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Abstract. Due to the demand for depth maps of higher quality than
possible with a single depth imaging technique today, there has been
an increasing interest in the combination of different depth sensors to
produce a “super-camera” that is more than the sum of the individual
parts. In this survey paper, we give an overview over methods for the
fusion of Time-of-Flight (ToF) and passive stereo data as well as applica-
tions of the resulting high quality depth maps. Additionally, we provide
a tutorial-based introduction to the principles behind ToF stereo fusion
and the evaluation criteria used to benchmark these methods.

1 Introduction

Will there ever be one depth sensor to rule them all? While this will hopefully
be true one day, all current depth sensing modalities fall short of obtaining
this title. Passive stereo works well on textured scenes and has a high lateral
resolution due to readily available mega pixel cameras. Conversely, there are
issues at occlusion boundaries and when the textures are ambiguous or when
no texture is present at all. Also, due to the number of pixels that have to
be compared, especially when global optimization techniques are used, stereo
matching algorithms are often computationally demanding. Time-of-Flight(ToF)
imaging on the other hand delivers images at high frame rates independent of
surface texture, but at the cost of a lower resolution and systematic errors. For
a more detailed description of Time-of-Flight cameras please refer to Chapter 1.
Finally, there is active stereo (e.g. Kinect), which triangulates correspondences
between a structured active illumination and a camera. While the effects at
occlusion boundaries (shadowing, edge fattening) remain, unstructured surfaces
are no longer a problem. This comes at a cost though, as the lateral resolution
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is now limited by the resolution of the projection system. To summarize, the
major drawback of all of these methods is that they usually only work in a
limited domain and lack the robustness often required in various application
domains. As these modalities often differ in the areas where they excel or fail, it
appears natural to combine them to create a “super-sensor”.

Depending on the camera systems used different methods ensue. With a single
additional camera typically edge information from the high resolution intensity
image is used to guide the upsampling of the depth image[1,2]. In [3], Castañeda
et al. present a system using two Time-of-Flight cameras. In this survey paper
we will focus on techniques to fuse of Time-of-Flight and passive stereo data.

The remainder of this paper is organized as follows. In Section 2 we shall further
clarify, what we expect from such a fusion system and what use there actually is
in having high resolution depth maps. Next, in Section 3 the basic fusion pipeline
including common preprocessing steps will be introduced in a tutorial like fashion.
As benchmarking such systems is as important as the innovation of new fusion
systems we will dedicate Section 4 to common evaluation strategies. Finally, in
Section 5 we will summarize the specifics of current fusion systems.

2 Requirements Engineering and Application Domains

2.1 Requirements

We have identified four basic requirements an application can have on a fusion
system.

Speed up while retaining Quality. Current stereo algorithms are often quite
time consuming. This is due to the vast search space that has to be analyzed.
Given real time ToF imaging it may now be possible to reduce the search
space and therefore make real-time implementations of the stereo methods
possible.

Robustness/Self Awareness. Fusion methods should be able to be at least
as good as the (locally) better of the two modalities and degrade gracefully
in presence of small calibration/synchronization errors.

Increase in Quality. Other than identifying regions of erroneous values the
system should also be able to use this information to produce depth maps
that are better than either method alone.

Backward Compatibility. In many application areas it is easier to just add
an additional camera to the working system than to completely alter the
existing system.

It is clear that it is difficult to accommodate for all requirements simulta-
neously. A speed - quality trade off has always to be made depending on the
application. For Human Computer Interaction and Robotic/Navigation applica-
tions a fast system that is able to detect and eliminate erroneous values [4,5]
may suffice. More sophisticated multimedia application on the other hand re-
quire high quality depth maps partly with speed constraints imposed on the
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Fig. 1. From left to right: Stereo-ToF rig on set, example image, high resolution dis-
parity map

system (e.g. in 3DTV, Augmented Reality). As other application domains for
depth data have been discussed in Chapter 4, Section 2, we will focus on the
application of high quality depth maps in multimedia systems.

2.2 High Quality Depth Maps for Multimedia Application

In movie and film productions many post-production steps are commonly con-
ducted including color corrections,(green-screen) matting, integration of com-
puter generated imagery, compositing and many more. High-resolution depth
or disparity maps can help to ease many of these steps. As edges in the depth
maps depict object boundaries in general, they can be used to guide local color
corrections, in the spirit of cross-bilateral filters [6,7]. Integration of virtual ob-
jects is possible with correctly handled occlusion [8]. For stereoscopic movie
productions the aforementioned tasks become even more important due to addi-
tional challenges including color matching between the stereoscopic views, verti-
cal alignment, disparity compensation, 3D compositing and image interpolation.
To faithfully deal with these tasks, correspondences between the left and right
image in the form of disparity or depth maps build the foundations of all these
algorithms. Depth maps as a form of 2.5D scene representation ease the inte-
gration of computer generated imagery or video footage with depth information
[9]. Precise depth maps also allow for image interpolation [10] which in turn can
be used for disparity compensation [11]. To prevent a flickering appearance in
stereoscopic video footage, appropriate local color corrections are necessary that
consistently correct for color mismatches in both views [12]. The problem is even
more difficult for specularities, here the solution is usually to replace the specu-
lar parts in the image by information from the other view [13] or to synthesize
a consistent specularity for both views [14].

