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Preface

Cameras for 3D depth imaging, using either time-of-flight (ToF) or structured
light sensors, have received a lot of attention recently and have matured con-
siderably over the last few years. Presently, these techniques make full-range
3D data available at video frame rates, and thus open the path toward a much
broader application of 3D vision systems.

A series of workshops have closely followed the developments on ToF imaging
over the years, like the Dynamic 3D Vision workshops in conjunction with the
annual conference of the German Association of Pattern Recognition (DAGM)
in 2007 and 2009, as well as the CVPR workshops Time-Flight Camera-Based
Computer Vision (TOF-CV) in 2008 and later years. The advent of the Kinect
depth sensor in 2010 as a versatile and inexpensive depth imaging device has
further opened the field for depth-based algorithms. Today, depth imaging work-
shops can be found at every major computer vision conference.

As a consequence, a prominent selection of leading researchers in the field
of ToF and depth imaging decided to initiate a seminar at Schloss Dagstuhl
- Leibniz Center for Informatics, which was successfully held in October 2012.
All aspects of ToF depth imaging, from sensors and basic foundations, over
algorithms for low-level processing, to important applications that exploit depth
imaging, were discussed. The results of this workshop are compiled in this state-
of-the-art survey series on ToF imaging. Eleven chapters, with an average of
25 pages each and over 700 reference citations in total, convey an excellent
overview over all aspects of ToF foundations, algorithms, and applications. The
survey is divided into three parts. “Part I: Foundations of Depth Imaging”,
discusses in four contributions the basic working principle, sensor calibration,
image enhancement, and the important issue of benchmarking ToF systems.
“Part II: Depth Data Processing and Fusion”, deals with advanced data fusion
combining ToF, color and stereo sensors, the handling of mirror surfaces, and the
tracking of deformable scenes. In ”Part III: Human-Centered Depth Imaging”,
the important application area of human—machine interfaces using ToF images
is surveyed. Human motion analysis from depth images, gesture interfaces, as
well as full-body motion capture is analyzed. This section concludes with a survey
on range imaging in health care.

As follow-up on recent activities in the field, a workshop on Imaging New
Modalities was held at the German Conference on Pattern Recognition, GCPR
2013, in Saarbrücken, Germany. Part IV of this volume comprises the proceed-
ings of this workshop. A state-of-the-art report on the Kinect sensor and its
applications is followed by two reports on local and global ToF motion compen-
sation, picking up a very current aspect closely related to Part I of the survey,
and a novel depth capture system using a plenoptic multi-lens multi-focus cam-
era sensor.



VI Preface
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organizers, the sponsors, the supporting organizations, and, last but not least,
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Technical Foundation and Calibration Methods

for Time-of-Flight Cameras

Damien Lefloch1, Rahul Nair2,3, Frank Lenzen2,3, Henrik Schäfer2,3,
Lee Streeter4, Michael J. Cree4, Reinhard Koch5, and Andreas Kolb1

1 Computer Graphics Group, University of Siegen, Germany
2 Heidelberg Collaboratory for Image Processing, University of Heidelberg, Germany

3 Intel Visual Computing Institute, Saarland University, Germany
4 University of Waikato, New Zealand

5 Multimedia Information Processing, University of Kiel, Germany

Abstract. Current Time-of-Flight approaches mainly incorporate an
continuous wave intensity modulation approach. The phase reconstruc-
tion is performed using multiple phase images with different phase shifts
which is equivalent to sampling the inherent correlation function at dif-
ferent locations. This active imaging approach delivers a very specific set
of influences, on the signal processing side as well as on the optical side,
which all have an effect on the resulting depth quality. Applying ToF
information in real application therefore requires to tackle these effects
in terms of specific calibration approaches. This survey gives an overview
over the current state of the art in ToF sensor calibration.

1 Technological Foundations

Time-of-Flight (ToF) cameras provide an elegant and efficient way to capture 3D
geometric information of real environments in real-time. However, due to their
operational principle, ToF cameras are subject to a large variety of measurement
error sources. Over the last decade, an important number of investigations con-
cerning these error sources were reported and have shown that they were caused
by factors such as camera parameters and properties (sensor temperature, chip
design, etc), environment configuration and the sensor hardware principle. Even
the distances measured, the primary purpose of ToF cameras, have non linear
error.

ToF sensors usually provide two measurement frames at the same time from
data acquired by the same pixel array; the depth and amplitude images. The
amplitude image corresponds to the amount of returning active light signal and
is also considered a strong indicator of quality/reliability of measurements.

Camera calibration is one of the most important and essential step for Com-
puter Vision and Computer Graphics applications and leads generally to a signif-
icant improvement of the global system output. In traditional greyscale imaging
camera calibration is required for factors such as lens dependent barrel and pin-
cushion distortion, also an issue in ToF imaging. In ToF cameras the on-board

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 3–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 D. Lefloch et al.

technology is more complicated, and leads to different errors which strongly re-
duce the quality of the measurements. For example, non-linearities in distance
which also require calibration and correction.

The work herein is a complete and up to date understanding of Time-of-
Flight camera range imaging, incorporating all known sources of distance errors.
The paper supplies an exhaustive list of the different measurement errors and a
presentation of the most popular and state of art calibration techniques used in
the current research field. We primarily focus on a specific ToF principle called
Continuous Modulation Approach (see Sec. 1.1) that is widely used nowadays,
because continuous wave technology dominates the hardware available on the
market. However, many of the techniques described are also useful in other ToF
measurement techniques.

The chapter is organized as follows: Sections 1.1 and 1.2 give an overview of
the basic technological foundation of two different ToF camera principles. In Sec-
tion 2, a presentation of all different measurement errors of ToF sensors will be
given. Section 3 discusses camera calibration techniques and several issues that
appear. To conclude, Section 4 will introduce current image processing tech-
niques in order to overcome scene dependent error measurement which cannot
be handled directly by calibration procedure.

1.1 Continuous Modulation Approach

Most of the ToF manufacturers built-in the following principle in their cameras
such as pmdtechnologies1, Mesa Imaging2 or Soft Kinetic3 (cf. Fig. 1). These
cameras are able to retrieve 2.5D image at a frame rate of 30FPS; pmdtechnolo-
gies is currently working on faster device (such as the Camboard Nano) which
operates at 90FPS. Note that common ToF cameras usually use high modulation
frequency range that make them suitable for near or middle range applications.

Fig. 1. Different ToF phase based camera models available in the market. A PMD
CamCube 2.0 (left), a swissranger SR 400 (middle) and a DepthSense DS325 (right).

1 http://www.pmdtec.com/
2 http://www.mesa-imaging.ch/
3 http://www.softkinetic.com/

http://www.pmdtec.com/
http://www.mesa-imaging.ch/
http://www.softkinetic.com/
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The continuous modulation principle, also known as a continuous wave inten-
sity modulation (CWIM) [1], is based on the correlation of the emitted signal oτ
shifted by an offset phase τ and the incident signal r resulting from the reflection
of the modulated active illumination (NIR light) by the observed scene. CWIM
is used to estimate the distance between the target (i.e. observed objects) and
the source of the active illumination (i.e. the camera). CWIM ToF sensors di-
rectly implement the correlation function on chip, composed of what is known
in the literature as smart pixels [1].

The correlation function c(t) at a specific phase offset sample τ = 0, π
2 , π,

3π
2

is defined as

cτ (t) = r(t) ⊗ oτ (t) = lim
T→∞

∫ T/2

−T/2

r(t) · oτ (t) dt. (1)

Both emitted and incident signal can be expressed as a cosinusoidal function:

oτ (t) = cos ((ω + fmτ) · t) , r(t) = I +A cos (ωt+ φ) (2)

where ω = 2πfm represents the angular frequency of fm, I is the offset of
the signal, A the amplitude of the reflected signal and φ is the phase shift
directly relating to the object distance. Using trigonometric relations [1], one
can simplified the correlation function as:

cτ =
A

2
cos (τ + φ) + I. (3)

There are three unknowns in Eq. 3 so at least three measurements are re-
quired in order to perform a single estimation of distance, amplitude and offset.
Typically four samples of the correlation function c are sequentially acquired at
specific discrete phase offsets Ai = cτ , τ = i · π

2 , i = 0, ..., 3. More measurements
improves the measurement precision but also incorporates additional errors due
to the sequential sampling such as motion blur which will be discuss later on.
The measured amplitude A, phase φ and intensity I are given by:

φ = arctan

(
A3 −A1

A0 −A2

)
, (4)

I =
1

4
·

3∑
i=0

Ai, (5)

A =
1

2
·
√
(A3 −A1)

2
+ (A0 −A2)

2
. (6)

Once the phase φ is reconstructed, the object distance d is easily computed using
the speed of light in the dominated medium c ≈ 3·108m·s−1 and the modulation
frequency of the active illumination fm:

d =
c

4πfm
φ. (7)



6 D. Lefloch et al.

Since the described principle is mainly based on phase shift calculation, only
a range of distances within one unambiguous range [0, 2π] can be retrieved.
This range depends on the modulation frequency fm used during the acquisition
giving a maximum distance of dmax = c

2fm
that can be computed. Note that the

factor 2 here is due to the fact that the active illumination needs to travel back
and forth between the observed object and the camera. It is understood that in
this simple depth retrieval calculation from the phase shift, φ, simplifications are
made which leads to possible measurement errors, e.g the assumption that the
active illumination module and the ToF sensors are placed in the same position
in space; which is physically impossible.

1.2 Pulse Based Approach

Conversely, pulse modulation is an alternative time-of-flight principle which gen-
erates pulse of light of known dimension coupled with a fast shutter observation.
The 3DV System camera is using this class of technology also known as shut-
tered light-pulse (SLP) sensor in order to retrieve depth information. The basic
concept lies on the fact that the camera projects a NIR pulse of light with known
duration (i.e. known dimension) and discretized the front of the reflected illumi-
nation. This discretization is realized before the returning of the entire light pulse
using a fast camera shutter. The portion of the reflected pulse signal actually
describes the shape of the observed object. Conversely to the unambiguous range
seen in continuous modulation approach, the depth of interest is directly linked
to the duration of the light pulse and the duration of the shutter (tpulse+δs). This
phenomenon is known as light wall. The intensity signal capture by the sensor
during the shutter time is strongly correlated with the depth of the observed
object. Since nearer object will appear brighter. This statement is not fully ex-
act, since the intensity signal also depends of the observed object reflectivity
property. As Davis stated [2], double pulse shuttering hardware provide a better
depth measurement precision than the ones based on a single shutter.

Note that shuttered light-pulse cameras are also subject to similar errors in-
troduced in Sec. 1. But due to the fact that this type of cameras are not easily
available and that less calibration methods were specially designed for it, we will
concentrate in the following sections on continuation modulation approach.

2 Error Sources

In this section, a full understanding of ToF camera error sources is developed
(errors identification and explanation). Calibration approaches that tackle the
intrinsic errors of the sensor to correct incorrect depth measurements are pre-
sented in Sec. 3. Errors based of extrinsic influences, such as multi-path reflection
or motion can be corrected with methods presented in Sec. 4.
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Beside integration time, that directly influences the signal-to-noise ratio (SNR)
of the measurement and consequently the variance of the measured distance, the
user can influenced the quality of the measurements made by setting the fm value
to fit the application. As stated by Lange [1], as fm increases the depth resolution
increases but the non ambiguity range decreases.

2.1 Systematic Distance Error

Systematic errors occur when the formulas used for the reconstruction do not
model all aspects of the actual physical imager. In CWIM cameras a prominent
such error is caused by differences between the actual modulation and correlation
functions and the idealized versions used for calculations. In case of a sinusodial
modulation Sec. 1.1 , higher order harmonics in the modulating light source
(Fig. 2.1) induce deviations from a perfect sine function.Use of the correlation
of the physical light source with the formulas 1.1 lead to a periodic ”wiggling”
error which causes the calculated depth to oscillate around the actual depth.
The actual form of this oscillation depends on the strength and frequencies of
the higher order harmonics. [1,3].

Fig. 2. Left:Measured modulation of the PMD light source: Right: Mean depth devia-
tion as a function of the real distance. Images from [4].

There are two approaches for solving this problem. The first approach is to
sample the correlation more phase shifts and extend the formulas to incorporate
higher order harmonics[5]. With current 2-tap sensor this approach induces more
errors when observing dynamic scenes. The second approach which we will fur-
ther discuss in 3.2 is to keep the formulas as they are and estimate the residual
error between true and calculated depth [6,7] . The residual can then be used
in a calibration step to eliminate the error. Finally, [8] employ a phase modu-
lation of the amplitude signal to attenuate the higher harmonics in the emitted
amplitude.
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2.2 Intensity-Related Distance Error

In addition to the wiggling systematic error, the measured distance is greatly
altered by an error dependent of the total amount of incident light recieved by
the sensor. Measured distance of lower reflectivity objects appear closer to the
camera (up to 3cm drift for the darkest objects). Fig. 3 highlights this error
effect using a simple black-and-white checkerboard pattern. The described error
is usually known as Intensity-related distance error and its cause is not fully
understood yet [9].

Nevertheless, recent investigation [10] shows that ToF sensor has a non-linear
response during the conversion of photons to electrons. Lindner et al. [9] claims
that the origin of the intensity-related error is assumed to be caused by non-
linearities of the semi conductor hardware.

A different point of view would be to consider the effect of multiple returns
caused by inter-reflections in the sensor itself (scattering between the chip and
the lens). Since the signal strength of low reflectivity objects is considerably
weak, they will be more affected by this behavior than for high signal strength
given by brighter objects. For more information about multi-path problems on
ToF cameras, referred to Sec. 2.5.

Fig. 3. Impact of the intensity-related distance error on the depth measurement: Left
image shows the intensity image given by a ToF camera. Right image shows the surface
rendering obtained by the depth map colored by its corresponding intensity map. Note
that those images were acquired using a PMD CamCube 2.0, PMDTechnologies GmbH

2.3 Depth Inhomogeneity

An important type of errors in ToF imaging, the so-called flying pixels, occurs
along depth inhomogeneities. To illustrate these errors, we consider a depth
boundary with one foreground and one background object. In the case that the
solid angle extent of a sensor pixel falls on the boundary of the foreground and
the background, the recorded signal is a mixture of the light returns from both
areas. Due to the non-linear dependency of the depth on the raw channels and
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the phase ambiguity, the resulting depth is not restricted to the range between
foreground and background depth, but can attain any value of the camera’s
depth range. We will see in Section 4.1, that is important to distinguish between
flying pixels in the range of the foreground and background depth and outliers.
The fact that today’ ToF sensors provide only a low resolution promotes the
occurrence of flying pixels of both kinds.

We remark that the problem of depth inhomogeneities is related to the mul-
tiple return problem, since also here light from different paths is mixed in one
sensor cell. In the case of flying pixels, however, local information from neigh-
boring pixels can be used to approximately reconstruct the original depth. We
refer to Section 4.1 for details.

2.4 Motion Artifacts

As stated in 1.1, CWIM ToF imagers need to sample the correlation between
incident and reference signal at least using 3 different phase shifts. Ideally these
raw images would be acquired simultaneously. Current two tap sensors only
allow for two of these measurements to be made simultaneously such that at
least one more measurement is needed. Usually, further raw images are acquired
to counteract noise and compensate for different electronic charateristics of the
individual taps. Since these (pairs) of additional exposures have to be made
sequentially, dynamic scenes lead to erroneous distance values at depth and
reflectivity boundaries.

Methods for compensating motion artifacts will be discussed in Section 4.2.

2.5 Multiple Returns

The standard AMCW model for range imaging is based on the assumption that
the light return to each pixel of the sensor is from a single position in the scene.
This assumption, unfortunately, is violated in most scenes of practical interest,
thus multiple returns of light do arrive at a pixel and generally lead to erroneous
reconstruction of range at that pixel. Multiple return sources can be categorised
due to two primary problems. Firstly, the imaging pixel views a finite solid angle
of the scene and range inhomogeneities of the scene in the viewed solid angle
lead to multiple returns of light—the so-calledmixed pixed effect which results in
flying pixels (see Section 2.3 above). Secondly, the light can travel multiple paths
to intersect the viewed part of the scene and the imaging pixel—the multipath
inteference problem. Godbaz [11] provides a thorough treatment of the multiple
return problem, including a review covering full field ToF and other ranging
systems with relevant issues, such as point scanners.

In a ToF system light returning to the sensor is characterised by amplitude A
and phase shift φ. The demodulated light return is modelled usefully as the
complex phasor

η = Aejφ, (8)
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φ1

η1

I

R

ξ

φ2
η2

Fig. 4. Phasor diagram of the demodulated output in complex form. The primary
return, η1, is perturbed by a secondary return, η2, resulting in the measured phasor, ξ.

where j =
√−1 is the imaginary unit. When light returns to a pixel via N mul-

tiple paths then the individual return complex phasors add yielding a total
measurement ξ given by

ξ =

N∑
n=1

ηn =

N∑
n=1

Ane
jφn . (9)

One of the phasors is due to the primary return of light, namely that of the
ideal path intended in the design of the imaging system. Note that the primary
return is often the brightest return, though it need not be. Let us take η1 as the
primary return and every other return (η2, η3, etc.) as secondary returns arising
from unwanted light paths. A diagram of the two return case is shown in Fig. 4.
Note that when the phase of the second return φ2 changes, the measured phasor
ξ changes both in amplitude and phase.

It is useful to categorise multiple returns due to multipath interference as to
those that are caused by scattering within the scene and those resulting from
scattering within the camera. Scene based multi-path interference arises due to
light reflecting or scattering off multiple points in the scene to arrive at the same
pixel of the sensor, and is frequently the most obvious effect to see in a ToF range
image. The following example illustrates a common situation. Consider a scene
where there is a large region of shiny floor exhibiting specular reflection. When
light diffusely reflects off some other surface, such as a wall or furniture, a portion
of that light is diffusely reflected so that it travels down towards the floor. When
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the ToF camera is viewing the floor and wall a hole is reconstructed in the floor,
where the position of the hole aligns with the light path from camera to wall,
wall to floor, and then back to the camera. The distance into the hole is due
to the phase of the total measured phasor and is determined by the relative
amplitude and phase of the component returns, as per Eq. 9. Another example
that exhibits strong multipath interference is the sharp inside corner junction
between two walls [12]. The light bouncing from one wall to the other causes the
camera to measure an erroneous curved corner.

Multipath interference can also occur intra-camera due to the light refraction
and reflection of an imaging lens and aperture [13,14,15]. The aperture effect
is due to diffraction which leads to localised blurring in the image formation
process. Fine detail beyond the limits in angular resolution is greatly reduced,
causing sharp edges to blur. Aberrations in the lens increase the loss in resolu-
tion. Reflections at the optical boundaries of the glass produce what is commonly
referred to as lens flare [16], which causes non-local spreading of light across the
scene. In ToF imaging the lens-flare effect is most prominent when a bright fore-
ground scatterer is present. The foreground object does not need to be directly
visible to the camera, as long as the light from the source is able to reach that
object and reflect, at least in part, back to the lens [17]. Such light scattering
leads to distorted reconstructed ranges throughout the scene with the greatest
errors occurring for darker objects.

2.6 Other Error Sources

ToF camera sensors suffer from the same errors as standard camera sensors. The
most important error source in the sensor is a result of the photon counting
process in the sensor. Since photons are detected only by a certain probability,
Poisson noise is introduced. We refer to Seitz [18] and the thesis by Schmidt [10,
Sect. 3.1] for detailed studies on the Poisson noise. An experimental evaluation
of noise characteristics of different ToF cameras has been performed in by Erz
& Jähne [19]. Besides from that other kinds of noise, e.g. dark (fixed-pattern)
noise and read-out noise, occur.

In ToF cameras, however, noise has a strong influence on the estimated scene
depth, due to the following two issues

– The recorded light intensity in the raw channels is stemming from both active
and background illumination. Isolating the active part of the signal reduces
the SNR. Such a reduction could be compensated by increasing the integra-
tion time, which on the other hand increases the risk of an over-saturation of
the sensor cells, leading to false depth estimation. As a consequence, a trade-
off in the integration time has to be made, often leading to a low SNR in the
raw data, which occurs especially in areas with extremely low reflectivity or
objects far away from the sensor.

– Since the estimated scene depth depends non-linearly on the raw channels
(cf. Eqs. 4 and 7), the noise is amplified in this process. This amplification is
typically modeled ([1,20]) by assuming Gaussian noise in the raw data and
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performing a sensitivity analysis. By this simplified approach, it turns out
that the noise variance in the final depth estimates depend quadratically on
the amplitude of the active illumination signal. In particular, the variance
can change drastically within the different regions of the scene depending on
the reflectivity and the distance of the objects.

Due to these short-comings current ToF cameras have a resolution smaller than
half VGA, which is rather small in comparison to standard RGB or grayscale
cameras.

We remark that the noise parameters of ToF cameras are part of the EMVA
standard 1228[21], thus they are assumed to be provided in the data sheet, if
the ToF camera conforms to the standard.

We finally consider a scenario, where several ToF cameras are used to retrieve
depth maps of a scene from different viewpoints. As a consequence of the modu-
lation of the active illumination, the emitted light of each camera can affect the
recordings of the other cameras, leading to false depth estimates. Some camera
manufacturers account for this issue by allowing to change the modulation in
the camera settings. In case that the modulation frequency of one sensor does
not match the frequency of the light from a different light source, the effect of
interference can be reduced as long as the integration time for the raw channels
is far larger than 1

fm
.

3 Calibration Approaches

In this section, the approaches to handle individual error sources are explained in
detail. First a foundation on standard camera calibration techniques is presented
to be followed by ToF depth calibration and depth enhancement.

3.1 Standard Camera Calibration

Optical camera calibration is one of the basic requirements before precise mea-
surements can be performed. The optical lens configuration and the camera
assembly determine the optical path of the light rays reaching each pixel. One
has to distinguish between the camera-specific parameters that determine the
optical rays in camera-centered coordinates, termed intrinsic calibration, and
the extrinsic calibration which determines the 3D position and 3D orientation
(the pose) of the camera coordinate system in 3D world coordinates.

Typically, the intrinsic parameters are defined by the linear calibration matrix,
K, which holds the camera focal length f , the pixel size sx, sy, and the optical
image center cx, cy of the imaging chip. In addition, non-linear image distortion
effects from the lens-aperture camera construction have to be included, which can
be severe in cheap cameras and for wide-angle lenses. A polynomial radial and
tangential distortion function is typically applied to approximate the distortion
effects. Radial-symmetric and tangential coefficients for polynomials up to 3rd
order are included in the intrinsic calibration.
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Unfortunately, it is very difficult to determine the intrinsic parameters by
inspecting the optical system directly. Instead, intrinsic and extrinsic parameters
have to be estimated jointly. A known 3D reference, the calibration object, is
needed for this task, since it allows to relate the light rays emitted from known
3D object points to the 2D pixel in the camera image plane. A non-planar 3D
calibration object with very high geometric precision is preferred in high-quality
photogrammetric calibration, but these 3D calibration objects are difficult to
manufacture and handle, because they ideally should cover the complete 3D
measurement range of the camera system. In addition, when calibrating not
only optical cameras but also depth cameras, the design of such 3D pattern is
often not possible due to the different imaging modalities of depth and color.

Therefore, a planar 2D calibration pattern is preferred which allows a much
easier capture of the calibration data. A popular approach based on a 2D pla-
nar calibration pattern was proposed by Zhang[22]. The 2D calibration object
determines the world coordinate system, with the x-y coordinates spanning the
2D calibration plane, and the z coordinate spanning the plane normal direction,
defining the distance of the camera center from the plane. For 3D point identi-
fication, a black and white checkerboard pattern is utilized to define a regular
spacing of known 3D coordinates. In this case, a single calibration image is not
sufficient, but one has to take a series of different calibration images while mov-
ing and tilting the calibration plane to cover the 3D measurement range of the
system. For each image, a different extrinsic camera pose has to be estimated,
but all intrinsic parameters remain fixed and are estimated jointly from the im-
age series. This is advantageous, since some of the calibration parameters are
highly correlated and need disambiguation. For example, it is difficult to distin-
guish between the extrinsic camera distance, z, and the intrinsic focal length,
f, because f is similar to a simple magnification and inversely proportional to
z. However, if sufficiently many different camera distances are recorded in the
calibration sequence, one can distinguish them from the constant focal length.

Another source of error during calibration is the optical opening angle of the
camera, the field of view fov. Calibration of a camera with narrow fov leads
to high correlation between extrinsic position and orientation, because moving
the camera in the x-y plane and simultaneous rotating it to keep the camera
focused on the same part of the calibration pattern is distinguishable only by
the perspective distortions in the image plane due to out-of-plane rotation of the
calibration object[23,7]. Hence it is advisable to employ wide-angle cameras, if
possible, for stable extrinsic pose estimation. Brought to the extreme, one would
like to use omnidirectional or fisheye cameras with extremely large fov for best
possible extrinsic pose estimation. In this case, however, it is also advisable to
increase the available image resolution as much as possible, since for large fov
optics the angular resolution per pixel decreases. See [24] for a detailed analysis.

The focus of this contribution is to calibrate a tof depth camera from image
data. Given the above discussion, it is clear that this will be a difficult prob-
lem. The cameras typically have a limited fov by construction, since its infrared
lighting has to illuminate the observable object region with sufficient intensity.



14 D. Lefloch et al.

Thus, wide fov illumination is not really an option, unless in very restricted
situations. In addition, the image resolution is typically much lower than with
modern optical cameras, and this will not change soon due to the large pixel size
of the correlating elements. Finally, no clear optical image is captured but only
the reflectance image can be utilized for calibration. Early results show that the
quality of the calibration using the approaches as described above is poor[6,25].

However, there is also an advantage of using depth cameras, since the camera
distance z can be estimated with high accuracy from the depth data, eliminating
the f/z ambiguity. The calibration plane can be aligned with all depth measure-
ments from the camera by plane fitting. Hence, all measurements are utilized
simultaneously in a model-based approach that compares the estimated plane
fit with the real calibration plane. More general, a virtual model of the calibra-
tion plane is built, including not only geometry but also surface color, and is
synthesized for comparison with the observed data. This model-driven analysis-
by-synthesis approach exploits all camera data simultaneously, and allows further
on to combine the ToF camera with additional color cameras, which are rigidly
coupled in a camera rig. The coupling of color cameras with depth cameras is
the key to high-quality calibration, since it combines the advantages of color
and depth data. High-resolution color cameras with large fov allow a stable and
accurate pose estimation of the rig, while the depth data disambiguates z from
f . The synthesis part is easily ported to GPU-Hardware, allowing for fast cali-
bration even with many calibration images4. For details about this approach we
refer to [26,7]. The approach allows further to include non-linear depth effects,
like the wiggling error, and reflectance-dependent depth bias estimates into the
calibration[27]. Depth calibration will be discussed next.

3.2 Depth Calibration

As described in 2, there are several reasons for a deviation of actual depth and
depth measured by the ToF camera. To record accurate data, a thorough depth
calibration has to be done. It should be noted here, that since the ToF camera
measures the time of flight along the light path of course, error calibration should
be done with respect to the radial distance as well, not in Cartesian coordinates.

One of the first contributions to this topic is [6] by Lindner and Kolb. They
combined a pixelwise linear calibration with a global B-splines fit. In [7] Schiller
et. al. used a polynomial to model the distance deviation.

Since a large share of the deviation is due to the non-sinusoidal illumination
signal 2.1, an approach modelling this behavior is possible as well, as shown in
[10]. But a completely model based behaviour would have to incorporate other
error sources as well, like the intensity related distance error 2.2, which is not
yet understood and hence, there is no model to fit to the data.

Lindner and Kolb used two separate B-spline functions to separate the dis-
tance and intensity related error in [28], even the integration time is considered

4 Software is available at
http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=Calibration

http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=Calibration
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by linear interpolation of the control points. The drawback of this method is the
large amount of data, necessary to determine all the parameters of the compen-
sation functions.

Lindner et. al. reduce the amount of necessary data in [27]. They use a mod-
ified calibration pattern, a checkerboard with different greylevels and introduce
a normalization for the intensity data of different depths, reducing the amount
of necessary data considerably.
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Fig. 5. Average intensity, amplitude and depth over time, showing an obvious temper-
ature drift

However, the calibration is only valid for the camera temperature it was
recorded at, since the behavior changes with the temperature ([29,10]). Fig.
5 shows the temperature drift of intensity, amplitude and depth measurement of
a PMD CamCube 3, averaged over the whole image for two hours after power
on.

For the temperature drift, there does not yet exist a proper investigation. Also
the cameras usually lack a sensor to measure the current temperature.

4 Post-Processing Data Correction

The final part of the chapter will focus on depth correction that cannot be
handled directly using calibration. Since those additional errors are usually scene
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dependent (as dynamic environment), a last processing needs to be applied after
the depth correction via calibration in order to increase the reliability of ToF
range measurements.

This section is divided into three subsections and will present state-of-the-art
techniques to correct the remaining errors.

4.1 Depth Inhomogeneity and Denoising

For the task of denoising Time-of-Flight data, we refer to Chapter 2, Section 2,
where state-of-the-art denoising methods and denoising strategies are discussed
in detail. In the following, we focus on the problem of flying pixels. We distinguish
between methods which directly work on the 2D output of the ToF cameras and
methods which are applied after interpreting the data as 3D scenes, e.g. as point
clouds.

On methods applied to the 2D data we remark that median filtering is a simple
and efficient means to for a rough correction of flying pixels, which are outside
the objects’ depth range. We refer to [30] for a more involved filtering pipeline.
In addition, we remark that denoising methods to a certain extend are capable
of dealing with such kind flying pixels. This is due to the fact that regions of
depth inhomogeneities are typically one dimensional structures and flying pixels
appear only in a narrow band along these regions. As a consequence, out-of-range
flying pixels can be regarded as outliers in the depth measurement. Denoising
method in general are robust against such outliers, and produces reconstructions
with a certain spatial regularity. The correction of in-range flying pixels is much
more involved. The standard approach is to identify such pixels, e.g. by confi-
dence measures [31] and to discard them. The depth value of the discarded pixel
then has to be reconstructed using information from the surrounding pixels. In
particular, the pixel has to be assigned to one of the adjacent objects. Super-
resolution approaches [32,33] allow to assign parts the pixel area to each of the
objects.

Also when considering 3D data (point clouds), geometrical information can
be used to correct for flying pixels, for example by clustering the 3D data in
order to determining the underlying object surface (e.g. [34,35]).

Finally, flying pixels can be dealt with when fusing point clouds [36,37] from
different sources with sub-pixel accuracy. Here, it is substantial to reliably iden-
tify flying pixels, so that they can be removed before the actual fusion process.
Missing depth data then is replaced by input from other sources. In order to
identify flying pixels, confidence measures [31] for ToF data can be taken into
account.

4.2 Motion Compensation

As stated in 2.4, motion artifacts occur in dynamic scenes at depth and reflectiv-
ity boundaries due to the sequential sampling of the correlation function. There
are three (or arguably two) different approaches to reduce such artifacts. One
way is by decreasing the number of frames obtained sequentially and needed to
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produce a valid depth reconstruction. As current two-tap sensors have different
electronic characteristics for each tap, the raw values belonging to different taps
cannot be combined without further calibration. In 4.2.1 a method proposed by
Schmidt et al. [10] will be presented where each of these taps are dynamically cal-
ibrated, such that a valid measurement can be obtained with the bare minimum
of 2 consecutive frames. Another approach commonly employed is composed of
a detection step, where erroneous regions due to motion are found, followed by
a correction step. The methods presented in 4.2.2 differ how these two steps are
undertaken and in how much knowledge of the working principles is put in to the
system. The final approach proposed by Lindner et al [38] is to directly estimate
scene motion between sub-frames using optical flow. This approach can be seen
as an extension of the detect and repair approach, but as the detection is not
only binary and the correction not only local it will be presented separately in
4.2.3.

4.2.1 Framerate Enhancement
Current correlating pixels used in ToF cameras are capable of acquiring Q =
2 phase images simultaneously, shifted by 180 degrees. N of these simultane-
ous measurements are made sequentially to obtain a sufficient sampling of the
correlation function.

Table 1. Illustration of raw frame yphaseindex,tapindex for Q = 2 taps and N = 4
acquisitions

time t0 t1 t2 t3
tap 0 y0,0 y1,0 y2,0 y3,0
tap 1 y3,1 y2,1 y1,1 y0,1

As shown by Erz et al [19,39] these taps have different amplification char-
acteristics, such that the raw values obtained from the taps cannot directly be
used. Instead N has to be chosen as 4. and the Ai used in Eq. 3 calculated as

Ai =

Q∑
k=0

yi,k (10)

The relationship between the different taps is given implicitly per pixel by

yi,0 = ri,k(yi,k) (11)

Schmidt [10] models these ri,k as a linear polynomial and proposes a dynamic
calibration scheme to estimate them. For different intensity and depth static
sequences are obtained and a linear model fitted between yi,0 and yi,k. The full
model with further extensions such as interleaved calibration can be found in
[10]. Note that this only reduces, but does not eliminate motion artifacts.
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4.2.2 Detect and Repair Methods
Detect and repair approaches can be further categorized in methods that operate
directly on the depth image [40,41] and the methods that harness the relation
between the raw data channels [10,42,43].

Filter based methods
Gokturk et al. [40] applied morphological filters on a foreground/background seg-
mented depth image to obtain motion artifact regions. These pixels are replaced
by synthetic values using a spatial filtering process. Lottner et al. [41] proposed
to employ data of an additional high resolution 2D sensor being monocularly
combined with the 3D sensor, effectively suggesting a joint filtering approach
which uses the edges of the 2d sensor to guide the filter.

Methods operating on raw data
Detection Schmidt [10] calculates the temporal derivatives of the individual
raw frames. Motion artifacts occur if the first raw frame derivative is near 0 (no
change) whereas one of the other raw frames has a large derivative. This means
that movement occured between sub-frames. Lee et al. [43] operates on a similar
principle. But evaluates the sums of two sub-frames.

Correction Finally once regions with artifacts are detected, they need to be
repaired in some where. Here Schmidt uses the last pixel values with valid raw
images whereas Lee uses the spatially nearest pixel with valid data.

Correction Finally once regions with artifacts are detected, they need to be
repaired in some way. Here Schmidt uses the last pixel values with valid raw
images whereas Lee uses the spatially nearest pixel with valid data.

4.2.3 Flow Based Motion Compensation
So far, the detection step gave a binary output whether or whether not mo-
tion was present in a pixel. Subsequently some heuristic was applied to inpaint
the regions with detected motion. Lindner et al. [38] took a somewhat different
approach by loosening the requirement that the 4 measurements used for recon-
struction need to originate from the same pixel. Instead, the ”detection” is done
over the whole scene by estimating the optical flow between sub-frames. The
application of optical flow to the raw data and the subsequent demodulation at
different pixel positions require the following two points to be considered:

– Brightness constancy (corresponding surface points in subsequent sub-frames
should have the same brightness to be able to match). This is not the case for
the raw channels due to the internal phase shift between modulated and ref-
erence signal. Fortunately, in multi-tap sensors, the intensity (total amount
of modulated light) can be obtained by adding up the measurements in dif-
ferent taps. Thus, the brightness constancy is given between the intensity of
sub-frames:

Ii =

Q∑
j=0

ui,j (12)
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– Pixel Homogeneity. The application of the demodulation at different pixel
locations requires a homogeneous sensor behavior over all locations. Other-
wise artifacts will be observed which usually cancel out by using the same
pixel for all four measurements. Again, this is not the case for the raw chan-
nels due to pixel gain differences and a radial light attenuation toward the
image border. To circumvent this, Lindner et al. [38] proposed a raw value
calibration based on work by Stürmer et al. [44].

Once the flow is known, it can be used to correct the raw image before applying
the standard reconstruction formulas. The strength and weakness of this method
is strongly coupled with the flow method used. It is important to obtain the
correct flow especially at occlusion boundaries, such that discontinuity preserving
flow methods should be preserved. Lindner et al. [38] reported a rate of 10 frames
per second using the GPU implemented version TV-L1 flow proposed by Zach et
al. [45] on a 2009 machine. Lefloch et al. [46] has recently proposed an alternative
solution, based on the previous work of Lindner et al., in order to improve the
performance of the motion compensation by reducing the number of computed
subsequent optical flows.

4.3 Multiple Return Correction

The determination of the multiple returns of multipath or mixed pixels essen-
tially is the separation of complex phasors into two or more components. Given
the complex measurement arising from the demodulation, Eq. 9, correction is
the separation of the total phasor into its constituent returns. The problem of
multiple return correction of a single range image is underdetermined as only one
complex measurement is made but the signal at each pixel is the linear combi-
nation (in the complex plane) of more than one return. To separate out multiple
returns more information is needed, either in the form of a priori assumptions
or multiple measurements.

Iterative offline processing of range images has been used to demonstrate
sucessful separation of multiple returns [47], however the algorithm is not suitable
for realtime operation. Here we summarise the work of Godbaz [11], who pro-
vides a mathematical development that leads to a fast online algorithm. Godbaz
employs multiple measurements with the assumption that two returns dominate
the measurement process, thus requiring at least two measurements for return
separation. Note that a fully closed form solution is possible for the overdeter-
mined case of three or more measurements and two returns [11,48].

We begin by writing Eq. 9 for two returns with the implicit assumption that
the measurement is taken at camera modulation frequency f1, namely

ξ1 = η1 + η2. (13)

Now, consider measurement at a second frequency fr = rf1, where r is the
relative frequency between fr and f1. A measurement at relative frequency r is

ξr =
ηr1

|η1|r−1
+

ηr2
|η2|r−1

. (14)
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Qualitatively, the action of making a new measurement at relative frequency r
rotates each component return so that its phase is increased to r times its original
while leaving the amplitude unchanged.5 This phase rotation is the information
that is exploited to separate the returns. It can be shown that the measurement
made at relative frequency r factorises as

ξr =
ηr1

|η1|r−1
Λr(b, θ), (15)

where Λr(b, θ) = 1 + bejrθ (16)

with b =
|η2|
|η1| , (17)

and θ = φ2 − φ1. (18)

Here b and θ are the relative amplitude and phase and describe the perturba-
tion of the primary return by the secondary return. From these we obtain the
characteristic measurement, χ, defined by

χ =
ξr|ξ1|r−1

ξr1
(19)

=
Λr(b, θ)|Λ1(b, θ)|r−1

Λ1(b, θ)r
. (20)

The computation of χ normalises for the primary return, yielding a number that
is explicitly dependent on b and θ.

A look-up table of the inverse of Eq. 20 can be constructed using parametric
curve fitting. Given indices |χ| and argχ into the table, b and θ are read from
the look-up table, Λ1(b, θ) is computed, and the estimate of the primary return
is simply

η1 =
ξ1

Λ1(b, θ)
. (21)

The relative frequency r = 2 is used in the implementation described by God-
baz [11], with the development and merit of other frequency ratios also consid-
ered. It is important to note that the characteristic measurement χ is multi-
valued thus multiple solutions arise in calculating its inverse. For the case r = 2
there are two solutions, but there is a symmetry in Λr(b, θ) that leads to a degen-
eracy. The two solutions are equivalent up to the fact that the second solution
physically corresponds to solving for η2 in Eq. 21.

The multiple return correction is demonstrated using the Mesa Imaging
SR4000 camera with a frequency combination of 15:30 MHz. An amplitude and
phase pair is shown in Fig. 6 of a scene of a hallway with a shiny floor and a

5 The assumption of invariance of the component amplitude with respect to a change in
modulation frequency is an ideal one. In practice factors arising due to the light and
sensor modulation mean that a calibration of amplitude with respect to frequency
is required.
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10 m

0 m

Fig. 6. The amplitude (left) and phase (right) of a range image pair. The reflection of
a bright white circular object manifests as multipath returns from the floor.

10 m

0 m

Fig. 7. The estimated primary (left) and secondary (right) returns

target object of a black board with a large round white circle. The board is 4.5 m
from the camera. The effect of the reflection of the white circle is visible on the
floor near the bottom of both the amplitude and phase images. The estimates of
the primary and secondary returns are shown in Fig. 7. The appearance of the
phase shift induced by the reflection of the white circle is greatly reduced in the
primary return estimate. Godbaz [11] analysed the noise behaviour of multiple
return correction and found an increase in noise, as is seen when comparing the
primary return estimate with the distance measurement.

5 Conclusion

In this paper, we present state-of-the art techniques that improved significantly
raw data given by ToF sensors. We have seen that ToF cameras are subject to
a variety of errors caused by different sources. Some errors can be handled by
simple calibration procedure, nevertheless other sources of errors are directly
related to the observed scene configuration which thus require post processing
techniques. Nevertheless, there are still some open issues that need to be further
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investigated. One concerns the intensity-related distance error which is, as stated
previously, not fully yet understood. The second open issue lies on multi-path
problem where separation of global and local illumination is required to provide
a reliable correction. Finally, there are still some difficulties for researchers to
evaluate their work since groundtruth generation is still an open issue.
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Abstract. When considering the task of denoising ToF data, two issues
arise concerning the optimal strategy. The first one is the choice of an ap-
propriate denoising method and its adaptation to ToF data, the second
one is the issue of the optimal positioning of the denoising step within the
processing pipeline between acquisition of raw data of the sensor and the
final output of the depth map. Concerning the first issue, several denois-
ing approaches specifically for ToF data have been proposed in literature,
and one contribution of this chapter is to provide an overview. To tackle
the second issue, we exemplarily focus on two state-of-the-art methods,
the bilateral filtering and total variation (TV) denoising and discuss sev-
eral alternatives of positions in the pipeline, where these methods can
be applied. In our experiments, we compare and evaluate the results of
each combination of method and position both qualitatively and quanti-
tatively. It turns out, that for TV denoising the optimal position is at the
very end of the pipeline. For the bilateral filter, a quantitative comparison
shows that applying it to the raw data together with a subsequent median
filtering provides a low error to ground truth. Qualitatively, it competes
with applying the (cross-)bilateral filter to the depth data. In particular,
the optimal position in general depends on the considered method. As
a consequence, for any newly introduced denoising technique, finding its
optimal position within the pipeline is an open issue.

1 Introduction

Measurements from Time-of-Flight cameras suffer from severe noise. This noise
is introduced when the raw image data are recorded by the camera sensor. It is
non-linearily amplified in the subsequent post-processing, where the actual depth
data are derived. For a detailed discussion on the noise we refer the reader to
the first chapter of this book.
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Higher level computer vision algorithms are often sensitive to the noise level
typically for ToF data and it is inevitable to denoise the data before applying
these methods. Three major questions arise concerning the denoising task:

1. Which state-of-the-art method should be chosen for denoising the depth
data?

2. At which stage of the data processing should the denoising method be ap-
plied? Two obvious alternatives are to denoise the raw data or the final depth
data. Denoising of some intermediate data is also possible.

3. Which modifications can be applied to state-of-the-art methods to increase
their performance with respect to ToF data?

We start this chapter with an overview over state-of-the-art denoising methods
for standard gray or color images in Section 2.1, including the class of learning
approaches, which are gaining importance in this field. Afterwards, we discuss
approaches which are proposed in literature specifically for denoising ToF data,
cf. Section 2.2.

The main focus of this chapter is the question of the optimal position of the
denoising method within the data processing pipeline. Not much research has
been done in this direction so far. Most of the related work solely considers
denoising of the depth map provided by the camera. One reason for this might
be the fact that for most cameras, the raw data is not accessible to the users.
However, since having access to raw data is of interest for scientific applications
of ToF cameras, in future more camera manufactures might consider to provide
corresponding interfaces.

To answer the question of positioning, we exemplarily consider in Section 3
two denoising methods, which are commonly used for ToF data, the bilateral
filter and total variation-(TV)-based denoising. We discuss several alternatives
of how to apply these methods to the raw, intermediate and final data processed
by the ToF camera. In addition, we discuss modifications to improve the restora-
tion quality of the considered methods. These modifications consist in making
the approaches adaptive, anisotropic and, in particular for the TV denoising
approach, to consider second-order smoothing terms.

In the experimental part in Section 4 we evaluate the different approaches
based on a test data set with ground truth. It turns out that for TV denoising
the optimal position is at the end of the processing pipeline. For the bilateral
filter, we found that applying it to the raw channels and performing a subsequent
median filter provides the smallest quantitative error. Qualitatively, it competes
with applying the bilateral and the cross-bilateral filter to the depth data.

2 State-of-the-Art Denoising Techniques

2.1 Denoising of Standard Images

The task of denoising faces the major problem of finding a trade-off between
removing the noise and preserving the detailed structures of the original data.



Denoising Strategies for Time-of-Flight Data 27

For images, these details are mainly the edges and textures. Applying for example
classical Gaussian convolution for images, one obtains a blurred images with
unsharp edges and with textures removed.

Various approaches exist in literature, which tackle both edge and texture
preservation. One edge preserving variant of Gaussian convolution is the bilateral
filter [1,2,3]. Here, the filter kernel decreases with increasing spatial distance as
well as with increasing distance in intensity. Another family of denoising methods
are the PDE-based approaches. They built on the fact that Gaussian convolu-
tion provides a solution to the linear diffusion equation, but use modifications
to guarantee edge preservation. The most prominent methods of this kind are
the nonlinear diffusion proposed by Perona and Malik [4] and the anisotropic
diffusion [5].

The bilateral filter as well as the mentioned PDE approaches provide solutions
which are smooth in the mathematical sense. As a consequence, sharp jumps in
intensity or color can only be modeled by steep but smooth slopes. There exists
approaches which explicitly allow for piecewise constant solutions, where edges
can be represented by sharp jumps. Among these are the wavelet methods, see
e.g. [6]. In image processing the most commonly used wavelets are the Haar
wavelets, which represent a discrete space of piecewise constant functions. Soft
thresholding then is applied to the wavelet coefficients of the image to remove
highly oscillating components.

In 1992 Rudin, Osher and Fatemi [7] proposed to consider a variational ap-
proach using total variation (TV) regularization. In particular, this approach
allows for piecewise constant solutions and thus is able to restore image edges
sharply. Due to the variational formulation with a data-fidelity and a regular-
ization term, this ansatz easily extends to other applications in computer vision
such as optical flow and stereo, cf. Chapter 6.The classical TV regularization
faces the drawbacks of a loss of contrast and stair-casing artifacts (piecewise
constant reconstruction of the data where a smooth slope would be expected).
Various TV variants have been proposed to overcome these drawbacks, including
adaptive TV [8,9], anisotropic TV [10,11] and approaches of higher order TV
[12,13,14].

Another approach dealing with piecewise smooth functions has been proposed
by Mumford and Shah [15,16].

The methods mentioned so far all share the problem that textures in the data
are over-smoothed. Non-local approaches such as non-local means [17], non-local
TV [7,18,19] and the BM3D methods (e.g. [20]) turned out to have better texture
preserving qualities.

Besides image denoising techniques, which are driven by a single input image,
we also discuss data-base driven methods, which are gaining importance in image
processing.

The underlying idea of database-driven methods is to learn a map from low-
quality (noisy) images to high-quality images based on example pairs of low- and
high-quality images. Burger et al. [21] proposed denoising images using multi-
layer Perceptrons (MLPs): A given noisy image is divided into an overlapping set
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of image patches (small sub-windows). For each noisy patch, the corresponding
clean patch is predicted using an MLP that is trained based on a large collection
of pairs of input noisy and the corresponding output clean image patches. Given
the patch predictions, the final image-valued output is reconstructed by taking
averages for overlapping windows. A similar approach has also been proposed
by Jain and Seung [22] in which convolutional networks are adopted.

An important advantage of database-driven methods is that they relieve the
user from the extremely difficult task of designing an analytical noise model.
This is especially important when the underlying noise generation process is non-
Gaussian or, in general, not well-studied or modeled. Accordingly, conventional
analytic noise models cannot be straightforwardly applied. Database-driven ap-
proaches enable building a denoising system (and general image enhancement
system) by preparing a set of example pairs of clean and noisy images and learn-
ing specific degradation models from such training data. This has been demon-
strated by the success of database-driven approaches for the related problems
of single-image super-resolution and artifacts removal in compressed images, in
which no analytical noise models are available. The reported results in these
domains were superior to the state-of-the-art algorithms [23,24,25,26]. Even for
the extensively studied Gaussian noise case, the reported performances were
comparable to state-of-the-art image denoising algorithms [22,21].

One major drawback is that these algorithms are ‘black boxes’: due to the non-
parametric nature of modeling, the trained denoising algorithms do not assist
understanding the underlying noise generation or image degradation processes.
Another limitation that is especially relevant for ToF image denoising is that
they require pairs of clean and noisy images. Please see the next section for a
more detailed discussion.

2.2 Denoising Techniques for Time-of-Flight Data

We start this section with a discussions of the challenges, which arise with
denoising ToF data compared to denoising standard images.

• As already discussed in Chapter 1, the noise in ToF data varies depending on
the amplitude of the recorded signal. A Gaussian distribution with variance
proportional to A−2(x), where A(x) is the amplitude of the recorded signal
at pixel x, provides a efficient approximation, cf. [27]. Standard denoising
models, however, often assume identically distributed Gaussian noise and
thus can only be applied after adapting to the locally varying noise variance.

• Due to their low spatial resolution, textures are not as dominant as in stan-
dard images and the issue of texture preservation is less relevant. As a con-
sequence, the texture preserving properties of non-local methods are of less
importance for denoising ToF data.

• To model depth data, it is common to assume piecewise smooth data with
salient depth edges. Depending on the scene recorded, planar surfaces might
dominate, which could be considered in the denoising approach, e.g. by reg-
ularization methods which favor piecewise affine reconstructions. However,
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one has to keep in mind that the depth maps provided by ToF cameras are
actually the radial distances of the objects to the camera center. We refer
to this as radial depth. As a consequence, surfaces which are flat in 3D are
represented by curved surfaces on the camera grid. Calculating for each pixel
the scene depth parallel to the viewing direction (z-depth) without adapting
the (x,y)-pixel positions reduces the projective distortion, but does not com-
pletely compensate it (cf. [28]). An alternative would be to generate a 3D
point cloud from the depth map, project these points onto the image plane
and associate each of these 2D sampling points with its z-depth. The draw-
back for such an approach is, that these sampling points in general are no
longer equally distributed. However, in our experiments we experienced that
when just using the z-depth stored on the original pixel grid, the projective
distortion of planar surfaces can be neglected compared to other systematic
errors of the ToF systems.

• Finally, we want to stress the fact that the quality of ToF data is evaluated
different to natural images. While for natural images the visual impression
often is used for evaluation, for ToF data their precision is the most im-
portant criterion. Denoising methods might reveal effects that do not sig-
nificantly change the visual appearance of the outcome, for example a loss
of contrast. On depth maps such effects instead might significantly falsify
the data. Therefore, when selecting appropriate denoising methods for ToF
data, care has to be taken to preserve the accuracy of the depth data.

Let us now give a short overview over the methods discussed in literature for
denoising ToF data.

2.2.1 Image Driven Methods
In this subsection, we consider image driven methods, i.e. methods which as
input require only the data, which are to be denoised. Opposed to these are
the database-driven (or learning) methods, which require a training phase with
additional input prior to their actual application.

Clustering approaches for ToF denoising have been proposed by Schöner,
Moser et al. [29,30]. Frank et al. [31] have considered adaptive weighted Gaus-
sian as well as median filtering. For these approaches, they consider different
positions within the depth acquisition pipeline. They come to the conclusion
that, among the alternatives considered, adaptive weighted Gaussian filtering
on the final depth in general gives the best results. However, it is not clear if
this statement can be generalized to other denoising methods. Wavelet denois-
ing of ToF data has been considered by Moser [30] and by Edeler et al. [32,33].
A popular denoising method used for ToF data is the already mentioned bi-
lateral filter (see e.g. [34]). A joint- or cross-bilateral filter on both the depth
and intensity data shows good denoising capabilities. We give a short overview
over the standard and the cross-bilateral filter below. Schöner et al. [35] recently
applied anisotropic diffusion to ToF data. In [28] we considered total variation
regularization for ToF denoising.

In order to deal with the low spatial resolution of ToF data, fusion of multiple
data sets has been proposed. In principle, ToF data can be fused with data
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from any other imaging device. The most prominent variants are multiple ToF
data [36,37,38], fusion of ToF with rgb data (rgbd) [39,40,41,42] and fusion of ToF
with stereo data. For the latter, we refer to Chapter 6 for a detailed discussion.

In all these approaches, denoising of the data is also an issue. Denoising tech-
niques considered within the fusion approaches are for example bilateral TV
regularization [38], (cross-)bilateral filtering [41,39] and adaptations of non-local
means [42,40].

2.2.2 Database-Driven Methods
Despite the success of database-driven approaches for image denoising and en-
hancement, their applications to ToF data have not been actively explored. This
can partially be attributed to the difficulty in generating the training data: The
performance of database-driven algorithms rely heavily on the availability of
large-scale and high-quality data. However, unlike the images, generating the
ground truth data is highly non-trivial, as it requires measuring the 3D geome-
try of the scene of interest. One way of generating example pairs is to scan the
scene with a laser scanner as well as with the ToF camera. However, accurate
registration between ToF and laser scan data is necessary [43].

Although this chapter does not evaluate this class of algorithms, recent work
breaks the limits of ground truth generation in this respect. Mac Aodha et al. [44]
proposed an algorithm for single-depth image super-resolution. Similar to exist-
ing approaches for image denoising and enhancement, they adopt a local patch-
wise prediction combined with a global image prior where the patch prediction
step takes account of the training data. Unlike typical example-based approaches,
the training examples are generated from synthesized 3D geometries, i.e., an ex-
ample pair is generated by capturing a view of a synthesized scene followed
by the corresponding degradation which, in the context super-resolution, is the
down-sampling. This approach can facilitate applying well-developed database-
driven image enhancement algorithms to ToF data without having to set up a
laser scanning studio or involve other expensive hardwares.

For denoising ToF data, this approach requires building the corresponding
noise model which may invalidate an important advantage of database-driven
approaches: There is no need to analyze the noise characteristics. Nevertheless,
database-driven approaches have certain potential advantages over conventional
approaches that we believe justify future investigation: 1) Sampling and adding
noise to synthetic data is still easier than constructing an algorithm that explic-
itly inverts the noise generation process; 2) It is easy to reflect a certain type of
a priori knowledge into database-driven approaches. For instance, if it is known
that the scene of interest shows a specific class of objects (e.g., faces), one could
train an algorithm on examples generated from this specific class. As exempli-
fied in Fig. 1, this strategy can significantly improve the performance over using
generic databases for the case of super-resolution [26] and may show promise for
denoising. This type of a priori knowledge can not be straightforwardly exploited
in conventional approaches.
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(a)

(b)

(c)

Fig. 1. The improvement made possible when training on a specific class of objects,
here demonstrated for face image super-resolution (magnification factor 4). (a) bicubic
resampling, (b) super-resolution results of Kim and Kwon’s algorithm trained based on
a generic image database [25], and (c) super-resolution results of Kim et al.’s algorithm
trained based on a face database [26]. We expect a similar behavior for database driven
denoising of ToF data.

3 Denoising Strategies

3.1 Methods under Consideration

The methods we consider here use as input some of the data provided by the
ToF camera, which are the raw data, the amplitude, the intensity and/or the
depth data. We exemplarily focus on the bilateral filter and total variation (TV)
denoising approach and compare different modifications of both working on spe-
cific subsets of the available data. We start this section with a review of the
standard versions of the bilateral filter and the TV denoising.

3.1.1 Bilateral Filter
The bilateral filter was first introduced by Aurich and Weule in [1] as edge pre-
serving smoothing. Its actual name was conceived later by Tomasi and Manduchi
[2] in 1998. The idea of the bilateral filter is to have a second domain, usually the
intensity data, that weakens the smoothing of a standard Gaussian at intensity
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discontinuities. A Gaussian weighting in this second domain is commonly used.
The bilateral filter, providing filtered data u from input v, is given as

u(x0, v) =
1

aNorm

∫
Ω

v(x)Gs(‖x0 − x‖)Gi(|v(x0)− v(x)|)dx, (1)

where Ω ⊂ R
2 is the image domain, Gs and Gi are the Gaussian convolution ker-

nels in spatial and intensity domain, respectively, and aNorm is a normalization
factor. Image coordinates are denoted by x.

Regarding ToF-depth data, it is hard to find a suitable σ for the second
domain, since the noise level varies strongly over the image, depending on the
intensity or amplitude of different regions. The results are either smeared edges
in bright parts or unsmoothed noise in darker areas. But the filter can be applied
to the four different raw-images, which are basically intensity images.

Still, there are different ways to apply a bilateral filter to the depth data
by incorporating other information as well. So called joint- or cross-bilateral
filters [45] do not use the primary data to determine the weight in the second
domain but calculate it from an additional image, which is less prone to noise
(cf. [46,47]). In case of a ToF-camera, this second image could be the intensity
or amplitude data. As mentioned already in Section 2.2, a different image with
higher resolution can even be used to achieve super-resolution directly in the
denoising step.

An alternative is to use both the intensity or amplitude image and the depth
image for a combined bilateral filter, following [28]. This method especially pre-
serves edges which are visible in both data sets. Applying the bilateral filter to
the complex representation of the data has a similar effect. In the complex rep-
resentation, the angle of each point towards the x-axis corresponds to the phase
shift of the signal, while the distance to the origin is the amplitude. As a second
weighting for the bilateral filter, the distance of points in the complex plane is
used. We finally remark that the bilateral filter can be efficiently implemented
on a GPU.

