPUs Distributed Setting: Case Study of B&B Tree Search 87

Trong-Tuan Vu, Bilel Derbel, and Nouredine Melab

Multi-Objective Optimization for Relevant Sub-graph Extraction 104
Mohamed Elati, Cuong To, and Rémy Nicolle

PROGRESS: Progressive Reinforcement-Learning-Based
Surrogate Selection . 110

Stefan Hess, Tobias Wagner, and Bernd Bischl

Neutrality in the Graph Coloring Problem . 125
Marie-Eléonore Marmion, Aymeric Blot, Laetitia Jourdan,
and Clarisse Dhaenens

Kernel Multi Label Vector Optimization (kMLVO): A Unified
Multi-Label Classification Formalism . 131

Gilad Liberman, Tal Vider-Shalit, and Yoram Louzoun

Robust Benchmark Set Selection for Boolean Constraint Solvers 138
Holger H. Hoos, B. Kaufmann, T. Schaub, and M. Schneider

Boosting Sequential Solver Portfolios: Knowledge Sharing
and Accuracy Prediction . 153

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz,
and Meinolf Sellmann

A Fast and Adaptive Local Search Algorithm
for Multi-Objective Optimization . 168

Duy Tin Truong

An Analysis of Hall-of-Fame Strategies in Competitive Coevolutionary
Algorithms for Self-Learning in RTS Games . 174

Mariela Nogueira, Carlos Cotta, and Antonio J. Fernández-Leiva

Resources Optimization in (Video) Games: A Novel Approach
to Teach Applied Mathematics? . 189

Dario Maggiorini, Simone Previti, Laura Anna Ripamonti,
and Marco Trubian

CMF: A Combinatorial Tool to Find Composite Motifs 196
Mauro Leoncini, Manuela Montangero, Marco Pellegrini,
and Karina Panucia Tillán

xii Contents

http://dx.doi.org/10.1007/978-3-642-44973-4_11
http://dx.doi.org/10.1007/978-3-642-44973-4_11
http://dx.doi.org/10.1007/978-3-642-44973-4_12
http://dx.doi.org/10.1007/978-3-642-44973-4_13
http://dx.doi.org/10.1007/978-3-642-44973-4_13
http://dx.doi.org/10.1007/978-3-642-44973-4_14
http://dx.doi.org/10.1007/978-3-642-44973-4_15
http://dx.doi.org/10.1007/978-3-642-44973-4_15
http://dx.doi.org/10.1007/978-3-642-44973-4_16
http://dx.doi.org/10.1007/978-3-642-44973-4_17
http://dx.doi.org/10.1007/978-3-642-44973-4_17
http://dx.doi.org/10.1007/978-3-642-44973-4_18
http://dx.doi.org/10.1007/978-3-642-44973-4_18
http://dx.doi.org/10.1007/978-3-642-44973-4_19
http://dx.doi.org/10.1007/978-3-642-44973-4_19
http://dx.doi.org/10.1007/978-3-642-44973-4_20
http://dx.doi.org/10.1007/978-3-642-44973-4_20
http://dx.doi.org/10.1007/978-3-642-44973-4_21

Hill-Climbing Behavior on Quantized NK-Landscapes 209
Matthieu Basseur and Adrien Goëffon

Neighborhood Specification for Game Strategy Evolution in a Spatial
Iterated Prisoner’s Dilemma Game . 215

Hisao Ishibuchi, Koichiro Hoshino, and Yusuke Nojima

A Study on the Specification of a Scalarizing Function in MOEA/D
for Many-Objective Knapsack Problems . 231

Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima

Portfolio with Block Branching for Parallel SAT Solvers 247
Tomohiro Sonobe and Mary Inaba

Parameter Setting with Dynamic Island Models . 253
Caner Candan, Adrien Goëffon, Frédéric Lardeux, and Frédéric Saubion

A Simulated Annealing Algorithm for the Vehicle Routing Problem
with Time Windows and Synchronization Constraints 259

Sohaib Afifi, Duc-Cuong Dang, and Aziz Moukrim

Solution of the Maximum k-Balanced Subgraph Problem 266
Rosa Figueiredo, Yuri Frota, and Martine Labbé

Racing with a Fixed Budget and a Self-Adaptive Significance Level 272
Juergen Branke and Jawad Elomari

An Efficient Best Response Heuristic for a Non-preemptive Strictly
Periodic Scheduling Problem . 281

Clément Pira and Christian Artigues

Finding an Evolutionary Solution to the Game of Mastermind
with Good Scaling Behavior . 288

Juan Julian Merelo, Antonio M. Mora, Carlos Cotta,
and Antonio J. Fernández-Leiva

A Fast Local Search Approach for Multiobjective Problems 294
Laurent Moalic, Alexandre Caminada, and Sid Lamrous

Generating Customized Landscapes in Permutation-Based
Combinatorial Optimization Problems . 299

Leticia Hernando, Alexander Mendiburu, and Jose A. Lozano

Multiobjective Evolution of Mixed Nash Equilibria 304
David Iclănzan, Noémi Gaskó, Réka Nagy, and D. Dumitrescu

Contents xiii

http://dx.doi.org/10.1007/978-3-642-44973-4_22
http://dx.doi.org/10.1007/978-3-642-44973-4_23
http://dx.doi.org/10.1007/978-3-642-44973-4_23
http://dx.doi.org/10.1007/978-3-642-44973-4_24
http://dx.doi.org/10.1007/978-3-642-44973-4_24
http://dx.doi.org/10.1007/978-3-642-44973-4_25
http://dx.doi.org/10.1007/978-3-642-44973-4_26
http://dx.doi.org/10.1007/978-3-642-44973-4_27
http://dx.doi.org/10.1007/978-3-642-44973-4_27
http://dx.doi.org/10.1007/978-3-642-44973-4_28
http://dx.doi.org/10.1007/978-3-642-44973-4_28
http://dx.doi.org/10.1007/978-3-642-44973-4_29
http://dx.doi.org/10.1007/978-3-642-44973-4_30
http://dx.doi.org/10.1007/978-3-642-44973-4_30
http://dx.doi.org/10.1007/978-3-642-44973-4_31
http://dx.doi.org/10.1007/978-3-642-44973-4_31
http://dx.doi.org/10.1007/978-3-642-44973-4_32
http://dx.doi.org/10.1007/978-3-642-44973-4_33
http://dx.doi.org/10.1007/978-3-642-44973-4_33
http://dx.doi.org/10.1007/978-3-642-44973-4_34

Hybridizing Constraint Programming and Monte-Carlo Tree Search:
Application to the Job Shop Problem . 315

Manuel Loth, Michéle Sebag, Youssef Hamadi, Marc Schoenauer,
and Christian Schulte

From Grammars to Parameters: Automatic Iterated Greedy Design
for the Permutation Flow-Shop Problem with Weighted Tardiness 321

Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste,
and Thomas Stützle

Architecture for Monitoring Learning Processes Using Video Games 335
N. Padilla-Zea, J.R. Lopez-Arcos, F.L. Gutiérrez-Vela,
P. Paderewski, and N. Medina-Medina

Quality Measures of Parameter Tuning for Aggregated Multi-Objective
Temporal Planning . 341

M.R. Khouadjia, M. Schoenauer, V. Vidal, J. Dréo, and P. Savéant

Evolutionary FSM-Based Agents for Playing Super Mario Game 357
R.M. Hidalgo-Bermúdez, M.S. Rodríguez-Domingo, A.M. Mora,
P. García-Sánchez, Juan Julian Merelo, and Antonio J. Fernández-Leiva

Identifying Key Algorithm Parameters and Instance Features
Using Forward Selection . 364

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

Using Racing to Automatically Configure Algorithms
for Scaling Performance . 382

James Styles and Holger H. Hoos

Algorithm Selection for the Graph Coloring Problem 389
Nysret Musliu and Martin Schwengerer

Batched Mode Hyper-heuristics . 404
Shahriar Asta, Ender Özcan, and Andrew J. Parkes

Tuning Algorithms for Tackling Large Instances:
An Experimental Protocol . 410

Franco Mascia, Mauro Birattari, and Thomas Stützle

Automated Parameter Tuning Framework for Heterogeneous and Large
Instances: Case Study in Quadratic Assignment Problem. 423

Lindawati, Zhi Yuan, Hoong Chuin Lau, and Feida Zhu

xiv Contents

http://dx.doi.org/10.1007/978-3-642-44973-4_35
http://dx.doi.org/10.1007/978-3-642-44973-4_35
http://dx.doi.org/10.1007/978-3-642-44973-4_36
http://dx.doi.org/10.1007/978-3-642-44973-4_36
http://dx.doi.org/10.1007/978-3-642-44973-4_37
http://dx.doi.org/10.1007/978-3-642-44973-4_38
http://dx.doi.org/10.1007/978-3-642-44973-4_38
http://dx.doi.org/10.1007/978-3-642-44973-4_39
http://dx.doi.org/10.1007/978-3-642-44973-4_40
http://dx.doi.org/10.1007/978-3-642-44973-4_40
http://dx.doi.org/10.1007/978-3-642-44973-4_41
http://dx.doi.org/10.1007/978-3-642-44973-4_41
http://dx.doi.org/10.1007/978-3-642-44973-4_42
http://dx.doi.org/10.1007/978-3-642-44973-4_43
http://dx.doi.org/10.1007/978-3-642-44973-4_44
http://dx.doi.org/10.1007/978-3-642-44973-4_44
http://dx.doi.org/10.1007/978-3-642-44973-4_45
http://dx.doi.org/10.1007/978-3-642-44973-4_45

Practically Desirable Solutions Search on Multi-Objective Optimization 438
Natsuki Kusuno, Hernán Aguirre, Kiyoshi Tanaka, and Masataka Koishi

Oversized Populations and Cooperative Selection: Dealing
with Massive Resources in Parallel Infrastructures 444

Juan Luis Jiménez Laredo, Bernabe Dorronsoro, Carlos Fernandes,
Juan Julian Merelo, and Pascal Bouvry

Effects of Population Size on Selection and Scalability in Evolutionary
Many-Objective Optimization. 450

Hernán Aguirre, Arnaud Liefooghe, Sébastien Verel, and Kiyoshi Tanaka

A Novel Feature Selection Method for Classification
Using a Fuzzy Criterion. 455

Maria Brigida Ferraro, Antonio Irpino, Rosanna Verde,
and Mario Rosario Guarracino

Author Index . 469

Contents xv

http://dx.doi.org/10.1007/978-3-642-44973-4_46
http://dx.doi.org/10.1007/978-3-642-44973-4_47
http://dx.doi.org/10.1007/978-3-642-44973-4_47
http://dx.doi.org/10.1007/978-3-642-44973-4_48
http://dx.doi.org/10.1007/978-3-642-44973-4_48
http://dx.doi.org/10.1007/978-3-642-44973-4_49
http://dx.doi.org/10.1007/978-3-642-44973-4_49

Interleaving Innovization with Evolutionary
Multi-Objective Optimization in Production
System Simulation for Faster Convergence

Amos H.C. Ng1(&), Catarina Dudas1, Henrik Boström2,
and Kalyanmoy Deb1,3

1 Virtual Systems Research Centre, University of Skövde, Skövde, Sweden
amos.ng@his.se

2 Department of Computer and Systems Sciences, Stockholm University,
Stockholm, Sweden

3 Department of Electrical and Computer Engineering, Michigan State University,
East Lansing, USA

Abstract. This paper introduces a novel methodology for the optimization,
analysis and decision support in production systems engineering. The meth-
odology is based on the innovization procedure, originally introduced to unveil
new and innovative design principles in engineering design problems. The
innovization procedure stretches beyond an optimization task and attempts to
discover new design/operational rules/principles relating to decision variables
and objectives, so that a deeper understanding of the underlying problem can be
obtained. By integrating the concept of innovization with simulation and data
mining techniques, a new set of powerful tools can be developed for general
systems analysis. The uniqueness of the approach introduced in this paper lies
in that decision rules extracted from the multi-objective optimization using data
mining are used to modify the original optimization. Hence, faster convergence
to the desired solution of the decision-maker can be achieved. In other words,
faster convergence and deeper knowledge of the relationships between the key
decision variables and objectives can be obtained by interleaving the multi-
objective optimization and data mining process. In this paper, such an inter-
leaved approach is illustrated through a set of experiments carried out on a
simulation model developed for a real-world production system analysis
problem.

Keywords: Innovization � Multi-objective optimization � Data mining �
Production system simulation

1 Introduction

Optimization involves the process of finding one or more solutions which correspond
to the minimization or maximization of one or more objectives. In a single optimi-
zation problem, a single optimal solution is sought to optimize a single objective
function and in a multi-objective optimization (MOO) problem the optimization
involves more than one objective function. In most MOO problems, especially those

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 1–18, 2013.
DOI: 10.1007/978-3-642-44973-4_1, � Springer-Verlag Berlin Heidelberg 2013

found in the real world, these objective functions are in conflict with each other. Thus,
seeking one single best solution that optimizes all of them simultaneously is impos-
sible, because improving one objective would deteriorate the others [1]. This scenario
gives rise to a set of optimal compromised (trade-off) solutions, largely known as
Pareto-optimal solutions. The so-called Pareto Front (PF) in the objective space
consists of solutions in the Pareto-optimal solution set.

Despite the existence of multiple trade-off solutions, in most cases, only one of
them will be chosen as the solution for implementation, for example, in a product or
system design. Therefore, two equally important tasks are usually involved in solving
an MOO problem: (1) searching for the PF solution set, so that the decision-maker can
acquire an idea on the extent and nature of the trade-off among the objectives, and
(2) choosing a particular preferred solution from the Pareto-optimal set. While the first
task is computationally intensive, and can be fully automated using an MOO algo-
rithm, the second task usually necessitates a manual decision-making process using
the preference information of the decision-maker. It is interesting to note that an MOO
problem can easily be converted into a single-objective optimization problem, by
formulating a weighted-sum objective function which is composed of the multiple
objectives, so that a single trade-off optimal solution can effectively be sought.
However, the major drawback is that the trade-off solution obtained by using this
procedure is very sensitive to the relative preference vector. Therefore, the choice of
the preference weights and thus the obtained trade-off solution is highly subjective to
the particular decision-maker. Firstly, without detailed knowledge about the product
or system under study, selecting the appropriate preference vector can be a very
difficult task. Secondly, converting an MOO problem into a simplistic single-objective
problem puts decision-making ahead of knowing the best possible trade-offs. In other
words, thanks to the generation of multiple trade-off solutions, an MOO procedure can
contribute to support the decision-making, in comparison to a single-objective
optimization procedure. On one hand, the decision-maker is provided with multiple
‘‘optimal’’ (or precisely near-optimal) alternatives for consideration before making the
final choice. On the other hand, since these optimal solutions are ‘‘high-performing’’
with respect to at least one objective, conducting an analysis that answers ‘‘What
makes these solutions optimal?’’ can provide the decision-maker with very important
information, or knowledge, which cannot be obtained if only one single solution is
sought in the optimization task. The idea of deciphering knowledge, or knowledge
discovery, using the post-optimality analysis of Pareto-optimal solutions from an
MOO, was first proposed by Deb and Srinivasan [2]. They coined the term
innovization (innovation via optimization) to describe the task of discovering the
salient common principles present in the Pareto-optimal solutions, in order to obtain
deeper knowledge/insights regarding the behavior/nature of the problem. The
innovization task employed in earlier publications involved the manual identification
of the important relationships among decision variables and objectives that are
common to the obtained trade-off solutions. Recent studies have shown that using data
mining (DM) techniques to enable innovization procedures to be performed
automatically [3, 4] can be promising for various engineering problems. In these
innovization tasks, the efficient evolutionary multi-objective optimization (EMO)
algorithm, NSGA-II [5], has been applied to generate the Pareto-optimal solutions.

2 A.H.C. Ng et al.

Due to their population-based approach and wide-spread applicability, EMO
algorithms are in general very suitable for the optimization task in an automated
innovization procedure.

Research in combining MOO and DM has attracted increasing interest in the last
decade. Obayashi and Sasaki [6] used Self-Organizing Maps (SOM) to cluster the
design space, in order to gain more information about design trade-offs in the
objective space. Jeong et al. [7] applied a combination of SOM and analysis of
variance (ANOVA) in the design process for aerodynamic optimization problems.
SOM was used to analyze the key design variables found in the ANOVA for further
examination, in order to gain insight into how they influence the objective functions.
Sugimura et al. [8] explored the use of decision trees and rough sets to analyze the
optimal solutions, in order to extract the design rules for the blower efficiency and
stability of the inflow for a diffuser. In [9], the dominant design features were
extracted by decomposing the shape and flow data into a set of orthogonal base
vectors describing the optimal design of an aerodynamic transonic airfoil. In addition
to data-mining methods, data visualization techniques like 4D-plots, Parallel coordi-
nates, and hyper-radial visualization have been used to analyze the Pareto-optimal
solutions applied to a range of automotive engineering problems [10].

In summary, most of the above-mentioned related studies were focused on engi-
neering or product design problems. As a matter of fact, by integrating the concept of
innovization with simulation and DM techniques, the innovization procedure can be
applied to systems design and analysis in general. In particular, by using MOO on
discrete-event simulation models, the innovization task can be effectively employed
for analysis and decision-making support in the system design/development of
industrial-scale production or supply-chain systems. Such a so-called Simulation-
based Innovization (SBI) procedure has been proposed in some of our previous work
[11–13]. In contrast to other automated innovization procedures using data-mining
techniques [3, 4], the uniqueness of our proposed SBI approach lies in:

• Using decision trees/rules as the induction techniques, instead of mathematical
formulae, to capture the relationship between decision variables and objectives, is
believed to make understanding the extracted knowledge easier for the decision-
maker.

• The SBI approach focusing on combining the data set in DM with both optimal and
non-optimal solutions, so that research on ‘‘What distinguishes the Pareto-optimal
solutions and non-optimal solutions?’’ can be conducted. This is different from
other existing innovization procedures, which only focus on unveiling the salient
common principles of the Pareto-optimal solutions.

Related to the latter point, it is logical to assume that a non-optimal solution, which
is closer to the PF, possesses the attributes that are closer to a Pareto-optimal solution
than one which is far away from it. This is particularly apparent for an MOO problem
with continuous decision variables and objective functions. Therefore, a distance-based
approach that performs pre-processing on the data set generated from MOO has been
proposed [14]. With such a distance-based pre-processing approach, the subsequent DM
task becomes a regression problem in which the distances of the solutions in the data set
to the PF are used as the dependent continuous variable. The overall aim of this

Interleaving Innovization with Evolutionary Multi-Objective Optimization 3

procedure is therefore to decipher attributes or patterns in what distinguishes a solution
with a short distance to the PF from a solution with a long distance to the PF, in order to
portray the optimality of the PF solutions and acquire deeper knowledge of the designed
system, before a final decision is made.

Very recently, the EMO literature has highlighted the importance of using a local
search procedure along with an EMO procedure [15]. The article includes a proposal
of a serial innovization and local search approach, in which the common principles
present in EMO solutions are first deciphered and then used as heuristics in the local
search operation. The basic idea of this approach is that the relationships between the
decision variables and the objectives derived from an innovization task can be used as
heuristics in the local search procedure, in order to obtain a faster convergence than a
single application of EMO to the problem would achieve. We believe that this concept
can be extended when we consider that a common decision-making scenario would
require the decision-maker to go through the following process iteratively, before a
decision could be made: (1) run MOO to gain an approximate idea of the extent of the
PF; (2) select some specific region(s) of interest on the PF; (3) discover the attributes
of the solutions in the selected region(s); (4) perform a local search procedure to
further explore other possible solutions in the interested region(s), e.g., using the
reference point-based approach [16]. In other words, an advanced SBI procedure
should be able to support the decision-maker, so that optimization, knowledge dis-
covery and decision-making tasks can be applied in an interleaving manner, before a
final, well-informed/confident decision is made.

The aim of this paper is to introduce such an advanced SBI procedure in which
MOO and DM are interleaved. The usefulness of such a procedure to solve real-world
system optimization problems is illustrated through a case study of an industrial
production system analysis problem. The paper continues as follows. Section 2
introduces the original SBI process and then the interleaving approach. Section 3
presents the industrial case study and results of the experiments using the proposed
approach to converge to the different preferred regions chosen by the decision-maker.
A presentation of the conclusions is found in Sect. 4.

2 Simulation-Based Innovization (SBI)

As argued in [14], a SBI process does not deviate much from a standardized process
model of an ordinary, knowledge discovery in databases (KDD) process. The major
difference, when comparing SBI with a KDD process, is that the data used for the
pattern detection is not from a data source containing historical data, but from
experimental data generated from simulation-based multi-objective optimization
(SMO). Simulation is a common approach to solve industrial problems. The detail
level of the simulation model can vary from a conceptual model to one with detailed
operation logics, but stochastic processes are commonly used in almost all production
simulation models to model variability, e.g., due to machine failures. It is such a
challenge, imposed by stochastic simulation, commonly found in production system
simulation that leads to the design of some distance-based DM approaches specifically
for these types of innovization applications.

4 A.H.C. Ng et al.

2.1 Distance-Based SBI

Similar to any innovization process, the core goal of the SBI process is to discover
what properties of the decision variables are in common with the solutions in the non-
dominated set. At the same time, by analyzing the design variables together with the
objective function values, the distinguishing factors that separate good solutions from
lesser ones can also be determined. There are two issues that complicate the latter
analysis:

• Due to the stochastic behavior of the simulation model, the binary classification of a
solution as either non-dominated or dominated is not entirely trustworthy.

• A solution closer to the PF is more likely to possess attribute values that resemble a
non-dominated solution more than a solution which is far away from the PF would.
This is particularly true for an MOO problem with continuous decision variables
and objective functions.

To address these issues, a distance-based approach to perform pre-processing on
the dataset generated from SMO, which differs significantly from other innovization
approaches, has been devised. Instead of treating dominated and non-dominated
solutions as belonging to two different classes, and hence finding distinguishing
factors by building classification models, the problem is converted into a regression
problem, in which the distance to the PF is used as the dependent continuous variable
in the subsequent DM process. The task is therefore to find factors to distinguish
solutions with short distances to the PF from solutions with long distances, as
mentioned earlier. As an example, a 2-D interpolation curve for a two-objective MOO
problem, in which the minimum Euclidian distances of the solutions to the interpo-
lated curve of the PF are represented by the color scale, is illustrated in Fig. 1 (see
[14] for more details of the calculations).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min(f1)

m
in
(f
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Dominated solutions

Non-dominated solutions

Interpolant

y
j

x

Fig. 1. Color representing the minimum Euclidian distance of solutions to the interpolation
curve in a 2-objective MOO problem.

Interleaving Innovization with Evolutionary Multi-Objective Optimization 5

2.2 An ASF-Based Distance Calculation

While the above distance calculation is easy to apply and has been combined with
K-means clustering so that the decision-maker can choose a preferred segment for the
DM analysis, a better alternative for the decision-maker is using a reference point
(RP) approach to explicitly specify the preferred region, which is perhaps the most
important way to provide preference information in an interactive optimization pro-
cedure [16]. Suggested by Wierzbicki [17–19], the RP approach can be used to find a
weakly Pareto-optimal solution closest to a supplied aspiration level RP, reflecting
desirable values for the objective function, based on solving an achievement scalar-
izing problem. Given a RP z for an MOO problem of minimizing (f1(x), …, fM(x))
with x � S, the following single-objective optimization is solved:

Minimize maxM
i¼1 wi fi xð Þ � zið Þ½ �

where wi is the ith component of a chosen weight vector used for scalarizing the
objectives. If the decision-maker is interested in biasing some objectives more than
others, a suitable weight vector can be used with the RP selected.

The use of RP to guide an EMO algorithm was proposed earlier in [20] and later in
[21] and [22]. Here, we are interested in investigating the use of RP for the decision-
maker to specify the preference for the distance-based SBI analysis. This concept is
illustrated in Fig. 2. For a 2-objectives problem, a Pareto-optimal solution can be
found by solving the above achievement scalarizing function (ASF), using the RP and
weight vector supplied by the decision-maker. Therefore, the Euclidean distances for
all solutions with respect to this so-called ASF solution can be calculated as shown by
the color scale in Fig. 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min(f1)

m
in
(f
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
All solutions

ASF solution

Fig. 2. Color representing the minimum Euclidian distance of solutions to the ASF point.

6 A.H.C. Ng et al.

2.3 Interleaving MOO, Knowledge Discovery and Decision-Making

With the introduction of ASF-based distance calculation, a general framework of an
interactive MOO, knowledge discovery and decision-making procedure is proposed as
shown in Fig. 3. Many powerful algorithms can be used for the knowledge discovery
to generate the decision rules. Among the various DM models, decision trees [23] are
particularly appealing for the purpose of innovization, because they provide inter-
pretable (non-opaque) predictive models. In the context of the distance-based
approach, the extracted decision tree models can provide insights into how the
decision variables should be configured in order to obtain a close-to-optimal and
close-to-preferred solution based on the ASF solution. In other words, the purpose of
using DM in this context is to find relationships of the decision variables to explain
why certain solutions are closer than others to the ASF solution. It is also important to
note that, unlike other innovization approaches in the literature, e.g. [3], by feeding the
DM algorithms with all the solutions generated in an MOO, both Pareto and non-
Pareto ones, the extracted models can also provide information about the values and
relationships of the decision variables constituent in the poor solutions.

The main purpose of SBI is to find innovative principles and to present novel
information to the user. It is hence of great interest to pay attention to the visualization
step of the SBI process. This step can be divided into two parts: the first is to interpret
the results of the decision tree analysis and the second is to present the discovered
information to the user in a comprehensible way. In terms of extracting important
rules from the decision tree analysis, each node in the decision tree corresponds to one

Multi-Objective
Optimization

All solutions

Decision rules

Visualization

Simulation

Decision
Making

Knowledge
Discovery

Objectives
evaluations

Decision variables
settings

Rules as constraints

Significant variables

Rules visualizations

Pareto
frontier

Partial
preference Verification

Partial preference

Fig. 3. An interactive MOO and DM approach.

Interleaving Innovization with Evolutionary Multi-Objective Optimization 7

rule, which is represented by two parts: an antecedent set of conditions and the
consequent averaged regression value (rv). The elements in the antecedent set of
conditions consist of a design vector (x1, …, xn) and its corresponding values (v1, …,
vn) which are linked by an operator (op1, …, opn), as shown in the following form:

Rule j:IF x1 op1 v1ð ÞAND. . .AND xi opn við ÞTHEN rv ¼ d

For a rule to be ‘‘interesting’’, rv=d (d is the predicted Euclidian distance) must be
sufficiently small. Therefore, all nodes are checked in order to determine all the rules
with d below a certain threshold of interestingness. Such a threshold ensures that the
high interestingness of the selected rules can be predetermined or determined at a later
stage by the decision-maker in conjunction with the visualization of the extracted
rules.

In general, since EMO algorithms do not use any mathematical optimality con-
ditions in their operators, the solutions obtained after a finite number of computations
are not guaranteed to be optimal, although an asymptotic convergence for EMOs with
certain restrictions has been proven in the past [24]. To enhance the convergence
properties of EMO algorithms, one common approach is to first apply an EMO and the
solutions obtained are then modified one at a time by using a local search procedure.
Although this hybrid method is commonly employed, the overall computational effort
needed to execute the local search for each EMO solution can be burdensome.
Therefore, an alternative strategy, which involves the hybrid use of MOO and DM,
also schematically illustrated in Fig. 3, is proposed in this paper. First, an MOO is run
to generate a data set of sufficient size for the innovization study using DM tech-
niques. Since the derived rules can reveal salient properties present in the MOO
solutions close to the preferred solution selected by the decision-maker, the rules
obtained can then be used to re-define the original optimization MOO problem, so that
a faster convergence can be achieved, compared to a single application of EMO to the
original problem.

With the introduction of the distance-based approach based on the preference region
selected by the decision-maker, it is believed that faster and ‘‘better’’ optimization can
be achieved in an interactive and interleaved manner. An interactive manner means the
decision-maker can select and subsequently change the preferred region by choosing
different reference points. With interleaving, it implies that several iterations of the
MOO-DM cycles can be repeated in order to obtain important rules with respect to the
preference of the decision-maker. In addition, the efficiency of the optimization can
simultaneously be enhanced by having the optimization converge faster to the preferred
region. While there is a vast amount of literature on interactive multi-objective opti-
mization (see e.g. [25]), most of the existing methods in Multi-criteria Decision Making
(MCDM) literature aim to assist the user in selecting the best solution through some
interaction processes. Related visualization techniques in [26, 27] are also targeted to
help the decision-maker analyze the Pareto solutions, particularly in the objective space,
but not the relationships between decision variables and objectives. The approach
proposed by Greco et al. [28], in which decision rules are used to represent user pref-
erences and also to describe the Pareto front, is very relevant to this current work.
Similar to the concept proposed here, the Dominance-based Rough Set Approach

8 A.H.C. Ng et al.

(DRSA) described in the article can also be used for the progressive exploration of the
Pareto optimal set, which is interesting from the point of view of the decision-maker’s
preferences as well as using the extracted rules to refine the original constraints of the
optimization problem. Nevertheless, there are some key contrasts between SBI and
other approaches like DRSA in the MCDM literature. In practical problems like pro-
duction systems engineering, decision-makers usually have a strong interest in the
decision space. While they indicate their preference in the objective space, they would
prefer to acquire information about the values of the decision variables that put the
solutions closer to their targeted region in the objectives. The preference model using,
e.g., the pairwise comparison of solutions is also less suitable for this type of problem
with stochastic continuous objectives, because a large number of solutions can be close
to the preferred solution. In order to illustrate the applicability of the proposed inter-
leaved SBI approach for practical production system problems, we are more interested
in the results when it is applied in studies of real-world production optimization
problems, instead of some theoretical benchmarking functions.

3 Industrial Application Study

The application case study presented here was part of an industrial-based research
project conducted at some automotive manufacturers in Sweden. As a matter of fact,
many industrial, production systems engineering problems can be effectively formu-
lated as some optimization problems, because their aim is to find the optimal setting,
through re-allocations of workforce, work-in-process and/or buffers, to improve the
performance of the system [29]. One objective of the project is to verify and evaluate
the combined use of SMO and innovization, as a new and innovative manufacturing
management toolset to support decision-making [30]. For the SMO and the sub-
sequent SBI methodology to be useful in solving real-world manufacturing decision-
making problems, the optimization of production systems via simulation models that
take into account both productivity and environmental factors related to the decision-
making process is essential. In other words, formulating the optimization objectives
related to both productivity and environmental issues, such as energy efficiency, was
the first step.

The production system considered in this industrial case study is a truck gears
machining cell comprising seven machines connected by conveyors and industrial
robots. The cell produces five types of truck gears with different cycle (processing)
times on different machines and is usually staffed by 2 operators who perform manual
tasks including tool changes, setups, and measurements. In the case study, some new
processing plans involving gear machining and cutting-time changes had been carried
out, which required the cell to be re-configured. The goal of the study was therefore to
investigate how changes in capacities, conveyor (buffer) sizes, setup sequences,
operator utilization, and planning schemes would affect the productivity and energy
efficiency cost, in order to optimally re-configure the cell. Figure 4 schematically
illustrates the product flow of the cell and its major components. There are five lathes
(L1-5) and two parallel milling machining centers (M1-2). Work-pieces flow from the
raw material inventory (RMI) to L1, L2 and L3 through some long conveyors (CB1-3)

Interleaving Innovization with Evolutionary Multi-Objective Optimization 9

which are not only used for material handling, but also serve as in-process buffers for
temporarily storing the work-pieces. The buffer sizes are therefore determined by the
lengths of the conveyors. An identical type of conveyor buffer is located before L5
(CB5). Operators are located in two regions and they serve different machine groups.
As later indicated, the number of workers in each region (W1 or W2) is also a decision
variable in the MOO study.

A discrete-event simulation model of the production line was developed for the
machining cell and used in the simulation-based optimization of this study. Readers
are referred to [31] for the full details of the cell and the simulation model.

3.1 Optimization Objectives and Decision Variables

The key purpose of the simulation-based optimization is to seek the optimum
parameter selection to optimize the following key performance indicators:

• Maximize the number of gears produced, i.e., maximize production of the cell.
• Maximize the machine and worker utilizations.
• Minimize the number of work-in-process (WIP).
• Minimize the energy consumption.

Since, in general, high utilization is only a secondary objective, it is usually
correlated with higher production. Therefore, in the case study, only three objectives
were considered in the SMO, namely, Maximize (Production), Minimize (WIP),
Minimize (Energy Usage). In the simulation model, the energy consumption (E) of a
machine is calculated according to the following formula using the runtime and down-
time proportion of that machine during the entire simulation period:

E ¼ Prun � Erun þ Pdown � Edown þ 1� Prun � Pdownð ÞEstandby

� �
� SimTime

where
Prun = Proportion of the time the machine is in working mode.
Pdown = Proportion of the time the machine is in down mode, including setup and

tool changes.
Erun = Energy consumption per unit time when the machine is in working

mode.
Edown = Energy consumption per unit time when the machine is in down mode.
Estandby = Energy consumption per unit time when the machine is in standby mode.

L1
CB2CB1

RMI L2 L3
CB3

M1

M2

L4 L5
CB5

FGI

Region 1 –W1 Number of workers

Region 2 –W2 number of workers

Fig. 4. Schematic illustration of the components and product flow of the machining cell.

10 A.H.C. Ng et al.

SimTime = Total simulation time.

A total of nine decision variables were considered in the SMO:

• Conveyor (buffer) lengths before L1, 2, 3 and 5, i.e., CB1, CB2, CB3 and CB5.
• Production scheme, PS [1…5]; 5 different pre-defined production plans, batch sizes

and product mix that the manufacturer wanted to select.
• Lathe setting (LS); the company provided two sets of lathe settings with different

cycle times and change-over intervals.
• Milling m/c setting, MS.
• Number of workers in region 1 (W1) and region 2 (W2), as shown in Fig. 4.

3.2 Optimization Results and SBI Analysis

Five thousand simulation evaluations were run with NSGA-II [5] as the MOO algo-
rithm. Figure 5 plots the optimization results (all 5000 evaluations) and highlights the
non-dominated solutions.

In Fig. 5, it is very clearly indicated that there are several clusters in the objective
space. By using an interactive user interface, the decision-maker can browse the color
change in the 4D plot by adjusting each decision variable. The color change during the
browsing allows the relationship between the selected decision variable and the
objectives in the 3D plot to be visualized and interpreted, as shown in Fig. 6. Applying
this procedure to the data set generated from the SMO has revealed that there are
mainly two decision variables that determine which objective cluster a solution will
fall into; high production can only be achieved when LS is 1 and the Ps is the
parameter which further divides the solutions into 8 clusters in the entire 3D objective
space. The variables controlling the conveyor lengths, which indirectly control the

35
40

45
50

55
60

65

5.4

5.5

5.6

5.7

5.8

5.9

x 10
5

5100

5200

5300

5400

5500

5600

Energy usage

Work in process

P
ro
d
u
c
ti
o
n

Fig. 5. 3D plot visualizing all solutions obtained from the SMO.

Interleaving Innovization with Evolutionary Multi-Objective Optimization 11

buffer sizes between workstations, contribute to controlling the final average WIP of
the whole cell, which is logical and not being shown here.

Apart from the visualization of the solutions generated from the MOO, we used
the ASF-based distance SBI data mining process to extract decision rules from the
entire MOO data set. In this study, the decision-maker had chosen the reference point
(RP) to be [WIP = 35, EnergyUsage = 550000 (kW), Production = 5700]. This is an
ideal performance indicator, due to the relatively low WIP and low energy usage, but
it can achieve the highest possible total production, which also reflects a typical
decision strategy of production managers. In Fig. 5, this RP is already highlighted as
the red dot. A set of weight vectors had been tried with such a RP, which projected to
different non-dominated solutions that were presented to the decision-maker:

ASF 1; 1; 1½ �¼ 47; 553566:1; 5402½ �
ASF 1; 1; 10½ �¼ 46; 576910:1; 5587½ �
ASF 1; 1; 10½ �¼ 46; 552152; 5380½ �
ASF 1; 1; 10½ �¼ 36; 551462:1; 5342½ �
ASF 1; 10; 10½ �¼ 36; 576840:3; 5585½ �

The weight vector [10, 1, 10] was finally chosen because of the desirable high
production and very low WIP attributes, even though energy usage would be sacri-
ficed somewhat. The rule set in Table 1 was obtained by using the ASF point
[36, 576840.3, 5585] to calculate the Euclidean distance for all the solutions in the
solution set.

The rules generated have clearly verified the importance of the key decision
variable, LS, as the main splitting variable which divides the solution set into the two
distinct regions, one with lower energy usage and less production and the other with
higher energy usage but also higher production. In order to maximize the production,
LS has to be set to 1, as shown in Table 2 and visualized in Fig. 6. The variables CB1,
CB2 and CB5 in the rule set are used to regulate the WIP objective; keeping the
conveyors below the lengths indicated in the rule can maintain low WIP. The rule

Fig. 6. 4D plot visualizing how key decision variables divide the solutions into clusters.

12 A.H.C. Ng et al.

extracted may conclude that the other decision variables, i.e., CB3, W1 and W2 have
less influence, with respect to the ASF point chosen by the decision-maker.

The accuracy of the extracted rule can be partially verified by highlighting the
solutions that have attributes represented by the rule ‘‘LS = 1 _ CB1 \5.61 _ CB2 \
5.43 _ PS = 2 _ CB5 \ 1.705’’ in the objective space with all solutions, as shown in
Fig. 7 (the ASF point indicated by the blue dot).

3.3 Local Search Using the Extracted Rule as Constraints

Another way to verify that the extracted rule set is reliable is by re-running the
optimization using the selected rule as the constraints for decision variables. Table 3
shows the new upper boundaries for CB1, CB2 and CB5 when they are limited
according to Rule no. 5 in Table 1, whereby LS and PS are restricted to 1 and 2
respectively.

By considering the visualization of the comparison between the original solution
set (the grey dots) and the solution set of the second optimization run (the blue
triangles) in Fig. 8, it is clear that the rule set which was used as the new constraints
does capture the main attributes of the solutions closer to the reference point.

With an aim to verify that the ASF-based approach can be used to control the
convergence of the optimization towards the preference region, DM was run with the
ASF [1, 10, 1], which resulted in a PF solution with the lowest WIP and very low
energy usage. In other words, the Production objective is sacrificed. DM results are

35 40 45 50 55 60 65
5

5.5

6
x 10

5

Work in process

E
ne

rg
y

us
ag

e

35 40 45 50 55 60 65
5000

5500

6000

Work in process

P
ro

du
ct

io
n

5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85

x 10
5

5000

5500

6000

Energy usage

P
ro

du
ct

io
n

Fig. 7. 2D plots visualizing how close the solutions represented by the rule are to the ASF
point for the problem with 3 objectives.

Interleaving Innovization with Evolutionary Multi-Objective Optimization 13

shown as rules in Table 4. By applying the last rule with the shortest average distance
to ASF [1, 10, 1], the optimization problem was re-defined as shown in Table 5.
Results from re-running the optimization with 1000 solutions are plotted in Fig. 9,
showing very clearly that the new solutions are focused towards the selected alter-
native ASF point.

Table 1. The influence of the rules on the average distance.

Rule applied No of solutions Average distance

No rule, all solutions 5 000 0.815
LS = 1 2 005 0.414
LS = 1 _ CB1 \ 5.61 743 0.204
LS = 1 _ CB1 \ 5.61 _ CB2 \ 5.43 394 0.123
LS = 1 _ CB1 \ 5.61 _ CB2 \ 5.43 _ PS = 2 222 0.068
LS = 1 _ CB1 \ 5.61 _ CB2 \ 5.43 _ PS = 2 _ CB5 \ 1.705 183 0.057

Table 2. Influence of the rule set on the objectives.

Rule applied min / max
WIP

min / max
Production

min / max
Energy

No rule, all solutions 35 / 61 5168 / 5587 548764 / 583340
LS = 1 35 / 61 5500 / 5587 572190 / 583340
LS = 1 _ CB1 \ 5.61 35 / 51 5503 / 5585 572330 / 583220
LS = 1 _ CB1 \ 5.61 _ CB2 \ 5.43 35 / 45 5519 / 5585 573020 / 583220
LS = 1 _ CB1 \ 5.61 _ CB2 \ 5.43 _ PS = 2 35 / 41 5550 / 5585 575180 / 576840
LS = 1 _ CB1 \ 5.61 _ CB2 \ 5.43
_ PS = 2 _ CB5 \ 1.705

35 / 38 5550 / 5585 575180 / 576840

Table 3. Constrained data set for the industrial case.

Variable Domain

CB1 [5.1, 5.61]
CB2 [3.4, 5.43]
CB3 [3.0, 14.0]
CB5 [0.5, 1.705]
LS [1 .. 1]
PS [2 .. 2]
MS [1 .. 8]
W1 [1 .. 3]
W2 [1 .. 3]

14 A.H.C. Ng et al.

35
40

45
50

55
60

65

5.4

5.5

5.6

5.7

5.8

5.9

x 10
5

5000

5200

5400

5600

Energy usage
Work in process

P
ro

du
ct

io
n

Fig. 8. Solutions from the second optimization run (blue triangles) with the refined constraints;
grey solutions from previous optimization; red dot=[36, 576840.3, 5585].

Table 4. The influence of the rules on the average distance.

Rule applied No of solutions Average distance

No rule, all solutions 5 000 0.649
LS = 2 2 995 0.441
LS = 2 _ CB1 \ 5.33 705 0.245
LS = 2 _ CB1 \ 5.33 _ CB2 \ 5.59 397 0.195
LS = 2 _ CB1 \ 5.33 _ CB2 \ 5.59 _ PS = 2 186 0.089

Table 5. Constrained data set for the industrial case.

Variable Domain

CB1 [5.1, 5.33]
CB2 [3.4, 5.59]
CB3 [3.0, 14.0]
CB5 [0.5, 7]
LS [2..2]
PS [2..2]
MS [1..8]
W1 [1..3]
W2 [1..3]

Interleaving Innovization with Evolutionary Multi-Objective Optimization 15

4 Conclusions

In this paper, we describe an extension of the SBI procedure to extract knowledge
from SMO. The SBI process is based on the post-optimality analysis of Pareto-optimal
solutions, to discover knowledge, in terms of rules/principles that relate key influ-
encing decision variables and objectives. Recent work in using DM techniques to
automate the post-optimality analysis of Pareto-optimal solutions has shown that some
engineering design problems can be successfully handled. Not long ago, we proposed
a distance-based data pre-processing approach specifically to generate high-quality
rules from stochastic simulation models for real-world production systems. In the
paper, this approach is further extended by the introduction of interleaving some
MOO-DM cycles, in order to enhance the efficiency of the optimization, in terms of
faster convergence to the preferred region in the objective space selected by the
decision-maker. Such an enhanced MOO procedure has been demonstrated with a
simulation model developed in an industrial production system optimization study. In
our future work, we will apply the methodology to address complex production
systems engineering problems with more decision variables, as well as continue some
quantitative comparisons with other innovization approaches.

35
40

45
50

55
60

65

5.45
5.5

5.55
5.6

5.65
5.7

5.75
5.8

5.85

x 10
5

5100

5200

5300

5400

5500

5600

Energy usage
Work in process

P
ro

du
ct

io
n

Fig. 9. Solutions from the optimization run (blue triangles) with the refined constraints based
on new selected rule; grey solutions from first optimization; red dot=[36, 551462.1, 5342].

16 A.H.C. Ng et al.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester
(2004)

2. Deb, K., Srinivasan, A., Innovization: innovating design principles through optimization.
In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
Seattle, USA, July 2006, pp. 162–1636 (2006)

3. Bandaru, S., Deb, K.: Automated discovery of vital knowledge from Pareto optimal
solutions: first results from engineering design. In: IEEE Congress on Evolutionary
Computation, CEC ’10, pp. 1–8 (2010)

4. Bandaru, S., Deb, K.: Towards automating the discovery of certain innovative design
principles through a clustering based optimization technique. Eng. Optim. 43(9), 911–941
(2011)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

6. Obayashi, S., Sasaki, D.: Visualization and data mining of Pareto solutions using self-
organizing map. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 796–809. Springer, Heidelberg (2003)

7. Jeong, S., Chiba, K., Obayashi, S.: Data mining for aerodynamic design space. J. Aerosp.
Comput. Inf. Commun. 2(11), 452–469 (2005)

8. Sugimura, K., Obayashi, S., Jeong, S.: Multi-objective design exploration of a centrifugal
impeller accompanied with a vaned diffuser. In: Proceedings of FEDSM2007, 5th Joint
AME/JSME Fluids Engineering Conference, San Diego, USA, 30 July–2 August,
pp. 939–946 (2007)

9. Oyama, A., Nonomura, T., Obayashi, S.: Data mining of Pareto optimal transonic airfoil
shapes using proper orthogonal decomposition. In: Proceedings of 19th AIAA
Computational Fluid Dynamics, San Antonio, USA, 22–25 June, pp. 1514–1523 (2009)

10. Liebscher, M., Witowski, K, Goel, T.: Decision making in multi-objective optimization for
industrial applications – data mining and visualization of Pareto data. In: The 8th World
Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal, 1–5 June
(2009)

11. Ng, A.H.C, Deb, K., Dudas, C.: Simulation-based innovization for production systems
improvement: an industrial case study. In: Proceedings of the International 3rd Swedish
Production Symposium, Göteborg, Sweden, December 2009, pp. 278–286 (2009)

12. Dudas, C., Frantzén, M., Ng, A.H.C.: A synergy of multi-objective optimization and data
mining for the analysis of a flexible flow shop. Robot. Comput. Integr. Manuf. 27(4),
687–695 (2011)

13. Ng, A.H.C., Dudas, C., Nießen, J., Deb, K.: Simulation-based innovization using data
mining for production systems analysis. In: Wang, L., Ng, A., Deb, K. (eds.) Evolutionary
Multi-objective Optimization in Product Design and Manufacturing, pp. 401–430. Springer,
London (2011)

14. Ng, A.H.C., Dudas, C., Pehrsson, L., Deb, K.: Knowledge discovery in production
simulation by interleaving multi-objective optimization and data mining. In: Proceedings of
the 5th Swedish Production Symposium (SPS’12), Linköping, Sweden, 6–8 November
2012, pp. 461–471 (2012)

15. Deb, K., Datta, R.: Hybrid evolutionary multiobjective optimization and analysis of
machining operations. Eng. Optim. 44(6), 685–706 (2011)

Interleaving Innovization with Evolutionary Multi-Objective Optimization 17

16. Branke, J.: Consideration of partial user preferences in evolutionary multiobjective
optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective
Optimization. LNCS, vol. 5252, pp. 157–178. Springer, Heidelberg (2008)

17. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In:
Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications,
pp. 468–486. Springer, Berlin (1980)

18. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math. Model. 3,
391–405 (1982)

19. Wierzbicki, A.P.: On the completeness and constructiveness of parametric
characterizations to vector optimization problems. OR Spektrum 8, 73–87 (1986)

20. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
formulation, discussion, and generalization. In: International Conference on Genetic
Algorithms, pp. 416–423 (1993)

21. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling
with evolutionary algorithms - Part I: a unified formulation. IEEE Trans. Syst. Man Cybern.
Part A 28(1), 26–37 (1998)

22. Deb, K., Sundar, J., Reddy, U.B., Chaudhuri, S.: Reference point based multiobjective
optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286
(2006)

23. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression
Trees. Wadsworth, Belmont (1984)

24. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary
algorithms. In: Proceedings of the 2000 congress on evolutionary computation (CEC2000),
16–19 July 2000, San Diego, CA, pp. 1010–1016. IEEE Press, Piscataway (2000)

25. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization:
interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.)
Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008)

26. Korhonen, P., Wallenius, J.: Visualization in the multiple objective decision-making
framework. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective
Optimization. LNCS, vol. 5252, pp. 195–212. Springer, Heidelberg (2008)

27. Lotov, A.V., Miettinen, K.: Visualizing the Pareto frontier. In: Branke, J., Deb, K.,
Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252,
pp. 213–243. Springer, Heidelberg (2008)

28. Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to
interactive multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński,
R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 121–155. Springer, Heidelberg
(2008)

29. Li, S., Meerkov, S.M.: Production Systems Engineering. Springer, New York (2008)
30. Pehrsson, L., Ng, A.H.C., Bernedixen, J.: Multi-objective production system optimisation

including investment and running costs. In: Wang, L., Ng, A., Deb, K. (eds.) Evolutionary
Multi-objective Optimization in Product Design and Manufacturing, pp. 431–454. Springer,
London (2011)

31. Hossain, M., Harari, N., Semere, D., Mårtensson, P., Ng, A.H.C., Andersson, M.: Integrated
modeling and application of standardized data schema. In: Proceedings of the 5th Swedish
Production Symposium (SPS’12), Linköping, Sweden, 6–8 November 2012

18 A.H.C. Ng et al.

Intelligent Optimization for the Minimum
Labelling Spanning Tree Problem

Sergio Consoli1(B), José Andrés Moreno Pérez2, and Nenad Mladenović3

1 Joint Research Centre, European Commission, Via Enrico Fermi 2749,
21027 Ispra, VA, Italy

2 DEIOC, IUDR, Facultad de Matemáticas, Universidad de La Laguna,
4a planta Astrofisico F. Sánchez s/n, 38271 Santa Cruz de Tenerife, Spain

3 School of Information Systems, Computing and Mathematics,
Brunel University, Uxbridge, Middlesex UB8 3PH, UK
sergio.consoli@istc.cnr.it, jamoreno@ull.es,

nenad.mladenovic@brunel.ac.uk

Abstract. Given a connected, undirected graph whose edges are labelled
(or coloured), the minimum labelling spanning tree (MLST) problem
seeks a spanning tree whose edges have the smallest number of distinct
labels (or colours). In recent work, the MLST problem has been shown
to be NP-hard and some effective heuristics have been proposed and
analysed. In this paper we present preliminary results of a currently on-
going project regarding the implementation of an intelligent optimization
algorithm to solve the MLST problem. This algorithm is obtained by
the basic Variable Neighbourhood Search heuristic with the integration
of other complements from machine learning, statistics and experimen-
tal algorithmics, in order to produce high-quality performance and to
completely automate the resulting optimization strategy.

Keywords: Combinatorial optimization · Graphs and networks · Min-
imum labelling spanning trees · Intelligent optimization · Hybrid local
search

1 Preliminary Discussion

In a currently ongoing project, we investigate a new possibility for solving the
minimum labelling spanning tree (MLST) by an intelligent optimization algo-
rithm. The minimum labelling spanning tree problem is a challenging combina-
torial problem [1]. Given an undirected graph with labelled (or coloured) edges
as input, with each edge assigned with a single label, and a label assigned to one
or more edges, the goal of the MLST problem is to find a spanning tree with the
minimum number of labels (or colours).

The MLST problem can be formally formulated as a network or graph prob-
lem [2]. We are given a labelled connected undirected graph G = (V,E,L), where
V is the set of nodes, E is the set of edges, and L is the set of labels. The pur-
pose is to find a spanning tree T of G such that |LT | is minimized, where LT

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 19–23, 2013.
DOI: 10.1007/978-3-642-44973-4 2, c© Springer-Verlag Berlin Heidelberg 2013

20 S. Consoli et al.

is the set of labels used in T . Although a solution to the MLST problem is a
spanning tree, it is easier to work firstly in terms of feasible solutions. A feasible
solution is defined as a set of labels C ⊆ L, such that all the edges with labels
in C represent a connected subgraph of G and span all the nodes in G. If C is a
feasible solution, then any spanning tree of C has at most |C| labels. Moreover,
if C is an optimal solution, then any spanning tree of C is a minimum labelling
spanning tree. Thus, in order to solve the MLST problem we first seek a feasible
solution with the least number of labels [3].

The MLST problem was first introduced in [1]. The authors also proved
that it is an NP-hard problem and provided a polynomial time heuristic, the
Maximum Vertex Covering Algorithm (MVCA), successively improved in [4].
Other heuristics for the MLST problem have been proposed in the literature [2,
3,5–9].

The aim of this paper is to present preliminary results concerning the design
of a novel heuristic solution approach for the MLST problem, with the goal of
obtaining high-quality performance. The proposed optimization strategy is an
intelligent hybrid metaheuristic, obtained by combining Variable Neighbourhood
Search (VNS) [10] and Simulated Annealing (SA) [11], with the integration of
other complements in order to improve the effectiveness and robustness of the
optimization process, and to completely automate the resulting solution strategy.

2 Complementary Variable Neighbourhood Search

The first extension that we introduce for the MLST problem is a local search
mechanism that is inserted at top of the Variable Neighbourhood Search meta-
heuristic [10]. The resulting local search method is referred to as Complementary
Variable Neighbourhood Search (COMPL).

For our implementation, given a labelled graph G = (V,E,L), with n ver-
tices, m edges, φ labels, each solution is encoded as a binary string, i.e. C =
(c1, c2, . . . , cΣ) where ci = 1 if label i is in solution C, ci = 0 otherwise, ∀i =
1, . . . , φ.

Given a solution C, COMPL extracts a solution from the complementary
space of C, and then replaces the current solution with the solution extracted.
The complementary space of a solution C is defined as the set of all the labels that
are not contained in C, that is (LΔC). To yield the solution, COMPL applies
a constructive heuristic, such as the MVCA [1,4], to the subgraph of G with
labels in the complementary space of the current solution. Note that COMPL
stops if either a feasible solution is obtained (i.e. a single connected component
is obtained), or the set of unused labels contained in the complementary space
is empty, (i.e. (LΔC) = ∅), producing a final infeasible solution. Then, the
basic VNS is applied in order to improve the resulting solution. At the starting
point of VNS, it is required to define a suitable neighbourhood structure of
size kmax. The simplest and most common choice is a structure in which the
neighbourhoods have increasing cardinality: |N1(·)| < |N2(·)| < ... < |Nkmax

(·)|.
In order to impose a neighbourhood structure on the solution space S, comprising

Intelligent Optimization for the Minimum Labelling Spanning Tree Problem 21

all possible solutions, we define the distance between any two such solutions
C1, C2 ∈ S, as the Hamming distance: ρ(C1, C2) = |C1ΔC2| =

∑Σ
i=1 λi, where

λi = 1 if label i is included in one of the solutions but not in the other, and 0
otherwise, ∀i = 1, ..., φ. VNS starts from an initial solution C with k increasing
from 1 up to the maximum neighborhood size, kmax, during the progressive
execution.

The basic idea of VNS to change the neighbourhood structure when the
search is trapped at a local minimum, is implemented by the shaking phase. It
consists of the random selection of another point in the neighbourhood Nk(C)
of the current solution C. Given C, we consider its kth neighbourhood, Nk(C),
as all the different sets having a Hamming distance from C equal to k labels,
where k ← 1, 2, . . . , kmax. In order to construct the neighbourhood of a solution
C, the algorithm first proceeds with the deletion of labels from C. In other
words, given a solution C, its kth neighbourhood, Nk(C), consists of all the
different sets obtained from C by removing k labels, where k ← 1, 2, ..., kmax.
In a more formal way, given a solution C, its kth neighbourhood is defined as
Nk(C) = {S ⊂ L : (|CΔS|) = k}, where k ← 1, 2, ..., kmax.

The iterative process of selection of a new incumbent solution from the com-
plementary space of the current solution if no improvement has occurred, is
aimed at increasing the diversification capability of the basic VNS for the MLST
problem. When the local search is trapped at a local minimum, COMPL extracts
a feasible complementary solution which lies in a very different zone of the search
domain, and is set as new incumbent solution for the local search. This new
starting point allows the algorithm to escape from the local minimum where it
is trapped, producing an immediate peak of diversification.

3 The Intelligent Optimization Algorithm

In order to seek further improvements and to automate on-line the search
process, Complementary Variable Neighbourhood Search has been modified by
replacing the inner local search based on the deterministic MVCA heuristic with
a probability-based local search inspired by a “Simulated Annealing cooling sched-
ule” [11], with the view of achieving a proper balance between intensification and
diversification capabilities. The strength of this probabilistic local search is tuned
by an automated process which allows the intelligent strategy to adapt on-line to
the problem instance explored and to react in response to the search algorithm’s
behavior [12]. The resulting metaheuristic represents the intelligent optimization
algorithm that we propose for the MLST problem.

The probability-based local search is another version of the MVCA heuristic,
but with a probabilistic choice of the next label to be added. It extends the basic
greedy construction criterion of the MVCA by allowing moves to worse solutions.
Starting from an initial solution, successively a candidate move is randomly
selected; this move is accepted if it leads to a solution with a better objective
function value than the current solution, otherwise the move is accepted with a
probability that depends on the deterioration, Δ, of the objective function value.

22 S. Consoli et al.

Following the SA criterion, the acceptance probability is computed according
to the Boltzmann function as exp(−Δ/T), using the temperature (T) as control
parameter. The value of T is initially high, which allows many worse moves to be
accepted, and is gradually reduced following a specific geometric cooling schedule:

Tk+1 = α · Tk where
{

T0 = |BestC |,
α = 1/|BestC | ∈ [0, 1], (1)

with BestC being the current best solution, and |BestC | its number of labels.
This cooling law is very fast for the MLST problem, yielding a good balance
between intensification and diversification. Furthermore, thanks to its self-tuning
parameters setting, which is guided automatically by the best solution BestC
without requiring any user-intervention, the algorithm is allowed to adapt on-
line to the problem instance explored and to react in response to the search
algorithm’s behavior [12].

The aim of the probabilistic local search is to allow, with a specified prob-
ability, worse components with a higher number of connected components to
be added to incomplete solutions. Probability values assigned to each label are
inversely proportional to the number of components they give. So the labels
with a lower number of connected components will have a higher probability of
being chosen. Conversely, labels with a higher number of connected components
will have a lower probability of being chosen. Thus, the possibility of choosing
less promising labels is allowed. Summarizing, at each step the probabilities of
selecting labels giving a smaller number of components will be higher than the
probabilities of selecting labels with a higher number of components. Moreover,
these differences in probabilities increase step by step as a result of the reduction
of the temperature for the adaptive cooling schedule. It means that the difference
between the probabilities of two labels giving different numbers of components is
higher as the algorithm proceeds. The probability of a label with a high number
of components will decrease as the algorithm runs and will tend to zero. In this
sense, the search becomes MVCA-like.

A simple VNS implementation which uses the probabilistic local search as
constructive heuristic has been tested. However, the best results were obtained
by combining Complementary Variable Neighbourhood Search with the proba-
bilistic local search, resulting in the hybrid intelligent algorithm that we propose.
Note that the probabilistic local search is applied both in COMPL, to obtain a
solution from the complementary space of the current solution, and in the inner
local search phase, to restore feasibility by adding labels to incomplete solutions.

4 Summary and Outlook

Concerning the achieved optimization strategy, the whole approach seems to be
highly promising for the MLST problem. Ongoing investigation will consist in a
statistical comparison of the resulting strategy against the best MLST algorithms
in the literature, in order to quantify and qualify the improvements obtained by
the proposed intelligent optimization algorithm.

Intelligent Optimization for the Minimum Labelling Spanning Tree Problem 23

References

1. Chang, R.S., Leu, S.J.: The minimum labelling spanning trees. Inf. Process. Lett.
63(5), 277–282 (1997)

2. Consoli, S., Darby-Dowman, K., Mladenović, N., Moreno-Pérez, J.A.: Greedy ran-
domized adaptive search and variable neighbourhood search for the minimum
labelling spanning tree problem. Eur. J. Oper. Res. 196(2), 440–449 (2009)

3. Xiong, Y., Golden, B., Wasil, E.: A one-parameter genetic algorithm for the min-
imum labelling spanning tree problem. IEEE Trans. Evol. Comput. 9(1), 55–60
(2005)

4. Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Inf.
Process. Lett. 66(2), 81–85 (1998)

5. Xiong, Y., Golden, B., Wasil, E.: Improved heuristics for the minimum labelling
spanning tree problem. IEEE Trans. Evol. Comput. 10(6), 700–703 (2006)

6. Cerulli, R., Fink, A., Gentili, M., Voß, S.: Metaheuristics comparison for the mini-
mum labelling spanning tree problem. In: Golden, B.L., Raghavan, S., Wasil, E.A.
(eds.) The Next Wave on Computing, Optimization, and Decision Technologies,
pp. 93–106. Springer-Verlag, New York (2005)

7. Brüggemann, T., Monnot, J., Woeginger, G.J.: Local search for the minimum label
spanning tree problem with bounded colour classes. Oper. Res. Lett. 31, 195–201
(2003)

8. Chwatal, A.M., Raidl, G.R.: Solving the minimum label spanning tree problem by
ant colony optimization. In: Proceedings of the 7th International Conference on
Genetic and Evolutionary Methods (GEM 2010), Las Vegas, Nevada (2010)

9. Consoli, S., Moreno-Pérez, J.A.: Solving the minimum labelling spanning tree
problem using hybrid local search. In: Proceedings of the mini EURO Conference
XXVIII on Variable Neighbourhood Search (EUROmC-XXVIII-VNS), Electronic
Notes in Discrete Mathematics, vol. 39, pp. 75–82 (2012)

10. Hansen, P., Mladenović, N.: Variable neighbourhood search: principles and appli-
cations. Eur. J. Oper. Res. 130, 449–467 (2001)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

12. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Ann. Oper. Res. 41, 421–451 (1993)

A Constraint Satisfaction Approach
to Tractable Theory Induction

John Ahlgren and Shiu Yin Yuen(B)

City University of Hong Kong, Hong Kong, China
ahlgren@ee.cityu.edu.hk, kelvin.ee@cityu.edu.hk

http://www.cityu.edu.hk

Abstract. A novel framework for combining logical constraints with
theory induction in Inductive Logic Programming is presented. The con-
straints are solved using a boolean satisfiability solver (SAT solver) to
obtain a candidate solution. This speeds up induction by avoiding
generation of unnecessary candidates with respect to the constraints.
Moreover, using a complete SAT solver, search space exhaustion is
always detectable, leading to faster small clause/base case induction. We
run benchmarks using two constraints: input-output specification and
search space pruning. The benchmarks suggest our constraint satisfac-
tion approach can speed up theory induction by four orders of magnitude
or more, making certain intractable problems tractable.

Keywords: Inductive Logic Programming · Theory induction · Con-
straint satisfaction

1 Introduction

Inductive Logic Programming (ILP) is a branch of machine learning that
represent knowledge using predicate logic. Examples are generalized into a theory
that cover all positive and no negative examples [1,2]. Thus, positive examples
provide observables, and negative examples provide instances of what should
never be observed. The induced theories are typically given in Prolog code (first
order Horn clauses), which has both declarative and procedural interpretations
[3,4]. Thus ILP is simultaneously capable of first order concept learning and
Turing complete program synthesis. For a summary of ILP as a research field,
and its applications, we refer the reader to [1].

State of the art ILP systems—such as Progol and Aleph—use the method
of Inverse Entailment to compute a bottom clause from a positive example,
background knowledge, and a non-mandatory set of mode declarations specifying
the input-output requirements of predicates [5].

The bottom clause is intended to be a most specific clause for the example
(relative to background knowledge and mode declarations) and is used to con-
strain the search space by providing a bottom element in the lattice generated
by the subsumption order [2,6,7].

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 24–29, 2013.
DOI: 10.1007/978-3-642-44973-4 3, c© Springer-Verlag Berlin Heidelberg 2013

http://www.cityu.edu.hk

A Constraint Satisfaction Approach to Tractable Theory Induction 25

A search through the lattice is then performed to find a suitable candidate
solution, and all examples made redundant by the new candidate are removed.
The process of generating a bottom clause from an example and searching for a
candidate continues until all positive examples have been covered [8].

As for the mode declarations, they specify the data type of each variable,
and whether it is an input or output. For our purposes in this paper, we are only
interested in the mode declaration’s specification of which variables are inputs
and outputs.

Example 1. If the bottom clause is h(X,Y) ← b1(X,Z), b2(Z, Y), there are four
candidate solutions, given by (ordered) subsets of the bottom clause’s literals:
h(X,Y) (the top element), h(X,Y) ← b1(X,Z), h(X,Y) ← b2(X,Z), and the
bottom clause itself. In general, there are 2n candidates whenever the bottom
clause has n body literals.

Searching for a viable candidate in the lattice bounded by a bottom clause
amounts to selecting and evaluating candidates for positive and negative example
coverage. If a candidate covers a negative example, it is said to be inconsistent,
otherwise consistent. Intuitively, a good candidate should be consistent, cover as
many positive examples as possible, and contain as few literals as possible.

Example 2. Continuing Example 1, assume we evaluate all four candidates,
obtaining positive and negative example coverage as pairs: (20, 5), (17, 2), (6, 0),
and (2, 0), respectively. As can be seen, h(X,Y) and h(X,Y) ← b1(X,Z) are
inconsistent (they cover at least one negative example), so we discard them. The
candidate h(X,Y) ← b2(X,Z) and the bottom clause are consistent, but the
former covers more positive examples (as well as fewer literals), so it is prefer-
able. Adding the candidate, we remove the 6 positive examples it covers. There
is at least 14 remaining examples (as can be seen by the top element’s coverage),
so the process of picking a new positive example, computing bottom clause, and
searching for best candidate continues in an iterative manner.

There are other approaches to ILP using constraints. Constraint logic pro-
gramming with ILP [9] converts negative examples into constraints in order to
deal with numerical constraints. Theta-subsumption with constraint satisfac-
tion [10] speeds up subsumption testing [2,6,7] using constraints. Our approach
differs from these in that our constraints are propositional and explicitly used
to construct candidate solutions by describing existential relations between the
literals of bottom clauses.

2 The NrSample Framework

We present NrSample (non-redundant sampling), a novel constraint satisfaction
framework where the search space is constrained not only by the bottom clause,
but also by arbitrary propositional constraints [11]. The propositional variables
refer to literals of the bottom clause: interpreting the variable as true means that

26 J. Ahlgren and S.Y. Yuen

the literal is to be included in a candidate, false means it is to be omitted. Thus,
if the bottom clause has n body literals, there are n propositional variables,
which we name b1, . . . , bn. A boolean satisfiability solver (SAT solver) is then
invoked to obtain a model for the constraints [11,12], which in turn corresponds
to a constraint-satisfied candidate. For high performance, we have used the Chaff
algorithm [13] for SAT solving.

Example 3. Using the bottom clause from Example 1, n = 2. The propositional
clause b1 ∨ b2 specifies that at least one of b1 and b2 must be included in the
candidate. A model for this propositional clause is setting b1 to false and b2 to
true, which corresponds to the candidate obtained by including the second, but
not the first, literal from the bottom clause: h(X,Z) ← b2(Y,Z).

We call candidates that satisfy all constraints valid. Candidates that are not
valid are said to be invalid.

We have tested our framework using two particular constraints: mode dec-
larations (mode constraints) and search space pruning (pruning constraints),
which we present next.

2.1 Mode Constraints

Mode constraints are constraints that require correct input-output chaining as
a candidate’s literals are computed from left to right: in order for a literal to
appear, all its inputs must have been instantiated by previous outputs (or occur
as inputs to the head, which means they are instantiated by the query itself).
Moreover, the candidate’s head outputs must be instantiated, either by appear-
ing as outputs in body literals or as inputs to the head.

Example 4. Given bottom clause

h(A,B) ← b1(A,C), b2(A,D), b3(C,B), b4(C,D,B)

and mode declarations specifying that for each literal, the last argument is an
output variable and all other arguments are input variables, we see that b4
requires both b1 and b2 (to instantiate C and D), b3 requires b1 (b3 also needs
C), and instantiating h’s output variable B means at least one of b3 and b4 must
be present. As propositional clauses, this is b4 → b1, b4 → b2, b3 → b1, and
b3 ∨b4. One model is {b1, b3}, which specifies the candidates containing precisely
the first and third body literals: h(A,B) ← b1(A,C), b3(C,B). The constraints
prevent the invalid candidate h(A,B) ← b1(A,C) from being generated: intu-
itively, because it does not instantiate B; logically, because the constraint b3 ∨b4
is not satisfied.

In general, for each input variable X of a bottom clause’s body literal bi
(which does not also occur as input to the head), we find all preceding literals
which have X as output, say bX1 , . . . bXk

. Then the propositional clause bi →
bX1 ∨ . . . ∨ bXk

is added as a constraint, stating that at least one of bX1 , . . . bXk

A Constraint Satisfaction Approach to Tractable Theory Induction 27

must occur for bi to occur. Moreover, for each output Z of the head (and where
it does not also occur as input), we find all body literals where Z occurs as
output, bZ1 , . . . bZk

. Since at least one of these body literals must be present to
instantiate Z, we add the clause bZ1 ∨ . . . ∨ bZk

.

2.2 Pruning Constraints

Pruning constraints arise due to the generality order of the search space (lattice).
Note that a clause C containing a subset of a clause D’s literals necessarily means
that C logically implies D (C is a generalization of D). In particular, C will cover
at least all the examples of D. Thus, if a candidate is consistent, a constraint
preventing generation of its specializations is added, as these can never cover
more positive examples. Conversely, if a candidate is inconsistent, so must its
generalizations be, and a constraint preventing their generation is added.

Example 5. Continuing from the previous example, if candidate h(A,B) ←
b1(A,C), b3(C,B) is consistent, we prune all specializations, given by all
candidates containing at least both the first and third literals. The pruning
constraint is hence the clause ¬(b1 ∧b3) = ¬b1 ∨¬b3. Note that generation of the
candidate itself, as well as the bottom clause, is prevented by this constraint as
both b1 and b3 can no longer occur simultaneously. Conversely, if the candidate
is inconsistent, we prune all generalizations, given by all candidates containing
only a subset of {b1, b3}. The pruning constraint is now the (complement) clause
¬(¬b2 ∧ ¬b4) = b2 ∨ b4. In particular, this prevents generation of the candidate
itself, as well as the top element.

In general, all specializations of a candidate C are given by all candidates
containing a superset of C’s body literals (and the same head). The propositional
clause is ¬(

∧
l∈C− l) =

∨
l∈C− ¬l, where C− denotes the set of body literals in

C. All generalizations are given by subsets of C (which means no other literals
may be included). The propositional clause is ¬(

∧
l∈Cc

−
¬l) =

∨
l∈Cc

−
l, where

Cc
− is the set of literals in the bottom clause that are not in C.

3 Experimental Results

We benchmark NrSample against a best-first and enumeration search on 9
problems. Best-first search is an implementation of Progol’s well established
A∗ algorithm [5], whereas enumeration search is the default search method in
the state-of-the-art Aleph ILP system.

First, we borrow some concept learning problems from the Progol distribu-
tion1: animal, train, grammar, member, and append. Second, we add our own
problems: sorted, sublist, reverse, and add.2 Moreover, append is benchmarked
1 Available at http://www.doc.ic.ac.uk/∼shm/Software/progol4.4/
2 Available with our source code distribution upon request.

http://www.doc.ic.ac.uk/~shm/Software/progol4.4/

28 J. Ahlgren and S.Y. Yuen

Table 1. Execution time in seconds.

Test TS TH TE TH/TS TE/TS VH VE

member 0.019 0.03 0.018 1.579 0.947 44.6 33.8
animal 0.026 0.041 0.025 1.577 0.962 100 42.2
train 0.079 0.09 0.019 1.139 0.241 29.1 7
grammar 0.022 0.088 0.032 4 1.455 0.7 0.3
sorted 0.008 0.028 0.008 3.5 1 19.7 19.3
sublist 0.13 0.846 0.154 6.507 1.185 3.3 2.8
append1 0.092 7.236 1.584 78.652 17.217 < 0.1 < 0.1
append2 0.11 > 600 45.351 > 2985 412.282 ? < 0.1
append3 0.238 > 600 > 600 > 1295 > 1295 ? ?
reverse 0.009 0.195 0.036 21.667 4 0.4 0.3
add1 0.027 1.825 0.271 67.593 10.037 0.1 0.1
add2 0.04 > 600 > 600 > 16216 > 16216 < 0.1 < 0.1

at three difficulty levels, which we call append1, append2, and append3. Sim-
ilarly, add is benchmarked as add1 and add2. The problems are made more
difficult by altering default settings. By default, an upper limit of i = 3 itera-
tions are used in bottom clause construction; at most n = 200 candidates are
then explored. The maximum number of body literals in any body candidate is
c = 4. For append1, we use c = 3; for append3 and add2, we use c = ∞.

Table 1 shows the average execution time over 30 trials for NrSample (TS),
best-first search (TH), and enumeration (TE). All benchmarks were performed
on an Intel Dual Core i5 (2 × 2.30 GHz) with 4 GB RAM. NrSample out-
performed best-first on all experiments. Compared to enumeration, NrSample
performed approximately equal for the smaller problems (member, animal,
grammar, sorted, sublist), but much better for the larger (reverse, add1, add2,
all versions of append). The only exception is train, where enumeration outper-
formed NrSample. We put an execution time limit of 10 minute per run on all
tests. This limit was reached in append2 for best-first. In append3 and add2,
both best-first and enumeration timed out.

The growing performance difference between NrSample and its competing
algorithms for larger problems—ranging from nothing to more than 1200 for
append3 and 16000 for add2—can be explained as follows: A more complex
problem is characterized by a longer bottom clause, which makes the search
space grow exponentially larger (in the number of bottom clause literals, see
Example 1). As the search space grows larger, there will be more ways of violating
the input-output specification given by the mode declarations. The percentage
of valid candidates during best-first and enumeration search is given by VH and
VE in Table 1, respectively. As can be seen, the probability of blindly generating
a valid candidate approaches zero for the larger tests, having less than 1 in 1000
valid candidates for append2, append3, and add2.3 By contrast, with NrSample,
100% of the candidates are valid.
3 We could not measure the exact proportion for the tests that timed out, but it is

estimated to be even less than its easier variants, thus always less than 0.1 %.

A Constraint Satisfaction Approach to Tractable Theory Induction 29

4 Conclusions

We have presented NrSample, a novel framework for theory induction using
constraints. To the best of our knowledge, we are the first to use constraints to
construct valid candidates rather than to eliminate already constructed candi-
dates. Our benchmarks indicate that, as the problems become larger, it becomes
increasingly beneficial to use mode and pruning constraints, with observed
increases of four orders of magnitude.

Given that top-down and bottom-up algorithms also prune the search space,
pruning constraints do not by themselves provide an advantage for NrSample.
Its SAT solving overhead can only be compensated for by providing additional
(non-pruning) constraints. We used mode constraints, but other alternatives may
be to use domain specific knowledge. We plan to do more research into using
other kinds of constraints within our framework.

Acknowledgments. The work described in this paper was supported by a grant from
the Research Grants Council of the Hong Kong Special Administrative Region, China
[Project No. CityU 124409].

References

1. Muggleton, S., Raedt, L.D., Poole, D., Bratko, I., Flach, P.A., Inoue, K., Srinivasan,
A.: ILP turns 20 - biography and future challenges. Mach. Learn. 86(1), 3–23 (2012)

2. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming.
Springer-Verlag New York Inc., Secaucus (1997)

3. Blackburn, P., Bos, J., Striegnitz, K.: Learn Prolog Now!. College Publications,
London (2006)

4. Sterling, L., Shapiro, E.: The art of Prolog: advanced programming techniques,
2nd edn. MIT Press, Cambridge (1994)

5. Muggleton, S.H.: Inverse entailment and progol. New Gener. Comput. 13, 245–286
(1995)

6. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153–163 (1970)
7. Plotkin, G.D.: A further note on inductive generalization. Mach. Intell. 6, 101–124

(1971)
8. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-

tions. Ellis Horwood, New York (1994)
9. Sebag, M., Rouveirol, C.: Constraint inductive logic programming. In: De Raedt,

L. (ed.) Advances in ILP. IOS Press, Amsterdam (1996)
10. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algo-

rithms. Mach. Learn. 55(2), 137–174 (2004)
11. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press, Cambridge (2009)
12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.

Commun. ACM 5, 394–397 (1962)
13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-

ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC ’01, pp. 530–535. ACM, New York (2001)

Features for Exploiting Black-Box Optimization
Problem Structure

Tinus Abell1, Yuri Malitsky2(B), and Kevin Tierney1

1 IT University of Copenhagen, Copenhagen, Denmark
{tmab,kevt}@itu.dk

2 Cork Constraint Computation Centre, Cork, Ireland
y.malitsky@4c.ucc.ie

Abstract. Black-box optimization (BBO) problems arise in numerous
scientific and engineering applications and are characterized by compu-
tationally intensive objective functions, which severely limit the number
of evaluations that can be performed. We present a robust set of features
that analyze the fitness landscape of BBO problems and show how an
algorithm portfolio approach can exploit these general, problem indepen-
dent, features and outperform the utilization of any single minimization
search strategy. We test our methodology on data from the GECCO
Workshop on BBO Benchmarking 2012, which contains 21 state-of-the-
art solvers run on 24 well-established functions.

1 Introduction

This paper tackles the challenge of crafting a set of features that can capture the
structure of black-box optimization (BBO) problem fitness landscapes for use
in portfolio algorithms. BBO problems involve the minimization of an objective
function f(x1, . . . , xn), subject to the constraints li ≤ xi ≤ ui, over the variables
xi ∈ R,∀1 ≤ i ≤ n. These types of problems are found throughout the scientific
and engineering fields, but are difficult to solve due to their oftentimes expen-
sive objective functions. This complexity can arise when the objective involves
difficult to compute expressions or that are too complicated to be defined by a
simple mathematical expression. Even though BBO algorithms do not guaran-
tee the discovery of the optimal solution, they are an effective tool for finding
approximate solutions. However, different BBO algorithms vary greatly in per-
formance across a set of problems. Thus, deciding which solver to apply to a
particular problem is a difficult task.

Portfolio algorithms, such as Instance Specific Algorithm Configuration
(ISAC), which uses a clustering approach to identify groups of similar instances,
provide a way to automatically choose a solver for a particular BBO instance using
offline learning. However, such methods require a set of features that consolidate

Yuri Malitsky is partially supported by the EU FET grant ICON (project 284715).
Kevin Tierney is supported by the Danish Council for Strategic Research as part of
the ENERPLAN project.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 30–36, 2013.
DOI: 10.1007/978-3-642-44973-4 4, c© Springer-Verlag Berlin Heidelberg 2013

Features for Exploiting Black-Box Optimization Problem Structure 31

the relevant attributes of a BBO instance into a vector that can then be used for
learning. The only way to generate these features for BBO problems is by eval-
uating expensive queries to the black box, which contrasts with most non-black-
box problems, e.g. SAT or the set covering problem, where many features can be
quickly inferred from the problem definition itself.

In this paper, we propose a novel set of features that are fast to compute and
are descriptive enough of the instance structure to allow a portfolio algorithm like
ISAC to accurately cluster and tune for the benchmark. These features are based
on well-known fitness landscape measures and are learned through sampling the
black box. They allow for the analysis and classification of BBO problems so that
anybody can take advantage of the recent advances in the ISAC framework in
order to more efficiently solve their BBO problems. This paper is a short version
of [1].

Related Work. There has been extensive research studying the structure of
BBO problems, and copious measures have been proposed for determining the
hardness of local search problems by sampling their fitness landscape [9], such
as the search space diameter, optimal solution density/distribution [6], fitness-
distance correlation (FDC) [10], the correlation length [16,19], epistasis mea-
sures [14], information analysis [17], modality and neutrality measures [15], and
fitness-distance analysis [13]. Difficulty measures for BBO problems in particu-
lar were studied by [8], who concluded that in the worst case building predictive
difficulty measures for BBO problems is not possible to do in polynomial time.1

Most recently, Watson introduced several cost models for combinatorial land-
scapes in order to try to understand why certain algorithms perform well on
certain landscapes [18].

In [12], the authors identify six “low-level feature classes” to classify BBO
problems into groups. In [4], algorithm selection for BBO problems is considered
with a focus on minimizing the cost of incorrect algorithm selections, unlike our
approach, which minimizes a score based on the penalized expected runtime.
Our approach also differs from online methods [5] and reactive techniques [3]
that attempt to guide algorithms based on information from previously explored
states because ISAC performs all of its work offline.

2 BBO Dataset and Solver Portfolio

We evaluate the effectiveness and robustness of our features on a dataset from the
GECCO 2012 Workshop on Black-Box Optimization Benchmarking (BBOB) [2].
The dataset contains the number of evaluations required to find a particular
objective value within some precision on one of 24 continuous, noise-free, opti-
mization functions from [7] in 6 different dimension settings for 27 solvers. The
solvers are all run on the data 15 times, each time with a different target value
set as the artificial global optimum. Note that the BBOB documentation refers

1 Our results do not contradict this, as we are not predicting the hardness of instances.

32 T. Abell et al.

to each of these target values as an “instance”. To avoid confusion with the
instances that ISAC uses to train and test on, we will only refer to BBOB tar-
gets. Removing 7 instances from the dataset for which no solver was able to find
a solution, the dataset consists of 1289 instances.

We use the 21 solvers of the BBOB dataset with full solution data for all
instances. This portfolio consists of a diverse set of continuous optimizers, includ-
ing 10 covariance matrix adaptation (CMA) variants, 8 differential evolution
(DE) variants, an ant colony optimization (ACO) algorithm, a genetic algorithm
(GA), and a particle swarm optimization (PSO) algorithm.2

3 Features

Computing features for BBO problems is difficult because evaluating the
objective function of a BBO problem is expensive, and there is scarce information
about a problem instance in its definition, other than the number of dimensions
and the desired solver accuracy. In the absence of any structure in the problem
definition, we have to sample the fitness landscape. However, such sampling is
expensive, and on our dataset performing more than 600 objective evaluations
removes all benefits of using a portfolio approach. We therefore introduce a set of
10 features that are based on well-studied aspects of search landscapes in the lit-
erature [18]. Our features are drawn from three information sources: the problem
definition, hill climbs, and random points. Table 1 summarizes our features.

The problem definition features contain the desired accuracy of the continuous
variables (Feature 1), and the number of dimensions that the problem has (Fea-
ture 2), which, together, describe the size of the problem.

The hill climbing features are based off of a number of hill climbs that are
initiated from random points and continued until a local optimum or a fixed
number of evaluations is reached. We then calculate the average and standard
deviation of the distance between optima (Features 3 and 4), which describes
the density of optima in the landscape. Using the best optimum found, we then

Table 1. BBO problem features.

Problem definition features
1. Solver accuracy
2. Number of dimensions
Hill climbing features
3–4. Average distance between optima (average, std. dev.)
5–6. Distance between best optima and other optima (average, std. dev.)
7. Percent of optima that are the best optimum
Random point features
8–9. Distance to local optimum (average, std. dev.)
10. Fitness-distance correlation (FDC)

2 Full details about the algorithms are available in [2].

Features for Exploiting Black-Box Optimization Problem Structure 33

compute the average and standard deviation of the distance between the optima
and the best optimum (Features 5 and 6), using the nearest to each non-best
optimum for these features if multiple optima qualify as the best. Feature 7
describes what percentage of the optima are equal to the best optimum, giving
a picture of how spread out the optima are throughout the landscape.

The random point features 8 and 9 contain the average and standard deviation
of the distance of each random point to the nearest optimum, which describes
the distribution of local optima around the landscape. Feature 10 computes the
fitness-distance correlation, a measure of how effectively the fitness value at a
particular point can guide the search to a global optimum [10]. In feature 10, we
compute an approximation to the FDC.

4 Numerical Results

In this section we describe the results of using our features, in full and in various
combinations, to train a portfolio solver using the ISAC method on the BBOB
2012 dataset. We measure the performance of each solver using a penalized score
that takes into account the relative performance of each solver on an instance.
We do not directly use the expected running time (ERT) value because the
amount of evaluations can vary greatly between instances, and too much focus
would be placed on instances where a large number of evaluations is required.
The penalized score of solver s on an instance i is given by:

score(s, i) =
PERT (s, i) − best(i)
worst(i) − best(i)

where PERT (s, i) is the penalized ERT defined by

PERT (s, i) =

{
ERT (s, i) if ERT (s, i) < ∞
worst(i) · 10 otherwise,

best(i) refers to the lowest ERT score on instance i, and worst(i) refers to the
highest non-infinity ERT score on the instance. The penalized ERT therefore
returns ten times the worst ERT on an instance for solvers that were unable to
find the global optimum. We are forced to use a penalized measure because if a
solver cannot solve a particular instance, it becomes impossible to calculate its
performance over the entire dataset.

4.1 ISAC Results

Table 2 shows the results of training and testing ISAC on the BBOB 2012
dataset. For each entry in the table, we run a 10-fold cross validation using
features from each of the 15 BBOB target values. The scores of each of the
cross-validation folds are accumulated for each instance, and the entries in the
table are the average and standard deviation across all instances in the dataset.

34 T. Abell et al.

Table 2. The average and standard deviation of the scores across all instances for
various minimum cluster sizes, numbers of hill climbs and hill climb lengths for the
best single solver and ISAC using various features.

κ 10/10 50/20 200/400

Test Train Test Train Test Train

→ σ → σ → σ → σ → σ → σ

50 BSS 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29
F1 2474.63 3×105 2.04 5.08 2474.66 3×105 2.04 5.08 2474.64 3×105 2.04 5.08
F2 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02
F1,2 189.11 6743.81 1.27 4.07 189.10 6743.81 1.27 4.07 189.10 6743.81 1.26 4.07
All 51.32 1801.27 1.21 3.96 96.15 3105.76 0.79 2.94 13.41 452.79 0.82 3.30
All∗ 51.42 1801.33 1.32 4.05 97.15 3110.46 1.82 9.90 95.25 1161.9283.12 760.37
LSF 1.25 4.01 1.24 4.00 88.18 3137.52 0.82 3.03 0.53 2.73 0.55 2.75
LSF∗ 1.35 4.09 1.34 4.08 89.18 3142.23 1.85 9.93 99.44 1323.6882.86 760.40

100 BSS 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29
F1 2474.63 3×105 2.04 5.08 2474.66 3×105 2.04 5.08 2474.64 3×105 2.04 5.08
F2 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02
F1,2 189.11 6743.81 1.27 4.07 189.11 6743.81 1.27 4.07 189.10 6743.81 1.27 4.07
All 1.25 4.02 1.24 4.00 1.25 4.03 1.23 4.00 1.16 3.86 1.12 3.80
All∗ 1.35 4.10 1.34 4.08 2.28 10.21 2.26 10.20 83.46 760.6083.43 760.34
LSF 1.25 4.02 1.24 4.01 1.22 3.99 1.19 3.93 1.20 3.85 1.15 4.00
LSF∗ 1.35 4.10 1.34 4.09 2.25 10.19 2.22 10.17 97.31 1223.9883.45 760.34

We compare our results against the best single solver (BSS) on the dataset,
which is the best performing solver across all instances, which is MVDE [11].

We train using several subsets of our features; only feature 1 (F1), only feature
2 (F2), and only features 1 and 2 (F1,2). We then train using all features (All),
and only landscape features (LSF), i.e., features 3 through 10. All∈ and LFS∈

include the evaluations necessary to compute the features, whereas all other
entries do not include the feature computation in the results. We used several
different settings of the number of hill climbs and maximum hill climb length
based on our feature robustness experiments in [1]: 10 hill climbs of maximum
length 10, 50 hill climbs of maximum length 20, and 200 hill climbs of maximum
length 400. The closer a score is to 0 (the score of the virtual best solver) the
better the performance of an approach.

Based on results for F1, F2 and F1,2, the easy to compute BBO features
alone are only able to give ISAC some information about the dataset, and that
a landscape analysis is justified. On the other hand, F2 outperforms BSS. In
fact, F2 performs equally well to All and LSF for cluster 100 with 10 hill climbs
of length 10 and for 50 hill climbs of length 20. In addition, F2 significantly
outperforms All on cluster size 50, where it is clear that it overfits the training
data. This is a clear indication that 10 hill climbs of length 10, or 50 hill climbs
of length 20, do not provide enough information to train ISAC to be competitive
with simply using the number of dimensions of a problem.

The fact that LSF∈ is able to match the performance of F2 on 10 hill climbs
of length 10 for both cluster size 50 and 100 an important accomplishment. With

Features for Exploiting Black-Box Optimization Problem Structure 35

so little information learned about the landscape, the fact that ISAC can learn
such an effective model indicates that our features are indeed effective.

Once we move up to 200 hill climbs of length 400, LSF significantly out-
performs F2, and even outperforms All, which suffers from overfitting. In fact,
LSF is able to cut the total score to under a fourth of BSS’s score, and to one
half of F2’s score, indicating that the fitness landscape can indeed be used for
a portfolio. In addition, LSF has a lower standard deviation than BSS. LSF’s
score on the training set of 0.53 and 0.55 on the test set are surprisingly close to
the virtual best solver, which has a score of zero, indicating that ISAC is able to
exploit the landscape features to nearly always choose the best or second best
solver for each instance. On the downside, 200 hill climbs of length 400 requires
too many evaluations to be used in a competitive portfolio, and All∈ needs 50
times the evaluations of BSS. However, the 200/400 features are still useful for
classifying instances into groups and analyzing the landscape.

5 Conclusion and Future Work

We introduced a set of features based on accepted and well-studied proper-
ties and measures of fitness landscapes to categorize BBO problems for use in
algorithm portfolios, like ISAC, that can greatly improve the ability of practi-
tioners to solve BBO problems. We experimentally validated our features within
the ISAC framework, showing that ISAC is able to exploit problem structure
learned during feature computation to choose the fastest solver for an unseen
instance. The success of the features we introduced clearly indicates that select-
ing algorithms from a portfolio based on the landscape structure is possible. For
future work, features analyzing landscape structure could be incorporated into
problems, providing an alternative view of problem structure.

References

1. Abell, T., Malitsky, Y., Tierney, K.: Fitness landscape based features for exploit-
ing black-box optimization problem structure. Technical report TR-2012-163, IT
University of Copenhagen (2012)

2. Auger, A., Hansen, N., Heidrich-Meisner, V., Mersmann, O., Posik, P., Preuss, M.:
In: GECCO 2012 Workshop on Black-Box Optimization Benchmarking (BBOB).
http://coco.gforge.inria.fr/doku.php?id=bbob-2012 (2012)

3. Battiti, R., Brunato, M.: Reactive search optimization: learning while optimizing.
In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, vol. 146, pp.
543–571. Springer, New York (2010)

4. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based
on exploratory landscape analysis and cost-sensitive learning. In: GECCO’12, pp.
313–320. ACM, New York (2012)

5. Boyan, J., Moore, A.W.: Learning evaluation functions to improve optimization
by local search. J. Mach. Learn. Res. 1, 77–112 (2001)

http://coco.gforge.inria.fr/doku.php?id=bbob-2012

36 T. Abell et al.

6. Brooks, C., Durfee, E.: Using landscape theory to measure learning difficulty for
adaptive agents. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000
and AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 291–305. Springer, Heidelberg
(2003)

7. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2010: presentation of the noisy functions. Technical report 2009/21,
Research Center PPE (2010)

8. He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in
black-box optimization: classification, realizations and predictability. Evol. Com-
put. 15, 435–443 (2007)

9. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann Publishers Inc., San Francisco (2004)

10. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: ICGA-95, pp. 184–192 (1995)

11. Melo, V.V.: Benchmarking the multi-view differential evolution on the noiseless
bbob-2012 function testbed. In: GECCO’12, pp. 183–188. ACM (2012)

12. Mersmann, O., Bischl, B., Trautmann, H., Preuß, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: GECCO’11, pp. 829–836. ACM (2011)

13. Merz, P., Freisleben, B.: Fitness landscapes, memetic algorithms, and greedy oper-
ators for graph bipartitioning. Evol. Comput. 8, 61–91 (2000)

14. Naudts, B., Kallel, L.: A comparison of predictive measures of problem difficulty
in evolutionary algorithms. IEEE Trans. Evol. Comp. 4(1), 1–15 (2000)

15. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolv-
ability. Evol. Comput. 10(1), 1–34 (2002)

16. Stadler, P.F., Schnabl, W.: The landscape of the traveling salesman problem. Phys.
Lett. A 161(4), 337–344 (1992)

17. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the
structure of landscapes. Evol. Comput. 8, 31–60 (2000)

18. Watson, J.: An introduction to fitness landscape analysis and cost models for local
search. In: Gendreau, M., Potvin, J. (eds.) Handbook of Metaheuristics, vol. 146,
pp. 599–623. Springer, New York (2010)

19. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biol. Cybern. 63, 325–336 (1990)

MOCA-I: Discovering Rules and Guiding
Decision Maker in the Context of Partial

Classification in Large and Imbalanced Datasets

Julie Jacques1,2,3, Julien Taillard1, David Delerue1,
Laetitia Jourdan2,3(B), and Clarisse Dhaenens2,3

1 Société ALICANTE, 50 Rue Philippe de Girard, 59113 Seclin, France
2 INRIA Lille Nord Europe, 40 Av. Halley, 59650 Villeneuve d’Ascq, France
3 LIFL, Université Lille 1, Bât. M3, 59655 Villeneuve d’Ascq cedex, France

{Laetitia.jourdan,clarisse.dhaenens}@lifl.fr
{julie.jacques,julien.taillard,david.delerue}@alicante.fr

Abstract. This paper focuses on the modeling and the implementa-
tion as a multi-objective optimization problem of a Pittsburgh classifi-
cation rule mining algorithm adapted to large and imbalanced datasets,
as encountered in hospital data. We associate to this algorithm an
original post-processing method based on ROC curve to help the deci-
sion maker to choose the most interesting rules. After an introduction to
problems brought by hospital data such as class imbalance, volumetry or
inconsistency, we present MOCA-I - a Pittsburgh modelization adapted
to this kind of problems. We propose its implementation as a dominance-
based local search in opposition to existing multi-objective approaches
based on genetic algorithms. Then we introduce the post-processing
method to sort and filter the obtained classifiers. Our approach is com-
pared to state-of-the-art classification rule mining algorithms, giving as
good or better results, using less parameters. Then it is compared to
C4.5 and C4.5-CS on hospital data with a larger set of attributes, giving
the best results.

1 Introduction

Data mining on real datasets can lead to handling imbalanced data. It occurs
when many attributes are available for each observation, but only a few are
actually entered. This is especially the case with medical data: ICD-101 – a
medical coding system – allows encoding up to 14,199 diseases and symptoms.
However in hospital data, for each patient, only a very small subset of these codes
will be used: up to 100 symptoms and diseases. This implies that most frequent
symptoms, like high blood pressure, are found on at best 10 % of the patients. For
less common diseases, like transient ischemic stroke it can be lower to less than
0.5 % of patients. This can also happen with market-basket data: many different
1 International classification of diseases; http://www.who.int/classifications/

icd/en/

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 37–51, 2013.
DOI: 10.1007/978-3-642-44973-4 5, c© Springer-Verlag Berlin Heidelberg 2013

http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/

38 J. Jacques et al.

items are available in the store but only a few are actually bought by a single
customer. Additionally, more and more information is available and collected
nowadays: algorithms must be able to deal with larger datasets. According to
Fernández et al. dealing with large datasets is still a challenge that needs to be
addressed [1]. This work is a part of the OPCYCLIN project – an industrial
project involving Alicante company, hospitals and academics as partners – that
aims at providing a tool to optimize screening of patients for clinical trials.

Different tasks are available in datamining, this paper focuses on the clas-
sification task, useful to predict or explain a given class (e.g.: cardiovascu-
lar risk) on unseen observations. Classification will use known data, composed
of a set of N known observations i1, i2, ..., iN to build a model. Each obser-
vation can be described by M attributes a1, a2, ..., aM and a class c. There-
fore each observation i is associated with a set of values vi1, vi2, ..., viM where
vij ∈ Vj{val1, val2, . . . valp}; Vj being the set of possible values for attribute aj .
In the same manner, each observation i is associated to a class value ci ∈ C, C
being the set of all possible values for the class. A classification algorithm will
be able to generate a model that describes how to determine cv on an unseen
observation v, using its values vv1, vv2, ..., vvM . This paper focuses on models
able to give a good interpretability: they allow medical experts to give a feed
back about them. Decision trees and classification rules give easy-to-interpret
models, by generating trees or rules — like “aj = valj and ag = valg ⇒ class”,
where valj ∈ Vj , valg ∈ Vg and class ∈ C; using combinations of attributes
a1, a2, ..., aM and one of their possible values val1, val2, ..., valM to lead to the
decision.

Decision trees – like C4.5 [2] or CART (classification and regression trees)
– are popular and efficient solutions for knowledge extraction. However the
tree representation is composed of conjunctions, not allowing expressing classes
explained by different contexts (e.g.: presence of overweight or high blood pressure
implies an increased cardiovascular risk, having both increases the risk more).
Separate and conquer strategy, frequently implemented in tree algorithms often
contribute to miss rules issued from different contexts: each sub-tree is con-
structed using a sub-part of data (observations not corresponding to the top
of the tree are removed from learning). To avoid this problem we will focus on
classification rule mining approaches.

The majority of state-of-the-art classification algorithms will have trouble to
deal with imbalanced data because they use Accuracy to build their predictive
model [1]. Accuracy focuses on counting good classifications obtained by a given
algorithm: true positives and true negatives. However, when predicting a class
available on only 1 % of the observations, an algorithm can get a very good
classification Accuracy – 99 % – while predicting each observation as negative
(99 % of observations) and missing each positive observation. Some resampling
methods exist to pre-process the data and convert it into balanced data, an
overview can be found in [3]. Jo and Japkowicz showed that combining data
resampling and an algorithm able to deal with class imbalance is more effective
than using resampling alone [4]. Moreover, in addition to class imbalance and

MOCA-I: Discovering Rules and Guiding Decision Maker 39

a huge amount of data, hospital data is subject to uncertainty. When data is
missing on one patient, two cases can happen: the patient does not have the
disease or the patient has the disease but was not diagnosed yet (or the diagnosis
was not entered in the system). This is difficult to predict the consequences of
resampling on such data.

The remaining of this paper is organised as follows: Sect. 2 will introduce
some common rule interestingness measures, and will show how the classification
rule mining problem can be seen as a multi-objective problem. Section 3 will
propose the modeling as a multi-objective local search optimization problem.
Then, the Dominance-based local search algorithm will be presented, as well as
the associated implementation details such as neighborhood. This section will
conclude by the description of an original post-processing method to select rules
based on ROC curve. In Sect. 4, we will assess the performance of our approach.
At first we will compare our results to those gathered by Fernandez et al. with
22 state-of-the-art classifiers in the context of imbalanced data [1], showing our
approach can be applied on more general datasets. Secondly, we will compare
our approach to C4.5 – a state-of-the-art decision tree algorithm – and C4.5-CS
– an adaptation of the C4.5 algorithm to imbalanced data – on real hospital
data. Finally, Sect. 5 gives conclusions and perspectives for future works.

2 A Multi-Objective Model to Discover Partial
Classification Rules in Imbalanced Data

This section will present some rule interestingness measures and their meaning.
Then it presents the 3 objectives that will be used to find rules.

2.1 Rule Interestingness Measures

When mining rules, an important question will raise: how can we assess that
a rule is better than another? Over 38 common rule interestingness measures
are referenced by Geng and Hamilton in their review [5], while Ohsaki et al.
studied measures used in medical domain [6] and Greco et al. studied Bayesian
confirmation measures [7].

Table 1. Confusion matrix

P P

C TP FP

C FN TN
N

The majority of rule interestingness measures are based on a confusion matrix,
like the one provided in Table 1. For a given rule C → P , TP (true positives) will
represent count of observations having both C and P; TN (true negatives) count

40 J. Jacques et al.

of observations not having C and not having P. FN (false negatives) and FP (false
positives) count observations on which C and P do not match. When dealing with
imbalanced data

P = FP + TN >> P = TP + FN, (1)

therefore problems may rise with some measures like previously seen with the
Accuracy.

To ease the conception of a rule mining algorithm we must focus on a subset
of these measures. Indeed, handling too many measures will add complexity and
will increase computational time. An analysis of these measures showed that
Confidence and Sensitivity

Confidence =
TP

TP + FP
, Sensitivity =

TP

TP + FN
, (2)

are two interesting complementary measures. Increasing Confidence decreases
the number of false positives while increasing Sensitivity decreases the number
of false negatives. However, increasing Confidence often decreases Sensitivity
while increasing Sensitivity decreases Confidence. To the medical domain point
of view, only rules having both good Confidence and Sensitivity are interest-
ing. Moreover, Bayardo and Agrawal showed that mining rules optimizing both
Confidence and Support leads to obtain rules optimizing several other mea-
sures including Gain, Chi-squared value, Gini, Entropy gain, Laplace, Lift, and
Conviction [8]. Since in classification, Sensitivity and Support measures are pro-
portional, optimizing Confidence and Support will bring the same rules than
optimizing Confidence and Sensitivity.

When mining variable-length rules, bloat can happen: rules endlessly grow
with no predictive enhancement. Because of bloat, a rule R1 : C ⇒ P can turn
into R2 : C OR C ⇒ P , then R3 : C OR C OR C ⇒ P , increasing computa-
tional time and preventing the algorithm to stop. Most of all, R3 is needlessly
complex and harder to interpret than R1. Rissanen introduced the Minimum
Description Length (MDL) principle that can be used to overcome this problem
[9]. Given two equivalent rules, the simplest must be preferred. The addition of
one objective promoting simpler rules is a common solution, successfully applied
in Reynolds and Iglesia work [10]. In addition to this, Barcadit et al. used rule
deletion operators [11]. In application of this principle, we introduce a third
objective to promote simpler rulesets: minimizing the count of terms of each
solution. Finally, we choose to find rules optimizing the 3 following objectives:

– maximize Confidence
– maximize Sensitivity
– minimize number of terms

3 A Multi-Objective Model to Discover Partial
Classification Rules in Imbalanced Data

In addition to class imbalance, our hospital data raises another problem: more
than 10,000 attributes are available for each patient. This implies a huge number

MOCA-I: Discovering Rules and Guiding Decision Maker 41

of possible rules to explore. As a rule may be seen as a combination of pairs
<attribute, value>, the rule mining problem is a combinatorial one. Moreover,
regarding the large number of attributes, it requires methods dedicated to deal
with very large search spaces such as combinatorial optimization methods and
metaheuristics. Moreover, some datamining tasks contain NP-hard problems; in
their review, Corne et al. explain how operations research and metaheuristics
can help solving these problems that may be seen as combinatorial optimization
problems [12].

The three objectives identified in the previous section highlight the need of
methods able to deal with several objectives. Multi-objective optimization can
handle such problems; Srinivasan and Ramkrishnan made a review of rule mining
approaches using multi-objective optimization [13].

As explained later, in our work we will adopt a Dominance-based approach:
each objective will be treated separately. Metaheuristics working on a population
of solutions are particularly well suited for this type of problems [14] and we
will adopt one of them to our classification rules problem. In the following, the
solution modeling and the algorithm proposed are detailed.

3.1 Solution Modeling

Solution Representation. Two main solution representations exist for rule
mining in metaheuristics: Michigan and Pittsburgh. Michigan is the widely used
one, where each solution represents a single rule. However algorithms using this
representation can miss some rules: an interesting rule will be removed if a
slightly better rule is found, even if that rule targets different observations from
the dataset.

This problem does not appear in Pittsburgh representation where each solu-
tion is a set of rules. This more complex representation will impact the size of
the search space – now larger than the one of Michigan – and introduce new
problems such as rule redundancy or conflicts between rules: which prediction
must be chosen when different rules in the same ruleset have conflicting pre-
dictions? This is only an overview of problems that may happen. Casillas et al.
identified more possible inconsistencies risen by Pittsburgh modeling [15].

We propose to use a Pittsburgh representation where each solution is a rule-
set. Each ruleset is composed only of rules predicting the positive class, called
partial rules. A rule is a conjunction of terms; a term is the expression of a test
made on an attribute, for a given observation. Attributes can be binary (e.g:
hasHighBloodPressure?), or associated to an operator (=, <,>) and a value,
where the value is taken from a list of values, ordered or not. Any observation
that triggers at least one rule from the ruleset will be labeled as positive class.
Our representation is designed to handle binary classes, thus observations not
triggering any rules are labeled as negative class. Since a ruleset groups together
only partial classification rules predicting the positive class, there is no need to
store the right part of each rule. Moreover, there are no inconsistencies since rules
in a same ruleset cannot predict different classes. Rule redundancy is avoided by

42 J. Jacques et al.

minimizing the size of each ruleset. Thus, a rule will be added only if it improves
Sensitivity (true positives rate) or Confidence of the ruleset.

Evaluation Function. Previously we saw three objectives can be used to
find rulesets: maximizing Confidence, maximizing Sensitivity and minimizing
the number of terms. The third objective corrects one drawback of Pittsburgh
representation that brings bloat. We use a dominance-based approach to handle
the different objectives, in opposition to some classification rule mining algo-
rithms like GAssist using scalar approaches [11]. Dominance-based approaches
use a dominance relation to compare solutions over several objectives, avoiding
searching the good adjustment of weights to combine the different objectives,
needed in scalar approaches. Moreover, with a weighted fitness function two
solutions having different objective values can have the same fitness score. Our
method is based on Pareto Dominance. This will generate a population of rule-
sets, in our case rulesets with very high Confidence but relatively low Sensitivity,
rulesets with middle Confidence and Sensitivity, rulesets with high Sensitivity
and relatively low Confidence, etc. These rule sets are stored in an archive, thus
we need an algorithm able to handle populations.

3.2 DMLS Algorithm

Dominance-based multi-objective local search (DMLS) is a local search algorithm,
based on a dominance relation [16]. It needs the definition of a neighborhood
function that associates to each solution a set of solutions – called neighbors –
by applying a small modification on it. A neighborhood of a rule can be, for
example, all rules having one more or one less term.

Most of multi-objective rule mining contributions presented in the review of
Srinivasan and Ramkrishnan are based on the metaheuristic NSGA-II (genetic
algorithm dedicated to multi-objective problems) [13]. DMLS has previously
proven to give at least as good results as NSGA-II on several problems [16].
Moreover, DMLS is easier to parameter than a genetic algorithm as we only
have to define a neighborhood operator. Therefore we used DMLS implemented
by Liefooghe et al. [16] in ParadisEO framework [17], with an unbounded archive,
using the natural stopping criterion. DMLS algorithm is detailed in Algorithm 1.
It evolves a population of non dominated rulesets. At first, all rulesets are marked
as unvisited. While unvisited rulesets exist, DMLS will chose randomly one of
them from the archive, visit its neighborhood and add all the non-dominated
neighbors to the archive for future visits.

Initialization. DMLS is initialized with a population of 100 rulesets. Each is
made of two rules, whose attributes are randomly picked in a same observation.
This ensures the chosen attributes appears together at least on one observation.
Then, one or two random attributes are replaced to add some diversity.

MOCA-I: Discovering Rules and Guiding Decision Maker 43

Algorithm 1. Dominance-based multi-objective local search
generates 100 rulesets RSa, composed of 2 initial rules
RSa.setV isited(false)
archive.add(RSa)
while RScurrent ← archive.selectRandomUnvisitedSol() do

RSn ← generateNeighbors(RScurrent)
for RSneighbor ∈ RSn do

/** add non dominated neighbor to archive, for future visits **/
if !RScurrent ∀ RSneighbor then

RSneighbor.setV isited(false)
archive.add(RSneighbor)

end if
/** stops when a dominating neighbor is found **/
if RSneighbor ∀ RScurrent then

break
end if

end for
if all neighbors in RSn were visited then

RScurrent.setV isited(true)
end if

end while

Neighborhood. The neighborhood function is defined as a generator of all
rulesets having a one-term difference: one term removed, one term added or one
term modified. They are randomly visited. The neighborhood size is important,
since a term addition can happen on each rule of the ruleset, for each available
attribute. To reduce the neighborhood size on attributes taking values in ordered
lists, we designed a simplified term neighborhood where only boundaries (adja-
cent values) are visited. Table 2 indicates for each operator (=, <,>) the list of
possible neighbors, assuming values are ordered (vi−1 < vi < vi+1). Ømeans
remove the term.

Table 2. Neighborhood of list-valued terms

a = vi a < vi a > vi

Ø Ø Ø
a > vi−1 a = vi−1 a = vi+1

a < vi+1 a < vi−1 a > vi+1

a = vi−1 a < vi+1 a < vi+2

a = vi+1 a > vi−2 a > vi−1

On a dataset with mixed attributes (ordered and not) (heart dataset, intro-
duced in results section), this simplified neighborhood decreases computational
time (in average by 14 %), while not degrading too much the classification perfor-
mance (less than 1 %). Another optimization on the neighborhood exploration is

44 J. Jacques et al.

done on rules with Confidence = 1: adding one term can only result in decreas-
ing Sensitivity because the obtained rule will be more specific and will concern
less observations. In this case, we restrict neighbors to modification or removing
of one random term.

3.3 Post-processing Using ROC Curve

Multi-objective optimization finds a population of rulesets, corresponding to
compromise solutions between the different objectives. Some datasets may obtain
up to 400 rulesets after one single run. As it is hard to choose one ruleset,
we propose a post-processing method based on ROC curve which combines all
obtained rules to take advantage of the diversity issued from the multi-objective
algorithm, and a tool to help choosing rules. Then we present how the result
can be used by the decision maker to choose the final ruleset. In addition, we
propose a method to determine automatically the final ruleset.

ROC Curve is often used in data mining to assess the performance of classifi-
cation algorithms, especially ranking algorithms. It is plotted using true positive
rate (TPR) (known as Sensitivity) and false positives rate (FPR) (also called 1
- Specificity) as axes and allows comparing algorithms. Fawcett presented differ-
ent ROC curve usages [18]. In our case, we use ROC curve to select which rules
to keep. Since the objective is to use the developed method in a medical context,
it can also be used to help our medical users to calibrate classifier or choosing
rules using a tool they are familiar with. Algorithm 2 describes how ROC curve
can be generated for a given ruleset. Rules are first ordered from the highest
Confidence score to the lower; rules having the same Confidence are ordered by
descending order according to Sensitivity. Then, TPR and FPR are computed
and drawn for each subruleset {R1}, {R1, R2}, . . . , {R1, R2 . . . Ri}.

Algorithm 2. Draw ROC curve of a ruleset RS
order rules of RS by Confidence DESC, Sensitivity DESC
create an empty ruleset RSroc

for rule Ri ∈ RS {R1, R2, . . . , Rn} do
/* get TPR and FPR for sub-rules-set R1, R2, ..., Ri */
RSroc.add(Ri)
tpr ← RSroc.computeTruePositiveRate()
fpr ← RSroc.computeFalsePositiveRate()
plot(fpr,tpr)

end for

Rule Selection Using ROC Curve. One drawback of dominance-based meth-
ods lies in obtaining a set of compromise solutions, that are difficult to handle by
the decision maker. The following post-processing method is proposed to cope

MOCA-I: Discovering Rules and Guiding Decision Maker 45

with this problem. Figure 1 shows on the right, one sample ruleset containing
rules R1 . . . R10, ordered from the highest Confidence to the lower and in descend-
ing order of Sensitivity for rules having the same Confidence score. On the left the
matching ROC curve is drawn. Each point on this curve depicts the performance
of a subruleset, e.g.: R1, R2, R3. The higher is the point, the more observations of
positive class it detects. Additionally, the more a point is on the right, the more
false positive it brings. Consequently, point (0, 1) is the ideal point where all
positive observations are found, without bringing any false positive. This figure
shows the performance of the ruleset when cut at different places, allowing to
choose the subruleset giving the most interesting performance according to deci-
sion maker’s needs. On this curve we can see that between point a and point b,
and after point c there is only a small improvement of True positives rate, but it
brings much more false positives. Performance is more interesting before point
a, matching ruleset R1, R2, R3. Subruleset R1 . . . R4 (cut b) does not seem to be
a good choice because it brings much more false positives than positives cases.
Point c brings more true positives cases, giving ruleset R1, R2, ..., R7. Cutting
at point d finds a ruleset able to detect all positive observations: R1, R2, ..., R9,
keeping rule R10 is useless and will only increase false positives. Depending on
how many false positive are tolerable, the cut point can be changed. In medical
context, cut points bringing less false positives will be preferred (like cut a). To
the contrary, an advertising campaign will accept more false positives, to deal
with a larger audience. In fraud detection, the cut point can be moved until a
given number of positive observations are found.

Fig. 1. Example of ROC curve obtained from one ruleset. R1 . . . R10 is one ruleset
obtained after the post-processing. a, b, c and d represent different cuts and their
associated position on the roc curve.

Ruleset Post-processing. Regarding the OPCYCLIN project, the decision
maker will have to deal with up to 30 different predictions for each clinical trial,
leading to 30 rulesets and 30 ROC curves. It makes the manual rule selection
harder. In addition to the previous rule selection method, we propose a solution

46 J. Jacques et al.

to determine automatically the best cut point. Thus, we can obtain a classifier
with good performance without the intervention of the decision maker. A final
ruleset classifier is generated from all obtained rulesets coming from archive,
as described in Algorithm 3. After merging all rules into one ruleset, the ROC
curve is drawn. The subruleset giving the point closest to the ideal point (0,1)
according to the Euclidean distance is chosen. All rules after this point are
removed (or disabled if we want to allow the decision maker to change the
Sensitivity accordingly to his needs). Once this ruleset is obtained, common data
mining measures can be computed on the entire ruleset: Confidence, Support,
etc. Diverse cut conditions have been tested but only the above presented one
gives classifiers with interesting performance. An improvement of this condition
could consist in weighting true positives rate and false positives rate according
to decision maker’s needs, since false positives can be more or less important
than true positives, depending on the context.

Algorithm 3. Obtain a ruleset RSall from a set of rulesets RSi

create an empty ruleset RSall

/* merge all obtained rules into RSall */
for obtained ruleset RSi do

for each rule Rj ∈ RSi {R1, R2, . . . , Rn} do
/* avoid duplicates */
if Rj /∈ RSall then

RSall.add(Rj)
end if

end for
end for
rocCurve ← RSall.plotROCcurve()
/* best point of ROC curve is (0,1) */
i ← rocCurve.getIndexOfPointClosestToBestPoint()
RSall.removeRules(i+1,N)

4 Experiments and Results

This section first introduces the protocol used in all our experiments. Both bench-
marks and real datasets were used for experiments; the first part presents results
obtained on benchmarks and compares them to the ones obtained by algorithms
of literature. In the last part we compare C4.5 and C4.5-CS decision tree algo-
rithms and our approach on a real dataset having an important imbalance and
a large number of attributes.

4.1 Protocol

According to the protocol proposed by Fernandez et al., our algorithm was run
25 times for each dataset. We use 5-fold cross-validation: datasets are split into 5

MOCA-I: Discovering Rules and Guiding Decision Maker 47

parts, each containing 20 % of observations. Then 4 parts are used for training,
1 for evaluation. For each available partition, as the algorithm contains some
stochastic components, it was run 5 times. So we obtain for stochastic algorithms
25 Pareto fronts for each dataset. For each partition, solutions are evaluated on
both training and test partitions. In our case, the objective is to maximize the
results on test data, because it shows the ability of the algorithm to handle
unseen data. A discretization of data was applied with Weka when necessary
(weka.filters.unsupervised.attribute.Discretize; bins=10, findNumBins=true) to
allow our algorithm to handle datasets containing continuous attributes.

Generally accuracy measure is used to assess the performance of classifica-
tion. Previously we saw that accuracy is not effective to handle class imbal-
ance. Therefore Fernandez et al. proposed to use Geometric mean of the true
rates (GM):

GM =

√
TP

TP + FN
× TN

FP + TN
. (3)

In order to have a good score, a classifier has now to classify correctly both
classes: positive and negative. GM has one drawback though: when a classifier is
not able to predict one class, score is worth 0. Here, when two classifiers failed
to predict the negative class, there is no difference between the classifier able
to find 50 % of positive observations and an other classifier predicting 70 % of
positive observations: both have a score of 0.

For each dataset we computed the average of GM values obtained in each 25
runs. In order to get a single GM value from the rulesets proposed by our algo-
rithm, we generated a ruleset, its ROC curve and cut it automatically as shown
previously. Then we computed GM on the resulting ruleset: if an observation
matches a rule from the ruleset it is considered as positive class. Observations
not matching any rule are considered as negative class.

Tests were carried out on a computer with a Xeon 3500 quad core and 8 GB of
memory, under Ubuntu 12. We used Weka software version 3.6 for discretization
of datasets and for running C4.5 tests. Our approach is implemented in C++,
using metaheuristics from ParadisEO framework [17]. In our experimentations
we set MOCA-I max ruleset size = 5, max rule size = 9 for each dataset.

4.2 Experiments on Imbalanced Benchmarks Datasets

Fernandez et al. performed a comparison of 22 classification rule mining algo-
rithms on imbalanced datasets and provided material to compare to their results
[1]. Since our algorithm is designed to handle discrete attributes, datasets with
less continuous attributes were preferred. We selected 6 imbalanced datasets in
those proposed by Fernandez et al. Their details are available in Table 3. The
degree of class imbalance varies from 0.77 % to 27.42 %: in the abalone19 dataset
the positive class happens on only 0.77 % of observations. In addition to these
datasets, tia dataset - a real dataset - will be used in the next experiments.
The tia dataset comes from hospital data. It is composed of 10,000 patients tak-
ing values in 10,250 available attributes: medical procedures and diagnoses. The

48 J. Jacques et al.

Table 3. Datasets main attributes

Name #ind. #feat. % repar.

haberman 306 3 27.42
ecoli1 336 7 22.92
ecoli2 336 7 15.48
yeast3 1484 8 10.38
yeast2vs8 482 8 4.15
abalone19 4174 8 0.77
tia 10,000 699 0.74

#ind.: count of observations; #feat.: count of attributes; % repar.: Percentage of obser-
vations having the class to be predicted

objective is to predict the presence of the diagnosis Transient cerebral ischemic
attack, available on 0.74 % of the observations. In order to allow some state-of-
the-art algorithms processing this dataset, the number of attributes is reduced.
Only attributes available on at least one observation having the class are kept,
leading to 699 attributes.

Results are available in Table 4. Our approach is denoted MOCA-I (Multi-
Objective Classifier Algorithm for Imbalanced data). We compared only to algo-
rithms giving the best results regarding the average of GM over the 25 runs. In
addition, we will also compared to C4.5-CS – a cost-sensitive version of C4.5
available in KEEL Framework [19]. For each dataset the best average of GM is
recorded. Then we computed relative error to the obtained best: a score of 0
indicates the algorithm got the best result on the dataset. As an indication, the
last line indicates the average of the relative errors, over the 6 datasets.

We can observe that the majority of algorithms had some difficulties to handle
abalone19 dataset, which has a high imbalance. Our model outperforms other
algorithms on 3 datasets. On the 3 remaining datasets, C4.5-CS outperforms all
algorithms. However, when outperformed the model still gives interesting results.

4.3 Experiments on a Real Dataset

In addition to literature datasets, we tested the scalability of our method on one
real large dataset: the previously presented tia dataset. We compared to results
obtained by J48 – the C4.5 algorithm implementation of Weka; well-known by
some medical users. Since C4.5 may encounters trouble to deal with imbalanced
data, we compared to results obtained by C4.5-CS algorithm that obtained good
results on the benchmark datasets. Each algorithm was run 5 times using 5-fold
cross-validation to obtain 25 Pareto fronts for MOCA-I. C4.5 and C4.5-CS uses
default parameters provided by Weka and KEEL.

As observed in Table 5, reporting average and standard deviation of GM, on
training and test data, our approach obtains a better GM score than C4.5 and
C4.5-CS, on test datasets. C4.5-CS is more effective than C4.5 and MOCA-
I on training data but is subject to over-fitting: it encounters problems when
dealing with unknown observations, like on the test data. In addition to its

MOCA-I: Discovering Rules and Guiding Decision Maker 49

Table 4. Relative error to the best average of GM: algorithms with 0 obtained the
best average of GM

MOCA-I XCS O-DT SIA CORE GAssist OCEC DT-GA HIDER C4.5 C4.5-CS

haberman 0.00 0.41 0.04 0.16 0.40 0.27 0.27 0.42 0.48 0.42 0.19
ecoli1 0.05 0.04 0.10 0.19 0.03 0.05 0.36 0.07 0.16 0.06 0.00
ecoli2 0.00 0.66 0.06 0.05 0.15 0.04 0.42 0.15 0.35 0.07 0.03
yeast3 0.01 0.81 0.10 0.10 0.23 0.06 0.01 0.10 0.43 0.07 0.00
yeast2vs8 0.11 0.18 0.18 0.88 0.14 0.26 0.16 0.88 0.18 0.88 0.00
abalone19 0.00 1.00 0.88 1.00 1.00 1.00 0.03 1.00 1.00 1.00 0.52

err. average 0.03 0.52 0.40 0.23 0.32 0.28 0.21 0.44 0.43 0.42 0.12

MOCA-I: Multi-Objective Classifier Algorithm for Imbalanced data; SIA: Super-
vised Inductive Algorithm, O-DT: Oblique Decision Tree, CORE: CO-Evolutionary
Rule Extractor, GAssist: Genetic Algorithms based claSSIfier sySTem, OCEC: Orga-
nizational Co-Evolutionary algorithm for Classification, DT-GA: Hybrid Decision
Tree - Genetic Algorithm, HIDER: HIerarchical DEcision Rules

Table 5. Comparison to C4.5 and C4.5-CS on the real dataset tia

GM on Training GM on Test

MOCA-I 0.92 ±0.02 0.74 ±0.07
C4.5 0.58 ±0.03 0.52 ±0.11
C4.5-CS 0.99 ±0.0009 0.47 ±0.11

Table 6. Impact of rule selection

Cf tra Cf tst Se tra Se tst GM tra GM tst

MOCA-I cut 1 1 1 0.36 0.14 0.60 0.38
MOCA-I cut 2 1 0.75 0.53 0.21 0.72 0.46
MOCA-I cut 3 0.10 0.06 0.86 0.71 0.90 0.81
C4.5 1 0.75 0.39 0.21 0.62 0.46

Confidence (Cf), Sensitivity (Se) and Geometric mean of the true rates (GM) on one
fold, with different cuts after ROC post-processing. Tra=training data, Tst=test data

best performance on test data, MOCA-I uses the previously presented post-
processing method to output a ruleset with different cut possibilities. In Table 5
the ruleset is cut to improve GM; Table 6 shows results obtained with different
cut points over the ROC curve. Cut 1 is a cut where there is no false positive.
Cut 3 is the cut presented previously in our post-processing method. Cut 2
is between these two cuts on the ROC curve. The cut point can be adapted
depending on the cost of a false positive. When no error is tolerable, cut points
bringing less false positives will be preferred (like Cut 1 or Cut 2 in Table 6).

5 Conclusion and Further Research

We proposed and implemented a Pittsburgh classification rule mining system
using partial classification rules, adapted to imbalanced data. Our method based
on a multi-objective local search using Confidence, Sensitivity and rule length

50 J. Jacques et al.

was shown to be effective in this context, compared to state-of-the-art rule min-
ing classification algorithms. Moreover, it was proven to be more effective than
C4.5 and C4.5-CS on real hospital data to predict unknown observations. The
use of partial classification rules avoids some common inconsistencies brought
by Pittsburgh modeling, simplifying the conception of neighborhood operators.
Thanks to DMLS algorithm, parameters are easier to configure than in other
approaches based on genetic algorithm, while giving best results. To overcome
one of the drawback of dominance-based algorithms, obtaining an archive of
400 and more compromise solutions, we proposed two methods based on ROC
curve. The first helps the final user to choose the rules to keep, while the second
automatically generates one single solution without the intervention of the user.
Further research may include the development of new neighborhood operators,
like a covering operator that introduces rules concerning uncovered individuals.
Operators dealing with attribute granularity can be interesting, like the one
presented in Plantevit et al. work [20]. They will allow generalizing or specializing
rules, defining new rule neighbors:

– R1 : juvenile diabetes → increased risk of stroke
– R1∈ : diabetes → increased risk of stroke

With enhanced computational power another interesting approach would be to
use the area under the ROC curve (AUC) as an optimization criterion, instead of
Sensitivity and Confidence. Or the left-most portion of the area under the curve
(LAUC) as defined by Zhang et al. [21], if we want to allow a fixed number of
false positives.

References

1. Fernández, A., Garciá, S., Luengo, J., Bernadó-Mansilla, E., Herrera, F.: Genetics-
based machine learning for rule induction: state of the art, taxonomy, and com-
parative study. IEEE Trans. Evol. Comput. 14(6), 913–941 (2010)

2. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

3. Chawla, N.V.: Data mining for imbalanced datasets: an overview. In: Maimon, O.,
Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn, pp.
875–886. Springer, New York (2010)

4. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD
Explor. Newsl. 6(1), 40–49 (2004)

5. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM
Comput. Surv. (CSUR) 38(3), 1–32 (2006)

6. Ohsaki, M., Abe, H., Tsumoto, S., Yokoi, H., Yamaguchi, T.: Evaluation of rule
interestingness measures in medical knowledge discovery in databases. Artif. Intell.
Med. 41, 177–196 (2007)

7. Greco, S., Pawlak, Z., Slowiński, R.: Can bayesian confirmation measures be useful
for rough set decision rules? Eng. Appl. Artif. Intell. 17(4), 345–361 (2004)

8. Bayardo, J., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the
Fifth ACM SIGKDD, ser. KDD ’99, pp. 145–154 (1999)

MOCA-I: Discovering Rules and Guiding Decision Maker 51

9. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

10. Reynolds, A., de la Iglesia, B.: Rule induction for classification using multi-
objective genetic programming. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu,
T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 516–530. Springer, Heidel-
berg (2007)

11. Bacardit, J., Stout, M., Hirst, J.D., Sastry, K., Llorà, X., Krasnogor, N.: Automated
alphabet reduction method with evolutionary algorithms for protein structure pre-
diction. In: GECCO, pp. 346–353 (2007)

12. Corne, D., Dhaenens, C., Jourdan, L.: Synergies between operations research and
data mining: the emerging use of multi-objective approaches. Eur. J. Oper. Res.
221(3), 469–479 (2012)

13. Srinivasan, S., Ramakrishnan, S.: Evolutionary multi objective optimization for
rule mining: a review. Artif. Intell. Rev. 36(3), 205–248 (2011)

14. Coello Coello, C.A, Dhaenens, C., Jourdan, L. (eds.): Advances in Multi-Objective
Nature Inspired Computing. SCI, vol. 272. Springer, Heidelberg (2010)

15. Casillas, J., Mart́ınez, P., Beńıtez, A.: Learning consistent, complete and compact
sets of fuzzy rules in conjunctive normal form for regression problems. Soft Comput.
(A Fusion of Foundations, Methodologies and Applications) 13, 451–465 (2009)

16. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.-G.: On dominance-
based multiobjective local search: design, implementation and experimental analy-
sis on scheduling and traveling salesman problems. J. Heuristics 18, 317–352 (2012)

17. Liefooghe, A., Jourdan, L., Talbi, E.-G.: A software framework based on a concep-
tual unified model for evolutionary multiobjective optimization: paradiseo-moeo.
Eur. J. Oper. Res. 209(2), 104–112 (2011)

18. Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett. 27(8), 861–874
(2006)

19. Alcalá-Fdez, J., et al.: Keel: a software tool to assess evolutionary algorithms for
data mining problems. Soft Comput. (A Fusion of Foundations, Methodologies and
Applications) 13, 307–318 (2009)

20. Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining mul-
tidimensional and multilevel sequential patterns. ACM TKDD 4(1), 1–37 (2010)

21. Zhang, J., Bala, J.W., Hadjarian, A., Han, B.: Learning to rank cases with clas-
sification rules. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp.
155–177. Springer, Heidelberg (2011)

Sharing Information in Parallel Search
with Search Space Partitioning

Davide Lanti and Norbert Manthey(B)

Knowledge Representation and Reasoning Group,
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract. In this paper we propose a new approach to share infor-
mation among the computation units of an iterative search partition-
ing parallel SAT solver by approximating validity. Experimental results
show the streh of the approach, against both existing sharing techniques
and absence of sharing. With the improved clause sharing, out of 600
instances we could solve 13 more than previous sharing techniques.

1 Introduction

Search problems arise from various domains, ranging from small logic puzzles
over scheduling problems like railway scheduling [1], to large job shop scheduling
problems [2]. As long as the answers need not to be optimal, these problems
can be translated into a constraint satisfaction problem [3], or into satisfiability
testing (SAT) [4]. SAT approach is often successful, e.g. scheduling railway trains
has been improved by a speedup up to 10000 compared to the state-of-the-art
domain specific solver [1]. With the advent of parallel architectures, the interest
moved towards parallel SAT solvers [5–7]. Most relevant parallel SAT solvers
can be divided in two families: portfolio solvers, where several sequential solvers
compete each other over the same formula, and iterative partitioning, where each
solver is assigned a partition of the original problem and partitions are created
iteratively. Portfolio solvers received much attention from the community, leading
to enhancements by means of sharing according to some filter heuristics [5], or by
controlling the diversification and intensification among the solvers [8]. The same
cannot be said for iterative partitioning: for a grid implementation of the parallel
solver, only a study on how to divide the search space [9] and on limited sharing
has been done [10]. As for portfolio solvers [5,11], Hyvärinen et.al report that in
average even this limited sharing results in a speedup. In this paper we present an
improved clause sharing mechanism for the iterative partitioning approach. Our
evaluation reveals interesting insights: first, sharing clauses introduces almost
no overhead in computation. Furthermore, the performance of the overall search
is increased. One of the reasons for this improved behavior is that the number

Davide Lanti was supported by the European Master’s Program in Computational
Logic (EMCL).

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 52–58, 2013.
DOI: 10.1007/978-3-642-44973-4 6, c© Springer-Verlag Berlin Heidelberg 2013

Sharing Information in Parallel Search 53

of shared clauses increases, strengthening the cooperation among the parallel
running solvers. Finally, the approach scales with more cores, that is crucial as
increasingly parallel architectures become available.

After giving some preliminaries on SAT solving in Sect. 2, we present our
new clause sharing approach in Sect. 3. An empirical evaluation is performed in
Sect. 4, and finally we draw conclusions in Sect. 5.

2 Preliminaries

Let V be a finite set of Boolean variables. The set of literals V ⊆{x | x ∀ V } con-
sists of positive and negative Boolean variables. A clause is a finite disjunction
of literals and a formula (in conjunctive normal form (CNF)) is a finite conjunc-
tion of clauses. We sometimes consider clauses and formulae as sets of literals
and sets of clauses, respectively, because duplicates can be removed safely. We
denote clauses with square brackets and formulae with angle brackets, so that
((a∅b)∈(a∅c∅d)) is written as ←[a, b], [a, c, d]⊂. An interpretation J is a (partial
or total) mapping from the set of variables to the set {�,⊥} of truth values;
the interpretation is represented by a set of literals, also denoted by J , with the
understanding that a variable x is mapped to � if x ∀ J and is mapped to ⊥ if
x ∀ J . One should observe that {x, x} ∼⊆ J for any x and J .

A clause C is satisfied by an interpretation J if l ∀ J for some literal l ∀ C.
An interpretation satisfies a formula F , if it satisfies every clause in F . If there
exists an interpretation that satisfies F , then F is satisfiable, otherwise F is
unsatisfiable. An interpretation J that satisfies a formula F is called model of
F (J |= F). Given two formulae F and G, we say that F models G (F |= G) if
and only if every model of F is also a model of G. Two formulae F and G are
equivalent (F ≡ G), if they have the same set of models. Observe that if F |= G,
then F ⊆ G ≡ F . Let C = [x, c1, . . . , cm] and D = [x, d1, . . . , dn] be two clauses.
We call the clause E = [c1, . . . , cm, d1, . . . , dn] the resolvent of C and D, which
has been produced by resolution on variable x. We write E = C ⊗D. Note, that
←C,D⊂ |= ←E⊂, and therefore ←C,D⊂ ≡ ←C,D,E⊂.