Not only post-production but also display and transmission of stereoscopic
content requires high-resolution and high quality depth. In depth-image-based
rendering the video stream consists of the typical RGB images plus an additional
depth channel [15]. From this information the stereoscopic views are recreated
by warping of the RGB image based on the depth and desired ocular distance.
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Fig. 2. Basic Fusion Pipeline

As most modern production settings already employ several cameras (cf. Fig-
ure 1), the idea of using an additional ToF camera lends itself to assist the depth
map generation. It should be noted though that algorithms intended to work in
such a setting require a higher amount of robustness as compared to the lab
setting. At any given time many different people are (to a certain extent) in-
dependently monitoring several different aspects of the scene such as lighting,
camera movement, focus of camera or the stereo baseline, often changing pa-
rameters frequently to accommodate for the requirements of the director. Also
the time plan is quite strict, such that any additional in-between calibration
steps need to be avoided. So if the ToF-Stereo setup is to be attached to the
principal camera it will be more difficult to obtain high precision measurements
and alignment than what is common for a lab setting. Therefore, robustness
of the algorithms, especially towards slightly misaligned cameras, is extremely
important. On the other hand, often post-production crews acquire their own
footage of the scene separately beforehand, so that they can start working on set
reconstructions etc. before receiving the main plates. In Section 5.3 two methods
will be discussed in detail that cater to these different settings.

3 Setting Up Fusion Systems

In the following we describe the general aspects of ToF stereo fusion systems.
These include the general pipeline (Section 3.1), possible camera setups (Section
3.2), calibration (Section 3.3) and data preprocessing (Section 3.4).

3.1 Pipeline

Most fusion systems differ mainly in how the data is merged, once it has been
brought into the same reference frame. Figure 2 illustrates the basic pipeline em-
ployed. After choosing a specific camera setup the standard camera intrinsics have
to be estimated for all three cameras, i.e. focal length, principal point as well as
radial and tangential distortion coefficients. Next the spatial relationship(Roto-
Translation) between the three cameras have to be found by means of pairwise or
joint stereo calibration methods.
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For the ToF camera, additionally a depth calibration has to be undertaken due
to the systematic errors described in Chapter 1, Section 2. This can either be done
after the intrinsic calibration with methods proposed in Chapter 1, Section 3 or by
jointly using the additional stereo information. After applying preprocessing steps
to clean up the ToF data (i.e. to reduce effects by noise pixels), the images must be
brought into the same coordinate frame bymeans of rectification and reprojection.
Finally, the fusion step involves a combination of the following:

• The ToF depth and the output of a Stereo algorithm are computed individ-
ually and then fused.

• The ToF data is used as an initial guess and/or to reduce the search space
for subsequent stereo refinements

• The depth reconstruction algorithm uses both stereo and ToF costs as data
terms.

Additionally various regularizers have been applied to obtain depth maps of
sufficient smoothness despite noise. In the following we will describe the steps
commonly employed by the methods presented in Section 5 before the data is
fused in detail.

3.1.1 Choice of Depth Cues
In essence a ToF stereo fusion system corresponds to a trifocal camera system,
with the third camera sensor having a lower spatial resolution, but a high tem-
poral sampling. Therefore, there exist many different sources of dense or sparse
depth information that may be exploited in a fusion system. In the following we
would like to discuss these depth cues in detail. Though some of the cues are
rarely used or not used at all, we believe that future algorithms may additionally
use these modalities.

ToF depth from demodulation. This is the standard output of the Time-
of-Flight sensor that is used in all fusion systems. The advantages of these
modalities as opposed to stereo is that the depth estimation a) works on
textureless surfaces, b) has a arguably simpler behavior at depth discontinu-
ities (unlike edge fattening in stereo) c) is real-time capable out of the box.
Major downsides are the limited lateral resolution and the various strong er-
ror sources such as noise, multi path, flying pixels, wiggling and to a certain
extent susceptibility to background illumination.
A detailed description of these errors and methods to compensate for them
is given in Chapter 1.

Photo consistency/Stereo. Depth from stereo is a well studied field of re-
search [16]. In stereo depth estimation, dense correspondences between left
and right view are found and the depth is inferred via triangulation. Unlike
ToF cameras, the lateral resolution of this modality can be very high. Depth
from stereo will fail in areas with little texture or in presence of highly repet-
itive patterns due to ambiguous matching. While this imposes a problem for
fast local-evidence based stereo methods, global methods use regularization
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techniques to utilize prior knowledge about ”normal” scenes such as tem-
poral coherence. It should also be noted that with the large (Full HD, 4K)
images commonly used for multimedia applications such global techniques
often reach their limit in terms of computational cost without any search
space reduction.

Cross-modal Stereo. While all current systems only use the photo consistency
constraints between the stereo heads, additional information is available via
the intensity image of the ToF camera. Unfortunately, due to the difference
in resolution and wavelength sensitivity traditional photo consistency can
not be used here. A promising line of research is cross-modal stereo [17], also
known as IR/Thermal image-RGB registration [18,19,20], which tries to find
correlations between the near or far IR with RGB/Intensity image to either
infer depth as in the former case or find a warp as in the later case.