3.1.2 Denoising with Total Variation
Standard Total Variation denoising (the Rudin-Osher-Fatemi (ROF) model [7])
follows the classical form of a regularization approach, where the objective func-
tion to be minimized consists of a data-fidelity term combined with a regular-
ization term. We describe the approach in a discrete framework. Let N denote
the set of nodes of the pixel grid with grid size h. We denote image coordinates
by x = (x, y). The optimization problem to be solved to obtain smoothed data
u from noisy input f is given as

min
u

[(∑
x∈N

1
2w(x) (u(x)− f(x))

2

)
+ λR(u)

]
. (2)
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We refer to the first term in (2) as the data (fidelity) term and to λR(u) as the
regularization term. For the ROF model, the latter is given as

R(u) : =
∑
(x,y)

‖∇u(x, y)‖

=
∑
(x,y)

√(
u(x+ h, y)− u(x, y)

)2
+

(
u(x, y + h)− u(x, y)

)2
.

(3)

The regularization parameter λ > 0 in (2) controls the amount of smoothing.
w(x) is a weighting term, which is used to account for the locally varying noise
variance. For independent and identically distributed Gaussian noise with zero
mean, one would use a constant weighting w(x) ∝ 1

σ2 . After rescaling the param-
eter λ, w(x) = 1 can be assumed. For ToF data, which show a locally varying
noise variance proportional to 1

A2 , we propose to use

w(x) = 1
c min(c, A2(x)), (4)

where we cut off the weighting function above some constant c > 0, and rescale
it to maxx w(x) = 1, so that the regularization parameter λ can be chosen in
the same range as in the case of constant w(x) = 1.

In order to solve the optimization problem (2), we propose to use a primal-
dual approach as for example described in [48]. Such a primal-dual approach is
able to handle the non-differentiability of R(u) and thus leads to a better edge
preservation (in terms of sharpness) than for example methods approximating
R(u) by smooth functions. We remark that also primal-dual approaches can be
efficiently implemented on GPUs.

3.2 Positioning within the Processing Pipeline

We start with a short review of depth acquisition process of a ToF camera as
already discussed in detail in Chapter 1:

• Four individual raw images Aj(x) at τj =
π
2 j, j = 0, . . . , 3, are recorded with

the camera sensor. Here we denote with x the pixel position. Typically, the
measurements are obtained using multiple taps. To deal with individual tap
characteristics, recordings from corresponding taps are averaged [49, Sect.
5.2.]. We assume that Aj(x) are already the averaged values.

• These raw data are related to the signal A(x)
2 cos(τj+φ(x))+I(x) amplitude

A(x), phase shift φ(x) and intensity I(x). Optimal values for A(x), φ(x) and
I(x) can be found by minimizing the least-squares error

3∑
j=0

(
A(x)
2 cos(τj + φ(x)) + I(x)−Aj(x)

)2

. (5)

In particular, this optimization problem is independent in each pixel position.
The standard approach is to transform it into a quadratic minimization
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problem by a change of variables. The analytic solution of the transformed
problem is given as

I(x) = 1
4

3∑
j=0

Aj(x),

A(x) = 1
2

√
(A0(x)−A2(x))2 + (A3(x)−A1(x))2,

φ(x) = arctan

(
A3(x)−A1(x)

A0(x)−A2(x)

) (6)

(cf. Chapter 1 and [27]). We remark that φ is the phase of the complex-valued
signal z with Re(z) = A0 −A2 and Im(z) = A3 −A1. One of the denoising
strategies discussed below considers smoothing of this complex-valued signal
z.

• The depth map is retrieved by

d(x) =
c

4πfm
φ(x), (7)

where c is the speed of light and fm is the modulation frequency.
• Depending on the respective ToF camera, post-processing for correcting sys-
tematic errors is applied.

Let us now turn to the optimal location of the denoising method within the pro-
cessing pipeline. The various positions within the pipeline, where total variation
denoising and bilateral filtering can be applied, are

Smoothing the Raw Data: We apply the ROF model given by (2) and
(3) and the bilateral filter to each of the four raw images to obtain the filtered
images. Denoting the individual results by Ãj , we then proceed in the processing

pipeline with Ãj instead of Aj .

Filtering the Complex Data: In this approach, we consider the vector valued
data

z(x) =

(
z1(x)
z2(x)

)
=

(
A0(x)−A2(x)
A3(x)−A1(x)

)
. (8)

z1(x) and z2(x) can be interpreted as the real and imaginary part of a complex-
valued signal z(x). We have to keep in mind that the depth d(x) we are actually
interested in is related to the phase φ(x) of this complex signal z(x) = r(x)eiφ(x)

by (7). For smoothing data z(x), we consider again two alternatives, the bilat-
eral filtering on vector-valued data and a TV-based approach consisting in the
minimization of the objective function

1
2

(∑
x

(‖z1(x)− (A0(x)−A2(x))‖2 + ‖z2(x)− (A3(x)−A1(x))‖2)
)

+ λR(z),

(9)
with some regularization parameter λ > 0. As regularization term R(z) we
choose isotropic total variation for vector valued data (see e.g. [50]). The term
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isotropic here refers to the fact that the filtering in the complex domain does
not favor any direction. As an alternative one could consider a filtering which
smooths the phase stronger than the amplitude of the image. We refer to such
an approach as anisotropic.

Combining the Cosine Fit with Spatial Regularization: Here the ap-
proach is to find A(x), φ(x) and I(x) minimizing⎛⎝∑

x

3∑
j=0

(
A(x)
2 cos(τj + φ(x)) + I(x)−Aj(x)

)2

⎞⎠+R(A, φ, I). (10)

For the regularization term R, we propose to consider the total variation of each
of the unknowns independently, i.e.

R(A, φ, I) = λ1TV (A) + λ2TV (φ) + λ3TV (I), (11)

for some λ1, λ2, λ3 > 0. Note that R(·) couples the local optimization prob-
lems considered in (5). The optimization problem (10) has the advantage that
the spatial regularity of the solution compensates for local distortions of the
data Aj . The drawback of (10) is its non-convexity. The existence of a unique
solution is not guaranteed and, even if, it is likely that the numerical optimiza-
tion gets stuck in a local minimum. As a consequence, the retrieved numerical
solution depends on the initialization and might not be the global minimum.
The standard approach to cope with this non-convexity is to find a convex re-
formulation of the data term in (10) by applying a change of variables from
(A, φ, I) to (z, z, I) = (A2 Z,

A
2 Z, I), where Z := eiφ (dependency on x omitted

for simplicity). Then

A
2 cos(τj + φ) + I = 1

2 (e
i
πj
2 z + e−i

πj
2 z) + I, j = 0, . . . , 3. (12)

Moreover, standard calculus shows that the data term in (10) locally can be split
into terms depending only on either z or I:

3∑
j=0

(
A
2 cos(τj + φ) + I −Aj

)2
= T1(z) + T2(I) + T3, (13)

where

T1(z) := 2(Re(z)− 1
2 (A0 −A2))

2 + 2(Im(z)− 1
2 (A3 −A1))

2, (14)

T2(I) := 4(I − 1
4

3∑
j=0

Aj)
2, (15)

T3 := 1
4

3∑
j=0

A2
j − 1

2 (A0A1 −A0A2 +A0A3 +A1A2 −A1A3 +A2A3) . (16)
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In particular, (13) can be optimized with respect to z and I independently. We
remark that we are mainly interested in z and φ = arg(z). For z we retrieve the
complex-valued data term already considered in (9). However, the regularization
terms R(A, φ, I) and R(z) differ. The strong advantage of (9) compared to
(10) with respect to numerical treatment is the strong convexity of optimization
problem. In particular, a unique solution is guaranteed.

Denoising the Depth Data: Finally, we consider the approach of filtering the
depth data d(x). This is the most commonly used strategy for denoising ToF
data. Here we exemplarily consider total variation filtering, bilateral filtering
and cross-bilateral filtering using both depth and intensity as input.

We remark that the approaches considered above differ in their numerical
effort, which is approximately proportional on the number of channels (unknown
variables) which have to be filtered. These are four in the case of filtering the
raw data, three in the case of the cosine fit, two for filtering the complex data
and one for smoothing the depth map. Thus, regarding numerical efficiency, the
filtering of the depth map is preferable.

3.3 Restoration Quality

Since the basic aim of ToF cameras is to provide the depth of objects in the
scene, the most important issue of filtering ToF data is to preserve the accuracy
of the measured depth. This also concerns the location of depth edges, the depth
difference at those edges and the optimal reconstruction of the slopes of surfaces.

Various techniques exist to improve given denoising schemes. We recall some
particular, which concern the bilateral filter as well as the TV denoising ap-
proach. One important modification is to introduce adaptivity of the smoothing
parameters. At edges, these parameters can be reduced to improve the edge
preservation properties of the methods. This requires additional information
about the edge location. For TV denoising, in particular, adaptivity of the reg-
ularization parameter significantly reduces the unfavorable loss of contrast.

Another way to improve denoising methods by local information is introduce
directional dependency or anisotropy (also being a form of adaptivity). The basic
idea goes back to the anisotropic diffusion approach presented in [5]. The aim is
to provide a stronger smoothing parallel to edges than in normal direction. In the
bilateral filter, the convolution mask can be made directionally depended. In the
TV approaches, the regularization term can be made anisotropic, see e.g. [11].
In both cases, additional information on the location and orientation is required.

In particular, for TV approaches aiming at denoising depth data it has proven
successful to include second-order regularization terms. Instead of piecewise con-
stant data, these methods then favor piecewise planar structures.

We remark that with planar surfaces the following issue arises: As already
mentioned above, ToF cameras provide the radial depth. After projection into
2D, planar 3D surfaces show up with a certain curvature. Using the z-depth
reduces this projection effect. Thus, the model of piecewise planar, which second-
order TV assumes, is fulfilled only approximately. The most accurate way to deal
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Fig. 2. The HCI box: recorded scene (left), ToF amplitude (middle) and ToF depth
map (right) recorded wit a PMD Cam Cube 3
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Fig. 3. Depth map with color bar clipped from 1.5 to 2.5 m, corresponding ground
truth (dark blue areas are void) and difference image

with planar surfaces would be to directly work in 3D coordinates and consider
the surface curvature of the objects, with the drawback that the numerical effort
increases. However, the mentioned projection effect is relatively weak compared
to systematic errors occurring in ToF data, such as the multi-path problem.
Thus the dominant systematic errors should be tackled first before accounting
for this effect.

For a detailed discussion on how edge information from both intensity/ampli-
tude and depth data can be used to steer adaptivity, and for details on higher
order TV denoising, we refer to [28].

4 Experiments and Evaluation

In this section we experimentally compare the methods presented in Section 3,
applied at different positions in the processing pipeline.

As test data set, we use a recording of the HCI box 1 with a PMD Cam
Cube 3, see Fig. 2. The box is made of medium-density fiberboard and shows
different kinds of planar surfaces. Some of the surfaces are covered with paper

1 http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/

http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/
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sheets painted in different gray tones, thus the reflectivity varies in the respective
regions.

For our evaluation, we require ground truth to determine the error of each
method considered. Therefore, we start with a discussion on appropriate ground
truth and a description on how it is obtained. In addition, we refer to Chapter 4
for further discussion on this topic.

There is a virtual grid model of the box available, from which, after regis-
tration to the real scene, a synthetic depth map in view of the real camera can
be rendered. Comparing, however, the recorded depth map with the synthetic
one, the difference between both reveals not only the noise of the ToF camera
but also all other kinds of systematic errors such as multi-path or an intensity
dependent error. These systematic errors even dominate compared to the noise.
Since the denoising methods considered above are not designed for the removal
of all systematic errors, the difference between their result and the synthetic
depth map will still be dominated by the systematic errors. As a consequence,
the denoising capability can not be evaluated upon these differences.

We therefore use an alternative approach to obtain ground truth, such that
the difference between ground truth and test data contains mainly noise. Here we
make use of the fact that the HCI box consists of planar surfaces. We select those
surfaces which are only weakly effected by the multi-path error. In particular,
the side walls of the HCI box are left out for this reason.

Note that, since the ToF Camera provides the radial depth to the camera
center, these surfaces appear curved in the 2D depth maps. After projecting the
2D data back into 3D, a linear regression can be applied to approximate the
noise free 3D surfaces. In the linear regression, regions of high noise due to low
amplitude are disregarded. The ideal planar surfaces then can be projected back
to retrieve the radial depth of the scene. Fig. 3 shows the result for selected
regions in the depth map. We use the resulting depth in these regions as ground
truth.

In order to have a fair comparison of the individual methods, care should be
taken to choose the optimal parameters for each method. For our experiments
we retrieve approximately optimal parameters for each method by means of the
ground truth, which in practical applications of course is not at hand: for each
method we seek for optimal parameters on a adaptively refined grid, so that the
mean squared error (MSE) to the ground truth is minimized.

The results of the individual methods applied with these parameters are de-
picted in Fig. 4. Close-ups of an inner part of the HCI box are provided in Fig. 5.
In addition we provide the MSE to the ground truth in Table 1.

We observe that the methods act differently on the background regions with
strong noise. The cosine fitting as well as the bilateral filter applied to the depth
data do barely smooth these regions at all. In order to further reduce this noise,
a stronger smoothing would be preferable. Moreover, since the parameters where
chosen to optimally reconstruct the planar areas where ground truth is provided,
the restoration of edge regions are not as good as expected. Again, increase of
the smoothing parameters would improve the regularity of the edges.
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We recall that our objective is to compare methods with respect to their
position in the processing pipeline. We therefore consider TV denoising and
bilateral filter separately. When comparing the errors of the TV-based methods
in Table 1, the cosine fitting clearly represents an outlier. This seems to be due to
the non-convexity of the considered objective function, so that the optimization
process most likely got stuck in a local minimum. Besides from this outlier, the
TV-based methods show a clear trend. The MSE decreases the more the method
is shifted to the end of the pipeline. Also the reconstruction of edges becomes
better, the later the denoising methods is applied. It turns out, that the optimal
strategy is to apply TV denoising at there very end of the pipeline.

(a) Noisy depth map
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Fig. 4. Applying the bilateral filter and TV denoising at different positions of the
processing pipeline. Besides the accurate restoration of surfaces (cf. MSE in Table 1)
the removal of heavy noise (left region of the data) and a sharp reconstruction of edges
is of importance
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Concerning bilateral filter, the smallest MSE is achieved by applying the bi-
lateral filter to the four raw channels. The result, however, reveals some distorted
pixels, see Figs. 4 and 5. These distorted pixels result from the phase ambiguity
after evaluating arctan(·). These distortions can be corrected by subsequently
applying a median filter, which reduces the MSE further to 1.3524 · 10−4. The
second best result is provided by the bilateral filter applied to the depth data.
Interestingly, the standard bilateral filter on the depth data slightly outperforms
the cross-bilateral filter in terms of MSE.

Since the ground truth data only cover a part of the data set, it is inevitable
to also compare the different variants in the remaining parts, especially at edges.
Each of the three methods mentioned above shows a different kind of artifacts:
the bilateral filter applied to the raw data shows some artifacts at the edges of
the staircase, which might be due to flying pixels. The bilateral filter applied to
the depth data in some regions (e.g. stairs) shows an over-smoothing, while in
other regions (ramp) some noise remains. Finally, the cross-bilateral filter on the
depth data provides a regular reconstruction of the true depth edges, while in
the same time pronouncing false intensity-related edges. Our general conclusion
is, that these three variants are competitive.

We remark that the above quantitative results are biased by the fact that we
have chosen only one test scenario and that only partial ground truth is available.
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Fig. 5. Close-ups of the results in Fig. 4, where the bilateral filter and TV denoising
are applied at different positions in the processing pipeline
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Table 1. Mean squared error (MSE) to the ground truth (cf. Fig. 3) of the methods
under consideration. The MSE strongly varies depending on the position within the
processing pipeline. The bilateral filter on raw data with subsequent median filtering
gives the smallest MSE.

Method MSE (·10−4)

Bilateral filter on raw data Aj(x) 1.4871
Bilateral filter on raw data plus median filter 1.3524
Bilateral filter on complex data z(x) 1.5444
Bilateral filter on depth map d(x) 1.5391
Cross bilateral filter on depth map d(x) 1.5819

TV denoising on raw data Aj(x) 1.6699
Non-convex cosine fit 7.1208
TV denoising on complex data z(x) 1.6320
TV denoising on depth map d(x) 1.5862

This stresses the need for larger data sets with highly accurate ground truth as
well as a good error measure for evaluating the restoration of edges.

As mentioned in Section 3.3, additional strategies can be applied to improve
the standard methods considered so far. We exemplarily consider the total vari-
ation denoising of the depth data to illustrate the potential of improvement of
the methods considered so far. For TV denoising, in order to reduce the loss of
contrast and prevent stair-casing, anisotropic total variation of first- and second-
order can be applied. We refer to our work [51] for details on this approach. The
result of this method is shown in Fig. 6. It achieves an MSE of 1.5105 · 10−4

compared to 1.5862 · 10−4 for the standard TV approach. For the bilateral filter
corresponding modifications can be considered.
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Fig. 6. Applying adaptive first- and second-order TV on the depth map
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5 Conclusion

This chapter started with an overview of state-of-the-art image denoising tech-
niques as well as denoising algorithms especially designed for ToF data. Both
image-driven and database-driven approaches were considered. As the central
theme of this chapter, we discussed two alternatives for positioning the denois-
ing algorithms in the data processing pipeline. Two well-established exemplary
methods were considered and experimentally evaluated for this purpose: One
is the bilateral filtering and the other is the total variation-based denoising. It
turned out that for TV denoising the optimal position is at the end of the pro-
cessing pipeline. For the bilateral filter, we found that applying it to the raw
channels and performing a subsequent median filter provides the smallest quan-
titative error. Qualitatively, it competes with applying the bilateral and the
cross-bilateral filter to the depth data. The general conclusion is, that the op-
timal position depends on the considered denoising method. As a consequence,
for any newly introduced denoising technique, finding its optimal position within
the pipeline is an issue which should be discussed along with the method.
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Abstract. Within the particular context of ToF imaging we investigate
a real-time cost-efficient filtering method for the stabilization of 3D data.
The current limitation in frame rate, resolution and intrinsic depth mea-
surement accuracy of range finding imaging systems, together with the
reflective and motion properties of the objects in the scene, may lead
to noisy or inaccurate depth map reconstruction. Still, in many appli-
cations such as gesture recognition or skeleton modeling and rendering,
reliable and stable point location data has to be extracted from the depth
map. To overcome the depth map limitations in the context of human-
computer interaction, we propose a simple, fast and efficient stabilization
method to filter the raw 3D data measurements or their derivatives. This
filter maintains the reliability of the original measurements of an iden-
tified 3D point when smoothing the continuous change in its 3D posi-
tion, avoids jerky movements without introducing noticeable latency nor
impacting rapid motion.

1 Introduction

Time-of-flight cameras measure the distance of the imaged objects to the cam-
era at each pixel, at an intrinsic noise rate. At the borders of the objects the
pixels tend to be mixed when a single measurement includes closeby depths of
a foreground object and far away depths of a background, or when multipath
light effects happen. This effect has more impact for objects further away from
the camera because they are measured in a lower resolution (pixels/meter). The
combination of all those disturbing characteristics may lead to perturbations in
the object depth measurement. In the domain of image processing, and especially
in relation to video stabilization, several filtering methods have been developed
to reduce the noise while tracking objects. They can be classified according to
the constraint of computation cost, namely (i) low cost but latency sensitive
methods based on conventional statistical models such as the median filter and
(ii) higher cost based on predictive analysis models such as the Kalman filters.
In this paper we propose a low cost stabilzation method with a better smoothing
performance as a Kalman filter when the object is in nearly static condition and
similarly performing for human dynamic motion conditions.

The remainder of the paper is organized as follows. Section 2 summarizes the
context of 3D gesture tracking and section 3 formulates the stabilization method.
Finally, in Section 4 experimental results are discussed and main conclusions are
exposed in Section 5.
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2 Human Motion Analysis Context

In many human computer interaction applications, including motion analysis,
reliable data has to be extracted from depth maps. According to the defects
observed, the representation in a virtual environment of an object may exhibit
instability of its 3D position over time. In particular, the mentioned defects
may break the spatio-temporal coherency of the representation of a captured
object as a 3D points cloud or of one of its derivatives (e.g. a cluster, center
of mass, or other associated data). This is a strong limitation for smart visual
feedback of moving or static object based 3D interactions, for skeletal modeling,
and especially for performing reliable analysis or gesture recognition in a human
to computer interaction context, as shown for example in the tracking by iisu R©

middleware of a fingertip in close interaction mode [1] in Figure 1.

(a) (b) (c)

Fig. 1. Depth images of close interaction tracking of a fingertip at (a) 0.17m (b) 0.29m
and (c) 0.43m away from the SoftKinetic DepthSenseR© ToF camera and iisuR© [1]

3 Method of Stabilization

The sequential 3D positioning of a 3D point of interest in space is filtered on
the fly using its current position, denoted x(t), and the previous position mea-
surement, denoted x(t− 1), as well as the position measurement before x(t− 1),
denoted x(t − 2). To prevent from introducing a noticeable delay between the
real position of the 3D point of interest and its measurement, the filter comprises
a standard attenuation of the observed movement between x(t) and x(t−1), us-
ing an attenuation filter such as a power function based filter, only when this
movement amplitude is below threshold T , as depicted in Figure 2a. The tresh-
old T represents a distance in the 3D space that defines a limit under which the
filtering is applied. Namely, at slow motion, when unstable or incoherent move-
ment of the 3D point of interest may occur due to discretization errors, the 3D
distance between x(t) and x(t − 1) is stabilized and hence a distance threshold
T must be chosen at least bigger than the errors that might occur. Note that, as
mentioned before, these errors are function of the sensor resolution, acquisition
frequency and speed of the 3D point of interest. At fast motion, the position of
the 3D point of interest will not be stabilzed because the discussed discretiza-
tion errors are less prominent. The power of the attenuation function (a power



48 J. Thollot, X. Baele, and I. Ravyse

strength s in the experiments) is modified (divided by r > 1) in accordance with
the filtering status of the previously observed movement between x(t − 1) and
x(t − 2) to moderate the strength of the filtering and to enhance and smooth
dynamically the behavior of the 3D point that requires filtering on each new
frame. The power strenght s is dimmed by the attenuating factor r to ensure
that stabilization will still occur and can decrease gradually when the previous
position has been filtered. The value of r can be set emperically or as function
of the number of previous considered measurements in the stabilization (in this
work fixed at 2) and the average speed of the meaningful motion of the 3D point
of interest. Hence, the filter is formulated as:

x̂i(t) =

⎧⎨⎩
x̂i(t− 1) + (Ai(t)/T )

s ∗ T if di(A(t)) ≤ T, di(B(t− 1)) = 0

x̂i(t− 1) + (Ai(t)/T )
max(1,s/r) ∗ T if di(A(t)) ≤ T, di(B(t− 1)) > 0

xi(t) if di(A(t)) > T
(1)

where i = {x, y, z}, A(t) = x(t) − x̂(t − 1) , B(t) = x(t) − x̂(t), di(.) = |.i|.
The condition d(B(t)) > 0 verifies if the movement between xi(t) and x̂i(t) is
stabilized.

4 Experiments

The experiments were held according to different scenarios occurring during
gesture based interactions between a human and a computer. More precisely,
we have analyzed the behavior of a 3D point captured by a ToF camera that
represents a part of a human body, namely a 3D position representing a fingertip
of a hand. This data was recorded using a QVGA DepthSense R© 325, using the
gesture recognition software iisu R© in close interaction at 30fps. Figure 2b shows
the motion of the x-coordinate of the fingertip over a series of depth images
depicted in Figure 1. The data is grouped per depth (z), and comprises periods of
static, slow dynamic waving motion, and similar rapid motion. The x-coordinate
was set to 0 when tracking was lost.

(a) (b)

Fig. 2. (a) Stabilization function with T = 0.04m; (b) unstabilized tracked fingertip at
(green) non , (blue) slow , (red) rapid horizontal motion in a plane perpendicular to
the camera view direction
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The proposed patented stabilization method was compared to the median
filter as conventional low cost filtering method and to the Kalman predictive
filter [2,3]. On the x-axis the data was stabilized with T = 0.04m, s = 2.5 and
3 and r = 2. Figure 3 zooms in the results on the static period at z = 0.64m
distance from the camera, and Figure 4 on the rapid motions at 0.17m and
0.29m. Table 1 compares the standard deviation of the movement amplitude per
period per filter.

Fig. 3. Tracked fingertip at 0,64m ; in (grey) unstabilized, (blue) stabilized with s =
2.5, T = 0.04, (cyan) stabilized with s = 3, T = 0.04, (red) median filtered (green)
kalman filtered

Table 1. Standard deviation of the movement amplitude σ(|x(t−1)x−x(t)x|) in mm

period of static slow motion rapid motion

at z (in m) = 0.17 0.29 0.43 0.58 0.64 0.17 0.29 0.43 0.17 0.29 0.43

unstabilized 0.3 0.5 0.7 1.8 3.4 4.0 3.6 3.6 9.7 10.0 16.6

stabilized s = 2.5 0.05 0.1 0.3 0.7 1.5 3.7 2.2 2.3 9.0 8.7 16.0

stabilized s = 3 0.1 0.2 0.4 1.1 2.2 3.8 2.5 2.7 9.1 8.8 16.0

median 0.3 0.5 0.6 1.8 3.3 4.0 3.6 3.6 5.8 9.9 16.6

kalman 0.2 0.3 0.4 1.0 1.8 2.3 1.8 1.8 4.5 5.3 9.1

Figs. 3 and 4 reveals that both the proposed stabilization and the Kalman
filter lead to smoothed estimations close to the measured position, wheras the
median filter introduces a noticeable delay and skips lost tracking data of less
than the filterwindow duration. The proposed filter cannot exceed one frame
delay, which is an acceptable and not noticeable latency for graphical user in-
terface based interactions as targeted by the hand analysis motion iisu software
of SoftKinetic [1]. At the rapid motions the Kalman filter tends to overshoot
when changing direction, while the proposed filter does not. This Kalman filter
overshoot may cause problems of false path matching in dynamic gesture recog-
nition and to collision with virtual objects of the virtual hands operated by a
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set of stabilized tracked points in an augmented reality context. Thus in this
application context our proposed stabilization is more appropriate. Indeed, the
closeness of the standard deviation of the movement amplitude of the stabilized
data to the unstabilized data for dynamic movements, in Table 1, indicates that
the distribution of the position measurement is preserved. Furthermore, with a
similar amount of filtered values (2580 for s = 2.5, 2491 for Kalman, out of 2691
frames) and less computational load, by comparing the equations in [2] and eqn.
1, our stabilization methods is better suited for a real-time gesture-recognition
implementation on low-end CPU platforms such as embedded platforms.

(a) (b)

Fig. 4. Tracked fingertip at (a) 0.17m (b) 0.29m; in (grey) unstabilized, (blue) stabilized
with s = 2.5, T = 0.04, (cyan) stabilized with s = 3, T = 0.04, (red) median filtered
(green) kalman filtered

5 Conclusion

One of the advantages of this stabilization method is that it filters efficiently
standard noise on static objects whilst still allowing smooth and slow variations
in the series of measurements, whereas other conventional low cost methods in-
troduce latency. On dynamic motion data the method is better suited for gesture
recognition than a predictive Kalman filter. We suggest further global improve-
ments specifically for human-computer interaction by using a 3D distance based
formulation of this stabilization method and by automating the choice of s and
T parameters contextually (e.g. according to z). Hence, in iisu [1] the method
is applied in parallel for several points of interest. The experiments have shown
that the stabilization of the 3D point positions keeps the fluidity of the move-
ment of the analyzed person without introducing noticeable lag between the real
performance and its representation in a virtual world. This low latency is critical
when applying real time gesture recognition or articulated object modeling and
rendering.
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Abstract. In this work, we systematically analyze how good ground
truth (GT) datasets for evaluating methods based on Time-of-Flight
(ToF) imaging data should look like. Starting from a high level char-
acterization of the application domains and requirements they typically
have, we characterize how good datasets should look like and discuss
how algorithms can be evaluated using them. Furthermore, we discuss
the two different ways of obtaining ground truth data: By measurement
and by simulation.

1 Introduction

Time-of-Flight imaging is known to suffer from various random and systematic
error sources such as multi path, depth wiggling and sensor noise (cf. Chapter 2).
Their low resolution additionally restricts their suitability to tasks that do not
require a high lateral accuracy. Many methods have been proposed in literature
to over-come these problems. Many of them were also published together with
ground truth data on which the algorithms were validated. As these works cen-
ter on the methods themselves, usually less attention is given to the nature of
the ground truth (GT) data, with the content chosen to be ‘realistic’ without
further specification what ‘realistic’ actually means. Furthermore, the simulta-
neous optimization of the GT data and the method at hand runs in danger of
over fitting the algorithm to the data or vice versa. Therefore, we believe that a
more rigorous definition of ground truth for Time-of-Flight imaging is necessary,
independent of a specific method at hand or a specific camera manufacturer.
The goal of this paper is to better define many of these problems. Starting from
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a problem domain analysis we will investigate and discuss requirements for good
GT data in Section 2. Next, in Section 3, we will discuss different ways of creat-
ing GT data by measuring reference data or by simulation. Then we will explore
existing datasets and discuss what characteristics good datasets have in Section
4 before discussing performance measures to evaluate algorithms in Section 5.
Finally, we will conclude with a section on best practices and lessons we learned
during ground truth acquisation in Section 6.

2 Application Domains and Requirements Engineering

It is unlikely that we can find one generic algorithm which optimally works
under all circumstances: This is called the generalization-specialization-dilemma.
It states that given an application, our algorithm might either be so specific that
it is not able to deal with previously unobserved data (overfitting). On the other
hand the algorithm might generalize well over many scenarios but yield mediocre
results in each of them. Thus, in order to analyze the appropriateness of an ToF
algorithm for a given application, we need to know the application.

On the other hand, there might be an infinite number of yet unknown ap-
plications for ToF algorithms. It seems unlikely that we can first enumerate all
applications and then analyze the performance of each and every algorithm for
each and every application. System engineers found a way around this problem
by identifying a number of meaningful and intuitive properties for each system
component (c.f. Table 1). These are measured and then listed in a specifica-
tion sheet. These properties are selected by finding those which are, ideally,
important for as many relevant applications as possible. In order to select the
most indicative properties, all currently available applications are considered.
Then, by experimentation, system properties are selected and tested for their
usefulness.

For four example applications we have identified a set of requirements, and
analyzed which ones are relevant for each application. Table 1 enumerates the
importance of several requirements for the example applications. Based on these
findings, ground truth data and appropriate test scenarios can be acquired /
generated to evaluate the performance and suitability of depth imaging devices
and algorithms with respect to the application requirements. In the following we
will discuss the requirements of various application fields, except for multimedia,
which is discussed in Chapter 6. As low-level pre-processing algorithms are used
in all applications below, we will first summarize their requirements separately.

Low-Level Pre-processing Algorithms

Well-known issues (cf. Chapter 1) such as noise (cf. Chapter 2), multi-path or
motion-induced artifacts often need to be reduced before high-level algorithms
can try to understand the scene. Superresolution (SR) is regularly used to scale
up depth images and thereby increase the detail of depth edges. Usually, this
approach is coupled with denoising and sometimes with sensor-fusion (cf. Chap-
ter 6) were other cameras are used to obtain hints on how to increase the detail.
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Table 1. Requirements and their importance for selected example applications. A +
indicates an important requirement, 0 is less important and - unimportant.

Requirements Gesture
Control

Room
Supervision

Driver
Assistance/
Robotics

Multimedia

Low Latency + - + +

Low Noise / High Precision 0 0 + +

High Accuracy - - + -

High Frame Rage + 0 + +

Motion Robustness + 0 + +

Robustness Against
Environmental Influences

0 0 + +

Interference Robustness - + 0 0

Low Hardware Requirements 0 0 + -

Graceful Degradation
Self-Inspection

0 + + 0

Depth Range - 0 + -

Lateral Resolution + 0 - +

Multi-path is a largely unsolved problem, whereas motion artifacts can already
be handled to some degree. In terms of requirements, these algorithms have in
common, that they should ideally be able to annotate their outcome with confi-
dences so that higher-level methods are able to judge whether they want to use
the data at all.

All of these algorithms address information-theoretic problems: given a subset
of the information of the scene, how can we add believable detail from other
sources? Information is added by prior knowledge as simple as interpolation
kernels, regularization techniques or more complex cues such as e.g. temporal
coherence or different modalities (such as RGB color).

Other algorithms on intermediate and higher levels of semantic understanding
could be 3D reconstruction and camera/object tracking as well as object detec-
tion and scene understanding. All of the discussed requirements can play a more
or less important role, such as depth accuracy is important for 3D reconstruction
but not necessarily for scene understanding whereas speed and beauty can play
a role depending on the application domain.

Gesture Control

Gesture Control is one of the major and most mature depth imaging applications.
Most gesture interaction systems do not need an overly high depth accuracy
and precision, as they use distinct gestures to trigger actions and the accuracy
of interactions is primarily limited by ergonomic considerations. However, low
latency and motion robustness are mandatory for a good and pleasant gesture
control system.
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Room Supervision

With the room supervision application in mind, we are interested in the number
of people in a room. Therefore, we want to use multiple cameras that observe
the room from different angles to ensure that no person is occluded. The use of
multiple cameras requires that they are able to observe the same scene without
interfering with each other. The processing power required for image processing
is increased with each added camera.

Reliability is very important in this application, so the system should be able
to detect when it is in an undefined state. Since exact localization of the persons
is not required, other requirements can be relaxed. Latency, motion robustness,
accuracy and noise are not a big issue.

Driver Assistance/Mobile Robotics

In driver assistance and autonomous mobile robotics, i.e realtime systems with
limited computational resources and possible public safety issues, speed is not
the only important criterion: Energy, memory and bandwidth consumption have
to be taken into consideration, as many subsystems are competing for limited
system resources. Accuracy is also relevant, as the desired behavior depends on
the distance to a detected obstacle - e.g. start breaking or initiate an evasive ma-
neuver. Finally, the algorithm should not only have self-inspection capabilities,
but also degrade gracefully, as small irritations such as specular reflections on
other cars or interference with other ToF-equipped vehicles can occur frequently.

In the following chapters, we will discuss different techniques to create datasets
for benchmarking such applications and requirements.

3 Ground Truth Generation

There are two ways of generating ground truth data. By measurement or by
simulation. Both these approaches assume that the reference data is dense and
has an error which is an order of magnitude smaller than the expected ToF error1.
In all cases, two datasets are created simultaneously: A scene captured using
ToF along with reference data for comparison. If reference data is measured, the
accuracy of the reference modality and alignment issues need to be considered
(cf. Chapter 3.1). GT can also be obtained by simulation. Here, a scene with
known geometry is used as a starting point and the ToF data simulated using
various ToF models (cf. Chapter 3.2). Even though such models usually need to
make simplifications to remain tractable, they offer the opportunity of white box
testing. Hence, this shifts the problem to the question what a good simulation is.
The reference data may be exact but the derived data can show subtle differences
compared to a real sequence.

1 In Section 5.2 on weak and sparse ground truth we will discuss what can be done if
this requirement does not hold anymore.
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3.1 By Measurement

We will introduce various methods which can be used for measuring ground
truth before discussing alignment issues that are relevant to all these methods.
These datasets can be used for general black-box testing. In the last part, we
will also discuss various strategies for isolating specific aspects of Time-of-Flight
imagers for white-box testing.

3.1.1 Methods

A. High Precision Scanning
High precision scanning techniques include Time-of-Flight and triangulation
based laser scanners as well as structured light scanners. Structured light
scanners and triangulation based laser scanners both infer depth by
triangulating the position of some active illumination pattern. Figure 1 de-
picts two example scans using these modalities. These scanners typically
have an accuracy of 1 - 100 microns and can safely be considered to be an
order of magnitude more accurate than ToF imagers [1]. They usually have
a limited working volume of a few liters and have a working range of up to
2 meters[]. As all optical measurement techniques they succumb to objects
with specular surfaces. Therefore, for best results, often the object to be
scanned has to be coated with a diffuse paint.

Fig. 1. Left: high density point cloud of statue scanned using structured light. Right:
Point cloud of office space acquired using terrestrial laser scanning.

In recent times ToF based terrestrial laser scanners (TLS) commonly
used for large scale terrain and building scanning have received more atten-
tion for creating ground truth datasets for applications such as stereo match-
ing or optical flow [2] and most recently also for Time-of-Flight imaging [3].
Most ToF laser scanners claim to have an accuracy of a few millimeters over
a wide range of distances (2 - 100 m), making them an ideal modality to
create ground truth for static scenes. As with ToF imaging the accuracy can
deteriorate depending on the actual sensor-scene setup[1], though the effects
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of such errors are certainly smaller than in ToF cameras. Still, a few aspects
should be considered while creating TLS datasets. Depending on model and
position of the scanner as well as the skill of the operator the error can reach
multiple centimeters.

Mixed Pixels. As the pixels have a certain size, the laser beam also has
a certain width and is subject to beam divergence which causes mixed
pixel effects at object boundaries. Since the reconstruction formulas used
in most ToF scanners are not as highly nonlinear as in the ToF imager 1,
these points lie between the foreground and background depth. Depend-
ing on the distance of the near object this can still lead to a substantial
broadening of the object. Current TLS systems employ lasers with start-
ing beam diameters of 6mm and beam divergences in the range of ≈ 0.1
mrad. Although the most often used gaussian beam profile allows for
a more exact localization of the beam center in orthogonal direction,
mixed pixel effects will be observed in a region of the size of the same
magnitude as the beam diameter. A rough calculation with a 40 degrees
FOV and 200 pixels sensor resolution for the ToF imager, yields that a
pixel accounts for around 6 mm at 2 m distance (Effects dependent on
the point spread function not taken into consideration). That means that
especially super resolution, flying pixel compensation and denoising al-
gorithms should evaluate whether mixed pixel effects actually affect their
evaluation at depth boundaries. An example scan with mixed pixels can
be seen in Figure 2.

Fig. 2. LiDAR based point cloud with high amount of flying pixels

Material Based Offset. Similarly Clark et al[4] and Boehler et al[1] have
reported a material/albedo (amplitude) based offset in the order of mag-
nitude of a centimeter. Though they cite different intensity based offsets,
this can be due to calibration/environmental effects or equipment degra-
dation (see last point). Again a visual inspection of the laser scan data is
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advisable to ensure that such effects are not present or are compensated
for [4].

Resolution/Sparsity. The resolution or point density of various scanners
can often be adjusted in a certain range. This can alleviate problems
caused by depth discontinuities making sure that the scene is sampled
denser than by the ToF camera to evaluate. Keep in mind that this will
not automatically compensate for mixed pixel effects. Scan density can
also be reduced in favor of speed. Velodyne scanners for example have a
very small vertical resolution of only 64 scanlines. The advantage is that
scan times are significantly lower, reaching even the typical frame times
of ToF cameras. This provides for some interesting evaluation scenarios
as reference data can be both accurate and dynamic but is also sparse
in at least one spatial direction.

Angle of Inclination. A small effect of surface inclination towards the
laser beam was observed by [5]. This effect was accounted to be up to 2
mm such that it alone most probably will not affect scan quality.

Scanning Volume/Shadowing. TLSs are made for large scale scanning.
Hence, using them in closed cluttered scenes will lead to a lot of shadow-
ing which requires tedious additional scans (especially as these scanners
are usually quite heavy).

Calibration/Environmental Effects. Boehler et al[1] reported that scan
performance can deteriorate depending on handling and age of the scan
equipment. Also as high precision mirrors are used, a drift in depth can
be caused due to temperature variations. Many of these effects can be
compensated for by appropriate calibration and we refer to the methods
proposed in [6].

Scan Time. Scan Time for these devices is typically at least a few seconds,
although real-time scanners with severely reduced lateral resolution ex-
ist. This limits their use to static ground truth scenes.

B. Kinect Fusion

Although depth cameras using different modalities may only offer compara-
ble but not superior accuracy, their output can still be useful for evaluations.
Examples would be the use of intelligent data fusion or temporal integration
approaches. We will demonstrate this on the example of the KinectFusion
pipeline [7,8].

The Kinect camera itself does not have a better lateral resolution than
typical Time-of-Flight cameras and its depth accuracy is also only in the
centimeter range [9]. Depth images acquired from the camera are therefore
not directly suited for evaluation.

Nonetheless, an interesting approach to ground truth generation using
the Kinect was presented by Meister et. al [10]. The Kinect Fusion algorithm
presented by Newcombe, Izadi et al. [7,8] uses the input of a kinect camera
to recreate a 3D representation of a scene. This is done by converting the
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Fig. 3. Left: KinectFusion generated mesh of evaluation target. Middle: Euclidean error
of mesh(red:15mm). Right: ToF depth image of the test target.

cameras depth data into a voxel based implicit surface representation [11].
Each new view and camera position is matched to the previous ones using an
special variant of an iterative closest point algorithm and the voxel volume
is then updated with new surface data.

This approach could be described as volumetric superresolution since the
resulting 3D representation is more accurate and shows less noise than the
individual depth frames. The polygon meshes created by applying marching
cubes to the zero-level set of the surface are known to have a geometrical
precision of 10 to 80 mm, depending on scene size. This does at least fulfill the
requisites for weak ground truth (c.f Section 5.2). Advantageous is that this
method works without complicated setup procedures and does not require
expensive equipment. It should be noted though, that as Kinect Fusion relies
on depth map registration, the quality will also depend on the the amount
of “clutter” in the scene.

C. Self Made Targets

Up until now arbitrary scenes were measured with ToF and a reference
modality for later comparison.

A different approach to creating real world test objects is to start off with
a computer model and produce them using various manufacturing processes.
This allows to create targets with specific characteristics such as known
curvature or controllable reflection properties using different materials.

Hand Measurement/Construction. Though probably considered some-
what archaic, for simple geometries it is possible to create the test tar-
gets manually. Objects with accuracy of a few millimeters or lower can
be created using standard materials like wood or metal. The test object
in Figure 5 was created from fiberboard with an accuracy of ≈ 1mm.

Milling. On the other end of the accuracy spectrum, processes such as CNC
milling have a precision of a couple of microns. The size of objects created
this way is typically limited. An example object can be seen in Figure 4.
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3D Printing. Automated 3D manufacturing even for private home use is
becoming increasingly popular in the recent years. So called 3D printers
which can produce arbitrary objects by depositing thermoplastics are
available for a few hundred Euros. Although typically limited to objects
as few dozen centimeters wide they also reach precisions of tenth of
millimeters.

Fig. 4. Left: CNC milled object, Right: Photogrammetric Target

3.1.2 Alignment
Once the same Dataset has been acquired using different modalities, the ToF
data needs to be aligned to the 3D data by estimating the relative rotation and
translation between the camera and the reference coordinate system. The first
decision that has to be made is whether this alignment is done using the point
cloud data directly or by first estimating the ToF camera pose in the reference
dataset and then back projecting the ToF points into space.

Manual Alignment. As a baseline it is possible to manually align the ToF with
reference data. This can be a very tedious job as 6 DOF have to be optimized
by hand. We suggest that instead users choose a set of correspondences
between the ToF data and the Reference data, and then align them by
means of standard pose estimation techniques [12].

Point based matching. This will work if the scene is cluttered enough, other-
wise it may result in drifts. Also it should be noted that systematic errors in
the scene will lead to a bias in matching. This can be circumvented to a cer-
tain extent by applying sparse point matching or robust versions of ICP [13]
that also account for the anisotropic noise present in the ToF point clouds.

Using Targets. Photogrammetric targets can be used to semi-automatically
align ToF with reference data. In case of RGBD reference data this amounts
to finding and matching feature points of known properties. Typical examples
are circles or checkerboard corners as they are easy and exact to locate (c.f.
Figure 4).

Partial Alignment. In certain situations the geometric properties of specific
areas of the image are known (e.g. a planar wall or table). It is therefore also
possible to just fit the ToF pixels to these simple models.
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3.1.3 Isolation of Effects
As many algorithms claim to target different specific aspects of ToF imaging,
datasets should help assess how well they perform. In the following we propose
various techniques to separate those specific aspects.

Temporal averaging. If the goal of the algorithm is to remove the statistical
fluctuation of the depth map, a GT dataset can be simply created by tem-
poral averaging of the input intensity images. The obtained dataset will still
contain all systematic errors, but can still be used to assess the power of
different regularizers (See Section 2).

Controlled Movements. Controlled Movements are interesting for algorithms
that try to compensate for motion artifacts (Section 1). Basically two param-
eters can be optimized: a) How accurately the movement can be controlled
and b) the accuracy with which the movement can be tracked. An example
for a) was given by Schmidt et al. [14] who used a rotating target of known
geometry with constant angular velocity to create ground truth for their
experiments. Another possibility is to use a rail system to constraint the
movement in one dimension. The movement can then either be estimated by
tracking a target or by evaluating the optical flow.

Lighting. While the light is usually fixed to the camera, Schmidt et. al [14]
separated the light from the sensor. This was done in order to decouple
saturation effects from the wiggling error.

Materials. As different materials affect the ToF measurement, especially multi-
path, the usage of specific materials can help making measurements with
reduced multi-path effect.
– As specular surfaces tend to show more multi-path interference, the usage

of highly lambertian surfaces such as spectralon could be used to isolate
interreflection effects.

– Often white walls in rooms increase global multi-path effects. Hence,
dark absorbing materials such as fleece should be used to reduce these
effects.

– Another interesting idea is to use infrared retroreflecting spots or sprays
while reducing the integration time such that the direct reflection out-
weighs the multi-path illumination. Combining this with dark materials
in a scene can possibly be utilized to estimate intra-lens reflections.

3.2 By Simulation

Computer generated data is in many cases a suitable alternative to measured
ground truth data for algorithm validation [15]. In the context of Time-of-Flight
imaging, a sensor simulator can provide such data.

To be useful for Time-of-Flight imaging method evaluation, a sensor simulator
must provide two kinds of data: ideal depth data without any noise or artefacts,
and realistic sensor data with typical noise characteristics and relevant system-
atic errors. The latter may include intermediate results that a real sensor may
provide to the user, such as phase images (c.f Chapter 1).
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The problem of simulating Time-of-Flight sensor data encompasses two areas:

1. Modeling of scene geometry and materials, light source, and light propaga-
tion, and

2. Modeling of the sensor hardware and operating principle.

Ground truth data generation for imaging method evaluation requires simu-
lation of sensor data that exhibits a clearly defined and identifiable challenge.
Depending on this problem domain, a simulator can be based on models on dif-
ferent abstraction levels in both areas. Typically, some aspects of the complete
system have to be simplified in order to maintain tractability. For example, to
produce ground truth data for the evaluation of methods to reduce motion arte-
facts, a simulator might chose relatively straightforward optics and light propa-
gation models in order to allow fast computation of multiple sensor data frames
for dynamic data.

3.2.1 Light Propagation
The light propagation model determines the composition of light that reaches
each sensor pixel in the sensor hardware model.

For that purpose, the light propagation model must encompass a modulated
light source, a scene description consisting of geometry and material properties,
a reflection model for each material, and a camera optics model.

Keller and Kolb [16] use a model based on the traditional computer graphics
pipeline. The camera is a pinhole camera and the light source is a point light
source located at the camera pinhole. All object surfaces in the scene are assumed
to be Lambertian reflectors at the wave length of the sensor light source.

In this model, the light that reaches a sensor pixel traveled twice the distance
d between camera / light source and a surface point. Thus, the phase shift of this
incoming light relative to the light source is known. Furthermore, its amplitude
can be computed from d, the direction from the light source to the surface point,
and the surface normal.

Knowing phase shift and amplitude allows to compute the four phase images
typically generated by Time-of-Flight sensors, and from these phase images the
final depth map can be computed. See Sec. 3.2.2.

The advantage of this model is that a simulator can leverage the processing
power of Graphics Processing Units (GPUs) to compute light propagation in-
formation for many sensor data frames, even for complex and dynamic scenes.
Furthermore, existing modeling tools from the computer graphics domain can
be used to create and animate test scenes.

Keller and Kolb use a spatial oversampling to simulate typical effects such as
flying pixels. For each sensor pixel, the rasterization produces a block of subpix-
els with light source information for the cone covered by that sensor pixel. This
allows to compute the incident light properties as a mixture of the responses
of different surface points, which is important e.g. at object boundaries. Addi-
tionally, computing the four phase images at distinct points in time allows to
simulate motion artefacts in dynamic scenes, with the limitation that the scene
is still assumed to be static during the exposure time of each phase image.
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The rasterization approach can be extended to support the simulation of
more effects by using methods known from the Computer Graphics domain. This
includes the approximation of area light sources with multiple point light sources,
improved modeling of material and reflection properties, transparent materials,
depth of field, and certain types of distortions caused by camera optics.

However, as known from Computer Graphics, rasterization has certain lim-
itations that prohibits its use for more complex light propagation effects. In
the context of Time-of-Flight imaging, multi-reflection (or multipath) artefacts
are a particularly interesting example. To simulate such effects, global illumina-
tion methods such as Photon Mapping or Path Tracing have to be employed.
These methods typically have significantly higher computational costs, to the
point that they are impracticable for complex dynamic scenes. However, they
can generate much more realistic light propagation information.

The main challenge in applying global illumination methods to Time-of-Flight
sensor data simulation is that the composition of modulated light reaching a
sensor pixel must be known, including phase shifts.

Calculating all possible or even only all physically relevant paths between
(multiple) lightsources and the camera is practically impossible. So most GI
algorithms try to infer the light distribution in a scene using intelligent sampling
schemes and by making certain assumptions about the light contributions. Two
of these assumptions namely that light propagation is instantaneous and that
the lighting situation is in a steady state for a single frame do not hold for ToF
imaging.

A possible approach to this problem is the simulation of individual phase
raw-frames similar to the mentioned scanline renderers. The path length (and
therefore the phase) of light which was reflected multiple times inside a scene
can be tracked and then be used to modulate the individual light contributions
when they hit a sensor pixel. These modifications could easily be added to most
existing global illumination algorithms.

In most cases this image synthesis is a stochastic process and noise in rendered
images is of a different nature than the sensor and photon noise present in real
cameras. A physically correct simulation would therefore need to be sustained
until the render noise has no more significant influence on the generated depth
maps. Then correct sensor noise as shown in Section 3.2.2 could then be applied
to the raw data. In practice, the minor differences in the noise characteristics of
the various simulations seldom justify the massive increase in computation time
this approach would necessitate.

A problem arises from the typically high-order parameter space of various
global illumination methods. Apart from the possible settings of the render en-
gine such as light sample sizes, recursion depth or sampling parameters, material
parameters such as reflectivity, surface roughness or texture can be changed indi-
vidually. The Time-of-Flight simulation may depend on any of these parameters
and finding the correct ones can be a challenging task in itself. Experiences from
computer graphics or image synthesis can only be applied partially as they may



64 R. Nair et al.

be focused on subjective expectations (Does it look good vs. does it look real)
or e.g. be limited to the visual spectrum.

Light propagation effects that have not yet been addressed by simulators based
on either rasterization or global illumination include advanced optics effects such
as lens flare and scattering inside the camera casing. The properties for lenses
used in Time-of-Flight imaging are generally quite different from those of regular
lenses. For example, they need to be transparent for infrared wavelengths and
suitable for intensities with high dynamic range. If a description of the lens is
available, the lens effects can be computed using optical engineering software
such as OSLO [17] or Zemax [18].

Fig. 5. Left: Ground truth geometry of test object. Middle: Geometry as seen by real
ToF camera. Right: Simulation with method by Keller and Kolb.

3.2.2 Sensor Hardware
Given the composition of incoming light as computed by the light propagation
model, a sensor hardware model can simulate the sensor pixel response. Again,
such hardware models can have different abstraction models, depending on the
problem domain.

Keller and Kolb [16] employ a phenomenological sensor model. Based on the
light input for each of the four phase images of typical PMD sensors, their sim-
ulator computes the ideal theoretical phase image sensor response, as described
in Chapter 1. To achieve a realistic simulation result (as opposed to a perfect re-
sult), Keller and Kolb apply additive and multiplicative Gaussian noise to these
ideal phase images before computing the final depth map sensor response.

This phenomenological model focuses on computational efficiency for the han-
dling of dynamic scenes: similar to their light propagation model, Keller and Kolb
leverage the processing power of Graphics Processing Units (GPUs) to compute
the sensor response for each pixel in parallel.

Schmidt and Jähne [19,20] employ a physical model of individual sensor pixel
components, with the goal of simulating the cause of sensor data imperfections
instead of applying noise effects after computation of the sensor response. This
leads to better understanding of sensor data, more realistic simulation results,
and more fine-grained control over simulator behavior.

In particular, their physical model accounts for real-world effects like
non-sinusoidal light modulation, non-rectangular switching functions, non-linear
photo response, and the influence of sensor-specific techniques such as the
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Suppression of Background Illumination (SBI) method commonly found in PMD
sensors. Consequently, their system can simulate various types of sensor noise
realistically.

Both the phenomenological approach by Keller and Kolb and the physical
modeling approach by Schmidt and Jähne originally used light propagation in-
formation generated by basic rasterization methods, but could also be combined
with more sophisticated light propagation models.

In addition to these approaches on relatively high abstraction levels, sensor
manufacturers can employ chip design evaluators that simulate chip behavior on
a transistor level, based on chip descriptions in VLSI. Such simulators naturally
require immense computational power even for small sensor resolutions, and are
therefore typically impracticable for producing ground truth data targeted at
the evaluation of imaging methods.

4 Content Selection and Available Datasets

4.1 Content Selection

An equally important question is which targets or scenes should be used for
the ground truth sequences. Three important aspects of ground truth datasets
are interpretability, progression and realism. Interpretability refers to the
aspect that an algorithm failing or working on a certain dataset should not only
tell us that it failed or worked but also give some insight that the algorithm
fails due to certain conditions. As a baseline, isolated effects on simple planar
geometries can be analyzed. In Section 5.2.1, simple geometries and measure-
ment methods to obtain certain effects are discussed. In more complex scenes
masks can be supplied that highlight only certain effects in the scene such as
specular reflections, multi-path or transparency. The second aspect - progres-
sion - is concerned with avoiding a problem heavily used datasets have. As the
optimization criterion is to minimize a certain error measure on this particular
dataset researchers tend to overfit their algorithms to this specific dataset[21].
On the other hand, if the dataset is initially too challenging, it may not receive
the needed traction in the research community.

Therefore we believe that a large database should include a progression of
difficulty to accommodate for this. Progression can be obtained by combining
different effects but also by more complex geometries that make simple regular-
izers etc. fail.

Finally, realism refers to the GT data being relevant to actual use cases.
Obviously a dataset can not be exhaustive regarding all possible applications.
But once an application domain is identified the goal should be to create ground
truth data as close to the actual working conditions as possible.

4.2 Existing Datasets

So far the number of available datasets and scene compositions is limited. Here
we present a short but representative selection of the available sets along a short
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description of the included data. Either the dataset name or the title of the
corresponding publication is given.

Capturing Time-of-Flight Data with Confidence. To calculate confidence
values for ToF imaging Reynolds et al. [3] provide a ground truth dataset
based on laser scanner data. The set consists of four scenes of which two are
augmented with ground truth data. ToF data includes depth maps as well
as intensity and amplitude images and intrinsic calibration data. Alignment
between the two modalities is enabled by the usage of reflecting calibration
markers. The dataset is available at http://visual.cs.ucl.ac.uk/pubs/
tofconfidence/.

Fig. 6. Left: ToF Intensity Image, Middle: ToF Z-Depth. Observe the ’halo’ around
object corners. Right: Ground Truth Z-Depth.

HCI LiDAR Dataset. A ToF dataset referenced with terrestrial laser scanner
data is available at http://hci.iwr.uni-heidelberg.de//Benchmarks/.

It consists of images of a office scene taken with a PMD CamCube 3
ToF camera. Included are intensity images, depth images, sensor raw data
as well as camera calibration data. The displayed room was also scanned
using a RIEGL VZ-400 terrestrial laser scanner 2 with an stated accuracy
of 5 mm and 3 mm precision. The scan was performed from 6 individual
positions with approximately 5 Million points per scan.

Ground truth depth maps were created by manually selecting 2D-to-3D
correspondences between the ToF intensity images and a delaunay trian-
gulation of the scanned point clouds. Using these correspondences camera
pose estimation was performed and the depth of the triangulated mesh was
rendered.

It should be noted that the lidar based polygon mesh contains multiple
errors or holes due to occlusions and flying pixels in the point cloud. See Sec-
tion 3.1 for typical problems regarding laser scanner data. Figure 6 shows a
ToF intensity image of the dataset as well as a depth map and corresponding

2 http://www.riegl.com

http://visual.cs.ucl.ac.uk/pubs/tofconfidence/
http://visual.cs.ucl.ac.uk/pubs/tofconfidence/
http://hci.iwr.uni-heidelberg.de//Benchmarks/
http://www.riegl.com


Ground Truth for Evaluating Time of Flight Imaging 67

ground truth map. The dataset does not adhere to all points mentioned in
Section 6 but is still useful for many evaluation tasks.

HCIBOX Depth Evaluation Dataset. An additional dataset is available un-
der the same url (http://hci.iwr.uni-heidelberg.de//Benchmarks/).
The test object is a wooden box containing several simple geometric objects
such as cylinders or spheres, see Figure 5 for an image. This set consists of ToF
images of the same type as well as fully calibrated megapixel stereo images.
Ground truth depth maps were again created using standard pose estimation
techniques. For this set the 3D model was created by measuring the depicted
test object by hand, reaching a general accuracy of ≈ 1 mm.

Locally Consistent ToF and Stereo Data Fusion. This dataset created by
Mutto et al. [22] contains both rectified stereo camera data as well as data
from aMESA SR4000 camera and is intended for use in sensor data fusion ap-
proaches (http://lttm.dei.unipd.it/downloads/tofstereo). The ToF
data does include amplitude, depth and confidence images and is of par-
ticular interest as ground truth data for this camera model is rare. Three
scenes containing household objects are contained in the set. Ground truth
for was created using the Spacetime stereo method by Zhang et al. [23], rely-
ing on the stereo systems images itself to create the reference data. Although
there are no indications about the accuracy of the used ground truth.
Additionally some rendered stereo images and ToF depth maps are also
available from the same location. These depth maps are purely synthetic
and lack typical ToF artifacts and errors.