2.1 Parallel SAT Solving

Satisfiability testing answers the question whether a propositional formula is
satisfiable. Structured sequential SAT solvers create a partial interpretation
based on the Davis-Putnam-Loveland-Logemann (DPLL) algorithm [12]. Con-
flict Driven Clause Learning (CDCL) sequential SAT solvers are an enhance-
ment of DPLL where backtracking is performed according to conflict analysis
[13]. Conflict analysis produces new learnt clauses based on resolution. Katebi
et.al. show in [14] that among all the major improvements to sequential SAT
solvers clause learning is the most beneficial technique.

Studies on parallel SAT solvers started in 1994 [15]. An overview of these
studies since that time is given in [16,17]. Parallelizing the search process inside
the DPLL algorithm has been done in [18], however this approach does not scale

54 D. Lante and N. Manthey

Fig. 1. The tree shows how a formula can be partitioned iteratively by using a parti-
tioning function that creates two child formulae.

beyond two cores. Since modern hardware provides many more cores, we focus
on techniques that are more promising, namely:

• parallel portfolio search [5], where different sequential solvers solve the
same input formula in parallel.

• iterative partitioning [9], where a formula is partitioned iteratively into a
tree of subproblems and each subproblem is solved in parallel.

Portfolio parallelization is the most common approach and many parallel
SAT solvers rely on this technique, e.g. [5,19]. Iterative partitioning is a par-
titioning scheme that does not suffer of the theoretical slow down common to
other partitioning approaches [20]. Since [20] reports that iterative partitioning
is the most scalable algorithm, we focus on improving it further by allowing more
communication.

3 Sharing Information in Parallel Search

The partitioning of the search space of a formula F is illustrated by the parti-
tion tree in Fig. 1. A partition function splits a formula F into n sub-problems
F1, . . . , Fn meeting the following constraints: F ≡ F1 ∅· · ·∅Fn and Fi ∈Fj ≡ ⊥,
for each 1 ≤ i < j ≤ n. W.l.o.g one can assume that every partition Fi is of the
form F ∈ Ki, for some paritioning constraint Ki in CNF. A partition tree for a
formula F w.r.t. a partition function φ is a tree T rooted in F such that, for
every node F ′ in T the set of its direct successors is φ(F ′). A more convenient
notation for nodes in a tree is given by marking them with their positions: the
root node has the empty position Δ, whereas the node at position pi is the i-th
successor of the node at position p. The set of all positions in T is pos(T). With
F p we denote the node at position p of a tree rooted in F . Observe that for
every position p ∀ pos(T), it holds F p = F ⊆ Ki1 ⊆ Ki1i2 ⊆ . . . ⊆ Ki1...in , if
p := i1...in and each ij ∀ {1, . . . , |φ(F i1...ij−1)|}. Since a partition tree is created
upon a partition function, clearly F p ≡ ∨

i F
pi and ∀i�=jF

pi ∈ F pj ≡ ⊥, for
every p ∀ pos(T), i, j ∀ {1, . . . , |φ(Fp)|}. Sharing learnt clauses among solvers
that solve child formulae has been considered in [10]. There, Hyvärinen et.al.
introduce an expensive mechanism called assumption-based (learnt) clause tag-
ging and a fast approximation method flag-based (learnt) clause tagging. In the
following, we present an extension of the latter that allows more information to
be shared without introducing significant overhead to the solver.

Sharing Information in Parallel Search 55

Fig. 2. Partition tree for F , where unsafe clauses are underlined. Each node has been
applied resolution w.r.t. its incoming constraints. Clause [x4, x2], that could be learnt by
the solver working on F 121, is unsafe because it depends on constraint ←[x6]∈. However,
it could safely be shared among the children of F 1.

3.1 Flag-Based Clause Tagging

The idea of flag-based clause tagging is to share only those clauses that do not
depend on a partitioning constraint. Each clause is assigned a Boolean flag that
represents being safe or unsafe. Clauses are tagged unsafe if they either belong
to a partitioning constraint or have been obtained in a resolution derivation
involving some unsafe clause. All other clauses are tagged as safe. Thus, every
safe clause either belongs to the original problem, or it can be obtained by
applying resolution over clauses of the original problem. Therefore, a safe clause
is a semantic consequence of every node in a partition tree.

Due to limited space, we provide examples in [21] where flag-based sharing
effectively permits to speed-up the local computation on nodes in the tree. How-
ever, this approach is only an approximation. Indeed, if a clause is a semantic
consequence only of a strict subset of the nodes in a partition tree, then this
clause cannot be shared at all. However, it would be safe to share it at least
among the nodes belonging to that subset. Figure 2 depicts such a situation:
clause [x4, x2] could be shared among all the children of F 123, but this is not
allowed by the flag-based approach. We now propose an improvement to clause
sharing that addresses this problem without introducing overhead on the parallel
solver.

3.2 Position-Based Clause Tagging

Instead of flags, we tag each clause with a position in the partition tree. A
clause C tagged with a position p is indicated as Cp. Given a partition tree T
for a formula F , clauses belonging to F are tagged with the empty position Δ.
Clauses in a partitioning constraint Kp are tagged with p. A clause obtained
from a resolution derivation (Rp1

1 , . . . , Rpn
n) is tagged with arg maxpi

|pi|, where
1 ≤ i ≤ n. The following theorem clarifies the main contribution of this work:

Theorem 1. Let T be a partition tree for a formula F , and consider two nodes
F pq and F r in T . Let Cp be a clause learnt at some point in the computation
over the node F r. Then F pq |= Cp.

56 D. Lante and N. Manthey

Proof. By well-founded induction [22] w.r.t. a specific well-founded partial order
over the resolvents of C it can be shown that F pq |= Cp, because position p is a
prefix of position pq. More details can be found in [21].

Consider Fig. 2 again. The clause [x4, x2], under position-based tagging, is
tagged with position 1. From Theorem 1 we conclude F 1 |= [x4, x2]. Thus, [x4, x2]
can be shared among all nodes of the kind F 1p, where p ∀ {Δ, 1, 2, 21, 22}.

4 Empirical Evaluation

The experiments have been run on AMD Opteron 6274 CPUs with 2.2 GHz and
16 cores, so that 16 local solvers run in parallel. Each instance is assigned a time-
out of 1 h (wall clock) and a total of 16 GB main memory. Each sharing approach
has been tested over 600 instances of the instances of SAT challenge 2012. Our
iterative-partitioning solver is based on Minisat [7], following the ideas of [20].
As in [9] the resources of the local solvers are restricted: a branch is created
after 8096 conflicts, and a local solver is allowed to search until 512000 conflicts
are reached. The partitioning function uses VSIDS scattering [9]. We tested our
solver with 4 different configurations: “POS” and “FLAG” use position-based
and flag-based clause sharing, respectively. Here, a clause can be shared only if
its size is less than or equal to 2. “RAND” uses position-based sharing where
each learnt clause can be shared with a probability of 5 %. The last configuration,
“NONE”, does not share any clauses.

Table 1. Number of solved instances

Approach Solved SAT UNSAT AVG CPU ratio Score Shared

POS 430 239 191 377.397 11.5 78 17202
RAND 380 232 148 374.445 11.5 −50 209199
FLAG 417 234 183 378.969 11.4 30 6557
NONE 418 244 174 383.785 12.1 −58 0

The results are depicted in Table 1. For satisfiable instances, sharing no
clauses seems to be the best option, allowing the parallel solvers to diverse. On
the other hand, for unsatisfiable instances the level based sharing gives the best
results. The CPU ratio shows how many cores have been used in average to solve
all the instances. Observe that sharing does not introduce significant overhead
w.r.t. a setting where solvers do not communicate. As expected, position-based
tagging permits to share (thrice) more clauses than flag-based. We expect even
better results by using more sophisticated filters than fixed clause size.

5 Conclusion

We presented a new position-based clause sharing technique that allows to share
clauses for subsets of a parallel iterative-partitioning SAT solver. Position-based
clause sharing improves the intensification of parallel searching SAT solvers by

Sharing Information in Parallel Search 57

identifying the search space in which a shared clause is valid so that the total
number of shared clauses can be increased compared to previous work [10].

Future work could improve shared clauses further. By rejecting resolution
steps, the sharing position of learnt clauses can be improved. Moreover, a filter
on the receiving solver should be considered as well. Also, it is not trivial to
decide what shared clauses are important and if these should actively drive the
search. Additionally, parallel resources should be exploited further, for example
by using different partitioning strategies or by replacing the local sequential
solver by another parallel SAT solver. Finally, improvements to the local solver,
as for example restarts and advanced search direction techniques, could also be
incorporated into the search space partitioning.

References

1. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.:
Solving periodic event scheduling problems with SAT. In: Jiang, H., Ding, W.,
Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 166–175. Springer,
Heidelberg (2012)

2. Carlier, J., Pinson, E.: An algorithm for solving the job-shop problem. Manage.
Sci. 35(2), 164–176 (1989)

3. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc, New York (2006)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

5. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel sat solver. JSAT 6(4), 245–
262 (2009)

6. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10/1. Johannes Kepler University, Linz, Austria
(2010)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification in
parallel SAT solving. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 252–265.
Springer, Heidelberg (2010)

9. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning SAT instances for dis-
tributed solving. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol.
6397, pp. 372–386. Springer, Heidelberg (2010)

10. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Grid-based SAT solving with iterative
partitioning and clause learning. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
385–399. Springer, Heidelberg (2011)

11. Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: Coello,
C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 46–60. Springer, Heidelberg (2011)

12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5, 394–397 (1962)

13. Marques Silva, J.P., Sakallah, K.A.: Grasp: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

58 D. Lante and N. Manthey

14. Katebi, H., Sakallah, K.A., Marques-Silva, J.: Empirical study of the anatomy of
modern sat solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 343–356. Springer, Heidelberg (2011)

15. Böhm, M., Speckenmeyer, E.: A fast parallel sat-solver - efficient workload
balancing, (1994)

16. Martins, R., Manquinho, V., Lynce, I.: An overview of parallel sat solving. Con-
straints 17(3), 304–347 (2012)

17. Hölldobler, S., Manthey, N., Nguyen, V., Stecklina, J., Steinke, P.: A short overview
on modern parallel SAT-solvers. In: Wasito, I., et al. (ed.) ICACSIS, pp. 201–206
(2011)

18. Manthey, N.: Parallel SAT solving - using more cores. In: Pragmatics of
SAT(POS’11) (2011)

19. Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C.: Revisiting
clause exchange in parallel SAT solving. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 200–213. Springer, Heidelberg (2012)

20. Hyvärinen, A.E.J., Manthey, N.: Designing scalable parallel SAT solvers. In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 214–227.
Springer, Heidelberg (2012)

21. Lanti, D., Manthey, N.: Sharing information in parallel search with search space
partitioning. Technical Report 1, Knowledge Representation and Reasoning Group,
Technische Universität Dresden, 01062 Dresden, Germany (2013)

22. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

Fast Computation of the Multi-Points Expected
Improvement with Applications

in Batch Selection

Clément Chevalier1,2 and David Ginsbourger2(B)

1 Institut de Radioprotection et de Sûreté Nucléaire (IRSN),
31, avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France

2 IMSV, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland
{clement.chevalier,ginsbourger}@stat.unibe.ch

Abstract. The Multi-points Expected Improvement criterion (or q-EI)
has recently been studied in batch-sequential Bayesian Optimization.
This paper deals with a new way of computing q-EI, without using
Monte-Carlo simulations, through a closed-form formula. The latter
allows a very fast computation of q-EI for reasonably low values of q
(typically, less than 10). New parallel kriging-based optimization strate-
gies, tested on different toy examples, show promising results.

Keywords: Computer experiments · Kriging · Parallel optimization ·
Expected improvement

1 Introduction

In the last decades, metamodeling (or surrogate modeling) has been increasingly
used for problems involving costly computer codes (or “black-box simulators”).
Practitioners typically dispose of a very limited evaluation budget and aim at
selecting evaluation points cautiously when attempting to solve a given problem.

In global optimization, the focus is usually put on a real-valued function f
with d-dimensional source space. In this settings, Jones et al. [1] proposed the
now famous Efficient Global Optimization (EGO) algorithm, relying on a kriging
metamodel [2] and on the Expected Improvement (EI) criterion [3]. In EGO, the
optimization is done by sequentially evaluating f at points maximizing EI. A
crucial advantage of this criterion is its fast computation (besides, the analytical
gradient of EI is implemented in [4]), so that the hard optimization problem is
replaced by series of much simpler ones.

Coming back to the decision-theoretic roots of EI [5], a Multi-points Expected
Improvement (also called “q-EI”) criterion for batch-sequential optimization was
defined in [6] and further developed in [7,8]. Maximizing this criterion enables
choosing batches of q > 1 points at which to evaluate f in parallel, and is of
particular interest in the frequent case where several CPUs are simultaneously
available. Even though an analytical formula was derived for the 2-EI in [7], the

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 59–69, 2013.
DOI: 10.1007/978-3-642-44973-4 7, c© Springer-Verlag Berlin Heidelberg 2013

60 C. Chevalier and D. Ginsbourger

Monte Carlo (MC) approach of [8] for computing q-EI when q ⊆ 3 makes the
criterion itself expensive-to-evaluate, and particularly hard to optimize.

A lot of effort has recently been paid to address this problem. The pragmatic
approach proposed by Ginsbourger and Le Riche [8] consists in circumventing a
direct q-EI maximization, and replacing it by simpler strategies where batches
are obtained using an offline q-points EGO. In such strategies, the model updates
are done using dummy response values such as the kriging mean prediction (Krig-
ing Believer) or a constant (Constant Liar), and the covariance parameters are
re-estimated only when real data is assimilated. In [9] and [10], q-EI optimiza-
tion strategies were proposed relying on the MC approach, where the number of
MC samples is tuned online to discriminate between candidate designs. Finally,
Frazier [11] proposed a q-EI optimization strategy involving stochastic gradient,
with the crucial advantage of not requiring to evaluate q-EI itself.

In this article we derive a formula allowing a fast and accurate approxi-
mate evaluation of q-EI. This formula may contribute to significantly speed up
strategies relying on q-EI. The main result, relying on Tallis’ formula, is given
in Sect. 2. The usability of the proposed formula is then illustrated in Sect. 3
through benchmark experiments, where a brute force maximization of q-EI is
compared to three variants of the Constant Liar strategy. In particular, a new
variant (CL-mix) is introduced, and is shown to offer very good performances
at a competitive computational cost. For self-containedness, a slightly revisited
proof of Tallis’ formula is given in appendix.

2 Multi-Points Expected Improvement Explicit Formulas

In this section we give an explicit formula allowing a fast and accurate determin-
istic approximation of q-EI. Let us first give a few precisions on the mathemat-
ical settings. Along the paper, f is assumed to be one realisation of a Gaussian
Process (GP) with known covariance kernel and mean known up to some linear
trend coefficients, so that the conditional distribution of a vector of values of the
GP conditional on past observations is still Gaussian (an improper uniform prior
is put on the trend coefficients when applicable). This being said, most forth-
coming derivations boil down to calculations on Gaussian vectors. Let Y :=
(Y1, . . . , Yq) be a Gaussian Vector with mean m ∀ R

q and covariance matrix Σ.
Our aim in this paper is to explicitly calculate expressions of the following kind:

E

⎡⎣

max
i∈{1,...,q}

Yi − T

⎨

+

⎤

(1)

where (.)+ := max(., 0). In Bayesian optimization (say maximization), expecta-
tions and probabilities are taken conditional on response values at a given set of
n points (x1, . . . ,xn) ∀ X

n where X is the input set of f (often, a compact subset
of Rd, d ⊆ 1), the threshold T ∀ R is usually the maximum of those n available
response values, and Y is the vector of unknown responses at a given batch of q
points, Xq := (xn+1, . . . ,xn+q) ∀ X

q. In such framework, the vector m and the

Calculation of the Multi-Points EI Relying on Tallis’ Formula 61

matrix Σ are the so-called “Kriging mean” and “Kriging covariance” at Xq and
can be calculated relying on classical Kriging equations (see, e.g., [12]).

In order to obtain a tractable analytical formula for Expression (1), not
requiring any Monte-Carlo simulation, let us first give a useful formula obtained
by [13], and recently used in [14] for GP modeling with inequality constraints:

Proposition 1 (Tallis’ formulas). Let Z := (Z1, . . . , Zq) be a Gaussian Vec-
tor with mean m ∀ R

q and covariance matrix Σ ∀ R
q×q. Let b = (b1, . . . , bq) ∀

R
q. The expectation of any coordinate Zk under the linear constraint (∅j ∀

{1, . . . , q}, Zj ∈ bj) denoted by Z ∈ b can be expanded as follows:

E(Zk|Z ∈ b) = mk − 1
p

q⎦

i=1

Σik ϕmi,Σii
(bi) Φq−1 (c.i, Σ.i) (2)

where:

– p := P(Z ∈ b) = Φq(b − m, Σ)
– Φq(u, Σ) (u ∀ R

q, Σ ∀ R
q×q, q ⊆ 1) is the c.d.f. of the centered multivariate

Gaussian distribution with covariance matrix Σ.
– ϕm,σ2(.) is the p.d.f. of the univariate Gaussian distribution with mean m and

variance σ2

– c.i is the vector of Rq−1 with general term (bj − mj) − (bi − mi)
Σij

Σii
, j ←= i

– Σ.i is a (q − 1)× (q − 1) matrix obtained by computing Σuv − ΣiuΣiv

Σii
for u ←= i

and v ←= i. This matrix corresponds to the conditional covariance matrix of
the random vector Z−i := (Z1, . . . , Zi−1, Zi+1, . . . , Zq) knowing Zi.

For the sake of brevity, the proof of this Proposition is sent in the Appendix.
A crucial point for the practical use of this result is that there exist very fast
procedures to compute the c.d.f. of the multivariate Gaussian distribution. For
example, the work of Genz [15,16] have been used in many R packages (see,
e.g., [17,18]). The Formula (2) above is an important tool to efficiently compute
Expression (1) as shown with the following Property:

Proposition 2. Let Y := (Y1, . . . , Yq) be a Gaussian Vector with mean m ∀
R

q and covariance matrix Σ. For k ∀ {1, . . . , q} consider the Gaussian vectors
Z(k) := (Z(k)

1 , . . . , Z
(k)
q) defined as follows:

Z
(k)
j := Yj − Yk , j ←= k

Z
(k)
k := − Yk

Denoting by m(k) and Σ(k) the mean and covariance matrix of Z(k), and defining
the vector b(k) ∀ R

q by b
(k)
k = −T and b

(k)
j = 0 if j ←= k, the EI of Xq writes:

EI(Xq) =
q⎦

k=1

⎫

(mk − T)pk +
q⎦

i=1

Σ
(k)
ik ϕ

m
(k)
i ,Σ

(k)
ii

(b(k)i)Φq−1

⎬
c(k).i , Σ

(k)
.i

⎭
)

(3)

62 C. Chevalier and D. Ginsbourger

where:

– pk := P(Z(k) ∈ b(k)) = Φq(b(k) − m(k), Σ(k)).
pk is actually the probability that Yk exceeds T and Yk = maxj=1,...,q Yj.

– Φq(., Σ) and ϕm,σ2(.) are defined in Proposition 1
– c(k).i is the vector of Rq−1 constructed like in Proposition 1, by computing

(b(k)j − m
(k)
j) − (b(k)i − m

(k)
i)

Σ
(k)
ij

Σ
(k)
ii

, with j ←= i

– Σ
(k)
.i is a (q − 1) × (q − 1) matrix constructed from Σ(k) like in Proposition

1. It corresponds to the conditional covariance matrix of the random vector
Z(k)

−i := (Z(k)
1 , . . . , Z

(k)
i−1, Z

(k)
i+1, . . . , Z

(k)
q) knowing Z

(k)
i .

Proof 1. Using that 1{maxi∈{1,...,q} Yi∗T} =
∑q

k=1 1{Yk∗T, Yj∩Yk ∀j ∪=k}, we get

EI(Xq) = E

⎡⎣

max
i∈{1,...,q}

Yi − T

⎨ q⎦

k=1

1{Yk∗T, Yj∩Yk ∀j ∪=k}

⎤

=
q⎦

k=1

E
(
(Yk − T)1{Yk∗T, Yj∩Yk ∀j ∪=k}

)

=
q⎦

k=1

E

⎬
Yk − T

∣
∣
∣Yk ⊆ T, Yj ∈ Yk ∅j ←= k

⎭
P (Yk ⊆ T, Yj ∈ Yk ∅j ←= k)

=
q⎦

k=1

⎬
−T − E

⎬
Z

(k)
k

∣
∣
∣Z(k) ∈ b(k)

⎭⎭
P

⎬
Z(k) ∈ b(k)

⎭

Now the computation of pk := P
(
Z(k) ∈ b(k)

)
simply requires one call to the Φq

function and the proof can be completed by applying Tallis’ formula (2) to the
random vectors Z(k)(1 ∈ k ∈ q).

Remark 1. From Properties (1) and (2), it appears that computing q-EI requires
a total of q calls to Φq and q2 calls to Φq−1. The proposed approach performs
thus well when q is moderate (typically lower than 10). For higher values of q,
estimating q-EI by Monte-Carlo might remain competitive. Note that, when q
is larger (say, q = 50) and when q CPUs are available, one can always distribute
the calculations of the q2 calls to Φq−1 over these q CPUs.

Remark 2. In the particular case q = 1 and with the convention Φ0(., Σ) = 1,
Eq. (3) corresponds to the classical EI formula proven in [1,5].

Remark 3. The Multi-points EI can be used in a batch-sequential strategy
to optimize a given expensive-to-evaluate function f , as detailed in the next
Section. Moreover, a similar criterion can also be used to perform opti-
mization based on a Kriging model with linear constraints, such as the
one developed by Da Veiga and Marrel [14]. For example expressions like:
E

[(
maxi∈{1,...,q} Yi − T

)
+

|Y ∈ a
]
,a ∀ R

q, can be computed using Tallis’ for-
mula and the same proof.

Calculation of the Multi-Points EI Relying on Tallis’ Formula 63

3 Batch Sequential Optimization Using Multi-Points EI

Let us first illustrate Proposition 2 and show that the proposed q-EI calculation
based on Tallis’ formula is actually consistent with a Monte Carlo estimation.
From a kriging model based on 12 observations of the Branin-Hoo function [1],
we generated a 4-point batch (Fig. 1, left plot) and calculated its q-EI value
(middle plot, dotted line). The MC estimates converge to a value close to the
latter, and the relative error after 5 ⊂ 109 runs is less than 10−5. 4-point batches
generated from the three strategies detailed below are drawn on the right plot.

Fig. 1. Convergence (middle) of MC estimates to the q-EI value calculated with Propo-
sition 2 in the case of a batch of four points (shown on the left plot). Right: candidate
batches obtained by q-EI stepwise maximisation (squares), and the CL-min (circles)
and CL-max (triangles) strategies.

We now compare a few kriging-based batch-sequential optimization methods
on two different functions: the function x �⊥ − log(−Hartman6(x)) (see, e.g., [1]),
defined on [0, 1]6 and the Rastrigin function [19,20] in dimension two restricted
to the domain [0, 2.5]2. The first function in dimension 6 is unimodal, while
the second one has a lot of local optima (see: Fig. 2). The Rastrigin function is
one of the 24 noiseless test function of the Black-Box Optimization Benchmark
(BBOB) [19].

For each runs, we start with a random initial Latin hypercube design (LHS)
of n0 = 10 (Rastrigin) or 50 (Hartman6) points and estimate the covariance
parameters by Maximum Likelihood (here a Matérn kernel with ν = 3/2 is
chosen). For both functions and all strategies, batches of q = 6 points are added
at each iteration, and the covariance parameters are re-estimated after each

64 C. Chevalier and D. Ginsbourger

Fig. 2. Contour lines of the Rastrigin function (grayscale) and location of the global
optimizer (black triangle)

batch assimilation. Since the tests are done for several designs of experiments,
we chose to represent, along the runs, the relative mean squared error:

rMSE =
1
M

M⎦

i=1

⎫
y
(i)
min − yopt

yopt

)2

(4)

where y
(i)
min in the current observed minimum in run number i and yopt is the real

unknown optimum. The total number M of different initial designs of experi-
ments is fixed to 50. The tested strategies are:

– (1) q-EI stepwise maximization: q sequential d-dimensional optimizations are
performed. We start with the maximization of the 1-point EI and add this
point to the new batch. We then maximize the 2-point EI (keeping the first
point obtained as first argument), add the maximizer to the batch, and iterate
until q points are selected.

– (2) Constant Liar min (CL-min): We start with the maximization of the 1-
point EI and add this point to the new batch. We then assume a dummy
response (a“lie”) at this point, and update the Kriging metamodel with this
point and the lie. We then maximize the 1-point EI obtained with the updated
kriging metamodel, get a second point, and iterate the same process until a
batch of q points is selected. The dummy response has the same value over
the q − 1 lies, and is here fixed to the minimum of the current observations.

– (3) Constant Liar max (CL-max): The lie in this Constant Liar strategy is
fixed to the maximum of the current observations.

Calculation of the Multi-Points EI Relying on Tallis’ Formula 65

– (4) Constant Liar mix (CL-mix): At each iteration, two batches are generated
with the CL-min and CL-max strategies. From these two “candidate” batches,
we choose the batch with the best actual q-EI value, calculated based on
Proposition 2.

– (5) Random sampling.

Note that CL-min tends to explore the function near the current minimizer
(as the lie is a low value and we are minimizing f) while CL-max is more
exploratory. Thus, CL-min is expected to perform well on unimodal functions.
On the contrary, CL-max may perform better on multimodal functions. For all
the tests we use the DiceKriging and DiceOptim packages [4]. The optimizations
of the different criteria rely on a genetic algorithm using derivatives, available
in the rgenoud package [21]. Figure 3 represents the compared performances of
these strategies.

0 2 4 6 8 10

−
4

−
3

−
2

−
1

rMSE evolution, Hartman6

iteration

lo
g1

0(
rM

S
E

)

q−EI
CL−min
CL−max
CL−mix
random

0 2 4 6 8 10

−
9

−
8

−
7

−
6

−
5

−
4

−
3

rMSE evolution, Rastrigin

iteration

lo
g1

0(
rM

S
E

)

q−EI
CL−min
CL−max
CL−mix
random

Fig. 3. Compared performances of the five considered batch-sequential optimization
strategies, on two test functions.

From these plots we draw two main conclusions. From these plots we draw the
following conclusions: first, the q-EI stepwise maximization strategy outperforms
the strategies based on constant lies, CL-min and CL-max. However, the left
graph of Fig. 3 points out that the CL-min strategy seems particularly well-
adapted to the Hartman6 function. Since running a CL is computationally much
cheaper than a brute fore optimization of q-EI, it is tempting to recommend the
CL-min strategy for Hartman6. However, it is not straightforward to know in

66 C. Chevalier and D. Ginsbourger

advance which of CL-min or CL-max will perform better on a given test case.
Indeed, for example, CL-max outperforms CL-min on the Rastrigin function.

Now, we observe that using q-EI in the CL-mix heuristic enables very good
performances in both cases without having to select one of the two lie values
in advance. For the Hartman6 function, CL-mix even outperforms both CL-
min and CL-max and has roughly the same performance as a brute force q-
EI maximization. This suggests that a good heuristic might be to generate, at
each iteration, candidate batches obtained with different strategies (e.g. CL with
different lies) and to discriminate those batches using q-EI.

4 Conclusion

In this article we give a closed-form expression enabling a fast computation of
the Multi-points Expected Improvement criterion for batch sequential Bayesian
global optimization. This formula is consistent with the classical Expected
Improvement formula and its computation does not require Monte Carlo sim-
ulations. Optimization strategies based on this criterion are now ready to be
used on real test cases, and a brute maximization of this criterion shows promis-
ing results. In addition, we show that good performances can be achieved by
using a cheap-to-compute criterion and by discriminating the candidate batches
generated by such criterion with the q-EI. Such heuristics might be particularly
interesting when the time needed to generate batches becomes a computational
bottleneck, e.g. when q ⊆ 10 and calls to the Gaussian c.d.f. become expensive.

A perspective, currently under study, is to improve the maximization of q-EI
itself, e.g. through a more adapted choice of the algorithm and/or an analytical
calculation of q-EI’s gradient.

Acknowledgments. This work has been conducted within the frame of the ReDice
Consortium, gathering industrial (CEA, EDF, IFPEN, IRSN, Renault) and academic
(Ecole des Mines de Saint-Etienne, INRIA, and the University of Bern) partners around
advanced methods for Computer Experiments. Clément Chevalier gratefully acknowl-
edges support from the French Nuclear Safety Institute (IRSN). The authors also would
like to thank Dr. Sébastien Da Veiga for raising our attention to Tallis’ formula.

Appendix: Proof for Tallis’ Formula (2)

The proof proposed here follows exactly the method given in [13] in the particular
case of a centered Gaussian Vector with normalized covariance matrix (i.e. a
covariance matrix equal to the correlation matrix). Here, the proof is slightly
more detailed and applies in a more general case.

Let Z := (Z1, . . . , Zq) ∼ N (m, Σ) with m ∀ R
q and Σ ∀ R

q×q. Let b =
(b1, . . . , bq) ∀ R

q. Our goal is to calculate: E(Zk|Z ∈ b). The method proposed
by Tallis consists in calculating the conditional joint moment generating function
(MGF) of Z defined as follows:

MZ(t) := E(exp(t�Z)|Z ∈ b) (5)

Calculation of the Multi-Points EI Relying on Tallis’ Formula 67

It is known (see, e.g., [22]) that the conditional expectation of Zk can be obtained
by deriving such MGF with respect to tk, in t = 0. Mathematically this writes:

E(Zk|Z ∈ b) =
∂MZ(t)

∂tk

∣
∣
∣
∣
∣
t=0

(6)

The main steps of this proof are then to calculate such MGF and its derivative
with respect to any coordinate tk.

Let us consider the centered random variable Zc := Z − m. Denoting h =
b−m, conditioning on Z ∈ b or on Zc ∈ h are equivalent. The MGF of Zc can
be calculated as follows:

MZc(t) :=E(exp(t�Zc)|Zc ∈ h)

=
1
p

∫ h1

−∞
. . .

∫ hq

−∞
exp(t�u)ϕ0,Σ(u)du

=
1
p
(2π)− q

2 |Σ|− 1
2

∫ h1

−∞
. . .

∫ hq

−∞
exp

⎣

−1
2

(
u�Σ−1u − 2t�u

)
⎨

du

where p := P(Z ∈ b) and ϕv,Σ(.) denotes the p.d.f. of the multivariate nor-
mal distribution with mean v and covariance matrix Σ. The calculation can be
continued by noting that:

MZc (t) =
1

p
(2π)−

q
2 |Σ|− 1

2 exp

(
1

2
t∼Σt

)∫ h1

−∞
. . .

∫ hq

−∞
exp

(
−1

2
(u− Σt)∼ Σ−1 (u− Σt)

)
du

=
1

p
exp

(
1

2
t∼Σt

)
Φq(h− Σt, Σ)

where Φq(., Σ) is the c.d.f. of the centered multivariate normal distribution with
covariance matrix Σ.

Now, let us calculate for some k ∀ {1, . . . , q} the partial derivative ∂MZc (t)
∂tk

in t = 0, which is equal by definition to E(Zc
k|Zc ∈ h).

p E(Zc
k|Zc ∈ h) = p

∂MZc(t)
∂tk

∣
∣
∣
∣
∣
t=0

= 0 + 1.
∂

∂tk

⎛

⎜
⎝Φq

⎛

⎜
⎝h − tk

⎛

⎜
⎝

Σ1k

...
Σqk

⎞

⎟
⎠ , Σ

⎞

⎟
⎠

⎞

⎟
⎠

∣
∣
∣
∣
∣
tk=0

= −
q⎦

i=1

Σik

∫ h1

−∞
. . .

∫ hi−1

−∞

∫ hi+1

−∞
. . .

∫ hq

−∞
ϕ0,Σ(u−i, ui = hi)du−i

The last step is obtained applying the chain rule to x �⊥ Φq(x, Σ) at the
point x = h. Here, ϕ0,Σ(u−i, ui = hi) denotes the c.d.f. of the centered mul-
tivariate normal distribution at given points (u−i, ui = hi) := (u1, . . . , ui−1,
hi, ui+1, . . . , uq). Note that the integrals in the latter Expression are in dimen-
sion q − 1 and not q. In the ith term of the sum above, we integrate with respect

68 C. Chevalier and D. Ginsbourger

to all the q components except the component i. To continue the calculation we
can use the identity:

∅u ∀ R
q, ϕ0,Σ(u) = ϕ0,Σii

(ui)ϕΣ−1
ii Σiui,Σ−i,−i−ΣiΣ

−1
ii Σ�

i
(u−i) (7)

where Σi = (Σ1i, . . . , Σi−1i, Σi+1i, . . . , Σqi)� (Σi ∀ R
q−1) and Σ−i,−i is the

(q−1)×(q−1) matrix obtained by removing the line and column i from Σ. This
identity can be proven using Bayes formula and Gaussian vectors conditioning
formulas. Its use gives:

p E(Zc
k|Zc ≤ h) = −

q∑

i=1

Σikϕ0,Σii
(hi)Φq−1(h−i − Σ−1

ii Σihi, Σ−i,−i − ΣiΣ
−1
ii Σ�

i)

= −
q∑

i=1

Σikϕmi,Σii
(bi)Φq−1(h−i − Σ−1

ii Σihi, Σ−i,−i − ΣiΣ
−1
ii Σ�

i)

which finally delivers Tallis’ formula, see Eq. (2).

References

1. Jones, D.R., Schonlau, M., William, J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

2. Santner, T.J., Williams, B.J.: The Design and Analysis of Computer Experiments.
Springer, New York (2003)

3. Mockus, J.: Bayesian Approach to Global Optimization. Theory and Applications.
Kluwer Academic Publisher, Dordrecht (1989)

4. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: Two R pack-
ages for the analysis of computer experiments by kriging-based metamodelling and
optimization. J. Stat. Softw. 51(1), 1–55 (2012)

5. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seek-
ing the extremum. In: Dixon, L., Szego, E.G. (eds.) Towards Global Optimization,
pp. 117–129. Elsevier, Amsterdam (1978)

6. Schonlau, M.: Computer experiments and global optimization. PhD thesis, Uni-
versity of Waterloo (1997)

7. Ginsbourger, D.: Métamodèles multiples pour l’approximation et l’optimisation de
fonctions numériques multivariables. PhD thesis, Ecole nationale supérieure des
Mines de Saint-Etienne (2009)

8. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize opti-
mization. Computational Intelligence in Expensive Optimization Problems. Adap-
tation Learning and Optimization, vol. 2, pp. 131–162. Springer, Heidelberg (2010)

9. Janusevskis, J., Le Riche, R., Ginsbourger, D.: Parallel expected improvements for
global optimization: summary, bounds and speed-up (August 2011)

10. Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improve-
ments for the asynchronous parallel global optimization of expensive functions:
potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS,
vol. 7219, pp. 413–418. Springer, Heidelberg (2012)

11. Frazier, P.I.: Parallel global optimization using an improved multi-points expected
improvement criterion. In: INFORMS Optimization Society Conference, Miami FL
(2012)

Calculation of the Multi-Points EI Relying on Tallis’ Formula 69

12. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New
York (1999)

13. Tallis, G.: The moment generating function of the truncated multi-normal distri-
bution. J. Roy. Statist. Soc. Ser. B 23(1), 223–229 (1961)

14. Da Veiga, S., Marrel, A.: Gaussian process modeling with inequality constraints.
Annales de la Faculté des Sciences de Toulouse 21(3), 529–555 (2012)

15. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput.
Graph. Stat. 1, 141–149 (1992)

16. Genz, A., Bretz, F.: Computation of Multivariate Normal and t Probabilities.
Springer, Heidelberg (2009)

17. Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B.,
Hothorn, T.: Mvtnorm: Multivariate Normal and t Distributions. R package version
0.9-9992 (2012)

18. Azzalini, A.: mnormt: The multivariate normal and t distributions. R package
version 1.4-5 (2012)

19. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion bencharking 2009: Presentation of the noiseless functions. Technical report,
Research Center PPE, 2009 (2010)

20. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. Technical report, INRIA 2009
(2010)

21. Mebane, W., Sekhon, J.: Genetic optimization using derivatives: The rgenoud pack-
age for R. J. Stat. Softw. 42(11), 1–26 (2011)

22. Cressie, N., Davis, A., Leroy Folks, J.: The moment-generating function and neg-
ative integer moments. Am. Stat. 35(3), 148–150 (1981)

R2-EMOA: Focused Multiobjective Search
Using R2-Indicator-Based Selection

Heike Trautmann1(B), Tobias Wagner2, and Dimo Brockhoff3

1 Department of Information Systems, University of Münster, Münster, Germany
trautmann@uni-muenster.de

2 Institute of Machining Technology, TU Dortmund University, Dortmund, Germany
wagner@isf.de

3 INRIA Lille Nord-Europe, Dolphin Team, Villeneuve d’Ascq, France
dimo.brockhoff@inria.fr

Abstract. An indicator-based evolutionary multiobjective optimization
algorithm (EMOA) is introduced which incorporates the contribution to
the unary R2-indicator as the secondary selection criterion. First exper-
iments indicate that the R2-EMOA accurately approximates the Pareto
front of the considered continuous multiobjective optimization problems.
Furthermore, decision makers’ preferences can be included by adjusting
the weight vector distributions of the indicator which results in a focused
search behavior.

Keywords: Multiobjective optimization · Performance assessment ·
EMOA · R2-indicator · Indicator-based selection · Preferences

1 Introduction

Throughout this paper, we consider multiobjective optimization problems con-
sisting of d objectives Yj and objective functions fj : Rn → R with 1 ≤ j ≤ d. In
the context of performance assessment of multiobjective optimizers, the (binary)
R-indicator family was introduced by Hansen and Jaszkiewicz [5]. It is based on
a set of utility functions. In total, three different variants were proposed which
differ in the way the utilities are evaluated and combined – the ratio of one set
being better than the other (R1), the mean difference in utilities (R2), or the
mean relative difference in utilities (R3). In particular, the second variant R2
is one of the most recommended performance indicators [8] together with the
hypervolume (HV, [9]) which directly measures the dominated objective hyper-
volume bounded by a reference point dominated by all solutions. Recently, we
defined an equivalent unary version of this R2 indicator [3]. In case the standard
weighted Tchebycheff utility function with ideal point i is used, it is defined as

R2(A,Λ, i) =
1

|Λ|
∑

λ∈Λ

min
a∈A

{

max
j∈{1,...,d}

{λj |ij − aj |}
}

for a solution set A and a given set of weight vectors λ = (λ1, . . . , λd) ∈ Λ.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 70–74, 2013.
DOI: 10.1007/978-3-642-44973-4 8, c∈ Springer-Verlag Berlin Heidelberg 2013

R2-EMOA: Focused Multiobjective Search 71

Theoretical and experimental comparisons to the HV for d = 2 revealed
that, contrarily to common assumptions, the R2 indicator even has a stronger
bias towards the center of the Pareto front than the HV [3]. Furthermore, it
could be proven that for d = 2 the optimal placement of a point w.r.t. the R2-
indicator solely depends on its two nearest neighbors and a subset of Λ. In [6],
the influence of the R2-indicator parametrization on the optimal distribution
of μ points on the true Pareto front (PF) regarding R2 was investigated. It
was shown that this distribution heavily depends on the position of the ideal
point, as well as on the domain and distribution of the weight vectors. Thus,
preferences of the decision maker can be reflected by a specifically parametrized
R2-indicator. In [1] a similar approach relying on linear utility functions was used
to identify knees of Pareto fronts. In this paper, we will investigate whether the
approximated optimal distributions of μ points regarding R2 based on different
preference articulations [6] can be accurately reproduced by a greedy R2-EMOA.

2 R2-EMOA

The proposed R2-EMOA implements a steady state strategy based on the con-
tribution to the unary R2-indicator (see Algorithm 1).

Fig. 1. |Λ| = 19 for γ = 1
(black dashed line) and
γ = 4 (red solid line).

1: draw multiset P with μ elements ∈ R
n at random

2: repeat
3: generate offspring z ∈ R

n from P by variation
4: P = P ∪ {z}
5: non-dominated sorting:

build ranking R1, . . . , Rh from P
6: ∀x ∈ Rh : r(x) = R2(P \ {x};Λ; i)
7: x∗ = argmin{r(x) : x ∈ Rh}
8: P = P \ {x∗}
9: until stopping criterion fulfilled

Algorithm 1: Pseudo code of the R2-EMOA.

3 Experiments

Experiments were conducted to empirically show that the evolutionary proce-
dure (selection pressure, variation) of the R2-EMOA is adequate to accurately
approximate the R2-optimal distributions. This cannot be directly assumed, as
the greedy strategy of the EMOA which only changes single solutions could be
stuck in local optima of the objective functions or in suboptimal distributions.1

For the experiments, three bi-objective test functions with different problem
characteristics were selected: ZDT1 (convex PF, n = 30) [7], DTLZ1 (linear PF,

1 For the HV indicator, it has been, for example, theoretically proven that such a
greedy strategy cannot always find a solution set with optimal HV value [2,10].

72 H. Trautmann et al.

Fig. 2. Results of best R2-EMOA runs for increasing γ on DTLZ1 (left), DTLZ2 (mid-
dle) and ZDT1 (right). The movement of the x-axis positions for γ ∈ {1, 4, 8} is shown.
The optimal distributions regarding HV are reflected by dashed vertical lines.

n = 6), and DTLZ2 (concave PF, n = 11) [4]. On each function, ten independent
runs were conducted using simulated binary crossover (SBX) and polynomial
mutation (pc = 0.9, pm = 1/n, ηc = 15, ηm = 20), 150.000 function evalua-
tions (FE), ideal point i = (0, 0)∩, and 501 weight vectors. A population size of
μ=10 was chosen in order to allow a clear visualization of the results and the
comparison to the reference distributions of [6].

The influence of restricted weight vector domains and altered weight vector
distributions on the outcome of the R2-EMOA results is considered. There-
fore, Algorithm 1 of [6] was used to generate weight vector distributions with
increasing focus on the extremes of the weight vector domain (see Fig. 1). This
is reflected by an increased value of γ while γ = 1 corresponds to equally distrib-
uted weight vectors in [0, 1]2. The R2-EMOA is able to accurately approximate
the optimal distributions. With increasing γ, the points tend to drift towards
the extremes of the front (Fig. 2) which is perfectly in line with the results of [6].

0.0 0.2 0.4

0.
0

0.
2

0.
4

Y1

Y 2

0.0 0.4 0.8

0.
0

0.
4

0.
8

Y1

Y 2

0.0 0.4 0.8

0.
0

0.
4

0.
8

Y1

Y 2

0.0 0.2 0.4

0.
0

0.
2

0.
4

Y1

Y 2

0.0 0.4 0.8

0.
0

0.
4

0.
8

Y1

Y 2

0.0 0.4 0.8

0.
0

0.
4

0.
8

Y1

Y 2

Fig. 3. Results of the best R2-EMOA runs (black dots) with restricted weight vector
domains for DTLZ1 (left), DTLZ2 (middle) and ZDT1 (right). The areas within the
intersections with the true PF (solid line) are highlighted.

R2-EMOA: Focused Multiobjective Search 73

Fig. 4. Boxplots of R2 values at final R2-EMOA generation for DTLZ1 (left), DTLZ2
(middle) and ZDT1 (right) for altered weight distributions with parameter γ (top) or
restricted weight space (bottom) corresponding to Fig. 3. The R2 value of the approx-
imated optimal 10-distribution of R2 in [6] is visualized by a red horizontal line.

Individually for each problem, distributions close to the optimal ones regarding
HV can be obtained for a specific choice of γ.

Moreover, the first component of the weight vector domain was restricted
to one or two intervals within [0, 1]. From [6] it is known that in this setting
the optimal solutions regarding R2 lie within the target cone defined by the
two outmost weight vectors of the interval(s). This is reflected by the respective
R2-EMOA results (Fig. 3).

Figure 4 relates the final R2 values of all experiments to the approximated
optimal 10-distributions regarding R2 [6]. It can be observed that the variance of
the R2-EMOA results is small. Sometimes even slightly better approximations
of the optimal distributions are obtained than in [6]. This is rather surprising
as these reference solutions were determined based on a global optimization on
the front. The evolutionary mechanism and the greedy selection seem to provide
efficient heuristics for the considered class of problems.

4 Conclusions and Outlook

First experiments show very promising results of the R2-EMOA regarding solu-
tion quality and the possibility of incorporating preferences of the decision
maker. In future studies, the R2-EMOA will be theoretically and empirically
compared to other EMOA optimizing the R2-indicator, such as MOEA/D and

74 H. Trautmann et al.

MSOPS. Furthermore, theoretical derivations of optimal distributions of μ solu-
tions regarding R2 are needed.

Acknowledgements. This paper is based on investigations of the project D5 “Syn-
thesis and multi-objective model-based optimization of process chains for manufac-
turing parts with functionally graded properties” as part of the collaborative research
center SFB/TR TRR 30 and the project B4 = C4 of the Collaborative Research Center
SFB 823, which are kindly supported by the Deutsche Forschungsgemeinschaft (DFG).
In addition, the authors acknowledge support by the French national research agency
(ANR) within the Modèles Numérique project “NumBBO - Analysis, Improvement
and Evaluation of Numerical Blackbox Optimizers” (ANR-12-MONU-0009-03).

References

1. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective
optimization. In: Yao, X., Burke, E.K., Lozano, J., Smith, J., Merelo-Guervós, J.,
Bullinaria, J.A., Rowe, J.E., Tino, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)

2. Bringmann, K., Friedrich, T.: Convergence of hypervolume-based archiving algo-
rithms I: effectiveness. In: Genetic and Evolutionary Computation Conference
(GECCO 2011), pp. 745–752. ACM, New York (2011)

3. Brockhoff, D., Trautmann, H., Wagner, T.: On the properties of the R2 indicator.
In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 465–
472. ACM, New York (2012)

4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Congress on Evolutionary Computation (CEC 2002), pp.
825–830. IEEE Press, New Jersey (2002)

5. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the non-
dominated set. Technical report, Institute of Mathematical Modeling, Technical
University of Denmark (1998), IMM Technical Report IMM-REP-1998-7

6. Wagner, T., Trautmann, H., Brockhoff, D.: Preference articulation by means of the
R2 indicator. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw,
J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 81–95. Springer, Heidelberg (2013)

7. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

8. Zitzler, E., Knowles, J.D., Thiele, L.: Quality assessment of Pareto set approxima-
tions. In: Branke, J., Deb, K., Miettinen, K., Sffilowiński, R. (eds.) Multiobjective
Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008)

9. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

10. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE
Trans. Evol. Comput. 14(1), 58–79 (2010)

A Heuristic Algorithm for the Set Multicover
Problem with Generalized Upper Bound

Constraints

Shunji Umetani1(B), Masanao Arakawa2, and Mutsunori Yagiura3

1 Osaka University, Suita 565-0871, Japan
umetani@ist.osaka-u.ac.jp

2 Fujitsu Limited, Kawasaki 211-8588, Japan
arakawa.masanao@jp.fujitsu.com

3 Nagoya University, Nagoya 464-8601, Japan
yagiura@nagoya-u.jp

Abstract. We consider an extension of the set covering problem (SCP)
introducing (i) multicover and (ii) generalized upper bound (GUB) con-
straints that arise in many real applications of SCP. For this problem,
we develop a 2-flip neighborhood local search algorithm with a heuristic
size reduction algorithm, in which a new evaluation scheme of variables
is introduced taking account of GUB constraints. According to compu-
tational comparison with the latest version of a mixed integer program-
ming solver, our algorithm performs quite effectively for various types of
instances, especially for very large-scale instances.

1 Introduction

The set covering problem (SCP) is one of representative combinatorial optimiza-
tion problems. We are given a ground set of m elements i ⊆ M = {1, . . . , m},
n subsets Sj ∀ M (|Sj | ∅ 1) and costs cj(> 0) for j ⊆ N = {1, . . . , n}. We
say that X ∀ N is a cover of M if

⎡
j∈X Sj = M holds. The goal of SCP is

to find a minimum cost cover X of M . The SCP is formulated as a 0–1 integer
programming (IP) problem as follows:

min.
⎣

j∈N

cjxj

s.t.
⎣

j∈N

aijxj ∅ 1, i ⊆ M,

xj ⊆ {0, 1}, j ⊆ N,

(1)

where aij = 1 if i ⊆ Sj holds and aij = 0 otherwise, and xj = 1 if j ⊆ X holds
and xj = 0 otherwise, respectively.

The SCP is often referred in the literature that it has many important appli-
cations [2], e.g., crew scheduling, vehicle routing, facility location, and logical
analysis of data. However, it is often difficult to formulate problems in real

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 75–80, 2013.
DOI: 10.1007/978-3-642-44973-4 9, c∈ Springer-Verlag Berlin Heidelberg 2013

76 S. Umetani et al.

applications into the SCP, because they often have additional side constraints
in practice. Most practitioners accordingly formulate them into general mixed
integer programming (MIP) problem and apply general purpose solvers, which
are usually less efficient compared to solvers specially tailored to SCP.

In this paper, we consider an extension of SCP introducing (i) multicover
and (ii) generalized upper bound (GUB) constraints, which arise in many real
applications of SCP. The multicover constraint is a generalization of covering
constraint, in which each element i ⊆ M must be covered at least bi ⊆ Z+ (Z+ is
the set of non-negative integers) times. GUB constraint is defined as follows. We
are given a partition {G1, . . . , Gk} of N (∈h ←= h∗, Gh ⊂ Gh′ = ∅,

⎡k
h=1 Gh = N).

For each block Gh ∀ N (h ⊆ K = {1, . . . , k}), the number of selected subsets Sj

(j ⊆ Gh) is constrained to be at most dh(⊥ |Gh|). We call this problem the set
multicover problem with GUB constraints (SMCP-GUB).

The SMCP-GUB is NP-hard, and the (supposedly) simpler problem of judg-
ing the existence of a feasible solution is NP-complete. We accordingly consider
the following formulation of SMCP-GUB that allows violations of the multi-
cover constraints and introduces a penalty function with a penalty weight vector
w = (w1, . . . , wm) ⊆ R

m
+ :

min. z(x) =
⎣

j∈N

cjxj +
⎣

i∈M

wiyi

s.t.
⎣

j∈N

aijxj + yi ∅ bi, i ⊆ M,

⎣

j∈Gh

xj ⊥ dh, h ⊆ K,

xj ⊆ {0, 1}, j ⊆ N,
yi ⊆ {0, . . . , bi}, i ⊆ M.

(2)

For a given x ⊆ {0, 1}n, we can easily compute an optimal y by yi = max{bi −⎨
j∈N aijxj , 0}. We note that when y∩ = 0 holds for an optimal solution (x∩,y∩)

of SMCP-GUB under the soft multicover constraints, x∩ is also optimal under
the original (hard) multicover constraints. Moreover, for an optimal solution
x∩ under hard multicover constraints, (x∩,0) is also optimal with respect to
soft multicover constraints if the values of wi are sufficiently large, e.g., if
wi >

⎨
j∈N cj holds for all i ⊆ M . We accordingly set wi =

⎨
j∈N cj + 1

for all i ⊆ M .
In this paper, we proposes a 2-flip neighborhood local search algorithm with

an efficient mechanism to find improved solutions. The above generalization of
SCP substantially extends the variety of its applications. However, GUB con-
straints often make the pricing method less effective (which is known to be very
effective for large-scale instances of SCP), because GUB constraints prevent solu-
tions from containing highly evaluated variables together. To overcome this, we
develop a heuristic size reduction algorithm, in which a new evaluation scheme
of variables is introduced taking account of GUB constraints.

A Heuristic Algorithm for the Set Multicover Problem 77

2 Lagrangian Relaxation and Subgradient Method

For a given vector u = (u1, . . . , um) ⊆ R
m
+ , called the Lagrangian multiplier

vector, the Lagrangian relaxation of SMCP-GUB is defined as follows:

min. zLR(u) =
⎣

j∈N

cjxj +
⎣

i∈M

wiyi +
⎣

i∈M

ui

⎤

⎦bi −
⎣

j∈N

aijxj − yi

⎫

⎬

=
⎣

j∈N

⎭

cj −
⎣

i∈M

aijui

)

xj +
⎣

i∈M

yi(wi − ui) +
⎣

i∈M

biui (3)

s.t.
⎣

j∈Gh

xj ⊥ dh, h ⊆ K,

xj ⊆ {0, 1}, j ⊆ N,

yi ⊆ {0, . . . , bi}, i ⊆ M,

where we call c̃j(u) = cj − ⎨
i∈M aijui the Lagrangian cost associated with

column j ⊆ N . For any u ⊆ R
m
+ , zLR(u) gives a lower bound on the optimal

value of SMCP-GUB z(x∩). The problem of finding a Lagrangian multiplier
vector u that maximizes zLR(u) is called the Lagrangian dual problem.

A common approach to compute a near optimal Lagrangian multiplier vec-
tor u is the subgradient method. When huge instances of SCP are solved, the
computing time spent on the subgradient method becomes very large if a naive
implementation is used. Caprara et al. [1] developed a variant of pricing method
on the subgradient method. They define a dual core problem consisting of a
small subset of columns Cd ∼ N (|Cd| � |N |), chosen among those having the
lowest Lagrangian costs c̃j(u) (j ⊆ Cd), and iteratively update the dual core
problem in a similar fashion to that used for solving large scale LP problems.
In order to solve huge instances of SMCP-GUB, we also introduce their pricing
method into the basic subgradient method (BSM) described in [3].

3 The 2-flip Neighborhood Local Search Algorithm

The local search (LS) starts from an initial solution x and repeats replacing x
with a better solution x∗ in its neighborhood NB(x) until no better solution
is found in NB(x). For a positive integer r, the r-flip neighborhood NBr(x) is
defined by NBr(x) = {x∗ ⊆ {0, 1}n | d(x,x∗) ⊥ r}, where d(x,x∗) = |{j ⊆ N |
xj ←= x∗

j}| is the Hamming distance between x and x∗. In other words, NBr(x) is
the set of solutions obtained from x by flipping at most r variables. In our LS,
the r is set to 2. In order to improve efficiency, our LS searches NB1(x) first,
and NB2(x) \ NB1(x) only if x is locally optimal with respect to NB1(x).

Yagiura et al. [4] developed an LS with the 3-flip neighborhood for SCP. They
derived conditions that reduce the number of candidates in NB2(x) \ NB1(x)
and NB3(x) \ NB2(x) without sacrificing the solution quality. However, those
conditions are not applicable to the 2-flip neighborhood for SMCP-GUB because

78 S. Umetani et al.

of GUB constraints. We therefore propose new conditions that reduce the number
of candidates in NB2(x)\NB1(x) taking account of GUB constraints. As a result,
the number of solutions searched by our algorithm becomes O(n + kν + n∗τ)
while the size of NB2 is O(n2), where ν = maxj∈N |Sj |, n∗ =

⎨
j∈N xj and

τ = maxj∈N

⎨
i∈Sj

|Ni| for |Ni| = {j ⊆ N |i ⊆ Sj}.
Since the region searched in a single application of LS is limited, LS is usually

applied many times. When a locally optimal solution is obtained, a standard
strategy of our algorithm is to update penalty weights and to resume LS from
the obtained locally optimal solution. We accordingly evaluate solutions with an
alternative evaluation function ẑ(x), where the original penalty weight vector w
is replaced with ŵ = (ŵ1, . . . , ŵm) ⊆ R

m
+ . Our algorithm iteratively applies LS,

updating the penalty weight vector ŵ after each call to LS.
Starting from the original penalty weight vector ŵ ≡ w, the penalty weight

vector ŵ is updated as follows. Let xbest denote the best feasible solution with
respect to the original objective function z(x). If the previous locally opti-
mal solution x satisfies ẑ(x) ∅ z(xbest), our algorithm uniformly decreases the
penalty weights ŵi (i ⊆ M). Otherwise, our algorithm increases the penalty
weights ŵi (i ⊆ M) in proportion to the amount of violation of the ith multi-
cover constraint.

4 Heuristic Reduction of Problem Sizes

For a near optimal Lagrangian multiplier vector u, the Lagrangian costs c̃j(u)
give reliable information on the overall utility of selecting columns j ⊆ N for
SCP. Based on this property, the Lagrangian costs c̃j(u) are often utilized to
solve huge instances of SCP, e.g., several heuristic algorithms successively solve
a number of subproblems, called primal core problems, consisting of a small
subset of columns Cp ∼ N (|Cp| � |N |), which are chosen among those having
low Lagrangian costs c̃j(u) [1,2,4].

The Lagrangian costs c̃j(u) are unfortunately unreliable for selecting columns
j ⊆ N for SMCP-GUB, because GUB constraints often prevent solutions from
containing more than dh variables xj with the lowest Lagrangian costs c̃j(u). To
overcome this, we develop an evaluation scheme of columns j ⊆ N for SMCP-
GUB taking account of GUB constraints. The main idea of our algorithm is
that we modify the Lagrangian costs c̃j(u) to reduce the number of redundant
columns j ⊆ Cp resulting from GUB constraints.

For each block Gh (h ⊆ K), let γh be the value of the (dh + 1)st lowest
Lagrangian cost c̃j(u) among those for columns in Gh, where we set γh ≡ 0
if dh = |Gh| holds. We then define a score ĉj(u) for a column j ⊆ Gh by
ĉj(u) = c̃j(u) − γh if γh < 0 holds, and ĉj(u) = c̃j(u) otherwise. That is, we
normalize the Lagrangian costs c̃j(u) so that at most dh columns have negative
scores ĉj(u) < 0 for each block Gh (h ⊆ K). Let n∗ =

⎨
j∈N xj be the number of

selected subsets for a solution x. Given a solution x and a Lagrangian multiplier
vector u, a primal core problem is defined by a subset Cp ∼ N consisting of (i)
columns j ⊆ Ni with the bi lowest scores ĉj(u) for each i ⊆ M , and (ii) columns
j ⊆ N with the 10n∗ lowest scores ĉj(u).

A Heuristic Algorithm for the Set Multicover Problem 79

Table 1. The benchmark instances for SMCP-GUB and time limits for our algorithm
LS-SR and the MIP solver CPLEX (in seconds)

Instance Rows Columns Density Instance types (dh/|Gh|) Time limit

(%) Type1 Type2 Type3 Type4 LS-SR CPLEX

G.1–G.5 1000 10,000 2.0 1/10 10/100 5/10 50/100 600 3600
H.1–H.5 1000 10,000 5.0 1/10 10/100 5/10 50/100 600 3600
I.1–I.5 1000 50,000 1.0 1/50 10/500 5/50 50/500 600 3600
J.1–J.5 1000 100,000 1.0 1/50 10/500 5/50 50/500 600 3600
K.1–K.5 2000 100,000 0.5 1/50 10/500 5/50 50/500 1200 7200
L.1–L.5 2000 200,000 0.5 1/50 10/500 5/50 50/500 1200 7200
M.1–M.5 5000 500,000 0.25 1/50 10/500 5/50 50/500 3000 18,000
N.1–N.5 5000 1,000,000 0.25 1/100 10/1000 5/100 50/1000 3000 18,000

5 Computational Results

We first prepared eight classes of random instances for SCP, where each class
has five instances. We denote instances in class G as G.1, . . . , G.5, and other
instances in classes H–N similarly. The summary of these instances are given
in Table 1, where the density is defined by

⎨
i∈M

⎨
j∈N aij/mn and the costs

cj are random integers taken from interval [1, 100]. For each SCP instance, we
generate four types of SMCP-GUB instances with different values of parameters
dh and |Gh| as shown in Table 1, where all blocks Gh (h ⊆ K) have the same
size |Gh| and upper bound dh for each instance. Here, the right-hand sides of
multicover constraints bi are random integers taken from interval [1, 5].

We compared our algorithm, called the local search algorithm with the heuris-
tic size reduction (LS-SR), with one of the latest mixed integer program (MIP)
solver called CPLEX12.3, where they were tested on an IBM-compatible per-
sonal computer (Intel Xeon E5420 2.5 GHz, 4 GB memory) and were run on
a single thread. Table 1 also shows the time limits in seconds for LS-SR and
CPLEX12.3, respectively. We tested two variants of LS-SR: LS-SR1 evaluates
variables xj with the proposed score ĉj(x), and LS-SR2 uses the Lagrangian
cost c̃j(x) in the heuristic reduction of problem sizes. We illustrate in Fig. 1
their comparison for each type of SMCP-GUB instances with respect to the rel-
ative gap z(x)−zLP

zLP
× 100, where zLP is the optimal value of LP relaxation for

SMCP-GUB. The horizontal axis shows the classes of instances G–N, and the
vertical axis shows the average relative gap for five instances of each class.

We first observe that LS-SR1 and LS-SR2 achieve better upper bounds than
CPLEX12.3 for types 3 and 4 instances, especially large instances with 10,000
variables or more. One of the main reasons for this is that the proposed algo-
rithms evaluate a series of candidate solutions efficiently while CPLEX12.3 con-
sumes much computing time for solving LP relaxation problems. We also observe
that LS-SR1 achieves much better upper bounds than those of LS-SR2 and
CPLEX12.3 for types 1 and 2 instances.

80 S. Umetani et al.

Fig. 1. Comparison of LS-SR and CPLEX12.3 on each instance type

6 Conclusion

In this paper, we considered an extension of SCP called the set multicover prob-
lem with the generalized upper bound constraints (SMCP-GUB). For this prob-
lem, we develop a 2-flip neighborhood local search algorithm with a heuristic size
reduction algorithm, in which a new evaluation scheme of variables is introduced
taking account of GUB constraints. According to computational comparison on
benchmark instances with the latest version of a MIP solver called CPLEX12.3,
our algorithm performs quite effectively for various types of instances, especially
for very large-scale instances.

References

1. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem.
Oper. Res. 47, 730–743 (1999)

2. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann.
Oper. Res. 98, 353–371 (2000)

3. Umetani, S., Yagiura, M.: Relaxation heuristics for the set covering problem. J.
Oper. Res. Soc. Jpn. 50, 350–375 (2007)

4. Yagiura, M., Kishida, M., Ibaraki, T.: A 3-flip neighborhood local search for the set
covering problem. Eur. J. Oper. Res. 172, 472–499 (2006)

A Genetic Algorithm Approach
for the Multidimensional Two-Way

Number Partitioning Problem

P.C. Pop1(B) and O. Matei2

1 Department of Mathematics and Informatics, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania
petrica.pop@ubm.ro

2 Department of Electrical Engineering, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

oliviu.matei@holisun.com

Abstract. This paper addresses the problem of partitioning a set of
vectors into two subsets such that the sums per every coordinate should
be exactly or approximately equal. This problem, introduced by Kojic
[8], is called the multidimensional two-way number partitioning problem
(MDTWNPP) and generalizes the classical two-way number partition-
ing problem. We propose an efficient genetic algorithm based heuristic
for solving the multidimensional two-way number partitioning problem.
The performances of our genetic algorithm have been compared with
the existing numerical results obtained by CPLEX based on an integer
linear programming formulation of the problem. The obtained prelimi-
nary results, in the case of medium and large instances, reveal that our
proposed methodology performs very well in terms of both quality of
the solutions and the computational times compared with the previous
method of solving the MDTWNPP.

Keywords: Number partitioning problem · Genetic algorithms · Com-
binatorial optimization

1 Introduction

Number partitioning problem is a classical, challenging and surprisingly difficult
problem in combinatorial optimization. Given a set S of n integers, the two-way
number partitioning problem (TWNPP) asks for a division of S into two subsets
such that the sums of numbers in each subset should be equal or are close to be
equal.

Though the number partitioning problem is NP-complete (see [4]), there have
been proposed heuristic algorithms that solve the problem in many instances
either optimally or approximately: the set differencing heuristic introduced by
Karmarkar and Karp [7], a Simulated Annealing algorithm by Johnson et al. [6],

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 81–86, 2013.
DOI: 10.1007/978-3-642-44973-4 10, c© Springer-Verlag Berlin Heidelberg 2013

82 P.C. Pop and O. Matei

genetic algorithm by Ruml et al. [9], GRASP by Arguello et al. [1], Tabu Search
by Glover and Laguna [5], memetic algorithm by Berretta et al. [2], etc.

The problem has captioned a lot of attention due to its theoretical aspects
and important real-world applications. For a more detailed description of the
applications we refer to [3].

The multidimensional two-way number partitioning problem (MDTWNPP)
was introduced by Kojic [8] and is a generalization of the TWNPP where instead
of numbers we have a set of vectors we are looking for a partition of the vectors
into two subsets such that the sums per every coordinate should be as close as
possible.

The MDTWNPP is NP-hard, as it reduces when the vectors have dimension
one to the TWNPP which is known to be an NP-hard problem. There is little
research being done in mathematical modeling and solution methods for this
problem. Kojic [8] described an integer programming formulation and tested the
model on randomly generated sets using CPLEX, which as far as we know is
the only approach to solve the problem. The obtained experimental results show
that the MDTWNPP is very hard to solve even in the case of medium instances.

The aim of this paper is to describe a novel use of genetic algorithms with the
goal of solving the multidimensional two-way number partitioning problem. The
results of preliminary computational experiments are presented, analyzed and
compared with the previous method introduced by Kojic [8]. The results reveal
that our proposed methodology, in the case of medium and large instances,
performs very well in terms of both quality of the solutions obtained and the
computational times.

2 Definition of the Problem

Given a set of n vectors of dimension m

S = {vi | vi = (vi1, vi2, ..., vim), i ⊆ {1, ..., n}, m ⊆ N}
then according to Kojic [8] the multidimensional two-way number partitioning
problem consists in splitting the elements of S into two sets, S1 and S2 such that

1. S1 ∀ S2 = S and S1 ∅ S2 = ∈;
2. the sums of elements in the subsets S1 and S2 are equal or almost equal for

all the coordinates.

If we introduce the variable t that denotes the greatest difference in sums per
coordinate, i.e.

t = max
{

∣
∣
∑

i∈S1

vij −
∑

i∈S2

vij
∣
∣ j ⊆ {1, ...,m}

}

then the objective function of the MDTWNPP is to minimize t. If min t = 0
then the partition will be called perfect partition for obvious reasons.

The MDTWNPP can be generalized easily to the case where a set of vectors
is partitioned into a given number of subsets rather than into two subsets.

A Genetic Algorithm Approach for the MDTWNPP 83

3 The Genetic Algorithm for Solving the MDMWNPP

In this section, we give the description of our genetic algorithm for solving the
multidimensional two-way number partitioning problem.

We used a binary representation (encoding), where every chromosome is a
fixed size (n-dimensional vector) ordered string of bits 0 or 1, identifying the set
partition as assigned to the vectors. This representation ensures that the set of
vectors belonging to the set S is partitioned into two subsets S1 and S2.

Concerning the initial population, experiments have been carried out with
two different ways of generating the initial population: random generation and
partially randomly and partially based on the problem structure. In the lat-
ter case, we picked randomly a number q ⊆ {2, ..., n} and then for the vectors
belonging to {2, ..., q} the genes are generated randomly and the other vectors
are partitioned iteratively such that by adding each vector we reduce the great-
est difference in sums per coordinate. Generating the population using as well
the information about the problem structure permitted us to reduce the global
fitness of the initial population with about 50% in comparison to the randomly
generation of the initial population.

The fitness value of the MDTWNPP, for a given partition of the vectors into
two subsets is given by the greatest difference in sums per each coordinate and
the aim of the problem is to find the partition that minimize this value.

Genetic operators are used in genetic algorithms to combine existing solutions
into others (crossover-like operators) and to generate diversity (mutation-like
operators). In our case we selected the two parents using the binary tournament
method, where two solutions, called parents, are picked from the population,
their fitness is compared and the better solution is chosen for a reproductive
trial. In order to produce a child, two binary tournaments are held, each of
which produces one parent. We have experimented both single and double point
crossover. Since there was not a big difference in the results we got from both
methods, we decided to use single point crossover. The crossover point is deter-
mined randomly by generating a random number between 1 and n − 1. We
decided upon crossover rate of 85% by testing the program with different values.

Mutation is a genetic operator that alters one or more gene values in a
chromosome from its initial state. We consider a mutation operator that changes
the new offspring by flipping bits from 1 to 0 or from 0 to 1. Mutation can occur
at each bit position in the string with 10% probability.

Computational experiments showed that our proposed GA involving just
the crossover and the mutation operators is effective in producing high quality
solutions in the case of medium and large size instances. However, we improved
the GA algorithm by adding a problem specific heuristic operator involving the
following local improvement step:

– let t be the greatest difference in sums per coordinate being achieved on
coordinate j, j ⊆ {1, ...,m}, then within the subset with higher sum we
analyze the corresponding elements belonging to the coordinate j, choose

the one closest to the value
t

2
and finally reassigned it to the other subset.

84 P.C. Pop and O. Matei

Example. Considering the set of vectors: S = {(1, 3), (5, 5), (3,−2), (−3, 12)}
and the partition:

S1 = {(5, 5)} and S2 = {(1, 3), (3,−2), (−3, 12)}
then the sums per coordinates are (5, 5) and (1, 13) and the difference is (4, 8)
and therefore t = 8. The second component of the vector (1, 3) is the closest

to
t

2
= 4 and we reassigned this vector to the subset S1 getting the following

partition:
S1 = {(1, 3), (5, 5)} and S2 = {(3,−2), (−3, 12)}

with the sums (6, 8), (0, 10) and the difference is (6, 2), t = 6.
In our algorithm we investigated and used the properties of (μ, λ) selection,

where μ parent produce λ (λ ← μ) and only the offspring undergo selection. In
other words, the lifetime of every individual is limited to only one generation.
This may lead to short periods of recession, but it avoids long stagnation phases
due to unadapted strategy parameters.

The genetic parameters are very important for the success of a GA. Based on
preliminary experiments, we have chosen the following parameters: the popula-
tion size μ has been set to 10 times the number of the vectors, the intermediate
population size λ was chosen ten times the size of the population: λ = 10 · μ,
mutation probability was set at 10% and the maximum number of generations
(epochs) in our algorithm was set to 10000.

In our algorithm the termination strategy is based on a maximum number
of generations to be run if there is no improvement in the objective function for
a sequence of 15 consecutive generations.

4 Preliminary Computational Results

In this section we present some computational results in order to asses the effec-
tiveness of our proposed genetic algorithm for solving the multidimensional two-
way number partitioning problem.

We conducted our computational experiments for solving the MDTWNPP on
a set of instances generated randomly and following the general format n−m. We
consider for each n−m five instances denoted by a, b, c, d and e. These instances
were used by Kojic [8] in her computational experiments. In our experiments
we performed 10 independent runs for each instance. The testing machine was
an Intel Dual-Core 1,6 GHz and 1 GB RAM with Windows XP Professional as
operating system. The algorithm was developed in Java, JDK 1.6.

In Table 1 we present the computational results obtained with our GA: best
solution and average solutions in comparison with those obtained by Kojic [8]
using CPLEX for a set of medium instances containing 400 respectively 500
vectors with dimension between 10 and 20. Because CPLEX did not finish its
work Kojic provided the best solutions achieved for a maximum of 30 min run.

The first column in the table gives the name of the instance, the second and
third columns provide the results obtained by Kojic [8] using CPLEX: the best

A Genetic Algorithm Approach for the MDTWNPP 85

Table 1. Computational results

Problem Results of CPLEX Results of GA
instance

Best solution Time (Sec.) Best solution Average solution Time (Sec.)

400 10a 14836.579 1622.34 7728.546 12627.840 356.27
400 10b 17918.141 1215.03 10918.141 11829.286 376.89
400 10c 21213.818 1703.88 9208.251 14682.930 324.50
400 10d 15212.906 1283.81 8212.906 11025.633 352.28
400 10e 16369.531 1530.48 13332.372 15820.827 342.56

400 15a 37574.022 926.03 29529.332 31637.388 321.35
400 15b 34390.093 62.52 21390.093 28839.275 326.28
400 15c 37161.817 1463.43 28621.829 34527.229 378.29
400 15d 30019.198 1203.22 16223.857 24589.012 381.10
400 15e 32561.093 26.19 30261.649 33427.922 378.29

400 20a 41974.284 767.30 28363.836 36728.003 390.28
400 20b 46751.348 354.05 38275.503 43906.422 368.45
400 20c 47259.514 313.95 32748.920 45636.829 372.32
400 20d 51544.421 31.38 36728.927 45366.764 310.38
400 20e 48792.272 251.36 43788.540 50023.568 302.65

500 10a 19 183.301 1718.29 12938.304 16227.263 736.74
500 10b 12 161.350 128.48 10393.382 13427.589 701.29
500 10c 16 594.760 368.13 10283.385 12533.378 692.03
500 10d 20 284.381 1699.01 16378.394 18226.185 678.90
500 10e 15 548.670 1680.47 14950.760 16272.317 732.39

500 15a 30 316.775 1055.81 20394.564 26373.372 720.31
500 15b 31 878.383 1591.08 28348.563 33723.653 743.86
500 15c 32 792.472 803.77 25484.567 33526.279 783.09
500 15d 35 555.260 881.27 27394.640 34291.266 810.28
500 15e 30 806.719 455.06 21849.570 27382.387 807.62

500 20a 48 281.977 1000.12 32934.495 42638.251 843.30
500 20b 54 921.900 237.63 38494.084 48373.736 873.39
500 20c 41 578.884 1382.98 39495.452 42930.553 812.73
500 20d 54 293.200 1728.58 43840.674 48342.734 843.30
500 20e 41 092.622 1713.03 40352.904 42839.224 921.83

solution and the necessary computational time in order to get it and the last
three columns provide the results obtained by our novel genetic algorithm: the
best solutions, the average solutions and the required time to get these solutions.
Because CPLEX did not finish its work in any considered instance in the table
are provided the best solutions obtained.

Analyzing the computational results, we observe that our genetic algorithm
based heuristic provides better solutions than the approach considered by Kojic
[8] using CPLEX.

86 P.C. Pop and O. Matei

Regarding the computational times, it is difficult to make a fair comparison
between algorithms, because they have been evaluated on different computers
and they have different stopping criteria. The running time of our GA is propor-
tional with the number of generations. From the computational experiments, it
results that 10000 generations are enough to explore the solution space of the
MDTWNPP. But generally speaking, it should be noted that the average CPU
time of our GA heuristic is comparable with the average CPU time provided by
CPLEX.

The proposed algorithm integrates a number of original features: we pro-
posed a novel method of generating of the initial population and we considered
a powerful local improvement step. The considered genetic operators and the
local improvement step provide our algorithm with a good tradeoff between
intensification and diversification.

In the future we plan to asses the generality and scalability of the GA by
testing it on a larger number of instances, to improve it by considering as well
other local search procedures and to explore the possibility of building a parallel
implementation of the algorithm.

Acknowledgments. This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-RU-TE-
2011-3-0113.

References

1. Arguello, M.F., Feo, T.A., Goldschmidt, O.: Randomized methods for the number
partitioning problem. Comput. Oper. Res. 23(2), 103–111 (1996)

2. Berretta, R.E., Moscato, P., Cotta, C.: Enhancing a memetic algorithms’ perfor-
mance using a matching-based recombination algorithm: results on the number par-
titioning problem. In: Resende, M.G.C., Souza, J. (eds.) Metaheuristics: Computer
Decision-Making, pp. 65–90. Kluwer, Boston (2004)

3. Coffman, E., Lueker, G.S.: Probabilistic Analysis of Packing and Partitioning Algo-
rithms. Wiley, New York (1991)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1997)

5. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Norwell (1997)
6. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simu-

lated annealing: an experimental evaluation. Part II: Graph coloring and number
partitioning. Oper. Res. 39(3), 378–406 (1991)

7. Karmarkar, N., Karp, R.M.: The differencing method of set partitioning, Techni-
cal report UCB/CSD 82/113, University of California, Berkeley, Computer Science
Division (1982)

8. Kojic, J.: Integer linear programming model for multidimensional two-way number
partitioning problem. Comput. Math. Appl. 60, 2302–2308 (2010)

9. Ruml, W., Ngo, J.T., Marks, J., Shieber, S.M.: Easily searched encodings for number
partitioning. J. Optim. Theor. Appl. 89(2), 251–291 (1996)

Adaptive Dynamic Load Balancing
in Heterogeneous Multiple GPUs-CPUs

Distributed Setting: Case Study
of B&B Tree Search

Trong-Tuan Vu(B), Bilel Derbel, and Nouredine Melab

DOLPHIN, INRIA Lille - Nord Europe, University Lille 1, Lille, France
{Trong-Tuan.Vu,Bilel.Derbel,Nouredine.Melab}@inria.fr

Abstract. The emergence of new hybrid and heterogenous multi-GPUs
multi-CPUs large scale platforms offers new opportunities and poses new
challenges when solving difficult optimization problems. This paper tar-
gets irregular tree search algorithms in which workload is unpredictable.
We propose an adaptive distributed approach allowing to distribute the
load dynamically at runtime while taking into account the computing
abilities of either GPUs or CPUs. Using Branch-and-Bound and Flow-
Shop as a case study, we deployed our approach using up to 20 GPUs and
128 CPUs. Through extensive experiments in different system configura-
tions, we report near optimal speedups, thus providing new insights into
how to take full advantage of both GPUs and CPUs power in modern
computing platforms.

1 Introduction

Context and Motivation. The current trend in high performance comput-
ing is converging towards the development of new software tools which can be
efficiently deployed over large scale hybrid platforms, interconnecting several
hundreds to thousands of heterogeneous processing units (PUs) ranging from
multiple distributed CPUs, multiple shared-memory cores, to multiple GPUs.
Although the aggregation of those resources can in theory offer an impressive
computing power, achieving high performance and scalability is still bound to the
expertise of programmers in developing new parallel techniques and paradigms
operating both at the algorithmic and at the system levels. The heterogeneity
and incompatibility of resources in terms of computing power and programming
models, make it difficult to parallelize a given application without significantly
drifting away from the optimal and theoretically attainable performance. In par-
ticular, when parallelizing highly irregular applications producing unpredictable
workload at runtime, mapping dynamically generated tasks into the hardware
so that workload is distributed evenly is a challenging issue. In this context,
adjusting the workload distributively is mandatory to maximize resource uti-
lization and to optimize work balance over massively parallel and large scale
distributed PUs.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 87–103, 2013.
DOI: 10.1007/978-3-642-44973-4 11, c© Springer-Verlag Berlin Heidelberg 2013

88 T.-T. Vu et al.

In the optimization field, irregular applications producing dynamic work-
load do not stand for an exception. Many search algorithms operating in some
decision space are essentially dynamic and irregular, meaning that neither the
search trajectory nor the amount of work can be predicted in advance. For
instance, while some search regions may require much computational efforts to
be processed, some others may require only a few. This is typically the case of
several tree search algorithms coming from discrete and combinatorial optimiza-
tions, artificial intelligence, expert systems, etc. Generally speaking, this paper
is targeting tree search-like algorithms endowed with some splitting/selection,
pruning/elimination and evaluation/bounding strategies to decide on what to
explore/search next. Despite the possibly sophisticated and efficient strategies
one can design, these kinds of algorithms still undergo a huge amount of process-
ing time when tackling large scale and/or difficult problems. More importantly,
the knowledge acquired during the search changes dynamically the shape of the
tree. Hence, it ends up with an unpredictable search process producing a highly
variable amount of work. From parallel computing and high performance per-
spectives, these algorithms can be viewed as ‘skillful’ adversaries which are very
difficult to counteract efficiently.

The goal of this paper is to push forward the design of parallel and distrib-
uted optimization algorithms requiring dynamic load balancing, in order to run
them efficiently on heterogenous systems consisting of multiple CPUs coupled
with multiple GPUs. More precisely, we consider the case study of the Branch-
and-Bound (B&B), viewed as a generic algorithm searching in a dynamic tree
representing a set of candidate solutions built dynamically at runtime. Given
that several distributed CPUs and GPUs coming from possibly different clusters
connected through a network can be used to parallelize the B&B tree search,
three major issues are addressed:

Q1. Can we benefit from the different degrees of parallelism available in the tree
search procedure and map them efficiently into the different PUs?

Q2. Given no knowledge about the amount of work the search would pro-
duce, can we distributively coordinate PUs so that parallelism dynamically
unfolds, while communication cost and idle time of PUs are kept minimal?

Q3. Having PUs with different computing abilities, can we distribute the load
evenly in order to attain optimal speedup while scaling the network?

Contribution Overview. In this paper, we answer the three previous ques-
tions in the positive while giving new insights into how to fully benefit from het-
erogenous computing systems and solve difficult optimization problems. More
precisely, we describe a two-level and fully distributed parallel approach taking
into account PU characteristics. Our approach incorporates an adaptive dynamic
load balancing scheme based on distributed work stealing, in order to flow work-
loads efficiently from overloaded PUs to idle ones at runtime. Furthermore, it
does not require any parameter tuning or specific optimization operations so
that it is adaptive to heterogeneous computing systems. We implemented and
deployed our approach over a distributed system of up to 20 GPUs and 128
CPUs coming from three clusters. Different scales and configurations of PUs were

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 89

experimented with the B&B algorithm and the well-known FlowShop combina-
torial optimization problem [14] as a case study. Firstly, on one single GPU, we
improve on the running time of the previous B&B GPUs implementations [4,11]
by at least a factor of two on the considered instances (the speedup with respect
to one CPU is around ×70). More importantly, independently of the scale and
power of CPUs or GPUs, our approach provides a substantial speed-up which is
nearly optimal compared to the ideal performance one could expect in theory.
It is worth to notice that although our experimentations are conducted for the
specific FlowShop problem, it is generic in the sense that it undergoes no spe-
cific optimization with respect to neither B&B nor FlowShop. Therefore, it can
be appropriate to solve other optimization problems, as far as a GPU parallel
evaluation (bounding) of search nodes (viewed as a blackbox) is available.

From the optimization perspective, relatively few investigations are known on
heterogenous parallel tree search algorithms. Specific to B&B, some very recent
GPU parallelizations are known for some specific problems [2–4,10,11]. The
focus there is mainly on the parallelization of the bounding step which is known
to very time-consuming. The only study we found on aggregating the power of
multiple GPUs presents a Master/Slave-like model and an experimental scale
of 2 GPUs [4]. The authors there stressed more on the parallel design issues
and not on scalability nor performance optimality. They reported a good but
sub-optimal speed-up when using 2 GPUs, which witness the difficulty of the
problem. To the best of our knowledge, the new parallel approach presented in
this paper is not only the first to scale near linearly up to 20 GPUs but also the
first to address the joint use of multiple distributed CPUs in the system.

From the parallel perspective, very few works exist on the parallelization of
highly irregular applications in heterogenous platforms. In particular, we found
no in-depth and systematic studies of application speed-up at different CPU-
GPU scales. Knowing that the adaptive workload distribution strategy adopted
in this paper is generic and not specific to tree search or B&B, our study provides
new insights into the scalability of distributed protocols harnessing both multiple
GPUs and CPUs which have a substantial gap in their respective computing
power.

Outline. In Sect. 2, we draw the main components underlying our distributed
approach while motivating their design architecture. A more detailed and tech-
nical description then follows in Sect. 3. In Sect. 4, we report and discuss our
experimental results. In Sect. 5, we conclude the paper and raise some open
issues.

2 A Comprehensive Overview of Our Approach

In this section, we give the general design principles guiding our approach. The
goal is to introduce different components of our approach in a comprehensive
manner without going into system technicalities or implementation details.

90 T.-T. Vu et al.

Fig. 1. Overview of our parallel approach

2.1 Application Model and Preliminaries

To simplify the presentation and clarify our contribution, let us model the B&B
algorithm, as a tree search algorithm that starts from a root node representing
an optimization problem. During the search, a parent node generates new child
nodes (e.g., representing partial/complete candidate solutions) at runtime. The
quality of these nodes is evaluated (bounding) using a given (heuristic) proce-
dure. Then, according to the search state, some nodes are discarded (pruning)
whether some others can be selected and the tree is expanded (branching) to
push the search forward and so on. Having this in mind, the general architecture
of our approach for distributing search computations is depicted in Fig. 1 and
discussed in the following subsections. Each subsection will give an answer to
one of the three questions addressed in the introduction.

2.2 A Two-Level Parallelism (Q1)

As shown in Fig. 1, our approach is based on two levels of parallelism mapping
the search into possibly multiple CPUs and multiple GPUs. In Level 1, different
CPUs or GPUs can explore different subtrees in parallel, i.e., select, branch,
evaluate, prune, etc. As it will be discussed later, enabling the distribution of
subtrees over PUs dynamically at runtime is at the heart of our approach. In
Level 2, the evaluation of tree nodes (bounding for B&B) is done inside every
GPU device, while the other search operations are performed in parallel by
the GPU host, i.e., CPU. In fact, due to the irregularity and unpredictable
shape of the tree, it is well understood that implementing the whole search

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 91

operations inside GPU, could suffer from the thread divergence induced by the
SIMD programming model of GPUs. The evaluation step, on the other side,
can highly benefit from the parallelism offered by the many GPU cores. These
design/model choices are essentially motivated by the fact that the evaluation
phase of many combinatorial optimization problems is very time-consuming, e.g
bounding for B&B, so that it dominates the other operations.

Although the GPU device can handle the evaluation of many tree nodes
in parallel [4,10], the CPU host still has to prepare a data containing these
nodes, copy them into GPU memory and copy back the result. This implies
that while computations are carried out on the GPU device, the host is idle and
vice-versa. In our Level 2 parallelism, the host and the device are managed to
run computations in parallel, i.e., while the device is evaluating tree nodes, the
host is preparing new data for the next evaluation in the device. Notice that the
evaluation step of many tree nodes inside the GPU is of course implying another
type of parallelism which we will not address in this paper, since our focus is on
scalability and work distribution on multiple PUs.

2.3 Dynamic Work Stealing (Q2)

It is essential to fully explore the computing resources provided by a single CPU-
GPU. However, it is more challenging to fully utilize the networked resources
available in the distributed system. In fact, the irregularity generated at run-
time can eventually lead to very poor performances because most computing
nodes are underloaded and few others are highly overloaded, or because of the
cost of synchronizing PUs and transferring work is so high. In this paper, we
propose a distributed work stealing [7] based mechanism to tackle this issue. If
a PU runs out of work, it acts like a thief and tries to steal work (i.e., subtree
nodes) from another PU, called victim, chosen uniformly at random. This sim-
ple decentralized work stealing approach is motivated by two facts. Firstly, idle
PUs acquire work cooperatively in parallel, thus eliminating the time required
to synchronize, and to transfer/distribute data among them. In particular, no
PU can constitute a communication bottleneck, so that the protocol would not
suffer from scalability issues. Secondly, random work stealing (RWS) in shared
memory is theoretically shown to give good performance under some applica-
tion circumstances [1]. However, it has not been studied so far in a heterogenous
networked setting involving the cooperation of both CPUs and GPUs at large
scales in order to solve hard optimization problems.

2.4 Adaptive Work Balancing (Q3)

One crucial issue in RWS for efficient dynamic load balancing is the amount
of work, denoted f , to be transferred between thieves and victims. Generally,
the thief attempts to balance the load evenly between itself and the victim. In
fact, when this amount of work is very small, the large overhead is observed
since many load balancing operations are performed. At the opposite, when it
is very large, too few load balancing operations will occur, thereby resulting

92 T.-T. Vu et al.

in large idle times despite the fact that surplus work could be available. In
classical RWS approaches, this is a hand-tuned parameter which depends on the
distributed system and the application context [12]. In a theoretical study [1],
the stability and optimality of RWS can be analytically guaranteed for f ≤ 1/2.
In practice, the so called steal-half strategy (f = 1/2) is often shown to perform
efficiently using homogenous computing units. In a heterogenous and large scale
scenario, this parameter is even more sensitive because of the wide variety of
computing capabilities of different PUs. In this context, the community lacks
relatively much knowledge to understand how to attain good performance for
RWS based protocols.

To understand the issues we are facing when distributing tree search works
over multiple CPUs and GPUs, one has to keep in mind that (i) a GPU is
substantially faster in evaluating tree nodes than a CPU, (ii) nothing can be
assumed about the amount of tree nodes initially. Hence, if GPUs run out of
work and stay idle searching for work, the performance of the system can drop
dramatically. If only few CPUs are available in the system, work stealing oper-
ations from CPUs to GPUs can cause a severe penalty to performance. This is
because the few CPUs can only contribute very little to the overall performance
but their stealing operations to GPUs can disturb the GPU computations and
prevent them from reaching their maximal speed. In contrast, if work is sched-
uled more on GPUs, then a significant loss in performance can occur when a
relatively large number of CPUs are available. To tackle these issues, we propose
to configure RWS so that when performing a steal operation, the value of f is
computed at runtime based on the normalized power of the thief and the victim,
where the computing power of every PU is estimated continuously at runtime
with respect to the application being tackled.

3 Parallel and Distributed Protocol Details

3.1 Concurrent Computations for Single CPU-GPU
(Level 2 Parallelism)

Generally speaking, an application is composed of multiple tasks and each task
could be executed on a GPU or CPU depending on its characteristics. For each
task running on a GPU, input data is transferred to GPU memory, a ker-
nel is executed on the input and the outputs are copied back to the host for
being processed. In other words, standard CPU/host GPU/device executions
are synchronized sequentially. While the host is working, i.e., to prepare/process
input/output data, the device sits idle, and vice versa. This can significantly
slow down computations especially when the host and the device can perform
concurrent operations in parallel.

With the rapid evolving of GPU devices, it is now possible to address the
above issue by carefully exploiting the new available hardware and software
technologies. For instance, NVIDIA GPUs with compute capability ≥ 1.1 are
associated with a compute engine and a copy engine (DMA engine). NVIDIA’s
Fermi GPUs have up to 2 copy engines, one for uploading from host to device

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 93

and one for downloading from device to host. Each engine is equipped with a
queue to store pending data and kernels that will be processed by the engine
shortly.

The Level 2 host-device parallelism discussed in our approach can be enabled
using CUDA primitives as sketched in Algorithm 1. Each Enqueue proce-
dure dispatches CUDA operations into the GPU device asynchronously, i.e.,
pushes/retrieves data and launches the kernel. This is possible by wrapping those
operations into a CUDA stream. All operations inside the same CUDA stream
get automatically synchronized and executed sequentially, but the CUDA oper-
ations of different streams could overlap one with the other, e.g., execute the
kernel of stream 1 and retrieve data from stream 2 concurrently in parallel. In
our implementation, we use a maximum number of streams, i.e., variable rmax,
which is the maximum number of elements (data, kernel) in the queue of GPU
Copy engine and Compute engine. The maximum number of streams that a
GPU can handle depends in general on GPU global memory characteristics. For
B&B search, data is a pool of tree nodes and kernel is the bounding function.
Asynchronously in parallel to the Enqueue procedure, the Dequeue procedure
in Algorithm 1 waits for data copied back from the device on a given CUDA
stream, and processes the output data. In our B&B implementation, this corre-
sponds to the pruning operation. Notice also that Algorithm 1 is independent of
the specific data or kernels being used, so that it can be customized with respect
to the search operations or optimization problems at hand. In particular, any
existing kernel implementing parallel tree node evaluation is applicable.

3.2 Distributed Work Stealing for Multiple CPUs/GPUs
(Level 1 Parallelism)

In this section, we describe how our Level 1 parallelism is implemented, i.e., how
tree nodes are distributed over PUs. As discussed previously, this is based on an
adaptive work stealing paradigm and sketched in Algorithm 2 below — Notice
that Algorithm 2 is to be executed distributively by each PU, i.e., v variable.

Algorithm 1: GPU Level 2 parallelism — Concurrent host-device
template
Data: q host, q device: queue of task in host and GPU; q host size: current

size of q host (0 initially); stream[rmax]: CUDA Stream of rmax elements;
w index, r index: next index to write (resp. read) to (resp. from) the
queues (0 initially).

1 while tree nodes are available do in parallel:

// Push tree nodes for evaluation inside GPU

2 Execute Procedure Enqueue;
// Retreive and process evaluated nodes from the GPU

3 Execute Procedure Dequeue;

94 T.-T. Vu et al.

Procedure Enqueue
1 while q host size < rmax do
2 q host[w index].task ← prepare a pool of tree nodes;

// Asynchronous Operations on stream[w index]

3 cudaMemcpyAsyn(q device[w index], q host[w index],
sizeof(q host[w index].task),

4 cudaMemcpyHostToDevice, stream[w index]);
// Launch parallel evaluation (bounding) on device

5 KERNEL<<< stream[w index] >>> (q device[w index]) ;
6 cudaMemcpyAsyn(q host[w index].bound, q device[w index].bound,
7 sizeof(q device[w index].bound),
8 cudaMemcpyDeviceToHost, stream[w index]) ;
9 w index ← (w index + 1) (mod rmax); q host size ← q host size + 1 ;

Procedure Dequeue
1 if q host size > 0 then

// Wait for results from device on stream[r index]

2 cudaStreamSynchronize(stream[r index]);
3 Process output data from q host[r index], i.e., prune nodes ;
4 r index ← (r index + 1) (mod rmax); q host size ← q host size − 1;

Algorithm 2: Level 1 Parallelism — Distributed Adaptive Work Stealing
1 while Termination not detected do in parallel:

2 Execute Procedure Thief;
3 Execute Procedure Victim;

Procedure Thief
1 x ← runtime normalized computing power;
2 repeat
3 u ← pick one PU victim uniformly at random;

// v denotes the actual thief PU executing the procedure

4 Send a steal request message (v, x) to u;
5 Receive u’s response (reject or work) message;

6 until some tree nodes are successfully transferred from victim u;

Stealing Granularity. To efficiently balance the work load, stealing granular-
ity, that is the amount of work to be transferred from victims to thieves, plays
a crucial role. Depending on the hardware platform and the input application,
there may exist a value of work granularity giving the best performance. For
instance, for the Unbalanced Tree Search benchmark [6], which is often consid-
ered as an adversary application to load balancing [9,13], it was shown that steal

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 95

Procedure Victim
1 if a steal request is pending then
2 y ← runtime normalized computing power ;
3 if tree nodes are available then
4 (v, x) ← pull the next pending thief request;

5 work ← share tree nodes in the proportion of
x

x + y
;

6 Send back shared work to v ;

7 else
8 Send back a reject message to v ;

half works best for binomial trees. Instead, stealing a fixed amount of work items
(i.e., 7 items) is shown to work well for geometric trees. Besides, in a heteroge-
neous and hybrid computing system, the hardware characteristics of PUs, e.g.,
clock speed, Cache, RAM, etc, can be highly needed to balance the work load
evenly depending on the characteristics of every available PU. Because high vari-
ations in computing power among PUs can lead to high imbalance and idle times,
one has also to manage this issue carefully when distributing work. One possible
solution to the above issues could be to profile the system components/PUs and
tune work granularity offline before application execution in order to get the
best performance. It should be clear that such an approach is not reasonable
nor feasible, for instance when the system may undergo a huge number of many
different types of PUs, or when having many different applications at hand.

In our stealing approach, we make every PU maintain at runtime a measure
reflecting its computing power, i.e., variable x in Algorithm 2. As the computa-
tions are running on, every PU adjusts its measure continuously with respect to
the work processed in the previous iterations. In our approach, we simply use the
average time needed for processing one tree node. More precisely, each PU sets
its computing power to be x = N/T , where T is the (normalized) time elapsed
since the PU has started the computation and N is the number of tree nodes
explored locally by that PU. Notice that time T includes, in addition to tree
node evaluation (i.e., B&B lower bounding), the time needed for other search
operations (i.e., select, branch and prune) but not the time when a PU stays
idle. When running out of work, a PU v then attempts to steal work by sending
a request message to one other PU u chosen at random, while wrapping the
value of x in the request. If a victim has some work to serve, then the amount
of work (i.e., number of tree nodes) to be transferred is in the proportion of
x/(x + y), where y is the computing power maintained locally by the victim.
Otherwise, a reject message is sent back to notify the thief and a new stealing
round is performed. Initially, the value of x is normalized so that all PUs have
the same computing ability. In other words, the system starts stealing half and
then the stealing granularity is refined for each pairwise PU. Intuitively, each
PU acts as a black-hole, so that the higher computing power of PUs is, the more
available work are flowed to the black-hole. Furthermore, no knowledge about

96 T.-T. Vu et al.

PUs is needed so that any performance variation at system/application level
would also be detected at runtime.

Termination Detection. One issue in the template of Algorithm 2 is how to
decide on termination distributively (Line 1). For B&B, this occurs when all
tree nodes are explored (explicitly or implicitly, i.e., pruned). However, since
stealing is performed locally by idle PUs, the work remaining in the system is
not maintained anywhere. This is a well understood issue for which an abundant
literature can be found [5].

We use a fully distributed scheme, in which PUs are mapped into a tree
overlay and the termination is detected in an ‘Up-Down’ distributed fashion. In
the up phase, if a PU becomes idle and has not served any stealing request, it
will then integrate a positive termination signal to its children signals. If a PU
turns to idle and has served at least one stealing request, it will then integrate a
negative termination signal to its children signals. Then the termination signal
is forwarded to the parent and eventually to the root. In the down phase, if
the root receives at least one negative termination signal from its children, it
broadcasts a signal to restart a new round of termination detection. Otherwise,
if only positive termination signals are received, the root broadcasts a message to
announce global termination. The tree overlay used in our implementation is a
binary one so that PU degrees and the overlay diameter are kept low. This allows
us to scale out PUs while avoiding communication bottlenecks and performance
degradation once a termination phase is performed.

Knowledge Exchange. An important ingredient missing to complete our app-
roach, is the mechanism allowing PUs to exchange knowledge during the search.
In B&B for instance, one important issue is to share the best upper bound found
by any PU in order to avoid exploring unnecessary branches. We use the same
tree overlay topology used in the above scheme for termination detection, to
propagate search knowledge (new upper bounds) among PUs. Since the over-
lay diameter is logarithmic, propagating knowledge among PUs has a relatively
limited communication cost.

4 Experimental Results

4.1 Experimental Setting

We consider the permutational FlowShop problem with the objective of mini-
mizing the makespan (Cmax) of scheduling n jobs over m machines as a case
study in our experiments. The well-known Taillard’ instances [14] of the family
of 20 jobs and 20 machines are considered. To give an idea of the their difficul-
ties, the time required for solving these instances on a standard modern CPU,
starting from scratch (that is without any initial solution), can be several dozens
of hours.

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 97

Our approach needs three major components to be experimented: (i) the
distributed load balancing protocols (Level 1 parallelism), (ii) the concurrent
host-device computations (Level 2 parallelism) and (iii) the GPU kernel for
bounding w.r.t FlowShop. The GPU kernel was taken to be the one of [4,11]
and used as a blackbox. Level 1 (resp. 2) was implemented using low level c++
libraries (resp. c++ concurrent threads and CUDA primitives). Three clusters
C1, C2 and C3 of the Grid’5000 French national platform [8] were involved in
our experiments. Cluster C1 contains 10 nodes, each equipped with 2 CPUs
of 2.26 Ghz Intel Xeon processors with 4 cores per CPU. Besides, each node
is coupled with two Tesla T10 GPUs. Each GPU contains 240 CUDA cores, a
4 GB global memory, a 16.38 KB shared memory and a warp size of 32 threads.
Cluster C2 (resp. C3) were equipped with 72 nodes (resp. 34 nodes), each one
equipped with 2 CPUs of 2.27 Ghz Intel Xeon processor with 4 cores per CPU
(resp. 2 CPUs of 2.5 Ghz Intel Xeon processor having 4 cores) and a network
card Infiniband-40G.

Let us point out that the GPU kernel implementation of [4,11] has a para-
meter s referring to the maximum number of B&B tree nodes that are pushed
into GPU memory for parallel evaluation. It is shown in [11] that the parameter
s has to be fixed to a value sΣ so that the device memory is optimized and the
performance is the best on a single GPU. In [4], it is shown how to tune the value
of s online so that it converges to sΣ. Since we assume that the GPU kernel is
provided as a black-box, and unless stated explicitly, the value of s is simply fixed
to sΣ in our experiments. In our experimental study, we are also interested in
analyzing how our approach would perform when having GPU kernels allowing
for different speed-ups in the evaluation phase. This can be typically the case
for other type of problems, different hardware configurations, etc. Being able
to understand whether our load balancing mechanism is efficient in such a het-
erogenous setting, independently of the considered scale or speedup gap between
available CPUs and GPUs, is of great importance. In this paper, we additionally
view the parameter s as allowing us to empirically reduce the intrinsic speed of a
single GPU, and thus to experiment our approach while using different GPU and
CPU configurations. In the remainder, we shall consider the following scenarios:

1. Enabling our Level 2 parallelism within a single CPU-GPU.
2. Running our approach (Level 1 + Level 2) at different scales with multiple

GPUs.
3. Running our approach with a fixed number of GPUs, while scaling the CPUs.
4. Running our approach with a fixed number of CPUs, while scaling the GPUs.
5. Running our approach with CPUs and GPUs having different computational

powers.

In all scenarios, a GPU device is launched with 1 CPU core taken from
C1. For the first four scenarios, CPUs are taken from cluster C2. As for the fifth
scenario, we mix CPUs of different hardware clock speeds, taken from C2 and C3,
and GPUs launching kernels configured with different values of s. The previous
scenarios aim at providing insights on how the system performs independently of
the scale and/or the power of CPUs and GPUs. For all experiments, we measure

98 T.-T. Vu et al.

T and N , respectively the time needed to complete the B&B tree search and the
number of B&B tree nodes that were effectively explored. All reported speedups
are relative to the number of B&B tree nodes explored by time units, that is
N/T .

4.2 Impact of Asynchronous Data Transfer on a Single GPU

We start our analysis by evaluating the impact of Level 2 host device concur-
rent operations. For the ten instances in Taillard’ family 20*20, we report in
Fig. 2 execution time and speedup w.r.t. the baseline sequential host-device exe-
cution [11], for different number of concurrent CUDA streams (variable rmax

in Algorithm 1) and different GPU kernel parameters s. One can clearly see
that substantial improvements are obtained, i.e., our approach is at least 2
times faster. It also appears that the maximum number of concurrent CUDA
streams rmax, which is the only parameter used in our approach, has only a
marginal impact on performance. Figure 2 Right shows that the speed-up, w.r.t
the sequential host-device execution, is substantial (> 30%) but depends on ker-
nel parameter s. This is because for lower values of s, the host spends more time
pushing small amount of data, while the device is less efficient. In other words,
Level 2 parallelism performs better when the amount of data and computations
on device is higher.

 0

 2

 4

 6

 8

 10

 12

Ta
21

Ta
22

Ta
23

Ta
24

Ta
25

Ta
26

Ta
27

Ta
28

Ta
29

Ta
30

E
xe

cu
tio

n
Ti

m
e

(x
 1

03) s
ec

on
ds

Flowshop Intances

Baseline
rmax = 5

rmax = 10
rmax = 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

Ta
21

Ta
22

Ta
23

Ta
24

Ta
25

Ta
26

Ta
27

Ta
28

Ta
29

Ta
30

S
pe

ed
up

Flowshop Intance

rmax=10, s = 8192
rmax=10, s = 4096
rmax=10, s = 2048

Fig. 2. Level 2 parallelism vs. baseline sequential host-device execution [4]. Left: Exe-
cution time with different number rmax of CUDA streams and s = s� (Lower is better).
Right: Speedup w.r.t baseline for different values of s and rmax = 10 (Higher is better).

4.3 Scalability and Stealing Granularity for Multiple GPUs

In this section, we study the scalability of our approach when only multiple
GPUs are available in the system. For this set of experiments we choose the
first instance Ta21 to be our case study. In Fig. 3 Left, we report the speedup of
our approach w.r.t one single GPU, and also the speedup obtained when using
a static stealing granularity (with of course Level 2 parallelism enabled). By

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 99

static stealing, we mean that we initially fix the proportion of tree nodes to
be stolen as a parameter f ∈ {1/2, 1/4, 1/8}. Two observations can be made.
Firstly, our adaptive approach performs similar to the best static stealing, which
is for f = 1/2 from our experiments. Other values of f in static stealing are in
fact worse especially in high scales. Secondly, we are able to scale linearly with
the number of GPUs. At scale 16, one can notice a slight decrease in speedup.
We attribute this to two factors: (i) the communication cost of distributing work
strategy to be not negligible in large scales, and (ii) sharable work becomes very
fine grain so that it limits the maximal performance of GPUs. Actually, the
results of Fig. 3 Left are obtained with parameter s being set to sΣ, i.e., the
maximal (and best) amount of tree nodes such that a single GPU can handle.
In Fig. 3 Right, we push our experiments further by taking other values for
parameter s. We can clearly see that the speed-up (w.r.t. one single GPU running
a kernel with the same value of s) is not impacted. The scalability is even slightly
better when the kernels are less efficient. This can be interpreted as the scalability
of our approach being not sensitive to other system/application settings with
GPUs having possibly different processing powers.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

S
pe

ed
up

#GPUs

Steal 1/8

Steal 1/4

Steal 1/2

Adaptive

Ideal Linear speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2048 4096 8192

S
pe

ed
up

pool size s

#GPUs= 2

#GPUs= 4

#GPUs= 8

#GPUs= 16

Fig. 3. Left: Scalability of our adaptive approach vs. static stealing (s = s�). X-axis
refers to the number of GPUs in log scale. Y-axis refers to the speed-up with respect
to one GPU. Right: Speedups of our approach as a function of s. rmax = 10.

4.4 Adaptive Stealing for Multiple GPUs Multiple CPUs

In this section, we study the properties of our approach when mixing both CPUs
and GPUs. For that purpose, we proceed as following. Let αj

i be the speedup
obtained by a single PU j with respect to PU i. We naturally define the linear
(ideal) normalized speedup with respect to PU i, to be

∑
j αj

i . For instance, hav-
ing p identical GPUs and q identical CPUs, each GPU being β times faster than
each CPU, our definition gives a linear speedup with respect to one GPU (resp.
one CPU) of p+q/β (resp. q+β ·p). The following sets of experiments shall allow
us to appreciate the performance of our approach when varying substantially the
ratio between the number of GPUs and CPUs.

100 T.-T. Vu et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32 64 128

S
pe

ed
up

#CPUs

Steal 1/2

Weighted Steal

Adaptive

Linear GPU normalized Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32 64 128

S
pe

ed
up

#CPUs

Steal 1/2

Weighted Steal

Adaptive

Linear GPU normalized Speedup

Fig. 4. Speedup of our approach vs. static steal when scaling CPUs and using 1 GPU
(Left) and 2 GPUs (Right) X-axis is in the log scale. Speed-up are w.r.t. one GPU.
rmax = 10.

CPU Scaling. In this set of experiments, we fix the number of GPUs and
scale the number of CPUs. Besides, we experiment two other static baseline
strategies. The first one is the standard steal half strategy. The second one, we
term ‘Weighted Steal’, is hand tuned as following. After profiling the different
PUs in the system and running the B&B tree search with the corresponding
FlowShop instance on every single PU until termination, we provide each PU
with the relative computing power of every other PU in the system. Then, the
amount of work transferred from PU i to PU j is initially fixed to be in the
proportion of the relative computing power observed in the profiling phase. The
results with 1 and 2 (identical) GPUs and (identical) CPUs ranging from 1 to
128 are reported in Fig. 4.

One can clearly see that the adaptive approach scales near linearly. It also
performs similar to the weighted static strategy while avoiding any tedious pro-
filing and/or PU code configurations. In particular, the weighted strategy can-
not be reasonable in production systems with different PU configurations since it
requires much time to tune the systems. Turning to the steal half static strategy,
it appears to perform substantially worse. When having relatively few CPUs, the
performance of steal half is even worse than in a scenario where only GPUs are
available (see Fig. 3). It is also getting worse as we push additional few CPUs in
the system. Improvements over 1 or 2 GPUs are only observed when the number
of CPUs is relatively high (w.r.t GPU power).

GPU Scaling. We now fix the number of CPUs and study how the behavior
of the system when scaling the number of GPUs. Results with 128 (identical)
CPUs and (identical) GPUs ranging from 1 to 16 are reported in Fig. 5. We can
similarly see that our adaptive approach is still scaling in a linear manner while
being near optimal. It is also substantially outperforming the static steal half
strategy.

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 101

Mixed Scaling. Our last set of experiments is more complex since we manage
to mix multiple GPUs with empirically different powers and multiple CPUs with
different clock speeds. This scenario is in fact intended to reproduce a heteroge-
nous setting where, even PUs in the same family do not have the same computing
abilities. In this kind of scenario, where in addition the power of PUs can evolve,
e.g., due to system maintenance constraints or hardware renewals/updates, even
a weighted hand tuned steal strategy is not plausible nor applicable. In the
results of Fig. 6, we fix the number of CPUs to be 128 with half of them taken
from cluster C2 and the other half from cluster C3 (C2 and C3 have different
CPU clock speeds as specified previously). For GPUs, we proceed as following.
We use a variable number of GPUs in the range p ∈ {1, 4, 8, 12, 16, 20}. For
p > 1, we configure the system so that 1/2 of GPUs run a kernel with pool size
sΣ, 1/4 of them with pool size sΣ/2 and the last 1/4 of them with pool size sΣ/4.
Once again our approach is able to adapt the load for this complex heteroge-
nous scenario and to obtain a nearly optimal speedup while outperforming the
standard steal half strategy. From the previous set of experiments we can thus

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16

S
pe

ed
up

#GPUs

Steal 1/2

Weighted Steal

Adaptive

Linear GPU normalized Speedup

Fig. 5. Speedup (w.r.t. one GPU) when scaling GPUs and using 128 CPUs. rmax = 10.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16

S
pe

ed
up

#GPUs

Steal 1/2

Adaptive

Linear GPU normalized Speedup

Fig. 6. Speedup when scaling heterogenous GPUs (1/2 with s�, 1/4 with s�/2, 1/4
with s�/4), and 128 heterogenous CPUs (1/2 from cluster C2, 1/2 from cluster C3).
Speedup is w.r.t. one GPU configured with s�. rmax = 10.

102 T.-T. Vu et al.

conclude that our approach allows us to take full advantage of both GPU and
CPU power independently of considered scales, or any hand tuned parameter.

5 Conclusion

In this paper, we proposed and experimented an adaptive load balancing dis-
tributed scheme for parallelizing computing intensive B&B-like tree search algo-
rithms in heterogenous systems, where multiple CPUs and GPUs with possibly
different properties are used. Our approach is based on a two-level parallelism
allowing for (i) distributed subtree exploration among PUs and (ii) concurrent
operations between every single GPU host and device. Through extensive experi-
ments involving different PU configurations, we showed that the scalability of our
approach is near optimal, which leaves very little space for further improvements.
Besides being able to experiment our approach with other problem-specific GPU
kernels, one interesting and challenging research direction would be to extend our
approach in a dynamic distributed environment where: (i) processing units can
join or leave the system, and (ii) different end-users can concurrently request the
system for solving different optimization problems. In this setting, the load has
to be balanced not only w.r.t. the irregularity/dynamicity of one single appli-
cation, but also w.r.t many other factors and constraints that may affect the
computing system at runtime.

Acknowledgments. This material is based on work supported by INRIA HEMERA
project. Experiments presented in this paper were carried out using the Grid5000 exper-
imental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bod-
ies (see https://www.grid5000.fr). Thanks also to Imen Chakroun for her precious
contributions to the code development of the GPU kernel.

References

1. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46, 720–748 (1999)

2. Boukedjar, A., Lalami, M.E., El-Baz, D.: Parallel branch and bound on a CPU-
GPU system. In: 20th International Conference on Parallel, Distributed and
Network-Based Processing, pp. 392–398 (2012)

3. Carneiro, T., Muritiba, A.E., Negreiros, M., De Campos, L., Augusto, G.: A new
parallel schema for branch-and-bound algorithms using GPGPU. In: 23rd Sym-
posium on Computer Architecture and High Performance Computing, pp. 41–47
(2011)

4. Chakroun, I., Melab, M.: An adaptative multi-GPU based branch-and-bound. a
case study: the flow-shop scheduling problem. In: 14th IEEE Interernational Con-
ference on High Performance Computing and Communications (2012)

5. Dijkstra, E.W.: Derivation of a termination detection algorithm for distributed
computations. In: Broy, M. (ed.) Control Flow and Data Flow: Concepts of Dis-
tributed Programming, pp. 507–512. Springer, Berlin (1987)

https://www.grid5000.fr

Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs 103

6. Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.-W.: A mes-
sage passing benchmark for unbalanced applications. Simul. Model. Pract. Theor.
16(9), 1177–1189 (2008)

7. Matteo, F., Charles, E.L., Keith, H.R.: The implementation of the cilk-5 multi-
threaded language. SIGPLAN Not. 33, 212–223 (1998)

8. Grid500 French national gird. https://www.grid5000.fr/
9. James, D., Brian, L.D., Sadayappan, P., Krishnamoorthy, S., Jarek, N.: Scalable

work stealing. In: Proceedings of ACM Conference on High Performance Comput-
ing Networking, Storage and Analysis, pp. 53:1–53:11 (2009)

10. Lalami, M.E., El-Baz, D.: GPU implementation of the branch and bound method
for knapsack problems. In: IPDPS Workshops, pp. 1769–1777 (2012)

11. Melab, N., Chakroun, I., Mezmaz, M., Tuyttens, D.: A GPU-accelerated b&b algo-
rithm for the flow-shop scheduling problem. In: 14th IEEE Conference on Cluster
Computing (2012)

12. Min, S.-J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters.
In: Proceedings of 5th Conference on Partitioned Global Address Space Program-
ming Models (2011)

13. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based global load balancing. In: 16th ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP ’11), pp. 201–212 (2011)

14. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

https://www.grid5000.fr/

Multi-Objective Optimization for Relevant
Sub-graph Extraction

Mohamed Elati, Cuong To, and Rémy Nicolle(B)

iSSB CNRS UPS3509, University of Evry-Val-dEssonne EA4527,
Genopole Campus 1, 5 Rue Henri Desbruères, 91030 Evry CEDEX, France

{mohamed.elati,cuong.to,remy.nicolle}@issb.genopole.fr

Abstract. In recent years, graph clustering methods have rapidly
emerged to mine latent knowledge and functions in networks. Most sub-
graphs extracting methods that have been introduced fall into graph
clustering. In this paper, a novel trend of relevant sub-graphs extraction
problem was considered as multi-objective optimization. Genetic Algo-
rithms (GAs) and Simulated Annealing (SA) were then used to solve the
problem applied to biological networks. Comparisons between GAs, SA
and Markov Cluster Algorithm (MCL) were carried out and the results
showed that the proposed approach is superior.

Keywords: Sub-graph extraction · Genetic algorithms · Simulated
annealing · Multi-objective optimization

1 Introduction

Nowadays, there are many types of data that can be represented as graphs (net-
works) such as web graphs, social networks, biological networks, communication
networks, road networks, etc. Mining hidden knowledge in networks is a non-
trivial task because networks are usually big (containing thousands of nodes and
edges) and discrete (mathematics models are difficult to apply). A graph is a
structure that consists of vertices (nodes) and edges. Vertices can be anything
such as pages in web graphs, members in social networks, proteins or genes
in biological networks, etc. Edges, which are links between two nodes, repre-
sent relationship between two nodes. There are many problems involving graphs
such as the shortest paths, graph coloring, route, etc. In this work, we focus on
graph clustering. Graph clustering is a problem where vertices are to be grouped
into clusters satisfying some pre-defined criteria. Graph clustering methods have
been applied in many fields, especially, in biological networks [1–3,10]. Most of
introduced sub-graph extraction methods are based on graph clustering such as
the Markov Cluster Algorithm (MCL) [5], a scalable clustering algorithm for
graphs. The basic idea of MCL, is Markov Chains so that when starting at a
node, and then randomly traveling to a connected node; you are more likely to
stay within a cluster than travel between clusters. Spirin et al. [13] used three

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 104–109, 2013.
DOI: 10.1007/978-3-642-44973-4 12, c© Springer-Verlag Berlin Heidelberg 2013

Multi-Objective Optimization for Relevant Sub-graph Extraction 105

different approaches to identify connected sub-graphs. The first approach is com-
plete enumeration. The second one is super-paramagnetic clustering. In the third
approach, the authors formulated the problem of finding highly connected sets
of nodes as an optimization problem, and then used Monte Carlo to solve it.
Although graph-clustering methods have been applied to many fields, they still
have some drawbacks. (1) The density (number of edges normalized by the num-
ber of nodes) of sub-graphs given by these methods are rather low. Yet, nodes of
a sub-graph (cluster) are desired to share similar traits which can be represented
by the den-sity in some circumstances. For instance, protein complexes in bio-
logical networks are described by their density [3], a cluster of social networks
is intuitively a collection of individuals with dense friendship patterns internally
and sparse friend-ships externally and in web graphs, clusters represent groups
of highly similar Web sites (similarity may be based on the degree of relationship
or association that exists between entities). Therefore, clusters with low density
can reflect groups of nodes with low similarity. (2) In large networks (containing
thousands of nodes and edges), graph clustering processes are resource-intensive
tasks and all identified sub-graphs are not all interesting for a given problem.
In other words, experts only want to extract dense sub-graphs connecting par-
ticular nodes (relevant subgraphs for short). However, in our knowledge there
have been very few studies directly addressing the problem of relevant subgraph
extraction; i.e, To find subgraph that can well capture the relationship among
k given nodes of interest in a large graph. The first work is done by Faloutsos
et al. [7] and then followed by that of [6]. Faloutsos et al. [7] present an electricity
analogue based method to find connection subgraph between two given nodes.
When there are more then two nodes of interest, the electricity analogues does
not work.

Based on the above drawbacks and inquiries, we propose an algorithm that
considers extracting reliable sub-graphs from networks as multi-objective opti-
mization which is solved using Genetic algorithms or Simulated. The rest of this
work is organized as follow. Section 2 describes our algorithm including problem
statement, a brief introduction of Genetic algorithms and Simulated annealing,
and how to use them to solve a multi-objective optimization problem. Section 3
presents a case study of the application of our algorithm as a strategy to expand
the knowledge of protein complex by clustering the protein interaction network
in a semi-supervised fashion using affinity-purification/mass-spectrometry (AP-
MS) data.

2 Relevant Sub-graph Extraction Method

2.1 Problem Statement

Given an unweighted and undirected graph, G(V,E) where V is a set of vertices
(nodes), E ⊆ V ×V is a set of edges (links) and a list of interesting vertices called
ranked list, L. The goal of our algorithm is extracting sub-graphs (clusters),
which are dense and contain as many vertices of the ranked list as possible. The

106 M. Elati et al.

density of a sub-graph is a fraction between number of edges and all possible
edges of sub-graph given by (3).

The Multi-Objective Optimization Concept. The above problem has two
objectives which need to be optimized (1) density of sub-graphs and (2) number
of interesting nodes in sub-graphs. It considers the problem as a multi-objective
optimization problem, which can be described as Finding sub-graphs, G(V,E)
which maximize

F (V ∈, E∈) = (f1(V ∈, E∈), f2(V ∈, E∈)) (1)

Subject to
f2(V ∈, E∈) > 0 (2)

where
– f1(V,E) represents density of sub-graph, given by

f1(V ∈, E∈) =
2 | E∈ |

| V ∈ | (| V ∈ | −1)
(3)

with | E∈ | and | V ∈ | are cardinality (number of items in a set) of E∈ and
V ∈, respectively.

– f2(V ∈, E∈) counts number of vertices in the ranked list, L appearing in sub-
graph, in form

f2(V ∈, E∈) =

∑

P∗V ′
R(P)

∑

P∗L

R(P)
(4)

with P is a node and R(P) is the ranked value (a positive number or zero,
if node is not in the ranked list) of node, P .

– The criterion (2) means that the result sub-graphs have to contain at least
one node that belongs to the ranked list, L.

The ranges of f1 and f2 are within [0, 1]. Normally, the second objective gives
high value if the sub-graph is big (containing a lot of vertices in the ranked list,
L); but the density value of large sub-graph is usually low. Vice versa, if the sub-
graph is small, the density value can become high then the number of vertices in
the ranked list appearing in the sub-graph can be low. The two objectives of the
of F (1) conflict with each other. So the algorithm has to find the sub-graphs
which gives high values in both objectives.

Closed-form solutions of multi-objective optimization problems are difficult
to obtain. There have been no closed-form solutions of global optimality for
general multi-objective optimization problems [9]. While Genetic algorithms [15]
can be considered as a “globalization technique” because they can handle a
population of candidate solutions, Simulated annealing is a probabilistic method
[11]. Another advantage of genetic algorithms and simulated annealing is that
they do not use gradients or Hessians which may not exist or can be difficult
to obtain. So we decided to use Genetic algorithms and Simulated annealing to
solve the above multi-objective optimization.

Multi-Objective Optimization for Relevant Sub-graph Extraction 107

2.2 Solving the Multi-Objective Optimization

In order to solve a multi-objective optimization problem, there are many types
of methods such as: scalar approach, Pareto-based approach, normal boundary
intersection, successive Pareto optimization, etc. [4,12]. We decided to use scalar
approach [9], which gives one solution for each implementation, in the following
formula:

F (V ∈, E∈) = w1 × f1(V ∈, E∈) + w2 × f2(V ∈, E∈) (5)

where wi is a non-negative weight.

2.3 Representation of Solutions

Solutions of this multi-objective optimization are of course sub-graphs, G(V,E).
In other words, solutions are sets of vertices. Unfortunately, we do not know the
number of proteins in each sub-graph in advance and these numbers are different,
in principle. The number of vertices in sub-graph is intrinsically dimension of
the search spaces. Consequently, the higher dimension the search space is, the
more difficult the problem is.

In order to lessen the dimension, we represented a solution as a circle that
is deter-mined by center and radius (see Fig. 1). Consequently, the dimension of
search space is fixed of two, namely center (vertex) and radius (positive integers).
Finally, each individual of GAs (SAs state) consists of center and radius; GAs
and SA used (7) as the fitness function.

Fig. 1. Circle representation of solution. The dash circle has center, P1 and radius of
one. The dash-dot circle has center, P1 and radius of two.

3 Results

Protein complex play an important role in cellular organization and function.
The accumulation of large-scale protein interaction data on multiple organisms
requires novel computational techniques to analyse biological data through these
large-scale networks. Biological information can often be represented in the form
of a ranked list.

The Biological General Repository for Interaction Datasets (BioGRID) [14]
contains genetic and protein interaction data from model organisms and humans.

108 M. Elati et al.

All the protein interactions corresponding to Saccharomyces cerevisiae (69,800
unique interactions) were downloaded and used as the network G to compute
f1. We used 20 ranked lists from the Affinity purification followed by mass spec-
trometry analysis (AP-MS) experiments from Gavin et al. [8]. These experi-
ments produced lists of proteins (nodes) that potentially form a complex but
very often capture non-specific proteins (false positive, FP) and miss core pro-
teins (false negative, FN). Therefore we applied our algorithm to each of these
lists to find the connected sub-graphs around these purified lists of proteins in
order to eliminate FP and add highly connected proteins potentially missed by
the experimental process.

We used Simulated annealing (with an initial temperature set to 10000) and
Genetic algorithms to solve the multi-objective optimization problem. Based
on the fitness function defined in Eq. 5, the Genetic Algorithm globally showed
better results (mean 1.28, standard deviation 0.19) than simulated annealing
(mean 1.22, standard deviation 0.20).

According to Brohee et al. [3], networks with large number of vertices are
not well identified by the MCODE algorithm [1]. Moreover, one of the most
successful clustering procedures that has been used so far in deriving clusters
from PPI networks seems to be the MCL [5]. Those are the reasons that we
selected MCL to do the comparisons. The parameters of MCL such as power
and inflation are set to two.

The results obtained by the Genetic Algorithm had always a superior density
f1 (mean 0.57) than the results given by MCL (mean 0.1).

4 Conclusion

The objectif of this work is to pose the problem of finding a subgraph connecting
n nodes in a graph as a multi-objective problem in the context of systems biology.
We used stochastic methods to solve the problem and used a graph specific
representation of solutions, a center and a radius, to lessen the search space. We
used Simulated annealing and a Genetic Algorithm to solve the optimization
problem and compared our results with a graph clustering method, the MCL
algorithm. MCL does not actually solve this problem, it does not maximizes f2,
but graph clustering was the most logical choice for a comparison.

MCL produced very big sub-graphs (2000–6000 nodes) making the analysis
of the results extremely difficult and adding many False Positive whereas the
results produced by the Genetic Algorithm had 29–190 nodes which is much more
realistic. The size of MCL clusters explains why the density is so low (average
of 0.1) and why the number of nodes from L is so high therefore motivating
the fact that the problem must be seen as a multi-objective problem. Moreover,
the execution time of MCL on such large networks is on the order of hours or
days (here 2 and a half hour on four cores) when solving the problem using a
Genetic Algorithm took an average of 2 min.

Acknowledgment. We thank F. Radvanyi for fruitful discussions and the anonymous
referees for their pertinent suggestions.This work is supported by the INCa (French

Multi-Objective Optimization for Relevant Sub-graph Extraction 109

National Institute of Cancer) through the INCa project PL-2010-196. R. Nicolle is
supported by a fellowship from the French Ministry of Higher Education and Research.

References

1. Bader, G., Hogue, C.: An automated method for finding molecular complexes in
large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

2. Birmele, E., Elati, M., Rouveirol, C., Ambroise, C.: Identification of functional
modules based on transcriptional regulation structure. BMC Proc. 2(Suppl 4), S4
(2008)

3. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinformatics 7, 488 (2006)

4. Coello, C.A.C., Dhaenens, C., Jourdan, L. (eds.): Advances in Multi-Objective
Nature Inspired Computing. Studies in Computational Intelligence, vol. 272.
Springer, Heidelberg (2010)

5. van Dongen, S.: Graph clustering by flow simulation. Ph.D. thesis, University of
Utrecht (May 2000)

6. Dupont, P., Callut, J., Dooms, G., Monette, J.N., Deville, Y.: Relevant subgraph
extraction from random walks in a graph (2006)

7. Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast discovery of connection sub-
graphs. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04,pp. 118–127 (2004)

8. Gavin, A., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C.,
Jensen, L., Bastuck, S., Dumpelfeld, B.: Proteome survey reveals modularity of
the yeast cell machinery. Nature 440, 631–636 (2006)

9. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local
search in hybrid evolutionary multi-criterion optimization algorithms. IEEE Trans.
Evol. Comput. 7, 204–223 (2002)

10. Jiang, P., Singh, M.: Spici: a fast clustering algorithm for large biological networks.
Bioinformatics 26(8), 1105–1111 (2010)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

12. Mueller-Gritschneder, D., Graeb, H., Schlichtmann, U.: A successive approach to
compute the bounded pareto front of practical multiobjective optimization prob-
lems. SIAM J. Optim. 20, 915–934 (2009)

13. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular
networks. Proc. Natl Acad. Sci. 100, 12123–12128 (2003)

14. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.:
Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–
D539 (2006)

15. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)

PROGRESS: Progressive
Reinforcement-Learning-Based Surrogate

Selection

Stefan Hess1(B), Tobias Wagner1, and Bernd Bischl2

1 Institute of Machining Technology (ISF), TU Dortmund University,
Dortmund, Germany

{hess,wagner}@isf.de
2 Faculty of Statistics, TU Dortmund University, Dortmund, Germany

bischl@statistik.tu-dormund.de

Abstract. In most engineering problems, experiments for evaluating
the performance of different setups are time consuming, expensive, or
even both. Therefore, sequential experimental designs have become an
indispensable technique for optimizing the objective functions of these
problems. In this context, most of the problems can be considered as
a black-box. Specifically, no function properties are known a priori to
select the best suited surrogate model class. Therefore, we propose a new
ensemble-based approach, which is capable of identifying the best surro-
gate model during the optimization process by using reinforcement learn-
ing techniques. The procedure is general and can be applied to arbitrary
ensembles of surrogate models. Results are provided on 24 well-known
black-box functions to show that the progressive procedure is capable
of selecting suitable models from the ensemble and that it can compete
with state-of-the-art methods for sequential optimization.

Keywords: Model-based optimization · Sequential designs · Black-box
optimization · Surrogate models · Kriging · Efficient global optimiza-
tion · Reinforcement learning

1 Introduction

The optimization of real-world systems based on expensive experiments or time-
consuming simulations poses an important research area. Against the back-
ground of increasing flexibility and complexity of modern product portfolios,
such kinds of problems have to be constantly solved. The use of surrogate (meta)-
models f̂ for approximating the expensive or time-consuming objective function
f : x → y represents an established approach to this task. After determining
the values of f for the points x of an initial design of experiments, the surrogate
model f̂ is computed and then used for the further analysis and optimization.
Here, we consider deterministic, i.e., noise-free minimization problems. In such
a scenario, the former approach has a conceptual drawback. The location of

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 110–124, 2013.
DOI: 10.1007/978-3-642-44973-4 13, c© Springer-Verlag Berlin Heidelberg 2013

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 111

the optimum can only roughly be determined based on the initial design. A high
accuracy of the optimization on the model does not necessarily provide improved
quality with respect to the original objective function. As a consequence, the
resources expended for the usually uniform coverage of the experimental region
for the approximation of the global response surface may be spent more effi-
ciently in order to increase the accuracy of the surrogate in the regions of the
actual optimum.

A solution to this problem is provided by sequential techniques, called effi-
cient global optimization (EGO) [16], sequential parameter optimization [1] and
sequential designs [24] within the different disciplines. Sequential techniques do
not focus on an approximation of a global response surface, but on an efficient
way to obtain the global minimum of the objective function f . After evaluating
a sparse initial design in the parameter space, much smaller than the actual
experimental budget, the surrogate model is fitted and proposes a new point
which is then evaluated on the original function f . The point is added to the
design and the procedure is repeated until the desired objective value has been
obtained or the experimental budget has been depleted.

For the design of a sequential technique, the choice of the surrogate model
is a crucial decision. Whereas resampling techniques [3] can be used to estimate
the global prediction quality in the classical approach, the optimization capa-
bilities of a model have to be assessed in the sequential approach. Therefore,
this capability is not necessarily static. Some models may be suited to efficiently
identify the most promising basin in the beginning, whereas others are good for
refining the approximation in the final stage of the optimization.

In this paper, we tackle the model selection problem for sequential optimiza-
tion techniques. Hence, the proposed optimization algorithm utilizes a heteroge-
neous ensemble of surrogate models. An approach to solve the progressive model
selection problem is proposed as a central scientific contribution. It is designed
to identify models that are most promising at a certain stage of the optimization.
Preference values are used to stochastically select a surrogate model, which in
turn proposes a new design point in each iteration of the algorithm. Based on the
quality of this design point, the rating of the model is adjusted by means of rein-
forcement learning techniques. The procedure is general and can be performed
with arbitrary ensembles of surrogate models.

In the following, an overview of related research is provided by means of
a brief review of the literature in Sect. 2. Details of the applied methods are
presented in Sect. 3 and the actual PROGRESS algorithm is described in Sect. 4
based on these foundations. In Sect. 6, its results on the benchmark specified
in Sect. 5 are presented and discussed. The main conclusions are summarized in
Sect. 7 and an outlook for further research in this area is introduced.

2 Review

In the following review of the literature we mainly restrict the focus to sequential
optimization techniques using ensembles of surrogate models in which the selec-
tion or combination of the models for the internal optimization is dynamically

112 S. Hess et al.

adjusted. A more general survey of sequential optimization algorithms has been
recently provided by Shan et al. [31]. For the special class of kriging-based opti-
mization algorithms exploiting the uncertainty estimation for a trade-off between
local and global search, we refer to the taxonomy of Jones [15].

Ensemble-based sequential optimization procedures can be classified in three
basic concepts:

1. All surrogate models are individually optimized and (subsets of) the design
points are evaluated on the original objective f .

2. The predictions of all surrogate models are aggregated and their combined
value is used for selecting the next design point.

3. A single surrogate model is used in each iteration. The selection of the model
is based on dynamically adjusted scores or probabilities.

The first concept is particularly designed for applications in which speed-ups
from parallelization can be expected. For instance, Viana [35] applied four differ-
ent surrogate models in parallel to optimize engineering design problems. It was
shown that the resulting procedure is often superior to a sequential optimization
only relying on kriging. An application to surrogate-assisted evolutionary algo-
rithms was reported by Lim et al. [20]. In their approach, the best solutions of
each surrogate model are evaluated on the original function.