Structure from Motion. If the fusion system is moving and the scene mostly
static, it is possible to use structure from motion (SFM) techniques [21,22]
to additionally infer depth at some locations. Here, it has to be ensured
that the synchronization is sufficiently accurate or that the fusion system is
capable of handling slight misalignments robustly.

Monoscopic Cues. Lighting, Shading and Silhouettes aremostly used in mono-
scopic depth estimation [23,24]. Shape fromShading with unconstrained light-
ing is yet a difficult problem. But for the ToF camera, as the primary light
source is around the camera, this could still be feasible and should be inves-
tigated. Indeed, Stürmer et al. [25] observed that the amplitude image in ob-
served an inverse square falloff with distance. Finally, silhouettes constrain the
direction of normals of the depth map to be perpendicular to the pixel ray.

Current fusion systems typically only use the ToF as a black box depth imager
and the photo consistency constraint between the stereo heads. A notable excep-
tion is the method by Kim et al. [26] that uses additional silhouette constraints
and the technique by Zhu et al. [27] that uses an optical flow based temporal
smoothing (though no SFM information is used here).

3.2 Camera Setup

The camera setup employed should suit the requirements of the application and
additionally aim to reduce the effects of visible errors due to alignment issues.
Figure 3 illustrates various common camera configurations, though naturally
many more are possible.

Symmetric Side-by-Side. This is the approach most commonly employed by
most fusion systems with the stereo heads symmetrically placed left and
right of the ToF camera. Though this approach seems to be the best on first
instance, it depends on whether the paralax between the ToF camera and
the stereo heads is actually being used to additionally infer depth. If the
ToF data is going to be reprojected on to one of the stereo frames then more
information is lost than in the assymmetric setup.
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Symmetric Side-by-Side Vertical setup

Asymmetric Side-by-Side Mirror setup

Fig. 3. Different possible camera setups. Green: ToF Camera, Red: RGB Camera,
Yellow: ToF Lights.

Asymmetric Side-by-Side. This approach tries to compensate such parallax
effects between the ToF and Stereo heads by placing the ToF camera closer
to the primary camera. Depending on whether the ToF imager or one of the
stereo heads is the primary camera, also different setups may make sense. In
the latter case the ToF camera may additionally be placed on the other side
of the primary camera to ensure available depth information, otherwise not
obtainable due to occlusion between the stereo heads.

Vertical Setup. The vertical setup mostly corresponds to the asymmetric side-
by-side setup. It is employed for the same reasons as above in situations,
where placing the camera next to the primary camera is not feasible, such
as in stereo-production rigs (cf. Section 1) which are often huge in size and
would induce a bigger parallax in a side-by-side setup.

Mirror Rig. Ideally - if only ToF and passive stereo are used, there shouldn’t be
any parallax between the primary and ToF camera. This is achievable using
a beam-splitting mirror/prism (commonly known as hot or cold mirrors) and
sharing the same optical axis. The center for sensor systems (ZESS) in Siegen
has produced such a prototype system[28]. The Arri group, manufacturers
of production grade film cameras, have recently introduced another RGB-Z
camera that works on the same principal. It should be noted though that
such a setup still requires manual alignment of the mirror and cameras to
actually achieve zero-parallax and in practice this may be difficult to achieve.

3.3 Calibration

Intrinsics and Extrinsics. Once the hardware is set up the system needs to
be calibrated intrinsically for focus, principal point and distortion coeffi-
cients and the ToF camera additionally for depth. The extrinsic calibration
is concerned with finding the Roto-Translation between the three cameras.
Both procedures are straight forward for the stereo heads and can be done
using standard libraries [29,30]. In our experience, the same methods often
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work on the intensity image (with parameter tweaking) for ToF imagers with
higher resolutions. More details on calibration can be found in Chapter 1.

Joint Calibration The extrinsic calibration between the ToF camera and the
stereo heads using the standard method will be less precice due to the lower
resolution of the ToF camera. Some fusion techniques account for this by
simply adjusting uncertainties that they utilize during fusion [31,32]. If the
ToF depth calibration has already been obtained, DalMutto et al. [33] sug-
gest using the depth information and planar calibration targets to obtain a
precise extrinsic calibration. Schiller et al.[34] jointly do the intrinsic ToF
calibration with the extrinsic calibration, as the depth estimates delivered
by the ToF and stereo will not only be consistent but the ToF calibration
can also be achieved more precisely. Similar methods were also proposed in
[35,36] and can be summarized as follows:

1. Obtain pictures of planar calibration targets via a (calibrated) stereo
setup and the ToF image.

2. Fit a Plane into this target via the triangulated target points in the
stereo setup. To obtain dense stereo ”ground truth points”.

3. If the extrinsic calibration has not been estimated yet, use Horn’s method
[37] to find the transform between the stereo plane and ToF plane.

4. Finally, store the residuals between ToF depth and the plane for the ToF
depth correction. This can be done in form of a 4D look-up table or by
fitting a polynomial spline per pixel.

Finally, Guan et al. [38] use spherical targets that are detected in the RGB
and ToF imagers.

3.4 Preprocessing

Stereo Rectification. Stereo rectification [39] reduces the search space to a
line search along one image dimension by finding two homographies such
that the epipolar lines between the two stereo heads become parallel.