5 Application of Ground Truth

5.1 Algorithm Performance Metrics

In this section we will give a short overview over the most often used error
metrics and give advise on how or when they should be used.

The performance metric most commonly used for GT evaluation is the mean
endpoint error/squared error. It is defined as the mean of the absolute distances
between the ground truth and the measured depth. Though useful in many cases,
the reduction of performance to a single scalar value may not be too meaningful.
To name one example: Often a visually pleasing result that contains a bias is
more preferable to a bias free solution with a high variance.

In general, performance metrics can be divided into different classes:
Local metrics are typically defined for every pixel of the depth map and in-

dependent of each other. Image processing and analysis has the advantage that
these individual observations have a clear and descriptive meaning. Also the spa-
tial structure of these observations has a meaning in itself so it is advantageous
to use error metrics which preserve this spatial information. An example for a
local metric would be the per pixel endpoint error.

http://hci.iwr.uni-heidelberg.de//Benchmarks/
http://lttm.dei.unipd.it/downloads/tofstereo
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Global metrics which includes the classical mean endpoint error are often
derived from local metrics by statistical analysis. This could be standard de-
viation of the error, higher order momenta or more subjective metrics like the
apparent smoothness (with smoothness deliberately left without a strict defi-
nition). If a local metric is used, there is practically no reason not to include
some simple statistics for this property. Mean, standard deviation, median and
quantiles are rather fast to compute and can give additional insights.

Another classification scheme would be the distinction between direct met-
rics which can be computed directly when the ground truth is given (or some-
times even independently of the GT), or derived metrics which need more
or less extensive postprocessing before they can be applied. Examples would be
the fit between polygon meshes which are based on the measured depth data.
This is usually more application dependent and may be expressed in terms of
the requirements presented in Section 2.

The following enumeration is in no way exhaustive as each application may
define its own error metric. These metrics should be considered as a guideline
for low-level examinations.

Endpoint error / Bias / Accuracy. The most basic error metric describes
the absolute distance between a ToF pixel and the true depth. As ToF cam-
eras are prone to systematic errors as well as high noise it can only give a
rough estimate about the quality of a measurement.

Standard deviation / Variance / Precision. The expressiveness of this
metric depends on whether it denotes the temporal or spatial deviation.
Spatial variance is typically highly dependent on scene geometry and not
very descriptive unless a flat will with uniform depth was imaged. Tempo-
ral variance can be of interest when the light situation and material of the
underlying pixel is of interest.

(Root) Mean Squared Error ((R)MSE). The RMSE is equal to the sum of
the standard deviation and the endpoint error (or bias). It is quite popular
due to its statistic properties but is otherwise not very descriptive.

Local curvature/Slope. Due to the various effects of ToF cameras, otherwise
planar or piecewise planar objects such as walls or room corners may appear
curved or slanted. Differences between the actual and measured surfaces can
give insight into the magnitude of those effects. Before this metric can be
evaluated a appropriate surface reconstruction must be applied to the depth
data.

Edges. Depth and texture edges are considered significant information for many
low-level vision and image processing tasks, albeit they may lack a proper
definition. ToF depth is known to vary depending on the observed intensity
even if the true depth is constant. This can lead to false depth edges in
regions where there is actually only a texture edge present. A yet to be
defined metric for edge quality could help distinguish between true and false
depth edges. This metric would be even more useful for ground truth with
labeled depth as well as texture edges.
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5.2 Weak Ground Truth

In Computer Vision, the finite accuracy of ground truth is often not taken into
consideration. This is fine as long as the GT has an accuracy of over an order of
magnitude more everywhere compared to the application at hand. Often there
are methods that can create reliable GT data for only certain parts of the scene
whereas other parts are erroneous. If those errors can be quantified and the
regions clearly be localized such weak GT can still be feasible to use for a quick
evaluation, as long as the analysis is mathematically/statistically sound.

5.2.1 Basic Example for Generation of Weak Ground Truth
A plane is a very basic example for ground truth that can be used to evaluate
several kinds of distance errors like temperature drift, intensity related errors or
distance offsets as well as noise characteristics. Given a carefully chosen setup,
other influences such as multi-path or motion artifacts can be eliminated or
reduced.

The weak ground truth for a plane can be generated by detecting and evaluat-
ing checkerboard corners in the amplitude image. From the detected points and
the knowledge of the checkerboard geometry, the position of the checkerboard
can be derived. For an ideally calibrated pin-hole camera, and a single corner
distance measure in the center, the approximate distance error can be estimated
using the intercept theorem:

e =
2dped

d̂2p − 2edd̂p
f. (1)

with dp being the corner distance, f is the focal length, distance between focal

point and checkerboard t, d̂p =
dp

t f is the according distance of the corners
projected onto the sensor and ed is the detection error with respect to distance
on the chip (has to be divided by the pixel pitch to get the detection error in
pixels).

For the technical specifications of a MESA SR 4000 camera, a typical corner
detection error of a 10th of a pixel (for each corner) a checkerboard at t = 1m
distance and with a corner distance of dp = 85mm, the maximum error in the
estimated checkerboard distance is approx. e = 0.73mm. For a checkerboard
with n corners the total estimation error decreases to e√

n
(assuming normally

distributed error statistics). Given a sufficiently large number of corners in the
checkerboard, the estimation error can be well below the typical ToF depth error
which is in the centimeter range.

5.2.2 Weak Ground Truth of Another Modality
Even if the reference modality has an accuracy of the same order of magnitude as
the ToF data, it can still be useful if a error distribution or a confidence score is
known. An example would be, if somebody uses a Kinect Fusion scan to assess
accuracy of a ToF denoising algorithm. If the reference modality has a error
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distribution that is known, The likelihood of the ToF Data given the probability
distribution of the reference data can be easily computed. An increasing number
of algorithms offer confidence measures [3,24] between 0 and 1 without any
further probabilistic interpretation. As low confidence data points are not an
error measure, low confidence data may still be interesting. We therefore propose
to borrow from sparsification plots used for confidence measures [24]. Normal
sparsification plots are concerned with the evaluation of confidence in presence
of ground truth. The endpoint error is plotted as a function of removing points
with a confidence lower than a certain threshold. In our case we plot the error
metric between the ToF data and the reference weak ground truth as a function
of the confidence of the reference data.

6 Best Practices

This last part is intended to be a tutorial section explaining how to create good
ground truth data which can be comparable with other ground truth datasets.
We will discuss various supplemental results that should be made available to
facilitate such comparisons. Many points in this section may appear obvious but
experience has shown that often data which is missing or was mislabeled during
the measurement process is in fact crucial for any further research effort.

Generally speaking, it is advisable to capture as much data and metadata as
possible. With data we designate individual frames from the camera, while meta-
data designates everything else, be it recorded automatically or by additional
experiments or setup procedures.

Data and Metadata

The metadata for a ground truth set should at least include:

Temperature The depth output of a ToF camera can be highly temperature
dependent. The camera should therefore have reached a steady state and
temperature changes due to environmental conditions (sunlight etc.) should
either be reduced or at least be recorded.

Light situation This does include the documentation of additional light
sources apart from the cameras own as well as significant external changes
(e.g. due to cloud movement etc.)

Camera parameters If possible, the camera should be calibrated and camera
matrices as well as lens distortion parameters be provided. For lenses with
fixed focus and aperture these values can be static over a long time but for
otherwise the calibration should be considered invalid each time the lens is
touched. If multiple cameras are used (e.g. in a stereo setup) the external
calibration should be measured and treated in a similar manner. As ToF
system are often used in image fusion approaches conjunction with other
imaging systems this requirement is generally observed in existing datasets.
This also includes all the presented example datasets in Section 4.2.
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Materials What type of materials are visible in the scene? It should also be
taken in to account, that the reflection and illumination behavior of certain
materials may be radically different under infrared lighting. Glass for exam-
ple may not be longer transparent while wood grain can appear much more
distinct, etc.

Sensor settings This includes integration times, framerates, gain, etc. If it is
adjustable it should be documented.

Software Which capture software and which version of it was used? If available
the source code as well as any configuration files should be supplied. Data
can be subtly different when seemingly unrelated program parameters or e.g.
the capture drivers change.

A written scene description An image may say more than a thousand words
but it may not always be as obvious as it seems. If many scenes with only
slightly different parameters were captured, the motivation to do so could
be included here.

Additional postprocessing or calibration data This may include the mea-
sured fixed pattern noise, data about sensor or light inhomogenities or cali-
bration fits for depth calibrated cameras.

Regarding the images, raw data if available should always be saved alongside
the derived depth maps. This is important as denoising or postprocessing on raw
phase images is a ongoing field of study (See Section 2) and research will benefit
from access to this data.

For static scenes it is advisable to capture multiple frames to allow investiga-
tion of e.g. temporal noise and to reduce the error by averaging. For dynamic
scenes noting the approximate speed of the camera and scene objects allows for
sanity checks.

Typical Errors

The following points are easily avoidable but may lead to inferior results or
deteriorated data when not detected early:

Under/Overexposure. Depth data on overexposed pixels may be completely
incorrect. Depth on pixels with a too low amplitude on the other hand may
be more accurate but is prone to severely increased noise and should be
considered unreliable.

Recording at different temperatures. The PMD CamCube camera for ex-
ample needs to run for about 20 minutes before it reaches a temperature
steady-state. During this warm-up-time the measured depths may change
significantly.

Low-frequency light modulation. Often caused by fluorescent lamps. May
not influence the measured depth but the intensities between adjacent frames.

Depth-of-field. Often neglected due to the rather low resolution of the most
common ToF cameras and their use of fixed focus optics. Out-of-focus record-
ings may have increased artifacts based on flying pixels. Edge quality may
also be effected.
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Ignoring imaging modalities. Assumptions about material behavior
(e.g. lambertian or specular reflectance) may not hold under infrared illu-
mination. Black ink on regular paper for example may appear brighter than
the surrounding white paper.

Incorrect interpretation of depth data. The depth maps produced by most
ToF cameras represent radial depth, which is the distance of the point to the
camera center. The depth from triangulation based methods (e.g. stereo) is
generally given as z-depth, the orthogonal distance from the sensor plane.
With known camera intrinsics both representations can be converted into
each other to make them comparable.

Occlusion of depth maps. For ground truth acquired by means of measuring,
the fields of view of the different sensors should overlap as much as possible.
Small deviations in the scan positions can lead to occlusion in the depth
maps, resulting in potentially sparse ground truth.

Multi path from unobserved walls. Often multi path effects from objects
just outside the camera frustum can be observed, even though the object
itself is not imaged by the camera.

7 Conclusion

While its creation is in no way easy we consider good ground truth to be a
necessity for advancements in the field of ToF imaging. Both applicants as well
as developers of ToF centric algorithms need ways to interpret their results.
Starting with clear requirement definitions the performance of ToF systems and
ToF based applications need to be evaluated. We have presented methods to
create ground truth data, both strong and weak as well as metrics to compare
and evaluate errors. We hope that with the help of these guidelines additional
and more detailed ground truth datasets will soon be made available to the
research community.
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Abstract. Mirroring is one of the fundamental light/surface interac-
tions occurring in the real world. Surfaces often cause specular reflection,
making it necessary to design robust geometry recovery algorithms for
many practical situations. In these applications the specular nature of
the surface is a challenge. On the other side, mirrors, with their unique
reflective properties, can be used to improve our sensing modalities, en-
abling applications such as surround, stereo and light field imaging. In
these scenarios the specular interactions are highly desirable. Both of
these aspects, the utilization and circumvention of mirrors are present
in a significant amount of publications in different scientific areas. These
publications are covering a large number of different problem statements
as well as many different approaches to solutions. In the chapter we will
focus on a collection and classification of the work in this area.

1 Introduction

Apart from refraction and diffraction, mirroring is one of the fundamental means
for shaping light distributions, either for imaging or for projection purposes.
Whereas refractive, or dioptric, systems, mainly in the form of camera optics, are
widely employed in the computer vision literature, cataoptric, or mirror systems
have mainly been used in the design of large scale optics where refractive elements
are impractical, e.g. for telescopes. The combination of refractive and mirror
elements in imaging and measurement systems is known as catadioptric imaging.

In this chapter, we review the design and application of mirror systems in
computer graphics and computer vision, as well as the related problem of the
determination of the geometry of a mirror or mirror system. While less obvious,
we point out a connection between mirror calibration or mirror shape estimation
and time-of-flight imaging.

Our methodology is based on a classification scheme for mirror systems, Fig. 1,
that builds on the fundamental imaging properties of the employedmirror surfaces.
We categorize existing systems into classes based on their mirroring properties and
their use in active or passive imaging systems. The main categories for mirror sys-
tems are whether the mirrors are planar or curved, whether single or multiple mir-
rors are used and whether single-bounce or multi-bounce interaction is employed.

We first discuss the different classes with respect to their imaging properties,
Sect. 2, and introduce the tool of ray unfolding for doing so. Next, we discuss

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 77–104, 2013.
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Number of mirrors

Single mirror Multiple mirrors

Mirrors shape

Planar Curved Active Passive

Number of bounces per ray

Single bounce Multiple bounces
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single bounce.
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CLASSES:

Fig. 1. Classification

passive imaging devices that utilize mirrors, Sect. 3. Passive systems have the
property that light rays that cover a common scene point do not influence each
other. On the other hand, if active illumination is introduced, light can super-
position in a scene. We discuss active imaging systems in Sect. 4. All systems
involving mirrors need to be calibrated, i.e. the geometry and position of the
mirrors in the scene has to be determined. For this reason, we review computer
vision methods that aim at determining the shape of specular reflective surfaces
or the position of a camera with respect to a known mirror geometry in Sect. 5.
The recovery of a mirror system’s geometry from depth measurements is a special
case of the calibration problem. However, this problem has its own literature and
approaches in the field of time-of-flight imaging and acoustics. We therefore draw
connections between the previously discussed techniques and the time-of-flight
literature in Sect. 6. Finally, we summarize the article and formulate important
open questions, that in our opinion, must be solved in order to achieve further
progress in the area of mirror systems.

2 Classification Scheme and Mirror System Interpretation

Here we present our classification scheme, Fig. 1, in conjunction with a discussion
of the main properties of the mirror systems involved. The two main classes are
planar mirrors and curved mirrors. Planar mirrors preserve perspective views
whereas curved ones only do so in very specific configurations. We will discuss
planar mirrors first.
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2.1 Planar Mirrors

2.1.1 Unfolding - A Convenient Way for Interpreting Image
Formation in Planar Mirror Systems
Our discussion is based on the ray unfolding procedure which we will introduce
and apply to different mirror systems. Ray unfolding has its origins in the op-
tical literature on prism systems where the resulting plots are known as tunnel
diagrams [1]. In this technique, every mirror interaction is applied to the world
instead of the ray. The result is a straight ray that passes through a sequence
of virtual copies of the world that is equivalent to the bouncing ray in the real
world. This way, complex ray interactions can be visualized in an intuitive man-
ner and a change of coordinate systems can easily be tracked.

2.1.2 Single-Mirror, Single-Bounce
Consider a single planar mirror and a camera observing an object via a single-
bounce reflection, Fig. 2.

�

�

��

�

��

� �

�

��

����

Fig. 2. Unfolding of a single reflection

When a ray of light is hitting the mirror it is mirrored from the plane ac-
cording to the law of reflection. Instead of mirroring the ray, we can consider
that the world is being reflected, creating a virtual world, or as we well call it, a
virtual chamber. In this case, the ray appears to continue straight into the vir-
tual mirror world. The mirror copy of the scene is an isometric transformation
of the real world. The world coordinate system is transformed to the mirrored
one by reflecting it in the mirror plane. Left-handed mirror system transform
into right-handed ones and vice versa. The procedure of ray straightening just
described is called unfolding. Because light paths are reversible, we can consider
the ray straightening procedure from the point of view of a scene point or from
the point of view of a camera or a projector. Consider a ray from camera S ob-
serving a scene point P through the reflection from the planar mirror M . Then
from the point of view of the camera, we observe the virtual point P ′ which is
the mirror copy of the real point P . But from the point of view of the point P we
are observing the virtual camera S′ which is the reflection of the real camera S.
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Fig. 3. Two planar mirrors: unfolding for two different rays (left) and unfolding for
sequential reflection (right)

2.1.3 Multi-mirror, Single-Bounce per Mirror
If there are several planar mirrors that are arranged around a camera, as for
example in Fig. 3 (left), for rays hitting different mirrors the ray straightening
process will introduce a different virtual world (or a different virtual camera if
we consider the point of view from the scene). A second possibility is to arrange
the planar mirrors such, that there is a sequencial ray bouncing from mirror to
mirror as shown in Fig. 3 (right). In this case the unfolding procedure is applied
recursively. Thus, if an even number of reflections is involved, the resulting virtual
world (virtual camera) coordinate system will not change its handness while it
changes handedness if the reflection level is odd.

As long as the reflection sequence includes every mirror only once, the recur-
sive unfolding procedure can be applied without ambiguity.

2.1.4 Multi-mirror, Multi-bounce
However, multiple bounces in systems with several planar mirrors could be such,
that the same mirrors are participating in a reflection sequence multiple times.
In a theoretical setting, this number could well be infinite.

The simplest such system is an angle constructed from two planar mirrors as
in Fig. 4. There are several cases to consider that are instructive for the further
discussion. If the angle ∠ABC between the mirrors is π

k , where k ∈ N, then
the unfolding of all possible rays will introduce a partitioning of the space into
continuous regions such that the space is divided into 2k different parts. These
are the inner part of the original angle (base chamber) and the copies associated
with different reflection levels (virtual chambers). The partitioning is, in this
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Fig. 4. Ray bouncing inside an angle with matching coordinate systems
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Fig. 5. Two different rays bouncing inside an angle where the chambers are matching
but the coordinate systems do not
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Fig. 6. Two different rays bouncing inside an angle where neither the coordinate sys-
tems nor the chambers match

case, independent of the origin of the ray. A useful result that can immediately
be verified in the unfolded representation is that no ray can have a sequence of
more than k bounces.

Note, that the ray can hit either of the mirrors first. Therefore, different re-
flection sequences will occur to the left or to the right of the half-line BE. This
half-line cuts some of the virtual chambers and its position depends on the loca-
tion of the projective center S. In general, the unfolded space will be discontinuous
across this half-line. For this reason, we call such a lines discontinuity lines [2].

In the example in Fig. 4, the discontinuity line BE is irrelevant because the
chambers that are crossed by the discontinuity line BE overlap perfectly and,
moreover, their transformed coordinate systems are the same. However, this is
only the case if the angle between mirrors is exactly π

k . As another example,
if the angle between the mirrors is 2π

2k+1 , then all the chambers still overlap
perfectly, but the coordinate systems are not the same, see picture Fig. 5. Even

�

�

� �

��

Fig. 7. Ray bouncing inside the rectangle ABCD. Light propagates from point S up
to point P.
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Fig. 8. Unfolding of the ray from Fig. 7 bouncing inside the rectangle

worse, if the angle between the mirrors is not an integer fraction of 2π, then the
virtual chambers do not match properly and their coordinate systems do not
align, Fig. 6.

A simple example involving several mirrors is a bouncing ray inside a rectan-
gular room, see Fig. 7. This type of geometry is most often considered in multi-
bounce time-of-flight image, Sect. 6. If we repeatedly unfold the ray while it is
propagating in space, we obtain the result seen in Fig. 8. In every virtual rectan-
gle (virtual chamber) we have a virtual world that is specific to the sequence of
reflections. If we consider all possible ray directions from any possible inner point
of the original rectangle, we obtain a partitioning of the space into virtual rectan-
gles. Since the rectangle is a regular structure, unfolding via different reflection se-
quences yields the same virtual worlds (perfectly overlapping chambers and equal
coordinate system), independent of the sequence of reflections we travel along the
ray to reach the virtual rectangle from the real one (see Fig. 9).

Unfortunately, only few types of polygons produce this similarly perfect space
partitioning schemes. In these cases, the partitioning is independent of the initial
ray position. The polygons (or polyhedra in the 3D case) having this property
are known as Coxeter polygons (polyhedra). A polygon is a Coxeter polygon
iff all its angles are in the form of π

k , k ∈ N. There are only 4 such polygons:
rectangles, equilateral triangles, the isosceles right triangles, and right triangles
with angles π

3 and π
6 .

For polyhedra in 3D, the condition to be a Coxeter polyhedron is that all
the dihedral angles are of the form π

k , k ∈ N. There are only 7 types of Coxeter
polyhedra [3].
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Fig. 9. Ray bouncing from two different camera locations, S1, S2 to the same object
point P

All other types of polygons and polyhedra generate a more complicated space
partitioning that depends on the ray origin [2].

2.2 Curved Mirrors

Curved mirrors are different from planar ones in the sense that they usually do
not yield perspective views (except in special configurations) but rather trans-
form the world according to their surface curvature. One can consider the curved
mirror as a surface, that, at each point, has a corresponding planar mirror that
is tangent to the surface. In order to use such mirrors in practice, their geometry
and pose with respect to a recording camera or a projector has to be known very
accurately. It is a difficult problem to estimate general mirror shapes precisely,
Sect. 5. Therefore, in practice, only a limited number of mirror shapes are con-
sidered. The classes of mirrors utilized in practical settings, Sects. 3 and 4, are
restricted to conic sections and to axially symmetric mirrors. In the following
we classify these simple types of curved mirrors into the following groups

• General axial symmetric mirrors,
• Circular cone mirrors,
• Spherical mirrors,
• Elliptic mirrors,
• Parabolic mirrors,
• Hyperbolic mirrors, and
• Cylindrical mirrors,

and discuss their properties that are useful in imaging applications.

2.2.1 Single-Mirror, Single-Bounce
Since all of these mirror shapes are axially symmetric, we start with a discussion
of the general properties of axially symmetric systems.
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2.2.1.1 General Axial Symmetric Curved Mirrors
For any axially symmetric surface, an intersection with a plane orthogonal to
the axis of symmetry is a circle. Therefore, if a projective center is placed on
the axis of symmetry, rays through the projective center with the same angle
towards the symmetry axis intersect the surface in the same circle. Moreover,
the surface normal of the mirror at the intersection point is in the same plane
as its symmetry axis and the propagation direction of the intersecting ray. The
law of reflection implies that the reflected ray is contained in this same plane.
Thus, the process of reflection can be described in terms of reflections from
curved mirrors within this plane (2D). In addition, all planes containing the
symmetry axis of the mirror yield the same 2D profile, or, in other words, the
reduced description is independent of the initial ray direction. Ray propagation
is rotationally invariant for the mirror’s axis of symmetry.

Consider one of the rays with the originS placed on the axis of symmetry l of an
axially symmetric curved mirror and with propagation direction d, Fig. 10 (left).
After reflection from the mirror surface, the ray changes its direction to d′. Let S′

be the intersection of a line with its origin at the intersection point and slope in the
new propagation direction d′ with the symmetry axis of the mirror l (we exclude
the case, when the direction d coincide with l). S′ can be considered as a virtual
origin of the reflected ray. Because the ray propagation is rotationally invariant
with respect to the axis of rotation l, any ray leaving S at the same angle (w.r.t the
symmetry axis) asd has the same virtual originS after reflection.We call the point
S′ the virtual focus of the ray bundle with angle α. In general, different angles
result in different virtual focii, except for some special cases discussed below. The
situation is depicted in Fig. 10 (middle and right).

Another important property is related to convex curved axially symmetric
mirrors (but it is also valid for an arbitrary convex mirror). If the surface of the
mirror is convex, then the ray inclination angle at the virtual focus is larger,

l

S

S'

d

d'

1

l





�

l

�

��

Fig. 10. Two different virtual foci together with a cones of rays propagation illustration
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than the inclination angle at the real focus (see the angles α1 and α on Fig. 10
(left)). In other words, convex mirrors widen the field of view.

This property is widely used in omnidirectional imaging devices, Sect. 3.2.1,
and all subtypes of curved mirrors discussed below show this characteristic.

2.2.1.2 Circular Cone Mirrors
Circular cone mirrors are axially symmetric mirrors with a linear cross-section,
see Fig. 11. Thus, propagation of rays inside such a mirror can be translated to
the propagation of rays in the 2D angle that was previously described and to
which the unfolding procedure can be applied.

l

��
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��

l

�
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�

��

Fig. 11. Traversal of a ray inside a circular cone. 3D view (left) and corresponding
plane projection (right).

2.2.1.3 Spherical Mirrors
The sphere is rotationally invariant with respect to its center. Therefore, the
spherical mirror is axially symmetric with respect to any axis that intersects the
center of the sphere. This is a very useful property as it solves the problem of
adjusting the position of the projective center to match the symmetry axis. The
second property of a spherical mirror is that all rays emanating from the center
of the sphere are reflected back towards this point.

2.2.1.4 Elliptic Mirrors
The specific optical property of an ellipse is that light, exiting at one focus
of the ellipse is reflecting such, that it passes through the other focus of the
ellipse. Thus, if a perspective camera/projector is placed in one focus, it will
observe/highlight the other focus for all light directions. Of course, in 3D, the
same properties apply to the ellipsoid, Fig. 12 (left).

2.2.1.5 Parabolic Mirrors
In a parabolic mirror, rays parallel to the main axis are reflected from the mirror
surface to the mirror’s focus and vice versa, Fig. 12 (middle).
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Fig. 12. Traversal of rays inside an ellipsoid (left), paraboloid (middle), and hyper-
boloid (right)

2.2.1.6 Hyperbolic Mirrors
The useful property of a hyperbola is that rays emanating from one of its focii
have a common virtual origin in the second focus when reflecting from the sur-
face, Fig. 12 (right).

2.2.1.7 Cylindrical Mirrors with Curved Cross Sections
The properties of a cylindrical mirror are dependent on its cross section (see
Fig. 13). We will consider circular, elliptic, parabolic and hyperbolic types of a
cylinder cross sections. Each of these types inherits the properties of the corre-
sponding 2D surface in such a way that the focii are elongated along the axis of
the cylinder. Therefore, the propagation of the ray inside such a figure can be
decomposed into two independent motions - one in the plane perpendicular to
the cylinder axis, and the other along the cylinder axis. The first motion can be
completely described by the propagation of the ray inside the 2D curve (circle,
ellipse, parabola or hyperbola), while the second motion is constant.
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Fig. 13. Reflection of rays in cylindrical mirrors of elliptical cross section (left) and
parabolic cross section (right)
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3 Passive Imaging Systems

In this section we describe passive imaging devices that utilize mirrors in their
design. The applications are mostly in stereo, multi-view and panoramic imaging.
The advantages of employing mirrors in a system are usually

• a reduction in system cost by utilizing less sensor hardware,
• a simplification of synchronization by compressing several views onto a single
sensor, and

• homogeneous radiometric and colorimetric properties of the sensor hardware.

In utilizing these advantages, sensor resolution is usually traded off for an
expanded view point coverage of a scene.

3.1 Planar Mirrors

Planar mirrors are the simplest devices. As discussed in Sect. 2, single planar
mirrors, and systems consisting of them have the advantage of preserving per-
spective projection properties at least in a subset of the pixels in an image.

Fig. 14. Single mirror rectified catadioptric stereo camera [4]. (left) Image forma-
tion draft. (right) Camera prototype (http://www.cs.columbia.edu/CAVE/projects/
cad_stereo/).

3.1.1 Single-Mirror, Single-Bounce
Single planar mirror systems are necessarily single-bounce. They can thus be used
to generate two viewpoints in a single image. This feature is often used to produce
inexpensive stereo viewers in a dual screen setup [5] and many hobbyists make use
of this capability http://klub.stereofotograf.eu/dual_monitor.php.

Similarly, a stereo camera can be built with a single mirror [6] and commer-
cial modifications of standard cameras are being offered http://hineslab.com/

old/Mirror_Stereo.html. Depending on the mirror orientation with respect to
the camera optical axes, the resulting epipolar geometry can be more or less

http://www.cs.columbia.edu/CAVE/projects/cad_stereo/
http://www.cs.columbia.edu/CAVE/projects/cad_stereo/
http://klub.stereofotograf.eu/dual_monitor.php
http://hineslab.com/old/Mirror_Stereo.html
http://hineslab.com/old/Mirror_Stereo.html
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suitable for stereo matching. Gluckman and Nayar [4,7] describe the conditions
for epipolar lines to be parallel and along horizontal scan lines, a case that is
particularly easy to handle in matching algorithms, see also Fig. 14.

In an early work, Mitsumoto et al. [8] describe object triangulation and ge-
ometric constraints for 3D reconstruction in case of a single plane mirror sym-
metry. They also time-sequentially move the mirror to different positions and
merge the reconstructions to obtain a larger coverage of the object.

Moving planar mirrors are also used to inexpensively generate many view-
points, e.g. for light field imaging [9] or 3D reconstruction [10,11].

Beamsplitters are often employed to distribute a single view of a scene onto
several imaging sensors. These devices can be considered as a special case of
a single mirroring operation for one of the sensors, whereas the beamsplitter
appears transparent to the other.

3.1.2 Multi-mirror, Single-Bounce per Mirror
An increase in complexity and achievable imaging geometry is obtained when
introducing several planar mirrors [4,7]. Restrictions that guarantee a single
bounce per mirror are a) that inter-reflections between mirrors are avoided, or
b) that all camera rays only encounter mirroring sequences where each of the
mirrors participates at most once.

Fig. 15. A mirror array used for light field imaging [12] (left). A fabricated mirror
array with an optimized facet distribution [13] (right).

3.1.2.1 No Inter-reflections
These arrangements are often employed for light field imaging with a single sen-
sor [14,12,15,13], see also Fig. 15. Since light field views differ only slightly from
one another, mirror arrangements like the ones shown in the Figure can be suit-
ably employed without too strong requirements on the positioning of the mirrors
to avoid inter-reflections. Since views are usually supposed to cover a common
viewing area, the carrier surface is chosen in a concave manner. If manufac-
tured on a very small scale, faceted mirrors can be used to mimic bidirectional
reflection distribution functions (BRDFs) with pre-defined properties [16].

Another way to avoid inter-reflections is to position planar mirrors on a convex
surface [17,18] and is realized using pyramidal or truncated pyramid structures.
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This measure yields out-ward facing views for panoramic imaging [18], or a means
of performing aperture splitting of a single image onto several sensors [17], an
application that is heavily used in computational photography applications.

In optics, in the area of multi-spectral imaging, especially manufactured mir-
rors, so called “image slicers” are being used to differently deflect the scan-lines
of an image such that vertical sensor space is freed up for sensing spectrally
expanded versions of the scan-lines that are obtained by passing them through
a diffraction grating [19,20,21].

3.1.2.2 Inter-reflections with a Single Reflection per Mirror
Several mirrors can also be arranged in a sequential sequence which yields a
higher flexibility in generating virtual views and purely optical means of image
manipulation. The most common commercial applications are probably erect-
ing prisms in SLR view finders and other prism-based optical designs that are
intended to flip or displace an image without distorting it otherwise [1].

Fig. 16. Design for a four mirror stereo camera or viewing device [4] (left). The Sokkia
MS27 commercial stereo viewer for aerial imagery (right).

However, several planar mirrors are also used to obtain a higher degree of
flexibility in the design of stereo imaging systems [6,4,7] or in the production of
stereo viewing equipment as e.g. produced by Sokkia, see also Fig. 16.

In computational photography settings, beamsplitter trees are often employed
to deliver a single physical image to different sensor units. The optical path
towards each of those sensor units can be modified such that optically differently
filtered images are recorded. For an overview of this area the interested reader
is referred to [22,23,24].

It should be mentioned that all applications discussed so far can be handled
with the basic unfolding technique, Sect. 2.1.1.

3.1.3 Multi-mirror, Multi-bounce
Multi-bounce planar mirror systems are considerably more difficult to compre-
hend and to make use of. Early work in mirror-based single-image 3D reconstruc-
tion focused on setups consisting of two mirrors arranged such that their normals
are in a common plane and that the angle between them is equal to 2π/N . This
has been a popular choice for three-dimensional imaging with a single camera
with N = 5 views [26,27,25,28]. It should be mentioned that this geometry re-
sults in a non-Coxeter structure and therefore the camera position has to be
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Fig. 17. The five-view case employing inter-reflections up to second order [25] – self-
occlusion is clearly visible (left). In the case of many inter-reflections a pixel labeling
procedure is necessary [2] that can resolve the view assignment to pixels – up to eight
reflection levels have been employed (right).

suitably chosen to hide discontinuous views, see Sect. 2.1.4. The multiple view
geometry of this setting has been explored in [29].

A common problem with this arrangement, and in fact with any multi-bounce
system, is that the object position has to be chosen very carefully. The problem
that occurs in the multi-bounce case is that an object might occlude its virtual
counter parts, an effect that is easily observed when viewing one-self in a set
of opened bathroom mirrors. A solution to this problem has been presented
recently [2] and consists in a pixel labeling procedure that determines for every
pixel of an image with multiple inter-reflections which virtual view it belongs
to, see also Fig. 17. This assignment can be computed from a single image and
for arbitrary calibrated planar mirror geometries. Because of the kaleidoscopic
nature of the resulting images, these systems are referred to as kaleidoscopic
imaging systems.

3.2 Curved Mirrors

Imaging systems employing curved mirrors commonly aim at achieving a larger
field-of-view than is possible with refractive optics at a reasonable price and with
acceptable distortions. In particular, wide-angle refractive elements often suffer
from strong aberrations.

3.2.1 Single-Mirror, Single-Bounce
The most common use of single curved mirrors in conjunction with a camera
device is omnidirectional or panoramic imaging. The applications of omnidi-
rectional cameras are mainly in robotics for navigation purposes [30], omni-
directional stereo if multiple images are available [31], tele-conferencing [32] and
panorama construction. Several companies such as Olympus and Canon have
developed prototypes and other companies such as 0-360, GoPano, Neovision,
RemoteReality, FullView Inc. and VersaCorp. are offering systems commercially.
The technology has been employed in Microsoft’s RoundTable.
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Research efforts have been concentrated on determining adequate mirror
shapes. While conic sections provide a single center of projection if the camera
is placed in one of the focii for hyperbolic or ellipsoidal mirrors, see Sect. 2.2.1, a
careful alignment of the camera and themirror have to be performed. Amore prac-
tical arrangement is the combination of an orthographic camera with a parabolic
mirror [32]. This way, only the optical axis of the camera and the axis of the mirror
have to align. The advantage of single center of projection systems is that proper
projective views can be synthesized from the acquired imagery.

The design of non-center of projection systems has focused on achieving desir-
able properties of the observed projections. An inevitable feature of observations
via curved mirrors are the distortions introduced by the curved surface. Some
research has been performed on optimizing mirror shapes such as to achieve
desirable projection properties such as a linear dependence between the inci-
dence angle of world rays to radial image coordinates [33], the preservation of
world space linearity in the images observed by the catadioptric system [34],
the achievement of a pre-defined projection pattern [35], the capture of non-
distorting wide-angle views [36], or the minimization of image space errors [37].
A common approach is the specification of derivative properties of the mirror
surface, followed by solving a differential equation [33,34,37] or minimizing an
error functional [35]. The concepts have been extended towards systems of cata-
dioptric cameras [38].

When several cameras are available, catadioptric stereo matching can be per-
formed [31] and depth maps can be computed. The associated research questions
are related to the imaging geometry and therefore the calibration of such sys-
tems, Sect. 5.

An important aspect to be taken into account when using curved mirrors
for imaging applications is their inherent property to refocus light rays. Studies
concentrating on the effects of mirror-induced defocus characterization can be
found in [39,40,41].

3.2.2 Single-Mirror, Multi-bounce
Curved mirrors are typically designed such that only a single reflection occurs for
each camera ray. This is achieved by employing convex mirror shapes. However,
it is possible to use multi-bounce mirror systems advantageously. In particular,
conical mirrors with a specular interior can be seen as a kaleidoscopic imaging
system that is continuous in one dimension, whereas offering discrete view points
in the other. They have been used for omnidirectional texture acquisition and
depth estimation [42]. Cross-sections of this type of mirror can be analyzed with
the unfolding procedure, Sect. 2.1.1.

3.2.3 Multi-mirror, Single-Bounce
Systems utilizing multiple curved mirrors are designed such that inter-reflections
are prevented, or the corresponding image regions are excluded from analysis.
The most popular multi-mirror arrangement for curved mirrors consists of arrays
of mirror spheres [43,44] or spherical caps [45,46], the reason being that the
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sphere is rotationally symmetric around its center, thus offering homogeneous
viewing properties for a single perspective camera observing several of them.
Applications include light field imaging and 3D reconstruction. An initial study
of the latter utilized two spherical mirrors observed by a perspective camera
and described the resulting epipolar geometry for stereo matching [47]. A linear
array of mirroring spheres was used to calibrate the position of a point light
source [48]. A study of two conic sections imaged by a single perspective camera
and of the resulting epipolar geometry is found in [49].

Panoramic cameras can be made more compact if reflection of two or more
mirrors is permitted. The camera is again arranged along the symmetry axis
of the mirror system. In the case of conic sections, it was shown that multi-
mirror systems of such shapes always have an equivalent single mirror interpre-
tation [50]. In [51], a double mirror system of the shape previously discussed is
designed such that a stereo pair is formed in a single panoramic 360◦ image.

Arrays of mirror spheres have primarily been employed for light field imaging
and 3D reconstruction. In [43,44] the incident light field of scene illumination is
acquired with an array of mirror spheres. The spatially and directionally varying
illumination is then used to relight synthetic scenes [43] or to compute depth
maps and perform refocusing operations [44]. Arrays of spherical caps reduce the
unusable area at the sphere boundaries that suffer from inter-reflections. They
have been used for light field imaging and 3D reconstruction [52,45,46].

4 Active Imaging Systems

Active imaging system employ a light source in addition to an imaging device.
Nowadays, these light sources are typically digital projectors which enable a per-
pixel control of the illumination. The use of combinations of cameras and projec-
tors enables applications such as corrected projection onto curved surfaces, virtual
large scale projection displays, 3D structured light scanning, reflectance scanning
and more. An overview of the area of camera-projector systems is given in [53].

The combination of light sources with mirrors introduces additional problems
in a measurement setting. Emitted light can super-position in a scene [54,55],
defocus problems [39,40,41] are exaggerated since projectors typically employ
large apertures for light efficiency. On the other hand, active light helps in coding
a scene, as e.g. in structured light scanning, or enables the scanning of surface
properties.

4.1 Planar Mirrors

Planar mirrors are most often used to multiply the number of physical projectors
or to virtually position them in a physically impossible location.

4.1.1 Single-Mirror, Single-Bounce
Themost commonuse of a single planarmirroringdevice is theuse of a beamsplitter
to bring a projector and a camera into a coaxial arrangement [56,41,57,58,59,60].
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This configuration allows for illumination along the same rays that form the camera
image and is often part of more complex active imaging systems.

In a different application, the use of a single planar mirror for range scanning
inaccessible parts of an object has been reported [54]. To avoid the super-position
of light, the operator has to manually ensure that the real and virtual laser lines are
formed in distinct regions and that a distance heuristic can distinguish between
the 3D points generated in the real space and in the virtual space, respectively.

4.1.2 Multi-mirror, Single-Bounce
In the active setting, systems of planar mirrors multiply a single projector into
a set of virtual projectors, in effect realizing a large aperture projection system.
These virtual large apertures have been employed in synthetic aperture confocal
imaging techniques [14,15] where the superposition of light is a crucial part of the
functioning of the device. Confocal imaging systems can slice a volumetric scene
via very shallow depth-of-field imaging and illumination. The planar mirrors
are arranged tangent to a concave base shape [14] which is ellipsoidal in the
case of [15]. The mirror array is simultaneously used as a light field imaging
unit, Sect. 3.1.2. The geometrical layout and interpretation are as discussed in
Sect. 2.1.3.

Sequential folding of projection cones is often employed in rear-projection
screens to reduce the size of the room that is required behind the screen. Typ-
ically, large-scale front-surface mirrors are employed for this purpose, http://
www.screen-tech.eu.

4.1.3 Multi-mirror, Multi-bounce
As mentioned in Sect. 3.1.2, the main complication in utilizing multiple ray
bounces in a mirror system is that self-occlusion between the object and its vir-
tual counter-parts has to be avoided. The simplest solution to this problem is
the imaging of flat objects [61,62]. In [61], a kaleidoscopic mirror system was in-
troduced that was capable of scanning the bidirectional texture function (BTF),
also known as spatially varying BRDF, of a surface without moving the acqui-
sition apparatus or the sample. In this case it is possible to observe a surface
light field with a single picture and the sample can be illuminated from different
directions by using a digital projector that is only highlighting specific chambers.
A sampling analysis of this type of system can be found in [62].

Kaleidoscopic reflectance scanning has been extended to take extended depth
objects into account [55]. The solution is similar to the pixel labeling proce-
dure [2], Fig. 17 (right), this time applied to the projector coordinate system. If
only pixels that have a unique label are illuminated simultaneously, the virtual
illumination is guaranteed to come from a single direction without causing illu-
mination overlap in the scene. The authors combined reflectance scanning with
omnidirectional laser-range scanning.

The superposition of light can also be arranged such that a projected pattern
perfectly super-positions onto itself. This approach requires orthogonal illumi-
nation with a direction that is contained in the plane spanned by the mirror

http://www.screen-tech.eu
http://www.screen-tech.eu
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normals. The two-mirror/five-virtual view system mentioned in Sect. 3.1.2 has
been used for this purpose [25,28].

4.2 Curved Mirrors

Curved mirrors are not widely used for projection purposes, most likely due
to defocusing of the projected image. For this reason, apparently only small
aperture “pocket projectors” use this technology.

4.2.1 Single-Mirror, Single-Bounce
An example for a curved mirror in a commercial projector is the RICOH PJ
WX4130. It is used to achieve a very short focusing distance and a large field-of-
view, http://www.ricoh.com/about/company/technology/tech/040.html. In
research, curved mirrors have been investigated for achieving large fields of
view [63] and optical undistortion when projecting onto tilted or curved walls [38].

In the area of reflection measurement, a combination of orthographic cam-
era, collimated light source and a parabolic mirror section allows for convenient
scanning of the BRDF of flat samples [64,65]. When the mirror is moved, the sur-
face can be scanned and a spatially varying BRDF is measured. The directional
scanning is performed angle-wise by using different projector pixels. A similar
system can be built from elliptical mirrors and a perspective camera, putting the
material sample in one focus and the projector-camera system in the other [66].
The latter reference also employs per-angle scanning, however, the system has
been extended to multiplexed illumination [67].

4.2.2 Single-Mirror, Multi-bounce
Single curved mirror active multi-bounce systems have not been explored to our
knowledge.

4.2.3 Multi-mirror, Single-Bounce
A combination of two curved mirrors and a coaxial camera/projector config-
uration has been used to perform BRDF measurements directly in some ba-
sis [58,59]. The basis is projected into the system and the observations consist
of the integral between the incident illumination and the BRDF. This integral
corresponds to a scalar product of the BRDF and the basis illumination and can
therefore be used to measure a basis expansion of the BRDF signal, permitting
to sample less coefficients if the reflectance is low frequency or the basis of the
material is known.

4.2.4 Multi-mirror, Multi-bounce
Multiple curved mirror active multi-bounce systems have not been explored to
our knowledge.

http://www.ricoh.com/about/company/technology/tech/040.html
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5 Mirror Calibration and Geometry Reconstruction
of Specular Surfaces

In order to successfully use mirror systems, they have to be calibrated. Usually
this involves the estimation of the mirror position and orientation, potentially
its shape, and its radiometric properties [2,55].

5.1 Planar Mirrors

Planar mirrors are relatively simple to calibrate since they do not introduce ad-
ditional distortions into the image. Instead, the image taken by a perspective
camera shows different perspective sub-views in parts of the acquired image. It
is therefore only necessary to determine the image regions that correspond to a
particular view, a task that is often performed manually. Within these viewing re-
gions, standard perspective camera calibration techniques can be employed [68].
In the case of single bounce observation, this calibration is usually sufficient.

5.1.1 Single Mirror, Single-Bounce
In case of a moving mirror, it is usually necessary to estimate the mirror pose
with respect to the recording camera, since an offline calibration step cannot
easily be employed. For this purpose, self-identifying markers that are attached
to the mirror can be used [9]. Moving platforms are also often employed in the
case of robotic applications. The case of a two-planar mirror setup with a moving
camera mounted on a robotic platform has been analyzed in [69]. The authors
derive a calibration procedure for computing the pose of the camera with respect
to the mirrors as well as the mirrors’ relative position and orientation.

5.1.2 Multiple Mirrors, Multi-bounce
In the case of multi-bounce observation, the mirror poses as well as the single
real camera pose need to be estimated very accurately since the calibration
error increases exponentially with the level of reflection. For this reason, special
calibration procedures are necessary. In [70] a fixed (and known) mirror geometry
is assumed and an algorithm for pose recovery of the real camera that is based on
scene point correspondences (without knowing their reflection level) is derived.

For kaleidoscopic imaging systems, different procedures can be used. For sys-
tems that are only imaging flat samples, it is sufficient to determine the homogra-
phies mapping the acquired views to their rectified versions [61]. The geometry
of the mirror system and the camera need not to be known. For kaleidoscopic
systems that image extended objects, it is necessary to estimate the mirrors’ po-
sitions and orientations with respect to the real camera. In [2,55] this is done by
placing a checkerboard pattern at different heights into the system and manually
identifying the direct view of the camera and the first order reflections. From
this data, initial mirror parameters can be computed that are then used to pre-
dict higher order reflections. Incorporating this new information yields improved
results. A global bundle adjustment step finishes the procedure.
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The manual identification of reflection levels in a multi-bounce image is te-
dious and error prone. In [71], an automatic procedure is proposed that can
recover the number of mirrors and their parameters without user intervention.
Unfortunately, the method is restricted to 2 1

2D settings.

5.2 Curved Mirrors

The calibration or geometry estimation of general curved mirrors or specular
surfaces of general shape is a difficult subject. A recent review article covering
the area can be found in [72]. When using curved mirrors in imaging systems, it
is necessary to calibrate the shape parameters of the mirror as well as its pose
with respect to the camera.

5.2.1 Single Mirror, Single-Bounce
The single-bounce case for parametric mirrors is the most investigated class of
algorithms for mirror calibration. A good overview of imaging, pose estimation,
and multiple view geometry that includes specific sections on catadioptric sys-
tems can be found in [73].

A prerequisite for investigating calibration problems is an understanding of
the imaging geometry of such systems.

5.2.1.1 Imaging Geometry
An analysis and classification of distortions in multi-perspective images and a
corresponding undistortion algorithm are discussed in [74]. The concept of gen-
eral linear cameras has been introduced as a general piece-wise linear class of
imaging models for multi-perspective images. Its application to reflection mod-
eling and an overview of its applications are given in [75].

The class of conic section mirrors has received the widest attention. Viewpoint
caustics of curved mirrors are intrinsically linked to their imaging properties
and are discussed in [76]. The imaging geometry of central catadioptric systems,
i.e. those featuring a single center of projection are discussed in [39,40,77,78].
Central systems require the camera to be in a specific point with its optical
axis aligned with the mirror axis (except for the parabolic mirror/orthographic
camera case). If the camera’s optical axis is aligned but the camera is not in
the correct location, the system is called non-central (because it does not have
a single center of projection, see Sect. 2.2.1). For this case analytic forward
projection models have been derived [79] that result in higher order polynomial
formulations. The condition for the camera to be on axis has recently been
lifted [80].

5.2.1.2 Shape Estimation
Imaging geometries as described above can be utilized to derive shape recovery
algorithms. These usually aim at recovering the parameters of a conic section
known as the intrinsic parameters of the mirror system as well as the effective
focal length of the combined mirror-camera system. Shape estimation for central
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catadioptric systems has been analyzed from the apparent distortion of scene
lines in an image [77]. The calibration of a parabolic mirror/orthographic camera
system is discussed in [81,78]. The parameters of a conic section mirror can also
be estimated from point correspondences between different frames of a moving
camera [76].

Images of warped scene lines can also be used to compute the shape of more
general shapes. In particular, near-flat specular surfaces can be recovered by
locally fitting the general linear camera model [82,83]. More generally, specular
surfaces can be scanned by establishing scene plane-to-image plane correspon-
dences [84,85]. A näıve application of the principle results in a 1D ambiguity
between the depth and the normal of the surface at one position. This ambigu-
ity has recently been resolved [86].

5.2.1.3 Pose Estimation
An associated problem in calibration is the pose estimation problem: Given a
known camera/mirror configuration that is moved to different positions, what is
the relative pose of the two views ? An early analysis of the ego-motion problem
with a central catadioptric is discussed in [30]. Here, optical flow in the recorded
images is used to compute the trajectory of the camera. A similar problem based
on sparse feature tracking was proposed in [87]. The epipolar geometry of central
catadioptric cameras was investigated in [88,89]. It allows for pose estimation and
simplified stereo matching.

5.2.2 Multiple Mirrors, Single-Bounce
Curved mirror arrays have mainly been used in the form of arrays of spheres,
Sect. 3.2.3. Calibration methods use images of distorted checkerboards to infer
the position and radii of the spheres with respect to the recording camera. A
method for calibrating an array of spherical mirror caps positioned on a common
ground plane is described in [45]. Recently, a method for calibrating several
mirror spheres in general position has been developed [90].

5.2.3 Multiple Mirrors, Multi-bounce
The most general result so far on multiple specular surface interactions is that
a maximum of two specular interactions of a ray with a general surface can be
recovered, regardless of the number of measurements [91]. The article derives
a theory of local specular surface interactions and derives tractable triangula-
tion problems on a local per-ray basis. As input, the authors consider an arbi-
trary number of correspondences between several image planes and several world
planes intersected by the ray in question.

6 Connection to Time-of-Flight Imaging and the
Multi-bounce Problem

The time-of-flight problem, at first hand, appears to be disconnected from the
problem settings considered so far and in fact, the literature is largely orthogo-
nal. In time-of-flight imaging, a pulse is emitted at one spatial location and the
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time difference until the signal returns is measured by the sensor. The classi-
cal time-of-flight technique is RADAR, where radio waves are used as probes.
SONAR uses sound waves and LIDAR is using light pulses, usually infrared, to
determine the distance of objects. In pulse-based time-of-flight imaging, most
commonly, a single reflection of the emitted pulse from the environment is as-
sumed. This situation is equivalent to a single-mirroring operation. In practice,
multiple echoes, or multi-bounce signals, can corrupt the detection. Most often,
these echoes are considered to be undesirable noise and filtering procedures are
developed to identify first time of arrivals, see [92,93] and the references therein.

Multi-bounce analysis in this area is investigating the forward modeling of
reverberation and recovery of a room geometry from impulse responses of a room.
The forward modeling frequently employs unfolding procedures, Sect. 2.1.1, for
Coxeter geometries [94], or for arbitrary polyhedral models [95].

The recovery of room geometries from multi-bounce data often considers the
special case of a rectangular Coxeter geometry [96] also known as the shoebox
model, which allows for the interpretation as a perfectly sub-divided space. Only
recently methods for general convex geometries have started to appear ([97] and
the references therein). These methods usually assume the first-bounce, other
reflection levels, or the number of walls of the room to be known. Two recent
methods that do not use these assumptions are [98,71].

The computer vision literature on time-of-flight is presented elsewhere in this
book. We would still like to point out recent developments that enable the record-
ing of the temporal profile of light for every pixel [99]. While the initial transient
imaging work used a very expensive femto-second laser setup, recently the use
of a standard time-of-flight imager for the measurement of transient images has
been proposed [100]. The information acquired with these devices can be used
to reconstruct geometry from indirectly observed bounces, i.e. the geometry of
hidden objects [101].

7 Conclusions

We have reviewed and classified the literature regarding the use of mirror systems
in computer graphics and computer vision, and established some connections to
the area of time-of-flight imaging. Some possible configurations of mirror systems
have been identified as yet of unexplored, in particular, the use of multiple bounce
curved mirrors in active imaging systems.

Another outcome of this review is that the design and optimization of mirror
layouts is an area of study that has been only partially addressed so far. In
particular, the global optimization of mirror system properties appears to be a
promising, if challenging, research direction.

The analysis of multi-bounce reflection systems is more advanced in the com-
puter graphics and computer vision literature than in time-of-flight imaging,
where multi-bounce signals are predominantly considered as noise rather then a
source of information.

Finally, we have discussed the, as of yet, little used tool of ray unfolding. It
enables a simplified understanding of complex specular interactions and, in our
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opinion, can serve a useful role in exploring the area. It would be desirable to
extend it such that more general classes of mirror shapes, especially non-central
curved ones can be handled with similar ease as the planar multi-bounce case.
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Abstract. Due to the demand for depth maps of higher quality than
possible with a single depth imaging technique today, there has been
an increasing interest in the combination of different depth sensors to
produce a “super-camera” that is more than the sum of the individual
parts. In this survey paper, we give an overview over methods for the
fusion of Time-of-Flight (ToF) and passive stereo data as well as applica-
tions of the resulting high quality depth maps. Additionally, we provide
a tutorial-based introduction to the principles behind ToF stereo fusion
and the evaluation criteria used to benchmark these methods.

1 Introduction

Will there ever be one depth sensor to rule them all? While this will hopefully
be true one day, all current depth sensing modalities fall short of obtaining
this title. Passive stereo works well on textured scenes and has a high lateral
resolution due to readily available mega pixel cameras. Conversely, there are
issues at occlusion boundaries and when the textures are ambiguous or when
no texture is present at all. Also, due to the number of pixels that have to
be compared, especially when global optimization techniques are used, stereo
matching algorithms are often computationally demanding. Time-of-Flight(ToF)
imaging on the other hand delivers images at high frame rates independent of
surface texture, but at the cost of a lower resolution and systematic errors. For
a more detailed description of Time-of-Flight cameras please refer to Chapter 1.
Finally, there is active stereo (e.g. Kinect), which triangulates correspondences
between a structured active illumination and a camera. While the effects at
occlusion boundaries (shadowing, edge fattening) remain, unstructured surfaces
are no longer a problem. This comes at a cost though, as the lateral resolution

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 105–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://hci.iwr.uni-heidelberg.de
http://www.intel-vci.uni-saarland.de/
http://graphics.tu-bs.de


106 R. Nair et al.

is now limited by the resolution of the projection system. To summarize, the
major drawback of all of these methods is that they usually only work in a
limited domain and lack the robustness often required in various application
domains. As these modalities often differ in the areas where they excel or fail, it
appears natural to combine them to create a “super-sensor”.

Depending on the camera systems used different methods ensue. With a single
additional camera typically edge information from the high resolution intensity
image is used to guide the upsampling of the depth image[1,2]. In [3], Castañeda
et al. present a system using two Time-of-Flight cameras. In this survey paper
we will focus on techniques to fuse of Time-of-Flight and passive stereo data.

The remainder of this paper is organized as follows. In Section 2 we shall further
clarify, what we expect from such a fusion system and what use there actually is
in having high resolution depth maps. Next, in Section 3 the basic fusion pipeline
including common preprocessing steps will be introduced in a tutorial like fashion.
As benchmarking such systems is as important as the innovation of new fusion
systems we will dedicate Section 4 to common evaluation strategies. Finally, in
Section 5 we will summarize the specifics of current fusion systems.

2 Requirements Engineering and Application Domains

2.1 Requirements

We have identified four basic requirements an application can have on a fusion
system.

Speed up while retaining Quality. Current stereo algorithms are often quite
time consuming. This is due to the vast search space that has to be analyzed.
Given real time ToF imaging it may now be possible to reduce the search
space and therefore make real-time implementations of the stereo methods
possible.

Robustness/Self Awareness. Fusion methods should be able to be at least
as good as the (locally) better of the two modalities and degrade gracefully
in presence of small calibration/synchronization errors.

Increase in Quality. Other than identifying regions of erroneous values the
system should also be able to use this information to produce depth maps
that are better than either method alone.

Backward Compatibility. In many application areas it is easier to just add
an additional camera to the working system than to completely alter the
existing system.

It is clear that it is difficult to accommodate for all requirements simulta-
neously. A speed - quality trade off has always to be made depending on the
application. For Human Computer Interaction and Robotic/Navigation applica-
tions a fast system that is able to detect and eliminate erroneous values [4,5]
may suffice. More sophisticated multimedia application on the other hand re-
quire high quality depth maps partly with speed constraints imposed on the
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Fig. 1. From left to right: Stereo-ToF rig on set, example image, high resolution dis-
parity map

system (e.g. in 3DTV, Augmented Reality). As other application domains for
depth data have been discussed in Chapter 4, Section 2, we will focus on the
application of high quality depth maps in multimedia systems.

2.2 High Quality Depth Maps for Multimedia Application

In movie and film productions many post-production steps are commonly con-
ducted including color corrections,(green-screen) matting, integration of com-
puter generated imagery, compositing and many more. High-resolution depth
or disparity maps can help to ease many of these steps. As edges in the depth
maps depict object boundaries in general, they can be used to guide local color
corrections, in the spirit of cross-bilateral filters [6,7]. Integration of virtual ob-
jects is possible with correctly handled occlusion [8]. For stereoscopic movie
productions the aforementioned tasks become even more important due to addi-
tional challenges including color matching between the stereoscopic views, verti-
cal alignment, disparity compensation, 3D compositing and image interpolation.
To faithfully deal with these tasks, correspondences between the left and right
image in the form of disparity or depth maps build the foundations of all these
algorithms. Depth maps as a form of 2.5D scene representation ease the inte-
gration of computer generated imagery or video footage with depth information
[9]. Precise depth maps also allow for image interpolation [10] which in turn can
be used for disparity compensation [11]. To prevent a flickering appearance in
stereoscopic video footage, appropriate local color corrections are necessary that
consistently correct for color mismatches in both views [12]. The problem is even
more difficult for specularities, here the solution is usually to replace the specu-
lar parts in the image by information from the other view [13] or to synthesize
a consistent specularity for both views [14].