The second concept represents a general procedure combining predictions
using an ensemble of surrogate models. Here, individual predictions are often
aggregated via a weighted average. One major distinction of the techniques in
this concept class is whether the technique can only be applied to surrogate
models of the same basic type or whether a completely heterogeneous ensemble
set is possible. The latter case is obviously preferable because of its increased
generality. An early example for the former approach was presented by Hansen
et al. [12] and relied upon combinations of different types of neural networks. In
a similar manner, Ginsbourger et al. [9] proposed ensembles of kriging models
based on different correlation functions.

An early approach for calculating weights for aggregating individual model
predictions from a heterogeneous set was based on so-called Bayes factors [17],
which from a Bayesian viewpoint denote the conditional probability of a sur-
rogate being the true model given the current training data. More heuristic
approaches for weight calculation based on cross-validated model accuracy were
proposed and analyzed by Goel et al. [10]. The same means were also applied to
select a subset of the ensemble within a tournament selection [37]. For each fold
of a cross-validation, a representative surrogate was determined. The mean over
the predictions of the selected models was used to guide the sequential optimiza-
tion. An approach focusing on the combination and tuning of different surrogates
was presented by Gorissen et al. [11]. They aggregated the active models of the
ensemble by using the mean over the predictions. Since the key aspect of their
work was the design of an evolutionary approach for tuning and selecting the
models, the evaluation mainly focuses on the prediction quality of the resulting
approach after the tuning. A comparison with other ensemble-based sequential
techniques was not performed.

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 113

Algorithm 1: Model-based optimization
Let f be the black-box function that should be optimized;1

Generate initial design set {x1, . . . ,xn};2

Evaluate f on design points: yi = f(xi);3

Let D={(x1, y1), . . . , (xn, yn)};4

while stopping criterion not met do5

Build surrogate model f̂ based on D;6

Get new design point x∗ by optimizing the infill criterion on f̂ ;7

Evaluate new point y∗ = f(x∗);8

Extend design D ← D ∪ {(x∗, y∗)};9

Currently, only a few related approaches exist for the third concept of ensem-
ble techniques. Its main advantage is that it constitutes a very general approach
which also allows many heterogeneous models to be integrated into the ensem-
ble since only one model has to be fitted and optimized per iteration. Thus,
the selected model can be subject to a more time-consuming tuning to specifi-
cally adapt it to the objective function. Friese et al. [8] applied and compared
different strategies to assess their suitability for sequential parameter optimiza-
tion, among them also ensemble-based methods using reinforcement learning.
However, these methods were used in a rather out-of-the-box manner, without
specifically adapting the generic reinforcement learning techniques to the prob-
lem at hand to exploit their full potential. Some of the potential problems, as
well as enhancements to overcome them, will be discussed in this paper. Another
variant of the approach was applied in the context of operator selection in evo-
lutionary algorithms by Da Costa et al. [5].

3 Methods

In this section, the methodological foundations of our algorithm are introduced.
First, the general concept of a model-based optimization (MBO) algorithm is
described. Then the multi-armed bandit problem from reinforcement learning,
which is later transferred to the progressive model selection problem in MBO, is
presented.

3.1 Model-Based Optimization

Response surface models are a common approach in cases where the budget of
evaluations available for the original function is severely limited. As this sur-
face can be explored with a much higher amount of evaluations, the optimum
of the so-called infill criterion can be accurately approximated using standard
optimization methods. This generic MBO approach is summarized in Algorithm
1. The stages of proposing new points and updating the model are alternated in
a sequential fashion.

114 S. Hess et al.

In the following, the steps of the generic MBO algorithm are discussed and
some details are provided.

1. For the initial design, many experimental design types are possible, but for
nonlinear regression models usually space-filling designs like Latin hypercube
sampling (LHS) are used, see [4] for an overview. Another important choice is
the size of the initial design. Rules of thumb are usually somewhere between
4d and 10d, the latter being recommended by [16].

2. As surrogate model, kriging was proposed in the seminal EGO paper [16]
because it is especially suited for nonlinear, multimodal functions and allows
local refinements to be performed, but basically any surrogate model is possi-
ble. As presented in Sect. 2, also more sophisticated approaches using ensem-
ble methods have been applied within MBO algorithms.

3. The infill criterion is optimized in order to find the next design point for
evaluation. It measures how promising the evaluation of a point x is according
to the surrogate model. One obvious choice is the direct use of f̂(x). For
kriging models, the expected improvement (EI) [23] is commonly used. It
factors in the local model uncertainty in order to guarantee a reasonable
trade-off between the exploration of the decision space and the exploitation
of the already obtained information. These and other infill criteria have been
proposed and assessed in several studies [15,25,30,36].

4. As a stopping criterion, a fixed budget for function evaluations, the attain-
ment of a specified y-level, or a combination of both is often used in practice.

3.2 Reinforcement Learning

The model selection problem in MBO can be considered as a “multi-armed-
bandit” reinforcement learning problem. Here, in each iteration t an action at

has to be chosen from a given set of finite choices A = {v1 . . . vm} and we could
envision those choices to be arms of a casino slot machine. In MBO, this choice
corresponds to selecting a regression model which in turn is used to propose
the next design point. Depending on the action at, we will receive a reward rt
according to an unknown probability distribution, and our aim is to maximize
summed rewards over time.

After we have obtained some information regarding the pay-offs from the dif-
ferent slot machines, we face the fundamental exploration-exploitation dilemma
in reinforcement learning: Should we try to gather more information regarding
the expected pay-off of the actions or should we greedily select the action which
currently seems most promising? The problem becomes even more difficult if we
assume nonstationary rewards, i.e., reward distributions that change over time.
In this scenario, we always have to allocate a significant proportion of selections
for exploring the current situation.

Sutton and Barto [32] suggest several ways for balancing exploration and
exploitation. One is a probability matching strategy called reinforcement com-
parison, where the actions are selected stochastically according to a vector
qt ∈ R

m of preference values. The main idea is that a high reward should strongly

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 115

increase the preference value/selection probability of an action, whereas a low
reward should decrease it.

Let us assume we are in iteration t and already have a preference vector qt.
These preferences are then transformed to selection probabilities via a softmax
function

πt,j = exp(qt,j)

(
m∑

k=1

exp(qt,k)

)−1

, j ∈ {1, . . . , m} . (1)

Based on these probabilities, we select action at and receive its stochastic reward
rt. Assuming we are in a general nonstationary scenario, we now have to decide
whether rt is favourable or not. For this, we compare it with a reference reward
r̄t, which encodes the expected, average pay-off across all actions at iteration t.
Assuming we already have such an r̄t, the element of the preference vector qt

for the chosen action at = vj ∈ A is now updated, while the preferences for all
other actions stay the same:

qt+1,k =

{
qt,k + β[rt − r̄t], if k = j

qt,k else.
(2)

Here, the strategy parameter β encodes the strength of the adjustment, i.e., the
desired trade-off between exploitation (high β) and exploration (low β).

Finally, we update the reference reward r̄t via the following exponential
smoothing formula

r̄t+1 = r̄t + α(rt − r̄t) . (3)

The strategy parameter α ∈ (0, 1] determines how much influence the current
reward has on the reference reward, i.e, how much we shift the reference reward
towards rt. It thus reflects the assumed degree of nonstationarity in the reward
distributions.

4 Algorithm

In this section, we address how the action selection by means of the reinforce-
ment comparison can be exploited for model selection in MBO. Regarding models
as selectable actions seems straightforward, but apart from that many techni-
cal details of the basic method in Sect. 3.2 have to be clarified or adapted. The
reward will be based on the improvement in objective value obtained by the pro-
posed x∈. The sum of rewards over time then measures the progress made during
optimization. The main idea is that models which generated larger improvements
in the past should be preferred in the future.

Instead of using an expected improvement criterion, we directly optimize
the response surface of the selected model, i.e., no local uncertainty estimation
is used. Although this carries the risk of getting stuck in a local optimum for
one model, it offers two important advantages: (a) It is possible to optimize
this criterion for arbitrary regression models, and (b) by using a heterogeneous

116 S. Hess et al.

Algorithm 2: PROGRESS
Let f be the black-box function that should be optimized;1

Let E = {h1, . . . , hm} be the regression models in the ensemble;2

Generate initial design {x1, . . . ,xn};3

Evaluate f on design ∀i ∈ {1, . . . , n} : yi = f(xi);4

Let D={(x1, y1), . . . , (xn, yn)};5

for j ∈ {1, . . . ,m} do6

Build surrogate model ĥj based on D;7

Select next promising point x∗(ĥj) by optimizing ĥj ;8

Evaluate new point y∗(ĥj) = f(x∗(ĥj));9

Extend design set D ← D ∪ {(x∗(ĥj), y
∗(ĥj))};10

Calculate vector of initial rewards r0 ∈ R
m using equation (5);11

Initialize preference vector q1 = r0 and reference reward r̄1 = median(r0);12

Let t = 1;13

while stopping rule not met do14

Calculate model selection probabilities πt from qt using equation (1);15

Sample model hj according to πt;16

Build surrogate model ĥj based on D;17

Select next promising point x∗(ĥj) by optimizing ĥj ;18

Evaluate new point y∗(ĥj) = f(x∗(ĥj));19

Extend design set D ← D ∪ {(x∗(ĥj), y
∗(ĥj))};20

Calculate reward rt using equation (4);21

Update preferences using equation (2) to obtain qt+1 ;22

Update reference reward using equation (3) to obtain r̄t+1;23

t ← t+124

ensemble the models are likely to focus on different basins. The exploration thus
emerges from a successful adaptation of the model selection.

The complete procedure of the PROGressive REinforcement-learning-based
Surrogate Selection (PROGRESS) is shown in Algorithm 2. It is an enhanced
instance of the generic Algorithm 1, whereby the methodological contributions
are: the initialization phase (lines 6 to 13), the stochastic model selection (lines
16 to 17) and the preference vector and reference reward updates (lines 22 to
24). Details are provided in the following.

4.1 Rewards

Let ymin be the minimum response value of the design before the integration of
x∈(ĥj). The reward of a chosen surrogate model hj is then given by

rt(ĥj) = φ(ymin − f(x∈(ĥj))) , (4)

where x∈(ĥj) is the next point proposed by model ĥj and φ is a simple linear
rescaling function which will be detailed in the next section. Thereby, it is pos-
sible that a model produces negative rewards. We intentionally use all available

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 117

information, also of iterations in which no improvements in the optimization of
f are achieved, as this happened a considerable amount of times in our exper-
iments. Surrogate models that poorly approximate interesting regions of the
objective function are directly downgraded. Clipping rewards at zero would dis-
card this information.

4.2 Initialization Phase and Reward Rescaling

Until now we have not defined how preference values and the reference reward are
initialized before the first iteration t = 1. When using the generic reinforcement
learning approach for MBO, we have to keep two peculiarities in mind: First,
there is a high potential for large rewards in the first sequential step, as no
optimization of the objective has been performed so far – this fact could cause
a strong overrating of the first selected model. Second, it is hard to decide on a
reasonable initial value for the reference reward – in particular, if independence
with respect to the scaling of the objective function is desired.

In the initialization phase all models of the ensemble E = {h1, . . . , hm}
are fitted to the initial design and we obtain all ĥj . Each one proposes a point
x∈(ĥj), which in turn is evaluated. We now define the vector initial rewards ρ by
calculating the initial improvements of all models w.r.t. ymin, the best objective
value we have observed on the initial design, and scale them to [0, 1] by applying
the linear transformation φ to obtain our initial rewards r0:

ρ = (ymin − f(x∈(ĥ1)), . . . , ymin − f(x∈(ĥm))T

r0 =(φ(ρ1), . . . , φ(ρm))T , φ(x) =
x − min(ρ)

max(ρ) − min(ρ)
. (5)

This transformation φ (always with the initial values of ρ) is also applied
to all upcoming rewards. The initial reference reward r̄1 is defined to be the
median of the transformed rewards as a robust representative. The initial vector
of probabilities π1 is now simply the softmax transformation of q1.

4.3 Sequential Update

In the sequential part of PROGRESS, a surrogate model is stochastically chosen
according to the current probability vector πt, fitted to the current design and
proposes a new point x∈(ĥj) by optimization of its response surface. After its
reward has been determined based on Eq. 4, the original formulas of Sect. 3 can
be used for updating the preferences and the reference reward. The algorithm
usually stops when a given budget of function evaluations is exhausted.

5 Experimental Setup

PROGRESS and all experiments in this article have been implemented in the
statistical programming language R [26]. We analyzed the performance of our

118 S. Hess et al.

Table 1. Overview of the considered test functions and the problem features covered.

Separable Low or moderate cond. High cond. and unimodal Adequate glob. struct. Weak glob. struct.

1 Sphere 6 Attractive sector 10 Ellipsoidal function 15 Rastrigin 20 Schwefel
2 Ellipsoidal 7 Step ellipsoidal 11 Discus function 16 Weierstrass 21 Gallagher’s Gaussian
3 Rastrigin 8 Rosenbrock 12 Bent cigar 17 Schaffers F7 (101-me Peaks)
4 Bueche- (original) 13 Sharp ridge 18 Schaffers F7 (ill) 22 Gallagher’s Gaussian

Rastrigin 9 Rosenbrock 14 Different powers 19 Composite Griewank (21-hi Peaks)
5 Linear slope (rotated) Rosenbrock 23 Katsuura

24 Lunacek bi-Rastrigin

algorithm on the 24 test functions of the BBOB noise-free test suite [13], which
is a common benchmarking set for black-box optimization. It covers a variety
of functions that differ w.r.t. problem features like separability, multi-modality,
ill-conditioning and existence of global structure. A summary of these functions
and their respective properties is provided in Table 1. Their function definitions,
box constraints and global minima were taken from the soobench R package
[21]. The dimension of the scalable test functions was set to d = 5.

The regression models used in our PROGRESS ensemble and their respective
R packages are listed in Table 2: A second order (polynomial) response surface
model (RSM) [14], a kriging model with power exponential covariance kernel
[29], multivariate adaptive regression splines (MARS) [6], a feedforward neural
network [14] with one hidden layer, a random forest [14], a gradient boosting
machine (GBM) [7] and a regression tree (CART) [14]. Table 2 also lists (con-
stant) parameter settings of the regression models which deviate from default
values and box constraints for parameters which were tuned prior to model fit-
ting in every iteration of PROGRESS based on all currently observed design
points (lines 7 and 17 in Algorithm 2). To accomplish this, we used a 10-fold
repeated cross-validation (5 repetitions) to measure the median absolute predic-
tion error and minimized this criterion in hyperparameter space by CMAES with
a low number of iterations. Integer parameters were determined by a rounding
strategy and CMAES was always started at the point in hyperparameter space
which was discovered as optimal during the previous tuning run of the same
model (or a random point if no such point is available).

The response surfaces of the regression models were also optimized by CMAES
with 100 iterations and λ = 10d offspring. This setting deviates from the literature
recommendation for technical reasons as more parallel model evaluations (predic-
tions) reduce the computational overhead and lead to a better global search qual-
ity with the same number of iterations. We performed 10 random CMAES restarts
and one additional restart at the currently best point of the observed design points
for further exploration of the search space and to reduce the risk of getting stuck
in a local optimum.

The learning parameters α and β of PROGRESS were manually tuned prior
to the experiments. In order to not bias the results by overtuning on the prob-
lems, these parameters were fixed to α = 0.1 and β = 0.25 for all of the test
instances. Thereby, our aim was to find a global parametrization leading to
robust results and a successful adaptation of the selection probabilities.

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 119

Table 2. Surrogate models, R packages, parameters and tuning ranges.

Model R package Parameter Value/Range Model R package Parameter Value/Range

RSM rsm [18] - - RF randomForest [19] ntree {50, . . . , 500}
NNET nnet [34] size 5 mtry {1, . . . , 5}

decay [0, 0.5] MARS earth [22] degree {1, 2, 3}
GBM gbm [27] interaction.depth {4, . . . , 8} penalty {2, 3, 4}

shrinkage [0.025, 0.05] nprune {1, . . . , 10}
bag.fraction [0.5, 0.8] CART rpart [33] - -

n.minobsinnode 1 KM DiceKriging [28] nugget.estim TRUE

We compared PROGRESS with an established global optimizer for expensive
black-box functions, namely EGO based on a kriging with a power exponential
kernel (implementation taken from the R package DiceOptim [28]; default para-
meters except for kernel). We also ran a random LHS to provide a baseline
result. For PROGRESS we considered two variants, one with the above men-
tioned hyperparameter tuning and one without, where default settings for all
regression models were set. All algorithms were allowed a budget of 200 function
evaluations, from which 50 were allocated to an initial maximin LHS design.
This is in accordance with the “10 · d rule” proposed in [16]. This initial design
is shared by all MBO algorithms in our experiments within one replication to
reduce variance in comparisons. All algorithm runs were replicated 20 times. To
parallelize our experiments the BatchExperiments R package [2] was used.

6 Results

In the following results, we report the distance of the best visited design point
to the global optimum in objective space as measure of algorithm performance.
Because the optimization of the black-box function at hand is our major interest,
we do not report global prediction quality indicators of the internal models.
Neither do we calculate expected run times to obtain a certain target level, as
we assume an a priori fixed budget of function evaluations. The performance
distributions of the 20 runs of each algorithm on the 24 test functions of the
benchmark are shown in Fig. 1 on a logarithmic scale.

The most obvious result is the superiority of the sequential designs over
the static random LHS. In all cases, except for functions 12 and 23, at least
one of the three sequential algorithms outperforms the static approach. Test
functions 12 and 23 can apparently not be approximated well enough by any of
the considered regression models to provide helpful guidance for the optimization
process. This might be due to the high condition number (function 12) or the
absence of global structure and an extreme number (> 105) of local optima
(function 23). The comparison of the two versions of PROGRESS with and
without hyperparameter tuning shows that both variants obtain similar results
in most instances. There are cases (e.g., function 15, 17, 19), however, where
hyperparameter tuning leads to a significantly better outcome.

120 S. Hess et al.

Fig. 1. Performance box plots per algorithm and test function. Displayed is the dif-
ference in objective space between best design point during optimization and global
minimum on a log10 scale. PROGRESS is run in two variants, one with hyperparameter
tuning of the selected surrogate model in each iteration and one without.

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 121

The EGO algorithm and the use of kriging models represent the state-of-
the-art in sequential designs. If PROGRESS can in general compete with EGO,
it can be considered as successful, as it manages to detect suitable surrogate
models within the strictly limited budget. If we assign equal importance to all
test functions in the benchmark, none of the two algorithms clearly dominates
the other. Whereas PROGRESS outperforms EGO on the functions 1, 5, 13, 15,
16, 17, 21, and 24, the opposite holds on the functions 2, 3, 6, 8, 10, 14 and 20.
On the remaining test cases, both algorithms show no significant difference in
performance. Hence, PROGRESS is competitive with EGO and is the preferable
choice on about one third of the benchmark set. For this reason, the proposed
procedure can be considered as successful.

To obtain a more detailed understanding of the principles behind the surro-
gate selection, we analyzed the progression of the selection probabilities in three
exemplary runs. These are shown in Fig. 2. We also display the total number of
selections per model during the whole run.

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

se
le

ct
io

n
pr

ob
ab

ili
tie

s

sequential step
0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

se
le

ct
io

n
pr

ob
ab

ili
tie

s

sequential step
0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

se
le

ct
io

n
pr

ob
ab

ili
tie

s

sequential step

Q
M

C
A

R
T

R
F

N
N

E
T

M
A

R
S

G
B

M

K
M

0

20

40

60

80

nu
m

be
r o

f m
od

el
 s

el
ec

tio
ns

Q
M

C
A

R
T

R
F

N
N

E
T

M
A

R
S

G
B

M

K
M

0

20

40

60

80

nu
m

be
r o

f m
od

el
 s

el
ec

tio
ns

Q
M

C
A

R
T

R
F

N
N

E
T

M
A

R
S

G
B

M

K
M

0

20

40

60

80

nu
m

be
r o

f m
od

el
 s

el
ec

tio
ns

Fig. 2. Progression of selection probabilities and number of selections in PROGRESS
(with tuning). From left to right: Lunacek bi-Rastrigin (24), Gallagher’s Gaussian 21-hi
Peaks (22) and Rastrigin (3).

In the first case shown in the left plot, a dynamic shift between a model cap-
turing global trends (QM) and a more detailed model for local optimization (RF)
is accomplished during the optimization. While the former efficiently identifies
the basins of the Lunacek bi-Rastrigin Function,1 the latter succeeds in guiding
the search through the rugged area around the optimum. This synergy allows
PROGRESS to significantly outperform EGO on this function. The center plot
1 The weak global structure of this function is rooted in the existence of two basins of

almost the same size.

122 S. Hess et al.

shows an experiment on Gallagher’s Gaussian 21-hi Peaks function. As “krig-
ing” is merely a different term for “Gaussian process”, it is unsurprising that this
model is the best choice to approximate the 21 local optima of this test function.
PROGRESS adapts its preference values after only a few iterations and learns to
select the kriging model with high probability and therefore scores comparable
to EGO. In the remaining plot on the right-hand side, the selection probabilities
are shown for a test case where PROGRESS showed inferior results compared
to EGO. Here, PROGRESS is not able to learn a superior model, but can only
downgrade the apparently inappropriate models NNET and CART. A possible
explanation for this problem might be the lack of balance between improvements
and deteriorations on this function. For functions on which PROGRESS is infe-
rior to EGO, such a problem can often be observed. We therefore consider this
as one of the main starting points for future improvements.

7 Conclusions and Outlook

In this paper, we presented PROGRESS, a new optimization algorithm for pro-
gressive surrogate selection based on reinforcement learning techniques. We
demonstrated that the algorithm can compete with the established efficient global
optimization (EGO) algorithm, which is the state-of-the-art for optimizing black-
box problems within a strictly limited experimental budget. While EGO was
superior in some cases of our considered benchmark cases and kriging therefore
probably the best choice for approximating the response surface of these func-
tions, PROGRESS outperformed EGO in roughly one third of all cases due to
the adaptive determination of the best fitting surrogate model during the differ-
ent stages of the sequential optimization. Furthermore, the results indicate that
hyperparameter tuning for the regression models in the ensemble can potentially
improve the outcome of PROGRESS on some problems.

In future research, our algorithmic decisions will be further validated and/or
refined. For instance, the scaling of the rewards and the calculation of the refer-
ence reward might offer potential for improvements. Moreover, more experiments
could be performed to get a better understanding of the effects and interactions of
the algorithm parameters. Alternatively, other reinforcement learning techniques
can be implemented and benchmarked with the reinforcement comparison with
respect to their suitability for an adaptive model selection. Finally, in order to
enhance the time-efficiency of PROGRESS, the necessity of a hyperparameter
tuning in every sequential loop will be further examined.

Acknowledgements. This paper is based on investigations of the project D5 of the
Collaborative Research Center SFB/TR TRR 30 and of the project C2 of the Collabora-
tive Research Center SFB 823, which are kindly supported by the Deutsche Forschungs-
gemeinschaft (DFG).

PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection 123

References

1. Bartz-Beielstein, T., Lasarczyk, C.G., Preuss, M.: Sequential parameter optimiza-
tion. In: McKay, B., et al. (eds.) Proceedings of the 2005 Congress on Evolutionary
Computation (CEC’05), Edinburgh, Scotland, pp. 773–780. IEEE Press, Los Alami-
tos (2005)

2. Bischl, B., Lang, M., Mersmann, O., Rahnenfuehrer, J., Weihs, C.: BatchJobs and
BatchExperiments: abstraction mechanisms for using R in batch environments.
Submitted to Journal of Statistical Software (2012a)

3. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for meta-
model validation with recommendations for evolutionary computation. Evol. Com-
put. 20(2), 249–275 (2012b)

4. Bursztyn, D., Steinberg, D.M.: Comparison of designs for computer experiments. J.
Stat. Planning Infer. 136(3), 1103–1119 (2006)

5. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th Conference Genetic
and Evolutionary Computation (GECCO ’08), pp. 913–920. ACM, New York (2008)

6. Friedman, J.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67
(1991)

7. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

8. Friese, M., Zaefferer, M., Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W.,
Naujoks, B.: Ensemble based optimization and tuning algorithms. In: Hoffmann,
F., Hüllermeier, E. (eds.) Proceedings of the 21. Workshop Computational Intelli-
gence, pp. 119–134 (2011)

9. Ginsbourger, D., Helbert, C., Carraro, L.: Discrete mixtures of kernels for kriging-
based optimization. Qual. Reliab. Eng. Int. 24(6), 681–691 (2008)

10. Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V.: Ensemble of surrogates. Struct.
Multidisc. Optim. 33(3), 199–216 (2007)

11. Gorissen, D., Dhaene, T., Turck, F.: Evolutionary model type selection for global
surrogate modeling. J. Mach. Learn. Res. 10, 2039–2078 (2009)

12. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12(10), 993–1001 (1990)

13. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions. Tech. Rep. RR-6829, INRIA
(2009). http://hal.inria.fr/inria-00362633/en/

14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York
(2009)

15. Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. Global Optim. 21(4), 345–383 (2001)

16. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-
box functions. J. Global Optim. 13(4), 455–492 (1998)

17. Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795
(1995)

18. Lenth, R.V.: Response-surface methods in R, using rsm. J. Stat. Softw. 32(7), 1–17
(2009)

19. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3),
18–22 (2002)

http://hal.inria.fr/inria-00362633/en/

124 S. Hess et al.

20. Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B.: A study on metamodeling techniques,
ensembles, and multi-surrogates in evolutionary computation. In: Thierens, D., et
al. (eds.) Proceedings of the 9th Annual Genetic and Evolutionary Computation
Conference (GECCO 2007), pp. 1288–1295. ACM, New York (2007)

21. Mersmann, O., Bischl, B.: soobench: Single Objective Optimization Benchmark
Functions (2012). http://CRAN.R-project.org/package=soobench, R package ver-
sion 1.0-73

22. Milborrow, S.: earth: Multivariate Adaptive Regression Spline Models (2012).
http://CRAN.R-project.org/package=earth, R package version 3.2-3

23. Mockus, J.B., Tiesis, V., Zilinskas, A.: The application of bayesian methods for seek-
ing the extremum. In: Dixon, L.C.W., Szegö, G.P. (eds.) Towards Global Optimiza-
tion 2, pp. 117–129. Elsevier North-Holland, New York (1978)

24. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Method-
ology, 3rd edn. Wiley, Hoboken (2009)

25. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill cri-
teria for noisy optimization. Struct. Multidisc. Optim. 48(3), 607–626 (2013)

26. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna (2012). http://www.R-project.org/ ISBN
3-900051-07-0

27. Ridgeway, G.: gbm: Generalized Boosted Regression Models (2012). http://CRAN.
R-project.org/package=gbm, R package version 1.6-3.2

28. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R pack-
ages for the analysis of computer experiments by kriging-based metamodeling and
optimization. J. Stat. Softw. 51(1), 1–55 (2012). http://www.jstatsoft.org/v51/i01/

29. Santner, T., Williams, B., Notz, W.: The Sesign and Analysis of Computer Exper-
iments. Springer, New York (2003)

30. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sam-
pling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278
(2002)

31. Shan, S., Wang, G.G.: Survey of modeling and optimization strategies to solve high-
dimensional design problems with computationally-expensive black-box functions.
Struct. Multi. Optim. 41(2), 219–241 (2010)

32. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. Cambridge Uni-
versity Press, Cambridge (1998)

33. Therneau, T.M., port by Brian Ripley, B.A.R.: rpart: Recursive Partitioning (2012).
http://CRAN.R-project.org/package=rpart, R package version 3.1-54

34. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer,
New York (2002)

35. Viana, F.A.C.: Multiple Surrogates for Prediction and Optimization. Ph.D. thesis,
University of Florida (2011)

36. Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W.: On expected-improvement
criteria for model-based multi-objective optimization. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 718–727. Springer,
Heidelberg (2010)

37. Wichard, J.D.: Model selection in an ensemble framework. In: International Joint
Conference on Neural Networks, pp. 2187–2192 (2006)

http://CRAN.R-project.org/package=soobench
http://CRAN.R-project.org/package=earth
http://www.R-project.org/
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=rpart

Neutrality in the Graph Coloring Problem

Marie-Eléonore Marmion1,2(B), Aymeric Blot2,3, Laetitia Jourdan2,
and Clarisse Dhaenens2

1 Université Libre de Bruxelles, Brussels, Belgium
mmarmion@ulb.ac.be

2 Université Lille 1 - INRIA Lille Nord-Europe, Lille, France
blot.aymeric@gmail.com, {laetitia.jourdan,clarisse.dhaenens}@lifl.fr

3 ENS Cachan/Bretagne, Université Rennes 1, Bruz, France

Abstract. In this paper, the neutrality of some hard instances of the
graph coloring problem (GCP) is quantified. This neutrality property
has to be detected as it impacts the search process. Indeed, local optima
may belong to plateaus that represent a barrier for local search methods.
Then, we also aim at pointing out the interest of exploiting neutrality
during the search. Therefore, a generic local search dedicated to neutral
problems, NILS, is performed on several hard instances.

Keywords: Graph coloring problem · Fitness landscape · Neutrality

1 Motivation

The graph coloring problem (GCP) consists in finding the minimal number of
colors χ, called the chromatic number, that leads to a legal coloring of a graph.
This is a NP−hard problem [3] widely studied in the literature. Then, for large
instances, approximate algorithms are used as local search methods [2] or evolu-
tionary strategies [8]. The most efficient metaheuristic schemes include specific
encodings and mechanisms for GCP. It requires a very good knowledge of the
problem and a long time of experimental analysis to tune the best parameters.

Another way to design efficient algorithms is to analyze the problem struc-
ture. For example, the landscape analysis aims at understanding better the char-
acteristics of the problems in order to design efficient algorithms [11]. Neutrality
appears when neighboring solutions have the same fitness value. Thus, neutrality
is a characteristic of the landscape [10].

Many insights about the neutrality of the GCP are raised when considering
the number of edges with the same color at both ends. But, as far as we know,
no deep analysis has ever been conducted in the literature. In this paper, we are
interested in the χ-GCP. This problem aims at looking for a legal coloring with
χ colors, while minimizing the number of conflicts. This paper analyses if the
χ-GCP may be considered as a neutral problem and if the neutrality may be
exploited to solve it. Therefore, Sect. 2 gives the results on the neutrality of hard
GCP instances. Then, in Sect. 3, the benefit of exploiting the neutrality when

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 125–130, 2013.
DOI: 10.1007/978-3-642-44973-4 14, c© Springer-Verlag Berlin Heidelberg 2013

126 M.-E. Marmion et al.

solving the GCP is studied. Section 4 discusses the presented work and future
research interests.

2 Characterizing the Neutrality

2.1 Definitions

A neutral neighbor of a solution is a neighboring solution having the same fitness
value. The neutral degree of a given solution is the number of neutral solutions
in its neighborhood. A fitness landscape is said to be neutral if there are “many”
solutions with a high neutral degree. A neutral fitness landscape can be pictured
by a landscape with many plateaus. A portal is a solution in a plateau of a local
optimum, having at least one neighbor with a better fitness value.

2.2 Approach

The average or the distribution of neutral degrees over the landscape may be
used to qualify the level of neutrality of a problem instance. This measure plays
an important role in the dynamics of local search algorithms [12,13]. In the case a
problem gets the neutrality property, Marmion et al. [6] suggested to characterize
the plateaus found from the local optima. Then, they sampled plateaus using
neutral walks from each local optimum found. The plateaus are classified in a
three-class topology: (T1) the local optimum is the single solution of the plateau,
(T2) no neighbor with a better fitness value was met for any solutions of the
plateau encountered along the neutral walk and; (T3) a portal has been identified
on the plateau. This latest type is the most interesting since it reveals some
solutions that help to escape from the plateau by improving. Indeed, the number
of solutions visited before finding a portal during a neutral random walk is a good
indicator of the probability to find an improving solution. Then, Marmion et al.
proposes to compute the distribution of the number of solutions on the plateau
that are needed to visit before finding a portal. Also, to study the cost/quality
trade-off, they compare this distribution with the one of the number of solutions
visited to find a (new) local optimum starting with a new solution, called the step
length. This approach and the characterization of the neutrality of the χ-GCP
are more detailed in [4].

2.3 Experiments

For this work we focus on literature instances of the GCP known to have “difficult
upper bound”, that is to say that a minimal legal coloring is hard to obtain.
Those instances are extracted from the DIMACS Computational Challenge on
“Graph Colouring and its Generalisations”.1 There are four classes of instances,
according to the type of generation. All the indicators, presented above, are
computed from 30 different solutions.
1 http://dimacs.rutgers.edu/Challenges/

http://dimacs.rutgers.edu/Challenges/

Neutrality in the Graph Coloring Problem 127

Table 1. Average neutral degree and the corresponding ratio for the random solutions
and the local optima.

Instances Neutral Degree
Data Random Local optima
V χ | nbh | nd ratio% nd ratio%

dsjc250.5 250 28 6750 858 12.7 83.8 1.2
dsjc500.1 500 12 5500 800 14.5 144 2.6
dsjc500.5 500 48 23500 2910 12.4 176 0.7
dsjc500.9 500 126 62500 9320 14.9 384 0.6
dsjc1000.1 1000 20 19000 2440 12.8 290 1.5

r250.5 250 65 16000 3470 24.2 1090 9.7
dsjr500.5 500 122 60500 12800 21.1 356 5.9
dsjr500.1c 500 84 41500 4780 11.5 121 0.3
dsjr1000.1c 1000 98 97000 8600 8.9 188 0.2

flat300 28 0 300 28 8100 1010 12.5 90.5 1.1
flat1000 50 0 1000 50 49000 4400 9.0 146 0.3

le450 25c 450 25 10800 1910 17.7 552 5.1
le450 25d 450 25 10800 1900 17.6 496 4.6

The ratio of the neutral degree is the neutral degree over the size of the neigh-
borhood. This measure is also computed for the random solutions and the local
optima as it makes the comparison between different instances easier. Table 1
gives the average neutral degree and the corresponding ratio for random solu-
tions and local optima on the GCP instances. For each instance, the number
of nodes V , the chromatic number χ and the size of the neighborhood | nbh |
are also given. This table first shows that, the ratios for random solutions are
quite high (up to 24.2 % for the instance r250.5). The neutrality characterises
the problem in general. The landscape may have a lot of flat parts. The sec-
ond observation on the results of Table 1 is that the ratios for local optima are
smaller than the ones of random solutions. Hence, depending on the instances,
the number of neutral neighbors in the neighborhood of a local optimum may be
important or not. Some instances present a high neutral degree (such as 9.7 %
for the highest, or around 5 % for others) while some others have a much smaller
neutral degree (down to 0.2 % for the instance dsjr1000.1c). These results con-
firm the apriori fact that neutrality is a strong property in the graph coloring
problem that may be used in local search strategies to be more efficient. In the
following, only the instances where the average neutral degree of the local optima
is higher than 1 % are considered.

Table 2 gives the statistics of the number of solutions visited on a plateau
(nbS) before finding a portal. The statistics of the step lengths (L) are also
given to study the cost/quality trade-off. Clearly, it is very quick to meet a
portal even randomly. Indeed, it is necessary to visit only 1 or 2 new solution(s)
on the plateau to find a portal to escape. Let us remark that reaching a portal
may be quick, but the difficulty is to identify a solution as a portal. However,
compared to the steps lengths, it seems to be more interesting to continue the

128 M.-E. Marmion et al.

Table 2. It gives the number of T1, T2 and T3 plateaus. nbS stands for the number
of visited solutions before finding a portal and, L for the step length.

Instances Plateaus nbS L
T1 T2 T3 Min Med Mean Max Min Med Mean Max

dsjc250.5 0 0 30 1 1 1.7 6 266 301 301 323
dsjc500.1 0 0 30 1 2 2 5 501 530 532 596
r250.5 0 1 29 1 2 3.3 17 125 148 148 164
flat300 28 0 0 0 30 1 1 1.7 6 344 388 385 406
le 450 25c 0 0 30 1 1 2.3 9 362 396 399 424
le 450 25d 0 0 30 1 2 2.5 11 370 399 400 428

search process by moving on a plateau to find a portal than to restart the search
process from a new random solution.

The analysis of the plateaus of the local optima shows that portals, solutions
of the plateau with at least one improving neighbor, are quick to reach with a
random neutral walk. It assumes that exploiting neutrality in the search process
may help to find better solutions. The following section provides insight about
the way to exploit neutrality to solve the GCP.

3 Influence of Neutrality on Local Search Performance

3.1 NILS Algorithm

The Neutrality-based Iterated Local Search (NILS) is an algorithm designed to
exploit the plateaus of the local optima [5]. It iterates a steepest descent and
a perturbation step to escape when the search is blocked on a local optimum.
In the perturbation step, from the local optimum, NILS performs neutral moves
until finding a portal. If no portal has been found until a maximum number
of neutral moves MNS, the solution is kicked. Thus, NILS is a generic local
search that benefits from the neutrality of the problem. In the following, NILS
is performed on the graph coloring problem in order to emphasize the benefit of
exploiting the neutrality of this problem.

3.2 Experiments

Four instances, one of each type, have been selected to perform NILS: dsjc250.5,
r250.5, flat 300 28 0 and le 450 25 c. The landscape analysis of theses instances
has shown that the plateaus of the local optima get portals that lead to improving
solutions. Several MNS values were tested in order to analyze the trade-off
between exploiting the plateau and exploring an other part of the search space.
MNS values were set to 0, 1, 2 and 5 times the size of the neighborhood. For
the value 0, NILS corresponds to a classical ILS that restarts from a new part
of the search space. 30 runs were performed for each configuration of NILS. The
stopping criterion was set to 2 × 107 evaluations.

Neutrality in the Graph Coloring Problem 129

Fig. 1. ILS and NILS performance on 4 instances of the graph coloring problem.

Figure 1 presents the boxplot of the performance of the classical ILS
(MNS = 0) and the three configurations of NILS (MNS = {1, 2, 5} × |Nbh|).
This figure shows first, that the performance of NILS are in average better than
the ones of the classical ILS. For the instances r250.5 and le 450 25c, the neutral
degree ratios were high (respectively 9.7 % and 5.1 %), and the results are very
promising as they show a clear improvement over the standard ILS. For the other
instances, the neutral degree ratios were lower (1.2 % for dscj250.5, and 1.1 % for
flat300 28 0), and the results obtained by NILS are only a little better than the
classical ILS. These results lead to the hypothesis that if the neutrality degree
ratio of an instance is high, NILS will probably give good results. In other cases,
it will not be attractive to use the neutrality, but however the results will not be
worse. Thus, exploiting the neutrality in the search process can lead to a better
efficiency and should not be discarded.

In these experiments, the performance of NILS is studied under different
MNS values for a same total number of evaluations. Results show that for
MNS values equal to 1 or 2 times the neighborhood size, performance is fairly
similar. However, with a coefficient of 5, results are worse. That implies NILS
can be stuck on plateaus on which searching portals is too expensive, and it may
be preferable, in these cases, to escape the plateaus not to waste too much time.

4 Discussion

The experimental results have shown that the hard instances of GCP present
neutrality where local search algorithms may be blocked on plateaus. Indeed,
the classical ILS is not able to find interesting solutions. However, when the
neutrality is exploited in the local search, results are improved even if no config-
uration of NILS gives a legal solution. This may be explained by the fact that
these instances are the hardest instances of the literature, and for each, k is set
to the χ-value, the best known chromatic number. In 2010, Porumbel et al. [8]
made a comparison between their algorithm dedicated to GCP and the 10 best
performing algorithms from the literature. Except the Iterated Local Search, all
the other algorithms are well-sophisticated and specific to GCP. Indeed, GCP-
specific mechanisms are used to improve the search. These mechanisms require
a huge knowledge on the GCP to be designed and tuned efficiently. Despite
this high level of sophistication, the comparison points out the difficulty for

130 M.-E. Marmion et al.

some algorithms to find the χ-value. For example, the results reported for the
instances considered above indicate that: The instance r250.5 is solved to the
optimality (k = χ) by only four algorithms out of six. The instance le 450 25c
is solved to the optimality only by six algorithms out of ten. And, the instance
flat300 28 0 is solved to the optimality only by four algorithms out of eleven.
Moreover, the ILS [7] never find the χ-value for the two last instances. Its per-
formance illustrate the difficulty for a generic algorithm to be efficient.

This paper should be considered as a preliminary work on the neutrality
of the GCP. Indeed, one points out the neutrality of some hard instances and
gives the degree of this neutrality. However, the performance of NILS are not
as good as expected, but, it shows the potential of exploiting neutrality to solve
the GCP. Since heuristic methods represent the state-of-the-art algorithms [1,9],
one wants to investigate how to exploit neutrality in such heuristics.

References

1. Caramia, M., Dell’Olmo, P., Italiano, G.F.: Checkcol: improved local search for
graph coloring. J. Discrete Algorithms 4, 277–298 (2006)

2. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Com-
put. Oper. Res. 33(9), 2547–2562 (2006)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., San Francisco (1990)

4. Marmion, M.-E., Blot, A., Jourdan, L., Dhaenens, C.: Neutrality in the graph
coloring problem. Technical Report RR-8215, INRIA (2013)

5. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: NILS: a
neutrality-based iterated local search and its application to flowshop scheduling. In:
Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 191–202. Springer,
Heidelberg (2011)

6. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neu-
trality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION
2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011)

7. Paquete, L., Stützle, T.: An experimental investigation of iterated local search for
coloring graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.
(eds.) EvoWorkshops 2002. LNCS, vol. 2279, pp. 122–131. Springer, Heidelberg
(2002)

8. Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Comput.
Oper. Res. 37(10), 1822–1832 (2010)

9. Porumbel, D.C., Hao, J.K., Kuntz, P.: A search space “cartography” for guiding
graph coloring heuristics. Comput. Oper. Res. 37(4), 769–778 (2010)

10. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Appl. Math. Comput.
117, 321–350 (2001)

11. Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20, 1–45
(1996)

12. Verel, S., Collard, P., Tomassini, M., Vanneschi, L.: Fitness landscape of the cellular
automata majority problem: view from the “Olympus”. Theor. Comput. Sci. 378,
54–77 (2007)

13. Wilke, C.O.: Adaptative evolution on neutral networks. Bull. Math. Biol. 63, 715–
730 (2001)

Kernel Multi Label Vector Optimization
(kMLVO): A Unified Multi-Label

Classification Formalism

Gilad Liberman1, Tal Vider-Shalit2, and Yoram Louzoun2(B)

1 Gonda Multidisciplinary Brain Research Center,
Bar Ilan University, Ramat Gan, Israel

2 Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
louzouy@math.biu.ac.il

Abstract. We here propose the kMLVO (kernel Multi-Label Vector
Optimization) framework designed to handle the common case in binary
classification problems, where the observations, at least in part, are not
given as an explicit class label, but rather as several scores which relate
to the binary classification. Rather than handling each of the scores and
the labeling data as separate problems, the kMLVO framework seeks a
classifier which will satisfy all the corresponding constraints simultane-
ously. The framework can naturally handle problems where each of the
scores is related differently to the classifying problem, optimizing both
the classification, the regressions and the transformations into the dif-
ferent scores. Results from simulations and a protein docking problem
in immunology are discussed, and the suggested method is shown to
outperform both the corresponding SVM and SVR.

1 Introduction

Classic supervised learning problems are formulated as a set of (xi, yi) pairs,
where xi lies in the problem domain (typically R

n, but may be more complex),
and yi ⊆ {0, 1, . . . , n} for classification problems (with n = 1 for decision prob-
lems) or yi ⊆ R for regression problems. Naturally, not all problems fall into these
categories and several generalization have been suggested, where each instance
belongs to more than one class or where multiple instances have multiple labels
[1,2]. In this study, we keep the assumption that each instance either belongs
to some target class or does not; however, the available data might not con-
tain this labeling but rather some indirect measurements. This formulation is
related to many real life problems. For example, in the medical domain, the
decision whether a subject is ill or not is made not just based on past subjects’
data along with their diagnoses, but also on past subjects’ data along with their
physiological condition scores, appetite and happiness scores, etc.

This notion can be especially helpful in areas where the classification is diffi-
cult to obtain, with limited data sets, or where the data suffers from high varia-
tion in measurement modality and protocol. The application of a first solution,

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 131–137, 2013.
DOI: 10.1007/978-3-642-44973-4 15, c© Springer-Verlag Berlin Heidelberg 2013

132 G. Liberman et al.

the MLVO method, was briefly introduced in a recent publication [3]. Here, we
present the extention of this fomalism to a kernel machine - the kMLVO, along
with some useful extensions.

The remainder of this manuscript is organized as follows. In Sect. 2, we
present the kMLVO framework. Extensions of the kMLVO are shown in Sect. 3.
In Sect. 4 we discuss the results on simulated and experimental data sets and
compare the performance of different classifiers, and we conclude with a sum-
mary in Sect. 5.

2 The kMLVO Framework

We use the SVR formalization for the regression part. This implies linear penal-
ties on regression errors, which improves the robustness to outliers. When using
a non-linear kernel, the direct relation to the original problem dimension is lost,
and the contribution of w0 must be indirect (we will return to this issue in the
kMLVO extensions).

2.1 Formalism

We note by X the training set, which is now not restricted to be a subset of Rn

but can be of any input space X . Let each instance xi ⊆ X of the training set be
associated with a class yi ⊆ {−1, 1, φ}, where φ represents an uknown value (i.e.
we do not know the classification for this point) and with L target values si,l ⊆
R

⋃ {φ}. The classifier is a function f : X ∀ {−1, 1}. In a manner analogous
to the SVM and SVR primal formulation, the classifier f is a weight vector
w in the problem space (or a vector space in which the prolem is transformed
into using explicit transformation or a multiplication kernel) and a bias b. The
optimality criteria for the classifier is the (soft) maximum margin both for the
classification and the regression tasks, with different costs. We then note by
C the cost vector (or scalar) for each misclassified sample, and by D the cost
matrix for the regression tasks, i.e. Di,l is the cost for the ith sample, for the lth
measurement. The problem can be written, ignoring w0, as:

minimize
w,b,ξ,α,β,ζ,ζ∗

1
2
∅w∅2 + CT Δ +

L∑

i=1

DT
i ρ+i

subject to Y (Xw + 1b) ∈ 1 − Δ, Δ ∈ 0 (1)
(λisi + 1αi) − Xw − 1b ← 1∂i + ρi, ρi ∈ 0,⊂i, 1 ← i ← L

Xw + 1b − (λisi + 1αi) ← 1∂i + ρ∈
i , ρ∈

i ∈ 0,⊂i, 1 ← i ← L

Where si is the vector of scores for the ith modality, for all of the samples.
Note that the units of the continuous scores si may differ from the units of the
optimal separating hyper-plane of the binary data, thus we added the vectors λ, α
of length L, with the linear transformations for the corresponding modalities. ∂
is a vector of length L containing the insensitive loss parameters for the different

Kernel Multi Label Vector Optimization (kMLVO) 133

modalities (as in [4]). Note that since for each modality this parameter is applied
after the linear transformation, its value is normalized and searching for the
optimal value is easier and indicative of the regression fit (which is otherwise
hidden).

2.2 Transition to the Dual Problem

We first transform the primal problem into its dual problem and then apply a
KKT formalism to it [5,6]. Then, using the standard SVM technique, the problem
can be written in a Lagrangian formalism and using the fact that the appropriate
partial derivatives equal 0 at the optimum, we get the final formulation as a
quadratic problem:

maximize
μ,δ,δ∗

− 1
2
(μT Y T XXT Y μ + (

L∑

i=1

π−T
i)XXT (

L∑

i=1

π−
i)) + μT 1 −

L∑

i=1

π+T
i 1∂i

−
l∑

i=1

π−T
i XXT Y μ

subject to μ, λ, πi, π
∈
i , ηi, η

∈
i ∈ 0,⊂i, 1 ← i ← L

μT y = 0; 1T π−
i = 0; sT

i π−
i = 0, 1 ← i ← L (2)

C = μ + λ;Di = π
(∈)
i + η

(∈)
i ,⊂i, 1 ← i ← L

where π−
i = πi − π∈

i and π+i = πi + π∈
i , with μ, λ being the Lagrange multipli-

ers corresponding to the classification problem (as in the SVM fromalism) and
πi, π

∈
i , ηi, η

∈
i the Lagrange multipliers corresponding to the i-th modality of the

regression problem (as in the SVR formalism, following [4,7]). Using such a for-
malism, we enjoy the advantages of a kernel machine, i.e. the optimization is
on the support vectors coefficients μ, π, π∈ and the (possibly high-dimensional)
product XXT can be replaced using any kernel function K. Here the decision
function becomes g(q) =

∑n
j=1(μjyj +

∑L
i=1 π−

i,j)K(xj , q) + b, i.e. a weighted
sum on the contributions of the kernel function of the support vectors with the
classified sample point, where the weight on each support vector considers both
the classification and the various regression constraints.

2.3 Handling Missing Values

The method can handle any combination of inputs, by simply setting the corre-
sponding element of the classification cost vector C and/or of the cost matrix D
to 0 where a value is missing. This constraints the corresponding support vectors
coefficient to be fixed (box constaint of 0) and effectively removes the element
from the optimization problem, while keeping all the other information intact.

134 G. Liberman et al.

3 Extending kMLVO

Two possible extensions of the kMLVO framework handle the incorporation of
w0, as in the MLVO, and non-linear regression.

3.1 Incorporation of w0

Given w0, we would like to introduce a penalty when diverging from it which is
simiar to the one used in the MLVO, i.e. E2 = 1

2 ∅w0 − w∅22. This however will
automatically lead to terms which are not quadratic in the values of xi. This
can be solved by projecting w and w0 on any basis of the feature space. Given
a base B = {Bi, · · · , Bn} of the feature space, ∅w0 − w∅22 =

∑n
i=1(< w0, Bi >

− < w,Bi >)2 =
∑n

i=1(μi− < w,Bi >)2 where < w0, Bi >= μi,⊂i is the score
induced by w0 for the base vectors. We would like the scores induced by w to
be similar, i.e. the problem is transformed into a regression problem. Thus it
suffices to add the base vectors {Bi, · · · , Bn} as additional input samples along
with their w0 induced scores. As before, while the MLVO uses squared penalty,
the kMLVO uses L1 penalty.

3.2 Non-linear Regression

Suppose that the scores for the i-th modality are not linear with the optimal
(or real) separating hyperplane for the classification problem, but follow si,k =
f(wT xk + b) = f(

∑n
j=1 μjyjK(xj , xk) + b) for some function f . In this case

we would like to linearize the scores, i.e. applying f−1 before performing the
kMLVO. If f (and thus f−1) is unknown, we may let the kMLVO approximate
it as a linear combination of score vectors. This can be performed by replacing
the term (λisi + 1αi) in the equations with (λi,1si,1 + · · · + λi,pi

si,pi
+ 1αi). The

only additional constraints added to the final dual problem is:

sT
i,1π

−
i = 0, . . . , sT

i,pi
π−
i = 0 (3)

These different scores can be, but not limited to, the original scores si in
different powers, etc.

4 Simulations

In order to test whether the proposed formalism outperforms existing methods,
we have compared the precision obtained using four different formalisms: SVR,
SVM, MLVO and kMLVO on artificial datasets of different dimentionality, noise
levels, and sample sizes. Additinaly, 10 % of the points were randomly chosen to
be “outliers”. For these points, the standard deviation of the added noise was 3
times the sandard deviation of all scores (instead of 0.03 or 0.6).

Kernel Multi Label Vector Optimization (kMLVO) 135

4.1 kMLVO Results on Simulations

The kMLVO outperforms the other classifiers in the presence of outliers. Such
outliers can significantly affect the SVM and SVR formalisms, and we have here
tested their effect on the kMLVO formalism. The average performace scores on
the different data sets can be seen in Fig. 1. While for weak noise levels the
MLVO is dominant, in the stronge noise level, a clear dominancy of the kMLVO
can be seen, especially in the region of high number of samples with continous
scores and a low number of binary samples. This can be explained by the fact
that kMLVO (as SVR) is has L1 regularization term, while the regression part
of the MLVO (as LS-SVR) is regularized with an L2 term.

In another application, regarding the binding to an immune system molecule,
the transporter associated with antigen processing (TAP), the kMLVO outper-
formed the MLVO and the uni-label classifiers SVM (using binding/non binding
data) and SVR (using affinity score), of the commonly used package LibSVM [8]
on our data.

Fig. 1. Simulation results with outliers. The relative number of winners (that is, most
accurate estimation of the direction vector) is coded to RGB by red - kMLVO, green
- SVM, blue - SVR, and black - MLVO. The titles refer to the dimensionality of the
data set and the noise’s standard deviation.

136 G. Liberman et al.

5 Discussion

The approach presented can be used as a general supervised learning method
when multiple labels of data are available. Such a situation often emerges in
biological interactions, such as transcription factor binding or protein-protein
interactions. In such cases, observations can either be binary (the presence or
absence of an interaction) or continuous (the affinity).

Several extensions of the kMLVO have been proposed. The simplest expan-
sion is the use of multiple continuous scores. Assume samples having continuous
scores that are derived from several unit scales (e.g. IC50 and EC50 affinity
related measurements). As part of the solution (as described above), we simul-
taneously fit between the predicted to the continuous score by linear regression.
Thus, actually all the available measurements can be merged together, and the
problem will be transformed to a set of linear regressions with multiple values
of λ and α. The algorithm can also be improved if the validity of the different
dimensions of the samples in the n dimensional space or the validity of the sam-
ples themselves can be guessed. In such a case, the weight given to the similarity
to the a priori guess in each dimension or the error of each classified data point
(Δi) can be varied.

The use of kernels, along with extension for handling multiple measurements
types, with different non-linear relations, and inherent consideration of missing
values gives the suggested approach a higher flexibility and applicability for real-
life problems.

The main limitations of the proposed methodology is that it mainly applies to
cases where the number of observations is limited. When the number of obser-
vations is very large and biased toward one type of observations, the MLVO
performes worse than the appropriate SVM or SVR. Another important caveat
is the need to determine three constants, instead of the single box constraint
constant in the standrad SVM formalism. In the presented cases, we have pred-
edefined the constant to be used, or used an internal test set to determine the
optimal constants, and then applied the results to an external test set. Even
when these caveats are taken into consideration, the MLVO can be an impor-
tant methodological approach in many biological cases, where the number of
observations is highly limited.

Acknowledgment. We would like to thank M. Beller for editing this manuscript.

References

1. Zhou, Z., Zhang, M., Huang, S., Li, Y.: Multi-instance multi-label learning. Artif.
Intell. 176, 2291–2320 (2011)

2. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recogn. 37, 1757–1771 (2004)

3. Vider-Shalit, T., Louzoun, Y.: Mhc-i prediction using a combination of t cell epitopes
and mhc-i binding peptides. J. Immunol. Methods 374, 43–46 (2010)

Kernel Multi Label Vector Optimization (kMLVO) 137

4. Farag, A., Mohamed, R.M: Regression using support vector machines: basic foun-
dations. Technical Report, CVIP Laboratory, University of Louisville (2004)

5. Karush, W.: Minima of functions of several variables with inequalities as side con-
straints. Master’s thesis, Department of Mathematics, University of Chicago (1939)

6. Kuhn, H., Tucker, A.: Nonlinear programming. In: Proceedings of the Second Berke-
ley Symposium on Mathematical Statistics and Probability, California, vol. 5 (1951)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans.

Intell. Sys. Technol. 2, 27:1–27:27 (2011)

Robust Benchmark Set Selection
for Boolean Constraint Solvers

Holger H. Hoos1(B), B. Kaufmann2, T. Schaub2, and M. Schneider2

1 Department of Computer Science, University of British Columbia,
Vancouver, BC, Canada

hoos@cs.ubc.ca
2 Institute of Computer Science, University of Potsdam, Potsdam, Germany

{kaufmann,torsten,manju}@cs.uni-potsdam.de

Abstract. We investigate the composition of representative benchmark
sets for evaluating and improving the performance of robust Boolean con-
straint solvers in the context of satisfiability testing and answer set pro-
gramming. Starting from an analysis of current practice, we isolate a set
of desiderata for guiding the development of a parametrized benchmark
selection algorithm. Our algorithm samples a benchmark set from a larger
base set (or distribution) comprising a large variety of instances. This
is done fully automatically, in a way that carefully calibrates instance
hardness and instance similarity. We demonstrate the usefulness of this
approach by means of empirical results showing that optimizing solvers
on the benchmark sets produced by our method leads to better configu-
rations than obtained based on the much larger, original sets.

1 Introduction

The availability of representative sets of benchmark instances is of crucial impor-
tance for the successful development of high-performance solvers for compu-
tationally challenging problems, such as propositional satisfiability (SAT) and
answer set programming (ASP). Such benchmark sets play a key role for assess-
ing solver performance and thus for measuring the computational impact of
algorithms and/or their vital parameters. On the one hand, this allows a solver
developer to gain insights on the strengths and weaknesses of features of inter-
est. On the other hand, representative benchmark instances are indispensable to
empirically underpin the claims of computational benefit of novel ideas.

A representative benchmark set is composed of benchmark instances stem-
ming from a variety of different benchmark classes. Such benchmark sets have
been assembled (manually) in the context of well-known solver competitions,
such as the SAT and ASP competitions, and then widely used in the research
literature. These sets of competition benchmarks are well-accepted, because
they have been constituted by an independent committee using sensible criteria.
Moreover, these sets evolve over time and thus usually reflect the capabilities
(and limitations) of state-of-the-art solvers; they are also publicly available and
well-documented.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 138–152, 2013.
DOI: 10.1007/978-3-642-44973-4 16, c© Springer-Verlag Berlin Heidelberg 2013

Robust Benchmark Set Selection for Boolean Constraint Solvers 139

However, instance sets from competitions are not always suitable for bench-
marking scenarios where the same runtime cutoff is used for all instances. For
example, in the last three ASP competitions, only ≈ 10% of all instances were
non-trivial (runtime over 9 s, i.e., 1% of the runtime cutoff) for the state-of-the-
art ASP solver clasp, while all other instances were trivial or unsolvable for clasp
within the time cutoff used in the competition. While benchmarking, results of
benchmarks are (typically) aggregated over all instances. But if the percentage of
interesting instances in the benchmark set is too small, the interesting instances
have small influence on the aggregated result and the overall result is dominated
by uninteresting, i.e., trivial or unsolvable, instances. Hence, a significant change
of the runtime behaviour of a new algorithm is harder to identify on such degen-
erate benchmark sets. In addition, uninteresting instances unnecessarily waste
computational resources and thus cause avoidable delays in the benchmarking
process.

Moreover, in ASP, competition instances do not necessarily represent real
world applications. In the absence of a common modelling language, benchmark
instances are often formulated in the most basic common setting and thus bear
no resemblance to how real world problems are addressed (e.g., they are usu-
ally free of any aggregates).1 The situation is simpler in SAT, where a wide
range of benchmark instances stems from real-world applications and are quite
naturally encoded in a low-level format, without the modelling layer present in
ASP. Notably, SAT competitions place considerable emphasis on a public and
transparent instance selection procedure [1]. However, as we discuss in detail in
Sect. 3, competition settings may differ from other benchmarking contexts.

In what follows, we elaborate upon the composition of representative bench-
mark sets for evaluating and improving the performance of Boolean constraint
solvers in the context of ASP and SAT. Starting from an analysis of current
practice of benchmark set selection in the context of SAT competitions (Sect. 2),
we isolate a set of desiderata for representative benchmark sets (Sect. 3). For
instance, sets with a large variety of instances are favourable when developing
a default configuration of a solver that is desired to perform well across a wide
range of instances. We rely on these desiderata for guiding the development of
a parametrized benchmark selection algorithm (Sect. 4).

Overall, our approach makes use of (i) a large base set (or distribution) of
benchmark instances; (ii) instance features; and (iii) a representative set of state-
of-the-art solvers. Fundamentally, it constructs a benchmark set with desirable
properties regarding difficulty and diversity by sampling from the given base
set. It achieves diversity of the benchmark set by clustering instances based on
their similarity w.r.t a given set of features, while ensuring that no cluster is
overrepresented. The difficulty of the resulting set is calibrated based on the
given set of solvers. Use of the benchmark sets thus obtained helps save com-
putational resources during solver development, configuration and evaluation,
while concentrating on interesting instances.
1 In ASP competitions, this deficit is counterbalanced by a modelling track, in which

each participant can use its preferred modelling language.

140 H. Hoos et al.

We empirically demonstrate in Sect. 5 that optimizing solvers on the obtained
selection of benchmarks leads to better configurations than obtainable from the
vast original set of benchmark instances. We close with a final discussion and
some thoughts on future work in Sect. 6.

2 Current Practice

The generation or selection of benchmark sets is an important factor in the
empirical analysis of algorithms. Depending on the goals of the empirical study,
there are various criteria for benchmark selection. For example, in the field of
Boolean constraint solving, regular competitions are used to asses new app-
roaches and techniques as well as to identify and recognize state-of-the-art
solvers. Over the years, competition organizers came up with sets of rules for
selecting subsets of submitted instances to assess solver performance in a fair
manner. To begin with, we investigate the rules used in the well-known and
widely recognized SAT Competition,2 which try to achieve (at least) three over-
all goals. First, the selection should be broad, i.e., the selected benchmark set
should contain a large variety of different kinds of instances to assess the robust-
ness of solvers. Second, each selected instance should be significant w.r.t. the
ranking obtained from the competition. Third, the selection should be fair, i.e.,
the selected set should not be dominated by a set of instances from the same
source (either a domain or a benchmark submitter).

For the 2009 SAT Competition [2] and the 2012 SAT Challenge [1], instances
were classified according to hardness, as assessed based on the runtime of a set
of representative solvers. For instance, for the 2012 SAT Challenge, the orga-
nizers measured the runtimes of the best five SAT solvers from the Application
and Crafted tracks of the last SAT Competition on all available instances and
assigned each instance to one of the following classes: easy instances are solved
by all solvers under 10% of the runtime cutoff, i.e., 90 CPU seconds; medium
instances are solved by all solvers under 100% of the runtime cutoff; too hard
instances are not solved by any solver within 300% of the runtime cutoff; and
hard instances are solved by at least one solver within 300% of the runtime
cutoff but not by all solvers within 100% of the runtime cutoff. Instances were
then selected with the objective to have 50% medium and 50% hard instances
in the final instance set and, at the same time, to allow at most 10% of the final
instance set to originate from the same source.

While the easy instances are assumed to be solvable by all solvers, the too
hard instances are presumably not solvable by any solver. Hence, neither class
contributes to the solution count ranking used in the competition.3 On the other
hand, medium instances help to rank weaker solvers and to detect performance
deterioration w.r.t. previous competitions. The hard instances are most useful
for ranking the top-performing solvers and provide both a challenge and a chance
to improve state-of-the-art SAT solving.
2 http://www.satcompetition.org
3 Solution count ranking assesses solvers based on the number of solved instances.

http://www.satcompetition.org

Robust Benchmark Set Selection for Boolean Constraint Solvers 141

Although using a large variety of benchmark instances is clearly desirable for
robust benchmarking, the rules used in the SAT Competition are not directly
applicable to our identified use cases. First, the hardness criteria and distribution
used are directly influenced by the use of the solution count ranking system. On
the other hand, ranking systems that also consider measured runtimes, like the
careful ranking4 [3], might be better suited for differentiating solver performance.
Second, limiting the number of instances from one source to achieve fairness is
not needed in our setting. Furthermore, the origin of instances provides only an
indirect way of achieving a heterogeneous instance set, as certain instances of
different origin may in fact be more similar than other pairs of instances from
the same source.

3 Desirable Properties of Benchmark Sets

Before diving into the details of our selection algorithm, let us first explicate the
desiderata for a representative benchmark set (cf. [4]).

Large Variety of Instances. As mentioned, a large variety of instances is favourable
to assess the robustness of solver performance and to reduce the risk of generalis-
ing from results that only apply to a limited class of problems. Such large variety
can include different types of problems, i.e., real-world applications, crafted prob-
lems, and randomly generated problems; different levels of difficulty, i.e., easy,
medium, and hard instances; different instance sizes; or instances with diverse
structural properties. While the structure of an instance is hard to assess, a
qualitative assessment could be based on visualizing the structure [5], and a
quantitative assessment can be performed based on instance features [6,7]. Such
instance features have already proven useful in the context of algorithm selection
[7,8] and algorithm configuration [9,10].

Adapted Instance Hardness. While easy problem instances are sometimes useful
for investigating certain properties of specific solvers, intrinsically hard or dif-
ficult to solve problem instances are better suited to demonstrate state-of-the-
art solving capabilities through benchmarking. However, in view of the nature
of NP-hard problems, it is likely that many hard instances cannot be solved
efficiently. Resource limitations, such as runtime cutoffs or memory limits, are
commonly applied in benchmarking. Solver runs that terminated prematurely
because of violations of resource limits are not helpful in differentiating solver
performance. Hence, instances should be carefully selected so that such prema-
turely terminated runs for the given set of solvers are relatively rare. Therefore,
the distribution of instance hardness within a given benchmark set should be
adjusted based on the given resource limits and solvers under consideration. In
particular, instances that are too hard (i.e., for which there is a high probability
of a timeout) as well as instances that are too easy, should be avoided, where

4 Careful ranking compares pairs of solvers based on statistically significant perfor-
mance differences and ranks solvers based on the resulting ranking graph.

142 H. Hoos et al.

hardness is assessed using a representative set of state-of-the-art solvers, as is
done, for example, in the instance selection process of SAT competitions [2].

Since computational resources are typically limited, the number of bench-
mark instances should also be carefully calibrated. While using too few instances
can bias the results, using too many instances can cost computational resources
without improving the information gained from benchmarking. Therefore, we
propose to start with a broad base set of instances, e.g., generated by one or
more (possibly parametrized) generators or a collection of previously used com-
petition instance sets, and to select a subset of instances following our desiderata.

Free of Duplicates, Reproducible, and Publicly Available. Benchmark set should
be free of duplicates, because using the same instance twice does not pro-
vide any additional information about solver performance. Nevertheless, non-
trivially transformed instances can be useful for assessing the robustness of
solvers [11]. To facilitate reproducibility and comparability, both the problem
instances and the process of instance selection should be publicly available. Ide-
ally, problem instances should originate from established benchmark sets and/or
public benchmark libraries. To our surprise, these properties are not true for
all competition sets. For example, we found duplicates in the SAT Challenge
2012, ASP Competitions 2007 and 2009 (for example, 15-puzzle.init1.gz and
15puzzle ins.lp.gz in the latter).

4 Benchmark Set Selection

Based on our analysis of solver competitions and the resulting desiderata, we
developed an instance selection algorithm. Its implementation is open source
and freely available at http://potassco.sourceforge.net. In addition, we present
a way to assess the relative robustness and quality of an instance set based on
the idea of Q-scores [1].

4.1 Benchmark Set Selection Algorithm

Our selection process starts from a given base set of instances I. This set can
be a benchmark collection or simply a mix of previously used instances from
competitions.

Inspired by past SAT competitions, a representative set of solvers S – e.g.,
best solvers of the last competition, the state-of-the-art (SOTA) contributors
identified in the last competition, or contributors to SOTA portfolios [12] – is
used to assess the hardness h(i) ∈ R of an instance i ∈ I. Typically, the runtime
t(i, s) (measured in CPU seconds) is used to assess the hardness of an instance
i ∈ I for solver s ∈ S. The aggregation of the runtimes of all solvers s ∈ S on
a given instance i can be carried out in several ways, e.g., by considering the
minimal (mins∈S t(i, s)) or the average runtime (1

|S| ·∑s∈S t(i, s)). The resulting
hardness metric is closely related to the intended ranking scheme for solvers.
For example, the minimal runtime is a lower bound of the portfolio runtime

http://potassco.sourceforge.net

Robust Benchmark Set Selection for Boolean Constraint Solvers 143

performance and represents a challenging hardness metric appropriate in the
context of solution count ranking. In contrast, the average runtime would be
better suited for a careful ranking [3], which uses pairwise comparisons between
solvers for each instance, because the pairs of runtimes for two solvers are of
limited value if neither of them solved the given instance within the given cutoff
time. Since all solvers contribute to the average runtime per instance, this metric
will assess instances as hard even if only some solvers time out on time, and
selecting instances based on it (as explained in the following) can therefore be
expected to result in fewer timeouts overall.

After selecting a hardness metric, we have to choose how the instance hard-
ness should be distributed within the benchmark set. As stated earlier, and
under the assumption that the set to be created will not be used primarily in
the context of solution count ranking, the performance of solvers can be com-
pared better, if the incidence of timeouts is minimized. This is important, for
example, in the context of algorithm configuration (manual or automatic). The
incidence of timeouts can be minimized by increasing the runtime cutoff, but
this is infeasible or wasteful in many cases. Alternatively, we can ensure that
not too many instances on which timeouts occur are selected for inclusion in our
benchmark set. At the same time, as motivated previously, it is also undesir-
able to include too many easy instances, because they incur computational cost
and, depending on the hardness metric used, can also distort final performance
rankings determined on a given benchmark set.

One way to focus the selection process on the most useful instances w.r.t.
hardness, namely those that are neither too easy nor too hard, is to use an
appropriately chosen probability distribution to guide sampling from the given
base set of instances. For example, the use of a normal (Gaussian) distribu-
tion of instance hardness in this context leads to benchmark sets consisting
predominantly of instances of medium hardness, but also include some easy
and hard instances. Alternatively, one could consider log-normal or exponential
distributions, which induce a bias towards harder instances, as can be found
in many existing benchmark sets.Compared to the instance selection approach
used in SAT competitions [1,2], this method does not require the classification
of instances into somewhat arbitrary hardness classes.

The parameters of the distribution chosen for instance sampling, e.g., mean
and variance in the case of a normal or log-normal distribution, can be deter-
mined based on the hardness metric and runtime limit; e.g., the mean could be
chosen as half the cutoff time. By modifying the mean, the sampling distribution
can effectively be shifted towards harder or easier benchmark instances.

As argued before, the origin of instances is typically less informative than
their structure, as reflected, e.g., in informative sets of instance features. Such
informative sets of instance features are available for many combinatorial prob-
lems, including SAT [7], ASP [13] and CSP [14], where they have been shown to
correlate with the runtime of state-of-the-art solvers and have been used promi-
nently in the context of algorithm selection (see, e.g., [7,8]). To prevent the
inclusion of too many similar instances in the benchmark sets, we cluster the

144 H. Hoos et al.

Algorithm 1: Benchmark Selection Algorithm
Input : instance set I; desired number of instances n; representative set of

solvers S; runtimes t(i, s) with (i, s) ← I × S; normalized instance
features f(i) for each instance i ← I; hardness metric h : I ∈ R of
instances; desired distribution Dh regarding h; clustering algorithm
ca; cutoff time tc; threshold e for too easy instances;

Output : selected instances I∗

remove instances from I that are not solved by any s ← S within tc;1

remove instances from I that are solved by all s ← S under e% of tc ;2

cluster all instances i ← I in the normalized feature space f(i) into clusters S(i)3

using clustering algorithm ca;
while |I∗| < n and I ∀= ≥ do4

sample x ← R ⊆ Dh;5

select instance i∗ ← I with the nearest h(i∗) to x;6

remove i∗ from I;7

if S(i∗) is not over-represented then8

add i∗ to I∗;9

end10

end11

return I∗
12

instances based on their similarity in feature space. We then require that a clus-
ter must not be over-represented in the selected instance set; in what follows,
roughly reminiscent of the mechanism used in SAT competitions, we say that
a cluster is over-represented if it contributes more than 10% of the instances
to the final benchmark set. While other mechanisms are easily conceivable, the
experiments we report later demonstrate that this simple criterion works well.

Algorithm 1 implements these ideas with the precondition that the base
instance set I is free of duplicates. (This can be easily ensured by means of
simple preprocessing.) In Line 1, all instances are removed from the given base
set that cannot be solved by all solver from the representative solver set S within
the selection runtime cutoff tc (rejection of too hard instances). If solution count
ranking is to be used in the benchmarking scenario under consideration, the cut-
off in the instance selection process should be larger than the cutoff for bench-
marking, as was done in the 2012 SAT Challenge. In Line 2, all instances are
removed that are solved by all solvers under e% of the cutoff time (rejection of
too easy instances). For example, in the 2012 SAT Challenge [1], all instances
were removed which were solved by all solvers under 10% of the cutoff. Line 3
performs clustering of the remaining instances based on their normlized features.
To perform this clustering, the well-known k-means algorithm could be used, and
the number of clusters could be computed using G-means [10,15] or by increas-
ing the number of clusters until the clustering optimization does not improve
further under a cross validation [16]. In our experiments, we used the latter, I’ve
reworded the following: because the G-means algorithm relies on a normality
assumption that is not necessarily satisfied for the instance feature data used

Robust Benchmark Set Selection for Boolean Constraint Solvers 145

here. Beginning with Line 4, instances are sampled within a loop until enough
instances are selected or no more instances are left in the base set. To this end,
x ∈ R is sampled from a distribution Dh induced by instance hardness metric
h, such that for each sample x from hardness distribution Dh, the instance i∗

is selected whose hardness h(i∗) is closest to x. Instance i∗ is removed from the
base instance set I. If the respective cluster S(i∗) is not already over-represented
in I∗, instance i∗ is added to I∗, the benchmark set under construction.

4.2 Benchmark Set Quality

We would like to ensure that our benchmark selection algorithm produces
instance sets that are in some way better than the respective base sets. At
the same time, any benchmark set I∗ it produces should be representative of
the underlying base set I in the sense that if an algorithm performs better than
a given baseline (e.g., some prominent solver) on I∗ it should also be better on
I. However, the converse may not hold, because specific kinds of instances may
dominate I but not I∗, and excellent performance on those instances can lead
to a situation where an algorithm that performs better on I does not necessarily
perform better on I∗.

Bayless et al. [17] proposed a quantitative assessment of instance set utility.
Their use case is the performance assessment of (new) algorithms on an instance
set I1 that has practical limitations, e.g., the instances are too large, too hard
to solve, or not enough instances are available. Therefore, a second instance
set I2 without these limitations is assessed as to whether it can be regarded
as a representative proxy for the instance set I1 during solver development or
configuration. The key idea is that any I2 that is a representative proxy for I1
can be used in lieu of I1 to assess performance of a solver, with the assurance
that good performance on I2 (which is easier to demonstrate or achieve) implies,
at least statistically, good performance on I1.

To assess the utility of an instance set, they use algorithm configuration
[9,10,18]. An algorithm configurator is used to find a configuration c := s(cI)
of solver s on instance set I by optimizing, e.g., the runtime of s. If I2 is a
representative proxy for I1, the algorithm configuration s(cI2) should perform
on I1 as well as a configuration optimized directly on I1, i.e., s(cI1). The Q-score
Q(I1, I2, s,m) defined in Eq. (1) is the performance ratio of s(cI1) and s(cI2) on
I1 with respect to a given performance metric m. A large Q-score means I2 is a
good proxy for I1. The short form of Q(I1, I2, s,m) is QI1(I2).

To compare both sets, I1 and I2, we want to know whether I2 is a better
proxy for I1 than vice versa. To this end, we extended the idea in [17] and propose
the Q∗-score of I1 and I2 by computing the ratio of QI1(I2) and QI2(I1) as per
Eq. (2). If I1 is a better proxy for I2 than vice versa, the Q∗-score Q∗(I1, I2) is
larger than 1.

Q(I1, I2, s,m) =
m(s(cI1), I1)
m(s(cI2), I1)

(1)

146 H. Hoos et al.

Q∗(I1, I2) =
QI1(I2)
QI2(I1)

(2)

We use the Q∗-score to assess the quality of the sets I∗ obtained from our
benchmark selection algorithm in comparison to the respective base sets I. Based
on this score, we can assess the degree to which our benchmark selection algo-
rithm succeeded in producing a set that is representative of the given base set
in the way motivated earlier. Thereby, a Q∗-score (Q∗(I1, I2)) and a Q-score
(QI1(I2)) of larger than 1.0 indicates that I2 is better proxy for I1 than vice
versa and I2 is a good proxy for I1.

5 Evaluation

We evaluated our benchmark set selection approach by means of the Q∗-score
criterion on widely studied instance sets from SAT and ASP competitions.

Instance Sets. We used three base instance sets to select our benchmark set:
SAT-Application includes all instances of the application tracks from the 2009
and 2011 SAT Competition and 2012 SAT Challenge; SAT-Crafted includes
instances of the crafted tracks (resp. hard combinatorial track) of the same com-
petitions; and ASP includes all instances of the 2007 ASP Competition (SLparse
track), the 2009 ASP Competition (with the encodings of the Potassco group
[19]), the 2011 ASP Competition (decision NP-problems from the system track),
and several instances from the ASP benchmark collection platform asparagus.5

Duplicates were removed from all sets, resulting in 649 instances in
SAT-Application, 850 instances in SAT-Crafted, and 2,589 instances in ASP.

Solvers. In the context of the two sets of SAT instances, the best two solvers
of the application track, i.e., Glucose [20] (2.1) and SINN [21], and of the hard
combinatorial track, i.e., clasp [19] (2.0.6) and Lingeling [22] (agm), and the
best solver of the random track, i.e., CCASAT [23], of the 2012 SAT Challenge
were chosen as representative state-of-the-art SAT solvers. clasp [19] (2.0.6),
cmodels [24] (3.81) and smodels [25] (2.34) were selected as competitive and
representative ASP solvers capable of reading the smodels-input format [26].

Instance Features. We used efficiently computable, structural features to cluster
instances. The 54 base features of the feature extractor of SATzilla [7] (2012)
were utilized for SAT. The seven structural features of claspfolio [13] were con-
sidered for ASP, namely, tightness (0 or 1), number of atoms, all rules, basic
rules, constraint rules, choice rules, and weight rules of the grounded program.
For feature computation, a runtime limit of 900 CPU seconds per instance and a
z-score normalization was used. Any instance for which the complete set of fea-
tures could not be computed within 900 s was removed from the set of candidate
instances. This led to the removal of 52 instances from the SAT-Application
set, 2 from the SAT-Crafted set, and 3 from the ASP set.
5 http://asparagus.cs.uni-potsdam.de/

http://asparagus.cs.uni-potsdam.de/

Robust Benchmark Set Selection for Boolean Constraint Solvers 147

Execution Environment and Solver Settings. All our experiments were performed
on a computer cluster with dual Intel Xeon E5520 quad-core processors
(2.26 GHz, 8,192 KB cache) and 48 GB RAM per node, running Scientific Linux
(2.6.18-308.4.1.el5). Each solver run was limited to a runtime cutoff of 900 CPU
seconds. Furthermore, we set parameter e in our benchmark selection procedure
to 10, i.e., instances solved by all solvers within 90 CPU seconds were discarded,
and the number of instances to select (n) to 200 for SAT (because of the relatively
small base sets) and 300 for ASP. After filtering out too hard instances (Line 1
of Algorithm 1), 404 instances remained in SAT-Application, 506 instances in
SAT-Crafted and 2,190 instances in ASP; after filtering out too easy instances
(Line 2), we obtained sets of size 393, 425, and 1,431, respectively.

Clustering. To cluster the instances based on their features (Line 3), we applied
k-means 100 times with different randomised initial cluster centroids. To find
the optimal number of clusters, we gradually increased the number of clusters
(starting with 2) until the quality of the clustering, assessed via 10-fold cross val-
idation and 10 randomised repetitions of k-means for each fold, did not improve
any further [16]. This resulted in 13 clusters for each of the two SAT sets, and
25 clusters for the ASP set.

Selection. To measure the hardness of a given problem instance, we used the
average runtime over all representative solvers. We considered a cluster to be
over-represented (Line 8) if more than 20% of the final set size (n) were selected
for SAT, and more than 5% in case of ASP; the difference in threshold was
motivated by the fact that substantially more clusters were obtained for the ASP
set than for SAT-Application and SAT-Crafted.

Algorithm Configuration. After generating the benchmark sets SAT-
Application∗, SAT-Crafted∗ and ASP∗ using our automated selection proce-
dure, these sets were evaluated by assessing their Q∗-scores. To this end, we
used the freely available, state-of-the-art algorithm configurator ParamILS [18]
to configure the SAT and ASP solver clasp (2.0.6). clasp is a competitive solver in
several areas of Boolean constraint solving6 that is highly parameterized, expos-
ing 46 performance-relevant parameters for SAT and 51 for ASP. This makes it
particularly well suited as a target for automated algorithm configuration meth-
ods and hence for evaluating our instance sets. Following standard practice, for
each set, we performed 10 independent runs of ParamILS of 2 CPU days each
and selected from these the configuration with the best training performance as
the final result of the configuration process for each instance set.

Sampling Distributions. One of the main input parameters of Algorithm1 is the
sampling distribution. With the help of our Q∗-score criterion, three distribu-
tions are assessed: a normal (Gaussian) distribution, a log-normal distribution,
and an exponential distribution. The parameters of these distributions were set
to the empirical statistics (e.g., empirical mean and variance) of the hardness
distribution over the base sets. The log-normal and exponential distributions
6 clasp won several first places in previous SAT, PB and ASP competitions.

148 H. Hoos et al.

Table 1. Comparison of set qualities of the base sets I and benchmark sets I∗ generated
by Algorithm 1; evaluated with Q∗-Scores with I1 = I∗, I2 = I, clasp as algorithm A
and PAR10-scores as performance metric m

Sampling-distribution PAR10 on I PAR10 on I∗ Q∗-score
cdef cI cI∗ cdef cI cI∗

SAT-Application

Normal 4629 4162 3997 3410 2667 1907 1.46
Log-normal 4629 4162 4683 3875 2601 3487 0.66
Exponential 4629 4162 4192 2969 2380 2188 1.08

SAT-Crafted

Normal 5226 5120 5056 2429 2155 1752 1.25
Log-normal 5226 5120 5184 3359 3235 3184 1.04
Exponential 5226 5120 5072 1958 1819 1523 1.21

ASP

Normal 2496 1239 1072 1657 705 557 1.46
Log-normal 2496 1239 1128 3136 1173 678 1.90
Exponential 2496 1239 1324 1648 710 555 1.20

have fat right tails and typically reflect better the runtime behaviour of solvers
for NP problems than the normal distribution. However, when using the average
runtime as our hardness metric, the instances sampled using a normal distrib-
ution are not necessarily atypically easy. For instance, an instance i, on which
half of the representative solvers have a timeout while the other half solve the
instance in nearly no time, has an average runtime of half of the runtime cutoff.
Therefore, the instance is medium hard and will be likely selected by using the
normal distribution.

In Table 1, we compare the benchmark sets we obtained from the base sets
SAT-Application, SAT-Crafted and ASP when using these three types of distri-
butions, based on their Q∗-scores. On the left of the table, we show the PAR10
performance on the base set I of the default configuration of clasp (cdef ; we use
this as a baseline), the configuration cI found on the base set I, and the con-
figuration cI∗ found on the selected set I∗; this is followed by the performance
on the benchmark sets I∗ generated using our new algorithm. The last column
reports the Q∗-score values for the pairs of sets I and I∗.

For all three instance sets, the Q∗-scores obtained via the normal distribution
were larger than 1.0, indicating that cI∗ performed better than cI and the set
obtained from our benchmark selection algorithm I∗ proved to be a good alter-
native to the entire base set I. Although on the ASP set, by using the log-normal
distribution a larger Q∗-score (1.90) was obtained than for the normal distri-
bution (1.46), on the SAT-Application set, using the log-normal distribution
did not produce good benchmark sets. When using exponential distributions,
Q∗-scores are larger than 1.0 in all three cases, but smaller than those obtained
with normal distributions.

Robust Benchmark Set Selection for Boolean Constraint Solvers 149

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

f e h 1 3 5 7 9 11 13

S
pe

ed
up

 (P
A

R
10

 in
 C

P
U

 s
ec

)

Cluster (ID)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

f e h 1 3 5 7 9 11 13

S
pe

ed
up

 (P
A

R
10

 in
 C

P
U

 s
ec

)

Cluster (ID)

Fig. 1. Boxplots indicating the median, quartiles minimum and maximum speedup
achieved on the instance clusters within the base set SAT-Application; (left) com-
pares cdefault and cI (high values are favourable for cI); (right) compares cdefault
and cI∗ (high values are favourable for cI∗); special clusters: Sf uncompleted feature
computation; Se too easy, Sh too hard.

When using the normal distribution, configuration cI∗ performed better than
cI on both sets I and I∗ (implying QI1(I2) > 1.0). Therefore, configuration on
the selected set I∗ leads to faster (and more robust) configurations than on
the base set I. Furthermore, the benchmark sets produced by our algorithm
are smaller and easier than the respective base sets. Hence, less CPU time is
necessary to assess the performance of an algorithm on those benchmark sets.
For instance, the default configuration of clasp needed 215 CPU hours on the
base ASP set and only 25 CPU hours on the benchmark set ASP∗. For developing
a new algorithm or configuring an algorithm (manually or automatically), fast
and informative assessment, as facilitated by our new benchmark set generation
algorithm, is very important.

Cluster Assessment. An additional advantage of Algorithm1 is the fact that it
produces a feature-based instance clustering, which can be further used to assess
more precisely the performance of algorithms (or configurations). Normally, the
performance of an algorithm is assessed over an entire instance set, but with the
help of instance clusters, the performance can be assessed on different types of
instances. This is useful, for example, in the context of developing a robust solver
which should perform equally well across different types of instances. An example
for such a solver is the CPLEX solver for mixed integer programming (MIP)
problems, which is designed to perform well over a broad range of application
contexts, each of which gives rise to different types of MIP instances.

The box plots in Fig. 1 show the speedups (y-axis) of the configurations
cI (left) and cI∗ (right; while sampling with a normal distribution) against
the default configuration cdef of clasp on each cluster S1..13 (x-axis) within
the SAT-Application base set. Furthermore, three special clusters contain the
instances that were discarded in Algorithm 1 because, feature computation could
not be completed (Sf), they were too easy (Se), or too hard (Sh).

150 H. Hoos et al.

The comparison against a common baseline, here: the default configuration,
helps to determine whether the new algorithm improved only on some types of
instance or on all. For instance, configuration cI (configured on the base set;
left plot) improved the performance by two orders of magnitude on cluster S8

but is slightly slower on S9. However, configuration cI∗ (configured on the set
generated by Algorithm 1; right plot) achieved better median performance on all
clusters except for Sf . In addition, the comparison between both plots reveals
that cI∗ produces fewer outliers than cI , especially on clusters S6, S9, S11 and
S13. Similar results (not shown here) were obtained for SAT-Crafted and ASP.
Therefore, cI∗ can be considered to be a more robust improvement over cdef than
cI .

We believe that the reason for the robustness of configuration cI∗ lies in the
fact that the (automatic) configuration process tends to be biased by instance
types that are highly represented in a given training set. Since Algorithm1 pro-
duces sets I∗ that cover instance clusters more evenly than the respective base
sets I, the configuration process is naturally guided more towards robust perfor-
mance improvements across all clusters.

Particular attention should be paid to the special clusters Sf , Se and Sh for
the assessment of cI∗ , because the instances contained in these clusters are not
at all represented in I∗. On none of our experiments with the three types of
sampling distributions did we ever observe that the performance of cI∗ on the
too hard instances Sh decreased; in fact, it sometimes increased. In contrast, the
performance on the too easy instances Se and instances with no features Sf was
less consistent, and we observed speedups between 300 and 0.1 in comparison
to cI . Therefore, the threshold for filtering too easy instances e should be set
conservatively (below 10%), to ensure that not too many too easy instances are
discarded (we note that this is in contrast to common practice in SAT competi-
tions).

Furthermore, our Algorithm1 ensures that no cluster is over-represented, but
does not ensure a sufficient representation of all clusters in the selected set. For
instance, cluster S4 has 141 instances in the base ASP set but only one instance
in ASP∗ set (with normal distribution). Nevertheless, a low representation of a
cluster in the selected set did not necessarily harm the configuration process,
and in most observed cases, the configuration cI∗ performed as well as cI on the
under-represented clusters.

6 Conclusions and Future Work

In this work, we have introduced an algorithm for selecting instances from a base
set or distribution to form an effective and efficient benchmark set. We consider a
benchmark set to be effective, if a solver configured on it performs at least as well
as when configured on the original set, and we consider it to be efficient, if the
instances in it are on average easier to solve than those in the base set. By using
such benchmark sets, the computational resources required for assessing the
performance of a solver can be reduced substantially. Our benchmark selection

Robust Benchmark Set Selection for Boolean Constraint Solvers 151

procedure can use arbitrary sampling distributions; yet, in our experiments, we
found that using a normal (Gaussian) distribution is particularly effective. Since
our approach filters out instances considered too easy or too hard for the solver
under consideration, it can lead to a situation where the performance of a given
solver, when configured on the benchmark set, becomes worse on those discarded
instances. However, the risk of worsening the performance on too hard instances
can be reduced by setting the runtime cutoff of the selection process higher
than in the actual benchmark. Then, the selected set contains very challenging
instances under the runtime cutoff in the benchmark, which are yet known to
be solvable. We have also demonstrated that clustering of instances based on
instance features facilitates diagnostic assessments of the degree to which a solver
performs well on specific types of instances or across an entire, heterogeneous
benchmark set. Our work reported here is primarily motivated by the desire
to develop solvers that perform robustly well across a wide range of problem
instances, as has been (and continues to be) the focus in developing solvers for
many hard combinatorial problems.

In future work, it may be interesting to ensure that semantically different
types of instances, such as satisfiable and unsatisfiable instances in the case of
SAT, are represented evenly or equivalently as in a given base set. Furthermore,
one could consider more sophisticated ways to assess the over-representation of
feature-based clusters and to automatically adjust the sampling process based
on the number of clusters and their sizes. Finally, we believe that it would be
interesting to study criteria for assessing the robustness of solver performance
across clusters and to use such criteria for automatic algorithm configuration.

Acknowledgments. B. Kaufmann, T. Schaub and M. Schneider were partially sup-
ported by DFG under grants SCHA 550/8-3 and SCHA 550/9-1. H. Hoos was supported
by an NSERC Discovery Grant and by the GRAND NCE.

References

1. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Application and hard combinatorial
benchmarks in SAT challenge. In: Proceedings of SAT Challenge 2012: Solver and
Benchmark Descriptions. Department of CS Series of Publications B, vol. B-2012-2,
pp. 69–71. University of Helsinki (2012)

2. Berre, D., Roussel, O., Simon, L.: http://www.satcompetition.org/2009/
BenchmarksSelection.html (2009). Accessed 09 March 2012

3. Van Gelder, A.: Careful ranking of multiple solvers with timeouts and ties. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 317–328. Springer,
Heidelberg (2011)

4. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Else-
vier/Morgan Kaufmann, San Francisco (2004)

5. Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reason. 39, 219–243 (2007)

6. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understand-
ing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

http://www.satcompetition.org/2009/BenchmarksSelection.html
http://www.satcompetition.org/2009/BenchmarksSelection.html

152 H. Hoos et al.

7. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

8. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

10. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: Proceedings of ECAI’10, pp. 751–756. IOS Press (2010)

11. Brglez, F., Li, X., Stallmann, F.: The role of a skeptic agent in testing and bench-
marking of sat algorithms (2002)

12. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer,
Heidelberg (2011)

14. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: AICS’08 (2008)

15. Hamerly, G., Elkan, C.: Learning the k in k-means. In: Proceedings of NIPS’03.
MIT Press (2003)

16. Hill, T., Lewicki, P.: Statistics: Methods and Applications. StatSoft, Tulsa (2005)
17. Bayless, S., Tompkins, D., Hoos, H.: Evaluating instance generators by configura-

tion. Submitted for publication (2012)
18. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic

algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
19. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,

M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 105–
124 (2011)

20. Audemard, G., Simon, L.: Glucose 2.1. in the SAT challenge 2012. In: Proceedings
of SAT Challenge 2012: Solver and Benchmark Descriptions. Department of CS
Series of Publications B, vol. B-2012-2, pp. 23–23. University of Helsinki (2012)

21. Yasumoto, T.: Sinn. In: Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions. Department of CS Series of Publications B, vol. B-2012-2, pp. 61–61.
University of Helsinki (2012)

22. Biere, A.: Lingeling and friends entering the SAT challenge 2012. In: Proceedings
of SAT Challenge 2012: Solver and Benchmark Descriptions. Department of CS
Series of Publications B, vol. B-2012-2, pp. 33–34. University of Helsinki (2012)

23. Cai, S., Luo, C., Su, K.: CCASAT: solver description. In: Proceedings of SAT
Challenge 2012: Solver and Benchmark Descriptions. Department of CS Series of
Publications B, vol. B-2012-2, pp. 13–14. University of Helsinki (2012)

24. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propo-
sitional satisfiability. J. Autom. Reason. 36(4), 345–377 (2006)

25. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

26. Syrjänen, T.: Lparse 1.0 user’s manual

Boosting Sequential Solver Portfolios:
Knowledge Sharing and Accuracy Prediction

Yuri Malitsky1(B), Ashish Sabharwal2, Horst Samulowitz2,
and Meinolf Sellmann2

1 Department of Computer Science, Brown University, Providence, RI 02912, USA
ynm@cs.brown.edu

2 IBM Watson Research Center, Yorktown Heights, NY 10598, USA
{ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

Abstract. Sequential algorithm portfolios for satisfiability testing
(SAT), such as SATzilla and 3S, have enjoyed much success in the last
decade. By leveraging the differing strengths of individual SAT solvers,
portfolios employing older solvers have often fared as well or better than
newly designed ones, in several categories of the annual SAT Compe-
titions and Races. We propose two simple yet powerful techniques to
further boost the performance of sequential portfolios, namely, a generic
way of knowledge sharing suitable for sequential SAT solver schedules
which is commonly employed in parallel SAT solvers, and a meta-level
guardian classifier for judging whether to switch the main solver sug-
gested by the portfolio with a recourse action solver. With these addi-
tions, we show that the performance of the sequential portfolio solver
3S, which dominated other sequential categories but was ranked 10th in
the application category of the 2011 SAT Competition, can be boosted
significantly, bringing it just one instance short of matching the perfor-
mance of the winning application track solver, while still outperforming
all other solvers submitted to the crafted and random categories.

1 Introduction

Significant advances in solution techniques for propositional satisfiability test-
ing, or SAT, in the past two decades have resulted in wide adoption of the SAT
technology for solving problems from a variety of fields such as design automa-
tion, hardware and software verification, cryptography, electronic commerce, AI
planning, and bioinformatics. This has also resulted in a wide array of challeng-
ing problem instances that continually keep pushing the design of better and
faster SAT solvers to the next level. The annual SAT Competitions and SAT
Races have played a key role in this advancement, posing as a challenge a set
of so-called “application” category (previously known as the “industrial” cat-
egory) instances, along with equally, but differently challenging, “crafted” and
“random” instances.

Given the large diversity in the characteristics of problems as well as spe-
cific instances one would like to solve by translation to SAT, it is no surprise

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 153–167, 2013.
DOI: 10.1007/978-3-642-44973-4 17, c© Springer-Verlag Berlin Heidelberg 2013

154 Y. Malitsky et al.

that different SAT solvers, some of which were designed with a specific set of
application domains in mind, work better on different kinds of instances. Algo-
rithm portfolios (cf. [7]) attempt to leverage this diversity by employing several
individual solvers and, at runtime, dynamically selecting what appears to be
the most promising solver — or a schedule of solvers — for the given instance.
This has allowed sequential SAT portfolios such as SATzilla [16] and 3S [8,10]
to perform very well in the annual SAT Competitions and Races.

Most of the state-of-the-art sequential algorithm portfolios are based on two
main components: (a) a schedule of “short running” solvers to be run first in
sequence for some small amount of time (usual some fixed percentage of the total
available time such as 10 %) and (b) a “long running” solver to be executed
for the remainder of the time which is selected by one or the other Machine
Learning technique (e.g., logistic regression, nearest neighbor search, or decision
forest). If one of the short running solvers succeeds in solving the instance, then
the portfolio terminates successfully. However, all work performed by each short
running solver in this execution sequence is completely wasted unless it manages
to fully solve the instance. If none of the short running solvers in the schedule
succeeds, all faith is put in the one long running solver.

Given this typical sequential portfolio setup, it is natural to consider an
extension that attempts to utilize information gained by short running solvers
even if they all fail to solve the instance. Further, one may also consider an
automated way to carefully revisit the choice of the long running solver whose
improper selection may substantially harm the overall portfolio performance. We
propose two relatively simple yet powerful techniques towards this end, namely,
learnt clause forwarding and accuracy prediction.

We remark that one limitation of current algorithm portfolios is that their
performance can never be better than that of the oracle or “virtual best solver”
which, for each given instance, (magically) selects an individual solver that will
perform best on it. By sharing knowledge, we allow portfolio solvers to, in prin-
ciple, go beyond VBS performance. Specifically, a distinguishing strength of our
proposed clause forwarding scheme is that it enables the portfolio solver to poten-
tially succeed in solving an instance that no constituent SAT solver can.

Learnt clause forwarding focuses on avoiding waste of effort by the short
running solvers in the schedule. We propose to share, or “forward,” the knowl-
edge gained by the first k solvers in the form of a selection of short learned
clauses, which are passed on to the k +1st solver. Conflict-directed clause learn-
ing (CDCL) is a very powerful technique in SAT solving, often regarded as the
single most important element that allows these solvers to tackle real-life prob-
lems with millions of variables and constraints. Forwarding learnt clauses is a
cheap but promising way to share knowledge between solvers and is commonly
employed in parallel SAT solving. We demonstrate that sharing learnt clauses
can improve performance in sequential SAT solver portfolios as well.1

1 For the specific case of population-based algorithm portfolios, Peng et al. [11] have
proposed sharing information through migration of individuals across populations.

Boosting Sequential Solver Portfolios 155

Accuracy prediction and recourse aims to use meta-level learning to
correct errors made by the portfolio solver when selecting the “primary” or long
running solver. Typically, effective schedules allocate a fairly large fraction of
the available runtime to one solver, as not doing so would limit the best-case
performance of the portfolio to that of an oracle portfolio with a relatively short
timeout. This, of course, poses a risk, as a substantial amount of time is wasted
if the portfolio selects the “wrong” primary solver. We present a scheme to gen-
erate large amounts of training data from existing solver performance data, in
order to create a machine learning model that aims to predict the accuracy
of the portfolio’s primary solver selector. We call this meta-level classifier as a
guardian classifier. We also use this training data to determine the most promis-
ing recourse action, i.e., which solver should replace the suggested primary solver.

These techniques are general and may be applied to various portfolio algo-
rithms. However, unlike the development of portfolio solvers that do not share
information, experimentation in our setting is much more cumbersome and
time consuming. It involves modifying individual SAT solvers and running the
designed portfolio solver on each test instance in real time, rather than simply
reading off performance numbers from a pre-computed runtime matrix.

We here demonstrate the effectiveness of our techniques using one base port-
folio solver, namely 3S, which had shown very good performance in SAT Com-
petition 2011 in the crafted and random categories but was ranked 10th in the
application category. Note also that the instances and solvers participating in the
2011 Competition were designed with a 5,000 s time limit in mind, compared to
instances and solvers in the 2012 Challenge where the time limit was only 900 s.
Our focus is on utilizing algorithm portfolios and our techniques for solving
hard instances. Our results, with a time limit roughly equivalent to 5,000 s of
the competition machines, show that applying these techniques can boost the
performance of 3S on the 2011 competition instances to a point where it is only
one instance short of matching the performance of the winning solver, Glucose
2.0 [1], on the 300 application track instances. Moreover, the resulting solver,
3S+fp, continues to dominate all other solvers from the 2011 Competition in the
crafted and random categories in which 3S had excelled.

We note that our portfolio solver built using these techniques, called ISS
or Industrial SAT Solver, was declared the Best Interacting Multi-Engine SAT
Solver in the 2012 SAT Challenge, a category that specifically compared portfo-
lios that share information among multiple SAT engines.

2 Background

We briefly review some essential concepts in constraint satisfaction, SAT, and
portfolio research.

Definition 1. Given a Boolean variable X ⊆ {true, false}, we call X and ¬X
(speak: not X) literals (over X). Given literals L1, . . . , Lk over Boolean variables
X1, . . . , Xn, we call (

∨
a La) a clause (over variables X1, . . . , Xn). Given clauses

156 Y. Malitsky et al.

C1, . . . , Cm over variables X1, . . . , Xn, we call
∧

a Ca a formula in conjunctive
normal form (CNF).

Definition 2. Given Boolean variables X1, . . . , Xn, a valuation is an assignment
of values “true” or “false” to each variable: σ : {X1, . . . , Xn} ∀ {true, false}. A
literal X evaluates to “true” under σ iff σ(X) = true (otherwise it evaluates to
“false”). A literal ¬X evaluates to “true” under σ iff σ(X) = false. A clause C
evaluates to true under σ iff at least one of its literals evaluates to “true.” A formula
evaluates to “true” under σ iff all its clauses evaluate to “true.”

Definition 3. The Boolean Satisfiability or SAT Problem is to determine
whether, for any given formula F in CNF, there exists a valuation σ such that
F evaluates to “true.”

The SAT problem has played a prominent role in theoretical computer science
where it was the first to be proven to be NP-hard [3]. At the same time, it
has driven research in combinatorial problem solving for decades. Moreover, the
SAT problem has great practical relevance in a variety of areas, in particular in
cryptography and in verification.

2.1 SAT Solvers

While algorithmic approaches for SAT have been developed as early as the begin-
ning of AI research, a boost in SAT solving performance has been achieved since
the mid-nineties. Problems with a couple of hundred Boolean variables frequently
posed a challenge back then. Today, many problems with hundreds of thousands
of variables can be solved as a matter of course. While there exist very differ-
ent algorithmic approaches to solving SAT problems, the performance of most
systematic SAT solvers (i.e., those that can prove unsatisfiability) is frequently
attributed to three ingredients:

1. Randomized search decisions and systematically restarting search when it
exceeds some dynamic fail limit,

2. Very fast inference engines which only consider clauses which may actually
allow us to infer a new Boolean variable for a variable, and

3. Conflict analysis and clause learning.

The last point regards the idea of inferring new clauses during search that are
redundant to the given formula but encode, often in a succinct way, the reason
why a certain partial truth assignment cannot be extended to any solution. These
redundant constraints strengthen our inference algorithm when a different partial
valuation cannot be extended to a full valuation that satisfies the given formula
for a “similar” reason. One of the ideas that we pursue in this paper is to inform
a solver about the clauses learnt by another solver that was invoked previously
to try and solve the same CNF formula. This technique is standard in parallel
SAT solving but, surprisingly, has not been considered for solver portfolios.

Boosting Sequential Solver Portfolios 157

2.2 Solver Portfolios

Another important contribution was the inception of algorithm portfolios [4,9,
15]. Based on the observation that solvers have complementary strengths and
thus exhibit incomparable behavior on different problem instances, the ideas of
running multiple solvers in parallel or to select one solver based on the features
of a given instance were introduced. Portfolio research has led to a wealth of
different approaches and an amazing boost in solver performance in the past
decade [8,16].

Solver Selection: The challenge when devising a solver portfolio is to develop
a learning algorithm that, for a given set of training instances, builds a dynamic
mechanism that selects a “good” solver for any given SAT instance. To this
end, we need a way to characterize a given SAT instance, which is achieved by
computing so-called “features.” These could be, e.g., the number of clauses or
variables, statistics over the number of negated over positive variables per clause,
or the clause over variable ratio. Features can also include dynamic properties of
the given instance, obtained by running a solver for a very short period of time
as a probe and collecting statistics. As the goal of this paper is to devise tech-
niques to improve existing portfolios, a full understanding of instance features
is unnecessary. We refer the reader to Xu et al. [16] for a comprehensive study
of features suitable for SAT.

Solver Scheduling: Recent versions of SATzilla and 3S no longer just choose
one among the portfolio’s constituent solvers. While still selecting one long run-
ning primary solver, they first schedule a sequence of several other solvers for a
shorter amount of time. In particular, 3S, our base solver for experimentation,
employs a semi-static schedule of solvers, given a test instance F and an total
time limit T . It runs a static schedule (independent of F , based solely on prior
knowledge from training data) for an internal time limit t (with t ∅ 10% of
T) in which several different solvers with different (short) time limits are used.
This is followed by a long running solver, scheduled for time T − t, based on the
features of F computed at runtime.

We will refer to these two components of 3S’s scheduling strategy as the
pre-schedule and the primary solver. In this paper, we tackle precisely these two
aspects: How can we improve the interplay between the short-running solvers in
the pre-schedule while also passing knowledge on to the primary solver, and how
can we improve the selection of the long-running primary solver itself.

3 Sharing Knowledge Among Solvers

A motivating factor behind the use of a pre-schedule used in sequential portfo-
lios is diversity. By employing very different search strategies, one increases the
likelihood of covering instances that may be challenging for some solvers and
very easy for others. Diversity has also been an important factor in the design

158 Y. Malitsky et al.

of parallel SAT solvers, such as ManySAT [6] and Plingeling [2]. When design-
ing these parallel solvers, it has been observed that the overall performance can
be improved by carefully sharing a limited amount of knowledge between the
search efforts led by different threads. This knowledge sharing must be care-
fully done, as it must balance usefulness of the information against the effort of
communicating and incorporating it. One effective strategy has been to share
information in the form of very short learned clauses, often just unit clauses,
i.e., clauses with only one literal (e.g., the winning parallel solver [2] at the 2011
SAT Competition).

3.1 Knowledge Sharing Among Clause-Learning Systematic Solvers

In contrast, current sequential portfolios, while also relying on diversity through
the use of a pre-schedule, do not exploit any kind of knowledge sharing. If the
first k solvers in the pre-schedule fail to solve the instance, the time they spent is
wasted. We propose to avoid this waste by employing the same technique that is
used in parallel SAT, namely by forwarding a subset of the clauses learned by one
solver in the pre-schedule to all solvers that follow it. In our implementation,
clause forwarding is parameterized by two positive integer parameters, L and
M . Each clause forwarding solver outputs all learned clauses containing up to
L literals. Out of this list, the M shortest ones (or fewer, if not enough such
clauses are generated) are forwarded to the next solver in the schedule, which
then treats these clauses as part of the input formula. While we solely base our
choice on what clauses to forward on their lengths, one could also consider more
sophisticated measures (e.g., [1]). Note that, unlike clause sharing in today’s
parallel SAT solvers, in the sequential case clause forwarding incurs a relatively
low communication overhead. Nonetheless, it needs to be balanced out with the
potential benefits. We implemented clause forwarding in three conflict directed
clause learning (CDCL) solvers, henceforth referred to as the clause forwarding
solvers.

3.2 Impact of Knowledge Sharing on Other Solvers

In addition to CDCL solvers, pre-schedules typically also employ two other
kinds of solvers: incomplete local search solvers and “lookahead” based com-
plete solvers. The former usually perform very well on random and some crafted
instances, and the latter usually excel in the crafted category and sometimes on
unsatisfiable random instances. Since these solvers are not designed to generate
or use conflict directed learned clauses, it is not clear a priori whether such
clauses — which are redundant with respect to the underlying SAT theory —
would help these two kinds of solvers as well. In our experiments, we found it
best to run these solvers before our clause forwarding solvers are used.

The exceptions to this rule were two solvers: march hi and mxc-sat09, which
showed a mixed impact of incorporating forwarded learned clauses. We thus
chose to run them both before the forwarding solvers, as in the base portfolio 3S,

Boosting Sequential Solver Portfolios 159

Table 1. Gap closed to the virtual best solver (VBS) by using clause forwarding.

2009 2010 2011 Average

% closed over 3S / VBS gap 12.5 16.67 5.41 11.53

and also after forwarding. Our overall pre-schedule was composed of the origi-
nal one used by 3S in the 2011 SAT Competition, scaled appropriately to take
the difference in machine speeds into account, enhanced with clause forwarding
solvers, and reordered to have non-forwarding CDCL solvers appear after the
forwarding ones. We note that changing the pre-schedule itself did not signifi-
cantly alter the performance of 3S. E.g., in the application category, as we will
later see in Table 3, the performances of 3S with the original and the updated
pre-schedules were very similar.

3.3 Formula Simplification

One other consideration that has a significant impact in practice is, whether to
simplify the CNF formula before handing it to the next solver in the schedule,
after (up to) M forwarded clauses have been added to it. With some experimenta-
tion, we found that minimal simplification of the formula after adding forwarded
clauses, performed using SatElite [13] in our case, was the most rewarding. We
thus used this clause forwarding setup for the experiments reported in this paper.

3.4 Practical Impact of Clause Forwarding

We will demonstrate in the experiments section that clause forwarding allows
3S to close a significant part of the gap in performance when compared to the
best solvers for application instances of the 2011 Competition, along with more
information on the choice of training/test splits we consider and the experi-
mental setup we use. We here provide an additional preview of the impact of
clause forwarding when using the latest SAT solver available prior to the 2012
Challenge. For this evaluation we consider three train/test splits of instances:
the first split uses the 2009 competition instances as test instances and every
instance available before 2009 for training; the second and third split are defined
similarly but for the 2010 race and 2011 competition, respectively.

Results are presented in Table 1. Here, we consider the gap in performance
between the portfolio without clause forwarding and the best possible no-
knowledge-sharing portfolio, VBS, which uses an oracle to invoke the fastest
solver for each given instance. In the table, we show how much of that gap is
closed by using clause forwarding. Of course, the portfolio that uses knowledge
sharing between solvers is no longer limited in performance by the oracle port-
folio, as remarked earlier. However, using the oracle portfolio gives us a good
baseline to compare with. As we see, clause forwarding significantly helps on all
three competition splits clause. On average, using this technique we are able to
close over 10 % of the gap between the pure portfolio and the oracle portfolio.

160 Y. Malitsky et al.

4 Accuracy Prediction and Recourse

Studying the results of the SAT Competition 2011 one can observe that the best
sequential portfolio, 3S only solved 200 out of 300 instances in the application
category. However, when analyzing the performance of the solvers the 3S portfolio
is composed of, one can also see that the virtual best solver (VBS) based on
those solvers can actually solve more than 220 application instances. Hence,
the suggestions made by the portfolio are clearly wrong in more than 10 % of
all cases. The objective of this section is to lower this performance gap. In the
following we first try to determine when the suggestion of a portfolio results in
a loss in performance, and second what to do when we believe the portfolio’s
choice is wrong.

4.1 Accuracy Prediction

One way to potentially improve performance would be to improve the portfolio
selector itself (e.g., by multi-class learning). Nonetheless, most classifiers often
cannot represent exactly the concept class they are used for. One standard way
out in machine learning is to conduct classification in multiple stages, which is
what we consider here. Basic classifiers providing a confidence or trust value can
function as their own guardian. In Ensemble Learning, more complex recourse
classifiers are considered. Our goal here is to design such an approach in the
specific context of machine learning methods for SAT solver selection.

We propose a two-stage approach where we augment the existing SAT portfo-
lio classifier by accompanying it with a “guardian” classifier, which aims to pre-
dict when the first classifier errs, and a second “selector” classifier that selects an
alternative solver whenever the guardian finds that the first selector is probably
not right.

To train a guardian and a replacement selector classifier, we first need to
capture some characteristics that correlate with the quality of the decision of
the portfolio. To that end we propose to create a set of features and label the
portfolio’s suggestion as “good” or “bad” (L = {good,bad}). A key question is,
how should these two labels be defined. Inspired by the SAT competition context,
a “good” decision will be defined as one where an instance can be solved within
the given time limit and a “bad” one is when it cannot be.2

The definition of a feature vector f to use for a guardian classifier is unfor-
tunately far less straightforward. We, of course, first tried the original features
used by 3S but that did not result in an overall improvement in performance.
As is typically done in machine learning, we experimented with a few additions
and variations, and settled on the following:
2 We also tried labels that identify top performer (e.g., not more than x% slower than

the best solver, for various x), but obtained much worse results. The issue here is
that it is more ambitious than necessary to predict which solver is best or close
to best. Instead, we need to be able to distinguish solvers that are good enough
from those that fail. That is, rather than aiming for speed, we optimize for solver
robustness.

Boosting Sequential Solver Portfolios 161

Table 2. Description of features used by guardian classifier. Solver rank is based on
average PAR10 score on neighborhood.

List of employed features

F1 Distance to closest cluster center
F2 k used for test instance
F3-F7 Min/Max/Average/Median/Variance of distance to closest cluster center
F8 Solver ID selected by k -NN
F9 Solver type: incomplete or complete
F10 Average distance to solved instances by top-2 solvers
F11 VBS time on k -neighborhood of test instance
F12 Number of instances solved by top-5 ranked solvers
F13-F23 PAR10 score/instances solved by top-5 ranked solvers
F24-F34 10 test instance features

We selected 34 features composed of: the first 10 features of the test instance,
the Euclidean based distance measures of training instances in the neighborhood
to the test instance, and runtime measures of the five best solvers on a restricted
neighborhood (see Table 2 for details). These features are inspired by the k-
nearest-neighbor classifier that 3S employs.

Consequently, for the guardian we need to learn a classifier function: f ∈−∀ L.
To this end we require training data. The 3S portfolio is based on data T that
is composed of features of and runtimes on 5,467 SAT instances appearing in
earlier competitions. We can split T into a training set Ttrain and test set Ttest.
Now, we can run the portfolio restricting its knowledge base to Ttrain and test
its performance on Ttest. For each test instance i ⊆ Ttest we can compute the
corresponding feature vector fi and obtain the label Li. Hence, the number of
training instances we obtain for the classifier is i. Obviously, one can split T
differently over and over by random subsampling, and each time one creates
new training data to train the “guardian” classifier.

The question arises whether different splits will not merely regenerate exist-
ing knowledge. This depends on the features chosen, but here the feature vector
will actually have a high probability to be different for each single split since in
each split the neighborhood of a test instance will be different. A thought exper-
iment that makes this more apparent is the following: Assume that, for a single
instance i, we sort all other instances according to the distance to i (neighbor-
hood of i). Assume further we select training instances from the neighborhood of
i with probability 1/k until we have selected k instances (where k is the desired
neighborhood size). When k > 10 it is obviously very unlikely for an instance to
have exactly the same neighbors.

In order to determine an appropriate amount of training data we first ran-
domly split the data set T in a training split Ttrain′ and test split Ttest′ , before
generating the data for the classifier. We then perform the aforementioned split-
ting to generate training data for the classifier on Ttrain′ and test it on the data
generated by running k-NN with data Ttrain′ on the test set Ttest′ . We use 10

162 Y. Malitsky et al.

different random splits of type Ttrain′ and Ttest′ and try to determine the best
number of splits for generating training data for the classifier.

While normally one could essentially look at the plain accuracy of the clas-
sifier and select the number of splits that result in the highest accuracy, we
propose to employ another measure based on the following reasoning. The clas-
sifier’s “confusion matrix” looks in our context like this (denoting the solver that
was selected by the portfolio on instance I with S):

(a) S solves I, and classifier predicts that it can
(b) S solves I, but classifier predicts that it cannot
(c) S can’t solve I, but classifier predicts that it can
(d) S can’t solve I, and classifier predicts that it cannot

Instances that fall in category (a) reflect a “good” choice by the portfolio
(our original selector) and, while correctly detected, there is also nothing for us
to gain. In case (c) we cannot exploit the wrong choice of the portfolio since
the guardian classifier does not detect it. However, we will also not degenerate
the performance of the portfolio. Cases (b) and (d) are the interesting cases. In
(b) we collect the false-positives where the classifier predicts that the portfolio’s
choice was wrong while it was not. Consequently it could be the case that we
degrade the performance of the original portfolio selector by altering its decision.
All instances falling in category (d) represent the correctly labeled decisions of
the primary selector that should be overturned. In (d) lies the potential of our
method: all instances that fall in this category cannot be solved by solver S that
the primary selector chose, and the guardian classifier correctly detected it. Since
cases (a) and (c) are somewhat irrelevant to any potential recourse action, we
focus on keeping the ratio (b)

(d) as small as possible in order to favorably balance
potential losses and wins. Based on this quality measure we determined that
roughly 100 splits achieve the most favorable trade off on our data.

4.2 Recourse

When the guardian classifier triggers, we need to select an alternative solver. For
this purpose we need to devise a second “recourse” classifier. While we clearly
do not want to select the same solver that was suggested by the original portfolio
selector, the choices for possible recourse actions is vast and their benefits hardly
apparent. We introduce the following recourse strategy:

Since we want to replace the suggested solver S, we assume S is not suitable
for the given test instance I. Based on this conditional probability we can also
infer that the instances solved by S in the neighborhood of size k of I can
be removed from its neighborhood. Now, it can be the case that the entire
neighborhood of I can be solved by S and therefore we extend the size of the
neighborhood by 30 %. If on this extended neighborhood S cannot solve all
instances, we choose the solver with the lowest PAR10-score on the instances
in the extended neighborhood not solved by S. Otherwise, we choose the solver
with the second best ranking by the original portfolio selector. In the context of

Boosting Sequential Solver Portfolios 163

3S this is the solver that has the second lowest PAR10-score on the neighborhood
of the test instance.

Designing a good recourse strategy poses a challenge. As we will see later
in Sect. 5.3, our proposed recourse strategy resulted in solving 209 instances on
the 2011 SAT Competition application benchmark, compared to the 204 that
3S solved. We tried a few other simpler strategies as well, which did not fare
as well. We briefly mention them here: First, we used the solver that has the
second best ranking in terms of the original classifier. For 3S this means choosing
the solver with the second lowest PAR10-score on the neighborhood of the test
instance. This showed only a marginal improvement, solving 206 instances. We
then tried to leverage diversity by mixing-and-matching the two recourse strate-
gies mentioned above, giving each exactly half the remaining time. This resulted
in overall performance to drop below 3S without accuracy prediction. Finally,
we computed offline a static replacement map that, for each solver S, specifies
one fixed solver f(S) that works the best across all training data whenever S
is selected by the original classifier but does not solve the instance. This static,
feature-independent strategy also resulted in degrading performance. For the
rest of this paper, we will not consider these alternative replacement strategies.

5 Empirical Evaluation

In order to evaluate the impact of our two proposed techniques on an existing
portfolio solver, we applied them to 3S [8], the best performing sequential port-
folio solver at the 2011 SAT Competition.3 We refer to the resulting enhanced
portfolio solver as 3S+f when clause forwarding is used, as 3S+p when accuracy
prediction and recourse classifiers are used, and as 3S+fp when both new tech-
niques are applied. We compare their performance to the original 3S, which was
the winner in the crafted and random categories of the main sequential track of
the 2011 SAT Competition.

As remarked earlier, our techniques are by no means limited to 3S and may
be applied to more recent portfolios. However, these techniques are likely to pay
off more on harder instances and thus we focus here on the 2011 Competition
in which both instance selection and solver design was done with a 5,000 s time
limit in mind.

For evaluation, we use the 2011 competition split, i.e., we use the same appli-
cation (300), crafted (300), and random (600) category instances as the ones used
in the main phase of the Competition. The enhanced variants of 3S rely only
on the pre-2011 training data that comes with the original 3S. We note that
we did conduct experiments using random splits after mixing all instances, but
there the performance of the original k-NN classifier of 3S is typically almost
perfect, leaving little to no room for improvement. Competition splits exhibit a
completely different and perhaps arguably more realistic behavior, as the sub-
optimal performance of 3S in the application category shows. We thus focused
3 The source code of 3S can be obtained from http://www.satcompetition.org/

http://www.satcompetition.org/

164 Y. Malitsky et al.

on splits that were neither random nor hand-crafted by us and experimented on
competition splits to evaluate the techniques.

All experiments were conducted on 2.3 GHz AMD Opteron 6134 machines
with 8 4-core CPUs and 64 GB memory, running Scientific Linux release 6.1.
We used a time limit of 6,500 s, which roughly matched the 5,000 s timeout
that was used on the 2011 Competition machines. As performance measures we
consider the number of instances solved, average runtime, and PAR10 score.
PAR10 stands for penalized average runtime, where instances that time out are
penalized with 10 times the timeout.

5.1 Implementation Details on Clause Forwarding

We implemented learnt clause forwarding in three CDCL SAT solvers that were
used by 3S in the 2011 Competition: CryptoMiniSat 2.9.0 [12], Glucose 1.0 [1],
and MiniSat 2.2.0 [14]. The pre-schedule was modified to prolong the time these
three clause-learning solvers are run, as discussed earlier. With clause forward-
ing disabled, 3S with this modified pre-schedule resulted in roughly the same
performance on our testbed as 3S with the original pre-schedule used in the
Competition (henceforth referred to as 3S-C). In other words, any performance
differences we observe can be attributed to clause forwarding and accuracy pre-
diction and recourse, not to the change in the pre-schedule itself.

For clause forwarding, we used parameter values L = 10 and M = 10, 000,
i.e., each of the three solvers may share up to 10,000 clauses of size up to 10 for
the next solver to be run. The maximum amount of clauses shared is therefore
30,000. We note that these parameters are by no means optimized. Among other
variations, we tried sharing an unlimited number of (small) clauses, but this
un-surprisingly degraded performance. We expect that these parameters can be
tuned better. Nevertheless, the above choices worked well enough to demonstrate
the benefits of clause sharing, which is the main purpose of this experimentation.

5.2 Implementation Details on Accuracy Prediction

To predict how good the primary solver suggested by 3S is likely to be, we
experimented with several classifiers available in the Weka 3.7.5 data mining and
machine learning Java library [5].4 The results presented here are for the REP-
Tree classifier, which is a fast decision tree learner that uses information gain and
variance reduction for building the tree, and applies reduced-error pruning. Using
training data based on splitting 5,464 pre-2011 instances (the ones 3S is based on)
100 times, as described earlier, we trained a REP-Tree and obtained the following
confusion matrix for instances5 of the 2011 SAT Competition application test
data:

4 http://www.cs.waikato.ac.nz/ml/weka/
5 Note that the numbers do not add up to 300 since, with the classifier, we only

consider instances that have not been solved yet by the pre-scheduler and can be
solved by at least one of the solvers in our portfolio.

http://www.cs.waikato.ac.nz/ml/weka/

Boosting Sequential Solver Portfolios 165

Number of forwarded clauses

N
um

be
r o

f i
ns

ta
nc

es

0 5000 10000 15000 20000 25000 30000

0
20

40
60

80

Number of forwarded clauses

N
um

be
r o

f i
ns

ta
nc

es

0 5000 10000 15000 20000 25000 30000

0
20

40
60

80

Fig. 1. Histogram showing how often N clauses are forwarded. Left: Crafted instances.
Right: Application instances.

(a) 61 (b) 7

(c) 25 (d) 14

Hence, the best possible outcome for a recourse action would be to solve the
previously unsolved 14 instances (∅ 5% of all the 2011 application instances)
under (c) and to still be able to solve the 7 instances (∅ 2%) under (b). While in
the best case we could gain 14 instances and lose none, it is obviously not clear
whether one would achieve any gain at all, or even solve at least the 7 instances
that originally used to be solved. Fortunately, with our recourse strategy, we
witness a significant gain in overall performance. We integrated the classifier in
3S in the following way: When 3S suggests the primary solver, if indicated by
our guardian REP-Tree model, we intercept its decision and alter it as proposed
by our recourse strategy.

5.3 Results on 2011 SAT Competition Data

Since our base portfolio solver, 3S, already works best on random and crafted
instances considered, the objective is to close the large gap between the best
sequential portfolios and the best individual solvers in the application track,
while not degrading the performance of the portfolio on crafted and random
categories.

To this end, let us first note that adding the methods proposed in this paper
have no significant impact on 3S performance on random and crafted instances.
On random instances, knowledge sharing hardly takes place since CDCL based
complete solvers are barely able to learn any short clauses on these instances.

For crafted instances, a limited amount of clause forwarding does happen,
but much less so than in application instances. In Fig. 1 we show how many
instances in our test set share how many clauses. On the left we see that, on
crafted instances, we mostly share a modest amount of clauses between solvers,
if any. The plot on the right shows the situation for application instances. Here
it is usually the case that the solvers share the fully allowed 30,000 clauses.

166 Y. Malitsky et al.

Table 3. Performance comparison of 3S-C from the competition and its four new
variants: 3S, 3S+f, 3S+p, and 3S+fp on application.

Application 3S-C 3S 3S+f 3S+p 3S+fp

Solved 205 204 213 209 214
Unsolved 95 96 87 91 86
% Solved 68.3 68.0 71.0 69.7 71.3
Avg runtime 2,764 2,744 2,537 2,707 2,524
PAR10 score 22,676 22,311 20,693 21,437 20,485

Interestingly, the clause sharing in crafted instance causes a slight decrease
in performance, but this is outweighed by the positive impact of our prediction
and recourse classifiers which actually improve the performance of the solver
presented here over 3S on crafted instances. In summary, the solver presented
here works as well as 3S on random instances, and insignificantly better than 3S

on crafted instances.
It remains to test if the methods proposed here can boost 3S performance to

a point where it is competitive on application instances as well.
Table 3, column 1, shows the performance of the 3S version available from

the competition website (3S-C). The number of instances it solves here differs
slightly from the competition results due to hardware and experimental differ-
ences. Comparing 3S-C with 3S (where we changed the pre-schedule to allow
more clauses to be learned), we observe that the difference is very small. 3S-C

solves just 1 instance more than 3S, letting us conclude that the subsequently
reported performance gains are not due to differences in the pre-schedule itself.

Both 3S+f (3S with clause forwarding) and 3S+p (3S with prediction and
recourse) are able to improve on 3S in a significant fashion: 3S+f is able to solve
9 more instances, and 3S+p solves 5 more. Note that in the application category it
is usually the case that the winning solver only solves a couple of more instances
than the second-ranked solver. Indeed, the difference between the 10th ranked
3S in the competition and the winner was only 15 instances. That is to say,
prediction and recourse closes 33 % of the gap to the winning solver, and clause
forwarding even over 60 %.

The combination of clause forwarding and prediction and recourse in 3S+fp

is able to solve 214 instances. This is just one instance shy of the best sequen-
tial solver Glucose 2.0 at the 2011 SAT Competition which we re-ran on our
hardware using the same experimental settings. Note that 3S uses only pre-2011
solvers. Furthermore, we found that the average runtime of 3S+fp is close to
Glucose 2.0 as well, which also indicates that in contexts where objectives other
than the number of solved instances are of interest, 3S+fp is very competitive.

6 Conclusion

We presented two novel generic techniques for boosting the performance of SAT
portfolios. The first approach shares the knowledge discovered by SAT solvers

Boosting Sequential Solver Portfolios 167

that run in sequence, while the second improves solver selection accuracy by
detecting when a selection is likely to be inferior and proposing a more promis-
ing recourse selection. Applying these generic techniques to the SAT portfolio
3S resulted in significantly better performance on application instances while
not reducing performance on crafted and random categories, making the result-
ing solver, 3S+fp excel on all categories in our evaluation using the 2011 SAT
Competition data and solvers.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: 21st IJCAI, Pasadena, CA, pp. 399–404, July 2009

2. Biere, A.: Plingeling: solver description. SAT Race (2010)
3. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–

158. ACM (1971)
4. Gomes, C.P., Selman, B.: Algorithm portfolios. AI J. 126(1–2), 43–62 (2001)
5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
6. Hamadi, Y., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6, 245–262 (2009)
7. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
8. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-

rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

9. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: IJCAI, pp. 1542–1543 (2003)

10. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-model-based algo-
rithm portfolios for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 369–370. Springer, Heidelberg (2011)

11. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for
numerical optimization. IEEE Trans. Evol. Comput. 14(5), 782–800 (2010)

12. Soos, M.: CryptoMiniSat 2.9.0. http://www.msoos.org/cryptominisat2 (2010)
13. Sorensson, N., Een, N.: SatELite 1.0. http://minisat.se (2005)
14. Sorensson, N., Een, N.: MiniSAT 2.2.0. http://minisat.se (2010)
15. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and

analysis of an algorithm portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

16. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. JAIR 32(1), 565–606 (2008)

http://www.msoos.org/cryptominisat2
http://minisat.se
http://minisat.se

A Fast and Adaptive Local Search Algorithm
for Multi-Objective Optimization

Duy Tin Truong(B)

University of Trento, Trento, Italy
truong@disi.unitn.it

Abstract. Although population-based algorithms are robust in solv-
ing Multi-objective Optimization Problems (MOP), they often require
a large number of function evaluations. In contrast, individual-solution
based algorithms are fast but can be stuck in local minima. To solve these
problems, we introduce a fast and adaptive local search algorithm for
MOP. Our algorithm is an individual-solution algorithm with a flexible
mechanism for switching between the exploration and exploitation phase
to escape from local minima. The experimental results on the DTLZ
benchmark show that our algorithm significantly outperforms the popu-
lar evolutionary algorithmNSGAII and three other simulated annealing
algorithms for MOP.

1 Introduction

Multi-objective Optimization Problems (MOP) appear in many practical appli-
cations in engineering, finance, transportation, etc. They are characterized by
multiple objective functions which need to be jointly optimized. The Pareto-
optimal solutions of MOP are the solutions where no single objective can be
improved without worsening at least another objective. The set of all Pareto-
optimal solutions in the objective space is called the Pareto front. Several algo-
rithms have been proposed to approximate the Pareto front with a single run.
They can be split into two groups: population method and individual-solution
method. The first group contains evolutionary algorithms (EAs) [1,2]. In each
generation, EAs modify a population of solutions by genetic operators such that
the next population contains high-quality and diverse solutions. Although EAs
are robust for many problems, they often require a large number of function
calls to evaluate the quality of solutions. In contrast, the individual-solution
algorithms [5,6] try improving only one solution in each iteration, by replacing
it with a better one in its neighborhood. When that solution is Pareto-optimal,
it is saved as a representative solution on the Pareto front. As only one solution
is evaluated in each iteration, the number of function evaluations can be sig-
nificantly reduced. However, without a good trade-off between exploration and
exploitation, these algorithms can be stuck in local minima.

To solve the above difficulties, we introduce a Fast and Adaptive Local
Search Algorithm for Multi-objective Optimization (abbreviated as FASAMO).

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 168–173, 2013.
DOI: 10.1007/978-3-642-44973-4 18, c© Springer-Verlag Berlin Heidelberg 2013

A Fast and Adaptive Local Search Algorithm 169

It is an individual-solution algorithm with an automatic mechanism for switching
between the exploration and exploitation phase to escape from local minima.

The rest of the paper is organized as follows. We conclude this section by
summarizing some related works. Then, we describe our algorithm in Sect. 2 and
compare it with four other algorithms in Sect. 3.

Related Work. One of the first individual-solution algorithms for MOP is the
multi-objective simulated annealing algorithm (MOSA) proposed by Serafini [5]
(denoted as SMOSA in this paper). In each iteration, SMOSA optimizes a
weighted sum of the objectives. To diversify the optimal solution set, the algo-
rithm modifies slightly the weight vector in each search step. Ulungu et al. [7]
later introduces a population-based MOSA algorithm (denoted as UMOSA).
UMOSA first generates a set of random solutions and associates each initial
solution with a random weight vector. Then, in each generation, UMOSA opti-
mizes each solution by the scalarizing function with the weight vector of that
solution. Smith et al. also proposes another individual-solution MOSA algorithm
in [6] (denoted as DMOSA) which minimizes an energy function based on the
dominance count to approximate the Pareto front. The energy function is defined
such that solutions near the Pareto front and in sparse regions have small energy.
Instead of improving individual solutions, the popular algorithm NSGAII pro-
posed by Deb et al. [2] tries to maintain populations of diverse and high-quality
solutions. In each generation, it selects the best solutions in the current popula-
tion to form the parent population. Then, it applies genetic operators on these
parents to generate a next offspring population.