Depth Reprojection. ToF delivers radial depth which has to be converted
into z-depth before comparing with the stereo depth. Given the focal length
f and centralized pixel coordinates px, py (i.e. principal point in (0, 0)) and
radial depth d the coordinates (X,Y, Z) can be computed via:

(X,Y, Z)T = (px, py, f)
T · d

(f2 + p2x + p2y)
. (1)

These points can then be rotated and translated into the reference coordinate
frame. If a dense ToF depth map is required the values for reference frame
pixels without a corresponding ToF pixel have to be interpolated. Finally,
the z-depth z can be converted into disparities disp using the baseline b:

disp =
b · f
z

. (2)
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Depth Preprocessing. The depth data may be additionally filtered before
reprojection to avoid false occlusions due to noise. This ranges from simple
median filtering to remove flying pixels to more complex denoising techniques
as presented in Chapter 2.

4 Evaluation of Fusion Methods

In this section we will discuss various evaluation datasets and performance met-
rics to benchmark fusion algorithms. Additionally, based on the requirements
discussed in Section 2 we will propose some new experiments and performance
measures that we believe will help in a better understanding of the fusion system.

4.1 Datasets

4.1.1 Available Stereo-ToF Datasets1

Currently, very few ground truth datasets for ToF stereo fusion are actually
available. Nair et al. [32] used the HCI Box2 for quantitative evaluations. The
target consists of a box with various geometric primivitives that was hand mea-
sured to 1mm accuracy and aligned to PMD[Tec] CamCube 3 data. It contains
little texture and shows strong multi-path effects on the box sides. The Padua3

datasets introduced by Dal Mutto et al.[33,40] contain simple synthetic scenes as
well as measured tabletop scenes containing a varied amount of textured objects.
The reference data was obtained using space time stereo[41] and aligned with
ToF data from a MESA SR4000.

4.1.2 Semi-synthetic GT
Since ToF stereo fusion ground truth datasets are not as readily available as
datasets for assessing ToF or stereo alone, authors often resort to use existing
datasets, by simulating the missing modality.

Synthesizing the ToF Image. Often the Middlebury ground truth dataset
[16] is used [40,42] and the ToF view is synthesized from the ground truth
data. Though an interesting way to compare the results, the naive imple-
mentation currently used is to just downsample the GT depth and add some
noise to the obtained depth map.
This approach does not account for a) the different camera positions and b)
the complex noise behavior of ToF cameras. We therefore believe that it can
be improved in two important aspects.
• Alignment. The effects due to the ToF and the reference camera not
sharing the same optical axis are completely ignored in this simple ap-
proach. This is fine as a baseline evaluation to isolate alignment effects

1 Up to date list:
http://hci.iwr.uni-heidelberg.de/Benchmarks/document/tofstereo

2 http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/
3 http://freia.dei.unipd.it/nuovo/research/ToF.html

http://hci.iwr.uni-heidelberg.de/Benchmarks/document/tofstereo
http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/
http://freia.dei.unipd.it/nuovo/research/ToF.html
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from the fusion part or if a mirror rig is used. Otherwise, the depth map
should be first synthesized in the ToF view before warping the data back,
possibly adding alignment noise.

• Simulation. Also some care should be taken into properly simulating
the ToF sensor. Evaluation using the GT without any noise can only
be used as a proof of concept. We suggest to use one of the simulators
stated in Section 3.2 on page 61.

Synthesizing Stereo. Similarly, if a ToF GT dataset is available where the
reference data has been obtained including RGB/Intensity information such
as the datasets in [43] and the HCI- Laser scanning dataset (Section 4.2 on
page 65), this can be used to synthesize additional views. If only a GT depth
map is available occlusion effects need to be handled consistently.

4.2 Performance Measures

As ToF stereo fusion aims at finding high quality 3D reconstructions, the same
evaluation criteria that are discussed in Chapter 4, Section 5 can be employed.
Here, we will give an overview of the performance criteria reported in the ToF-
Stereo fusion literature and propose some performance criteria specifically for
ToF stereo fusion we deem useful.

4.2.1 Used Measures

Accuracy and precision. Conventional depth measuring approaches such as
laser scanning always state precision (variance of measurement) and accuracy
(systematic bias between GT and measurement). Assuming independently
and identically Gaussian distributed errors in each pixel, then mean and
standard deviation of the signed error would correspond to these measures.
As many real life distributions often have heavy tails, skewing or more than
one mode, robust statistics such as median and interquartile range should be
used. Finally, as there often is a strong correlation between error and external
factors such as viewing angle or texturedness, such scalar error metrics may
not give the complete insight into the behavior. Therefore, wherever possible
we suggest to additionally supply either the complete (1D) error distribution,
or even the error images [32].

Mean squared error, median absolute error. In fusion literature [44,40]
often the mean squared error is reported instead of accuracy and precision.
For real valued functions this corresponds to the sum of variance and squared
bias. Again, due to the inherent quadratic weighting of large errors a better
metric would be the median absolute error instead. The same arguments
against the scalarization of the error as above apply here as well.