Not only post-production but also display and transmission of stereoscopic
content requires high-resolution and high quality depth. In depth-image-based
rendering the video stream consists of the typical RGB images plus an additional
depth channel [15]. From this information the stereoscopic views are recreated
by warping of the RGB image based on the depth and desired ocular distance.
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Fig. 2. Basic Fusion Pipeline

As most modern production settings already employ several cameras (cf. Fig-
ure 1), the idea of using an additional ToF camera lends itself to assist the depth
map generation. It should be noted though that algorithms intended to work in
such a setting require a higher amount of robustness as compared to the lab
setting. At any given time many different people are (to a certain extent) in-
dependently monitoring several different aspects of the scene such as lighting,
camera movement, focus of camera or the stereo baseline, often changing pa-
rameters frequently to accommodate for the requirements of the director. Also
the time plan is quite strict, such that any additional in-between calibration
steps need to be avoided. So if the ToF-Stereo setup is to be attached to the
principal camera it will be more difficult to obtain high precision measurements
and alignment than what is common for a lab setting. Therefore, robustness
of the algorithms, especially towards slightly misaligned cameras, is extremely
important. On the other hand, often post-production crews acquire their own
footage of the scene separately beforehand, so that they can start working on set
reconstructions etc. before receiving the main plates. In Section 5.3 two methods
will be discussed in detail that cater to these different settings.

3 Setting Up Fusion Systems

In the following we describe the general aspects of ToF stereo fusion systems.
These include the general pipeline (Section 3.1), possible camera setups (Section
3.2), calibration (Section 3.3) and data preprocessing (Section 3.4).

3.1 Pipeline

Most fusion systems differ mainly in how the data is merged, once it has been
brought into the same reference frame. Figure 2 illustrates the basic pipeline em-
ployed. After choosing a specific camera setup the standard camera intrinsics have
to be estimated for all three cameras, i.e. focal length, principal point as well as
radial and tangential distortion coefficients. Next the spatial relationship(Roto-
Translation) between the three cameras have to be found by means of pairwise or
joint stereo calibration methods.
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For the ToF camera, additionally a depth calibration has to be undertaken due
to the systematic errors described in Chapter 1, Section 2. This can either be done
after the intrinsic calibration with methods proposed in Chapter 1, Section 3 or by
jointly using the additional stereo information. After applying preprocessing steps
to clean up the ToF data (i.e. to reduce effects by noise pixels), the images must be
brought into the same coordinate frame bymeans of rectification and reprojection.
Finally, the fusion step involves a combination of the following:

• The ToF depth and the output of a Stereo algorithm are computed individ-
ually and then fused.

• The ToF data is used as an initial guess and/or to reduce the search space
for subsequent stereo refinements

• The depth reconstruction algorithm uses both stereo and ToF costs as data
terms.

Additionally various regularizers have been applied to obtain depth maps of
sufficient smoothness despite noise. In the following we will describe the steps
commonly employed by the methods presented in Section 5 before the data is
fused in detail.

3.1.1 Choice of Depth Cues
In essence a ToF stereo fusion system corresponds to a trifocal camera system,
with the third camera sensor having a lower spatial resolution, but a high tem-
poral sampling. Therefore, there exist many different sources of dense or sparse
depth information that may be exploited in a fusion system. In the following we
would like to discuss these depth cues in detail. Though some of the cues are
rarely used or not used at all, we believe that future algorithms may additionally
use these modalities.

ToF depth from demodulation. This is the standard output of the Time-
of-Flight sensor that is used in all fusion systems. The advantages of these
modalities as opposed to stereo is that the depth estimation a) works on
textureless surfaces, b) has a arguably simpler behavior at depth discontinu-
ities (unlike edge fattening in stereo) c) is real-time capable out of the box.
Major downsides are the limited lateral resolution and the various strong er-
ror sources such as noise, multi path, flying pixels, wiggling and to a certain
extent susceptibility to background illumination.
A detailed description of these errors and methods to compensate for them
is given in Chapter 1.

Photo consistency/Stereo. Depth from stereo is a well studied field of re-
search [16]. In stereo depth estimation, dense correspondences between left
and right view are found and the depth is inferred via triangulation. Unlike
ToF cameras, the lateral resolution of this modality can be very high. Depth
from stereo will fail in areas with little texture or in presence of highly repet-
itive patterns due to ambiguous matching. While this imposes a problem for
fast local-evidence based stereo methods, global methods use regularization
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techniques to utilize prior knowledge about ”normal” scenes such as tem-
poral coherence. It should also be noted that with the large (Full HD, 4K)
images commonly used for multimedia applications such global techniques
often reach their limit in terms of computational cost without any search
space reduction.

Cross-modal Stereo. While all current systems only use the photo consistency
constraints between the stereo heads, additional information is available via
the intensity image of the ToF camera. Unfortunately, due to the difference
in resolution and wavelength sensitivity traditional photo consistency can
not be used here. A promising line of research is cross-modal stereo [17], also
known as IR/Thermal image-RGB registration [18,19,20], which tries to find
correlations between the near or far IR with RGB/Intensity image to either
infer depth as in the former case or find a warp as in the later case.

Structure from Motion. If the fusion system is moving and the scene mostly
static, it is possible to use structure from motion (SFM) techniques [21,22]
to additionally infer depth at some locations. Here, it has to be ensured
that the synchronization is sufficiently accurate or that the fusion system is
capable of handling slight misalignments robustly.

Monoscopic Cues. Lighting, Shading and Silhouettes aremostly used in mono-
scopic depth estimation [23,24]. Shape fromShading with unconstrained light-
ing is yet a difficult problem. But for the ToF camera, as the primary light
source is around the camera, this could still be feasible and should be inves-
tigated. Indeed, Stürmer et al. [25] observed that the amplitude image in ob-
served an inverse square falloff with distance. Finally, silhouettes constrain the
direction of normals of the depth map to be perpendicular to the pixel ray.

Current fusion systems typically only use the ToF as a black box depth imager
and the photo consistency constraint between the stereo heads. A notable excep-
tion is the method by Kim et al. [26] that uses additional silhouette constraints
and the technique by Zhu et al. [27] that uses an optical flow based temporal
smoothing (though no SFM information is used here).

3.2 Camera Setup

The camera setup employed should suit the requirements of the application and
additionally aim to reduce the effects of visible errors due to alignment issues.
Figure 3 illustrates various common camera configurations, though naturally
many more are possible.

Symmetric Side-by-Side. This is the approach most commonly employed by
most fusion systems with the stereo heads symmetrically placed left and
right of the ToF camera. Though this approach seems to be the best on first
instance, it depends on whether the paralax between the ToF camera and
the stereo heads is actually being used to additionally infer depth. If the
ToF data is going to be reprojected on to one of the stereo frames then more
information is lost than in the assymmetric setup.
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Symmetric Side-by-Side Vertical setup

Asymmetric Side-by-Side Mirror setup

Fig. 3. Different possible camera setups. Green: ToF Camera, Red: RGB Camera,
Yellow: ToF Lights.

Asymmetric Side-by-Side. This approach tries to compensate such parallax
effects between the ToF and Stereo heads by placing the ToF camera closer
to the primary camera. Depending on whether the ToF imager or one of the
stereo heads is the primary camera, also different setups may make sense. In
the latter case the ToF camera may additionally be placed on the other side
of the primary camera to ensure available depth information, otherwise not
obtainable due to occlusion between the stereo heads.

Vertical Setup. The vertical setup mostly corresponds to the asymmetric side-
by-side setup. It is employed for the same reasons as above in situations,
where placing the camera next to the primary camera is not feasible, such
as in stereo-production rigs (cf. Section 1) which are often huge in size and
would induce a bigger parallax in a side-by-side setup.

Mirror Rig. Ideally - if only ToF and passive stereo are used, there shouldn’t be
any parallax between the primary and ToF camera. This is achievable using
a beam-splitting mirror/prism (commonly known as hot or cold mirrors) and
sharing the same optical axis. The center for sensor systems (ZESS) in Siegen
has produced such a prototype system[28]. The Arri group, manufacturers
of production grade film cameras, have recently introduced another RGB-Z
camera that works on the same principal. It should be noted though that
such a setup still requires manual alignment of the mirror and cameras to
actually achieve zero-parallax and in practice this may be difficult to achieve.

3.3 Calibration

Intrinsics and Extrinsics. Once the hardware is set up the system needs to
be calibrated intrinsically for focus, principal point and distortion coeffi-
cients and the ToF camera additionally for depth. The extrinsic calibration
is concerned with finding the Roto-Translation between the three cameras.
Both procedures are straight forward for the stereo heads and can be done
using standard libraries [29,30]. In our experience, the same methods often
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work on the intensity image (with parameter tweaking) for ToF imagers with
higher resolutions. More details on calibration can be found in Chapter 1.

Joint Calibration The extrinsic calibration between the ToF camera and the
stereo heads using the standard method will be less precice due to the lower
resolution of the ToF camera. Some fusion techniques account for this by
simply adjusting uncertainties that they utilize during fusion [31,32]. If the
ToF depth calibration has already been obtained, DalMutto et al. [33] sug-
gest using the depth information and planar calibration targets to obtain a
precise extrinsic calibration. Schiller et al.[34] jointly do the intrinsic ToF
calibration with the extrinsic calibration, as the depth estimates delivered
by the ToF and stereo will not only be consistent but the ToF calibration
can also be achieved more precisely. Similar methods were also proposed in
[35,36] and can be summarized as follows:

1. Obtain pictures of planar calibration targets via a (calibrated) stereo
setup and the ToF image.

2. Fit a Plane into this target via the triangulated target points in the
stereo setup. To obtain dense stereo ”ground truth points”.

3. If the extrinsic calibration has not been estimated yet, use Horn’s method
[37] to find the transform between the stereo plane and ToF plane.

4. Finally, store the residuals between ToF depth and the plane for the ToF
depth correction. This can be done in form of a 4D look-up table or by
fitting a polynomial spline per pixel.

Finally, Guan et al. [38] use spherical targets that are detected in the RGB
and ToF imagers.

3.4 Preprocessing

Stereo Rectification. Stereo rectification [39] reduces the search space to a
line search along one image dimension by finding two homographies such
that the epipolar lines between the two stereo heads become parallel.

Depth Reprojection. ToF delivers radial depth which has to be converted
into z-depth before comparing with the stereo depth. Given the focal length
f and centralized pixel coordinates px, py (i.e. principal point in (0, 0)) and
radial depth d the coordinates (X,Y, Z) can be computed via:

(X,Y, Z)T = (px, py, f)
T · d

(f2 + p2x + p2y)
. (1)

These points can then be rotated and translated into the reference coordinate
frame. If a dense ToF depth map is required the values for reference frame
pixels without a corresponding ToF pixel have to be interpolated. Finally,
the z-depth z can be converted into disparities disp using the baseline b:

disp =
b · f
z

. (2)
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Depth Preprocessing. The depth data may be additionally filtered before
reprojection to avoid false occlusions due to noise. This ranges from simple
median filtering to remove flying pixels to more complex denoising techniques
as presented in Chapter 2.

4 Evaluation of Fusion Methods

In this section we will discuss various evaluation datasets and performance met-
rics to benchmark fusion algorithms. Additionally, based on the requirements
discussed in Section 2 we will propose some new experiments and performance
measures that we believe will help in a better understanding of the fusion system.

4.1 Datasets

4.1.1 Available Stereo-ToF Datasets1

Currently, very few ground truth datasets for ToF stereo fusion are actually
available. Nair et al. [32] used the HCI Box2 for quantitative evaluations. The
target consists of a box with various geometric primivitives that was hand mea-
sured to 1mm accuracy and aligned to PMD[Tec] CamCube 3 data. It contains
little texture and shows strong multi-path effects on the box sides. The Padua3

datasets introduced by Dal Mutto et al.[33,40] contain simple synthetic scenes as
well as measured tabletop scenes containing a varied amount of textured objects.
The reference data was obtained using space time stereo[41] and aligned with
ToF data from a MESA SR4000.

4.1.2 Semi-synthetic GT
Since ToF stereo fusion ground truth datasets are not as readily available as
datasets for assessing ToF or stereo alone, authors often resort to use existing
datasets, by simulating the missing modality.

Synthesizing the ToF Image. Often the Middlebury ground truth dataset
[16] is used [40,42] and the ToF view is synthesized from the ground truth
data. Though an interesting way to compare the results, the naive imple-
mentation currently used is to just downsample the GT depth and add some
noise to the obtained depth map.
This approach does not account for a) the different camera positions and b)
the complex noise behavior of ToF cameras. We therefore believe that it can
be improved in two important aspects.
• Alignment. The effects due to the ToF and the reference camera not
sharing the same optical axis are completely ignored in this simple ap-
proach. This is fine as a baseline evaluation to isolate alignment effects

1 Up to date list:
http://hci.iwr.uni-heidelberg.de/Benchmarks/document/tofstereo

2 http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/
3 http://freia.dei.unipd.it/nuovo/research/ToF.html

http://hci.iwr.uni-heidelberg.de/Benchmarks/document/tofstereo
http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/
http://freia.dei.unipd.it/nuovo/research/ToF.html
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from the fusion part or if a mirror rig is used. Otherwise, the depth map
should be first synthesized in the ToF view before warping the data back,
possibly adding alignment noise.

• Simulation. Also some care should be taken into properly simulating
the ToF sensor. Evaluation using the GT without any noise can only
be used as a proof of concept. We suggest to use one of the simulators
stated in Section 3.2 on page 61.

Synthesizing Stereo. Similarly, if a ToF GT dataset is available where the
reference data has been obtained including RGB/Intensity information such
as the datasets in [43] and the HCI- Laser scanning dataset (Section 4.2 on
page 65), this can be used to synthesize additional views. If only a GT depth
map is available occlusion effects need to be handled consistently.

4.2 Performance Measures

As ToF stereo fusion aims at finding high quality 3D reconstructions, the same
evaluation criteria that are discussed in Chapter 4, Section 5 can be employed.
Here, we will give an overview of the performance criteria reported in the ToF-
Stereo fusion literature and propose some performance criteria specifically for
ToF stereo fusion we deem useful.

4.2.1 Used Measures

Accuracy and precision. Conventional depth measuring approaches such as
laser scanning always state precision (variance of measurement) and accuracy
(systematic bias between GT and measurement). Assuming independently
and identically Gaussian distributed errors in each pixel, then mean and
standard deviation of the signed error would correspond to these measures.
As many real life distributions often have heavy tails, skewing or more than
one mode, robust statistics such as median and interquartile range should be
used. Finally, as there often is a strong correlation between error and external
factors such as viewing angle or texturedness, such scalar error metrics may
not give the complete insight into the behavior. Therefore, wherever possible
we suggest to additionally supply either the complete (1D) error distribution,
or even the error images [32].

Mean squared error, median absolute error. In fusion literature [44,40]
often the mean squared error is reported instead of accuracy and precision.
For real valued functions this corresponds to the sum of variance and squared
bias. Again, due to the inherent quadratic weighting of large errors a better
metric would be the median absolute error instead. The same arguments
against the scalarization of the error as above apply here as well.

Application specific evaluation. For many applications geometry
reconstruction is not the final goal but just a intermediate step. Song et
al. [45] evaluate the edge quality by comparing the obtained depth edges
with pre-labeled silhouette boundaries in a plant phenotyping application
(cf. Chapter 4, Section 5.2 on page 69). This is not only interesting for plant
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phenotyping, where the leaf silhouettes have to be extracted reliably, but
also in multimedia applications where the location and shape of silhouettes
are of vital importance. Zhu et al.[35,44] analyze the deviation between a
box model fitted into the depth data and the GT box by analyzing the an-
gular deviation of the three observed box sides from 90 degrees. Finally, for
view synthesis, the quality criteria is the credibility of the synthesized view.
This evaluation could be achieved having an additional camera capturing
the scene and comparing a synthesized view with the real view.

Eyeballing. The evaluation of ToF stereo fusion methods is still largely qual-
itative in nature due to the lack of sufficient ground truth datasets. For
certain applications (e.g. visual effects) the users can often judge best, how
useful the algorithm results are to them. This process, also called eyeballing,
requires many different scenes to be visually inspected by one or more inde-
pendent expert users. While all proposed methods show qualitative results,
a proper user study has yet to be undertaken.

4.2.2 Proposed Measures/Experiments

Graceful degradation - Alignment. As spatial and temporal alignment (i.e.
extrinsic calibration and synchronous triggering) is a big issue one possible
quality criterion is the robustness towards misalignments. We propose the fol-
lowing experiments to assess this. First a calibrated dataset using the standard
setup is captured. Fusion results for a spatially misaligned setup are then gen-
erated by artificially varying the calibration between ToF and the stereo setup.
Temporal alignment can either be evaluated by capturing the stereo data in a
higher framerate than the ToF images or by interpolating in between frames.

Speed vs. Quality. One claim that all Fusion papers make is that using ToF
data speeds up computation considerably compared to a baseline and many
authors also state the running times of their algorithms. Additionally, an
assessment of execution time (number of iterations, change of search range,
etc.) vs. quality improvement could be made. While it is clear that the speed
of algorithm execution depends heavily on the implementation platform,
hardware and implementation details, we think that a speed over quality
assessment of the algorithms is still necessary. Quality can mean any quality
criteria from endpoint error to precision of edges.

Effect of Fusion. The final claim that many fusion algorithms make is that the
depth maps obtained is better than either depth map alone. The question
that remains is how much better is the algorithm? And how does the scene
composition affect this performance. A fusion algorithm should at least be
as good as the better of the two modalities irrelevant of scene composition.

5 Overview of Fusion Methods

Following [16] we will group the fusion methods based on the optimization strat-
egy that is employed. Local methods [4,46,47,48,49,42,32,50] tend to be faster
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Table 1. General notation used

i, j pixel location
i ∈ Ω pixel i in image domain Ω
j ∈ Ni pixels j in neighborhood of i

{xi} = x Value x at pixel i collectively referred to as x
ste, ToF stereo, ToF
L, R Left/Right image
x̂, x̂i Final estimate for x, xi

dToF, zToF Disparity, Z-depth from ToF (as converted using Sec. 3.4)
dste, zste Disparity, Z-depth from stereo

AToF, IToF Amplitude, Intensity
IL, IR Intensity in Left/Right image

E(x), Ei(x) Objective energy to be minimized (at location i)
R(x) Regularizer
c Confidence / Weights

1ToF (z),1ste(z) Range indicator functions for ToF/stereo
χToF (x), χste(x) Spatial indicator functions for valid/trusted ToF/stereo

γ1, γ2 . . . User Parameters

and parallelizable but cannot cope with locally erroneous data. They are of-
ten based on a line search that is guided by the ToF data. Global methods,
[5,31,35,27,44,26,32,51,52,40,45] add the ToF information as an additional data
term in a global energy functional is then jointly optimized. While the depth
maps obtained are smoother due to the usage of prior information/regularizers,
this is at the cost of additional computational resources. In this overview, we
will further group the global techniques depending the framework that was cho-
sen for optimization. While [31,35,27,44,45] employ different graphical models
for inference, [51,32] formulate the problem in a variational framework. The
last sub-group of the global methods[5,26,52,40] contains those which use other
non-local optimization strategies.

After a discussion of commonalities in each group, we will proceed to describe
each method in detail. The description will start from the point we left in Sec-
tion 3 – that is after all data have been brought to the same reference frame and
after all preprocessing has occurred – except for some special kinds of prepro-
cessing not already mentioned in Section 3. The notation used in the following is
summarized in Table 5. Please note that some algorithms work in the disparity
(d) space while others operate in the depth (z) space. This doesn’t impose any
additional contraint as one representation can be converted into the other using
the extrinsic calibration and Eq. 2.

5.1 Local Methods

The methods presented here have in common that the basic optimization em-
ployed only takes a local sets of pixel values are taken into account. Note, that
the aggregation over support windows, whenever applied, make implicit assump-
tions (e.g. piecewise planar, fronto parallel patches) on surface regularity.
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Kuhnert et al. 2006 [4]. Kuhnert and Stommel proposed the first ToF stereo
fusion algorithm in 2006. Unlike many methods that incorporate the ToF
data into the stereo matching, this methods first independently computes
depth maps and uncertainties for ToF and for stereo and then fuses both data
sources (see also [40]). The stereo algorithm (Winner Takes All [16]) is only
applied to confident regions, using a thresholded Sobel operator response
to obtain a binary confidence map. Then, for each data source per pixel
ranges are estimated for ToF by adding and subtracting 2 sigma of the
previously measured noise. Using indicator functions 1ToF and 1ste for the
depth ranges, the fused depth is then given as.

ẑi =

∫ ∞

0

zi1ToF (zi)1ste(zi)dzi. (3)

This amounts to choosing the mid point of the depth range where the two
ranges from ToF and stereo overlap. Otherwise the depth is set to 0 (invalid).

Beder et al. 2007 [50]. Beder et al. derive a closed form solution to estimating
patch orientation based on ToF and Stereo data. The patchlet is initialized
with the ToF depth data. Next, by deriving analytical formulas for the gra-
dient direction the patch orientation is optimized using stereo and ToF data.
Beder et al. also give a thorough analysis on planar wall scenes as ground
truth.

Gudmundsson et al. 2008 [46] applies a hierarchical stereo matching algo-
rithm directly on the remapped ToF depth data. The reprojected depth is
input into the 4th coursest level of a hierarchical stereo matching algorithm
by van Meerbergen et al. [53] (see also [51]).

Hahne et al. 2009 [48]. First, a binary confidence map is obtained by thresh-
olding the amplitude image. The depth data in unconfident areas are dis-
carded and the holes filled via linear scan line interpolation. Next, only
the unconfident regions are then further refined via correlation based block
matching. The support window shape that is used guided by a watershed
segmentation of the color image. The segmentation is seeded using an eroded
version of the confident and unconfident regions.

d̂i =

{
argmin

di

Este(di) if AToF
i < γ

dToF
i otherwise

. (4)

DalMutto et al. 2010 [49]. The technique is build around a confidence-based
matching in a probabilistic framework. It computes pixel wise probabilities
of ToF and probability of stereo in a cost volume. The ToF probability is
assumed to be a Gaussian centered around the ToF depth. The stereo prob-
ability is given by the truncated absolute difference. The energy resembles
the one used in Eq. 8 without the regularizing terms.

Bartczak et al. 2009 [47]. Bartczak et al. propose an iterative line search
based fusion scheme. After each iteration of the algorithm the obtained depth
map is fed back into the matching score in order to enforce local minima.
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The local matching cost after the nth iteration is given by

En(di) =

∑
j∈Ni

wj(d)

(
EPC(di) +

∑
k<n

ED(di|dk)

)
/(N + 1)∑

j∈Ni

wi,j(di)
(5)

with d0 = dToF ,dk = argmin
d

(
Ek(d)

)
. In Eq. 5 EPC is the photo consis-

tency cost based on truncated L1 cost weighted and offset by a confidence
in the cost given by the min max range of the cost function. The pixel-wise
depth contribution ED is a truncated L2 cost. Finally, the weights used for
aggregation are given as the product of normal distributions centered around
center pixel a) color b) location and c) photo consistency.

Yang et al. 2010 [42]. The approach by Yang et al. is based on plane-sweeping
stereo [54]. As a preprocessing the technique employs a fast RGB-assisted
bilateral filter. The energy being minimized is

E(zi) = cEToF (zi|zToF
i ) + (1 − c)Este(z). (6)

with EToF being modeled as a truncated quadratic loss between the depth
and the ToF depth. EStereo corresponds to the plane sweeping cost based
on the sum of square (SSD) distance per pixel costs. The confidence c used
for matching is given as

c =
(1 − cste)cToF

((1 − cste)cToF ) + (1− cToF )cste)
. (7)

Here, cste is the stereo confidence given as the likelihood of the current
matching assuming a Gaussian distribution of matching costs in the aggre-
gation window centered around the center pixel cost and cToF is the ToF
confidence, a Gaussian with the amplitude image used as standard deviation.

5.2 Graphical Models

Graphical models have frequently been used in the past to solve the stereo match-
ing problem[55,56,57]. Here the problem of correspondence estimation is treated
as a labeling problem, where each discrete label corresponds to a disparity value.
The energy is interpreted as the negative logarithm of a joint probability distri-
bution defined on a graph, where each node corresponds to an observed (data
term) or latent (depth) random variables the probabilities are defined on cliques
of these graphs. Though continuous extensions of graphical models do exist[58]
the methods presented here still operate on a discrete domain and differ in how
the graph is defined as well as the optimization method used for inference.

Zhu et al. 2008, 2010, 2011 [35,27,44]. In a series of publications starting
with [35] Zhu formulates the problem in a Maximum a priori-MRF frame-
work. In [44] the adaptive weight terms are added and finally in [27] a tempo-
ral smoothing term is added. The graph structure represented by the energy
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functional is given by a temporally layered graph. Each layer represents a
normally 4 connected pixel neighborhood graph. The connections between
layers are given by an optical flow estimate

E(d) = cstereoEstereo

+ cToFEToF (d|dToF )
+ Rsmooth

+ Rtemp

(8)

with EToF (d|dToF ) being a function of the truncated L1 distance between the
estimated disparity and ToF disparity and Estereo(d) based on the Birchfield
and Tomasi matching cost [59]. The spatial smoothness term Rsmooth is a
truncated quadratic penalization. Finally, the temporal regularization Rtemp

is given by the complete cost without the temporal term for the previous and
next frame. The weights are set according to the confidence in each point.
Stereo confidence is the peak to peak ratio of the cost function. ToF reliability
is given by a normal distribution (cf. [49]). Optimization is done using Loopy
Belief Propagation.

Hahne et al. 2008 [31]. The approach by Hahne et al. is based on Graph Cuts
and regularizes the first order Total Variation (TV) of the reconstructed sur-
face. The graph is defined on the cost volume with the optimal cut between
foreground and background nodes being the desired surface. Each voxel is
associated with an consistency edge in z direction. Additionally, smoothing
edges connect the nodes in x and y direction. The nodes themselves reside
in between voxels. The energy considered is

E(z) =
∑
i

(Efused(z) + cfused,x∂xz + cfused,y∂yz) (9)

where Efused is a linear combination of photo consistency and truncated
quadratic cost for the ToF and the smoothing weights cfused determined by
a linear combination of the color difference in the primary stereo image and
the difference of median depth of the ToF output. Note that the variable z
corresponds to the edges in z direction that are chosen in the cut.

Song et al. 2011 [45]. Song et al. use a the standard graph cut stereo approach
[56]. Unlike the previous approach the graph is defined over the image grid
using multiple labels. Inference is done using alpha expansion. The Time of
Flight data is used to reduce the label space in each graph node.

5.3 Variational Fusion

Different to fusion approaches based graphical models as considered in the pre-
vious section, variational fusion approaches consider both a continuous image
domain Ω ⊂ R

2 and continuous variables (functions), indicated by a dependency
on the image coordinates x ∈ R

2.
We start with a brief overview of a general variational framework, before dis-

cussing in detail two recently proposed ToF stereo fusions approaches [32,51],
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Fig. 4. Nair et al. – comparison of ToF only, stereo with semi global matching (SGM)
[60], local and variational fusion. We observe that the local approach gives a rough
estimate of the disparity, which still compares favorably with SGM. The variational
fusion approach provides the most regular result.

which are based on this framework. Since one of these approaches assumes un-
synchronized data, the restriction to solely horizontal correspondences between
the (rectified) stereo images IL and I can not be applied. We therefore describe
this correspondence in terms of an optical flow field u = (ux, uy)

	 : Ω → Ω, also
referred to as displacement field.
We recall the general form of an variational approach given as

E(u) := Edata(u) + λR(u), (10)

to be minimized w.r.t. u, whereEdata(u) is the data term, R(u) is a regularization
term and λ > 0 is a regularization parameter. A standard data term for optical
flow based on the linearized brightness constancy assumption [61,62] is

Edata(u) := ‖ρ(u)‖L1 :=

∫
Ω

ρ(u(x)) dx, (11)

where

ρ(u(x)) :=
∣∣IL(x + u0(x)) + 〈∇IL(x+ u0(x)), u(x) − u0(x)〉 − IR(x)

∣∣ (12)

with some approximation u0 of u. The above framwork is typically used in combi-
nation with a coarse-to-fine multi-scale approach (image pyramid), see e.g. [62],
where u0 is updated on each scale. The two fusion approaches considered below
differ to this standard form in the way how additional information on the image
correspondence from a different modality is introduced into this framework and
how the initial approximation u0 is obtained.

Nair et al. 2012 [32]. Nair et al. consider a synchronized camera setup which
allows rectification of the stereo images. As a consequence the displacement
field can be assumed to be horizontal (ux = d with disparity d, uy = 0).

The proposed approach consist of two stages, which both make use of
confidence measures to determine regions where the ToF or the stereo data
might be corrupted. These confidence measures cover problems with low
signal intensity and flying pixels for the ToF data, and regions with weak
textures and occlusions in the stereo data. A detailed review of the exact
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(a) (b) (c)

Fig. 5. Ruhl et al. – input data example: approximate depth data from multiple unsyn-
chronized Kinects to be used as uncertain prior to image correspondence estimation.
(a) HD camera image, (b) VGA depth map (invalid depth data marked in red), (c)
depth points projected into world space.

definition of these measures is out of the scope of this section; instead we
refer the reader to [32].

The first stage of the proposed approach consists in a local fusion us-
ing block matching combined with these fidelity measures. Later on, in the
second stage, the result of the local method is used as initialization. Alter-
natively, the local fusion approach can serve as a stand-alone method with
low numerical costs.

To improve the result of the local fusion approach in a second stage, a
modification of the variational framework in Eq. 10 is considered, where the
standard data term is replaced by

Edata(u) :=

∫
Ω

χToF (x)ρToF (u(x)) + χste(x)ρste(u(x)) dx (13)

with two local terms ρToF (u) and ρste(u) penalizing the deviation from the
ToF and stereo data, respectively. (We refer the reader to [32] for the exact
definition of these two terms.) The aforementioned confidence measures are
used to determine locally which of the two data modalities is preferable to the
other by defining the indicator functions χToF and χste in Eq. 13. Thus, the
individual data terms are active only in the corresponding image regions. As
regularization term an adaptive approach based on first- and second-order
total variation is used.

We refer to Fig. 4 for a comparison of the results from both stages.

Ruhl et al. 2012 [51]. The authors consider a fusion system, which focuses
on settings with unsynchronized cameras. Such a setting complicates recon-
struction as typical algorithms require input data captured at the same time
instance. In particular, here, the images correspondences do not only depend
on the camera geometry, but also on a change of the scene between the indi-
vidual image recordings. As a consequence, the correspondences in general
can not be assumed to be horizontal. The approach makes use of a given
depth proxy to guide an image correspondence algorithm that establishes
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(a) (b)

Fig. 6. Ruhl et al. – stage 1 vs. 2: Approximate prior vs. estimation guided by approx-
imate prior. (a) source image warped directly by approximate prior (b) source image
warped after dense image correspondence estimation guided by the approximate prior.
The large-displacement, occlusion and low-texture matching properties have been pre-
served while detail errors are much less present.

the necessary connections between the input RGB images. The proposed
method is not restricted to ToF, as the depth data can be obtained with any
available method, but it can be used directly in a ToF stereo fusion setting.

The two stage approach can be briefly summarized as follows:

First stage: Different alternatives are considered to obtain a prior for the
stereo correspondence. One alternative is to use depth sensors such as ToF
or Kinect (cf. Fig. 5). The second one is to use very coarse, manually mod-
eled geometric proxies, which are e.g. a common byproduct of visual media
productions. In both cases, the core idea is, after assuming fully calibrated
camera systems, to project the 3D world coordinates from the scene into im-
age planes of the stereo cameras to obtain (possibly sparse) correspondences
that ideally map to a disparity field u(x), but may also deviate from epipolar
geometry to some extent.

Second stage: The variational framework introduced in Eq. 10 is used with
the data term defined as in Eq. 11 and using total variation regularization.
The correspondence prior ũ(x) from the first stage enters the approach in the
interpolation phase, when the initialization u0 for the next finer step of the
image pyramid is set up. Values of u0(x) from the coarser level are replaced
by the values of prior ũ(x), if the employed confidence measure allows it.

We refer to Fig. 6 for an example comparing direct application of a depth-
based prior ũ against the results of a dense image correspondence estimation
merely guided by ũ using a confidence measure.

5.4 Other Methods

Kim et al. 2009 [26]. Kim et al. propose a volumetric approach. The initial
surface is given by the ToF depth. This is further refined by optimizing
an energy function including ToF, stereo, silhouette terms and a Laplacian
prior. Optimization is done with the L-BFGS optimizer [63].
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Fischer et al. 2011 [5]. Fischer et al. extended Semi-Global Matching Stereo
by the approach of Hirschmüller [64] to account for ToF-Stereo data. The
algorithm works in disparity space. The energy being minimized is given as

E(d) =
∑
i

Cdata(di) +
∑
j∈Ni

γ1χ{|di−dj|=1} +
∑
j∈Ni

γ2χ{{|di−dj|>1}, (14)

where d is the disparity, χA is 1 when the condition A is true and 0 otherwise
and 0 < γ1 < γ2 are the user specified parameters. The data term in Eq. 14
is defined via

Cdata(d) :=

{
CToF (d) if theToF data is valid,

CBT (d) otherwise,
(15)

where CToF is a truncated reverse Gaussian centered around the ToF dis-
parity estimate. Note that either ToF or stereo data are used but not both
at the same time. The ToF data is invalidated, if the photo consistency score
for the ToF disparity is below a certain threshold. The regularizer does not
penalize small spatial variations in disparity. As no additional term is added
to the functional the optimization step remains the same as in [64] and is
done in 16 different 1D directions. As a preprocessing step outliers in the
ToF depth image are removed via wavefront propagation.

DalMutto et al. 2012 [40]. Based on locally consistent stereo [65] the tech-
nique uses a segmentation of the RGB image to guide a bilateral filter for
ToF data upsampling. The algorithm takes two depth hypothesis from a
stereo algorithm (semi global matching) and ToF respectively which are cal-
culated independently. Each pixel then propagates both depth hypothesis
independently according to [65] to surrounding pixel based on color similar-
ity, spatial proximity and photo consistency. Every pixel then has a number
of ‘votes’ casted by neighboring pixels. From these hypothesis the one with
the highest plausibility is finally chosen.

Gandhi et al. 2012 [52]. The basic idea here is to combine the reprojection
and interpolation step of the ToF depth map on the reference frame with a
stereo matching procedure. The proposed technique is based on [66], with the
difference that , reprojected ToF pixels are used as input instead of sparsely
matched feature points. The reprojected ToF points are used as initial seeds
for a region growing stereo algorithm. The seeds are first put in a priority
queue based on their photo consistency score. Next, the seed with the highest
priority is removed from the queue and the corresponding disparity drawn
into a final disparity map. The neighbors of the pixel that has just been
finalized are then added to the priority queue using the depth estimate with
the best stereo score, found by searching around the interpolated ToF depth
estimate. This process is repeated until all pixels in the final depth map
are drawn, thus implicitly discarding ToF measurements with a bad photo
consistency score.



124 R. Nair et al.

6 Conclusion

We presented an overview over current ToF stereo fusion techniques as well as
a guide to setting up such a system. Furthermore, we discussed the importance
of high quality depth maps in multimedia applications due to the requirements
that applications such as matting, view synthesis or CG effects impose on depth
map quality. Still, more effort has to be put into assessing the actual benefits
of the ToF stereo fusion over either method alone in a more systematic fashion.
We considered various approaches to evaluate these methods and proposed new
experiments that should be included in a future evaluation. Finally, we note
that currently not all possible depth modalities available from such a system are
actually being made use of for fusion purposes. Systems in the future may use
the additional modalities to achieve a better accuracy.
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Abstract. Depth sensors like ToF cameras and structured light devices
provide valuable scene information, but do not provide a stable base for
optical flow or feature movement calculation because the lack of tex-
ture information makes depth image registration very challenging. Ap-
proaches associating depth values with optical flow or feature movement
from color images try to circumvent this problem, but suffer from the
fact that color features are often generated at edges and depth discon-
tinuities, areas in which depth sensors inherently deliver unstable data.
Using deformation tracking as an application, this article will discuss the
benefits of Analysis by Synthesis (AbS) while approaching the tracking
problem and how it can be used to:

• exploit the complete image information of depth and color images in
the tracking process,

• avoid feature calculation and, hence, the need for outlier handling,
• regard every measurement with respect to its accuracy and expected

deviation.

In addition to an introduction to AbS based tracking, a novel approach
to handle noise and inaccuracy is proposed, regarding every input mea-
surement according to its accuracy and noise characteristics. The method
is especially useful for time of flight cameras since it allows to take the
correlation between pixel noise and the measured amplitude into account.
A set of generic and specialized deformation models is discussed as well as
an efficient way to synthesize and to optimize high dimensional models.
The resulting applications range from real-time deformation reconstruc-
tion methods to very accurate deformation retrieval using models of 100
dimensions and more.

1 Introduction

Depth sensing in computer vision has come a long way since the beginning of
stereo vision [1] and the introduction of 2D and 3D range imaging. Today, many
reliable algorithms for computing dense depth maps from stereo data exist, but
the continuing demand for alternative depth sensing technologies such as time
of flight (ToF) cameras and structured light systems, e.g. the Microsoft Kinect,
shows that stereo imaging still has its weaknesses. When using color camera
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data, image registration and tracking have always been rigidly connected to
the 3D estimation process, since registration, e.g. corresponding features [2,3] or
correlation [4] are prerequisites to retrieve information about the third dimension
as well as for object tracking.

Depth images however, as produced by ToF cameras and structured light
systems, often lack significant structure that can be exploited in a similar fashion.
Hence, the image registration that comes for free with stereo generated depth
images can be difficult to retrieve if only the depth data is available. There
are algorithms to generate points of interest [5] and even depth image features
that are invariant to view point changes [6] but these require articulated surface
information, limiting their field of application. Furthermore, descriptors as well
as significant point retrieval fail when the objects at hand deform, because the
(local) shape is the only invariant feature a depth image can provide.

Hence, the first works on aligning depth data did not refer to significant points
and correspondences, but performed registration directly using the complete
image. In 1992, Besl [7] published a method iteratively enhancing an unknown
pose estimate between two given depth images by reducing the distance between
the closest 3D points of each measurement, the iterative closest point (ICP)
algorithm. This direct approach became a standard method for registering point
clouds and depth data. It is for example used in the Kinect Fusion method [8]
for real-time 3D reconstruction based on Kinect depth images.

Another direct method was introduced early on by Horn and Harris[9]. Laser
range finder data was aligned for navigation purposes by iteratively generating
sensor results for each pose hypothesis, which could be evaluated by directly com-
paring it to the actual sensor input. The class of such optimization methods that
synthesize input data in order to evaluate hypothesis is called analysis by synthesis
(AbS). In most cases, AbS methods optimize all parameters simultaneously, since
a synthesis of the input data usually requires an estimate of the complete solution.
Hence, AbS methods require a solution space that is parametrized with a limited
number of dimensions, e.g. a pose [9], rag-doll parameters [10] or specialized de-
formation models [11,12]. Global search algorithms are usually slow compared to
local optimization methods, and high dimensional optimization via synthesis of
one or multiple input images is hardly capable of processing in real time. Never-
theless, real-time tracking can be achieved by combining a fast global optimiza-
tion scheme, covariance matrix adaptation - evolution strategy (CMA-ES)[13] with
sparse synthesis [14], as used in [15] and [11].

In this article, sparse synthesis and CMA-ES optimization are discussed and
the approach in [14] is extended by explicit noise handling. Regarding noise ex-
plicitly not only leads to more accurate tracking results for known noise models,
it also makes weighting heuristics for input data from different domains (color,
ToF, structured light) obsolete, providing a solution to the data fusion problem
that is much more sound and physically reasonable.

The remainder of this article is organized as follows: section 2 discusses the
parametrization of the search domain and shows various examples from differ-
ent applications. In section 3, the process of generating artificial input data is
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explained along with the sparse synthesis that allows for fast estimation evalua-
tion. The explicit noise model is introduced in section 4 and the global optimiza-
tion scheme CMA-ES is discussed. Section 5 provides example applications and
evaluation results, reviewing the capability and limits of AbS and the benefits of
explicit noise handling. Figure 1 depicts a schematic overview over the method.

Initial Mesh

Θmax

Resulting
Deformation Parameters

V

Deform
Vertex Set

D(V )

Optimization Loop

Synthesize
Expected Input

P (D(V ))

Optimization
CMA-ESΘ∗

Analysis

∑L

(Evaluation)

Input Image(s)

Fig. 1. An overview showing the components and the data processing of the AbS sys-
tems discussed in this article. The variable names are introduced in the corresponding
sections in which the components are explained in detail.

2 Scene Parametrization

The primary difference between reconstruction methods like (Non-rigid) struc-
ture from motion (SfM) and AbS is the explicit model of the search space that
is required by AbS methods. Hence, AbS methods are not suitable for e.g. 3D
reconstruction from color data only, due to the lack of a generic parameter space
describing arbitrary 3D scenes. But if depth cameras are involved, a 3D mesh is
already provided for every frame, allowing to reduce the reconstruction problem
to a tracking problem. For the rigid case, the direct reconstruction is already
solved very well [8] and will not be discussed in this article. In the non-rigid
case, the algorithms for tracking still leave room for improvement. One of the
main reasons for this is the lack of a generic deformation model; unconstrained
deformation in the real world cannot be described by a parameter space with a
finite number of dimensions.

Therefore, the first step in setting up a tracking method for deformable scenes
is the design of a deformation space. In this deformation (parameter-) space, the
trade-off between versatility and ease of optimization is defined. In the following,
three examples of deformation function classes are given. The initial triangle
mesh is always given as a set V of vertices v, and D will denote the deformation
function parametrized by the vector Θ, i.e.

DΘ : V → R
3. (1)
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In the generic case of deforming surfaces, the co-domain of non-uniform ra-
tional B-splines (NURBS) [16] has proven to be a suitable parameter space for
single objects [14]. This section will first introduce NURBS-based deformation
and afterwards discuss specialized deformation functions for dedicated purposes.

2.1 Non-uniform Rational B-Splines

In the last decades, NURBS have become one of the standard tools in CAD
applications to design arbitrary surfaces. Not only are 3D NURBS surfaces intu-
itively manipulated via 3D control points, the ability to match any given surface
with arbitrary accuracy can easily be deduced from the mathematical definition
[16]. It is justified to say that the co-domain of a NURBS surface function is
a suitable parameter space to describe deformations. As discussed in [14], the
common definition of a NURBS surface is given by

N ((u,w), C) :=
∑
p∈C

Rp(u,w)p. (2)

Rp(u,w) is the weighting function for each control point p for the parameters
(u,w) where

∑
p∈P Rp(u,w) = 1 for all (u,w) ∈ [0, 1]2. Each control point p

has a position in 3D space, i.e. p ∈ R
3 and is associated with a spline function

Rp, describing the influence of p at the parameter (u,w). Figure 2 shows a 2D
example of a NURBS function. The points of maximum influence η, which are
also the points at which the weighting functions “fade out”, are arranged in a
grid-like fashion in the parameter space, which allows to index the weighting
functions Rp by their position i in the first and j in the second parameter space
dimension. Using this definition of i and j, Rp can be defined as

Rp(u,w) :=
ni,d(u)nj,d(w)∑m

k=0

∑m
l=0 nk,d(u)nl,d(w)

. (3)
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Fig. 2. Left: the weighting functions Rp defining the influence of each control point
position in the parameter domain. Right: the NURBS function N together with its
control points in the co-domain of the NURBS function, the world coordinate system.
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The function n is the one-dimensional base spline of polynomial degree d for
the indices i and j. The actual placement of the spline in each dimension of the
parameter space is defined by an ordered set of knots {η0, ..., ηm} ∈ [0, 1]m+1,
describing the “fade-out points” of the base splines (see Fig. 2). Given these
parameters, the base splines are defined recursively by

ni,0(u) :=

{
1 for ηi ≤ u < ηi+1

0 otherwise
(4)

and for d > 0 by

ni,d(u) :=
u− ηi

ηi+d − ηi
ni,d−1(u) +

ηi+d+1 − u

ηi+d+1 − ηi+1
ni+1,d−1(u). (5)

The algorithms discussed in this article assume the knots η0, ..., ηm to be
distributed equidistantly in each dimension [14].

x

y

z

v

u

w

o

v

Fig. 3. Left: a vertex v as it is defined in world coordinates x,y,z. Right: the same
vertex addressed by the parameters u and w describing the closest surface point and
the orthogonal offset o.

In order to use a NURBS surface as a deformation function for a given mesh,
the mesh vertices have to be associated with the surface function. As introduced
in [15], a surface dependent coordinate system can be defined that allows any
given mesh to follow the deforming movements of the NURBS function:

for each vertex v, the closest point on the NURBS surface is given by

(u,w) = argmin
(u′,w′)∈[0,1]2

‖N ((u′, w′), Θ∗)− v‖2 (6)

with Θ∗ being the set of control points at the initial position. Assuming that
the closest surface point is not at the edge of the surface, the surface normal of
that point directly intersects with the vertex. Let N̂ (u,w) describe this surface
normal, then there is an scaling factor o ∈ R, such that

v = N ((u,w), Θ∗) + N̂ ((u,w), Θ∗)o. (7)
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Hence, every vertex position can be reconstructed from a function parameter
(u,w) and an offset parameter o (see Fig. 3). If u,v and o are stored for each ver-
tex in the initial surface shape, any further deformation of the NURBS function
is also performed by the triangle mesh, if the positions are calculated by (7), i.e.

DΘ(v) = N ((u,w), Θ) + N̂ ((u,w), Θ)o. (8)

with Θ being the vector containing the current set of control points.

2.2 Specialized Deformation Functions

As the NURBS based deformation is very generic, its deformation space is often
higher dimensional than necessary. In order to keep the optimization process
efficient, it is useful to choose the deformation space to be as low-dimensional as
possible. This does not only speed up the optimization, it also causes the result-
ing tracking to be more robust towards degenerative parameter constellations.

Fig. 4. Left: an object sliced into a set of segments, each assumed to have a constant
deformation. Right: a schematic of a deformed object: each segment is modeled with
constant curvature.

2.2.1 Deformation under Gravity
In [12], Fugl et al. describe an AbS approach to deformation tracking dedicated
to the handling of flexible objects with a robot gripper. The basic principle is to
adapt the angles of a set of curvatures within the object (see fig. 4) to synthesize
the deformation of an object under the influence of gravity. For an angle α and
an object of size xsize, a vertex v is deformed using the function

DΘ :

⎛⎝x
y
z

⎞⎠ �→
⎛⎝ x cos(α)− (z − r) sin(α)

y
(z − r) cos(α) + x sin(α) + r

⎞⎠ , α =
x

2π(r − z)
, r =

xsize

β
(9)

with Θ = {β}, if the object is made from a single curvature element. For mul-
tiple segments, (9) has to be applied subsequently to the mesh points with Θ
containing the set of angles respectively (see [12] for details).
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The limitation to one dimension in the main deformation allows to produce
very robust and accurate results, up to the ability to determine the object mate-
rial properties based on their physical plausibility. The fact that one end of the
object is rigidly connected to the robot gripper adds to the robustness as this
constraint can directly be used for the synthesis.

2.2.2 Paper and Virtual Display Deformation
Steimle et al. [11] introduced an AbS system for real-time tracking of virtual
display surfaces, i.e. sheets of paper or foam onto which display content is pro-
jected by a video beamer. A key aspect of this method is the ability to track the
position and deformation of the object with very low latency. To achieve high
reconstruction precision and high frame rates, a dedicated deformation model
was created that reduced the generic deformation to the ones plausible for sheets
of paper or foam:

Four main deformation directions, intersecting at the center of the sheet, each
with two independent curvature values for each side (see Fig. 5 left) form the
linear deformation base. Note that the bending transformation is a non-linear
transformation which is approximated by linear combinations of lookup table
entries, merely the combination of the deformations is purely linear. Paper, when
bend, has the property to deform with one dominant curve axis, which can be
approximated by a corresponding linear combination of base deformations. The
fact, that the base elements are combined in a linear fashion is vital to the real-
time aspect of the algorithm. To account for effects that can not be approximated
by the 8 base deformations, an additional z-mapping step is performed after
the main deformation: the height (z-value) of each object point is mapped by a
function that regards the most common deviations from the deformation domain
spanned by the 8 base deformations (see Fig. 5 right).

In comparison, a NURBS function to model such a class of deformations would
have required 4x4 control points, creating a 48 dimensional parameter space, this
deformation only requires 8+1 deformation parameters and 6 pose parameters,
that add up to a 15 dimensional parameter space for Θ. The low dimensionality

Fig. 5. Left: the four main bending directions, each with a separate curvature value
for each side, are the deformation base for the FlexPad deformation function. Right:
a post processing deformation executes a mapping of the high values of the deformed
object points to regard non-constant curvature aspects.
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leads to a faster and more robust deformation function at the cost of a lower
generality.

3 Synthesis

A precondition to a correct synthesis is to have reliable calibration data of all
sensors involved. For the results displayed in section 5, the calibration method
from Schiller et al. [17] was deployed to all input sensors. Hence, for any image
Is from a sensor s, there is a corresponding projection function Ps : R3 → R

2

function given, yielding image coordinates for any 3D point and sensor s. Let
cs ∈ R

3 be the camera center of s and R ∈ R
3×3 the rotation matrix for the

sensor orientation. Let Ks ∈ R
3×3 be the camera matrix of s and Ds : R

2 → R
2

the lens distortion function, then Ps can be written as

Ps(v) = Ds

(
Ks · (R · (v − c)) · 1

(R · (v − cs))z

)
. (10)

with ·z denoting the z component of a vector.
In the general case, the synthesis (as e.g. performed in [12]) can easily be done

by rendering the object at hand on a graphics card for each sensor s, using the
set of deformed vertices D(V ). The resulting RGB image can be used as a color
sensor synthesis for a sensor while the z-Buffer of the rendered image can be used
as a depth image. Lens distortion effects of the sensors can either be synthesized
in a second render step (distortion rendering) or the inverse distortion function
is applied to the input images.

The advantage of forward distortion, e.g. distortion rendering, is that values
can be compared directly in the input domain, without relying on interpolated
values generated by the undistortion of the input data, making it the right option
if a high precision reconstruction is to be achieved.

In case of backward distortion on the other hand, images are undistorted prior
to any processing, leading to a gain in processing speed because the input image
is processed once for every frame, whereas several thousands of syntheses may be
generated for one input frame. Backward distortion should be used when results
have to be calculated in real time.

3.1 Sparse Synthesis

A more efficient way to synthesize the projections of a mesh is a sparse synthesis,
first introduced in [15]: instead of rendering the complete mesh into an image
buffer, only the significant parts of the mesh are evaluated. The surface of a
triangle mesh can be understood as linear interpolation between vertices, i.e.
the main information of an object is given by its set of vertices, not by the
interpolating triangles. Hence, sparse synthesis does not generate a synthesized
image, but only one image value for each position a vertex v is projected to
in the sensor s with projection Ps. The color image synthesis for each sensor s
at the image coordinates Ps(D(v)) is a simple lookup of the vertex color of v.
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For each depth sensor, the synthesized depth value is given by the Euclidean
distance value

d = ‖cs − D(v)‖2 (11)

for the image coordinates Ps(D(v)) for all depth sensors.

3.2 Input Warping

If a 3D point v is already given in camera coordinates and if the corresponding
projection Ps does not have to compensate lens distortion, (10) can be simplified
to

Ps(v) = Ks · v

vz
, (12)

greatly reducing the amount of calculations that need to be performed per vertex
and per synthesis. For a single sensor setup, this requirement is easily met by
solving the problem directly in the camera coordinate system. If multiple sensors
are used, such a simplification requires a warping step applied to the input
images, changing the viewpoints of the input data into a common projection
(see [18] for an introduction to warping). Although such a preprocessing step
can greatly increase the overall performance of the algorithm, one has to be
aware of the fact that the warping results are subject to artifacts caused by
occlusion, quantization and noise in the depth input data. Warping helps to
perform AbS in real time [14], but reduces the accuracy of the result.

4 Analysis and Optimization

With the ability to synthesize the input for a given parameter set, the parame-
ter space can be searched for the parameter set most suitable for a given input
image set, i.e. for the parameters whose synthesized output is as close to the real
input as possible. In most cases [14,15,11,12] the objective function is modeled
as a simple pixel-wise least squares error function augmented by heuristics to
keep the target function from introducing singularities or optima at degenera-
tive parameter constellations. Least squares errors are a suitable tool as long as
the values compared are within the same domain, but require manual weight-
ing or heuristics when used to compare values in different domains, e.g. depth
differences and color differences.

In the area of sensor fusion, statistical modeling is common because it allows
to define a global likelihood based on the expected distribution of each sensor
input. This means if a noise model is present for every input, the global likelihood
over an arbitrarily large set of different inputs from different domains is still
well defined. A likelihood based AbS method is able to combine the input of
different types of depth cameras (Kinect and ToF) along with color information
and even binary information like light barrier feedback, regarding sensor specific
shortcomings.
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4.1 Direct Bayer Pattern Analysis

When formulating the idea of a direct method like analysis by synthesis, one
of the main motivations is drawn from the argument of a most direct feedback
because each solution is evaluated directly on the sensor input. A minor detail
that is most often disregarded is the fact, that a color image is already an in-
terpretation of the sensor values, as Bayer pattern cameras [19] only provide
one color channel per pixel. The effect seen most often in RGB images gener-
ated by simple de-bayering methods are wrong color values at discontinuities
and contrasting textures. There are very powerful demosaicing strategies [20],
but in practice, these methods are only used in situations where the need for
complex demosaicing is required, since they require GPU usage to run in real
time on larger images. Figure 6 shows the large differences between different
demosaicing algorithms. The results are sorted from left to right in the order of
complexity of the reconstruction. It visualizes that even the most renown demo-
saicing method “Adaptive Homogeneity-Directed Demosaicing” (AHD) [21] has
problems at reconstructing fine details and edges correctly.

Fig. 6. Left: the Bayer pattern as it is used in the Microsoft Kinect camera. Center left:
a Kinect color image converted to RGB with a fast demosaicing method as it is used in
the Open NI driver. Center right: demosaicing result by a simple bilinear demosaicing
method. Right: demosaicing result by the AHD method as it is implemented in the
DC1394 library.

Using analysis by synthesis, the de-bayering step is not required anymore,
since it is possible to synthesize the Bayer pattern image directly, by masking
the RGB synthesis accordingly. It even allows to simulate defocus, crosstalk, and
insufficient color filters (as e.g. described in [20]), and even in cases where it is
impossible to reconstruct the real RGB projection from the input image. AbS
allows to process the data efficiently without the need for e.g. convolutions, by
simply applying a kernel filter to the synthesized image to simulate the effects.
This way, the problem of demosaicing and debluring is completely circumvented
in an elegant and efficient way.

4.2 Likelihood

Modeling the noise of a sensor is not straight forward. Especially for more com-
plex capturing systems like time-of-flight cameras, the problem of finding a suit-
able model is tedious and not sufficiently solved yet. The problem is that errors
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may depend on various environmental influences, correlated background noise
within and from outside the camera housing, overexposure, and geometrical con-
stellations that introduce multi-path effects as well es material properties (see
chapter 1). Some of these effects can be modeled well, though a direct com-
pensation is not always possible or only with reduction of image information as
discussed in section 3.

The very advantage of AbS methods proposed in this article is that there is
no need for any explicit compensation as long as the noise model can be given,
i.e. the probability density can be calculated.

Let P be the probability density function for a distance measurement event
xdm given the real distance xdr , i.e.

P (xdm |xdr ), (13)

providing the relative likelihood of xdr when the measurement event xdm is
present

L(xdr |xdm). (14)

There has been the common observation, that the amplitude of the ToF signal
can provide a hint on the accuracy of a measurement(see chapter 2.2 or [22,23]).
Let this be regarded by the likelihood function as well. Given the additional
amplitude measurement event xa, the likelihood

L(xdr |xdm , xa). (15)

is augmented by the additional conditional xa, regarding the amplitude measure-
ment. The slight inaccuracy of regarding the amplitude measurement instead of
the actual amplitude helps to create a system free of hidden random variables,
since the amplitude is not rendered by the synthesis step. It can be assumed that
the effect of exchanging the actual amplitude by its measurement is neglectable.

For a color sensor the likelihood can be denoted in a similar fassion, by cal-
culating the propabilty of the color of a vertex projected onto sensor given the
measured color at this point in the image.

The overall goal can now be formulated as finding the deformation parameters
Θmax causing the solution with the highest likelihood over all measurements over
all sensors

Θmax = argmax
Θ

∑
v∈V

∑
s∈S

log (Lv,s) (16)

where Lv,s denotes the likelihood function for the pixel in which DΘ(v) would be
projected in sensor s, evaluated using the given synthesized distance (‖DΘ(v)−
c‖2) (or vertex color) and the measured distance and amplitude (or color) of the
pixel at image coordinate P (DΘ(v)).

An example likelihood function can be found in section 5.