2 Fast and Adaptive Local Search Algorithm for MOP

Our algorithm FASAMO uses the dominance-based energy function as in [6].
Let nonDomSet be the set of non-dominated solutions obtained so far by the
algorithm. The energy energy(xi) of a solution xi w.r.t nonDomSet is defined
as the portion of the solutions in nonDomSet that dominate xi: |{xj |xj ∈
nonDomSet & xj dominates xi}| / |nonDomSet|. An important property of
this energy function is that solutions near the Pareto front and in spare regions
have small energy. Besides, if the size of nonDomSet is less than 100, we increase
the energy resolution by sampling 100 points on the attainment surface of the
approximate front (formed by nonDomSet) as in [6].

FASAMO consists of two main phases: exploration and exploitation. In the
exploration phase, the perturbation level is set to a large value to help FASAMO
identify quickly local fronts. In each iteration, the algorithm improves the current
solution by replacing it with one of its neighbor solutions having smaller energy.
When the current solution is on a local optimal front, the algorithm switches to
the exploitation phase for exploiting that local front. In this phase, the pertur-
bation level is first decreased to help the algorithm determine the best solutions
on that front. Then, it is increased, thus the algorithm can discover other opti-
mal solutions around these best solutions and move gradually to a neighbor
region. This process is repeated periodically by using a cosine function to adjust

170 D.T. Truong

the perturbation level. Besides, two phases of the algorithms can be switched
according to the approximate front and the current solution. This gives the algo-
rithm chances to correct the mistake of switching to the exploitation phase too
soon. In addition, to increase the convergence speed, if a perturbation step is
successful then it will be performed again in the next step.

Algorithm 1: Fast and Adaptive Local Search Algorithm for MOP
xcurrent = a random solution; nonDomSet = {xcurrent}
searchDirection = random; perturbationLevel = maxPerturbation
for i = 1 to maxEvaluations do

xnew = xcurrent

if searchDirection = random then
Perturb xnew randomly with the scale of perturbationLevel.

else
Perturb xnew as the previous perturbation step does.

Add xnew to nonDomSet.
if energy(xnew) ≤ energy(xcurrent) or xnew improves nonDomSet then

xcurrent = xnew

searchDirection = goOn
else

searchDirection = random
// Switch phases
if phase = exploration then

if xcurrent is unimproved sequentially for maxUnimproved times then
phase = exploitation

else

cosFactor = 0.5 × (1 + cos(2π (i mod cosFreq)
cosFreq

)) // cosFactor ∈ [0, 1]
perturbationLevel = maxPerturbation × cosFactor
if xcurrent is improved for maxImproved times in this phase then

phase = exploration
perturbationLevel = maxPerturbation

return nonDomSet

The pseudo-code of FASAMO is shown as in Algorithm 1. FASAMO is
initialized by a random solution. In this paper, each solution xi is presented as
a vector of D real variables {xk

i }Dk=1. In each iteration, a new solution xnew is
generated by first copying from the current solution xcurrent. Then, this new
solution xnew is modified based on the search direction. If the search direction
is random, then the algorithm picks randomly a variable xk

new and adds to it a
random value Δk generated from a Laplacian distribution with the mean of 0
and the scale of perturbationLevel. Otherwise, the previous perturbation step
is performed again with a doubled length by adding 2Δl to xl

new where l was
the index of the perturbed variable in the previous iteration and Δl was the
perturbation value added on that variable. The reason for doubling the per-
turbation length is to increase the convergence speed and avoid executing a
large number of small perturbation steps. Besides, we use the Laplacian dis-
tribution since it has a fatter tail than the normal distribution. This gives the
algorithm a high probability of exploring the regions that are far from the current

A Fast and Adaptive Local Search Algorithm 171

solution. Next, the new solution xnew is added to the non-dominated solution
set nonDomSet. If xnew dominates at least one solution in nonDomSet, then
xnew is considered as it has improved nonDomSet. If the new solution improves
the non-dominated solution set or its energy is smaller than or equal to the
current solution energy, then the algorithm moves to the new solution and sets
the search direction to goOn. Otherwise, the search direction is set to random.
After that, the algorithm considers the improvement status to switch between
two phases and adjust the perturbation level. In detail, if the algorithm is in the
exploration phase and the number of times that the algorithm sequentially can-
not improve the current solution reaches a maximum value maxUnimproved,
then the algorithm switches to the exploitation phase as the current solution
is now on a local front. When the algorithm is in the exploitation phase, the
perturbation level perturbationLevel is adjusted by a cosine function with a fre-
quency of cosFreq. If the number of times that the current solution is improved
equals to a maximum value maxImproved, then the algorithm switches again to
the exploration phase. The main reason of this step is that the improvement of
the current solution implies that the current solution is now in a new and more
potential region, thus the large search steps can be performed to quickly reach
the local minima of that region or identify other potential neighbor regions.

3 Experiments

This section presents the experiments to compare our algorithm and four other
algorithms: SMOSA, UMOSA, DMOSA and NSGAII on the DTLZ bench-
mark [3] (with the number of variables and objectives as suggested in [3]). All
algorithms are implemented on the jmetalcpp framework [4]. The parameters
of FASAMO are set as follows: maxUnimproved = 100, maxImproved = 10,
maxPerturbation = 0.3 and cosFreq = 1 + 10 ∗ numberOfV ariables. The odd
value of cosFreq is used to eliminate the zero value of the perturbation level.
The parameters of DMOSA is set as suggested in [6]. The default parameters
of NSGAII in the jmetalcpp framework are used in the experiments. The max-
imum temperature Tmax of SMOSA and UMOSA is set to 1.0. For measuring
the distance to the true Pareto front and the coverage of the solution set, we
use the generational distance metric [8] and the hyper volume metric [9] (see
the implementation for the minimization problem in the jmetalcpp framework),
respectively. Besides, the Pareto front samples on the website of jmetalcpp are
used when computing the metrics.

Experimental Results on the Number of Function Evaluations: In this
experiment, we measure the number of evaluations required by each algorithm to
obtain the approximate front with the generational distance of 0.01 (to the true
Pareto front). We run each algorithm 10 times on each problem. In a run, for
every 100 evaluations, the algorithms check whether the generational distance
of the approximate front is less than or equal to 0.01. If this condition is hold or
the number of evaluations equals to 100000, the algorithms stop and report the
number of evaluations.

172 D.T. Truong

Table 1. Average number (± Standard Deviation) of function evaluations. NA (Not
Available) means that a number of runs (written in brackets) did not reach the required
target: generational distance of 0.01 within 100000 iterations.

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

FASAMO 4180 ± 120 410 ± 123 8760 ± 113 2580 ± 1207 340 ± 12 280 ± 25 370 ± 22

SMOSA NA (10) 9500 ± 189 NA (7) NA (9) 11050 ± 3272 8050 ± 1596 6330 ± 768

DMOSA 6850 ± 173 3290 ± 98 12590 ± 154 NA (3) 3140 ± 113 3140 ± 240 2880 ± 69

UMOSA NA (10) 14370 ± 262 NA (10) NA (10) 22010 ± 2280 24410 ± 540 27230 ± 53

NSGAII 26090 ± 1356 2490 ± 60 53650 ± 2355 2790 ± 218 2060 ± 18 43530 ± 1021 4920 ± 56

Table 1 shows the average number of evaluations required by five algorithms
on seven problems. We only compute the average evaluation number for the
algorithms which can finish in all 10 run times. As can be seen, on all problems,
FASAMO requires a much smaller number of evaluations compared to that one
of the other algorithms. Besides, on the difficult problems like DTLZ1, DTLZ3,
DTLZ4, SMOSA, DMOSA and UMOSA cannot approach the generational
distance of 0.01 within 100000 iterations.

Experimental Results on Generational Distance and Hyper Volume:
In this experiment, we fix the number of evaluations to compare the perfor-
mance on the generational distance and hyper volume. We set the number of
evaluations of five algorithms on each problem as the average number of eval-
uations required by FASAMO to reach the generational distance of 0.01 (pre-
sented in Table 1). However, as the population size of UMOSA and NSGAII
is 100, we round up these values to the nearest multipliers of 100. Table 2a
presents the generational distance of five algorithms on seven problems. Except
for problem DTLZ4, on the other six problems, FASAMO obtains a much
smaller generational distance compared to that one of the other algorithms.
In more detail, the second smallest generational distance is at least 10 times
larger than that one of FASAMO. As for problem DTLZ4, FASAMO is
slightly outperformed by NSGAII. In this problem, a very large portion of
decision space is mapped to a single point in the objective space [3,6]. Thus,
when FASAMO samples in this special region of decision space, a large

Table 2. Performance comparison

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

(a) Generational distance with (Mean ± Standard Deviation) ×10−2

FASAMO 1.41 ± 0.41 0.59 ± 0.09 2.04 ± 0.67 1.81 ± 0.31 1.15 ± 0.13 7.24 ± 2.25 1.01 ± 0.03

SMOSA 71.27 ± 18.86 14.32 ± 1.66 90.80 ± 18.19 22.06 ± 2.13 23.31 ± 2.16 220.67 ± 17.38 79.72 ± 2.51
DMOSA 117.11 ± 25.61 19.16 ± 0.92 823.03 ± 74.59 16.68 ± 0.93 28.86 ± 1.85 245.17 ± 14.92 85.71 ± 4.65
UMOSA 891.00 ± 60.62 9.90 ± 0.12 2722.03 ± 145.93 12.34 ± 0.00 16.13 ± 0.10 133.53 ± 1.57 70.82 ± 1.12
NSGAII 1450.47 ± 62.91 6.71 ± 0.04 2082.86 ± 4.59 1.04 ± 0.04 12.31 ± 0.10 115.75 ± 0.04 51.25 ± 1.51

(b) Hyper volume with (Mean ± Standard Deviation) ×10−2

FASAMO 56.61 ± 6.72 27.38 ± 1.25 24.58 ± 7.77 12.70 ± 1.31 5.33 ± 0.13 5.68 ± 0.34 21.55 ± 0.06

SMOSA 14.82 ± 4.69 1.17 ± 1.14 6.19 ± 0.26 0.20 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
DMOSA 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
UMOSA 0.00 ± 0.00 0.70 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 0.00 ± 0.00 0.00 ± 0.00
NSGAII 0.00 ± 0.00 3.03 ± 0.44 0.00 ± 0.00 29.15 ± 0.03 0.09 ± 0.02 0.00 ± 0.00 0.00 ± 0.00

A Fast and Adaptive Local Search Algorithm 173

number of evaluations can be wasted as identical solutions in the objective space
are produced. In contrast, NSGAII may overcome this issue better as it uses
crossover operators and has an explicit diversifying mechanism.

Table 2b shows the hyper volume of five algorithms on seven problems. Sim-
ilarly to the case of generational distance, FASAMO is slightly worse than
NSGAII on the DTLZ4 problem. However, on the other six problems,
FASAMO outperforms significantly the other four algorithms. Especially, on
two problems DTLZ6 and DTLZ7, except for FASAMO, the other algorithms
have no solution in the coverage volume of the true Pareto front.

4 Conclusion

In this paper, we propose a fast and adaptive local search algorithm for MOP,
called FASAMO. Our algorithm is an individual-solution algorithm with an
automatic mechanism for switching between two phases of exploration and
exploitation. The experiments on seven problems of the DTLZ benchmark show
that our algorithm significantly outperforms the popular evolutionary algorithm
NSGAII and three other multi-objective simulated annealing algorithms.

References

1. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for
solving multi-objective problems, vol. 5. Springer, Heidelberg (2007)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization
test problems. In: Proceedings of the Congress on Evolutionary Computation (CEC-
2002), Honolulu, USA, pp. 825–830 (2002)

4. Durillo, Juan J., Nebro, Antonio J.: jmetal: a java framework for multi-objective
optimization. Adv. Eng. Softw. 42, 760–771 (2011)

5. Serafini, P.: Simulated annealing for multiple objective optimization problems. In:
Tzeng, G., Wang, H., Wen, U., Yu, P. (eds.) Multiple Criteria Decision Mak-
ing. Expand and Enrich the Domains of Thinking and Application, pp. 283–292.
Springer, Heidelberg (1994)

6. Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-
based multiobjective simulated annealing. IEEE Trans. Evol. Comput. 12(3), 323–
342 (2008)

7. Ulungu, E.L., Teghem, J., Fortemps, P.H., Tuyttens, D.: Mosa method: a tool for
solving multiobjective combinatorial optimization problems. J. Multi-Criteria Decis.
Anal. 8(4), 221–236 (1999)

8. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence
to a pareto front. In: Late Breaking Papers at the Genetic Programming 1998 Con-
ference, pp. 221–228 (1998)

9. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

An Analysis of Hall-of-Fame Strategies
in Competitive Coevolutionary Algorithms

for Self-Learning in RTS Games

Mariela Nogueira1, Carlos Cotta2, and Antonio J. Fernández-Leiva2(B)

1 University of Computers Science, Havana, Cuba
2 University of Málaga, Málaga, Spain

mnogueira@uci.cu, {ccottap,afdez}@lcc.uma.es

Abstract. This paper explores the use of Hall-of-Fame (HoF) in the
application of competitive coevolution for finding winning strategies in
RobotWars, a two-player real time strategy (RTS) game developed in
the University of Malaga for research purposes. The main goal is testing
different approaches in order to implement the concept of HoF as part
of the self learning mechanism in competitive coevolutionary algorithms.
Five approaches were designed and tested, the difference between them
being based on the implementation of HoF as a long or short-term mem-
ory mechanism. Specifically they differ on the police followed to keep the
members in the champions’ memory during an updating process which
deletes the weakest individuals, in order to consider only the robust mem-
bers in the evaluation phase. It is shown how strategies based on period-
ical update of the HoF set on the basis of quality and diversity provide
globally better results.

Keywords: Coevolution · RTS game · Game’s strategy · Evaluation
process · Memory mechanism

1 Introduction

Artificial Intelligence (AI) implementation represents a challenge in game devel-
opment: a deficient game AI surely decreases the satisfaction of the player. Game
AI has been traditionally coded manually, causing well-known problems such as
loss of reality, sensation of artificial stupidity, and predictable behaviors, among
others; to overcome them a number of advanced AI techniques have recently
been proposed in the literature. Coevolution, a biologically inspired technique
based on the interaction between different species, represents one of the most
interesting techniques to this end.

Coevolutionary systems are usually based on two kinds of interactions: one in
which different species interact symbiotically (i.e., the cooperative approach) and
other in which species compete among them (i.e., the competitive approach). In
cooperation-based approaches, an individual is typically decomposed in different

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 174–188, 2013.
DOI: 10.1007/978-3-642-44973-4 19, c© Springer-Verlag Berlin Heidelberg 2013

An Analysis of the HoF Used in CC Algorithms 175

components that evolve simultaneously and the fitness depends on the interac-
tion between these components; in competition-based approaches, an individual
competes with other individuals for the fitness value and, if appropriate, will
increase its fitness at the expense of its counterparts, whose fitnesses decrease.
This latter approach resembles an army race in which the improvement of some
individuals causes the improvement in others, and vice versa.

This paper deals with the application of competitive coevolution (CC) as a
self learning mechanism in RTS games. As a first contribution, the paper ana-
lyzes the performance of different approaches in order to apply the concept of
Hall-of-Fame (HoF) defined by Rosin and Belew in [1] as a long-term memory in
competitive coevolutionary algorithms; the analysis is conducted in the context
of the real-time strategy (RTS) game RobotWars. The goal is to produce auto-
matically game strategies to govern the behavior of an army in the game that
can also beat its opponent counterpart. As a second contribution this work pro-
poses alternatives for optimizing two key aspects in the implementation of the
HoF, which are, the diversity of the solutions, and the growth of the champions’
memory.

This paper is organized as follows. Next, –and given that we focus in this work
on exploring different variants of HoF as an evaluation and memory mechanism
in competitive coevolutionary settings– we present an overview of competitive
coevolution in games. In Sect. 3 we explain the game which is our arena for
competitive coevolution. Section 4 describes ours variants for implementing a
Hall-of-Fame based competitive coevolutionary algorithm. In Sect. 5 we analyze
the results obtained by each variants in many experiments. And finally in Sect. 6
we closure this investigation.

2 Background on Competitive Coevolution in Games

Coevolution has been shown to be successful on a number of applications but it
also has a number of drawbacks [2]. The primary remedy to cope with the inher-
ent pathologies of coevolution consists of proposing new forms of evaluating
individuals during coevolution [1], and memorization of a number of successful
solutions to guide the search is one of the most employed. Following this idea,
Rosin and Belew [3] already proposed the use of a Hall-of-Fame (HoF) based
mechanism as an archive method and, since then, there have been similar pro-
posals such as those described in [4–6]. According to [7] the question of how to
actually use the memory in the coevolution tends to fall into two areas: insert-
ing individuals from memory into the coevolution, or evaluating individuals from
the populations against the memory. Precisely, our investigation fits to this lat-
ter area, we have implemented different variants of Hall-of-Fame for controlling
evaluation process in a CC algorithm, which tries to find wining strategies for
the game RobotWars.

Several experiments have showed significants results in the application of
coevolutionary models in competitive environments; for example the study
described in [8] on competitive fitness functions in the Tic Tac Toe game, the

176 M. Nogueira et al.

application of simple competitive models for evolving strategies in a pursuit-
evasion game [9], or the evolution of both morphology and behaviors of artificial
creatures through competition in a predator-prey environment [10]. Competi-
tive coevolution continues to be useful nowadays, and has been used heavily in
complex scenarios like those that emerge in strategy games; so, Smith et al. [11]
coevolved artificial intelligent opponents with the objective of training human
players in the context of a game of type capture-the-flag. Also, Avery and Louis
[12] analyzed the employment of coevolution for creating a tactical controller
for small groups of game entities in a real-time capture-the-flag game; a rep-
resentation for generating adaptive tactics using coevolved Influence Maps was
proposed, and the result was the attainment of an autonomous entity that plays
in coordination with the rest of the team to achieve the team objectives. More
recently, Dziuk and Miikkulainen [13] explores several methods for automat-
ically shaping the coevolutionary process, and this is done by modifying the
fitness function as well as the environment during evolution.

Other research that addresses the use of the HoF concept as an evalua-
tion mechanism in a competitive-coevolutive environment was given by Pawel
Lichocki in [14]. He implemented the HoF with three useful extensions included:
uniqueness, manual teachers, and Competitive Fitness Sharing [3]. The results
of this work showed that HoF works better than SET (Single Elimination Tour-
nament) [8], but this method was not sufficient to prevent the lack of diversity
in the population. In our variants of HoF the probability of a repeated mem-
ber being inserted in the memory is minimal, because we do coevolutions by
turns of two independent populations, and each coevolutive turn begins with a
new population which evolves until finding an unique champion, or reaching the
maximum number of continuous coevolution without success; and this champion
must defeat all the members of the opponents’ HoF. The use of manual teachers
is also possible in our system: the first coevolutive iteration may be started with
random or offensive –manually defined– strategies.

Another interesting perspective was presented in [15] where the authors using
the game of Tempo as a test space, tried to ease the selection of optimal strategies
by clustering the solutions in the population of a coevolutionary system through
the concept of similarity. This cluster system integrated a long-term memory
that valued the changes produced in the environment to trigger appropriate
coevolution. The game of Tempo has also been used with the aim of improving
the creation of smart agents in [16,17].

3 Game Description

This section is devoted to RobotWars,1 our arena for competitive coevolution
which will be presented for first time in [18]. RobotWars is a test environment
that allows two virtual players (i.e., game AIs) to compete in a 3 dimensional
scenario of a RTS war game, and thus it is not a standard game itself in the
sense that no human players intervene interactively during the game; however it
1 http://www.lcc.uma.es/∼afdez/robotWars

http://www.lcc.uma.es/~afdez/robotWars

An Analysis of the HoF Used in CC Algorithms 177

is a perfect scenario to test the goodness and efficacy of (possibly hand-coded)
strategies to control the game AI and where the human player can influence the
game by setting its initial conditions.

In RobotWars, two different armies (each of them controlled by a virtual
player - i.e., a game AI) fight in a map (i.e., the scenario) that contains multiple
obstacles and has limited dimensions. Each army consists of a number of different
units (including one general) and the army that first wipes out the enemy general
is considered the winner. Virtual players are internally coded as a 4 dimension
matrix where the first dimension has 7 different values corresponding to the type
of unit (i.e., general, infantry, chariot, air force, antiaircraft, artillery, cavalry),
the second dimension to objective closeness (i.e., a binary value: 0 if the unit
is closer to the enemy general than to its friendly general, and 1 otherwise),
the third dimension to numeric advantage (i.e., are there, in a nearby space,
more friendly units than enemy units? A binary answer:yes/no), and the fourth
dimension to health (i.e., an amount that indicates the health level as high,
medium or low). Each position of the matrix acts as a gen and stores one of the
following 5 actions: attack, advance, recede, crowd together, or no operation.

The whole matrix represents a strategy that controls, deterministically, the
behavior of an army during the game. For a specific type of unit there are
12 possible different states (i.e., 2 × 2 × 3, all the possible value combinations
considering the last three dimensions of the matrix), and basically, in a specific
turn of the game each unit of the army will execute the action stored in the state
in which the unit perceives that it is. Note that all the units (irrespective of their
type) are managed by the same controller, and in any instant of the game, the
team behavior will be the result of summing up all the action taken by each of
its constituent units. Note however that this does not mean all the units execute
the same action because the action to be executed by a unit will depend on its
particular situation in the match and its specific category.

4 Hall-of-Fame Based Competitive Coevolutionary
Algorithm and Variants

Our objective is to apply competitive coevolution techniques to automate the
generation of victorious strategies for the game described above. According to the
strategies encoding shown in the previous section, the search space is 57×2×2×3 =
584, which is really huge, and cannot be efficiently explored using implicit enu-
meration techniques due to the inherently complex and non-linear behavior of
game simulations. Thus, the use of metaheuristic techniques is approached.

Using our RTS game we test five variants of a competitive coevolutionary
algorithm that uses the HoF as a memory mechanism to keep the winning strate-
gies found in each coevolutionary step, to this end the best individual from each
generation is retained for future testing. In our approach, each army (i.e., player)
maintains its own HoF, in which its own winning strategies (with respect to the
set of winning strategies of its opponent) found in each coevolutionary step will
be saved.

178 M. Nogueira et al.

Regarding the use and implementation of HoF some aspects must be defined.
The first is the criteria for inserting a new member in the memory. Also we have
considered different policies for maintaining the champions in the set, regarding
this issue one has to take into account the contribution of the individual (i.e., the
champion) to the search process as, for instance, it might be the case that some
opponents that belong to very old generations do not show a valuable perfor-
mance in comparison with opponents generated in recent generations and thus
they might be easily beaten; it is therefore crucial to remove those champions
not contributing to the solution what, in other words, represents a mechanism to
control the size of the champions’ memory. Another relevant aspect concerns to
the selection of those strategies from HoF that will be employed in the evaluation
process; considering all the champions might produce more consistent solutions
at the expense of a very high computational cost (note that a simulation of the
match must be executed for each champion involved in the evaluation; we will
provide more details on this further on). Next we present our HoF-based com-
petitive coevolutionary algorithm (HofCC) and five variants that precisely differ
in the policy of establishing the aspects mentioned previously.

4.1 Basic HofCC

Algorithm 1 shows the schema of our basic algorithm HofCC. A specific strategy
is considered winning if it achieves a certain score (see below) when it deals with
each of the strategies belonging to the set of winning strategies of its opponent
(i.e., the enemy Hall-of-Fame). The initial objective is to find a winning strategy
of player 1 with respect to player 2 (i.e., the initial opponent) so that the HoF of
player 2 is initially loaded with some strategies (randomly or manually initialized:
line 2). Then a standard evolutionary process tries to find a strategy for player
1 that can be considered as victorious (lines 7–13). A strategy is considered
winning if its fitness value is above a certain threshold value φ (line 14) that
enables the tuning of the selective pressure of the search process by considering
higher/lower quality strategies; in case of success (line 14), this strategy is added
to the HoF of player 1 (line 16) and the process is initiated again but with
the players’ roles interchanged (line 17); otherwise (i.e., no winning strategy is
found) the search process is restarted again. If after a number of coevolutionary
steps no winning strategy is found the search is considered to have stagnated
and the coevolution finishes (see while condition in line 4). At the end of the
whole process we obtain as a result two sets of winning strategies associated
respectively to each of the players.

Regarding to the evaluation of candidates for a specific player p (where p ⊆
{player 1, player 2}), the fitness of an specific strategy is computed by facing
it against a selected subset of the (winning) strategies in the Hall-of-Fame of
its opponent player (that we call the selected opponent set). Given a specific
strategy s its fitness is computed as follows:

fitness(s) =

∑k
j=1

(
ps

j + extrass(j)
)

k
(1)

An Analysis of the HoF Used in CC Algorithms 179

Algorithm 1: HofCC()
1 nCoev ∈ 0; A ∈ player1; B ∈ player2; φ ∈ thresholdvalue;
2 HoFA ∈ ∗; HoFB ∈ InitialOpponent();
3 pop ∈ Evaluate(HoFB); // Evaluate initial population
4 while nCoev < MaxCoevolutions ∩ NOT (timeout) do
5 pop ∈RandomSolutions(); // pop randomly initialized
6 i ∈ 0;
7 while (i < MaxGenerations) ∩ (fitness(best(pop)) < φ) do
8 parents ∈Select (pop);
9 childs ∈ Recombine (parents, pX);

10 childs ∈ Mutate (childs, pM);
11 pop ∈ Replace(childs);
12 pop ∈ Evaluate(HoFB);
13 i ∈ i + 1;

14 end while
15 if fitness(best(pop)) ∀ φ then //winner found!
16 nCoev ∈ 0; // start new search
17 HoFA ∈ HoFA ∪ {best(pop)}
18 temp ∈ A; A ∈ B; B ∈ temp; // interchange players’ roles

19 else
20 nCoev ∈ nCoev + 1; // continue search
21 end if

22 end while

where k ⊆ N is the cardinality of the selected opponent set, ps
j ⊆ ∀ returns φ

points if strategy s beats strategy hj belonging to the selected opponent set (i.e.,
victorious case), φ

2 in case of a draw, and 0 if hj wins to strategy s; Also:

extrass(j) = c − nturnsj + c ∅ Δhealthsj + c ∅ ΔAlivesj (2)

where c ⊆ N is a constant, nTurnsj ⊆ N is the number of turns spent on the
game to achieve a victory of s over its opponent hj (0 in case of draw or defeat),
Δhealthsj ⊆ N is the difference between the final health of the army (i.e., sum
of the health of all its living units) controlled by strategy s at the end of the
match and the corresponding health of the enemy army, and ΔAlivesj ⊆ N is its
equivalent with respect to the number of living units at the end of the combat.
This fitness definition was formulated based on our game experience, and it
values the victory above any other result.

4.2 HofCC Variants

This section is devoted to describe five variants of our HofCC algorithms; basi-
cally these variants differ in the nature (i.e., in this case, size) of the HoF when
it is used as a memory mechanism, ranging from short-term memory versions to
long-term memory instances.

4.2.1 HofCC-Complete
In this variant the Hall-of-Fame acts as a long-term memory by keeping all the
winners found in previous coevolutions, and all of them are also used in the
evaluation process. So, in the coevolutionary step n each possible solution of

180 M. Nogueira et al.

army A fight again each solution in {B1, B2, ...Bn−1}, where Bi is the champion
found by army B in the i (for 1 ∈ i ∈ n − 1) coevolutionary step.

Note that the cardinality of the selected opponent set and the cardinality of
the HoF in the coevolutionary step n are equal (i.e., k = n in Eq. 1).

4.2.2 HofCC-Reduced
Here the HoF acts as the minimum short-term memory mechanism by minimiz-
ing the number of battles required for evaluating an individual; that is to say,
in the n co-evolutionary step, each individual in army A only faces the latest
champion inserted in the HoF of army B (i.e., Bn−1). Note that this means
k = 1 in Eq. 1.

4.2.3 HofCC-Diversity
In this proposal the HoF acts as a long-term memory mechanism, but the content
of the HoF is updated by removing those members that provide less diversity.
The value of diversity that an individual in the HoF provides is calculated by the
genotypic distance as follows: we manage the memory of champions as a matrix
in which each row represents a solution and each column a gen (i.e., an action
in the strategy). Then, we compute the entropy value for a specific column j as
follows:

Hj = −
k∑

i=1

(pij log pij) (3)

where pij is the probability of action i in column j, and k is the length of the
memory. Finally the entropy of the whole set is defined by the following formula:

H =
n∑

j=1

Hj (4)

The higher the value of H the greater the diversity of the set. For determin-
ing the diversity’s contribution of a specific solution, we calculate the value of
entropy with this solution inside the set, and the corresponding value with this
solution out of the set, and finally, the difference of these two values represents
the contribution of diversity.

The number of individuals to be deleted from the memory should be set by
the programmer as a percentage value (α) representing the portion of the HoF
to be removed; in other words, the HoF (with cardinality #HoF) is ordered
according to the diversity value in a decreased order and the last �#HoF×n

α �
individuals in this ordered sequence are removed. The frequency of updating (λ)
is also a parameter of this version (i.e., the HoF is updated every λ coevolutions)

The motivation of this proposal is to maintain certain diversity among the
members of the HoF, and at the same time to reduce (or maintain an acceptable
value for) the size of the memory. With this idea, we assume that the deleted
individuals will not affect the quality of the found solutions.

An Analysis of the HoF Used in CC Algorithms 181

Here, the cardinality of the selected opponent set k in the evaluation phase
(see Eq. 1) is the cardinality of the opponent HoF after executing the updating
of the memory (i.e., after removing the individuals).

4.2.4 HofCC-Quality
In this version, we follow a similar approach to that applied in HofCC-Diversity
but now the HoF is ordered with respect to a measure of quality that is defined as
the number of defeats that an individual obtained in the previous coevolutionary
step; in other words, a simple counter variable associated with each member of
the HoF stores the number of defeats that were computed for the corresponding
member during the evaluation process of the opponent army in the previous
coevolutive turn.

Based on our game experience, we assume that this metric is representative
of the strength of a solution, and the aim is to keep only the robust individuals
in the champions’ memory by removing the weak strategies.

As in the HofCC-Diversity, the parameters α and λ have to be set, and the
cardinality of the selected opponent set k is exactly the same.

4.2.5 HofCC-U
This variant of HofCC follows the idea of optimizing the memory of champions,
but in this case we propose a multiobjective approach where each solution has a
diversity value and also a quality value as described previously associated with
it. Then, a percentage value (α) from the set of dominated solutions according
to the multiobjective values is removed; if the set of dominate solutions is empty
then HoF is ordered according to the measure of quality and the solutions with
worst quality will be removed.

As in the previous algorithms (HofCC-Quality and HofCC-Diversity) the
frequency of updating the HoF is an important parameter that must be defined.

This proposal uses a different fitness function (to that shown in Eq. 1) whose
definition was inspired by the Competitive Fitness Sharing (CFS) [3]. The main
idea is that a defeat against opponent X has more importance if there are other
individuals that defeated X. So, a penalization value N for each individual i (for
1 ∈ i ∈ k) in the population is then calculated as follows:

Ni = 1 −
∑k

j=1
vij

V (j)

k
(5)

where vij = 1 is the individual i of the population defeats the strategy (or
champion) j in the HoF (whose cardinality is k) and 0 otherwise; and

V (j) =
n∑

i=1

vij

is the number of individuals in the population which defeat opponent j of the
HoF. As a consequence, Ni ← 0 if the candidate i defeats all opponents of HoF

182 M. Nogueira et al.

and the solution i itself is one of the few candidates to do so; Ni = 1 if it
defeats no opponent; and 0 < Ni < 1 depending on how many times it wins and
how common is to beat certain opponents. The fitness of a candidate i is then
computed as follows:

Fi = Pi − cNi (6)

where Pi is the result obtained in the battles by Eq. 1, and c ⊆ N is a coefficient
that scales Ni in order to make it meaningful with respect to value P .

5 Experiments and Analysis

Due to the high computational cost to execute the experiments we have con-
sidered a unique battle scenario without obstacles and in which the formation
(i.e., morphology) of armies is the type of tortoise vs. tortoise, and the initial
predefined enemy strategy is random.

The five variants of the HofCC described in previous section has been con-
sidered for the experiments.

5.1 Configuration of the Experiments

Eleven instances of our algorithms were used: one for HofCC-Complete (HofC);
one for HofCC-Reduce (HofR); and three for each of the HofCC-Diversity,
HofCC-Quality, and HofCC-U varying according to the values of α = 10% (i.e.,
(HofDiv-10, HofQua-10, HofU-10), α = 30% ((HofDiv-30, HofQua-30, HofU-
30)), and α = 50% ((HofDiv-50, HofQua-50, HofU-50)). Also we set λ = 3 for
all the versions of HofCC-Diversity, HofCC-Quality, and HofCC-U.

Ten runs per each algorithm instance were executed, and in all of them we
have used a steady-sate genetic algorithm (GA - note that this corresponds to
Lines 7–13 in Algorithm 1) with the aim of finding a winning strategy with
respect to a set of strategies (stored in the HoF of the opponent) that were
considered winning in previous stages of the coevolutionary algorithm; this GA
employed binary tournament for selection, Bernoulli crossover, bit-flip muta-
tion, elitist replacement, MaxCoevolution = 15 (it represents the numbers of
continuous coevolutions in the same army without finding a champion solution),
Maxgenerations = 300, population size was set to 100, the limit of evaluation
was 230000 (i.e., the timeout value), and standard values for crossover and muta-
tion probabilities were used (pX = .9 and pM = 1/nb respectively where nb is the
number of genes); and φ = 2000 so that a strategy that defeats all the strategies
in the HoF of its opponent is surely considered as victorious, although others
can also be. The choice of these values is due to a previous analysis of the mean
fitness reached by individuals in the competitions. We also set the constant c in
Eq. (6) to 200, a representative value of the range of scores that were obtained
from the battle simulator after executing a number of games.

Our analysis has been guided by the following indicators which are applied
for all runs of each algorithm: Best fitness: shows the best value of fitness found
by the search process; Average fitness : shows the average fitness value reached

An Analysis of the HoF Used in CC Algorithms 183

in the coevolutive cycle; Number of evaluations: indicates the total number of
battles which are realized during the evaluation process; Number of defeats:
indicates the total number of defeats obtained in an All(vs)All fighting among
the best solutions found by each version of algorithm.

In what follows, we analyze the results obtained in ten independent exe-
cutions for the eleven versions of HofCC, and focus on the mentioned indica-
tors; we have used the well-known non-parametric statistical tests to compare
ranks namely Kruskal-Wallis test [19] with a significance of 95 %. When this test
detects significant differences in the distributions, we have performed multiple
tests using the Dunn–Sidak method [20] in order to determine which pairs of
means are significantly different, and which are not. Next, the results obtained
in the experiments for each indicator are presented.

5.2 Results of Average Fitness

Figure 1 shows the behavior of the average fitness for each algorithm instance. In
this figure the algorithms are sorted according to the median of the distribution
(i.e., the vertical red line). The Kruskal-Wallis test confirms that the differences
between values are statistically significant (see the first row in Table 1). The
HofR algorithm reaches the worst results for this indicator, such results may be
a sign that this algorithm does not exploit the search space sufficiently because
in this version the HoF acts as a short memory mechanism, whereby it is easier
to find a champion than for the rest of the algorithms. Moreover, note that
the best results are obtained by algorithms which optimize the use of HoF (in
terms of diversity, quality, or both), and at the same time do not reduce too
significantly the memory size; note also that the average fitness value decreases
in those cases where the HoF suffered a reduction of 50% during the updating
process. In the results of multiple tests for the value of average fitness, the HofR
distribution has significant differences respect to the majority of the algorithms

Fig. 1. Average fitness obtained in each algorithm

184 M. Nogueira et al.

Table 1. Results of Kruskal-Wallis test for all the indicators (pvalue< 0.05)

Indicator pvalue

Average fitness 2.6205E − 004
Best fitness 0.0175
Number of evaluations 0, 2214
Numbers of defeats 5.6909E − 007

(except HofU-50, and HofQua-50), and the rest of the versions have a similar
behavior.

5.3 Results of Best Fitness

Figure 2 shows the results of best fitness for each algorithm in the executions.
Note that HofR finds the higher values. This situation can be generated by the
fact that in HofR the individuals compete only against one opponent during
the evaluation process, therefore it is easier to obtain higher scores. For the
rest of the algorithms a high value in this indicator may be given by a further
intensification in the search. As another interesting point, note that in many
cases the algorithms with poor results in terms of average fitness, have good
results here; except in the case of the HofDiv-10 and HofU-30 which maintain
good results in both analysis.

Fig. 2. Best fitness obtained by each algorithm

Table 1 (row 2) displays the results computed by Kruskal-Wallis’ test con-
firming there are significative differences among the distributions. The results
of multicompare test shows that the HofQua-30 and HofDvi-30 have relevant
differences with respect to the HofR; the rest of the algorithms have similar
values.

An Analysis of the HoF Used in CC Algorithms 185

Fig. 3. Numbers of evaluations employed by each algorithm

5.4 Results of Number of Evaluations

For the case of the number of evaluations the results are shown in Fig. 3 and
according to the statistical tests performed (see Table 1), there is no significant
statistical difference in the distribution data. In this indicator we noted that the
increasing in the number of evaluations is in consonance to the length of the
coevolutive cycle; except in the case of HofR which presents a very long cycle
and has no influence because during the evaluation process of this algorithm the
individuals face a single opponent, and this decreases the number of evaluations
significantly. Consider that the coevolutive cycle’s length is determined by the
number of coevolutions that use the algorithm to find an undefeated champion
(i.e a member of the HoF which can not be defeated by the opponent side), and
it helps to identify whether the problem difficulty increases as best solutions
are obtained, or if it remains stable. In all algorithms (except HofR) the rigor
of the competition increases until it reaches the point at which the algorithm
can not exceed the level of specialization achieved. However, in HofR the cycles
were very long, because the quality of the solutions was stagnated; and it was
necessary to limit the length of cycles up to 500 iterations.

5.5 Results of Number of Defeats

For this test, the last champions (i.e., the last member added to the HoF) found
by each algorithm instance (in each execution) fought in an All versus All tour-
nament. The results with respect to the amount of defeats are shown in Fig. 4;
and Table 1 (row 4). The main differences are in the values of HofR, and HofC
which still maintain the same poor results as the previous indicators. On the
other hand, HofDiv-10 and HofDiv-30 again obtains the best values. Curiously,
the HofQua-30 which had the worst results in the analysis of best fitness has a

186 M. Nogueira et al.

Fig. 4. Numbers of defeats obtained by each algorithm in an All (vs) All tournament

low ranking of defeats here, this is certainly an indicator that the fitness mea-
sure used is insufficient. The instances of HofQua-10 and HofU-10 have a similar
behavior with high numbers of defeats. Another detail that attracts attention is
that variants that reduce the HoF by 50 % in the previous indicators have not
shown encouraging results, except for the HofDiv-50, however in this analysis
we can see that they are in the middle top of the ranking.

5.6 Summary of the Results

We can conclude that, for all the experiments, the versions that incorporate
updating the HoF were more efficient than HofR and HofC. In the case of the
best fitness analysis the HofR shows higher values, however in the fighting tour-
naments the strategies generated by this algorithm were the weakest, so we can
say that the fitness function is not sufficiently representative of the individuals’
strength, and undoubtedly the loss of transitivity in this algorithm causes a total
disengagement of the search.

Regarding to the numbers of evaluations there are not significant differences,
and here let us underline that the game used does not allow very long evolu-
tionary cycles due to performance limitations. This means the HoF obtained is
not large, so it is not possible to demonstrate the benefits of those algorithms
which optimize the size of the HoF and in turn reduce the number of necessary
evaluations.

By analyzing the families of algorithms we can conclude that the HofDiv’s
variants shown the best performance for all the indicators. In the fitness analy-
sis HofDiv shown the best results, while the HofU and HofQua reached similar
behavior. And as general rule, for these indicators, the variants which update
HoF by 10 and 30 % obtain a better performance; however in the tournaments,
the algorithms which use a high percentage showed some slight advantages,
although the differences between the versions that update the HoF are not sta-
tistically significant for any indicator.

An Analysis of the HoF Used in CC Algorithms 187

We have also shown that the fitness values are not related with the solution
robustness by executing fighting tournaments; this is a particular result which
can be interpreted as follows. During the coevolutive cycle the search space is
explored, but the self-learning mechanism falls into a local optimum and gets
trapped there, so that the solutions found improve their fitness values without
a global improvement in a more general context.

6 Conclusions and Future Work

The analyzed results allow us to conclude that whenever we update the mem-
ory of champions using a selection criteria the search process provides better
solutions. In our experiments the updating of HoF using the diversity as the
selection criteria showed the best performance. We also detected that affecting
the transitivity among the solutions has a direct influence on the quality of the
search result, and therefore, the removing of members in the champions’ memory
should be done carefully. However, it is important to decrease to avoid perfor-
mance problems; in our experiments we did not suffer this, but there are cases
in which the exhaustive exploration of the search space requires to significantly
enlarging the size of the champions’ memory what can affect the performance of
the algorithm considerably.

As for future work we propose testing these algorithms in other games. Trying
at that time to achieve a more complete representation of individuals by genetic
encoding, and a better adjustment of the evaluation function. The games that
we will choose should allow us to experiment with long coevolutionary cycles, to
carry out a performance analysis of the algorithms.

Acknowledgements. This work is partially supported by Spanish MICINN under
project ANYSELF (TIN2011-28627-C04-01), and by Junta de Andalućıa under project
P10-TIC-6083 (DNEMESIS).

References

1. Rosin, C.D., Belew, R.K.: Methods for competitive co-evolution: finding opponents
worth beating. In: ICGA, pp. 373–381 (1995)

2. Ficici, S.G., Bucci, A.: Advanced tutorial on coevolution. In: Proceedings of the:
GECCO Conference Companion on Genetic and Evolutionary Computation, pp.
3172–3204. ACM, New York (2007)

3. Rosin, C., Belew, R.: New methods for competitive coevolution. Evol. Comput.
5(1), 1–29 (1997)

4. de Jong, E.: Towards a bounded pareto-coevolution archive. In: Congress on Evo-
lutionary Computation, CEC2004, vol. 2, pp. 2341–2348. IEEE, New York (2004)

5. Jaskowski, W., Krawiec, K.: Coordinate system archive for coevolution. [21], pp.
1–10

6. Yang, L., Huang, H., Yang, X.: A simple coevolution archive based on bidirectional
dimension extraction. In: International Conference on Artificial Intelligence and
Computational Intelligence: AICI’09, vol. 1, pp. 596–600. IEEE, Washington (2009)

188 M. Nogueira et al.

7. Avery, P.M., Greenwood, G.W., Michalewicz, Z.: Coevolving strategic intelligence.
In: IEEE Congress on Evolutionary Computation, pp. 3523–3530. IEEE (2008)

8. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for
complex tasks. In: ICGA, pp. 264–270 (1993)

9. Reynolds, C.: Competition, coevolution and the game of tag. In: Brooks, R., Maes,
P. (eds.) Proceedings of Artificial Life IV, pp. 59–69. MIT Press, Cambridge (1994)

10. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4),
353–372 (1994)

11. Smith, G., Avery, P., Houmanfar, R., Louis, S.J.: Using co-evolved RTS opponents
to teach spatial tactics. In: Yannakakis, G.N., Togelius, J. (eds.) CIG, pp. 146–153.
IEEE, New York (2010)

12. Avery, P., Louis, S.J.: Coevolving team tactics for a real-time strategy game. [21],
pp. 1–8

13. Dziuk, A., Miikkulainen, R.: Creating intelligent agents through shaping of coevo-
lution. In: IEEE Congress on Evolutionary Computation, pp. 1077–1083 (2011)

14. Lichocki, P.: Evolving players for a real-time strategy game using gene expression
programming. Master thesis, Poznan Universtity of Technology (2008)

15. Avery, P.M., Michalewicz, Z.: Static experts and dynamic enemies in coevolution-
ary games. In: IEEE Congress on Evolutionary Computation, pp. 4035–4042 (2007)

16. Johnson, R., Melich, M., Michalewicz, Z., Schmidt, M.: Coevolutionary tempo
game. In: Congress on Evolutionary Computation, CEC’04, vol. 2, pp. 1610–1617
(2004)

17. Avery, P., et al.: Coevolving a computer player for resource allocation games: using
the game of Tempo as a test space. Ph.D. thesis, School of Computer Science
University of Adelaide (2008)

18. Nogueira, M., Gálvez, J., Cotta, C., Fernández-Leiva, A.: Hall of Fame based com-
petitive coevolutionary algorithms for optimizing opponent strategies in a new RTS
game. In: Fernández-Leiva, A., et al., (eds.) 13th Annual European Conference on
Simulation and AI in Computer Games (GAMEON’2012), Málaga, Spain, Eurosis,
pp. 71–78, November 2012

19. Kruskal, W., Wallis, W.: Use of ranks in one-criterion variance analysis. J. Am.
Stat. Assoc. 47(260), 583–621 (1952)

20. Sokal Robert, R., Rohlf James, F.: Biometry: The Principles and Practice of Sta-
tistics in Biological Reseach. W.H. Freeman and Company, New York (1995)

21. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010,
Barcelona, Spain, 18–23 July 2010. In: IEEE Congress on Evolutionary Computa-
tion, IEEE (2010)

Resources Optimization in (Video) Games:
A Novel Approach to Teach

Applied Mathematics?

Dario Maggiorini(&), Simone Previti, Laura Anna Ripamonti,
and Marco Trubian

Dip. di Informatica, Università di Milano, Via Comelico 39 20135 Milan, Italy
{maggiorini,ripamonti,trubian}@di.unimi.it, rekotc@gmail.com

Abstract. In spite of the efficacy of Operations Research (OR), its tools are
still underused, due to the difficulties that people experience when describing a
problem through a mathematical model. For this reason, teaching how to
approach and model complex problems is still an open issue. A strong relation
exists between (video) games and learning: for this reason we explore to which
extent (real time) simulation video games could be envisaged to be an inno-
vative, stimulating and compelling approach to teach OR techniques.

Keywords: Simulation � Video games � Applied mathematic � Operations
research � Simulation games � Teaching applied mathematics � Player
experience in game

1 Introduction

The adoption of effective mathematical tools is of paramount importance when facing
complex problems involving a wise resources allocation. This means achieving a deep
understanding of each problem in terms of goals and constraints to its solution. This
approach belongs to the domain of Operations Research (OR), which, beside mod-
elling and solving complex decisional problems, allows to produce formal justifica-
tions for the choices among which the decision maker has to choose. In spite of the
proven efficacy of OR in specific contexts (e.g. business management, complex sys-
tems management, etc.), its tools are still underused, mainly due to the difficulties that
many people experience when facing the job of describing a problem through a
rigorous mathematical model. For this reason, teaching how to approach and model
complex problems is still an open issue in the field of applied mathematics [1].
Typically, OR is applied to optimization problems in the following fields: services
distribution in a closed area, goods production, productive structures organization and
management, territory optimal exploitation. All this issues do not belong only to the
‘‘real life’’ domain, but very often appear also in simulation or strategy (video) games
[2]. Our goal, in the present work, is to explore to which extent (real time) simulation
video games could be exploited as an innovative, stimulating and compelling
approach to the teaching of OR techniques, hence helping students to overcome part
of the difficulties that they often experience when modeling complex problems.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 189–195, 2013.
DOI: 10.1007/978-3-642-44973-4_20, � Springer-Verlag Berlin Heidelberg 2013

We will not dig into how the game should be presented to a classroom or how the
modelling phase should be taught, but on a preliminary aspect: (dis)proving that
simulation video games contain enough combinatorial structure to imply interesting
optimization problems and enough numerical data to allow building reasonable
instances.

The paper is organized as follows: Sect. 2 briefly recalls the grounding upon
which we have built our work. The following Sect. 3 describes how it is possible to
formalize quite complex OR problems starting from the video game Caesar IV.
Section 4 summarizes several perspective results, draws conclusions and describes
future developments.

2 (Serious) Video Games and Teaching Applied Math

The explicit use of mathematics in games is no news in popular scientific literature,
(see, e.g., the prolific work of Gardner [3]). Moreover, at the very core of every game
there is a limited formal system (see e.g. [4–6]). In spite of this, a game-based
approach in teaching OR is not frequent, except for few excellent examples [7].

Beside the ‘‘traditional’’ way to convey teaching, learning patterns have changed
radically [8] and further developments are easily foreseeable: younger are ‘‘native
speakers’’ in the language of digital media. New generations are experiencing new
forms of computer and video game entertainment and, as Prensky underlines, this has
shaped their preferences and abilities, while offering an enormous potential for their
learning, both as children and as adults [9]. The idea of exploiting video games as a
teaching media has been ‘‘formalized’’ in 2002: in that year, the Woodrow Wilson
Center for International Scholar in Washington, D.C. founded the Serious Games
Initiative. Although we instinctively tend to associate ‘‘serious games’’ to video
games, this term was already in use long before computers and electronic devices
became a way to convey entertainment [10]. Anyway, no generally accepted definition
of what a Serious Game (SG) is exists yet. The one provided by Zyda seems good
enough for our goals: Serious Game: a mental contest, played with a computer in
accordance with specific rules, that uses entertainment to further government or
corporate training, education, health, public policy, and strategic communication
objectives ([8], p. 26). It is important to enlighten that SGs are not only a way to
instruct people about something, but also way to convey knowledge within a context
that is motivationally rich. The usefulness of games as learning tools is a well known
phenomenon, that becomes of overwhelming relevance in the first years of our life
[11–13], and it is demonstrated that games are able to guarantee high learning
effectiveness in quite short time [5, 14, 15]; e.g., they are adopted as training tools in
medical, military, and business fields [16]. Moreover, as [14] point out, games are able
to train cognitive functions – such as memory –, and to teach how to exert control over
emotions [17–20]. It might be worth spending also a few words to recall what sci-
entists have proved about the relation between games and our brain. Although we
instinctively recognize than games and fun are tightly related, both concept and their
interrelation are quite slippery to define [21–26]. The investigation of these issues has
led neuroscientists and cognitive psychologists to examine how playing a game and

190 D. Maggiorini et al.

learning are connected [27, 28]. The basic observation is that humans have always
used games as playgrounds for learning and exercising safely specific skills (see, e.g.,
the relation that, in the past, linked archery tournaments to the ability to catch food).
During this process, human brain secretes endorphins (which makes a game an
enthralling and fun activity), is highly focused on recognizing recurring patterns in
problems, and on creating appropriate neural routines to deal with them. Once the
pattern is fully caught by the player, the game becomes boring, but the skill has been
accurately acquired. To exploit this phenomenon, we have envisaged a set of par-
ticularly ‘‘difficult to approach’’ problems, typical of the OR domain, and for each
problem we have identified at least one popular video game which can be exploited as
a case study to help students in the process of refining their modelling skills (Table 1).
For each game we have developed and tested the related OR problems, but for reasons
of paper length, in the following we will focus mainly on the maximum profit problem
for the game Caesar IV.

3 Caesar IV: Maximizing the City Profit

Caesar IV [29] is a managerial strategic video game in real time, set in the ancient
Rome period, developed by Tilted Mill Entertainment. The game aims at simulating
the management of a city, and the player ultimate goal is to develop the ‘‘ideal’’ city,
endowed with whichever good or service its population may need, while at the same
time, maximizing its income. It is as an ideal playground to verify how OR techniques
can be proficiently applied to video games. We have designed, developed and tested
models based on Caesar (namely: profit maximization, optimal service configuration,
facility location) able to allow the maximization of the player performances. This
means exploiting the ‘‘rewarding’’ effect implicit in the accomplishment of in-game
goals that characterizes each (video) game as tool for motivating learners to approach
the modeling problem. As an example, we briefly describe the approach to the
maximization of the city profit. From the point of view of OR, the goal of the game
maps into the optimization of the starting budget of the player, that is to say the
optimal allocation of starting resources in order to acquire the maximization of the
city income deriving from trading goods with other cities. Since goods can be

Table 1. Video Games and Simulation Problems

Video game Simulation problem

Caesar IV [29] Maximum profit
Optimal configuration of services
Facility location

Age of Empires II Creation of an army
Time to create an army

Domino Optimal configuration
Armor Picross Optimal configuration
World of Warcraft Knapsack model

Resources Optimization in (Video) Games 191

produced either from scratch (e.g. olives) or from raw materials (e.g. olive oil), a first
set of decisions focuses on the selection of the best (in terms of trade-off between
production costs and income provided) mix of goods to produce. This decision is
influenced also by the types of goods produced by or tradable (in defined quantities)
with neighboring cities. Once the mix has been chosen, the necessity of other deci-
sions arises: each good can be produced only by a specific plant (characterized by a
construction cost), which, in turn, is operated by workers characterized by specific sets
of needs. As a consequence, the player must face the necessity to preserve enough of
each good to satisfy domestic consumption. The problem is further complicated by the
fact that goods must be distributed among the population according to the needs of
different classes. Also, different social classes will need different types of houses (with
different cost, space occupation, etc.).

In other words, the player aims at maximizing the difference between total rev-
enues (R) and total costs (C). R is the sum of the revenues produced by selling abroad
certain amounts of goods at their fixed prices. Costs are, as usual, the sum between
total fixed costs and total variable costs, constrained by the total starting budget
available to the player. Total fixed costs are the sum of the costs sustained to build
production plants, houses, warehouses and to open commercial routes, and total
variable costs are produced by the total amount of goods imported. To model the
problem, it is necessary to define sets, constraints and several variables, whose values
indicates if a certain activity is in place, the quantity of specific plants, goods, etc.
Once the objective function, the relevant sets and variables are in place, several
constraints mirroring the restriction in the gameplay are needed for the following in-
game objects:

– production plants: many of them need raw materials to produce goods. Raw
materials can be produced or imported. A production plant should be built only if
the raw materials it requires can be acquired;

– goods for import/export: if no neighbouring city needs a specific good, there is no
reason to set up its production for export. The production of a certain good should
be constrained by the fact that a trading route with possible customers is active and
by the total quantity of that good that can be absorbed by the market;

– production plants: to define the number of each production plant to build, we need
to constraint their number to the actual production (i.e. if the player does not
produce wine, she does not need wineries), and then to model the fact that a certain
good can be both a final product and a raw material. Moreover, the same good may
be imported from abroad suppliers. Finally, we must take into account the pro-
duction necessary to satisfy domestic consumption and export, plus the import;

– workforce: the production plants should be operated by the appropriate workforce.
We need two constraints, the first one models the number of houses needed to host
the workforce, the second one the correct number of workers for operating all the
plants (and warehouses) set up by the player.

192 D. Maggiorini et al.

4 Conclusions and Further Developments

Our goal was to verify to what extent several problems presented in an appropriate
selection of video games can be described ‘‘ex-post’’ through formal systems, aimed at
supporting teaching activities in the field of applied mathematics (i.e. simulation and
OR). Obviously, this approach would arise a greater interest in the student/player if
the effort put in the modelling process actually produces better in-game results (since
players are always struggling to enhance their in-game performances). For these
reasons we have developed and tested (using AMPL - www.ampl.com) several among
the above mentioned models (namely those based on Caesar IV, Armor Picross and
Domino). In the case of Armor Picross, for example, the simulation allowed the player
to find very quickly an optimal configuration that respects all the constraints (and, in
several cases, the game map can produce more than one optimal solution). Anyway,
the most interesting results emerged from the simulations run on Caesar IV. In this
case, we have run many simulations, gradually reducing the starting budget, in order
to test which are the most suitable starting choices when the budget is very limited.
The solutions supplied by the simulations have then been adopted by a human player
in the game: as a result, the profit deriving from trading was higher then the profit that
a skilled player can typically obtain. As we showed, the models that can be built
starting from a real-time simulation video game are not trivial and require a non-trivial
effort to be fully understood by undergraduate students. Same drawbacks are also
present: for example, while numerical data for several problems (e.g. maximizing the
city profit) are presented by the game in tabular form, gathering data for several other
problems can be a truly boring task. In this latter case, the simulated environment
could be used mainly as a support tool to introduce real-life problems and to build
their related models. As our preliminary computational campaign also shows, the non
trivial impact on in-game performance of right decisions can be used to encourage
student’s interest. Actually, video games could be exploited as tools to convey the
teaching of applied mathematics, provided that they offer problems matching also with
the skills required by each specific teaching unit and student. This is, by the way,
coherent with one of the fundamental requirements of game design: a ‘‘fun’’ game
provides a challenge that perfectly matches the player skills, drawing her into the
‘‘flow’’ [30] (hence, also the difficulty of the game should grow at the same pace of the
player ability [5, 30]).

The next steps in our research will focus on further developing the corpus of
problems derived from video games that can be exploited for OR teaching purposes
and in testing their use with undergraduate students in Computer Science.

References

1. Kaiser, G., Blum, W., Borromeo Ferri, R., Stillman, G. (eds.): Trends in Teaching and
Learning of Mathematical Modelling, vol. 1. Springer, Netherlands (2011)

2. Adams, E.: Fundamentals of Game Design. New Riders, Indianapolis (2009)
3. Gardner, M.: My Best Mathematical and Logic Puzzles. Dover Recreational Math. Dover,

Mineola (1994)

Resources Optimization in (Video) Games 193

http://www.ampl.com

4. Crawford, C.: On Game Design. New Riders Publishing, Thousand Oaks (2003)
5. Koster, R.: A Theory of Fun for Game Design. Paraglyph Press, Scottsdale (2005)
6. Fullerton, T.: Game Design Workshop: A Playcentric Approach to Creating Innovative

Games. Morgan Kaufmann, Burlington (2008)
7. DePuy, G.W., Taylor, D.: Using board puzzles to teach operations research. INFORMS

Trans. Educ. 7(2), 160–171 (2007)
8. Zyda, M.: From visual simulation to virtual reality to games. Computer 38(9), 25–32 (2005)

(IEEE Computer Society Press, Los Alamitos)
9. Prensky, M.: Don’t Bother Me Mom, I’m Learning!. Paragon House Publisher, St. Paul

(2005)
10. Abt, C.: Serious Games. The Viking Press, New York (1970)
11. Din, F.S., Calao, J.: The effects of playing educational videogames on kindergarten

achievement. Child Study J. 2, 95–102 (2001)
12. Durik, A.M., Harackiewicz, J.M.: Achievement goals and intrinsic motivation: coherence,

concordance, and achievement orientation. J. Exp. Soc. Psychol. 39, 378–385 (2003)
13. Ritterfeld, U., Weber, R.: Video games for entertainment and education. In: Vorderer,

P., Bryant, J. (eds.) Playing Video Games – Motives, Responses, and Consequences.
Lawrence Erlbaum, Mahwah (2006)

14. Squire, K., Jenkins, H.: Harnessing the Power of Games in Education. Insight 3(1), 5–33
(2003)

15. Susi, T., Johannesson, M., Backlund, P.: Serious games – an overview. Technical Report
HS-IKI-TR-07-001, University of Skovde, Sweden (2007)

16. Ripamonti, L.A., Peraboni, C.: Managing the design-manufacturing interface in VEs
through MUVEs: a perspective approach. Int. J. Comput. Integr. Manuf. 23(8–9), 758–776
(2010) (Taylor & Francis)

17. Michael, D., Chen, S.: Serious Games: Games that Educate, Train, and Inform. Thomson
Course Technology, Boston (2006)

18. Mitchell, A., Savill-Smith, C.: The Use of Computer and Video Games for Learning: A
Review of the Literature. Learning and Skills Development Agency, London (2004)

19. Wong, W. L., Shen, C., Nocera, L., Carriazo, E., Tang, F., Bugga, S., Narayanan, H.,
Wang, H., Ritterfeld, U.: Serious Video Game Effectiveness. In: ACE’07, Salzburg, Austria
(2007)

20. Ripamonti, L.A., Maggiorini, D.: Learning in virtual worlds: a new path for supporting
cognitive impaired children. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011.
LNCS, vol. 6780, pp. 462–471. Springer, Heidelberg (2011)

21. Caillois, R.: Man, Play, and Games. The Free Press, Glencoe (1961)
22. Huizinga, J.: Homo Ludens. The Beacon Press, Boston (1950)
23. Juul, J.: The game, the player, the world: looking for a heart of gameness. In: Copier, M.,

Raessens, J. (eds.) Level Up: Digital Games Research Conference Proceedings, pp. 30–45.
Utrecht University, Utrecht (2003)

24. Crawford, C.: The Art of Computer Game Design. McGraw-Hill/Osborne Media Berkeley,
California (1984)

25. Rollings, A., Adams, E.: A Rollings and E. Adams on Game Design. New Riders,
California (2003)

26. Salen, K., Zimmerman, E.: Game design and meaningful play. In: Raessens, J., Goldstein,
J. (eds.) Handbook of Computer Game Studies, pp. 59–79. MIT Press, Cambridge (2005)

27. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity
for processing information. Psychol. Rev. 63, 81–97 (1956)

194 D. Maggiorini et al.

28. Johnson, S.: Mind Wide Open: Your Brain and the Neuroscience of Everyday Life.
Scribner, New York (2004)

29. Caesar IV. http://caesar4.heavengames.com/
30. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper & Row, New

York (1990)

Resources Optimization in (Video) Games 195

http://caesar4.heavengames.com/

CMF: A Combinatorial Tool to Find
Composite Motifs

Mauro Leoncini1,3(B), Manuela Montangero1,3, Marco Pellegrini3,
and Karina Panucia Tillán2

1 Dipartimento di Scienze Fisiche, Informatiche e Matematiche,
University of Modena and Reggio Emilia, Modena, Italy

{manuela.montangero,leoncini}@unimore.it
2 Dip. di Scienze e Metodi dell’Ingegneria,

Univ. di Modena e Reggio Emilia, Modena, Italy
83672@unimore.it

3 Istituto di Informatica e Telematica, CNR, Pisa, Italy
marco.pellegrini@iit.cnr.it

Abstract. Controlling the differential expression of many thousands
genes at any given time is a fundamental task of metazoan organisms
and this complex orchestration is controlled by the so-called regulatory
genome encoding complex regulatory networks. Cis-Regulatory Modules
are fundamental units of such networks. To detect Cis-Regulatory Mod-
ules “in-silico” a key step is the discovery of recurrent clusters of DNA
binding sites for sets of cooperating Transcription Factors. Composite
motif is the term often adopted to refer to these clusters of sites. In
this paper we describe CMF, a new efficient combinatorial method for
the problem of detecting composite motifs, given in input a description
of the binding affinities for a set of transcription factors. Testing with
known benchmark data, we attain statistically significant better perfor-
mance against nine state-of-the-art competing methods.

1 Introduction

Transcription Factors (or simply factor) are particular proteins that bind to
short specific stretches of DNA (called TFBS - Transcription Factor Binding
Sites) in the proximity of genes and participate in regulating the expression
of those genes [1]. The “language” of gene regulation is a complex one since a
single factor regulates multiple genes, and a gene is usually regulated over time
by a cohort of cooperating factors. This network of interactions is still far from
being completely uncovered and understood even for well studied model species.
Groups of factors that concur in regulating the expression of groups of genes
form functional elements of such complex network and are likely to have TFBS
in the proximity of the regulated genes. TFBSs are often described by means of
Position Weight Matrices (PWMs) (see Sect. 2 for a quick recap).

Over the last two decades more than a hundred computational methods have
been proposed for the de-novo prediction “in silico” of single functional TFBSs

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 196–208, 2013.
DOI: 10.1007/978-3-642-44973-4 21, c© Springer-Verlag Berlin Heidelberg 2013

CMF: A Combinatorial Tool to Find Composite Motifs 197

(often called single motifs, or simply motifs) [2–5]. Moreover, several hundreds
of validated PWMs for identifying TFBS are available in databases such as
TRANSFAC [6] and JASPAR [7]. Observe that, although these PWM have been
subject to validation in some form, the highly degenerate nature of the TFBS
implies that, when scanning sequences for PWM matches, false positive non-
functional matches are quite likely.

In this paper we address the problem of discovering groups of TFBSs that
are functional for a set of cooperating factors, given in input a set of PWMs
that describe the binding affinities of the single factors. This is known as the
Composite Motif Discovery problem in the literature [8]. For us, a composite
motif will be simply a set of TFBSs that are close by in a stretch of DNA,
i.e., we do not pose any constraints on the order or the spacing between the
participating TFBSs (but see [9] for other possible models).

The composite motif discovery problem has been the subject of a number
of studies, and we refer to [10] for a survey. In addition we observe that the
phenomenon of clustering of TFBS is used also by tools that try to predict the
location and composition of Cis-Regulatory Modules (see, e.g., [11]), which then
address composite motif discovery problems of some sort.

In this paper we present a new tool (CMF) for composite motifs discovery
that adopts a two stage approach: first it looks for candidate single TFBSs in
the given sequences, and then uses them to devise the prospective composite
motifs by using mainly combinatoric techniques. CMF borrows the idea of the
two stage approach from a previous tool we developed for the related problem of
structured motif detection [12]. Using the data set and the published results in
[8,13] we can readily compare CMF’s performance against the eight state of the
art methods listed in [8] and other three more recent methods [13–15], showing
that our tool is highly competitive with the others.

The detection of TFBS and composite motifs is a complex challenging prob-
lem (witness the wide spectrum of approaches) which is far from having a sat-
isfactory solution [16], thus there is ample scope for improvements from both
the modeling and the algorithmic one points of view. CMF introduces several
new key ideas within a combinatorial approach, which, on one hand, have been
shown empirically to be valid on challenging benchmarks, and on the other hand
may prove useful in developing future more advanced solutions.

The rest of the paper is organized as follows: Sect. 2 introduces preliminary
notions and definitions, Sect. 3 describes the algorithm adopted by CMF and,
finally, Sect. 4 reports experimental results.

2 Preliminary Notions

In this Section we introduce the fundamental notions used in the description of
the algorithm that forms the computational core of CMF.

Given the DNA alphabet D = {A,C,G, T}, a short word w ⊆ D∈ is called an
oligonucleotide, or simply oligo (typically |w| ∀ 20), and we say that w occurs
in S ⊆ D∈ if and only if w is a substring of S.

198 M. Leoncini et al.

From a computational point of view, a DNA motif (or simply motif) is
a representation of a set of oligos, that are meant to describe possible factor
binding loci. The representation can be made according to one of a number
of models presented in the literature. Here we adopt the well-known Position
Weight Matrices (PWMs). A PWM M = (mb,j), b ⊆ D, j = 1, . . . , k, is a
4 × k real matrix. The element mb,j gives a score for nucleotide b being found
at position j in the subset of length-k oligos that M is intended to represent.
Scores are typically computed from frequency values.

Among the different ways in which oligos can be associated to PWMs (e.g.,
[17–19]), here we adopt perhaps the simplest one. Consider a word
w = w1w2 . . . wk over Dk, and define the score of w, according to M , simply
as the sum of the scores of all nucleotides: SM (w) =

∑k
j=1 mwj ,j . The maximum

possible score given by M to any word in Dk is clearly SM =
∑k

j=1 maxb∗D mb,j .

Then we say the M represents word w iff SM (w)
SM

∅ τ , for some threshold value
τ ⊆ (0, 1]. In the following, we will identify motifs with their matrix representa-
tion.

Let S ∈ D∈ denote the set of N input sequences. A motif M has a match in
S ⊆ S if and only if there is a substring of S that is represented by M . As in
[13], we call discretization the process of determining the matches of a motif in
a set of DNA sequences.

A motif class is a set of motifs. Ideally, in CMF all the motifs in a class
describe potential binding sites for the same factor. For this reason, we often
freely speak of factors to refer to motif classes. A factor match in a DNA sequence
is thus a match of any of the motifs in the class associated to that factor. Note
that motif classes have the ability to represent oligos of different lengths, since
different matrices usually exist for the same factor that have a different number
of columns. Let F be the set of factors having matches in S. We consider a one-
to-one mapping between F and an arbitrary alphabet R of |F| symbols, which
we refer to R as the mapping alphabet.

A combinatorial group (or just group) is a collection of not necessarily dis-
tinct factors that have close-by matches in a sufficiently large fraction of the
input sequences.1 The minimum fraction allowed for a collection of factors to
be considered a combinatorial group is termed quorum. The width or span of a
collection of factor matches in a sequence S is the “distance” (measured in bps)
between the first bps of first and last factor match of the group in S.

Finally, a Composite Motif is simply a collection of close-by factor matches in
some input sequence, representing CMF’s best guess for functional factor binding
regions. Note that no quorum constraint is imposed to composite motifs. Indeed,
as collection of factor matches, composite motifs are clearly unique objects. As
we shall see in Sect. 3, CMF builds composite motifs by extending the matchings
of some combinatorial group.
1 Assuming the number N of sequences is clearly understood, we silently equate the

fraction q ← (0, 1] and the absolute number of sequences ∈q · N∀.

CMF: A Combinatorial Tool to Find Composite Motifs 199

In set-theoretic terms, groups are multisets. In CMF they are represented
as character sorted strings over the mapping alphabet R. In the algorithm of
Sect. 3.3 we will make use of some operations than involve multisets. We first
recall, using two simple examples, the customary definitions of intersection and
symmetric difference:

xxyyyz ← xyyw = xyy

xxyyyz \ xyyw = xyz

Note that we have adopted the string representation for multisets. We next
consider pairs ⊂M,n〉, where M is a multiset and n is a positive integer, and sets
P of such pairs which only include maximal pairs. That is, if ⊂M,n〉 ⊆ P then
there is no other pair ⊂M̄, n̄〉 in P such that M̄ ⊥ M and n̄ ∅ n, where inclusion
takes multiplicity into account.

We define special union and intersection operations, denoted by ∼ and ∧,
over sets of maximal pairs. The definition of ∼ is easy:

P ∼ Q = {p : p is maximal in P ≡ Q}
We first define ∧ for singleton sets:

{⊂M1, n1〉} ∧ {⊂M2, n2〉} = {⊂M1 ← M2, n1 + n2〉}if M1∩M2 ∀=∪ ≡
{⊂M1, n1〉}if M1\M2 ∀=∪ ≡ {⊂M2, n2〉}if M2\M1 ∀=∪

Then, for arbitrary sets P1 = {p
(1)
i }i=1,...,h and P2 = {p

(2)
j }j=1,...,k:

P1 ∧ P2 = ∼i,j

({
p
(1)
i

}
∧

{
p
(2)
j

})
.

3 Algorithm

CMF main operation mode is composite motifs discovery in a set S =
{S1, . . . , SN} of DNA sequences, using a collection of PWMs.2

PWMs can be passed to CMF in either a single or multiple files. In the latter
case, CMF assumes that each file contains PWMs for only one given factor.
Actually, when the input set is prepared using matrices taken from an annotated
repository (e.g., the TRANSFAC database [20]), assuming the knowledge of the
corresponding factors is not an artificial scenario. However, here we describe the
main steps implementing CMF’s operation mode on input a single PWM file,
namely:

1. (Optional) PWM clustering, to organize the matrices in classes believed to
belong to different factors;

2. Discretization, to detect PWM matches in the input sequences;
3. Group and composite motif finding.
2 Even if not taken into consideration in this paper, CMF is also able to run a number

of third-party motif discovery tools to “synthesize” PWMs.

200 M. Leoncini et al.

3.1 PWM Clustering

By default, CMF assumes that the PWMs in the input file correspond to different
factors, and hence it does not perform any clustering. However, in many cases
the number of matrices available, which describe the binding affinities of the
factors involved in the upstream experimental protocol, is much larger than the
number of such factors. If the latter information is available to the user, then
clustering may be highly useful both to improve the accuracy and to reduce the
group finding complexity. Another circumstance in which clustering is advisable
(not discussed here) is when the input matrices are produced by third-party
motif discovery tools.

To perform the clustering, CMF first builds a weighted adjacency graph
whose nodes are the matrices and edges the pairs (M1,M2) such that the sim-
ilarity3 between M1 and M2 is above a given threshold. Then, CMF executes
a single-linkage partitioning step of the graph vertices; finally, it identifies the
dense cores in each set of the partition, via pseudo-cliques enumeration [22],
returning them as the computed clusters.

The experiments described in Sect. 4 suggest that, when the PWM file mainly
includes good matrices corresponding to possibly different factors, then even a
simple clustering algorithm like the one mentioned above is able to correctly
separate them into the “right” groups (factors). In general, however, performing
a good partitioning of the input matrices when the fraction of “noisy” PWM
increases (as is the case when CMF is used downstream de-novo motif discovery
software tools) is one of the major issues left open for further work.

3.2 Discretization

Even with the most accurate PWM description of a motif, the problem of deter-
mining the “true” motif matches in the input sequences is all but a trivial task.
Whatever the algorithm adopted, there is always the problem of setting some
thresholds τ to distinguish matches from non-matches, a choice that may have
a dramatic impact on the tool’s performance.

In general, low thresholds improve sensitivity while high thresholds may
improve the rate of positive predicted values (PPVs). A reasonable strategy
is to moderately privilege sensitivity during discretization, with the hope to
increase the positive predicted rate thanks to the combinatorial effect of close-
by matches. Indeed, keeping initial low thresholds may give the benefit of not
filtering out low-score matches.4 On the other hand, complexity issues demand
that the number of possible combinations of motif matches, which the composite
motifs should emerge from, will not explode. Now, for factors with many matri-
ces, low thresholds may incur in a very high number of matches and these in
turn affect the number of potential composite motifs.
3 Currently, CMF invokes RSAT’s utility compare-matrices for this purpose [21],

which uses pairwise normalized correlation
4 Sometimes referred to as weak signals in the literature.

CMF: A Combinatorial Tool to Find Composite Motifs 201

In light of the above arguments, we formulate the following general and sim-
ple qualitative criterion: assign factors (motif classes) with many/few matrices
a high/low threshold. All the experiments of Sect. 4 were performed with fixed
threshold values. Although these can be varied (in the configuration file, hence in
a completely transparent way to the typical user), the overall good results suggests
that the above criterion may have some merits, to be further investigated.

3.3 Composite Motif Finding

The previous two steps result in a set of factors (motif classes) and a set of
factors matches, which are the “input” to the Composite Motif Finding step.
This is in turn divided into two main sub-processes:

(a) Finding combinatorial groups. CMF uses a simple search strategy, with the
aim of trading computation time for accuracy. Let {W1, . . . , Wr} be a set of
(internal) window sizes and let {q1, . . . , qs} be a set of (internal) quorum values,
with W1 < W2 < . . . < Wr and 1 ∅ q1 > q2 > . . . > qs > 0. For a given window
size value W and sequence Si, we say that a multiset m over R is feasible iff each
letter/factor of m corresponds to a match in Si and the span of all the matches
in Si is bounded by W .

The algorithm that computes the combinatorial groups can be described as
follows.

1. Set W = W1 and q = q1.
2. For i = 1, . . . , N , compute the maximal multisets M

(i)
1 , . . . , M

(i)
ni that are

feasible for W and Si, and form the set of pairs

Pi = {⊂M (i)
1 , 1〉, . . . , ⊂M (i)

ni
, 1〉}

3. Set G1 = P1

4. For i = 2, . . . , N compute
Gi = Gi−1 ∧ Pi

5. Discard from GN all the pairs ⊂M,n〉 such that n < ⊗q · N�.
6. If the (remaining) multisets in GN include all the letters of R or W = Wr

and q = qs, then set G = {M : ⊂M,n〉 ⊆ GN} and return G.
7. In alternate order (whenever possible) advance W or q to the next value and

jump to step 2.

The above general description has only explanatory purposes, since a direct
implementation would be highly inefficient. For instance, when relaxing the quo-
rum value, step 2 can be avoided, since the multisets M

(i)
j have already been

computed. On the other hand, the pairwise intersections of step 4 can be per-
formed quite efficiently thanks to the character sorted string representation of
multisets of factors.

By the properties of the ∼ and ∧ operators, the pairs ⊂M,n〉 included in
GN are maximal, with n satisfying the last fixed quorum value. Note, however,
that even with the weakest parameter values (i.e., widest window and smallest

202 M. Leoncini et al.

quorum), some factors may not be represented in G. This is not necessarily a
problem, since the user may have provided PWMs for irrelevant factors.

(b) Computing the composite motifs. For any combinatorial group g in G, CMF
first retrieves its actual matches from the input sequences; then tries to extend
each group of matches by possibly including other strong factors matches that do
not make the extended group unfeasible with respect to the window constraint.
This is done independently for each sequence. All these extended group matches
form the composite motifs that CMF gives in output under the ANR (Any
NumbeR) model. Under the ZOOPS (Zero Or One Per Sequence) model, groups
and composite motifs are further filtered basing on the most recurrent span
width (details not reported here for lack of space).

3.4 Computational Cost

The cost of the bare CMF algorithm is dominated by the Composite Motif find-
ing step or, more precisely, by the combinatorial group finding subprocess. This
is easily seen to be exponential in the length of the longest group g (regarded
as a string over R) in any of the initial sets Mi’s, simply because g may have
an exponential number of maximal subgroups that satisfy also the quorum con-
straint. In turn, the length of g may be of the order of composite motif width and
hence of sequence length. At the other extreme, there is the situation where we
only have two (of few) factors and look for sites where both factors bind (as for
the TRANSCompel datasets of Sect. 4). In this case the cost of the subprocess
is linear in the number of sequences.

When combinatorial group finding is fast (as in all the experiments we have
performed) the computational bottlenecks move to other parts of the code, i.e.,
outside of the software module that implements the core CMF algorithm. In
particular, the computation of PWM pairwise similarities takes quadratic time
in the number of PWMs, which can be pretty high in a number of scenarios.

4 Experiments

In this section we present the results obtained from a number of experiments
performed on the twelve benchmark datasets presented in [8].5

We compare CMF against the eight tools considered in the assessment paper
(CisModule [23], Cister [24], Cluster-Buster (CB) [25], Composite Module Ana-
lyst (CMA) [26], MCAST [27], ModuleSearcher (MS) [28], MSCAN [29] and
Stubb [30]). We also consider two other (more recent) tools, named COMPO,
developed by the same research group that performed the assessment [13], and
MOPAT [14]. We based our choice on tools whose code was available or for which
we could find reported results for all datasets taken into consideration in this
paper. We also compare CMF against CORECLUST [15] on just one dataset,
the only one for which data are available.
5 In the following, we refer to [8] as to the assessment paper.

CMF: A Combinatorial Tool to Find Composite Motifs 203

4.1 Datasets

We use the TRANSCompel as well as the liver and muscle datasets presented in
[8]. The TRANSCompel benchmark includes ten datasets corresponding to as
many composite motifs, each consisting of two binding sites for different factors.

In [8], all the matrices corresponding to a same factor were grouped to form
an “equivalence set”, and treated as they were one. These matrices form what is
called, in the assessment paper, the noise 0 benchmark. To simulate conditions in
which input data are fuzzier, we also consider the so-called noise 50 benchmark
presented in [8], in which each dataset is composed of an equal number of good
and random (i.e., taken at random from TRANSFAC) matrices.

Two additional benchmarks are discussed in [8], namely liver and mus-
cle, having very different characteristics from the previous ones. Liver includes
sequences with up to nine binding sites from four different factors, while muscle
includes sequences with up to eight sites from five factors.

Statistics for tools evaluated in [8] were downloaded from the site
http://tare.medisin.ntnu.no/composite/composite.php. Regarding CO-
MPO, we computed the statistics for liver and muscle datasets starting from
the prediction files made available by the authors at the address http://tare.
medisin.ntnu.no/compo/. For the TRANSCompel datasets (noise 0 and
noise 50), we directly used the statistic results provided at the same address.

4.2 Scoring Predictions

We compare CMF against all the other eleven tools using the correlation coef-
ficient (CC). We also compare CMF and COMPO (the best performing tool
among CMF’s competitors) using other popular statistics, namely: Sensitiv-
ity (Sn), Positive Predicted Values (PPV), Performance Coefficient (PC), and
Average Site Performance (ASP) (see [31] for definitions). All the mentioned
statistics are computed at the nucleotide-level. CMF and COMPO are also com-
pared using motif level statistics.

4.3 Results

In all the experiments, CMF was run with fixed configuration file, with W =
{50, 75, 100, 125, 150}, q = {0.9, 0.8, 0.7, 0.6., 0.5., 0.4, 0.3, 0.2, 0.1} (see Sect. 3.3).

Nucleotide level analysis. Table 1 shows the results obtained by CMF com-
pared to eleven competitor algorithms on the whole collection of twelve datasets
(noise 0, liver, and muscle). The results suggest that CMF is indeed competitive
with other state of the art tools. In the attempt to assess the significance of the
results of Table 1, we first performed a Friedman non-parametric test (see, e.g.,
[32]) that involved eleven tools (all but CORECLUST, because of the limited
availability of homogeneous data with which to perform the comparisons). As it
can be easily argued, here the null hypothesis (i.e., that all the considered algo-
rithms behave similarly, and hence that the average ranks over the all datasets
are essentially the same), can be safely rejected, with a P-value around 2.2 ·10−9.

http://tare.medisin.ntnu.no/composite/composite.php
http://tare.medisin.ntnu.no/compo/
http://tare.medisin.ntnu.no/compo/

204 M. Leoncini et al.

Table 1. CC results for noise 0, liver, and muscle data, with best figures in bold-face.
CB = Cluster-Buster, MS = ModuleSearcher, CMA = Composite Module Analyst,
CM = CisModule, C = CORECLUST.

Dataset/tool CMF COMPO CB Cister MSCAN MS MCAST Stubb CMA CM MOPAT C

AP1-Ets 0.52 0.19 0.24 0.00 0.11 0.30 0.20 0.15 0.22 −0.0 0.37
AP1-NFAT 0.11 0.06 0.04 0.00 0.00 0.05 0.14 −0.01 0.15 −0.02 0.14
AP1-NFkB 0.76 0.59 0.49 0.19 0.36 0.29 0.26 0.35 0.55 0.05 0.18
CEBP-NFkB 0.74 0.70 0.72 0.45 0.56 0.56 0.60 0.36 0.60 −0.03 0.38
Ebox-Ets 0.59 0.55 0.16 0.26 0.44 0.20 0.23 0.14 0.18 0.05 0.15
Ets-AML 0.49 0.42 0.30 0.07 0.31 0.38 0.26 0.23 0.33 0.03 0.27
IRF-NFkB 0.92 0.73 0.77 0.62 0.91 0.85 0.41 0.41 0.69 0.04 0.57
NFkB-HMGIY 0.26 0.31 0.35 0.10 0.30 0.40 0.23 0.07 0.15 −0.03 0.13
PU1-IRF 0.92 0.28 0.16 0.27 0.00 0.43 0.16 0.17 0.24 −0.01 0.21
Sp1-Ets 0.20 0.05 0.09 0.20 0.00 0.00 0.13 0.19 0.15 0.02 0.09
Liver 0.49 0.57 0.59 0.31 0.51 0.42 0.50 0.48 0.36 −0.01 0.33
Muscle 0.56 0.52 0.41 0.36 0.50 0.46 0.30 0.24 0.46 0.29 0.37 0.56

We then performed the post hoc tests associated to the Friedman statistics,
by considering CMF as the new proposed methods to be compared against the
other ten tools. Table 2 shows the P-values of the ten comparisons, adjusted
(according to the Hochberg step-up procedure [32]) to take into account possible
type-I errors in the whole set of comparisons. For nine competing algorithms we
obtained figures below the critical 0.05 threshold; only in case of COMPO we
cannot reject with high confidence the null hypothesis, namely that the observed
average ranks of the two algorithms (CMF and COMPO) are different by chance
only.

Table 2. Adjusted P-values for post hoc comparisons of CFM against other 10 tools:
MS = ModuleSearcher, CMA = Composite Module Analyst, CM = CisModule

COMPO ClusterBuster MS CMA MSCAN MCAST MOPAT Cister Stubb CM

0.1961 0.0455 0.0455 0.0455 0.0308 0.0102 0.0012 3.4e−4 1.9e−5 6.9e−10

We next concentrate on the comparison between CMF and COMPO, which
is the best performing tool among the CMF competitors considered here. Table
3 compares CMF and COMPO on a wider sets of statistics. For the noise 0
benchmark, the results shown combine the results of the corresponding ten
datasets (i.e., counting the total numbers of positive, positive predicted, negative,
and negative predicted nucleotides). For the noise 50 benchmark, the combined
results are the average of the figures obtained on ten runs on each datasets. In
each run, the “good” matrices were mixed with different sets of decoy PWMs
(see [8]).

Motif level analysis. We compared CMF and COMPO to understand their ability
to correctly tell the matrices (possibly within an equivalence set) whose matches

CMF: A Combinatorial Tool to Find Composite Motifs 205

Table 3. Further nucleotide level comparisons between CMF and COMPO. We report
here the results most favorable to COMPO, as the authors provide three different files
with predictions for each datasets.

Statistics Noise 0 Noise 50 Liver Muscle Tool

PPV 0.67 0.45 0.67 0.60 CMF
0.40 0.37 0.85 0.52 COMPO

Sn 0.54 0.49 0.429 0.65 CMF
0.47 0.48 0.425 0.69 COMPO

PC 0.42 0.31 0.35 0.45 CMF
0.28 0.26 0.40 0.42 COMPO

ASP 0.60 0.47 0.55 0.62 CMF
0.44 0.42 0.64 0.60 COMPO

CC 0.58 0.45 0.49 0.56 CMF
0.41 0.39 0.57 0.52 COMPO

belong to a predicted composite motif. In contrast to [8], we do not consider
here true negative predictions, as we regard the concept of true negative not
well defined at the motif level.6 Hence we only computed Sensitivity, Positive
Predicted Value, and Performance Coefficient as motif level statistics.

Table 4. Motif level results for CMF and COMPO on the noise 0 dataset

Statistics AP1-Ets AP1-NFAT AP1-NFkB CEBP-NFkB Ebox-Ets Ets-AML Tool

Sn 0.647 0.045 0.75 0.625 0.417 0.9 CMF
0.47 0.364 0.625 0.75 0.5 0.8 COMPO

PPV 0.733 0.5 1 1 0.833 0.9 CMF
1 1 1 1 1 1 COMPO

PC 0.524 0.043 0.75 0.625 0.385 0.818 CMF
0.47 0.364 0.625 0.75 0.5 0.8 COMPO

Statistics IRF-NFkB NFkB-HMGIY PU1-IRF Sp1-Ets Combined Tool

Sn 1 0.357 1 0.438 0.574 CMF
0.833 0.429 0.6 0 0.506 COMPO

PPV 1 0.625 1 0.875 0.861 CMF
1 1 1 0 0.932 COMPO

PC 1 0.294 1 0.412 0.525 CMF
0.833 0.429 0.6 0 0.488 COMPO

6 Note that in the already cited paper by Tompa et al. [31], true negative predictions
at the motif level are not considered.

206 M. Leoncini et al.

Table 5. CMF motif level statistics for the muscle and liver datasets

Liver dataset Muscle dataset

Sn PVV PC Sn PVV PC
0.5 0.728 0.42 0.74 0.66 0.54

Table 4 reports the performances at motif level obtained using our computed
CMF predictions and the predictions made by COMPO on the TRANSCompel
datasets. The results are essentially similar, with a slightly better Performance
Coefficient (the sole comprehensive measure computed at motif level) exhibited
by CMF. The results suggest once more that our software is competitive with
current state of the art tools.

Finally, Table 5 reports CMF statistics on the muscle and liver datasets. We
do not include a comparison against COMPO here since the way to correctly
and fairly interpret COMPO’s prediction is not completely clearly to us. First of
all, the authors present three different prediction sets, obtained under different
configuration runs. Secondly, all the prediction files contain multiple identical
predictions, which negatively influences the PPV counts.

5 Conclusions

In this paper we have presented CMF, a novel tool for Composite Motif detection,
a computational problem which is well-known to be very difficult. Indeed, to
date, no available software for (simple or composite) motif discovery can be
clearly identified as the “best one” under all application settings. Knowing this,
we are also aware that more comparisons are required, in different experimental
frameworks, for general conclusions to be drawn about the competitiveness of
CMF.

However, we think that some interesting findings have emerged from this
work, all related to the power of simple motif combinations. First of all, that the
good results exhibited by CMF have been obtained without using any sophis-
ticated statistic filtering criteria; the combination of “right” simple sites were
often strong enough to emerge from a huge set of potentially active motif clus-
ters. Secondly, that the conceptually simple CMF architecture, based on a two-
stage approach to composite motif finding (i.e., first detect simple motifs, then
combine them to form clusters of prospective functional motifs) proved to be
competitive against other, more sophisticated approaches (see also [12]). In the
third place, that lowering the thresholds that “define” (in silico) the DNA occu-
pancy by a transcription factor, can be appropriate a strategy that can be kept
hidden to the user.

On the other hand, the same issues outlined in the preceding paragraph
suggest possible directions to improve CMF performance. For instance, incor-
porating a statistical filtering may enhance the PPV rate of the prospective
composite motifs devised by simple site combinations. However, we think that

CMF: A Combinatorial Tool to Find Composite Motifs 207

the most delicate aspect has to do with thresholding and discretization. It is
a growing popular belief among biologists that the DNA occupancy is deter-
mined mostly by chromatin accessibility (rather than DNA-factor affinities),
with the occupancy scale being a continuum of thermodynamics levels. Turning
this knowledge into a computable property of the potential binding site seems
indeed a hard challenge.

Acknowledgments. The present work is partially supported by the Flagship project
InterOmics (PB.P05), funded by the Italian MIUR and CNR organizations, and by
the joint IIT-IFC Lab for Integrative System Medicine (LISM).

References

1. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Develop-
ment and Evolution, 1st edn. Academic Press, San Diego (2006)

2. Pavesi, G., Mauri, G., Pesole, G.: In silico representation and discovery of tran-
scription factor binding sites. Brief. Bioinform. 5, 217–236 (2004)

3. Sandve, G.K., Drabløs, F.: A survey of motif discovery methods in an integrated
framework. Biol. Direct. 1, 11 (2006)

4. Häußler, M., Nicolas, J.: Motif discovery on promotor sequences. Research report
RR-5714, INRIA (2005)

5. Zambelli, F., Pesole, G., Pavesi, G.: Motif discovery and transcription factor bind-
ing sites before and after the next-generation sequencing era. Brief. Bioinf. (2012)

6. Wingender, E., et al.: Transfac: a database on transcription factors and their DNA
binding sites. Nucl. Acids Res. 24, 238–241 (1996)

7. Sandelin, A., Alkema, W., Engström, P.G., Wasserman, W.W., Lenhard, B.: Jas-
par: an open-access database for eukaryotic transcription factor binding profiles.
Nucl. Acids Res. 32, 91–94 (2004)

8. Klepper, K., Sandve, G., Abul, O., Johansen, J., Drabløs, F.: Assessment of com-
posite motif discovery methods. BMC Bioinform. 9, 123 (2008)

9. Sinha, S.: Finding regulatory elements in genomic sequences. Ph.D. thesis, Univer-
sity of Washington (2002)

10. Van Loo, P., Marynen, P.: Computational methods for the detection of cis-
regulatory modules. Brief. Bioinform. 10, 509–524 (2009)

11. Ivan, A., Halfon, M., Sinha, S.: Computational discovery of cis-regulatory modules
in drosophila without prior knowledge of motifs. Genome Biol. 9, R22 (2008)

12. Federico, M., Leoncini, M., Montangero, M., Valente, P.: Direct vs 2-stage
approaches to structured motif finding. Algorithms Mol. Biol. 7, 20 (2012)

13. Sandve, G., Abul, O., Drablos, F.: Compo: composite motif discovery using discrete
models. BMC Bioinform. 9, 527 (2008)

14. Hu, J., Hu, H., Li, X.: Mopat: a graph-based method to predict recurrent cis-
regulatory modules from known motifs. Nucl. Acids Res. 36, 4488–4497 (2008)

15. Nikulova, A.A., Favorov, A.V., Sutormin, R.A., Makeev, V.J., Mironov, A.A.:
Coreclust: identification of the conserved CRM grammar together with prediction
of gene regulation. Nucl. Acids Res. 40, e93 (2012). doi:10.1093/nar/gks235

16. Vavouri, T., Elgar, G.: Prediction of cis-regulatory elements using binding site
matrices - the successes, the failures and the reasons for both. Curr. Opin. Genet.
Develop. 15, 395–402 (2005)

http://dx.doi.org/10.1093/nar/gks235

208 M. Leoncini et al.

17. Kel, A., Gößling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O., Wingen-
der, E.: Matchtm: a tool for searching transcription factor binding sites in DNA
sequences. Nucl. Acids Res. 31, 3576–3579 (2003)

18. Chen, Q.K., Hertz, G.Z., Stormo, G.D.: Matrix search 1.0: a computer program
that scans DNA sequences for transcriptional elements using a database of weight
matrices. Comp. Appl. Biosci.: CABIOS 11, 563–566 (1995)

19. Prestridge, D.S.: Signal scan: a computer program that scans DNA sequences
for eukaryotic transcriptional elements. Comp. Appl. Biosci.: CABIOS 7, 203–206
(1991)

20. Matys, V., et al.: TRANSFAC and its module TRANSCompel: transcriptional gene
regulation in eukaryotes. Nucl. Acids Res. 34, D108–D110 (2006)

21. Thomas-Chollier, M., et al.: RSAT: regulatory sequence analysis tools. Nucl. Acids
Res. 36, W119–W127 (2008)

22. Uno, T.: Pce: Pseudo clique enumerator, ver. 1.0 (2006)
23. Zhou, Q., Wong, W.H.: Cismodule: De novo discovery of cis-regulatory modules

by hierarchical mixture modeling. Proc. Natl. Acad. Sci. 101, 12114–12119 (2004)
24. Frith, M.C., Hansen, U., Weng, Z.: Detection of cis -element clusters in higher

eukaryotic dna. Bioinformatics 17, 878–889 (2001)
25. Frith, M.C., Li, M.C., Weng, Z.: Cluster-Buster: finding dense clusters of motifs in

DNA sequences. Nucl. Acids Res. 31, 3666–3668 (2003)
26. Kel, A., Konovalova, T., Waleev, T., Cheremushkin, E., Kel-Margoulis, O., Win-

gender, E.: Composite module analyst: a fitness-based tool for identification of tran-
scription factor binding site combinations. Bioinformatics 22, 1190–1197 (2006)

27. Bailey, T.L., Noble, W.S.: Searching for statistically significant regulatory modules.
Bioinformatics 19, ii16–ii25 (2003)

28. Aerts, S., Van Loo, P., Thijs, G., Moreau, Y., De Moor, B.: Computational detec-
tion of cis -regulatory modules. Bioinformatics 19, ii5–ii14 (2003)

29. Johansson, Ö., Alkema, W., Wasserman, W.W., Lagergren, J.: Identification of
functional clusters of transcription factor binding motifs in genome sequences: the
mscan algorithm. Bioinformatics 19, i169–i176 (2003)

30. Sinha, S., van Nimwegen, E., Siggia, E.D.: A probabilistic method to detect regu-
latory modules. Bioinformatics 19, i292–i301 (2003)

31. Tompa, M., et al.: Assessing computational tools for the discovery of transcription
factor binding sites. Nat. Biotechnol. 23, 137–144 (2005)

32. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064 (2010)

Hill-Climbing Behavior on Quantized
NK-Landscapes

Matthieu Basseur(B) and Adrien Goëffon

LERIA, University of Angers, Angers, France
{matthieu.basseur, adrien.goeffon}@univ-angers.fr

Abstract. This paper provides guidelines to design climbers considering
a landscape shape under study. In particular, we aim at competing best
improvement and first improvement strategies, as well as evaluating the
behavior of different neutral move policies. Some conclusions are assessed
by an empirical analysis on non-neutral (NK-) and neutral (quantized
NK-) landscapes. Experiments show the ability of first improvement to
explore rugged landscapes, as well as the interest of accepting neutral
moves at each step of the search.

1 Introduction

Basic iterative improvement methods like climbers are generally used as compo-
nents of more sophisticated local search techniques or metaheuristics. A climber
consists in reaching a local optimum by iteratively improving a single solution
with local modifications. Although most of metaheuristics use climbers or vari-
ants as intensification mechanism, they mainly focus on determining how to
escape local optima. Nevertheless, several important questions have to be con-
sidered while designing a climber. Usually, the conception effort of any local
search algorithm focus on the design of the neighborhood structure as well
as how to build the solution initiating the search. However there are several
questions which are regularly considered during the conception process, but not
really empirically or theoretically investigated. Among them, one can identify
two main issues. First, the choice of pivoting rule: are different pivoting rules
leading to similar local optima qualities in comparable computational effort? To
the best of our knowledge, there is no real consensus on the benefit of using a
best-improvement strategy rather than a first-improvement one, or vice versa.
Second, the neutral moves policy: should we restrict the use of neutral moves
for escaping local optima? The use of neutral moves during the climbing should
be experimentally analyzed. In particular, it is contradictory that traditional
climbers only allow strictly improving moves, while a derived search strategy,
e.g. simulated annealing, systematically accept neutral moves.

Most of local search and evolutionary computation contributions are focus-
ing on the design and evaluation of advanced and original search mechanisms.
However, those aforementioned elementary components are rarely discussed in
the experimental analysis.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 209–214, 2013.
DOI: 10.1007/978-3-642-44973-4 22, c© Springer-Verlag Berlin Heidelberg 2013

210 M. Basseur and A. Goëffon

Since the efficiency of advanced search methods is usually dependent to the
problem under consideration, it should be interesting to determine if their ele-
mentary components are themselves dependent to the considered search space
topology. In this study, we aim to evaluate the behavior and efficiency of basic
search methods on search spaces of different size, rugosity and neutrality. To this
end, we will use NK-landscapes [3] model to simulate problems with different
structures and sizes. Since the basic NK model does not induce landscapes with
neutrality, we will also focus on quantized NK-lanscapes (NKq [5]).

Recently, Ochoa et al. [6] investigated the behavior of first and best improve-
ment algorithms on NK-landscapes, by exhaustive exploration of small search
spaces. In this paper, we extend the study by evaluating both pivoting rules and
neutral moves effects on large size problems, which are those considered while
using metaheuristics. To achieve this, we will evaluate empirically the relative
efficiency of climber variants. The aim of this study is to compare basic ways to
navigate through a search space, rather than to propose an efficient sophisticated
algorithm to solve NK instances.

In Sect. 2, we will discuss on climbers key components and NK(q)-landscapes
models. In Sect. 3, we compare the ability of climber variants a large scale of
landscape shapes. Finally, the last section reports the main contributions and
point out future investigations.

2 Climbers and NK-Landscapes

We assume that the reader is familiar with the notions of combinatorial opti-
mization and local search algorithms. For more detailed definitions and compre-
hensive review of local search principles, we refer the reader to [2].

A hill-climbing algorithm (or climber) is a basic local search strategy which
navigates through the search space in allowing only non-deteriorating moves.
Given an initial configuration called starting point, a traditional climber itera-
tively moves to better neighbors, until it reaches a local optimum. Such a search
mechanism, also known as iterative improvement, allows to distinguish several
variants which are discussed hereafter.

2.1 Climber Components

The design of a climber implies several choices, whose effects are not clearly
established. Let us point out two mains conception issues that need to be
discussed.

Pivoting Rule. The best improvement strategy (or greedy hill-climbing) con-
sists in selecting, at each iteration, a neighbor which achieves the best fitness.
This implies to generate the whole neighborhood at each step of the search,
unless an incremental evaluation of all neighbors can be performed. On the con-
trary, the first improvement strategy accepts the first evaluated neighbor which
satisfies the moving condition. This avoids the systematic generation of the entire
neighborhood and allows more conceptual options.

Hill-Climbing Behavior on Quantized NK-Landscapes 211

Neutral Move Policy. A basic hill-climbing algorithm does not allow neutral
moves (i.e. moves to neutral neighbors) during the search, and only performs
improving moves until reaching a local optimum. Question of neutral moves
can be considered to escape local optima (neutral perturbation, NP) when the
fitness landscape contains a substantial proportion of neutral transitions (on
smooth landscapes). Another variant, called stochastic hill-climbing, can accept
indifferently neutral or improving neighbors throughout the search, even before
reaching a local optimum. It is not that obvious to determine the influence of
the neutral move policy on the quality of the configurations reached. However,
it is interesting to note that the more advanced simulated annealing algorithm,
which allows some deteriorating moves during the search, systematically accepts
neutral moves under consideration.

There are other aspects which could be discussed. For instance the neighbor-
hood evaluation can be made with or without replacement, and its generation
order can be done deterministically or randomly. Nevertheless, these choices are
greatly dependent on the problem under study and are not discussed here.

2.2 NK-Landscapes and Neutrality

NK-Landscapes. The NK family of landscapes [3] is a problem-independent
model for constructing multimodal landscapes. NK-landscapes use a basic search
space, with binary strings as configurations and bit-flip as neighborhood (two
configurations are neighbors iff their Hamming distance is 1). Characteristics of
an NK-landscape are determined by two parameters N and K. N refers to the
size of binary string configurations, which defines the search space size (|X | =
2N). K specifies the rugosity level of the landscape; indeed, the fitness value of
a configuration is given by the sum of N terms, each one depending on K + 1
bits of the configuration. Thus, by increasing the value of K from 0 to N − 1,
NK-landscapes can be tuned from smooth to rugged.

In NK-landscapes, the fitness function f : {0, 1}N → [0, 1) to be maximized
is defined as follows.

f(x) =
1
N

N∑

i=1

ci(xi, xi1 , . . . , xiK) (1)

where ci : {0, 1}K+1 → [0, 1) defines the component function associated with
each variable xi, i ∈ {1, . . . , N}, and where K < N .

NK-landscapes instances are both determined by the (K + 1)-uples
(xi, xi1 , . . . , xiK) and the 2N .(K + 1) ci result values corresponding to a fit-
ness contribution matrix C whose values are randomly generated in [0, 1). The
usual precision of random values imply that plateaus are almost absent on
NK-landscapes.

NKq-Landscapes. To add neutrality to NK-landscapes, Newman et al. intro-
duced quantised NK-landscapes [5], by fluctuating the discretization level of ci

212 M. Basseur and A. Goëffon

result values. Indeed, limiting their possible values increase the number of neu-
tral neighbors. Thus, NKq implies a third parameter q � 2 which specifies the
ci. functions codomain size. The maximal degree of neutrality is reached when
q = 2 (C is then a binary matrix), and decreases while q increases.

3 Comparison of Hill-Climbing Strategies

In this section, we aim at evaluating the ability of climbers to explore various
landscapes. Thus, different climbing strategies introduced Sect. 2 will be applied
on landscapes defined in Sect. 2.2.

The experimental analysis will compare five climbers variants combining piv-
oting rule (PR) alternatives and the neutral move policy (NMP). All climbers
start from a random configuration, and stop after 10.N2 configuration evalua-
tions (unless for basic move policy which stops when a local optimum is reached).
Let us notice that this maximal number of evaluations has been set to allow a
convergence of the search, after observing no significant improvements for longer
searches.

Each climber will be executed 10,000 times on a benchmark set of 48 instances:
16 basic NK-landscapes parametrizations, as well as 32 instances which corre-
sponds to the 32 NKq landscapes parametrizations s.t. N ∈ {256, 1024} and
K ∈ {1, 2, 4, 8}. For each instance, the five climbers start their searches from a
single set of 10,000 starting points, in order to cancel the initialization bias.

Empirical Analysis

Experiment results are given on Tables 1 and 2 which focus respectively on the
NK and NKq instances. For each couple climber/instance, we report the average
fitness of the 10,000 resulting configurations. For each instance, the best average
value appears in bold. Moreover, we indicate in grey methods which are not
statistically outperformed by any other method (w.r.t. the Mann-Whitney test).

Table 1. Climbers results on NK-landscapes. Only two variants, with no neutral moves,
are outputed.

Results obtained on the basic NK-landscapes are given in Table 1. In this
table, results include only two variants which correspond to the pivoting rule
alternatives. Indeed, the basic NK-landscapes do not contains a significant num-
ber of neutral neighbors. Then, experiments show equivalent results whatever

Hill-Climbing Behavior on Quantized NK-Landscapes 213

the neutral move policy being adopted. Anyway, this table provides us a signif-
icant piece of information while comparing the best improvement and the first
improvement pivoting rules. Best improvement statistically outperforms first
improvement when K ∈ {1, 2}, and first improvement appears more efficient
while K increases. In other words, best improvement is well-suited to explore
smooth landscapes, whereas first improvement seems more adapted to explore a
rugged one.

Table 2. Climbers results on NKq landscapes (q = {10, 5, 3, 2}).

NKq instances experiments lead to relevant outcomes. One can see in Table 2
that neutral moves are necessary to climb landscapes containing even a small
level of neutrality. Indeed, basic climbers are always statistically outperformed
by others. Moreover, this table emphasizes significant differences between the
three strategies allowing neutral moves. First, stochastic climbers reach bests
results on most instances, especially on more rugged and/or neutral landscapes
(high K, low q). This is particularly interesting since, to our knowledge, basic
policies – with or without neutral perturbations – are more traditionally used
while designing metaheuristics. However, a best improvement strategy combined
with neutral perturbations remains suitable in smooth landscapes, especially
with lowest levels of neutrality. Globally, one observe that the search space size
given by parameter N does not influence the overall tendency of the results;
although efficiency differences between policies tends to be more significant for
larger search spaces.

Let us precise that in our original experimental analysis, two other models
of neutrality have been experimented: probabilistic NK-landscapes [1] as well as
rounded NK-landscapes, designed by simply rounding fitnesses. These experi-
ments also lead to significant outcomes, which are not outputted here due to a
lack of space.

214 M. Basseur and A. Goëffon

4 Conclusion

Climbers are often considered as basic components of advanced search meth-
ods. However, influence of their conception choices are rarely discussed through
advanced studies. In this paper we have focused on the capacity of different
hill-climbings versions to reach good configurations in various landscapes. In
particular, we compared the first and best improvement strategies as well as
three different neutral move policies. In order to provide an empirical analysis
on a large panel of representative instances, we used NK-landscapes with dif-
ferent sizes and rugosity levels. On landscapes with no neutrality, we show that
best improvement performs better on smooth landscapes, while first improve-
ment is well-suited on more rugged ones. To evaluate the impact of neutral move
policies, we used quantized NK-lanscapes (NKq) as model of neutrality. First,
one observes that stochastic hill-climbings globally reach better configurations
than other variants. In other words, at each step of the search, it makes sense to
perform the first non-deteriorating move instead of extending the neighborhood
evaluation.

Perspectives of this work mainly includes the extension of this analysis to
Iterative Local Search methods [4]. Indeed, several questions arise while con-
sidering iterated versions. First, we have to determine to what extent efficient
climbers can improve iterated searches. Last, a similar study performed in an iter-
ated context will determine if the overall influence of structural choices remain
unchanged.

References

1. Barnett, L.: Ruggedness and neutrality - the NKp family of fitness landscapes. In:
Alive VI: Sixth International Conference on Artificial Life, pp. 18–27. MIT Press
(1998)

2. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan
Kaufmann Publishers Inc., San Francisco (2004)

3. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution,
1st edn. Oxford University Press, USA (1993)

4. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochen-
berger, G. (eds.) Handbook of Metaheuristics. International Series in Operations
Research and Management Science, vol. 57, pp. 321–353. Kluwer Academic, Nor-
well (2002)

5. Newman, M.E.J., Engelhardt, R.: Effects of selective neutrality on the evolution of
molecular species. Proc. Roy. Soc. B 265(1403), 1333–1338 (1998)

6. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local
optima networks of NK landscapes. In: Proceedings of the 11th International Con-
ference on Parallel Problem Solving From Nature, Krakow Pologne, pp. 104–113,
September 2010

Neighborhood Specification for Game Strategy
Evolution in a Spatial Iterated Prisoner’s

Dilemma Game

Hisao Ishibuchi(&), Koichiro Hoshino, and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

{hisaoi,nojima}@cs.osakafu-u.ac.jp,

kouichirou.hoshino@ci.cs.osakafu-u.ac.jp

Abstract. The prisoner’s dilemma is a two-player non-zero-sum game. Its
iterated version has been frequently used to examine game strategy evolution in
the literature. In this paper, we discuss the setting of neighborhood structures in
its spatial iterated version. The main characteristic feature of our spatial iterated
prisoner’s dilemma game model is that each cell has a different scheme to
represent game strategies. In our computational experiments, one of four rep-
resentation schemes is randomly assigned to each cell in a two-dimensional
grid-world. An agent at each cell has a game strategy encoded by the assigned
representation scheme. In this situation, an agent may have no neighbors with
the same representation scheme as the agent’s scheme. The existence of such
an agent has a negative effect on the evolution of cooperative behavior. This is
because strategies with different representation schemes cannot be recombined.
When no neighbors have the same representation scheme as the agent’s
scheme, no recombination can be used for generating a new strategy for the
agent. In our former study, we used a larger neighborhood structure for such an
agent. As a result, each agent has a different neighborhood structure and a
different number of neighbors. This makes it difficult to discuss the effect of the
neighborhood size on the evolution of cooperative behavior. In this paper, we
propose the use of the following setting: Each agent has the same number of
neighbors with the same representation scheme as the agent’s scheme. This
means that each agent has the same number of qualified neighbors as its mates.
We also examine a different spatial model where the location of each agent is
randomly specified as a point in a two-dimensional continuous space instead of
a grid-world.

Keywords: Evolutionary games � Prisoner’s dilemma game � Iterated pris-
oner’s dilemma (IPD) � Spatial IPD games � Neighborhood structures �
Representation

1 Introduction

In general, an appropriate choice of a representation scheme for solution encoding has
been an important research topic in evolutionary computation. This is also the case in
evolutionary games. Ashlock et al. [1–3] showed that the evolution of cooperative

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 215–230, 2013.
DOI: 10.1007/978-3-642-44973-4_23, � Springer-Verlag Berlin Heidelberg 2013

behavior in the IPD (Iterated Prisoner’s Dilemma) game strongly depended on the
choice of a representation scheme for game strategy encoding. They examined a
number of different representation schemes, and obtained totally different results from
different settings. In each run in their computational experiments, a single represen-
tation scheme was assigned to all agents to examine the relation between the choice of
a representation scheme and the evolution of cooperative behavior.

Simultaneous use of two representation schemes was examined in Ishibuchi et al.
[4]. One of the two schemes was randomly assigned to each agent. When the IPD
game was not played between agents with different schemes, totally different results
were obtained from each scheme. However, similar results were obtained from each
scheme when the IPD game was played between agents with different schemes. The
simultaneous use of different representation schemes was also examined in other areas
of evolutionary computation (e.g., see [5] for the use in island models).

It has been demonstrated in many studies on the IPD game that spatial structures
of agents have a large effect on the evolution of cooperative behavior (e.g., [6–9]). A
two-dimensional grid-world with a neighborhood structure is often used in such a
spatial IPD game. An agent in each cell plays the IPD game against its neighbors (i.e.,
local interaction through the IPD game). A new strategy for each agent is generated
from current strategies of the agent and its neighbors (i.e., local mating). Local
interaction and local mating usually use the same neighborhood structure. The use of
different neighborhood structures was examined in Ishibuchi and Namikawa [10].

Motivated by the above-mentioned studies on representation schemes [1–5] and
spatial structures [6–10], we examined a spatial IPD game model with a number of
different representation schemes in our former study [11]. One of four representation
schemes was randomly assigned to each cell in a two-dimensional grid-world. An
example of such a random assignment is shown for a two-dimensional 11 9 11 grid-
world in Fig. 1 where the von Neumann neighborhood with four neighbors is also
illustrated. In Fig. 1, the center cell of the illustrated von Neumann neighborhood has
a representation scheme D. However, none of its four neighbors has the representation
scheme D. Thus no strategies of the four neighbors can be used to generate a new
strategy for the center cell. As a result, only the current strategy of the center cell is
used to generate its new strategy (i.e., new strategies are generated by mutation).

In our former study [11], we used a larger neighborhood when a cell had no
neighbors with the same representation scheme as the cell’s scheme. That is, each cell
had a different neighborhood and a different number of neighbors. This makes it very
difficult to discuss the effect of the neighborhood size on the strategy evolution.

In this paper, we examine the following three settings of neighborhood for local
mating in our spatial IPD game model in a two-dimensional grid-world:

(i) Basic setting: A given neighborhood structure for local mating is always used
for all cells. If a cell has no neighbors with the same representation scheme as
the cell’s scheme, a new strategy is always generated from the current one by
mutation. Otherwise, a new strategy is generated by local mating, crossover and
mutation.

216 H. Ishibuchi et al.

(ii) Setting in our former study [11]: When a cell has no neighbors with the same
representation scheme as the cell’s scheme, a larger neighborhood structure is
used so that the cell has at least one neighbor with the same scheme. In this
setting, a new strategy at each cell is generated by local mating, crossover and
mutation.

(iii) Setting with the same number of neighbors for local mating: In this setting, a
pre-specified number of cells with the same representation scheme are defined
for each cell as neighbors for local mating. That is, each cell has the same
number of neighbors for local mating. A new strategy at each cell is generated
by local mating, crossover and mutation.

For comparison, we also examine a different spatial IPD game model with a
different spatial structure where each agent is randomly assigned to a point in a two-
dimensional continuous space. We do not use a two-dimensional grid-world in this
spatial IPD game model. For each agent, a pre-specified number of the nearest agents
with the same representation scheme are defined as its neighbors for local mating.

One advantage of this model is that the number of neighbors for local mating can
be arbitrarily specified in each computer simulation. Another advantage is that the
definition of neighbors is clear and easy to implement. One disadvantage is that the
neighborhood relation is not always symmetrical. That is, ‘‘X is in the nearest
neighbors of Y’’ does not always mean ‘‘Y is in the nearest neighbors of X’’. The
above-mentioned settings (ii) and (iii) of neighbors for local mating in a two-
dimensional grid-world also have such an asymmetric property of neighborhood.

This paper is organized as follows. In Sect. 2, we explain our spatial IPD game
model in a two-dimensional grid-world with different representation schemes. We use
two neighborhood structures in our spatial IPD game model: One is for local mating
and the other is for local interaction. Game strategies and representation schemes are
also explained in Sect. 2. In Sect. 3, we explain our cellular genetic algorithm for

A B C D

Fig. 1. An example of random assignment of four representation schemes (A, B, C and D) over
a two-dimensional 11 9 11 grid-world.

Neighborhood Specification for Game Strategy Evolution 217

strategy evolution. In each generation of the evolutionary algorithm, the fitness of each
agent is evaluated as the average payoff from the IPD game against its neighbors.
A new strategy of each agent is generated from its own and its neighbors’ strategies.
In Sect. 4, we report experimental results of computational experiments where one of
four representation schemes is randomly assigned to each cell in a two-dimensional
11 9 11 grid-world. The above-mentioned three settings of neighborhood for local
mating are compared with each other using various specifications of neighborhood size.
In Sect. 5, we explain a different spatial IPD game model in a two-dimensional con-
tinuous space where each agent is randomly located. Experimental results using this
spatial IPD game model are reported in Sect. 6. In Sect. 7, we conclude this paper.

2 Spatial IPD Game in a Two-Dimensional Grid-World

In this section, we explain our spatial IPD game model in a two-dimensional grid-
world with two neighborhood structures and different representation schemes. As in
many other studies on the spatial IPD game, we assume the torus structure of the two-
dimensional grid-world. Our spatial IPD game model in this section is the same as in
our previous study [11] except for the specification of local mating neighborhood.

Payoff Matrix: The PD (Prisoner’s Dilemma) game is a two-player non-zero sum
game with two actions: cooperation and defection. We use a frequently-used standard
payoff matrix in Table 1. When both the agent and the opponent cooperate in Table 1,
each of them receives the payoff 3. When both of them defect, each of them receives
the payoff 1. The agent receives the maximum payoff 5 by defecting when the
opponent cooperates. In this case, the opponent receives the minimum payoff 0. In
Table 1, the defection is a rational action because the agent always receives the larger
payoff by defecting than cooperating in each of the two cases of the opponent action.
The defection is also a rational action for the opponent. However, the payoff 1 by
mutual defection is smaller than the payoff 3 by mutual cooperation. That is, the
rational actions of the agent and the opponent lead to the smaller payoff 1 than the
payoff 3 by their irrational actions. This is the dilemma in Table 1.

IPD Game Strategies: The IPD game is an iterated version of the PD game. The
agent plays the PD game with the payoff matrix in Table 1 against the same opponent
for a pre-specified number of rounds. In the first round, no information is available
with respect to the previous actions of the opponent. When the agent and the opponent
choose their actions for the second round, they can use the information about

Table 1. Payoff matrix in our spatial IPD game.

Agent’s action Opponent’s action

C: Cooperation D: Defection

C: Cooperation Agent payoff: 3 Agent payoff: 0
Opponent payoff: 3 Opponent payoff: 5

D: Defection Agent payoff: 5 Agent payoff: 1
Opponent payoff: 0 Opponent payoff: 1

218 H. Ishibuchi et al.

their actions in the first round. In the third round, the information about the actions in
the first two rounds is available. A game strategy for the IPD game determines the
next action based on a finite memory about previous actions. In this paper, we use the
following four representation schemes to encode IPD game strategies:

(1) Binary strings of length 3,
(2) Real number strings of length 3,
(3) Binary strings of length 7,
(4) Real number strings of length 7.

Each value in these strings shows the probability of cooperation in the next action
in a different situation. Strings of length 3 determine the next action based on the
opponent’s previous action whereas strings of length 7 use the opponent’s actions in
the previous two rounds. As an example, we show a binary string strategy ‘‘101’’
called TFT (tit for tat) in Table 2. This string chooses the cooperation at the first
round, which corresponds to the first value ‘‘1’’ of the string ‘‘101’’. When the
opponent cooperated in the previous round, the cooperation is selected using the third
value ‘‘1’’. Only when the opponent defected in the previous round, the defection is
selected using the second value ‘‘0’’. Table 3 shows an example of a binary string
strategy of length 7 (‘‘1110111’’). The first value ‘‘1’’ is used for the first round. The
next two values ‘‘11’’ are used for the second round. The choice of an action in each of
the other rounds is specified by the last four values ‘‘0111’’. This strategy, which is
called TF2T (tit for two tats), defects only when the opponent defected in the previous
two rounds. In the case of real number strings, the cooperation is probabilistically
chosen using the corresponding real number as the cooperation probability.

Local Interaction Neighborhood in the Grid-World: We use the 11 9 11 grid-
world with the torus structure in Fig. 1. Each cell has an agent, a game strategy, and a
representation scheme. Each agent plays the IPD game against its local interaction
neighbors. Let us denote the set of local interaction neighbors of Agent i by NIPD(i). If
NIPD(i) includes five or less neighbors, Player i plays the IPD game against all
neighbors in NIPD(i). If NIPD(i) includes more than five neighbors, five opponents are
randomly selected from NIPD(i). It should be noted that any agent is not allowed to
play the IPD game against itself. It was demonstrated that the IPD game of each agent
against itself had a large positive effect on the evolution of cooperative behavior [12].

We examine six specifications of NIPD(i) in Fig. 2 with 4, 8, 12, 24, 40 and 48
neighbors. We also examine an extreme specification of NIPD(i) for Agent i where all
the other 120 agents are included in NIPD(i).

Local Mating Neighborhood in the Grid-World: A new strategy for each agent is
generated from its own and its neighbors’ strategies. Let NGA(i) be a set of neighbors

Table 2. Binary string strategy of length 3 called TFT (‘‘101’’).

Round Opponent’s previous action Cooperation probability

1st Round – 1

Other Rounds Defect 0
Other Rounds Cooperate 1

Neighborhood Specification for Game Strategy Evolution 219

of Agent i for local mating. As in the case of local interaction neighborhood NIPD(i),
we examine as local mating neighborhood NGA(i) the six specifications in Fig. 2 and
the extreme specification including all the other agents. Only neighbors with the same
representation scheme as Agent i are qualified as mates of Agent i. If no neighbors are
qualified, the current strategy of Agent i is selected to generate its new strategy. We
consider the following three settings to handle this undesirable case:

(i) Basic Setting: We do not modify local mating neighborhood even in this case.
(ii) Use of a Larger Neighborhood: In our former study [11], we used a larger

neighborhood structure for Agent i if Agent i had no qualified neighbors. More
specifically, a larger neighborhood structure with at least one qualified neighbor
was searched in the order (a) ? (b) ? (c) ? (d) ? (e) ? (f) in Fig. 2. If no
qualified neighbor is included even in Fig. 2(f), all agents were handled as
neighbors.

(iii) The Same Number of Qualified Neighbors: In this new setting, all agents have
the same number of qualified neighbors. First all neighbors are systematically
sorted (e.g., see Fig. 3). Then qualified neighbors are added to NIPD(i) up to the
pre-specified number. We can use any kind of order of neighbors.

Table 3. Binary string strategy of length 7 called TF2T (‘‘1110111’’).

Round Opponent’s previous actions Cooperation probability

1st Round – 1

2nd Round Defect 1
2nd Round Cooperate 1

Other Rounds Defect and defect 0
Other Rounds Defect and cooperate 1
Other Rounds Cooperate and defect 1
Other Rounds Cooperate and cooperate 1

(a) Size 4. (b) Size 8. (c) Size 12.

(d) Size 24. (e) Size 40. (f) Size 48.

Fig. 2. Six neighborhood structures examined in this paper.

220 H. Ishibuchi et al.

3 Cellular Genetic Algorithm for Game Strategy Evolution

In this section, we explain our cellular genetic algorithm for game strategy evolution.
In our algorithm, each cell has a representation scheme and an agent with a game
strategy. The fitness value of each strategy is evaluated through the IPD game against
its neighbors. A new strategy is generated from its own and its neighbors’ strategies
with the same representation scheme. The current strategy is always replaced with a
newly generated one. The following are more detailed explanations.

Representation Scheme Assignment: One of the four representation schemes (i.e.,
binary strings of length 3, real number strings of length 3, binary strings of length 7,
and real number strings of length 7) is randomly assigned to each agent. More spe-
cifically, the 121 agents in the 11 9 11 grid-world are randomly divided into four
subsets with 30, 30, 30 and 31 agents. Each representation scheme is randomly
assigned to a different subset (i.e., to all agents in that subset). Each agent uses the
assigned representation scheme throughout the current execution of our cellular
genetic algorithm. The random assignment of a representation scheme to each agent is
updated in each run of our cellular genetic algorithm.

Initial Strategies: Each agent randomly generates an initial strategy using the
assigned representation scheme. For binary strings, each bit is randomly specified as 0
or 1 with the same probability. Real numbers in real number strings are randomly
specified using the uniform distribution over the unit interval [0, 1].

Fitness Evaluation: The fitness value of each agent is calculated as the average
payoff obtained from the IPD game with 100 rounds against up to five opponents in its
local interaction neighborhood NIPD(i). If an agent has five or less neighbors, the
average payoff is calculated over the IPD game against all neighbors. Otherwise, five
neighbors are randomly chosen as opponents to calculate the average payoff.

Parent Selection, Crossover and Mutation: Two parent strategies are selected for
each agent from its own and its qualified neighbors’ strategies in NGA(i) using binary
tournament selection with replacement. A new strategy is generated from the selected
pair by crossover and mutation. For binary strings, we use one-point crossover and

120 116 108 100 92 81 85 93 101 109 117

115 80 76 68 60 49 53 61 69 77 110

107 75 48 44 36 25 29 37 45 70 102

99 67 43 24 20 9 13 21 38 62 94

91 59 35 19 8 1 5 14 30 54 86

84 52 28 12 4 2 10 26 50 82

90 58 34 18 7 3 6 15 31 55 87

98 66 42 23 17 11 16 22 39 63 95

106 74 47 41 33 27 32 40 46 71 103

114 79 73 65 57 51 56 64 72 78 111

119 113 105 97 89 83 88 96 104 112 118

Fig. 3. Order of neighbors.

Neighborhood Specification for Game Strategy Evolution 221

bit-flip mutation. For real number strings, we use blend crossover (BLX-a [13]) with
a = 0.25 and uniform mutation. If a real number becomes more than 1 (or less than 0)
by the crossover operator, it is repaired to be 1 (or 0) before the mutation. The same
crossover probability 1.0 and the same mutation probability 1/(5 9 121) are used for
binary and real number strategies.

Generation Update and Termination: The current strategy of each agent is always
replaced with a newly generated one. The execution of our cellular genetic algorithm
is terminated after 1000 generation updates.

4 Experimental Results on the Two-Dimensional
Grid-World

In this section, we report experimental results with four representation schemes. The
reported results are average results over 500 runs of our cellular genetic algorithm for
each setting of local interaction and mating neighborhood structures. For comparison,
we also report experimental results using a single representation scheme.

Experimental Results using a Single Representation Scheme: For comparison, we
first report experimental results with a single representation scheme. One of the four
representation schemes was assigned to all the 121 agents. We examined 7 9 7
combinations of the seven neighborhood specifications for local interaction
NIPD(i) and local mating NGA(i). Experimental results are summarized in Fig. 4 where
each bar shows the average payoff over 1000 generations in each of 500 runs.

Experimental Results with the Basic Setting: As explained in Sect. 2, some agents
have no qualified neighbors as mates when the four representation schemes are ran-
domly assigned over the 121 agents. Table 4 summarizes the average percentage of
those agents with no qualified neighbors as mates. In the case of the smallest
neighborhood with four neighbors, many agents (i.e., 32.3 % of the 121 agents) have
no qualified neighbors as mates. A new strategy for each of those agents is generated
from its current strategy by mutation. No selection pressure towards good strategies
with higher average payoff is applied to those agents.

In Fig. 5, we show experimental results with the basic setting where the specified
local mating neighborhood structure is never modified. As shown in Table 4, many
agents have no qualified neighbors as mates in this setting. In Fig. 5, lower average
payoff was obtained from the smallest two neighborhood structures for local mating
(i.e., NGA(i) with four and eight neighbors) than the other larger structures. We can
also observe in Fig. 5 that similar results were obtained from the four representation
schemes when they were randomly assigned over the 121 agents (whereas totally
different results were obtained from each representation scheme in Fig. 4).

Experimental Results with the Use of a Larger Neighborhood: As in our former
study, we used a larger neighborhood structure for each agent when the agent had no
qualified neighbors as its mate. In this setting, each agent has at least one qualified
neighbor as its mate. This means that each agent has at least two candidates for its
parent strategies. As a result, some selection pressure was applied to strategies of all

222 H. Ishibuchi et al.

agents. Experimental results are summarized in Fig. 6. There is no large difference
between Figs. 5 and 6. Closer comparison between these two figures shows that the
average payoff from |NGA(i)| = 4 in Fig. 6(b) and (d) was decreased from Fig. 5. This
is because uncooperative strategies are more likely to be evolved in Fig. 6(b) and (d)
with |NGA(i)| = 4 than in the corresponding situations in Fig. 5 including 32.3 %
agents with no qualified mates.

In Table 5, we show the average number of qualified neighbors in computational
experiments for Figs. 5 and 6. In Fig. 6, a larger neighborhood structure was used for
agents with no qualified neighbors under the originally specified neighborhood
structure. Thus the average number of qualified neighbors is larger in Fig. 6 than
Fig. 5. For example, when we used the von Neumann neighborhood with four
neighbors, 32.3 % of agents had no qualified neighbors on average. A larger neigh-
borhood structure was assigned to each of those agents. As a result, the average
number of qualified neighbors was increased from 0.97 in Fig. 5 to 1.49 in Fig. 6 (see
Table 5).

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

(b) Real number strings of length 3.

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

(a) Binary strings of length 3.

(d) Real number strings of length 7. (c) Binary strings of length 7.

Fig. 4. Experimental results with a single representation scheme for all the 121 agents.

Table 4. Average percentage of agents with no qualified neighbors as mates.

Neighborhood size 4 8 12 24 40 48

Average percentage 32.3 % 10.0 % 2.8 % 0.1 % 0.0 % 0.0 %

Neighborhood Specification for Game Strategy Evolution 223

Simulation Results with the Same Number of Qualified Neighbors: In the third
setting of local mating neighborhood NGA(i), all neighbors of each agent are sorted in
a systematic manner. Then qualified neighbors are added to NGA(i) up to a pre-
specified number. In our computational experiments, we used the order of neighbors
in Fig. 3. Since our two-dimensional 11 9 11 grid-world has the torus structure, we
can use Fig. 3 for all agents (not only for the agent at the center of the grid-world). As
the number of qualified neighbors, we examined seven specifications: 1, 2, 3, 6, 10, 12
and 30. These values are 1/4 of the size of the seven neighborhood structures
examined in the previous computational experiments. When 30 was used as the
number of qualified neighbors in NGA(i), the actual number of qualified neighbor was
29 or 30 since 121 agents were divided into four subsets with 30, 30, 30 and 31 agents.

Experimental results are summarized in Fig. 7. The axis with NGA(i) in Fig. 7 is
the number of qualified neighbors whereas it is the size of NGA(i) including unqual-
ified neighbors in Figs. 5 and 6. Experimental results in Figs. 5–7 are similar to one
another. Closer examination on experimental results for |NGA(i)| = 4 and |NGA(i)| = 8
in Figs. 5–7 may suggest that Fig. 7 looks like something between Figs. 5 and 6 (see
Table 5 for the average number of qualified neighbors in Figs. 5 and 6).

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

(a) Binary strings of length 3. (b) Real number strings of length 3.

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

(c) Binary strings of length 7. (d) Real number strings of length 7.

Fig. 5. Experimental results with the randomly assigned four representation schemes. The
specified neighborhood structure for local mating was never modified (i.e., the basic setting).

224 H. Ishibuchi et al.

5 Spatial IPD Game in a Two-Dimensional
Continuous Space

In this section, we explain a different spatial IPD game model in a two-dimensional
continuous space. In our model in this section, the location of each of 121 agents is
specified as a point in a two-dimensional unit square [0, 1] 9 [0, 1] with the torus
structure. Of course, we can use any continuous space in our model. The number of
agents can also be arbitrarily specified.

As in the previous section, we assume that one of the four representation schemes
is randomly assigned to each agent. An example of the location of each agent and its
representation scheme is shown in Fig. 8. The neighborhood size can be arbitrary
specified for each agent because we can choose an arbitrarily specified number of the

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

(a) Binary strings of length 3. (b) Real number strings of length 3.

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

Average
Payoff
3.0

2.5

2.0

1.5

1.0
4 8

12
24

40
48120 4

8
12

24
40

48
120

(c) Binary strings of length 7. (d) Real number strings of length 7.

Fig. 6. Experimental results with the randomly assigned four representation schemes. A larger
neighborhood structure was used as the local mating neighborhood for each agent when the
agent has no qualified neighbor as its mate.

Table 5. The average number of qualified neighbors in Figs. 5 and 6.

Neighborhood size 4 8 12 24 40 48

Qualified neighbors in Fig. 5 0.97 1.93 2.91 5.84 9.74 11.68
Qualified neighbors in Fig. 6 1.49 2.13 3.00 5.84 9.74 11.68

Neighborhood Specification for Game Strategy Evolution 225

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3
610

12
30

4 8
12

24
40

48120

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3
610

12
30

4 8
12

24
40

48120

(a) Binary strings of length 3. (b) Real number strings of length 3.

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3 610
12

30
4 8

12
24

40
48120

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3 610
12

30
4 8

12
24

40
48120

(c) Binary strings of length 7. (d) Real number strings of length 7.

Fig. 7. Experimental results with the randomly assigned four representation schemes. Each
agent had the pre-specified number of qualified neighbors as its mate.

0.0 1.0
0.0

1.0
A B C D

Fig. 8. An example of 121 agents with a different representation scheme in the unit square. The
four representation schemes are shown by A, B, C and D (i.e., A: binary strings of length 3,
B: real number strings of length 3, C: binary strings of length 7, and D: real number strings of
length 7). Those representation schemes are randomly assigned to 30, 30, 30 and 31 agents.

226 H. Ishibuchi et al.

nearest neighbors for each agent. We use the Euclidean distance between agents when
we choose the nearest neighbors. The neighborhood structure NIPD(i) for local inter-
action includes the nearest agents independent of the representation scheme of each
agent. The neighborhood structure NGA(i) for local mating includes the nearest agents
with the same representation scheme as Agent i. Except for the specifications of these
two neighborhood structures, we can use the same specifications for the IPD game and
the cellular genetic algorithm for our spatial IPD game in the continuous space
[0, 1] 9 [0, 1] in this section as those in the 11 9 11 grid-world in Sect. 4.