Application specific evaluation. For many applications geometry
reconstruction is not the final goal but just a intermediate step. Song et
al. [45] evaluate the edge quality by comparing the obtained depth edges
with pre-labeled silhouette boundaries in a plant phenotyping application
(cf. Chapter 4, Section 5.2 on page 69). This is not only interesting for plant
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phenotyping, where the leaf silhouettes have to be extracted reliably, but
also in multimedia applications where the location and shape of silhouettes
are of vital importance. Zhu et al.[35,44] analyze the deviation between a
box model fitted into the depth data and the GT box by analyzing the an-
gular deviation of the three observed box sides from 90 degrees. Finally, for
view synthesis, the quality criteria is the credibility of the synthesized view.
This evaluation could be achieved having an additional camera capturing
the scene and comparing a synthesized view with the real view.

Eyeballing. The evaluation of ToF stereo fusion methods is still largely qual-
itative in nature due to the lack of sufficient ground truth datasets. For
certain applications (e.g. visual effects) the users can often judge best, how
useful the algorithm results are to them. This process, also called eyeballing,
requires many different scenes to be visually inspected by one or more inde-
pendent expert users. While all proposed methods show qualitative results,
a proper user study has yet to be undertaken.

4.2.2 Proposed Measures/Experiments

Graceful degradation - Alignment. As spatial and temporal alignment (i.e.
extrinsic calibration and synchronous triggering) is a big issue one possible
quality criterion is the robustness towards misalignments. We propose the fol-
lowing experiments to assess this. First a calibrated dataset using the standard
setup is captured. Fusion results for a spatially misaligned setup are then gen-
erated by artificially varying the calibration between ToF and the stereo setup.
Temporal alignment can either be evaluated by capturing the stereo data in a
higher framerate than the ToF images or by interpolating in between frames.

Speed vs. Quality. One claim that all Fusion papers make is that using ToF
data speeds up computation considerably compared to a baseline and many
authors also state the running times of their algorithms. Additionally, an
assessment of execution time (number of iterations, change of search range,
etc.) vs. quality improvement could be made. While it is clear that the speed
of algorithm execution depends heavily on the implementation platform,
hardware and implementation details, we think that a speed over quality
assessment of the algorithms is still necessary. Quality can mean any quality
criteria from endpoint error to precision of edges.

Effect of Fusion. The final claim that many fusion algorithms make is that the
depth maps obtained is better than either depth map alone. The question
that remains is how much better is the algorithm? And how does the scene
composition affect this performance. A fusion algorithm should at least be
as good as the better of the two modalities irrelevant of scene composition.

5 Overview of Fusion Methods

Following [16] we will group the fusion methods based on the optimization strat-
egy that is employed. Local methods [4,46,47,48,49,42,32,50] tend to be faster
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Table 1. General notation used

i, j pixel location
i ∈ Ω pixel i in image domain Ω
j ∈ Ni pixels j in neighborhood of i

{xi} = x Value x at pixel i collectively referred to as x
ste, ToF stereo, ToF
L, R Left/Right image
x̂, x̂i Final estimate for x, xi

dToF, zToF Disparity, Z-depth from ToF (as converted using Sec. 3.4)
dste, zste Disparity, Z-depth from stereo

AToF, IToF Amplitude, Intensity
IL, IR Intensity in Left/Right image

E(x), Ei(x) Objective energy to be minimized (at location i)
R(x) Regularizer
c Confidence / Weights

1ToF (z),1ste(z) Range indicator functions for ToF/stereo
χToF (x), χste(x) Spatial indicator functions for valid/trusted ToF/stereo

γ1, γ2 . . . User Parameters

and parallelizable but cannot cope with locally erroneous data. They are of-
ten based on a line search that is guided by the ToF data. Global methods,
[5,31,35,27,44,26,32,51,52,40,45] add the ToF information as an additional data
term in a global energy functional is then jointly optimized. While the depth
maps obtained are smoother due to the usage of prior information/regularizers,
this is at the cost of additional computational resources. In this overview, we
will further group the global techniques depending the framework that was cho-
sen for optimization. While [31,35,27,44,45] employ different graphical models
for inference, [51,32] formulate the problem in a variational framework. The
last sub-group of the global methods[5,26,52,40] contains those which use other
non-local optimization strategies.

After a discussion of commonalities in each group, we will proceed to describe
each method in detail. The description will start from the point we left in Sec-
tion 3 – that is after all data have been brought to the same reference frame and
after all preprocessing has occurred – except for some special kinds of prepro-
cessing not already mentioned in Section 3. The notation used in the following is
summarized in Table 5. Please note that some algorithms work in the disparity
(d) space while others operate in the depth (z) space. This doesn’t impose any
additional contraint as one representation can be converted into the other using
the extrinsic calibration and Eq. 2.

5.1 Local Methods

The methods presented here have in common that the basic optimization em-
ployed only takes a local sets of pixel values are taken into account. Note, that
the aggregation over support windows, whenever applied, make implicit assump-
tions (e.g. piecewise planar, fronto parallel patches) on surface regularity.
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Kuhnert et al. 2006 [4]. Kuhnert and Stommel proposed the first ToF stereo
fusion algorithm in 2006. Unlike many methods that incorporate the ToF
data into the stereo matching, this methods first independently computes
depth maps and uncertainties for ToF and for stereo and then fuses both data
sources (see also [40]). The stereo algorithm (Winner Takes All [16]) is only
applied to confident regions, using a thresholded Sobel operator response
to obtain a binary confidence map. Then, for each data source per pixel
ranges are estimated for ToF by adding and subtracting 2 sigma of the
previously measured noise. Using indicator functions 1ToF and 1ste for the
depth ranges, the fused depth is then given as.