4.3 Optimization

The overall tracking goal can now be defined by finding Θmax which maximizes∑
logL as formulated in (16). If e.g. approximated by Gaussian distributions, a



Reconstruction of Deformation from Depth and Color Video 139

1) 2)

3) 4)

Θmax

Fig. 7. A 2D visualization of CMA-ES distributions (circles) around the current mean
(black dots) in the parameter space. Bright background color denotes high likelihood,
darker color a smaller likelihood. The optimum Θmax is located in the center. The
evaluation points of each CMA-ES iteration are chosen according to the distribution
(grey squares). 1) The initial distribution. 2) The distribution stretches towards the
area of higher likelihood. 3/4) The distribution is narrowed down to the area of high
likelihood.

problem that is formulated as maximizing the likelihood of a parameter can usu-
ally be optimized by local optimization methods for maximum likelihood estima-
tion such as expectation maximization [24]. But the distributions do not regard
the assignment of 3D points to 2D image coordinates performed by Ps, which pre-
vents the convexity properties in a Gaussian distribution of the likelihood to be
valid. In most cases this convexity is obviously not given, especially if repeating
textures or structures are a part of the scene. Therefore, the global optimization
algorithm Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [13]
is used as proposed in [14,15] to maximize the given likelihood function.

CMA-ES is a global optimization method based on a Gaussian sample distri-
bution that is iteratively updated in the optimization process. An initial distri-
bution in the parameter space (Fig. 7,1) is evaluated by probing the likelihood
function at discrete sample points, randomly chosen by the given distribution.
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The evaluation results are then used to update the distribution, i.e. to adapt the
covariance matrix and the mean such that it increases the likelihood of distribut-
ing the samples at positions of higher values of the fitniss function, in this case
the likelihood (16), which is then used to distribute the samples again (Fig. 7,2).
The iterative application of these steps shifts the distribution towards the opti-
mum (Fig. 73). At a given stopping criteria, the best evaluation result is returned
as the best approximation of the optimal parameter Θmax. For a detailed intro-
duction to CMA-ES, see [13]. If a dense sequence of images is processed, the
current movement and side constraints that shape the likelihood space can be
assumed to have similarities, i.e. the search path within the likelihood function
of two consecutive input image sets are similar. In [14], this is exploited to speed
up the optimization.

5 Application

In order to test the explicit noise handling of the likelihood-based system, a set
of synthetic and real tests have been performed. The goal of these tests is not to
evaluate a certain noise model, but to demonstrate that explicit noise handling
does work in AbS methods and that it can greatly improve the fitting results.
For this reason, a rather simple Gaussian-distribution-based approach has been
implemented for the test cases, which can be replaced by any, more complex
model based e.g. on [23,25] (see also chapter 2).

5.1 Polynomial Interpolated Gaussian Distribution

The implemented distribution, approximates the ToF measurement noise by a
Gaussian distribution per pixel in respect to depth and amplitude image. Mean
value and deviation are calculated based on distance and amplitude measure-
ments. Let μp be the function to describe the average offset of the measurement
for a pixel p, and let σp describe the average deviation of a measurement. Then
the probability density of the approximating Gaussian distribution is given by

φ(x)p =
1√
2πσ2

p

e
− 1(x−μ2

p

2σ2
p . (17)

for one measurement of pixel p.
The precision and the noise levels of ToF measurements depend on a rather

large number of variables, including the integration time, the modulation fre-
quency, sensor and illumination properties, the observed material and the sur-
face normal, the scene geometry and the distance of each measurement. For a
ToF camera with a fixed integration time setting and sensor properties, the most
influential variable aspects remain the amount of reflected light and the distance
to the measurements target. Both aspects can be estimated by the actual mea-
surement, as the distance measurement of each pixels obviously correlates with
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the actual camera-object-distance and the amplitude image of the ToF mea-
surement provides a hint on the amount of light reflected by the object for the
measurement at hand subject to the distance.

To account for the influence of distance and amplitude on the measurement,
15 static ToF camera sequences have been acquired using 5 different distances
to a large reference object and 3 different object materials each to change the
reflectivity of the measured surface. The measurements have been performed us-
ing a Mesa Imaging SR4000. The ground truth for all meassurements is known.
For each pixel and each combination of amplitude and distance, the mean mea-
surement and the deviation of the measurements (over time) is available. Figure
8 depicts the measurments for a central pixel of the ToF camera to demonstrate
the relation between distance, amplitude and noise. Note that the amplitude
values of the SR4000 are preprocessed with a distance related factor.

Noise (SD)

0 mm
10 mm
20 mm
40 mm

2652 mm

2193 mm

1606 mm

1185 mm

753 mm

Distance

Amplitude

Fig. 8. Plot of the average noise (standard deviation in mm) as it was measured by
a central pixel for various distances (ground truth) and amplitude values as returned
by an SR4000 (distance compensated). The height is depicting the noise levels. For
visualization purposes, the measurements have been connected to a 3D surface.

In order to apply the measured distribution to the analysis step, the likelihood
function of each measurement is rendered based on the deviation σp and the mean
μp which interpolate the measured mean and deviation values for the synthesized
depth measurement and the amplitude measurement of the pixel p. Hence, σp

and μp become functions depending on the actual distance x and the measured
amplitude a, so (17) becomes

φ(x)p,a =
1√

2πσp(x, a)2
e
− 1(x−μp(x,a))2

2σp(x,a)2 . (18)

The functions μp and σp interpolate the actual deviation and mean values
of the measurements made by pixel p with available ground truth based on the
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synthesized distance x and the amplitude a, i.e. μp and σp are polynomial func-
tions interpolating the discrete measurements retrieved by the real experiments
with available ground truth. In a way, this error modelling follows the spirit of
the reflectivity calibration by Lindner et al. [26] (see also chapter 2.2). If p is
written as a function providing the actual pixel to an image coordinate, then the
optimization goal is to find a Θ which maximizes the likelihood over all pixels
given by

Θmax = argmax
Θ

∑
v∈V

log(φp,A(p)(‖DΘ(v)− c‖2 −D(p))) (19)

with

p = �P (DΘ(v)) +

(
0.5

0.5

)
� (20)

and c denoting the camera center, A and D describing the actual depth and the
amplitude image. To examine the components of (19), it is helpful to take a look
at the overall tracking process (see also Fig.1):

• The goal is to search for the model parameters Θmax fitting the depth input
image D in respect to the amplitude input image A.

• To optimize the parameters, CMA-ES generates a guess Θ that is evaluated.
• Θ provides a deformation function DΘ which allows to generate the set of
deformed vertices DΘ(V ).

• Each deformed vertex DΘ(v) is projected at the image coordinate given by
P (DΘ(v)) and visible in pixel p (see (20)).

• If Θ is a correct guess, then the distance measurement D(P (DΘ(v))) of the
pixel at image coordinate P (DΘ(v)) would correspond to the distribution of
pixel p given a real distance ‖DΘ(v) − c‖2 and a current amplitude of that
pixel A(p).

• This distribution is described by μ(p,A(p)) and σ(p,A(p), the deviation
and mean offset retrieved by interpolating the sample measurements with
available ground truth.

• Summing up the log-Likelihood over all vertices v yields how well Θ matches
input images D and A

• This value is returned to CMA-ES as evaluation of Θ (equation 19)

Equation 19 can easily be extended to multiple depth and color sensors, by
summing up all likelihood functions as suggested in (16). Let S be a set of sensors
s and let Ds and As be the depth and amplitude image of a sensor s, then

Θmax = argmax
Θ

∑
s∈S

∑
v∈V

log(φp,As(p)(‖DΘ(v) − cs‖2 −Ds(p))) (21)

with

p = �Ps(DΘ(v)) +

(
0.5

0.5

)
� (22)

provides the likelihood of a solution Θ regarding all sensors, with cs denoting
the camera center of each sensor and Ps the corresponding projection. For color
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cameras, the likelihood can be computed analogously using the vertex color
instead of the camera-to-vertex distance.

5.2 Test on Synthetic Data

To evaluate the distribution based approach to AbS for ToF cameras, an ar-
tificial deformation scene was generated (see Fig. 9) using the noise model as
introduced in 5.1. Two sets of experiments have been conducted, one using the
NURBS deformation model as described in section 2.1, and one using the Flex-
Pad deformation described in 2.2.2. Each of these tests was performed using the
fitness function as published in the original articles [14] and [11] and were com-
pared to the new likelihood based fitness. Note that these tests are not suitable
to validate the noise model itself, but how the algorithm performs if the noise
model is known.

Fig. 9. Left: a 3D representation of an artificial deformation sequence showing the
virtual camera and the deforming object. Center: the depth image of the artificial
rendering using projection parameters of a Mesa Imaging SR4000. Right: the depth
image augmented with noise simulating input data of an Mesa Imaging SR4000.

It shows that the distribution based AbS system outperforms the Euclidean
based AbS approach for known noise levels. The ratio between the two systems
can be driven arbitrarily high just by choosing the noise model accordingly, as
the Euclidean error function has no possibility to compensate for any mean offset
in the data set, e.g. shifting the complete measurements by 10cm results in an
error of the Euclidean AbS raised by 10cm whereas the distribution based AbS
compensates for the shift in the mean function μ.

To test the influence of applied knowledge about deviation in an isolated way,
a synthetic sequence was generated applying artificial noise based on the pixel
wise deviation measured in a real ToF camera. Using 10 different geometries,
each tracked over a sequence of 500 frames, the deviation of the NURBS control
points from the actual ground truth data was in average 1.92 times (SD 0.35)
as high using the Euclidean based AbS as it was using the distribution based
AbS. This shows that even without known mean offset, the tracking can profit
from the knowledge of the deviation as the likelihood based AbS outperforms
the Euclidean AbS.
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5.3 Test on Real Data

The evaluation of deformation tracking algorithms on real data is always a dif-
ficult task. The reason is the lack of available ground truth for real scenes con-
taining deforming objects and the missing generic model covering all possible
deformations. An algorithm producing low reproduction errors does not nec-
essarily yield true results, as e.g. optical flow can be used for efficient image
compression but does not always describe the real motion in the scene since it
does not use an underlying model to constrain itself to plausible movements.

To be able to offer comparable results nevertheless, the tests on real data in
this article were performed using the NURBS deformation model as well as the
FlexPad deformation model, which already proved the ability to model certain
deformation scenes in a simulated setup (section 5.2) as well as in real tests using
a structured light system [14,11]. To offer ground truth, the physical objects were
not deformed, so any tracked deformation can be evaluated as deviation from
ground truth. It is important to note that neither of the models encourages the
optimizer to yield undeformed results by e.g. penalizing large deformations.

Fig. 10. The two test objects used in the real data tests. Left: The checker board has
equally distributed areas of high and low reflection, Right: The black area in the center
of the tracking object provides a special challenge for the tracking algorithm since the
black area will cause an offset in the depth image.

The tests were performed using two objects with known geometry, a checker
board and a stiff white object with a black center, especially designed to show how
well thenoisemodel canhandle systematic errors causedbyvarying reflectionprop-
erties in the time of flight measurements. Figure 10 depicts the tracking targets.

A sequence of 500 images was recorded of each object while changing the
object position and orientation. This sequences were used as input data for the
tracking algorithm. Table 1 shows the average error over all sequence images.
The error in column 2 and 3 was calculated by measuring the average deviation
of the NURBS control points from a planar alignment, i.e. the average distance
in mm over all control points from the plane that minimizes the distance to the
control points. A NURBS function of degree 2 with 4 × 4 control points was
used, optimized with 1000 CMA-ES iterations using 32 individuals.

In contrast to the NURBS based tracking, the Flexpad tracking delivers pose
estimation and deformation values separately. To evaluate the tracking results,
the bending parameter containing the maximum absolute value was considered
in every frame. Bending parameters range from -2 (full bending away from the
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Table 1. Test results comparing the Euclidean fitness function to the likelihood fitness.
The cells contain the average error and the standard deviation put in parenthesis. The
rows contain results for the tests runs using the checker board (Fig. 10 left) and the
stripe board (Fig. 10 right) as tracking target. Column 2 and 3 contain the average
deviation in mm using the NURBS deformation model, column 4 and 5 contain the
average maximum bending parameter using the FlexPad deformation model.

Parameter NURBS FlexPad
Fitness Euclidean Likelihood Euclidean Likelihood

checker board 12.83 (5.31) 10.21 (5.49) 0.16 (0.11) 0.12 (0.09)
stripe board 35.71 (18.35) 17.08 (7.76) 0.92 (0.23) 0.24 (0.17)

camera) to +2 (full bending towards the camera). Table 1 contains the average
maximum bending parameter for the two test sequences. The tracking used 400
CMA-ES iterations with 16 individuals for each frame.

6 Conclusion

Analysis by synthesis is a powerful tool to perform tracking tasks in situations
in which, due to missing features, incomplete input data or the use of featureless
depth data, feature based approaches may not yield good results. This article
shows that explicit noise handling can be integrated into existing AbS methods
by reformulating the fitness function as a likelihood function. This does not only
lead to more accurate results for noisy input data and known noise models, but
also allows a sound combination of several sensors as the weighting of error terms
is implicitly handled by the noise models of the sensors. The noise model applied
in this article is rather simple but still leads to an increased accuracy when
applied to existing methods. The application of more sophisticated and complex
noise models for depth sensors may, hence, lead to even higher accuracies.
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Abstract. Human pose estimation has been actively studied for
decades. While traditional approaches rely on 2d data like images or
videos, the development of Time-of-Flight cameras and other depth sen-
sors created new opportunities to advance the field. We give an overview
of recent approaches that perform human motion analysis which includes
depth-based and skeleton-based activity recognition, head pose estima-
tion, facial feature detection, facial performance capture, hand pose es-
timation and hand gesture recognition. While the focus is on approaches
using depth data, we also discuss traditional image based methods to
provide a broad overview of recent developments in these areas.

1 Introduction

Human motion analysis has been a major topic from the early beginning of com-
puter vision [1,2] due to its relevance to a large variety of applications. With the
development of new depth sensors and algorithms for pose estimation [3], new
opportunities have emerged in this field. Human motion analysis is, however,
more than extracting skeleton pose parameters. In order to understand the be-
haviors of humans, a higher level of understanding is required, which we generally
refer to as activity recognition. A review of recent work of the lower level task
of human pose estimation is provided in the chapter Full-Body Human Motion
Capture from Monocular Depth Images. Here we consider the higher level activ-
ity recognition task in Section 2. In addition, the motion of body parts like the
head or the hands are other important cues, which are discussed in Section 3 and
Section 4. In each section, we give an overview of recent developments in human
motion analysis from depth data, but we also put the approaches in context of
traditional image based methods.

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 149–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Activity Recognition

A large amount of research has been conducted to achieve the high level under-
standing of human activities. The task can be generally described as: given a
sequence of motion data, identify the actions performed by the subjects present
in the data. Depending on the complexity, they can be conceptually categorized
as gestures, actions and activities with interactions. Gestures are normally re-
garded as the atomic element of human movements, such as “turning head to the
left”, “raising left leg” and “crouching”. Actions usually refer to a single human
motion that consists of one or more gestures, for example “walking”, “throw-
ing”, etc. In the most complex scenario, the subject could interact with objects
or other subjects, for instance, “playing with a dog”, “two persons fighting” and
“people playing football”.

Though it is easy for human being to identify each class of these activities,
currently no intelligent computer systems can robustly and efficiently perform
such task. The difficulties of action recognition come from several aspects. Firstly,
human motions span a very high dimensional space and interactions further com-
plicate searching in this space. Secondly, instantiations of conceptually similar
or even identical activities by different subjects exhibit substantial variations.
Thirdly, visual data from traditional video cameras can only capture projective
information of the real world, and are sensitive to lighting conditions.

However, due to the wide applications of activities recognition, researchers
have been actively studying this topic and have achieved promising results. Most
of these techniques are developed to operate on regular visual data, i.e. color im-
ages or videos. There have been excellent surveys on this line of research [4,5,6,7].
By contrast, in this section, we review the state-of-the-art techniques that inves-
tigate the applicability and benefit of depth sensors for action recognition, due
to both its emerging trend and lack of such a survey. The major advantage of
depth data is alleviation of the third difficulty mentioned above. Consequently,
most of the methods that operate on depth data achieve view invariance or scale
invariance or both.

Though researchers have conducted extensive studies on the three categories
of human motions mentioned above based on visual data, current depth based
methods mainly focus on the first two categories, i.e. gestures and actions. Only
few of them can deal with interactions with small objects like cups. Group activ-
ities that involve multiple subjects have not been studied in this regard. One of
the reason is the limited capability of current low cost depth sensors in captur-
ing large scale scenes. We therefore will focus on the first two groups as well as
those that involve interactions with objects. In particular, only full-body motions
will be considered in this section, while body part gestures will be discussed in
Section 3 and Section 4.

The pipeline of activity recognition approaches generally involve three steps:
features extraction, quantization/dimension reduction and classification. Our re-
view partly follows the taxonomyused in [4]. Basicallywe categorize existingmeth-
ods based on the features used. However, due to the special characteristics of depth
sensor data, we feel it necessary to differentiatemethods that rely directly on depth
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Fig. 1. Examples from the three datasets: MSR Action 3D Dataset [8], MSR Daily
Activity Dataset [9] and Gesture3D Dataset [10] c©2013 IEEE

maps or features therein, and methods that take skeleton (or equivalently joints)
as inputs. Therefore, the reviewed methods are separated into depth map-based
and skeleton-based. Following [4], each category is further divided into space time
approaches and sequential approaches. The space time approaches usually extract
local or global (holistic) features from the space-time volume, without explicit
modeling of temporal dynamics. Discriminative classifiers, such as SVM, are then
usually used for recognition. By contrast, sequential approaches normally extract
local features from data of each time instance and use generative statistical model,
such as HMM, to model the dynamics explicitly.

We discuss the depth map-based methods in Section 2.2 and the skeleton-based
methods in Section 2.3. Some methods that utilize both information are also
considered in Section 2.3. Before the detailed discussions of the existing methods,
we would like to first briefly introduce several publicly available datasets, as well
as the mostly adopted evaluation metric in Section 2.1.

2.1 Evaluation Metric and Datasets

The performance of the methods for activity recognition are evaluated mainly
based on accuracy, that is the percentage of correctly recognized actions. There
are several publicly available dataset collected by various authors for evaluation
purpose. Here we explicitly list three of them that are most popular, namely the
MSR Action 3D Dataset [8], MSR Daily Activity Dataset [9] and Gesture3D
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Table 1. Summary of the most popular publicly available datasets for evaluating
activity recognition performance

Datasets #Subjects #Types of activities #Data sequences

MSR Action 3D [8] 10 20 567

Gesture3D [10] 10 12 336

MSR Daily Activity 3D [9] 10 16 960

Dataset [10]. Each of the datasets include various types of actions performed
by different subjects multiple times. Table 1 provides a summary of these three
datasets, while Figure 1 shows some examples. Notice that the MSR Action 3D
Dataset [8] is pre-processed to remove the background, while the MSR Daily
Activity 3D Dataset [9] keeps the entire captured scene. Therefore, the MSR
Daily Activity 3D Dataset can be considered as more challenging. Most of the
methods reviewed in the following sections were evaluated on some or all of
these datasets, while some of them conducted experiments on their self-collected
dataset, for example due to mismatch of focus.

2.2 Depth Maps-Based Approaches

The depth map-based methods rely mainly on features, either local or global,
extracted from the space time volume. Compared to visual data, depth maps
provide metric, instead of projective, measurements of the geometry that are
invariant to lighting. However, designing both effective and efficient depth se-
quence representations for action recognition is a challenging task. First of all,
depth sequences may contain serious occlusions, which makes the global features
unstable. In addition, the depth maps do not have as much texture as color im-
ages do, and they are usually too noisy (both spatially and temporally) to apply
local differential operators such as gradients on. It has been noticed that directly
applying popular feature descriptors designed for color images does not provide
satisfactory results in this case [11]. These challenges motivate researchers to de-
velop features that are semi-local, highly discriminative and robust to occlusion.
The majority of depth maps based methods rely on space time volume features;
therefore we discuss this sub-category first, followed by the sequential methods.

2.2.1 Depth Map-Based Space Time Volume Approaches
Li et al. [8] present a study on recognizing human actions from sequences of depth
maps. The authors employed the concept of bag-of-points in the expandable
graphical model framework to construct the action graph [12] to encode the
actions. Each node of the action graph which represents a salient posture is
described by a small set of representative 3d points sampled from the depth
maps (example depth maps are shown in Figure 2. The key idea is to use a small
number of 3d points to characterize the 3d shape of each salient posture and to
use a Gaussian Mixture Model to effectively capture the statistical distribution
of the points. In terms of 3d points sampling, the paper proposed a simple yet
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Fig. 2. Examples of the sequences of depth maps for actions in [8]: (a) Draw tick and
(b) Tennis serve c©2010 IEEE

Fig. 3. Examples of the space-time cells of a depth sequence of the action Forward
Kick used in [13] c©2010 Springer

effective projection based sampling scheme for sparse sampling from depth maps.
Experiments were conducted on the dataset collected by the authors, which is
later known as the MSR Action3D Dataset [8]. The results have shown that over
90% recognition accuracy is achieved by only sampling 1% of the 3d points from
the depth maps.

One limitation of the approach in [8] is the loss of spatial context information
between interest points. Also, due to noise and occlusions in the depth maps,
the silhouettes viewed from the side and from the top may not be reliable. This
makes it very difficult to robustly sample the interest points given the geometry
and motion variations across different persons. To address these issues, Vieira et
al. [13] presented a novel feature descriptor, named Space-Time Occupancy Pat-
tens (STOP). The depth sequence is represented in a 4d space-time grid. A
saturation scheme is then used to enhance the roles of the sparse cells which
typically consist of points on the silhouettes or moving parts of the body. Figure
3 illustrates the space-time cells from a depth sequence of the action Forward
Kick. The sequence is divided into three time segments, and each segment con-
tains of about 20 frames. Only the non-empty cells are drawn. The red points
are those in the cells that have more than a certain number of points. The ac-
curacy of the STOP features for action classification was shown to be higher in
a comparison with [8] on the MSR Action3D Dataset [8].
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Fig. 4. The framework of the method proposed by [14]. Note that only 3d sub-volumes
are shown for illustration. In the real implementation, 4d sub-volumes are used. c©2012
Springer.

Wang et al. [14] also studied the problem of action recognition from depth
sequences captured by a single commodity depth camera. In order to address
the noise and occlusion issues, the authors treated a three-dimensional action
sequence as a 4d shape and proposed Random Occupancy Pattern (ROP) fea-
tures, which were extracted from randomly sampled 4d sub-volumes with dif-
ferent sizes and at different locations. Since the ROP features are extracted at
a larger scale, they are robust to noise. In the meantime, they are less sensitive
to occlusion because they encode information from the regions that are most
discriminative for the given action. The paper also proposed a weighted random
sampling scheme to efficiently explore the large dense sampling space. Sparse
coding is employed to further improve the robustness of the proposed method.
The general framework of the method proposed in [14] is shown in Figure 4.
The authors compared their results against those obtained from [8] and [13]
using the MSR Action3D Dataset [8]. Experimental results conclude that [14]
outperforms [8] by a large margin (> 10%) and is slightly superior to [13].

Yang et al. [15] developed the so-called Depth Motion Maps (DMM) to cap-
ture the aggregated temporal motion energies. More specifically, the depth map
is projected onto three pre-defined orthogonal Cartesian planes and then nor-
malized. For each projected map, a binary map is generated by computing and
thresholding the difference of two consecutive frames. The binary maps are then
summed up to obtain the DMM for each projective view. Histogram of Oriented
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Fig. 5. The framework of the method proposed by [15] c©2012 ACM

Gradients (HOG) is then applied to each view to extract features, and features
from three views are concatenated together to form the DMM-HOG descriptors.
An SVM classifier is trained on such descriptors for recognition. Compared to
many other methods in this category, the computational cost of this approach is
relatively low, since HOG is only applied to the final DMM. Evaluations based
on the MSR Action3D Dataset [8] showed high recognition rates. However, the
hand-crafted projection planes might raise problems related to view-dependency.
Their high recognition rate is partly due to the fact that subjects in the MSR-
Action3D Dataset mostly face towards the camera. An interesting exploration
they performed is to characterize the number of frames required to generate
satisfactory recognition results. The conclusion they reached is that only short
sub-sequence of roughly 35 frames is sufficient. Nonetheless, the number is in
fact largely dependent on the complexity of the actions.

More recently, Oreifej and Liu [11] presented a new descriptor for depth maps.
The authors describe the depth video sequence using a histogram capturing the
distribution of the surface normal orientation in the 4d volume of time, depth
and spatial coordinates. As the depth sequence represents a depth function of
space and time, they proposed to capture the observed changing structure using
a histogram of oriented 4d surface normals (HON4D). To construct HON4D,
the 4d space is initially quantized using the vertices of a regular polychoron.
Afterwards, the quantization is refined using a novel discriminative density mea-
sure such that additional projectors are induced in the directions where the 4d
normals are denser and more discriminative. Figure 6 summarizes the various
steps involved in computing the HON4D descriptor. Experimental results from
the standard benchmark MSR Action3D Dataset [8] showed that using the pro-
posed HON4D descriptors achieved the state of the art in recognition accuracy.

Rather than using depth maps only, Zhang et al. [16] proposed 4d local spatio-
temporal features as the representation of human activities. This 4d feature is a
weighted linear combination of a visual component and a geometric component.
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Fig. 6. The steps for computing HON4D descriptor in [11] c©2013 IEEE

This approach then concatenates per-pixel responses and their gradients within
a spatial-temporal window into a feature vector which has over 105 elements.
In order to reduce such a high dimensionality, the approach applies K-means
clustering on all feature vectors collected from a training dataset and forms a
codebook with 600 vocabularies which is used to code six activity categories:
lift, remove, wave, push, walk and signal. In order to predict activities from
input videos, the approach formulates this problem as a Latent Dirichlet Allo-
cation (LDA) model where six activity categories are regarded as topics, and
codes calculated from 4d features are regarded as words. Gibbs sampling [17] is
then adopted for approximate estimation and inference for this high-dimensional
model, due to its efficiency. They demonstrated their approach on a self-collected
dataset with 198 short video clips, each lasting from 2 to 5 seconds, including 6
activities. Each activity has 33 video clips. The combined features (85.5%) us-
ing LDA outperforms features based on intensity (77.67%), demonstrating that
depth is an important cue to improve activity recognition accuracy.

Lei et al. [18] also combine depth and color cues, while targeting at recog-
nizing fine-grained kitchen activities. Different from the methods above that are
mainly limited to single subject motions, this work demonstrated a successful
prototype that tracks the interaction between a human hand and objects in the
kitchen, such as mixing flour with water and chopping vegetables. It is shown
that the recognition of objects and their state changes through actions is helpful
in recognizing very fine-grained kitchen activity from few training samples. The
reported system uses object tracking results to study both object and action
recognition. For object recognition, the system uses SIFT-like feature from both
color and depth data. These features are fed into an SVM to train a classifier.
For action recognition, the authors combine a global feature and a local feature.
The global feature is defined by PCA on the gradients of 3d hand trajectories
since a hand can be tracked using human skin characteristics. The local feature is
defined as bag-of-words of snippets of trajectory gradients. The training dataset
includes 35 object instances and 28 action instances. Each action instance has
only 3 samples compared with 33 in [16]. The reported overall action recogni-
tion accuracy is around 82% by combining trajectory-based action recognition
with object recognition. This shows that by combining hand-object tracking and
object-action recognition, systems like this are capable of identifying and rec-
ognizing objects and actions in a real-world kitchen environment with only a
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Fig. 7. The flow of the method proposed by Jalal et al. [19] c©2013 SAGE

small dataset. This work is only a proof of concept. Deploying such a system in
a real environment requires a larger set of objects and actions, along with vari-
ations across people and physical environments that present many challenges
not revealed in their work. Nevertheless, there are many possibilities to enhance
their system, such as combining multiple sensors including wearable cameras and
infrastructure sensors to robustify RGBD cameras in a real world environment.

2.2.2 Depth Maps-Based Sequential Approaches
As mentioned before, local differential operators are not suitable for extracting
features from depth maps, resulting in difficulties in extracting reliable temporal
correspondences. Therefore only few approaches have explored the possibility of
explicitly modeling temporal dynamics from depth maps. This line of research
lies in between pure depth map-based methods and skeleton-based methods.
They try to design features from which reliable temporal motion can be ex-
tracted, while skeletons are one of the most natural features that embed such
information.

Inspired by the great success of silhouette based methods developed for vi-
sual data, Jalal et al. [19] extract depth silhouettes to construct feature vectors.
Figure 7 shows the overall flow of their proposed pipeline. The key idea is to
apply R transform [20] on the depth silhouette to obtain compact shape repre-
sentation reflecting time-sequential profiles of the activities. PCA is then used
for dimension reduction and Linear Discriminant Analysis is adopted to extract
most discriminant vectors as in [21]. Similar to most sequential methods for vi-
sual data, HMM is utilized for recognition. Experiments were performed on 10
daily home activities collected by the authors, each with 15 video clips. Upon
this dataset, a recognition rate of 96.55% was achieved.

Together with the skeleton-based methods that will be studied in Section 2.3,
the depth map-based approaches are summarized in Table 2 and Table 3.

2.3 Skeleton-Based Approaches

The study of skeleton-based activity recognition dates back to the early work
by Johansson [23], which demonstrated that a large set of actions can be recog-
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Fig. 8. (a) Example of a typical human skeleton used for recognition. (b) Example of
a typical hierarchy of human body parts in a tree structure as in [22] c©2010 Elsevier.

nized solely from the joint positions. This concept has been extensively explored
ever since. In contrast to the depth maps-based methods, the majority of the
skeleton-based methods model temporal dynamics explicitly. One main reason
is the natural correspondence of skeletons across time, while this is difficult to
establish for general visual and depth data. There are mainly three ways to ob-
tain skeletons: active motion capture (MoCap) systems, monocular or multi-view
color images and single view depth maps [24,25]. One difference worth mention-
ing is the degree of embedded noise. Overall the MoCap data is the cleanest
compared to the other two. A multi-view setup is usually adopted for color im-
ages, and therefore produces more stable skeleton estimations than those from
monocular depth maps. Early methods were mostly tested on MoCap data and
skeletons from multi-view image data; while more recent work operates more on
noisy skeleton data from monocular depth maps, mainly due to its simple setup.
In the following, we first discuss sequential approaches, followed by space time
volume approaches.

2.3.1 Skeleton-Based Sequential Approaches
Though we discuss mainly recent research in this study, the seminal work by
Campbell and Bobick [26] is still worth mentioning. They represent human ac-
tions as curves in low-dimensional phase spaces obtained via projection of 3d
joint trajectories. The phase space is defined with each axis being an indepen-
dent parameter of the body, for example ankle-ankle, or its first derivative. A
static pose is interpreted as a point in the phase space, while an action forms a
curve. Multiple 2d subspaces are chosen via supervised learning paradigm and
the action curves are projected onto these spaces as the action feature. A given
actions is projected as a set of points and recognized by verifying whether they
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are on certain action curves. However, due to their cubic polynomial fitting of
the projected curves, only simple movements can be recognized. In particular,
they succeeded in recognizing various ballet dance moves. Notice that dynamics
are not explicitly considered for their recognition, though such information is
embedded in the curve representation. Due to the phase space representation,
their method is both view invariant and scale invariant.

Similar to the idea of 2d subspace selection above, Lv et al. [27] designed a set
of (spatially) local features based on single joints or combinations of small sets
of joints. Their observations suggest that using solely the full pose vector might
cause loss of some relevant information and reduce the discriminative power.
They consider three types of motions that involve motions of different primary
body parts: {leg+torso, arm, head}. In the end, they construct a 141 dimen-
sional feature vector from seven types of features including the full pose vector.
The skeleton is pre-normalized to avoid dependence on initial body orientation
and body size variations. An HMM is built for each feature and action class to
model the temporal dynamics. A key novelty of their method is to treat each of
the HMM models as a weak classifier and combine them with the multi-class Ad-
aBoost classifier [28] to significantly increase the discriminative power. Besides,
they propose a method using dynamic programming to extract from a contin-
uous video the segment that involves an activity considered. They tested their
method on two datasets: a set of 1979 MoCap sequences with 243,407 frames in
total, collected from the internet, and a set of annotated motion sequences [29].
For the first dataset, they achieved recognition rates of {92.3%, 94.7%, 97.2%}
for the three classes of actions separately when half of the data was used as
training data, and {88.1%, 91.9%, 94.9%} when the training data was reduced
to 1/3. Noticeably, a 30% gain was reached via the use of AdaBoost in this test.
A recognition rate of 89.7% was achieved for the second dataset, which is seg-
mented by their proposed method and thus more difficult. Overall their method
has achieved promising results with the small classes of actions considered. How-
ever, in reality many human actions involve motions of the entire body, such as
dancing, and it is not clear how well this method can be generalized to deal with
such complex actions.

The recent work by Xia et al. [21] proposed a feature called Histogram of 3d
Joint Locations (HOJ3D) that essentially encodes spatial occupancy information
relative to the skeleton root, i.e. hip center. Towards this end, they define a
modified spherical coordinate system on the hip center and partition the 3d
space into n bins, as shown in Figure 9 (a) and (b) respectively. Radial distance
is not considered in this spherical coordinate system to make it scale-invariant.
Different from other methods that also utilize spatial occupancy information that
make binary decision, such as [14] and [9], they perform a probabilistic voting
to determine the fractional occupancy, as demonstrated in Figure 9(c). In order
to extract dominant features, Linear Discriminant Analysis is applied to reduce
the dimensionality from n to (#Class−1). Vector Quantization is performed via
K-means to discretize the continuous vectors obtained from the previous step,
and discrete HMM is adopted to model the dynamics and recognize actions.
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Fig. 9. Reference coordinates of HOJ3D (a) and spherical coordinate system for joint
location binning used in [21]. (c) The probabilistic voting for spatial occupancy via a
Gaussian weighting function in [21]. c©2012 IEEE.

They tested their approach on both their own dataset and the MSR Action3D
dataset [8]. Experiments on the MSR Action3D Dataset [8] showed that their
method outperformed [8]. However, the heavy reliance on the hip joint might
potentially jeopardize their recognition accuracy, due to the noise embedded in
the estimated hip joint location. Currently the estimation of this joint with [25]
is not very reliable, especially when the subject is not facing towards the camera.

The above-mentioned methods are mostly limited to single human actions, due
to lack of a model of the motion hierarchy. By contrast, Koppula et al. [30,31]
explicitly consider human-object interactions. They aimed at joint activity and
object affordance labeling from RGBD videos as illustrated in Figure 10. They
defined an MRF over the spatio-temporal sequence with two kinds of nodes,
namely objects nodes and sub-activity nodes, and edges representing the re-
lationships between object affordances, their relations with sub-activities, and
their evolution over time. The explicit modeling of the motion hierarchy enables
this method to handle complex activities that involve human-object interactions.
Features are defined for both classes of nodes. The object node feature is a vec-
tor representing the object’s location in the scene and how it changes within
the temporal segment including the transformation matrix and displacement of
the corresponding points from the SIFT tracker. The sub-activity node feature
map gives a vector of features computed using the human skeleton information
obtained from a skeleton tracker on RGBD video. By defining the feature vec-
tors, they then train a multi-class SVM classifier on the training data. Given
the model parameters, the inference problem is to find the best labeling for
the input video. Its equivalent formulation has a linear relaxation which can be
solved efficiently using a graph-cut method. Evaluations are conducted based on
the Cornell 60 dataset [32] and a new dataset acquired by the authors, named
Cornell 120.

Similar to the work of Koppula et al. [30,31], Sung et al. [34,35] also explic-
itly model the activity hierarchy, however, with a two-layer Maximum Entropy
Markov Model (MEMM) [36]. The lower layer nodes of the MEMM represent
sub-activities such as “lifting left hand”, while higher level nodes represent more
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Fig. 10. The MRF graph of [33]. Different types of nodes and relationships modeled in
part of the cleaning objects activity comprising three sub-activities: reaching, opening
and scrubbing. c©2012 IEEE.

general and complex activities such as “pouring water”. The features used in
their work consist of four components. The first one are body pose features
based on joint orientations that are transformed to the local coordinate system
of torso to remove view dependency. The angles are represented as quaternions to
avoid the well-known gimbal lock phenomenon when using Euler angles. Besides,
the angle between each foot and the torso is explicitly emphasized to tell apart
sitting poses from standing poses. The second component consists of the posi-
tions of the hands relative to the torso and the head, due to the discriminative
power of hand positions. The third considers the motion of joints with a tempo-
rally sliding window. Besides these skeleton features, they incorporate image and
point cloud features as the last component. Specifically, Histogram of Oriented
Gradients (HOG) [37] descriptors are used on both RGB and depth data. A key
component of their model is dynamic association of the sub-activities with the
higher-level activities. In general, they do not assume that the input videos are
segmented. Instead, they use GMM to group the training data into clusters that
represent sub-activities and utilize the proposed probabilistic model to infer an
optimal association of these two layers on-the-fly. Experiments are conducted
based on the dataset acquired by the authors.

The work by Wang et al. [9] also utilizes both skeleton and point cloud in-
formation. The key idea is that some actions differ mainly due to the objects
in interactions, while skeleton information is not sufficient in such cases. To-
wards this end, they introduced a novel actionlet ensemble model to represent
each action and capture the intra-class variance via occupancy information, as
illustrated in Figure 11. In terms of skeleton information, one important ob-
servation made by them is that the pairwise relative positions of the joints are
more discriminative than the joint positions themselves. Interactions between
humans and environmental objects are characterized by Local Occupancy Pat-
terns (LOP) at each joint. The LOP features are computed based on the 3d
point cloud around a particular joint. The local space of each joint is discretized
using a spatial grid as shown in Figure 11. Moreover, they concatenate both
feature vectors and apply Short Fourier Transform to obtain the coefficients as
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Fig. 11. The actionlet framework proposed by Wang et al. [9] c©2012 IEEE

(a) joint distance (b) plane (c) normal plane (d) velocity (e) normal velocity

Fig. 12. Relational pose features [38]. (a) Euclidean distance between two joints (red).
(b) Distance between a joint (red) and a plane (green) defined by three joints. (c)
Distance between a joint (red) and a plane (green) defined by one joint and the normal
direction of two joints (black). (d) Velocity of a joint (red) in the direction of two joints
(black). (e) Velocity of a joint in normal direction of the plane.

the Fourier Temporal Pyramid features at each joint. The Fourier Temporal
Pyramid is insensitive to temporal misalignment and robust to noise, and also
can characterize the temporal structure of the actions. An actionlet is defined as
a conjunctive structure on the base features (Fourier Pyramid features). They
learn the discriminative actionlet by iteratively optimizing parameters through
a generic SVM solver and obtain an SVM model defining a joint feature map on
the data and labels as a linear output function. Once they have training pairs,
they employed a mining algorithm to output a discriminative actionlet pool
which contains the actionlets meeting the criteria: having a large confidence and
a small ambiguity. They evaluated their method using CMU MoCap dataset,
MSR Action3D Dataset [8] and a new dataset named MSR Daily Activity 3D.
Experiments demonstrated the superior performance of their method compared
to other state-of-the-art methods.

A more general approach has been proposed by Yao et al. [38] where skeleton
motion is encoded by relational pose features [39], as shown in Figure 12. These
features describe geometric relations between specific joints in a single pose or
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Fig. 13. The EigenJoints features developed by Yang et al. [33] c©2012 IEEE

a short sequence of poses. For action recognition, a Hough forest [40] has been
used. Furthermore, a system for coupling the closely intertwined tasks of ac-
tion recognition and pose estimation is presented. Experiments on a multi-view
kitchen dataset [41] indicate that the quality of estimated poses with an average
error between 42mm-70mm is sufficient for reliable action recognition.

Similar to the depth maps based category, the sequential methods usually
require a larger set of training data. However, the explicit modeling of motion
dynamics provide the potential to capture complex and general activities. A
major difference is that the dynamics are well defined due to exact semantic
definition of joints.

2.3.2 Skeleton-Based Space Time Volume Approaches
The space time volume approaches using skeleton information usually extract
global features from the joints, sometimes combined with point cloud data. This
line of research is relatively new and only a few methods lie in this category.

Yang et al. [33] developed the EigenJoints features from RGBD sequences
as shown in Figure 13. The features include posture features fcc, motion fea-
tures fcp and offset features fci. The posture and motion features encode spatial
and temporal configuration with pair-wise joint differences in single frames and
between consecutive frames, respectively. The offset features represent the differ-
ence of a pose with respect to the initial pose with the assumption that the initial
pose is generally neutral. They normalize the three channels and apply PCA to
reduce redundancy and noise to obtain the EigenJoints descriptor. For classifi-
cation, they adopt a Naive-Bayes-Nearest-Neighbor (NBNN) classifier due to its
simplicity. The video-to-class NN search is accelerated using a KD-tree. Their
evaluation on the MSR Action3D dataset [8] demonstrated the effectiveness of
their approach. One limitation of their method is the assumption about the ini-
tial pose. It is not clear how this assumption affects the recognition accuracy in
a more general context.
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Table 2. Accuracy of the reviewed activity recognition methods on the popular
datasets. Notice that the numbers are based on those reported in the correspond-
ing papers and the specific evaluation methodology can be slightly different even for
the same dataset.

MSR Action 3D [8]
Gesture3D [10] MSR Daily Activity 3D [9]1

3
training 2

3
training cross subject

[8] 91.36% 94.2% 74.7% - -

[13] 96.8% 98.25% 84.8% - -

[14] - - 86.2% 88.5% -

[15] 95.83% 97.37% 91.63% 89.20% -

[11] - - 88.89% 92.45% 80%

[16] - - - - -

[18] - - - - -

[19] 95.8% 97.78% 91.63% - -

[26] - - - - -

[27] - - - - -

[21] 96.2% 97.15% 78.97% - -

[30,31] - - - - -

[34,35] - - - - -

[9] - - 88.2% - 85.75%

[38] - - - - -

[33] 95.8% 97.77% 82.33% - -

2.4 Summary

A summary of the methods reviewed above, both depth maps-based and skeleton-
based, are presented in Table 3. Since all the reviewedmethods are capable of deal-
ing with both gestures and actions, only the capability of handling interactions is
enumerated. The accuracy of the reviewed methods on the popular datasets are
summarized in Table 2. Originally, Wang et al [8] performed three set of tests on
theMSR Action 3DDataset. The first two use one third and two thirds of the data
for training, respectively, while the last one was designed for a cross-subject test.
This evaluationmethod is adopted bymost of the works that follow, as can be seen
in the table. As theMSRDaily Activity Dataset is relatively new, not many meth-
ods were evaluated on it. The methods that were not evaluated on these datasets
generally performed evaluations on other datasets that are not listed here.

In conclusion, with the excellent opportunities provided by the low-cost depth
sensors for activity recognition, promising results have been achieved as evi-
denced in recent research work. The unique characteristics of the depth sensor
data inspire the researchers to investigate effective and efficient approaches for
this task, partly based on the traditional work on regular visual data. One line of
ongoing research attempts to design more discriminative and meanwhile compact
feature vectors from depth and skeleton data to describe human activities. An-
other possible direction is to extend the current methods to deal with more com-
plicated activities, such as interactions or group activities. In this case, existing
works that operate on regular visual data might provide some good insights [4].
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Table 3. Summary of methods for action recognition based on data from depth sensors.
Here “Seq” refers to “Sequential”, “STV” refers to “Space Time Volume” and “Skel”
means “Skeleton”.

Taxonomy Features Represen-
tation

Classifier View-
invariant

Scale-
invariant

Interac-
tions

[8] Depth+STVBag of 3d
points

2d Projec-
tion

Action
graph

yes yes no

[13] Depth+STV STOP PCA Action
graph

yes yes no

[14] Depth+STVROP Sparse
Coding

SVM yes yes no

[15] Depth+STVDMM +HOG SVM no yes no

[11] Depth+STVHON4D Histogram SVM yes yes no

[16] Depth+STV 4d Local
Spatio-
Temporal
Features

PCA Latent
Dirichlet
Allocation

no no yes

[18] Depth+STV SIFT-like PCA +
Bag of
Words

SVM no no yes

[19] Depth+Seq Depth silhou-
ettes + R
Transform

HMM no yes no

[26] Skel+Seq 3d joint tra-
jectories

Projection
in phase
spaces

Similar to
NN

yes yes no

[27] Skel+Seq Poses of sin-
gle and multi-
ple joints

HMM +
AdaBoost

yes yes no

[21] Skel+Seq HOJ3D Linear
Discrim-
inant
Analysis

HMM yes yes no

[30,31] Skel+Seq Object and
Pose features

Multi-
class SVM

no no yes

[34,35] Skel+Seq Pose features
+ HOG

MEMM yes yes no

[9] Skel+Seq LOP Actionlet SVM yes yes yes

[38] Skel+Seq Relational
Pose Features

Hough
Forest

yes yes no

[33] Skel+STV EigenJoints PCA NBNN yes yes no

3 Face Motion

Human motion analysis is not restricted to full body motion, but can also be
applied to body parts like the face or the hands. In this section, we give an
overview of different approaches that capture head or facial motion at different
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levels of details; see Figures 14, 18 and 19. The lowest level estimates the head
pose only, i.e., location and orientation of the head. Approaches for head pose
estimation are discussed in Section 3.1. Facial feature points or low-resolution
shape models provide more information and are often extracted for applications
like face recognition, speech recognition or analysis of facial expressions. While
Section 3.2 discusses works for extracting facial feature points, Section 3.3 dis-
cusses methods that aim at capturing all details of facial motion. The latter is
mainly used in the context of facial animations. Parts of this section appeared
in [42].

3.1 Head Pose Estimation

With application ranging from face recognition to driver drowsiness detection,
automatic head pose estimation is an important problem. Since the survey [43]
gives already an excellent overview of approaches until the year 2007, we focus
on more recent approaches for head pose estimation that appeared in 2007 or
later. Although the focus is head pose estimation from depth data, we give
a broader view that also includes methods that estimate the head pose from
RGB data like images or videos. Methods based on 2d images can be subdivided
into appearance-based and feature-based approaches, depending on whether they
analyze the face as a whole or instead rely on the localization of some specific
facial features for head pose estimation.

3.1.1 RGB Appearance-Based Methods
Appearance-based methods usually discretize the head pose space and learn
separate detectors for subsets of poses [44,45]. Chen et al. [46] and Balasubra-
manian et al. [47] present head pose estimation systems with a specific focus
on the mapping from the high-dimensional space of facial appearance to the
lower-dimensional manifold of head poses. The latter work considers face images
with varying poses as lying on a smooth low-dimensional manifold in a high-
dimensional feature space. The proposed Biased Manifold Embedding uses the
pose angle information of the face images to compute a biased neighborhood of
each point in the feature space, prior to determining the low-dimensional embed-
ding. In the same vein, Osadchy et al. [48] instead use a convolutional network to
learn the mapping, achieving real-time performance for the face detection prob-
lem, while also providing an estimate of the head pose. A very popular family
of methods use statistical models of the face shape and appearance, like Ac-
tive Appearance Models (AAMs) [49], multi-view AAMs [50] and 3d Morphable
Models [51,52]. Such methods, however, focus more on tracking facial features
rather than estimating the head pose. In this context, the authors of [53] coupled
an Active Appearance Model with the POSIT algorithm for head pose tracking.

3.1.2 RGB Feature-Based Methods
Feature-based methods rely on some specific facial features to be visible, and
therefore are sensitive to occlusions and to large head rotations. Vatahska et
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al. [54] use a face detector to roughly classify the pose as frontal, left, or right
profile. After this, they detect the eyes and nose tip using AdaBoost classifiers.
Finally, the detections are fed into a neural network which estimates the head
orientation. Similarly, Whitehill et al. [55] present a discriminative approach to
frame-by-frame head pose estimation. Their algorithm relies on the detection of
the nose tip and both eyes, thereby limiting the recognizable poses to the ones
where both eyes are visible. Morency et al. [56] propose a probabilistic framework
called Generalized Adaptive View-based Appearance Model integrating frame-
by-frame head pose estimation, differential registration and keyframe tracking.

3.1.3 Head Pose Estimation from Depth or 3D
In general, approaches relying solely on 2d images are sensitive to illumination
changes and lack of distinctive features. Moreover, the annotation of head poses
from 2d images is intrinsically problematic. Since 3d sensing devices have become
available, computer vision researchers have started to leverage the additional
depth information for solving some of the inherent limitations of image-based
methods. Some of the recent works thus use depth as primary cue [57] or in
addition to 2d images [58,59,60].

Seemann et al. [60] presented a neural network-based system fusing skin color
histograms and depth information. It tracks at 10 fps but requires the face to be
detected in a frontal pose in the first frame of the sequence. The approach in [61]
uses head pose estimation only as a pre-processing step to face recognition, and
the low reported average errors are only calculated on faces of subjects that
belong to the training set. Still in a tracking framework, Morency et al. [59] use
instead intensity and depth input images to build a prior model of the face using
3d view-based eigenspaces. Then, they use this model to compute the absolute
difference in pose for each new frame. The pose range is limited and manual
cropping is necessary. In [58], a 3d face model is aligned to an RGB-depth input
stream for tracking features across frames, taking into account the very noisy
nature of depth measurements coming from commercial sensors.

Considering instead pure detectors on a frame-by-frame basis, Lu and Jain [62]
create hypotheses for the nose position in range images based on directional max-
ima. For verification, they compute the nose profile using PCA and a curvature-
based shape index. Breitenstein et al. [57] presented a real-time system working
on range scans provided by the scanner of [63]. Their system can handle large pose
variations, facial expressions and partial occlusions, as long as the nose remains
visible. Their method relies on several candidate nose positions, suggested by a ge-
ometric descriptor. Such hypotheses are all evaluated in parallel on a GPU, which
compares them to renderings of a generic template with different orientations. Fi-
nally the orientation which minimizes a predefined cost function is selected. Bre-
itenstein et al. also collected a dataset of over 10k annotated range scans of heads.
The subjects, both male and female, with and without glasses, were recorded us-
ing the scanner of [63] while turning their heads around, trying to span all possible
yaw and pitch rotation angles they could. The scans were semi-automatically an-
notated by a template-based tracking approach for head pose estimation [64] as
illustrated in Figure 14. The tracker requires a user-specific head model that has
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Fig. 14. Head pose tracking with a head template [64]. A user turns the head in front
of the depth sensor, the scans are integrated into a point cloud model [69] and a generic
template is fit to it using graph-based non-rigid ICP [70]. The personalized template
is used for rigid tracking.

(a) Training data (b) Regression forest (c) Pose prediction

Fig. 15. Head pose estimation with regression forests [66]. (a) A head model is used
to generate a large set of training data. (b) Based on the training data, a forest of
regression trees is trained. Each tree takes a depth patch as input and regresses the
pose parameters. (c) The regressed values of each patch can be considered as votes for
the pose parameters. The final estimate is obtained by mean-shift.

been acquired before recording the dataset. The same authors also extended their
system to use lower quality depth images from a stereo system [65].

While GPUs allow the evaluation of many hypotheses in real-time, they are
not available for embedded systems where power consumption matters. In order
to achieve real-time performance without the need of a GPU and to be robust to
occlusions, a random forests framework for head pose estimation from depth data
has been employed in [66]. The approach is illustrated in Figure 15. In [67], the
approach has been further extended to handle noisy sensor data and a dataset
with annotated head pose has been collected. The dataset comprises 24 sequences
of 20 different subjects (14 men and 6 women, 4 subjects with glasses) that
move their heads while sitting about 1 meter away from a Kinect sensor. Some
examples of the dataset are shown in Figure 16. The biggest advantage of depth
data for head pose estimation in comparison to 2d data is the simplicity of
generating an abundance of training data with perfect ground truth. In [66],
depth images of head poses are synthetically generated by rendering the 3d
morphable model of [68].
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Fig. 16. Database for benchmarking head pose estimation from depth data [67]. The
green cylinder represents the estimated head pose, while the red one encodes the ground
truth.

3.2 Facial Feature Detection

3.2.1 Facial Feature Detection from 2D Data
Facial feature detection from standard images is a well studied problem, often
performed as preprocessing for face recognition. Previous contributions can be
classified into two categories, depending on whether they use global or local
features. Holistic methods, e.g., Active Appearance Models [49,71,72], use the
entire facial texture to fit a generative model to a test image. As discussed in
Section 3.1, they can also be used for head pose estimation. They are usually
affected by lighting changes and a bias towards the average face. The complexity
of the modeling is an additional issue. Moreover, these methods perform poorly
on unseen identities [73] and cannot handle low-resolution images well.

In recent years, there has been a shift towards methods based on independent
local feature detectors [74,75,76,77]. These detectors are discriminative models
of image patches centered around facial landmarks. To improve accuracy and
reduce the influence of inaccurate detections and false positives, global models of
the facial features configuration like pictorial structures [78,79] or Active Shape
Models [80] can be used.

3.2.2 Facial Feature Detection from 3D Data
Similar to the 2d case, methods focusing on facial feature localization from range
data can be subdivided into categories using global or local information. Among
the former class, the authors of [81] deform a bi-linear face model to match a scan
of an unseen face in different expressions. Yet, the paper’s focus is not on the
localization of facial feature points and real-time performance is not achieved.
Also Kakadiaris et al. [82] non-rigidly align an annotated model to face meshes.
However, constraints need to be imposed on the initial face orientation. Using
high quality range scans, Weise et al. [83] presented a real-time system that is
capable of tracking facial motion in detail, but requires personalized templates.
The same approach has been extended to robustly track head pose and facial
deformations using RGB-depth streams provided by commercial sensors like the
Kinect [64].
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Fig. 17. Real-time facial feature localization using depth from a structured light system
as input [42]

Most works that try to directly localize specific feature points from 3d data
take advantage of surface curvatures. For example, the authors of [84,85,86] all
use curvature to roughly localize the inner corners of the eyes. Such an approach
is very sensitive to missing depth data, particularly for the regions around the
inner eye corners that are frequently occluded by shadows. Also, Mehryar et
al. [87] use surface curvatures by first extracting ridge and valley points, which
are then clustered. The clusters are refined using a geometric model imposing a
set of distance and angle constraints on the arrangement of candidate landmarks.
Colbry et al. [88] use curvature in conjunction with the Shape Index proposed
by [89] to locate facial feature points from range scans of faces. The reported
execution time of this anchor point detector is 15 seconds per frame. Wang et
al. [90] use point signatures [91] and Gabor filters to detect some facial feature
points from 3d and 2d data. The method needs all desired landmarks to be vis-
ible, thus restricting the range of head poses while being sensitive to occlusions.
Yu et al. [92] use genetic algorithms to combine several weak classifiers into a 3d
facial landmark detector. Fanelli et al. [42] proposed a real-time system that re-
lies on random forests for localizing fiducials. The system is shown in Figure 17.
Ju et al. [93] detect the nose tip and the eyes using binary neural networks, and
propose a 3d shape descriptor invariant to pose and expression.

The authors of [94] propose a 3d Statistical Facial Feature Model (SFAM),
which models both the global variations in the morphology of the face and the
local structures around the landmarks. The low reported errors for the localiza-
tion of 15 points in scans of neutral faces come at the expense of processing time:
over 10 minutes are needed to process one facial scan. In [95], fitting the pro-
posed PCA shape model containing only the upper facial features, i.e., without
the mouth, takes on average 2 minutes per face.

For evaluating facial feature detectors on depth data, there are two datasets
available. BU3DFE [97] contains 100 subjects (56 females and 44 males) posing
six basic expressions plus neutral in front of a 3d face scanner. Each of the
six prototypic expressions (happiness, disgust, fear, angry, surprise and sadness)
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Fig. 18. Successfully localized facial features using the approach [42] on some test scans
from the B3D(AC)2 database [96] (left) and the BU3DFE dataset [97] (right)

includes four levels of intensity, i.e., there are 25 static 3d expression models for
each subject, resulting in a total of 2500 faces. Each face is annotated with 83
facial points. B3D(AC)2 [96] comprises over 120k depth images and includes 14
subjects, 8 females and 6 males, repeating sentences from 40 movie sequences,
both in a neutral and in an induced emotional state.

3.3 Facial Performance Capture

Facial performance capture goes beyond simple shape models or feature point
detection and aims at capturing the full geometry of the face, mainly for facial
animations. A typical application is performance-based facial animation where
the non-rigid surface of the face is tracked and the motion is transferred to
a virtual face [98,99]. Most of the work has focused so far on the acquisition
of high-quality data using structured light systems [100,101,102,103,104] or pas-
sive multi-camera systems [105,106,101,107] in controlled setups. These methods
propose different acquisition setups that are optimized for acquisition time, ac-
quisition accuracy, or budget.

There are a few works that go beyond capturing facial motion in studio en-
vironments. The approach [108] uses a time-of-flight camera to estimate a few
basic facial action units based on the Facial Action Coding System (FACS). The
method fits a high-resolution statistical 3d expression morph model to the noisy
depth data by an iterative closest point algorithm and regresses the action units
from the fitted model. The method [83] achieves real-time performance-based
facial animation by generating a user-specific facial expression model offline.
During tracking the PCA components of the expression model are estimated
and transferred to a PCA model of a target face in real-time. In [64], a robust
method based on user-specific blendshapes has been proposed for real-time fa-
cial performance capture and animation. In contrast to most other works for
facial animation, the approach also works with noisy depth data. The approach
is illustrated in Figure 19.
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(a) Model generation (b) Real-time capture and facial animation

Fig. 19. (a) Data from a depth sensor is used to build a user-specific blendshape
model. (b) Having build the model, the motion can be transferred to a virtual head in
real-time. c©2013 Faceshift AG http://www.faceshift.com.

3.4 Summary

Capturing facial motion from depth data has progressed fast in the last years and
several real-time systems for different applications have been developed. While
for some applications head pose estimation might be sufficient, more details
like facial feature points, facial action units, or full geometry can be captured.
Interestingly, the richer output does not necessarily require much higher compu-
tational cost, still allowing real-time performance, but it requires more effort for
acquiring training data or an additional offline acquisition process, e.g., to ac-
quire a user-specific model. While the discussed methods already perform well in
terms of runtime and accuracy, there is further room for improving the accuracy
without compromising runtime. For evaluation, several datasets have been re-
leased as shown in Table 4. Although each dataset has been recorded for a specific
task like head pose estimation [57,42], facial expression recognition [97,109,110],
face recognition [111,112,113], or audiovisual speech recognition [96], they can
be also used for benchmarking methods for other tasks. Current datasets and
methods assume that the head is clearly visible, the handling of crowded scenes
for instance with many faces has not been addressed so far.