6 Experimental Results on the Continuous Space

In each run of our cellular genetic algorithm, the locations of the 121 agents were
randomly specified in the unit square as in Fig. 8. One of the four representation
schemes was randomly specified to each agent in the same manner as in Sect. 4 (i.e.,
the 121 agents were divided into four subsets with 30, 30, 30 and 31 agents in each
run). As the number of neighbors in NIPD(i) for local interaction and NGA(i) for local

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3 610
12

30
4 8

12
24

40
48120

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3 610
12

30
4 8

12
24

40
48120

(a) Binary strings of length 3. (b) Real number strings of length 3.

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3 6
10

12
30

4 8
12

24
40

48120

Average
Payoff

Average
Payoff
3.0

2.5

2.0

1.5

1.0

1
2

3 6
10

12
30

4 8
12

24
40

48120

(c) Binary strings of length 7. (d) Real number strings of length 7.

Fig. 9. Experimental results of our different spatial IPD game in the two-dimensional unit
square with the randomly assigned four representation schemes over 121 agents. Each agent had
the same number of qualified neighbors as its mates.

Neighborhood Specification for Game Strategy Evolution 227

mating, we examined the same 7 9 7 combinations as in Fig. 7: |NIPD(i)| = 4, 8, 12,
24, 40, 48, 120 and |NGA(i)| = 1, 2, 3, 6, 10, 12, 30. When |NGA(i)| was specified as 30,
the actual number of neighbors in NGA(i) was 29 or 30.

Experimental results are summarized in Fig. 9. We can see that similar results
were obtained in Figs. 5–7 with the two-dimensional grid-world and Fig. 9 with the
two-dimensional unit square. This is because each specification of the local mating
neighborhood NGA(i) included almost the same number of qualified neighbors in
Figs. 5–7 and Fig. 9. One interesting observation is that Fig. 9 is more similar to
Fig. 5 than Fig. 7 whereas NGA(i) includes exactly the same number of qualified
neighbors in Figs. 7 and 9. It may need further examinations and more computational
experiments to explain why this observation was obtained.

In order to examine the effect of local interaction through the IPD game between
agents with different representation schemes on the evolution of cooperative behavior,
we performed additional computational experiments by excluding neighbors with
different representation schemes from the interaction neighborhood NIPD(i). That is,
we performed computational experiments under the following condition: each agent
was allowed to play the IPD game against its neighbors with the same representation
scheme. Under this condition, we examined the same seven specifications for the local
interaction neighborhood NIPD(i) and the local mating neighborhood NGA(i).

Average
Payoff
3.0

2.5

2.0

1.5

1.0
1 2

3
6

10
12 30 1

2
3 610

12
30

Average
Payoff
3.0

2.5

2.0

1.5

1.0
1 2

3
6

10
12 30 1

2
3 610

12
30

(a) Binary strings of length 3. (b) Real number strings of length 3.

Average
Payoff
3.0

2.5

2.0

1.5

1.0
1 2

3
6

10
12 30 1

2
3 6

10
12

30

Average
Payoff
3.0

2.5

2.0

1.5

1.0
1 2

3
6

10
12 30 1

2
3 6

10
12

30

(c) Binary strings of length 7. (d) Real number strings of length 7.

Fig. 10. Experimental results with no local interaction through the IPD game between agents
with different representation schemes. All the other settings of computational experiments are
the same as Fig. 9.

228 H. Ishibuchi et al.

Experimental results over all of the 49 combinations of those seven specifications are
summarized in Fig. 10. Experimental results in Fig. 10 were totally different from
those in Fig. 9. In Fig. 9, similar results were obtained from each of the four repre-
sentation schemes. That is, the four plots in Fig. 9 are similar to one another. How-
ever, experimental results from each representation scheme were totally different in
Fig. 10. This is because there was no interaction through the IPD game between
agents with different representation schemes in Fig. 10.

7 Conclusions

In this paper, we discussed the handling of agents with no qualified neighbors for local
mating. Those agents generated new strategies from their current strategies by
mutation. No selection pressure towards better strategies with higher average payoff
was applied to those agents. Thus those agents might have negative effects on the
evolution of cooperative behavior. We examined the three settings with respect to the
handling of those agents with no qualified neighbors through computational experi-
ments. However, the effect of those agents was not so clear. This is because the
existence of those agents prevents the population from converging not only to
cooperative strategies but also to uncooperative strategies. We also proposed the use
of a different spatial IPD game in a two-dimensional continuous space. Since we do
not use any discrete structure in the continuous space, we can arbitrarily specify the
number of agents and the size of neighborhood structures. The location of each agent
can also be arbitrarily specified in the continuous space. That is, the use of the spatial
IPD game in the continuous space makes it possible to perform various computational
experiments in a more flexible manner than the case of the grid-world. Those com-
putational experiments are left for future research.

References

1. Ashlock, D., Kim, E.Y., Leahy, N.: Understanding representational sensitivity in the
iterated prisoner’s dilemma with fingerprints. IEEE Trans. Syst. Man Cybern.: Part C 36,
464–475 (2006)

2. Ashlock, D., Kim, E.Y.: Fingerprinting: visualization and automatic analysis of prisoner’s
dilemma strategies. IEEE Trans. Evol. Comput. 12, 647–659 (2008)

3. Ashlock, D., Kim, E.Y., Ashlock, W.: Fingerprint analysis of the noisy prisoner’s dilemma
using a finite-state representation. IEEE Trans. Comput. Intell. AI Games 1, 154–167
(2009)

4. Ishibuchi, H., Ohyanagi, H., Nojima, Y.: Evolution of strategies with different
representation schemes in a spatial iterated prisoner’s dilemma game. IEEE Trans.
Comput. Intell. AI Games 3, 67–82 (2011)

5. Skolicki, Z., De Jong, K.A.: Improving evolutionary algorithms with multi-representation
island models. In: Yao, X., Burke, E.K., Lozano, J., Smith, J., Merelo-Guervós, J.,
Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 420–429. Springer, Heidelberg (2004)

Neighborhood Specification for Game Strategy Evolution 229

6. Oliphant, M.: Evolving cooperation in the non-iterated prisoner’s dilemma: the importance
of spatial organization. In: Brooks, R.A., Maes. P. (eds.) Artificial Life IV, pp. 349–352
(1994)

7. Grim, P.: Spatialization and greater generosity in the stochastic prisoner’s dilemma.
BioSystems 37, 3–17 (1996)

8. Brauchli, K., Killingback, T., Doebeli, M.: Evolution of cooperation in spatially structured
populations. J. Theor. Biol. 200, 405–417 (1999)

9. Seo, Y.G., Cho, S.B., Yao, X.: The impact of payoff function and local interaction on the N-
player iterated prisoner’s dilemma. Knowl. Inf. Syst. 2, 461–478 (2000)

10. Ishibuchi, H., Namikawa, N.: Evolution of iterated prisoner’s dilemma game strategies in
structured demes under random pairing in game playing. IEEE Trans. Evol. Comput. 9,
552–561 (2005)

11. Ishibuchi, H., Hoshino, K., Nojima, Y.: Evolution of strategies in a spatial IPD game with a
number of different representation schemes. In: Proceedings of 2012 IEEE Congress on
Evolutionary Computation, pp. 808–815 (2012)

12. Ishibuchi, H., Hoshino, K., Nojima, Y.: Strategy evolution in a spatial IPD game where
each agent is not allowed to play against itself. In: Proceedings of 2012 IEEE Congress on
Evolutionary Computation, pp. 688–695 (2012)

13. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata.
Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufman, San Mateo (1993)

230 H. Ishibuchi et al.

A Study on the Specification of a Scalarizing
Function in MOEA/D for Many-Objective

Knapsack Problems

Hisao Ishibuchi(&), Naoya Akedo, and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

{hisaoi,nojima}@cs.osakafu-u.ac.jp,

naoya.akedo@ci.cs.osakafu-u.ac.jp

Abstract. In recent studies on evolutionary multiobjective optimization,
MOEA/D has been frequently used due to its simplicity, high computational
efficiency, and high search ability. A multiobjective problem in MOEA/D is
decomposed into a number of single-objective problems, which are defined by
a single scalarizing function with evenly specified weight vectors. The number
of the single-objective problems is the same as the number of weight vectors.
The population size is also the same as the number of weight vectors. Multi-
objective search for a variety of Pareto optimal solutions is realized by single-
objective optimization of a scalarizing function in various directions. In this
paper, we examine the dependency of the performance of MOEA/D on the
specification of a scalarizing function. MOEA/D is applied to knapsack prob-
lems with 2-10 objectives. As a scalarizing function, we examine the weighted
sum, the weighted Tchebycheff, and the PBI (penalty-based boundary inter-
section) function with a wide range of penalty parameter values. Experimental
results show that the weighted Tchebycheff and the PBI function with an
appropriate penalty parameter value outperformed the weighted sum and the
PBI function with no penalty parameter in computational experiments on two-
objective problems. However, better results were obtained from the weighted
sum and the PBI function with no penalty parameter for many-objective
problems with 6-10 objectives. We discuss the reason for these observations
using the contour line of each scalarizing function. We also suggest potential
usefulness of the PBI function with a negative penalty parameter value for
many-objective problems.

Keywords: Evolutionary multiobjective optimization � Many-objective
problems � MOEA/D � Scalarizing functions

1 Introduction

Recently, high search ability of MOEA/D (multiobjective evolutionary algorithm
based on decomposition [1]) has been reported in many studies [2–8]. MOEA/D is a
simple and efficient scalarizing function-based EMO (evolutionary multiobjective
optimization) algorithm. MOEA/D has clear advantages over Pareto dominance-based

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 231–246, 2013.
DOI: 10.1007/978-3-642-44973-4_24, � Springer-Verlag Berlin Heidelberg 2013

EMO algorithms such as NSGA-II [9] and SPEA2 [10]. For example, its scalarizing
function-based fitness evaluation is very fast even for many-objective problems. Its
hybridization with local search and other heuristics is often very easy.

One important issue in the implementation of MOEA/D is the choice of an
appropriate scalarizing function. In our former study [11], we proposed an idea of
automatically switching between the weighted sum and the weighted Tchebycheff
during the execution of MOEA/D. We also proposed an idea of simultaneously using
multiple scalarizing functions [12]. In the original study on MOEA/D [1], the
weighted sum and the weighted Tchebycheff were used for multiobjective knapsack
problems while the weighted Tchebycheff and the PBI (penalty-based boundary
intersection) function were used for multiobjective continuous optimization. Good
results were obtained from a different scalarizing function for a different test problem.

In this paper, we compare the weighted sum, the weighted Tchebycheff and the
PBI function with each other, which were used in the original study on MOEA/D [1].
We examine a wide range of penalty parameter values in the PBI function. As test
problems, we use multiobjective knapsack problems with 2-10 objectives. One of our
test problems is the 2-500 (two-objective 500-item) knapsack problem in Zitzler and
Thiele [13]. Many-objective test problems with 4-10 objectives are generated by
adding new objectives to the 2-500 problem. Objectives in some test problems are
strongly correlated [14] while objectives in other problems are not. MOEA/D with a
different scalarizing function shows a different search behavior on each test problem.

This paper is organized as follows. In Sect. 2, we explain our implementation of
MOEA/D, which is its basic version with no archive population [1]. In Sect. 2, we also
explain the three scalarizing functions used in [1]: the weighted sum, the weighted
Tchebycheff, and the PBI function. In Sect. 3, we compare the three scalarizing
functions through computational experiments on the 2-500 problem. Experimental
results by each scalarizing function are explained using its contour lines. It is also
shown that the PBI function with different penalty parameter values has totally dif-
ferent contour lines. In Sect. 4, we examine the performance of each scalarizing
function through computational experiments on many-objective problems. In Sect. 5,
we suggest a potential usefulness of the PBI function with a negative penalty
parameter value. Finally we conclude this paper in Sect. 6.

2 MOEA/D Algorithm

We explain the basic version of MOEA/D [1] with no archive population for the
following m-objective maximization problem:

Maximize f ðxÞ ¼ ðf1 xð Þ; f2 xð Þ; . . .; fm xð ÞÞ; ð1Þ

where f(x) is an m-dimensional objective vector, fi(x) is the ith objective to be
maximized, and x is a decision vector. The use of the basic version is to concentrate
on a choice of a scalarizing function. The maintenance of an archive population needs
additional special care and large computation load in many-objective optimization.

232 H. Ishibuchi et al.

The multiobjective problem in (1) is decomposed into a number of single-
objective problems defined by a scalarizing function with different weight vectors. We
examine the weighted sum, the weighted Tchebycheff and the PBI function used in
[1]. The weighted sum is written using the weight vector k =(k1, k2, …, km) as

gWS xjkð Þ ¼ k1 � f1 xð Þ þ k2 � f2 xð Þ þ � � � þ km � fm xð Þ: ð2Þ

The weighted sum is to be maximized in its application to our multiobjective
maximization problem. The weighted Tchebycheff in [1] is written using the weight
vector k and a reference point z� ¼ z�1; z�2; . . .; z�m

� �
as

gTE xjk; z�ð Þ ¼ max
i¼1;2;...;m

ki � jz�i � fiðxÞj
� �

: ð3Þ

The weighted Tchebycheff is to be minimized. As in computational experiments in
[1], we use the following specification of the reference point z*:

z�i ¼ 1:1 �max fiðxÞjx 2 XðtÞf g; i ¼ 1; 2; . . .; m; ð4Þ

where X(t) is the population at the tth generation.
Zhang and Li [1] also used the PBI (penalty-based boundary intersection)

function:

gPBI xjk; z�ð Þ ¼ d1 þ h d2; ð5Þ

d1 ¼
z� � f xð Þð ÞTk

�� ��

kk k ; ð6Þ

d2 ¼ f xð Þ � z� � d1kð Þk k: ð7Þ

In this formulation, z* is the reference point in (4) and h is a user-definable penalty
parameter. In [1], h was specified as h = 5. The PBI function is to be minimized. For
detailed explanations on scalarizing functions and their characteristic features, see
textbooks on multiobjective optimization (e.g., see Miettinen [15])

In each of the three scalarizing functions, all weight vectors k = (k1, k2, …, km)
satisfying the following two conditions are used for the m-objective problem:

k1 þ k2 þ � � � þ km ¼ 1; ð8Þ

ki 2 0;
1
H
;

2
H
; . . .;

H

H

� �
; i ¼ 1; 2; . . .; m; ð9Þ

where H is a user-definable positive integer. For example, we have a set of evenly
specified two-dimensional 101 vectors for H = 100 and m = 2: k = (0, 1), (0.01, 0.99),
(0.02, 0.98), …, (0.99, 0.01), (1, 0). The number of weight vectors can be calculated as
N = H+m-1Cm-1. The number of weight vectors is the same as the population size.

Let N be the number of weight vectors (i.e., N is the population size). We denote
N weight vectors as kk, k = 1, 2,…, N. Each weight vector kk has the nearest T weight
vectors as its neighbors where T is a user-definable positive integer. In MOEA/D, first

A Study on the Specification of a Scalarizing Function in MOEA/D 233

N solutions are randomly generated as an initial population in the same manner as in
other evolutionary algorithms. Each solution is assigned to a different weight vector.

Let xk be the solution assigned to the kth weight vector kk. For each weight vector
kk with the current solution xk, a pair of parent solutions is randomly selected from its
neighbors to generate a new solution yk by crossover and mutation. The newly
generated solution yk is compared with the current solution xk using a scalarizing
function with the kth weight vector kk. If the newly generated solution yk is better, the
current solution xk is replaced with yk. The newly generated solution yk is also
compared with each of its neighbors. Let kh be a neighbor of the kth weight vector kk.
The newly generated solution yk for the kth weight vector kk is compared with the
current solution xh of each neighbor kh using the scalarizing function with the
neighbor’s weight vector kh. If yk is better, the current solution xh is replaced with yk.
In this manner, the newly generated solution for each weight vector is locally com-
pared with its own and its neighbors’ current solutions.

In MOEA/D, local and global parent selection can be probabilistically used. In our
implementation, we always use the above-mentioned local parent solution. The upper
bound on the number of replaced current solutions with a newly generated one can be
specified in MOEA/D. We do not use any upper bound on the number of replaced
current solutions in our implementation. MOEA/D also has an option of using an
archive population to store non-dominated solutions. We do not use any archive
population. All of these settings are to clearly examine the effect of the choice of a
scalarizing function on the performance of MOEA/D under a simple situation.

3 Experimental Results on a Two-Objective
Knapsack Problem

In this section, we report experimental results on the 2-500 (two-objective 500-item)
knapsack problem in Zitzler and Thiele [13]. This problem is written as follows:

Maximize fiðxÞ ¼
Xn

j¼1

pijxj; i ¼ 1; 2 ; ð10Þ

subject to
Xn

j¼1

wijxj� ci; i ¼ 1; 2 ; ð11Þ

xj ¼ 0 or 1; j ¼ 1; 2; . . .; n ; ð12Þ

where n is the number of items (i.e., n = 500), x is a 500-bit binary string, pij is the
profit of item j according to knapsack i, wij is the weight of item j according to
knapsack i, and ci is the capacity of knapsack i [13]. The values of each profit pij and
each weight wij were randomly specified integers in [10, 100], and the constant value
ci was set as a half of the total weight value (i.e., ci = (wi1 + wi2 + ��� + win)/2) in [13].
In the next section, we generate many-objective knapsack problems by adding new
objectives to the 2-500 problem.

234 H. Ishibuchi et al.

We applied MOEA/D with the weighted sum, the weighted Tchebycheff, and the
PBI function (h = 5) to the 2-500 problem using the following specifications:

Coding: 500-bit binary string, Population size: 200,
Termination condition: 20092000 solution evaluations,
Parent selection: Random selection from the neighborhood,
Crossover: Uniform crossover (Probability: 0.8),
Mutation: Bit-flip mutation (Probability: 1/500 for each bit),
Constraint Handling: Maximum profit/weight ratio-based repair in [13],
Number of runs of MOEA/D with each scalarizing function: 100 runs.

Solutions in the final generation of a single run of MOEA/D with each scalarizing
function are shown in Fig. 1a–c. Figure 1d shows the 50 % attainment surface over
100 runs of MOEA/D with each scalarizing function. In Fig. 1, better distributions of
solutions were obtained by the weighted Tchebycheff and the PBI function (h = 5).

Fig. 1. Experimental results on the 2-500 problem.

A Study on the Specification of a Scalarizing Function in MOEA/D 235

In Fig. 2, we show the contour lines of each scalarizing function for the weighted
vector k = (0.5, 0.5). Contour lines have been used to explain scalarizing functions in
the literature [15]. When we used the weighted sum in Fig. 2a, the same solution was
often obtained from different weight vectors. As a result, many solutions were not
obtained in Fig. 1a. In the case of the weighted Tchebycheff in Fig. 2b, the same
solution was not often obtained from different weight vectors. Thus more solutions
were obtained in Fig. 1b than Fig. 1a. The best results with respect to the number of
solutions were obtained in Fig. 1 from the PBI function with h = 5 in Fig. 1c due to
the sharp edge of the contour lines in Fig. 2c. In Fig. 1d, the PBI function slightly
outperformed the weighted Tchebycheff with respect to the width of the obtained
solution sets along the Pareto front.

The shape of the contour lines of the PBI function totally depends on the value of
h. Figure 3 shows the contour lines of the PBI function with some other values of h.
When h = 0, the contour lines in Fig. 3a are similar to those of the weighted sum in
Fig. 2a. The contour lines of the PBI function with h = 1 in Fig. 3b look somewhat
similar to those of the weighted Tchebycheff in Fig. 2b. The valley of the contour
lines in Fig. 3c with h = 50 is much longer than that in Fig. 2c with h = 5. This means
that the contour lines with h = 50 have a sharper edge, which leads to slower con-
vergence speed towards the reference point (i.e., towards the Pareto front).

Fig. 2. Contour lines of the three scalarizing functions.

Fig. 3. Contour lines of the PBI function with different values of the penalty parameter h.

236 H. Ishibuchi et al.

Figure 4 shows experimental results using each value of the penalty parameter h in
Fig. 3. As expected, the use of h = 50 in Fig. 4c deteriorated the convergence ability
of MOEA/D from Fig. 1c with h = 5. Figure 4a with h = 0 is similar to Fig. 1a with
the weighted sum. However, Fig. 4b with h = 1 is not similar to Fig. 1b with the
weighted Tchebycheff. This is because the contour lines of the two scalarizing
functions are not similar to each other for other weight vectors (see Fig. 5).

Figure 5 shows the contour lines of each scalarizing function for the five weight
vectors: k = (1, 0), (0.75, 0.25), (0.5, 0.5), (0.25, 0.75), (0, 1). The contour lines of the
weighted sum are similar to those of the PBI function with h = 0 in Fig. 5. Thus
similar results were obtained from these two scalarizing functions in Figs. 1 and 4.
Except for the PBI function with h = 1, the contour lines are (almost) vertical or
(almost) horizontal when k = (1, 0) and k = (0, 1). Thus a wide variety of solutions
were obtained in Figs. 1 and 4 except for the case of the PBI function with h = 1.

Fig. 4. Experimental results by the PBI function on the 2-500 problem.

A Study on the Specification of a Scalarizing Function in MOEA/D 237

4 Experimental Results on Many-Objective Knapsack
Problems

We generated many-objective test problems by adding new objectives to the 2-500
problem. More specifically, we generated eight additional objectives fi(x) in the form
of Eq. (10) by randomly specifying the value of the profit pij as an integer in [10, 100]
for i = 3, 4, …, 10 and j = 1, 2, …, 500. Then we specified ten new objectives gi(x) in
the following manner using a real number parameter a (0� a� 1) where a can be
viewed as the correlation strength among the generated objectives:

g1ðxÞ ¼ f1ðxÞ and g2ðxÞ ¼ f2ðxÞ; ð13Þ

giðxÞ ¼ a f1ðxÞ þ ð1� aÞfiðxÞ for i ¼ 3; 5; 7; 9; ð14Þ

giðxÞ ¼ a f2ðxÞ þ ð1� aÞfiðxÞ for i ¼ 4; 6; 8; 10: ð15Þ

Using these ten objectives gi(x), i = 1, 2, …, 10 and the constraint conditions of the
original 2-500 knapsack problem in (10)–(12), we generated many-objective knapsack
problems with four, six, eight and ten objectives (i.e., 4-500, 6-500, 8-500 and 10-500

Fig. 5. Contour lines of the scalarizing functions for various weight vectors.

238 H. Ishibuchi et al.

problems). It should be noted that all of those test problems have the same constraint
condition as in the 2-500 problem. This means that all of our test problems have the
same feasible solution set as in the 2-500 problem.

In one extreme case with a = 1 in (13)–(15), our many-objective test problems
have only two different objectives g1(x) and g2(x) (i.e., f1(x) and f2(x) of the 2-500
problem). In the other extreme case with a = 0, all objectives gi(x) are totally different
from each other and have no strong correlation since profit values were randomly
specified in each objective. We examined six values of a: a = 0, 0.2, 0.4, 0.6, 0.8, 1.

We applied MOEA/D with the weighted sum, the weighed Tchebycheff and the
PBI function (h = 0, 0.1, 0.5, 1, 5, 10, 50) to our many-objective 4-500, 6-500, 8-500
and 10-500 problems with a = 0, 0.2, 0.4, 0.6, 0.8, 1. For comparison, we also applied
NSGA-II and SPEA2 to the same test problems. Computational experiments were
performed using the same parameter specifications as in Sect. 3 except for the pop-
ulation size in MOEA/D due to the combinatorial nature of the number of weight
vectors. The population size in MOEA/D was specified as 220 (4-500), 252 (6-500),
120 (8-500), and 220 (10-500). In NSGA-II and SPEA2, the population size was
always specified as 200. We evaluated the performance of each algorithm on each test
problem using the average hypervolume over 100 runs. The origin of the objective
space of each test problem (i.e., (0, 0, …, 0)) was used as a reference point for
hypervolume calculation.

Experimental results are summarized in Tables 1, 2, 3 and 4 where all experi-
mental results are normalized using the results of MOEA/D with the weighted sum for
each test problem. The average hypervolume value by MOEA/D with the weighted
sum is normalized as 1.00. In Table 1, experimental results on the 2-500 problem are
also included for comparison. The largest normalized average hypervolume value for
each test problem is highlighted by bold face in Tables 1, 2, 3 and 4. Good results
were obtained for all test problems by MOEA/D with the weighted sum and the PBI
function with h = 0. The weighted Tchebycheff did not work well on many-objective
problems with no or small correlation among objectives (e.g., 10-500 with a = 0.2)
while it worked well on many-objective problems with highly correlated objectives
(e.g., 10-500 with a = 0.8). It also worked well on the 2-500 and 4-500 problems.
For the 2-500 problem, the best results were obtained by the PBI function with h = 5
and h = 10.

Table 1. Normalized average hypervolume on the 4-500 problems.

Problem
(4-500)

NSGA-II SPEA2 Weighted
sum

Tchebycheff PBI (h)

0 0.1 0.5 1 5 10 50

a = 0.0 0.86 0.85 1.00 1.00 1.00 0.96 0.82 0.78 0.92 0.94 0.95
a = 0.2 0.90 0.89 1.00 1.01 1.00 0.97 0.85 0.83 0.94 0.95 0.96
a = 0.4 0.95 0.92 1.00 1.01 1.00 0.97 0.88 0.87 0.96 0.97 0.98
a = 0.6 0.96 0.94 1.00 1.01 1.00 0.97 0.89 0.88 0.97 0.99 1.00
a = 0.8 0.95 0.94 1.00 1.01 1.00 0.97 0.89 0.88 0.97 0.99 1.00
a = 1.0 0.94 0.94 1.00 1.02 1.00 0.98 0.88 0.87 0.97 0.99 1.00
2-500 0.96 0.96 1.00 1.01 1.00 0.99 0.93 0.97 1.02 1.02 1.01

A Study on the Specification of a Scalarizing Function in MOEA/D 239

As pointed out by many studies [16–21], Pareto dominance-based EMO algo-
rithms do not work well on many-objective problems. In Tables 1, 2, 3 and 4, we can
observe the performance deterioration of NSGA-II and SPEA2 by the increase in the
number of objectives. In the case of a two-objective maximization problem, a solution
is dominated by other solutions in its upper right region of the objective space.
The relative size of this region can be viewed as being 1/4 of the objective space. The
relative size of this region exponentially decreases as the number of objectives
increases (e.g., 1/1024 in the case of ten objectives). This is the reason why Pareto
dominance-based EMO algorithms do not work well on many-objective problems.

The same reason can be used to explain why the performance of MOEA/D with
the weighted Tchebycheff was deteriorated by the increase in the number of objec-
tives. Let us assume a solution of the 2-500 problem at the corner of a contour line of
the weighted Tchebycheff in Fig. 2b. This solution is outperformed by other solutions
in its upper right region. The relative size of this region can be viewed as being 1/4 of
the objective space. The relative size of this region exponentially decreases as the

Table 2. Normalized average hypervolume on the 6-500 problems.

Problem
(6-500)

NSGA-II SPEA2 Weighted
sum

Tchebycheff PBI (h)

0 0.1 0.5 1 5 10 50

a = 0.0 0.78 0.74 1.00 0.94 1.00 0.96 0.79 0.67 0.76 0.77 0.78
a = 0.2 0.86 0.81 1.00 0.97 1.00 0.96 0.82 0.74 0.81 0.82 0.83
a = 0.4 0.93 0.89 1.00 0.99 1.00 0.97 0.86 0.80 0.87 0.89 0.90
a = 0.6 0.97 0.92 1.00 1.00 1.00 0.97 0.87 0.82 0.89 0.91 0.93
a = 0.8 0.96 0.92 1.00 1.02 1.00 0.97 0.86 0.82 0.89 0.90 0.92
a = 1.0 0.94 0.93 1.00 1.01 1.00 0.98 0.86 0.82 0.89 0.91 0.93

Table 3. Normalized average hypervolume on the 8-500 problems.

Problem
(8-500)

NSGA-II SPEA2 Weighted
sum

Tchebycheff PBI (h)

0 0.1 0.5 1 5 10 50

a = 0.0 0.73 0.68 1.00 0.90 1.00 0.96 0.78 0.66 0.68 0.70 0.71
a = 0.2 0.83 0.77 1.00 0.91 1.00 0.96 0.82 0.72 0.74 0.76 0.77
a = 0.4 0.92 0.86 1.00 0.94 1.00 0.97 0.85 0.78 0.81 0.82 0.83
a = 0.6 0.97 0.91 1.00 0.99 1.00 0.97 0.86 0.80 0.83 0.85 0.86
a = 0.8 0.99 0.94 1.00 1.02 1.00 0.98 0.87 0.81 0.84 0.86 0.87
a = 1.0 0.98 0.97 1.00 1.01 1.00 1.00 0.88 0.82 0.85 0.87 0.89

Table 4. Normalized average hypervolume on the 10-500 problems.

Problem
(10-500)

NSGA-II SPEA2 Weighted
sum

Tchebycheff PBI (h)

0 0.1 0.5 1 5 10 50

a = 0.0 0.66 0.60 1.00 0.87 1.00 0.95 0.76 0.63 0.62 0.64 0.65
a = 0.2 0.77 0.71 1.00 0.87 1.00 0.95 0.79 0.69 0.68 0.70 0.72
a = 0.4 0.88 0.82 1.00 0.91 1.00 0.96 0.83 0.74 0.75 0.77 0.78
a = 0.6 0.96 0.90 1.00 0.98 1.00 0.97 0.84 0.78 0.78 0.80 0.82
a = 0.8 1.00 0.94 1.00 1.02 1.00 0.98 0.85 0.79 0.80 0.81 0.83
a = 1.0 1.00 0.99 1.00 1.01 1.00 1.01 0.88 0.81 0.82 0.84 0.86

240 H. Ishibuchi et al.

number of objective increases. As a result, it becomes very difficult for MOEA/D to
find a better solution with respect to the weighted Tchebycheff. That is, the conver-
gence of solutions towards the reference point using the weighted Tchebycheff is
slowed down by the increase in the number of objectives. The performance deterio-
ration of MOEA/D due to the increase in the number of objectives was more severe in
Tables 1, 2, 3 and 4 for the PBI function than the weighted Tchebycheff except for the
case of zero or small penalty values. This is because the contour lines of the PBI
function have a sharper edge than those of the weighted Tchebycheff. It is more
difficult for MOEA/D to find a better solution with respect to the PBI function with a
large penalty parameter value than the case of the weighted Tchebycheff.

In Tables 1, 2, 3 and 4, we also observe that NSGA-II worked well on many-
objective problems with highly correlated objectives (e.g., 10-500 with a = 0.8) as
pointed out in [14]. This is because the relative size of the above-mentioned domi-
nating region in the objective space does not exponentially decrease with the number
of highly correlated objectives (i.e., many solutions are not non-dominated with each
other in the case of highly correlated objectives). As a result, the performance of
NSGA-II and SPEA2 was not severely deteriorated by the increase in the number of
objectives in Tables 1, 2, 3 and 4. For the same reason, MOEA/D with the weighted
Tchebycheff worked well on many-objective problems with highly correlated
objectives.

5 Use of a Negative Penalty Parameter Value

In Tables 1, 2, 3 and 4, the performance of MOEA/D with the PBI function on many-
objective problems was improved by using a smaller value for the penalty parameter h
(e.g., see the results on the 10-500 problem with a = 0.0). From this observation, one
may think that better results would be obtained from a negative value of h.

To examine this issue, we further performed computational experiments using
three negative values of h: h = -1, -0.5, -0.1. Experimental results are summarized
in Tables 5, 6, 7 and 8 where the normalized average hypervolume is calculated in the
same manner as in Tables 1, 2, 3 and 4. The origin of the objective space of each test
problem was used in Tables 5, 6, 7 and 8 for hypervolume calculation as in Tables 1,
2, 3 and 4. We can see from Tables 5, 6, 7 and 8 that the best results were obtained

Table 5. Normalized average hypervolume on 4-500 (reference point: origin).

Problem
(4-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 1.00 0.78 0.95 1.03 1.00 0.96 0.82 0.78 0.92 0.94 0.95
a = 0.2 1.00 1.01 0.80 0.98 1.03 1.00 0.97 0.85 0.83 0.94 0.95 0.96
a = 0.4 1.00 1.01 0.80 0.99 1.02 1.00 0.97 0.88 0.87 0.96 0.97 0.98
a = 0.6 1.00 1.01 0.79 0.97 1.02 1.00 0.97 0.89 0.88 0.97 0.99 1.00
a = 0.8 1.00 1.01 0.75 0.94 1.02 1.00 0.97 0.89 0.88 0.97 0.99 1.00
a = 1.0 1.00 1.02 0.71 0.92 1.01 1.00 0.98 0.88 0.87 0.97 0.99 1.00
2-500 1.00 1.01 0.93 0.99 1.01 1.00 0.99 0.93 0.97 1.02 1.02 1.01

A Study on the Specification of a Scalarizing Function in MOEA/D 241

from the PBI function with h = -0.1 for almost all test problems except for those with
highly correlated objectives.

These experimental results in Tables 5, 6, 7 and 8, however, are somewhat
misleading. In Fig. 6a, we show all solutions in the final generation of a single run of
MOEA/D on the 2-500 problem for the case of the PBI function with h = -0.1. We
can see that no solutions were obtained around the center of the Pareto front. Such a
distribution of the obtained solutions can be explained by the concave shape of the
contour lines of the PBI function with h = -0.1, which are shown in Fig. 6b. Due to
the concave contour lines, MOEA/D with the PBI function tends to search for solu-
tions around the edges of the Pareto front even when the weight vector k is specified as
(0.5, 0.5). As a result, no solutions were obtained around the center of the Pareto front
in Fig. 6a.

In Tables 1, 2, 3, 4, 5, 6, 7 and 8 we used the origin of the objective space as the
reference point for hypervolume calculation. Since the origin is far from the Pareto
front of each test problem, extreme solutions around the edge of the Pareto front have

Table 6. Normalized average hypervolume on 6-500 (reference point: origin).

Problem
(6-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.94 0.53 0.83 1.03 1.00 0.96 0.79 0.67 0.76 0.77 0.78
a = 0.2 1.00 0.97 0.55 0.86 1.04 1.00 0.96 0.82 0.74 0.81 0.82 0.83
a = 0.4 1.00 0.99 0.56 0.88 1.03 1.00 0.97 0.86 0.80 0.87 0.89 0.90
a = 0.6 1.00 1.00 0.53 0.86 1.02 1.00 0.97 0.87 0.82 0.89 0.91 0.93
a = 0.8 1.00 1.02 0.46 0.81 1.01 1.00 0.97 0.86 0.82 0.89 0.90 0.92
a = 1.0 1.00 1.01 0.42 0.74 1.00 1.00 0.98 0.86 0.82 0.89 0.91 0.93

Table 7. Normalized average hypervolume on 8-500 (reference point: origin).

Problem
(8-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.90 0.00 0.56 1.02 1.00 0.96 0.78 0.66 0.68 0.70 0.71
a = 0.2 1.00 0.91 0.00 0.57 1.03 1.00 0.96 0.82 0.72 0.74 0.76 0.77
a = 0.4 1.00 0.94 0.00 0.58 1.03 1.00 0.97 0.85 0.78 0.81 0.82 0.83
a = 0.6 1.00 0.99 0.00 0.59 1.00 1.00 0.97 0.86 0.80 0.83 0.85 0.86
a = 0.8 1.00 1.02 0.00 0.48 0.99 1.00 0.98 0.87 0.81 0.84 0.86 0.87
a = 1.0 1.00 1.01 0.00 0.41 0.97 1.00 1.00 0.88 0.82 0.85 0.87 0.89

Table 8. Normalized average hypervolume on 10-500 (reference point: origin).

Problem
(10-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.87 0.00 0.36 1.01 1.00 0.95 0.76 0.63 0.62 0.64 0.65
a = 0.2 1.00 0.87 0.00 0.38 1.04 1.00 0.95 0.79 0.69 0.68 0.70 0.72
a = 0.4 1.00 0.91 0.00 0.43 1.03 1.00 0.96 0.83 0.74 0.75 0.77 0.78
a = 0.6 1.00 0.98 0.00 0.41 1.00 1.00 0.97 0.84 0.78 0.78 0.80 0.82
a = 0.8 1.00 1.02 0.00 0.30 0.97 1.00 0.98 0.85 0.79 0.80 0.81 0.83
a = 1.0 1.00 1.01 0.00 0.23 0.94 1.00 1.01 0.88 0.81 0.82 0.84 0.86

242 H. Ishibuchi et al.

large effects on hypervolume calculation [22]. This is why the best results were
obtained from the PBI function with h = -0.1 in Tables 5, 6, 7 and 8. Good results
from h = -0.1 also suggest the importance of diversity improvement even for many-
objective problems [23].

In Tables 9, 10, 11 and 12, we recalculated the normalized average hypervolume
using another reference point closer to the Pareto front for each test problem. For each
test problem, we used (15000, 15000, …, 15000) as the reference point for hyper-
volume calculation. This setting of hypervolume calculation increases the importance
of the convergence of solutions around the center of the Pareto front. Thus the nor-
malized average hypervolume value by the PBI function with h = -0.1 was deteri-
orated for almost all test problems in Tables 9, 10, 11 and 12 (e.g., see the last row in
Table 9 on the 2-500 problem).

Fig. 6. Experimental results by the PBI function with h = -0.1 on the 2-500 problem.

Table 9. Normalized average hypervolume on 4-500 (reference point: 15000).

Problem
(4-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.77 0.00 0.07 0.92 1.00 0.98 0.63 0.52 0.92 0.91 0.85
a = 0.2 1.00 0.84 0.00 0.26 1.00 1.00 0.94 0.61 0.53 0.88 0.91 0.90
a = 0.4 1.00 0.91 0.00 0.37 1.02 1.00 0.94 0.65 0.60 0.91 0.94 0.95
a = 0.6 1.00 0.93 0.00 0.28 1.02 1.00 0.95 0.68 0.65 0.95 0.99 1.01
a = 0.8 1.00 0.97 0.00 0.18 1.00 1.00 0.95 0.70 0.67 0.96 1.00 1.03
a = 1.0 1.00 1.06 0.00 0.09 0.86 1.00 1.03 0.79 0.75 1.06 1.11 1.14
2-500 1.00 1.04 0.03 0.48 0.95 1.00 0.97 0.79 0.91 1.04 1.02 0.94

A Study on the Specification of a Scalarizing Function in MOEA/D 243

6 Conclusions

In this paper, we examined the choice of a scalarizing function in MOEA/D for many-
objective knapsack problems. Good results were obtained from the weighted sum over
various settings of test problems. With respect to the specification of the penalty
parameter in the PBI function, we obtained the following interesting observations:

(i) The best hypervolume values were obtained from a small negative parameter
value (i.e., h = -0.1) when a reference point was far from the Pareto front. In
this case, the search of MOEA/D was biased towards the edges of the Pareto
front.

(ii) When a reference point was close to the Pareto front, the best hypervolume
values were obtained from a small positive parameter value (i.e., h = 0.1).

(iii) Almost the same results were obtained from h = 0 and the weighed sum.

Table 10. Normalized average hypervolume on 6-500 (reference point: 15000).

Problem
(6-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.42 0.00 0.00 0.76 1.00 1.10 0.78 0.38 0.66 0.69 0.71
a = 0.2 1.00 0.53 0.00 0.02 0.91 1.00 0.99 0.64 0.37 0.59 0.63 0.65
a = 0.4 1.00 0.70 0.00 0.08 0.95 1.00 0.97 0.66 0.46 0.70 0.76 0.79
a = 0.6 1.00 0.82 0.00 0.06 0.94 1.00 0.98 0.71 0.53 0.78 0.83 0.88
a = 0.8 1.00 1.02 0.00 0.02 0.76 1.01 1.09 0.81 0.65 0.89 0.95 1.01
a = 1.0 1.00 1.13 0.00 0.00 0.72 1.00 1.25 1.03 0.84 1.14 1.23 1.31

Table 11. Normalized average hypervolume on 8-500 (reference point: 15000).

Problem
(8-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.67 0.00 0.00 0.51 1.01 1.35 1.21 0.58 0.66 0.77 0.83
a = 0.2 1.00 0.58 0.00 0.00 0.72 1.00 1.11 0.81 0.43 0.51 0.57 0.62
a = 0.4 1.00 0.70 0.00 0.00 0.80 1.00 1.05 0.76 0.47 0.57 0.63 0.68
a = 0.6 1.00 0.97 0.00 0.00 0.73 0.99 1.17 0.94 0.65 0.77 0.86 0.92
a = 0.8 1.00 1.37 0.00 0.00 0.63 1.00 1.32 1.29 0.95 1.13 1.24 1.31
a = 1.0 1.00 1.37 0.00 0.00 0.45 0.99 1.55 1.80 1.43 1.66 1.81 1.90

Table 12. Normalized average hypervolume on 10-500 (reference point: 15000).

Problem
(10-500)

Weighted
sum

Tchebycheff PBI (h)

-1 -0.5 -0.1 0 0.1 0.5 1 5 10 50

a = 0.0 1.00 0.69 0.00 0.00 0.39 1.01 1.47 1.39 0.59 0.55 0.68 0.78
a = 0.2 1.00 0.57 0.00 0.00 0.64 1.00 1.15 0.82 0.38 0.37 0.44 0.51
a = 0.4 1.00 0.65 0.00 0.00 0.73 0.98 1.06 0.72 0.41 0.43 0.49 0.55
a = 0.6 1.00 0.93 0.00 0.00 0.68 0.99 1.19 0.94 0.62 0.66 0.74 0.81
a = 0.8 1.00 1.37 0.00 0.00 0.51 0.98 1.38 1.38 0.99 1.05 1.16 1.25
a = 1.0 1.00 1.46 0.00 0.00 0.33 1.00 1.77 2.31 1.75 1.89 2.02 2.19

244 H. Ishibuchi et al.

References

1. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

2. Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling problems.
In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1433–1438 (2008)

3. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09
unconstrained MOP test instances. In: Proceedings of IEEE Congress on Evolutionary
Computation, pp. 203–208 (2009)

4. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets,
MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13, 284–302 (2009)

5. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective
optimization by NSGA-II and MOEA/D with large populations. In: Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics, pp. 1820–1825 (2009)

6. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by
MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14, 456–474 (2010)

7. Tan, Y.Y., Jiao, Y.C., Li, H., Wang, X.K.: A modification to MOEA/D-DE for
multiobjective optimization problems with complicated pareto sets. Inf. Sci. 213, 14–38
(2012)

8. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary
algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16,
442–446 (2012)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. TIK-Report 103, Department of Electrical Engineering, ETH, Zurich (2001)

11. Ishibuchi, H., Hitotsuyanagi, Y., Ohyanagi, H., Nojima, Y.: Effects of the existence of
highly correlated objectives on the behavior of MOEA/D. In: Takahashi, R.H.C., Deb, K.,
Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 166–181. Springer,
Heidelberg (2011)

12. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous use of different
scalarizing functions in MOEA/D. In: Proceedings of Genetic and Evolutionary
Computation Conference, pp. 519–526 (2010)

13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

14. Ishibuchi, H., Hitotsuyanagi, Y., Ohyanagi, H., Nojima, Y.: Effects of the existence of
highly correlated objectives on the behavior of MOEA/D. In: Takahashi, R.H.C., Deb, K.,
Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 166–181. Springer,
Heidelberg (2011)

15. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)
16. Hughes, E. J.: Evolutionary many-objective optimisation: many once or one many? In:

Procedings of IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)
17. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting

objectives. IEEE Trans. Evol. Comput. 11, 770–784 (2007)
18. Sato, H., Aguirre, H.E., Tanaka, K.: Local dominance and local recombination in MOEAs

on 0/1 multiobjective knapsack problems. Eur. J. Oper. Res. 181, 1708–1723 (2007)
19. Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of scalability

improvement attempts on the performance of NSGA-II for many-objective problems. In:
Proceedings of Genetic and Evolutionary Computation Conference, pp. 649–656 (2008)

A Study on the Specification of a Scalarizing Function in MOEA/D 245

20. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a
short review. In: Proceedings of IEEE Congress on Evolutionary Computation,
pp. 2424–2431 (2008)

21. Kowatari, N., Oyama, A., Aguirre, H., Tanaka, K.: Analysis on population size and
neighborhood recombination on many-objective optimization. In: Coello, C.A.C., Cutello,
V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II.LNCS, vol.
7492, pp. 22–31. Springer, Heidelberg (2012)

22. Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between single-objective and multi-
objective genetic algorithms: performance comparison and performance measures. In:
Proceedings of IEEE Congress on Evolutionary Computation, pp. 3959–3966 (2006)

23. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Diversity improvement by non-geometric binary
crossover in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 14,
985–998 (2010)

246 H. Ishibuchi et al.

Portfolio with Block Branching
for Parallel SAT Solvers

Tomohiro Sonobe(B) and Mary Inaba

Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan

tominlab@gmail.com

Abstract. A portfolio approach has become a widespread method for
parallelizing SAT solvers. In comparison with a divide-and-conquer app-
roach, an important feature of the portfolio approach is that there is no
need to conduct load-balancing for workers. Instead of load-balancing,
the portfolio makes a diversification of workers by differentiating their
search parameters. However, it is difficult to achieve effective diversifica-
tion in a massively parallel environment because the number of combi-
nations of the search parameters is limited. Thus, many overlaps of the
search spaces between the workers can occur in such an environment.
In order to prevent these overlaps, we propose a novel diversification
method, called block branching, for the portfolio approach. Preliminary
experimental results show that our approach works well, even in a small
parallel setting (sixteen processes), and shows potential for a massively
parallel environment.

Keywords: SAT solver · Portfolio · Diversification

1 Introduction

The Boolean satisfiability (SAT) problem asks whether an assignment of vari-
ables exists that can evaluate a given formula as true. A formula is given in
Conjunctive Normal Form (CNF), which is a conjunction of clauses. A clause
is a disjunction of literals, where a literal is a positive or a negative form of a
Boolean variable. The solvers for this problem are called SAT solvers. Today,
there are many real applications [6] of SAT solvers, such as AI planning, circuit
design, and software verification. Many state-of-the-art SAT solvers are based
on the Davis-Putnam-Logeman-Loveland (DPLL) algorithm. In recent decades,
conflict-driven clause learning and non-chronological backtracking, Variable
State Independent Decaying Sum (VSIDS) decision heuristic [7], and restart
[3] were added to DPLL, which improved the performance of DPLL SAT solvers
significantly. Today, these solvers are called Conflict Driven Clause Learning
(CDCL) solvers [1].

State-of-the-art parallel SAT solvers are also built upon CDCL solvers. The
mainstream approach to parallelizing SAT solvers is portfolio [5]. In this app-
roach, all workers conduct the search competitively and cooperatively without

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 247–252, 2013.
DOI: 10.1007/978-3-642-44973-4 25, c© Springer-Verlag Berlin Heidelberg 2013

248 T. Sonobe and M. Inaba

load-balancing of the search spaces. By contrast, a divide-and-conquer approach
often has difficulty with load-balancing because the selection of splitting variables
can generate unbalanced sub problems. We believe that the portfolio approach is
effective in environments that consist of a small number of processes. However,
we also believe that this approach has limitations in conducting effective searches
in massively parallel environments because there can be many overlaps of the
search spaces between the workers. In order to prevent them, diversification [4]
has to be implemented by differentiating the search parameters, such as decision
heuristic, restart span, and clause-sharing strategy between the workers.

However, it is apparent that existing methods for creating diversification
cannot work well in an environment with, for example, over 100 processes, since
the number of combinations of parameter settings is limited and similar types
of workers are then searching similar search spaces. To address this issue, we
consider the differentiation of the search spaces between the workers, rather
than only considering their search activities. In a portfolio approach, the workers
conduct the search independently, except for learnt clause sharing. However, we
can force each worker to search intensively for specific variables. In this way, each
worker focuses on specific and different search spaces, and effective diversification
can be achieved.

In this paper, we propose a novel diversification method, called block branch-
ing, which divides variables in a given instance into blocks and assigns them
to the workers. With this method, we can achieve diversification of the search-
space, in contrast to existing methods, which focus on differentiation of the
search activities of the workers. Preliminary experimental results indicate that
our approach is effective, even in a small parallel setting (sixteen processes), and
shows potential for massively parallel environments.

In Sect. 2, we explain the details of block branching. We show the experimen-
tal results in Sect. 3 and conclude the paper in Sect. 4.

2 Block Branching

Our method is quite simple. Firstly, we divide the variables in a given CNF into
blocks, in such a way that the variables in each block have close relationships.
Then, we assign them to each worker. Each worker conducts a search, focusing
on the variables in the assigned block. In this manner, we can easily reduce
the overlaps of the search spaces between the workers. In order to focus on
the specific variables in the search, the workers must periodically increase their
VSIDS scores, in order to change the decision order. The method used to increase
the VSIDS scores is based on Counter Implication Restart (CIR) [10]. For every
several restarts, we increase the scores of the variables vigorously, immediately
after the restart, in order to force the solver to select them as decision variables.
In [2], each worker fixes three variables that are randomly chosen as the root of
the search tree. Our method does not always assign values to the target variables
at the top of the search tree.

Portfolio with Block Branching for Parallel SAT Solvers 249

We utilize binary clauses in a given CNF for dividing the variables (literals)
into blocks. The basic concept comes from our previous work [9] and we explain
the procedure in Fig. 1. Assuming that there are four variables (eight literals),
State #1 indicates that each literal belongs to its own block. Next, the first
binary clause, (a ∨ b), is evaluated in State #2. This clause logically stands
for (¬a ⇒ b) and (¬b ⇒ a). In the case of the former clause, the literal b
is assigned to True, immediately after the assignment of a = False, and the
same assignment is made for the latter clause. In other words, the literal b is
dominated by the literal ¬a. Thus, we can make a block represented by the
literal ¬a, which consists of the literal ¬a and the literal b. In this manner, we
can identify the two blocks in State #4 by analyzing three binary clauses. We
believe that variables in a certain block have close relationships, and an intensive
search for these variables can achieve effective diversification for the whole search.
Note that although there can be illogical relationships between some literals in
a block, we permit such irrelevancies since we want to divide the variables into
blocks in the simplest possible way. We use the Union-Find algorithm to detect
the representative literals and merge the two blocks effectively. For the merging
process, we set a threshold in order to change the number of blocks because we
have to adjust it to the number of working processes. When the new block-size
after the merging exceeds the threshold, the process is cancelled. We use a binary
search algorithm for identifying the suitable threshold.

3 Experimental Results

We implemented our proposal on MiniSAT 2.2, using a Message Passing Interface
(MPI) in order to run it in a distributed environment. In this implementation,
we create a master process that manages the worker processes and a learnt
clause database. Each worker sends a solution if found, or learnt clauses whose
length is less than, or equal to four. These clauses are exported to other workers
through the database in the master process. The master sends the blocks to
the workers before the search, and the workers increase the VSIDS scores of all
(or thirty, at most) of the assigned variables for every five (or ten) restarts (we
call this “INTERVAL”). The workers also use Counter Implication Restart and
differentiated parameter settings (e.g., the span of the restart) for diversification.

We used 300 instances from the application category of the SAT Competi-
tion 2011. The experiments were conducted on a Linux machine with two Intel
Xeon six-core CPUs, running at 3.33 GHz and 144 GB of RAM. Timeout was
set to 5000 s for each instance. The number of running processes was set to
sixteen, and thus, these results are preliminary. We used four types of solvers:
block branching with INTERVAL = 5 (bb INT5 p16), block branching with
INTERVAL = 10 and variable selection for a maximum of thirty variables
from the block (bb INT10 var30 p16), no block branching (no bb p16), and
ParaCIRMiniSAT [8] with eight threads (ParaCIRMiniSAT p8). Note that
ParaCIRMiniSAT is almost same as our new solver, except our solver uses block
bra nching, while ParaCIRMiniSAT is parallelized by OpenMP, to be run in

250 T. Sonobe and M. Inaba

Fig. 1. An illustration of the process of Union-Find for some binary clauses

a shared-memory machine. The cactus plot of the results of the four solvers
is shown in Fig. 2 and the details are shown in Table 1. Our proposed solver
achieved better performance than ParaCIRMiniSAT within the time limit. In
total, it could solve eight more instances than ParaCIRMiniSAT and three more
instances than the solver with no block branching (no bb p16). Even in the
small parallel settings (sixteen processes), it was proven that block branching
can improve the performance of the base solver. We are sure that block branching
can achieve stronger diversification in massively parallel environments.

Table 1. The details of the results: 252 (SAT: 111, UNSAT: 141) instances could be
solved at least one solver. The instances that could not be solved within 5000 s are
calculated as 5000.

SAT (111) UNSAT (141) Total Total time for 252 instances

bb INT5 p16 107 132 239 190040
bb INT10 var30 p16 108 131 239 176250
no bb p16 106 130 236 188790
ParaCIRMiniSAT p8 105 126 231 200070

Portfolio with Block Branching for Parallel SAT Solvers 251

Fig. 2. The experimental results of four solvers using 300 instances from the SAT
Competition 2011

4 Conclusion

We have proposed a novel diversification method, block branching, for paral-
lel SAT solvers in massively parallel environments. In this method, variables
are divided into blocks and assigned to each worker. The workers conduct an
intensive search for the given variables, and this resulted in search-space diversi-
fication. Preliminary experiments indicate that the proposed method works well,
even in a small parallel environment.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

2. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: Proceedings of the 21st International Jont Conference on
Artifical Intelligence, IJCAI’09, pp. 443–448 (2009)

3. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: Proceedings of the 15th National/10th Conference on Artificial
Intelligence, AAAI’98/IAAI’98, pp. 431–437 (1998)

252 T. Sonobe and M. Inaba

4. Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification in
parallel SAT solving. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 252–265.
Springer, Heidelberg (2010)

5. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4),
245–262 (2009)

6. Marques-Silva, J.: Practical applications of boolean satisfiability. In: Proceedings
of Workshop on Discrete Event Systems, WODES’08, pp. 74–80 (2008)

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC’01, pp. 530–535 (2001)

8. Sonobe, T., Inaba, M.: Counter implication restart for parallel SAT solvers. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 485–490.
Springer, Heidelberg (2012)

9. Sonobe, T., Inaba M.: Division and alternation of decision variables. In: Pragmatics
of SAT 2012 (2012)

10. Sonobe, T., Inaba, M., Nagai, A.: Counter implication restart. In: Pragmatics of
SAT 2011 (2011)

Parameter Setting with Dynamic Island Models

Caner Candan(B), Adrien Goëffon, Frédéric Lardeux, and Frédéric Saubion

LERIA, University of Angers, Angers, France
caner.candan@univ-angers.fr

Abstract. In this paper we proposed the use of a dynamic island model
which aim at adapting parameter settings dynamically. Since each island
corresponds to a specific parameter setting, measuring the evolution of
islands populations sheds light on the optimal parameter settings effi-
ciency throughout the search. This model can be viewed as an alterna-
tive adaptive operator selection technique for classic steady state genetic
algorithms. Empirical studies provide competitive results with respect to
other methods like automatic tuning tools. Moreover, this model could
ease the parallelization of evolutionary algorithms and can be used in a
synchronous or asynchronous way.

1 Introduction

Island Models [7] have been introduced in order to better manage diversity in
population-based algorithms. A well-known drawback of evolutionary algorithms
(EA) is indeed the premature convergence of their population.

Island models provide a natural abstraction for dividing the population into
several subsets, distributed on the islands. An independent EA is run on each
of these islands. Individuals are allowed to migrate from one island to another
in order to insure information sharing during the resolution and to maintain
some diversity on each island thanks to incoming individuals. Another immediate
advantage of such models is that they facilitate the parallelization of EAs. The
basic model can be refined, especially concerning the following aspects:

– Migration policies: Generally, migrations between the different islands are
performed according to predefined rules [5]. Individuals may be chosen in
order to reinforce the islands’population characteristics [6]. Recently, dynamic
policies have been proposed [1]. A transition matrix is updated during the
search process in order to dynamically regulate the diversity and the size of
the different islands’ populations, according to their quality.

– Search algorithms: In classic island models, each island uses the same EA. It
may be interesting to consider on each island different algorithms or different
possible configurations of an algorithm, by changing its parameters.

We propose to use island models as a new method for improving parameter man-
agement in EAs. Although the efficiency of EAs is well-established on numerous
optimization problems, their performance and robustness depend on the correct
setting of its components by means of parameters. Different type of parameters

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 253–258, 2013.
DOI: 10.1007/978-3-642-44973-4 26, c© Springer-Verlag Berlin Heidelberg 2013

254 C. Candan et al.

can be considered from the solving components (e.g., the selection process or
the variation operators) until numerical parameters that modify the behavior of
a given EA (e.g., the population size or the application rates of the variation
operators). Most of the time, these parameters have strong interactions and it
is very difficult to forecast how they will affect the performance of the EA. We
focus here on the use of variation operators in population based algorithms: i.e.,
choosing at each iteration which variation operator should be applied.

Automatic tuning (off-line setting before solving) tools [3] have been devel-
oped to search for good parameters values in the parameters’ space, which is
defined as the crossproduct of the parameters values and the possible instances
of the problem. Specific heuristics are used in order to sample efficiently the pos-
sible values of parameters that are expected to have a significant impact on the
performance. Another possible approach for parameter setting is to control the
value of the parameters during the search. Adaptive operator selection (AOS) [3]
consists in providing an adaptive mechanism for selecting the suitable variation
operator to apply on individuals at each iteration of the EA process.

Dynamic island models can be used as an AOS method for classic steady
state GA. The main principle is to distribute the operators of the GA on the
different islands. We use a dynamic migration policy in order to achieve a suitable
distribution of the individuals on the most promising island. The purpose of
this paper is to show that our approach is able to identify the most efficient
operators of a given EA. This result can be used to improve the performance
of an algorithm whose behavior is difficult to handle by non specialist users but
also to help algorithm’s designers to improve their EAs.

2 Dynamic Islands for Managing Operators

An optimization problem is defined by a search space S, and an objective func-
tion f : S ⊆ R. Solving the problem consists thus in finding an element of S
that has an optimal value with regards to f . An island model can be defined by
the following elements:

– Dimensions: a size n, a set of islands I = {i1, · · · , in}, a set of algorithms
A = {A1, · · · , An}, a set of populations P = {P1, · · · , Pn}, each Pi is a subset
of S. Each population Pk is assigned to island Ik. Each Ak assigned to island
ik is indeed an EA that apply variation operators to the individuals of its
population (see [2] for more details on EAs).

– A topology: an undirected graph (I, V) where V ∀ I2 is a set of edges between
islands of I.

– A migration policy: a squared matrix M of size n, such that M(i, j) ∅ [0, 1]
represents the probability for an individual to migrate from island i to island
j. This matrix is supposed to be coherent with the topology, i.e., if ∈ ←(i, j) ∅ V
then T (i, j) = 0.

Different choices can be made for the topology: complete graph, ring... A node
(i, i) in the graph allows individuals to have the possibility of staying on the

Parameter Setting with Dynamic Island Models 255

Fig. 1. General mechanism for an island in a dynamic model

same island. The size of the global population is fixed along the process but the
size of each Pk changes constantly according to the migrations. Dynamic islands
models uses a migration policy that evolves during the search. Each island is
equipped with two main processes that define how its population evolves and
how the migration policy is controlled.

Figure 1 highlights that the migration policy is modified during the run
according to incoming feedback received from other islands. This feedback allows
the island to know about the improvement that its individuals have obtained on
other islands. The basic learning principle consists in sending more individuals
to islands that have been able to improve them significantly and less to islands
that are currently less efficient for these individuals. To avoid brutal changes,
these effects are evaluated on a time window. The selection component uses the
migration matrix M to select the individuals that are sent to other islands. Of
course, some individuals may stay on the same island. The analyze component
aims at evaluating the improvements of the individuals after the EA has been
applied and send this feedback information to the island these individuals were
originated from. According to the previous notations, we define the following
basic processes and data structures:

– A data matrix D is a square matrix of size n. D(i, j) is the improvement
obtained by individuals of island i when they are processed on island j.
– The algorithm Ai applies the operator oi assigned to this island on every
individuals of the population Pi : Ai(Pi) = {oi(s)|s ∅ Pi}.
– The learn process is very simple here since we just keep the last performance
(time window of size 1). Therefore we have [D⊂Din](i, j) = D(i, j) if Din(i, j) =
0 and [D ⊂ Din](i, j) = Din(i, j) otherwise.

256 C. Candan et al.

– The analyze(P) process computes the feedback information and sends it to
each island (including its own). In our case, this information will be the average
improvement of all individuals in function of their previous localization, during
the last evolution step. Analyze is a data matrix Dout containing only 0 except
for the i-th column. We propose here two possible evaluations:

– Mean Dout(k, i) = Σs∈Pi[k]f(s)

card(Pi[k]) .
– Max Dout(k, i) = maxs∈Pi[k](f(s))

where Pi[k] = {s ∅ Pi|s comes from island k}

- The update process uses the data matrix D (i.e., the feedback from other island)
into order to modify the migration matrix. Of course, only the line corresponding
to island i is modified. We compute an intermediate reward vector R. We propose
to use an intensification strategy: only the island where individuals of i have
obtained the best improvement is rewarded (note that there could be several
such best islands).

R(k) =

{
1

card(B) if k ∅ B,

0 otherwise,

with B = argmax
k

D(i, k)

then M(i, k) = (1−β)(α.M(i, k)+(1−α)R(k)).βN(k)), where N is a stochastic
vector such that ||N || = 1. The parameter α represents the importance of the
knowledge accumulated during the last migrations (inertia or exploitation) and
β is the amount of noise, which is necessary to explore alternative search space
areas by means of individuals (see [1]).

3 Experimental Results

The NK family of landscapes is a problem-independent model for construct-
ing multimodal landscapes. An NK-landscape is commonly defined by triplet
(X ,N , f), with the set of N -length binary strings as search space X and 1-flip
as neighborhood relation N (two configurations are neighbors iff their Hamming
distance is 1). The fitness function f : {0, 1}N ⊆ [0, 1), to be maximized, is
defined as follows:

f(x) =
1
N

N∑

i=1

ci(xi, xi1 , . . . , xiK) (1)

where ci : {0, 1}K+1 ⊆ [0, 1) defines the component function associated with
each variable xi, i ∅ {1, . . . , N}, and where K < N .

Parameters N and K define the landscape characteristics. The configurations
length N is naturally determining the size of the search space, while K specifies
the rugosity level of the landscape. Indeed, the fitness value of a configuration
is given by the sum of N terms, each one depending on K + 1 bits of the
configuration. Thus, by increasing the value of K from 0 to N −1, NK-landscapes

Parameter Setting with Dynamic Island Models 257

Fig. 2. DIM behavior for the AOS problem on an NK landscape instance (a) Compar-
isons among DIM, ParamILS, Uniform and 1-flip (b)

can be tuned from smooth to rugged. In particular, if K = 0, then the landscape
contains only one local (global) optimum; on the contrary, setting K to N − 1
leads to a random fitness assignment.

The set of operators used in the experiments is {1-flip, 2-flip, 3-flip, 4-flip}.
Number of individuals is set to 100, while 1000 migrations are allowed. Between
each migration process, only one operator is applied on each individual. Finally,
we specify the mean strategy as analyze process. Figure 2(a) presents results for
an instance with N = 1024 and K = 4.

Larger neighborhoods are more intensively used at the beginning of the
search. After 200 migrations, the application rates are reversed and 1-flip is
detected to be the most effective operator. This behavior seems coherent since
the first stage of the search consists in performing more important changes on
configurations in order to reach rapidly high fitnesses, while final stages involve
intensifying the search to explore close solutions.

Previous experiment shows that the Dynamic Island Model allows to tune
the application rates of operators during the search. In order to assess if the
efficiency of dynamic adaptation, Fig. 2(b) represents the evolution of the average
configurations fitnesses for DIM and three others methods: 1-flip strategy, which
uses only the 1-flip operator; Uniform selection strategy with the 4 operators
(at each step each a random operator is applied with a uniform probability);
ParamILS strategy which applies one of the 4 operators at each step with a
probability found by paramILS [4]. For this NK-landscape instance, application
rates found are 31 % for 1-flip, 3 % for 2-flip, 53 % for 3-flip and 13 % 4-flip.

DIM provides the best result for a 1000 migrations search (Fig. 2(b)). It is
interesting to see the difference between DIM and 1-flip whereas DIM mainly
uses the 1-flip operator (more than 70 %). As expected, the use of additional
operators at the beginning of the search gives a important benefit comparing to
the basic 1-flip strategy. The paramILS and uniform strategies provide similar
results and are systematically outperformed by DIM.

DIM provides competitive results and does not require many parameters.
In order to study the influence of the learning process, we propose to use the
multi-armed bandit problem.

258 C. Candan et al.

Fig. 3. Multi-armed bandit problem with two learning strategies: (a) for mean and (b)
for best.

An armed bandit is a machine which rewards the gambler with a fixed prob-
ability. It can be represented by a couple (p, r) where p is the probability to
gain r. While playing, the gambler does know neither p nor r. The multi-armed
bandit is a set of armed bandits where each arm has its own probability and
its own reward. Figure 3 shows the Dynamic Island Model behavior with the
mean (a) and the max (b) strategy for the multi-armed bandit problem. In this
experiment, 3 operators have been used, corresponding to a 3-armed bandit with
the following rewards: (0.4,0.6), (0.8,0.4) and (1,0.001).

The mean strategy leads to mainly use the operator with the higher expected
value (operator (0.8,0.4)) whereas the best strategy leads to only use the operator
with the higher reward (operator (0.4,0.6)).

References

1. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: A dynamic island model for
adaptive operator selection. In: Proceedings of Genetic and Evolutionary Compu-
tation Conference (GECCO’12), pp. 1253–1260 (2012)

2. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing
Series. Springer, Heidelberg (2003)

3. Hamadi, Y., Monfroy, E., Saubion, F. (eds.): Autonomous Search. Springer, Heidel-
berg (2012)

4. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

5. Rucinski, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the
island model. CoRR, abs/1004.4541 (2010)

6. Skolicki, Z., Jong, K.A.D.: The influence of migration sizes and intervals on island
models. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 1295–1302 (2005)

7. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on
separability, population size and convergence. J. Comput. Inf. Tech. 7, 33–47 (1998)

A Simulated Annealing Algorithm
for the Vehicle Routing Problem with Time
Windows and Synchronization Constraints

Sohaib Afifi1(B), Duc-Cuong Dang1,2, and Aziz Moukrim1

1 Université de Technologie de Compiègne,
Laboratoire Heudiasyc, UMR 7253 CNRS, Compiègne 60205, France

2 School of Computer Science, ASAP Research Group, University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
{sohaib.afifi,duc-cuong.dang,aziz.moukrim}@hds.utc.fr

Abstract. This paper focuses on solving a variant of the vehicle rout-
ing problem (VRP) in which a time window is associated with each
customer service and some services require simultaneous visits from dif-
ferent vehicles to be accomplished. The problem is therefore called the
VRP with time windows and synchronization constraints (VRPTWSyn).
We present a simulated annealing algorithm (SA) that incorporates sev-
eral local search techniques to deal with this problem. Experiments on
the instances from the literature show that our SA is fast and outper-
forms the existing approaches. To the best of our knowledge, this is the
first time that dedicated local search methods have been proposed and
evaluated on this variant of VRP.

Keywords: Vehicle routing · Synchronization · Destruction/repair ·
Simulated annealing

1 Introduction

The vehicle routing problem (VRP) [9] is a widely studied combinatorial opti-
mization problem in which the aim is to design optimal tours for a set of vehicles
serving a set of customers geographically distributed and respecting some side
constraints. We are interested in a particular variant of VRP, the so-called VRP
with time windows and synchronization constraints (VRPTWSyn). In such a
problem, each customer is associated with a time window that represents the
interval of time when the customer is available to receive the vehicle service.
This means that if the vehicle arrives too soon, it should wait until the opening
of the time window to serve the customer while too late arrival is not allowed.
Additionally, for some customers, more than one visit, e.g. two visits from two

This work is partially supported by the Regional Council of Picardie and the Euro-
pean Regional Development Fund (ERDF), under PRIMA project.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 259–265, 2013.
DOI: 10.1007/978-3-642-44973-4 27, c© Springer-Verlag Berlin Heidelberg 2013

260 S. Afifi et al.

different vehicles, are required to complete the service. Visits associated to a
particular customer need to be synchronized, e.g. having the same start time.

VRPTWSyn was first studied in [3] with an application in health care ser-
vices for elders. In such services, the timing and coordination are crucial and
therefore the temporal constraints. The readers are referred to [4] for a com-
plete review of those constraints involved in vehicle routing. As an extension of
VRP, VRPTWSyn is clearly NP-Hard. There are only a few attempts to solve
this problem in the literature [2,3]. In those works, even heuristic ones, integer
linear programming is the key ingredient and the methods often require much
computational time to deal with large instances. Motivated by the potential
applications and by the challenge of computational time, in this work we pro-
pose a Simulated Annealing algorithm (SA) for solving VRPTWSyn. Our SA
incorporates several local search methods dedicated to the problem. It produces
high quality solutions in a very short computational time compared to the other
methods of the literature. New best solutions are also detected.

2 Simulated Annealing Algorithm

The main idea of a Simulated Annealing algorithm (SA) [6] is to occasionally
accept degraded solutions in the hope of escaping the current local optimum. The
probability of accepting a newly created solution is computed as e− Δ

T , where Δ
is the difference of fitness between the new solution and the current one and T
is a parameter called the current temperature. This parameter is evolved during
the search by imitating the cooling process in metallurgy.

Our SA is summarized in Algorithm 1. The algorithm is implemented with a
reheating mechanism, due to lines 6 and 25. The simulated annealing routine is
from line 9 to line 23. In the algorithm, we use n to denote the number of visits.
The other functions are described as follows.

2.1 Constructive Heuristic

The procedure BestInsertion(X) contains a constructive heuristic to build a
solution from scratch (X = ∅) or from a partial solution. At each iteration of
the heuristic, a visit with the less insertion cost is chosen to be inserted in the
associated route. Extra routes will be added when it is impossible to insert the
remained visits to the existing routes. The heuristic is actually terminated with
all visits being routed.

In order to evaluate the insertion cost in constant time O(1), some additional
computations for each visit are archived and updated during the process. When
an insertion is applied, the update is propagated through different routes because
of the related synchronization constraints. The propagation may loop infinitely
if the cross synchronizations are not prohibited, e.g. visiting u then v by the first
vehicle, visiting p then q by the second one, and finally realizing that u and q
are the same customer as well as v and p (see Fig. 1). In our implementation,
such issues are avoided by carefully computing beforehand for each visit the set

A Simulated Annealing Algorithm for the VRPTWSyn 261

Algorithm 1: Simulated annealing algorithm for VRPTWSyn.
Output: Xbest, the best solution found so far by the algorithm;
X ← BestInsertion(∅);1

X ← LocalSearch(X);2

Xbest ← X;3

reheat ← 0;4

while (reheat < rhmax) do5

T ← T0;6

iter ← 0;7

Xlbest ← X;8

while (iter < itermax) do9

X ∼ ← Diversification(X, 1, d);10

X ∼ ← LocalSearch(X ∼);11

Δ ← Fitness(X ∼) − Fitness(X);12

iter ← iter + 1;13

r ∼ U(0, 1);14

if (r < e− Δ
T) then15

X ← X ∼;16

T ← α × T ;17

if (Fitness(X) < Fitness(Xlbest)) then18

iter ← 0;19

Xlbest ← X;20

if (Fitness(X) < Fitness(Xbest)) then21

Xbest ← X;22

reheat ← 0;23

X ← Diversification(X, n
2
, n);24

reheat ← reheat + 1;25

u v

p q

Fig. 1. A cross synchronization

of valid positions (for insertion) from the existing routes. This process is known
as the computation of transitive closures.

2.2 Diversification Process

The function Diversification(X, dmin, dmax) first removes a number (randomly
generated between dmin and dmax) of visits from the current solution, then

262 S. Afifi et al.

rebuilds it using the above constructive heuristic. This function is actually an
implement of the destruction/repair operator [1]. The aim is to obtain a new
solution from the current one without losing much of the quality, thanks to the
constructive heuristic.

In addition, a dynamic priority management is also administered to identify
critical visits. Each visit is associated with a priority number initialized to 0.
This number is increased by 1 unit whenever the insertion of the visit causes the
creation of an extra route. Visits having the highest priority, i.e. frequently caus-
ing extra routes, are in fact critical. Therefore, they need to be inserted during
the early stages of the constructive heuristic. With this dynamic management,
the search is guided back to the feasible space whenever it hits the infeasible
one. In general, we remarked that the portion of explored infeasible solutions
over feasible ones is varied from one instance to another. This solely depends on
the size of the time windows, e.g. the algorithm hits infeasible solutions more
frequently with an instance having small time windows.

2.3 Local Search Procedure

The two following neighborhoods were adapted to the synchronization con-
straints and used in our local search procedure:

2-opt* (exchanges of paths between different routes [7]): in a 2-opt operator,
we look for the possibility of exchanging two links with two others in the same
route in order to find a local improvement. For the case of multiple vehicles, we
use 2-opt* to denote the same principle of exchange but related to two distinct
routes. This operator consequently implies the exchanges of paths between the
two routes. It is particularly suitable for our case because it is hardly possible
for the classical 2-opt to find an improvement due to preserved order of visits
from the time windows. Our 2-opt* is implemented as follows: a subset of visits
is randomly selected and for each couple of visits {rki , rk

′
j }, we consider the

arcs (rki , rki+1) and (rk
′

j , rk
′

j+1) (where rki denotes the visit at position i in route
k). If the exchange of these two arcs for (rki , rk

′
j+1) and (rk

′
j , rki+1) ensures the

feasibility then the associated cost is recorded. The feasibility check is handled
by the same process as the one used in the constructive heuristic to avoid cross
synchronizations. Therefore, the exchange cost is evaluated in constant time
for each couple {rki , rk

′
j }. The best one is then memorized and the exchange is

applied.
or-opt (relocation of visits in the same route [8]): in this operator, we look

for the possibility of relocating a sequence of (1, 2 or 3) visits from its original
place to another one in the same route. The implementation of this operator is
similar to 2-opt* operator: a random selection at the beginning then a feasibility
check.

Our LocalSearch(X) function is then the following: at each iteration, a ran-
dom neighborhood w is chosen from the current set W , initialized to {2-opt*,
or-opt}. Neighborhood w is then removed from W and repeatedly applied to the
current solution until no improvement is found. If at least an improvement was

A Simulated Annealing Algorithm for the VRPTWSyn 263

detected by w, then the other neighborhood will be put back to W (in case it
was removed). The procedure is terminated when W is empty.

3 Results

We tested our algorithm on the instances introduced by [3]. The benchmark
comprises 10 sets grouped in 3 categories based on the number of customers.
Each set has 5 varieties of instances, those are named after the width of the time
windows. Our algorithm is coded in C++ and all experiments were conducted on
an Intel Core i7-2620M 2.70 GHz. This configuration is comparable to the com-
putational environment employed by Bredström and Rönnqvist [2,3] (a 2.67 GHz
Intel Xeon processor). According to the protocol proposed in [2], all the meth-
ods were tested with the varieties of S (small), M (medium) and L (large) time
windows. After several experiments on a subset of small instances, we decided
to fix the parameters as follows: T0 = 20, α = 0.99, d = 3, itermax = 10 × n
and rhmax = 10.

Table 1 shows our results compared to the literature. Instances, in which all
methods report the same results, are discarded from this table. Columns n, m,
s and Best show the number of visits, the number of vehicles, the number of
synchronizations and the best known solution from all methods (including ours)
respectively for each instance. A star symbol (*) is used in Best to indicate that

Table 1. Comparison of results and CPU times

Data n m s Best MIP H BP1 BP2 SA

Sol CPU Sol CPU Sol CPU Sol CPU Sol CPU

1L 20 4 2 3.39* 3.44 3600.00 3.39 120.00 3.39 107.41 3.39 11.91 3.39 0.29

2L 20 4 2 3.42* 3.58 3600.00 3.42 120.00 3.42 2.72 3.42 7.41 3.42 0.64

3M 20 4 2 3.33* 3.41 3600.00 3.33 120.00 3.33 17.57 3.33 4.31 3.33 0.92

4M 20 4 2 5.67* 5.91 3600.00 5.75 120.00 5.67 27.53 5.67 2.55 5.67 0.72

4L 20 4 2 5.13* 5.83 3600.00 5.30 120.00 5.13 9.74 5.13 7.69 5.13 4.66

6S 50 10 5 8.14* - - - - 8.14 3600.00 8.14 197.92 8.14 93.78

6M 50 10 5 7.70 - - - - 7.71 3600.00 7.70 3600.00 7.70 3358.60

6L 50 10 5 7.14* - - - - 7.14 3279.48 7.14 3600.00 7.14 2440.95

7S 50 10 5 8.39* - - - - 8.39 1472.39 8.39 169.30 8.39 163.03

7M 50 10 5 7.49 - - - - 7.67 3600.00 7.56 3600.00 7.49 199.23

7L 50 10 5 6.86 - - - - 6.88 3600.00 6.88 3600.00 6.86 144.94

8S 50 10 5 9.54* - - - - 9.54 931.95 9.54 850.52 9.54 149.95

8M 50 10 5 8.54* - - - - 8.54 3600.00 8.54 3490.57 8.54 276.46

8L 50 10 5 8.07 - - - - 8.62 3600.00 8.11 3600.00 8.07 335.72

9S 80 16 8 12.13 - - - - - 3600.00 12.21 3600.00 12.13 397.876

9M 80 16 8 10.94 - - - - 11.74 3600.00 11.04 3600.00 10.94 641.838

9L 80 16 8 10.67 - - - - 11.11 3600.00 10.89 3600.00 10.67 376.24

10S 80 16 8 8.82 - - - - - 3600.00 9.13 3600.00 8.82 3099.28

10M 80 16 8 8.01 - - - - 8.54 3600.00 8.10 3600.00 8.01 757.87

10L 80 16 8 7.75 - - - - - 3600.00 - 3600.00 7.75 3247.71

264 S. Afifi et al.

the solution is proved to be optimal. The other column headers are: MIP for the
results of the default CPLEX solver reported in [3]; H for the heuristic proposed
in [3] which is based on the local-branching technique [5]; BP1 and BP2 for
the results of the two branch-and-price algorithms presented in [2] and finally
SA for our simulated annealing algorithm. Columns Sol and CPU correspond to
the best solution found by each method and the associated total computational
time. Bold numbers in Sol indicate that the solution quality reaches Best.

From these results, we remark that SA finds all known optimal solutions
(20 of 30) in very short computational times compared to the other methods.
Quality of the other solutions is also better than the one found in the literature.
The algorithm strictly improved the best known solutions for 9 instances of the
data sets. Those instances are 7M , 7L, 8L, 9S, 9M , 9L, 10S, 10M and 10L. To
summarize, our SA is clearly fast and efficient.

4 Conclusion

The paper presented a simulated annealing based heuristic for VRPTWSyn.
Numerical results on the benchmark proposed by [3] demonstrate the competi-
tiveness of the algorithm for such a problem. They also demonstrate that destruc-
tion/repair operator and local search methods can be efficiently adapted to the
case of the synchronization constraints. As future work, we intend to investigate
the performance of the SA on other variants of VRPTWSyn, such as the one
with customer-driver preferences and the one with route balance constraints [3].
We also plan to investigate the use of the obtained solutions as a warm start for
exact methods, such as mixed integer programming, to solve the open instances
of VRPTWSyn to the optimality.

References

1. Bouly, H., Moukrim, A., Chanteur, D., Simon, L.: An iterative destruc-
tion/construction heuristic for solving a specific vehicle routing problem. In:
MOSIM’08 (2008) (in French)

2. Bredström, D., Rönnqvist, M.: A branch and price algorithm for the combined
vehicle routing and scheduling problem with synchronization constraints (Feb 2007)

3. Bredström, D., Rönnqvist, M.: Combined vehicle routing and scheduling with tem-
poral precedence and synchronization constraints. Eur. J. Oper. Res. 191(1), 19–31
(2008)

4. Drexl, M.: Synchronization in vehicle routing a survey of vrps with multiple syn-
chronization constraints. Transp. Sci. 46(3), 297–316 (2012)

5. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
6. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220, 671–680 (1983)
7. Potvin, J.Y., Kervahut, T., Garcia, B.L., Rousseau, J.M.: The vehicle routing prob-

lem with time windows part I: tabu search. INFORMS J. Comput. 8(2), 158–164
(1996)

A Simulated Annealing Algorithm for the VRPTWSyn 265

8. Solomon, M.M., Desrosiers, J.: Time window constrained routing and scheduling
problems. Transp. Sci. 22, 1–13 (1988)

9. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Mathe-
matics and Applications. Society for Industrial and Applied Mathematics, Philadel-
phia (2002)

Solution of the Maximum k-Balanced
Subgraph Problem

Rosa Figueiredo1(B), Yuri Frota2, and Martine Labbé3

1 CIDMA, Department of Mathematics, University of Aveiro,
3810-193 Aveiro, Portugal
rosa.figueiredo@ua.pt

2 Department of Computer Science, Fluminense Federal University,
Niterói–RJ 24210-240, Brazil

yuri@ic.uff.br
3 Département d’Informatique, Université Libre de Bruxelles,

CP 210/01 B-1050 Brussels, Belgium
mlabbe@ulb.ac.be

Abstract. A signed graph G = (V,E, s) is k-balanced if V can be parti-
tioned into at most k sets in such a way that positive edges are found only
within the sets and negative edges go between sets. We study the problem
of finding a subgraph of G that is k-balanced and maximum according to
the number of vertices. This problem has applications in clustering prob-
lems appearing in collaborative × conflicting environments. We describe
a 0-1 linear programming formulation for the problem and implement a
first version of a branch-and-cut algorithm based on it. GRASP meta-
heuristics are used to implement the separation routines in the branch-
and-cut. We also propose GRASP and ILS-VND procedures to solve
heuristically the problem.

Keywords: Combinatorial optimization · Balanced signed graph ·
Branch-and-cut · Metaheuristics · Portfolio analysis

1 Introduction

Let G = (V,E) be an undirected graph where V = {1, 2, . . . , n} is a set of
vertices and E is a set of m edges connecting pairs of vertices. Consider a function
s : E → {+,−} that assigns a sign to each edge in E. An undirected graph G
together with a function s is called a signed graph. For a vertex set S ⊆ V , let
E[S] = {(i, j) ∈ E | i, j ∈ S} denote the subset of edges induced by S. Let
G = (V,E, s) denote a signed graph. We assume here that a signed graph has
no parallel edges. An edge e ∈ E is called negative if s(e) = − and positive if
s(e) = +. Let E− and E+ denote, respectively, the sets of negative and positive
edges in G. Let k be a given parameter satisfying 1 ≤ k ≤ n. A signed graph G
is k-balanced if its vertex set V can be partitioned into sets N1, N2, . . . , Nl, with
l ≤ k, in such a way that ∪1≤i≤lE[Ni] = E+.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 266–271, 2013.
DOI: 10.1007/978-3-642-44973-4 28, c∈ Springer-Verlag Berlin Heidelberg 2013

Solution of the Maximum k-Balanced Subgraph Problem 267

The Maximum k-balanced subgraph problem (k-MBS problem) is the prob-
lem of finding a subgraph H = (V ∗, E∗, s) of G such that H is k-balanced and
maximizes the cardinality of V ∗.

Signed graphs were introduced in 1946 [9] with the purpose of describing
sentiment relations between people pertaining to the same social group and
to provide a systematic statement of social balance theory. Since then, signed
graphs have shown to be a very attractive discrete structure for social networks
researchers. The k-MBS problem has applications in clustering problems appear-
ing in collaborative × conflicting environments. The particular case k = 2 yields
the problem of finding a maximum balanced subgraph in a signed graph [3,4].
Applications of the 2-MBS in different research areas were discussed recently
in [3]. These applications are: the detection of embedded structures, portfolio
analysis in risk management and community structure. These applications can
be extended to the general case, the k-MBS problem.

Solution approaches have been proposed for the particular case defined
for k = 2. In [7], a simple linear procedure to detect whether a signed graph
is balanced was presented. Descriptions of the polytope associated with the
2-MBS problem were given in [1,4]. A greedy heuristic was proposed in [6] for
this particular case and it is able to find an optimal solution whenever G is a
balanced signed graph. Figueiredo et al. [4] proposed a branch-and-cut algorithm
to the exact solution of the 2-MBS problem. Recently, a GRASP heuristic and
an improved version of the greedy heuristic were proposed in [3]. To the best of
our knowledge, the general case of the k-MBS problem has never been treated
in the literature before.

Our intention is the efficient solution of the k-MBS problem and the iden-
tification of difficult instances for which heuristic approaches are required. For
that purpose, we describe an integer linear programming formulation to the
problem and implement a branch-and-cut algorithm based on it. Metaheuristic
procedures were used to improve the branch-and-cut algorithm via efficient sep-
aration routines. We also present and compare two heuristic approaches to solve
the k-MBS: a GRASP [14] and an ILS-VND [12] procedure.

2 Integer Linear Programming Formulation

A representative formulation [2,5] is proposed here for the k-MBS problem. We
define A = {(i, j) | i ∈ V, j ∈ N̄−(i), i < j} and A0 = A ∪ V 2. An arc (i, j) ∈ A0

indicates that vertex i can represent vertex j. Let us define D(i) = {j ∈ V |
(i, j) ∈ A0} and O(j) = {i ∈ V | (i, j) ∈ A0}. We use binary decision variables
x ∈ {0, 1}|V |+|A| to define a partition of G in l ≤ k clusters. For each vertex
i ∈ V , xi

i = 1 if i is a representative vertex and xi
i = 0 otherwise. For each arc

(i, j) ∈ A, we define xi
j = 1 if vertex j is represented by vertex i and xi

j = 0
otherwise.

Constraints (1) establish that vertex j must be represented by at most one
vertex. The total number of representative vertices is limited to k by constraint
(2). Constraints (3) forbid vertex j to be represented by vertex i unless i is

268 R. Figueiredo et al.

a representative vertex. Consider a negative edge (i, j) ∈ E−. Constraints (4),
written for (i, j), ensure that vertices i and j cannot be represented by a same
vertex. Consider a positive edge (i, j) ∈ E+. Constraints (5), written for (i, j),
ensure that vertices i and j are represented by the same vertex whenever both i
and j belong to the feasible solution. Constraints (6) impose binary restrictions
to the variables. Finally, the objective function looks for a maximum subgraph.
The formulation follows.

maximize
∑

(i,j)∩A0

xi
j

subject to
∑

i∩O(j)

xi
j ≤ 1, ∀ j ∈ V, (1)

∑

i∩V

xi
i ≤ k, (2)

xi
j ≤ xi

i, ∀ (i, j) ∈ A, (3)

xp
i + xp

j ≤ xp
p, ∀ (i, j) ∈ E−,∀ p ∈ O(i) ∩ O(j), (4)

∑

p∩S

xp
i +

∑

p∩O(j)\S
xp
j ≤ 1, ∀ (i, j) ∈ E+,∀ S ⊆ O(i), (5)

xi
j ∈ {0, 1}, ∀ (i, j) ∈ A0. (6)

3 Branch-and-Cut Algorithm

Due to the space limitations, we only scratch the principal components of this
algorithm. The branch-and-cut algorithm implemented has two basic compo-
nents: the initial formulation and the cut generation. The initial formulation is
composed by inequalities (1), (2), (3), (4), all the trivial inequalities and by a
subset of inequalities (5) (with |S| = 1).

A partial description of the polytope associated with the formulation describe
in the last section was done. We described families of valid inequalities associated
with substructures of the graph (negative cliques, positive cliques and holes)
and based on a related problem (the stable set problem). The cut generation
component consists, basically, in detecting cliques and holes in G. A GRASP
heuristic was used for finding clique cuts and a modification of Hoffman and
Padberg’s heuristic [10] for finding odd holes cuts.

4 Primal Heuristics

We implemented an ILS-VND and a GRASP procedure for the solution of the
k-MBS problem. The ILS-VND heuristic works as follows. An initial solution is
reached by a simple random procedure and a local optimum solution is found
by a local search VND algorithm [13]. The VND algorithm uses five different

Solution of the Maximum k-Balanced Subgraph Problem 269

Table 1. Random instances not solved by the branch-and-cut algorithm within the
time limit.

Instance Branch-and-cut

|V | d |E−|/|E+| k LR root LB UB Nodes

50 .25 .5 2 36.92 25 29 1591
50 .50 .5 2 27.74 17 27 273
50 .75 .5 2 22.91 12 22 299
50 .25 1 10 37.77 27 37 243
50 .25 .5 10 38.09 26 37 97
50 .50 1 10 29.48 18 28 202
50 .50 2 10 29.72 22 25 2164
50 .50 .5 10 29.75 17 29 150
50 .75 1 10 22.77 14 22 258
50 .75 .5 10 24.07 12 23 106

neighborhoods. Instead of restarting the same procedure from a completely new
solution, the ILS heuristic [12] applies the local search (VND) repeatedly to the
solutions achieved by perturbing the local optimum solutions previously visited.
The GRASP heuristic is an iterative procedure that has two phases associated
with each iteration: a construction phase and a local search phase. In the con-
struction phase an initial solution is reached by the same simple random proce-
dure used in the ILS-VND heuristic. The local search phase is also implemented
by the VND algorithm used in the ILS-VND heuristic.

Notice that, the GRASP heuristic generates a new random solution at each
iteration while the ILS-VND heuristic uses a perturbation scheme with the aim
to escape a local optimum.

5 Preliminary Computational Results

The branch-and-cut algorithm and the heuristic procedures are coded in C++
running on a Intel(R) Pentium(R) 4 CPU 3.06 GHz, equipped with 3 GB of
RAM. We use Xpress-Optimizer 20.00.21 to implement the components of the
enumerative algorithm. The CPU time limit is set to 1h for the branch-and-cut
and to 5 min for the heuristics.

We run our experiments with the branch-and-cut algorithm on a set of 74
random instances. The random instances were generated by varying |V |, graph
density d, rate |E−|/|E+| and parameter k, respectively, in sets {20, 30, 40, 50},
{0.25, 0.50, 0.75}, {0.5, 1.0, 2.0} and {2, |V |/5}. All random instances with
up to 40 vertices were solved to optimality; those with 20 and 30 vertices were
solved in few seconds. For each unsolved instance, Table 1 exhibits the value of
the linear relaxation (LR) at the root of the branch-and-cut tree; upper (UB)
and lower (LB) bounds obtained and the total number of nodes in the branch-
and-cut tree. The metaheuristics used in the separation procedures showed to
be quite efficient: effective cuts were found and the time spent in separation

270 R. Figueiredo et al.

Fig. 1. GRASP and ILS-VND results on portfolio instances with k = 2

was around 20 % of CPU time. However, for half of the instances in Table 1, the
upper bound after 1h of computation is very close to the value of the LR at the
root. This seems to indicate that stronger inequalities are needed to optimally
solve large instances of this problem.

We run our experiments with the GRASP and the ILS-VND procedures
on a set of portfolio instances described in [3]. This test set is composed by
instances with the number of vertices varying in the set {30, 60, 90, . . . , 510} and
a threshold value t (used to define the set of positive and negative edges) vary-
ing in the set {0.300, 0.325, 0.350, 0.375, 0.400}. For each combination of these
values, 10 different signed graphs were randomly chosen, which means that each
signed graph represents a different subset of stocks and totalize 850 instances.
For more details on the definition of these instances, we refer the reader to [8,11].
Figure 1 presents the results obtained for portfolio instances when k = 2. The
x-axis exhibits instances ordered primarily by number of vertices and secondly
by the threshold value while the y-axis exhibits the percentage gaps. Clearly, the
GRASP metaheuristic has found the best heuristic solution for almost all port-
folio instances when k = 2. Similar results were obtained for portfolio instances
with k = |V |/5.

6 Future Research

In this work, we described a representatives formulation for the k-MBS problem.
With the purpose to develop an exact approach to its solution, we investigated
some classes of valid inequalities for the associated polytope. Based on this study
we implemented a first version of a branch-and-cut algorithm to the problem.
Some computational experiments were carried out over a set of random instances.
They suggest us some directions on the development of an efficient exact solution
approach such as: the investigation of strengthening families of valid inequalities,
the development of more efficient separation routines and the development of a
tailored branching rule. Primal heuristics were also implemented to the problem:
a GRASP heuristic and an ILS-VND heuristic. Computational experiments were
executed on a set of portfolio instances. The GRASP procedure achieved better
results for almost all the instances. We need to investigate if a similar behavior

Solution of the Maximum k-Balanced Subgraph Problem 271

is observed for other sets of instances in the literature (e.g. the community
structure instances defined in [3]). For each test set, we also need to investigate
which heuristic is the best option when a quick solution (in some seconds) is
needed.

Acknowledgements. Rosa Figueiredo is supported by FEDER founds through
COMPETE-Operational Programme Factors of Competitiveness and by Portuguese
founds through the CIDMA (University of Aveiro) and FCT, within project
PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-
022690.

References

1. Barahona, F., Mahjoub, A.R.: Facets of the balanced (acyclic) induced subgraph
polytope. Math. Program. 45, 21–33 (1989)

2. Campelo, M., Correa, R.C., Frota, Y.: Cliques, holes and the vertex coloring poly-
tope. Inf. Process.Lett. 89, 1097–1111 (2004)

3. Figueiredo, R., Frota, Y.: The maximum balanced subgraph of a signed graph:
applications and solution approaches. Paper submitted (2012)

4. Figueiredo, R., Labbé, M., de Souza, C.C.: An exact approach to the problem
of extracting an embedded network matrix. Comput. Oper. Res. 38, 1483–1492
(2011)

5. Frota, Y., Maculan, N., Noronha, T.F., Ribeiro, C.C.: A branch-and-cut algorithm
for partition coloring. Networks 55, 194–204 (2010)

6. Gülpinar, N., Gutin, G., Mitra, G., Zverovitch, A.: Extracting pure network subma-
trices in linear programs using signed graphs. Discrete. Appl. Math. 137, 359–372
(2004)

7. Harary, F., Kabell, J.A.: A simple algorithm to detect balance in signed graphs.
Math. Soc. Sci. 1, 131–136 (1980)

8. Harary, F., Lim, M., Wunsch, D.C.: Signed graphs for portfolio analysis in risk
management. IMA J. Manag. Math. 13, 1–10 (2003)

9. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21, 107–112 (1946)
10. Padberg, M., Hoffman, K.L.: Solving airline crew scheduling problems. Manag. Sci.

39, 657–682 (1993)
11. Huffner, F., Betzler, N., Niedermeier, R.: Separator-based data reduction for signed

graph balancing. J. Comb. Optim. 20, 335–360 (2010)
12. Martin, Q.C., Stutzle, T., Lourenço, H.R.: Iterated Local Search. In: Handbook of

Metaheuristics, pp. 1355–1377. Kluwer Academic Publishers, Norwell (2003)
13. Hansen, P., Mladenović, N.: Variable neighborhood search. Comput. Oper. Res.

24(11), 1097–1100 (1997)
14. Resende, M.G.C., Ribeiro, C.C.: GRASP: greedy randomized adaptive search pro-

cedures. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, 2nd edn, pp.
285–310. Springer, New York (2013)

Racing with a Fixed Budget
and a Self-Adaptive Significance Level

Juergen Branke(&) and Jawad Elomari

Warwick Business School, Coventry CV4 7AL, UK
Juergen.Branke@wbs.ac.uk, J.Elomari@warwick.ac.uk

Abstract. F-Race is an offline parameter tuning method which efficiently
allocates samples in order to identify the parameter setting with the best
expected performance, out of a given set of parameter settings. Using non
parametric statistical tests, F-Race discards parameter settings which perform
significantly worse than the current best, allowing the surviving parameter
settings to be tested on more instances and hence obtaining better estimates for
their performance. The statistical tests require setting significance levels which
directly affect the algorithm’s ability of detecting the best parameter setting,
and the total runtime. In this paper, we show that it is not straightforward to set
the significance level and propose a simple modification to automatically adapt
the significance level such that the failure rate is minimized. This is tested
empirically using data drawn from probability distributions with pre-defined
characteristics. Results indicate that, under a strict computational budget, F-
Race with online adaptation performs significantly better than its counterpart
with even the best fixed value.

1 Introduction

Racing algorithms were first introduced in [1] to solve the model selection problem in
Machine Learning. Within the parameter tuning context, a Racing algorithm takes as
an input a number of parameter settings k, a computational budget N, and a problem
instance generator I. Running each parameter setting i on an instance j consumes a
portion of N and returns a performance value for that parameter setting on that
instance Uij. These performance values are used to identify inferior parameter settings
and systematically discard them from the race. When only one parameter setting
remains, or when N is consumed, the race terminates. If N is consumed with more than
one surviving parameter setting, the one with the best aggregated performance value is
selected as the winner. In both cases, only one parameter setting is returned by the
algorithm to be used to solve other instances of the problem (i.e. test instances). The
assumption made here is that the training set is representative and the parameter
setting which performed best on the training set will also perform best on the test set.

Racing initially runs all parameter settings on n0 � N instances to get an estimate
of their performance, then a two-stage statistical test is carried out to determine which
parameter setting(s) to keep and which to discard. The first stage only detects if at
least one parameter setting is significantly different from the rest, tests such as

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 272–280, 2013.
DOI: 10.1007/978-3-642-44973-4_29, � Springer-Verlag Berlin Heidelberg 2013

Analysis of Variance (ANOVA), cf. [2], for normally distributed data or ranked-based
ANOVA, such as Friedman’s F-test or the Kruskal-Wallis, for non-normal data are
usually used. If there is at least one parameter setting that is significantly different
from the rest, the second stage test is carried out to identify inferior parameter settings
using tests such as the paired t-test for normally distributed data, or any non-para-
metric post hoc test for non-normal data, see [3, 4] for various suggestions. Following
this filtering stage, the surviving parameter settings are tested on a new instance and
the tests are applied again. This continues until only one parameter setting remains, or
until N is consumed. See Fig. 1 for an illustration.

F-Race [5] is a Racing algorithms which uses the F-test followed by a non-
parametric pair-wise comparison with the current best to discard inferior parameter
settings. It requires setting a significance level a for both tests. If a is set to a high
value, parameter settings, including the true best, are likely to be dropped out based on
only a few samples and the algorithm terminates before consuming the entire budget.
On the other hand, if it is set to a small value, F-Race will be very conservative, rarely
discarding any parameter setting, and will allocate the computational budget almost
equally between the competing parameter settings. In both cases the performance of
F-Race is sub-optimal, which is reflected in the U-shaped curve in Fig. 2, where F-
Race is to find the best out of 10 parameter settings with a limited budget of 1000
function evaluations maximum. Another observation from Fig. 2 is that the chosen a
does not correspond to the actual failure rate (percentage of runs F-Race fails to select
the true best parameter setting), for example an a of 0.08 achieves a 0.12 failure rate,
and an a of 0.001 achieves a 0.097 failure rate. This demonstrates that setting an
appropriate value for the parameter a is not straightforward.

In this paper, we propose a simple modification to F-Race which automatically
adapts a such that the failure rate f, after having used up a pre-determined N, is
minimized. Using a fixed N reflects a typical real-world scenario where a decision has
to be made within a limited time. To calculate f we use data drawn from probability
distributions with pre-defined means, variances, and covariances and assume that the
best parameter setting is the one with the lowest mean. The rest of the paper is
organized as follows: Sect. 2 reviews related work on Racing algorithms, Sect. 3
describes how to adapt a and the experimental setup, Sect. 4 presents the empirical
results, and Sect. 5 concludes the paper.

Iterations / Instances
Parameter settings

PS1 PS2 PS3 PS4

n0

Iter 1 Instance 1 U11 U12 U13 U14

Iter 2 Instance 2 U21 U22 U23 U24

Iter 3 Instance 3 U31 U32 U33 U34

Iteration 4 Instance 4 U41 U42

Iteration 5 Instance 5 U51 U52

… …

Iteration M Instance M

Run the first test and drop PS3 and PS4

Run the second test and don’t drop anything

Run the third test and drop PS1

Winner identified after 5 iterations

Fig. 1. An example run of a Racing algorithm

Racing with a Fixed Budget and a Self-Adaptive Significance Level 273

2 Literature Review

Racing algorithms have been applied in a number of papers to tune algorithm
parameters. In [6] the authors compared the performance of five different metaheu-
ristics on the University Course Timetabling Problem, aiming to find the best algo-
rithm for that specific problem domain, if possible. To allow for a fair comparison, all
algorithms were tested under the same conditions and had their parameters tuned with
F-Race. Results showed that even for a very specific problem domain, no one algo-
rithm was able to outperform the rest on all instances. A similar application of F-Race
can be found in [7] where the authors tuned the parameters of five metaheuristics for
the Quadratic Assignment Problem and compared the results to those obtained by the
same algorithms with default parameter settings, results favour the tuned algorithms in
almost all cases. Balaprakash et al. [8] improved the performance of an estimation-
based local search algorithm by combining heuristically two variance reduction
techniques: Importance Sampling and Adaptive Sampling. The authors applied Iter-
ated F-Race to tune the parameters of several Importance Sampling variants. In the
same fashion Racing algorithms have been used to tune different algorithms applied in
various fields, examples include: [9] in Graph colouring, [10, 11] in bioinformatics,
[12] in portfolio selection, and [13] in neural network training.

Racing has indirectly been used in parameter tuning, specifically for selection
within a metaheuristic. In [14] the authors used a Racing algorithm to reduce the
computational cost of running a (1 ? k) Evolutionary Strategy tuning a number of
numerical and categorical parameters of a Genetic Algorithm; instead of evaluating all

Average budget consumed

0.00

0.05

0.10

0.15

0.20

0.25

00.020.040.060.080.10.120.140.160.180.2

Fa
ilu

re
 ra

te

Significance level

Failure rate

0

100

200

300

400

500

600

700

800

900

1000
A

ve
ra

ge
 b

ud
ge

t c
on

su
m

ed

Fig. 2. An example of the performance of F-Race at different significance levels. F-Race
chooses from a set of 10 parameter settings and a maximum budget of 1000 function
evaluations.

274 J. Branke and J. Elomari

k individuals equally to find the best one, Racing was used to efficiently allocate the
computational budget on the most promising individuals. In a similar fashion Racing
was combined with Ant Colony Optimization in [15], Mesh Adaptive Direct Search
[16], Bound Optimization By Quadratic Approximation, Covariance Matrix Adapta-
tion Evolution Strategy, and Uniform Random and Iterated Random Sampling in [17].

F-Race can only select from the initial set of parameter settings provided to it. If a
better parameter setting exists for that algorithm and it was not included in the initial
set, it will never be discovered. An interesting modification to F-Race to overcome
this issue can be found in [18] where the authors insert a new parameter settings into
the race after each iteration, this parameter setting is first tested on as many instances
as the others, then the statistical tests are carried out. Yet another exploration
mechanism added to F-Race can be found in [19] where the authors created an
iterative version of F-Race (I/F-Race); each iteration is a single race, and with each
iteration the initial set of parameter settings is biased towards the best. In their
implementation biasing was done analogous to an Estimation of Distribution Algo-
rithm working at a higher level than F-Race.

In all of these applications, and many others, the significance levels of the sta-
tistical tests were set by the user to a fixed value all throughout the race. In the
following section we propose a simple modification to automatically adapt a such that
f is minimized given a fixed N. We restrict the application of this modification to
F-Race.

3 Methodology and Experimental Setup

In the following, we assume that F-Race is run under a fixed budget constraint N,
finishing at a time t\N has no benefit. If more than one parameter setting remains in
the race after N is consumed, the race is aborted and the parameter setting with the
best estimated performance is selected. The basic idea of the proposed approach is to
allow F-Race to consume the entire budget even if the race terminates beforehand.
Starting with k, N, I, and a (the latter set to a relatively high default value and shown
to be irrelevant) F-Race is run until a single parameter setting remains. Because a has
been chosen large, it is likely that the race terminates before N is consumed. If this
happens, we roll back to the point/iteration where the first parameter setting was
discarded, lower a by a factor of q, and then repeat the statistical tests on all the
parameter settings. Because of the smaller a, F-Race is now more conservative, and
less likely to discard parameter settings. Obviously, all the samples already collected
are maintained in memory and used again in subsequent iterations if needed, only
those parameter settings which had been previously discarded, but are now in the race
due to the lower a, are sampled. This ‘‘reset’’ is done as many times as needed until
N is consumed, each time the previous a is discounted by q. See Fig. 3.

Assessment of the proposed method is based primarily on f calculated over many
replications r. This requires prior knowledge of which is the best parameter setting;
therefore, we draw numbers from multivariate normal distributions with pre-defined
means, variances, and covariances. Using such data will help better understand how
the method works and where it fails. In addition to f, the dropout rate d (portion of

Racing with a Fixed Budget and a Self-Adaptive Significance Level 275

times the best parameter setting was discarded from the race over all replications) is
reported. Clearly f � d as it accounts for failures due to dropout, and failures due to
the variation in the data which could lead to selecting a sub-optimal parameter setting
appearing to be better than the true best.

The proposed method F-Race_R is compared to the standard F-Race, which uses a
fixed a, and to Equal Allocation. Comparisons are based on f and d plotted against
different a values, in specific: an a value is set for both F-Race and F-Race_R (an
initial one) and they are run until termination. If the returned parameter settings does
not correspond to the one with the true best mean, that method is considered to have
failed on that replication. The same process is repeated for all r to find f and d. This
represents one point on the plot, other values are obtained by changing a. F-Race_R
introduces its own parameter q, which determines the new a with each reset. It is
shown that F-Race_R is robust to different values of q. We expect that the perfor-
mance of F-Race_R is insensitive to q, but that it should not be set too low, as
decreasing a by a large amount may result in the optimal value of a being skipped.

The specific settings of the experiments are:

• k = 10, N = 1000 FEs, n0 = 10 instances, r = 3000, q = 0.5, 0.2
• a values used to construct the f and d plots: 0.2, 0.1:0.01 decreasing by 0.01, and

0.009:0.001 decreasing by 0.001. These represent initial values for F-Race_R
• Sampling distribution of the performance values: N i; 102ð Þ8i ¼ 1; . . .; k or

N U 1; 10ð Þ;U 24; 48ð Þð Þ8i ¼ 1; . . .; k

Reset 1 Reset 2 Reset 3

Iteration PS0 PS1 PS2 PS3 PS4 PS0 PS1 PS3 PS0 PS1 PS3 PS4

0 1 1 1 1 1

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1 1

4 1 1 1 1 1

5 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1

15 1 1 1 1 1

16 1 1 1 1 1

17 1 1 1

18 1 1 1

19 1 1 1

n0

First drop out
for Reset 1

Winner

First drop out
for Reset 2

Fig. 3. An example of Racing with reset

276 J. Branke and J. Elomari

• Correlation values used were: 0, 0.1, 0.3, and 0.6. Although the 0-correlation case
does not apply to F-Race for tuning parameter settings, it was included to observe
the performance of the algorithm under such conditions.

In the original implementation of F-Race [19], the F-test is replaced with the
Wilcoxon matched-pairs signed-ranks test if only two parameter settings remain in the
race. The Wilcoxon test statistic T follows a Wilcoxon distribution, for which tabu-
lated critical values are available for a number of significance levels and sample sizes;
however, the a values which F-Race_R may require with every reset are not available
and can only be calculated by enumeration, which is infeasible for the application of
F-Race_R. A normal approximation of the Wilcoxon T statistic is possible if there are
many ties, which is not the case since utility values are from probability distributions,
and the sample size is large, although there is no general agreement on what is a large
enough sample size [4]. Given these difficulties, we chose not to replace the F-test
with the Wilcoxon test if two parameter settings remain. This applies for both F-Race
and F-Race_R.

4 Results

We first examine the performance of F-Race in Figs. 4 and 5. As expected, f drops as
a decreases because a lower a reduces the probability of early termination, and then
f increases again as it behaves more like Equal Allocation which does not make use of
information gathered during the run and is thus less efficient. Having the f and d lines
close to each other, especially for high values of a, means that F-Race is making most
of its incorrect selections because the true best parameter setting has been dropped out
from the race. This is reduced for low values of a as F-Race becomes more cautious.

The performance of F-Race is greatly improved using the reset idea, this is evident
from the f and d curves of F-Race_R. First, the F-Race_R-Fail curve is almost steady
for any value of a between 0.2 and 0.009, which indicates that F-Race_R is able to
adapt a regardless of its initial value. Obviously, this does not apply for very small
initial values of a, at which only few resets, if any, are possible and the behaviour of
the algorithm eventually has to approach that of Equal Allocation. It is safe to start
with a high a as there does not seem to be any penalty for doing so. Second, the F-
Race_R-Drop is at a very low level, which means that F-Race_R hardly ever drops out
the best parameter settings.

The most interesting outcome is that F-Race_R was able to make correct selection
more often than even the best setting of a for F-Race. To see if the difference in
performance is significant, we compared the best f achieved by F-Race with any
f achieved by F-Race_R at a relatively high a (0.2 and 0.1 were selected even though
they are not the best setting for a for F-Race_R). A 1-sample sign test with a significance
level of 0.05 was conducted over 30 replications. The null hypothesis that the differ-
ences between observations are equal to zero vs. that they are less than zero (indicating
the F-Race_R has a lower f than F-Race). This non-parametric test was chosen because
the f data does not follow a normal distribution and it is not symmetric. As seen from
Table 1 f is significantly better for F-Race_R at all correlation levels.

Racing with a Fixed Budget and a Self-Adaptive Significance Level 277

a) Independent b) 0.1 correlation

c) 0.3 correlation d) 0.6 correlation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal F-Race_Drop

F-Race_Fail F-Race_R-Drop_0.5

F-Race_R-Fail_0.5 F-Race_R-Drop_0.2

F-Race_R-Fail_0.2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal RacingD

RacingF F-Race_R-Drop_0.5

F-Race_R-Fail_0.5 F-Race_R-Drop_0.2

F-Race_R-Fail_0.2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal F-Race_Drop

F-Race_Fail F-Race_R-Drop_0.5

F-Race_R-Fail_0.5 F-Race_R-Drop_0.2

F-Race_R-Fail_0.2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal F-Race_Drop

F-Race_Fail F-Race_R-Drop_0.5

F-Race_R-Fail_0.5 F-Race_R-Drop_0.2

F-Race_R-Fail_0.2

Fig. 5. F-Race vs. F-Race_R using utility values drawn from N(U(1, 10), U(24, 48)) for i = 1, …, k

a) Independent b) 0.1 correlation

c) 0.3 correlation d) 0.6 correlation

0.00

0.05

0.10

0.15

0.20

0.25

00.050.10.150.2

Fa
ilu

re
 ra

te

Singinficnce level

Equal F-Race-Drop

F-Race-Fail F-Race_R-Drop-0.5

F-Race_R-Fail-0.5 F-Race_R-Drop-0.2

F-Race_R-Fail-0.2

0.00

0.05

0.10

0.15

0.20

0.25

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal F-Race-Drop

F-Race-Fail F-Race_R-Drop-0.5

F-Race_R-Fail-0.5 F-Race_R-Drop-0.2

F-Race_R-Fail-0.2

0.00

0.05

0.10

0.15

0.20

0.25

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal F-Race-Drop

F-Race-Fail F-Race_R-Drop-0.5

F-Race_R-Fail-0.5 F-Race_R-Drop-0.2

F-Race_R-Fail-0.2

0.00

0.05

0.10

0.15

0.20

0.25

00.050.10.150.2

Fa
ilu

re
 ra

te

Significance level

Equal RacingD

RacingF F-Race_R-Drop-0.5

F-Race_R-Fail-0.5 F-Race_R-Drop-0.2

F-Race_R-Fail-0.2

Fig. 4. F-Race vs. F-Race_R using utility values drawn from N(i, 102) for i = 1, …, k

278 J. Branke and J. Elomari

5 Conclusion

A new method to automatically adjust the significance level of the F-Race algorithm
for best performance given a fixed budget was presented. It was shown that a chosen
significance level does not correspond to the actual failure rate the user observes, and
choosing an appropriate significance level is not straightforward. The proposed
method, F-Race_R, allows the user to set a computational budget and it will adapt the
significance level accordingly such that the failure rate is minimized. This is achieved
by systematically lowering the initial significance level each time the race terminates
until the entire budget is consumed.

Experiments were carried out using performance values drawn from normal dis-
tributions with known means, variances, and covariances. Results show that F-Race_R
is quite robust to the initial significance level chosen, as long as it is not too low,
demonstrating its ability to adapt it online. Finally, and perhaps most importantly,
F-Race_R is able to find significance levels which achieve lower failure rates than any
fixed significance level used in F-Race. The 1-sample sign test indicates that the
improvement in the failure rate is significant. F-Race_R comes with its own new
parameter, the reduction factor. However, as shown from the experiments, F-Race_R
is also robust to different values of the reduction factor.

More experiments are still needed to better understand the full potential, and
limitations, of the proposed method. Utility values drawn from other normal and non-
normal distributions need to be tested, in addition to using actual utility values from
algorithms solving real optimization problems.

References

1. Maron, O., Moore, A.: Hoeffding races: accelerating model selection search for
classification and function approximation. Adv. Neural Inf. Process. Syst. 6, 59–66 (1994)

2. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters
affecting online performance of genetic algorithms for function optimization. In:
International Conference on Genetic Algorithms, pp. 51–60 (1989)

Table 1. Comparing the best f obtained by F-Race with any f obtained by F-Race_R obtained
at a single high default value of a

Sampling distribution of utility values Correlation F-Race_R @ 0.2 F-Race_R @ 0.1
p-value p-value

N i; 102ð Þ8i ¼ 1; . . .; k 0 0.000 0.000
0.1 0.000 0.000
0.3 0.001 0.000
0.6 0.000 0.000

N U 0; 10ð Þ;U 24; 48ð Þð Þ8i ¼ 1; . . .; k 0 0.001 0.000
0.1 0.001 0.001
0.3 0.000 0.001
0.6 0.000 0.001

Racing with a Fixed Budget and a Self-Adaptive Significance Level 279

3. Conover, W.J.: Practical Nonparametric Statistics. Wiley, New York (1999)
4. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures, 5th edn.

Chapman and Hall/CRC, New York (2011)
5. Birattari, M., Stutzle, T., Paquete, L., Varrentrapp, K.: A Racing algorithm for configuring

metaheuristics. In: Genetic and Evolutionary Computation Conference, pp. 11–18 (2002)
6. Rossi-Doria, O., et al.: A comparison of the performance of different metaheuristics on the

timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2003. LNCS, vol.
2740, pp. 329–351. Springer, Heidelberg (2003)

7. Paquete, L., Stutzle, T.: A study of stochastic local search algorithms for the biobjective
quadratic assignment problem with correlated flow matrices. Eur. J. Oper. Res. 169(3),
943–959 (2006)

8. Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Adaptive sample size and
importance sampling in estimation-based local search for the probabilistic traveling
salesman problem. Eur. J. Oper. Res. 199(1), 98–110 (2009)

9. Chiarandini, M., Stutzle, T.: Stochastic local search algorithms for graph set T-colouring
and frequency assignment. Constraints 12(3), 371–403 (2007)

10. Di Gaspero, L., Roli, A.: Stochastic local search for large-scale instances of the haplotype
inference problem by pure parsimony. J. Algorithms 63(3), 55–69 (2008)

11. Lenne, R., Solnon, C., Stutzle, T., Tannier, E., Birattari, M.: Reactive stochastic local
search algorithms for the genomic median problem. In: European Conference on
Evolutionary Computation in Combinatorial Optimization, pp. 266–276 (2008)

12. Di Gaspero, L., di Tollo, G., Roli, A., Schaerf, A.: Hybrid local search for constrained
financial portfolio selection problems. In: Van Hentenryck, P., Wolsey, L.A. (eds.)
CPAIOR 2007. LNCS, vol. 4510, pp. 44–58. Springer, Heidelberg (2007)

13. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization:
an application to pattern classification, p. 6

14. Yuan, B., Gallagher, M.: Combining meta-EAs and Racing for difficult EA parameter
tuning tasks. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in
Evolutionary Algorithms, pp. 121–142. Studies in Computational IntelligenceSpringer,
Berlin (2007)

15. Birattari, M., Balaprakash, P., Dorigo, M.: The ACO/F-Race algorithm for combinatorial
optimization under uncertainty. In: Doerner, K., Gendreau, M., Greistorfer, P., Gutjahr, W.,
Hartl, R., Reimann, M. (eds.) Metaheuristics, Operations Research/Computer Science
Interfaces Series, pp. 189–203. Springer, Heidelberg (2007)

16. Yuan, Z., Stützle, T., Birattari, M.: MADS/F-Race: mesh adaptive direct search meets F-
Race. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J., Ali, M. (eds.) IEA/AIE
2010, Part I. LNCS, vol. 6096, pp. 41–50. Springer, Heidelberg (2010)

17. Yuan, Z., Montes de Oca, M., Birattari, M., Stützle, T.: Continuous optimization algorithms
for tuning real and integer parameters of swarm intelligence algorithms. Swarm Intell. 6(1),
49–75 (2012)

18. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid algorithm
for university course timetabling. J. Sched. 9(5), 403–432 (2006)

19. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Berlin (2010)

280 J. Branke and J. Elomari

An Efficient Best Response Heuristic
for a Non-preemptive Strictly Periodic

Scheduling Problem

Clément Pira1,2(B) and Christian Artigues1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Université de Toulouse, LAAS, F-31400 Toulouse, France

{pira,artigues}@laas.fr

Abstract. We propose an enhanced version of a original heuristic first
proposed in [1,2] to solve a NP-hard strictly periodic scheduling prob-
lem. Inspired by game theory, the heuristic reaches an equilibrium by
iteratively solving best response problems. Our contribution is to greatly
improve its efficiency, taking advantage of the two-dimensionality of the
best response problem. The results show that the new heuristic compares
favorably with MILP solutions.

Keywords: Periodic scheduling · Equilibrium · Two dimensional
optimization

1 Problem and Method

We consider a periodic scheduling problem, arising for example in the avionic
field, where a set of N periodic tasks (measure of a sensor, etc.) has to be
scheduled on P processors distributed on the plane [1–4]. In this problem, each
task i has a fixed period Ti which cannot be modified. A solution is given by an
assignment of the tasks to the processors and, for each task, by the start time
ti of one of its occurrences. Each task has a processing time pi and no two tasks
assigned to the same processor can overlap during any time period. In fact, we
adopt a slightly more general model in which processing times pi are generalized
by positive latency delays li,j ≥ 0. The former case is the particular case where
li,j = pi for all other tasks j (Fig. 1).

In this paper, we only consider the case where the offsets ti are integers,
which is important to prove convergence of the heuristic.

A more complete exposition of the material presented in this article can be found in
the technical report [6].
This work was funded by the French Midi-Pyrenee region (allocation de recherche
post-doctorant n◦11050523) and the LAAS-CNRS OSEC project (Scheduling in
Critical Embedded Systems).

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 281–287, 2013.
DOI: 10.1007/978-3-642-44973-4 30, c© Springer-Verlag Berlin Heidelberg 2013

282 C. Pira and C. Artigues

Fig. 1. N = 4 non-overlapping periodic tasks on P = 1 processor

1.1 Problem Definition

Non-overlapping Constraints. We first focus on the monoprocessor problem.
Given two tasks i and j, we want a latency delay li,j ≥ 0 to be respected whenever
an occurrence of j starts after an occurrence of i. Said differently, we want the
smallest positive difference between an occurrence of j and an occurrence of i
to be greater than li,j . The set of occurrences of i is ti + TiZ, while the set
of occurrences of j is tj + TjZ. When doing the difference, and using Bézout
identity, we obtain that the set of possible differences is (tj − ti) + gi,jZ where
gi,j = gcd(Ti, Tj). The smallest positive representative of this set is (tj − ti)
mod gi,j . Therefore, the constraint we want to pose is simply:

(tj − ti) mod gi,j ≥ li,j , ∀(i, j) ∈ G (1)

The graph G involved in constraint (1) contains the arcs (i, j) for which li,j > 0
(since otherwise the equation is trivially satisfied). Since some complications are
introduced when only one of the delays li,j or lj,i is strictly positive, we will
suppose in the following that G is symetric (which can always be enforced [6]).
Seeing it as an undirected graph, we will write G(i) for the set of neighbors of i,
i.e. the set of tasks with which i is constrained.

Objective to Maximize. In a context of robustness, it could be natural to
maximize the feasibility of the system. More concretely, we want an execution
of a task to be as far as possible from every other executions of another task
which precedes or follows it. Indeed, due to uncertainties, we could imagine that
a task lasts longer than expected. This increase in the duration is naturally
proportional to the original processing time. Hence, we make all the delays li,j
proportional to a common factor α ≥ 0 that we try to optimize (see [1,2]).

max α (2)
s.t. (tj − ti) mod gi,j ≥ li,jα ∀(i, j) ∈ G (3)

ti ∈ Z ∀i (4)
α ≥ 0 (5)

We easily check that a schedule is feasible for the feasibility problem iff
the optimization problem has a solution with α ≥ 1. Hence, this optimization
problem can be interesting simply to find feasible solutions.

An Efficient Best Response Heuristic 283

1.2 An Equilibrium-Based Heuristic

The main component of the algorithm is called the best response procedure.
Following a game theory analogy, each task is seen as an agent which tries to
optimize its own offset ti, while the other offsets (t∈j) are fixed. Moreover, the
agent only takes into account the constraints in which it is involved, i.e. only
the constraints associated with its neighborhood G(i). We obtain the following
program:

(BRi) max α (6)
s.t. (ti − t∈j) mod gi,j ≥ lj,iα ∀j ∈ G(i) (7)

(t∈j − ti) mod gi,j ≥ li,jα ∀j ∈ G(i) (8)

α ≥ 0 (9)
ti ∈ Z (10)

Definition 1. A task i is stable if the current offset ti is optimal for (BRi). An
equilibrium is a solution (ti) such that all the tasks are stable.

The heuristic, described in Algorithm 1, counts the number of tasks known
to be stable. Starting with an initial solution (for example randomly generated),
we choose cyclically a task i and try to optimize its schedule, i.e. we solve (BRi).
If no improvement was found, then one more task is stable, otherwise we update
and reinitialize the counter of stable tasks. We continue until N tasks are stable.
We refer to [1] for the proof of correction and termination (the latter requires
the integrality of the offsets).

Algorithm 1. The heuristic
1: procedure ImproveSolution((tj)j∈I)
2: Nstab ∗ 0 Σ The number of stabilized tasks
3: i ∗ 0 Σ The task currently optimized
4: while Nstab < N do Σ We run until all the tasks are stable
5: (new ti, σi) ∗ BestResponse(i, (tj)j∈I) Σ We optimize the task i
6: if new ti = ti then Σ We do not have a strict improvement
7: Nstab ∗ Nstab + 1 Σ One more task is stable
8: σ ∗ min(σi, σ)
9: else Σ We have a strict improvement

10: Nstab ∗ 1 Σ We restart counting the stabilized tasks
11: σ ∗ σi; ti ∗ new ti
12: end if
13: i ∗ (i + 1) mod N Σ We consider the next task
14: end while
15: return (σ, (tj)j∈I)
16: end procedure

2 The Best Response Procedure

Since the offsets are integer, and since the problem is periodic, we can always
impose ti to belong to {0, · · · , Ti − 1}. Therefore we can trivially solve the best

284 C. Pira and C. Artigues

response program (BRi) by computing the α-value for each ti ∈ {0, · · · , Ti − 1},
using the following expression, and selecting the best offset:

α = min
j∩G(i)

min
(

(ti − t∈j) mod gi,j

lj,i
,

(t∈j − ti) mod gi,j

li,j

)

(11)

This procedure runs in O(TiN), hence any method should at least be faster.
In [1], the authors propose a method consisting in precomputing a set of inter-
section points to reduce the number of evaluations. In the following, we present
a new line-search method which greatly improves (BRi) solving.

2.1 Structure of the Solution Set of (BRi)

Each task i is linked with all the tasks j ∈ G(i) through non-overlapping con-
straints. For a given task j ∈ G(i), and a fixed offset tj , the set of solutions
(ti, α) satisfying constraints (7–9) has a shape represented on Fig. 2(a). The set
of solutions (ti, α) for the problem (BRi), given some fixed offsets (tj)j∩G(i), is
therefore the intersection of these sets for each j ∈ G(i) (see Fig. 2(b)).

(a) (b)

Fig. 2. Possible values for (ti, α) when constrained by (a) a single task j, and (b) all
the tasks j ∈ G(i)

Hence, this solution set is composed of several adjacent polyhedra. We can
give an upper bound on the number npoly of such polyhedra. A polyhedron starts
and ends at zero points (i.e. an offset where the curve vanishes). In the case of
integer offsets, there is obviously at most Ti zero points in the interval [0, Ti − 1]
and therefore, at most Ti polyhedra.

2.2 Principle of the Best-Response Procedure

Graphically, solving the program (BRi) amounts to finding the solution maxi-
mizing the curve described by Fig. 2(b). By periodicity, ti can be supposed to
belong to {0, · · · , Ti − 1}. More generally we can start at any initial offset τ ,
for example the initial value of ti, and run on the right until we reach the offset
τ +Ti − 1, hence we obtain a new solution ti ∈ {τ, · · · , τ +Ti − 1}. If needed, we
can then consider ti mod Ti which is an equivalent solution in {0, · · · , Ti − 1}.

Given an initial reference offset trefi , we can compute the local polyhedron
which contains it (see Fig. 3). Using standard LP techniques, we can find the

An Efficient Best Response Heuristic 285

Fig. 3. Selection of the polyhedron containing a reference offset trefi

Fig. 4. Principle of the best response procedure

local fractional optimum, as well as the local integral optimum (see Sect. 2.3). If
the latter is better than the current best solution, we update. We now want to
reach the next polyhedron. At the local fractional optimum, there are two active
lines, an increasing one and a decreasing one. Since the procedure runs from left
to right, we follow the decreasing line until we reach the x-axis (i.e. the offset o∀

k

on Fig. 4). We can use this point as the new reference offset. We continue until
a whole period has been traversed. This method is illustrated on Fig. 4.

2.3 Solving the Local Best Response Problem

We now explain more precisely how to optimize on the local polyhedra. Near the
reference offset trefi , the constraint (ti − t∈j) mod gi,j ≥ lj,iα is locally linear and
increasing, of the form (13). In the same way, the constraint (t∈j − ti) mod gi,j ≥
li,jα is locally linear and decreasing, of the form (14). Thus, the local program
has the following form:

(Loc−BRi) max α (12)
s.t. ti − lj,iα ≥ oj ∀j ∈ G(i) (13)

ti + li,jα ≤ o∀
j ∀j ∈ G(i) (14)

ti ∈ Z (15)

If the reference point trefi is not a zero-point, there is only one possible choice
for oj and o∀

j . Otherwise, there is technically two polyhedra, on the left and on
the right. As we move to the right, the right one is preferred. This amounts to
defining oj and o∀

j by (see [6]):

oj = trefi − (trefi − t∈j) mod gi,j and o∀
j = oj + gi,j (16)

In order to solve (Loc−BRi), we can first search for a fractional solution.
Since the problem is a particular two dimensional program, Megiddo algorithm
allows to find an optimal solution in O(N) [5]. We can then round this fractional
solution to the closest smaller and larger integers, compute the α-value associated
with these two offsets (using expression (11)), and select the best one. This gives

286 C. Pira and C. Artigues

immediately a method to compute an integer solution in O(N). Therefore, the
global best response algorithm runs in O(npolyN) with npoly bounded by Ti.

In [6], we give a special implementation of the dual simplex algorithm, which
runs in O(N2), but which outperforms Megiddo algorithm in practice (at least
for the sizes of instances we considered). In fact, the integrality assumption allows
subsequently to improve the dual simplex algorithm and obtain a complexity in
O(NW) where W is the width of the polyhedron. This is enough to give an
acceptable complexity in O(TiN) for the global best response problem.

2.4 The Multiprocessor Best-Response

In order to implement the multiprocessor best response, we solve the best response
on each processor. The task is reassign to the processor which gives the best result,
and the offset is changed accordingly.

3 Experimental Results

We test the method on non-harmonic instances, with N = 20 tasks and P = 4
processors, generated using the procedure described in [3]: the periods were
choosen in the set {2x3y50 | x ∈ [0, 4], y ∈ [0, 3]} and the processing times
were generated following an exponential distribution and averaging at about
20 % of the period. Columns 2 and 3 allow to compare our results with a MILP
formulation presented in [6] and restricted with a timeout of 200s. Results about
the original heuristic [1,2] are presented on columns 4-7. Here, timesingle is the
time needed for a single run and starts2s = 2/timesingle measures the average
number of starts performed by the original heuristic in 2s. Finally, columns 8-11
contain the results for our version of the heuristic. In [1,2], the stopping criterion

Table 1. Results of the MILP, the heuristic of [1], and the new version of the heuristic

id MILP (200s) Original heuristic [2] (Bayesian test) New heuristic (2s)

σMILP timesol σheuristic timesingle timestop starts2s σheuristic startssol starts2s timesol

0 2.5 159 2.3 1.43 101.33 1.4 2.5 35 3624 0.01932

1 2 18 2.01091 3.27 5064.67 0.61 2.01091 28 4477 0.01251

2 1.6 6 1.40455 1.52 869.45 1.32 1.6 2 2462 0.00162

3 1.6 4 1.6 4.34 8704.45 0.46 1.64324 45 2910 0.03093

4 2 5 1.92 3.48 1115.51 0.57 2 1 2489 0.00080

5∗ 3 7 1.43413 1.63 1498.21 1.23 3 1 2107 0.00095

6 2.5 54 2.3 1.44 101.25 1.39 2.5 35 3805 0.01840

7 2 19 2 0.23 302.27 8.7 2 3 4431 0.00135

8 2.12222 8 1.75794 1.03 871.8 1.94 2.12222 3 2513 0.00239

9∗ 2 11 2 2.42 3541.79 0.83 2 3 3575 0.00168

10 1.12 6 0.87 0.72 368.44 2.78 1.12 4 3466 0.00231

11 2.81098 20 0.847368 3.78 478.63 0.53 2.81098 1 3421 0.00058

12 1.5 7 1.5 0.27 313.74 7.4 1.5 4 3645 0.00219

13 1.56833 49 1.5 1.77 3293.33 1.13 1.56833 1 3863 0.00052

14 2 8 2 1.85 3873 1.08 2 2 2331 0.00172

An Efficient Best Response Heuristic 287

was a bayesian test, but column 4 shows that it often stopped with a solution
far from the best solution found by the MILP. Hence for the new heuristic,
the stopping criterion is more simply a timeout of 2s. The value start2s is the
number of times the heuristic was started during this period. This number is
much greater than the equivalent number for the original heuristic, therefore
our heuristic is much faster (about 3100 times on these instances). Moreover,
timesol represents approximately the time needed to find the best solution. This
is to compare with the column timesol of the MILP formulation, which shows
that our version of the heuristic is very competitive compared to the MILP
(Table 1).