ẑi =

∫ ∞

0

zi1ToF (zi)1ste(zi)dzi. (3)

This amounts to choosing the mid point of the depth range where the two
ranges from ToF and stereo overlap. Otherwise the depth is set to 0 (invalid).

Beder et al. 2007 [50]. Beder et al. derive a closed form solution to estimating
patch orientation based on ToF and Stereo data. The patchlet is initialized
with the ToF depth data. Next, by deriving analytical formulas for the gra-
dient direction the patch orientation is optimized using stereo and ToF data.
Beder et al. also give a thorough analysis on planar wall scenes as ground
truth.

Gudmundsson et al. 2008 [46] applies a hierarchical stereo matching algo-
rithm directly on the remapped ToF depth data. The reprojected depth is
input into the 4th coursest level of a hierarchical stereo matching algorithm
by van Meerbergen et al. [53] (see also [51]).

Hahne et al. 2009 [48]. First, a binary confidence map is obtained by thresh-
olding the amplitude image. The depth data in unconfident areas are dis-
carded and the holes filled via linear scan line interpolation. Next, only
the unconfident regions are then further refined via correlation based block
matching. The support window shape that is used guided by a watershed
segmentation of the color image. The segmentation is seeded using an eroded
version of the confident and unconfident regions.

d̂i =

{
argmin

di

Este(di) if AToF
i < γ

dToF
i otherwise

. (4)

DalMutto et al. 2010 [49]. The technique is build around a confidence-based
matching in a probabilistic framework. It computes pixel wise probabilities
of ToF and probability of stereo in a cost volume. The ToF probability is
assumed to be a Gaussian centered around the ToF depth. The stereo prob-
ability is given by the truncated absolute difference. The energy resembles
the one used in Eq. 8 without the regularizing terms.

Bartczak et al. 2009 [47]. Bartczak et al. propose an iterative line search
based fusion scheme. After each iteration of the algorithm the obtained depth
map is fed back into the matching score in order to enforce local minima.
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The local matching cost after the nth iteration is given by

En(di) =

∑
j∈Ni

wj(d)

(
EPC(di) +

∑
k<n

ED(di|dk)

)
/(N + 1)

∑
j∈Ni

wi,j(di)
(5)

with d0 = dToF ,dk = argmin
d

(
Ek(d)

)
. In Eq. 5 EPC is the photo consis-

tency cost based on truncated L1 cost weighted and offset by a confidence
in the cost given by the min max range of the cost function. The pixel-wise
depth contribution ED is a truncated L2 cost. Finally, the weights used for
aggregation are given as the product of normal distributions centered around
center pixel a) color b) location and c) photo consistency.

Yang et al. 2010 [42]. The approach by Yang et al. is based on plane-sweeping
stereo [54]. As a preprocessing the technique employs a fast RGB-assisted
bilateral filter. The energy being minimized is

E(zi) = cEToF (zi|zToF
i ) + (1 − c)Este(z). (6)

with EToF being modeled as a truncated quadratic loss between the depth
and the ToF depth. EStereo corresponds to the plane sweeping cost based
on the sum of square (SSD) distance per pixel costs. The confidence c used
for matching is given as

c =
(1 − cste)cToF

((1 − cste)cToF ) + (1− cToF )cste)
. (7)

Here, cste is the stereo confidence given as the likelihood of the current
matching assuming a Gaussian distribution of matching costs in the aggre-
gation window centered around the center pixel cost and cToF is the ToF
confidence, a Gaussian with the amplitude image used as standard deviation.

5.2 Graphical Models

Graphical models have frequently been used in the past to solve the stereo match-
ing problem[55,56,57]. Here the problem of correspondence estimation is treated
as a labeling problem, where each discrete label corresponds to a disparity value.
The energy is interpreted as the negative logarithm of a joint probability distri-
bution defined on a graph, where each node corresponds to an observed (data
term) or latent (depth) random variables the probabilities are defined on cliques
of these graphs. Though continuous extensions of graphical models do exist[58]
the methods presented here still operate on a discrete domain and differ in how
the graph is defined as well as the optimization method used for inference.

Zhu et al. 2008, 2010, 2011 [35,27,44]. In a series of publications starting
with [35] Zhu formulates the problem in a Maximum a priori-MRF frame-
work. In [44] the adaptive weight terms are added and finally in [27] a tempo-
ral smoothing term is added. The graph structure represented by the energy
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functional is given by a temporally layered graph. Each layer represents a
normally 4 connected pixel neighborhood graph. The connections between
layers are given by an optical flow estimate

E(d) = cstereoEstereo

+ cToFEToF (d|dToF )
+ Rsmooth

+ Rtemp

(8)

with EToF (d|dToF ) being a function of the truncated L1 distance between the
estimated disparity and ToF disparity and Estereo(d) based on the Birchfield
and Tomasi matching cost [59]. The spatial smoothness term Rsmooth is a
truncated quadratic penalization. Finally, the temporal regularization Rtemp

is given by the complete cost without the temporal term for the previous and
next frame. The weights are set according to the confidence in each point.
Stereo confidence is the peak to peak ratio of the cost function. ToF reliability
is given by a normal distribution (cf. [49]). Optimization is done using Loopy
Belief Propagation.