4 Hand Motion

Capturing the motion of hands shares many similarities with full body pose
estimation. However, hands impose some additional challenges like uniform skin
color, very large pose variations and severe occlusions that are even difficult to
resolve from depth data. Since hands interact with other hands or objects nearly
all the time, capturing hand motion is still a very challenging task. Parts of this
section appeared in [114].

4.1 Hand Pose Estimation

In the survey [115], various methods for hand pose estimation have been reviewed
in the context of human-computer interaction. We also follow the taxonomy used

http://www.faceshift.com
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Table 4. Datasets for evaluating depth-based approaches for head pose estimation and
facial feature detection

Dataset Annotation Data Subjects

ETH Face Pose Range Image [57] head pose 10k depth 20

Biwi Kinect Head Pose [42] head pose 15k RGBD 20

Binghamton 3D Facial Expression [97] 6 facial expressions, 3k 3d models 100
3 facial points

Bosphorus Database [109] 24 facial points, FACS 5k 3d models 105

3D Dynamic Facial Expression [110] 6 facial expressions, 60k 3d models 101
83 facial points

Texas 3D Face Recognition [111] 25 facial points 1k RGBD 105

Biwi 3D Audiovisual Corpus [96] face model, emotions, 120k RGBD 14
segmented speech

UMB 3D Face [112] 7 facial points 1k RGBD 143

EURECOM Kinect Face [113] 6 facial points 1k RGBD 52

in [115] that splits the approaches in discriminative methods that use classifi-
cation or regression to estimate the hand pose from image data and generative
methods that use a hand model to recover the hand pose.

The model-based approaches mainly differ in the used cues and techniques
for solving the problem. The most commonly used image features are silhouettes
and edges, but also other cues like shading, color, or optical flow have been
used [115]. For instance, edges, optical flow and shading information have been
combined in [116] for articulated hand tracking. In [117], a method based on
texture and shading has been proposed. A very important cue is depth [118,119]
that has been recently revisited in the context of depth sensors [120].

In order to recover the hand pose based on some cues, several techniques have
been proposed. One of the first methods for 3d hand pose estimation used local
optimization [121], which is still a very popular method due to its efficiency, but
it also requires a careful design of the objective function to avoid that the method
gets stuck in local minima [114,117]. Other methods rely on filtering techniques
like Kalman filter [122] or particle filter [123]. While particle filtering and local
stochastic optimization have been combined in [119] to improve the performance
of filtering techniques in the high-dimensional space of hand poses, [124,125]
proposed to reduce the pose space by using linear subspaces. The methods,
however, considered only very few hand poses. Other methods rely on belief
propagation [126,127] or particle swarm optimization [128].

Depending on the method, the used hand models also differ as shown in
Figure 20. The highest accuracy is achieved with user-specific hand models,
e.g., [114,130]. These models need to be acquired offline, similar to user-specific
head models, but anatomical properties like fix limb length are retained during
tracking. More flexible are graphical models that connect limbs modeled by shape
primitives and use often Gaussian distributions to model the allowed distance
of two limbs, e.g., [126,127]. For each limb a likelihood is computed and the
best hand configuration is inferred from the graphical model connecting the
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(a) Articulated Hand Model (b) Connected Parts (c) Labeled Parts

Fig. 20. Different models for hand pose estimation: (a) Detailed 3d mesh with under-
lying skeleton [114] (b) Connected body parts [127] (c) Labeled surface for training a
body part detector [129]

limbs. A hand model based on a self-organizing map [131] is discussed in the
chapter Gesture Interfaces with Depth Sensors.

Discriminative approaches like [132,133,134] do not require an explicit hand
model, but learn a mapping from image features to hand poses from a large set of
training data. Although these methods process the frames independently, tem-
poral consistency can be enforced [135,136,137]. While discriminative methods
can recover from errors, the accuracy and type of hand poses that can be han-
dled depends on the training data. Discriminative approaches that process the
full hand are therefore not suitable for applications that require accurate hand
poses of a-priori unknown actions. However, instead of learning a mapping for
the full hand, also a mapping only for body parts can be learned [129] as shown
in Figure 20(c). Breaking the hand into parts has the advantage that a larger
variation of poses can be handled. Similar approaches have been successfully
applied to human pose [3] or head pose estimation [66].

Recently, the focus has been on hand motion capture in the context of in-
teractions. [127] has considered hand tracking from depth data in the context
of object manipulation. While the objects were originally treated as occluders,
[139] proposed to learn an object dependent hand pose prior to assist tracking.
The method assumes that object manipulations of similar objects have been
previously observed for training and exploits contact points and geometry of the
objects. Such dependencies can also be used to create hand animations [140,141]
as shown in Figure 21. In the context of object grasping, a database of 10 000
hand poses with and without grasped objects has been created to recover the
hand pose from images using nearest neighbor search [136]. Recently, it has been
proposed to track the manipulated object and the hand at the same time to con-
strain the search space using collision constraints [142]. The object is assumed
to be a shape primitive like a cylinder, ellipsoid or box whose parameters are
estimated. In [130], particle swarm optimization (PSO) has been applied to hand
tracking of two interacting hands from depth data.
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(a) Skeleton (b) Hand Model (c) Skeleton (d) Hand Model

Fig. 21. The relations between hands and object classes can be modeled to synthesize
hand poses or hand-object animations [138].

(a) (b) (c) (d) (e) (f) (g)

Fig. 22. Alphabet (A-G) of the American sign language captured with a ToF camera

Instead of using off-the-shelf depth sensors, some approaches have focused on
the sensor design in the context of human-computer interaction (HCI) applica-
tions. For instance, Leap Motion1 developed a controller that allows to capture
the motion of finger tips with high accuracy. While the volume that can be
captured by the controller is very small, a wrist-worn sensor for hand pose es-
timation has been proposed in [143]. In [144], RGBD data is used to improve a
marker-based system. A more detailed overview of approaches for HCI, includ-
ing commercial systems, is given in the chapter Gesture Interfaces with Depth
Sensors.

4.2 Hand Gesture Recognition

Even if the resolution of the hands is too small to estimate the full articulated
hand, the gesture of the hand can still be estimated given a suitable training set.
In this section, we give an overview of different methods for recognizing hand
gestures, in particular letters of a sign language, as shown in Figure 22. Parts of
this section appeared in [140].

Recognizing signs of visual-gestural languages like the American sign language
(ASL) is a very active field [145,146,147,148,149,150,151]. For instance, the Sign-
Speak project [152] aims at developing vision-based technology for translating
continuous sign language to text. It is also related to gesture recognition from
depth data and optional color data [153,154,155,156,157,158,159,160,161,162],
which is discussed in the chapter Gesture Interfaces with Depth Sensors. While
for gesture recognition usually only a small set of distinctive gestures are used,
the letters of a sign language are pre-defined and not very distinctive in low

1 http://www.leapmotion.com

http://www.leapmotion.com
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resolution depth images. In the following, we structure the methods into user-
specific systems, i.e., the systems are trained and designed for a specific user,
and general systems, i.e., the user does not provide any training data:

4.2.1 User-Specific Systems
Polish finger alphabet symbols have been classified in [163] with an off-line setup.
The input for each of the considered 23 gestures consisted of a gray-scale image at
a relatively high resolution and depth data acquired by a stereo setup. In [164],
a real-time recognition system has been developed for Spanish sign language
letters where a colored glove was used. The real-time system [165] recognizes 46
gestures including symbols of the ASL. It assumes constant lighting conditions
for training and testing and uses a wristband and special background for accurate
hand segmentation. More recently, British sign language finger spelling has been
investigated in [166] where the specialty is that both hands are involved in the
26 static gestures. Working on skin color, it is assumed that the signer wears
suitable clothing and the background is of a single uniform color. The system
recognizes also spelled words contained in a pre- defined lexicon.

4.2.2 General Systems
Using a stereo camera to acquire 3d and color data, Takimoto et al. [160] pro-
posed a method for recognizing 41 Japanese sign language characters. Data was
acquired from 20 test subjects and the achieved classifier runtime is about 3
frames per second. Although the approach does not require special background
or lighting conditions, segmenting the hand, which is a challenging task by itself,
is greatly simplified by the use of a black wristband. Colored gloves have been
used in [167] for recognizing 23 symbols of the Irish sign language in real-time.
A method for recognizing the ASL finger alphabet off-line has been proposed
in [168]. Input data was acquired in front of a white background and the hand
bounding box was defined for each image manually. A similar setup has been used
in [169]. In [140], a method based on average neighborhood margin maximation
has been proposed that recognizes the ASL finger alphabet from low-resolution
depth data in real-time.

The methods are summarized in Table 5.

4.3 Summary

In contrast to activity recognition and facial motion capture, there is a lack of
publicly available datasets for benchmarking and comparing methods for hand
pose estimation. Even for RGB data, there are very few datasets that provide
ground-truth data [170]. While many depth datasets have been used for hand
gesture recognition or recognizing finger alphabet symbols, there is no dataset
available that has been consistently used. As shown in Table 5, many methods
use a different number of gestures or recording setups. In order to evaluate the
progress in this area, publicly available datasets with ground-truth data are
needed.
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Table 5. Overview of methods for recognizing hand gestures

Method # of Gest. Setup Depth Resolution Markers Real-time

[165] 46 user-specific no 320x240 wristband yes

[159] 11 user-specific yes 160x120 yes

[163] 23 user-specific yes 320x240 black long sleeve no
768x576(gray)

[164] 19 user-specific no colored glove yes

[162] 6 user-specific yes 176x144 yes
640x480(rgb)

[140] 26 user-specific yes 176x144 yes

[157] 12 general yes 160x120 yes

[158] 6 general yes 176x144 yes

[156] 5 general yes 176x144 yes

[160] 41 general yes 320x240 wristband no
1280x960(rgb)

[167] 23 general no color glove yes

[168] 26 general no bounding box no

[169] 26 general no bounding box no

[140] 26 general yes 176x144 yes

5 Conclusion

Over the last years, a significant progress has been made in the field of human
motion analysis from depth data. The success is attested by commercial systems
that estimate full body poses for computer games, hand poses for gesture inter-
faces, or capture detailed head motions for facial animations. It is expected that
more approaches in the field will make the transition from the lab to a business.
The main advantages of developing applications for depth sensors compared to
purely 2d color sensors are (i) the better robustness to lighting conditions, at
least in indoor environments, (ii) the resolved scale-distance ambiguity of 2d
sensors, making it easier to develop real-time algorithms, (iii) the possibility
to synthesize an abundance of training data. Nevertheless, there are still many
research challenges that need to be addressed and that cannot be resolved by im-
proving only the data quality provided by the sensors. So far, the most successful
approaches for capturing full body motion or specific body parts like hands or
the head assume that the subjects are within a specific distance range to the
sensor. Dealing with a larger range of distances, however, requires to smoothly
blend between analyzing full body motion and the motion of body parts. If the
person is far away from the sensor, full body motion can be better analyzed
than facial motion. As soon as the person gets closer to the sensor, only parts
of the person remain visible and motion analysis is limited to the upper body,
hands, or the face. For some applications, even all aspects of human body lan-
guage need to be taken into account to understand the intend of the user. In
sign languages, for instance, it is not only hand gestures that matter, but also
the motion of the arms, facial expressions and the movements of the lips. Bring-
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ing all these components of motion analysis together, which have been mainly
addressed independently, is a big challenge for the future. Another challenge is
motion analysis in the context of crowded scenes and interactions. While first
approaches address the problem of human-human or human-object interactions,
more work needs to be done in this area to achieve performances that are good
enough for real-world applications.
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Abstract. Optical capturing of human body motion has many practi-
cal applications, ranging from motion analysis in sports and medicine,
over ergonomy research, up to computer animation in game and movie
production. Unfortunately, many existing approaches require expensive
multi-camera systems and controlled studios for recording, and expect the
person to wear special marker suits. Furthermore, marker-less approaches
demand dense camera arrays and indoor recording. These requirements
and the high acquisition cost of the equipment makes it applicable only
to a small number of people. This has changed in recent years, when the
availability of inexpensive depth sensors, such as time-of-flight cameras or
the Microsoft Kinect has spawned new research on tracking human mo-
tions from monocular depth images. These approaches have the potential
to make motion capture accessible to much larger user groups. However,
despite significant progress over the last years, there are still unsolved chal-
lenges that limit applicability of depth-based monocular full body motion
capture. Algorithms are challenged by very noisy sensor data, (self) occlu-
sions, or other ambiguities implied by the limited information that a depth
sensor can extract of the scene. In this article, we give an overview on the
state-of-the-art in full body human motion capture using depth cameras.
Especially, we elaborate on the challenges current algorithms face and dis-
cuss possible solutions. Furthermore, we investigate how the integration of
additional sensor modalities may help to resolve some of the ambiguities
and improve tracking results.

1 Introduction

The recording and analysis of full-body human motion data constitutes an impor-
tant strand of research in computer vision, computer graphics and many related
fields of visual computing. Full body human motion capture has many appli-
cations in divers areas, ranging from character animation for movie and game
productions, sports sciences, and human computer interaction. Unfortunately,
the methods for measuring human skeletal motion that were available until re-
cently impose stark constraints on applicability and can lead to high acquisition
cost. Most applications in the movie and game industry, medical research and
rehabilitation, as well as sports sciences are often based on optical marker-based

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 188–206, 2013.
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(a) (b)

Fig. 1. (a) Input color images for a typical markerless multi-camera motion capture
approach. (b) Input depth image for a typical depth tracking approach.

or marker-less approaches, see [1] for an overview. These approaches often need
multi-view input images, recorded in controlled environments using expensive
and calibrated recording equipment, see also Fig. 1a. These requirements ren-
der them unaffordable for many users, or even completely unsuitable, such as in
home user applications.

In the recent years, depth sensing devices such as time-of-flight (ToF) cam-
eras or the Microsoft Kinect have triggered a new strand of research, where
human motion data is inferred from so called 2.5D depth maps. Such cameras
are easy to set-up and are inexpensive compared to the systems required by
the approaches above. The provided data is especially appealing for tracking
because of two reasons. Firstly, it is more resilient to challenging surface and
appearance properties of objects and in most cases independent from controlled
lighting conditions. Secondly, the provided depth maps enable easier background
subtraction and provide rich geometric information even when using only a sin-
gle camera, see also Fig. 1b. In consequence, several algorithms were introduced
recently that can capture full body human skeletal poses from a single depth
camera view. While they do not yet reach the same level of accuracy as classi-
cal multi-camera-based approaches, many of them perform in real-time and have
paved the trail for some new interaction applications in home user environments.

However, despite the advances in this field, there are still many fundamental
algorithmic obstacles to overcome in order to bridge the immense quality and
robustness gap between depth-camera based tracking and earlier multi-camera
approaches. Current algorithms are challenged by the non-trivial noise charac-
teristics of depth cameras. Understanding and characterizing this noise (see also
chapter “Denoising Strategies for Time-of-Flight Data”) and properly accom-
modating for it (see also chapter “Stabilization of 3D Position Measurement”)
in the pose estimation methods is thus a key requirement. Another set of chal-
lenges originates from the fact that depth images are very sparse. While already
with multiple available camera views the process of inferring pose from images is
highly ambiguous, this problem is even more difficult in monocular pose recon-
struction. Algorithms are challenged by occlusions resulting in missing informa-
tion. Another example is the fact that the orientation of rotationally symmetric
body parts, such as arms and legs, is ambiguous in the depth data.
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In this article, we want to give an overview on the current state-of-the art
in human pose estimation from depth images, see Sect. 2. We will review the
advantages and disadvantages of the main categories of algorithmic strategies
for monocular pose estimation from depth, which includes generative and dis-
criminative strategies. We will also put a focus on the basic principle of so-called
hybrid trackers that combine these two tracking recipes. Based on this review of
state-of-the-art, we will elaborate on primary algorithmic limitations and chal-
lenges that current methods have to overcome, and present ideas and an outlook
to possible ways of achieving this, see Sect. 3. In particular, we will use the exam-
ple approach presented by Baak et al. [2] as instructional example, see Sect. 3.4.

2 State-of-the-Art

Nowadays, most commercial solutions to full-body human motion capture em-
ploy techniques that are invasive to the scene. Some approaches are based on me-
chanical or electronic exoskeletons, or other external sensors placed on the body.
But the most widely used techniques require the person to wear special suits with
retro-reflective markers whose motion is picked up by a multi-camera system to
compute the skeletal motion of the person [3]. Due to the complex apparatus,
these approaches are expensive, need a lot of preparation time, and are restricted
to controlled recording environments which constrains their application to spe-
cialized professional users. To overcome this limitation, researchers in computer
vision and computer graphics started to develop marker-less skeletal pose esti-
mation algorithms. They can capture skeletal motion from multi-view video of
a moving person, without needing markers in the scene. An extensive overview
of these methods is beyond the scope of this chapter, and a review can be found
in [4], but the main concepts are as follows. Most approaches use some form of 3D
kinematic skeleton model augmented by shape primitives, such as cylinders [5], a
surface mesh [6,7,8], or probabilistic density representations attached to the hu-
man body [9]. Optimal skeletal pose parameters are often found by minimizing an
error metric that assesses the similarity of the projected model to the multi-view
image data using features. Local optimization approaches are widely used due to
their high efficiency, but they are challenged by the highly multimodal nature of
the model-to-image similarity function [9,8]. Global pose optimization methods
can overcome some of these limitations, however at the price of needing much
longer computation times [10,6]. Some approaches aim to combine the efficiency
of local methods with the reliability of global methods by adaptively switching be-
tween them [6]. Even though marker-less approaches succeed with a slightly sim-
pler setup, many limitations remain: computation time often precludes real-time
processing, recording is still limited to controlled settings, and people are still ex-
pected to wear relatively tight clothing. Furthermore, marker-less motion capture
methods deliver merely skeletal motion parameters.

In contrast, marker-less performance capture methods go one step further and
reconstruct deforming surface geometry from multi-view video in addition to
skeletal motion. Some methods estimate the dynamic scene geometry using vari-
ants of shape-from-silhouette methods or combinations of shape-from-silhouette
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and stereo[11,12,13,14], but in such approaches establishing space-time coher-
ence is difficult. Template-based methods deform a shape template to match the
deformable surface in the real scene, which implicitly establishes temporal co-
herence [15,16], also in scenes with ten persons. All the developments explained
so far aim towards the goal of high-quality reconstruction, even if that necessi-
tates complex and controlled indoor setup. In contrast, depth-based tracking of
full-body human motion focuses on using inexpensive recording equipment that
is easy to setup and to use in home user applications. As a consequence, depth
based have to deal with various challenges that marker-less tracking approaches
do not face. Commercial systems that make use of this kind of motion tracking
can be found e. g. in the Microsoft Kinect for XBox1, the SoftKinetic IISU Mid-
dleware2 for pose and gesture recognition, as well as the SilverFit3 system for
rehabilitation support. So far, several depth-based tracking methods have been
published that can be classified into three basic types: Generative approaches,
discriminative approaches and hybrid approaches. In this chapter, we give a
general overview over full-body tracking approaches. We refer to the chapter “A
Survey on Human Motion Analysis from Depth Data” for activity recognition
and body part motion in general. Furthermore, we refer to the chapter “Gesture
Interfaces with Depth Sensors” for the specific case of hand and arm motion
tracking. The later chapter also discusses a special kind of generative tracking
approach which makes use of so-called self-organizing maps (SOM).

2.1 Generative Approaches

Generative approaches use parametrized body models that are fit into the depth
data using optimization schemes. In particular, the optimization process maxi-
mizes a model-to-image consistency measure. This measure is hard to optimize
due to the inherent ambiguity in the model-to-data projection. In particular,
when using monocular video cameras, this ambiguity precludes efficient and re-
liable inference of a usable range of 3D body poses. Depth data reduce this
ambiguity problem but it is still one of the main algorithmic challenges to make
generative methods succeed.

A first approach for obtaining pose and surface of articulated rigid objects
from ToF depth images was presented in [17]. Under the assumption that the
movement of the tracked object is small w. r. t. the capture speed of the depth
camera, the authors track individual bones from a manually pre-labeled depth
image using an iterative closest point (ICP) approach. In each frame, previously
unlabeled depth pixels are assigned to the bone that best explains the unla-
beled depth pixel. However, this approach was not real-time capable, running at
around 0.5 frames per second (FPS). Another approach [18] that is specialized
on human motion, generates point correspondences for an ICP based optimiza-
tion from both 3D and 2D input. An example for 2D input could be a body part

1 http://www.xbox.com/Kinect
2 http://www.softkinetic.com
3 http://www.silverfit.nl/en.html

http://www.xbox.com/Kinect
http://www.softkinetic.com
http://www.silverfit.nl/en.html
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Fig. 2. First five geodesic extrema (white spheres) computed for several poses. These
five extrema typically correspond to the four end-effectors (two hands, two feet) and
the head of the person.

or feature detector working on 2D color images. All 3D points that could be pro-
jected onto the 2D feature point now define a ray in 3D space. The closest point
of this ray to the model is used to generate a traditional 3D point constraint. The
authors report a performance of 25 fps with this method, but the approach is
limited to simple non-occluded poses since otherwise the tracker would converge
to an erroneous pose minimum from which it cannot recover. Another early ap-
proach for real time capable depth-based motion tracking from monocular views
was presented in [19]. Here, the authors describe a general pipeline for obtaining
pose parameters of humans from a stream of depth images that are then used to
drive the motion of a virtual character in e. g. video games. To further increase
the performance of generative approaches [20] proposed porting the computa-
tional intense local optimization to the graphics processor. However, all these
approaches tend to fail irrecoverably when the optimization is stuck in a local
minimum. This problem also exists in other vision-based approaches and was
e. g. discussed in [21]. In general, these tracking errors occur due to the ambigu-
ous model-to-data mapping in many poses, as well as fast scene motion. While
the latter problem can be remedied by increasing the frame rate, the former
was addressed by more elaborated formulations of the energy function. One op-
tion was lately presented in [22], where the authors proposed a modified energy
function that incorporates empty space information, as well as inter-penetration
constraints. A completely different approach was shown in [23]. Here, multi-
ple depth cameras were used for pose estimation which reduces the occlusion
problem and enabled capturing the motion of multiple person using high resolu-
tion body models. The approach is not real-time capable, though. With all these
depth-based methods, real-time pose estimation is still a challenge, tracking may
drift, and with exception to [23], the employed shape models are rather coarse
which impairs pose estimation accuracy.

2.2 Discriminative Approaches

On the other hand, discriminative approaches focus on detecting certain features
in the depth data—such as joint locations—and later combine these independent
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cues to form a body pose hypothesis. These feature are often learned for a pre-
defined set of poses. For this reason, discriminative methods are not dependent
on a numerical optimization procedure, and can infer pose also without temporal
context and continuity. One algorithm for detecting human body parts in depth
images was presented in [24]. Here, the authors use so-called geodesic extrema
calculated by iteratively using Dijkstra’s algorithm on a graph deduced by con-
necting all depth pixels in the 2.5D depth data into a map. The assumption
here is that geodesic extrema generally align with salient points of the human
body, such as the head, the hands, or the feet, see also Fig. 2. To label the re-
trieved geodesic extrema according to the corresponding body part, the authors
employ local shape descriptors on normalized depth image patches centered at
the geodesic extrema’s positions. Another body part detection approached is
pursued in [25], where the authors deduce landmark positions from the depth
image and include regularizing information from previous frames. These posi-
tions are then used in a kinematic self retargeting framework to estimate the
pose parameters of the person. In contrast, the approach described in [26] uses
regression forest learned on simple pair-wise depth features to do a pixel-wise
classification of the input depth image into body parts. To obtain a working
regression forest for joint classification that works under a large range of poses,
though, the authors had to train the classifier on approx. 500 000 synthetically
generated and labeled depth images. For each body part, joint positions are then
inferred by applying a mean shift-based mode finding approach on the pixels as-
signed to that body part, see also Fig. 3a. Using also regression forests for body
part detection, [27] determine the joint positions by letting each depth pixel
vote for the joint positions of several joints. After excluding votes from too dis-
tant depth pixels and applying a density estimator on the remaining votes, even
the probable positions of non-visible joints can be estimated, see also Fig. 3b.
Finally, [28] generate correspondences between body parts and a pose and size
parametrized human model, which they also achieve by using depth features and
regression forests. The parameters of this model are then found using a one shot
optimization scheme, i. e. without iteratively recomputing the established corre-
spondences. Discriminative approaches show impressive tracking results, where
some discriminative methods even succeed in detecting joint information also in
non-frontal occluded poses. However, since they often detect features in every
depth frame independently, discriminative approaches tend to yield temporally
unstable pose estimations results. Furthermore, for many learning-based meth-
ods, the effort to train classifiers can be significant.

2.3 Hybrid Approaches

Combining the ideas of generative and discriminative approaches, hybrid ap-
proaches try to harness the advantages from both tracker types. On the one
hand, hybrid trackers inherit the stability and temporal coherence of pose es-
timation results common to generative trackers. On the other hand, they show
the robustness of pose inference even in partly occluded poses that character-
izes discriminative approaches. A first method, in the domain of 3D surface



194 T. Helten et al.

(a)

(b)

Fig. 3. Regression-forest-based discriminative trackers. The images were taken from
the respective papers. (a) Body part and joint detection as presented in [26]. (b)
Voting approach for occluded joints as described in [27].

reconstruction, was presented in [29]. Here, the discriminative tracker is used for
initializing the surface model, while the generative tracker enforces the obser-
vance of distance constraints. The authors also sketched, how their approach can
be applied to human pose reconstruction. At the same time, the first method
with specialization to human pose estimation was presented in [30]. This work
combines the geodesic extrema-based body part recognition presented in [24]
with a generative pose optimization scheme based on articulated ICP. Further-
more, the authors introduce a dataset comprising of calibrated ToF depth images
and ground-truth marker positions that serves as common benchmark for future
work in that field. The works by Baak et al. [2] and Ye et al. [31] also use a
discriminative tracker to initialize a generative pose estimation algorithm. In
detail, the approach presented in [31] uses a database consisting of 19 300 poses.
For each of these poses, four synthesized depth images were rendered from dif-
ferent views. Using a principal axis based normalization, the point clouds are
indexed using their coefficients in a PCA subspace. Here, the normalization of



Full-Body Human Motion Capture from Monocular Depth Images 195

Fig. 4. Schematic overview of a hybrid depth tracker as suggested by Baak et al. [2]

the point cloud in combination with the rendering from four different views is
used to retrieve poses from the database independent from the orientation w. r. t.
the depth camera. Note that by storing four different views in the database, the
index size is increased to 77 200, while still only 19 300 poses are contained in the
database. During tracking, the input point cloud is normalized in the same way,
its PCA-coefficients are calculated and used for retrieving a similar point cloud
in the database. Finally, they refine the retrieved pose using the Coherent Drift
Point algorithm presented in [32]. This approach shows good pose estimation
results on the benchmark dataset introduced in [30]. However, their approach
does not run in real time—inferring the pose in one frame takes between 60 s
and 150 s.

In contrast, the approach showcased in [2] uses a modified iterated version
of Dijkstra’s algorithm to calculate geodesic extrema similar to the approach in
[24]. The stacked positions of the first five geodesic extrema, which often co-align
with the head, hands and feet, serve as index into a pose database consisting of
50 000 poses. The suitability of such an approach has been previously discussed
in [33], where the authors used the stacked positions of the body’s extremities
(head, hands, and feet) to index a database containing high dimensional motion
data. As index structure the authors employed a kd-tree facilitating fast nearest
neighbor searches. To be invariant to certain orientation variations of the person,
Baak et al. normalize the query and the database poses based on information
deduced from the depth point cloud. The incorporated generative tracker is a
standard ICP approach that builds correspondences between preselected points
from the parametrized human model and points in the depth point cloud. In each
frame, they conduct two local optimizations, one initialized using the pose from
the previous frame and one using the retrieved pose from the pose database.
Using a late fusion step they decide based on a sparse Hausdorff-like distance
function which pose obtained from the two local optimizations best describes the
observed depth image. This pose is then used as final pose hypothesis, see Fig. 4
for an overview of their approach. While not showing as good results as the ap-
proach presented in [31], their tracker runs much faster at around 50−60 frames
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per second, enabling very responsive tracking. Another real-time approach was
recently proposed by e. g. [34]. Here, the authors use a discriminative body-part
detector similar to [26] to augment a generative tracker. In particular, they use
the pose obtained from the discriminative tracker only for initialization at the
beginning of the tracking and for reinitializing the generative tracker in cases of
tracking errors. For detecting wrongly tracked frames, they measure how well
their body model with the current pose parameters explains the observed point
cloud. Hybrid approaches, harnessing the advantages of both tracking worlds, are
able to show superior performance compared too purely discriminative or gener-
ative approaches. However, even the current state-of-the-art hybrid trackers still
have limitations, which we will elaborate on in the following.

3 Open Challenges and Possible Solutions

While providing good overall tracking results, hybrid approaches still suffer from
the noisy character and the sparsity of the depth data and are prone to ambi-
guities originating from occlusions. In this section, we will discuss the various
challenges current approaches still face, elaborate on the reasons, and give an
outlook how these problems could be approached. For the special case of denois-
ing depth data we refer to the chapter “Denoising Strategies for Time-of-Flight
Data”.

3.1 Accuracy of the Body Model

Most trackers use an underlying model of the human body. Such models vary
drastically ranging from simple representations as graphs [17,25,26,27,28,29,31],
over articulated rigid bodies [18,20,22,34] to complex triangle meshes driven by
underlying skeletons using skinning approaches [2,23,30]. Here, the complexity of
the model mainly depends on the intended application. While some approaches
are only interested in tracking specific feature points of the body such as the
positions of the extremities [24] or joint positions [26], other approaches try
to capture pose parameters such as joint angles [2,22,28,30,31,34], or even the
complete surface of the person including cloth wrinkles and folds [23]. Another
requirement for a detailed surface model may be the energy function used in gen-
erative or hybrid approaches. In particular, ICP-based trackers benefit from an
accurate surface model to build meaningful correspondences between the model
and the point cloud during optimization. In order to circumvent the problem of
obtaining an accurate model of each individual person, some approaches use a
fixed body model and scale the input data instead [2]. However, this approach
fails for persons with very different body proportions.

In general, the model of the tracked person is often assumed to be created
in a pre-processing step using manual modeling or special equipment as full-
body laser scanners. While this is a viable way in movie and game productions
or in most scientific settings, in home user scenarios it is not feasible. To this
end, most algorithms applied in home user scenarios, such as [26] use a different
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(a) (b) (c) (d) (e)

Fig. 5. (a) Body shape of a person to be tracked. (b) Depth image of shape. (c) Graph
model. (d) Model based on articulated cylinders and spheres . (e) High resolution
surface model.

approach. In a pre-processing step the authors use a large number of body models
of different sizes and proportions to learn a decision-forest-based classifier that
is able to label depth pixels according to the body part they belong to. As
a consequence, this classifier becomes invariant to the size of the person and
its proportions. During the actual tracking, the learned classifier can be used
without obtaining an actual body model of the tracked person. Based on the
labeled depth pixel the authors employ a heuristic to deduce the most probable
joint position. This approach runs in real-time and works for many tracking
applications.

However, for some augmented reality applications the reconstruction quality
obtained from simple graphical body models may not be sufficient enough. A
popular example is virtual try-on, where the person can wear a piece of virtual
apparel that plausibly interacts with the person’s body motion. Here, an accu-
rate reconstruction of the person’s body surface is beneficial in order to ensure
believable visual quality or to give good indication whether the cloth actually
fits. One possible approach would be to infer a high resolution body model from
depth data in a pre-processing step and then use this model for tracking, visual-
ization or physical simulations of objects in the augmented scene. Recently, one
approach [35] has addressed this issue. Here, the authors fit a pose and shape
parametrized model into the depth point clouds using an ICP-based approach.
The point clouds were obtained from four sequentially captured depth images
showing the person from the front, the back and two sides. However, the fact that
the person had to reproduce the same pose in all four images and the optimiza-
tion’s runtime of about one hour makes this approach not applicable in home
user scenarios. For an explanation how to obtain a pose and shape parametrized
model, we refer to [36,37].

3.2 Rotational Ambiguities

Another inherent challenge to all depth-based trackers are rotational ambigui-
ties. Depth data contains rich information about the relative location of objects
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(a) (c)(b)

Fig. 6. Rotational ambiguities of depth data. (a) Input depth image. (b) One typ-
ical output from a generative pose estimation procedure. Note that the axis of the
elbow joint is vertical. (c) Another possible output, the axis of the elbow joint is now
horizontal.

which enables easy background subtraction compared to vision based approaches
on intensity images. However, depth images reveal only little information about
the surface structure and no color information at all. This makes it hard to
determine the correct orientation of rotational symmetric objects, such as the
body extremities. Since most depth trackers only depend on very simplistic un-
derlying body models with isotropic extremities [18,20,22,34] or even graphs
[17,25,26,27,28,29,31] that do not have any volume at all, they can simply ignore
the aforementioned problem. However, these trackers also do not provide any
pose information about the twist of the arms or the legs. In contrast, trackers
that use complex triangle meshes for defining the body’s surface [2,23,30] should
not ignore rotational ambiguities. In particular, for these approaches the used
generative tracker might come to different results depending on its initialization.
An example can be seen in Fig. 6. Here, the depth image shown in Fig. 6a reveals
only little information on how the arm is oriented. Two possible solutions of a
generative tracker are depicted in in Fig. 6b&c. The difference between both
solutions lies in the twist of the arm. While in Fig. 6b the axis of the right elbow
joint is oriented vertically, it is oriented horizontally in Fig. 6c. In this exam-
ple, the latter would semantically be the correct pose estimation result. At first
glance this might not have huge impact on the overall performance of the tracker.
However, a tracking error might serve as initialization for the next frame. Lets
consider the scenario that the tracked person bends her arm with the forearm
pointing upwards. While this is a straight-forward task for the generative tracker
initialized with the pose shown in Fig. 6c, a local optimization starting with the
pose shown in Fig. 6b is more likely to get stuck in a local minimum. Unfortu-
nately, none of the presented trackers employs methods to prevent this. While
pure generative trackers are likely to fail in such situations and may not be able
to proceed, discriminative trackers completely avoid this issue by tracking each
frame independently and not relying on local optimization. In contrast, hybrid
approaches, such as presented in [2,34], detect the failure of their generative
tracker and reinitialize it using pose estimations of their discriminative tracker.



Full-Body Human Motion Capture from Monocular Depth Images 199

Similar challenges are also faced in other tracking fields as e. g. marker-less
motion capture. Here, so called silhouetted-based trackers that estimate the pose
of the person from multiple, binary (foreground vs. background) images, suffer
from the same challenge being unable to determine the correct orientation of the
person’s extremities. One approach to tackle this was presented in [7], where the
authors included information from another sensor modality to correctly detect
the orientation of the extremities independent from ambiguous optical informa-
tion. In particular, their approach relies on orientation data obtained from five
inertial sensors attached to the lower legs, forearms and the trunk of the per-
son. By including the measured orientations into the energy function of their
generative approach, tracking errors in rotationally symmetric limbs could be
avoided.

3.3 Occlusions

The third and by far greatest challenge for today’s depth trackers are occlusions.
Occlusions stem from the fundamental principle how depth images (and other
optical data) is obtained. Light is reflected by some object and detected by some
light sensitive sensor inside the camera. If light from an object, e. g. a body part,
cannot reach the sensor of the camera because another object in between, the
object is occluded. As a consequence, one cannot obtain any usable information
about the occluded object. Present depth trackers deal with occlusions in var-
ious ways. Some trackers simply avoid this by requiring the tracked person to
strike only poses where all body parts are clearly visible to the depth camera
[2,30,34]. Such trackers often show undefined behavior if the requirements are
not met, see Fig. 7 for some representative failure cases. Some discriminative
trackers allow for non frontal poses but do not give any pose hypothesis for
non-visible parts [25,26,28,34]. In contrast, the approach presented in [27] uses a
regression forest-based approach to learn the relative joint positions for a depth
pixel based on depth values in its neighborhood. Calculating the density mean
on a set of votes yields a hypothesis even for occluded joints. As most learn-
ing based approaches, this approach shows good results on poses close to the
one used for learning and vice versa. In a pure generative setting, the approach
proposed in [22] includes two additional constraints into the energy function to
produce plausible results for occluded body parts. The first constraint prevents
body parts from entering empty space, i. e. parts in the depth image where no
foreground pixels were detected. The second constraint prevents body parts from
inter-penetrating. However, without an actual measurement it is impossible to
deduce the correct pose for occluded body parts.

We see two ways that could help tracking in difficult scenes. Firstly, occlusions
could be reduced by dynamically moving the cameras during the recording of the
scene. Secondly, occlusions could be handled by adding another input modality
that does not depend on visual cues. As for the first approach, the authors
in [23] make use of three Kinect depth cameras that are carried by operators
around a scene. At a given frame, the depth input of the three Kinects is then
fused into one point cloud representation of the whole scene. Using a generative
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Fig. 7. Illustration of typical tracking artifacts in the case of non-frontal poses and
occlusions. Many trackers require the tracked person to face the depth camera and
have all arms and legs clearly visible. If those requirements are not met, this results in
strong tracking artifacts. These example images where generated using the approach
presented in [2].

tracking approach, the poses of the persons are tracked by fitting a rigged surface
mesh into the point cloud. While this approach shows good results even for
multiple persons in close contact, the runtime of the approach is not real-time
and the use of multiple Kinect cameras is not feasible in home user scenarios.
Furthermore, the use of several Kinect cameras simultaneously bears its own
challenge since these cameras, in contrast to color cameras, interfere with each
other’s measurement. In order to reduce the interference of multiple Kinects, the
authors of [38,39] applied vibration patterns to each camera. These vibrations
have the effect that the point pattern projected by one Kinect looks blurred when
seen from a different Kinect. In contrast, the pattern does not look blurred for
the Kinect it is projected from, since its projector is moved in the same way
its camera is. A similar effect is achieved in the approach presented in [23],
since the three Kinects are not installed on tripods but hand-held by the camera
operators. However, even when using multiple depth cameras, occlusions are
difficult to prevent in many tracking scenarios.

As for the second approach, the fusion of different sensor modalities has be-
come a successful approach for dealing with challenging tasks, in other research
fields. An approach combining two complementary sensor types for full body hu-
man tracking in large areas was presented in [40]. Here, densely placed inertial
sensors, one placed on every limb of the body, provide an occlusion independent
estimation of the persons body configuration using measured global orientations.
Since inertial sensors cannot measure their position, this information is provided
by an optical system mounted to a robot accompanying the tracked person. Un-
fortunately, their approach does not include the rich optical information for sup-
porting the tracking of the persons body configuration. Their approach rather
solves two independent sub task, determining the local body configuration and
estimating the global position of the person.

At this point, we want to take a second look on the approach presented in
[7], which we also discussed in Sect. 3.2. In this approach, the main intention of
using inertial sensors in a classical marker-less tracking framework was to pre-
vent erroneous tracking that stems from the ambiguous representation of body
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(a) (b) (c) (d) (e)

Fig. 8. Normalization of the query pose as presented in [2]. (a) Input point cloud
of the tracked person. (b) Detected end effector positions. (c) Segmentation of the
torso using mean-shift approach. (d) Plane fitted into torso points. The normal of the
plane determines the front direction. (e) Normalized (front direction pointing towards
camera) end effector positions as used for querying.

extremities in silhouette images. Another interesting side-effect is that the iner-
tial sensors provide information about the limb orientations even in situations
when the limbs are not visible to the camera. While in the presented scenario this
effect was not important because multiple cameras enabled an almost occlusion
free observation of the tracked person, this effect might be very important in
monocular tracking approaches. In particular, many current depth-based track-
ers would benefit from additional information that does not depend on visual
cues. In the following, we will take a state-of-the-art depth tracker and explain
in detail how inertial information could be included to increase the performance
in challenging tracking situations.

3.4 Improvement of a Hybrid Tracking Approach

The hybrid depth tracker presented by Baak et al. [2] states a typical example
for combining a generative (local optimization) approach with a discriminative
(DB lookup) approach. While their real-time tracking approach shows good per-
formance on fast and dynamic motions, the tracker requires the person to face
the camera during tracking. Furthermore, if body parts are occluded, the tracker
might produce erroneous tracking results, see also Fig. 7. In this section, we elab-
orate on some of the limitations of this approach and discuss modifications to
enhance its tracking performance. Furthermore, we will show that including ad-
ditional complementary sensor information, such as provided by inertial sensors,
may support the tracking in challenging tracking situations.

The requirement for frontal poses stems from design decisions made by the
authors. In particular, the authors employ a database with normalized poses
that serve as initialization to the generative tracker. As query to the database,
the authors employ so called geodesic extrema, inspired by [24], computed on the
depth point cloud that often co-align with salient features of the persons body
such as the head, hands and feet. The normalization of the database was chosen
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(a) (c)(b)

Fig. 9. Typical tracking situations when some of the geodesic extrema do not align
with the hand, feet and head

to enable a densely sampled pose space while not requiring to sample the same
pose in various global orientations. To this end, their database only contains
poses, where the person is facing the camera frontally. As a consequence, also
the query to the database needs to be normalized in the same way. By fitting
a plane into a subset of depth pixels representing the torso of the person, the
authors compute a front direction that serves as basis for the normalization,
see also Fig. 8. Note that this way of normalization only works for near frontal
poses and it is prone to noise and limbs occluding the torso. In order to pursue
a normalization also in poses with occlusions, an additional inertial sensor could
be leveraged to obtain a stable estimation of the person’s front direction. This
approach works for arbitrary rotations and is independent of optical clues that
are prone to occlusions. This would already stabilize the lookup of poses from
the database in cases when the geodesic extrema are calculated correctly.

However, there will be many occasions remaining where the query to the
database, the geodesic extrema, cannot be calculated correctly. Some of these
occasions with or without occlusions are shown in Fig. 9. The question is, whether
it is possible to obtain poses from a database based on sparse features that are
independent to occlusions. In computer animation this question is related to
the data-driven reconstruction of human motions from sparse control signals.
Many papers have come up that are inspired by an approach using sparse op-
tical features presented in [41]. In particular, the two approaches [42,43] based
on sparse inertial sensors data are interesting in our context since they do not
rely on optical but inertial cues. In particular, the authors use the readings from
inexpensive accelerometers fixed to the body to retrieve poses from a database.
Unfortunately, the authors state, that using accelerometer data to obtain poses
from the database is challenging because of the noisy characteristics of the data
and the lack of discrimination of certain motions. This fact was further exam-
ined in [44], where the authors concluded that features based on orientations
are better suited to describe full-body human motions than features based on
accelerations. To conclude, a sparse set of inertial sensors could also be used
to obtain a pose prior from a pose database when using e. g. orientation-based
features are used for indexing. Such additional sensors could be easily added to
the extremities of the person using straps.
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Fig. 10. Sketch of a fusion approach that uses optical depth data and inertial data to
generate a single combined pose hypothesis.

Inertial data could also be used to support generative trackers. The idea is,
to include information about the limbs orientations directly during the gener-
ative tracker’s optimization. In contrast to the approach presented in [40], we
propose not to solve two independent problems but building a combined energy
function that incorporates visual and inertial constraints. In particular, optical
cues might add positional constraints, while inertial sensors contribute with ro-
tational constraints, see also Fig. 10. This would help to prevent tracking errors
in a similar fashion as described in [7]. Furthermore, the inertial sensors would
provide information about limbs even when they are not visible to the depth
camera. This concept is modular in a way that one could selectively add inertial
sensors to those parts of the body that need highly accurate tracking and do
not attach sensors to body parts one does not need as accurate tracking. Over-
all, this enables selective tracking accuracy that can be adopted to the need of
specific applications. Please note that the additional information needed to re-
solve rotational ambiguities might also be obtained from other sensor modalities
such as RGB-input from a color camera. In particular, one could use feature
tracking-based or optical-flow-based cues to stabilize tracking, see also [45].

4 Conclusion

In this chapter, we showed how recent depth cameras can be employed for track-
ing full-body human motion. Based on the unique properties of the provided
depth data, such as easy background subtraction and geometric information,
monocular tracking approaches become feasible that are not possible with tra-
ditional marker-less techniques. Furthermore, being much cheaper and easier to
setup than systems used by traditional vision-based approaches, depth cameras,
such as the Microsoft Kinect, have enabled applications even in uncontrolled
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home user scenarios. While there was a lot of progress in the field of monocu-
lar depth tracking of human motions, current approaches still suffer from the
challenging noise characteristics of depth cameras and the sparse information
contained in their depth images. Especially rotational ambiguities and occlu-
sions show, that the tracking of human poses is still very challenging and maybe
not feasible in all cases when only relying to monocular depth images. To this
end, we also discussed how current approaches could benefit from including addi-
tional, complementary sensor information for tracking stabilization. Here, work
from other domains showed that inertial sensors are suitable to provide valuable
information in cases when pure optical approaches fail.
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33. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity
searches in large motion capture databases. In: Symposium on Computer Anima-
tion, pp. 1–10 (2010)

34. Wei, X., Zhang, P., Chai, J.: Accurate realtime full-body motion capture using a
single depth camera. TOG 31(6), 188:1–188:12 (2012)

35. Weiss, A., Hirshberg, D., Black, M.: Home 3D body scans from noisy image and
range data. In: ICCV (2011)

36. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape:
Shape completion and animation of people. ACM TOG 24, 408–416 (2005)



206 T. Helten et al.

37. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model
of human pose and body shape. CGF 2(28) (March 2009)

38. Maimone, A., Fuchs, H.: Reducing interference between multiple structured light
depth sensors using motion. In: 2012 IEEE Virtual Reality Short Papers and
Posters (VRW), pp. 51–54 (2012)

39. Butler, A., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., Kim, D.:
Shake’n’sense: Reducing interference for overlapping structured light depth cam-
eras. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 2012, pp. 1933–1936 (2012)

40. Ziegler, J., Kretzschmar, H., Stachniss, C., Grisetti, G., Burgard, W.: Accurate
human motion capture in large areas by combining IMU- and laser-based people
tracking. In: IROS, pp. 86–91 (2011)

41. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control sig-
nals. TOG 24(3), 686–696 (2005)

42. Slyper, R., Hodgins, J.K.: Action capture with accelerometers. In: Symposium on
Computer Animation, pp. 193–199 (2008)

43. Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten, T., Müller,
M., Seidel, H.P., Eberhardt, B.: Motion reconstruction using sparse accelerometer
data. TOG 30(3), 18 (2011)

44. Helten, T., Müller, M., Tautges, J., Weber, A., Seidel, H.-P.: Towards cross-modal
comparison of human motion data. In: Mester, R., Felsberg, M. (eds.) DAGM 2011.
LNCS, vol. 6835, pp. 61–70. Springer, Heidelberg (2011)

45. Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined region- and motion-
based 3d tracking of rigid and articulated objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(3), 402–415 (2010)



Gesture Interfaces with Depth Sensors

Foti Coleca1,2, Thomas Martinetz1, and Erhardt Barth1

1 Institute for Neuro- and Bioinformatics, University of Lübeck,
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Abstract. Computers and other electronic devices shrink and the need
for a human interface remains. This generates a tremendous interest in
alternative interfaces such as touch-less gesture interfaces, which can
create a large, generic interface with a small piece of hardware. However,
the acceptance of novel interfaces is hard to predict and may challenge
the required computer-vision algorithms in terms of robustness, latency,
precision, and the complexity of the problems involved.

In this article, we provide an overview of current gesture interfaces that
are based on depth sensors. The focus is on the algorithms and systems
that operate in the near range and can recognize hand gestures of increas-
ing complexity, from simple wipes to the tracking of a full hand-skeleton.

1 Introduction

In this chapter we focus on gestural interfaces, specifically close-range applica-
tions using a depth camera.

Gesture interfaces are different from the input devices currently in use, and for
them to be successful, they must be designed from the ground up, with natural
human interaction in mind. For this purpose, we first present a gesture taxonomy.

In Section 2 we show how depth cameras affected the field of gesture in-
teraction and algorithmic approaches to hand pose estimation. We then guide
the reader through the state of the art. Thereby, related hardware issues are
presented only briefly, the focus being the algorithmic approaches. While the
main discussion is about solutions which use depth sensors, we also give a brief
overview of methods that are using 2D cameras.

The next section is dedicated to identifying remaining challenges, from hard-
ware shortcomings to environment and ergonomic limitations, also proposing
solutions to some of these limitations.

Section 4 follows recent developments in hardware, commercial solutions, as
well as our own work in the field. We first give an overview on pose estimation
using self-organizing maps and then present a few recent extensions.

Finally, Section 5 provides some example applications of gestural interfaces,
showing the wide variety of fields that can benefit from this technology.
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Fig. 1. Hand and arm movement types, as shown in [1]. Communicative gestures are
the main focus of touch-less gestural interfaces.

1.1 Gesture Taxonomies

Humans use gestures in everyday life to communicate and interact with the
environment. It is not obvious what gestures are and how they can be used to
build a better interface. As a brief introduction to the topic, we summarize, in
Fig. 1, the hand and arm movement taxonomy:

Unintentional movements are movements unrelated to, and not serving a
meaningful communication purpose. These are dependent entirely on the con-
text of the situation, as the same gesture that can be used to communicate
something in a certain situationmight be completely unintentional in another.

Gestures are hand and arm movements done with the specific intention of
communication. Gestures specifically made during verbal communication be-
tween humans are known as gesticulations. They are first separated by their
physicality, as manipulative and communicative gestures.

Manipulative gestures are used to physically act upon objects in an environ-
ment, anddepend on the type of actionbeing done on the objects themselves. In
the context of human-computer interaction, these are found in interfaceswhere
a direct physical contact is required to use them (e.g. touch-based interfaces).

Communicative gestures have a communicational purpose and are used to-
gether with, or instead of, natural speech. Communicative gestures are the
focus of touch-less gestural interfaces. Depending on the situation, any part
of the body can be used to generate them. They can bring a richer means of
interaction, at the cost of being harder to detect and classify.

Acts relate directly to the intended interpretation, are transparent, and can be
understood without prior learning. They can either be mimetic imitating
actions or objects or deictic, pointing gestures, which are further split into
specific, generic, and metonymic (when pointing at an object to signify some
entity related to it). Deictic gestures are useful in simple interfaces, as point-
ing is a natural way of communicating intention. Example applications are
controlling a slideshow [2] or even robots [3].

Symbols are motion short-hand that cannot be used without prior learning.
They can vary greatly between cultures and are deeply rooted in the human
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interpersonal communication. Symbols are useful for gesture interfaces as
humans are adept at learning novel ones, which can be created specifically
to control said interface. The two categories of symbols are referential and
modalizing. The former refer to iconic gestures linked directly to meanings
(e.g. the thumbs-up gesture, rubbing fingers and thumb together to symbolize
money), while the latter are used to change the meaning (mode) of commu-
nication, (eg. shrugging shoulders to indicate uncertainty, which would not
be apparent if one would only read a transcript of the conversation).

2 State of the Art

2.1 Time-of-Flight Sensors and Alternative Hardware

Time-of-flight (ToF) sensors have led to the first compact 3D cameras that could
deliver depth maps at video rate [4]. Early work with 3D cameras was based on
either the Swissranger cameras [5,6,7,8,9,10], the PMD sensors [11,12] or the
Canesta cameras [13], which were all using the same principle of light modula-
tion and phase measurement. Alternatively, some authors were using the 3DV
Zcam [14], which used pulses, and was one of the early compact 3D devices,
but was not widely available. With the introduction of the low-cost Microsoft
Kinect, the field has expanded quickly [15,16,17,18,19,20,21,22]. Limitations of
ToF cameras and open issues are discussed in Section 3.1 as well as in Chapters
1 and 2 of this book.

With stereo-based approaches it is difficult to obtain a dense range map.
This issue is hard to overcome because stereo disparities can only be estimated
at those locations which have a distinct image structure, and it is known that
such image patches are rare in natural images [23]. A further limitation is size,
because miniaturization is limited by the need to have a sufficient baseline.
We have performed extensive tests with different stereo cameras and different
illumination settings, and have always obtained range maps that cannot properly
resolve the fingers of a hand.

3D cameras that use structured light also require a baseline and two optical
systems, for the camera and the projector. Moreover, insensitivity to ambient
light is more difficult to achieve. Limitations are discussed in Section 3.1.

2.2 Algorithmic Approaches

Gesture interfaces can range from simple motion detection to complex, pose-
driven gesture recognition. In this section, we will focus on hand-pose estimation
for gesture recognition. Although there exist a variety of methods to capture the
pose of the hand, most can be categorized using combinations of the following
dichotomies (Fig. 2):

Partial methods estimate the locations of specific features of the hand. These
include approaches from simple geometry and motion parameter extraction
of the hand image such as blob tracking and averaging (hand center) to
fingertip detection and tracking.
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Fig. 2. Pose estimation dichotomies

Full DOF (degree-of-freedom) methods attempt to extract all the kinematic
parameters of the hand pose such as fingertips, joint positions, hand orien-
tation, finger angles etc. This is usually done with a full hand skeleton, via
a model-based approach.

Appearance-based approaches try to infer gestures directly from the appear-
ance of the hand. These methods are used frequently with 2D cameras, as
they are based on a series of 2D views of the 3D object.

Model-based methods estimate the hand position and the specific angles of the
joints using a model or skeleton. The model can vary greatly in complexity,
from using simple geometric primitives to model a hand skeleton, to accurate
computer renderings of hand meshes. Usually these methods attempt to
recover the full degree of freedom of the hand.

Tracking approaches use the previous discovered parameters of the hand pose
to predict the new ones. This approach is used extensively in methods that
need to search over a large state space for the parameters which best match
the current hand configuration (i.e. model-based approaches). Using prior
information, the search can be restricted only to the most probable hand
configurations.

Detection methods disregard temporal information and attempt a single-shot
pose estimation. This is sometimes preferred, as the hand and fingers are
capable of rapid motion, making time coherence assumptions useless [24].

Methods are often combined to balance their strengths and weaknesses. For
example if only tracking is used the tracker may drift away, and when only
detection is used, the hand pose can be unstable.

Hand pose estimation is a particularly difficult problem, which poses a number
of challenges:

Size : compared to the human body (also used in gesture interfaces), the hand
is significantly smaller, with, complex articulated fingers, which are easily
affected by segmentation errors [20].

High dimensionality : human hand models used for pose estimation usually
have around 26 degrees of freedom [24], the state space being very large.
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Skin : The hand is chromatically uniform, which poses a problem for finger
detection using color, especially in complex poses. The skin color is also
heavily dependent on scene illumination, if skin segmentation is used for
hand detection.

Severe self-occlusions : Due to the complexity of the hand, fingers often oc-
clude each other while gesturing. Trying to bypass this problem by forcing
the user into non-self-occluding poses (such as an keeping the hand paral-
lel to the interface) makes for an unnatural interface experience and should
therefore be avoided.

Performance : Real-world interfaces need short response times in order to be
usable. With the ever-increasing computing power available and the intro-
duction of 3D cameras, which simplify tasks like scene segmentation, real-
time performance is no longer an unattainable goal.

2.2.1 Using 2D Cameras
The progress made in the early day of gesture interfaces and the limitations of
the early approaches are comprehensively reviewed in [1]. The authors conclude
that “Although the current progress is encouraging, further theoretical as well as
computational advances are needed before gestures can be widely used for HCI”
(Human-Computer Interaction). The review emphasizes the popular distinction
between model-based and appearance-based approaches and separates between
volumetric and skeletal hand models. Regarding applications, a distinction is
made between manipulative and communicative gestures. We may conclude that
many of the conceptual issues had been clarified early but still, we had to wait for
many years until a more mature sensing technology and a few new algorithmic
ideas have brought the field much closer to real applications.

Due to limitations of the computing hardware and the lack of depth sen-
sors, early approaches often relied on detecting the hands using a color skin
model [25]. Only a few approaches have been developed into systems that would
work reliably under a variety of conditions, as for instance [25]. Here, 2D-color-
blobs associated with the hands and the head are tracked based on a Maximum
A Posteriori Probability approach. In [26] hidden Markov models (HMM) were
used for the recognition of 18 different Tai Chi gestures. Different features ex-
tracted from a stereo-camera system that could track the head and the hands
were evaluated; typical recognition rates were around 90 percent correct. Using
more than two RGB cameras can enhance the performance of 2D-camera based
hand-pose estimation. This approach is used in [27] with no less than 8 cameras,
which allows for the pose capture of two strongly interacting hands and an ad-
ditional object. These methods usually aggravate the problem of computational
overload, which can be then dealt with by using GPUs instead of CPUs [28].

2.2.2 Using 3D Cameras
The approach for body-skeleton tracking developed by Shotton et al. [29] was
extended to the hand pose in [15]. The authors claim real-time performance but
do not show hand poses for real-life data. Another popular approach is to detect
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fingertips and use the positions directly as input to the gesture interface [11,30].
In one of the first approaches that used depth data for hand pose estimation [31],
the authors employed an active, structured-light stereo system to detect the fin-
gertips with a combination of skin segmentation and 3D principal curvature
analysis. The detected fingertips and hand position and orientation were sub-
sequently used for a coarse model of the hand, achieving real-time detection of
static or dynamic gestures. A model-based approach is used also in [32], where
the hand direction is first coarsely estimated using principal component analysis
(PCA), after which a model fitting is able to estimate 7 degrees of freedom of
the hand.