References

1. Al Sheikh, A.: Resource allocation in hard real-time avionic systems - scheduling
and routing problems. Ph.D. thesis, LAAS, Toulouse, France (2011)

2. Al Sheikh, A., Brun, O., Hladik, P.E., Prabhu, B.: Strictly periodic scheduling in
IMA-based architectures. Real Time Syst. 48(4), 359–386 (2012)

3. Eisenbrand, F., Kesavan, K., Mattikalli, R.S., Niemeier, M., Nordsieck, A.W.,
Skutella, M., Verschae, J., Wiese, A.: Solving an avionics real-time scheduling prob-
lem by advanced IP-methods. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I.
LNCS, vol. 6346, pp. 11–22. Springer, Heidelberg (2010)

4. Korst, J.: Periodic multiprocessors scheduling. Ph.D. thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands (1992)

5. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM J. Comput. 12(4), 759–776 (1983)

6. Pira, C., Artigues, C.: An efficient best response heuristic for a non-preemptive
strictly periodic scheduling problem. Technical report LAAS-CNRS, Toulouse,
France, October 2012. http://hal.archives-ouvertes.fr/hal-00761345

http://hal.archives-ouvertes.fr/hal-00761345

Finding an Evolutionary Solution to the Game
of Mastermind with Good Scaling Behavior

Juan Julian Merelo1, Antonio M. Mora1, Carlos Cotta2,
and Antonio J. Fernández-Leiva2(B)

1 Department Computer Architecture and Technology + CITIC,
University of Granada, Granada, Spain
{jmerelo,amorag}@geneura.ugr.es

2 Department of Computer Sciences and Languages,
University of Málaga, Málaga, Spain

{ccottap,afdez}@lcc.uma.es

Abstract. There are two main research issues in the game of Master-
mind: one of them is finding solutions that are able to minimize the num-
ber of turns needed to find the solution, and another is finding methods
that scale well when the size of the search space is increased. In this paper
we will present a method that uses evolutionary algorithms to find fast
solutions to the game of Mastermind that scale better with problem size
than previously described methods; this is obtained by just fixing one
parameter.

Keywords: Mastermind · Oracle games · Puzzles · Evolutionary algo-
rithms · Parameter optimization

1 Introduction and State of the Art

Mastermind [1–3] is a puzzle in which one player A hides a combination of φ
symbols and length Δ, while the other player B tries to find it out by playing
combinations coded in the same alphabet and length. The answers from player
A to every combination include the number of symbols in the combination that
are in the correct position and the number of colors that have been guessed
correctly. Player B then plays a new combination, until the hidden one is found.
The objective of the game is to play repeatedly minimizing the number of turns
needed to find the solution.

Most solutions so far [4,5] use the concept of eligible, possible or consistent
combinations: those that, according to responses by player A, could still be the
hidden combination or, in other words, those that match the played combina-
tions as indicated by the answer. Exhaustive methods [2,6] would eliminate all
non-consistent solutions and play a consistent one, while non-exhaustive meth-
ods would sample the set of consistent solutions and play one of them. Those
solutions are guaranteed to reduce the search space at least by one, but obvi-
ously different combinations have a different reduction capability. This capability

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 288–293, 2013.
DOI: 10.1007/978-3-642-44973-4 31, c© Springer-Verlag Berlin Heidelberg 2013

Finding an Evolutionary Solution to the Game of Mastermind 289

is reflected by a score. However, scores are heuristic and there is no rigorous way
of scoring combinations. To compute these scores, every combination is compared
in turn with the rest of the combinations in the set; the number of combinations
that get every response (there is a limited amount of possible responses) is noted.
Eventually this results in a series of partitions in which the set of consistent com-
binations is divided by its distance (in terms of common positions and colors) to
every other. This results in a set of combinations with the best score; one of the
combinations of this set is chosen deterministically (using lexicographical order,
for instance) or randomly. In this paper we use most parts, proposed in [7] which
takes into account only the number of non-zero partitions.

Currently, the state of the art was established by Berghman et al. in [4].
They obtained a system that is able to find the solution in an average number of
moves that is, for all sizes tested, better than previously published. The number
of evaluations was not published, but time was. In both cases, their solutions
were quite good. However, there were many parameters that had to be set for
each size, starting with the first guess and the size of the consistent set, as well as
population size and other evolutionary algorithm parameters. In this paper we
will try to adapt our previously published Evo method by reducing the number
of parameters without compromising too much on algorithm performance, based
on the fact that even as you can find a good solution using only a sample of the
consistent set size as proved in [4,5], different set sizes do have an influence on
the outcome. When you reduce the size to the minimum it is bound to have an
influence on the result, in terms of turns needed to win and number of evaluations
needed to do it. The effect of the reduction of this sample size will decrease the
probability of finding, and thus playing, the hidden combination, and also the
probability of finding the combination that maximally reduces the search space
size when played. However, in this paper we will prove that good solutions can
be found by using a small and, what is more, a common set size across all
Mastermind problem sizes.

In the next section we will present the experiments carried out and its results
for sizes from Δ = 4, φ = 8 to Δ = 7, φ = 10.

2 An Evolutionary Method for Playing MasterMind

This paper uses the method called, simply, Evo [8–11]. This method, which
has been released as open source code at CPAN (http://search.cpan.org/dist/
Algorithm-MasterMind/), is an evolutionary algorithm that has been optimized
for speed and to obtain the minimal number of evaluations possible. An evolu-
tionary algorithm [12] is a Nature-inspired search and optimization method that,
modeling natural evolution and its molecular base, uses a (codified) population
of solutions to find the optimal one. Candidate solutions are scored according
to its closeness to the optimal solution (called fitness) and the whole population
evolved by discarding solutions with the lowest fitness and making those with
the highest fitness reproduce via combination (crossover) and random change
(mutation).

http://search.cpan.org/dist/Algorithm-MasterMind/
http://search.cpan.org/dist/Algorithm-MasterMind/

290 J.J. Merelo et al.

Evo, which is explained extensively in [11] searches consistent combinations
until a prefixed amount of them has been found. It uses Most Parts score to assess
consistent combinations, and the distance to consistency for non-consistent ones,
so that the fitness directs search towards finding consistent solutions with better
score. The algorithm continues until a pre-fixed number of consistent solutions
have been found or until this number does not vary for a number of generations
(set to three throughout all experiments).

Evo incorporates a series of methods to decrease the amount of evaluations
needed to find the solution, including endgames which makes the evolutionary
algorithm revert to exhaustive search in the case the search space has been well
characterized (for instance, when we know that the solution is a permutation of
one of the combinations played or when we have discarded some colors, reverting
to a problem of smaller size).

The solutions are quite promising, but the main problem is that the number
of evaluations needed to find the solution increases rapidly with problem size
(fortunately, not as fast as the problem size itself or this solution would not be
convenient) and a new parameter is introduced: the optimal size of the set of
consistent combinations, that is, the number of combinations that the algorithm
tries to find out before it plays one.

What we do in this paper is testing an one size fits all approach by making
the size of the consistent set unchanged for any problem size. This reduces the
algorithm parameter set by one, but since this parameter set has, a priori, a big
influence on result and there is no method to set it other than experimentation,
it reduces greatly the amount of experiments needed to obtain a solution.

3 Experiments and Results

The experiments presented in this paper extend those published previously,
mainly by [11].

In this paper we will set this size to a common for all sizes and minimal value:
10, that is why we will denominate the method tested Evo10. This value has been
chosen to be small enough to be convenient, but not so small that the scoring
methods are rendered meaningless. This will reduce the parameters needed by
one, leaving only the population size to be set, once, of course, the rest of the
evolutionary algorithm parameters have been fixed by experimentation; these
parameters are set to crossover rate equal to 80 %, and mutation and permuta-
tion rate equal to 10 %; replacement rate is equal to 75 % and tournament size
equal to 7.

For every problem size, a fixed set of 5000 combinations were generated ran-
domly. There is at most a single repetition in the smallest size, and no repetition
in the rest. The sets can be downloaded from http://goo.gl/6yu16; these sets
are the same that have been used in previous papers. A single game is played
for every combination.

The results for this fixed parameter setting are shown in Tables 1(a), (b), (c)
and (d).

http://goo.gl/6yu16

Finding an Evolutionary Solution to the Game of Mastermind 291

Table 1. Comparison among this approach (Evo10) and previous results published by
the authors (Evo++) in [11] and Berghman et al. [4].

(a) Mean number of guesses and the standard error of the mean for Σ = 4, 5, the
quantities in parentheses indicate population and consistent set size (in the case of the
previous results).

Σ = 4 Σ = 5

ϕ = 8 ϕ = 8 ϕ = 9

Berghman et al. 5.618
Evo++ (400,30) 5.15 ± 0.87 (600,40) 5.62 ± 0.84 (800,80) 5.94 ± 0.87
Evo10 (200) 5.209 ± 0.91 (600) 5.652 ± 0.818 (800) 6.013 ± 0.875

(b) Mean number of guesses and the standard error of the mean for Σ = 6, 7, the
quantities in parentheses indicate population and consistent set size (in the case of the
previous results).

Σ = 6 Σ = 7

ϕ = 9 ϕ = 10 ϕ = 10

Berghman et al. 6.475
Evo++ (1000,100) 6.479 ± 0.89
Evo10 (800) 6.504 ± 0.871 (1000) 6.877 ± 0.013 (1500) 7.425 ± 0.013

(c) Mean number of evaluations and its standard deviationΣ = 4, 5.

Σ = 4 Σ = 5

ϕ = 8 ϕ = 8 ϕ = 9

Evo++ 6412 ± 3014 14911 ± 6120 25323 ± 9972
Evo10 2551 ± 1367 7981 ± 3511 8953 ± 3982

(d) Mean number of evaluations and its standard deviationΣ = 6, 7.

Σ = 6 Σ = 7

ϕ = 9 ϕ = 10 ϕ = 10

Evo++ 46483 ± 17031
Evo10 17562 ± 135367 21804 ± 67227 40205 ± 65485

The first of these tables, which represent the average number of moves needed
to find the solution, show results that are quite similar. The average for Evo10 is
consistently higher (more turns are needed to find the solution) but in half the
cases the difference is not statistically significant using Wilcoxon paired test.
There is a significant difference for the two smaller sizes (Δ = 4, φ = 8 and
Δ = 5, φ = 8), but not for the larger sizes Δ = 5, φ = 9 and Δ = 6, 7. This is
probably due to the fact that, with increasing search space size, the difference
among 10 and other sample size, even if they are in different orders of magnitude,
become negligible; the difference between 10 and 1 % of the actual sample size
is significant, but the difference 0.001 and 0.0001 % is not.

However, the difference in the number of evaluations (shown in Tables 1(c)
and (d)), that is, the total population evaluated to find the solution is quite
significant, going from a bit less than half to a third of the total evaluations

292 J.J. Merelo et al.

for the larger size. This means that the time needed scales roughly in the same
way, but it is even more interesting to note that it scales better for a fixed
size than for the best consistent set size. Besides, in all cases the algorithm
does not examine the full set of combinations, while previously the number of
combinations evaluated, 6412, was almost 50 % bigger than the search space size
for that problem. The same argument can be applied to the comparison with
Berghman’s results (when they are available); Evo++ was able to find solutions
which were quite similar to them, but Evo10 obtains an average number of
turns that is slightly worse; since we don’t have the complete set of results, and
besides they have been made on a different set of combinations, it is not possible
to compare, but at any rate it would be reasonable to think that this result is
significant.

4 Discussion, Conclusions and Future Work

This paper has shown that using a small and fixed consistent set size when
playing mastermind using evolutionary algorithms does not imply a deterioration
of results, while cutting in half the number of evaluations needed to find them.
This makes the configuration of the algorithm shown quite suitable for real-
time games such as mobile apps or web games; the actual time varies from less
than one second for the smallest configuration to a few seconds for the whole
game in the biggest configuration shown; the time being roughly proportional
to the number of evaluations, this is at least an improvement of that order;
that is, the time is reduced by 2/3 for the φ = 6, Δ = 9 problem, attaining an
average of 4.7 sec, almost one fourth of the time it can take when we try to
achieve the minimum number of turns, 18.6 sec. This number is closer to the
one published by [4] for this size, 1.284 s, although without running it under
the same conditions we cannot be sure. It is in the same ballpark, anyways.
The time needed to find the solution has a strong component in the number of
evaluations, but it also depends on the consistent set size, that is why the relation
between the time needed (1/4) is smaller than the relation between number of
evaluations (roughly 1/3, see Table 1(d)). This allows also to extend the range
of feasible sizes, and yields a robust configuration that can be used throughout
any Mastermind problem.

As future lines of work, we will try to reduce even more this size and try
to check whether it offers good results for bigger sizes such as Δ = 7, φ = 11 or
even Δ = 8, φ = 12. Several consistent set sizes will be systematically evaluated,
looking mainly for a reduction in the number of evaluations, and time, needed.
Eventually, what we are looking is for a method that is able to resolve problems
with moderate size, but this will need to be tackled from different points of view:
implementation, middle-level algorithms used, even the programming language
we will be using. We might even have to abandon the paradigm of playing always
consistent solutions to settle, sometimes, for non-consistent solutions for the sake
of speed.

Finding an Evolutionary Solution to the Game of Mastermind 293

It is also clear than, when increasing the search space size, the size of the
consistent set will become negligible with respect to the actual size of the consis-
tent set. This could work both ways: first, by making the results independent of
sample size (for this small size, at least) or by making the strategy of extracting
a sample of a particular size indistinguishable from finding a single consistent
combination and playing it. As we improve the computation speed, it would be
interesting to take measurements to prove these hypotheses.

Acknowledgements. This work is supported by projects TIN2011-28627-C04-02 and
TIN2011-28627-C04-01 and -02 (ANYSELF), awarded by the Spanish Ministry of Sci-
ence and Innovation and P08-TIC-03903 and P10-TIC-6083 (DNEMESIS) awarded by
the Andalusian Regional Government.

References

1. Meirovitz, M.: Board game (December 30 1980) US Patent 4,241,923
2. Knuth, D.E.: The computer as master mind. J. Recreational Math. 9(1), 1–6 (1976–

1977)
3. Montgomery, G.: Mastermind: improving the search. AI Expert 7(4), 40–47 (1992)
4. Berghman, L., Goossens, D., Leus, R.: Effcient solutions for mastermind using

genetic algorithms. Compu. Oper. Res. 36(6), 1880–1885 (2009)
5. Runarsson, T.P., Merelo-Guervós, J.J.: Adapting heuristic mastermind strategies

to evolutionary algorithms. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G.,
Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 255–267. Springer, Heidelberg
(2010). ArXiV: http://arxiv.org/abs/0912.2415v1

6. Merelo-Guervós, J.J., Mora, A.M., Cotta, C., Runarsson, T.P.: An experimental
study of exhaustive solutions for the mastermind puzzle. CoRR abs/1207.1315
(2012)

7. Kooi, B.: Yet another mastermind strategy. ICGA J. 28(1), 13–20 (2005)
8. Cotta, C., Merelo Guervós, J.J., Mora Garćia, A.M., Runarsson, T.P.: Entropy-

driven evolutionary approaches to the mastermind problem. In: Schaefer, R., Cotta,
C., Koffilodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 421–431.
Springer, Heidelberg (2010)

9. Merelo, J., Mora, A., Runarsson, T., Cotta, C.: Assessing effciency of different
evolutionary strategies playing mastermind. In: 2010 IEEE Symposium on Com-
putational Intelligence and Games (CIG), pp. 38–45, August 2010

10. Merelo, J.J., Cotta, C., Mora, A.: Improving and scaling evolutionary approaches
to the mastermind problem. In: Di Chio, C., et al. (eds.) EvoApplications 2011,
Part I. LNCS, vol. 6624, pp. 103–112. Springer, Heidelberg (2011)

11. Merelo-Guervós, J.J., Mora, A.M., Cotta, C.: Optimizing worst-case scenario in
evolutionary solutions to the MasterMind puzzle. In: IEEE Congress on Evolu-
tionary Computation, pp. 2669–2676. IEEE (2011)

12. Eiben, A.E., Smit, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2003)

A Fast Local Search Approach
for Multiobjective Problems

Laurent Moalic, Alexandre Caminada(B), and Sid Lamrous

Belfort-Montbéliard University of Technology - UTBM,
F-90010 Belfort, France

{laurent.moalic,sid.lamrous,alexandre.caminada}@utbm.fr

Abstract. In this article, we present a new local method for multiobjec-
tive problems. It is an extension of local search algorithms for the single
objective case, with specific mechanisms used to build the Pareto set. The
performance of the local search algorithm is illustrated by experimental
results based on a real problem with three objectives. The problem is
issued from electric car-sharing service with a car manufacturer partner.
Compared to the Multiobjective Pareto Local Search (PLS) well known
in the scientific literature [1], the proposed model aims to improve: the
solutions quality and the time computing.

Keywords: Local search algorithm · Multiobjective optimization ·
Transportation services · Car-sharing

1 Introduction

Many real world problems require to optimize several objectives simultaneously,
they are called multiobjective optimization problems (MOP). When it does not
exist a unique solution optimizing all objectives in an optimal way, we need to
find other decisional mechanisms. The Pareto dominance is one of these; for
MOP, the Pareto set is composed of all best compromises between the different
objectives. The Pareto set is achieved if there are no other dominant solutions
in the search space. The Pareto front is defined as the image of the Pareto
set in the objective space [2]. In the past few years, a lot of works were based
on multiobjective evolutionary algorithms (MOEA) such NSGA-II [3], SPEA [4]
and SPEA2 [5], sometime coupled with local search in memetic approaches [6,7].

To solve single objective combinatorial optimization problems, local search
algorithms provide often efficient metaheuristics. They can also be adapted to
multiobjective combinatorial problems like in Pareto Local Search algorithm
(PLS) [1] with a complete exploration of the neighborhood, or with strategy
based on the neighborhood structure [8]. A recent work has been done to unify
local search algorithms applied to MOP, known as Dominance-based Multiob-
jective Local Search (DMLS) [9]. Finally, some algorithms add a Tabu criteria
in the local search [10,11].

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 294–298, 2013.
DOI: 10.1007/978-3-642-44973-4 32, c© Springer-Verlag Berlin Heidelberg 2013

A Fast Local Search Approach for Multiobjective Problems 295

The local search approach we propose, named FLS-MO, is based on the
Pareto optimality. A neighbor is acceptable if and only if it is not dominated
by the solutions found so far. This criteria was used in other approaches as in
[1] but the originality of our method is to be very intensive while maintaining a
good diversity. With this new tradeoff between intensification and diversification
we get good results in comparison with PLS.

2 Fast Local Search for Multiobjective Problems

The new algorithm is based on a not dominated local search. The initial solu-
tion is build randomly, marked as not explored and added to the solutions set.
While it exists a not explored solution in the solutions set, the algorithm chooses
randomly such a solution and use it recursively until being in a local optimum.
At each step the first random neighbor that provides a new non-dominated
solution is accepted. The algorithm stops when all non-dominated solutions are
marked as explored. The result is an approximation of the Pareto set. The app-
roach combines two qualities: a good intensification based on exploration of any
non-dominated solution of the set and a good diversification because all non-
dominated solutions are accepted in the set.

Algorithm 1. Fast Local Search for Multiobjective Problems
1: S ← init() {init the solution set S with a random individual}
2: s ← select(S) {select randomly a not explored solution from S}
3: while s ∈= ∀ do
4: repeat
5: s′ ← selectNeighbor(s) {select randomly a neighbor of s not dominated by S}
6: if s′ ∈= ∀ then
7: s ← s′

8: addNotDominated(s) {add s in S and remove all dominated solutions}
9: end if
10: until s′ = ∀
11: mark s as explored
12: s ← select(S) {select randomly a not explored solution from S}
13: end while

3 Study Case: Charging Stations Location for Electric
Car-Sharing service

Car-sharing services was first experimented in 1940 [12]. To deploy the service,
we need to locate charging stations where the people take and return the cars. In
our case, it is not necessary to return the vehicle in its starting station. Solving
approaches based on exact methods already exist such as [13] but they consider
simplified problem. We have applied FLS-MO algorithm to approximate the

296 L. Moalic et al.

Pareto set of this problem. The aim is to locate n stations in a given area to
maximise several daily requests of population flows.

The area is discretized into a grid and all the flows are set in a 3D matrix
F = (fi,j,t) where fi,j,t represents the number of displacements from the cell i to
the cell j at time period t. We have 3 objectives to locate the charging stations:

f1 : flow maximization i.e. the locations must allow us to maximize the flows
between themselves

f1 = max
s∈Ω

⎡

⎣
⎨

sti∈s

⎨

stj∈s\{sti}
f(sti, stj)

⎤

⎦ (1)

f2 : balance maximization i.e. the location must allow us to maximize the
balance between inflows and outflows of a station

f2 = max
s∈Ω

⎫
⎨

sti∈s

fr(sti)
fT (sti)

⎬

(2)

f3 : minimization of flow standard deviation i.e. the location must allow us
to get an uniform flow along the day

f3 = min
s∈Ω

⎫
⎨

sti∈s

⎭
1
|T |

⎨

t

(f(sti, t) − f̄(sti))2
⎬

(3)

With,

φ : set of feasible solutions
s : solution element of φ corresponding to a network of n charging stations
sti : charging station i from the solution s
T : set of time periods of the day
t : one time period (for instance 15 minutes)
f(sti, stj) : number of people moving from sti to stj on all time periods
f(sti, stj , t) : number of people moving from sti to stj on time period t
f(sti, t) : number of people moving from/to sti on time period t
f̄(sti) : average number of people moving from/to sti on all time periods
fr(sti) =

∑
t min

[∑
stj∈s\{sti} f(sti, stj , t),

∑
stj∈s\{sti} f(stj , sti, t)

]
is the

balanced part of the in/out flow throughout the day
fT (sti) =

∑
t max

[∑
stj∈s\{sti} f(sti, stj , t),

∑
stj∈s\{sti} f(stj , sti, t)

]
is the

total flow going through sti station

4 Performance Analysis

In multiobjective optimization the comparison of different algorithms is quite
difficult. Indeed for two approximations of the Pareto front one can be better
for a criteria but worst for another one. Choosing a comparative indicator would

A Fast Local Search Approach for Multiobjective Problems 297

be a good way to distinguish these sets. Here we have considered the additive Δ-
indicator [14]. The unary additive Δ-indicator gives the minimum factor by which
a set A has to be translated to dominate the reference set R. As we do not know
the optimal reference set of the problem we composed an approximated R with
the best solutions obtained with PLS and FLS-MO on many runs.

Fig. 1. Σ-indicator evolution for PLS and FLS-MO algorithms

Figure 1 shows the comparison on 6 runs between PLS and FLS-MO. It
reflects the evolution in time of Δ-indicator. The left side shows 6 runs for each
method and the right side shows their mean value on 6 runs. The results given
by FLS-MO seems to be very promising. Figure 1 shows that FLS-MO converges
twice faster than PLS and provides a better average evaluation.

References

1. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: an experimental study. In: Gandibleux, X.,
Sevaux, M., Sörensen, K., T’kindt, V., Fandel, G., Trockel, W. (eds.) Metaheuris-
tics for Multiobjective Optimisation. Lecture Notes in Economics and Mathemat-
ical Systems, vol. 535, pp. 177–199. Springer, Heidelberg (2004)

2. Coello, C., Lamont, G.: Applications of Multi-Objective Evolutionary Algorithms,
vol. 1. World Scientific, Singapore (2004)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-2. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

4. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271
(1999)

5. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evo-
lutionary algorithm. TIK-Report 103 (2001)

6. Knowles, J., Corne, D.: M-paes: a memetic algorithm for multiobjective optimiza-
tion. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1,
pp. 325–332 (2000)

7. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimiza-
tion. Eur. J. Oper. Res. 137(1), 50–71 (2002)

298 L. Moalic et al.

8. Wu, Z., Chow, T.S.: A local multiobjective optimization algorithm using neighbor-
hood field. Struct. Multi. Optim. 46, 853–870 (2012)

9. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.-G.: On dominance-
based multiobjective local search: design, implementation and experimental analy-
sis on scheduling and traveling salesman problems. J. Heuristics 18, 317–352
(2012). doi:10.1007/s10732-011-9181-3

10. Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0-1 mul-
tiobjective knapsack problem: the two objectives case. J. Heuristics 6, 361–383
(2000). doi:10.1023/A:1009682532542

11. Hansen, M.P.: Tabu search for multiobjective optimization: Mots. In: MCDM’97,
Springer (1997)

12. Shaheen, S.A., Cohen, A.P.: Worldwide Carsharing Growth: An International Com-
parison. University of California, Berkeley (2008)

13. de Almeida Correia, G.H., Antunes, A.P.: Optimization approach to depot location
and trip selection in one-way carsharing systems. Transp. Res. Part E 48(1), 233–
247 (2012)

14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol.
Comput. 7, 117–132 (2003)

http://dx.doi.org/10.1007/s10732-011-9181-3
http://dx.doi.org/10.1023/A:1009682532542

Generating Customized Landscapes
in Permutation-Based Combinatorial

Optimization Problems

Leticia Hernando, Alexander Mendiburu, and Jose A. Lozano(B)

Intelligent Systems Group,
Department of Computer Science and Artificial Intelligence,

University of the Basque Country UPV/EHU, San Sebastián, Spain
{leticia.hernando,alexander.mendiburu,ja.lozano}@ehu.es

Abstract. Designing customized optimization problem instances is a
key issue in optimization. They can be used to tune and evaluate new
algorithms, to compare several optimization algorithms, or to evaluate
techniques that estimate the number of local optima of an instance. Given
this relevance, several methods have been proposed to design customized
optimization problems in the field of evolutionary computation for con-
tinuous as well as binary domains. However, these proposals have not
been extended to permutation spaces. In this paper we provide a method
to generate customized landscapes in permutation-based combinatorial
optimization problems. Based on a probabilistic model for permutations,
called the Mallows model, we generate instances with specific character-
istics regarding the number of local optima or the sizes of the attraction
basins.

Keywords: Combinatorial optimization problems · Landscape genera-
tor · Mallows model · Permutation space · Local optima

1 Introduction

Generating instances of combinatorial optimization problems (COPs) is an essen-
tial factor when comparing and analyzing different metaheuristic algorithms,
and when evaluating algorithms that estimate the number of local optima of an
instance. The design of a tunable generator of instances is of high relevance as
it allows to control the properties of the instances by changing the values of the
parameters.

Given the significance of this topic, several proposals have been presented in
the literature. For example, a generator for binary spaces is proposed in [1], or
a more recent work [2] shows a software framework that generates multimodal
test functions for optimization in continuous domains. Particularly, the study
developed in [3] has high relevance with our paper. The authors proposed a
continuous space generator based on a mixture of Gaussians, which is tunable by

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 299–303, 2013.
DOI: 10.1007/978-3-642-44973-4 33, c© Springer-Verlag Berlin Heidelberg 2013

300 L. Hernando et al.

a small number of user parameters. Based on that work we propose a generator of
permutation-based COPs instances based on a mixture of a probabilistic model
for permutations called the Mallows model.

The rest of the paper is organized as follows. The Mallows model is explained
in Sect. 2. In Sect. 3 we present our generator of instances of COPs based on
permutations. Finally, future work is given in Sect. 4.

2 Mallows Model

The Mallows model [4] is an exponential probability model for permutations
based on a distance. This distribution is defined by two parameters: the central
permutation σ0, and the spread parameter θ. If Ω is the set of all permutations
of size n, for each σ ⊆ Ω the Mallows distribution is defined as:

p(σ) =
1

Z(θ)
e−θd(σ0,σ)

where Z(θ) =
∑

σ′∈Ω e−θd(σ0,σ′) is a normalization term and d(σ0, σ) is the
distance between the central permutation σ0 and σ. The most commonly used
distance is the Kendall tau. Given two permutations σ1 and σ2, it counts the
minimum number of adjacent swaps needed to convert σ1 into σ2. Under this
metric the normalization term Z(θ) has closed form and does not depend on σ0:

Z(θ) =
n−1∏

j=1

1 − e−(n−j+1)θ

1 − e−θ
.

Notice that if θ > 0, then σ0 is the permutation with the highest probability.
The rest of permutations σ∗ ⊆ Ω −{σ0} have probability inversely exponentially
proportional to θ and their distance to σ0. So, the Mallows distribution can be
considered analogous to the Gaussian distribution on the space of permutations.

3 Instance Generator

In this section we show a generator of instances of COPs where the solutions
are in the space of permutations. Our generator defines an optimization function
based on a mixture of Mallows models.

The generator proposed in this paper uses 3m parameters: m central permu-
tations {σ1, ..., σm}, m spread parameters {θ1, ..., θm} and m weights {w1, ..., wm}.
We generate m Mallows models pi(σ|σi, θi), one for each σi and θi, ∀i⊆ {1, ...,m}.
The objective function value for each permutation σ ⊆ Ω is defined as follows:

f(σ) = max
1∩i∩m

{wipi(σ|σi, θi)}.

Landscapes with different properties, and hence different levels of complexity,
are obtained by properly tuning these parameters.

Generating Customized Landscapes in Permutation-Based COPs 301

Some of these interesting properties are analyzed here. The first relevant
factor we consider is that all central permutations σi’s were local optima. Clearly,
in order to be local optima, {σ1, ..., σm} have to fulfill that d(σi, σj) ∅ 2, ∀i ∈= j.
A second constraint is that the objective function value of σi has to be reached
in the ith Mallows model, i.e.:

f(σi) = max
1∩k∩m

{wkpk(σi|σk, θk)} = wipi(σi|σi, θi) = wi
e−θid(σi,σi)

Z(θi)
=

wi

Z(θi)
(1)

Moreover, in order to be σi a local optimum the following constraint has to
be fulfilled:

f(σi) > f(σ), ∀σ s.t. d(σi, σ) = 1. (2)

To satisfy (2), and taking into account the constraint (1), we need to comply
with:

∀j = 1, ...,m,
wi

Z(θi)
> wjpj(σ), ∀σ s.t. d(σi, σ) = 1.

However, taking into account that if σ ⊆ Ω is s.t. d(σi, σ) = 1, then d(σj , σ) =
d(σj , σi) − 1 or d(σj , σ) = d(σj , σi) + 1, Eq. (2) can be stated as:

wi

Zi(θi)
>

wj

Zj(θj)
e−θj(d(σi,σj)−1) , ∀j ⊆ {1, 2, ...,m}, i ∈= j. (3)

Notice that once the parameters θi’s have been fixed, the previous inequalities
are linear in wi’s. So the values of wi’s could be obtained as the solution of
just a linear programming problem. However, we have not defined any objective
function to be optimized in our linear programing problem. This function can be
chosen taking into account the different desired characteristics for the instance.

For example, one could think about a landscape with similar sizes of attrac-
tion basins. In this case, and without loss of generality, we consider that σ1 is
the global optimum and that σm is the local optimum with the lowest objective
function value. Our objective function tries to minimize the difference between
the objective function values of these two permutations (and implicitly minimize
the difference of the objective function values of all the local optima). In addi-
tion we have to include new constraints to comply with these properties in the
objective function values. This landscape can be generated as follows:

1. Choose uniformly at random m permutations in Ω: σ1, σ2, ..., σm, such that
d(σi, σj) ∅ 2, ∀i, j ⊆ {1, ...,m}, i ∈= j.

2. Choose uniformly at random in the interval [a, b] (with b > a > 0) m spread
parameters : θ1, θ2, ..., θm.

3. Solve the linear programming problem in the weights wi’s:

min
{

w1

Z(θ1)
− wm

Z(θm)

}

302 L. Hernando et al.

wi

Z(θi)
>

wi+1

Z(θi+1)
(∀i ⊆ {1, 2, ...,m − 1})

wi/Z(θi) > wj
e−θj(d(σi,σj)−1)

Z(θj)
(∀i, j ⊆ {1, 2, ...,m}, ?i > j)

4. Assign to each σ ⊆ Ω the objective function value:

f(σ) = max
i

{wi
e−θid(σi,σ)

Z(θi)
}

4 Conclusions and Future Work

In this paper we introduce a framework to generate instances of COPs with
permutation search spaces that is based on [3]. We create the landscapes based on
a Mallows mixture. The aim is to obtain different kinds of instances depending on
the central permutations σ1, ...σm, the values of the spread parameters θ1, ..., θm

and the values of the weights w1, ...wm.
Once the values of θi’s are fixed, and the σi’s are chosen, some linear con-

straints in wi’s have to be fulfilled in order to be all σi’s local optima. These
constraints can be accompanied by a function to be optimized, and therefore wi’s
can be obtained as solutions of a linear programming problem. This optimization
function is a key element when creating the instances under desired characteris-
tics. One function is explained in Sect. 4, but obviously one could think of many
other functions. For example, if we want to create an instance with a big size of
attraction basin of the global optimum σi, our intuition leads us to think that
we have to maximize the difference between the objective function value of σi

and the other local optima, where σi is the local optimum that is further to the
rest of local optima. However, if we want a global optimum σi with a small size
of attraction basin, we could think about minimizing the difference between the
objective function value of σi and the value of its neighbors, where σi has to be
the local optimum that is nearer on average to the other local optima.

A remarkable point is that in the example we have taken the local optima
uniformly at random. However, they can be chosen taking into account different
criteria, such as the distance between them. For example, we can choose all the
local optima as close as possible, or choose them maintaining the same distance,
while the global optimum is far from them.

A more tunable model, and therefore more interesting when trying to
create instances with different levels of complexity, can be obtained using the
Generalized Mallows model [5]. This model uses a decomposition of the
Kendall-tau distance and different spread parameters are assigned to each of
the index i ⊆ {1, 2, ..., n}, where n is the size of the permutations. So the para-
meters of the model ascend to 2m + n ← m. Apart from that, the Mallows model
can be used with other distances such as the Hamming distance, the Cayley
distance, etc.

We believe that by controlling the parameters we would we able to create
instances with similar characteristics to those existing for famous COPs, such as

Generating Customized Landscapes in Permutation-Based COPs 303

the Traveling Salesman Problem, the Flowshop Scheduling Problem, the Linear
Ordering Problem, etc. Moreover, we think that the model could be flexible
enough to represent the complexity of real-world problems.

Acknowledgements. This work has been partially supported by the Saiotek,
Etortek and Research Groups 2007-2012 (IT- 242-07) programs (Basque Government),
TIN2010-14931 (Spanish Ministry of Science and Innovation) and COMBIOMED net-
work in computational biomedicine (Carlos III Health Institute). Leticia Hernando
holds a grant from the Basque Government.

References

1. De Jong, K.A., Potter, M.A., Spears, W.M.: Using problem generators to explore
the effects of epistasis. Seventh International Conference on Genetic Algorithms,
pp. 338–345. Morgan Kaufmann, San Francisco (1997)

2. Rönkkönen, J., Li, X., Kyrki, V., Lampinen, J.: A framework for generating tunable
test functions for multimodal optimization. Soft Comput., 1–18 (2010)

3. Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE
Trans. Evol. Comput. 10(5), 590–603 (2006)

4. Mallows, C.L.: Non-null ranking models. Biometrika 44(1–2), 114–130 (1957)
5. Fligner, M.A., Verducci, J.S.: Distance based ranking models. J. Roy. Stat. Soc.

48(3), 359–369 (1986)

Multiobjective Evolution of Mixed
Nash Equilibria

David Iclănzan(B), Noémi Gaskó, Réka Nagy, and D. Dumitrescu

Babes-Bolyai University, Cluj-Napoca, Romania
david.iclanzan@gmail.com

Abstract. In a mixed strategy equilibrium players randomize between
their actions according to a very specific probability distribution, even
though with regard to the game payoff, they are indifferent between
their actions. Currently, there is no compelling model explaining why
and how agents may randomize their decisions is such a way, in real
world scenarios.

We experiment with a model for two player games, where the goal of
the players is to find robust strategies for which the uncertainty in the
outcome of the opponent is reduced as much as possible. We show that in
an evolutionary setting, the proposed model converges to mixed strategy
profiles, if these exist. The results suggest that only local knowledge of
the game is sufficient to attain the adaptive convergence.

1 Introduction

In Game Theory [6] a mixed strategy is a probability distribution over the actions
available for the players. This allows a player to randomly choose an action
instead of choosing a single pure strategy. If only one action has a probability of
one to be selected, the player is said to use a pure strategy.

The most popular solution concept in game theory is Nash equilibrium [5].
A game state is a Nash equilibrium, if no player has the incentive to unilaterally
deviate from his/her strategy. Every finite game has a Nash equilibrium. How-
ever, not every game has a Nash equilibrium in pure strategies. Therefore, the
concept of mixed strategies is a fundamental component in Game Theory, as it
can provide Nash equilibria in games where no equilibrium in pure strategies
exists.

The empirical relevance of mixed strategies have been often criticized for
being “intuitively problematic” [1]. In [9] mixed strategies are viewed from the
perspective of evolutionary biology. According to other interpretations players
randomize because they think their strategies may be observed in advance by
other players [8]. Albeit there are theoretical arguments trying to rationalize this
concept [4], it is not clear why and how players randomize their decisions.

Beside the behavioral observation that people seldom make their choices fol-
lowing a lottery, the most puzzling question arises from the “indifference” prop-
erty of a mixed strategy equilibrium. In mixed equilibrium, given the strategies

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 304–314, 2013.
DOI: 10.1007/978-3-642-44973-4 34, c© Springer-Verlag Berlin Heidelberg 2013

Multiobjective Evolution of Mixed Nash Equilibria 305

chosen by the other players, each player is indifferent among all the actions that
he/she may select with positive probability, as they do not affect the result-
ing payoff. Therefore, there is no direct benefit to select precisely the strategy
that induces the opponents to be indifferent, as required for the existence of the
equilibrium. Then, in the absence of communication between players, how can a
mixed equilibrium arise in a real-world scenario, especially in cases of incomplete
information?

Computational computing the Nash equilibrium is a complex problem [2,7].
We experiment with a novel model, that can lead to the emergence of mixed
equilibrium. Here, agents aim to develop strategies for which the payoff outcome
of the opponent can be predicted.

2 Game Theoretic Prerequisites

Mathematically, a finite strategic non-cooperative game is a system

G = (N,Si, ui; i = 1, ..., n),

where:

– N represents a set of players, and n is the number of players
– for each player i ⊆ NSi is the set of actions available to him/her;

S = S1 × S2 × ... × SN

is the set of all possible situations of the game and s ⊆ S is a strategy (or
strategy profile) of the game

– for each player i ⊆ N , ui : S ∀ R represents the payoff function.

Let us denote by (si, s∈
−i) the strategy profile obtained from s∈ by replacing

the strategy of player i with si :

(si, s∈
−i) = (s∈

1, ..., si,, s
∈
n).

Nash equilibrium captures a state in which individual players maximize their
own payoffs. A strategy profile is a Nash equilibrium if no player has the incentive
to unilaterally deviate. Once all players are playing Nash equilibrium, it is in
interest of every player to stick to his/her strategy.

Definition 1. A strategy profile s∈ ⊆ S is a Nash equilibrium if the inequality

ui(si, s∈
−i) ∅ ui(s∈),

holds ∈i = 1, ..., n,∈si ⊆ Si, si ←= s∈
i .

306 D. Iclănzan et al.

2.1 Mixed Strategies

Games allowing mixed strategies are extensions of standard non-cooperative
games where players, instead of choosing a single strategy, they are allowed to
choose a probability distribution over their set of actions. Such a probability
distribution is called a mixed strategy.

A mixed strategy of a player i is given by:

φi : Si ∀ ⊂+,

where ⎡

sk∗Si

φi(sk) = 1.

The strategies available to player i is the set of all probability distributions over
Si. A player may assign a probability 1 to a single action, in this case the player
chooses a pure strategy.

The payoff for player i in a game allowing mixed strategies is given by:

ui(φi) =
⎡

si∗Si

φi(si)ui(s−i, si).

The mixed strategy Nash equilibrium (or simply mixed Nash equilibrium) is
an extension of the Nash equilibrium. A mixed strategy profile φ∈ is a mixed
Nash equilibrium is there is no player i that would prefer the lottery over the
payoffs generated by the strategy profile (φi, φ

∈
−i).

Definition 2. φ∈ is a mixed Nash equilibrium if,

ui(φ∈) ≥ ui(φi, φ
∈
−i),∈i ⊆ N,∈φi ⊆ Σ i.

Evey finite game has a Nash equilibrium in mixed strategies [5].

Example 1. The game of Matching Pennies is a simple two player game. Both
players have a penny and that they simultaneously turn to either heads (H) or
tails (T). If the two pennies match (both are heads or both are tails), Player 1
wins a penny from Player 2, otherwise Player 2 wins a penny from Player 1. The
payoffs for the game are depicted in Table 1.

The game does not have a Nash equilibrium, however there is a Nash equi-
librium in mixed strategies, namely when both players choose Heads with a
probability of 1

2 and Tails with a probability of 1
2 . This way both players end up

with an expected payoff of 0 and neither can do better by deviating from this
strategy.

In most cases a player can benefit from knowing the next move of the oppo-
nent, so each player wants to keep his/her opponent guessing. An important
feature of mixed Nash equilibrium is, that, given the actions of the opponents,
the players are indifferent among the actions chosen with positive possibility.
For example in the Matching Pennies game, given that Player 2 chooses Heads

Multiobjective Evolution of Mixed Nash Equilibria 307

Table 1. The payoff matrix of the mathcing pennies game.

or Tails with same probability, Player 1 is indifferent among its actions. Thus
the goal of each player is to randomize in such a way to keep the opponent
indifferent.

3 Proposed Model

Rational agents often build internal models that anticipate the actions of the
other players and adapt their strategies accordingly. Here, we experiment with
a model for two player games where players try to anticipate directly the game
payoff of the other player. The agents adapt their strategies in order to reduce
the uncertainty of this prediction. This is in contrast with the classical scenario,
where players foremost objective is to maximize their game utility.

Let (w, p) be a mixed strategy profile for a two player game, where w defines
the probability distribution over the actions available for the first player, with p
having a similar role for the second player. Let u1(w, p) and u2(w, p) denote the
game payoff for player one and for player two respectively.

Then, the proposed model is formalized as follows:
⎣
⎨

⎤

o1 = argmin
w

(1
m

⎦m
i=1(u2(w, p) − u2(w, Δi(p)))2)

o2 = argmin
p

(1
m

⎦m
i=1(u1(w, p) − u1(Δi(w), p))2)

(1)

where Δi provides a perturbation to the input probability distribution, and m is
the number of perturbations.

If a mixed strategy equilibrium exits, it will optimally satisfy this multiob-
jective model, as a direct consequence of the “indifference” property, with both
objective values equaling 0. Furthermore, the model provides incentive to not
deviate from this strategy profile. If an agent deviates from the equilibrium,
the other player is not completely indifferent, the squared average difference of
different pays might deviate from the zero minimum.

Several important questions arise regarding the proposed model:

– Can the model be used to locate a mixed strategy Nash equilibrium (if it
exists), using an adaptive search?

– What should the magnitudes of perturbations provided by Δ be? Perturbation
magnitudes have a direct consequence on the amount of information about
the game, assumed to be available for the players. Arbitrary perturbation
equates to a complete information game, where one can internally evaluate

308 D. Iclănzan et al.

every possible strategy profile, while small perturbations assume only a local
knowledge about the game outcomes.

– How many perturbations of the actual strategy profile are required at each
step for reliable results (how big should parameter m be)?

We empirically investigate these issues in the next Section.

4 Detection Method and Results

The proposed model is optimized using the NSGA II [3] – a fast multiobjective
evolutive algorithm based on the concept of nondomination.

According to this concept, a solution A is dominated by another solution B,
if B is better than A in relation to at least one of the objectives, and is better
than or equal to A regarding all the other objectives. Two solutions A and B are
nondominated in relation to each other if A does not dominate B and neither is
B dominating A. The Pareto optimum is the set of nondominated solutions for
which any candidate solution that is better than those from the Pareto optimum
with respect to one of the objectives, is guaranteed to be worse with respect to
at least another objective.

NSGA II segregates the population into layers, according to their domination
degree and inside each layer, a diversity enhancing sharing function is employed
to assign fitnesses. The elitist selection takes into account both the rank and the
diversity maintaining crowding distance factor.

In our setup, an initial population of 60 individuals are generated randomly,
where each individual encodes a strategy profile. At each step the nondominated
individuals from the actual population can be considered as the approximation
of certain equilibria. As genetic operators, crossover and mutation for real val-
ues are used, with probability 0.8 and 0.01. For the test problems, selection,
recombination, and mutation is repeated in the bound of 500 generations. A run
is considered successful, if a strategy profile is located that is very close to the
target equilibrium state i.e. the euclidean distance between the two points is less
or equal then a preset threshold ρ = 0.0001.

In the following we describe the two player games used for testing.

4.1 Game 1

We study a game where each player has two actions. The payoff matrix is
described in Table 2.

Table 2. The payoff gatrix for Game 1. The game has two pure Nash equilibria (p =
1, w = 0) and (p = 0, w = 1) and one mixed equilibrium at (p = 6

7
, w = 6

7
).

Multiobjective Evolution of Mixed Nash Equilibria 309

Table 3. The payoff matrix for Game 2. The game has one pure Nash equilibrium and
one mixed equilibrium at (p = 0, w = 1

2
).

Table 4. Payoff matrix for Game 3. The game has no pure Nash equilibrium and one
mixed equilibrium at (p = 4

7
, w = 2

7
).

The game has two Nash equilibria in pure strategies and one mixed equilib-
rium at (67 , 6

7).

4.2 Game 2

We consider an other two player game, where payoffs and actions are presented
in Table 3. The game has one pure Nash equilibrium (p = 1, w = 0) with the
corresponding payoff of (1, 0)) and one mixed equilibrium at (0, 1

2).

4.3 Game 3

We consider a bimatrix zero-sum game, having its payoff matrix described in
Table 4. The game has no pure Nash equilibrium but it has one mixed equilibrium
at (47 , 2

7).

4.4 Game 4

Finally, we consider the Rock-Paper-Scissors Game. Both players chose simul-
taneously a sign: Rock (R), Paper (P) or Scissors (S). The winner gets a dollar
from the loser according to the following rule: Paper beats (wraps) Rock, Rock
beats (blunts) Scissor and Scissor beats (cuts) Paper. The payoff matrix of the
game is depicted in Table 5.

The Rock-Paper-Scissors Game has no Nash equilibrium in pure strategies.
There is however a single Nash equilibrium in mixed strategies, namely when
both players play all three strategies with equal probability.

4.5 Numerical Results

In a first experiment, for each game, we set parameter m to a constant value of 5
and study the effect of perturbation magnitude on the convergence of the model.

310 D. Iclănzan et al.

Table 5. The Rock-Paper-Scissors Game. The game has no pure Nash equilibrium and
one symmetric mixed equilibrium in (1

3
, 1
3
, 1
3
).

In the analyzed approach, a strategy profile of a player is perturbed by adding
a Gaussian noise with a standard deviation of φ, where φ takes the following
values: [0.00000001, 0.0000001, 0.000001, 0.00001, 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.15, 0.2]. For each φ 500 independent runs are performed and for
the successful runs the average convergence generation and standard deviation
is computed.

In the case of Game 1, from the total of 6500 runs only in 9 cases (0.0014 %)
the mixed equilibrium is not located with sufficient exactness. For the second
game, the method located the mixed equilibrium in all runs while for Game 3
we have 5 cases (0.000769 %) of unsuccessful runs. Therefore, we conclude that

10
-8

10
-6

10
-4

10
-2

0

10

20

30

Perturbation magnitudeAv
g.

 n
r.

of
 g

en
er

at
io

ns

Fig. 1. Semilogarithmic plot of the average convergence speed for various perturbation
magnitudes for Game 1.

Fig. 2. Average convergence speed when using various number of perturbed states for
Game 1.

Multiobjective Evolution of Mixed Nash Equilibria 311

Fig. 3. Semilogarithmic plot of the average convergence speed for various perturbation
magnitudes (Game 2).

Fig. 4. Average convergence speed when using various number of perturbed states
(1-7) (Game 2).

312 D. Iclănzan et al.

Fig. 5. Semilogarithmic plot of the average convergence speed for various perturbation
magnitudes (Game 3).

Fig. 6. Average convergence speed when using various number of perturbed states
(1-7) (Game 3).

Multiobjective Evolution of Mixed Nash Equilibria 313

the method displays a robust behavior for finding mixed equilibria, even for very
small perturbations.

The obtained averages for the three games are displayed in Figs. 1, 3, respec-
tively Fig. 5 for Game 3.

Surprisingly, as one can see in these figures, the search is mostly insensitive
to the amount of perturbation, with a slight better behavior, faster convergence
with smaller perturbations.

In a next step, we lock φ = 0.00000001 and experiment with various number
of perturbations (parameter m) used at each evaluation, ranging from 1 to 7.
Again, an average of 500 independent run for each game and for each case is
computed. The results of this experiment are displayed in Figs. 2, 4 and 6.

In the case of Game 4 the strategy of a player is perturbed by a Gaussian
noise with a standard deviation of φ = 0.15. The number of perturbations is
equal to three. 500 different runs are performed, and with a percent of 93.8 %
the algorithm finds the mixed Nash equilibrium.

Results suggest that the model is moderately sensitive to the parameter m.
The lower this number is, the higher is the required average number of genera-
tions until convergence. However, this difference is not very large. For example,
for Game 1, the difference between using only one perturbed point and using
seven points is on average 4.9627 generations, representing an 32.19 % increase.

5 Conclusions

We propose a model that adaptively converge to mixed strategy Nash equilibria,
when optimized via an evolutionary multiobjective search method. The model
can work with only a local knowledge about the game, centered around the
actual strategy profile, and at each step requires only one evaluation of a slightly
perturbed strategy profile.

The results suggest that a player can adaptively develop the strategy that
makes the opponent indifferent with regard to his own actions. Interestingly, to
obtain this result, it is enough to consider and measure one additional alternative.
The players need to have only a local knowledge about the game, where it can
internally evaluate the outcome of strategy profiles that are very close to the
current profile and its known outcome.

Numerical experiments describe several two player games, with different pure
and mixed Nash equilibria. Results indicate the potential of the proposed evo-
lutionary search method.

Future work will extend the model to more than two players.

Acknowledgments. The first author acknowledges the financial support of the Sec-
toral Operational Program for Human Resources Development 2007-2013, co-financed
by the European Social Fund, within the project POSDRU 89/1.5/S/60189 with the
title “Postdoctoral Programs for Sustainable Development in a Knowledge Based Soci-
ety”. The second author wishes to thank for the financial support of the national
project code TE 252 financed by the Romanian Ministry of Education and Research
CNCSIS-UEFISCSU and “Collegium Talentum”.

314 D. Iclănzan et al.

References

1. Aumann, R.J.: What is game theory trying to accomplish? In: Arrow, K., Honkapo-
hja, S. (eds.) Frontiers of Economics. Blackwell, Oxford (1985)

2. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a nash equilibrium. In: Proceedings of the Thirty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’06, pp. 71–78. ACM, New York (2006)

3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimisation: NSGA-II. In: Schoenauer, M.,
Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

4. Harsanyi, J.C.: Games with randomly disturbed payoffs: a new rationale for mixed-
strategy equilibrium points. Int. J. Game Theor. 2(1), 1–23 (1973)

5. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
6. Osborne, M.J.: An introduction to game theory. Oxford University Press, New York

(2004)
7. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient

proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)
8. Reny, P.J., Robson, A.J.: Reinterpreting mixed strategy equilibria: a unification of

the classical and bayesian views. Games Econ. Behav. 48(2), 355–384 (2004)
9. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press,

Cambridge (1982)

Hybridizing Constraint Programming
and Monte-Carlo Tree Search: Application

to the Job Shop Problem

Manuel Loth1,2(B), Michéle Sebag2, Youssef Hamadi1,
Marc Schoenauer2, and Christian Schulte3

1 Microsoft Research, Cambridge, UK
2 TAO, CNRS–INRIA–LRI, Université Paris-Sud, Orsay, France

manuel.loth@inria.fr
3 School of ICT, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. Constraint Programming (CP) solvers classically explore
the solution space using tree search-based heuristics. Monte-Carlo Tree-
Search (MCTS), a tree-search based method aimed at sequential decision
making under uncertainty, simultaneously estimates the reward asso-
ciated to the sub-trees, and gradually biases the exploration toward
the most promising regions. This paper examines the tight combina-
tion of MCTS and CP on the job shop problem (JSP). The contribu-
tion is twofold. Firstly, a reward function compliant with the CP setting
is proposed. Secondly, a biased MCTS node-selection rule based on this
reward is proposed, that is suitable in a multiple-restarts context. Its
integration within the Gecode constraint solver is shown to compete
with JSP-specific CP approaches on difficult JSP instances.

1 Introduction

This paper focuses on hybridizing Constraint Programming (CP) and Monte-
Carlo Tree Search (MCTS) methods. The proof of concept of the approach is
given on the job-shop problem (JSP), where JSPs are modelled as CP prob-
lem instances, and MCTS is hybridized with the Gecode constraint solver envi-
ronment [3]. This paper first briefly presents the JSP modeling in constraint
programming and the MCTS framework, referring the reader to respectively
[2] and [4,5] for a comprehensive presentation. The proposed hybrid approach,
referred to as Bandit-Search for Constraint-Programming (BaSCoP), is there-
after described. The first experimental results on the difficult Taillard 11-20
20 × 15 problem instances are presented in Sect. 5. The paper concludes with a
discussion w.r.t related work [10], and some perspectives for further research.

2 CP-Based Resolution of JSP

The job-shop problem, one of the classical scheduling problems, is concerned
with allocating jobs to machines while minimizing the overall makespan. The

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 315–320, 2013.
DOI: 10.1007/978-3-642-44973-4 35, c© Springer-Verlag Berlin Heidelberg 2013

316 M. Loth et al.

CP modelling of JSP proceeds by considering a sequence of problems: after a
given solution with makespan m has been found, the problem is modified by
adding the constraint makespan < m.

While specific JSP-driven heuristics have been used in CP approaches, e.g.
[11], our goal in this paper is to investigate the coupling of a generic CP frame-
work, specifically Gecode [3], with MCTS. The JSP modeling in Gecode, inspired
from the reportedly best CP approach to JSP [2], is as follows:
– the restart policy follows a Luby sequence [6]: the search is restarted after the

specified number of failures is reached or when a new solution is found;
– the variable ordering is based on the weighted-degree heuristics − found as

Max Accumulated Failure Count (AfcMax) in Gecode [3];
– the search heuristics is a Depth-First-Search, starting from the last found

solution, i.e. the left value associated to a variable is the value assigned to
this variable in the previous best solution.

3 Monte-Carlo Tree Search

MCTS [5] is concerned with optimal sequential decision under uncertainty, and is
known in particular for its breakthrough in the game of Go [4]. MCTS proceeds
by gradually and asymmetrically growing a search tree, carefully balancing the
exploitation of the most promising sub-trees and the exploration of the rest of
the tree. MCTS iterates N tree-walks, a.k.a simulations, where each tree-walk
involves four phases:
– In the so-called bandit phase, the selection rule of MCTS selects the child

node of the current node −starting from the root− depending on the empirical
reward associated to each child node, and the number of times it has been
visited. Denoting respectively μ̂i and ni the empirical reward and the number
of visits of the i-th child node, the most usual selection rule, inspired from the
Multi-Armed Bandit setting [1], is:

Select i∈ = arg max

⎡
⎣

⎨
μ̂i + C

⎤
log

⎦
ini

ni

⎫
⎬

⎭
(1)

– When MCTS reaches a leaf node, this node is attached a child node −the
tree thus involves N nodes after N tree-walks− and MCTS enters the roll-out
phase. This expansion may also occur only every k tree-walk, where k can be
referred to as an expand rate.

– In the roll-out phase, nodes (a.k.a. actions) are selected using a default (usu-
ally randomized) policy, until arriving at a terminal state.

– In this terminal state, the overall reward associated to this tree-walk is com-
puted and used to update the reward μ̂i of every node in the tree-walk.

MCTS is frequently combined with the so-called RAVE (Rapid Action Value
Estimate) heuristic [9], which stores the average reward associated to each action
(averaging all rewards received along tree-walks involving this action). In
particular, the RAVE information is used to select the new nodes added to
the tree.

Hybridizing Constraint Programming and Monte-Carlo Tree Search 317

4 BaSCoP

The considered CP setting significantly differs from the MCTS one. Basically,
CP relies on the multiple restart strategy, which implies that it deals with many,
mostly narrow, trees. In contrast, MCTS proceeds by searching in a single, grad-
ually growing and eventually very large tree. The CP and MCTS approaches
were thus hybridized by attaching average rewards (Sect. 4.1) to each value of a
variable (Sect. 4.2). Secondly, BaSCoP relies on redefining the selection rule in
the bandit- and in the roll-out phases (Sect. 4.3, 4.4).

4.1 Reward

Although an optimization problem is addressed, the value to be optimized −
the makespan − is of no direct use in the definition of the reward associated
to each tree-walk. Indeed, all but a few of these tree-walks are terminated by
a failure, that is an early detection of the infeasibility of an improvement over
the last-found schedule. No significant information seems to be usable from the
makespan’s domain at a failure point. Hence, the depth of a failure is used
as a base for the reward, as an indication of its closeness to success, with the
following argument: the more variables are assigned the correct value, the deeper
the failure.

Since the assignments of a given variable can occur at different depths within
a tree and through the successive trees, it seemed reasonable, and was empirically
validated, to consider the relative failure depth rather than the absolute one: after
a tree-walk failing at depth df , for each variable v that was assigned, letting dv
be its assignment depth and x the assigned value, a reward (df − dv) is added
to the statistics of (v, x).

4.2 RAVE

In the line of [4], the most straightforward option would have been to associate
to each node in the tree (that is, a (variable, value) assignment conditioned by
the former assignment nodes) the average objective associated to this partial
assignment. This option is however irrelevant in the considered setting: the mul-
tiple restarts make it ineffective to associate an average reward to an assignment
conditioned by other variable assignments, since there are not enough tree-walks
to compute reliable statistics before they are discarded by the change of con-
text (the new tree). Hence, a radical form of RAVE was used, where statistics
are computed for each (variable,value) assignment, independently of the context
(previous variables assignments).

4.3 Depth-First-Search Roll-Out

The roll-out phase also presents a key difference with the usual MCTS setting.
The roll-out policy launched after reaching a leaf of the MCTS tree usually

318 M. Loth et al.

implements a stochastic procedure, e.g. Monte-Carlo sampling (possibly guided
using domain knowledge [4]); the roll-out part of the tree-walk is discarded (not
stored in memory) after the reward has been computed.

In the considered CP setting, it is however desirable to make the search com-
plete, i.e. exhaustive given enough time. For this reason, the roll-out policy is set
to a depth-first search. As mentioned, in each node the left branch corresponds
to setting the variable to its value in the last solution. DFS thus implements a
search in the neighborhood of this last solution.

Contrary to random roll-outs, DFS requires node storage; yet only the last
path of one DFS need be stored. DFS thus provides a simple and light-storage
roll-out policy from which to gather reward statistics. As desired, the use of DFS
as roll-out policy within MCTS enforces a complete search, provided that the
restart sequence includes a “sufficiently long” epoch.

Overall, the coupling of MCTS with DFS in BaSCoP is similar in spirit to
the Interleaved Depth-First Search [8]; the difference is that BaSCoP adaptively
explores different regions of the search tree (within a restart).

4.4 Selection Rules

As the left branch associated to each variable corresponds to the value assigned
to this variable in the previous best solution, the selection rules determine the
neighborhood of the previous solution which is explored in the current tree.

Several rules have been considered:

– Balanced: selects alternatively the left and the right node;
– φ − left: selects the left node with probability 1 − φ, and can be seen as a

stochastic emulation of Limited Discrepancy Search;
– UCB: selects a node according to Eq. (1) with no bias towards the left branch;
– UCB-Left: same as UCB, where different constants Cright and Cleft are used

to enforce the bias toward the left branch.

Figure 1 illustrates the domains and shapes designed by the selection rule
and roll-out policies, by an example using a Balanced selection rule and DFS
roll-outs.

5 Experimental Results

Figure 2 depicts the overall results in terms of mean relative error w.r.t. the best
(non CP-based) solution found in the literature, on the Taillard 11-20 problem
suite (20 × 15), averaged on 11 independent runs, versus the number of tree-
walks. The computational cost is ca. 30 mn on a PC with Intel dual-core CPU
2.66GHz. Compared to DFS, a simple diversification improves only on the early
stages, while a left-biased one yields a significant improvement, of the same order
as a failure-depth one, and improvements seem to add up when combining both
biases.

Overall, BaSCoP is shown to match the CP-based state of the art [2]: the use
of MCTS was found to compensate for the lack of JSP-specific variable ordering.

Hybridizing Constraint Programming and Monte-Carlo Tree Search 319

Fig. 1. Balanced + DFS search tree. Concurrent DFS are run under each leaf of the
−growing− MCTS tree (dotted nodes).

Fig. 2. Mean relative error, for 11 runs on the 10 20×20 Taillard instances.

320 M. Loth et al.

6 Discussion and Perspectives

The work most related to BaSCoP is [10], who compared an φ-greedy variant
of MCTS to the so-called Pilot method on JSP problems. The Pilot method
iteratively optimizes the option selected at each choice point, while sticking to
the default heuristics for other choice points: it can thus be viewed as a particular
and simplified case of MCTS. Interestingly, [10] concluded that MCTS was more
effective than Pilot methods for small problem sizes; but Pilot methods were
shown to catch up on large-sized problems, which was blamed on the inefficient
random roll-out policies within MCTS.

Basically, BaSCoP most differs from [10] as it tightly integrates MCTS within
a multiple-restart CP scheme, where the objective function (the makespan) can-
not be used as reward.

Further work is concerned with investigating new variable-ordering heuristics,
exploiting the RAVE information and combining per-node and per-variable sta-
tistics. Another perspective is to assess the generality and limitations of BaSCoP
on other CP problems, such as BIBD [7] and car sequencing.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling.
J. Artif. Intell. Res. 29, 49–77 (2007)

3. Gecode Team: Gecode: Generic constraint development environment,
www.gecode.org

4. Gelly, S., et al.: The grand challenge of computer go: monte carlo tree search and
extensions. Commun. ACM 55(3), 106–113 (2012)

5. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

6. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
Inf. Process. Lett. 47, 173–180 (1993)

7. Mathon, R., Rosa, A.: Tables of parameters for BIBD’s with r ≤ 41 including
existence, enumeration, and resolvability results. Ann. Discrete Math. 26, 275–308
(1985)

8. Meseguer P.: Interleaved depth-first search. In: IJCAI 1997, vol. 2, pp. 1382–1387
(1997)

9. Rimmel, A., Teytaud, F., Teytaud, O.: Biasing monte-carlo simulations through
RAVE values. In: ICCG 2010, pp. 59–68 (2010)

10. Runarsson, T.P., Schoenauer, M., Sebag, M.: Pilot, rollout and monte carlo tree
search methods for job shop scheduling. In: Hamadi, Y., Schoenauer, M. (eds.)
LION 2012. LNCS, vol. 7219, pp. 160–174. Springer, Heidelberg (2012)

11. Watson, J.-P., Beck, J.C.: A hybrid constraint programming/local search approach
to the job-shop scheduling problem. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS,
vol. 5015, pp. 263–277. Springer, Heidelberg (2008)

www.gecode.org

From Grammars to Parameters: Automatic
Iterated Greedy Design for the Permutation
Flow-Shop Problem with Weighted Tardiness

Franco Mascia(B), Manuel López-Ibáñez, Jérémie Dubois-Lacoste,
and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{fmascia,manuel.lopez-ibanez,jeremie.dubois-lacoste,stuetzle}@ulb.ac.be

Abstract. Recent advances in automatic algorithm configuration have
made it possible to configure very flexible algorithmic frameworks in
order to fine-tune them for particular problems. This is often done by
the use of automatic methods to set the values of algorithm parame-
ters. A rather different approach uses grammatical evolution, where the
possible algorithms are implicitly defined by a context-free grammar.
Possible algorithms may then be instantiated by repeated applications
of the rules in the grammar. Through grammatical evolution, such an
approach has shown to be able to generate heuristic algorithms. In this
paper we show that the process of instantiating such a grammar can be
described in terms of parameters. The number of parameters increases
with the maximum number of applications of the grammar rules. There-
fore, this approach is only practical if the number of rules and depth of
the derivation tree are bounded and relatively small. This is often the case
in the heuristic-generating grammars proposed in the literature, and, in
such cases, we show that the parametric representation may lead to supe-
rior performance with respect to the representation used in grammatical
evolution. In particular, we first propose a grammar that generates iter-
ated greedy (IG) algorithms for the permutation flow-shop problem with
weighted tardiness minimization. Next, we show how this grammar can
be represented in terms of parameters. Finally, we compare the quality
of the IG algorithms generated by an automatic configuration tool using
the parametric representation versus using the codon-based representa-
tion of grammatical evolution. In our scenario, the parametric approach
leads to significantly better IG algorithms.

Keywords: Automatic algorithm configuration · Grammatical evolu-
tion · Iterated greedy · Permutation flow-shop problem

1 Introduction

Designing an effective stochastic local search (SLS) algorithm for a hard optimi-
sation problem is a time-consuming, creative process that relies on the experience

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 321–334, 2013.
DOI: 10.1007/978-3-642-44973-4 36, © Springer-Verlag Berlin Heidelberg 2013

322 F. Mascia et al.

and intuition of the algorithm designer. Recent advances in automatic algorithm
configuration have shown that this process can be partially automated, thus
reducing human effort. This allows algorithm designers to explore a larger num-
ber of algorithm designs than it was previously feasible and, by relying less on
human intuition, to explore many design choices that would have never been
implemented and tested because they were regarded as supposedly poor design
alternatives.

Nowadays, methods for automatic algorithm configuration are able to handle
large parameter spaces composed of both categorical and numerical parameters
with complex interactions. This capability has enabled researchers to automat-
ically configure flexible frameworks of state-of-the-art SAT solvers [7], and to
automatically design multi-objective algorithms [9]. The development of these
flexible frameworks follows a top-down approach, in which a framework for gen-
erating SLS algorithms is built starting from algorithmic components already
known to perform well for the problem at hand.

Instead, we consider here a bottom-up approach, where an algorithm is assem-
bled from simple components without a priori fixing how they could be combined.
There are two recent works that follow such a bottom-up approach. Vázquez-
Rodŕıguez and Ochoa [13] automatically generate by using genetic programming
an initial order for the NEH algorithm, a well-known constructive heuristic for
the PFSP. More recently, Burke et al. [2] automatically generate iterated greedy
(IG) algorithms for the one-dimensional bin packing problem. Both works instan-
tiate algorithms bottom-up from a context-free grammar.

In this paper, we propose to use a parametric representation, using cate-
gorical, numerical and conditional parameters, to instantiate algorithms from a
grammar. In particular, we show how grammars can be represented in terms
of a parametric space, using categorical, numerical and conditional parameters.
Such parametric representation exploits the abilities of automatic configuration
tools, which are mentioned above. Moreover, the proposed parametric represen-
tation avoids known disadvantages of GE, such as low fine-tuning behaviour
due to the low locality of the operators used by GE [10]. We apply our proposed
approach to the automatic generation of IG algorithms for the permutation flow-
shop problem (PFSP). The PFSP models many variants of a common kind of
production environment in industries. Because of its relevance in practice, the
PFSP has attracted a large amount of research since its basic version was for-
mally described decades ago [6]. Moreover, with the exception of few special
cases, most variants of the PFSP are NP-hard [5], and, hence, tackling real-
world instances often requires the use of heuristic algorithms. For these reasons,
the PFSP is an important benchmark problem for the design and comparison
of heuristics. When tackling new PFSP variants, the automatic generation of
heuristics can save a significant effort.

Finally, we also compare our proposed parametric representation with the
codon-based representation used in GE. Our experiments show that, for the par-
ticular grammar considered in this paper, the parametric representation
produces better heuristics than the GE representation.

From Grammars to Parameters: Automatic IG Design for the PFSP 323

This paper is structured as follows. In Sect. 2 we introduce the PFSP prob-
lem we tackle. Section 3 presents the methodology we use and describes the
mapping from a grammar to a parametric representation. Next, we present our
experimental results in Sect. 4 and we conclude in Sect. 5.

2 Permutation Flowshop Scheduling

The flowshop scheduling problem (FSP) is one of the most widely studied sche-
duling problems, as it models a very common kind of production environment
in industries. The goal in the FSP is to find a schedule to process a set of
n jobs (J1, . . . , Jn) on m machines (M1, . . . , Mm). The specificity of flowshop
environments is that all jobs must be processed on the machines in the same
order, i.e., all jobs have to be processed on machine M1, then machine M2, and
so on until machine Mm. A common restriction in the FSP is to forbid job
passing between machines, i.e., to restrict to solutions that are permutations of
jobs. The resulting problem is called permutation flowshop scheduling problem
(PFSP). In the PFSP, all processing times pij for a job Ji on a machine Mj

are fixed, known in advance, and non-negative. In what follows, Cij denotes the
completion time of a job Ji on machine Mj and Ci denotes the completion time
of a job Ji on the last machine, Mm.

In many practical situations, for instance when products are due to arrive at
customers at a specific time, jobs have an associated due date, denoted here by di

for a job Ji. Moreover, some jobs may be more important than others, which can
be expressed by a weight associated to them representing their priority. Thus,
the so-called tardiness of a job Ji is defined as Ti = max{Ci −di, 0} and the total
weighted tardiness is given by

∑n
i=1 wi · Ti, where wi is the priority assigned to

job Ji.
We consider the problem of minimizing the total weighted tardiness (WT).

This problem, which we call PFSP-WT , is NP-hard in the strong sense even for
a single machine [3]. Let πi denote the job in the ith position of a permutation
π. Formally, the PFSP-WT consists of finding a given job permutation π as to

minimize F (π) =
n∑

i=1

wi · Ti

subject to Cπ0j = 0 j ⊆ {1, . . . , m},
Cπi0 = 0 i ⊆ {1, . . . , n},
Cπij = max{Cπi−1j , Cπij−1} + pij ,

i ⊆ {1, . . . , n} j ⊆ {1, . . . , m}.
Ti = max{Ci − di, 0} i ⊆ {1, . . . , n}.

(1)

We tackle the PFSP-WT by means of iterated greedy (IG), which has been
shown to perform well in several PFSP variants [11]. Our goal is to automatically
generate IG algorithms in a bottom-up manner from a grammar description. The
next section explains our approach in more detail.

324 F. Mascia et al.

3 Methods

The methodology used in this work is the following. Given a problem to be tack-
led, we first define a set of algorithmic components for the problem at hand,
avoiding as much as possible assumptions on which component will contribute
the most to the effectiveness of the algorithm or which is the best way of combin-
ing the components in the final algorithm. Once the building blocks are defined,
we use tools for automatic algorithm configuration to explore the large design
space of all possible combinations and select the best algorithm for the problem
at hand.

The size and complexity of the building blocks is set at a level that is below
a full-fledged heuristic, but still allows us to easily combine them in a modular
way to generate a very large number of different algorithms. This is in contrast
with the more standard way of designing SLS algorithms for a given problem,
in which the algorithm designer defines the full-fledged heuristics and leaves out
some parameters to tune specific choices within the already defined structure.

In this paper, the building blocks and the way in which they can be combined
will be described by means of context-free grammars. Grammars comprise a set
of rules that describe how to construct sentences in a language given a set of
symbols. The grammar discussed in this paper generates algorithm descriptions
in pseudo-code, the actual grammar used in the experiments is equivalent to the
one presented in this paper but generates directly C++ code.

3.1 The Grammar for PFSP

The PFSP has been the object of many studies over the past decades, and it is
still attracting a significant amount of research nowadays. Recent studies [4,11]
have shown that many high-performing algorithms to tackle the PFSP (whatever
is the objective to optimize) are based on the iterated greedy (IG) principle. IG
consists of the iterative partial “destruction” of the current solution, and its
“reconstruction” into a full solution afterwards. The term “greedy” comes from
the fact that the reconstruction of the solution is often done using a greedy
heuristic. In the case of the PFSP, the destruction phase removes a number of
jobs from the schedule. The reconstruction phase inserts these jobs back in the
solution, to obtain again a complete solution.

In this work, we define a grammar for generating IGs for the PFSP in which
we allow several underlying heuristic choices. State-of-the-art IG algorithms for
the PFSP from the literature always apply a local search step to each full solu-
tion after the reconstruction phase. However, such local search step would hide
performance differences when using different choices for the other components of
IG. Our goal is not to generate a state-of-the-art IG for the PFSP, but rather to
study different methods for the automatic generation of algorithms, and, thus,
in this paper we do not apply any local search step.

Figure 1 shows the grammar for generating the main step of the IG algo-
rithm in Backus–Naur Form (BNF). In BNF, production rules are in the form
<non-terminal> ::= expression . Each rule describes how the non-terminal

From Grammars to Parameters: Automatic IG Design for the PFSP 325

Fig. 1. Grammar that describes the rules for generating IG algorithms for the PFSP.

symbol on the left-hand side can be replaced by the expression on the right-
hand side. Expressions are strings of terminal and/or non-terminal symbols. If
there are alternative strings of symbols for the replacement of the non terminal
on the left-hand side, the alternative strings are separated with the symbol “|”.

In Fig. 1, the non-terminal symbol <program> defines the main step of the
algorithm. First one or more jobs are marked for removal from the current solu-
tion, then the selected jobs are removed and sorted, and finally the solution is
reconstructed inserting the jobs back in the current solution. Implementing an
IG algorithm for the PFSP requires to make some design choices. In particular,
(i) which jobs and how many are selected for removal, (ii) in which order the jobs
are reinserted; and (iii) which criteria should be optimized when deciding the
insertion point. All the possibilities that we consider in this paper are described
by the grammar in Fig. 1. Next, we explain these components in detail.

Heuristics for the Selection of Jobs. The selection of jobs for removal (rule
<select jobs>) consists in the application of one or more selection rules. In
particular this is done with the function select jobs (<heuristic>, <num>,
<low range>, <high range>) that selects <num> jobs from the current solution
according to the rule specified in <heuristic>. Each rule computes a numerical
value for each job Ji, which may be one of the following properties:

326 F. Mascia et al.

– Priority: the weight wi that defines its priority;
– DueDate: its due date di;
– SumProcessingTimes: the sum of its processing times,

∑m
j=1 pij ;

– Position: its position in the current solution;
– Tardiness: its tardiness in the current solution;
– WaitingTime: its waiting time between machines computed as

∑m
j=2 Cπij −

Cπij−1 − pπij ;
– IdleTime: the time during which machines are idle because the job is still

being processed on a previous machine, that is,
∑m

j=1 Cπij −Cπi−1j −pπij , for
i ∀= π1.

After the heuristic values are computed, they are normalized in the fol-
lowing way: the minimum for each heuristic value among all jobs is normal-
ized to 0, the maximum one to 100, and values in-between are normalized
linearly to the range [0, 100]. Only jobs whose normalized heuristic value is
between a certain range [low, high] are considered for selection. The range is
computed from the values given by the grammar as high = <high range> and
low = <low range> · high/100. Finally, from the jobs considered for selection,
at most <num> percent (computed as <num> · n/100) of the jobs are actually
selected, where n is the total number of jobs. An example of selection rule would
be select jobs(DueDate,20,10,50), which means that, from those jobs that
have a normalized due date in the range [10, 50], at most 0.2 ·n jobs are selected.

Rules for Ordering the Jobs. The function that sorts jobs for re-insertion
(sort removed jobs) is composed by one or more order criteria
(<order criteria>), where each additional order criterion is used for break-
ing ties. Each order criterion sorts the removed jobs by a particular heuristic
value, in either ascending or descending order, according to <comparator>. The
result is a permutation of the removed jobs according to the order criteria.

Rules for Inserting the Jobs. In this paper we consider the minimization of
the weighted tardiness of the solution, thus, it is natural to optimize primarily
this objective when choosing the position for re-inserting each job. However, it
often happens that the weighted tardiness is the same for any insertion position
of a job (in particular, when the solution is partial: all jobs can easily respect
due dates and therefore the weighted tardiness is 0).

Thus, we consider the possibility of breaking ties according to additional
criteria, namely, the minimization of the sum of completion times and the max-
imization of the weighted earliness, computed as

∑n
i=1 wi · (di − Ci). Both are

correlated with the minimization of the weighted tardiness and allow us to differ-
entiate between partial schedules with zero weighted tardiness because none of
the jobs is tardy. In total, we consider five alternatives for the insertion criteria
(<insert criteria>), corresponding to breaking ties with any combination of
either, none or both sum of completion times and weighted earliness.

From Grammars to Parameters: Automatic IG Design for the PFSP 327

Table 1. Parametric representation of the grammar in Fig. 1

Parameter Domain Condition

select jobs1 {Priority, Position, SumProcessingTimes,

DueDate, Tardiness, WaitingTime, IdleTime}
num1 [0,100]

low range1 [0,99]

high range1 [0,100]

select jobs2 {Priority, Position, SumProcessingTimes,

DueDate, Tardiness, WaitingTime, IdleTime, ""}
num2 [0,100] if select jobs2 �= ""

low range2 [0,99] if select jobs2 �= ""

high range2 [0,100] if select jobs2 �= ""

.
select jobsi {Priority, Position, SumProcessingTimes,

DueDate, Tardiness, WaitingTime, IdleTime, ""} if select jobsi−1 �= ""

numi [0,100] if select jobsi �= ""

low rangei [0,99] if select jobsi �= ""

high rangei [0,100] if select jobsi �= ""

order criteria1 {Priority, Position, SumProcessingTimes,

DueDate, Tardiness, WaitingTime, IdleTime}
comparator1 {"<", ">"}
order criteria2 {Priority, Position, SumProcessingTimes,

DueDate, Tardiness, WaitingTime, IdleTime, ""}
comparator2 {"<", ">"} if order criteria2 �= ""

.
order criteriaj {Priority, Position, SumProcessingTimes,

DueDate, Tardiness, WaitingTime, IdleTime, ""} if order criteriaj−1 �= ""

comparatorj {"<", ">"} if order criteriaj �= ""

insert criteria {"WaitingTime",
"WaitingTime, SumCompletionTimes",

"WaitingTime, SumCompletionTimes,

WeightedEarlyness",

"WeightedEarlyness, WeightedEarlyness",

"WaitingTime, WeightedEarlyness,

SumCompletionTimes"}

3.2 From Grammars to Parameters

To tune the algorithms with a tool for automatic algorithm configuration, we
need to define the process of instantiating a grammar as a choice between alter-
native parameter settings. Table 1 is a possible parametric representation of the
grammar given in Fig. 1. We now explain in detail how the parametric represen-
tation was obtained.

First, rules that do not contain alternatives do not require a parameter.
Second, numeric terminals, such as <num>, <low range> and <high range> in
Fig. 1 can be naturally represented by numerical parameters with a defined range.
Third, rules with alternative choices are represented as categorical parameters.
This is especially natural in the case of rules that consist only of alternative
terminals, such as <insert criteria>.

The only difficulty appears if the same rule can be applied more than once,
for example, rules <select jobs> and <tie breaking>. In such a case, each
application requires its own parameter. Some of these rules might be applied
an infinite number of times, and, thus, they might seem to require an infinite
number of parameters. However, when generating algorithms from grammars,

328 F. Mascia et al.

such rules are never applied more than a small number of times. We use this
consideration and explicitly limit the number of parameters that describe such
rules; thus, in this way we also limit the length of the generated algorithm.

Converting rules that can be derived an unbounded number of times is the
non trivial case, and we will explain it here with an example. Assume we want
to map the following rule to a set of categorical parameters:

<select_jobs> ::= <a_job> | <a_job> <select_jobs>
<a_job> ::= criterion1 | criterion2

What is expressed by the rule is that a valid program contains a list of at
least one criterion. Suppose we want to limit the number of rule-applications
to five, then the rule could be converted into five categorical parameters with
possible values criterion1 or criterion2. This mapping leads to exactly five
criteria. To have at most five, the parameters should consider also the empty
string among the possible values. The corresponding grammar would be the
following:

<select_jobs> ::= <a_job> <a_job> <a_job> <a_job> <a_job>
<a_job> ::= criterion1 | criterion2 | ""

In order to have at least one job, the first parameter should not have the
empty string among the possible values. This would more directly map to the
following equivalent grammar:

<select_jobs> ::= <a_job> <further_jobs>
<further_jobs> ::= "" | <a_job> <further_jobs>

<a_job> ::= criterion1 | criterion2

Table 1 shows the mapping of Fig. 1 to parameters. Both rules <select jobs>
and <order criteria> can be applied up to i and j times respectively. More-
over, each parameter used in those rules has to be duplicated for each possible
application of the rules.

3.3 From Grammars to Sequences of Integers

How to search for the best algorithm in the design space defined by the gram-
mar and how to represent the sequence of derivation rules that represent an
algorithm is the goal of different methods in grammar based genetic program-
ming (GBGP) [10]. Among the GBGP techniques proposed in the literature, we
consider recent works in grammatical evolution (GE) [2].

In GE, the instantiation of a grammar is done by starting with the <program>
non-terminal symbol, and successively applying the derivation rules in the gram-
mar, until there are no non-terminal symbols left. Every time that a non-terminal

From Grammars to Parameters: Automatic IG Design for the PFSP 329

symbol can be replaced following more than one production rule, a choice has
to be made. The sequence of specific choices made during the derivation, which
leads to a specific program, is encoded in a sequence of integers.

This linearisation of the derivation tree, leads to a high decoupling between
the sequence of integers and the programs being generated. For example, when
a derivation is complete and there are still numbers left in the sequence, these
numbers are discarded. Conversely, if the derivation is not complete and there are
no numbers left in the sequence, the sequence is read again from the beginning.
This operation is called wrapping and is repeated for a limited number of times.
If after a given number of wrappings the derivation is not complete, the sequence
of strings is considered to lead to an invalid program. Moreover, since the integers
are usually in a range which is bigger than the possible choices for the derivation
of a non terminal, a modulo operation is applied at each choice.

In GE, the sequences of integers are used as chromosomes in a genetic algo-
rithm that is used to derive the best algorithm for a given problem. The high
decoupling between the programs and their representation, has it drawbacks
when used within a genetic algorithm. The decoupling translates to non locality
in the mutation and crossover operators [10]. Wrapping operations are clearly
responsible of this decoupling, but even without wrapping, the way in which an
algorithm is derived from a grammar and the sequence of integer values leads
to non locality in the operation. In fact, since the integer values are used to
transform the left-most non terminal symbol, a choice in one of the early trans-
formations can impact on the structure of the program being generated and on
the meaning of all subsequent integers in the sequence. Therefore since a muta-
tion on one integer in the sequence (a codon) impacts on the meaning of all
the following codons, one-bit mutations in different positions of the individual
genotype have impacts of different magnitude on the phenotype of the individ-
ual. For the same reason the offspring of two highly fit parents is not necessarily
composed of highly fit individuals. On the contrary a one-point cross-over of
the best individuals in the population could lead to individuals whose geno-
type can not be translated to any algorithm, because of the upper-bound on the
wrapping operations. But, regardless of the specific issues when used in a genetic
algorithm, we are interested to see if this representation presents similar
drawbacks also when used with a tool for automatic algorithm configuration.
In fact, this linearisation of the grammar, can easily be used within a tool for
algorithmic configuration by mapping all codons to categorical parameters. The
choice here between integer and categorical parameters is due to the high non
linear response between the values of the codons and the algorithm they are
decoded into.

Both the parameters and the sequence of codons limit the length of
the algorithms that can be generated. In fact, a grammar can represent an
arbitrarily long algorithm, but in practice the length is limited by the num-
ber of parameters in one case, and in the other case by the number of possible
wrapping operations.

330 F. Mascia et al.

4 Experimental Results

4.1 Experiments

The automatic configuration procedure used in this work is irace [8], a publicly
available implementation of Iterated F-Race [1]. Iterated F-Race starts by sam-
pling a number of parameter configurations uniformly at random. Then, at each
iteration, it selects a set of elite configurations using a racing procedure and the
non-parametric Friedman test. This racing procedure runs the configurations
iteratively on a sequence of (training) problem instances, and discards config-
urations as soon as there is enough statistical evidence that a configuration is
worse than the others. After the race, the elite configurations are used to bias
a local sampling model. The next iteration starts by sampling new configura-
tions from this model, and racing is applied to these configurations together
with the previous elite configurations. This procedure is repeated until a given
budget of runs is exhausted. The fact that irace handles categorical, numerical
and surrogate parameters with complex constraints makes it ideal to instantiate
algorithms from grammars in the manner proposed in this paper.

Benchmark Sets. We generated two benchmark sets of PFSP instances: 100
instances of 50 jobs and 20 machines (50x20), and 100 other instances of 100 jobs
and 20 machines (100x20). These two sizes are nowadays the most common ones
in the literature to evaluate heuristic algorithms on various PFSP variants. The
processing times of the jobs on each machine are drawn from a discrete uniform
distribution U{1, . . . , 99} [12]. The weights of the jobs are generated at random
from U{1, . . . , 10}, and each due date di is generated in a range proportional to
the sum of processing times of the job Ji as: di =

⌊
r · ∑m

j=1 pij

⌋
, where r is a

random number sampled from the continuous uniform distribution U(1, 4).

Experimental Setup. We compare the quality of the heuristics generated by
irace when using either the grammar representation used by GE (irace-ge)
or the parametric representation given in Table 1 (irace-param). In irace-ge
an algorithm is derived from the grammar by means of 30 codons, which are
mapped to 30 integer parameters that can assume values in the range [0, 100].
For the parametric representation given in Table 1, we need to specify the num-
ber of times the select jobs and order criteria rules are applied (i and j,
respectively). Large values give more flexibility to the automatic configuration
tool to find the best heuristics, however, they also enlarge the space of potential
heuristics. We study three possibilities: irace-param5, which uses i = 5, j = 3;
irace-param3, which uses i = 3, j = 3, and irace-param1, which uses i = 1,
j = 1. The first variant is larger than what we expect to be necessary, and its
purpose is to test if irace can find shorter heuristics than the maximum bounds.
The purpose of the last variant is to verify that more than one application per
rule is necessary to generate good results.

Each run of irace has a maximum budget of 2 500 runs of IG, and each run
of IG is stopped after 0.001 · n · m s.

From Grammars to Parameters: Automatic IG Design for the PFSP 331

Fig. 2. Mean relative percentage deviation (RPD) obtained by the heuristics generated
by each tuning method. Results are given separately for the heuristics trained and
tested on 50x20 instances and on 100x20 instances.

Using the same computational budget, we also consider two additional meth-
ods that generate heuristics randomly, to use as a baseline comparison. These
methods generate 250 IG heuristics randomly, run them on 10 randomly selected
training instances and select the heuristic that obtains the lowest mean value.
Method rand-ge uses the grammar representation, while method rand-param
uses the parametric representation.

Each method (irace-ge, irace-param5, irace-param3, irace-param1,
rand-ge, rand-param) is repeated 30 times with different random seeds for each
benchmark set, that is, in total, each method generates 60 IG heuristics. The
training set used by all methods are the first 90 instances of each size. A gram-
mar equivalent to the one in Fig. 1 is used to generate directly C++ code, which
is in turn compiled with GCC 4.4.6 with optimization level -O3. Experiments
were run on a single core of an AMD Opteron 6272 CPU (2.1 GHz, 16 MB L2/L3
cache size) running under Cluster Rocks Linux version 6/CentOS 6.3, 64 bits.

4.2 Results

For assessing the quality of the generated heuristics, we run them on 10 test
instances (that are distinct from the ones used for the training), repeating each
run 10 times with different random seeds. Next, we compute the relative per-
centage deviation (RPD) from the best solution ever found by any run for each
instance. The RPD is averaged over the 10 runs and over the 10 test instances.

Figure 2 compares the quality of the heuristics generated by the four methods
described above on each test set for 50x20 and 100x20 benchmark sets. For each
method, we plot the distribution of the mean RPD of each heuristic generated
by it. In both benchmark sets, irace-param5 and irace-param3 obtain the best
heuristics. The heuristics generated by irace-param1 are typically worse than
those generated by irace-ge.

Pairwise comparisons using the Wilcoxon signed rank test indicate that all
pair-wise differences are statistically significant with the only exception being the

332 F. Mascia et al.

Table 2. Comparison of the methods through the Friedman test on the two bench-
mark sets. ΔRα=0.95 gives the minimum difference in the sum of ranks between two
methods that is statistically significant. For both benchmark sets, irace-param5 and
irace-param3 are clearly superior to the other methods.

Family ΔRα=0.95 Method (ΔR)

50x20 265.55 irace-param5 (0), irace-param3 (453), irace-ge (1574.5),
rand-param (3706.5), irace-param1 (3976), rand-ge (4705)

100x20 262.85 irace-param3 (0), irace-param5 (474.5), irace-ge (2106),
irace-param1 (4214.5), rand-param (4380), rand-ge (4917)

pair rand-param and irace-param1. Moreover, we compare the different meth-
ods using the Friedman test in Table 2. Both irace-param5 and irace-param3
are ranked much better than irace-ge, thus confirming the superiority of the
parameterised representation in our case studies.

When analysing the heuristics generated by each method, we observe that
both irace-ge and rand-ge generate on average around three <select jobs>
rules and no more than 2.23 <order criteria> rules. On the other hand,
irace-param5 and rand-param generate on average more than 4.5
<select jobs> rules and more than 2.5 <order criteria> rules. This sug-
gests to us that the GE-based representation has trouble generating programs
with as many rules as the parametric representation. The results obtained by
irace-param1 and irace-param3 suggest also that at least three rules are nec-
essary to obtain good results. In terms of the particular heuristics generated,
we observe that most heuristics contain a rule that selects jobs according to
idle time. Perhaps more surprising is that the most common order criteria for
sorting removed jobs is by position. On the other hand, there is no clear win-
ner among the insert criteria methods, which suggests that breaking ties in
some particular order is not advantageous. A complete analysis of the heuris-
tics is not the purpose of this paper, but our results indicate that the heuristics
generated by irace are quite different from what a human expert would consider
when designing a similar algorithm.

5 Conclusions

The main conclusion from our work is that existing automatic configuration tools
may be used to generate algorithms from grammars.

Defining algorithmic components to be combined in an SLS algorithm prese-
nts several advantages over the design of a full fledged heuristic, where some
design choices are left to be tuned automatically. Most importantly, less intu-
ition, and therefore less bias of the designer goes in the definition of the separate
blocks with respect to the classical top-down approach. But there are also more
practical advantages of following a bottom-up strategy. In fact, every instanti-
ation of the grammar is a minimal SLS algorithm designed and implemented
to have a very specific behaviour. Less programming abstractions are needed,

From Grammars to Parameters: Automatic IG Design for the PFSP 333

and a simpler code may be optimised more easily by the compilers. Even the
parameters become constant values in the source code, and there is no need to
pass them to various parts of the algorithm. On the contrary, when following a
top-down approach, the designer tackles the hard engineering task of designing a
full-fledged framework where all possible combinations of design choices have to
be defined beforehand. This leads to a reduced number of possible combinations
with respect to a modular bottom-up approach, and also to the added complex-
ity of intricate conditional expressions required to instantiate only the parts of
the framework needed to express a specific algorithm.

We have shown that it is possible to represent the instantiation of the gram-
mar by means of a parametric space. The number of parameters required is
proportional to the number of times a production rule can be applied, and,
hence, our approach is more appropriate for grammars where this number is
bounded and not excessively large. It is an open research question for which
kind of grammars the number of parameters required to represent applications
of production rules becomes prohibitively expensive and other representations
are more appropriate. Nonetheless, the grammar used in this work is similar in
this respect to others that can be found in the literature, and, hence, we believe
that grammars, where production rules are to be applied only a rather limited
number of times are common in the development of heuristic algorithms.

From our experimental results, the heuristics generated by irace when using
the parametric representation achieve better results than those generated when
using the GE representation. This indicates that the parametric representation
can help to avoid disadvantages of grammatical evolution such as a low fine-
tuning behaviour due to a low locality of the used operators. Furthermore, our
approach is not limited to irace and it can be applied using other automatic
configuration tools, as long as they are able to handle categorical and conditional
parameters.

In future work, we plan to compare our approach with a pure GE algorithm,
which is the algorithm used in previous similar works. Moreover, our intention
is to test the proposed method on different grammars and benchmark problems
to investigate its benefits and limitations.

Acknowledgments. This work was supported by the META-X project, an Action
de Recherche Concertée funded by the Scientific Research Directorate of the French
Community of Belgium. Franco Mascia, Manuel López-Ibáñez and Thomas Stützle
acknowledge support from the Belgian F.R.S.-FNRS. Jérémie Dubois-Lacoste acknowl-
edges support from the MIBISOC network, an Initial Training Network funded by the
European Commission, grant PITN–GA–2009–238819. The authors also acknowledge
support from the FRFC project “Méthodes de recherche hybrids pour la résolution de
problèmes complexes”. This research and its results have also received funding from the
COMEX project within the Interuniversity Attraction Poles Programme of the Belgian
Science Policy Office.

334 F. Mascia et al.

References

1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race
algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HCI 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

2. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Trans. Evol. Comput. 16(7), 406–417 (2012)

3. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard.
Math. Oper. Res. 15(3), 483–495 (1990)

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236
(2011)

5. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1, 117–129 (1976)

6. Johnson, D.S.: Optimal two- and three-stage production scheduling with setup
times included. Naval Res. Logistics Quart. 1, 61–68 (1954)

7. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automat-
ically building local search SAT solvers from components. In: Boutilier, C. (ed.)
Proceedings of the Twenty-First International Joint Conference on Artificial Intel-
ligence (IJCAI-09), pp. 517–524. AAAI Press/International Joint Conferences on
Artificial Intelligence, Menlo Park (2009)

8. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

9. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

10. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–
396 (2010)

11. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049
(2007)

12. Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

13. Vázquez-Rodŕıguez, J.A., Ochoa, G.: On the automatic discovery of variants of the
NEH procedure for flow shop scheduling using genetic programming. J. Oper. Res.
Soc. 62(2), 381–396 (2010)

Architecture for Monitoring Learning
Processes Using Video Games

N. Padilla-Zea(&), J. R. Lopez-Arcos, F. L. Gutiérrez-Vela,
P. Paderewski, and N. Medina-Medina

GEDES Research Group, University of Granada, Granada, Spain
{npadilla,jrlarco,fgutierr,patricia,nmedina}@ugr.es

Abstract. PLAGER-VG is an architecture used to design, execute, analyze
and adapt educational processes supported by video games, especially those
that include collaborative activities and which use collaborative learning
techniques. In this paper, we have focused on the monitoring and adaptive
processes in order to customize activities both within the game and the learning
process to improve the results obtained from using these collaborative video
games. To perform these processes we propose a mechanism based on the use
of a set of specialized agents included in this architecture to collect relevant
information and to process it in order to obtain the necessary adaptation
actions.

Keywords: Video games � Architecture � Learning processes

1 Introduction

The incorporation of Game Based Learning (GBL) into learning processes has already
become a reality, both in schools and for research purposes. In particular, playing
these games in groups has been shown to be a desirable way of accomplishing this, as
players are used to playing commercial video games in groups. By combining these
two aspects, we have focused our research on the use of group activities within
Educational Video Games (EVG) in order to promote collaborative skills in students
and to promote the many advantages that both elements involve.

Although several aspects of designing and using EVG have been developed in our
research, in this paper we have fixed the focus on the personalization of the learning/
playing process. Assuming that an educational video game includes recreational
activities that hide some educational content, the monitoring and adapting of the game
are closely related to the monitoring and adapting of the learning process. Starting
from this assumption, we think that it is necessary to monitor relevant activities in the
game in order to analyze and adapt it according to the features of the player or the
group who is playing.

In this context of using collaborative learning and EVG as tools for teaching, we
think our previously proposed architecture PLAGER-VG [1] (PLAtform for manag-
inG Educational multiplayeR Video Games) needs to be modified. PLAGER-VG
helps teachers and designers to obtain more efficient video games and is able to
monitor and to adapt the learning processes underpinned by them.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 335–340, 2013.
DOI: 10.1007/978-3-642-44973-4_37, � Springer-Verlag Berlin Heidelberg 2013

The problem of monitoring and analyzing learning processes is of particular
interest in Computer Supporter Collaborative Learning (CSCL) environments where
learning is usually based on interaction and communication among students.

Many CSCL systems offer functions to study the way in which collaboration takes
place. For this purpose, they usually record the actions carried out with the interac-
tions with the system [2], the communication between collaborators [3], and/or the
changes carried out in the shared workspaces [4]. However, we have found that more
information is needed to contextualize the performed actions and that automatic
mechanisms are needed to collect this information and to adapt the games.

Thus, we propose a modification of the architecture PLAGER-VG using agents as
active entities in order to collect information generated by the collaborative activities
performed by the players during the game. In addition, these agents help teachers to
improve the learning process by proposing adaptation actions. An adaptation action
allows some aspects in the game to be changed, for example, modifying (decreasing)
the difficulty level if the player or the group is unable to overcome a challenge in the
stated time.

In this paper, we use the terms ‘‘game’’ and ‘‘video game’’ as synonyms.

2 Architecture PLAGER-VG

The architecture PLAGER-VG [1] is composed of five interrelated and interconnected
subsystems: Personalization Sub-system, Design Sub-system, Groups Sub-system,
Monitoring Sub-system and Game Sub-system. Both the educational and recreational
contents are designed using functionalities included in the Design Sub-system.
Components designed as a result of this process are stored in a central repository, as
can be seen in Fig. 1.

The Personalization Sub-system accesses the designed elements and customizes
them according to the needs of each of the users. Such changes, which customize both
the learning and game processes, are also reflected in the central repository.

The Personalization Sub-system communicates with the Game Sub-system which,
given a set of educational specifications for a student or group, generates a personal
Game Instance, which is run in accordance with the educational restrictions.

During the game, a set of ‘‘interesting events’’ occurs, from both an educational
and recreational viewpoint, which are collected for processing by the Monitoring Sub-
system. As a result, the Monitoring Sub-system generates a set of recommendations,
which are reported to both the Personalization Sub-system and the central repository.

The Personalization Sub-system adapts the game and learning features to each of
the users and is therefore responsible for implementing these recommendations.

Finally, the Groups Sub-system manages both the design and creation of groups
and stores this information in the central repository. Information about groups allows
both the Personalization Sub-system, Monitoring Sub-system and Game Sub-system to
manage collaborative activities.

Although the PLAGER-VG architecture is composed of five interrelated and
interconnected subsystems, in this paper we are going to focus our attention on the
Monitoring and the Personalization Sub-system.

336 N. Padilla-Zea et al.

3 Using Agents to Retrieve Relevant Information

In order to analyze learning processes and to improve them accordingly, we need to
select the information to be studied carefully, but also to decide how to process and to
use it.

Based on our previous works [5, 6], we have decided to use agents in order to
obtain the functions to monitor and adapt the game.

In those works we presented an architecture for dynamic and evolving cooperative
software agents. We defined a model that allowed communication between agents and
preserved system activity to take place while it was running. A central blackboard was
used to communicate and coordinate agents and to store the information needed by
those agents. This blackboard was controlled by special agents with specific functions
to store and retrieve information when needed and to perform evolution actions over a
software system.

Following this idea, and to facilitate the analysis of the learning processes, we
propose to include two types of specialized agents in the architecture (PLAGER-VG),
which will be responsible for monitoring (Monitoring Agents) and for providing
information to teachers about the activities to be performed in the game and by the
groups to adapt and improve the learning process (Facilitator Agent). Figure 2 shows
the integration of these agents with other elements in the architecture.

Since EVG aim to provide implicit learning, we need to establish a relationship
between what a student is doing in the game and the learning implicit in such an
activity. To do so, we need to determine what activities are relevant in the game and
which information is relevant for each of them.

Fig. 1. PLAGER-VG architecture

Architecture for Monitoring Learning Processes Using Video Games 337

Thus, we use interesting events. These events can be individual, if information is
only related to one player; or for a group, if the activity is being done by several
players and includes information about interaction, in addition to that related to the
learning process. The information that the agent has to collect regarding each event is:
event identification, game identification, game mode, video game task, educational
task, educational goal, task starts, success/failure, added score, player, group and task
end.

Information collected by agents while the game is running is stored in a global
structure, called State of Game. This structure contains details about every interesting
event and allows us to analyze sequences of the game in order to study patterns of
behavior or repetitive actions.

In our platform, players have a set of tools (Synchronous Communication Tools,
Asynchronous Communication Tools, Information about the group members,
Scheduler, Voting system, Map of the game, Common Warehouse) that enable group
communication, coordination and improve awareness.

Using these types of tools, players can maintain contact with their group partners
to do the group activities but also to obtain advice or information while performing
individual activities, if they need help to perform them. Therefore, all the previously
stated elements could appear in both individual and group activities.

One of the most important problems is how to identify interesting events. The
Monitoring Agent uses a set of events based on the 3 C’s model [7], and classifies
them according to a message classification that we have proposed be adapted to
interaction analysis in EVG. This classification falls outside the scope of this paper,
but can be found in [8].

Fig. 2. Multi-Agent architecture for PLAGER-VG.

338 N. Padilla-Zea et al.

In general, making an automatic classification of messages produced during the
game is difficult. A way of reducing this difficulty is to define the set of tools to be
used and how this classification can be made by using them. In our system, defining
specialized agents with specific information associated to them makes the process
easier, because the frame of information that every agent collects includes what kind
of event it is.

Facilitator Agents use some analysis mechanisms based on Social Network
Analysis [9] (SNA), focusing the analysis on the educational process that students are
engaged in, specifically, on the collaborative process. From the results of this analysis,
we can make adaptations to the learning process to improve the process itself and,
therefore, the skills of students and learning outcomes.

There are different types of adaptation actions. Depending on how they are per-
formed, they can be automatic, performed by the teacher (directed) or semi-automatic,
if the teacher‘s agreement is required. Depending on the duration, they can be tem-
porary or permanent. Finally, depending on the applicability scope, adaptations can
affect only the current game, or the next game or until another change is made.

4 Conclusions and Further Works

In this paper we have presented our proposal of using agents (1) to analyze interaction
between players of EVG in order to assess their learning processes and (2) to control
the adaptation of the game. These agents have been included as an extension of the
architecture PLAGER-VG.

We have defined the concept of the interesting event and we have presented the
information to be collected in order to classify and analyze the learning process during
the game based on the widely known model of the 3 C’s.

To monitor the interaction during the game, we have proposed the inclusion of
additional information (context) referring to the conditions under which events occur.
This information is collected by a set of special agents of a Monitoring Agent type.

Once the previously mentioned information has been analyzed, another special
agent called Facilitator Agent decides whether some adaptation actions have to be
performed or whether the teacher has to be informed. In the latter case, the teacher
could accept or reject the proposed changes.

Our immediate future work is to refine and to implement the modifications of the
PLAGER-VG prototype with the defined agents. We want to integrate the prototype
with a modular design which allows the design, execution and analysis of educational
video games with group activities.

We also intend to improve the adaptation mechanism. We are going to complete
the list of adaptation actions and to include the corresponding pre and post conditions
to them. Pre-conditions and Post-conditions will guarantee the integrity of the game
when these new adaptation actions are carried out. This process is dynamically per-
formed while the game is running.

Architecture for Monitoring Learning Processes Using Video Games 339

Acknowledgments. This study has been financed by the Ministry of Science and Innovation,
Spain, as part of the VIDECO Project (TIN2011-26928) and Vice-Rector’s Office for Scientific
Policy and Research of University of Granada (Spain).

References

1. Padilla Zea, N.: Metodología para el diseño de videojuegos educativos sobre una arquitectura
para el análisis del aprendizaje colaborativo. Ph.D. thesis, University of Granada (2011)

2. Gutwin, C., Stark, G., Greenberg, S.: Support for workspace awareness in educational
groupware. In: Proceedings of CSCL’95. The First International Conference on Computer
Support for Collaborative Learning, pp. 147–156 (1995)

3. Baker, M., Lund, K.: Promoting reflective interactions in a CSCL environment. J. Comput.
Assist. Learn. 3(13), 175–193 (1997)

4. Collazos, C., Guerrero, L.A., Pino, J., Ochoa, S.F.: Evaluating collaborative learning pro-
cesses. In: Haake, J., Pino, J. (eds.) CRIWG 2002. LNCS, vol. 2440, pp. 203–221. Springer,
Heidelberg (2002)

5. Paderewski-Rodríguez, P., Rodríguez-Fortiz, M.J., Parets-Llorca, J.: An architecture for
dynamic and evolving cooperative software agents. Comput. Stand. Interfaces 25(3),
261–269 (2003)

6. Paderewski-Rodríguez, P., Torres-Carbonell, J., Rodríguez-Fortiz, M.J., Medina-Medina, N.,
Molina-Ortiz, F.: A software system evolutionary and adaptive framework: application to
agent-based systems. J Syst Archit. Elsevier 50, 407–416 (2004)

7. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware: some issues and experiences. Commun.
ACM 34(1), 39–58 (1991)

8. Padilla, N., González, J.L., Gutiérrez, F.L.: Collaborative learning by means of video games:
an entertainment system in the learning processes. In: Proceedings of 9th IEEE International
Conference on Advanced Learning Technologies (ICALT), pp. 215–217 (2009)

9. Hanneman, R.A., Riddle, M.: Introduction to social network methods. Free online textbook.
http://www.faculty.ucr.edu/*hanneman/nettext/ (2005). Accessed 2010

340 N. Padilla-Zea et al.

http://www.faculty.ucr.edu/~hanneman/nettext/

Quality Measures of Parameter Tuning
for Aggregated Multi-Objective

Temporal Planning

M.R. Khouadjia1, M. Schoenauer1, V. Vidal2, J. Dréo3, and P. Savéant3(B)

1 TAO Project, INRIA Saclay & LRI Paris-Sud University, Orsay, France
{mostepha-redouane.khouadjia, marc.schoenauerg}@inria.fr

2 ONERA-DCSD, Toulouse, France
Vincent.Vidal@onera.fr

3 THALES Research & Technology, Palaiseau, France
{johann.dreo, pierre.saveantg}@thalesgroup.com

Abstract. Parameter tuning is recognized today as a crucial ingredi-
ent when tackling an optimization problem. Several meta-optimization
methods have been proposed to find the best parameter set for a given
optimization algorithm and (set of) problem instances. When the objec-
tive of the optimization is some scalar quality of the solution given by the
target algorithm, this quality is also used as the basis for the quality of
parameter sets. But in the case of multi-objective optimization by aggre-
gation, the set of solutions is given by several single-objective runs with
different weights on the objectives, and it turns out that the hypervol-
ume of the final population of each single-objective run might be a better
indicator of the global performance of the aggregation method than the
best fitness in its population. This paper discusses this issue on a case
study in multi-objective temporal planning using the evolutionary plan-
ner DaEYAHSP and the meta-optimizer ParamILS. The results clearly
show how ParamILS makes a difference between both approaches, and
demonstrate that indeed, in this context, using the hypervolume indica-
tor as ParamILS target is the best choice. Other issues pertaining to
parameter tuning in the proposed context are also discussed.

1 Introduction

Parameter tuning is now well recognized as a mandatory step when attempting
to solve a given set of instance of some optimization problem. All optimization
algorithms behave very differently on a given problem, depending on their para-
meter values, and setting the algorithm parameters to the correct value can make
the difference between failure and success. This is equally true for deterministic
complete algorithms [1] and for stochastic approximate algorithms [2,3]. Cur-
rent approaches range from methods issued from racing-like methods [4,5] to

This work is being partially funded by the French National Research Agency under
the research contract DESCARWIN (ANR-09-COSI-002).

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 341–356, 2013.
DOI: 10.1007/978-3-642-44973-4 38, c© Springer-Verlag Berlin Heidelberg 2013

342 M.R. Khouadjia et al.

meta-optimization, using Gaussian Processes [6], Evolutionary Algorithms [7] or
Iterated Local Search [8]. All these methods repeatedly call the target algorithm
and record their performance on the given problem instances.

Quality criteria for parameter sets usually involve the solution quality of
the target algorithm and the time complexity of the algorithm, and, in the case
of a set of problem instances, statistics of these quantities over the whole set.
The present work is concerned with the case of instance-based parameter tun-
ing (i.e. a single instance is considered), and the only goal is the quality of the
final solution, for a fixed computational budget. In this context, the objective
of the meta-optimizer is generally also directly based on the quality of the
solution.

However, things are different in the context of multi-objective optimization,
when using an aggregation method, i.e. optimizing several linear combinations
of the objectives, gathering all results into one single set, and returning the non-
dominated solutions within this set as an approximation of the Pareto front.
Indeed, the objective of each single-objective run is the weighted sum of the
problem objectives, and using this weighted sum as the objective for parameter
tuning seems to be the most straightforward approach. However, the objective
of the whole algorithm is to approximate the Pareto front of the multi-objective
problem. And the hypervolume indicator [9] has been proved to capture into a
single real value the quality of a set as an approximation of the Pareto front.
Hence an alternative strategy could be to tune each single-objective run so as
to optimize the hypervolume of its final population, as a by-product of opti-
mizing the weighted sum of the problem objectives. This paper presents a case
study of the comparison of both parameter-tuning approaches described above
for the aggregated multi-objective approach, in the domain of AI planning [10].
This domain is rapidly introduced in Sect. 2. In particular, MultiZeno, a tun-
able multi-objective temporal planning benchmark inspired by the well-known
zeno IPC logistic domain benchmark, is described in detail. Section 3 intro-
duces Divide-and-Evolve (DaEYAHSP), a single-objective evolutionary AI plan-
ning algorithm that has obtained state-of-the-art results on different planning
benchmark problems [11], and won the deterministic temporal satisficing track
at IPC 2011 competition.1 Section 4 details the experimental conditions of the
forthcoming experiments, introduces the parameters to be optimized, the aggre-
gation method, the meta-optimizer ParamILS, the parameter tuning method
that has been chosen here [8], and precisely defines the two quality measures to
be used by ParamILS in the experiments: either the best fitness or the global
hypervolume of its final population. Section 5 details the experimental results
obtained by DaEYAHSP for solving MultiZeno instances using these two qual-
ity measures. The values of the parameters resulting from the ParamILS runs
are discussed, and the quality of the approximations of the Pareto front given
by both approaches are compared, and the differences analyzed.
1 See http://www.plg.inf.uc3m.es/ipc2011-deterministic

http://www.plg.inf.uc3m.es/ipc2011-deterministic

Quality Measures of Parameter Tuning 343

2 AI Planning

An AI Planning problem (see e.g. [10]) is defined by a set of predicates, a set
of actions, an initial state and a goal state. A state is a set of non-exclusive
instantiated predicates, or (Boolean) atoms. An action is defined by a set of
pre-conditions and a set of effects: the action can be executed only if all pre-
conditions are true in the current state, and after an action has been executed,
the effects of the action modify the state: the system enters a new state. A plan
is a sequence of actions, and a feasible plan is a plan such that executing each
action in turn from the initial state puts the systems into the goal state. The goal
of (single objective) AI Planning is to find a feasible plan that minimizes some
quantity related to the actions: number of actions for STRIPS problems, sum
of action costs in case actions have different costs, or makespan in the case of
temporal planning, when actions have a duration and can eventually be executed
in parallel. All these problems are P-SPACE.

A simple planning problem in the domain of logistics (inspired by the well-
known Zeno problem of IPC series) is given in Fig. 1: the problem involves cities,
passengers, and planes. Passengers can be transported from one city to another,
following the links on the figure. One plane can only carry one passenger at a
time from one city to another, and the flight duration (number on the link) is
the same whether or not the plane carries a passenger (this defines the domain
of the problem). In the simplest non-trivial instance of such domain, there are 3
passengers and 2 planes. In the initial state, all passengers and planes are in city
0, and in the goal state, all passengers must be in city 4. The not-so-obvious
optimal solution has a total makespan of 8 and is left as a teaser for the reader.

AI Planning is a very active field of research, as witnessed by the success of
the ICAPS series of yearly conferences (http://icaps-conferences.org), and
its biannual competition IPC, where the best planners in the world compete on
a set of problems. This competition has lead the researchers to design a common
language to describe planning problems, PDDL (Planning Domain Definition
Language). Two main categories of planners can be distinguished: exact planners
are guaranteed to find the optimal solution . . . if given enough time; satisficing
planners give the best possible solution, but with no optimality guarantee.

2.1 Multi-Objective AI Planning

Most existing work in AI Planning involves one single objective, even though
real-world problems are generally multi-objective (e.g., optimizing the makespan
while minimizing the cost, two contradictory objectives). An obvious approach to
Multi-Objective AI planning is to aggregate the different objectives into a single
objective, generally a fixed linear combination (weighted sum) of all objectives.
The single objective is to be minimized, and the weights have to be positive
(resp. negative) for the objectives to be minimized (resp. maximized) in the
original problem. The solution of one aggregated problem is Pareto optimal if
all weights are non-zero, or the solution is unique [12]. It is also well-known that

http://icaps-conferences.org

344 M.R. Khouadjia et al.

City 1

City 0 City 4City 2

City 3

1

66

4 4

2

5 3

3
2

2

3

Fig. 1. A schematic view of MultiZeno, a simple benchmark transportation domain:
Flight durations of available routes are attached to the corresponding edges, costs are
attached to landing in the central cities (in grey circles).

whatever the weights, the optimal solution of an aggregated problem is always on
the convex parts of the Pareto front. However, some adaptive techniques of the
aggregation approach have been proposed, that partially address this drawback
[13] and are able to identify the whole Pareto front by maintaining an archive
of non-dominated solutions ever encountered during the search.

Despite the fact that pure multi-objective approaches like e.g., dominance-
based approaches, are able to generate a diverse set of Pareto optimal solutions,
which is a serious advantage, aggregation approaches are worth investigating, as
they can be implemented seamlessly from almost any single-objective algorithm,
and rapidly provide at least part of the Pareto front at a low man-power cost.

This explains why all works in multi-objective AI Planning used objective
aggregation, to the best of our knowledge.2 Early works used some twist in PDDL
2.0 [16–18]. PDDL 3.0, on the other hand, explicitly offered hooks for several
objectives [19], and a new track of IPC was dedicated to aggregated multiple
objectives: the “net-benefit” track took place in 2006 [20] and 2008 [21], . . . but
was canceled in 2011 because of a too small number of entries.

2.2 Tunable Benchmarks for Multi-Objective Temporal Planning

For the sake of understandability, it is important to be able to experiment with
instances of tunable complexity for which the exact Pareto fronts are easy to
determine, and this is the reason for the design of the MultiZeno benchmark
family. The reader will have by now solved the little puzzle illustrated in Fig. 1,
and found the solution with makespan 8, whose rationale is that no plane ever
stays idle. In order to turn this problem into a not-too-unrealistic logistics multi-
objective problem, some costs are added to all 3 central cities (1 to 3). This leads

2 With the exception of an early proof-of-concept for DaEX [14] and its recently
accepted follow-up [15].

Quality Measures of Parameter Tuning 345

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60

C
os

t

Makespan

Pareto solution

(a) cost(city2)=1.1

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60

C
os

t

Makespan

Pareto solution

(b) cost(city2)=2

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60

C
os

t

Makespan

Pareto solution

(c) cost(city2)=2.9

Fig. 2. The exact Pareto Fronts for the MultiZeno6 problem for different values of
cost(city2) (all other values as in Fig. 1).

to the MultiZenoCost problems, where the second objective is additive: each
plane has to pay the corresponding tax every time it lands in that city.3

In the simplest instance, MultiZeno3, involving 3 passengers only, there are
3 obvious points that belong to the Pareto Front, using the small trick described
above, and going respectively through city1, city 2 or city 3. The values of
the makespans are respectively 8, 16 and 24, and the values of the costs are,
for each solution, 4 times the value of the single landing tax. However, different
cities can be used for the different passengers, leading to a Pareto Front made of
5 points, adding points (12,10) and (20,6) to the obvious points (8,12), (16,8),
and (24,4).

There are several ways to make this first simple instance more or less complex,
by adding passengers, planes and central cities, and by tuning the different values
of the makespans and costs. In the present work, only additional bunches of
3 passengers have been considered, in order to be able to easily derive some
obvious Pareto-optimal solutions as above, using several times the little trick to
avoid leaving any plane idle. This lead to the MultiZeno6, and MultiZeno9
instances, with respectively 6 and 9 passengers. The Pareto front of MultiZeno6
on domain described by Fig. 1 can be seen on Fig. 2b. The other direction for
complexification that has been investigated in the present work is based on the
modification of the cost value for city 2, leading to different shapes of the
Pareto front, as can be seen on Fig. 2a, c. Further work will investigate other
directions of complexification of this very rich benchmark test suite.

3 Divide-and-Evolve

Let PD(I,G) denote the planning problem defined on domain D (the predicates,
the objects, and the actions), with initial state I and goal state G. In STRIPS
representation model [22], a state is a list of Boolean atoms defined using the
predicates of the domain, instantiated with the domain objects.

In order to solve PD(I,G), the basic idea of DaEX is to find a sequence of
states S1, . . . , Sn, and to use some embedded planner X to solve the series of
3 In the MultiZenoRisk problem, not detailed here, the second objective is the risk:

its maximal value ever encountered is to be minimized.

346 M.R. Khouadjia et al.

planning problems PD(Sk, Sk+1), for k ∈ [0, n] (with the convention that S0 = I
and Sn+1 = G). The generation and optimization of the sequence of states
(Si)i∈[1,n] is driven by an evolutionary algorithm. After each of the sub-problems
PD(Sk, Sk+1) has been solved by the embedded planner, the concatenation of
the corresponding plans (possibly compressed to take into account possible par-
allelism in the case of temporal planning) is a solution of the initial problem.
In case one sub-problem cannot be solved by the embedded solver, the individ-
ual is said unfeasible and its fitness is highly penalized in order to ensure that
feasible individuals always have a better fitness than unfeasible ones, and are
selected only when there are not enough feasible individual. A thorough descrip-
tion of DaEX can be found in [11]. The rest of this section will briefly recall the
evolutionary parts of DaEX.

3.1 Representation, Initialization, and Variation Operators

Representation: An individual in DaEX is a variable-length list of states of the
given domain. However, the size of the space of lists of complete states rapidly
becomes untractable when the number of objects increases. Moreover, goals of
planning problems need only to be defined as partial states, involving a subset
of the objects, and the aim is to find a state such that all atoms of the goal state
are true. An individual in DaEX is thus a variable-length list of partial states,
and a partial state is a variable-length list of atoms (instantiated predicates).

Initialization: Previous work with DaEX on different domains of planning
problems from the IPC benchmark series have demonstrated the need for a
very careful choice of the atoms that are used to build the partial states [23].
The method that is used today to build the partial states is based on a heuristic
estimation, for each atom, of the earliest time from which it can become true [24],
and an individual in DaEX is represented by a variable-length time-consistent
sequence of partial states, and each partial state is a variable-length list of atoms
that are not pairwise mutually exclusive (aka mutex), according to the partial
mutex relation computed by the embedded planner.

Crossover and Mutation Operators are applied with respective user-defined
probabilities Proba-cross and Proba-mut. They are defined on the DaEX rep-
resentation in a straightforward manner - though constrained by the heuristic
chronology and the partial mutex relation between atoms. One-point crossover
is adapted to variable-length representation: both crossover points are indepen-
dently chosen, uniformly in both parents. Only one offspring is kept, the one
that respects the approximate chronological constraint on the successive states.

Four mutation operators are included, and operate either at the individual
level, by adding (addGoal) or removing (delGoal) an intermediate state, or at
the state level by adding (addAtom) or removing (delAtom) some atoms in a
uniformly chosen state. The choice among these mutations is made according to
user-defined relative weights, named w-MutationName - see Table 1.

Quality Measures of Parameter Tuning 347

3.2 Hybridization and Multi-Objectivization

DaEX uses an external embedded planner to solve in turn the sequence of sub-
problems defined by the ordered list of partial states. Any existing planner can in
theory be used. However, there is no need for an optimality guarantee when solv-
ing the intermediate problems in order for DaEX to obtain good quality results
[11]. Hence, and because a very large number of calls to this embedded plan-
ner are necessary for a single fitness evaluation, a sub-optimal but fast planner
was found to be the best choice: YAHSP [25] is a lookahead strategy planning
system for sub-optimal planning which uses the actions in the relaxed plan to
compute reachable states in order to speed up the search process. Because the
rationale for DaEX is that all sub-problems should hopefully be easier than the
initial global problem, and for computational performance reason, the search
capabilities of the embedded planner YAHSP are limited by setting a maximal
number of nodes that it is allowed to expand to solve any of the sub-problems
(see again [11] for more details).

However, even though YAHSP, like all known planners to-date, is a single-
objective planner, it is nevertheless possible since PDDL 3.0 to add in a PDDL
domain file other quantities (aka Soft Constraints or Preferences [19]) that are
simply computed throughout the execution of the final plan, without interfering
with the search. Two strategies are then possible for YAHSP in the two-objective
context of MultiZeno: it can optimize either the makespan or the cost, and sim-
ply compute the other quantity (cost or makespan) along the solution plan. The
corresponding strategie will be referred to as YAHSPmakespan and YAHSPcost.

In the multi-objective versions of DaEYAHSP the choice between both strate-
gies is governed by user-defined weights, named respectively W-makespan and
W-cost (see Table 1). For each individual, the actual strategy is randomly chosen
according to those weights, and applied to all subproblems of the individual.

4 Experimental Conditions

The Aggregation Method for multi-objective optimization runs in turn a
series of single-objective problems. The fitness of each of these problems is
defined using a single positive parameter α. In the following, Fα will denote
α ∗ makespan + (1 − α) ∗ cost, and DaEYAHSP run optimizing Fα will be called
the α-run. Because the range of the makespan values is approximately twice as
large as that of the cost, the following values of α have been used instead of
regularly spaced values: 0, 0.05, 0.1, 0.3, 0.5, 0.55, 0.7, 1.0. One “run” of the
aggregation method thus amounts to running the corresponding eight α-runs,
and returns as the approximation of the Pareto front the set of non-dominated
solutions among the merge of the eight final populations.

ParamILS [8] is used to tune the parameters of DaEYAHSP. ParamILS uses the
simple Iterated Local Search heuristic [26] to optimize parameter configurations,
and can be applied to any parameterized algorithm whose parameters can be
discretized. ParamILS repeats local search loops from different random starting

348 M.R. Khouadjia et al.

Table 1. Set of DaE parameters and their discretizations for ParamILS, leading to
approx. 1.5 · 109 possible configurations.

Parameters Range Description

W-makespan 0,1,2,3,4,5 Weighting for optimizing makespan during the search

W-cost Weighting for optimizing cost during the search

Pop-size 30,50,100,200,300 Population size

Proba-cross 0.0,0.1,0.2,0.5,0.8,1.0 Probability (at population level) to apply crossover

Proba-mut Probability (at population level) to apply one mutation

w-addAtom 0,1,3,5,7,10 Relative weight of the addAtom mutation

w-addGoal Relative weight of the addGoal mutation

w-delAtom Relative weight of the delAtom mutation

w-delGoal Relative weight of the delGoal mutation

Proba-change 0.0,0.1,0.2,0.5,0.8,1.0 Probability to change an atom in addAtom mutation

Proba-delatom Average probability to delete an atom in delAtom mutation

Radius 1,3,5,7,10 Number of neighbour goals to consider in addGoal mutation

points, and during each local search loops, modifies one parameter at a time,
runs the target algorithm with the new configuration and computes the quality
measure it aims at optimizing, accepting the new configuration if it improves
the quality measure over the current one.

The most prominent parameters of DaEYAHSP that have been subject to
optimization can be seen in Table 1.

Quality Measures for ParamILS: The goal of the experiments presented
here is to compare the influence of two quality measures of ParamILS for the
aggregated DaEYAHSP on MultiZeno instances. In AggregFitness, the quality
measure used by ParamILS to tune the α-run of DaEYAHSP is Fα, the fitness
also used by the target α-run. In AggregHyper, ParamILS uses, for each of the
α-run, the same quality measure, i.e., the unary hypervolume [27] of the final
population of the α-run w.r.t. the exact Pareto front of the problem at hand (or
its best available approximation when it is not available). The lower the better
(a value of 0 indicates that the exact Pareto front has been reached).

Implementation: Algorithms have been implemented within the ParadisEO-
MOEO framework.4 All experiments were performed on the MultiZeno3,
MultiZeno6, and MultiZeno9 instances. The first objective is the makespan,
and the second objective is the cost. The values of the different flight durations
(makespans) and costs are those given on Fig. 1 except otherwise stated.

Performance Assessment and Stopping Criterion: For all experiments, 11
independent runs were performed. Note that all the performance assessment pro-
cedures, including the hypervolume calculations, have been achieved using the
PISA performance assessment tool suite.5 The main quality measure used here
to compare Pareto Fronts is, as above, the unary hypervolume IH− [27] of the set
of non-dominated points output by the algorithms with respect to the complete
true Pareto front. For aggregated runs, the union of all final populations of the
α-runs for the different values of α is considered the output of the complete ‘run’.
4 http://paradiseo.gforge.inria.fr/
5 http://www.tik.ee.ethz.ch/pisa/

http://paradiseo.gforge.inria.fr/
http://www.tik.ee.ethz.ch/pisa/

Quality Measures of Parameter Tuning 349

However, and because the true front is known exactly, and is made of a few
scattered points (at most 17 for MultiZeno9 in this paper), it is also possible
to visually monitor, for each point of the front, the ratio of actual runs (out of
11) that discovered it at any given time. This allows some other point of view on
the comparison between algorithms, even when none has found the whole Pareto
front. Such hitting plots will be used in the following, together with more classical
plots of hypervolume vs computational effort. In any case, when comparing differ-
ent approaches, statistical significance tests are made on the hypervolumes, using
Wilcoxon signed rank test with 95 % confidence level.

Finally, because different fitness evaluations involve different number calls to
YAHSP – and because YAHSP runs can have different computational costs too,
depending on the difficulty of the sub-problem being solved – the computational
efforts will be measured in terms of CPU time and not number of function evalu-
ations – and that goes for the stopping criterion: The absolute limits in terms of
computational efforts were set to 300, 600, and 1800 seconds respectively forMul-
tiZeno3,MultiZeno6, andMultiZeno9. The stopping criterion forParamILS
was likewise set to a fixed wall-clock time: 48 h (resp. 72 h) for MultiZeno3 and 6
(resp.MultiZeno9), corresponding to 576, 288, and 144 parameter configuration
evaluations per value of α for MultiZeno3, 6 and 9 respectively.

5 Experimental Results

5.1 ParamILS Results

Table 2 presents the optimal values for DaEYAHSP parameters of Table 1 found
by ParamILS in both experiments, for all values of α - as well as for the multi-
objective version of DaEYAHSP presented in [15] (last column, entitled IBEAH).

The most striking and clear conclusion regards the weights for the choice of
YAHSP strategy (see Sect. 3.2) W-makespan and W-cost. Indeed, for the

Table 2. ParamILS results: Best parameters for DaEYAHSP on MultiZeno6

Hypervolume Fitness IBEAH

α 0.0 0.05 0.1 0.3 0.5 0.55 0.7 1.0 0.0 0.05 0.1 0.3 0.5 0.55 0.7 1.0

W-makespan 3 3 3 2 2 2 0 0 0 0 0 0 5 5 1 4 1

W-cost 0 0 0 4 3 3 3 4 2 4 4 2 1 1 0 1 1

Pop-size 100 100 200 200 100 100 200 300 200 300 300 100 100 100 100 100 30

Proba-cross 0.5 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.1 0.2 0.2 0.5 0.8 0.2 0.1 0.2

Proba-mut 0.8 0.2 0.2 0.2 0.2 0.2 0.5 1.0 0.5 1.0 0.5 1.0 1.0 1.0 0.8 1.0 0.2

w-addatom 1 1 5 5 5 5 5 5 3 10 3 10 3 5 5 3 7

w-addgoal 5 1 5 7 7 7 0 0 3 7 10 10 10 10 10 10 10

w-delatom 3 3 1 5 10 1 7 0 3 5 10 0 10 10 3 1 5

w-delgoal 5 5 5 7 10 3 7 10 1 7 1 1 0 1 10 1 5

Proba-change 0.5 0.5 0.5 1.0 0.8 0.5 0.5 0.8 0.8 0.8 0.8 0.5 0.0 1.0 0.8 0.5 1.0

Proba-delatom 0.1 0.0 0.0 0.1 0.5 0.5 0.5 0.0 0.1 0.8 0.0 0.8 1.0 0.8 0.5 0.5 1.0

Radius 3 3 10 1 7 7 1 5 3 3 1 3 5 5 10 3 5

350 M.R. Khouadjia et al.

 0.001

 0.01

 0.05

 0.1

 0.15
 0.2

 0 100 200 300 400 500 600 700

H
yp

er
vo

lu
m

e
In

di
ca

to
r

(I
H

-)

Time (seconds)

0.0 fit
0.0hyp

0.3 fit
0.3hyp

0.5 fit
0.5hyp

0.7 fit
0.7hyp

1.0 fit
1.0hyp

overall fit
overall hyp

(a) MultiZeno6

 0.05

 0.1

 0.15

 0.2

 0.4

 0 500 1000 1500 2000

H
yp

er
vo

lu
m

e
In

di
ca

to
r

(I H
-)

Time (seconds)

0.0 fit
0.0hyp

0.3 fit
0.3hyp

0.5 fit
0.5hyp

0.7 fit
0.7hyp

1.0 fit
1.0hyp

overall fit
overall hyp

(b) MultiZeno9

Fig. 3. Evolution of the Hypervolume for both approaches, for all α-runs and overall,
on MultiZeno instances. Warning: Hypervolume is in log scale, and the X-axis is not
the value 0, but 6.7 10−5 for MultiZeno6 and 0.0125 for MultiZeno9.

AggregHyper approach, ParamILS found out that YAHSP should optimize only
the makespan (W-cost = 0) for small values of α, and only the cost for large values
of α while the exact opposite is true for the AggregFitness approach. Remember
that small (resp. large) values of α correspond to an aggregated fitness having all
its weight on the cost (resp. the makespan). Hence, during the 0- or 0.5-runs, the
fitness of the corresponding α-run is pulling toward minimizing the cost: but for
the AggregHyper approach, the best choice for YAHSP strategy, as identified by
ParamILS, is to minimize the makespan (i.e., setting W-cost to 0): as a result,
the population has a better chance to remain diverse, and hence to optimize the
hypervolume, i.e., ParamILS quality measure. In the same situation (small α),
on the opposite, for AggregFitness, ParamILS has identified that the best strat-
egy for YAHSP is to also favor the minimization of the cost, setting W-makespan
to zero. The symmetrical reasoning can be applied to the case of large values of
α. For the multi-objective version of DaEYAHSP (IBEA column in Table 2), the
best strategy that ParamILS came up with is a perfect balance between both
strategies, setting both weights to 1.

The values returned by ParamILS for the other parameters are more difficult
to interpret. It seems that large values of Proba-mut are preferable for AggregHyper

for α set to 0 or 1, i.e. when theDaEYAHSP explores the extreme sides of the objec-
tive space – more mutation is needed to depart from the boundary of the objec-
tive space and cover more of its volume. Another tendancy is that ParamILS
repeatedly found higher values of Proba-cross and lower values of Proba-mut for
AggregHyper than for AggregFitness. Together with large population sizes (com-
pared to the one for IBEA for instance), the 1-point crossover of DaEYAHSP

remains exploratory for a long time, and leads to viable individuals that can remain
in the population even though they don’t optimize the α-fitness, thus contribut-
ing to the hypervolume. On the opposite, large mutation rate is preferable for
AggregFitness as it increases the chances to hit a better fitness, and otherwise
generates likely non-viable individuals that will be quickly eliminated by selec-
tion, making DaEYAHSP closer from a local search. The values found for IBEA,

Quality Measures of Parameter Tuning 351

on the other hand, are rather small – but the small population size also has to
be considered here: because it aims at exploring the whole objective space in one
go, the most efficient strategy for IBEA is to make more but smaller steps, in all
possible directions.

5.2 Comparative Results

Figure 3 represents the evolution during the course of the runs of the hypervolumes
(averaged over the 11 independent runs) of some of the (single-objective) α-runs,
for both methods together (labelled αhyp or αfit), as well as the evolution of the
overall hypervolume, i.e., the hypervolume covered by the union of all populations
of the different α-runs as a function of CPU time. Only the results onMultiZeno6
andMultiZeno9 are presented here, but rather similar behaviors can be observed
for the two approaches on these two instances, and similar results were obtained
on MultiZeno3, though less significantly different.