Hahne et al. 2008 [31]. The approach by Hahne et al. is based on Graph Cuts
and regularizes the first order Total Variation (TV) of the reconstructed sur-
face. The graph is defined on the cost volume with the optimal cut between
foreground and background nodes being the desired surface. Each voxel is
associated with an consistency edge in z direction. Additionally, smoothing
edges connect the nodes in x and y direction. The nodes themselves reside
in between voxels. The energy considered is

E(z) =
∑
i

(Efused(z) + cfused,x∂xz + cfused,y∂yz) (9)

where Efused is a linear combination of photo consistency and truncated
quadratic cost for the ToF and the smoothing weights cfused determined by
a linear combination of the color difference in the primary stereo image and
the difference of median depth of the ToF output. Note that the variable z
corresponds to the edges in z direction that are chosen in the cut.

Song et al. 2011 [45]. Song et al. use a the standard graph cut stereo approach
[56]. Unlike the previous approach the graph is defined over the image grid
using multiple labels. Inference is done using alpha expansion. The Time of
Flight data is used to reduce the label space in each graph node.

5.3 Variational Fusion

Different to fusion approaches based graphical models as considered in the pre-
vious section, variational fusion approaches consider both a continuous image
domain Ω ⊂ R

2 and continuous variables (functions), indicated by a dependency
on the image coordinates x ∈ R

2.
We start with a brief overview of a general variational framework, before dis-

cussing in detail two recently proposed ToF stereo fusions approaches [32,51],
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Fig. 4. Nair et al. – comparison of ToF only, stereo with semi global matching (SGM)
[60], local and variational fusion. We observe that the local approach gives a rough
estimate of the disparity, which still compares favorably with SGM. The variational
fusion approach provides the most regular result.

which are based on this framework. Since one of these approaches assumes un-
synchronized data, the restriction to solely horizontal correspondences between
the (rectified) stereo images IL and I can not be applied. We therefore describe
this correspondence in terms of an optical flow field u = (ux, uy)

� : Ω → Ω, also
referred to as displacement field.
We recall the general form of an variational approach given as

E(u) := Edata(u) + λR(u), (10)

to be minimized w.r.t. u, whereEdata(u) is the data term, R(u) is a regularization
term and λ > 0 is a regularization parameter. A standard data term for optical
flow based on the linearized brightness constancy assumption [61,62] is

Edata(u) := ‖ρ(u)‖L1 :=

∫
Ω

ρ(u(x)) dx, (11)

where

ρ(u(x)) :=
∣∣IL(x + u0(x)) + 〈∇IL(x+ u0(x)), u(x) − u0(x)〉 − IR(x)

∣∣ (12)

with some approximation u0 of u. The above framwork is typically used in combi-
nation with a coarse-to-fine multi-scale approach (image pyramid), see e.g. [62],
where u0 is updated on each scale. The two fusion approaches considered below
differ to this standard form in the way how additional information on the image
correspondence from a different modality is introduced into this framework and
how the initial approximation u0 is obtained.

Nair et al. 2012 [32]. Nair et al. consider a synchronized camera setup which
allows rectification of the stereo images. As a consequence the displacement
field can be assumed to be horizontal (ux = d with disparity d, uy = 0).

The proposed approach consist of two stages, which both make use of
confidence measures to determine regions where the ToF or the stereo data
might be corrupted. These confidence measures cover problems with low
signal intensity and flying pixels for the ToF data, and regions with weak
textures and occlusions in the stereo data. A detailed review of the exact
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(a) (b) (c)

Fig. 5. Ruhl et al. – input data example: approximate depth data from multiple unsyn-
chronized Kinects to be used as uncertain prior to image correspondence estimation.
(a) HD camera image, (b) VGA depth map (invalid depth data marked in red), (c)
depth points projected into world space.

definition of these measures is out of the scope of this section; instead we
refer the reader to [32].

The first stage of the proposed approach consists in a local fusion us-
ing block matching combined with these fidelity measures. Later on, in the
second stage, the result of the local method is used as initialization. Alter-
natively, the local fusion approach can serve as a stand-alone method with
low numerical costs.

To improve the result of the local fusion approach in a second stage, a
modification of the variational framework in Eq. 10 is considered, where the
standard data term is replaced by

Edata(u) :=

∫
Ω

χToF (x)ρToF (u(x)) + χste(x)ρste(u(x)) dx (13)

with two local terms ρToF (u) and ρste(u) penalizing the deviation from the
ToF and stereo data, respectively. (We refer the reader to [32] for the exact
definition of these two terms.) The aforementioned confidence measures are
used to determine locally which of the two data modalities is preferable to the
other by defining the indicator functions χToF and χste in Eq. 13. Thus, the
individual data terms are active only in the corresponding image regions. As
regularization term an adaptive approach based on first- and second-order
total variation is used.

We refer to Fig. 4 for a comparison of the results from both stages.