When moving from RGB cameras to 3D cameras, the issue of choosing appro-
priate representations or features had to be readdressed [4,5,14,33]. Even when
using standard methods such as the PCA on 3D data, the interpretation of the
main axes may differ in 3D [14].

Segmenting objects by their distance from the camera is often a better way of
recognizing the hand compared to color segmentation, for example, by assuming
it to be the closest object to the camera [34], especially in cases where multiple
people are in the frame or there is a partial hand-face occlusion [35]. Still, some
approaches [35,36] use skin color for hand detection, mainly for enhancing depth-
based segmentation. While the authors of [35] do not report a significant increase
in performance, there are certain situations where a combination of skin and
depth for hand segmentation may be useful, for instance the former example
would be enhanced by assuming the hand to be the closest skin colored object,
which would exclude other objects close to the camera, such as a keyboard. It
would also provide a better hand segmentation for users that wear long-sleeved
shirts and salvage cases where depth segmentation is prone to errors, such as the
hand being too close to another object.

When using ToF sensors, quite a few authors have stressed the importance of
fusing the 2D and 3D data (the intensity and the range maps) [5,7,8,9,10,37,38].
In [38], for example, the recognition rates for a set of simple arm gestures were be-
tween 78% and 88% correct when using only the 3D data, while with the fused 3D
and 2D data the rates improved the rates to between 90% and 95%. The authors
of [38], also argue for representations of gestures as a sequence of discrete primitives
as opposed to recognizing gestures through a trajectory based approach. Their ap-
proach is further developed in [10] by including optical flow for better motion esti-
mation. Another approach is [21], which uses twoKinects and twoRGB cameras to
capture a wider 3D scene, which improves the robustness of hand tracking, while
the high definition web cams determine the hand pose. As well as fusing data from
depth and RGB images, the authors of [36] use angular data from an inertial mea-
surement unit to normalize and orient the hand upwards for pose estimation.

Hand pose estimation for sign language recognition is also a very active field.
The authors of [39] use a combination of three letter classifiers to detect words
from sequences of hand gestures. As a novel feature, the letter classifiers are
improved by updating the training samples when a word is detected with high
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confidence. For an extended overview of sign language recognition systems we
direct the reader to Chapter 4.2 of this book.

The bag of visual-and-depth-words approach is used in [40] in conjunction
with a concatenated Viewpoint Feature Histogram (VFH) and Camera Roll
Histogram (CRH) feature vector. Spatio-temporal pyramids are used to fuse
geometrical and temporal information. With the addition of late fusion of the
RGB (Histogram of Oriented Gradients, Histogram of Optical Flow) and depth
(VFH-CRH) descriptors, the mean Levenshtein distance between the recognized
sequence of gestures and the ground truth is improved from 0.30 to 0.26.

The authors of [17] achieve a 87% hand gesture recognition accuracy with
a multi-step approach, finding hand-sized blobs, performing scale and rotation
normalization, then extracting four feature descriptors and classifying gestures
using an action graph as an alternative to HMMs. In [18], a 26 DOF hand model
is matched to the hand pose using particle swarm optimization. The GPU is
then used to accelerate the implementation to near real-time frame rates (15Hz).
Model-based pose detection is also used in [19]: a one-shot pose estimation is done
using a hand pose database consisting of 20 prototype models (poses) rendered
from 86 different viewpoints. The images from the database are compared to the
actual segmented hand pose by means of a weighted depth matching and chamfer
distance similarity measure. In tests, the authors discovered that anthropometric
features varied greatly between users’ hands and that the real-world 3D data
could not be aligned perfectly to the generated poses. They obtain a recognition
rate of 76% for a 1–64 pixels error between the winner pose and the real-world
3D pose. The authors of [20] achieve a recognition rate of 90% and a runtime
of 0.5 s per pose, with a method based on Earth-Mover’s distance. This method
is also robust to finger-melding poses, when two fingers are close enough, or
partially occluding each other, to be considered to be part of the same blob.
Alternative approaches use the full-body tracking of the OpenNI framework to
help in hand detection [21] or provide a basis for full-body gesture detection [22].

Only few approaches deal with the simultaneous tracking of body and
hands [41,42]. While in [41] the authors have shown how gesture recognition
can be improved by tracking both the body and the hands, the only reference to
simultaneous and real-time extraction of hand and body skeletons we are aware
of is [42].

3 Main Remaining Challenges

3.1 Shortcomings of Current 3D Cameras

ToF Sensors

Low resolution is common in ToF cameras compared to regular RGB ones.
While the resolution is sufficient for tracking two hands at a particular dis-
tance, the flexible tracking of hands at various distance ranges would require
higher resolution. Alternatively, in such cases, the interface might be reduced
only to simple gesture recognition via blob tracking, as the fingers might not
be clear enough.
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(a) (b)

Fig. 3. (a) Frame from a near-range ToF camera (PMD CamBoard Micro): note the
large amount of noise in the background and near the edges of objects. (b) Motion
artifacts: the moving hand (right) has thinner fingers than the static hand (left).

Working range is limited by the range ambiguities inherent to the ToF princi-
ple and also by the illumination they use. This is not necessarily an issue for
near-range gestural interfaces, although they tend to have more noise due to
the lower level of active illumination (Fig. 3a).

Motion artifacts may lead to erroneous values at the borders of the measured
objects. This issue is more prominent for hand gestures, as panning the hand
can lead to loss of data around the fingers, effectively making them thinner
and therefore harder to track (Fig. 3b).

Systematic distance errors, multiple reflections and flying pixels may
also affect ToF-based gesture interfaces. We refer to [4] and Chapters 1, 2
where various solutions to these problems are discussed.

Structured Light Sensors (PrimeSense Technology)

Low resolution may not be apparent as the device has an output resolution of
640x480. From measurements on the Microsoft Kinect (Fig. 4b), the spatial
localization of an edge is approximately 2 pixels off in either direction per-
pendicular to the edge, which indicates that the effective lateral resolution
of the sensor is about 4 times lower in x and y directions.

Working range is limited by design, as the sensor was built to work best at
medium range and indoors. At close range (less than 40cm) the sensor fails
to produce any data (Fig. 4a). Although there are devices that improve close
range output (“near mode” for the Kinect for Windows and the PrimeSense
Carmine short range sensor), they are still limited to around 40cm.

Missing data occurs maily due to the baseline between the sensor and the
illuminating laser, resulting in shadows around the outside of object borders.
Data can also be missing in regions where the diffraction pattern has hot
spots (more obvious at close range). Also, where the sensor does not have
enough information from the pattern to make a depth measurement, small
patches of missing data can occur (Fig. 4a).
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Fig. 4. (a) Kinect sensor artifacts: missing data (black) due to shadowing and near
range (right hand) and hot spots (left hand). (b) Vertical (top) and horizontal (bot-
tom) edge fidelity denote reduced lateral resolution. The graphs represent the position
deviation of the edges of a rectangular object placed at 100 cm from the Kinect sen-
sor. The deviation is calculated by counting erroneous pixels that correspond to the
background inside the object boundary and vice-versa over a strip of the edge. Similar
results have been found by [43].

Environment Limitations
One must also consider the limitations of cameras that require active lighting
before using them in environments with substantial infrared light. Typical sce-
narios are outdoors in full sun, in cars near the dashboard, or in rooms that use
high powered incandescent lighting. A different set of limitations is created by
scenarios which require the cameras to be behind a transparent cover, such as
digital signage or window-shopping entertainment: while the sensors themselves
are not affected by a transparent surface, reflexions from the active lighting can
cause sensor saturation with loss of information in those regions.

3.2 Latency and Real-Time Performance

Although approaches like the ones to be presented in Section 4 can run in real
time on rather modest hardware, future requirements will aim at further reducing
cost and size. The complexity of hardware and algorithms must be therefore
further reduced.

For most applications, a tight coupling between the hands and the application
is essential. Current solutions all provide a more or less squashy and wobbly
interaction due to both the latencies of the sensor readout and of the middleware.
In addition to reduced latencies, more realistic and predictive models are needed.

Moreover, since the hand can move very fast, with speeds of up to 5ms−1

for translation and 300◦s−1 for wrist rotation [24], higher framerates may be
required.
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3.3 User Interaction

Unintentional movements are a big challenge for gesture recognition when
interacting with touch-less interfaces. In contrast to touch-enabled interfaces,
where physical contact with the controlling surface indicates the user’s intent
to begin a gestural command, touch-less interfaces must decide when and where
the user actually wants to interact with them. Possible solutions to this problem
are:

Active area defines a region which limits the interface to a bounding rectangle
(2D) or box (3D) in which the user can use gesture control to interact with the
interface. Some type of feedback is needed so that the user can know when he is
inside the active area.

Modal interfaces become active when a “clutch” action is performed by the
user. This can be anything from giving a vocal command or using a very obvious
and unique gesture such as waving, opening the hand to show all five fingers
or making a gesture with his other hand. After this action is performed, the
interface is active, and the user can interact with it by performing other gestures.
Deactivating the interface can be done automatically, e.g. after the user finishes
the current gesture, after a preset idle time, or by moving the hand outside the
active area of the interface (in conjunction with the previous strategy).

Dwell time is usually implemented for emulating virtual buttons: in order to
interact with the interface, the user must perform a gesture for a certain amount
of time. For example, to press a button, the user must point to it, and then
keep his hand inside the button perimeter for a preset time. This is usually
done in conjunction with visual or auditory feedback (a timer, change of color
or short sound) to announce to the user that if he keeps doing the gesture the
corresponding action will be performed.

Preset idle pose is a variation of the modal interface: instead of switching to
the active state after the specific gesture has been performed, here the interface
is in a neutral state while a certain gesture is performed, becoming active when
the gesture is changed. This is implemented usually to force users in a particular
pose to better suit the application purpose. For example, if accuracy is needed
for a particular interface, the user could be forced to keep his thumb and index
fingers in an “L” shape, with the rest of the fingers being curled. The application
can then track the index finger as a cursor and use the thumb moving towards the
hand as an indication of interface activation, with the benefit of stability while
gesturing (the index finger does not move much when adducting the thumb).

Multi-modal interaction presents the user with other forms of input that can be
used to gain attention of the gesture recognition system: a vocal command, head
and gaze tracking, or even pushing a button (where extreme robustness is required,
for instance in medical applications) can be used to activate the interface.

Ergonomic limitations can become an issue with touch-less interfaces that force
the user in unnatural poses. Humans prefer having their hands supported by the
work surface, while the work is done with wrist and elbow movements. In the case
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of interacting with interfaces by the means of pointing gestures, fatigue and sore-
ness quickly set in if the hand is held in an unsupported position for too long.

Possible solutions to this problem include not being limited to hand-only or
pointing gestures for interface control, or requiring the use of hand gestures only
for a short time. Cubic-foot applications should not have this issue, as users can
support their elbows on the desktop or their body. The main takeaway from this
limitation is that interfaces should be designed from the ground up, with human
biomechanics in mind.

3.4 Novel Gesture Interfaces and Standards

There is a growing agreement that touch-less gesture interfaces should not be
designed as computer-mouse replacements. Instead, the whole interface needs to
be re-designed in order to enable the potential of such novel interfaces. In order to
be accepted, these novel interfaces must be standardized in the sense that similar
actions should be triggered by similar gestures across different applications.

3.5 Multi-modal Interfaces

Examples of alternatives to gesture interfaces are speech recognition and gaze
tracking. All these modalities have their strengths and weaknesses and one future
challenge will be to fuse them. For example, gaze is much faster for pointing
but can hardly produce any semantics, which could be done by speech and/or
gestures. The recognition of emotions and the integration of wearable sensors
could be further extensions.

4 Selected Recent Developments

4.1 3D Cameras

Currently ToF cameras are becoming much smaller and also cheaper. The Cre-
ative Interactive Gesture Camera Developer Kit, for example, costs US$150,
while solutions based on PrimeSense technology are more expensive (US$200
and US$250 for the PrimeSense Carmine sensor and Microsoft Kinect for Win-
dows sensor respectively). Similarly, ToF modules for automotive and consumer
applications are expected to be targeted at prices well below US$100. The pace at
which ToF cameras have been shrinking is impressive and it certainly facilitates
the development of near-range gesture interfaces.

Light-field cameras are another interesting option since they neither require
a baseline nor active illumination. We have tested Raytrix1 light field cameras
with the algorithms presented in the next section and found that they provide
more robust hand-skeleton tracking than standard stereo systems.

1 www.raytrix.de

www.raytrix.de
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Fig. 5. Various ToF cameras, from left to right: PMD CamCube, PMD CamBoard
Micro, PMD CamBoard Nano, and the most recent PMD CamBoard Pico. Other
manufacturers have completed a similar miniaturization process (e.g. SoftKinetic).

4.2 Commercial Solutions

There are a number of commercial solutions for desktop PCs which provide a
framework for body tracking and gesture recognition, such as the Omek Beckon2,
the SoftKinetic iisu SDK3 and the Microsoft Kinect for Windows4.

Probably the most widely known body tracking solution is the Microsoft Kinect
for Xbox360. It employs machine learning algorithms to estimate the user’s body
posture [29], which is then used as input for interactive games on the console.
However, extensions to hand gestures have only been recently introduced for the
Kinect for Windows, but hand skeleton tracking is still not available.

Regarding hand gesture recognition, a recent collaboration between Intel, Cre-
ative and SoftKinetic released the Creative Interactive Gesture Camera Devel-
oper Kit5. It is a near-range time-of-flight camera that allows tracking of the
user’s hand up to one meter. While the accompanying software solution does
not fully model the hand in 3 dimensions, it does provide the extended finger-
tips’ position and various anatomical landmarks (palm, elbow).

The Leap Motion6 device promises to allow full 3D tracking of the user’s
fingers, provided they keep their hands over the device’s field of view. The device
itself is a small box that needs to be placed on the user’s desktop and facing
upward. At the time of this writing, the device has not been released yet. Finally,
there have been some attempts to use mobile devices to track the user’s hand
or face and respond to simple gestures.

Another solution for hand and finger detection is provided by Metrilus7. Their
algorithms include finger tracking, pointing, swipes, and direction evaluation.

For full hand skeleton tracking, 3Gear Systems8 proposes a desktop solution
which involves a PrimeSense9 Carmine short range sensor mounted above the

2 www.omekinteractive.com
3 www.softkinetic.com
4 www.microsoft.com/en-us/kinectforwindows
5 www.click.intel.com/intelsdk/
6 www.leapmotion.com
7 http://www.metrilus.de/
8 www.threegear.com
9 www.primesense.com

www.omekinteractive.com
www.softkinetic.com
www.microsoft.com/en-us/kinectforwindows
www.click.intel.com/intelsdk/
www.leapmotion.com
http://www.metrilus.de/
www.threegear.com
www.primesense.com
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user’s desk. The system provides hand pose estimation and gesture recognition
with the added step of first calibrating the model with the user’s hands.

Omek Interactive’s Grasp solution promises full hand skeleton tracking, al-
though it is not currently available for review.

An alternative solution for hand skeleton tracking, which is of low complexity
and requires no calibration, has been developed by gestigon10, and it is based
on the approach presented in the next section.

4.3 Hand and Body Tracking Using Self Organizing Maps

In this section we will present some of our own recent developments, showing how
self-organizing maps (SOM) can be used for hand and full body tracking. We
use a range camera for data acquisition and apply a SOM-learning process for
each frame in order to capture the pose. While the standard SOM algorithm [6]
and some extensions [44] have been proposed before, we will introduce further
constraints and a performance analysis on an embedded system. Details on the
embedded system implementation are given in [45].

4.3.1 The SOM Tracking Algorithm
SOMs are a well-established method for topology-preserving data transforma-
tions and have been used for gesture recognition based on 2D appearance mod-
els, for which the SOM can help to find the low-dimensional space of hand-pose
transformations [46]. Similarly, in [47] SOMs are used as an intermediate stage to
cluster hand trajectories before feeding them into an HMM for gesture recogni-
tion. These uses of SOMs, however, are completely different from our approach,
which we will describe next.

The node-based SOM tracking algorithm proposed by [6,42] (which we will
refer from now on as the Standard SOM Algorithm) takes a different approach,
by modeling the hand as a SOM topology. The process starts with the initial-
ization of the network weights in the shape of the hand topology (Fig. 6c) in the
center of the hand point cloud, followed by the iteration of two steps: the com-
petition and the update of the weights. At every iteration, a sample point from
the dataset is randomly chosen. First, during the competition phase, a winner
node (i.e. the weight with the minimum Euclidean distance to the sample point)
is computed.

Next, the update phase aims at decreasing the distance between the two points
by moving the winner-node weight towards the sample point by a fraction ε of the
distance between them. The standard SOM algorithm then also applies a neigh-
borhood update, in the sense that not only the winner-node weight is updated,
but also the weights of the neighbor-nodes, with a smaller learning rate.

These steps are repeated for hundreds or thousands of iterations. This makes
the skeleton graph fit to the point cloud and stay within its confines.

10 www.gestigon.com

www.gestigon.com
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4.3.2 Topology Expansion
We expand the 44-node upper body topology presented in [6,42] (Fig. 6a) to two
topologies, one representing the whole body (Fig. 6b), and the other representing
the human hand (Fig. 6c). The models were chosen so they mimic the anatomical
landmarks of their real-world counterparts — limbs and joints for the body and
phalanges and interphalangeal joints for the hand. The rigid bodies (torso and
palm) are modeled as a mesh. Both produce good qualitative results in our
implementation.

(a) (b) (c) (d)

Fig. 6. SOM topologies: (a) The upper body topology proposed in [6]; (b), (c) Ex-
panded topologies for the whole body and the hand; (d) The extended SOM hand
topology for segments and planes

4.3.3 The Extended SOM
Our proposed algorithm extends the competition and the update step to 1D
and 2D network segments. The 1D-segments are the lines between pairs of con-
nected nodes, and the 2D-segments are the triangles determined by triples of
connected nodes. 1D-segments allow to represent the fingers more accurately,
and the 2D-segments model the palm of the hand. We now have not only ele-
ments of dimension zero (nodes) like in the standard case described in the last
section, but also elements of dimension one and two for representing the data
distribution. The new topology can be seen in Fig. 6d.

This approach is motivated by the fact that a hand-like topology involves
a difficult separation between the nodes corresponding to different fingers. A
node that belongs to one finger can easily be attracted by another finger, given
the topological closeness. This may lead to an erroneous tracking of the hand
and destroy the topological relations. With these 1D and 2D segments we can
represent fingers and parts of the palm more accurately and expect the self-
organizing maps to be less prone to this type of errors.

4.3.4 Performance Analysis
Because the algorithms have low computational complexity, they can be imple-
mented on low power devices, such as embedded systems. We implemented both
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the standard SOM algorithm and the extended version on a PandaBoard ES,
which is the next iteration of the popular Pandaboard platform. It is powered
by a Texas Instruments OMAP4460 system-on-chip (SoC), which is used in a
number of mobile devices available on the market such as the Samsung Galaxy
Nexus. The board features a 1.2GHz dual-core Cortex-A9 ARM CPU, a Pow-
erVR SGX 540 graphics processing unit, 1GB DDR2 SDRAM, two USB 2.0
ports, Ethernet connection and various other peripherals.

After implementing the standard SOM for the hand and whole-body skeleton,
we have obtained the results shown in Figure 7. We have been able to successfully
reach our target of real-time performance, at 30 frames per second (FPS).

(a) (b) (c) (d) (e)

Fig. 7. The Standard SOM Algorithm results for various hand poses [45]

It can be seen that the hand tracker is able to cope with missing data (Fig. 7b,c
as white areas on the palm), the skeleton’s topology remaining stable, the fingers
being retracted in the palm. This is considered to be correct behavior, as the
fingers will be reported as “bent” to a subsequent gesture recognition algorithm.

The results for the extended SOM for hand tracking can be seen below. Al-
though the competition and update phases are more complex than those of the
standard SOM, the algorithm still runs in real time (30FPS) with the same
number of iterations, as the new topology has less than half the nodes of the
old one (16 vs. 37). In figure 8 we show five hand poses taken directly from the
real-time video on the embedded platform. The qualitative performance is sim-
ilar to the one of the node-only SOM implementation. The topology converges
correctly on the straightened as well as the bent fingers.

In figures 8d and e, hand poses in which the fingers are held together are
shown. The fingers remain in the correct places and do not retract into the
palm — the new segment-plane updates solve the problem of the previous SOM
implementation that appeared when data points were too close to each other
and the nodes from one finger wandered into the space of other fingers. This
allows for a more robust representation of the hand gestures, as melded fingers
(that could come from out-of-plane hand rotations or hands which are too far
away for the camera to distinguish between fingers) are no longer a problem.

The computational efficiency of the method makes it ideal for implementations
on a low-powered systems such as embedded devices. The algorithm could be
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(a) (b) (c) (d) (e)

Fig. 8. The extended SOM results for various hand poses

used in such devices, which need low-power, low-complexity solutions to enable
gesture technologies — granting extended interaction capabilities to current and
future mobile interfaces. Natural user interfaces can be used to enhance the us-
ability of devices ranging from the current mobile devices to the next generation
head-mounted displays.

From the testing done with the Microsoft Kinect and PMD CamBoard we
concluded that our method is robust and can adapt to any 3D data that is
being supplied, as long as it is accurate enough, meaning that the proposed
algorithm is able to work with a wide range of cameras. Another benefit is that
the self-organizing map approach can easily be applied to any deformable object
that needs to be tracked by simply changing the network topology (e.g. torso,
full body, pets etc.). This presents a definite advantage over methods that use
machine learning to recognize objects, as the self-organizing map algorithm need
not be trained in advance.

However, the SOM approach has its limitations: it requires hand segmentation
and adequate initialization. Also, since only a topology is being defined, it is not
obvious how geometrical constraints can be applied.

5 Example Applications

5.1 Consumer

Cubic Foot applications have been pioneered by Intel in an attempt to make
ultrabooks more interesting. The idea is to use the 3D volume spanned by the
opened notebook for gesture-based interaction (i.e. the “cubic foot”). Cur-
rently, the hand gestures are all based on fingertips, not a full hand skeleton.
However, this initiative has contributed to the ongoing miniaturization of
ToF cameras and it seems that ToF sensors may win the race for the small-
est sensor for gesture interfaces, although some promising alternatives such
as the Leap Motion device exist.

Gaming applications have always been big adopters of alternative input inter-
faces. One of the first commercial touch-less controllers designed for games
was the Sony EyeToy, a QVGA resolution webcam that could be used in
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low-light environments. Released in 2003, it leveraged the PlayStation 2
powerful video processor to let users interact with games using their whole
body as the input device. Other gesture interfaces followed: the Nintendo
Wii console along with the Wii Remote as a motion sensing device in 2006,
EyeToy’s successor, the PlayStation Eye and its accompanying motion sens-
ing controller, the PlayStation Move in 2010, and soon after, the Microsoft
Kinect for XBOX360, a definitive boost to gesture control interfaces.

Mobile and Embedded Control is another range of applications that could
benefit from gesture control. Almost every commercial gesture control frame-
work on the market today is aimed at desktop PCs, due to the computing
power required by the algorithms they use. As mobile platforms shrink in
size, gestural interfaces will start to become a viable alternative to touch-
based interaction [45]. Gesture control could be a potent interface with which
the user could control device parameters of mobile applications or other per-
sonal devices such as cameras. Being able to control appliances such as TVs
from a distance without the need for a remote control is starting to become
a feature in the new range of consumer devices, although only for high-end
models, due to the limitations described above.

5.2 Automotive

Automotive suppliers aim at (i) replacing the growing number of buttons and
joysticks in the car by a generic virtual interface and (ii) creating new forms of
interaction. This will, however, be a gradual development starting with simple
gestures that control harmless functions. Due to the extreme variations in am-
bient light and high demands on reliability and robustness, this application field
has its own challenges.

5.3 Medical

The prototypical medical application is that of using gestures during surgery
to access medical records or to control equipment in a sterile environment. The
obvious benefit is the lack of physical contact between the operator and the
device. Moreover, surgeons prefer not having to put down their tools in order to
be able to press buttons or touchscreens. We refer to Chapter 4.1 for a review
of such applications.

5.4 Digital Signage

As gesture control is a highly user-interactive experience, gesture driven signage
will certainly see emergence in the future, with some companies specializing in
gesture marketing (e.g. GestureTek 11 and ZiiCON 12). Possible applications in
this area include virtual tours, information kiosks, gaming, art installations, even

11 www.gesturetek.com
12 www.ziicon.com

www.gesturetek.com
www.ziicon.com
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interactive window-shopping which could, for instance, take the user’s clothing
dimensions automatically or target marketing based on one’s actions. Because
the system is tracking the user at all times for gesture input, features such as
customizing an ad for the tracked person could be used to grab attention and
increase the impact of the signage.

5.5 Sign Language

This is an application that many consider to be obvious and useful [15,16].
From our own experience and extensive discussions with German associations,
however, the interpretation of hand gestures is not sufficient for communication
because facial expressions are essential for those who ”speak” and read sign
language. While the extraction of a hand skeleton can provide a good basis for
sign recognition, the problem of recognizing facial expressions has to be solved
in addition. For an overview of gestural language recognition please refer to
Chapter 4.2 of this book.

6 Summary

Gesture interfaces promise to change the way we interact with devices. To fully
exploit this potential, however, one needs to rethink the human-machine interface
and adapt it to the new technological opportunities. An essential component of
such gesture interfaces is hand pose estimation which, as shown in Section 2.2,
remains a challenging problem although a number of promising approaches and
commercial solutions exist.

One approach to alleviate some of these issues is using a depth sensor. This
increases robustness to lighting conditions and gives the possibility of discrim-
inating objects based on their depth, making segmentation a more straightfor-
ward process. Depth sensors have led to considerable progress in the field and are
now becoming small and low-cost devices, which, however, still need to overcome
certain limitations that we have underlined in Section 3.1.

A further limiting factor is the complexity of the algorithms needed to estimate
the many degrees of freedom that a gesturing hand can have. This is particularly
true for approaches that operate with a full geometrical model of the hand. As
an alternative, approaches that only define the topology have lower complexity
but may sometimes fail to precisely extract the correct pose and may therefore
require additional constraints.

Currently, although commercial solutions exist, they are limited to specific
use-cases, such as desktop or cubic foot interaction. We have also presented our
own work in the field, which is based on self-organizing maps for hand pose
estimation. The method has the benefit of tracking and estimating the hand
skeleton in a single stage, with significant performance gains.

Finally, we have presented several commercial application domains in which
gesture control can be used in order to build a better interface. As gestures
are often used in human communication, is seems natural to extend them to
human-machine interaction for more intuitive interfaces.
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7. Böhme, M., Haker, M., Martinetz, T., Barth, E.: Head tracking with combined
face and nose detection. In: Proceedings of the IEEE International Symposium on
Signals, Circuits & Systems (ISSCS), Iaşi, Romania (2009)
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Abstract. The recent availability of dynamic, dense, and low-cost range
imaging has gained widespread interest in health care. It opens up new
opportunities and has an increasing impact on both research and com-
mercial activities. This chapter presents a state-of-the-art survey on the
integration of modern range imaging sensors into medical applications.
The scope is to identify promising applications and methods, and to
provide an overview of recent developments in this rapidly evolving do-
main. The survey covers a broad range of topics, including guidance in
computer-assisted interventions, operation room monitoring and work-
flow analysis, touch-less interaction and on-patient visualization, as well
as prevention and support in elderly care and rehabilitation. We put em-
phasis on dynamic and interactive tasks where real-time and dense 3-D
imaging forms the key aspect. While considering different range imaging
modalities that fulfill these requirements, we particularly investigate the
impact of Time-of-Flight imaging in this domain. Eventually, we discuss
practical demands and limitations, and open research issues and chal-
lenges that are of fundamental importance for the progression of the field.

1 Introduction

Computer assistance became increasingly important in health care over the last
decades. Applications include computer-aided diagnosis, therapy support, vir-
tual and augmented reality for intervention support and training, as well as
systems to assist handicapped and elderly people. One of the key tasks for ef-
ficient computer-assistance in health care is a robust localization and tracking
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of the objects (operation situs, instruments) and persons (patient, physician,
clinical staff) involved in the specific medical procedure. So far, this is typi-
cally performed using either (1) optical or electromagnetic tracking technologies
that require markers to be attached to the target, or (2) by means of intra-
operative radiographic imaging that implies a substantial radiation exposure to
the patient and/or the physician. Marker-based approaches often complicate the
clinical workflow and are thus not widely accepted in clinical routine.

In recent years, range imaging (RI) based techniques for marker-less, radiation-
free localization have experienced a remarkable development with the availability
of dynamic, dense and low-cost RI devices such as Time-of-Flight (ToF) cameras
and Microsoft Kinect. Indeed, these modalities have been applied for numerous
applications in the clinical environment, beyond marker-less localization. The
scope of this state-of-the-art survey is to give a comprehensive overview of the
use of range imaging devices in the context of health care, with a focus on dy-
namic tasks that require real-time and non-scanning 3-D perception. To our
knowledge, it is the first review to address the fast growing number of research
activities in this area.

The remainder of this chapter is organized as follows. The main part of the
survey divides into four fields of application: guidance in computer-assisted inter-
ventions (Sect. 2), monitoring for operation room safety and workflow analysis
(Sect. 3), touch-less interaction and on-patient visualization (Sect. 4), and di-
agnosis, prevention and support in screening, elderly care, rehabilitation and
assistance for handicapped people (Sect. 5). In addition, we outline opportuni-
ties and limitations of different range imaging modalities, practical issues and
dedicated software frameworks with a focus on the specific demands in medical
applications (Sect. 6). Eventually, we conclude with a discussion (Sect. 7) where
we summarize the most substantial challenges that must be tackled to increase
the range of potential applications in the particular field of health care, and
identify future research directions.

2 Guidance in Computer-Assisted Interventions

Guidance in computer-assisted interventions (CAI) is typically provided by es-
tablishing the spatial relationship between anatomical structures (acquired with
some imaging modality prior to the intervention) and the medical instruments
used during the intervention. This requires a registration of pre-operative patient-
specific models to intra-operatively acquired data. One of the main challenges in
this context is the fast, accurate, and robust acquisition of the patient anatomy
during the intervention. Many CAI applications rely on modalities with limited
imaging quality, such as ultrasound (US), or expensive and impracticable acqui-
sition procedures, such as magnetic resonance imaging (MRI), or utilize custom
designed markers that can be localized with optical or magnetic tracking systems.
In contrast, real-time RI holds a simple, marker-less and non-ionizing alterna-
tive in interventional imaging. CAIs based on range imaging typically follow a
generic workflow:
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Treatment Planning: Prior to intervention, the patient’s anatomy is acquired
using standard medical imaging modalities such as computed tomography
(CT) or MRI. Commonly, a treatment plan is derived from this data to be
applied during intervention. Depending on the application, a simultaneous
capture of range imaging data may be required during this planning stage.

Interventional Imaging: During the intervention, real-time RI allows for a
continuous, marker-less and non-radiographic monitoring of the external
body surface or the operation situs.

Surface Registration: To transfer the treatment plan to the patient, the ac-
quired RI surface is typically registered to a reference shape being extracted
from the planning data before the intervention. This may involve the de-
termination of the patient’s orientation and pose, as well as non-rigid de-
formations induced by respiration, cardiac motion or interventional tissue
manipulation. As this chapter is not intended to review surface registration
techniques, we refer to dedicated surveys for more information [1,2,3,4,5].

Guidance: The application of the treatment plan to the patient is accomplished
by some sort of guidance that supports the physician during the intervention,
e.g. by means of augmented reality (AR) visualization.

Below, we summarize applications and methods that have been proposed in the
context of RI-based CAI for diagnostic and interventional imaging (Sect. 2.1),
radiation therapy (Sect. 2.2), tomographic reconstruction (Sect. 2.3), open and
percutaneous interventions (Sect. 2.4), and 3-D endoscopy for minimally-invasive
procedures (Sect. 2.5).

2.1 Patient Setup in Diagnostic and Interventional Imaging

In the past decade, substantial progress has been made in improving the im-
age acquisition process in CT and MRI. However, optimizing the pre-imaging
workflow has been considered only lately. In clinical practice, patient setup and
scanner initialization including patient positioning, table adjustment, and the in-
put of patient-specific parameters into the scanner software are performed man-
ually, being both tedious and time consuming [6,7]. The automation of these
steps would reduce both the examination time and the workload for clinical
staff, thereby relieving the health care system. In CT imaging, the initial pa-
tient setup accounts for a substantial share of the entire procedure. To speedup
the pre-imaging CT workflow, Schaller et al. proposed a marker-less system
based on ToF imaging that identifies the coarse location of anatomical regions
for prone and supine patient postures at interactive framerates [6]. The align-
ment of the pre-defined anatomical target with the scanner isocenter can then
be performed in an automatic manner by either positioning the treatment table
w.r.t. a non-moving acquisition device (CT/MRI), or by transforming a mov-
ing acquisition device (e.g. C-arm CT) to coincide with the target. Note that a
calibration between the coordinate systems of the RI camera and the scanner
is required for this approach (cf. Sect. 6). Grimm et al. investigated the use of
RI in the pre-imaging protocol for MRI [7]. In today’s clinical routine, first, the
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(a) (b) (c)

Fig. 1. (a) Estimating the body pose of a reclined patient on ToF data, for supine
(left) and lateral left postures (right) [7]. The skeleton of the estimated pose is overlaid,
with the right and left extremities labeled in red and yellow, respectively. (b) Patient
setup in RT, where the intra-fractional patient surface acquired with an RI camera is
registered to a reference shape extracted from planning data (depicted in gray). The
aligning transformation (in blue) is then applied to the treatment table. (c) Feature-
based multi-modal surface registration between Microsoft Kinect (bottom) and CT
data (top). [8]. The colored lines indicate the established point correspondences.

patient orientation (head/feet first), posture (prone, supine, lateral left, right)
and additional biometric information (body height, weight) must be specified by
hand. Second, the radiologist manually defines the region of interest on the pa-
tient’s body, typically using laser cross-hairs. To automate these tasks, Grimm et
al. proposed a ToF-based system to detect both patient orientation and posture.
In addition, using a model-based optimization framework, the articulated body
pose of the reclined patient is estimated (Fig. 1a). This allows for a computer-
ized localization of the scanning target, automating the pre-imaging workflow.
Natural limitations involve the presence of blankets or additional equipment oc-
cluding the external patient surface, such as optional body coils in MR. In these
cases, the localization must be performed prior to equipment placement.

2.2 Positioning and Motion Management in Radiation Therapy

The automation of patient setup is of particular interest for repeat treatments
such as in fractionated radiation therapy (RT), where the tumor is irradiated
in a sequence of treatment sessions. Reproducible patient setup constitutes a
key component for accurate dose delivery. Prior to each fraction, the target
location known from tomographic planning data must be accurately aligned
w.r.t. the isocenter of the treatment system (Fig. 1b). Conventionally, this align-
ment is performed in a two-step procedure, comprising (1) manual coarse pa-
tient setup using laser cross-hairs and skin markers, and (2) position verification
and refinement using radiographic imaging. Over the past years, systems for
non-radiographic patient setup and monitoring in RT have been proposed using
different RI technologies, including active stereo vision [9], ToF imaging [10],
structured light [8,11,12], and light sectioning [13,14]. These systems estimate
the rigid transformation that aligns the intra-fractionally acquired external body
surface of the patient with a given reference shape extracted from tomographic
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(a) (b)

Fig. 2. (a) 1-D respiration surrogates extracted from Microsoft Kinect data, differen-
tiating between thoracic (in green) and abdominal (in blue) motion. The target region
(left) is set individually for each patient. (b) Dense surface deformation tracking [18]
from sparse RI measurements (depicted in blue), using prior shape information from
planning data (in gray). The magnitude of the local displacements is color-coded.

planning data. This transformation can then be transferred to the treatment
table control for automatic positioning. The focus of early solutions was on
setup verification, restricting the automatic patient alignment to a fine-scale po-
sitioning and thus still requiring a manual setup initialization [9,13]. The first
ToF-based systems for automatic patient setup in RT were proposed by Schaller
et al. [15] and Placht et al. [10]. However, these systems rely on rigid surface
registration techniques and thus do not account for deformations induced by
respiratory motion. To cope with this issue, Wasza et al. proposed a system for
motion-compensated positioning based on patient-specific 4-D shape priors [11].
As the underlying iterative closest point (ICP) algorithm [16,17] for these surface
registration techniques is susceptible to local minima, the methods are restricted
to resolving small initial misalignments. Targeting fully-automatic patient setup,
Bauer et al. and Placht et al. proposed feature-based approaches that are ca-
pable to cope with gross initial misalignments [8,10]. Both rely on matching
feature descriptors that encode the local surface topography. Point correspon-
dences between the intra-fractional patient shape and a given reference then yield
the aligning transformation (Fig. 1c). More specifically, Placht et al. presented
a mono-modal ToF-based solution where the intra-fractional patient shape is
aligned to an RI reference shape acquired prior to the first fraction [10]. Bauer
et al. proposed a multi-modal surface registration scheme that enables a direct
alignment of intra-fractional structured light data (Microsoft Kinect) to a ref-
erence shape extracted from pre-fractional tomographic planning data [8]. Both
studies indicate the feasibility of the approach, yet being restricted to phantom
experiments.

Real-time monitoring of the patient body holds great potential for the man-
agement of respiratory motion, being a rapidly evolving field in modern medicine.
Motion management is of particular interest in image-guided RT for abdominal
and thoracic targets where motion induces a substantial source of error. Account-
ing for potential targeting errors and to assure adequate dosimetric coverage of
the tumor-bearing tissue, large safety margins are typically applied. However,
this comes at the cost of irradiating surrounding radio-sensitive structures. To
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reduce tolerances between the planned and actually delivered dose distribution,
a multitude of techniques for respiratory motion management have been devel-
oped over the past decades [19,20]. Early strategies in RI-based motion tracking
were restricted to low-dimensional respiration surrogates (cf. Fig. 2a). Schaller
et al. presented a ToF-based system to acquire a low-dimensional respiratory
signal [21]. Lately, similar systems using Microsoft Kinect have been presented
by Xia et al. and Alnowami et al. [22,23]. In contrast, recent RT motion track-
ing solutions target dense surface deformation tracking that better reflect the
complexity of respiratory motion [24,25]. In combination with 4-D CT or MRI
planning data, they can be used to establish patient-specific motion models [26]
that correlate external body deformation with internal tumor motion. These
models can then be applied for non-radiographic motion-compensated dose de-
livery. First approaches to reconstructing dense non-rigid torso deformations
induced by respiratory motion were proposed only recently, (Fig. 2b). Bauer
et al. developed a joint variational formulation that simultaneously solves the
intertwined tasks of denoising ToF data and its registration to a reference sur-
face [27]. Schaerer et al. studied the application of a non-rigid extension of the
ICP algorithm with a commercially available stereo vision based RT solution [28].
Further promising approaches for dense surface deformation tracking include
sparse-to-dense shape registration based on a grid-type triangulation sensor [18],
and photometry-driven surface registration [29]. Let us further remark that the
analysis of dense displacement fields also allows for an automatic distinction
between abdominal and thoracic respiration [30].

2.3 Motion Compensation in Tomographic Reconstruction

Beyond the discussed applications in RT, dense surface deformation tracking
could also help reducing motion artifacts in tomographic reconstruction. Gianoli
et al. proposed the use of marker-based surface tracking to extract a multi-
dimensional respiration surrogate for reducing artifacts in retrospective 4-D CT
image sorting [31]. The experiments revealed that using multiple surrogates re-
duced uncertainties in breathing phase identification compared to conventional
methods based on a mono-dimensional surrogate, cf. Sect. 2.2. In addition, RI-
based body surface tracking is of particular interest for motion compensation
in nuclear medical imaging such as positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) [32]. Based on previous
concepts for motion compensation in PET/SPECT using marker-based track-
ing [33,34,35], dense and real-time RI has been attracting interest in this field
lately [36,37] Open issues in this context such as the calibration and synchro-
nization to the scanner are discussed in Sect. 6.

2.4 Guidance for Open and Percutaneous Interventions

Guidance systems for open and percutaneous interventions require additional
intra-operative imaging modalities to relate the present patient anatomy to the
pre-operatively acquired planning data. Current systems use either radiographic
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(a) (b)

Fig. 3. Marker-less navigation concept for percutaneous needle insertions [41]. (a) Pro-
jection of the virtual needle model into the image plane of the RI camera. (b) AR view
of the intensity image with projected final instrument position.

imaging modalities or rely on tracking techniques that require additional mark-
ers to be attached to the instrument and the patient. To date, many of those
systems have not become widely accepted in clinical routine because their ben-
efit to the patient could not exceed the problems arising from the additional
hardware complexity, radiation exposure and higher costs. Real-time RI consti-
tutes an alternative for marker-less intra-operative acquisition of the operation
area. In recent years, a variety of applications emerged that utilize range imag-
ing cameras for intra-operative guidance, navigation and AR. One of the first
approaches to assist open surgeries with marker-less guidance was presented by
Cash et al. [38,39]. They proposed a system for image-guided liver surgery based
on a laser range scanner and presented a method for recovering soft-tissue defor-
mations using incomplete surface data [40]. Although this concept was presented
using a laser scanner for surface acquisition, it can be seen as the starting point
for following research on the application of RI technologies in open surgery.

Mersmann et al. [42] investigated the suitability of ToF cameras as intra-
operative modality for surface acquisition by comparing ToF and CT surfaces
of explanted human and porcine organs. Furthermore, they investigated the use
of ToF cameras as a marker-less inside-out tracking device for AR visualiza-
tion during image-guided procedures as opposed to the marker-based variant
presented in [43]. Dos Santos [44] presented a surface matching approach that
allows for non-rigid intra-operative registration of ToF data.

Wang et al [45] proposed a needle tracking algorithm that is able to track
standard biopsy needles within the field of view of the Microsoft Kinect camera
without needing to attach any additional markers. Due to their thinness, biopsy
needles can hardly be reconstructed in the depth map. Instead, the idea is to
use the Kinect device as a stereo camera with the infrared and the RGB sensor
forming the stereo pair. Based on the needle being detected in both images
separately, its 3-D pose can be estimated in four degrees of freedom. In a first
evaluation the feasibility of the approach was shown. Navigated needle insertions
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have also been realized using range imaging techniques. Nicolau et al. [46] were
one of the first groups to use a custom-made structured light camera system
to assist percutaneous needle insertions. Having a video projector integrated
into their structured light system, they were also able to project an AR view
of internal organs directly onto the patient’s surface. Seitel et al. [41] proposed
another marker-less navigation approach for percutaneous needle insertions. Its
main idea is to use an RI camera as a single modality for patient localization
and instrument guidance. For guidance of the instrument, its virtual model is
projected onto the image plane of the intensity/RGB image of the RI camera
to provide guidance information during navigation, see Fig. 3. The accuracy of
the presented approaches may not yet be sufficient for clinical use, however,
along with a prospective increase in depth resolution, the integration of motion
compensation methods and deformation models they hold great potential for
future clinical applicability.

2.5 3-D Endoscopy for Minimally Invasive Procedures

While open surgery involves cutting the skin and dividing the underlying tissues
to gain direct access to the surgical target, minimally-invasive surgery (MIS) is
performed through small incisions in the skin in order to reduce surgical trauma.
Laparoscopic surgery refers to MIS performed in the abdominal or pelvic cavities.
As no direct view on the surgical target is possible, an endoscopic camera is used
to provide a 2-D view of the anatomical structures as well as the instruments
applied. Due to the limited field of view, the difficult hand-eye coordination as
well as the loss of depth perception and tactile feedback, laparoscopic interven-
tions generally require a lot of skill and experience to be performed successfully.
Hence, computer-assisted laparoscopy is subject of ongoing research. One of the
main difficulties to be addressed is again the acquisition of the 3-D structure of
the patient anatomy in an accurate, fast and robust manner during the proce-
dure (cf. Sect. 2.4). Optical techniques for laparoscopic 3-D surface reconstruc-
tion can roughly be divided into two categories [47]. Passive methods, such as
stereoscopy [48]), shape-from-shading [49], shape-from-motion (SfM) [50], and
simultaneous localization and mapping (SLAM) [51] need only endoscopic RGB
images as input. Active methods, such as structured light [52,53] and ToF re-
quire controlled light to be projected into the environment. For a comprehensive
review of these different techniques in the context of MIS we refer to Maier-Hein
et al. [54]. In this chapter, we review recent advances related to ToF endoscopy.

While all the passive and active methods enumerated above have already been
successfully applied in various fields, anatomic reconstruction for MIS poses sev-
eral specific challenges: Firstly, the methods must be able to cope with a dynamic
environment. Furthermore, human tissue often tends to be of homogeneous tex-
ture, making automatic feature detection and matching, required by most passive
methods, difficult. Finally, miniaturization is necessary in order to build small de-
vices that fit into the ports used in laparoscopic interventions. Behind this back-
ground,ToF imaging is a very interesting alternative for 3-D surface reconstruction
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in laparoscopic surgery, because it is real-time compatible, does not rely on salient
features and does not require a baseline.

The first ToF-based endoscope was proposed by Penne et al. [55]. The authors
combined a commercial ToF camera featuring a lateral resolution of 64×48 px
with a rigid standard endoscope optics. The standard illumination units of the
ToF camera were replaced by a fiber-coupled high-power laser diode connected
to the illumination fiber bundle of the endoscope. In a subsequent study, a higher
resolution ToF camera featuring a lateral resolution of 204×204 px was used in
a similar setup [56]. Recently, the company Richard Wolf GmbH (Knittlingen,
Germany) introduced their first prototypical ToF endoscope. It features both a
white light source as well as a ToF illumination unit and simultaneously gener-
ates range images (64×48 px), corresponding gray-scale amplitude images and
standard definition RGB images (640×480 px) at a framerate of ∼30 Hz. One
application being addressed with these initial prototypes was laparoscopic instru-
ment localization [57]. Furthermore, first approaches to the fusion of endoscopic
ToF and SfM [58] as well as SLAM [59] have been proposed.

In the context of endoscopy, the major advantages of ToF compared to other
reconstruction techniques are the registered depth and intensity data at high
framerates and the compact design without scanning component or baseline.
However, the reconstruction accuracy of the first prototypical ToF endoscopes
is not yet sufficient for clinical application, cf. Sect. 6.1. Still, due to the con-
tinuous technological advances related to ToF as well as the growing number
of applications in various areas, ToF measurement precision and accuracy can
be expected to increase further, thus making ToF endoscopy a new technique
with high potential for computer-assisted endoscopy. Applications besides intra-
operative registration for AR guidance are instrument tracking, collision avoid-
ance in robotic-assisted MIS, and quantitative metric measurements.

3 Monitoring for OR Safety and Workflow Analysis

Monitoring the working area of operating rooms (OR) or intensive care units
using a multi-camera setup of conventional cameras or RI cameras has attracted
increasing attention lately [60,61]. The reason for this interest is twofold. First,
it can help improve both medical staff and patient safety by monitoring human-
robot interaction (Sect. 3.1). Second, it holds great potential to analyze and
optimize the efficiency of clinical workflows (Sect. 3.2).

3.1 Room Monitoring for Safety in Robot-Assisted Interventions

Collision avoidance in interventional environments is an emerging topic with the
increased use of robotics in the OR. Real-time range imaging holds potential to
ensure safe workspace sharing in this context. Let us point out the requirements
for an RI-based collision avoidance system. First, it needs to have a low latency to
cope with the dynamics of the scene. The particular demands in terms of latency
and framerate can be derived from the given maximum velocity of the moving
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components in the scene. Second, as the scene of an OR during intervention is
usually rather complex, occlusion will occur. Multiple cameras can be used to
resolve the occlusion problem and provide additional redundancy in the data.
However, note that RI technologies such as ToF or structured light suffer from
signal interference that has to be coped with (cf. Sect. 6). Another open topic
is the optimal placement of cameras in a multi-camera setup to ensure sufficient
coverage of the monitored workspace. On the other hand, one wants to use
as few cameras as possible, because of interference, the amount of data to be
processed, and the cost of the system. The overall system accuracy is limited
by the individual sensor accuracy and the accuracy of the calibration of the
sensors to each other. Since the moving components usually cannot be stopped
instantaneously, a safety margin of the collision area in the centimeter range
is mandatory. Consequently, the accuracy demands in human-robot collision
avoidance scenarios are in that range as well.

The aim of the EU projects SAFROS [62] and ACTIVE [63] is to address the
described problems. For instance, Mönnich et al. and Nicolai et al. proposed an
OR supervision system based on multiple RI cameras [64,65]. In particular, they
used seven ToF cameras in order to monitor the scene from different perspec-
tives. Based on extrinsic camera calibration, the system enables a volumetric
reconstruction of the OR workspace.

3.2 Monitoring, Analysis, and Modeling of Workflows

Another research direction where RI cameras are of great interest is the model-
ing, recognition, analysis and interpretation of workflows and activities during
surgery. A computer system that is able to understand activities inside the OR
has several potential applications such as context-aware guidance and provision
of user interfaces, relevance based visualization, monitoring of the operation for
unexpected events, automatic documentation, or prediction of the remaining du-
ration of a surgery. Most work in this area is based on the concept of recording
several medical procedures and generating a statistical model of the workflow.
Later, during a running medical procedure, intra-operative data from RI cameras
is compared to this statistical model [66].

One example of using range images for workflow recognition has been shown
by Padoy et al., using a real-time 3-D reconstruction of a simulated OR that was
obtained from a multi-camera system [67]. Based on the 3-D reconstruction, the
motion flow of staff and objects inside the OR was computed and a statistical
model was generated. This model allows detection of surgical phases during a
running surgery. Lea et al. used a single RI camera to detect medical staff in
a pediatric intensive care unit [68]. They extracted features such as position,
orientation and interaction between persons from the range images. Based on
these features they recognized different actions during the intervention. There
are also related applications that do not require a temporal workflow model. For
instance, Ladikos et al. [69] used a real-time 3-D reconstruction of an OR to
analyze radiation exposure during interventions. They recognize the position of
OR staff with respect to an X-ray device and can model the radiation exposure
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over the course of an intervention. Compared to standard radiation counters
the advantage of such a system is that the radiation exposure for each part of
the body is simulated. For inexperienced OR staff it is also very interesting that
after the intervention it can be visualized when and where the radiation exposure
occurred to increase the awareness of the dangers of radiation.

4 Touch-Less Interaction and Visualization

Real-time range imaging also holds potential for touch-less interaction in ster-
ile environments (Sect. 4.1) and for on-patient visualization of medical data
(Sect. 4.2). In this section, we summarize the developments in these two emerg-
ing fields of application.

4.1 Touch-Less Interaction in Sterile Environments

The recent advent of touch-less real-time user-machine interaction that came along
with the introduction of low-cost RI sensors has also evoked interest in the medical
domain. In particular, gesture control holds potential in areas such as interven-
tional radiology, neurosurgery or navigated surgery where volumetric scans such
as CT or MRI are commonly used for intra-operative guidance. There are two
main arguments for using touch-less interaction in medical interventions. First,
the surgeon has to remain sterile. This limits the usability of mouse and keyboard.
Second, operating rooms are typically packed. Therefore, workstations allowing
access to medical images usually require the surgeon to move away from the pa-
tient. Today, the surgeon commonly delegates the interaction with computers to
nurses. However, this often leads to misunderstandings and delays, in particular
for complex tasks. In general, there are different alternative solutions to range
imaging for touch-less interaction such as data gloves, accelerometers, optical or
magnetic tracking systems and hand recognition in color cameras. However, these
solutions either require hardware or markers to be worn by the user, or are less
robust. In the last decade, several systems for touch-less interaction using stereo
cameras [70], ToF imaging [71] and recently Microsoft Kinect [72,73,74,75,76,77]
have been proposed. A commercially available system using infrared stereo cam-
eras to access patient records in the OR is offered by Karl Storz GmbH, Tuttlin-
gen, Germany [78]. For a more general overview on RI-based gesture recognition
we refer to Chap. Gesture Interfaces with Depth Sensors.

As gesture-based interaction is not an established input method such as key-
boards or touch-screens, finding appropriate interaction metaphors is still a topic
of ongoing research. Existing prototypes use different concepts such as mapping
the hand position to the position of the mouse pointer and using clicking ges-
tures [70,72]. Other systems analyze gestures of the fingers [71,73], the hands
[73,75,74,76,79] or analyze the hand position w.r.t. the body [76]. Most existing
research prototypes allow navigation through either 2-D or 3-D image data. For
2-D images, the selection of slices, zoom and changing brightness and contrast
are common operations that have been implemented. For 3-D image viewing,
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(a) (b) (c)

Fig. 4. Concept of on-patient visualization. (a,b) The pose of the display and thus
the viewing direction of the user is continuously computed based on surface data cap-
tured with a range imaging device [83], c© DKFZ, Tobias Schwerdt. (c) AR overlay of
anatomical information in a magic mirror for education of anatomy [84].

rotation and translation are common operations. Another functionality that has
been implemented is the measurement of the size of a structure [71]. Additional
functions that have been tested in some prototypes are control of OR parameters
such as turning on or off the light [70,79]. One common problem of gesture-based
user interfaces is to differentiate between intended and unintended gestures. Dif-
ferent methods to address this issue have been proposed, such as using a specific
interaction zone [70,73] or distance [72], using certain gestures [71], using voice
recognition to activate gesture recognition [76,79] or analyzing the pose of the
user with respect to the display [74].

To evaluate the use of touch-less interactions for medical applications several
studies have been conducted, involving participants without medical background
[71,75,77], medical doctors in a simulated setup [76,77] and medical doctors in
real surgeries [80]. All studies reported results in favor of touch-less interaction.
Most systems are still prototypes and research on using gesture-based interaction
in real medical interventions has rarely been addressed. Nevertheless, gesture-
based interaction holds great potential as there is an increasing need for user
interfaces to operate computer-based systems in the OR and gesture-based user
interfaces have substantial advantages over traditional interfaces.

4.2 On-patient Visualization of Medical Data

The visualization of anatomical data for the purpose of disease diagnosis, surgical
planning, or orientation during interventional radiology and surgery is an integral
part of modern health care. However, only few medical imaging modalities are
capable of providing real-time images of the patient’s anatomy. A common pro-
cedure therefore involves the acquisition of static 3-D image data, e.g. by means
of CT or MRI scanners, and subsequent manipulation and visualization of the
acquired data on a workstation. However, in such conventional techniques it is
usually the task of the physician to mentally transfer the 3-D virtual image to the
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patient, which requires considerable skill and experience. In addition, navigation
in the three-dimensional data set may be rather cumbersome. To overcome these
issues, methods for on-patient visualization during medical interventions via AR,
using head-mounted displays [81] or intra-operative projector systems [82], for
example, have been proposed. However, these AR systems are typically expen-
sive, require the attachment of markers to the patient, or are difficult to integrate
into the medical workflow due to bulky equipment.

A novel alternative for intuitive and real-time on-patient visualization of anatom-
ical data are RI devices that allow for capturing the patient anatomy without
markers and in real-time. In particular, low-cost RI cameras hold potential for
cost-sensitive applications such as medical education, training and rehabilitation.
One promising application involves tracking the pose of a person in order to visu-
alize subsurface anatomical detail via AR, as suggested by Maier-Hein et al. [83]
and Blum et al. [84]. Maier-Hein et al. [83] proposed mounting a ToF camera to a
portable display or tablet for on-patient visualization of medical images, as shown
in Fig. 4a,b. The basic idea is to compute the pose of the mobile display relative
to previously acquired 3-D tomographic data set by means of surface registration
(cf. Sect. 2). Estimating the pose of the camera and thus the viewing direction
of the physician allows for visualization of internal anatomical structures on the
portable display as illustrated in Fig. 4b. In addition, navigation through medical
imaging data becomes more intuitive because it is performed directly at the object
of interest. As the quality of visualization depends on the accuracy of surface reg-
istration, the authors proposed an anisotropic ICP variant [85,86] that accounts
for the resolution and precision of RI devices in different directions. A trimmed
version of the algorithm, which allows for aligning partially overlapping surfaces,
has been also applied in this context [87].

Blum et al. [84] presented a system that involves tracking of a person in front
of a large screen that serves as a kind of mirror (cf. Fig.4c). Registration of the
person’s body surface, captured with an RI device, with a virtual patient model
allows for AR visualization of subsurface anatomical detail in the mirror. The
system can be applied for education purposes as it provides an intuitive visualiza-
tion of anatomical information. It can be further used to support patient-doctor
communication, based on the visualization of patient-specific data. Note that
instead of surface registration between the medical data and the RI-based shape
of the user, full-body motion capture methods (cf. Chaps. Full-Body Human Mo-
tion Capture from Monocular Depth Images and A Survey on Human Motion
Analysis from Depth Data) may be applied.

5 Diagnosis, Prevention and Support

In this section, we summarize the developments in diverse fields of applica-
tions. More specifically, we review the use of real-time range imaging in elderly
care (Sect. 5.1), early diagnosis and screening (Sect. 5.2), rehabilitation (Sect. 5.3),
and support for handicapped people (Sect. 5.4).
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5.1 Activity Assessment in Elderly Care

In-home activity assessment in elderly care is a rapidly evolving field. The need for
care facilities and the associated costs for the health insurance system can be alle-
viated by low-cost systems that allow older adults to continue life in independent
settings. These systems focus onmonitoring the health status, sharing information
about presence and daily activities, and providing on-line assistance and coach-
ing. Low-cost range imaging holds great potential in this context. For instance,
recognition of early indicators of functional decline such as deviations in gait using
RI-based pose estimation [88] can help preventing accidents, automatic detection
of abnormal events such as falls [89] can improve the respond time in emergency
situations, and retrospective data analysis can help understand the mechanisms
that led to an event. In elderly care, both static installations [90,91,92,93] and mo-
bile robotic platforms [94,95,96] that incorporate dense and real-time range imag-
ing have been proposed. Most systems that rely on human pose analysis exploit
the mass-market proven skeletal tracking that ships with Microsoft Kinect [97].
ToF-based pose estimation has been rarely considered [98,99].