First of all, AggregHyper appears as a clear winer against AggregFitness, as
confirmed by the Wilcoxon test with 95 % confidence: On both instances, the two
lowest lines are the results of the overall hypervolume for, from bottom to top,
AggregHyper and AggregFitness, that reach respectively values of 6.7 10−5 and
0.015 on MultiZeno6 and 0.0127 and 0.03155 on MultiZeno9. And for each
value of α, a similar difference can be seen. Another remark is that the central
values of α (0.5, 0.7 and 0.3, in this order) outperform the extreme values (1 and
0, in this order): this is not really surprising, considering that these runs, that
optimize a single objective (makespan or cost), can only spread in one direction,
while more ’central’ values allow the run to cover more volume around their best
solutions. Finally, in all cases, the 0-runs perform significantly worse than the cor-
responding 1-runs, but this is probably only due to the absence of normalization
between both objectives.

Another comparative point of view on the convergence of both aggregation
approaches is given by the hitting plots of Fig. 4. These plots represent, for each
point of the true Pareto front, the ratio along evolution of the runs (remember
that one ’run’ represent the sum of the eight α-runs, see Sect. 4) that reached that
point, for all three instances MultiZeno{3,6,9}. On MultiZeno3 (results not
shown here for space reasons), only one point, (20, 6), is not found by 100 % of
the runs. But it is found by 10/11 runs by AggregHyper and only by 6/11 runs by
AggregFitness. On MultiZeno6, the situation is even clearer in favor of
AggregHyper: Most points are found very rapidly by AggregHyper, and only point
(56, 12) is not found by 100 % of the runs (it is missed by 2 runs); on the other hand,
only 4 points are found by all α-runs of AggregFitness, the extreme makespan (60,
10), and the 3 extreme costs (20, 30), (24, 28), and (28, 26). The other points are
discovered by different runs . . . but overall, not a single run discovers all 11 points.
Finally, the situation is even worse in the MultiZeno9 case: only 6 points (out of
17) are ever discovered by AggregFitness, while AggregHypersomehow manages to
hit 12 different points. Hence again, no method does identify the full Pareto front.

But take a look at Fig. 5, that displays the union of the 11 Pareto front returned
by the aggregated runs, for both AggregHyper and AggregFitness. No big

352 M.R. Khouadjia et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

A
tta

in
m

en
t

Time (seconds)

60-10
56-12
52-14
48-16
44-18
40-20
36-22
32-24
28-26
24-28
20-30

all-points

(a) AggregHyper on MultiZeno6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

A
tta

in
m

en
t

Time (seconds)

60-10
56-12
52-14
48-16
44-18
40-20
36-22
32-24
28-26
24-28
20-30

all-points

(b) AggregFitness on MultiZeno6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000

A
tta

in
m

en
t

Time (seconds)

96-16
92-18
88-20
84-22
80-24
76-26
72-28
68-30
64-32
60-34
56-36
52-38
48-40
44-42
40-44
36-46
32-48

all-points

(c) AggregHyper on MultiZeno9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000

A
tta

in
m

en
t

Time (seconds)

96-16
92-18
88-20
84-22
80-24
76-26
72-28
68-30
64-32
60-34
56-36
52-38
48-40
44-42
40-44
36-46
32-48

all-points

(d) AggregFitness on MultiZeno9

Fig. 4. Hitting plots on the 3 MultiZeno instances.

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80 90

C
os

t

Makespan

Aggregationhyper
Exact Pareto front

(a) AggregHyper on MultiZeno6

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80

C
os

t

Makespan

Aggregation fitness
Exact Pareto front

(b) AggregFitness on MultiZeno6

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140 160

C
os

t

Makespan

Aggregationhyper
Exact Pareto front

(c) AggregHyper on MultiZeno9

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140 160

C
os

t

Makespan

Aggregation fitness
Exact Pareto front

(d) AggregFitness on MultiZeno9

Fig. 5. Pareto fronts on MultiZeno instances.

Quality Measures of Parameter Tuning 353

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

A
tta

in
m

en
t

Time (seconds)

60-19.0
56-19.2
52-19.4
48-19.6
44-19.8
40-20.0
36-23.8
32-27.6
28-31.4
24-35.2
20-39.0

all-points

(a) AggregHyper, cost(city2)=1.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

A
tta

in
m

en
t

Time (seconds)

60-19.0
56-19.2
52-19.4
48-19.6
44-19.8
40-20.0
36-23.8
32-27.6
28-31.4
24-35.2
20-39.0

all-points

(b) AggregFitness, cost(city2)=1.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

A
tta

in
m

en
t

Time (seconds)

60-19.0
56-22.8
52-23.0
48-25.0
44-27.0
40-29.0
36-31.0
32-33.0
28-35.0
24-37.0
20-39.0

all-points

(c) AggregHyper, cost(city2)=2.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

A
tta

in
m

en
t

Time (seconds)

60-19.0
56-22.8
52-23.0
48-25.0
44-27.0
40-29.0
36-31.0
32-33.0
28-35.0
24-37.0
20-39.0

all-points

(d) AggregFitness, cost(city2)=2.9

Fig. 6. Hitting plots for different Pareto fronts for MultiZeno6. See Sect. 2.2 and com-
pare with Fig. 4(a), (b).

difference is observed onMultiZeno6, except maybe a higher diversity away from
the Pareto front for AggregHyper. On the other hand, the difference is clear on
MultiZeno9, where AggregFitness completely misses the center of the Pareto-
delimited region of the objective space.

Preliminary runs have been made with the two other instances presented in
Sect. 2.2, where the costs of city2 have changed, respectively to 1.1 and 2.9, giv-
ing the Pareto fronts that are displayed in Fig. 2. However, no specific parameter
tuning was done for these instances, and all parameters have been carried on from
the ParamILS runs on the corresponding MultiZeno instance where the cost of
city2 is 2. First, it is clear that the overall performance of both aggregation meth-
ods is rather poor, as none ever finds the complete Pareto front in the 1.1 case, and
only one run out of 11 finds it in the 2.9 case. Here again, only the extreme points
are reliably found by both methods. Second, the advantage of AggregHyper over
AggregFitness is not clear any more: some points are even found more often by
the latter. Finally, and surprisingly, the ankle point in the case 1.1 (Fig. 2a) is not
found as easily as it might have seemed; and the point on the concave part of the
case 2.9 (point (56,22.8), see Fig. 2c) is nevertheless found by respectively 9 and
4 runs, whereas aggregation approaches should have difficulties to discover such
points.

354 M.R. Khouadjia et al.

6 Conclusion and Perspectives

This paper has addressed several issues related to parameter tuning for aggre-
gated approaches to multi-objective optimization. For the specific case study in AI
temporal planning presented here, some conclusions can be drawn. First, the para-
meter tuning of each single-objective run should be made using the hypervolume
(or maybe some other multi-objective indicator) as a quality measure for parame-
ter configurations, rather than the usual fitness of the target algorithm.

Second, the AggregHyper approach seems to obtain better results than the
multi-objectiveDaEYAHSP presented in [15], in terms of hypervolume, as well as in
terms of hitting of the points of the Pareto front. However, such comparison must
take into account that one run of the aggregated approach requires eight times the
CPU time of one single run: such fair comparison is the topic of on-going work.

Finally, several specificities of the case study in AI planning make it very
hazardous to generalize the results to other problems and algorithms without fur-
ther investigations: DaEYAHSP is a hierarchical algorithm, that uses an embedded
single objective planner that can only take care of one objective, while the evolu-
tionary part handles the global behavior of the population; and the MultiZeno
instances used here have linear, or quasi-linear Pareto front; on-going work is con-
cerned with studying other domains along the same lines.

In any case, several issues have been raised by these results, and will be the
subject of further work. At the moment, only instance-based parameter tuning
was performed – and the preliminary results on the other instances with different
Pareto front shapes (see Fig. 6) suggest that the best parameter setting is highly
instance-dependent (as demonstrated in a similar AI planning context in [28]).
But do the conclusions drawn above still apply in the case of class-driven para-
meter tuning? Another issue that was not discussed here is that of the delicate
choice of the values for α. Their proper choice is highly dependent on the scales of
the different objectives. Probably some adaptive technique, as proposed by [13],
would be a better choice.

References

1. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

2. Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter control in evolu-
tionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter
Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg
(2007)

3. Yuan, Z., de Oca, M.A.M., Birattari, M., Stützle, T.: Modern continuous optimiza-
tion algorithms for tuning real and integer algorithm parameters. In: Dorigo, M., et
al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 203–214. Springer, Heidelberg (2010)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: Automated algorithm tuning
using F-Races: recent developments. In: Caserta, M., et al. (eds.) Proceedings of
MIC’09. University of Hamburg (2009)

Quality Measures of Parameter Tuning 355

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Automatic configuration of state-
of-the-art multi-objective optimizers using the TP+PLS framework. In: Krasnogor,
N., Lanzi, P.-L. (eds.) Proceedings of 13th ACM-GECCO, pp. 2019–2026 (2011)

6. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: McKay, B., et al. (eds.) Proceedings of CEC’05, pp. 773–780. IEEE (2005)

7. Nannen, V., Eiben, A.: Relevance estimation and value calibration of evolutionary
algorithm parameters. In: Veloso, M., et al. (eds.) Proceedings of IJCAI’07, pp. 975–
980 (2007)

8. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algo-
rithm configuration framework. J. Artif. Intel. Res. 36(1), 267–306 (2009)

9. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol.
Comput. 7(2), 117–132 (2003)

10. Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

11. Bibäı, J., Savéant, P., Schoenauer, M., Vidal, V.: An evolutionary metaheuristic
based on state decomposition for domain-independent satisficing planning. In: Braf-
man, R., et al. (eds.) Proceedings of 20th ICAPS, pp. 18–25. AAAI Press (2010)

12. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Heidelberg
(1999)

13. Jin, Y., Okabe, T., Sendhoff, B.: Adapting weighted aggregation for multiobjective
evolution strategies. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001)

14. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a new memetic scheme
for domain-independent temporal planning. In: Gottlieb, J., Raidl, G. (eds.) Evo-
COP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

15. Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Multi-objective
AI planning: evaluating DAEYAHSP on a tunable benchmark. In: Purshouse, R.C.,
Fleming, P.J., Fonseca, C.M., (eds.) Proceedings of EMO’2013 (2013, to appear)

16. Do, M., Kambhampati, S.: SAPA: a multi-objective metric temporal planner. J.
Artif. Intell. Res. (JAIR) 20, 155–194 (2003)

17. Refanidis, I., Vlahavas, I.: Multiobjective heuristic state-space planning. Artif.
Intell. 145(1), 1–32 (2003)

18. Gerevini, A., Saetti, A., Serina, I.: An approach to efficient planning with numerical
fluents and multi-criteria plan quality. Artif. Intell. 172(8–9), 899–944 (2008)

19. Gerevini, A., Long, D.: Preferences and soft constraints in PDDL3. In: ICAPS
Workshop on Planning with Preferences and Soft, Constraints, pp. 46–53 (2006)

20. Chen, Y., Wah, B., Hsu, C.: Temporal planning using subgoal partitioning and res-
olution in SGPlan. J. Artif. Intell. Res. 26(1), 323–369 (2006)

21. Edelkamp, S., Kissmann, P.: Optimal symbolic planning with action costs and pref-
erences. In: Proceedings of 21st IJCAI, pp. 1690–1695 (2009)

22. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem prov-
ing to problem solving. Artif. Intell. 1, 27–120 (1971)

23. Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: On the benefit of sub-optimality
within the Divide-and-Evolve scheme. In: Cowling, P., Merz, P. (eds.) EvoCOP
2010. LNCS, vol. 6022, pp. 23–34. Springer, Heidelberg (2010)

24. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings
of AIPS 2000, pp. 70–82 (2000)

25. Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of the
14th ICAPS, pp. 150–159. AAAI Press (2004)

356 M.R. Khouadjia et al.

26. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochen-
berger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Kluwer Academic,
New York (2003)

27. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

28. Bibäı, J., Savéant, P., Schoenauer, M., Vidal, V.: On the generality of parameter
tuning in evolutionary planning. In: Proceedings of 12th GECCO, pp. 241–248.
ACM (2010)

Evolutionary FSM-Based Agents
for Playing Super Mario Game

R.M. Hidalgo-Bermúdez1,2, M.S. Rodŕıguez-Domingo1,2(B), A.M. Mora1,2,
P. Garćıa-Sánchez1,2, Juan Julian Merelo1,2, and Antonio J. Fernández-Leiva1,2

1 Depto. Arquitectura y Tecnoloǵıa de Computadores, University of Granada,
Granada, Spain

2 Depto. Lenguajes y Ciencias de la Computación,
University of Málaga, Málaga, Spain

rosa.hb84@gmail.com, zandra@correo.ugr.es,

{amorag,pgarcia,jmerelo}@geneura.ugr.es, afdez@lcc.uma.es

Abstract. Most of game development along the years has been focused
on the technical part (graphics and sound), leaving the artificial intelli-
gence aside. However computational intelligence is becoming more signif-
icant, leading to much research on how to provide non-playing characters
with adapted and unpredictable behaviour so as to afford users a bet-
ter gaming experience. This work applies strategies based on Genetic
Algorithms mixed with behavioural models, to obtain an agent (or bot)
capable of completing autonomously different scenarios on a simulator
of Super Mario Bros. game. Specifically, the agent follows the rules of
the Gameplay track of Mario AI Championship. Different approaches
have been analysed, combining Genetic Algorithms with Finite State
Machines, yielding agents which can complete levels of different difficul-
ties playing much better than an expert human player.

1 Introduction

Mario Bros. games series were created by Shigeru Miyamoto1, and appeared in
early 80s. The most famous so far is the platform game Super Mario Bros. and
its sequels (for instance the blockbuster Super Mario World).

All of them follow a well-known plot: the plumber Mario must rescue the
princess of Mushroom Kingdom, Peach, who has been kidnapped by the king
of the koopas, Bowser. The main goal is to go across lateral platforming levels,
trying to avoid different types of enemies and obstacles and using some useful
(but limited) items, such as mushrooms or fire flowers.

Due to their success, amusement and attractiveness, Mario series have
become a successful researching environment in the field of Computational Intel-
ligence (CI) [1,5,6]. The most used framework is Mario AI, a modified version
of the game known as Infinite Mario Bros.,2 an open-code application where the
1 Designer and producer of Nintendo Ltd., and winner of the 2012 Pŕıncipe de Asturias

Prize in Humanities and Communication
2 http://www.mojang.com/notch/mario/

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 357–363, 2013.
DOI: 10.1007/978-3-642-44973-4 39, c© Springer-Verlag Berlin Heidelberg 2013

http://www.mojang.com/notch/mario/

358 R.M. Hidalgo-Bermúdez et al.

researchers can implement, for instance interactive and autonomous behavioural
routines, using the set of functions and variables it offers. Moreover, in order
to motivate the scientific community to perform these studies, a competition
is proposed three times a year, inside several famous conferences, it is called
the Mario AI Championship,3 and is composed by some tracks: Learning, Level
generation, Turing test, and Gameplay. The latter is devoted to create the best
autonomous agent (also known as bot) as possible for automatically playing and
pass sequential levels with a growing difficulty.

This work presents different approaches of autonomous agents aimed to this
track, which consider a behavioural model created by means of a finite state
machine (FSM) [2]. This model, based on expert knowledge, has been latter
improved by applying offline (not during game) optimisation using Genetic Algo-
rithms (GAs) [3], in two different schemes.

These approaches have been widely tested and analysed, getting an optimal
set of parameters for the EA and thus, very competent agents in a number of
difficulty levels.

2 Mario AI: Competition and Environment

The proposed agents follow the rules of the Mario AI Championship, considering
the GamePlay track (complete as many levels as possible). The game consists in
moving the character, Mario, through bi-dimensional levels. He can move left and
right, down (crouch), run (letting the button pushed), jump and shoot fireballs
(when in “fire” mode).

The main goal is complete the level, whereas secondary goals could be killing
enemies and collecting coins or other items. These items may be hidden and may
cause Mario to change his state (for instance a fire flower placed ‘inside’ a block).
The difficulty of the game lies in the presence of cliffs/gaps and enemies. Mario
loses power (i.e., its status goes down one level) when touched by an enemy and
dies if he falls off a cliff.

The Mario AI simulator provides information about Mario’s surrounding
areas. According to the rules of the competition, two matrices give this infor-
mation, both of them are 19 × 19 cells size, centred in Mario. One contains the
positions of surrounding enemies, and the other provides information about the
objects in the area (scenery objects and items).

Every tick (40 ms), Mario’s next action must be indicated. This action consist
in a combination of the five possible movements that Mario can do (left, right,
down, fire/speed, jump). This information is encoded into a boolean array, con-
taining a true value when a movement must be done.

The action to perform depends, of course, in the scenery characteristics
around Mario, but it is also important to know where the enemies are and their
type. Thus, the agent could know if it is best to jump, shoot or avoid them.
We have defined four main enemies groups according to what the agent needs
3 http://www.marioai.org/

http://www.marioai.org/

Evolutionary FSM-Based Agents for Playing Super Mario Game 359

to do to neutralize them: one for enemies who die by a fireball/jump/Koopa
shell, other for those who only die by a fireball, others which only die jumping
on them, and finally others which just die by a Koopa shell.

3 Evolutionary FSM-Based Agent

The proposed agent, evoFSM-Mario, is based in a FSM which models a logical
behaviour, and which has been designed following an expert player knowledge.
We decided to combine this technique with EAs, since they have proved being
an excellent adapting and optimisation method, very useful for improving pre-
defined behavioural rules, as the FSMs model.

We have defined a table of possible states for the agent, including all the
possible (valid) actions the agent can perform in a specific instant, i.e. feasi-
ble combinations of moving left, moving right, crouch (going down), jump and
fire/run. Table 1 shows the codification of the states in boolean values.

Table 1. Codification of the feasible states of the FSM which will model the Mario
agent’s AI. 1 is true/active, 0 is false/non− active.

St 0 St 1 St 2 St 3 St 4 St 5 St 6 St 7 St 8 St 9 St 10 St 11 St 12 St 13

Right 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Left 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Fire/Run 0 0 1 1 0 0 1 1 0 0 0 0 1 1
Jump 0 1 0 1 0 1 0 1 0 0 1 1 0 1
Down 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Depending on the input string, the state changes (or remains), so the transi-
tion is decided. Inputs are the possible situations of the agent in the environment:
for example, find an enemy or being near a cliff/gap. Each input is represented
as a boolean string, having a true (1) value in a position if a specific situation
or event has happened.

These possible states along with the possible inputs and transitions will be
evolved by means of the GA, considering that the output state for a new entry is
randomly set, but according to a probability which models the preference of the
states, in order to improve the convergence of the algorithm. Due to the huge
search space a parameter indicating the percentage of new individuals that will
be added in each generation is included, in order to control the diversity rate.

Every individual in the population is represented by a set of tables, one per
state, and every table contains an output state for every possible input. The
fitness function is calculated for each individual by setting the FSM represented
in a chromosome as the AI of one agent. It is then placed in a level, and then,
it plays for obtaining a fitness value. Two different schemes have been imple-
mented: mono-seed, where all the individuals are tested in the same level (with
the same difficulty), which grows in length with the generations; and a multi-seed

360 R.M. Hidalgo-Bermúdez et al.

approach, where every individual is tested in 30 levels (in the same difficulty)
generated randomly (using different seeds). In both cases every agent plays until
it pass the level, dies or gets stacked.

The aim of the latter scheme is: first, avoid the usual noise [4] present in
this type of problems (videogames), i.e. it tries to get a fair valuation for an
individual, since the same configuration could represent an agent which is very
good sometimes and quite bad some others, due to the stochasticity present in
every play (just in the agent’s behaviour); and second, get individuals prepared
to a wide set of situations in every level and difficulty, since 30 levels should
present a high amount of different scenarios and configurations.

Thus, there is a generic fitness which has as restriction completely finish
the level to be set to positive. On the contrary, individuals that have not fin-
ished the level start from the lowest fitness possible and their negativity is
reduced according the behaviour during the level run. This generic fitness is a
weighted aggregation based in the values: marioWinner (1 if the agent finish the
level), marioSize (0 small, 1 big, and 2 fire), numKilledEnemies, numTotalEn-
emies, numCellsPassed, remainingTime, timeSpent, coinsGathered, totalCoins,
numCollisions (number of times the agent has bumped with an enemy), num-
GatheredPowerUps, causeOfDeath (value representing how the agent has died).

This fitness is considered as the result of the evaluation for the individuals in
the mono-seed approach, meanwhile multi-seed considers a hierarchical fitness,
where the population is ordered according the next criteria: First, taking into
account the percentage of levels where the individuals have been stacked or fallen
from a cliff. Then, they are ordered considering the average percentage of levels
completed. Finally, the individuals are ordered by the average generic fitness.

The selection mechanism considers the best individual and a percentage of
the best ones, selected by tournament according to their fitness. The percentage
of individuals to consider as parents follows to schemes: in mono-seed it is low
at the beginning and will be increased when the number of generations grows;
in multi-seed it is constant.

Uniform Crossover is performed considering the best individual of the present
generation as one of the parents, and one of the individuals with positive fitness
as the other parent. They generate a number of descendents which depends on
the percentage of population to complete with the crossover.

The Mutation operator selects a percentage of individuals to be mutated, and
a random set of genes to be changed in every individual, then the output state
is randomly changed for an input in the table.

There is a 1 − elitism replacement to form the new population (the best
individual survives). The rest of the population is composed by the offspring
generated in the previous generation (a percentage of the global population)
and a set of random individuals, in order to increase the diversity.

4 Experiments and Results

In order to test the approaches, several experiments have been conducted. The
aim was to find good enough agents for completing any level in any difficulty.

Evolutionary FSM-Based Agents for Playing Super Mario Game 361

Table 2. Optimal parameter values for mono- and multi-seed approaches.

Mono-seed Multi-seed

Population size 1000 (difficulty 0) 2000 (difficulty 4)
Number of generations 30 (difficulty 0) 500 (difficulty 4)
Crossover percentage 95 % 95 %
Mutation percentage 2 % (individuals) 2 % (individuals)
Mutation rate 1 % (genes) 1 % (genes)
Percentage of random individuals 5 % (decreased with the generations) 5 % (constant)

Fitness function generic (aggregation) hierarchical

Previously it was performed a hard fine-tuning stage (through systematic experi-
mentation), where several different values for the parameters were tested, search-
ing for the best configuration. The best values are presented in Table 2.

The values in the table (mono-seed) show that a small number of generations
is required to get a competent agent in difficulty level 0, along with a population
size quite high since every individual is just test once in this approach, so it is
needed to ensure the evolution, even considering that none of the individuals may
not complete a level. In that cases, some other generations are run to improve
them and give another step in the evolution process.

It is important to remark that a single play of an agent could spend around
40–50 s on average (depending on the level length and difficulty), because it must
be played in real-time, not simulated. So a single evaluation for one individual
in the multi-seed approach could take around 25 min.

Moreover, when the experiments were conducted, it could be noticed than the
most difficult levels strongly limited the algorithmic behaviour of the approaches,
making it hard to converge and even ending the execution abruptly. In addition
to the high computational cost (one run may take several days), there was a
problem with the structure that stores the FSM of the individuals, since it is
huge (in memory terms) and grows exponentially during the run (new inputs
and outputs are added to the tables in crossovers), so in levels higher than 4, the
program frequently crashes. Thus, this structure implementation was redesigned
to an optimal one, letting to evolve agents in all the possible levels, in the mono-
seed approach, but with a shorter number of generations than recommended.

In multi-seed case the memory problem still remained, so the number of states
where reduced to 12, by deleting those considered as non-useful (in Table 1):
State 8 (no action is done) and State 11 (Mario jumps and crouch, since these
actions are not possible simultaneously in this implementation of Infinite Mario).
With this change, it was possible optimising competent agents from difficulty
levels 0 to 4, which are, in turn, enough for the GamePlay competition.

The fitness evolution was studied, showing a grow (improvement) with the
generations, as expected in a GA. Moreover there are always enough individuals
with positive fitness to assure the offspring generation (at least in the easiest
levels). Some examples of the obtained evolved FSM-based agents can be seen
in action (in a video) from the next urls:

362 R.M. Hidalgo-Bermúdez et al.

– Difficulty level 1 (completed): http://www.youtube.com/watch?v=6Pj6dZCE070
– Difficulty level 2 (completed): http://www.youtube.com/watch?v=gtfuY-L0WDA
– Difficulty level 3 (completed): http://www.youtube.com/watch?v=qQVQ43sWwYY
– Difficulty level 12 (stacked): http://www.youtube.com/watch?v=zNGfBApX7sk

The last one was evolved for some generations (not all the desired) in that
level of difficulty, due to the commented problems, so it cannot complete this
hard level in the simulator. However, as it can be seen, it is quite good in the
first part of the play. Thus, if we could finish the complete evolution process in
this difficulty level we think the agent could complete any possible level.

5 Conclusions

In this work, two different approaches for evolving, by means of Genetic Algo-
rithms (GAs), agents which play Super Mario Bros. game have been proposed
and analysed. They have been implemented using Finite State Machine (FSM)
models, and considering different schemes: mono-seed and a multi-seed evalua-
tion approaches, along with two different fitness functions. Both algorithms have
been tested inside a simulator named Mario AI, implemented for the Mario AI
Competition, focusing on the GamePlay Track.

Several experiments have been conducted to test the algorithms and a deep
analysis has been performed in each case, in order to set the best configuration
parameters for the GA. Some problems have arisen such as the high memory
requirements, which have done it hard to complete the optimisation process
in several cases. However, very competent agents have been obtained for the
difficulty levels 0 to 4 in both approaches, which are, in turn, enough for the
Game Play competition requirements.

In the comparison between the approaches, mono-seed can yield excellent
agents for the level where they were ‘trained’ (evolved), having a quite bad
behaviour in a different level. Multi-seed takes much more computational time
and has higher resource requirements, but the agents it yields are very good
playing in any level of the considered difficulty (in the evolution). All these
agents play much better than an expert human player and can complete the
levels in a time impossible to get for the human.

Acknowledgements. This work has been supported in part by the P08-TIC-03903
and P10-TIC-6083 projects awarded by the Andalusian Regional Government, the FPU
Grant 2009-2942 and the TIN2011-28627-C04-01 and TIN2011-28627-C04-02 projects,
awarded by the Spanish Ministry of Science and Innovation.

References

1. Bojarski, S., Bates-Congdon, C.: REALM: A rule-based evolutionary computation
agent that learns to play mario. In: Proceedings of the IEEE CIG 2011, pp. 83–90.
IEEE Press (2011)

http://www.youtube.com/watch?v=6Pj6dZCE070
http://www.youtube.com/watch?v=gtfuY-L0WDA
http://www.youtube.com/watch?v=qQVQ43sWwYY
http://www.youtube.com/watch?v=zNGfBApX7sk

Evolutionary FSM-Based Agents for Playing Super Mario Game 363

2. Booth, T.L.: Sequential Machines and Automata Theory, 1st edn. Wiley, New York
(1967)

3. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: motivation, analysis,
and first results. Complex Syst. 3(5), 493–530 (1989)

4. Mora, A.M., Fernández-Ares, A., Merelo-Guervós, J.-J., Garćıa-Sánchez, P.: Dealing
with noisy fitness in the design of a RTS game bot. In: Di Chio, C., et al. (eds.)
EvoApplications 2012. LNCS, vol. 7248, pp. 234–244. Springer, Heidelberg (2012)

5. Pedersen, C., Togelius, J., Yannakakis, G.: Modeling player experience in super
mario bros. In: Proceedings 2009 IEEE Symposium on Computational Intelligence
and Games (CIG’09), pp. 132–139. IEEE Press (2009)

6. Togelius, J., Karakovskiy, S., Koutnik, J., Schmidhuber, J.: Super mario evolution.
In: Proceedings 2009 IEEE Symposium on Computational Intelligence and Games
(CIG’09), pp. 156–161. IEEE Press (2009)

Identifying Key Algorithm Parameters
and Instance Features Using Forward Selection

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown(B)

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4 , Canada
{hutter,hoos,kevinlb}@cs.ubc.ca

Abstract. Most state-of-the-art algorithms for large-scale optimization
problems expose free parameters, giving rise to combinatorial spaces of
possible configurations. Typically, these spaces are hard for humans to
understand. In this work, we study a model-based approach for identify-
ing a small set of both algorithm parameters and instance features that
suffices for predicting empirical algorithm performance well. Our empiri-
cal analyses on a wide variety of hard combinatorial problem benchmarks
(spanning SAT, MIP, and TSP) show that—for parameter configurations
sampled uniformly at random—very good performance predictions can
typically be obtained based on just two key parameters, and that simi-
larly, few instance features and algorithm parameters suffice to predict
the most salient algorithm performance characteristics in the combined
configuration/feature space. We also use these models to identify settings
of these key parameters that are predicted to achieve the best overall per-
formance, both on average across instances and in an instance-specific
way. This serves as a further way of evaluating model quality and also
provides a tool for further understanding the parameter space. We pro-
vide software for carrying out this analysis on arbitrary problem domains
and hope that it will help algorithm developers gain insights into the key
parameters of their algorithms, the key features of their instances, and
their interactions.

1 Introduction

State-of-the-art algorithms for hard combinatorial optimization problems tend
to expose a set of parameters to users to allow customization for peak perfor-
mance in different application domains. As these parameters can be instantiated
independently, they give rise to combinatorial spaces of possible parameter con-
figurations that are hard for humans to handle, both in terms of finding good
configurations and in terms of understanding the impact of each parameter. As
an example, consider the most widely used mixed integer programming (MIP)
software, IBM ILOG CPLEX, and the manual effort involved in exploring its 76
optimization parameters [1].

By now, substantial progress has been made in addressing the first sense
in which large parameter spaces are hard for users to deal with. Specifically,
it has been convincingly demonstrated that methods for automated algorithm

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 364–381, 2013.
DOI: 10.1007/978-3-642-44973-4 40, c© Springer-Verlag Berlin Heidelberg 2013

Identifying Key Algorithm Parameters 365

configuration [2–7] are able to find configurations that substantially improve the
state of the art for various hard combinatorial problems (e.g., SAT-based formal
verification [8], mixed integer programming [1], timetabling [9], and AI planning
[10]). However, much less work has been done towards the goal of explaining
to algorithm designers which parameters are important and what values for
these important parameters lead to good performance. Notable exceptions in
the literature include experimental design based on linear models [11,12], an
entropy-based measure [2], and visualization methods for interactive parameter
exploration, such as contour plots [13]. However, to the best of our knowledge,
none of these methods has so far been applied to study the configuration spaces
of state-of-the-art highly parametric solvers; their applicability is unclear, due
to the high dimensionality of these spaces and the prominence of discrete para-
meters (which, e.g., linear models cannot handle gracefully).

In the following, we show how a generic, model-independent method can be
used to:

– identify key parameters of highly parametric algorithms for solving SAT, MIP,
and TSP;

– identify key instance features of the underlying problem instances;
– demonstrate interaction effects between the two; and
– identify values of these parameters that are predicted to yield good perfor-

mance, both unconditionally and conditioned on instance features.

Specifically, we gather performance data by randomly sampling both parameter
settings and problem instances for a given algorithm. We then perform forward
selection, iteratively fitting regression models with access to increasing num-
bers of parameters and features, in order to identify parameters and instance
features that suffice to achieve predictive performance comparable to that of
a model fit on the full set of parameters and instance features. Our experi-
ments show that these sets of sufficient parameters and/or instance features
are typically very small—often containing only two elements—even when the
candidate sets of parameters and features are very large. To understand what
values these key parameters should take, we find performance-optimizing set-
tings given our models, both unconditionally and conditioning on our small sets
of instance features. We demonstrate that parameter configurations that set as
few as two key parameters based on the model (and all other parameters at ran-
dom) often substantially outperform entirely random configurations (sometimes
by up to orders of magnitude), serving as further validation for the importance
of these parameters. Our qualitative results still hold for models fit on training
datasets containing as few as 1 000 data points, facilitating the use of our app-
roach in practice. We conclude that our approach can be used out-of-the-box by
algorithm designers wanting to understand key parameters, instance features,
and their interactions. To facilitate this, our software (and data) is available at
http://www.cs.ubc.ca/labs/beta/Projects/EPMs.

http://www.cs.ubc.ca/labs/beta/Projects/EPMs

366 F. Hutter et al.

2 Methods

Ultimately, our forward selection methods aim to identify a set of the kmax most
important algorithm parameters and mmax most important instance features
(where kmax and mmax are user-defined), as well as the best values for these
parameters (both on average across instances and on a per-instance basis). Our
approach for solving this problem relies on predictive models, learned from given
algorithm performance data for various problem instances and parameter con-
figurations. We identify important parameters and features by analyzing which
inputs suffice to achieve high predictive accuracy in the model, and identify good
parameter values by optimizing performance based on model predictions.

2.1 Empirical Performance Models

Empirical Performance Models (EPMs) are statistical models that describe the
performance of an algorithm as a function of its inputs. In the context of this
paper, these inputs comprise both features of the problem instance to be solved
and the algorithm’s free parameters. We describe a problem instance by a vector
of m features z = [z1, . . . , zm]T, drawn from a given feature space F . These
features must be computable by an automated, domain-specific procedure that
efficiently extracts features for any given problem instance (typically, in low-order
polynomial time w.r.t. the size of the given problem instance). We describe the
configuration space of a parameterized algorithm with k parameters θ1, . . . , θk
and respective domains Θ1, . . . , Θk by a subset of the cross-product of parameter
domains: Θ ⊆ Θ1×· · ·×Θk. The elements of Θ are complete instantiations of the
algorithm’s k parameters, and we refer to them as configurations. Taken together,
the configuration and the feature space define the input space I := Θ × F .

EPMs for predicting the “empirical hardness” of instances have their ori-
gin over a decade ago [14–17] and have been the preferred core reasoning tool
of early state-of-the-art methods for the algorithm selection problem (which
aim to select the best algorithm for a given problem, dependent on its features
[18–20]), in particular of early iterations of the SATzilla algorithm selector for
SAT [21]. Since then, these predictive models have been extended to model the
dependency of performance on (often categorical) algorithm parameters, to make
probabilistic predictions, and to work effectively with large amounts of training
data [11,12,22,23].

In very recent work, we comprehensively studied EPMs based on a variety
of modeling techniques that have been used for performance prediction over the
years, including ridge regression [17], neural networks [24], Gaussian processes
[22], regression trees [25], and random forests [23]. Overall, we found random
forests and approximate Gaussian processes to perform best. Random forests
(and also regression trees) were particularly strong for very heterogeneous bench-
mark sets, since their tree-based mechanism automatically groups similar inputs
together and does not allow widely different inputs to interfere with the predic-
tions for a given group. Another benefit of the tree-based methods is apparent
from the fact that hundreds of training data points could be shown to suffice to

Identifying Key Algorithm Parameters 367

yield competitive performance predictions in joint input spaces induced by as
many as 76 algorithm parameters and 138 instance features [23]. This strong per-
formance suggests that the functions being modeled must be relatively simple,
for example, by depending at most very weakly on most inputs. In this paper,
we ask whether this is the case, and to the extent that this is so, aim to identify
the key inputs.

2.2 Forward Selection

There are many possible approaches for identifying important input dimensions
of a model. For example, one can measure the model coefficients w in ridge
regression (large coefficients mean that small changes in a feature value have
a large effect on predictions, see, e.g., [26]) or the length scales λ in Gaussian
process regression (small length scales mean that small changes in a feature value
have a large effect on predictions, see, e.g., [27]). In random forests, to measure
the importance of input dimension i, Breiman suggested perturbing the values in
the ith column of the out-of-bag (or validation) data and measuring the resulting
loss in predictive accuracy [28].

All of these methods run into trouble when input dimensions are highly
correlated. While this does not occur with randomly sampled parameter config-
urations, it does occur with instance features, which cannot be freely sampled.
Our goal is to build models that yield good predictions but yet depend on as few
input dimensions as possible; to achieve this goal, it is not sufficient to merely
find important parameters, but we need to find a set of important parameters
that are as uncorrelated as possible.

Forward selection is a generic, model-independent tool that can be used to
solve this problem [17,29].1 Specifically, this method identifies sets of model
inputs that are jointly sufficient to achieve good predictive accuracy; our variant
of it is defined in Algorithm 1. After initializing the complete input set I and
the subset of important inputs S in lines 1–2, the outer for-loop incrementally
adds one input at a time to S. The forall-loop over inputs i not yet contained
in S (and not violating the constraint of adding at most kmax parameters and
mmax features) uses validation data to compute err(i), the root mean squared
error (RMSE) for a model containing i and the inputs already in S. It then adds
the input resulting in lowest RMSE to S. Because inputs are added one at a
time, highly correlated inputs will only be added if they provide large marginal
value to the model.

Note that we simply call procedure learn with a subset of input dimensions,
regardless of whether they are numerical or categorical (for models that require
a so-called “1-in-K encoding” to handle categorical parameters, this means we
introduce/drop all K binary columns representing a K-ary categorical input at
once). Also note that, while here, we use prediction RMSE on the validation set

1 A further advantage of forward selection is that it can be used in combination with
arbitrary modeling techniques. Although here, we focus on using our best-performing
model, random forests, we also provide summary results for other model types.

368 F. Hutter et al.

Algorithm 1: Algorithm 1: Forward Selection
In line 10, learn refers to an arbitrary regression method that fits a function
f to given training data. Note that input dimensions 1, . . . , k are parameters,
k + 1, . . . , k + m are features.

Input : Training data Dtrain = ←(x1, y1), . . . , (xn, yn)∈; validation data
Dvalid = ←(xn+1, yn+1), . . . , (xn+n′ , yn+n′)∈; number of parameters, k;
number of features, m; desired number K ∀ d = k + m of key inputs;
bound on number of key parameters, kmax ≥ 0; bound on number of
key features, mmax ≥ 0, such that kmax + mmax ≥ K

Output: Subset of K feature indices S ⊆ {1, . . . , d}
I ← {1, . . . , d} ;1

S ← ∅ ;2

for j = 1, . . . ,K do3

Iallowed ← I \ S;4

if |S ∩ {1, . . . , k}| ≥ kmax then Iallowed ← Iallowed \ {1, . . . , k};5

if |S ∩ {k + 1, . . . , k + m}| ≥ mmax then6

Iallowed ← Iallowed \ {k + 1, . . . , k + m};
forall i ∈ Iallowed do7

S ← S ∪ {i};8

forall (xj , yj) ∈ Dtrain do xS
j ← xj restricted to input dimensions in S;9

f ← learn(←(xS
1 , y1), . . . , (x

S
n, yn)∈);10

err(i) ←
√∑

(xj ,yj)∈Dvalid
(f(xj) − yj)2;11

S ← S \ {i};12

î ← random element of arg maxi err(i);13

S ← S ∪ {̂i};14

return S;15

to assess the value of adding input i, forward selection can also be used with any
other objective function.2

Having selected a set S of inputs via forward selection, we quantify their
relative importance following the same process used by Leyton-Brown et al. to
determine the importance of instance features [17], which is originally due to
[31]: we simply drop one input from S at a time and measure the increase in
predictive RMSE. After computing this increase for each feature, we normalize
by dividing by the maximal RMSE increase and multiplying by 100.

We note that forward selection can be computationally costly due to its need
for repeated model learning: for example, to select 5 out of 200 inputs via forward
selection requires the construction and validation of 200 + 199 + 198 + 197 +
196 = 990 models. In our experiments, this process required up to a day of CPU
time.
2 In fact, it also applies to classification algorithms and has, e.g., been used to derive

classifiers for predicting the solubility of SAT instances based on 1–2 features [30].

Identifying Key Algorithm Parameters 369

2.3 Selecting Values for Important Parameters

Given a model f that takes k parameters and m instance features as input and
predicts a performance value, we identify the best values for the k parameters
by optimizing predictive performance according to the model. Specifically, we
predict the performance of the partial parameter configuration x (instantiating
k parameter values) on a problem instance with m selected instance features z
as f([xT, zT]T). Likewise, we predict its average performance across n instances
with selected instance features z1, . . . , zn as

∑n
j=1

1
n · f([xT, zT

j]
T).

3 Algorithm Performance Data

In this section, we discuss the algorithm performance data we used in order
to evaluate our approach. We employ data from three different combinatorial
problems: propositional satisfiability (SAT), mixed integer programming (MIP),
and the traveling salesman problem (TSP). All our code and data is available
online: instances and their features (and feature computation code & binaries),
parameter specification files and wrappers for the algorithms, as well as the
actual runtime data upon which our analysis is based.

3.1 Algorithms and Their Configuration Spaces

We employ peformance data from three algorithms: CPLEX for MIP, SPEAR for
SAT, and LK-H for TSP. The parameter configuration spaces of these algorithms
are summarized in Table 1.

IBM ILOG CPLEX [32] is the most-widely used commercial optimization tool
for solving MIPs; it is used by over 1 300 corporations (including a third of
the Global 500) and researchers at more than 1 000 universities. We used the
same configuration space with 76 parameters as in previous work [1], exclud-
ing all CPLEX settings that change the problem formulation (e.g., the optimality
gap below which a solution is considered optimal). Overall, we consider 12 pre-
processing parameters (mostly categorical); 17 MIP strategy parameters (mostly

Table 1. Algorithms and their parameter configuration spaces studied in our
experiments.

Algorithm Parameter type # parameters of this type # values considered Total # configurations

Boolean 6 2

CPLEX Categorical 45 3–7 1.90 × 1047

Integer 18 5–7

Continuous 7 5–8

Categorical 10 2–20

SPEAR Integer 4 5–8 8.34 × 1017

Continuous 12 3–6

Boolean 5 2

LK-H Categorical 8 3–10 6.91 × 1014

Integer 10 3–9

370 F. Hutter et al.

categorical); 11 categorical parameters deciding how aggressively to use which
types of cuts; 9 real-valued MIP “limit” parameters; 10 simplex parameters (half
of them categorical); 6 barrier optimization parameters (mostly categorical); and
11 further parameters. In total, and based on our discretization of continuous
parameters, these parameters gave rise to 1.90 × 1047 unique configurations.

SPEAR [33] is a state-of-the-art SAT solver for industrial instances. With
appropriate parameter settings, it was shown to be the best available solver
for certain types of SAT-encoded hardware and software verification instances
[8] (the same IBM and SWV instances we use here). It also won the quantifier-
free bit-vector arithmetic category of the 2007 Satisfiability Modulo Theories
Competition. We used exactly the same 26-dimensional parameter configura-
tion space as in previous work [8]. SPEAR’s categorical parameters mainly control
heuristics for variable and value selection, clause sorting, resolution ordering, and
also enable or disable optimizations, such as the pure literal rule. Its numerical
parameters mainly deal with activity, decay, and elimination of variables and
clauses, as well as with the randomized restart interval and percentage of ran-
dom choices. In total, and based on our discretization of continuous parameters,
SPEAR has 8.34 × 1017 different configurations.

LK-H [34] is a state-of-the-art local search solver for TSP based on an efficient
implementation of the Lin-Kernighan heuristic. We used the LK-H code from
Styles et al. [35], who first reported algorithm configuration experiments with
LK-H; in their work, they extended the official LK-H version 2.02 to allow several
parameters to scale with instance size and to make use of a simple dynamic
restart mechanism to prevent stagnation. The modified version has a total of
23 parameters governing all aspects of the search process, with an emphasis on
parameterizing moves. In total, and based on our discretization of continuous
parameters, LK-H has 6.91 × 1014 different configurations.

3.2 Benchmark Instances and Their Features

We used the same benchmark distributions and features as in previous work [23]
and only describe them on a high level here. For MIP, we used two instance
distributions from computational sustainability (RCW and CORLAT), one from win-
ner determination in combinatorial auctions (REG), two unions of these (CR :=
CORLAT ∪ RCW and CRR := CORLAT ∪ REG ∪ RCW), and a large and diverse set of
publicly available MIP instances (BIGMIX). We used 121 features to characterize
MIP instances, including features describing problem size, the variable-constraint
graph, the constraint matrix, the objective function values, an LP programming
relaxation, various probing features extracted from short CPLEX runs and tim-
ing features measuring the computational expense required for various groups of
features.

For SAT, we used three sets of SAT-encoded formal verification benchmarks:
SWV and IBM are sets of software and hardware verification instances, and SWV-IBM

is their union. We used 138 features to characterize SAT instances, including
features describing problem size, three graph representations, syntactic features,
probing features based on systematic solvers (capturing unit propagation and

Identifying Key Algorithm Parameters 371

clause learning) and local search solvers, an LP relaxation, survey propagation,
and timing features.

For TSP, we used TSPLIB, a diverse set of prominent TSP instances, and
computed 64 features, including features based on problem size, cost matrix,
minimum spanning trees, branch & cut probing, local search probing, ruggedness,
and node distribution, as well as timing features.

3.3 Data Acquisition

We gathered a large amount of runtime data for these solvers by executing them
with various configurations and instances. Specifically, for each combination of
solver and instance distribution (CPLEX run on MIP, SPEAR on SAT, and LK-H

on TSP instances), we measured the runtime of each of M = 1000 randomly-
sampled parameter configurations on each of the P problem instances available
for the distribution, with P ranging from 63 to 2 000. The resulting runtime
observations can be thought of as a M ×P matrix. Since gathering this runtime
matrix meant performing M · P (i.e., between 63 000 and 2 000 000) runs per
dataset, we limited each single algorithm run to a cutoff time of 300 CPU seconds
on one node of the Westgrid cluster Glacier (each of whose nodes is equipped with
two 3.06 GHz Intel Xeon 32-bit processors and 2–4 GB RAM). While collecting
this data required substantial computational resources (between 1.3 CPU years
and 18 CPU years per dataset), we note that this much data was only required
for the thorough empirical analysis of our methods; in practice, our methods are
often surprisingly accurate based on small amounts of training data. For all our
experiments, we partitioned both instances and parameter configurations into
training, validation, and test sets; the training sets (and likewise, the validation
and test sets) were formed as subsamples of training instances and parameter
configurations. We used 10 000 training subsamples throughout our experiments
but demonstrate in Sect. 4.3 that qualitatively similar results can also be achieved
based on subsamples of 1 000 data points.

We note that sampling parameter configurations uniformly at random is not
the only possible way of collecting training data. Uniform sampling has the
advantage of producing unbiased training data, which in turn gives rise to models
that can be expected to perform well on average across the entire configuration
space. However, because algorithm designers typically care more about regions
of the configuration space that yield good performance, in future work, we also
aim to study models based on data generated through a biased sequential sam-
pling approach (as is implemented, e.g., in model-based algorithm configuration
methods, such as SMAC [6]).

4 Experiments

We carried out various computational experiments to identify the quality of
models based on small subsets of features and parameters identified using for-
ward selection, to quantify which inputs are most important, and to determine

372 F. Hutter et al.

good values for the selected parameters. All our experiments made use of the
algorithm performance data described in Sect. 3, and consequently, our claims
hold on average across the entire configuration space. Whether they also apply
to biased samples from the configuration space (in particular, regions of very
strong algorithm performance) is a question for future work.

4.1 Predictive Performance for Small Subsets of Inputs

First, we demonstrate that forward selection identifies sets of inputs yielding low
predictive root mean squared error (RMSE), for predictions in the feature space,
the parameter space, and their joint space. Figure 1 shows the root mean squared
error of models fit with parameter/feature subsets of increasing size. Note in
particular the horizontal line, giving the RMSE of a model based on all inputs,
and that the RMSE of subset models already converges to this performance
with few inputs. In the feature space, this has been observed before [17,29] and
is intuitive, since the features are typically very correlated, allowing a subset of
them to represent the rest. However, the same cannot be said for the parameter

Fig. 1. Predictive quality of random forest models as a function of the number of
allowed parameters/features selected by forward selection for 3 example datasets. The
inputless prediction (subset size zero) is the mean of all data points. The dashed hori-
zontal line in each plot indicates the final performance of the model using the full set
of parameters/features.

Identifying Key Algorithm Parameters 373

space: in our experimental design, parameter values have been sampled uniformly
at random and are thus independent (i.e., uncorrelated) by design. Thus, this
finding indicates that some parameters influence performance much more than
others, to the point where knowledge of a few parameter values suffices to predict
performance just as well as knowledge of all parameters.

Figure 2 focuses on what we consider to be the most interesting case, namely
performance prediction in the joint space of instance features and parameter
configurations. The figure qualitatively indicates the performance that can be
achieved based on subsets of inputs of various sizes. We note that in some cases,
in particular in the SPEAR scenarios, predictions of models using all inputs closely
resemble the true performance, and that the predictions of models based on a
few inputs tend to capture the salient characteristics of the full models. Since the
instances we study vary widely in hardness, instance features tend to be more
predictive than algorithm parameters, and are thus favoured by forward selec-
tion. This sometimes leads to models that only rely on instance features, yielding
predictions that are constant across parameter configurations; for example, see
the predictions with up to 10 inputs for dataset CPLEX-CORLAT (the second row
in Fig. 2). While these models yield low RMSE, they are uninformative about
parameter settings; this observation caused us to modify forward selection as
discussed in Sect. 2.2 to limit the number of features/parameters selected.

4.2 Relative Importance of Parameters and Features

As already apparent from Fig. 1, knowing the values of a few parameters is
sufficient to predict marginal performance across instances similarly well as when
knowing all parameter values. Figure 3 shows which parameters were found to
be important in different runs of our procedure. Note that the set of selected
key parameters was remarkably robust across runs.

The most extreme case is SPEAR-SWV, for which SPEAR’s variable selection
heuristic (sp-var-dec-heur) was found to be the most important parameter every
single time by a wide margin, followed by its phase selection heuristic (sp-phase-
dec-heur). The importance of the variable selection heuristic for SAT solvers is
well known, but it is surprising that the importance of this choice dominates
so clearly. Phase selection is also widely known to be important for the per-
formance of modern CDCL SAT solvers like SPEAR. As can be seen from Fig. 1
(top middle), predictive models for SPEAR-SWV based on 2 parameters essentially
performed as well as those based on all parameters, as is also reflected in the
very low importance ratings for all but these two parameters.

In the case of both CPLEX-BIGMIX and LK-H-TSPLIB, up to 5 parameters show up
as important, which is not surprising, considering that predictive performance of
subset models with 5 inputs converged to that of models with all inputs (see Fig. 1,
top left and right). In the case of CPLEX, the key parameters included two control-
ling CPLEX’s cutting strategy (mip limits cutsfactor and mip limits cutpasses, lim-
iting the number of cuts to add, and the number of cutting plane passes,

374 F. Hutter et al.

Fig. 2. Performance predictions by random forest models based on subsets of features
and parameters. To generate these heatmaps, we ordered configurations by their aver-
age performance across instances, and instances by their average hardness across con-
figurations; the same ordering (based on the true heatmap) was used for all heatmaps.
All data shown is test data.

Identifying Key Algorithm Parameters 375

Fig. 3. Parameter importance for 3 example datasets. We show boxplots over 10
repeated runs with different random training/validation/test splits.

respectively), two MIP strategy parameters (mip strategy subalgorithm and
mip strategy variableselect, determining the continuous optimizer used to solve
subproblems in a MIP, and variable selection, respectively), and one parameter
determining which kind of reductions to perform during preprocessing (preprocess-
ing reduce). In the case of LK-H, all top five parameters are related to moves,
parameterizing candidate edges (EXCESS and MAX CANDIDATES, limiting the
maximum alpha-value allowed for any candidate edge, and the maximum
number of candidate edges, respectively), and move types (MOVE TYPE, BACK-
TRACKING, SUBSEQUENT MOVE TYPE, specifying whether to use sequen-
tial k-opt moves, whether to use backtracking moves, and which type to use for
moves following the first one in a sequence of moves).

To demonstrate the model independence of our approach, we repeated the
same analysis based on other empirical performance models (linear regression,
neural networks, Gaussian processes, and regression trees). Although overall,
these models yielded weaker predictions, the results were qualitatively similar:
for SPEAR, all models reliably identified the same two parameters as most impor-
tant, and for the other datasets, there was an overlap of at least three of the
top five ranked parameters. Since random forests yielded the best predictive
performance, we focus on them in the remainder of this paper.

As an aside, we note that the fact that a few parameters dominate impor-
tance is in line with similar findings in the machine learning literature on the
importance of hyperparameters, which has informed the analysis of a simple
hyperparameter optimization algorithm [36] and the design of a Bayesian opti-
mization variant for optimizing functions with high extrinsic but low intrinsic
imensionality [37]. In future work, we plan to exploit this insight to design better
automated algorithm configuration procedures.

Next, we demonstrate how we can study the joint importance of instance
features and algorithm parameters. Since foward selection by itself chose mostly
instance features, for this analysis we constrained it to select 3 features and 2
parameters. Table 2 lists the features and parameters identified for our 3 example
datasets, in the order forward selection picked them. Since most instance features
are strongly correlated with each other, it is important to measure and under-
stand our importance metric in the context of the specific subset of inputs it is
computed for. For example, consider the set of important features for dataset

376 F. Hutter et al.

Table 2. Key inputs, in the order in which they were selected, along with their omission
cost from this set.

Dataset CPLEX-BIGMIX SPEAR-SWV LK-H-TSPLIB

1st selected cplex prob time (10.1) Pre featuretime (35.9) tour const heu avg (0.0)

2nd selected obj coef per constr2 std (7.7) nclausesOrig (100.0) cluster distance std (0.8)

3rd selected vcg constr weight0 avg (30.2) sp-var-dec-heur (32.6) EXCESS (10.0)

4th selected mip limits cutsfactor (8.3) VCG CLAUSE entropy (34.5) bc no1s q25 (100.0)

5th selected mip strategy subalgorithm (100.0) sp-phase-dec-heur (27.6) BACKTRACKING (0.0)

Table 3. Key parameters and their best fixed values as judged by an empirical per-
formance model based on 3 features and 2 parameters.

Dataset 1st selected param 2nd selected param
CPLEX-BIGMIX mip limits cutsfactor = 8 mip strategy subalgorithm = 2
CPLEX-CORLAT mip strategy subalgorithm = 2 preprocessing reduce = 3
CPLEX-REG mip strategy subalgorithm = 2 mip strategy variableselect = 4
CPLEX-RCW preprocessing reduce = 3 mip strategy lbheur = no
CPLEX-CR mip strategy subalgorithm = 0 preprocessing reduce = 1
CPLEX-CRR preprocessing coeffreduce = 2 mip strategy subalgorithm = 2

SPEAR-IBM sp-var-dec-heur = 2 sp-resolution = 0
SPEAR-SWV sp-var-dec-heur = 2 sp-phase-dec-heur = 0
SPEAR-SWV-IBM sp-var-dec-heur = 2 sp-use-pure-literal-rule = 0

LK-H-TSPLIB EXCESS = −1 BACKTRACKING = NO

CPLEX-BIGMIX (Table 2, left). While the single most important feature in this
case was cplex prob time (a timing feature measuring how long CPLEX probing
takes), in the context of the other four features, its importance was relatively
small; on the other hand, the input selected 5th, mip strategy subalgorithm
(CPLEX’s MIP strategy parameter from above) was the most important input in
the context of the other 4. We also note that all algorithm parameters that were
selected as important in this context of instance features (mip limits cutsfactor
and mip strategy subalgorithm for CPLEX; sp-var-dec-heur and sp-phase-dec-heur
for SPEAR; and EXCESS and BACKTRACKING for LK-H) were already selected
and labeled important when considering only parameters. This finding increases
our confidence in the robustness of this analysis.

4.3 Selecting Values for Key Parameters

Next, we used our subset models to identify which values the key parameters
identified by forward selection should be set to. For each dataset, we used the
same subset models of 3 features and 2 parameters as above; Table 3 lists the best
predicted values for these 2 parameters. The main purpose of this experiment
was to demonstrate that this analysis can be done automatically, and we thus

Identifying Key Algorithm Parameters 377

Fig. 4. Performance of random configurations vs configurations setting almost all para-
meters at random, but setting 2 key parameters based on an empirical performance
model with 3 features and 2 parameters.

only summarize the results at a high level; we see them as a starting point that
can inform domain experts about empirical properties of their algorithm in a
particular application context and trigger further in-depth studies. At a high
level, we note that CPLEX’s parameter mip strategy subalgorithm (determining
the continuous optimizer used to solve subproblems in a MIP) was important
for most instance sets, the most prominent values being 2 (use CPLEX’s dual
simplex optimizer) and 0 (use CPLEX’s auto-choice, which also defaults to the dual
simplex optimizer). Another important choice was to set preprocessing reduce
to 3 (use both primal and dual reductions) or 1 (use only primal reductions),
depending on the instance set. For SPEAR, the parameter determining the variable
selection heuristic (sp-var-dec-heur) was the most important one in all 3 cases,
with an optimal value of 2 (select variables based on their activity level, breaking
ties by selecting the more frequent variable). For good average performance of
LK-H on TSPLIB, the most important choices were to set EXCESS to −1 (use an
instance-dependent setting of the reciprocal problem dimension), and to not use
backtracking moves.

We also measured the performance of parameter configurations that actually
set these parameters to the values predicted to be best by the model, both on aver-
age across instances and in an instance-specific way. This serves as a further way
of evaluating model quality and also facilitates deeper understanding of the para-
meter space. Specifically, we consider parameter configurations that instantiate
the selected parameters according to the model and assign all other parameter
to randomly sampled values; we compare the performance of these configurations
to that of configurations that instantiate all values at random. Figure 4 visual-
izes the result of this comparison for two datasets, showing that the model indeed
selected values that lead to high performance: by just controlling two parameters,
improvements of orders of magnitude could be achieved for some instances. Of
course, this only compares to random configurations; in contrast to our work on
algorithm configuration, here, our goal was to gain a better understanding of an

378 F. Hutter et al.

Fig. 5. Log10 speedups over random configurations by setting almost all parameters at
random, except 2 key parameters, values for which (fixed best, and best per instance)
are selected by an empirical performance model with 3 features and 2 parameters.
The boxplots show the distribution of log10 speedups across all problem instances;
note that, e.g., a log10 speedup of 0, −1, and 1 mean identical performance, a 10-fold
slowdown, and a 10-fold speedup, respectively. The dashed green lines indicate where
two configurations performed the same, points above the line indicate speedups. Top:
based on models trained on 10 000 data points; bottom: based on models trained on
1 000 data points.

algorithms’ parameter space rather than to improve over its manually engineered
default parameter settings.3 However, we nevertheless believe that the speedups
achieved by setting only the identified parameters to good values demonstrate the
importance of these parameters. While Fig. 4 only covers 2 datasets, Fig. 5 (top)
summarizes results for a wide range of datasets. Figure 5 (bottom) demonstrates
that predictive performance does not degrade much when using sparser training
data (here: 1 000 instead of 10 000 training data points); this is important for facil-
itating the use of our approach in practice.

5 Conclusions

In this work, we have demonstrated how forward selection can be used to analyze
algorithm performance data gathered using randomly sampled parameter config-
urations on a large set of problem instances. This analysis identified small sets of
key algorithm parameters and instance features, based on which the performance
of these algorithms could be predicted with surprisingly high accuracy. Using
this fully automated analysis technique, we found that for high-performance
solvers for some of the most widely studied NP-hard combinatorial problems,
namely SAT, MIP and TSP, only very few key parameters (often just two of
dozens) largely determine algorithm performance. Automatically constructed
performance models, in our case based on random forests, were of sufficient
3 In fact, in many cases, the best setting of the key parameters were their default values.

Identifying Key Algorithm Parameters 379

quality to reliably identify good values for these key parameters, both on aver-
age across instances and dependent on key instance features. We believe that our
rather simple importance analysis approach can be of great value to algorithm
designers seeking to identify key algorithm parameters, instance features, and
their interaction.

We also note that the finding that the performance of these highly parametric
algorithms mostly depends on a few key parameters has broad implications on
the design of algorithms for NP-hard problems, such as the ones considered here,
and of future algorithm configuration procedures.

In future work, we aim to reduce the computational cost of identifying key
parameters; to automatically identify the relative performance obtained with
their possible values; and to study which parameters are important in high-
performing regions of an algorithm’s configuration space.

References

1. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Proceedings of CPAIOR-10, pp. 186–202 (2010)

2. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Proceedings of IJCAI-07, pp. 975–980 (2007)

3. Ansotegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of solvers. In: Proceedings of CP-09, pp. 142–157 (2009)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Empirical Methods for the Analysis of Optimization Algorithms. Springer,
Heidelberg (2010)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

6. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011)

7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 55–70.
Springer, Heidelberg (2012)

8. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Proceedings of FMCAD-07, pp. 27–34 (2007)

9. Chiarandini, M., Fawcett, C., Hoos, H.: A modular multiphase heuristic solver for
post enrolment course timetabling. In: Proceedings of PATAT-08 (2008)

10. Vallati, M., Fawcett, C., Gerevini, A.E., Hoos, H.H., Saetti, A.: Generating fast
domain-optimized planners by automatically configuring a generic parameterised
planner. In: Proceedings of ICAPS-PAL11 (2011)

11. Ridge, E., Kudenko, D.: Sequential experiment designs for screening and tuning
parameters of stochastic heuristics. In: Proceedings of PPSN-06, pp. 27–34 (2006)

12. Chiarandini, M., Goegebeur, Y.: Mixed models for the analysis of optimization
algorithms. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 225–264.
Springer, Berlin (2010)

380 F. Hutter et al.

13. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The
New Experimentalism. Natural Computing Series. Springer, Berlin (2006)

14. Finkler, U., Mehlhorn, K.: Runtime prediction of real programs on real machines.
In: Proceedings of SODA-97, pp. 380–389 (1997)

15. Fink, E.: How to solve it automatically: selection among problem-solving methods.
In: Proceedings of AIPS-98, pp. 128–136. AAAI Press (1998)

16. Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., Mayrhauser, A.: Exploiting
competitive planner performance. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS,
vol. 1809, pp. 62–72. Springer, Heidelberg (2000)

17. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness
of Optimization Problems. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
556–572. Springer, Heidelberg (2002)

18. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
19. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm

selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)
20. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-

mization problems. Comput. Oper. Res. 39(5), 875–889 (2012)
21. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. JAIR 32, 565–606 (2008)
22. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction

and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

23. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
the state of the art. CoRR, abs/1211.0906 (2012)

24. Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algo-
rithms by learning from evolved instances. AMAI 61, 87–104 (2011)

25. Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applica-
tions: a regression tree based approach. In: Proceedings of CEC-04, pp. 1111–1118
(2004)

26. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York
(2006)

27. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

28. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
29. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models:

methodology and a case study on combinatorial auctions. J. ACM 56(4), 1–52
(2009)

30. Xu, L., Hoos, H.H., Leyton-Brown, K.: Predicting satisfiability at the phase tran-
sition. In: Proceedings of AAAI-12 (2012)

31. Friedman, J.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–141
(1991)

32. IBM Corp.: IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/ (2012). Accessed 27 Oct 2012

33. Babić, D., Hutter, F.: Spear theorem prover. Solver description SAT competition
(2007)

34. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

35. Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling
performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp.
205–219. Springer, Heidelberg (2012)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Identifying Key Algorithm Parameters 381

36. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR
13, 281–305 (2012)

37. Wang, Z., Zoghi, M., Hutter, F., Matheson, D., de Freitas, N.: Bayesian opti-
mization in a billion dimensions via random embeddings. ArXiv e-prints, January
(2013). arXiv:1301.1942

Using Racing to Automatically Configure
Algorithms for Scaling Performance

James Styles(B) and Holger H. Hoos

University of British Columbia, 2366 Main Mall, Vancouver, BCV6T 1Z4, Canada
{jastyles,hoos}@cs.ubc.ca

Abstract. Automated algorithm configuration has been proven to be
an effective approach for achieving improved performance of solvers for
many computationally hard problems. Following our previous work, we
consider the challenging situation where the kind of problem instances for
which we desire optimised performance are too difficult to be used during
the configuration process. In this work, we propose a novel combination
of racing techniques with existing algorithm configurators to meet this
challenge. We demonstrate that the resulting algorithm configuration
protocol achieves better results than previous approaches and in many
cases closely matches the bound on performance obtained using an oracle
selector. An extended version of this paper can be found at www.cs.ubc.
ca/labs/beta/Projects/Config4Scaling.

1 Introduction

High performance algorithms for computationally hard problems often have
numerous parameters which control their behaviour and performance. Finding
good values for these parameters, some exposed to end users and others hidden
as hard-coded design choices, can be a challenging problem for algorithm design-
ers. Recent work on automatically configuring algorithms has proven to be very
effective. These automatic algorithm configurators rely on the use of significant
computational resource to explore the design space of an algorithm.

In previous work [7], we examined a limitation of the basic protocol for
using automatic algorithm configurators in scenarios where the intended use case
of an algorithm is too expensive to be feasibly used during configuration. We
proposed a new protocol for using algorithm configurators, referred to as train-
easy select-intermediate (TE-SI), which uses so-called easy instances during the
configuration step of the protocol and so-called intermediate instances during
the selection step. Through a large empirical study we were able to show that
TE-SI reliably out performed the basic protocol.

In this work, we show how even better configurations can be found using
two novel configuration protocols that combine the idea of using intermediate
instances for validation with the concept of racing. One of these protocols uses
a new variant of F-Race [1] and the other is based on a novel racing procedure
dubbed ordered permutation race. We show that both racing-based protocols
reliably outperform our previous protocol [7] and are able to produce configu-
rations up to 25 % better within the same time budget or configurations of the
same quality in up to 45 % less total time and up to 90 % less time for validation.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 382–388, 2013.
DOI: 10.1007/978-3-642-44973-4 41, c© Springer-Verlag Berlin Heidelberg 2013

www.cs.ubc.ca/labs/beta/Projects/Config4Scaling
www.cs.ubc.ca/labs/beta/Projects/Config4Scaling

Using Racing to Automatically Configure Algorithms 383

To assess the effectiveness of our new protocols, we performed a empirical
study across five configuration scenarios, described in Sect. 3. All scenarios use
the freely available algorithm configurators ParamILS [5] and SMAC [4].

2 Validation Using Racing

Racing, as applied to algorithm configuration, evaluates a set of candidate con-
figurations of a given target algorithm on a set of problem instances, one of
which is presented in each stage of the race, and eliminates configurations from
consideration once there is sufficient evidence that they are performing signif-
icantly worse than the current leader of the race. The race ends when either
a single configuration remains, when all problem instances have been used,
or when an overall time budget has been exhausted. There are three impor-
tant aspects to racing strategies: (1) how the set of candidate configurations is
constructed, (2) what metric is used to evaluate configurations, and (3) what
method is used to determine if a configuration can be eliminated from further
consideration.

The first and most prominent racing procedure for algorithm configuration is
F-Race [1], which uses the non-parametric, rank-based Friedman test to deter-
mine when to eliminate candidate configurations. A major limitation of this basic
version of F-Race stems from the fact that in the initial steps, all given config-
urations have to be evaluated. This property of basic F-Race severely limits the
size of the configuration spaces to which the procedure can be applied effectively.
Basic F-Race and its variants select the instance used to evaluate configurations
for each round of the race at random from the given training set.

Slow Racers Make for Slow Races. In each round of a race, every candidate
configuration must be evaluated. If the majority of candidate configurations have
poor performance, then much time is spent performing costly evaluations of bad
configurations before anything can be eliminated. This is problematic, because
good configurations are often quite rare, so that the majority of configurations
in the initial candidate set are likely to exhibit poor performance. Therefore,
we perform racing on a set of candidate configurations obtained from multiple
runs of a powerful configurator rather than for the configuration task itself; this
way, we start racing from a set of configurations that tend perform to well which
significantly speeds up the racing process.

It Doesn’t Take a Marathon to Separate the Good from the Bad. The
first few stages of racing are the most expensive. Yet, during this initial phase,
there is not yet enough information to eliminate any of the configurations, so
the entire initial candidate set is being considered. We know how the default
configuration of an algorithm performs on each validation instance, which gives
us an idea for the difficulty of the instance for all other configurations of the
target algorithm. By using instances in ascending order of difficulty, we reserve
the most difficult (i.e., costly) evaluations for later stages of the race, when there
are the fewest configurations left to be evaluated.

384 J. Styles and H. Hoos

Judge the Racers by What Matters in the End. The configuration scenar-
ios examined in this work involve minimising a given target algorithm’s runtime.
While rank-based methods may indirectly lead to a reduction in runtime they
are more appropriate for scenarios where the magnitude of performance dif-
ferences does not matter. We therefore propose the use of a permutation test
instead of the rank-based Friedman test, focused on runtime, for eliminating
configurations.

In detail, our testing procedure works as follows. Given n configurations
c1, . . . cn, and m problem instances i1, . . . , im considered at stage m of the race,
we use pk,j to denote the performance of configuration ck on instance ij , and
pk to denote the aggregate performance of configuration ck over i1, . . . , im. In
this work, we use penalised average run time, PAR10, to measure aggregate
performance, and our goal is to find a configuration with minimal PAR10. Let
c1 be the current leader of the race, i.e., the configuration with the best aggre-
gate performance among c1, . . . , cn, We now perform pairwise permutation tests
between the leader, c1, and all other configurations ck. Each of these tests assesses
whether c1 performs significantly better than ck; if so, ck is eliminated from the
race. To perform this one-sided pairwise permutation test between c1 and ck,
we generate 100,000 resamples of the given performance data for these two con-
figurations. Each resample is generated from the original performance data by
swapping the performance values p1,j and pk,j with probability 0.5 and leav-
ing them unchanged otherwise; this is done independently for each instance
j = 1, . . . , m. We then consider the distribution of the aggregate performance
ratios p∈

1/p∈
k over these resamples and determine the q-quantile of this distrib-

ution that equals the p1/pk ratio for the original performance data. Finally, if,
and only if, q > α2, where α2 is the significance of the one-sided pairwise test,
we conclude that c1 performs significantly better than ck. Different from F-race,
where the multi-way Friedman test is used to gate a series of pairwise post-tests,
we only perform pairwise tests and therefore need to perform multiple testing
correction. While more sophisticated corrections could be applied, we decided to
use the simple, but conservative Bonferroni correction and set α2 := α

n−1 for an
overall significance level α.

We refer to the racing procedure that considers problem instances in order
of increasing difficulty for the default configuration of the given target algorithm
and in each stage eliminates configurations using the previously described series
of pairwise permutation tests as ordered permutation race (op-race), and the
variant of basic F-race that uses the same ordering as ordered F-race
(of-race).

The TE-FRI and TE-PRI Configuration Protocols. We now return to the
application of racing in the context of a configuration protocol that starts from
a set of configurations obtained from multiple independent runs of a configura-
tor. In this context, we start op-race and of-race from the easiest intermediate
difficulty instance and continue racing with increasingly difficult instances until
either a single configurations remains, the time budget for validation has been
exhausted, or all available intermediate instances have been used.

Using Racing to Automatically Configure Algorithms 385

This yields two new protocols for using algorithm configurators: (1) train-
easy validate-intermediate with of-race (TE-FRI) and (2) train-easy validate-
intermediate with op-race (TE-PRI). We have observed that both protocols are
quite robust with respect to the significance level α (see extended version) and
generally use α = 0.01 for TE-FRI and α = 0.1 for TE-PRI.

3 Experimental Setup and Protocol

The result of a single, randomized, configuation experiment (i.e., a set of con-
figurator runs and the corresponding global validation step) may be misleading
when trying to assess the quality of a configuation procedure. We therefore per-
formed a large number of configurator runs, up to 300, for each scenario, and
fully evaluated the configuration found by each run on the training, validation
and testing sets. For a specific protocol and a target number n of configura-
tor runs, we generated 100,000 bootstrap samples by selecting, with replace-
ment, the configurations obtained from the n runs. For each such sample R, we
chose a configuration with the selection criteria of the protocol under investiga-
tion and used the performance of that configuration on the testing set as the
result of R.

For all experiments, we measured the performance of configurations on a
given instance, using penalised average runtime required for reaching the opti-
mal solution and a penalty factor of 10 times the scenario-specific cutoff for every
run that failed to reach the optimal solution. For all scenarios, we configured the
target algorithm for minimised PAR-10 using a set of easy training instances
defined as being solvable by the default configuration within the per-instance
cutoff used during training. We then defined the set of intermediate instances
as being in the 12.5th to 20th percentile difficulty of the testing set. The easy,
intermediate and testing instance sets are disjoint for each scenario. Each sce-
nario can then be defined by: the target algorithm, the instance set, the config-
urator time budgets and the per-instance cutoffs enforced during training and
testing.

TSP Solving Using LKH. The first scenario we considered involves config-
uring Keld Helsgaun’s implementation of the Lin-Kerninghan algorithm (LKH),
the state-of-the art incomplete solver for the traveling salesperson problem (TSP)
[3], to solve structured instances similar to those found in the well known TSPLIB
benchmark collection [6,7]. Each run of ParamILS and SMAC was given a time
budget of 24 h. A 120 second per-instance cutoff was enforced during configura-
tion and a 2 hour per-instance cutoff was enforced during testing.

MIP Solving Using CPLEX. The final three scenarios we considered involve
configuring CPLEX, one of the best-performing and most widely used industrial
solvers for mixed integer programming (MIP), for solving instances based on real
data modeling either wildlife corridors for grizzly bears in the Northern Rockies
[2] (CORLAT instances) or the spread of endangered red-cockaded woodpeckers
based on decisions to protect certain parcels of land (RCW instances).

386 J. Styles and H. Hoos

The first CPLEX scenario considered configuring CPLEX 12.1 for CORLAT
instances. Each run of ParamILS was given a time budget of 20 h. A 120 second
per-instance cutoff was enforced during configuation and a 2 hour per-instance
cutoff was enforced during testing. The second CPLEX scenario considered con-
figuring CPLEX 12.3 for CORLAT instances. Each run of ParamILS and SMAC
was given a time budget of 3456 s. A 15 second per-instance cutoff was enforced
during configuation and a 346 second cutoff was enfored during testing. The third
CPLEX scenario considered configuring CPLEX 12.3 for RCW instances. Each
run of ParamILS and SMAC was given a time budget of 48 h. A 180 second
per-instance cutoff was enfored during configuration and a 10 hour cutoff was
enforced during testing.

Execution Environment. All our computational experiments were performed
on the 384 node DDR partition of the Westgrid Orcinus cluster; Orcinus
runs 64-bit Red Hat Enterprise Linux Server 5.3, and each DDR node has two
quad-core Intel Xeon E5450 64-bit processors running at 3.0 GHz with 16 GB
of RAM.

4 Results

Using the methods described in Sect. 3 we evaluated each of the four protocols
on all five configuration scenarios. The results are shown in Table 1,
where we report bootstrapped median quality (in terms of speedup over the
default configurations, where run time was measured using PAR10 scores)
of the configurations found within various time budgets as well as bootstrap
[10 %, 90 %] percentile confidence intervals (i.e., 80 % of simulated applications
of the respective protocol fall within these ranges; note that these confidence
intervals are not for median speedups, but for the actual speedups over simulated
experiments).

As can be seen from these results, TE-PRI is the most effective configuration
protocol, followed by TE-FRI and TE-SI. These three protocols tend to produce
very similar [10 %, 90 %] confidence intervals, but the two racing approaches
achieve better median speedups, especially for larger time budgets.

To further investigate the performance differences between the protocols,
we compared them against a hypothetical protocol with an oracle selection
mechanism. This mechanism uses the same configurator runs as the other
protocols, but always selects the configuration from this set that has the
best testing performance, without incurring any additional computational
burden. This provides a upper bound of the performance that could be
achieved by any method for selecting from a set of configurations obtained
for a given training set, configurator and time budget. These results, shown in
Table 1, demonstrate that for some scenarios (e.g., CPLEX 12.1 for CORLAT)
the various procedures, particularly TE-PRI, provide nearly the same perfor-
mance as the oracle, while for others (e.g., CPLEX 12.3 for RCW), there is a
sizable gap.

Using Racing to Automatically Configure Algorithms 387

Table 1. Speedups obtained by our configuration protocols, using ParamILS, on con-
figuration scenarios with different overall time budgets. An increase in overall configura-
tion budget corresponds to an increase in the number of configuration runs performed,
rather than to an increase in the time budget for individual runs of the configurator.
This means larger time budgets can be achieved by increasing either wall-clock time or
the number of concurrent parallel configurator runs. The highest median speedups,
excluding the oracle selector, for each configuration scenario and time budget are
boldfaced.

Median [10 %, 90 %] Speedup (PAR10)

Time Budget TE-SI TE-FRI TE-PRI Oracle
(CPU Days) Selector
Configuring LKH for TSPLIB, using ParamILS
20 1.33 [0.96, 2.29] 1.34 [1.00, 2.11] 1.34 [0.95, 2.11] 1.71 [1.33, 3.11]
50 1.52 [1.06, 3.10] 1.60 [1.25, 3.10] 1.85 [1.25, 3.10] 2.11 [1.46, 3.19]
100 2.10 [1.24, 3.19] 2.11 [1.46, 3.19] 2.29 [1.38, 3.19] 2.29 [1.85, 3.19]

Configuring LKH for TSPLIB, using SMAC
20 0.99 [0.71, 1.23] 1.00 [0.73, 1.23] 1.08 [0.89, 1.23] 1.12 [0.89, 1.25]
50 1.08 [0.89, 1.23] 1.08 [0.92, 1.23] 1.08 [0.89, 1.23] 1.23 [1.08, 1.25]
100 1.08 [0.89, 1.23] 1.23 [1.00, 1.23] 1.23 [0.89, 1.25] 1.25 [1.23, 1.25]

Configuring CPLEX 12.3 for RCW, using ParamILS
40 1.11 [0.97, 1.39] 1.12 [0.96, 1.39] 1.08 [0.98, 1.42] 1.23 [1.08, 1.42]
100 1.12 [1.03, 1.42] 1.16 [1.06, 1.42] 1.16 [0.98, 1.42] 1.39 [1.16, 1.42]
200 1.13 [1.11, 1.42] 1.37 [1.06, 1.42] 1.42 [0.98, 1.42] 1.42 [1.37, 1.42]

Configuring CPLEX 12.3 for RCW, using SMAC
40 0.79 [0.54, 1.01] 0.79 [0.54, 1.24] 0.79 [0.54, 1.01] 0.95 [0.77, 1.24]
100 0.79 [0.77, 1.24] 0.84 [0.54, 1.24] 0.82 [0.77, 1.24] 1.01 [0.84, 1.24]
200 0.79 [0.77, 1.24] 0.84 [0.54, 1.24] 1.24 [0.77, 1.24] 1.24 [0.98, 1.24]

Configuring CPLEX 12.1 for CORLAT, using ParamILS
40 54.5 [42.2, 61.1] 53.8 [42.9, 61.1] 55.8 [48.3, 61.1] 60.0 [48.8, 68.3]
100 60.1 [49.0, 68.3] 60.6 [53.4, 68.3] 61.1 [50.3, 68.3] 61.3 [60.0, 68.3]
200 61.5 [53.8, 68.3] 68.3 [60.1, 68.3] 68.3 [60.6, 68.3] 68.3 [60.6, 68.3]

Configuring CPLEX 12.3 for CORLAT, using ParamILS
1.0 2.00 [1.02, 2.64] 1.93 [1.19, 2.64] 2.24 [1.00, 3.04] 2.36 [1.94, 3.04]
2.5 2.36 [1.95, 3.04] 2.36 [1.95, 3.04] 2.36 [1.93, 3.04] 2.64 [2.24, 3.04]
5.0 2.64 [2.24, 3.04] 3.02 [1.95, 3.04] 3.02 [2.24, 3.04] 3.04 [2.64, 3.04]

Configuring CPLEX 12.3 for CORLAT, using SMAC
1.0 2.41 [1.46, 3.66] 2.41 [1.39, 3.66] 2.89 [1.54, 3.66] 2.89 [2.16, 3.84]
2.5 3.26 [1.94, 3.84] 3.26 [2.19, 3.84] 3.26 [2.41, 3.66] 3.66 [2.93, 3.84]
5.0 3.66 [2.89, 3.84] 3.66 [3.26, 3.84] 3.66 [2.41, 3.66] 3.84 [3.66, 3.84]

5 Conclusion

In this work, we have addressed the problem of using automated algorithm con-
figuration in situations where instances in the intended use case of an algorithm
are too difficult to be used directly during the configuration process. Building
on the idea of selecting from a set of configurations optimised on easy train-

388 J. Styles and H. Hoos

ing instances by validating on instances of intermediate difficulty recently, we
have introduced two novel protocols for using automatic configurators by lever-
aging racing techniques to improve the efficiency of validation. The first of these
protocols, TE-FRI, uses a variant of F-Race [1], and the second, TE-PRI, uses
a novel racing method based on permutation tests. Through a large empirical
study we have shown that these protocols are very effective and reliably outper-
form the TE-SI protocol we previously introduced across every scenario we have
tested. This is the case for SMAC [4] and ParamILS [5], two fundamental differ-
ent configuration procedures (SMAC is based on predictive performance models
while ParamILS performs model-free stochastic local search), which suggests
that our new racing protocols are effective independently of the configurator
used.

References

1. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: GECCO ’02: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 11–18 (2002)

2. Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in networks: A hybrid
approach. In: Perron, L., Trick, M. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp.
303–307. Springer, Heidelberg (2008)

3. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. EJOR 126, 106–130 (2000)

4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

6. Reinelt, G.: TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95. Version visited in October 2011

7. Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling
performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219,
pp. 205–219. Springer, Heidelberg (2012)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

Algorithm Selection
for the Graph Coloring Problem

Nysret Musliu(B) and Martin Schwengerer(B)

Institut für Informationssysteme 184/2, Technische Universität Wien,
Favoritenstraße 9-11, 1040, Vienna, Austria

musliu@dbai.tuwien.ac.at, mschweng@kr.tuwien.ac.at

Abstract. We present an automated algorithm selection method based
on machine learning for the graph coloring problem (GCP). For this
purpose, we identify 78 features for this problem and evaluate the per-
formance of six state-of-the-art (meta) heuristics for the GCP. We use the
obtained data to train several classification algorithms that are applied
to predict on a new instance the algorithm with the highest expected per-
formance. To achieve better performance for the machine learning algo-
rithms, we investigate the impact of parameters, and evaluate different
data discretization and feature selection methods. Finally, we evaluate
our approach, which exploits the existing GCP techniques and the auto-
mated algorithm selection, and compare it with existing heuristic algo-
rithms. Experimental results show that the GCP solver based on machine
learning outperforms previous methods on benchmark instances.

Keywords: Algorithm selection · Graph coloring · Machine learning

1 Introduction

Many heuristic algorithms have been developed to solve combinatorial optimiza-
tion problems. Usually, such techniques show different behavior when solving
particular instances. According to the no free lunch theorems [45], no algorithm
can dominate all other techniques on each problem. In practice, this raises new
issues, as selecting the best (or most appropriate) solver for a particular instance
may be challenging. Often, the “winner-take-all” strategy is applied and the
algorithm with the best average performance is chosen to solve all instances.
However, this methodology has its drawbacks, because the distribution of tested
instances effects the average performance, and usually in practice only a special
class of instances are solved.

One possible approach to obtain better solutions on average is to select for
each particular instance the algorithm with the highest expected performance.
This task is known as algorithm selection (AS) and one emerging and very
promising approach that is used for AS is based on machine learning methods.
These techniques are able to learn a model based on previous observations an
then predict on a new and unseen instance the best algorithm.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 389–403, 2013.
DOI: 10.1007/978-3-642-44973-4 42, c© Springer-Verlag Berlin Heidelberg 2013

390 N. Musliu and M. Schwengerer

In this paper, we address AS using classification algorithms for the well-
known Graph Coloring Problem (GCP) machine learning techniques. The GCP
is a classical NP-hard problem in computer science. The task for this prob-
lem is to assign a color to each node of a given graph such that (a) no
adjacent nodes received the same color and (b) the number of colors used is
minimized. Various heuristic algorithms to solve GCP have been developed
in the literature. However, recent studies [7,26] show that the performance of
different heuristics highly depend on attributes of the graph like for example
the density or the size. Therefore, the aim of this paper is to apply auto-
mated algorithm selection for this problem. We evaluate experimentally different
heuristics and classification algorithms and show that our solver that includes
algorithm selection is able to achieve much better performance than the
underlying heuristics.

The rest of this paper is organized as follows: Sect. 2 gives a short introduction
into the GCP, AS and the related work. In Sect. 3, we present features of a
GCP instance and describe our AS approach for the GCP. The experimental
results are given in Sect. 4 while Sect. 5 concludes our work and describes the
future work.

2 Background and Related Work

2.1 The Graph Coloring Problem

Given a graph G = (V,E), a coloring of G is an assignment of a color c ≤ k to
each vertex v ∈ V such that no vertices sharing an edge e ∈ E receive the same
color. The Graph Coloring Problem (GCP) deals with finding a coloring for G
whereby it can occur as decision problem (also known as k-coloring problem),
where the number of colors k is fixed, or as optimization problem (the chromatic
number problem), where k has to be minimized. Instances of the k-coloring prob-
lem are, unlike other NP-complete problems (e.g. the Hamilton path problem),
“hard on average” [43], meaning that also random instances tend to be difficult
to solve. Moreover, approximating the chromatic number itself is very hard [14],
although many different approaches for this task exist (see [36] for more details).
Graph coloring itself has many applications like scheduling [25,48], references:
register allocation [5], circuit testing [17] etc.

There exist many exact methods for solving the GCP (see [29] for more
details). However, all these approaches are only usable in general on small
graphs up to 100 vertices [7]. Consequently, many solvers apply heuristic algo-
rithms. Early approaches in this context are greedy constructive heuristics (e.g.
DSATUR [3] or RLF [25]) while recent algorithms use more sophisticated tech-
niques. Especially, local search methods like tabu search [1,21] provide good
results. Moreover, also several population-based and hybrid algorithms have
been proposed [16,28,46]. For a survey on different heuristics, we refer to
[26,29,35].

Algorithm Selection for the Graph Coloring Problem 391

2.2 Algorithm Selection

The Algorithm Selection Problem postulated by Rice [37] deals with this ques-
tion: Given different algorithms to solve a problem, which one should be selected
for a particular instance? For this purpose, Rice identified four important
components, namely

– the set of candidate algorithms A,
– the instances of a problem, the problem space P ,
– measurable attributes of an instance, denoted as feature space F , and
– the performance space Y .

For solving this problem, it is necessary to use relevant features f(x) ∈ F of
an instance x ∈ P that model the performance of an algorithm a ∈ A with
respect to a performance criteria Y . Designing the algorithm portfolio A is also
usually not so hard, because in most cases the available algorithms are limited
and a good selection procedure will not use suboptimal solvers anyway. More
challenging is the choice of appropriate features F and to find a good selection
procedure (denoted as S).

Unfortunately, there exist no automatic way to find good features [34], as
this requires usually deep domain knowledge and analytical skills. Nevertheless,
some approaches seem to be useful across different problems and sometimes,
even features of related problems can be reused. Regarding concrete features for
the GCP, in [40] various properties of a graph that may be useful are introduced.
We also adapted some other features that can be found in [47] and additionally
introduced some new features.

Regarding the selection procedure, there exist different methods that for
example use analytical aspects or complexity parameters [12]. One successfully
and widely used solution is the application of machine learning techniques.
Usually, either classification or regression techniques are used. Classification
techniques classify the new instances into one category, which is the recom-
mended algorithm. In contrast to this, regression techniques model the behavior
of each algorithm by using an regression function and predict the result (e.g.
runtime, solution quality) on a new instance. Based on this prediction the algo-
rithm with the best performance is selected. Both paradigms have been success-
fully applied for algorithm selection. Applications of regression include [4,31,47].
Classification techniques have been used among others in [18,19,23,30,39,41].
However, none of these approaches is specially designed for the GCP and
although some also consider graph properties, only one paper, [42], deals explic-
itly with graph coloring. This work, which was published just recently, utilizes 16
different features and a decision tree to chose between two algorithms for graph
coloring: DSATUR and tabu search. Although this approach shows some simi-
larities concerning features and algorithms, there are several differences to our
work. We consider additional features (including the greedy algorithm DSATUR)
and evaluate the performance of several classifiers. In addition, we focus on
using multiple and more sophisticated heuristics and investigate the effect of

392 N. Musliu and M. Schwengerer

data preparation. In this paper we present new attributes of a graph that can be
calculated in polynomial time and are suitable to predict the most appropriate
heuristic for GCP.

3 Algorithm Selection for the GCP

First step in algorithm selection is to identify characteristic features that can be
calculated in reasonable time. Furthermore, we collect performance information
about each algorithm on a representative set of benchmark instances and deter-
mine for each graph the most suited algorithm. Then, we use machine learning
to train classification algorithms that act as selection procedure. To predict the
best algorithm on a new instance, the proposed system extracts the features of
that instance and then determines the corresponding class, which corresponds
to the most appropriate algorithm.

3.1 Instance Features

We identify 78 features that are grouped in eight categories: graph size, node
degree, maximal clique, clustering coefficient, local search probing features,
greedy coloring, tree decomposition, and lower- and upper bound. Figure 1 gives
a more detailed view on the different attributes. The first two groups, graph size
and node degree contain classical features that are also used in other systems
(e.g. [47]). For the maximal clique features, we calculate for each node a maximal

Fig. 1. Basic features for an instance of the GCP.

Algorithm Selection for the Graph Coloring Problem 393

clique by using a simple greedy algorithm and take statistical information about
the size of these cliques as relevant attributes. Regarding the local clustering
coefficient [44] of a node, we use, besides the classical value, a modified version
denoted as weighted clustering coefficient, where the coefficient of the node is
multiplied with its degree. The local search probing features are extracted from
10 executions of a simple 1-opt best-improvement local search on the k-coloring
problem. The greedy coloring attributes are based on the application of DSATUR
and RLF. For these features, we take, besides the number of used colors, also
the sizes of the independent sets into account and calculate statistical informa-
tion like the average size or the variation coefficient. Furthermore, we consider
attributes of a tree decomposition obtained by a minimum-degree heuristic. Such
features have been used successfully by [32] for AS in Answer Set Programming.
The last category builds on a lower bound of k, denoted as Bl, which is the car-
dinality of the greatest maximal clique found, and an upper bound Bu, which
is the minimum number of colors needed by the two greedy algorithms. Apart
from features we described above, we also take the computation times of some
feature classes as additional parameters. Note that we also experimented with
attributes based on the betweenness centrality [15] and the eccentricity [20] of the
nodes. Unfortunately, the algorithms we implemented to calculate these features
required during our tests much time, for which reasons we did not use them in
our approach.

It is widely accepted that the performance of learning algorithms depend on
the choice of features, and that using irrelevant features may lead to suboptimal
results. Therefore, we apply a feature subset selection using a forward selection
with limited backtracking and a genetic search to reduce the set of basic features.
Both techniques are applied with the CfsSubsetEval criteria as evaluation func-
tion. Only features that are selected by one of these methods are used further.
Additionally, for each pair of features xj , xk, k > j we create two new features
that represent the product xj ·xk and the quotient xj/xk, respectively. This idea
is based on a similar technique used in [47], where also the product of two fea-
tures is included as an additional attribute. Finally, we apply feature selection
on these expanded attributes to eliminate unnecessary attributes. In the end, we
obtain 90 features, including 8 basic features and 82 composed attributes.

3.2 Algorithm Portfolio

To demonstrate our approach, we use six state-of-the-art (meta)heuristics for
the GCP, namely: HEA [16], ILS [8], MAFS [46], MMT [28] (only the component
containing the genetic algorithm), FOO-PARTIALCOL [1] (further abbreviated to
FPC), and TABUCOL [21] (further denoted as TABU).

For each of these algorithms, we use parameter settings proposed in the orig-
inal publications and that are suggested by their developers. The main reason
for selecting the TABU solver is the fact that this technique is one of the most-
studied heuristics and is often used as local search in various population-based
algorithms for the GCP. In addition, according to a comparison by Chiaran-
dini [6], TABU is besides HEA and ILS the most effective algorithm for random

394 N. Musliu and M. Schwengerer

graphs. HEA is chosen because it shows good performance on flat graphs and it
is used as basis for many other evolutionary heuristics that are applied for GCP.
We selected FPC and MMT because we also wanted to use algorithms working
with partial colorings and these two candidates are the correspondent versions
of TABU and HEA. The last competitor, MAFS, is included because it shows good
performance on large graphs.

3.3 Benchmark Instances

As training instances, we take three different publicly available sets: The first
set, further denoted as dimacs, consists of 174 graphs from the Graph Color-
ing and its Generalizations-series (COLOR02/03/04)1 which builds up on the
well-established Dimacs Challenge [22]. This set includes instances from the col-
oring and the clique part of the Dimacs Challenge. The second and third set of
instances, denoted as chi500 and chi1000, are used by a comparative study [9]
of several heuristics for the GCP and contain 520 instances with 500 nodes and
740 instances with 1000 nodes respectively.2 These instances are created using
Culberson’s [10] random instance generator by controlling various parameters
like the edge density (p = {0.1, 0.5, 0.9}) or the edge distribution (resulting in
three groups of graphs: uniform graphs (G), geometric graphs (U) and weight
biased graphs (W)).

For the final evaluation of our algorithm selection approach with the under-
lying algorithms, we use a test set comprising complete new instances of dif-
ferent size, density and type, generated with Culberson’s instance generator. We
constructed uniform (G), geometric (U) and weight biased (W) graphs of dif-
ferent sizes n = {500, 750, 1000, 1250} and density values p = {0.1, 0.5, 0.9}.
For each parameter setting we created 5 graphs, leading to a total of 180
instances.

In order to ensure practicable results and prevent excessive computational
effort, we use a maximal time limit per color tmax = min(3600,

√|E| · x) where
|E| is the number of edges and x is 15, 5 and 3 for the sets dimacs, chi500 and
chi1000, respectively. For the test set which contains graphs of different size,
we stick to the values used for chi1000 (x = 3). These values for x are obtained
experimentally. In this context, we want to note that the average time needed
for the best solution on the hard instances is only 21.58% of the allowed value
tmax and 90% of the best solutions are found within 62.66% of tmax.

Regarding the feature computation, we do not use any time limitations except
for the local search probing, although this might be reasonable for practical
implementations. However, for our test data the median calculation time is 2 s,
the 95th percentile is 18 s and the 99th percentile is 53 s.

In total, we collected 1434 graphs of variable size and density as training
data. We removed instances where an optimal solution has been found by one of
1 Available at http://mat.gsia.cmu.edu/COLOR04/, last visited on 22.10.2012
2 Available at www.imada.sdu.dk/∼marco/gcp-study/, last visited on 28.10.2012

http://mat.gsia.cmu.edu/COLOR04/
www.imada.sdu.dk/~marco/gcp-study/

Algorithm Selection for the Graph Coloring Problem 395

the two greedy algorithms or where the heuristics did not find better colorings
than obtained by the greedy algorithms. We further excluded all instances where
at least four heuristics (more than 50%) yield the best solution in less than five
seconds. These seem to be easy instances which can be solved efficiently by most
heuristics. Therefore, they are less interesting for algorithm selection. In the end,
our training data consist of 859 hard instances.

Note that during our experiments, we discovered instances where several
heuristics obtain best result. For machine learning, this is rather uncomfort-
able, as the training data should contain only one recommended algorithm per
instance. One solution for this issue is using multi-labeled classification [23]. How-
ever, we follow a different strategy where we prioritize the algorithms according
to their average rank on all instances. Thus, in case of a tie, we prefer the
algorithm with the lower rank. Concerning the performance evaluation of the
classifiers, we have to take into account that there might be several “best” algo-
rithms. For that reason, we introduce a new performance measurement, called
success rate (sr), that is defined as follows: Given for each instance i ∈ I a set
of algorithms Bi that obtains best result on i. Then, the sr of a classifier c on
a set of instances I is sr = |{i∈I:c(i)∈Bi}|

|I| where c(i) is the predicted algorithm
for the instance i. Furthermore, the success rate of a solver is the ratio between
the number of instances for which the solver achieves the best solution and the
total number of instances.

3.4 Classification Algorithms

For the selection procedure itself, we test six popular classification algorithms:
Bayesian Networks (BN), C4.5 Decision Trees (DT), k-Nearest Neighbor (kNN),
Multilayer Perceptrons (MLP), Random Forests (RF), and Support-Vector
Machines (SVM). For all these techniques, we use the implementation included
in the Weka software collection [2], version 3.6.6. Furthermore, we manually
identify important parameters of these learning algorithms and experimented
with different settings. We refer the reader to [38] for more details regarding
different parameter settings that we used for classification algorithms.

3.5 Data Discretization

Apart from selection of relevant features, a different, but also important issue
is whether to use the original numeric attributes or to apply a discretization
step to transform the values into nominal attributes. Besides the fact that some
classification algorithms can not deal with numeric features, research has clearly
shown that some classifiers achieve significant better results when applied with
discretized variables [11]. In this work, we experimented with two different super-
vised discretization techniques. The first one is the classical minimum-descriptive
length (MDL) method [13], while the second method is a derivation of MDL using
a different criteria [24] (further denoted as Kononenko’s criteria (KON)).

396 N. Musliu and M. Schwengerer

4 Experimental Results

All our experiments have been performed on a Transtec CALLEO 652 Server
containing 4 nodes, each with 2 AMD Opteron Magny-Cours 6176 SE CPUs
(2 · 12= 24 cores with 2.3 GHz) and 128 GB memory.

Concerning the heuristic for the GCP, we execute each algorithm n = 10
times (n = 20 for the dimacs instances) using different random seeds. The result
of each algorithm is the lowest number of colors that has been found in more
than 50% of the trials. Furthermore, we take the median time needed within
the n executions as required computation time. In cases of a timeout, we take
tmax as computation time. Detailed results of the experiments can be found at
http://www.kr.tuwien.ac.at/staff/mschweng/gcp/.

4.1 Parameter Configuration and Discretization

Regarding the effect of data discretization, we compare the success rate of the
best parameter configuration for each of the three methods on several data sets
(e.g. using different feature subsets). The experimental results clearly show that
most classifiers achieve a higher accuracy on data with nominal attributes.

Table 1 gives an overview regarding the impact of discretization. The column
avg shows the improvement regarding the average success rate, whereas the col-
umn best represents the gap between the best value obtained using numerical
values and the best value achieved with the discretized data sets. Both discretiza-
tion variants improve the best reached success rate. The classical MDL method
improves sr on average by 5.14%, while Kononenko’s criteria by 4.35%. However,
for some classifiers, the benefits of discretized values are up to +9.41% with MDL
and even +11.09% using Kononenko’s criteria (KON). The only classifier which
does not benefit from a discretization is MLP. Its training time increases dramat-
ically (up to several hours). Even more, when using Kononenko’s criteria (KON),
the average success rate decreases by 20.33%. Nevertheless, as Kononenko’s cri-
teria (KON) provides for the most classifiers slightly better results than MDL,
we decided to use Kononenko’s criteria for all further experiments.

As mentioned before, we experimented with different parameter configura-
tions for each classifier. Based on these tests, we selected for the remaining tests

Table 1. Improvements of sr (in percent) when using discretized data in relation to
results achieved with non-discretized data on the training set using cross validation.

Method BN C4.5 kNN
Avg Best Avg Best Avg Best

MDL +2.40 +2.30 +6.34 +7.15 +9.41 +7.00
KON +4.93 +4.85 +5.78 +6.23 +11.09 +8.92

MLP RF SVM

MDL +4.16 +5.42 +2.25 +2.25 +4.57 +1.75
KON −20.33 +4.37 +3.94 +4.38 +5.33 +4.20

http://www.kr.tuwien.ac.at/staff/mschweng/gcp/

Algorithm Selection for the Graph Coloring Problem 397

the most successful configuration. In detail, the maximum number of parent
nodes that we used for BN is 3. For the DT the minimum number of objects per
leave was set to 3. Regarding the kNN, the size of the neighborhood is set to 5
and for the RF, we set the number of trees to 15. For the MPL and SVM, and
other remaining parameters, we used the default settings from the Weka system.

4.2 Results on the Training Data

To show the performance on the training data set, we tested each classifier 20
times using a 10-fold cross validation. The results of these experiments are given
in Fig. 2, which shows the average number of correct predictions for each classifier
and instance set. The figure also gives a comparison with the existing solvers for
the GCP regarding the number of instances on which the best solution is achieved.
The diagram shows that 5 of 6 tested classifiers achieve good results. Only the
MLP gives very weak results. This method requires more than 24 h for one run
of cross-validation and its results are even below those of the existing heuristics.
Nevertheless, other approaches show very good performance by obtaining on up
to 625.9 (72.86%) instances the best solution. Compared with MMT, which is the
best heuristic for the GCP, an improvement on 259 instances (30.15%) is reached.
Even more, this performance increase can be observed on all three instance sets.

For a more detailed statistical analysis, we applied a corrected resampled T-
test [33] on the results of the 10-fold cross-validation (except the MLP). These
experiments, applied with a level of significance of α = 0.05, reveal that BN, kNN
and RF are significant better than DT while all other pairwise comparisons do
not show significant differences.

Fig. 2. Prediction of the best algorithm by different classifiers on the training data and
their comparison with the existing (meta)heuristics.

398 N. Musliu and M. Schwengerer

4.3 Evaluation on the Test Set

In the next step, we trained the classifiers with the complete training set and
evaluate the performance of them on the test set. The corresponding results are
shown in Fig. 3, which shows the number of instances on which the solvers show
the best performance. From this figure, we can see that all learning strategies
except MLP accomplish a higher number of best solutions than any existing
solver for the GCP. The most successful classifiers are RF, BN and kNN which
predict on up to 71.71% of the 152 graphs the most appropriate algorithm.

Fig. 3. Number of instances from the test set on which a solver shows best perfor-
mance.

A more detailed view on the results using different metrics is given in Table 2.
Besides the success rate, we also consider the distance to the best known solu-
tion, err(χ̂, G) [6], and the average rank. The figures point out that MMT is the
best single heuristic with respect to the number of best solutions. Moreover,
it accomplishes the lowest average distance err(χ̂, G) with a larger gap to the
other approaches. Surprisingly, when we look at the average rank, MMT is not
ranked first because TABU and HEA show both a lower value. Thus, it seems
that although MMT obtains often solution with a low number of colors (resulting
in a low err(χ̂, G)), it is not always ranked first. One possible explanation for
this is that MMT is a method which is powerful, but rather slow. Consequently,
on instances where other heuristics (e.g. TABU or HEA) find equal colorings, MMT
requires more computation time and is therefore, ranked behind its competitors.

Compared with our solver that applies all algorithms and an automated
algorithm selection mechanism, we can see that for all considered metrics except
err(χ̂, G) at least one system shows a stronger performance than the best sin-
gle heuristic. The best selection mechanism provides clearly RF, which is on all

Algorithm Selection for the Graph Coloring Problem 399

Table 2. Performance metrics of the algorithm selection and the underlying heuristics
on the test set.

Solver No. best solution sr (%) err(χ̂, G) (%) Rank
avg σ

Heuristics (H)
FPC 17 11.18 25.42 3.29 1.42
HEA 34 22.37 14.91 2.66 1.38
ILS 1 0.66 21.73 3.82 1.36
MAFS 2 1.32 30.17 4.62 1.52
MMT 60 39.47 3.78 2.76 1.84
TABU 44 28.95 19.23 2.58 1.29

Algorithm Selection (AS)
BN 104 68.42 5.16 1.59 1.08
C4.5 76 50.00 5.86 2.21 1.50
kNN 102 67.11 3.82 1.52 0.91
MLP 31 20.39 24.90 3.14 1.66
RF 109 71.71 5.44 1.41 0.78
SVM 84 55.26 8.32 1.97 1.38

Best (H) 60 39.47 3.78 2.58 1.29
Best (AS) 109 71.71 3.82 1.41 0.78

criteria except err(χ̂, G) better than the other classifiers. In detail, this system
achieves a success rate of 71.71% (+32.24% compared with MMT) and an aver-
age rank of 1.41 (−1.17 compared with TABU). Only on the metric err(χ̂, G),
MMT shows with 3.78% a lower value than RF, which colorings of the choosen
algorithms have an average distance of 5.44% to the best known solution. The
best classifier in this context is kNN, which achieves with 3.82 a slightly higher
value than MMT. The worst performance among the classifiers shows clearly MLP,
which results concerning the number of instances where it finds the best solution
are even below those of MMT or TABU. These data confirm that this machine learn-
ing technique in combination with Kononenko’s criteria (KON) is not suited for
the GCP. This does not imply that MLP is in general inappropriate for AS. The
results using data sets with continuous attributes show that this classifier can
achieve competitive results compared to the other tested classifiers. However,
when using nominal features, its training time usually increases dramatically
while the accuracy decreases.

For a more detailed analysis, we group the graphs according to their density
and graph class and compare the performance of RF, which is the best classifier,
with the existing heuristics. Figure 4 presents the number of graphs on which the
different methods show the best performance. The figures show that our solver
based on algorithm selection is on 5 of the 9 subsets better or equal compare to
the best heuristic. On the group U-0.9 the algorithm selection fails by predicting
on only 6 of 10 graphs the correct algorithm. The reason for this bad results
might be that for almost all graphs with high density, either TABU or MMT is the
best heuristic whereby the decision criteria is based on the edge distribution. In

400 N. Musliu and M. Schwengerer

Fig. 4. Number of instances of the test set on which a solver shows the best perfor-
mance, grouped by the graph type (edge distribution) and the density. The dark bar
denotes that our approach is at least as successful as the best single solver.

detail, TABU is to prefer on uniform and weight biased graphs while MMT is better
on geometric graphs. Unfortunately this information is not part of the feature
space and it seems that the classifier is not able to distinguish this based on
other features, which leads to mispredictions. The suboptimal prediction rate
on W-0.1 is hard to explain, as FPC is also in the related subset W-0.1 of the
training data the best algorithm. Thus, is seems that the classifier is just not able
to learn this pattern correctly. On the groups G-0.5 and W-0.5 our approach is
also not able to achieve competitive results compare to the best single solver.
This is surprising as the best heuristic on these instances is HEA, which shows
also on the corresponding training data good results. One possible explanation is
that, as for instances with high density, the classifier is unable to detect the type
of edge distribution. Nevertheless, we can see that in many cases, the classifier is
able to predict the most appropriate algorithm, which leads to a better average
performance compare to any single heuristic.

5 Conclusion

In this paper, we presented a novel approach based on machine learning to
automate algorithm selection for the GCP. Given a set of algorithms and a set
of specific features of a particular instance, such a system selects the algorithm
which is predicted to show the best performance on that instance. Our proposed

Algorithm Selection for the Graph Coloring Problem 401

approach applies a classification algorithm as selection procedure that assigns a
new instance to one of the available algorithms based on a previously learned
model. For this purpose, we identified 78 attributes for the GCP that can be
calculated in reasonable time and that have impact on solving of the GCP.

To demonstrate our approach, we evaluated the performance of six state-of-
the-art (meta)heuristics on three publicly available sets of instances and showed
that no algorithm is dominant on all instances. We further applied machine
learning to build an automated selection procedure based on the obtained data.
For that purpose, we experimented with six well known classification algorithms
that are used to predict on a new instance the most appropriate algorithm.
Our experiments clearly showed that a solver that applies machine learning
yield a significant better performance compared with any single heuristic. We
further demonstrated that using data discretization increases the accuracy of
most classifiers.

Regarding future work, we plan to investigate a regression-based approach
using runtime and solution quality predictions. This technique, which is success-
fully used for other systems, is an alternative to our classification-based app-
roach. Also worth considering is a hybridization of our method with automated
parameter selection and the combination of heuristic and exact techniques for
the GCP in a system that applies automated algorithm selection.

Acknowledgments. The work was supported by the Austrian Science Fund (FWF):
P24814-N23. Additionally, the research herein is partially conducted within the com-
petence network Softnet Austria II (www.soft-net.at, COMET K-Projekt) and funded
by the Austrian Federal Ministry of Economy, Family and Youth (bmwfj), the province
of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of
Vienna in terms of the center for innovation and technology (ZIT).

References

1. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and
a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

2. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A.,
Scuse, D.: Weka manual (3.6.6), October 2011

3. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22,
251–256 (1979)

4. Brown, K.L., Nudelman, E., Shoham, Y.: Empirical hardness models: methodology
and a case study on combinatorial auctions. J. ACM 56(4), 1–52 (2009)

5. Chaitin, G.: Register allocation and spilling via graph coloring. SIGPLAN Not.
39(4), 66–74 (2004)

6. Chiarandini, M.: Stochastic local search methods for highly constrained combina-
torial optimisation problems. Ph.D. thesis, TU Darmstadt, August 2005

7. Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for
the graph colouring problem. In: Gonzalez, T.F. (ed.) Handbook of Approximation
Algorithms and Metaheuristics. Chapman & Hall/CRC, Boca Raton (2007)

8. Chiarandini, M., Stützle, T.: An application of iterated local search to graph col-
oring. In: Johnson, D.S., Mehrotra, A., Trick, M.A. (eds.) Proceedings of the Com-
putational Symposium on Graph Coloring and its Generalizations (2002)

402 N. Musliu and M. Schwengerer

9. Chiarandini, M., Stützle, T.: An analysis of heuristics for vertex colouring. In:
Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 326–337. Springer, Heidelberg
(2010)

10. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy.
In: Dimacs Series in Discrete Mathematics and Theoretical Computer Science, pp.
245–284. American Mathematical Society, Providence (1995)

11. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Machine Learning: Proceedings of the Twelfth Interna-
tional Conference, pp. 194–202. Morgan Kaufmann, San Francisco (1995)

12. Ewald, R.: Experimentation methodology. In: Ewald, R. (ed.) In: Automatic Algo-
rithm Selection for Complex Simulation Problems, pp. 203–246. Vieweg+Teubner
Verlag, Wiesbaden (2012)

13. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued
attributes for classification learning. In: Bajcsy, R. (ed.) IJCAI. Morgan Kauf-
mann, San Mateo (1993)

14. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst.
Sci. 57(2), 187–199 (1998)

15. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40(1), 35–41 (1977)

16. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J.
Comb. Optim. 3, 379–397 (1999)

17. Garey, M.R., Johnson, D.S., Hing, S.C.: An application of graph coloring to printed
circuit testing. IEEE Trans. Circ. Syst. (1976)

18. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio
selection. In: de Mántaras, R.L., Saitta, L. (eds.) In: Conference on Artificial Intel-
ligence, ECAI’2004, pp. 475–479. IOS Press, Amsterdam (2004)

19. Guo, H., Hsu, W.H.: A machine learning approach to algorithm selection for NP-
hard optimization problems: a case study on the MPE problem. Ann. Oper. Res.
156, 61–82 (2007)

20. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17(1),
57–63 (1995)

21. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

22. Johnson, D.J., Trick, M.A. (eds) Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, 11–13 October 1993. American Mathematical
Society (1996)

23. Kanda, J., de Carvalho, A.C.P.L.F., Hruschka, E.R., Soares, C.: Selection of algo-
rithms to solve traveling salesman problems using meta-learning. Int. J. Hybrid
Intell. Syst. 8(3), 117–128 (2011)

24. Kononenko, I.: On biases in estimating multi-valued attributes. In: IJCAI. Morgan
Kaufmann, San Francisco (1995)

25. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res.
Natl Bur. Stand. 84(6), 489–506 (1979)

26. Lewis, R., Thompson, J., Mumford, C.L., Gillard, J.W.: A wide-ranging computa-
tional comparison of high-performance graph colouring algorithms. Comput. Oper.
Res. 39(9), 1933–1950 (2012)

27. Luce, D.R., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14, 95–116 (1949)

28. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex col-
oring problem. INFORMS J. Comput. 20(2), 302–316 (2008)

Algorithm Selection for the Graph Coloring Problem 403

29. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper.
Res. 17, 1–34 (2010)

30. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-model-based algo-
rithm portfolios for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 369–370. Springer, Heidelberg (2011)

31. Messelis, T., De Causmaecker, P.: An algorithm selection approach for nurse ros-
tering. In: Proceedings of BNAIC 2011, Nevelland, pp. 160–166, November (2011)

32. Morak, M., Musliu, N., Pichler, R., Rümmele, S., Woltran, S.: Evaluating tree-
decomposition based algorithms for answer set programming. In: Hamadi, Y.,
Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 130–144. Springer, Hei-
delberg (2012)

33. Nadeau, C., Bengio, Y.: Inference for the generalization error. Mach. Learn. 52(3),
239–281 (2003)

34. Nudelman, E.: Empirical approach to the complexity of hard problems. Ph.D.
thesis, Stanford University, Stanford, CA, USA (2006)

35. Pardalos, P., Mavridou, T., Xue, J.: The Graph Coloring Problem: A Bibliographic
Survey, pp. 331–395. Kluwer Academic Publishers, Boston (1998)

36. Paschos, V.T.: Polynomial approximation and graph-coloring. Computing 70(1),
41–86 (2003)

37. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
38. Schwengerer, M.: Algorithm selection for the graph coloring problem. Vienna Uni-

versity of Technology, Master’s thesis, October 2012
39. Smith-Miles, K.: Towards insightful algorithm selection for optimisation using

meta-learning concepts. In: IEEE International Joint Conference on Neural Net-
works. IEEE, New York (2008)

40. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Comput. OR 39(5), 875–889 (2012)

41. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learn-
ing from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol.
6073, pp. 266–280. Springer, Heidelberg (2010)

42. Smith-Miles, K., Wreford, B., Lopes, L., Insani, N.: Predicting metaheuristic per-
formance on graph coloring problems using data mining. In: El Talbi, G. (ed.)
Hybrid Metaheuristics. SCI, pp. 3–76. Springer, Heidelberg (2013)

43. Venkatesan, R., Levin, L.: Random instances of a graph coloring problem are hard.
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pp. 217–222. ACM, New York (1988)

44. Watts, D.J., Strogatz, S.M.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998)

45. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

46. Xie, X.F., Liu, J.: Graph coloring by multiagent fusion search. J. Comb. Optim.
18(2), 99–123 (2009)

47. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for sat. J. Artif. IntelL. Res. 32, 565–606 (2008)

48. Zufferey, N., Giaccari, P.: Graph colouring approaches for a satellite range schedul-
ing problem. J. Schedul. 11(4), 263–277 (2008)

Batched Mode Hyper-heuristics

Shahriar Asta, Ender Özcan, and Andrew J. Parkes(B)

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
{sba,exo,ajp}@cs.nott.ac.uk

http://www.cs.nott.ac.uk/∼{sba,exo,ajp}

Abstract. A primary role for hyper-heuristics is to control search
processes based on moves generated by neighbourhood operators. Studies
have shown that such hyper-heuristics can be effectively used, without
modification, for solving unseen problem instances not only from a partic-
ular domain, but also on different problem domains. They hence provide
a general-purpose software component to help reduce the implementation
time needed for effective search methods. However, hyper-heuristic stud-
ies have generally used time-contract algorithms (i.e. a fixed execution
time) and also solved each problem instance independently. We consider
the potential gains and challenges of a hyper-heuristic being able to treat
a set of instances as a batch; to be completed within an overall joint exe-
cution time. In batched mode, the hyper-heuristic can freely divide the
computational effort between the individual instances, and also exploit
what it learns on one instance to help solve other instances.

Keywords: Combinatorial optimisation · Metaheuristics · Hyper-
heuristics

1 Introduction

A goal of hyper-heuristic [1] research is to raise the level of generality of search
methods by providing high level strategies, and associated directly-usable soft-
ware components, that are useful across different problem domains rather than
for a single one. (Note that this general goal is not unique to hyper-heuristics
but also occurs in other forms, e.g. in memetic computation [2].) There are
two main types of hyper-heuristics depending on whether they do generation or
selection of heuristics [3]. In this paper, we focus on selection hyper-heuristics,
and in particular, those that combine heuristic selection and move acceptance
processes under a single point search (i.e. not population-based) framework [4].
A candidate solution is improved iteratively by selecting and applying a heuristic
(neighbourhood operator) from a set of low level heuristics and then using some
acceptance criteria to decide if it should replace the incumbent. We also use the
HyFlex (Hyper-heuristics Flexible framework)1 [5] software tool associated with
the CHeSC20112 hyper-heuristic competition.
1 http://www.hyflex.org/
2 http://www.asap.cs.nott.ac.uk/chesc2011/

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 404–409, 2013.
DOI: 10.1007/978-3-642-44973-4 43, c© Springer-Verlag Berlin Heidelberg 2013

http://www.hyflex.org/
http://www.asap.cs.nott.ac.uk/chesc2011/

Batched Mode Hyper-heuristics 405

Usually hyper-heuristics are used to individually and independently solve sin-
gle instances. However, in some cases, it might well be that a batch of instances
need to be solved; where the “batching” simply means that a whole set of
instances are to be solved within an overall time limit, but there is no a pri-
ori restriction on how much time should be spent on each instance, or even that
they need to be treated entirely separately (unlike within the CHeSC2011 com-
petition). A real-world application of this is when many different instances, or
maybe many variants of a few instances but with different choices for available
resources, need to be solved “as well as possible overnight” so that a decision
can be made next day as to which one(s) to use. In this case, it is reasonable to
consider that hyper-heuristics should be extended so as to treat the instances col-
lectively as a batch. This batching has two immediate potential advantages: (i)
“Effort balancing”. Better balancing of computational effort across the instances.
If some are much easier than others then it seems reasonable that they should
be allocated less computational time, and more time allocated to those that will
benefit most. (ii)“Inter-instance learning”. If some of the instances are from the
same domain (as would be the case in most practical applications) then it makes
sense that the hyper-heuristic should be able to learn from the earlier instances
in order to perform better on the later instances. This gives an intermediate
between online and offline learning.

In this study, we do not consider the interesting challenge of the inter-instance
learning. Instead, we provide evidence that there is a significant potential benefits
of the better balancing of computational effort between instances. Note that,
although we do not here provide a mechanism that would be able to directly
exploit the potential, the aim is to show that it would be worthwhile for hyper-
heuristics research to develop such effort balancing schemes.

After a brief discussion of HyFlex and the CHeSC competition, we study some
statistics of the performance of a particular hyper-heuristic on the competition
instances; showing that there is a wide variation in their properties, and that
this can lead to about half the computational effort effectively being wasted.

2 Background

HyFlex is an interface supporting development and research of hyper-heuristics
and other metaheuristics in which the domain level is separated from the hyper-
heuristic level. In order to discriminate between the interface from its imple-
mentation, we will refer to its first version as HyFlex v1.0 which was developed
at the University of Nottingham by a team of researchers of the ASAP research
group during 2009-2011. HyFlex v1.0 was used for the “Cross-domain Heuris-
tic Search Challenge” (CHeSC) in 2011. CHeSC2011 used the following prob-
lem domains: Boolean Satisfiability (SAT), One Dimensional Bin Packing (BP),
Permutation Flow Shop (FS), Personnel Scheduling (PS), Vehicle Routing Prob-
lem (VRP) and the Traveling Salesman Problem (TSP). For each domain ten
different instances were provided. A hyper-heuristic was given 10 minutes of
execution time for each instance on a specified machine. The winner of CHeSC,

406 S. Asta et al.

AdapHH3 was a learning hyper-heuristic which uses a learning adaptive heuristic
selection method in combination with an adaptive iteration limited list-based
threshold move accepting method [6]. All the problem domain implementa-
tions compatible with HyFlex v1.0 have been serving as benchmarks to test the
generality of hyper-heuristics.

3 Performance Properties of the Instances

A standard property of a search is the Performance Profile “PP” or the curve
of quality versus time. This is used heavily within the area of anytime rea-
soning [7] but is also relevant to the case of balancing of computational effort
between optimisation tasks. To study the PP on the CHeSC2011 instances, we
used AdapHH and Robinhood hyper-heuristic (RHH) [8] which is not as suc-
cessful as AdapHH on the CHeSC benchmark. Some examples of the PP on the
SAT domain using AdapHH are given in Fig. 1 and from these we immediately
see that those are cases for which improvements in quality cease well before the
standard time deadline of 10 (nominal) minutes.4 This suggests that it could
be worth transferring time from such instances to others in which the search
does not stagnate. In order to quantify this we performed experiments with the
overall deadline extended to 30 (nominal) minutes per instance. For each run,
we determined “t(LastImp)” the time at which the last improvement occurred
in each run. The results of these are analysed in two ways. Firstly, in Table 1 we
compare the fraction of time that is spent before the last improvement against
the overall time using AdapHH. We see that, on average, around half the run
time is actually “wasted” in the sense that it is after the last improvement.

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

ob
je

ct
iv

e

time

SAT inst 0
SAT inst 2
SAT inst 4
SAT inst 6
SAT inst 8

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600

ob
je

ct
iv

e

time

SAT inst 0, run 1
SAT inst 0, run 2
SAT inst 0, run 3
SAT inst 0, run 4
SAT inst 0, run 5

Fig. 1. Performance Profiles for runs on instances from the SAT domain using AdapHH.
The Best-So-Far (BSF) quality is plotted against running time; and the lines stop when
no further improvements are made within the 600 nsec limit. (a) A single run on each
of 5 separate instances. (b) 5 separate runs on a single instance.

3 http://code.google.com/p/generic-intelligent-hyper-heuristic/downloads/

list
4 In experiments, the “10 minute” is a “nominal” (or normalised) standardised time

as determined by a benchmarking program available via the CHeSC website. To aid
future comparisons, we always report results using nominal seconds (nsecs).

http://code.google.com/p/generic-intelligent-hyper-heuristic/downloads/list
http://code.google.com/p/generic-intelligent-hyper-heuristic/downloads/list

Batched Mode Hyper-heuristics 407

Table 1. For each domain, and then the aggregate of all domains, we give the average
“non-stagnant fraction of the runtime” that was taken to reach the last improvement.
(Based on runs of 1800 s per instance).

Domain SAT BP PS FS VRP TSP ALL

Non-stagnant fraction of runtime 0.24 0.78 0.62 0.57 0.52 0.81 0.59

In Fig. 2(a) we give the results of ranking the instances in a domain by their
value of t(LastImp) and then plotting t(LastImp) against this rank (achieved by
AdapHH). In the SAT domain we see that most instances stagnate fairly early. In
other domains there are a wide range of these stagnation times. In Fig. 2(b) we
use the same data, but give the ranking over the domains aggregated together.
We see that the instances show widely different behaviours. In particular, around
10 instances stagnate well before the usual 600 nsecs deadline; in contrast, many
other instances would potentially benefit from a longer runtime.

The dispersion of stagnation times suggests that each instance should be
given a new time limit. There are many potential ways to do this, however, here
we use two simple schemes. In the first scheme, some instances are selected to
be ‘down’ by reducing their time to a new limit arbitrarily chosen as 500 nsecs,
and others are ‘up’ with their time limit increased to 700 nsecs. Equal numbers
of up and down instances are taken so that the average time will still be 600
nsecs. The up and down instances are (heuristically) selected based on their
performance during trial runs with down being those that do not need the need
the extra time, and the up the ones that are most likely to benefit. Specifically,
8 and 6 instances were selected for AdapHH and RHH respectively. We then
tested the effects of the new time limits on the selected instances using separate
test runs that compare the qualities achieved at 500 vs. 600 nsecs for the down
instances, and 600 vs. 700 nsecs for the up instances. For efficiency, we use the
“Retrospective Parameter Variation” technique in the style of [9] (originally used
for the loosely-related topic of restarts) so as to re-use data from long runs to
quickly simulate shorter runs of different lengths. A run on a down (up) instance
is called a loser (winner) if it improved between 500 and 600 (600 and 700) nsecs,

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10

t(l
as

t i
m

pr
ov

.)
in

 n
se

cs

rank within domain

SAT
BP
PS
FS

VRP
TSP

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

t(l
as

t i
m

pr
ov

.)
in

 n
se

cs

rank within all domains

Fig. 2. Times till last improvement on the instances after ranking using AdapHH. (a)
For each domain separately, (b) for all the domains together.

408 S. Asta et al.

as the reduced (increased) time would have caused a loss (an improvement) in
quality. The net gain is just the numbers of winners minus losers per run; we
found net gains of around 7 and 5 instances for AdapHH and RHH, respectively.
Although this first scheme uses knowledge of the performances that means it
is not directly implementable, it does show that simple transfers of runtimes
between instances have a potential for significant improvements.

In the second experimental scheme, a two phase on-the-fly approach is fol-
lowed. In the first phase, each instance is given a standard time, however if it
makes no progress within a given of duration 100 nsecs, it is terminated and the
remaining time is added to a time budget. In the second phase, the time budget
is shared between instances that they were not terminated in the first phase. The
point of this simple and common scheme, unlike the first scheme, is that it can
be implemented directly without pre-knowledge of the performance profile on an
instance. The success rate, denoting the percentage of runs on which extra time
allocation leads to improvement in the solution, was 75 and 69% for AdapHH
and RHH, respectively.

4 Conclusion and Future Work

We proposed a batch mode in which the hyper-heuristic is given many instances
and an overall time limit, but is not unrestricted to treating them indepen-
dently and with the same run-time. We found large variations in run times
for the CHeSC2011 benchmark instances, and provided simple changes to time
limits that lead to significant improvement. A key question for future work is
whether such decisions as to better timing can be made reliably, dynamically and
in advance, by using the properties of the performance profiles. However, this
paper should be taken as indication that if such predictions can be made, then
potentially significant runtime can be saved. We also remark, that it seems that
the 6 different CHeSC2011 domains have rather different properties with respect
to the standard time limit of 600 nsecs. This wide distribution was presumably
good for the competition as it made it more likely that there would be a good
differentiation between hyper-heuristics, though it does suggest some caution
needs to be taken when interpreting results of comparisons of hyper-heuristics
between domains. It might well be that differences between domains occur
because the standard 600 nsec limit occurs at a different phase within the search
process; either in the initial “easy” improvements or during the later “harder”
stages where improvements are harder to find. Future analyses might benefit
from longer run-times to classify the time limit with respect to the expected
“stagnation times”.

We are currently extending the HyFlex interface and software to support
batched operation, in which the hyper-heuristic is given an overall time limit
for the entire set of instances, but is free to make its own decision as to how
to partition the computation time between them, and is also able to take what
it has learned on one instance and use it for others. During a run, HyFlex will
have the utilities to allow saving a solution into a file so that the hyper-heuristic

Batched Mode Hyper-heuristics 409

could choose to continue improving it at a later stage if time allows. Since part
of the goal of batched mode is to allow inter-instance learning, and learning
might naturally start with the smallest instances first, then we will also add a
method returning an indicative measure of the size of a given instance. A further
planned improvement, “delayed commitment” arises from the observation that
moves are often rejected, and the decision to reject relies only on the objective
function which is often obtainable with a fast incremental computation with no
immediate need to also update internal data structures. It may be more efficient
if “virtual-states” were created, with a full construction of the state and data
structures only occurring after a separate call to a commit method, and only if
it is decided to accept the move.

Besides the extensions specific to batch mode, we hold the view (shared,
we believe, by many others in the community) that the classical strict domain
barrier returning only the fitness is too restrictive; that more information needs
to be passed through the barrier, but still ensuring that there is no loss of the
modularity of splitting the search control from the domain details (for example,
a common and natural request seems to be to allow multiple objectives rather
than one). However, we expect that such relaxations of the domain barrier can
generally be made independently of changes for the batched mode.

References

1. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001)

2. Chen, X., Ong, Y.S.: A conceptual modeling of meme complexes in stochastic search.
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42(5), 612–625 (2012)

3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics:
a survey of the state of the art. Technical Report NOTTCS-TR-SUB-0906241418-
2747, School of Computer Science, University of Nottingham (2010)

4. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intell. Data Anal. 12(1), 3–23 (2008)

5. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search.
In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147.
Springer, Heidelberg (2012)

6. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic implementation in HyFlex: a study on generality. In: Fowler, J., Kendall,
G., McCollum, B. (eds.) Proceedings of the MISTA’11, pp. 374–393 (2011)

7. Zilberstein, S., Russell, S.J.: Approximate reasoning using anytime algorithms. In:
Natarajan, S. (ed.) Imprecise and Approximate Computation. Kluwer Academic
Publishers, The Netherlands (1995)

8. Kheiri, A., Özcan, E.: A Hyper-heuristic with a round robin neighbourhood selec-
tion. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 1–12.
Springer, Heidelberg (2013)

9. Parkes, A.J., Walser, J.P.: Tuning local search for satisfiability testing. In: Proceed-
ings of AAAI 1996, pp. 356–362 (1996)

Tuning Algorithms for Tackling Large Instances:
An Experimental Protocol

Franco Mascia(B), Mauro Birattari, and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{fmascia,mbiro,stuetzle}@ulb.ac.be

Abstract. Tuning stochastic local search algorithms for tackling large
instances is difficult due to the large amount of CPU-time that testing
algorithm configurations requires on such large instances. We define an
experimental protocol that allows tuning an algorithm on small tuning
instances and extrapolating from the obtained configurations a para-
meter setting that is suited for tackling large instances. The key ele-
ment of our experimental protocol is that both the algorithm parameters
that need to be scaled to large instances and the stopping time that is
employed for the tuning instances are treated as free parameters. The
scaling law of parameter values, and the computation time limits on
the small instances are then derived through the minimization of a loss
function. As a proof of concept, we tune an iterated local search algo-
rithm and a robust tabu search algorithm for the quadratic assignment
problem.

Keywords: Automatic algorithm configuration · Scaling of
parameters · Iterated local search · Robust tabu search · Quadratic
assignment problem

1 Introduction

Many applications require the solution of very large problem instances. If such
large instances are to be solved effectively, the algorithms need to operate at
appropriate settings of their parameters. As one intriguing way of deriving
appropriate algorithm parameters, the automatic configuration of algorithms
has shown impressive advances [1]. However, tuning algorithms for very large
instances directly is difficult, a main reason being the high computation times
that even a single algorithm run on very large instances requires. There are two
main reasons for these high computation times. First, the computational cost
of a single search step scales with instance size; second, larger instances usually
require a much larger number of search steps to find good quality solutions. From
a theoretical side, the tuning time would scale linearly with the number of con-
figurations tested or linearly with the computation time given to each instance.
However, even if a limited number of algorithm configurations are tested during
the tuning of the algorithm, the sheer amount of time required to test a single

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 410–422, 2013.
DOI: 10.1007/978-3-642-44973-4 44, c© Springer-Verlag Berlin Heidelberg 2013

Tuning Algorithms for Tackling Large Instances 411

algorithm configuration on a very large instance makes it a problem of practical
relevance also for the tuning.

Here, we define a protocol for tuning a stochastic local search (SLS) algorithm
on small instances that allows us to make predictions on the behaviour of the
tuned SLS algorithm on very large instances. To do so, we optimise the value
of free variables of the experimental setting that allow us to make this kind
of extrapolations. To give a concrete example, in this paper we present a case
study on an iterated local search (ILS) [2,3] algorithm and a robust tabu search
(RoTS) [4] algorithm for the quadratic assignment problem (QAP). In the ILS
case, we intend to study the strength of the perturbation while in the case of
RoTS, we intend to define the appropriate tabu list setting (or better said,
finding an appropriate range for the tabu list length settings). Hence, we need
to identify the scaling law for these two variables in the respective algorithms to
very large instances.

For this we define an experimental protocol where we actually allow two
free variables in our experimental setting: a policy for the cut-off time and a
policy for the actual parameter configuration. The rationale of having also the
cut-off time as a free variable (in addition to the actual parameter setting) is
to find an appropriate cut-off time for training on small instances that allows
us to extrapolate the parameter configuration for a target cut-off time on a
very large instance. As an illustrative example, consider an ILS algorithm that
exposes a single parameter to the tuning, for example, the one that controls
the amount of perturbation of the current solution. This parameter acts on the
balance between intensification and diversification of the algorithm. A reasonable
assumption is that the amount of intensification and diversification determined
by the parameter value depends on the instance size, and more specifically, that
on very large instances the amount of diversification required is smaller due to
the fact that the search space to be explored is already large and the algorithm
will have to spend most of the time intensifying. In such cases a small cut-off time
when tuning on small instances, can lead to algorithm configurations that imply
stronger intensification and that therefore allow for a more realistic prediction
for very large instances.

The structure of the paper is as follows. Section 2 presents the formalisation
of the experimental setting. Section 3 presents a proof of concept with an ILS
algorithm and a RoTS algorithm for the QAP. In Sect. 4 we draw the conclusions.