Ruhl et al. 2012 [51]. The authors consider a fusion system, which focuses
on settings with unsynchronized cameras. Such a setting complicates recon-
struction as typical algorithms require input data captured at the same time
instance. In particular, here, the images correspondences do not only depend
on the camera geometry, but also on a change of the scene between the indi-
vidual image recordings. As a consequence, the correspondences in general
can not be assumed to be horizontal. The approach makes use of a given
depth proxy to guide an image correspondence algorithm that establishes
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(a) (b)

Fig. 6. Ruhl et al. – stage 1 vs. 2: Approximate prior vs. estimation guided by approx-
imate prior. (a) source image warped directly by approximate prior (b) source image
warped after dense image correspondence estimation guided by the approximate prior.
The large-displacement, occlusion and low-texture matching properties have been pre-
served while detail errors are much less present.

the necessary connections between the input RGB images. The proposed
method is not restricted to ToF, as the depth data can be obtained with any
available method, but it can be used directly in a ToF stereo fusion setting.

The two stage approach can be briefly summarized as follows:

First stage: Different alternatives are considered to obtain a prior for the
stereo correspondence. One alternative is to use depth sensors such as ToF
or Kinect (cf. Fig. 5). The second one is to use very coarse, manually mod-
eled geometric proxies, which are e.g. a common byproduct of visual media
productions. In both cases, the core idea is, after assuming fully calibrated
camera systems, to project the 3D world coordinates from the scene into im-
age planes of the stereo cameras to obtain (possibly sparse) correspondences
that ideally map to a disparity field u(x), but may also deviate from epipolar
geometry to some extent.

Second stage: The variational framework introduced in Eq. 10 is used with
the data term defined as in Eq. 11 and using total variation regularization.
The correspondence prior ũ(x) from the first stage enters the approach in the
interpolation phase, when the initialization u0 for the next finer step of the
image pyramid is set up. Values of u0(x) from the coarser level are replaced
by the values of prior ũ(x), if the employed confidence measure allows it.

We refer to Fig. 6 for an example comparing direct application of a depth-
based prior ũ against the results of a dense image correspondence estimation
merely guided by ũ using a confidence measure.

5.4 Other Methods

Kim et al. 2009 [26]. Kim et al. propose a volumetric approach. The initial
surface is given by the ToF depth. This is further refined by optimizing
an energy function including ToF, stereo, silhouette terms and a Laplacian
prior. Optimization is done with the L-BFGS optimizer [63].
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Fischer et al. 2011 [5]. Fischer et al. extended Semi-Global Matching Stereo
by the approach of Hirschmüller [64] to account for ToF-Stereo data. The
algorithm works in disparity space. The energy being minimized is given as

E(d) =
∑
i

Cdata(di) +
∑
j∈Ni

γ1χ{|di−dj|=1} +
∑
j∈Ni

γ2χ{{|di−dj|>1}, (14)

where d is the disparity, χA is 1 when the condition A is true and 0 otherwise
and 0 < γ1 < γ2 are the user specified parameters. The data term in Eq. 14
is defined via

Cdata(d) :=

{
CToF (d) if theToF data is valid,

CBT (d) otherwise,
(15)

where CToF is a truncated reverse Gaussian centered around the ToF dis-
parity estimate. Note that either ToF or stereo data are used but not both
at the same time. The ToF data is invalidated, if the photo consistency score
for the ToF disparity is below a certain threshold. The regularizer does not
penalize small spatial variations in disparity. As no additional term is added
to the functional the optimization step remains the same as in [64] and is
done in 16 different 1D directions. As a preprocessing step outliers in the
ToF depth image are removed via wavefront propagation.

DalMutto et al. 2012 [40]. Based on locally consistent stereo [65] the tech-
nique uses a segmentation of the RGB image to guide a bilateral filter for
ToF data upsampling. The algorithm takes two depth hypothesis from a
stereo algorithm (semi global matching) and ToF respectively which are cal-
culated independently. Each pixel then propagates both depth hypothesis
independently according to [65] to surrounding pixel based on color similar-
ity, spatial proximity and photo consistency. Every pixel then has a number
of ‘votes’ casted by neighboring pixels. From these hypothesis the one with
the highest plausibility is finally chosen.

Gandhi et al. 2012 [52]. The basic idea here is to combine the reprojection
and interpolation step of the ToF depth map on the reference frame with a
stereo matching procedure. The proposed technique is based on [66], with the
difference that , reprojected ToF pixels are used as input instead of sparsely
matched feature points. The reprojected ToF points are used as initial seeds
for a region growing stereo algorithm. The seeds are first put in a priority
queue based on their photo consistency score. Next, the seed with the highest
priority is removed from the queue and the corresponding disparity drawn
into a final disparity map. The neighbors of the pixel that has just been
finalized are then added to the priority queue using the depth estimate with
the best stereo score, found by searching around the interpolated ToF depth
estimate. This process is repeated until all pixels in the final depth map
are drawn, thus implicitly discarding ToF measurements with a bad photo
consistency score.
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6 Conclusion

We presented an overview over current ToF stereo fusion techniques as well as
a guide to setting up such a system. Furthermore, we discussed the importance
of high quality depth maps in multimedia applications due to the requirements
that applications such as matting, view synthesis or CG effects impose on depth
map quality. Still, more effort has to be put into assessing the actual benefits
of the ToF stereo fusion over either method alone in a more systematic fashion.
We considered various approaches to evaluate these methods and proposed new
experiments that should be included in a future evaluation. Finally, we note
that currently not all possible depth modalities available from such a system are
actually being made use of for fusion purposes. Systems in the future may use
the additional modalities to achieve a better accuracy.
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