2 Modelling

In the most general case, we want to define a protocol for tuning an SLS algo-
rithm on a set of small training instances s ∈ S and make predictions on the
behaviour of the tuned algorithm on a very large instance sΣ. There are two
free variables in our experimental setting. The first one is the maximum cut-off
time on the small instances, which we define as a policy t(s) that depends on
the instance size s. The second one is the parameter setting that we define as
the policy m̂(s; t(s)) that depends on the instance size and the cut-off time t(s).

412 F. Mascia et al.

Our aim is to optimise policies t(s) and m̂(s; t(s)) to predict a good parameter
setting m̂(sΣ;T Σ) when executing the algorithm on a very large instance sΣ with
cut-off time T Σ, where T Σ is the maximum time-budget available for solving the
target instance sΣ.

We cast this problem as a parameter estimation for the minimisation of
a loss function. More in detail, we select a priori a parametric family for the
policies t(s) and m̂(s; t(s)). The value defined by the policies for an instance
size s will be determined by the sets of parameters πt and πm̂. The number and
type of parameters in πt and πm̂ depend on the parametric family chosen for
the respective policies. We further constrain the policies by requiring that the
maximum cut-off time is larger than a specified threshold t(s) > δ and that the
policy defines a specific cut-off time for the target instance t(sΣ) = T Σ.

Very small instances should have a smaller impact on the optimisation of the
policies than have small or small-to-medium training instances. The latter are in
fact closer and more similar to the target instance size sΣ. Therefore, in the most
general case, we also use a weighting policy ω(s) of a specific parametric family
with parameters πσ. The only constraint on this policy is that

∑
s∈S ω(s) = 1.

We define the loss function in Eq. 1 as the difference between Cm̂(s; t(s)),
which is the cost obtained when executing the algorithm with the parameter
setting determined by m̂(s; t(s)); and CB(s; t(s)), which is the cost function
obtained when executing the algorithm with the best possible parameter setting
B(s; t(s)) given the same maximum run-time t(s), and try to determine:

arg min
∂ω,∂m̂,∂t

∑

s∈S

ω(s) [Cm̂(s; t(s)) − CB(s; t(s))] . (1)

By finding the optimal settings for πσ, πm̂, and πt, we effectively find the best
scaling of the examples in S, and the best cut-off time, which allow us to find
the policy that best describes how the parameter setting scales with the sizes in
S. The same policy can be used to extrapolate a parameter setting for a target
instance size sΣ and a target cut-off time T Σ.

3 A Proof of Concept

In this paper, we present a proof of concept in which we concretely use the
parameter estimation in Eq. 1 to tune an ILS algorithm and a RoTS algorithm
for the QAP [5].

The QAP models the problem of finding a minimal cost assignment between
a set P of facilities and a set L of locations. Between each pair of facilities there
is a flow defined by a flow function w : P ×P → R, and locations are at distance
d : L×L → R. To simplify the notation, flow and distance functions can be seen
as two real-valued square matrices W and D respectively. The QAP is to find
a bijective function π : P ∈ L that assigns each facility to a location and that
minimises the cost functional:

∑

i,j∈P

wi,jd∂(i),∂(j).

Tuning Algorithms for Tackling Large Instances 413

3.1 Iterated Local Search

In our ILS algorithm for the QAP [3], after generating a random initial solution,
a first improvement local search is applied until a local minimum is reached.
Then the algorithm undergoes a series of iterations until the maximum cut-off
time is reached. At each iteration the current solution is perturbed by a random
k-exchange move. After the perturbation, an iterative improvement algorithm is
applied until a local optimum is reached. The new solution obtained is accepted
if and only if it improves over the current solution. A parameter k specifies the
size of the perturbation. It is the only parameter exposed to the tuning, and it
can assume values from 2 up to the instance size.

The Experimental Setting. For each size in S = {40, 50, . . . , 100}, we gen-
erate 10 random instances of Taillard’s structured asymmetric family [6]. We
then measure the average percentage deviation from the best-known solution for
each size s ∈ S, by running the ILS algorithm 10 times on each instance with
100 values of the perturbation parameter and by taking the mean value. The
maximum cut-off time for these experiments is set to a number of CPU-seconds
that is larger than a threshold maxt(s), which allows at least for 1000 iterations
of the ILS algorithm with the perturbation strength set to k = 0.5s.

We fix the scaling policy as ω(s) = s3
∑

s∈S s3 with no parameters πσ to be
optimised. The parametric family of the parameter policy is the linear function
m̂(s; t(s)) = c+ms with the parameters πm̂ = (c,m). The cut-off time policy t(s)
is defined as a function t(s) = c0+c1s

ζ, with the constraint that t(s) > δ ∀s > s∗,
where s∗ is the smallest s ∈ S. The constant δ is set to 20 ms as the minimum
amount of time that can be prescribed for an experiment. Moreover, since we
pre-computed the cost function for a given maximum cut-off time, we set also
an upper-bound t(s) < 3 maxt(s). Finally, the policy has to pass through the
point (sΣ, T Σ), hence one of the parameters can be determined as function of the
others and πt can be restricted to the two parameters (c0, α):

arg min
c,m,c0,ζ

∑

s∈S

s3
∑

s∈S s3
[Cm̂(s; t(s)) − CB(s; t(s))] . (2)

To minimize the loss in Eq. 2 we implemented, for this case study, an ad hoc
local search procedure that estimates the parameter values within predefined
ranges. The local search starts by generating random solutions until a feasible
one is obtained. This initial random solution is then minimised until a local opti-
mum is reached. The algorithm is repeated until the loss function is equal to zero
or a maximum number of iterations is reached. To minimise the incumbent solu-
tion, the algorithm selects an improving neighbour by systematically selecting a
parameter and increasing or decreasing its value by a step l. For integer-valued
parameters l is always equal to 1. For real-valued parameters the value of l is
set as in a variable neighbourhood search (VNS) [10,11]. Initially, l is set to 1−6,
then as soon as the the local search is stuck in a local minimum, its value l is first
increased to 1−5, then 1−4 and so on until l is equal to 1. As soon as the local

414 F. Mascia et al.

search escapes the local minimum, the value of l is reset to 1−6. With this local
search, we do not want to define an effective procedure for the parameter esti-
mation, the aim here is mainly to have some improvement algorithm for finding
reasonable parameter settings for our policy and to present a proof of concept
of the experimental protocol presented in this paper. In the future, we plan to
replace our ad hoc local search with more performing local search algorithms for
continuous optimization such as CMA- ES [7] or Mtsls1 [8]. The parameters c
and m are evaluated in the range [−0.5, 0.5], and the parameter α in the range
[3, 4, . . . , 7]. The parameter c0 is initialised to maxt(s∗), where s∗ is the smallest
s ∈ S, and evaluated in the range [0, 3 maxt(s∗)].

Results. For each target size sΣ and target cut-off time T Σ, we first let the t(s)
policy pass through the point (sΣ, T Σ), and then we find the optimal policies by
minimising Eq. 2. We optimise and test our policies for the target sizes sΣ 150,
200, 300, 400 and 500. For the minimisation of the loss function, we allow our
ad hoc local search algorithm to restart at most 25 times.

To evaluate the policies obtained, we compute two metrics: the loss obtained
by the predicted value and a normalised score inspired by [9]. The loss is the
difference between the cost obtained when running the algorithm with the para-
meter prescribed by the policy and the best parameter for the given size and
cut-off time. The normalised score, is computed as:

Eunif C(s; t(s)) − Cm̂(s; t(s))
Eunif C(s; t(s)) − CB(s; t(s))

,

where Eunif C(s; t(s)) is the expectation of an uniform choice of the parameter
setting. This score is equal to zero when the cost of the parameter prescribed
by the policy is the same as the one expected by an uniform random choice
of the parameter. It is equal to one when the cost of the prescribed parameter
corresponds to the cost attainable by an oracle that selects the best parameter
setting. Negative values of the score indicate that the prescribed parameter is
worse than what could be expected by an uniform random choice.

To calculate the two metrics, we pre-compute on the target instance sizes, the
values of the cost function for 100 possible parameter configurations. Then, to
evaluate the predicted values, we round them to the closest pre-computed ones.

In Fig. 1 we present the results for the largest of the test instances, with
sΣ = 500 and T Σ = 6615.44 CPU-seconds. The plot on top shows the cut-
off time policy with exponent α = 4 that passes through the target size and
target cut-off time. The second plot from the top shows the linear policy for the
parameter setting that prescribes a perturbation of size 177, while the optimal
perturbation value for the specified cut-off time is 171. The third plot shows the
loss. The predicted parameter is rounded to the closest precomputed one, which
is 176. The difference in the average deviation from the best known solution
amounts to 0.044977. The last plot at the bottom shows the normalised score
that for the prediction on target size 500 is equal to 0.841609. In Table 1 we
summarise similar results also for 150, 200, 300 and 400.

Tuning Algorithms for Tackling Large Instances 415

Fig. 1. Cut-off time policy, parameter policy for ILS, loss, and prediction quality on
target instance size s� = 500.

416 F. Mascia et al.

Table 1. Summary of the loss and normalised score on the target sizes of the policies
optimised for ILS.

s� T � Loss Normalised score

150 102.85 0.058957 0.880454
200 257.50 0.084706 0.814831
300 1 047.82 0.039883 0.887496
400 2 596.33 0.039318 0.881627
500 6 615.44 0.044977 0.841609

To further evaluate the policies obtained, we also compare them with a
dynamic setting of the parameter as in a VNS algorithm. This comparison is
relevant, as a dynamic variation of the perturbation size as propagated in VNS
would be a reasonable way of addressing the fact that a single best perturbation
size value is unknown for the very large instances. For each target size sΣ in our
test set, we run both algorithms 10 times on the 10 instances of size sΣ. Figure 2
shows the average deviation of the two algorithms with respect to the results
that are obtained with the a posteriori best parameter for the given size and cut-
off time. Also in this case, the policies obtained for the parameter setting lead
to results which are much better than what can be expected from a baseline
VNS algorithm. A stratified rank-based permutation test (akin to a stratified
version of the Mann-Whitney U test) rejects at a 0.05 significance level the null
hypothesis of no difference between the average deviations obtained with the
two algorithms.

To test for the importance of optimising also a policy for the cut-off time, we
tested a tuning protocol in which the parameter policy is the only free variable
being optimised. In this case we fixed the cut-off time to a number of CPU-
seconds that allows for 1000 steps of the ILS algorithm on the target instance
size sΣ with a perturbation size k = 0.5s. As shown in Table 2, on all target
instance there is a clear advantage of leaving the cut-off time policy as a free
variable of the experimental setting.

Table 2. Normalised score on the target sizes for ILS in the case in which the cut-off
time is optimised as a free variable of the experimental setting, and in the case in which
the cut-off time is fixed.

s� T � Cut-off time policy Fixed cut-off time

150 102.85 0.880454 0.742731
200 257.50 0.814831 0.769348
300 1 047.82 0.887496 0.661414
400 2 596.33 0.881627 0.606192
500 6 615.44 0.841609 0.701780

Tuning Algorithms for Tackling Large Instances 417

Fig. 2. Comparison between VNS and the parameter policy for ILS on target instances
s� at time T �.

3.2 Robust Tabu Search

The RoTS algorithm for the QAP [4] is a rather straightforward tabu search
algorithm that is put on top of a best improvement algorithm making use of
the usual 2-exchange neighbourhood for the QAP, where the location of two
facilities are exchanged at each iteration. A move is tabu, if at least the two
facilities involved are assigned to a location they were assigned in the last tl
iterations, where tl is the tabu list length. Diversification is ensured by enforc-
ing specific assignments of facilities to locations if such an assignment was not
considered for a rather large number of local search moves. In addition, an aspi-
ration criterion is used that overrides the tabu status of a move if it leads to a
new best solution. The term robust in RoTS stems from the random variation
of the tabu list length within a small interval; this mechanism was intended to
increase the robustness of the algorithm by making it less dependent on one
fixed setting of tl [4]. Hence, instead of having a fixed tabu list length, at each
iteration the value for the tabu tenure is selected uniformly random in the range
max(2,unif(μ − 0.1, μ + 0.1) · s)). Thus, μ is the expected value of the tabu list
length and it is the only parameter exposed to the tuning. In the original paper,
a setting of μ = 1.0 was proposed.

The Experimental Setting. For instance sizes S = {40, 50, . . . , 100}, we gen-
erate 10 Taillard’s instances with uniformly random flows between facilities and
uniformly random distances between locations [6]. For each parameter setting of
μ ∈ {0.0, 0.1, . . . , 2.5}, and for each instance size, we compute the mean devia-
tion from the best-known solution. The mean is computed over 10 runs of the
RoTS algorithm on each of the 10 instances. The maximum cut-off time for these
experiments is set to a number of CPU-seconds that allow for at least 100 · s
iterations of the RoTS algorithm.

418 F. Mascia et al.

We keep for this problem the same free variables and the same parametric
families we used for the ILS algorithm. The only difference is a further constraint
on the parameter policy m̂(s; t(s)) that is required to prescribe a positive value
for the parameter for all s ∈ S and on the target size sΣ. Since the problem
is more constrained and harder to minimise, we allow our ad hoc local search
algorithm to restart from at most 5000 random solutions. We optimise and test
the policies on target instance sizes 150, 200, 300, 400 and 500.

Results. As for the ILS algorithm, we evaluate the policies by measuring the
loss on the target instance sizes and by computing the normalised score. In Fig. 3
we present the results on the largest test instance sΣ = 500. On this instance,
the parameter policy prescribes a parameter setting of 0.040394 while the best
parameter for this instance size and cut-off time is 0.1. The loss amounts to
0.051162 and the normalised score is 0.653224.

Table 3 summarises the results on all test instances. On instance sΣ = 400
the parameter policy obtains a loss of 0 and a normalised score equal to 1. This
is due to the fact that for evaluating the policies, and hence knowing the best
parameter setting given the size and cut-off time, we pre-computed the cost of
a fixed number of parameter configurations. When computing the cost of the
parameter configuration prescribed by the policy, the value of the parameter
is rounded to the closest value for which the cost has been pre-computed. For
instance, for size sΣ = 400 the prescribed parameter value is 0.086961. This value
is rounded to 0.1, which corresponds to the best parameter setting.

To further evaluate the policy we evaluate it with a default setting of the
parameter that, in the case of RoTS, would be μ = 1.0. Figure 4 shows the aver-
age deviation obtained with the parameter setting prescribed by the policy and
the default parameter setting. The average deviation is computed with respect
to the solution quality obtained when using the best a posteriori parameter set-
ting given the instance size and the cut-off time. On all instances the policy
obtained for the parameter setting lead to results which are much better than
what we could expect from the default parameter setting. Also in this case, a
stratified rank-based permutation test rejects at a 0.05 significance level the null
hypothesis of no difference between the average deviations obtained with the
two algorithms.

Table 3. Summary of the loss and normalised score on the target sizes of the policies
optimised for RoTS.

s� T � Loss Normalised score

150 120.09 0.038592 0.827993
200 278.84 0.062164 0.697857
300 954.89 0.021499 0.861288
400 2 517.97 0 1
500 5 473.06 0.051162 0.653224

Tuning Algorithms for Tackling Large Instances 419

Fig. 3. Cut-off time policy, parameter policy for RoTS, loss, and prediction quality on
target instance size s� = 500.

420 F. Mascia et al.

Fig. 4. Comparison between the default value µ = 1.0 and the parameter policy for
RoTS on target instances s� at time T �.

To test the importance of optimising also a policy for the cut-off time, we
tested also for this problem a tuning protocol in which we optimise the parameter
policy while keeping the cut-off time fixed. In this case the cut-off time was fixed
to a number of CPU-seconds that allow for 100 · s steps of the RoTS algorithm.
On this problem there was no clear-cut result, in fact on instance sizes 300, 400,
and 500, with a fixed cut-off time policy the score remains the same; on instance
150 the score drops from 0.827993 to 0.354483; and on instance size 200 the score
increases from 0.697857 to 1.

4 Conclusions and Future Work

We presented an experimental protocol in which optimising the value of the free
variables of the experimental setting allows for tuning an SLS algorithm on a
set of small instances and extrapolating the results obtained on the parameter
configuration for tackling very large instances. We cast the problem of optimising
the value of the free variables as a parameter estimation for the minimisation
of a loss function. In the general formulation as well as in the proofs of concept
presented in this paper, we suggested as possible free variables: (i) a policy for
scaling the parameter configuration, (ii) a policy for selecting the cut-off time
when tuning the algorithm on the small instances, and (iii) a policy for weighting
the small instances during the minimisation of the loss function.

We presented a study on an ILS algorithm and a RoTS algorithm with one
parameter for the QAP. On both problems we obtained promising results, with
the extrapolated parameter setting being close to best a posteriori parameter
setting for the instances being tackled. We also showed that results obtained by
our method are much better than default static or dynamic settings of the para-
meters. We believe that our approach may be a viable way of tuning algorithms

Tuning Algorithms for Tackling Large Instances 421

for very large instances if SLS algorithms rely on few key parameters such as the
algorithms tested here.

One key element of our contribution is the optimisation of a policy for the
cut-off time that prescribes how long a configuration should be tested during
the tuning on small instances. We showed experimentally, that at least for the
ILS algorithm, optimising a cut-off time policy allows for better extrapolations
of the parameter setting on large instances.

As future work, we plan to extend the approach to algorithms with (many)
more than one parameter and to extrapolate to much larger instance sizes. In
both cases we also need to define an extended protocol for assessing the per-
formance of our method since pre-computing the cost function may become
prohibitive. Furthermore, an automatic selection of the parametric models, and
a comparisons to other recent approaches for tuning for large instances such
as [12] would be interesting.

Acknowledgments. This work was supported by the META-X project, an Action
de Recherche Concertée funded by the Scientific Research Directorate of the French
Community of Belgium. Franco Mascia, Mauro Birattari, and Thomas Stützle acknowl-
edge support from the Belgian F.R.S.-FNRS. The authors also acknowledge support
from the FRFC project “Méthodes de recherche hybrids pour la résolution de problèmes
complexes”. This research and its results have also received funding from the COMEX
project within the Interuniversity Attraction Poles Programme of the Belgian Science
Policy Office.

References

1. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
2. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: framework and appli-

cations. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science, 2nd edn, pp. 363–397.
Springer, New York (2010)

3. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

4. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4–5), 443–455 (1991)

5. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of eco-
nomic activities. Econometrica 25, 53–76 (1957)

6. Taillard, E.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Sci. 3(2), 87–105 (1995)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

8. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimiza-
tion. In: Proceedings of IEEE Congress on Evolutionary Computation, Piscataway,
NJ, IEEE, pp. 3052–3059 June 2008

9. Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuris-
tics design: a machine learning perspective. Theor. Inform. Appl. 40(2), 353–369
(2006)

422 F. Mascia et al.

10. Mladenovic, N., Hansen, P.: Variable neighbourhood search. Comput. Oper. Res.
24(11), 71–86 (1997)

11. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)

12. Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling
performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp.
205–219. Springer, Heidelberg (2012)

Automated Parameter Tuning Framework
for Heterogeneous and Large Instances: Case

Study in Quadratic Assignment Problem

Lindawati1, Zhi Yuan1,2, Hoong Chuin Lau1, and Feida Zhu1(B)

1 School of Information Systems, Singapore Management University,
Singapore, Singapore

{lindawati,zhiyuan,hclau,fdzhu}@smu.edu.sg
2 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Abstract. This paper is concerned with automated tuning of parame-
ters of algorithms to handle heterogeneous and large instances. We pro-
pose an automated parameter tuning framework with the capability to
provide instance-specific parameter configurations. We report prelimi-
nary results on the Quadratic Assignment Problem (QAP) and show that
our framework provides a significant improvement on solutions qualities
with much smaller tuning computational time.

Keywords: Automated parameter tuning · Instance-specific
parameter configuration · Parameter search space reduction · Large
instance parameter tuning

1 Introduction

Good parameter configurations are critically important to ensure algorithms to
be efficient and effective. Automated parameter tuning (also called automated
algorithm configuration or automated parameter optimization) is concerned with
finding good parameter configurations based on training instances. Existing
approaches for automated parameter tuning mainly differ in their applicability to
different types of parameters: tuners that handle both categorical and numerical
parameters include ParamILS [16], GGA [1], iterated F-Race [4] and SMAC [15]
etc.; and there exist approaches specially designed for tuning numerical parame-
ters, e.g. by Kriging models (SPO [2]) and continuous optimizers [32].

In this paper, we are concerned with two specific challenges of automated
parameter tuning:

1. Heterogeneity. This refers to the phenomenon that different problem instances
require different parameter configurations on the same target algorithm to
solve. Hutter et al. [14] defines “inhomogeneous” instances as those for which
algorithm rankings are unstable across instances. They state that inhomoge-
neous instance sets are problematic to address with both manual and auto-
mated methods for offline algorithm configuration. Schneider and Hoos [26]

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 423–437, 2013.
DOI: 10.1007/978-3-642-44973-4 45, c© Springer-Verlag Berlin Heidelberg 2013

424 Lindawati et al.

provides two quantitative measures of homogeneity and observes that homo-
geneity increases when partitioning instance sets by means of clustering based
on observed runtimes. In this paper, we are concerned with the notion of
heterogeneity in the sense that instances perform differently when run with
different configurations. Table 1 gives an illustration of this phenomenon for
benchmark QAP instances on robust tabu search algorithm as presented in [9].

2. Large problem instances. By “large”, we mean instances that require a pro-
hibitively long computation time [29]. This notion of largeness is typically
tied to the size of the problem instances (i.e. larger problem instances typi-
cally take longer time to run), but one needs to be mindful that this quantity
varies across problems and target algorithms.

Table 1. Effect of Three Different Parameter Configurations on 4 QAP instances
performance. The performance is an average of percentage deviation from optimum or
best known solution.

Instances Configuration 1 Configuration 2 Configuration 3

tai40a 1.4 1.0 2.0
tai60a 1.7 1.6 2.2
tai40b 9.0 9.0 0.0
tai60b 2.1 2.9 0.3

There have been approaches that attempt to find instance-specific configu-
rations for a heterogeneous set of instances (see for example, [17,21,30]). Unfor-
tunately, finding instance features itself is often tedious and domain-specific [8],
requiring a discovery of good features for each new problem. Similarly, tuning
algorithms for large instances is a frustrating experience, as the tuning algo-
rithm typically requires a large number of evaluations on training instances. This
quickly makes automatic tuning suffer computationally prohibitive run time.

In this paper, we attempt to tackle the above challenges by proposing a
new automated parameter tuning framework AutoParTune that attempt to bring
together components that are helpful for automated parameter tuning. Having
a unified software framework allows algorithm designers to readily experiment
with different mixes of parameter tuning components in deriving good parameter
configurations. Our emphasis in this paper is heterogeneity and large instances,
and we briefly describe our approach as follows.

To handle heterogeneous instances, we propose a generic instance cluster-
ing technique SufTra that mines generic features from instance search trajectory
patterns. For this purpose, we make use of a novel data structure “suffix tree”
[7]. A search trajectory is defined as a path of solutions discovered by the target
algorithm as it searches through its neighborhood search space [13]. A nice char-
acteristic of our work is that we can obtain these trajectories from the target
local search algorithm with minimal additional computation effort. Our approach
improves the work of [21] that captures similarity using a single (and relatively
short) segment through out the entire sequence, and works only on short and

Automated Parameter Tuning Framework 425

small number of sequences due to its inherit computational bottleneck. In con-
trast, our approach is capable of retrieving similarity across multiple segments
with linear time complexity. Using a Suffix Tree data structure, our approach
can efficiently and effectively form better and tighter clusters and hence improve
the overall performance of the underlying target algorithm.

To handle large instances, we propose ScaLa that automatically finds compu-
tationally less expensive instances as surrogate to large instances. ScaLa detects
similarity among different instances with different runtime using performance-
based similarity measures [26] and clustering techniques. In this work, we exper-
imentally explore the feasibility of this approach.

We apply our approach on the Quadratic Assignment Problem (QAP), since
it is a notoriously hard problem that has been shown to have heterogeneous
instances, and the run time required to solve grows rapidly with instance size.
The major contributions (and thus the flow) of this paper are summarized as
follows:

– We propose a new generic automated parameter tuning framework AutoPar-
Tune for handling heterogeneous and large instances.

– We present SufTra, a novel technique for clustering heterogeneous instances.
– We present ScaLa that performs runtime analysis for scaling large instances.

2 AutoParTune

AutoParTune is a realization of the concept proposed in [20]. As shown in
Fig. 1(a), the framework consists of four components: (I) parameter search space
reduction; (II) instance-specific tuning to handle heterogeneous instances; (III)
scaling large instances; and (IV) global tuning. The first components are con-
sidered as pre-processing steps which can be executed in any combination and
in any order. The detail of the AutoParTune subsystems is shown in Fig. 1(b).

Parameter Search Space Reduction. This component allows us to drasti-
cally reduce the size of the parameter space before tuning. We implement the
method presented in [6], which is based on Design of Experiment (DoE), that
involves full factorial design and Response Surface Methodology (RSM).

Instance-Specific Tuning. For the instance-specific tuning, we construct a
generic approach for instance-specific parameter tuning: SufTra. The detail will
be presented in Sect. 4.

Scaling Large Instances. For handling large instances, we present a novel tech-
nique based on the computational time analysis: ScaLa, and empirically explore
its feasibility in Sect. 5.

Global Tuning. There are many global tuning methods in the literature. Here,
we embed ParamILS [16] which utilizes Iterated Local Search (ILS) to explore
the parameter space in order to find a good parameter configuration based on
the given training instances. ParamILS has been very successfully applied to
tune a broad range of high-performing algorithms for several hard combinatorial
problems with large number of parameters.

426 Lindawati et al.

Fig. 1. Automated parameter tuning framework concept and subsystem

3 Target Algorithm and Experimental Setup

To avoid confusion, we refer the algorithm whose performance is being opti-
mized as target algorithm and the one that is used to tune it as the tuner. As
target algorithm, we use a hybrid Simulated Annealing and Tabu Search (SA-
TS) algorithm [22]. It uses the Greedy Randomized Adaptive Search Procedure
(GRASP) [31] to obtain an initial solution, and then uses a combined Simulated
Annealing (SA) [18] and Tabu Search (TS) [5] algorithm to improve the solution.
There are four numerical parameters, real-valued or integer-valued, to be tuned
as described in Table 2.

In SufTra, we use a set of instances from two generators in [19] for single-
objective QAP as in [23]. The first generator generates uniformly random
instances where all flows and distances are integers sampled from uniform distrib-
utions. The second generator generates flow entries that are non-uniform random
values, having the so called real-like structure since it resemble the structure of
QAP problems found in practical applications. We generated 500 instances with
size from 10 to 150 from each generator and randomly choose 100 as training

Table 2. Parameters for SA-TS on QAP

Parameter Description Type Range Default

Temp Initial temperature of SA
algorithm

Continuous [100, 5000] 5000

Alpha Cooling rate Continuous [0.1, 0.9] 0.1
Length Length of tabu list Integer [1, 10] 10
Limit maximum number of

non-improving iterations
prior to intensification
strategy (re-start the
search from best-found
solution)

Integer [1, 10] 10

Automated Parameter Tuning Framework 427

instances and 400 as testing instances. In ScaLa, we use 120 training instances
with size 50, 70, 90, and 150 and 100 testing instances with size 150 from the
first generator.

All experiments were performed on a 1.7 GHz Pentium-4 machine running
Windows XP for SufTra and on a 3.30 GHz Intel Core i5-3550 running Windows
7 for ScaLa. We measured runtime as the CPU time needed by these machine.

4 SufTra: Clustering Heterogeneous Instances

SufTra is premised on the assumption that an algorithm configuration is corre-
lated with its fitness landscape, i.e. configuration that performs well on a problem
instance of certain fitness landscape will also perform well on another instance
of a similar topology [24]. Furthermore, since fitness landscape is difficult to
compute, it can be approximated by a search trajectory [10,11] which is deemed
a probe through the landscape under a given algorithm configuration. SufTra
is an extension of the work on search trajectory clustering CluPaTra [21], and
overcomes the following major limitations of CluPaTra.

1. Scalability
The pair-wise sequence alignment used in CluPaTra is implemented using
standard dynamic programming with a complexity O(m2), where m is the
maximum sequence length. Hence, the total time complexity for all instances
is O(n2 × m2), where n is the number of instances. This poses a serious
problem for instances with long sequences and when the number of instances
is large.

2. Flexibility
The nature of sequence alignment is to align a sequence pair that gives us
the highest alignment score. A matched symbol contributes a positive score
(+1), while a gap contributes a negative score (−1). The sum of the scores
is taken as the maximal similarity score of the two sequences. However, it is
possible that sequences share similarity on more than one segment, especially
for long sequences. Sequence alignment is not flexible enough to capture multi-
segment alignment with an acceptable time complexity.

SufTra works by transforming search trajectory into a string of symbols based
on its solution attributes. A suffix tree is constructed on these strings to extract
frequent substrings. Substrings may occur in multiple segments along the search
trajectory, it allows us to consider multi-segment similarities to improve the
accuracy of the clusters. Using these frequent substrings as features to cluster
the strings, we calculate the similarity and cluster the instances.

4.1 Search Trajectory Representation and Extraction

Search Trajectory. The search trajectory is obtained by running a local search
procedure and keep track of all the solutions visited. These solutions are then
transformed into a sequence of symbols based on its attributes. Each symbol

428 Lindawati et al.

encodes a combination of two solution attributes: (1) position type, based on the
topology of the local neighborhood as given in Table 3 [13]; and (2) percentage
deviation from optimum or best known. These two attributes are combined: the
first two digits are the deviation from optimum and the last digit is the position
type. To handle target algorithms with cycles and (random) restarts, SufTra
adds two additional symbols: ‘CYCLE’ and ‘JUMP’; ‘CYCLE’ is used when the
target algorithm returns to a previously-visited position, while ‘JUMP’ is used
when the local search is restarted.

Table 3. Position types of solution

Position type label Symbol < = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

‘+’ = present, ‘-’ = absent; referring to the presence of neighbors with larger (‘<’),
equal (‘=’) and smaller (‘>’) objective values

Note that in a search trajectory, several consecutive solutions may have simi-
lar solution properties before final improvement and reaching local optimum. We
therefore compress the search trajectory sequence to a Hash String by removing
the consecutive repetition symbols and store the number of repetitions in a Hash
Table to be used later in pair-wise similarity calculation.

Suffix Tree Construction. The search trajectory sequences found in the pre-
vious section is used to build a suffix tree. Suffix tree is a data structure that
exposes internal structure of a string for a particularly fast implementation of
many important string operations. The construction of a suffix tree proves to
have a linear time complexity w.r.t. the input string length [7]. A suffix tree T for
an m-character string S is a rooted directed tree having exactly m leaves num-
bered 1 to m. Each internal node, except for the root, has at least two children
and each edge is labeled with a substring (including the empty substring) of S.
No two edges out of a node has edge-labels beginning with the same character.
To represent suffixes of a set {S1, S2,Sn } of strings, we use a generalized
suffix tree. Generalized suffix tree is built by appending a different end of string
marker (which is a symbol not in used in any of the string) to each string in
the set, then concatenate all the strings together, and build a suffix tree for the
concatenated string [7].

Automated Parameter Tuning Framework 429

We construct the suffix tree for the hash strings derived from search trajecto-
ries using the Ukkonen’s algorithm [7]. We build a single generalized suffix tree
by concatenating all the Hash Strings together to cover all training instances.
Length of the concatenate string is proportional to the sum of all the Hash String
lengths. The Ukkonen’s algorithm works by first building an implicit suffix tree
containing the first character of the string and then adding successive charac-
ters until the tree is complete. Details of Ukkonen’s algorithm can be found in
[7]. Our Ukkonen’s algorithm implementation requires O(n × l), where n is the
number of instances and l is the maximum length of the Hash String.

Features Extraction. After constructing the suffix tree, we extract frequent
substrings as features. A substring is considered as frequent if it has a length
greater than minlength and it occurs in at least minsupport number of strings.
minlength and minsupport value is different for each problem. To find a good value
of minlength and minsupport, we apply one run of a first-improvement local search,
starting from the best of five random initial points, using a 1-flip neighborhood.

4.2 Similarity Score Calculation

After extracting the features, we calculate instance’s scores for each feature and
construct an instance-feature metric using the following rules:

1. if the instance does not contain the feature, the score is 0.
2. Otherwise, the score is calculated by summing numbers of repetitions for

each symbol in feature from previously constructed Hash Table. A frequent
substring may occur few times in one string. We calculate the score for each
occurrence and choose the maximum score as a score for instance-feature
metric.

Using the metric, we calculate similarity for each pair of instances by applying
cosine similarity. Cosine similarity has been widely used to measure similarity
between two vectors by measuring cosine angle between them [7]. Cosine sim-
ilarity result is equal to 1 when the angle is 0, and it is less than 1 when the
angle is of any other value. Cosine similarity is formulated as follows.

similarity =
∑n

i=0(Inst1(featurei) × Inst2(featurei))
√∑n

i=0 Inst1(featurei)2 × √∑n
i=0 Inst2(featurei)2

(1)

with Inst1(featurei) and Inst2(featurei) as score from instance-feature metric
for instance 1 and 2, and feature i.

4.3 Clustering

Similar to [21], we cluster the instances by a well-known clustering approach
AGNES [12] with L method [25]. AGNES or AGglomerative NESting is a hier-
archical clustering approach that works by creating clusters for each individual

430 Lindawati et al.

instance and then merging two closest clusters (i.e., a pair of clusters with the
smallest distance) resulting in fewer clusters of larger sizes until all instances
belong to one cluster or a termination condition is satisfied (e.g. a prescribed
number of clusters is reached). We implement the L method [25] to automatically
find the optimal number of clusters.

4.4 Experimental Result

To evaluate SufTra∈s effectiveness, we first compared the time needed (in seconds)
for SufTra and CluPaTra to form the clusters in training phase and to map the
testing instances in testing phase. Table 4 (I) shows the result. From the table,
we observe that SufTra is 18 times faster then CluPaTra.

Next, we compared the target algorithm performance using parameter con-
figuration from SufTra, CluPaTra and ISAC as well as the one-size-fits-all tuner
ParamILS. Since ISAC requires problem-specific features, we used 2 features: flow
dominance and sparsity of flow metric which is believed to have significant influ-
ence on the performance [28].

For the three instance-specific methods, we used the same one-size-fits-all
tuner, ParamILS [16]. Since ParamILS works only with discrete parameters, we
first discretized the values of the parameters. We measured the performance
as the average of percentage deviation from optimum or best known solution.
We set the cutoff runtime of ParamILS to 100 s. For CluPaTra and SufTra, we
allowed each tuner to execute the target algorithm for a maximum of two CPU
hours for each cluster. To ensure fair comparison, we set the time budget for
ISAC and ParamILS to be equal to the total time needed to run SufTra. For
reducing evaluation error, we used five different set of training instances and
testing instances, and measured the average performance on these instance sets.
We also performed t-test on the significance of our result where a p-value below
0.05 is deemed to be statistically significant.

In Table 4 (II), we show the performance comparison results. From the table,
we observe that SufTra performs better on training and testing instances compare
to other approaches. But the result for training instances is not statistically
significant compared to ISAC.

Table 4. QAP experiment result

Training Testing

I. Computational time
CluPaTra 1,051 s 2,718 s
SufTra 56 s 146 s

II. Performance result
ParamILS 1.07 2.12
CluPaTra 0.87 1.54
ISAC 0.83 1.21
SufTra 0.81 1.16
p-value∗ 0.061 0.042
∗based on statistical test on ISAC and SufTra

Automated Parameter Tuning Framework 431

5 ScaLa: Scaling Large Instances

As mentioned in the introduction, tuning on instances that require long com-
putation time to solve is a challenging task. These instances are referred to as
large instances in this work, since typically, instances with larger size require
longer computation time to solve. However, the largeness referred here may also
depend on other instance features and whether the target algorithm is effective
in tackling them. These features may include, e.g. problem-independent features
such as ruggedness of the fitness landscape, fitness distance correlation, and so
on; and problem-specific instance features such as dominance and sparsity of
the instance matrix in QAP, etc. More detailed survey on measuring instance
difficulty can be found in [27]. Our preliminary experiments here consider only
instance size as a measure of instance “largeness”, but incorporating other fea-
tures is straightforward.

To make automatic tuning applicable for large instances, one idea is to tune
on smaller instances [3,29]. Styles et al. proposed in [29] to run multiple tuning
processes on small instances, validate the independently tuned configurations on
medium instances, and use the best validated configuration for solving the large
instances. Our current work takes a different direction. The goal is to tune on
small instances with short runtime, such that the tuned configuration performs
similarly on large instances with long runtime. In order to realize this goal, a
number of questions have to be addressed:

1. How to measure similarity among different instances?
2. Does there exist similarity between small instances and large instances at all?
3. Do good configurations on small instances perform well on similar large

instances?

Each of the three questions above will be addressed in one of the following
subsections.

5.1 Measuring Instance Similarity

To answer question 1, there exist two different approaches to finding similarities
among instances. One is based on instance features, e.g. instance size, fitness
distance correlation, search trajectory patterns [21] etc. Both instance-specific
tuners ISAC [17] and CluPaTra [21] cluster instances based on features, then
tune on each cluster, and confirm that tuning on separate clustered instance set
leads to better performance than tuning on all instances. Unlike our approach
in this work, they did not take into account the computation time as instance
feature. Another approach is based on empirical algorithm performance [26].
Scheider et al. introduced in [26] two measures, a ratio measure and a variance
measure, for measuring instance similarity based on relative performance of dif-
ferent algorithms (or same algorithm with different configurations). However, the
performance-based similarity measure depends on two folds: computation time
and solution quality. Although [26] considered computation time, but did not

432 Lindawati et al.

consider scaling among different instances by, e.g. considering different solution
quality threshold. In this work, we adopt the performance-based similarity mea-
sures proposed in [26], more specifically, the variance measure that is described
in more details in the next section, and use them to find similarities among
different instances with different runtime.

5.2 Finding Similarities Between Large and Small Instances

To answer question 2, we set up experiments to test the hypothesis whether
large instances could be similar to small instances at all given different compu-
tation time. Unlike in SufTra (Sect. 4) where we try to separate heterogeneous
instances, here the goal is to join instances with different features, given dif-
ferent runtime. We take QAP as our target problem, and an implementation
of SA-TS algorithm as our target algorithm (see Sect. 3 for a description and
parameter ranges). 30 instances are generated for each of the four instance sizes
50, 70, 90, and 150. The SA-TS has four parameters as described in Table 2. In
order to use the performance-based measure, 100 parameter configurations are
sampled uniformly within the parameter range. Each parameter configuration
runs once on each instance. The solution cost cθ(n, tn) of a configuration θ ∈ Θ
on an instance size n ∈ N = {50, 70, 90, 150} with a given runtime tn is com-
puted by taking the mean solution cost across the 30 instances with size n, and
CΘ(n, tn) = {cθ(n, tn), θ ∈ Θ}. For each instance size n, a set of runtime Tn is
determined as follows: let minimum runtime tmin = 0, maximum runtime tmax

takes value of the maximum natural stopping time of the algorithm (no restart),
and Tn takes values in a logarithmically spaced sequence between tmin and tmax,
excluding tmin. Following [26], we perform a standardized z-score normalization
for each cost vector CΘ(n, tn), and use the variance measure

Qvar(Θ,N ∈, TN ′) =
1

|Θ|
∑

θ∗Θ

V ar(cθ(N ∈, TN ′)), for N ∈ ⊆ N (2)

for measuring similarity (more precisely, dissimilarity) among different pairs of
(n, tn) ∈ (N,TN). Based on this measure Qvar, instances of different size and
computation time can be clustered with the goal of optimizing similarity of
the resulting subsets. A classical clustering approach Hierarchical Agglomera-
tive Clustering or AGNES [12] is adopted in our preliminary experiments (an
alternative clustering method K-mean also gives very similar clustering result).
For illustrative purpose, 5 logarithmic time intervals for each instance size n are
used, excluding tmin, this makes |Tn| = 4. The clustering results are shown in
Fig. 2. Interestingly, the most similar two subgroups turn out to be the longest
runtime (natural stopping time) of each of the four instance sizes n ∈ N , and
the second longest logarithmic runtime level of each n ∈ N . More specifically,
the four (n, tn)-pairs (50, 23.6), (70, 29.8), (90, 39.2), (150, 127.6) form the most
similar group, while (50, 6.7), (70, 8.0), (90, 9.8), (150, 23.8) comprise the second
most similar group. In the two shorter levels of runtime, the similarities across

Automated Parameter Tuning Framework 433

the four instance sizes are less obvious. Nevertheless, this interesting cluster-
ing result confirms our hypothesis raised in question 2: using performance-based
similarity measure, given the right runtime, different instances, small or large,
can become similar to each other.

15
0@

12
7.

60
9

50
@

23
.5

56
70

@
29

.7
96

90
@

39
.1

56
50

@
6.

70
9

15
0@

23
.8

23
70

@
8.

00
2

90
@

9.
82

2
15

0@
0.

83
15

0@
4.

44
7

70
@

0.
57

7
50

@
0.

54
4

90
@

0.
61

8
70

@
2.

14
9

50
@

1.
91

1
90

@
2.

46
4

0
1

2
3

4
5

6Clustering 4 instance sizes each with 4 runtimes

instance size @ runtime

H
ei

gh
t

Fig. 2. Clustering four different instance sizes each with four different computation
times by hierarchical agglomerative based on variance measure.

5.3 Solving Large Instances by Tuning on Small Instances

How can automatic tuning benefit from this automatically detected instance
similarity? One straightforward follow-up idea is to use the best parameter
configuration tuned on small instances with short runtime to solve similar large
instances with long runtime. However, it remains unjustified that how good these
tuned-on-small parameter configurations are, compared with, for example, para-
meter configuration tuned directly on instances of the same size with the same
runtime. In this experiment, two most similar groups of size-runtime pairs (see
Fig. 2 of Sect. 5.2) are used: the first group includes (50, 6.709), (70, 8.002), (90,
9.822), and (150, 24.823); the second group includes (50, 23.556), (70, 29.796),
(90, 39.156), (150, 127.609). For each of the two groups, two sets of experiments
are set up: (1) tuned by oracle: as a quick proof-of-concept, we take the best
configuration from 100 configurations based on 30 instances on each instance
size as found in Sect. 5.2, and test them on another 100 testing instances of size
150 with corresponding runtime; (2) tuned by ParamILS [16]: we tune the target
algorithm using three independent runs of ParamILS for each instance size using
the size-runtime pairs mentioned above, each run was assigned maximum 300
calls of target algorithm on new randomly generated training instances, and each
tuned configuration is tested on 100 same testing instances as in (1). The second
experiment set is to test generalizability of the similarity information detected
in Sect. 5.2. The goal is to see how good these best configurations tuned on small

434 Lindawati et al.

instances such as 50, 70, and 90 with shorter runtime, compared with the best
configuration tuned on instance size 150, when tested on instance size 150 with
the same runtime.

The results are listed in Table 5. The results confirm that, firstly as expected,
a large amount of tuning time is saved by tuning on small instances, ranging from
59 to 81 % in our experiments; and secondly, in general, parameter configurations
tuned on smaller instances with shorter runtime do not differ significantly from
the ones directly tuned on large instances, as long as similarities between them
are confirmed. In both groups of both experiment sets, there is no statistical
difference between the configurations tuned on 50, 70, 90, and 150, tested by
Wilcoxon’s rank-sum test. In the first experiment set tuned by oracle, config-
urations tuned on size 70 and 90 sometimes perform even better than tuned on
150. The mean performance difference from the tuned-on-150 configuration in
the first group is usually less than 0.1 %, and even less than 0.01 % in the second
group. In the second experiment set tuned by ParamILS, although configuration
tuned on size 150 performs best, the difference is not significant: the mean per-
formance difference is usually less than 0.1 % in the first group, and less than
0.05 % in the second group. This shows the similarity information detected from
Sect. 5.2 can be actually generalized to tuners with different training instances.
As reference, the performance of the default parameter configuration (listed in
Table 2) is presented in Table 5, and it is statistically significantly outperformed
by almost all the above tuned configurations in both groups, which proves the
necessity and success of tuning process. We also include as reference the best con-
figuration tuned on instance size 150 with runtime 23.556 (127.609) s to be tested

Table 5. Results for the performance of the best parameter configurations tuned on
sizes 50, 70, 90, 150, and tested on instances of size 150. Two most similar groups of size-
runtime pairs (see text or Fig. 2) are used. Two experiment sets are presented, oracle
and ParamILS (see text). Each column of %oracle and %ParamILS shows the mean
percentage deviation from the reference cost. In each column, +x (−x) means that the
tuned configuration performance is x% more (less) than the reference cost. %time.saved
shows the percentage of tuning time saved comparing with tuning on instances of
size 150. The performance of default parameter configuration is shown in row “def.”.
The last row 150’ used the best parameter configuration tuned on instance size 150
with runtime 127.609 (23.556) s, and tested on instance size 150 with runtime 23.556
(127.609) s, respectively. Results marked with † refers to statistically significantly worse
results compared to tuned-on-150 using Wilcoxon’s rank-sum test.

23.556 s 127.609 s

tuned.on %oracle %ParamILS %time.saved %oracle %ParamILS %time.saved

50 −0.48 −0.047 72 −0.048 −0.048 81
70 −0.65 −0.053 66 −0.060 −0.027 76
90 −0.61 −0.093 59 −0.057 −0.040 69
150 −0.58 −0.151 0 −0.060 −0.070 0

def. +1.17† +0.150† - −0.008† −0.024 -

150’ +1.16† +0.195† - +0.232† +0.208† -

Automated Parameter Tuning Framework 435

on instance size 150 with different runtime, i.e. 127.609 (23.556) s, respectively (in
row 150’ of Table 5). Although the tuning and testing instances are of the same
size, different runtime makes a great performance difference, resulting in almost
one order of magnitude worse than tuning on the small instances with appropri-
ate runtime. The 150’ performance is statistically significantly worse than all the
above tuned configurations belonging to the same group, and it is even signifi-
cantly worse than the default configuration in the second group. This contrasts
with the fact that the difference among the similar size-runtime pairs (the first
four rows of Table 5) is indeed very minor, and it also shows the risk of tuning
on algorithm solution quality without assigning the right runtime, which in fact
proves the necessity of our automatic similarity detection procedure in ScaLa.

6 Conclusion and Future Work

In this paper, we proposed an automated parameter tuning framework for het-
erogeneous and large instances and tested it on Quadratic Assignment Problem
(QAP). We constructed SufTra for tuning heterogeneous instances and ScaLa
for large instances. We verified SufTra’s performance and observed a significant
improvement compared to a vanilla one-size-fits-all approach (ParamILS) and
other generic instance-specific approach CluPaTra. We claim that: (1) SufTra is a
suitable approach for instance-specific configuration that significantly improves
the performance with minor additional computational time; and (2) SufTra has
overcome CluPaTra limitations with a new efficient method for feature extraction
and similarity computation using suffix tree. In the development of ScaLa, we
used performance-based similarity measure and clustering technique to automat-
ically detect and group similar instances with different sizes by assigning different
runtime, such that one can tune on small instances with much less runtime and
apply the tuned configuration to solve large instances with long runtime. This
greatly reduces computation time required when tuning large instances. Through
our preliminary experiments, we empirically showed that small instances and
large instances can be similar when given the right runtime, and in such case,
the good configurations tuned on small instances can also perform well on large
instances.

Up to this stage of our work, the SufTra and ScaLa are not yet integrated.
In near future, we plan to integrate those two components on the AutoParTune
framework, in particular, we plan to integrate also features extracted from tra-
jectory patterns of SufTra into ScaLa. As future works on SufTra, we will inves-
tigate how to generate clusters from population-based-algorithm using generic
features pertaining to population dynamics, since currently SufTra can only be
applied to target algorithms which are local-search-based due to the search tra-
jectory. On the other hand, ScaLa is still an actively ongoing work. Future works
include largely extending the amount of experiments, consider also testing on
problems other than QAP, and extend our studies to other state-of-the-art algo-
rithms. The correlation between computation time and instance size may be
algorithm-specific, therefore, an automatic approach to detecting it is practically

436 Lindawati et al.

valuable. Our current approach is still a proof-of-concept, since it is computation-
ally expensive for computing the performance-based measure. In future work, we
plan to investigate how to reduce the computation expenses by, e.g. taking fewer
instances and fewer but good configurations found during the tuning process. In
particular, we plan to investigate the possibility of predicting the “right” runtime
for an unseen instance such that it is similar to a known group of instances.

Acknowledgments. We thank Saifullah bin Hussin, Thomas Stützle, Mauro
Birattari, Matteo Gagliolo for valuable discussion on scaling large instances, and Aldy
Gunawan for allowing us to use his DoE codes.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: 15th International Conference on
Principles and Practice of Constraint Programming, pp. 142–157 (2009)

2. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: Congress on Evolutionary Computation 2005, pp. 773–780. IEEE Press (2005)

3. Birattari, M., Gagliolo, M., Saifullah bin Hussin, Stützle, T., Yuan, Z.: Discussion
in IRIDIA coffee room, October 2008

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Heidelberg (2010)

5. Glover, F.: Tabu search - part I. ORSA J. Comput. 1, 190–206 (1989)
6. Gunawan, A., Lau, H.C., Lindawati, : Fine-tuning algorithm parameters using the

design of experiments approach. In: Coello Coello, C.A. (ed.) LION 5. LNCS, vol.
6683, pp. 278–292. Springer, Heidelberg (2011)

7. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Cambridge (1997)

8. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction: Foun-
dations and Applications. Springer, Heidelberg (2006)

9. Halim, S., Yap, Y.: Designing and tuning sls through animation and graphics an
extended walk-through. In: Stochastic Local Search, Workshop (2007)

10. Halim, S., Yap, Y., Lau, H.C.: Viz: a visual analysis suite for explaining local search
behavior. In: 19th ACM Symposium on User Interface Software and Technology,
pp. 57–66 (2006)

11. Halim, S., Yap, R.H.C., Lau, H.C.: An integrated white+black box approach for
designing and tuning stochastic local search. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 332–347. Springer, Heidelberg (2007)

12. Han, J., Kamber, M.: Data Mining: Concept and Techniques, 2nd edn. Morgan
Kaufman, San Francisco (2006)

13. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundation and Application.
Morgan Kaufman, San Francisco (2004)

14. Hutter, F., Hoos, H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation of
competing algorithm designs. Ann. Math. Artif. Intell. (AMAI), Spec. Issue Learn.
Intell. Optim. 60, 65–89 (2011)

Automated Parameter Tuning Framework 437

15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

16. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

17. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: Isac: instance-specific algo-
rithm configuration. In: 19th European Conference on Artificial Intelligence (2010)

18. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 200, 671–680 (1983)

19. Knowles, J.D., Corne, D.W.: Instance generators and test suites for the multiob-
jective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler,
E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer,
Heidelberg (2003)

20. Lau, H.C., Xiao, F.: Enhancing the speed and accuracy of automated parameter
tuning in heuristic design. In: 8th Metaheuristics International Conference (2009)

21. Lindawati, Lau, H.C., Lo, D.: Clustering of search trajectory and its application to
parameter tuning. JORS Special Edition: Systems to Build Systems (to appear)

22. Ng, K.M., Gunawan, A., Poh, K.L.: A hybrid algorithm for the quadratic assign-
ment problem. In: International Conference on Scientific Computing, pp. 14–17
(2008)

23. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Clustering of local optima in com-
binatorial fitness landscapes. In: Coello Coello, C.A. (ed.) LION 5. LNCS, vol.
6683, pp. 454–457. Springer, Heidelberg (2011)

24. Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86(1),
473–490 (1999)

25. Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical
clustering/segmentation algorithms. In: 16th IEEE International Conference on
Tools with Artificial Intelligence, pp. 576–584 (2004)

26. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm
configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219,
pp. 190–204. Springer, Heidelberg (2012)

27. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

28. Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the exper-
imental analysis of algorithms. In: Gottlieb, J., Raidl, G. (eds.) EvoCOP 2004.
LNCS, vol. 3004, pp. 199–209. Springer, Heidelberg (2004)

29. Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling
performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp.
205–219. Springer, Heidelberg (2012)

30. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algo-
rithms for portfolio-based selection. In: Conference of the Association for the
Advancement of Artificial Intelligence (AAAI-10) (2010)

31. Yong, L., Pardalos, P.M., Resende, M.G.C.: A greedy randomized adaptive search
procedure for the quadratic assignment problem. In: Pardalos, P.M., Wolkowicz, H.
(eds.) Quadratic Assignment and Related Problems. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 16, pp. 237–261. American
Mathematical Society, Providence (1994)

32. Yuan, Z., Montes de Oca, M., Birattari, M., Stützle, T.: Continuous optimization
algorithms for tuning real and integer parameters of swarm intelligence algorithms.
Swarm Intell. 6(1), 49–75 (2012)

Practically Desirable Solutions Search
on Multi-Objective Optimization

Natsuki Kusuno1, Hernán Aguirre1, Kiyoshi Tanaka1, and Masataka Koishi2(B)

1 Faculty of Engineering, Shinshu University, 4-17-1 Wakasato,
Nagano 380-8553, Japan

{nsk0936@iplab.,ahernan@,ktanaka@}shinshu-u.ac.jp
2 R&D Center, The Yokohama Rubber Co. Ltd., 2-1 Oiwake,

Hiratsuka, Kanagawa 254-8601, Japan
koishi@hpt.yrc.co.jp

Abstract. This work investigates a method to search practically desir-
able solutions expanding the objective space with additional fitness
functions associated to particular decision variables. The aim is to find
solutions around preferred values of the chosen variables while search-
ing for optimal solutions in the original objective space. Solutions to be
practically desirable are constrained to be within a certain distance from
the instantaneous Pareto optimal set computed in the original objec-
tive space. Our experimental results show that the proposed method can
effectively find practically desirable solutions.

1 Introduction

Evolutionary multi-objective algorithms [1] optimize simultaneously two or more
objective functions that are usually in conflict with each other. The aim of the
algorithm is to find the set of Pareto optimal solutions that capture the trade-offs
among objective functions. In the presence of several solutions, a decision maker
often considers preferences in objective space to choose one or few candidate
solutions for implementation. This approach is valid when there is no concern
about the buildability of candidate solutions.

In many practical situations, however, the decision maker has to pay spe-
cial attention to decision space in order to determine the constructability of a
potential solution. In manufacturing applications, for example, preferences for
particular values of variables could appear due to unexpected operational con-
straints, such as the availability or lack of materials with particular specifica-
tions. Or simple because physical processes that determine a particular value for
a decision variable have become easier to perform than those required to deter-
mine another value. When these situations arise the decision maker is interested
in knowing how far these possible solutions are from optimality. Furthermore,
in design optimization and innovation related applications, rather than precise
values of decision variables of few candidate solutions, the extraction of useful
design knowledge is more relevant. In these cases, analysis of what-if scenarios
in decision space, without losing sight of optimality, are important.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 438–443, 2013.
DOI: 10.1007/978-3-642-44973-4 46, c© Springer-Verlag Berlin Heidelberg 2013

Practically Desirable Solutions Search 439

From this standpoint, in this work, we investigate an approach that incor-
porates additional fitness functions associated to particular decision variables,
aiming to find solutions around preferred values of the chosen variables while
searching for optimal solutions in the original objective space. In addition to
expanding the space, we also constraint the distance that solutions could be
from the instantaneous Pareto optimal set computed in the original space. We
call these solutions as practically desirable solutions. We test the algorithm using
DTLZ3 function with two and three objectives in the original space and two addi-
tional objectives for the expanded space. Our results show that the proposed
method can effectively find practically desirable solutions.

2 Proposed Method

2.1 Concept

We pursue an approach that incorporates additional fitness functions associated
to particular decision variables, aiming to find solutions around preferred val-
ues of the chosen variables while searching for optimal solutions in the original
objective space.

Let us define the original objective space f (m) as the vector of functions

f (m)(x) = (f1(x), f2(x), · · · , fm(x)), (1)

where x is a vector of variables and m ⊆ 2 the number of functions. The extended
objective space f (M) with M > m objectives is given by

f (M)(x) = (f1(x), f2(x), · · · , fm(x), fm+1(x), · · · , fM (x)) (2)

where fm+1(x), · · · , fM (x) are the additional M −m functions used to evaluate
solutions with preferred values in one or more decision variables.

Extending the objective space would work to bias selection to include solu-
tions with particular desired values for some decision variables. However, it is
also expected that evolution in an expanded objective space would substantially
increase diversity of solutions, which could jeopardize convergence of the algo-
rithm in the original space and the expanded space as well. Thus, in addition
to an expanded space, we also constraint the distance that solutions could be
from the instantaneous Pareto optimal set computed in the original space, as
illustrated in Fig. 1(a). We call these solutions as practically desirable solutions.
In the following we describe a method that implements this concept.

2.2 Two Populations, Concurrent Evolution

This method evolves concurrently two populations in different objective spaces.
Population A evolves in the extended objective space f (M) using an enhanced
ranking of solutions that prefers practically desirable solutions for survival selec-
tion and parent selection. On the other hand, Population B evolves in the orig-
inal objective space f (m). The instantaneous set of Pareto optimal solutions

440 N. Kusuno et al.

(a) Desirable region in f (m) (b) Sorting by desirability

Fig. 1. (a) Region of practically desirable solutions with preferred values in variable
space located at most a distance d from the Pareto optimal set computed in the original
objective space f (m). (b) Sorting by desirability respect to the original space f (m) and
front number in the extended space f (M)

computed in f (m) from the Population B is incorporated into Population A and
used as a reference to establish the desirability of solutions in Population A.
Ranking for Population A is enhanced by making it dependant on both front
number in the extended space f (M) and desirability respect to the original space
f (m). This new ranking is used for survival selection and parent selection as well.

In this work Population A evolves using NSGA-II with the enhanced ranking
and survival selection, whereas Population B evolves using conventional NSGA-
II [2]. In the following we explain survival selection and ranking procedure used
to evolve Population A, illustrated in Fig. 2.

Step 1 Get a copy of the set of non-dominated solutions from Population B that
evolves in the original space f (m). Let us call this set F

(m)
1 .

Fig. 2. Two evolving populations, concurrent search method

Practically Desirable Solutions Search 441

Step 2 Apply non-dominated sorting to RA
t ∀ F

(m)
1 in the space F (M), where

RA
t = PA

t ∀ QA
t is the combined population of parents PA

t and offspring
QA

t evolving in the expanded space f (M). Classify solutions into fronts
F

(M)
i and rank solutions according to the i-th front they belong to, where

i = 1, 2, · · · , NF . Solutions in F
(m)
1 will be part of F

(M)
1 .

Step 3 Calculate the Euclidean distances from solutions in the fronts F
(M)
i to

the set F
(m)
1 . The distance from solution x ∅ F

(M)
i to F

(m)
1 is given

by δ(x) = min ∈ f (m)(x) − f (m)(y) ∈, y ∅ F
(m)
1 . If the distance δ(x) is

smaller than a threshold distance d then solution x is marked as desirable.
Otherwise, it is marked as undesirable.

Step 4 Sort solutions by front rank and desirability. The front number (rank) of
desirable solutions remains the same, while the front number of an unde-
sirable solution initially classified in front i is modified to i+NF , where
NF is the number of fronts initially obtained by non-dominated sort-
ing. That is, undesirable solutions are penalized so that no undesirable
solution is assigned better rank than a desirable one, while still differen-
tiating among undesirable ones. Sorting by front number and desirability
is illustrated in Fig. 1(b).

Step 5 Form the population PA
t+1 for the next generation by copying to it fronts

F
(M)
i in ascending order, starting with front F

(M)
1 . If all solutions in

F
(M)
i do not fit in PA

t+1 (|PA
t+1| = |RA

t |/2), select the required num-
ber according to their crowding distance (less crowded is better). Since
undesirable solutions are penalized, as explained above, desirable solu-
tions are given priority for survival and reproduction as well (better rank
than undesirable solutions).

3 Simulation Results and Discussion

We study the performance of the algorithms in continuous DTLZ3 functions [3].
In our experiments we set the number of objectives to m = {2, 3} varying the
number of variables n = {5, 10, 15}. Thus, the original objective space is given by
f (m=2) = (f1, f2) and f (m=3) = (f1, f2, f3), respectively. The original objective
space is extended by adding two functions to form f (M), where M = m+2. The
two additional functions are as follows

fm+1 = |x5 − 0.3| (3)
fm+2 = |x5 − 0.4| (4)

Here, the assumed desirable values for variable x5 are 0.3 and 0.4. Note that
in this problem it is known that the optimal value for x5 is 0.5. We set the
threshold distance d = 10 to determine the desirability of solutions respect to
Pareto optimal solutions in f (m).

To evaluate convergence of solutions we use the Generational Distance (GD),
which measures the distance of solutions to the true Pareto front. Smaller values
of GD mean better convergence of solutions.

442 N. Kusuno et al.

x5

f1

0 0.2 0.4 0.6 0.8 1

5

10

15

20

f1

f2

0 5 10 15 20

5

10

15

20

generations

G
D

0 200 400 600 800 1000
0.1

1

10

100

1000

(a) (b) (c)

Fig. 3. Proposed method searching concurrently on the original space f (m) = (f1, f2),
m = 2, n = 5, and expanded space f (M), M = 4. Final generation, DTLZ3
problem.

We run the algorithms 30 times using different random seeds and present
average results, unless stated otherwise. The number of generations is set to
1000 generations, parent and offspring population size are |PA

t | = |QA
t | = 2250

for the search on the expanded space and |PB
t | = |QB

t | = 250 for the search
on the original space. As variation operators, the algorithms use SBX crossover
and polynomial mutation, setting their distribution exponents to ηc = 15 and
ηm = 20, respectively. Crossover rate is pc = 1.0, crossover rate per variable is
pcv = 0.5, and mutation rate per variable is pm = 1/n.

Figure 3 shows results by the proposed method searching concurrently on
the original space f (m) = (f1, f2), m = 2, and on the expanded space f (M),
M = 4, for n = 5 variables. From Fig. 3(a) it can be seen that the proposed
method effectively finds solutions around the two preferred values x5 = 0.3 and
x5 = 0.4. In addition it also finds solutions around x5 = 0.5, the value at which
solutions become Pareto optimal in this problem. Also, from Fig. 3(b) note that
the solutions found are within the threshold distance d established as a condition
for solutions desirability.

Figure 3(c) shows the generational distance GD over the generations.
GD is calculated separately grouping solutions around the preferred values
x5 = 0.3, x5 = 0.4 and optimal value x5 = 0.5. Solutions are considered within
a group if the value of x5 is in the range [x5 − 0.005, x5 + 0.005]. Note that GD
reduces considerably for the three groups of solutions. This clearly shows that
the concurrent search on the original space pulls the population closer to the
Pareto optimal front and achieves good convergence in addition of finding solu-
tions around the preferred values in variable space. These solutions are valuable
for the designer to analyze alternatives that include practically desirable features
in addition to optimality.

Figure 4 shows the number of solutions that fall within the desirable area at
various generations of the evolutionary process, i.e. solutions located within a
distance d = 10 of the instantaneous set of Pareto optimal solutions in f (m).
Results are shown for DTLZ3 problem with m = {2, 3} original objectives

Practically Desirable Solutions Search 443

generation

nu
m

be
r

of
 in

di
vi

du
al

s

n=5
n=10
n=15

0 200 400 600 800 1000

0

500

1000

1500

2000

2500

generation

nu
m

be
r

of
 in

di
vi

du
al

s

n=5
n=10
n=15

0 200 400 600 800 1000

0

500

1000

1500

2000

2500

(a) (b)

Fig. 4. Number of solutions within the desirable area over the generations, i.e. solutions
located within a distance d = 10 of the Pareto optimal solutions in f (m) found by the
proposed method. DTLZ3 problem with m = 2 and m = 3 original objectives and two
additional fitness functions.

varying the number of variables n = {5, 10, 15}. Note that the proposed method
can effectively find a large number of solutions for any number of variables.

4 Conclusions

In this work we have proposed a method to search practically desirable solutions
expanding the objective space with additional fitness functions associated to
preferred values of decision variables. The proposed method evolves concurrently
two populations, one in the original objective space and the other one in the
expanded space using an enhanced ranking and survival selection that favors
optimality as well as practical desirability of solutions. Our experiments show
that the proposed method can effectively find a large number of practically
desirable solutions around preferred values of variables for DTLZ3 problems
with 2 and 3 objectives in its original space and 5, 10, and 15 variables.

In the future we would like to test the approach on other kinds of problems,
including real world applications.

References

1. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic, Boston (2002)

2. Deb. K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. KanGAL report
200001 (2000)

3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization
test problems. In: Proceedings of the Congress on Evolutionary Computation 2002,
pp. 825–830. IEEE Service Center (2002)

Oversized Populations and Cooperative
Selection: Dealing with Massive Resources

in Parallel Infrastructures

Juan Luis Jiménez Laredo1(B), Bernabe Dorronsoro3, Carlos Fernandes2,4,
Juan Julian Merelo4, and Pascal Bouvry1

1 FSTC-CSC/SnT, University of Luxembourg, Luxembourg
{juan.jimenez,pascal.bouvry}@uni.lu

2 Laseeb, Technical University of Lisbon, Lisbon, Portugal
cfernandes@laseeb.org

3 Laboratoire d’Informatique Fondamentale de Lille, University of Lille, Lille, France
bernabe.dorronsoro diaz@inria.fr

4 Geneura Lab, University of Granada, Granada, Spain
jmerelo@geneura.ugr.es

Abstract. This paper proposes a new selection scheme for Evolutionary
Algorithms (EAs) based on altruistic cooperation between individuals.
Cooperation takes place every time an individual undergoes selection:
the individual decreases its own fitness in order to improve the mat-
ing chances of worse individuals. On the one hand, the selection scheme
guarantees that the genetic material of fitter individuals passes to sub-
sequent generations as to decrease their fitnesses individuals have to be
firstly selected. On the other hand, the scheme restricts the number of
times an individual can be selected not to take over the entire population.
We conduct an empirical study for a parallel EA version where cooper-
ative selection scheme is shown to outperform binary tournament: both
selection schemes yield the same qualities of solutions but cooperative
selection always improves the times to solutions.

Keywords: Selection schemes · Evolutionary algorithms · Paralleliza-
tion · Execution times

1 Introduction

We seek after a more efficient exploitation of massively large infrastructures
in parallel EAs by balancing population size and selection pressure parameters.
To that aim, we assume platforms in which the number of resources can be
always considered sufficient (see e.g. [5]), i.e. large enough to allow a parallelized
population to eventually converge to problem optima. The challenging issue here
is to make an efficient use of such resources since a too large population size can
be considered oversized: a parametrization error leading to unnecessary wastes
of computational time and resources [8]. We show that, in the case of oversized
populations, selection pressure can be increased to high values in such a way that

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 444–449, 2013.
DOI: 10.1007/978-3-642-44973-4 47, c© Springer-Verlag Berlin Heidelberg 2013

Oversized Populations and Cooperative Selection 445

computing time is minimized and the solution quality is not damaged. Hence, the
population sizing problem can be redefined into a twofold question that we call
the selection dominance criterion; a selection scheme A can be said to dominate
other selection scheme B if:

a) any arbitrary population size P sufficient to B is always sufficient to A. In
our case, we set up the sufficiency criterion to the algorithm performing with
a success rate (SR) greater or equal to 0.98 (SR ≥ 0.98).

b) the execution time due to the pair (A, P) is strictly smaller than the execution
time due to (B, P).

Under the selection dominance perspective, it is a good practice to tune the
selection pressure to maximum values which still respect the sufficiency criterion.
Nevertheless, by doing that we may fall in the following well-known dilemma:
On the one hand, a high selection pressure will eventually make the algorithm
converge faster but with the risk of losing diversity and getting stuck in local-
optima. On the other hand, a low selection pressure will improve the success
rate expectations at the cost of a worse parallel execution time.

In the ideal case, a selection operator should be able to self-regulate the selec-
tion pressure according to the problem features and the given population size.
However, in this paper, we limit the scope of the research to demonstrate a new
selection scheme that is better than binary tournament (s2) in the sense that
s2 solutions are always dominated: binary tournament is shown to be outper-
formed in execution times while both selection schemes have equivalent sizing
requirements, i.e. same population sizes are sufficient in both cases.

The new selection scheme –introduced in Sect. 2– is inspired by reciprocal
altruism, a simple form of natural cooperation in which the fittest individuals
decrease their own fitnesses in order to allow breedings of less fitter ones. An
experimental analysis is conducted in Sect. 3. Finally, some conclusions and
future lines of research are exposed in Sect. 4.

2 Cooperative Selection

The design of new selection schemes is an active topic of research in EC. In
addition to canonical approaches such as ranking, roulette wheel or tournament
selection [3], other selection schemes have been designed to trade off exploration
and exploitation [1] or to be able to self-adapt the selection pressure on-line [2],
just to mention a few. Cooperation has been also considered in the design of
co-evolutionary EAs [9] in which sub-populations represent partial solutions to
a problem and have to collaborate in order to build up complete solutions. How-
ever, to the extent of our knowledge, there have been no attempts for designing
selection schemes inspired by cooperation.

Cooperative selection, in this early approach, is not more than a simple
extension of the classical tournament selection operator. As in the latter, a set
of randomly chosen individuals −→s = {random1(P), . . . , randoms(P)} compete
for reproduction in a tournament of size s. The best ranked individual is then

446 J.L.J. Laredo et al.

selected for breeding. The innovation of the new operator consists of each indi-
vidual having two different measures for fitness. The first is the standard fitness
function f which is calculated in the canonical way while the second is the
cooperative fitness fcoop which is utilized for competing. Since we analyze the
operator in a generational scheme context, at the beginning of every generation
fcoop is initialized with the current fitness value (f) of the individual. There-
fore, every first tournament within every generation is performed the same way
as with the classical tournament selection. The novelty of the approach relies
on the subsequent steps: after winning a competition of a tournament −→s , the
fcoop of the fittest individual is modified to be the average of the second and the
third, which means that, in the following competitions, the winning individual
will yield its position to the second. Since each fcoop is restarted with the f
value every generation, it is likely that fitter individuals reproduce at least once
per generation but without taking over the entire population. The details of the
cooperative selection scheme are described in Procedure 1.

Procedure 1. Pseudo-code of Cooperative Selection
procedure CooperativeSelection(s)

#1. Ranking step:
Competing individuals in −→s are ranked according to their cooperative fitnesses frank

coop

rank(−→s) ← {f1
coop, f

2
coop, f

3
coop, . . . , f

s
coop}

#2. Competition step:
The individual with the highest cooperative fitness f1

coop is selected

winner ← rank1(
−→s)

#3. Altruistic step:
After being selected, the winner of the competition decreases its own fitness

f1
coop ← f2

coop+f3
coop

2

return winner

end procedure

As in tournament selection, the only parameter to adjust in cooperative selec-
tion is the tournament size. We performed preliminary studies in order to tune
such a parameter. In those experiments, we found out that a cooperative tour-
nament size of 16 (Coop s16) is equivalent to binary tournament s2 in terms
of selection pressure. Therefore, all experiments will be conducted for such a
parameter value.

3 Analysis of Results

In order to analyze the performance of the cooperative selection scheme, we
conduct simple experiments in a master-slave GA [4] and tackle an instance of
length L = 200 of the onemax problem [10]. The GA, in addition to be parallel,

Oversized Populations and Cooperative Selection 447

(a) Scalability of the success rate (SR)
as a function of the population size
(P). Marks in bold show a SR ≥
0.98.

(b) Tradeoff between Tsec and Tpar for
SR ≥ 0.98 and different population
and tournament sizes.

Fig. 1. Scalability of a master-slave GA tackling an instance of the onemax problem
with size L = 200. Parameters s2 and s16 represent different tournament sizes of 2 and
16 respectively and Coop s16 stands for cooperative selection with a tournament size of
16. Arrows in sub-figure (b) indicate a “dominated by” relationship between selection
schemes using equal population sizes. Some circles for s16 are missing in (b) as this
setting does not yield sufficiency (SR ≥ 0.98) for population sizes smaller than 10240.

follows a 1-elitism generational scheme. Besides, only a simple point crossover
was considered as breeding operator1 and three different types of selection para-
metrization: two of them using tournament selection with tournament sizes of 2
(s2) and 16 (s16), and one using cooperative selection with a tournament size of
16 (Coop s16). Then every setting is analyzed for population sizes scaling so that
the SR can be estimated and the sufficiency criterion met. Our method to esti-
mate optimal population sizes starts with a population size of P = 40, doubling
P in every step until P = 20480. Each parametrization is run independently 50
times so that a fair estimation of the success rate (SR) can be made.

For the sake of simplicity, we assume that each individual is sent for evalu-
ation to a single processor so as to apply the following execution time metrics
[6]:

– Tsec: is the sequential optimization time and refers to the number of function
evaluations until the first global optimum is evaluated.

– Tpar: is the parallel optimization time and accounts for the number of gener-
ations it takes to find the problem optimum.

Figure 1(a) shows the scalability of the SR with respect to the population
size for the three different selection operators. The SR scales in all cases with a
sigmoid shape in which smaller population sizes perform poorly and larger ones
reach the sufficiency SR ≥ 0.98. The only remarkable difference between para-
meterizations rely on the transition phase of the sigmoid. Such transitions occur
1 We follow here the selectorecombinative approach of Lobo and Lima [7] for studying

the scalability of the population size.

448 J.L.J. Laredo et al.

much earlier in s2 and Coop s16 than in s16. This allows smaller populations to
be sufficient for the formers while not for the latter.

In Fig. 1(b), the analysis of the trade offs Tsec/Tpar shows that, whenever a
given population size is sufficient in the three settings, the winning strategy is
s16, i.e. the maximum selection pressure. Nevertheless, such results do not imply
that s16 dominates s2 since s16 requires of larger population sizes to achieve bet-
ter performance. Coop s16, however, outperforms parallel and sequential times
of s2 while having the same population requirements. Therefore, it can be said
that Coop s16 dominates s2 under any setting.

4 Conclusions and Future Works

In this paper, we have proposed the cooperative selection scheme, an extension of
tournament selection that, by implementing an altruistic behavior in winners of
the competitions, is able to outperform binary tournament. Without assuming
any knowledge on the problem domain, cooperative selection is shown to out-
perform the utilization of parallel resources in a simple test case: given identical
population sizes (i.e. same computing platform), cooperative selection saves com-
putational efforts with respect to binary tournament and requires of less parallel
execution time to yield the same quality in solutions.

As a future work, we plan two major lines of research. The first is the straight-
forward application of cooperative selection to massively parallel EAs as in the
case of GPU-based EAs or as in volunteer-computing-based EAs. The second
line of research is related to high-dimensional real-parameter optimization. Here
we think that cooperative selection could perform well since, on the one hand,
typical frameworks for benchmarking usually impose restrictions on time and,
on the other hand, problems with high-dimensionality require of large amounts
of resources in order to minimize optimization errors.

Acknowledgments. This work was supported by the Luxembourg FNR
Green@Cloud project (INTER/CNRS/11/03) and by the Spanish Ministry of
Science Project (TIN2011-28627-C04). B. Dorronsoro acknowledges the support by
the Fonds National de la Recherche, Luxembourg (AFR contract no 4017742).

References

1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

2. Eiben, A.E., Schut, M.C., De Wilde, A.R.: Boosting genetic algorithms with self-
adaptive selection. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, pp. 1584–1589 (2006)

3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2003)

4. Lombraña González, D., Jiménez Laredo, J., Fernández de Vega, F., Merelo
Guervós, J.: Characterizing fault-tolerance of genetic algorithms in desktop grid
systems. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp.
131–142. Springer, Heidelberg (2010)

Oversized Populations and Cooperative Selection 449

5. Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo Guervós, J.J.: Evag: a scalable
peer-to-peer evolutionary algorithm. Genet. Program. Evolvable Mach. 11(2), 227–
246 (2010)

6. Lässig, J., Sudholt, D.: General scheme for analyzing running times of parallel
evolutionary algorithms. In: Schaefer, R., Cotta, C., Koffilodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6238, pp. 234–243. Springer, Heidelberg (2010)

7. Lobo, F., Lima, C.: Adaptive population sizing schemes in genetic algorithms.
In: Lobo, F., Lima, C., Zbigniew, M. (eds.) Parameter Setting in Evolutionary
Algorithms, vol. 54, pp. 185–204. Springer, Heidelberg (2007)

8. Lobo, F.G., Goldberg, D.E.: The parameter-less genetic algorithm in practice. Inf.
Sci. Inf. Comput. Sci. 167(1–4), 217–232 (2004)

9. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function
optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN LNCS, vol.
866, pp. 249–267. Springer, Heidelberg (1994)

10. David Schaffer, J., Eshelman, L.J.: On crossover as an evolutionarily viable strat-
egy. In: Belew, R.K., Booker, L.B. (eds.) ICGA, pp. 61–68. Morgan Kaufmann,
San Francisco (1991)

Effects of Population Size on Selection
and Scalability in Evolutionary
Many-Objective Optimization

Hernán Aguirre1(B), Arnaud Liefooghe2,4,
Sébastien Verel3,4, and Kiyoshi Tanaka1

1 Shinshu University, Matsumoto, Japan
{ktanaka,ahernan}@shinshu-u.ac.jp

2 Université Lille 1, LIFL, UMR CNRS 8022, Lille, France
arnaud.liefooghe@lifl.fr

3 Université Nice Sophia-Antipolis, Nice, France
verel@i3s.unice.fr

4 Inria Lille-Nord Europe, Lille, France

Abstract. In this work we study population size as a fraction of the
true Pareto optimal set and analyze its effects on selection and per-
formance scalability of a conventional multi-objective evolutionary algo-
rithm applied to many-objective optimization of small MNK-landscapes.

1 Introduction

Conventional multi-objective evolutionary algorithms (MOEAs) [1] are known to
scale up poorly to high dimensional objective spaces [2], particularly dominance-
based algorithms. This lack of scalability has been attributed mainly to inappro-
priate operators for selection and variation. The population size greatly influences
the dynamics of the algorithm. However, its effects on large dimensional objectives
spaces are not well understood. In this work we set population size as a fraction of
the true Pareto optimal set and analyze its effects on selection and performance
scalability of a conventional MOEA applied to many-objective optimization. In
our study we enumerate small MNK-landscapes with 3–6 objectives, 20 bits, and
observe the number of Pareto optimal solutions that the algorithm is able to find
for various population sizes.

2 Methodology

In our study we use four MNK-landscapes [3] randomly generated with m = 3,
4, 5 and 6 objectives, n = 20 bits, and k = 1 epistatic bit. For each landscape
we enumerate all its solutions and classify them in non-dominated fronts. The
exact number of true Pareto optimal solutions POST found by enumeration are
|POST | = 152, 1554, 6265, and 16845 for m = 3, 4, 5, and 6 objectives, respec-
tively. Similarly, the exact number of non-dominated fronts of the landscapes
are 258, 76, 29, and 22, respectively.

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 450–454, 2013.
DOI: 10.1007/978-3-642-44973-4 48, c© Springer-Verlag Berlin Heidelberg 2013

Effects of Population Size on Selection and Scalability 451

We run a conventional MOEA for a fixed number of generations. The algo-
rithm uses a population P from which it creates an offspring population Q
by recombination and mutation. The population P for the next generation is
obtained from the joined population P ∪Q by survival selection. In this work we
use NSGA-II as the evolutionary multi-objective optimizer, set with two point
crossover with rate pc = 1.0, and bit flip mutation with rate pm = 1/n.

Once evolution is over, we compare the set of POST with the sets of unique
non-dominated solutions obtained at each generation after survival selection to
determine which are true Pareto optimal solutions, count their number at each
generation, and their accumulated number found during evolution.

3 Experimental Results and Discussion

Let us denote by F1 the set of non-dominated solutions in population P , and
FT
1 the set of solutions in by F1 that are true Pareto optimal solutions. Figure 1

shows the number of solutions in F1 and FT
1 over the generations for m = 3

and 4 objectives, running the algorithm for 100 generations with three different
population sizes |P | = 50, 100 and 200.

First we analyze results for m = 3 objectives. When we set population size to
|P | = 50 or 100, a value smaller than the number of true Pareto optimal solutions
|POST | = 152, it can be seen in Fig. 1(a.1) and (a.2) that after few generations
all solutions in the population are non-dominated, |F1| = |P |. However, not all
solutions in F1 are true Pareto optimal solutions, i.e. |FT

1 | < F1 = |P |. Also, it
is important to note that FT

1 fluctuates up and down after an initial increase.
On the other hand, when we set the population size to a value larger than the
number of true Pareto optimal solutions, |P | = 200 > |POST | = 152, it can
be seen in Fig. 1(a.3) that the instantaneous non-dominated set is a subset of
the population, F1 ⊂ P . Also, note that from generation 35 onwards, all non-
dominated solutions in the population are also true Pareto optimal, F1 = FT

1 .
In this case, the algorithm finds and keeps in P almost all true Pareto optimal
solutions, 147 out of 152, during the latest stage of the search.

It is known that the number of true Pareto optimal solutions |POST | increases
considerably with the number of objectives. However, this is often ignored and
the algorithm is set with a very small population size compared to |POST |. To
study these cases, Fig. 1 (b.1)–(b.3) show results for m = 4 objectives setting
population size to the same values used for m = 3 objectives, which are very small
compared to |POST |, i.e |P | ≤ 200 < |POST | = 1554. Note that these settings of
population size magnify the difficulties observed for m = 3 with |P | = 50 or |P | =
100. That is, fewer solutions are true Pareto optimal, although the set of non-
dominated solutions of the population quickly contains mutually non-dominated
solutions only. Also, larger fluctuations are observed in the number of true Pareto
optimal solutions FT

1 .

452 H. Aguirre et al.

(a.1) m =3, P || =50 (a.2) m =3, |P | =100 (a.3) m =3, |P | =200

(b.1) m =4, |P | =50 (b.2) m =4, |P | =100 (b.3) m =4, |P | =200

Fig. 1. Number of non-dominated F1 and actual number of true Pareto optimal solu-
tions FT

1 in the population over the generations. |POST | = 152, and 1554 for m = 3,
and 4 objectives, respectively. Population sizes |P | = 50, 100, and 200.

(a) m = 3, |POST | = 152 (b) m = 4, |POST | = 1554 (c) m = 5, |POST | = 6265

Fig. 2. Accumulated and instantaneous number of true Pareto optimal solutions, AFT
1

and FT
1 , m = 3, 4, and 5 objectives. Population sizes |P | = 50, 100, and 200.

Effects of Population Size on Selection and Scalability 453

(a) m = 4, |POST | = 1554 (b) m = 5, |POST | = 6265 (c) m = 6, |POST | = 16845

Fig. 3. Accumulated and instantaneous number of true Pareto optimal solutions, AFT
1

and FT
1 , m = 4, 5, and 6 objectives. Population sizes 1/3, 2/3 and 4/3 of POST .

In general, if |P | is set to a value smaller than |POST |, the algorithm cannot
keep all true Pareto optimal solutions in the population. However, we would
expect an ideal algorithm to keep as many true Pareto optimal solutions as the
size of its population, |FT

1 | = |F1| = |P | < |POST |. This is not what we observe
in our results. To explain this behavior, Fig. 2 shows the instantaneous number
of true Pareto optimal solutions in the population |FT

1 | and its accumulated
number |AFT

1 | over the generations for population sizes |P | = 50, 100, and 200.
Note that a large number of true Pareto optimal solutions are found by the
algorithm. However, not all these solutions remain in the population (except in
the case m = 3 |P | = 200). Some of these solutions are lost from one generation
to the next one during the survival selection step of the algorithm. At this
step, the algorithm joins the population P with the offspring population Q and
ranks individuals with respect to dominance-depth. The best rank is given to
true Pareto optimal solutions and also to some others that are not true optimal
but appear non-dominated in the combined population. Let us call the set of
best ranked non-dominated solutions obtained from P ∪ Q as FP∈Q

1 . If this set
FP∈Q
1 is larger than the population P , a sample of them P = F 1 ⊂ FP∈Q

1 is
chosen based on crowding distance during the survival step. At this point, some
true Pareto optimal solutions are dropped in favor of lest crowded non-optimal
solutions. Summarizing, P = F 1 ⊂ FP∈Q

1 and therefore FT
1 ⊂ F1 is more likely

to occur for population sizes smaller than the number of true Pareto optimal
solutions |POST |.

Figure 2(a) and Fig. 3(a)–(c) show results for m = 3, 4, 5 and 6 objectives
using population sizes that correspond approximately to 1/3, 2/3 and 4/3 of the
set POST , respectively. From these figures note that increasing population size
from 1/3 to 4/3 of POST translates into a striking performance scalability of the
algorithm, measured on terms of the number of true Pareto optimal solutions
found and kept in the population. For population size 4/3 of POST the number of
AFT

1 = FT
1 ⊂ F1 and the algorithm can actually find and keep in the population

147 out of 152, 1545 out of 1554, 6248 out of 6265, and 16842 out of 16845 true
Pareto optimal solutions for 3, 4, 5 and 6 objectives, respectively.

454 H. Aguirre et al.

These results show that the effectiveness of the algorithm in many-objective
landscapes depends strongly on the size of the population. However, it should be
noted that larger populations demand more computational time and memory.
Also, a relatively larger number of solutions need to be evaluated. For example,
after 100 generations, using a population size 4/3 of POST , the conventional
MOEA used in this study evaluates approximately a number of solutions equiv-
alent to 2 %, 19 %, 76 % and 215 % of the size of the search space for m = 3,
4, 5, and 6 objectives, respectively. In the future, we would like to analyze the
efficiency of MOEAs in many-objective landscapes.

4 Conclusions

In this work we analyzed the effects of population size on selection and scalability
of a conventional dominance-based MOEA for many-objective optimization. We
showed that the performance of a conventional MOEA can scale up fairly well
to high dimensional objective spaces if a sufficiently large population size is used
compared to the size of the true Pareto optimal set.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

2. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: Proceedings of IEEE Congress on Evolutionary Computa-
tion (CEC 2008), pp. 2424–2431. IEEE Press (2008)

3. Aguirre, H., Tanaka, K.: Insights on properties of multi-objective MNK-landscapes.
In: Proceedings of 2004 IEEE Congress on Evolutionary Computation, pp. 196–203.
IEEE Service Center (2004)

A Novel Feature Selection Method
for Classification Using a Fuzzy Criterion

Maria Brigida Ferraro1, Antonio Irpino2,
Rosanna Verde2, and Mario Rosario Guarracino1,3(B)

1 High Performance Computing and Networking Institute,
National Research Council, Naples, Italy

2 Department of European and Mediterranean Studies,
Second University of Naples, Caserta, Italy

3 Department of Informatics, Kaunas University of Technology, Kaunas, Lithuania
mario.guarracino@cnr.it

Abstract. Although many classification methods take advantage of
fuzzy sets theory, the same cannot be said for feature reduction methods.
In this paper we explore ideas related to the use of fuzzy sets and we pro-
pose a novel fuzzy feature selection method tailored for the Regularized
Generalized Eigenvalue Classifier (ReGEC). The method provides small
and robust subsets of features that can be used for supervised classifica-
tion. We show, using real world datasets that the performance of ReGEC
classifier on the selected features well compares with that obtained using
them all.

1 Introduction

In many practical situations, the size and dimensionality of datasets is large and
many irrelevant and redundant features are included. In a classification context,
learning from huge datasets could not work well even if theoretically more fea-
tures should lead more discriminant power. In order to face with this problem
two kinds of algorithms can be used: feature transformation (or extraction) and
feature selection. Feature transformation consists in constructing new features
(in a lower dimentional space) from the original ones. These methods include
clustering, basic linear transforms of the input variables (Principal Component
Analysis/Singular Value Decomposition, Linear Discriminant Analysis), spectral
transforms, wavelet transforms or convolution of kernels. The basic idea of a fea-
ture transformation is simply projecting a high-dimensional feature vector onto
a low-dimensional space. Unfortunately, the projection leads a loss of the mea-
surement units of features and the obtained features are not easy to interpret.
Feature selection (FS) may overcome this disadvantages.

FS aims at selecting a subset of features relevant in terms of discrimina-
tion capability. It avoids the drawback of the output interpretability, because
the selected features represent a subset of the given ones. FS is used as a pre-
processing phase in many contexts. It plays an important role in applications
that involve a large number of features and only few samples. FS enables data

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 455–467, 2013.
DOI: 10.1007/978-3-642-44973-4 49, c© Springer-Verlag Berlin Heidelberg 2013

456 M.B. Ferraro et al.

mining algorithms to run when it is otherwise impossible given the dimensional-
ity of the dataset. Furthermore, it permits to focus only on relevant features and
to avoid redundant information. FS strategy consists of the following steps. From
the original set of features, a candidate subset is generated and then evaluated
by means of an evaluation criterion. The goodness of each subset is analyzed
and, if it fulfills the stopping rule, it is selected and validated in order to check
whether the subset is valid. Otherwise, if the subset does not fulfill the stopping
rule, another candidate is generated and the whole process is repeated.

The FS methods are classified as filters, wrappers and embedded, depending
on criterion used to evaluate the feature subsets. Filters are based on intrinsic
characteristics of features to reveal their discriminating power and do not depend
on predictor. These methods select features by ranking. Different relevance mea-
sures can be used. These measures include correlation criteria [1], the mutual
information metric [2–4], class similarity measures with respect to the selected
subset (FFSEM [5] and filter methods presented in [6,7]) and the separability of
neighboring patterns (ReliefF [8]). A filter procedure may involve a forward or a
backward selection. Forward selection consists in starting with no features and
then, at each iteration, one or more features are added if they bring additional
contribution. The algorithm stops when no features among the candidates lead
a significant improvement. Backward selection (or elimination) starts with all
features. At each iteration, one or more features are removed if they reduce the
value of the total evaluation.

Filters present a low complexity but the discriminant power may be not
high, since the evaluation criterion can be not associated with the classifier in
use. Embedded methods do not separate the learning from the feature selection
phase, thus embedding the selection within the learning algorithm. At the time of
designing the predictor, these methods pick up the relevant features. Embedded
methods include decision trees, weighted naive Bayes (Duda et al. [9]), FS using
the weight vector of Support Vector Machines (SVM) (Guyon et al. [10], Weston
et al. [11]).

In wrapper methods, FS depends on classifiers. Namely, each candidate sub-
set is evaluated by analyzing the accuracy of a classifier. These methods, unlike
the filters, are characterized by high computational costs but high classification
rates are usually obtained. Filter algorithms are computationally more efficient,
although their performance can be worse than wrapper algorithms.

In a classification framework, data may present characteristics of different
classes and can be affected by noise. To cope with this problem, classes may be
considered as fuzzy sets and data belong to each class with a degree of member-
ship. Fuzzy logic improves classification by means of overlapping class definitions
and improves the interpretability of the results. In the last years, some efforts
have been devoted to the development of methodologies for selecting feature
subsets in an imprecise and uncertain context. To this extend, the idea of fuzzy
set is used to characterize the imprecision. Ramze Rezaee et al. [12] present
a method consisting of an automatic identification of a reduced fuzzy set of a
labeled multi-dimensional data set. The procedure includes the projection of the

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion 457

original data set onto a fuzzy space, and the determination of the optimal subset
of fuzzy features by using conventional search techniques. A k-nearest neighbor
(NN) algorithm is used. Pedrycz and Vukovich [13] generalize feature selection
method by introducing a mechanism of fuzzy feature selection. They propose
to consider granular features, rather than numeric. A process of fuzzy feature
selection is carried out and numerically quantified in the space of membership
values generated by fuzzy clusters. In this case a simple Fuzzy C-Means (FCM)
algorithm is used. More recently, a new heuristic algorithm has been introduced
by Li and Wu [5]. This algorithm is characterized by a new evaluation criterion,
based on a min-max learning rule, and a search strategy for feature selection
from fuzzy feature space. The authors consider the accuracy of k-NN classifier
as the evaluation criterion. Hedjazi et al. [14] introduce a new feature selection
algorithm, MEmbership Margin Based Attribute Selection (MEMBAS). This
approach processes in the same way numerical, qualitative and interval data
based on an appropriate and simultaneous mapping, using fuzzy logic concepts.
They propose to use the Learning Algorithm for Multivariable Data Analysis
(LAMBDA), a fuzzy classification algorithm that aims at getting the global
membership degree of a sample to an existing class, taking into account the con-
tributions of each feature. Chen et al. [15] introduce an embedded method. It is
an integrated mechanism to extract fuzzy rules and select useful features, simul-
taneously. They use the Takagi-Sugeno model for classification. Finally, Vieira
et al. [16] consider fuzzy criteria in feature selection by using a fuzzy decision
making framework. The underlying optimization problem is solved using an ant
colony optimization algorithm previously proposed by the same authors. The
classification accuracy is computed by means of a fuzzy classifiers.

A different approach is considered in the work proposed by Moustakidis and
Theocharis [17]. They propose a forward filter FS based on a Fuzzy Comple-
mentary Critrion (FuzCoC). They introduce the notion of fuzzy partition vec-
tor (FPV) associated with each feature. A local fuzzy evaluation measure with
respect to patterns is used and it takes advantage of fuzzy membership degrees of
training patterns (projected on that feature) to their own classes. These grades
are obtained using a fuzzy output kernel-based SVM. FPV aims at detecting the
data discrimination capability provided by each feature. It treats each feature on
a pattern-wise base, thus allowing to assess redundancy between features. They
obtain subsets of discriminating (highly relevant) and non-redundant features.
FuzCoC acts like a minimal-redundancy-maximal-relevance (mRMR) criterion.
Once features have been selected, the prediction on class labels is obtained using
a 1-NN.

In the present work, we take inspiration from the above methodology and
from [18] to devise a novel wrapper FS method. It can be seen as a FuzCoC con-
structed by a ReGEC (Guarracino et al. [19]) classification approach. By means
of a binary linear ReGEC, a one-versus-all (OVA) strategy is implemented, that
allows to solve multiclass problems. For each feature, distances between each
pattern and classification hyperplanes are computed, and they are used to con-
struct the membership degree of each pattern to its own class. The sum of these

458 M.B. Ferraro et al.

grades represent the score associated with the feature, that is the capability to
discriminate the classes. In this way, all features are ranked, and the selection
process determines the features leading to an increment of the total accuracy on
training set. Hence, only features with highest discrimination power are selected.

The advantage of this strategy is that it takes into account the peculiarity
of the classification method, providing a set of features consistent with it. We
show that this process fits out a robust subset of features, thus, a change in
training points produces a small variation in the selected features. Furthermore,
using standard datasets, we show that the classification accuracy obtained with
a small percentage of available features is comparable with that obtained using
all features.

This paper is organized as follows. In the next section, a description of the
forward filter FS SVM-FuzCoC ([17]) is given. Section 3 contains our proposal,
FFS-ReGEC, and the novel algorithm is described. In order to check the ade-
quacy of the proposed procedure, in Sect. 4, we present a discussion on the
dataset SONAR. Some comparative results on real world datasets are given in
Sect. 5. Finally, Sect. 6 contains some concluding remarks and open problems.

2 SVM-FuzCoC

Let D = {xi, i = 1, · · · , N} be the training set, where xi = {xij,j=1,··· ,n} (n is
the total number of features). The training patterns in D are initially sorted by
class labels:

D = {D1, · · · ,Dk, · · · ,DM}
where Dk = {xi1 , · · · ,xiNk

} denotes the set of class k patterns and Nk is the

number of patterns included in Dk, with
M⎡

k=1

Nk = N (M is the number of

classes). Following the OVA methodology, the authors initially train a set of M
binary K-SVM classifiers on each single feature, to obtain fuzzy membership of
each pattern to its class. Let xij denote the feature j component of pattern xi,
i = 1, · · · , N . According to FO-K-SVM, fuzzy membership value μk(xij) ⊆ [0, 1]
of xij to class k is computed by

μk(xij) =

⎣
⎨⎨⎨⎨⎤

⎨⎨⎨⎨⎦

0.5 if fk(xij) = mijk = 1

1

1 + e

(

ln

(1 − γ

γ

))

·
⎛

⎝
fk(xij) − mijk

|1 − mijk|
⎞

⎠

if mijk ∀= 1 (1)

where fk(xij) is the decision value of the kth K-SVM binary classifier trained
by xij , mijk = maxl ∈=kfl(xij) is the maximum decision value obtained by the
rest (k − 1) K-SVM binary classifiers, and γ is the membership degree threshold
fixed by the user.

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion 459

The fuzzy partition vector (FPV) of feature j is defined as

G(j) = {μG(x1j), · · · , μG(xNj)} (2)

where μG(xij) = μci(xij) ⊆ [0, 1], i = 1, · · · , N. Generally, μG(xij) is determined
using the general formula (1) by replacing k with ci, i.e., the class label which
pattern xij belongs to. Each FPV can be considered as a fuzzy set defined on D:

G(j) = {xij , μG(xij)|xij ⊆ D}, |D| = N, i = 1, · · · , N

where μG(xij) denotes the membership value of xij to fuzzy set G.
Consider a set of initial features, S = {z1, · · · , zn}, where, zj =

[x1j , · · · , xNj]T . For each feature they construct in advance the associated FPV
by means of the FO-K-SVM technique. Let FS(p) = {zl1 , · · · , zlp} denote the
set of p features selected up to and including iteration p. The cumulative set
CS(p) is an FPV representing the aggregating effect (union) of FPVs of the
features contained in FS(p):

CS(p) = G(zl1) ∅ · · · ∅ G(zlp) (3)

CS(p) fits out approximatively the quality of data coverage obtained by the
features selected at the pth iteration.

Let zlp be a candidate feature to be selected at iteration p. AC(p, zlp) denotes
the additional contribution of zlp with respect to the cumulative set CS(p − 1)
obtained at the preceding iteration, and it is determined by

AC(p, zlp) = G(zlp)| − |CS(p − 1) (4)

Feature selection, according to SVM-FuzCoC, follows the algorithm in Fig. 1.

3 Fuzzy Feature Selection ReGEC

The proposed FFS-ReGEC is a wrapper FS, incorporating a FuzCoC. The train-
ing patterns in D are initially sorted by class labels. Following the OVA method-
ology, we initially train a set of M binary linear ReGEC classifiers on each single
feature, to obtain fuzzy membership of each pattern to its class. Let xij denote
the feature j component of pattern xi, i = 1, · · · , N . According to FO-ReGEC
(Fuzzy Output ReGEC), a fuzzy membership value μci(xij) ⊆ [0, 1] of xij to its
own class ci is computed by

μci(xij) = f + (1 − f) · e
−

∈xij − ci∈2
dm2 (5)

where ∈xij − ci∈2 is the squared distance of xij from its original class ci, dm2 =
minl ∈=i∈xij − cl∈2 is the minimum squared distance of xij from the other classes
and f is the minimum membership (fixed). The fuzzy score sj of feature j is
defined as

sj =
N⎫

i=1

μci(xij) (6)

460 M.B. Ferraro et al.

Feature selection according to FFS-ReGEC consists of the following steps. From
the feature set we select the feature j with the highest score sj , obtained by
(6). Then we consider the set of non-selected features. At each iteration p, we
consider a candidate with the highest score among non-selected ones. Let Dp be
the dataset obtained considering the features selected at iteration (p − 1) and
the candidate. We consider a linear Multi-ReGEC algorithm (Guarracino et al.
[20]) and we compute the accuracy rate on training set. If the last added feature
increases accuracy on training set, we add it to the set of selected features. We
iterate the procedure until a candidate leads an increment of the total accuracy.
In order to explain better this procedure, the algorithm of the FS is presented
in Fig. 2.

Fig. 1. SVM-FuzCoC FS

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion 461

Fig. 2. FFS-ReGEC

4 A Case Study

In this section we check the adequacy of FFS-ReGEC by using the dataset
Sonar [21] from UCI. The dataset is characterized by 208 samples, 60 features
and 2 classes. The dataset is composed of 111 samples obtained by sending
sonar signals to a metal cylinder at various angles and under various conditions,
and 97 patterns obtained from rocks under similar conditions. The transmitted
sonar signal is a frequency-modulated chirp, with rising frequency. The data set
contains signals obtained at different angles, spanning 90∗ for the cylinder and
180∗ for the rock.

The 60 variables values range in [0, 1]. Each number represents the energy
within a particular frequency band, integrated over a certain period of time.

We generate 1000 random splits partitioning the original dataset into training
and testing sets, 70 % and 30 %, respectively. Figure 3 shows the distribution of
the 1000 hold outs according to the number of selected features in the training
step. Furthermore, we report the mean test accuracy and the standard deviation
for each set of partitions having the same number of selected features. The
average number of selected features on 1000 random partitions is 7.42, with an
average test accuracy equal to 76.46 %. We also note that in 84.70 % of times the

462 M.B. Ferraro et al.

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300 74,5
75,0
75,5
76,0
76,5
77,0
77,5
78,0

Fig. 3. The distribution of 1000 hold outs according to the number of selected features,
the average test accuracy and the standard deviation for each set of splits with the
same number of selected features.

0

20

40

60

80

100

Fig. 4. Percentages of times features are selected in 1000 hold outs

number of selected features is between six and nine. It is also interesting that all
20 partitions in which a single feature is selected, it is always feature 12.

In Fig. 4 we report the number of times (in percentage) features are selected
in 1000 hold outs. In the figure, the darkest bars are related to the 15 most
selected features.

In Fig. 5 the absolute value of the correlations corr among the top 15 most
chosen features is shown. We can see that some features are highly correlated
(the darkest zones), hence we cluster them by means of the hierarchical clus-
tering derived by the dendrogram depicted in Fig. 6, in which the vertical axis
represents the value 1 − |corr|, the complement to one of the absolute value of
the correlation, and by clustering together those features with |corr| > .6. We
obtain 4 clusters, forming the groups reported in Table 1.

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion 463

9 10 11 12 13 20 21 22 34 35 36 37 45 48 49

9

10

11

12

13

20

21

22

34

35

36

37

45

48

49

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Correlation plot

9 10 11 12 13 20 21 22 45 48 49 34 35 36 37

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 6. Dendrogram of the classification of the 15 feature

In each cluster, features are correlated when all data are considered. In the
hold out process the discrimination capability might be lower because of pres-
ence/absence of some patterns. In this case, it would be desirable that another
feature from the cluster of correlated patterns is selected, which is also consis-
tent with the idea that an FS procedure should avoid redundancy in selected
features. To verify whether the proposed algorithm has this characteristic, we
perform the following test.

Let A(zj) be the set of hold outs where the feature zj has been selected
with cardinality |A(zj)|, and let Ck be a cluster of features. For each cluster, we
compute the following coverage index:

CI(k) =
|⎬zj∩Ck

A(zj)|
H

464 M.B. Ferraro et al.

Table 1. Clusters of correlated features and covarage indexes.

Cluster Features CI (%)

1 9, 10, 11, 12, 13 99.60
2 20, 21, 22 61.40
3 45, 48, 49 60.90
5 34, 35, 36, 37 68.90

where H is the number of hold outs. This index represents the probability that
at least one feature is selected from a cluster. In Table 1 coverage indexes of
clusters of correlated features are reported. These represent the percentages of
times at least one of correlated features is selected in all the considered hold
outs. These percentages are much higher than those we would obtain with a
random selection.

1 4 5 6 7 8 9 10 11 12
50%

55%

60%

65%

70%

75%

80%

Mean Test Accuracy with FS Mean Test Accuracy with random selection

Fig. 7. Test accuracy of FFS-ReGEC and test accuracy of a random feature selection.

Then, we perform a paired t-test in order to validate the difference between
the average accuracy of the proposed FS and the average accuracy of a random
selection. The null hypothesis is that the random feature selector and FFS-
ReGEC have the same mean accuracy. The sample consists of 1000 pairs of
accuracy calculated on 1000 hold outs (70-30). For each hold out, we perform
the FS, then we compute the test accuracy. On the same hold out, we randomly
select a set of features with the same cardinality of the set of the selected features,
then we compute the test accuracy with these random features. We obtained a
rejection of the null hypothesis with p-value lower than 0.001, hence we conclude
that the mean accuracies are different. The accuracy obtained with the proposed
FS procedure is significantly greater than test accuracy obtained by a random
selection. Finally, in Fig. 7, the values of test accuracy for different numbers of
selected features are reported for both FFS-ReGEC and random selector. For
each number of selected features, we consider the number of holds out selecting

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion 465

this number of features and we consider the average test accuracy obtained with
FFS-ReGEC and that of the random selector.

We conclude that the proposed strategy always select a number of features
sufficient to discriminate patterns with almost the same accuracy, whatever are
the patterns used to train the classifier.

5 Comparative Analysis

In order to validate the proposed FFS-ReGEC, we consider 9 real-world datasets
taken from UCI. All tests have been performed implementing the algorithms in
Matlab, and comparing the results with those available in literature ([17]). The
details are reported in Table 2, where the name of the dataset, the number of
patterns, features, classes are shown.

To be consistent with the validation strategy used in [17], we consider 100
random splits partitioning the original dataset into training and testing sets,
70 % and 30 %, respectively. We check test accuracy (TA) obtained by ReGEC
procedure without FS, by 1-NN, by the proposed FS and by SVM-FuzCoC. In
Table 3 we also report the mean number of selected features (sf).

We note that the dimensionality reduction obtained using the novel FS
method is comparable with that of SVM-FuzCoC, and in most cases it is higher.
The selection process achieves a reduction in the number of features of approxi-
mately 99 % for genomic datasets, where the number of features is in the order of
thousands. The classification accuracy obtained by ReGEC on the reduced sets is
comparable with that obtained by the method, when all features are used. Accu-
racy results of FFS-ReGEC well compare with those of SVM-FuzCoc. In addi-
tion, when SVM-FuzCoc reaches classification rates higher than those obtained
with FFS-ReGEC, these rates are the highest ones compared with all FS proce-
dures considered in [17], and when classification rates of FFS-ReGEC are higher
than those resulting from SVM-FuzCoc, these are the best ones compared with
all the other algorithms. This means that on specific problems FFS-ReGEC can
be a suitable alternative to existing methods.

Table 2. Dataset details

Dataset Number of patterns Number of features Number of classes

Glass 214 9 6
Page Blocks 5472 10 5
Pen digits 10992 16 10
WDBC 569 30 2
Ionosphere 351 34 2
Sonar 208 60 2
SRBCT 83 2308 4
Leukemia 72 5147 2
DLBCL 77 7070 2

466 M.B. Ferraro et al.

Table 3. Test accuracy (TA) rates for Multi-ReGEC, 1-NN, FFS-ReGEC, SVM-
FuzCoC and number of selected features (sf) for the FS procedures

Dataset Features Multi-ReGEC 1-NN FFS-ReGEC SVM-FuzCoC

TA (%) TA (%) TA (%) sf TA (%) sf

Glass 9 70.30 70.50 69.05 5.95 73.36 6.00
Page Blocks 10 95.53 95.52 93.41 4.40 95.04 7.00
Pen digits 16 99.34 99.31 98.82 13.09 97.22 12.00
WDBC 30 86.89 86.67 92.31 2.96 96.48 7.74
Ionosphere 34 85.98 85.57 90.36 7.07 89.46 4.00
Sonar 60 81.39 81.92 76.46 7.42 73.17 19.00
SRBCT 2308 90.64 91.29 94.24 24.00 98.88 33.00
Leukemia 5147 93.29 91.43 91.80 10.29 95.71 12.86
DLBCL 7070 88.92 89.32 82.20 52.32 93.22 15.50

6 Concluding Remarks

In this paper we propose a novel fuzzy feature selection technique. It uses the
ReGEC algorithm to select the most promising set of variables for classification.
In future, we will devise techniques to weight the contribution of the variables
in the computation of the classification model, in order to enhance the discrim-
ination capability of the most promising ones.

Acknowledgment. This work has been partially funded by Italian Flagship project
Interomics and Kauno Technologijos Universitetas (KTU).

References

1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

2. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. IEEE Trans. Neural Netw. 5, 537–550 (1994)

3. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27, 1226–1238 (2005)

4. Ooi, C.H., Chetty, M., Teng, S.W.: Differential prioritization in feature selection
and classifier aggregation for multi class microarray datasets. Data Min. Knowl.
Discov. 114, 329–366 (2007)

5. Li, Y., Wu, Z.F.: Fuzzy feature selection based on min-max learning rule and
extension matrix. Pattern Recogn. 41, 217–226 (2008)

6. Mao, K.Z.: Orthogonal forward selection and backward elimination algorithms for
feature subset selection. IEEE Trans. Syst. Man Cybern. B 34, 629–634 (2004)

7. Fu, X., Wang, L.: Data dimensionality reduction with application to simplifying
RBF network structure and improving classification performance. IEEE Trans.
Syst. Man Cybern. B. 33, 399–409 (2003)

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion 467

8. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182.
Springer, Heidelberg (1994)

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York
(2001)

10. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46, 389–422 (2002)

11. Weston, J., Elisseff, A., Schoelkopf, B., Tipping, M.: Use of the zero-norm with
linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)

12. Ramze Rezaee, M., Goedhart, B., Lelieveldt, B.P.F., Reiber, J.H.C.: Fuzzy feature
selection. Pattern Recogn. 32, 2011–2019 (1999)

13. Pedrycz, W., Vukovich, G.: Feature analysis through information granulation and
fuzzy sets. Pattern Recogn. 35, 825–834 (2002)

14. Hedjazi, L., Kempowsky-Hamon, T., Despénes, L., Le Lann, M.V., Elgue, S.,
Aguilar-Martin, J.: Sensor placement and fault detection using an efficient fuzzy
feature selection approach. In: 49th IEEE Conference on Decision and Control,
15–17 December 2010, Hilton Atlanta Hotel, Atlanta, GA, USA

15. Chen, Y.C., Pal, N.R., Chung, I.F.: An integrated mechanism for feature selection
and fuzzy rule extraction for classification. IEEE Trans. Fuzzy Syst. 20, 683–698
(2012)

16. Vieira, S.M., Sousa, J.M.C., Kaymak, U.: Fuzzy criteria for feature selection. Fuzzy
Sets and Syst. 189, 1–18 (2012)

17. Moustakidis, S.P., Theocharis, J.B.: SVM-FuzCoC: a novel SVM-based feature
selection method using a fuzzy complementary criterion. Pattern Recogn. 43, 3712–
3729 (2010)

18. Guarracino, M.R., Cuciniello, S., Pardalos, P.: Classification and characterization
of gene expression data with generalized eigenvalues. J. Optim. Theory Appl. 141,
533–545 (2009)

19. Guarracino, M.R., Cifarelli, C., Seref, O., Pardalos, P.: A classification algorithm
based on generalized eigenvalue problems. Optim. Methods Softw. 22, 73–81 (2007)

20. Guarracino, M.R., Irpino, A., Verde, R.: Multiclass generalized eigenvalue proximal
support vector machines. In: 4th IEEE Conference on Complex, Intelligent and
Software Intensive Systems, pp. 25–32 (2010)

21. Gorman, P., Sejnowski, T.: Analysis of hidden units in a layered network trained
to classify sonar targets. Neural Netw. 11, 75–89 (1988)

Author Index

Abell, Tinus 30
Afifi, Sohaib 259
Aguirre, Hernán 438, 450
Ahlgren, John 24
Akedo, Naoya 231
Arakawa, Masanao 75
Artigues, Christian 281
Asta, Shahriar 404

Basseur, Matthieu 209
Birattari, Mauro 410
Bischl, Bernd 110
Blot, Aymeric 125
Boström, Henrik 1
Bouvry, Pascal 444
Branke, Juergen 272
Brockhoff, Dimo 70

Caminada, Alexandre 294
Candan, Caner 253
Chevalier, Clément 59
Consoli, Sergio 19
Cotta, Carlos 174, 288

Dang, Duc-Cuong 259
Deb, Kalyanmoy 1
Delerue, David 37
Derbel, Bilel 87
Dhaenens, Clarisse 37, 125
Dorronsoro, Bernabe 444
Dréo, J. 341
Dubois-Lacoste, Jérémie 321
Dudas, Catarina 1
Dumitrescu, D. 304

Elati, Mohamed 104
Elomari, Jawad 272

Fernandes, Carlos 444
Fernández-Leiva, Antonio J. 174, 288, 357

Ferraro, Maria Brigida 455
Figueiredo, Rosa 266
Frota, Yuri 266

García-Sáanchez, P. 357
Gaskó, Noémi 304
Ginsbourger, David 59
Goëffon, Adrien 209, 253
Guarracino, Mario Rosario 455
Gutiérrez-Vela, F.L. 335

Hamadi, Youssef 315
Hernando, Leticia 299
Hess, Stefan 110
Hidalgo-Bermúdez, R.M. 357
Hoos, Holger H. 138, 364, 382
Hoshino, Koichiro 215
Hutter, Frank 364

Iclănzan, David 304
Inaba, Mary 247
Irpino, Antonio 455
Ishibuchi, Hisao 215, 231

Jacques, Julie 37
Jiménez Laredo, Juan Luis 444
Jourdan, Laetitia 37, 125

Kaufmann, B. 138
Khouadjia, M.R. 341
Koishi, Masataka 438
Kusuno, Natsuki 438

Labbé, Martine 266
Lamrous, Sid 294
Lanti, Davide 52
Lardeux, Frédéric 253
Lau, Hoong Chuin 423
Leoncini, Mauro 196
Leyton-Brown, Kevin 364

Liberman, Gilad 131
Liefooghe, Arnaud 450
Lindawati 423
Lopez-Arcos, J.R. 335
López-Ibáñez, Manuel 321
Loth, Manuel 315
Louzoun, Yoram 131
Lozano, Jose A. 299

Maggiorini, Dario 189
Malitsky, Yuri 30, 153
Manthey, Norbert 52
Marmion, Marie-Eléonore 125
Mascia, Franco 321, 410
Matei, O. 81
Medina-Medina, N. 335
Melab, Nouredine 87
Mendiburu, Alexander 299
Merelo, Juan Julian 288, 357, 444
Mladenović, Nenad 19
Moalic, Laurent 294
Montangero, Manuela 196
Mora, Antonio M. 288, 357
Moreno Pérez, José Andrés 19
Moukrim, Aziz 259
Musliu, Nysret 389

Nagy, Réka 304
Ng, Amos H.C. 1
Nicolle, Rémy 104
Nogueira, Mariela 174
Nojima, Yusuke 215, 231

Özcan, Ender 404

Paderewski, P. 335
Padilla-Zea, N. 335
Parkes, Andrew J. 404
Pellegrini, Marco 196
Pira, Clément 281
Pop, P.C. 81
Previti, Simone 189

Ripamonti, Laura Anna 189
Rodríguez-Domingo, M.S. 357

Sabharwal, Ashish 153
Samulowitz, Horst 153
Saubion, Frédéric 253
Savéant, P. 341
Schaub, T. 138
Schneider, M. 138
Schoenauer, Marc 315, 341
Schulte, Christian 315
Schwengerer, Martin 389
Sebag, Michéle 315
Sellmann, Meinolf 153
Sonobe, Tomohiro 247
Stützle, Thomas 321, 410
Styles, James 382

Taillard, Julien 37
Tanaka, Kiyoshi 438, 450
Tierney, Kevin 30
Tillán, Karina Panucia 196
To, Cuong 104
Trautmann, Heike 70
Trubian, Marco 189
Truong, Duy Tin 168

Umetani, Shunji 75

Verde, Rosanna 455
Verel, Sébastien 450
Vidal, V. 341
Vider-Shalit, Tal 131
Vu, Trong-Tuan 87

Wagner, Tobias 70, 110

Yagiura, Mutsunori 75
Yuan, Zhi 423
Yuen, Shiu Yin 24

Zhu, Feida 423

470 Author Index

	Preface
	Organization
	Contents
	Interleaving Innovization with Evolutionary Multi-Objective Optimization in Production System Simulation for Faster Convergence
	1 Introduction
	2 Simulation-Based Innovization (SBI)
	2.1 Distance-Based SBI
	2.2 An ASF-Based Distance Calculation
	2.3 Interleaving MOO, Knowledge Discovery and Decision-Making

	3 Industrial Application Study
	3.1 Optimization Objectives and Decision Variables
	3.2 Optimization Results and SBI Analysis
	3.3 Local Search Using the Extracted Rule as Constraints

	4 Conclusions
	References

	Intelligent Optimization for the Minimum Labelling Spanning Tree Problem
	1 Preliminary Discussion
	2 Complementary Variable Neighbourhood Search
	3 The Intelligent Optimization Algorithm
	4 Summary and Outlook
	References

	A Constraint Satisfaction Approach to Tractable Theory Induction
	1 Introduction
	2 The NrSample Framework
	2.1 Mode Constraints
	2.2 Pruning Constraints

	3 Experimental Results
	4 Conclusions
	References

	Features for Exploiting Black-Box Optimization Problem Structure
	1 Introduction
	2 BBO Dataset and Solver Portfolio
	3 Features
	4 Numerical Results
	4.1 ISAC Results

	5 Conclusion and Future Work
	References

	MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets
	1 Introduction
	2 A Multi-Objective Model to Discover Partial Classification Rules in Imbalanced Data
	2.1 Rule Interestingness Measures

	3 A Multi-Objective Model to Discover Partial Classification Rules in Imbalanced Data
	3.1 Solution Modeling
	3.2 DMLS Algorithm
	3.3 Post-processing Using ROC Curve

	4 Experiments and Results
	4.1 Protocol
	4.2 Experiments on Imbalanced Benchmarks Datasets
	4.3 Experiments on a Real Dataset

	5 Conclusion and Further Research
	References

	Sharing Information in Parallel Search with Search Space Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Parallel SAT Solving

	3 Sharing Information in Parallel Search
	3.1 Flag-Based Clause Tagging
	3.2 Position-Based Clause Tagging

	4 Empirical Evaluation
	5 Conclusion
	References

	Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection
	1 Introduction
	2 Multi-Points Expected Improvement Explicit Formulas
	3 Batch Sequential Optimization Using Multi-Points EI
	4 Conclusion
	References

	R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection
	1 Introduction
	2 R2-EMOA
	3 Experiments
	4 Conclusions and Outlook
	References

	A Heuristic Algorithm for the Set Multicover Problem with Generalized Upper Bound Constraints
	1 Introduction
	2 Lagrangian Relaxation and Subgradient Method
	3 The 2-flip Neighborhood Local Search Algorithm
	4 Heuristic Reduction of Problem Sizes
	5 Computational Results
	6 Conclusion
	References

	A Genetic Algorithm Approach for the Multidimensional Two-Way Number Partitioning Problem
	1 Introduction
	2 Definition of the Problem
	3 The Genetic Algorithm for Solving the MDMWNPP
	4 Preliminary Computational Results
	References

	Adaptive Dynamic Load Balancingin Heterogeneous Multiple GPUs-CPUs Distributed Setting: Case Study of B&B Tree Search
	1 Introduction
	2 A Comprehensive Overview of Our Approach
	2.1 Application Model and Preliminaries
	2.2 A Two-Level Parallelism (Q1)
	2.3 Dynamic Work Stealing (Q2)
	2.4 Adaptive Work Balancing (Q3)

	3 Parallel and Distributed Protocol Details
	3.1 Concurrent Computations for Single CPU-GPU (Level 2 Parallelism)
	3.2 Distributed Work Stealing for Multiple CPUs/GPUs (Level 1 Parallelism)

	4 Experimental Results
	4.1 Experimental Setting
	4.2 Impact of Asynchronous Data Transfer on a Single GPU
	4.3 Scalability and Stealing Granularity for Multiple GPUs
	4.4 Adaptive Stealing for Multiple GPUs Multiple CPUs

	5 Conclusion
	References

	Multi-Objective Optimization for Relevant Sub-graph Extraction
	1 Introduction
	2 Relevant Sub-graph Extraction Method
	2.1 Problem Statement
	2.2 Solving the Multi-Objective Optimization
	2.3 Representation of Solutions

	3 Results
	4 Conclusion
	References

	PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection
	1 Introduction
	2 Review
	3 Methods
	3.1 Model-Based Optimization
	3.2 Reinforcement Learning

	4 Algorithm
	4.1 Rewards
	4.2 Initialization Phase and Reward Rescaling
	4.3 Sequential Update

	5 Experimental Setup
	6 Results
	7 Conclusions and Outlook
	References

	Neutrality in the Graph Coloring Problem
	1 Motivation
	2 Characterizing the Neutrality
	2.1 Definitions
	2.2 Approach
	2.3 Experiments

	3 Influence of Neutrality on Local Search Performance
	3.1 NILS Algorithm
	3.2 Experiments

	4 Discussion
	References

	Kernel Multi Label Vector Optimization (kMLVO): A Unified Multi-Label Classification Formalism
	1 Introduction
	2 The kMLVO Framework
	2.1 Formalism
	2.2 Transition to the Dual Problem
	2.3 Handling Missing Values

	3 Extending kMLVO
	3.1 Incorporation of w0
	3.2 Non-linear Regression

	4 Simulations
	4.1 kMLVO Results on Simulations

	5 Discussion
	References

	Robust Benchmark Set Selection for Boolean Constraint Solvers
	1 Introduction
	2 Current Practice
	3 Desirable Properties of Benchmark Sets
	4 Benchmark Set Selection
	4.1 Benchmark Set Selection Algorithm
	4.2 Benchmark Set Quality

	5 Evaluation
	6 Conclusions and Future Work
	References

	Boosting Sequential Solver Portfolios: Knowledge Sharing and Accuracy Prediction
	1 Introduction
	2 Background
	2.1 SAT Solvers
	2.2 Solver Portfolios

	3 Sharing Knowledge Among Solvers
	3.1 Knowledge Sharing Among Clause-Learning Systematic Solvers
	3.2 Impact of Knowledge Sharing on Other Solvers
	3.3 Formula Simplification
	3.4 Practical Impact of Clause Forwarding

	4 Accuracy Prediction and Recourse
	4.1 Accuracy Prediction
	4.2 Recourse

	5 Empirical Evaluation
	5.1 Implementation Details on Clause Forwarding
	5.2 Implementation Details on Accuracy Prediction
	5.3 Results on 2011 SAT Competition Data

	6 Conclusion
	References

	A Fast and Adaptive Local Search Algorithm for Multi-Objective Optimization
	1 Introduction
	2 Fast and Adaptive Local Search Algorithm for MOP
	3 Experiments
	4 Conclusion
	References

	An Analysis of Hall-of-Fame Strategies in Competitive Coevolutionary Algorithms for Self-Learning in RTS Games
	1 Introduction
	2 Background on Competitive Coevolution in Games
	3 Game Description
	4 Hall-of-Fame Based Competitive Coevolutionary Algorithm and Variants
	4.1 Basic HofCC
	4.2 HofCC Variants

	5 Experiments and Analysis
	5.1 Configuration of the Experiments
	5.2 Results of Average Fitness
	5.3 Results of Best Fitness
	5.4 Results of Number of Evaluations
	5.5 Results of Number of Defeats
	5.6 Summary of the Results

	6 Conclusions and Future Work
	References

	Resources Optimization in (Video) Games: A Novel Approach to Teach Applied Mathematics?
	1 Introduction
	2 (Serious) Video Games and Teaching Applied Math
	3 Caesar IV: Maximizing the City Profit
	4 Conclusions and Further Developments
	References

	CMF: A Combinatorial Tool to Find Composite Motifs
	1 Introduction
	2 Preliminary Notions
	3 Algorithm
	3.1 PWM Clustering
	3.2 Discretization
	3.3 Composite Motif Finding
	3.4 Computational Cost

	4 Experiments
	4.1 Datasets
	4.2 Scoring Predictions
	4.3 Results

	5 Conclusions
	References

	Hill-Climbing Behavior on Quantized NK-Landscapes
	1 Introduction
	2 Climbers and NK-Landscapes
	2.1 Climber Components
	2.2 NK-Landscapes and Neutrality

	3 Comparison of Hill-Climbing Strategies
	4 Conclusion
	References

	Neighborhood Specification for Game Strategy Evolution in a Spatial Iterated Prisoner’s Dilemma Game
	1 Introduction
	2 Spatial IPD Game in a Two-Dimensional Grid-World
	3 Cellular Genetic Algorithm for Game Strategy Evolution
	4 Experimental Results on the Two-Dimensional Grid-World
	5 Spatial IPD Game in a Two-Dimensional Continuous Space
	6 Experimental Results on the Continuous Space
	7 Conclusions
	References

	A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems
	1 Introduction
	2 MOEA/D Algorithm
	3 Experimental Results on a Two-Objective Knapsack Problem
	4 Experimental Results on Many-Objective Knapsack Problems
	5 Use of a Negative Penalty Parameter Value
	6 Conclusions
	References

	Portfolio with Block Branching for Parallel SAT Solvers
	1 Introduction
	2 Block Branching
	3 Experimental Results
	4 Conclusion
	References

	Parameter Setting with Dynamic Island Models
	1 Introduction
	2 Dynamic Islands for Managing Operators
	3 Experimental Results
	References

	A Simulated Annealing Algorithm for the Vehicle Routing Problem with Time Windows and Synchronization Constraints
	1 Introduction
	2 Simulated Annealing Algorithm
	2.1 Constructive Heuristic
	2.2 Diversification Process
	2.3 Local Search Procedure

	3 Results
	4 Conclusion
	References

	Solution of the Maximum k-Balanced Subgraph Problem
	1 Introduction
	2 Integer Linear Programming Formulation
	3 Branch-and-Cut Algorithm
	4 Primal Heuristics
	5 Preliminary Computational Results
	6 Future Research
	References

	Racing with a Fixed Budget and a Self-Adaptive Significance Level
	1 Introduction
	2 Literature Review
	3 Methodology and Experimental Setup
	4 Results
	5 Conclusion
	References

	An Efficient Best Response Heuristic for a Non-preemptive Strictly Periodic Scheduling Problem
	1 Problem and Method
	1.1 Problem Definition
	1.2 An Equilibrium-Based Heuristic

	2 The Best Response Procedure
	2.1 Structure of the Solution Set of (BRi)
	2.2 Principle of the Best-Response Procedure
	2.3 Solving the Local Best Response Problem
	2.4 The Multiprocessor Best-Response

	3 Experimental Results
	References

	Finding an Evolutionary Solution to the Game of Mastermind with Good Scaling Behavior
	1 Introduction and State of the Art
	2 An Evolutionary Method for Playing MasterMind
	3 Experiments and Results
	4 Discussion, Conclusions and Future Work
	References

	A Fast Local Search Approach for Multiobjective Problems
	1 Introduction
	2 Fast Local Search for Multiobjective Problems
	3 Study Case: Charging Stations Location for Electric Car-Sharing service
	4 Performance Analysis
	References

	Generating Customized Landscapes in Permutation-Based Combinatorial Optimization Problems
	1 Introduction
	2 Mallows Model
	3 Instance Generator
	4 Conclusions and Future Work
	References

	Multiobjective Evolution of Mixed Nash Equilibria
	1 Introduction
	2 Game Theoretic Prerequisites
	2.1 Mixed Strategies

	3 Proposed Model
	4 Detection Method and Results
	4.1 Game 1
	4.2 Game 2
	4.3 Game 3
	4.4 Game 4
	4.5 Numerical Results

	5 Conclusions
	References

	Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop Problem
	1 Introduction
	2 CP-Based Resolution of JSP
	3 Monte-Carlo Tree Search
	4 BaSCoP
	4.1 Reward
	4.2 RAVE
	4.3 Depth-First-Search Roll-Out
	4.4 Selection Rules

	5 Experimental Results
	6 Discussion and Perspectives
	References

	From Grammars to Parameters: Automatic Iterated Greedy Design for the Permutation Flow-Shop Problem with Weighted Tardiness
	1 Introduction
	2 Permutation Flowshop Scheduling
	3 Methods
	3.1 The Grammar for PFSP
	3.2 From Grammars to Parameters
	3.3 From Grammars to Sequences of Integers

	4 Experimental Results
	4.1 Experiments
	4.2 Results

	5 Conclusions
	References

	Architecture for Monitoring Learning Processes Using Video Games
	1 Introduction
	2 Architecture PLAGER-VG
	3 Using Agents to Retrieve Relevant Information
	4 Conclusions and Further Works
	References

	Quality Measures of Parameter Tuning for Aggregated Multi-Objective Temporal Planning
	1 Introduction
	2 AI Planning
	2.1 Multi-Objective AI Planning
	2.2 Tunable Benchmarks for Multi-Objective Temporal Planning

	3 Divide-and-Evolve
	3.1 Representation, Initialization, and Variation Operators
	3.2 Hybridization and Multi-Objectivization

	4 Experimental Conditions
	5 Experimental Results
	5.1 ParamILS Results
	5.2 Comparative Results

	6 Conclusion and Perspectives
	References

	Evolutionary FSM-Based Agents for Playing Super Mario Game
	1 Introduction
	2 Mario AI: Competition and Environment
	3 Evolutionary FSM-Based Agent
	4 Experiments and Results
	5 Conclusions
	References

	Identifying Key Algorithm Parameters and Instance Features Using Forward Selection
	1 Introduction
	2 Methods
	2.1 Empirical Performance Models
	2.2 Forward Selection
	2.3 Selecting Values for Important Parameters

	3 Algorithm Performance Data
	3.1 Algorithms and Their Configuration Spaces
	3.2 Benchmark Instances and Their Features
	3.3 Data Acquisition

	4 Experiments
	4.1 Predictive Performance for Small Subsets of Inputs
	4.2 Relative Importance of Parameters and Features
	4.3 Selecting Values for Key Parameters

	5 Conclusions
	References

	Using Racing to Automatically Configure Algorithms for Scaling Performance
	1 Introduction
	2 Validation Using Racing
	3 Experimental Setup and Protocol
	4 Results
	5 Conclusion
	References

	Algorithm Selection for the Graph Coloring Problem
	1 Introduction
	2 Background and Related Work
	2.1 The Graph Coloring Problem
	2.2 Algorithm Selection

	3 Algorithm Selection for the GCP
	3.1 Instance Features
	3.2 Algorithm Portfolio
	3.3 Benchmark Instances
	3.4 Classification Algorithms
	3.5 Data Discretization

	4 Experimental Results
	4.1 Parameter Configuration and Discretization
	4.2 Results on the Training Data
	4.3 Evaluation on the Test Set

	5 Conclusion
	References

	Batched Mode Hyper-heuristics
	1 Introduction
	2 Background
	3 Performance Properties of the Instances
	4 Conclusion and Future Work
	References

	Tuning Algorithms for Tackling Large Instances: An Experimental Protocol
	1 Introduction
	2 Modelling
	3 A Proof of Concept
	3.1 Iterated Local Search
	3.2 Robust Tabu Search

	4 Conclusions and Future Work
	References

	Automated Parameter Tuning Framework for Heterogeneous and Large Instances: Case Study in Quadratic Assignment Problem
	1 Introduction
	2 AutoParTune
	3 Target Algorithm and Experimental Setup
	4 SufTra: Clustering Heterogeneous Instances
	4.1 Search Trajectory Representation and Extraction
	4.2 Similarity Score Calculation
	4.3 Clustering
	4.4 Experimental Result

	5 ScaLa: Scaling Large Instances
	5.1 Measuring Instance Similarity
	5.2 Finding Similarities Between Large and Small Instances
	5.3 Solving Large Instances by Tuning on Small Instances

	6 Conclusion and Future Work
	References

	Practically Desirable Solutions Search on Multi-Objective Optimization
	1 Introduction
	2 Proposed Method
	2.1 Concept
	2.2 Two Populations, Concurrent Evolution

	3 Simulation Results and Discussion
	4 Conclusions
	References

	Oversized Populations and Cooperative Selection: Dealing with Massive Resources in Parallel Infrastructures
	1 Introduction
	2 Cooperative Selection
	3 Analysis of Results
	4 Conclusions and Future Works
	References

	Effects of Population Size on Selection and Scalability in Evolutionary Many-Objective Optimization
	1 Introduction
	2 Methodology
	3 Experimental Results and Discussion
	4 Conclusions
	References

	A Novel Feature Selection Method for Classification Using a Fuzzy Criterion
	1 Introduction
	2 SVM-FuzCoC
	3 Fuzzy Feature Selection ReGEC
	4 A Case Study
	5 Comparative Analysis
	6 Concluding Remarks
	References

	Author Index