5.2 Early Diagnosis and Screening

The detection of abnormal behavior based on range imaging technologies also
holds potential for early diagnosis and screening, for different groups of pa-
tients. Information about daily lifestyle and deviations from the normal can
help in early diagnosis or progression analysis for cognitive impaired people
such as Alzheimer’s [100] or Parkinson’s disease patients [88]. Low-cost RI de-
vices further open the possibility of large-scale screening of at-risk groups. For
instance, in developmental disorders such as autism and schizophrenia, observ-
ing behavioral precursors in early childhood using 3-D perception for activity
recognition [101,102] can allow for early intervention and thus improve patient
outcomes. In sleep monitoring, range imaging is gaining interest for non-contact
measurement of sleep conditions or diagnosis of sleep apnea, for instance using
ToF [103] or structured light [104] range imaging.

5.3 Treatment Support in Rehabilitation

RI sensors have also attracted interest in the field of physical therapy. The basic
idea of using serious games in rehabilitation is to increase motivation and en-
gagement of the patient, thus improving exercise performance, perseverance and
rehabilitation outcomes [105]. RI-based games are of particular interest, as the
embedded sensors simultaneously allow for a quantitative assessment of perfor-
mance. Hence, the rehabilitation progress can be tracked and analyzed to modify
the therapy, if necessary. Furthermore, the workload of professional therapists is
reduced. Low-cost RI systems have lately been considered for tele-rehabilitation
techniques [106,107] that are beneficial for translating skills learned in ther-
apy to everyday life. Tele-rehabilitation systems allow the therapist to monitor
the patient during exercising at home, track their activity and progress, and
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provide feedback. Recently, RI-based rehabilitation systems for physically dis-
abled patients [108,109,110,111], chronic pain patients [112] and patients af-
ter neurological injuries [113,114] have been proposed. The vast majority of
approaches in the field of serious games builds on Microsoft Kinect, being inher-
ently embedded in an off-the-shelf gaming console.

5.4 Aids for Handicapped People

Recently, first approaches towards the use of assistive technologies to support
handicapped people were proposed [115]. The integration of an RI device into
an augmented blindman’s cane or head-mounted systems could aid visually im-
paired people in navigation by identifying and describing surroundings beyond
the limited sensing range of a physical cane [116,117,118,119]. For instance,
Gassert et al. [117] described the augmentation of a white cane with a ToF
sensor. Low-cost range imaging has been also proposed for autonomous trans-
portation vehicles that follow handicapped people using 3-D perception [120].

6 Practical Issues

Medical applications impose several practical demands on RI cameras, including
real-time capability and a high degree of absolute accuracy, reliability, and ro-
bustness. However, RI data are typically prone to inaccuracies due to technologi-
cal limitations. In this section, we identify issues that are specific for applications
in health care (Sect. 6.1). Dedicated software frameworks for RI processing that
explicitly address medical applications are briefly outlined in Sect. 6.2.

6.1 Issues and Limitations

First and foremost, the enhancement of RI measurement data in terms of denois-
ing and correction of modality-specific systematic errors – such as intensity- or
temperature-related distance errors, motion artifacts, and outliers at depth dis-
continuities in ToF imaging – assumes a critical role in the processing pipeline. In
theory, some of these systematic errors could be compensated for by a calibration
procedure performed once before clinical use. For ToF-based systems, a practical
approach would further assume a constant temperature after a warm-up period
and a fixed integration time thatmust be chosen in an application-specificmanner.
However, even though progress has been made in understanding the underlying
technological issues, a robust and holistic calibration and correction of systematic
errors is still an open field of research. This particularly applies for the young dis-
cipline of ToF imaging, for a comprehensive treatment we refer to Chap.Technical
Foundation and Calibration Methods for Time-of-Flight Cameras. Here, the focus
is on practical aspects that are specific for medical applications. Thus we conclude
that the quality of RI data is a limiting factor concerning the spectrum of medical
applications that can be potentially addressed. Indeed, the achievable degree of
accuracy of today’s RI cameras hinders a more widespread usage.
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The acquisition of RI data in a medical context poses several challenges.
The systems typically face a dynamic and often unpredictable environment, and
occlusions that result from clinical staff or interventional devices such as linear
accelerators or C-arm CT systems that may temporally obstruct the field of
view of the RI camera (cf. Sect. 2). Yet, even in a static scenario with known
acquisition geometry, small reconstruction frustums, shallow acquisition angles
or a large working distance may deteriorate the quality of RI data or invoke
self-occlusions. Applications where the patient is partially covered by a blanket
or equipment are even more challenging or impossible to address with RI.

For many clinical scenarios, using a multi-camera acquisition setup can help
to improve the scene coverage in both dynamic and static environments (cf.
Sect. 3). However, this typically entails substantial efforts w.r.t. robust and re-
current intrinsic and extrinsic calibration, potentially introducing an additional
error source. Furthermore, available RI technologies such as ToF or structured
light are known to suffer from issues due to signal interference. For ToF imag-
ing, several techniques to suppress interference have been investigated, such as
modulation frequency or code division multiplexing (see [121] for an overview).
For structured light, the usage of different light frequencies for the pattern can
be used. Maimone et al. [122] have proposed a multiple Kinect system that in-
volves vibrating the Kinects at distinct frequencies. If the cameras support a
framerate that is substantially higher than the overall required framerate, tem-
poral multiplexing with an external trigger may be used. In addition to mutual
signal interference in a multi-camera setup, the influence of the infrared part of
ambient or high-intensity surgical lighting on RI reconstruction robustness and
accuracy should be investigated.

Besides acquisition constraints in a medical environment, surface and tissue
properties of the observed object assume a decisive role. In particular for ToF-
based open surgery (Sect. 2.4) and endoscopic procedures (Sect. 2.5), translucent
and glossy organ surfaces impair RI measurements. For instance, specular high-
lights may cause invalid depth measurements due to sensor saturation. Further-
more, reflective or absorbing tissues and fluids such as blood [123] may lead to
multi-path or sub-surface penetration, signal attenuation and scattering issues
with ToF imaging [124,125,126] that might impair both absolute accuracy and
signal-to-noise ratio. These are critical issues to be addressed in future work.
Note that similar effects occur with applications that involve range imaging of
the external body surface. In this context, different skin types may influence the
range measurements.

Another important issue for the application of RI technologies in health care
concerns a proper integration into clinical routine. The need for a warm-up pe-
riod for ToF devices, frequent re-calibration procedures for multi-camera setups,
or frequent re-calibration between the sensor and scanner coordinate systems
might be problematic for certain clinical workflows. For patient setup and mon-
itoring solutions, system calibration w.r.t. a treatment couch coordinate system
has been shown to be manageable. For instance, the VisionRT system being a
widely established range imaging system in RT relies on a calibration with a
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dedicated pattern [127]. In contrast, for calibrating the RI coordinate system
w.r.t. imaging modalities such as CT, MRI, US, PET or SPECT, the design
of customized calibration patterns may be necessary. This also applies for the
joint application of RI-based and conventional tracking solutions using optical
or electromagnetic markers. In addition, let us stress that the accuracy of system
calibration w.r.t. different modalities and coordinate systems highly depends on
the accuracy and reliability of the RI measurement data itself.

For RI-based guidance in computer-assisted intervention, an open field of
research beyond calibration concerns the relation of the measured external to-
pography to the internal structures given from tomographic data (CT/MR). In
clinical practice, the external shape acquired with an RI system during interven-
tion typically does not coincide with the shape extracted from tomographic plan-
ning data due to non-rigid deformations that occur due to body twist and bend,
respiration, cardiac motion, or tissue manipulation. Promising future directions
involve the use of generic or patient-specific models that correlate external mo-
tion to internal motion based on dynamic 4-D CT/MR data [24,25]. Only little
research has investigated the use of biomechanical models propagating surface
deformations to the internal structures known from a static tomographic scan.

Range imaging systems that are intended to be used in surgical and endo-
scopic interventions need to be compact. This implies several restrictions for
the different range imaging principles, such as miniaturized illumination units
for ToF sensors in general, sufficient light transmission for 3-D ToF endoscopy
and a small baseline for structured light sensors. In the context of endoscopic
applications in MIS, errors caused by background illumination can be neglected
due to the controlled environment. On the other hand, working in a cavity of
reflecting tissue poses challenges regarding multi-path reflexions. Furthermore,
it is a great challenge to transmit enough light to the tissue, which leads to a
low signal-to-noise ratio in endoscopic ToF images and hence a decreased mea-
surement accuracy in camera direction compared to standard ToF cameras. It is
theoretically possible to increase measurement accuracy by operating the ToF de-
vice with a higher modulation frequency [128]. Due to the small working volume
in laparoscopic interventions, the reduced ambiguity range would be acceptable.

In conclusion, we stress that the integration of range imaging systems into
clinical routine is restricted due to the lack of certified standard hardware or the
early prototype stage of dedicated devices such as in 3-D endoscopy. This hinders
experimental studies involving patients and, thus, most research on surgical and
endoscopic applications relies on synthetic phantom or animal studies.

6.2 Software Frameworks

Two open-source frameworks have addressed range imaging in medical appli-
cations so far: MITK-ToF [129] as an integration into the well-known Medi-
cal Imaging Interaction Toolkit (MITK) [130] and the Range Imaging Toolkit
(RITK) [131]. Both frameworks build upon the Insight Segmentation and Reg-
istration Toolkit (ITK) [132], which is considered as de-factor standard in open-
source medical image processing. Whereas the focus of MITK-ToF is more on the
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medical integration and interaction with other modules, RITK has a strong fo-
cus on hardware accelerated multi-view range data streaming to satisfy real-time
demands in clinical practice, e.g. using general purpose computing on graphics
processing units (GPGPU). As a general RI framework, the Point Cloud Library
[133] has become popular in the computer vision community.

7 Discussion

In this chapter we have given an overview of the application of range imaging in
different fields of health care. While some are merely in a proof of concept state
and still require basic research to be done, others are already close to being em-
ployed in commercial products. Most often, RI is used for localization and track-
ing of objects and persons in 3-D workspace. Commercially available systems
that solve these tasks utilize marker-based solutions or radiographic imaging.
However, attaching markers is time-consuming and complicates the workflow.
Radiation on the other hand is harmful to both the patient and medical staff.
The main advantages of RI cameras are that they operate touch-less (sterile),
marker-free (no setup required), fast (real-time), and dense (non-scanning).

Range imaging can help improve health care in many areas. Outside a clini-
cal environment, even at home, body tracking and pose detection can support
prevention, rehabilitation, and remote diagnosis. Location and pose informa-
tion is also required for automatic patient positioning. When tracked over time,
information about non-rigid surface deformations can be used to compensate
for patient motion, e.g. in tomographic reconstruction, or radiation therapy.
With additional instrument tracking, guidance is viable. Robust localization and
3-D surface information is also the basis for AR applications that hold potential
in interventional navigation as well as human-doctor communication. Touch-less
gesture recognition promises to solve the problem of sterile human-machine-
interaction in the OR. The technology is mature, however, its widespread accep-
tance is hampered by the lack of a common, intuitive set of gestures. Finally,
3-D endoscopy and room supervision are areas where range imaging creates new
types of data. Both hold great potential, but still require considerable research.

Future research on real-time RI in health care should cover three areas. First,
there are several open research questions which have to be tackled. Since the
underlying technologies are relatively new and still immature to some degree,
available RI cameras have shortcomings, which have to be resolved (e.g. system-
atic errors, low spatial resolution). Further, the registration of RI measurements
to data acquired with conventional medical imaging modalities is important.
Other open questions regard the adequacy of the acquired data, e.g. whether ex-
ternal surface information is sufficient for tracking internal structures, or whether
the achievable absolute accuracy is acceptable for a given application. Second,
everyday issues of current applications and prototypes must be solved. This in-
volves their integration into clinical scenarios and workflows, including e.g. multi-
camera setups, calibration and synchronization to a scanner or treatment system,
and real-time implementation of algorithms. Third, medical certification for RI
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devices and related clinical applications is another fundamental requirement for
the progression of the field. Once these issues have been solved and range imag-
ing technology has been established in daily health care routine, it will lead to
new, more efficient and safe workflows.
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Abstract. During the last three years after the launch of the Microsoft
Kinect R© in the end-consumer market we have become witnesses of a
small revolution in computer vision research towards the use of a stan-
dardized consumer-grade RGBD sensor for scene content retrieval. Be-
side classical localization and motion capturing tasks the Kinect has
successfully been employed for the reconstruction of opaque and trans-
parent objects. This report gives a comprehensive overview over the main
publications using the Microsoft Kinect out of its original context as a
decision-forest based motion-capturing tool.

1 Introduction

In early March 2010 Microsoft released a press text [54] that it would work to-
gether with PrimeSense, a Tel-Aviv based chip supplier, on a ”groundbreaking
optical-sensing and recognition technology to aid gesture control platforms.” for
the upcoming holidays. The goal of the project, internally known as ”Project Na-
tal” was to develop a new controller-free entertainment environment. Microsoft
anticipated a paradigm shift on how people would interact with consumer-grade
electronic devices.

The device itself was presented to a public audience at the E3 game conven-
tion. The device was launched in North America on November 4, 2010 and in
Europe on November 10, 2010. By the beginning of 2012, 24 million units were
sold. On February 1, 2012, Microsoft released the Kinect R© for Windows SDK
[53] and it is believed that more than 300 companies are working on apps that
employ the Microsoft Kinect. In November 2010, Adafruit Industries funded an
open-source driver development for Kinect. Although Microsoft initially disap-
proved their approach, they later clarified their position claiming that the USB
connection was left open by design. Adafruit recognized Hèctor Mart̀ın’s work
on a Linux driver that allows the use of both the RGB camera and depth sen-
sitivity functions of the device. It is publicly available for download under the
name libfreenect [62]. It is estimated that the OpenKinect community consists of
roughly 2000 members who are contributing their time and code to the project.
The code contributed to OpenKinect is made available under an Apache 2.0 or
optional GPL2 license. Another open source API is provided via the OpenNI
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framework of the OpenNI Organization [63] in which PrimeSense is a major
contributor. In the middle of May 2013 Microsoft released a technical demo of
the successor, Microsoft Kinect 2.0, which is based on Time-Of-Flight imaging.
Both the availability of a consumer-grade RGBD sensor at a competitive price
and the Open Source project that allowed to easily read out the essential streams
from the sensor, quickly sparked an interest in the research community.

2010 2011 2012 2013
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IEEE

Fig. 1. The impact of the Microsoft Kinect in the computer vision field is significant:
over the last three years, over 3000 papers related to the Microsoft Kinect have been
published in renowned journals and proceedings (e.g., IEEE Explore, Digital Library
of Eurographics, Proceedings of the ACM, Elsevier). Keywords associated with the
Kinect include simultaneous localization and mapping, object reconstruction, multiple
Kinect, interference mitigation, transparency and calibration.

Over the last three years a significant part of the published papers has been
devoted to the use of the Kinect in a scientific context, Fig. 1. Over 3000 papers
have been published in renowned journals and proceedings, e.g., Elsevier (208
papers), Eurographics (36 papers), ACM (651 papers), Springer (746 papers)
or IEEE Explore (1518 papers), which publishes CVPR and ICCV proceedings
among others. Of these, 276 papers refer to simultaneous localization and map-
ping problems and 227 are related to object reconstruction. Another 17 articles
recognize the challenge that transparency, e.g. from a glass object, would pose on
a sensor like the Kinect and proposed algorithms to reconstruct such transpar-
ent objects from depth streams from the Kinect. Finally, 47 papers address new
ways to calibrate the Kinect. Further details about the deployment of a single
Microsoft Kinect in academic context can be found in the manuscript submitted
by Han et al. [27].

We recognize that there are still new ambitious research projects incorporating
the Microsoft Kinect, e.g. the project Kinect@Home [2]. There, the user can help
robotics and computer vision researchers around the world by scanning their
office/living room environment with the Kinect. In return the user is delivered
a 3D model of the very room.

The remainder of this state-of-the-art report is structured as follows: after
reviewing the sensor itself in Section 2, we will introduce papers related to its use
as a simultaneous localization and mapping tool in Section 3. Afterwards, we will
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expand on motion capturing scenarios in which the Kinect has been employed,
e.g. hand tracking, Section 4. Then, we will have a look into the research field
that incorporates the Kinect as a tool to reconstruct non-opaque objects and
motion, Section 5. In Section 6 we will present methods to improve or denoise
Kinect depth maps while focusing on sensor fusion approaches. Finally, we will
conclude and give an outlook, Section 7.

2 The Kinect 1.0 Sensor

The Microsoft Kinect is the first structured light sensor available for the con-
sumer market. Designed as a motion sensing input device for the gaming console
Microsoft XBox 360 R© the Kinect is intended to be used for gaming purposes.
A typical usage environment can be seen in Figure 2(Left). With the Kinect
it is possible for the XBox 360 to track movements of multiple players in a
game. Its pattern emission technique was invented by PrimeSense and licensed
by Microsoft for use in the Project Natal. The project OpenKinect provided
the open source library libfreenect that enables PCs to use the Kinect as an
input device via USB 2.0. This enabled users to experiment with an easy to ac-
cess realtime capable depth tracking system. Compared to state-of-the-art depth
capturing systems, e.g. time-of-flight (ToF) cameras, the system costs were negli-
gible. With the success of the Kinect, other company’s devices licensing the same
technique from PrimeSense did appear. Asus introduced two devices called Xtion
and Xtion LIVE with the underlying technique being the same as in the Kinect.

The coded light approach employed for the depth mapping is a simple and
effective way to acquire depth data of a scene. A light, here an IR laser, projects
a unique pattern onto the surface of the scene (see Figure 2(Center) for an exam-
ple). This projection is recorded by a camera which is capable of capturing in the
spectrum in which the pattern is emitted. Then, an integrated circuit computes
the disparity for subpatterns by comparing them to their default positions at a
given distance. For the disparity values the distance in meters for each pixel in
the depth image can be computed. The structured light or active stereo approach
is well known and has long been used by structured light scanners e.g. in the form
of gray-codes for high precision depth measurements. The special pattern of the

Fig. 2. Typically, the Microsoft Kinect would be found in the living room of a Microsoft
Xbox user. Left: typical usage scene, Center: infrared pattern, Right: colorcoded
depth map.



260 K. Berger et al.

light used in the Kinect is particulary suited for fast disparity estimation using
block-matching and has been introduced by PrimeSense. In so far the Kinect
suffers from the same depth estimation problems as other active or also passive
stereo systems, mainly inaccurate depth at occlusion boundaries and problems
with reflecting or transparent surfaces. A colorcoded representation of the depth
values can be seen in Figure 2(Right).

3 SLAM and 3D Reconstruction

3D reconstruction and simultaneous localization and mapping (SLAM) are two
closely connected fields of application which both can benefit from accurate
depth data. Both can rely on either monoscopic reconstruction methods without
prior depth information, sparse 3D data e.g. from laser rangefinders or dense
depth maps e.g. from stereoscopic systems. Although systems utilizing only
depth data or only visual data have been in use for decades, the integration
of RGBD to make the systems more robust is a relatively new development.
Apart from algorithms which were specifically designed for the Kinect we will
also cover those that combine RGB and depth data in new ways and those
which were inspired by these works even if they are not specifically limited to
the Kinect.

A first step in both algorithm classes is the estimation of camera movement
between consecutive frames. As shown by Handa et al. [28] tracking does gener-
ally benefit from high-frame rates alongside high resolution and low SNR. The
Kinect sensor fills a niche in that it can supply dense depth maps in realtime.
Examples for odometry algorithms which use depth data were presented by Kerl
[41] or Steinbrücker [75]. Additionally, it has been shown by Newman and Ho
[58] that visual features can effectively be used to solve the loop-closing problem
in SLAM applications. The simultaneous availability of RGB and depth data
can in this context be further exploited to calculate a dense scene flow [23]. Spe-
cific calibration considerations are discussed in [73] or [33]. Currently, there is
no known SLAM system that uses multiple Kinects, although motion tracking
with stationary cameras was demonstrated e.g. by Faion et al. [19] or Schönauer
and Kaufmann [71].

One of the first methods to utilize the Kinect in a SLAM system is the frame-
work presented by Henry et al. [30][31]. Here, features extracted from the RGB
images are used for the initial camera pose estimation which is then refined by
applying an iterative closest point algorithm (ICP) on the depth data. Hu et al.
[34] use a similar approach but fall back to pure RGB based pose estimation if
the depth features are insufficient, thereby adding the advantages of depth maps
without inheriting their problems. Another approach was presented by Endres
et al. [18] who also extract RGB features but then reproject these features into
3d to perform pose estimation in a closed form. All these algorithms can be used
for online processing but unlike most recent developments which utilize GPU
computation they are not real-time capable. Additionally, they do not always
produce dense 3d representations like the following reconstruction algorithms as
this is generally not necessary for localization tasks.
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Accurate 3d reconstruction was until now a slow and expensive process as
it was mostly based on laser or structured light scanners. The KinectFusion
algorithm which was first introduced by Newcombe, Izadi et al. [57][38] and
its subsequent improvements [66][32][83] represent a new direction in algorithm
development as it is fast and depends only on commodity hardware. It creates
an implicit voxel representation of a scene from the depth data using truncated
signed distances functions. Each new view from the camera is registered using
an Iterative Closest Point (ICP) algorithm. In that regard it behaves similar to
other SLAM algorithms but the in-memory voxel representation allows for highly
parallelized processing using GPUs. By providing a realtime 3D reconstruction
method in the low to medium accuracy range (mm to cm regarding depth) it
makes 3D scanning affordable for a wide field of potential users.

An analysis of the KinectFusion reconstruction performance has been per-
formed by Meister et al. [52]. They compared the 3D meshes created by the
KinectFusion system with high accuracy scans from LiDAR or structured light
scanners to provide definite accuracy measures for mesh surfaces and derived
values. The results suggest that the method is suitable even for applications
where one would suspect an accuracy as high as possible to be mandatory. The
geometric errors of 3D meshes created by KinectFusion can range from 10mm
for small scenes (less than 1 m across, see Figure 3 for an example) to 80mm
for room sized scenes. This may be too large for industrial inspection purposes
but perfectly reasonable for the creation of synthetic test sequences for low-level
image processing tasks, such as stereo matching or optical flow evaluation.

Despite it’s impressive impact on both research and application alike the
algorithm should not be considered a full SLAM solution. It’s biggest drawbacks
are the limited scan volume (≈ 100 − 200m3 depending on graphics memory),
the tendency to loose camera tracking in regions with few geometry features
and the lack of explicit loop-closure handling. Some direct modifications of the
algorithm try to alleviate these problems. Moving Volume Kinect by Roth et

Fig. 3. Ground truth mesh, Kinect fusion mesh and euclidean surface error for scanned
object from [52]
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al. [66] allows the camera to leave the initial bounding volume but the basic
limits for the 3d model still apply. Others like Kinfu Large Scale [32] or [87]
use more memory efficient data structures to represent the volume data, e.g.
by using octrees. Kintinuous by Whelan et al. [83] continuously converts the
volume data to point clouds for processing in main memory. This effectively
removes any hard size limitations for the mapping volume. Whelan et al. also
combined their system with the odometry estimation by Steinbrücker to make
it more robust in case of missing geometric features [82]. This method is so
far the only KinectFusion inspired algorithm that integrates RGB data. Bylow
et al. [11] directly use the signed distance function of the voxel representation
instead of ICP to estimate the camera movement more exactly. Keller et al.
[40] drop the voxel representation altogether and use point-based fusion instead.
Their approach handles the Kinect specific depth noise better and can handle
dynamic scene content.

Other recent works try to combine SLAM with real-time capabilities and dense
3d reconstruction. Examples include the works by Lee et al. [44] who directly
create a polygon representation from the acquired depth data or Henry et al.
[29] who combine volumetric fusion with large-scale models. Finally, Stückler et
al. [76] [77] use a different method based on a surfel representation of the envi-
ronment. The camera pose estimation is also different in that it is estimated by a
likelihood optimization approach on the surfel distribution. These recent devel-
opments suggest that the distinction between SLAM and 3D reconstruction may
disappear in the near future as both algorithm types profit from improvements
made to each other.

4 Motion Capturing Setups

Shotton et al. [72] introduced the Kinect and its underlying algorithm as a tool
to capture the human pose from monocular depth images. Quickly thereafter,
monocular motion capturing has gotten into the focus of the research commu-
nity [22,65,60], with the Microsoft Kinect being the device to generate datasets
and benchmarks. What can be done with this research has been shown by Chen
et al. [13]. Besides the tracking of limbs and joints quickly other research fields
in monocular depth processing have emerged.

One interesting research direction for example is to use the Microsoft Kinect
as a hand-tracking device. Oikonomidis [61] presents an approach based on par-
ticle swarms to discriminate between the palm and single fingers. Frati and his
colleagues [21] assume the hand to always be closest to the camera and calculate
convexity defects from the bounding box of the hand with the help of OpenCV
while Reheja and his colleagues first detect the palm with a circular filter and
then remove it to arrive at the shapes of individual fingertips in the depth im-
age [64]. An interesting approach has been proposed by Van den Bergh et al. [6],
who estimate the orientation of the hand from the orientation of the forearm
in the depth image. The posture itself is estimated by employing an Average
Neighborhood Margin Maximization (ANMM) algorithm [80].
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Fig. 4. An approach to incorporate multiple Kinects nondestructively in a motion
capturing setup: An externally synced rolling shutter assigns one Kinect a unique time
slot so that three other Kinects can capture as well. Such setups enable the capturing of
obstructed motions or of motions with the actor not facing a camera. Red dots represent
the emitters (projectors) while green dots represent receivers (cameras). Reproduced
from [70].

With the Microsoft Kinect it is also possible to capture facial movements.
Zollhofer et al. [89] showed how to fit deformable facial meshes to depth data
captured from human faces by relying on feature points (eyes, nose) in the depth
data. Leyvand et al. also examine the face recognition of identical twins given
depth and motion data from the Microsoft Kinect [46].

In 2011, Berger and his colleagues showed, that it is also possible to employ
multiple Microsoft Kinects in one scene for motion capturing research [5]. Their
incentive was to enable the capturing of partially obstructed poses, e.g. from
persons facing away from the camera or in small rooms. Using a specifically tai-
lored external hardware shutter [70] they were able to reduce the sensor noise
introduced from neighboring Kinects, Fig. 4. Their approach relied on synchro-
nized rolling shutters for up to four devices. This idea was quickly adopted and
further developed by Maimone and Fuchs [50] in a shake and sense approach:
each Kinect sensor would slightly rotate around its up vector introducing scene
motion to the imaged scene except for its own projected pattern which always
moves accordingly. Thus, the accuracy of the depth image generated from its
own pattern would increase due to blurred out sensor noise from other Kinects.
The motion would be accounted for from the Kinect’s inertial sensor data. This
approach was further refined by Butler and his colleagues [10] who basically
hot-melt glued a motor to each device to introduce arbitrary motion.

5 Opaque and Transparent Reconstruction

With the availability of accurate depth data, the complete 3D reconstruction of
objects with the consumer-grade Kinect became a popular research branch. For
example, Tam and his colleagues [78] register point clouds captured with the
Kinect to each other.
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However, the reconstruction need not necessarily be restricted to opaque ob-
jects. Lysenkov and his colleagues [48] describe an approach to recognize trans-
parent objects, e.g. a water glass, and to recognize its pose from the input images
of a Kinect device. Due to reflection and transmission the IR pattern shone onto
the transparent objects is not usable for depth estimation. Consequently, pixel
regions of the projected object in the depth image obtain invalid values, e.g. ap-
pear black. They use a key observation: Transparent and opaque objects create
surface and silhouette edges. Image edgels corresponding to a silhouette edge
can be detected at the boundary between the invalid and valid depth pixels. To
recognize transparent objects one can reconstruct it by moving the Kinect 360◦

around the object or by comparing it to a similar mesh in a database. They,
however, decide to register it beforehand by powdering it and thus making it
temporarily opaque. The silhouettes of the registered object are then used for
training. During the test phase later, they compare the silhouette edges created
by invalid pixels in the depth images with the silhouettes in the database us-
ing Procrustes Analysis as proposed by [51]. When a non-powdering approach
is pursued, the authors stress that it is important to provide additional cali-
bration information [47] for the Kinect in order to reconstruct its location to
the transparent object, whose only viable information are the silhouette edges
retrieved from the depth images. Another approach to reconstruct transparent
objects with the Kinect is to incorporate the RGB-sensor. Chiu et al. [15] pro-
pose to calibrate the RGB-camera with the IR-camera to arrive at a multi-modal
stereo image (i.e., depth, and the stereo from disparity between the RGB- and
IR-camera).

When the object to be reconstructed becomes time-varying, it is impossible to
powder and capture it beforehand. In their work, Berger et al. [4] examined the
possibilities to reconstruct transparent gas flows using the Kinect. They ruled
out seeding particles and decided to follow a Background-oriented Schlieren ap-
proach. The projected IR-pattern of each Kinect is hereby used as the back-
ground pattern. The silhouette boundaries would become visible in the depth
sensor by the index gradient between the flowing gas, there propane, and its
surrounding medium (air). As propane obtains a refractive index of roughly 1.34
the difference to the surrounding air would be sufficiently high enough to intro-
duce noticeable pixel deviations at a distance of 3m between scene walls and
the Kinect camera. They concluded, that, when they would place three Kinects
in an half-arc around the flowing gas and projection walls at a fixed distance
opposite to it, they could detect difference in the depth images that would suffice
for silhouettes. Using the silhouettes of each Kinect they could enclose the gas
volume in the reconstructed visual hull for each frame. The silhouette generation
relied on fitting polynomials from left and right in each image [1,4]. In further
research they concluded that it is also viable to directly use the deviations in the
IR-images for the silhouette reconstruction, by relying on a sparse spot-based
optical flow algorithm [69].
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Fig. 5. The reconstruction of non-opaque motion. Three Kinects are placed in a cir-
cular half-arc around propane gas flow, projection walls opposite to each Kinect. As
the Kinects do not interfere destructively with each other, meaningful information can
be retrieved for each sensor. The refractive index gradient present in the scene would
result in detectable depth deviations in each Kinect’s depth image stream. Reproduced
from [4]

6 Enhancing Depth Data

Although the Kinect delivers RGBD data of a sufficient quality for many appli-
cations, it is far from perfect. For example, as the projector is located to the right
of the cameras, no depth data can be obtained in areas to the left of occlusion
boundaries due to shadowing. If the depth map is then additionally registered
to the RGB image, further information is lost. Other effects which are present
throughout the image are errors due to the sparsity of the point pattern, the
block size used for matching and the unknown smoothing that may addition-
ally be applied to the raw data. Most of these errors can best be observed at
depth edges. They lead to inaccurate depth boundaries, blobbing artifacts and
a reduced effective lateral resolution. Also like every other active depth imaging
technique the Kinect relies on the reflected light being of sufficient intensity.
This is not the case with dark IR absorbing surfaces that may additionally lie at
an angle to the camera or when strong IR light sources such as direct sun light
are present in the scene [55].

The question remains whether there is a real need for better quality or higher
resolution depth data. ICP [7][86] which is at the core of many pose and 3d
reconstruction algorithms using Kinect, will produce better results given better
input data. Also, accurate silhouette information is a strong cue used for 3d
reconstruction [43].Some applications even depend on good initial depth data.
As an example the visual effects industry frequently requires dynamic scene ge-
ometry at resolutions ranging from Full HD to 4K [39]. Current depth cameras
meet the dynamic imaging requirement but fail to provide the necessary lateral
resolution. In the following we will review the various lines of research dealing
with the enhancement of depth images. Often, the papers presented deal with
Time of Flight data instead of Kinect. Many of these algorithms work on the
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depth images and thus can be directly applied to Kinect data. Others also take
into account the noise characteristics of Time of Flight sensors which are gen-
erally quite different from those of the Kinect. Here, the noise model used must
be replaced with the Kinect noise model such es the empirical model recently
presented by Nguyen et al. [59].

Depth data denoising as a subdiscipline of image denoising has progressed
significantly and many edge preserving denoising techniques can be applied di-
rectly to range images. Examples would be diffusion based filters [81], non local
means [9] or bilateral filtering [79]. Unlike RGB images, depth images are gen-
erally considered to be comparitively smooth with few distinct edges [35][84].
This property allows for a much stronger regularization than would be possible
in RGB images. Lenzen et al. [45] apply an adaptive first and second order total
variation approach to regularize depth data while retaining edges and slopes.
Schoner et al. [68] apply a clustering approach to identify regions with similar
properties. Aodha et al. [49] learn the relation between noisy input images and
filtered output using decision tree ensembles [8].

As mentioned above, Kinect depth data contains many invalid pixels. To al-
leviate this problem, hole filling strategies which are related to image inpainting
can be employed. Danciu et al. presented a single-frame method based on mor-
phological filters [17]. Other Methods additionally use temporal information to
make the inpainting more robust. Xu et al. first detect moving objects to im-
prove edge stability before filling in holes [85], while Camplani and Salgado use
bilateral filtering in combination with a temporal consistency constraint [12].

A different method to enhance Kinect data is to apply a sensor fusion approach
by adding additional depth imaging modalities to create superresolution depth
images. The sensor fusion methods can be differentiated by the employed camera
setup. As strategies for using multiple Kinects have been discussed in Section
5 we will therefore limit ourselves to approaches using one or two additional
RGB cameras. As the Kinect sensor itself includes a RGB camera and an IR
camera, it can be used directly for RGBD fusion. Often though, an external RGB
camera with a higher resolution is used for the fusion approach. After aligning
the RGB and IR camera employing standard camera calibration techniques the
main assumption is that depth edges often coincide with RGB edges. Chen et
al. [14] for example employ cross bilateral filtering to smooth the resulting depth
maps. Huhle et al. propose a graphical model with data terms based on RGB
and depth gradient strength in [36] and in [37] adapted non local means filtering
to encompass the additional data. Chiu et al. [15] on the other hand use the
cross modal stereo information between the IR and the RGB sensor directly.

Most works which combine depth cameras with a regular passive stereo setup
have been done with ToF imagers but as already mentioned the methods can
be adapted to Kinect most of the time. One exception it the recently presented
method by Somanath et al. [74] which uses a kinect to improve stereo depth
estimates in ambiguous or low-textured regions. These methods use the range
imaging data to initialize stereo matching and impose constraints on the search
range depending on the depth budget and stereo noise model. Local methods
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[42],[24],[3],[26],[16],[56] combine the stereo and the range imaging data term on
a per pixel level. Gudmundsson et al.[24] apply a hierarchical stereo matching
algorithm directly on the remapped depth data without considering uncertain-
ties. Kuhnert et al.[42] and Hahne et al.[26] compute binary confidences in the
depth image and let stereo refine the result in regions with low confidence. Nair
et al.[56] and Dal Mutto et al. [16] locally combine confidences from both stereo
and the depth image into the the stereo matching framework. Global methods
[20],[56],[88],[25] additionally apply spatial regularization techniques to propa-
gate more information to regions with low stereo or depth image confidence.
Inference of the global energy is then done using different optimization meth-
ods such as graph cuts[25], semi global optimization[20], MAP-MRF [88] or by
minimizing the total variation[56],[67].

7 Conclusion

This state of the art report has reviewed the Kinect as a consumer-grade motion
capturing toolkit and recognized its impact in the computer vision community.
The output of the Kinect, depth-, RGB- and IR-images at realtime framerate
enabled researchers to use the device in various scenarios. Simultaneous localiza-
tion and mapping (SLAM) in the context of robotics and object reconstruction
showed that the Kinect sensor fills a niche in that it can supply dense depth
maps in realtime. Out of its intended context the Kinect was employed to track
gestures and recognize faces. In small room environments it was shown that mul-
tiple Kinect sensors could capture motion without interfering destructively with
each other thus enabling the capturing of obstructed motions or the motions of
actors facing away from one camera. Recently, it was examined if non-opaque
objects can be reconstructed as well. By relying on silhouette edges present
in the depth images, e.g. around invalid depth pixel, the question could be an-
swered positively for glass objects and gas flows. We conclude that this capturing
has made an impact to the community that is unprecedented and sparked very
creative research ideas. Additionally many advancements in the field of sensor
fusion or depth map denoising e.g. from time-of-flight imaging can be applied to
the Kinect camera to improve its accuracy.

Although now, 3 years later, a new generation of consumer-grade motion
capturing devices is ready to be deployed and to challenge the position of the
Microsoft Kinect. We believe that the impact of the Kinect and similar devices
will continue to increase in the next years and that it will become the standard
prototyping-research tool on every desktop in the vision community.
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Abstract. Time-of-Flight (ToF) cameras gained a lot of scientific at-
tention and became a vivid field of research in the last years. A still re-
maining problem of ToF cameras are motion artifacts in dynamic scenes.
This paper presents a new preprocessing method for a fast motion ar-
tifact compensation. We introduce a flow like algorithm that supports
motion estimation, search field reduction and motion field optimization.
The main focus lies on real-time processing capabilities. The approach
is extensively tested and compared against other motion compensation
techniques. For the evaluation, we use quantitative (ground-truth data,
statistic error comparison) and qualitative (real environments, visual
comparison) test methods. We show, that our proposed algorithm runs
in real-time within a GPU based processing hardware (using NVIDIA
Cuda) and corrects motion artifacts in a reliable way.

1 Introduction

Time-of-Flight (ToF) sensors as the PMD camera [1] offer an elegant way to
measure depth data. They become more and more important for the computer
vision and graphics domain and also for industrial applications [2]. Having ad-
vantages such as high performance and no mechanical overhead compared to
e.g. laser scanners, they also posses many problems, especially in accuracy and
noise behavior. Most of these errors can be corrected well by applying good cal-
ibration models [3] and pre-filtering (e.g. low-pass filtering). However, artifacts
arising from dynamic scenes are still not resolved satisfactorily. Moving objects
in scenes result in a blur effect (motion artifacts) in acquired depth images. A
fast movement leads to strong artifacts, related to the sensor’s working princi-
ple which is based on the sequential acquisition of four so-called phase images
in order to generate a depth map (see also Sec. 3). Artifacts occur in areas
where corresponding phase image values do not align to each other, resulting in
a incorrect distance calculation.

In this paper we propose a new algorithm to perform a fast real-time motion
compensation with high frame rates (above 50 FPS). We focus on high flexibility
to allow the algorithm to be either computed parallelized on a GPU using CUDA
[4] or to simply port it to small devices like an FPGA preprocessing platform.

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 273–288, 2013.
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To fulfill these requirements, a linear movement with constant motion between
the four consecutive phase images is assumed. Hence, the algorithm still allows
an arbitrary degree of freedom assuming this linear behavior for each individual
pixel (see Sec. 5). Invalid pixels are replaced by corresponding values of the spatial
neighborhood. This leads to simpler and faster processing compared to standard
methods shown in Sec. 2. For the evaluation, a PMD CamCube 3.0 with a reso-
lution of 200× 200 pixel is used. The big advantages of the proposed method are
the possibility of an automatic motion detection, a search direction restriction, the
repeatability of results in different applications and also the system performance.

The remainder of this paper is organized as follows. Sec. 2 discusses the re-
lated work. In Sec. 3 we describe the working principle of PMD cameras. Sec.
4 introduces our proposed algorithm for the motion compensation. In Sec. 5 we
show our results. Sec. 6 concludes this paper.

2 Related Work

In the last years, several methods have been proposed to detect and compensate
motion artifacts.

Hussmann et al. [5] introduce a motion compensation for linear object motion
on a conveyor belt. Areas of motion artifacts are identified using phase image
differences. These areas are binarized for each individual difference image using
a threshold. The length of motion is determined by processing each line of the
binary images and counting the lines with white pixels. Once knowing the length,
every phase image is moved accordingly before the distances are calculated. The
algorithm is implemented exemplary on an FPGA platform, but it is restricted
to a linear motion in a range between 90 − 100cm due to the small object size
and the camera field of view.

Schmidt [6] proposes a method handling motion artifacts as disturbances in
the raw data. Motion artifacts are calculated for each phase image using a tem-
poral derivative. High temporal derivatives of the raw data are then replaced
by previously valid values. An advantage compared to Hussmann et al. is the
arbitrary degree of freedom. Lee et al. [7] propose a similar approach where
they detect motion artifacts by temporal-spatial coherence of neighboring pixels
directly on the hardware level.

Another method was proposed by Lindner et al. [8]. This method computes a
dense optical flow to compensate spatial shifts between subsequent phase images
(three flow calculations). Lefloch et al. [9] proposed a method improving this ap-
proach. Necessary computation steps can be reduced to two flow calculations.
The missing step is replaced by a polynomial approximation. One big disadvan-
tage is the system performance. The optical flow computation is a very time
consuming task and thus is a heavy burden for real-time processing, if further
pocessing tasks need to be performed.

Our proposed method uses particular parts from Lindner and Lefloch [8,9]
(flow field) and Hussmann [5] (binarization of the motion area). The algorithm
restricts the motion to blurred areas only and optimizes the flow field detection.
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3 The Time-of-Flight Principle

The following section gives a brief introduction to the functionality of ToF cam-
eras serving as a basis for the method proposed in this paper.

An intensity modulated, incoherent infrared (IR) light is emitted with a mod-
ulation frequency f using the cameras’ illumination units to determine the phase
shift between outgoing and incoming optical signals. Each camera pixel correlates
the incoming signal s(t) with the reference signal r(t) to estimate the correla-
tion function. This process is repeated four times for every pixel with different
internal phase shift τi = i ·π in order to sample the correlation function between
s and r.

The PMD camera for instance is a two-tap sensor. It allows the acquistion
of two corresponding values for the same pixel at the same time, represented in
the camera as two phases PAi , PBi . In theory, if there is no motion and other
influences, the phases are complementary, i.e. measuring phase values at two
positions with 180◦ difference: PBi = PA(i+2) mod 4

. Internally, the phase image
is represented by the difference Pi = PAi − PBi in order to compensate for
hardware inaccuracies. Using the four phase images Pi, the phase shift φ, the
amplitude A and the intensity I can be calculated:

φ = arctan 2(P0 − P2, P3 − P1) (1)

I =
P0 + P1 + P2 + P3

4
(2)

A =
1

2
·
√
(P3 − P1)

2
+ (P0 − P2)

2
. (3)

The resulting distance D is then received using the angular modulation fre-
quency ω = 2πf and the speed of light c ≈ 3 · 108ms−1:

D =
c

2ω
φ. (4)

4 A Method for Fast Linear Motion Compensation

In this section we start with an analysis of the origin of motion artifacts and
continue with a detailed description of our proposed method.

4.1 Problem Analysis

ToF-cameras as the PMD camera have the advantage to be able to acquire
full distance-/depth-images of the whole scene at a time. This is done using a
sequence of four phase images, as described in Sec. 3 and shown in Fig. 1.

One full phase acquisition is split in two parts: acquisition and readout. The
acquisition time is equal to the integration time set, the readout time of ac-
tual PMD cameras is stated as about 3.5ms. Ideally all four phase images
would simultaneously be recorded. In reality the acquisition is sequentially done
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time 

Acquisition 
P0 

Readout 
P0 

Acquisition 
P1 

Readout 
P1 

Acquisition 
P2 

Readout 
P2 

Acquisition 
P3 

Readout 
P3 

Fig. 1. Schematic view of the acquisition process of a PMD frame using four phase images

(see Fig. 1). Motion artifacts typically arise in areas of unmatching raw phase
values due to motion (see. Fig. 2). It mainly occurs at object boundaries and
in regions of inhomogeneous reflection. This effect becomes more extensive the
faster an object moves, the closer the object is to the camera and the higher the
scene is exposed (high integration times) [8].

Fig. 2 shows the default demodulation of a car (left images), moving from right
to the left and of a moving hand (right images). In both scenes, the blurred areas
are marked red. It can be seen that especially these areas contain many motion
artifacts.

Fig. 2. Top: Demodulation of the car’s phase image sequence and a corresponding
closeup. Bottom: A moving hand scene and a corresponding closeup. Left: Motion
areas are marked red. Right: The closeups of the red marked motion areas.

Blurred areas in depth maps lead to incorrect distance computations. The
goal of motion compensation approaches is the elimination of these areas to
minimize errors. The motion during a single acquisition is not considered here
and is nearly negligible for small integration times (< 1ms).
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4.2 The Motion Compensation Approach

The proposed method works on a per pixel basis allowing arbitrary motion direc-
tions. It is divided into several steps, starting with a phase normalization. The
normalization is done to compensate the sensor’s pixel gains and to equalize
the image illumination. This is necessary due to the block-matching like work-
ing principle of the approach and to obtain comparable raw values. In a second
step the area of motion is estimated to improve the processing time. The mo-
tion direction is then determined with a correspondence search in the spatial
neighborhood. Once knowing this kind of flow field, the raw values can be cor-
rected. The processing pipeline can be seen in Fig. 3 and will be explained in
the following sections.

Raw 
Images 

Normalization 

Motion 
Detection  

Flow Field 
Estimation 

Raw Value 
Correction 

Depth 
Image 

Fig. 3. The motion detection and processing pipeline used for our algorithm

Phase Normalization. According to the behavior and design of PMD cameras,
there are several aspects for the pixel correspondence search, which have to be
taken care of. One point is the radial light attenuation. Images become darker
from the center to the border. Another aspect is the difference in pixel gains,
which has to be individually corrected for each sensor and every pixel.

To compensate these two problems, a pixel adjustment is performed using
the method proposed by Lindner et al. [8] by applying a pixel-wise intensity
correction function

fPA(PAi) = P̃Ai , fPB (PBi) = P̃Bi with i = 0 . . . 3 (5)

to minimize
3∑

i=0

(P̃Ai + P̃Bi) = href. (6)

The brightest pixel in a homogeneous surface is taken and used as refer-
ence intensity, the fitting functions are assumed to be logarithmic as fX(Xi) =
a
√
Xi + b+ cXi + d.
Applying these corrections improve the search as shown by Lindner et al.

Motion Detection. Since the motion estimation is a computation intensive
task, an important preprocessing step is to detect areas of apparent motions
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first. Motion can be detected using the changes in the total per-pixel intensity
for the subsequent phase images, i.e.

P+
i = PAi + PBi (7)

M =

3∑
i=1

∣∣P+
i − P+

0

∣∣ (8)

In a next step, the estimated motion image M is binarized

B = M > θ (9)

where B is the binary image and θ a threshold value that is determined ex-
perimentally. In our experiments we found that for θ = 650 (about 1% of the
maximum of PAi/Bi

= 65535) we get reliable results. Fig. 4 shows the motion
image and its corresponding binary image. White areas (ones) on the right side
indicate unmatching raw values.

Fig. 4. The moving hand from Fig. 2 with extracted motion artifacts. Left: The motion
image M calculated using Eq. 8. Right: The binarized image B thresholded using Eq. 9.

Motion Direction Estimation. Inspired by the idea of the optical flow motion
estimation, we propose a simpler way to determine a 2D vector displacement
map (U, V ) without subpixel precision. Each pixel value represents a unique

displacement vector (u, v)T .
Our approach assumes a linear motion between all raw phase images with a

constant velocity (see Sec. 5). A pixel-wise motion displacement is estimated for
all detected pixels in B. Therefore a motion window around every invalid pixel
is defined, which limits the detectable motion around these pixels. The window
is assumed to be squared with an odd size between 3 and 11 pixels (Motion
Window Size, MWS). Vectors from the center (the invalid pixel) to all neighbors
are calculated and scaled according to the phase image index. Let (dx, dy) be
a single delta for a possible pixel correspondence shift between adjacent phase
images, then the respective shifted phase values for the i-th phase image are
given as:

Pshifted,i(x, y) = Pi(x+ i · dx, y + i · dy), i ∈ {0, 1, 2, 3} (10)
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Pi and Pshifted,i represent the particular phase image with index i. dx and dy
are the applied deltas from the the center (see also Fig. 6) with a maximum
value of:

dxmax = dymax = (MWS − 1)/2 (11)

and an odd MotionWindow Size (MWS). The maximum euclidean pixel distance
l between two corresponding points of phase image P0 and P3 is given as:

l = 3 ·
∣∣∣∣∣∣−−−−−−−−−−−→(dxmax, dymax)

∣∣∣∣∣∣ (12)

In compliance with Eq. 12 and some knowledge about the expected motion
in a scene, the motion window size can be preset to optimize the system per-
formance. In our examples we set MWS = 5, yielding reliable results in most
of the situations (see Sec. 5). Fig. 5 shows, how search vectors are defined and
introduces the coordinate system exemplarily for a 5× 5 motion window.

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

x 
dx 

dy 

y 

Fig. 5. Left: The coordinate system and an example offset dx = dy = 2. Right: The
grid cells are numbered in a row-wise order. Index ’13’ indicates the start position. Five
sample vectors are presented here.
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dx=1 
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Fig. 6. An example flow for a shift dx = 1 and dy = 0. This leads to a maximum shift
between the four phase images of 3 pixels.

For the estimation of the best corresponding flow, the Sum of Squared Dif-
ferences (ssd) for all possible flow vectors within the defined motion window is
calculated:

ssdindex(x, y, dx, dy) =

3∑
1

(P0(x, y)− Pshifted,i(x, y, dx, dy))
2 (13)
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Accordingly, the best correspondence value has the minimal deviation from
the first phase image. So the final flow vector for the currently processed pixel
can be expressed as:

(u, v)T = argmin (ssd(x, y, dx, dy)) (14)

The number of possible vectorsMWS2 is leading to a time complexity T (n) =
O(n2). A quadratic complexity allows only small motion window sizes (about
11 × 11) to perform the algorithm in real-time. To overcome this problem, the
search direction can be restricted to an initial or mean direction from a previous
frame.

4.3 Search Space Reduction

An additional performance optimization can be achieved using a search space
reduction as can be seen in Fig. 7. Therefore the mean direction angle of a
previous frame is used as initial guess for the current motion. The direction
angle ϕ(u,v)T for one pixel is calculated between the positive x-axis −→x and the

corresponding flow vector
−−−−→
f(u, v). The mean motion direction angle ϕ is defined

as average of all estimated flow vector direction angles. Assuming a small motion
between two consecutive frames, the amount of change of the mean direction
angle is small. Now using this assumption, all pixel (x’, y’) in the search window
whose position vector has an angle in the range of ϕ ± ρ/2 (0◦ ≤ ρ ≤ 359◦)
are taken into consideration for the motion estimation. The raw phase value
correction is then applied to the reduced flow field as described in Sec. 4.5.

x 

y 

ρ = 180° 

x 

y 

ρ = 180° 

mean direction vector/angle 

ϕ = 115° ρ/2 
ρ/2 

ϕ = 115° 

Fig. 7. Left: The mean motion vector (115◦ in this example) calculated in a previous
frame (red arrow) and an exemplary search space reduction to 180◦. Right: Valid
motion vectors resulting out of the reduction are marked green.

All possible flow direction angles in a motion window can be precalculated.
So it is also easy to port this to small platforms as e.g. an FPGA by using
lookup-tables.
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4.4 Flow Field Optimization

In order to improve the robustness of the approach, a possible optimization is
optionally applied taking the spatial neighborhood into account. A median filter
is used to filter outliers. Therfore all motion vectors in a neighborhood with size
MWS are considered. Median filtering is then performed using the direction
angle as defined in Sec. 4.3. The vector length is kept.

4.5 Raw Phase Value Correction

Once the flow field (U, V ) is determined, it can be applied to the raw phase values
PA0−3 and PB0−3 according to Eq. 10. Each vector of the flow field is applied
to its corresponding raw value. After the data correction has been applied, the
depth values can be reconstructed according two the principle described in Sec.
3. The results and evaluation can be seen in Sec. 5.

5 Results

The following subsections give detailed information about the motion compen-
sation results obtained with our proposed method. To perform a comprehensive
analysis, the evaluation is split in two parts. In the first part, a quantitative
evaluation is done, to allow the comparison of results against ground-truth data.
Using artificial scenes gives reproducable and reliable results. In the second part,
we do a qualitative evaluation in real scenes. Having the disadvantage that gen-
erally no ground-truth models are available, a visual evaluation makes it possible
to see if the correction could successfully be applied.

5.1 Quantitative Results

Our method has been tested in a variety of scenes of different complexities (sim-
ulated and real environments). A robustness and peformance evaluation can be
done using simulated data (see Table 2 and Table 3). Similar to Lefloch et al.
[9] we use different data sets generated with a simulator [10]. The statistic eval-
uations are done with the tool CloudCompare1. The first data set is a buddha
figure, the second is a dragon. Both figures are used as input for the simulator.
An artificial, planar wall is placed in a distance of 4 meters. In front of this
wall, in a distance of about 3 meters, the figures are placed. This setup provides
reliable ground-truth data. To obtain motion data, we acquire several different
images at different camera positions. The camera is transformed between each
individual phase acquisition. For the buddha, we use a simple lateral camera
translation of 1cm (about 2m/s motion speed). In the dragon figure setup, the
camera is rotated 1 degree (about 200deg/s angular velocity) around the z-axis
(line of sight).

1 http://www.danielgm.net/cc/

http://www.danielgm.net/cc/
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3D model Distance without motion Distance with motion

Fig. 8. Two different data sets (buddha (top) and dragon (bottom)) that have been
used for the robustness evaluation of our approach; Left: The ground-truth 3D model.
Center: The cartesian distance image without any motion. Right: The cartesian dis-
tance image with motion.

Proposed method Lindner et al. Lefloch et al.

Fig. 9. The results of the three evaluated methods. As can be seen, all the methods
give good results visually comparing them to the ground-truth distance with no motion
shown in Fig. 8.
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Using the ground-truth of Fig. 8, we can easily generate comparable results
between the different motion compensation approaches (see also Fig. 9).

Table 1 shows a statistic evaluation of the buddha and dragon scene without
motion compensation; here, static background pixels are discarded. The dynamic
scene is created as previously described.

Table 1. The deviation of the ground-truth depth data (flying pixels included) of the
buddha and dragon scene from the underlying meshs. It shows the mean distance error
and the deviation for the static and the dynamic scene.

Scenes Distance errors from Ground-truth (cm)
Static (no motion) Dynamic (with motion)
Mean Sigma Mean Sigma

Buddha 0.64 3.12 5.96 9.32

Dragon 1.25 4.62 7.75 14.37

For further evaluation, several different setups are created to verify the qual-
ity of the proposed method. The first test shows the behavior of the algorithm
with different settings for the Motion Window Size (MWS), neighborhood filter-
ing (NH), motion area estimation (θ) and also search space restriction (ρ) (see
Sec. 4.2). Table 2 and Table 3 contain the test results of the different setups and
show the detailed behaviour of the proposed algorithm using different parameter
sets. Especially the remaining depth error compared to the ground-truth data
and the system performance is highlighted. It can be seen that as expected, the
best results are given without any limitation and restricition of the search space
(θ = 0, ρ = 0). The mean error of the buddha motion scene is reduced from
5.96cm (±9.32cm) to 1.14cm (±3.02cm), the dragon scene is corrected from a
mean error of 7.75cm (±14.37cm) to 2.07cm (±5.65cm). Furhtermore it can be
seen that with an increasing θ the correction performance gets better, but the
quality decreases. Another fact that gets visible is, that using the neighborhood
flow smoothing also improves the mean error, but with the disadvantage of losing
performance: With the same settings and neighborhood filtering we can correct
the buddha scene in 16.13ms, without neighborhood filtering it takes 11.57ms
only. A similar behavior can be seen for the dragon scene in Table 3. In addi-
tion, restricting the algorithm to a maximum direction deviation also improves
the correction quality (mean error) and the system performance. This can be
achieved by the rejection of a large number of search vectors in the motion win-
dow.We reject up to 36% of the possible directions (MWS = 7, ρ = 90◦, 1000000
direction search vectors, rejected directions between 110770 and 716877) in the
buddha scene and up to 30% (MWS = 7, ρ = 90◦, 1000000 direction search vec-
tors, rejected directions between 118916 and 583470) in the dragon scene. Please
note that the execution time is an average value of 100 measurements. Furthe-
more it can be seen that the mean motion direction ϕ most closely approximates
the expected linear translation of the buddha scene of 180◦.
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Additionally we compare our algorithm against the methods proposed by [8]
and [9]. Our approach reduces the mean error of the buddha scene to 1.14cm
(±3.02cm), compared to Lindner 1.13cm (±4.39cm) and Lefloch 1.46cm
(±4.40cm). For the dragon scene, the remaining mean error with our method
is 2.07cm (±5.65cm), for Lindner 2.26cm (±7.57cm) and for Lefloch 3.14cm
(±8.00cm). The results between the three compared methods are nearly equal,
but our method can score with the execution time, which is about half the time
of the method from Lefloch et al. and an eight of Lindner et al.

Table 2. The statistic evaluation of the buddha scene and the behavior of the mean
error in relation to different parameters. Statistics are shown for different motion win-
dows sizes, neighborhood filtering (NH) on(x) and off(-), binarization thresholds θ and
a search space restriction ρ.

Buddha Scene Distance errors from Ground-truth corrected
MWS NH θ ρ (◦) Mean (cm) Sigma (cm) ϕ (◦) Rejected Directions � Time (ms)

5 - 0 - 1.15 3.10 - 0 12.58

5 - 650 - 1.70 3.54 - 0 11.57

5 - 3276 - 3.49 4.70 - 0 10.59

5 - 5243 - 4.22 5.18 - 0 10.13

5 x 650 - 1.38 3.05 - 0 16.13

5 - 650 90 1.34 3.33 206.36 118916 9.79

5 x 650 90 1.46 3.24 223.98 110770 13.18

5 - 650 180 1.34 3.38 179.21 212408 11.08

5 x 650 180 1.27 3.04 190.33 212408 13.49

7 - 0 - 1.14 3.02 - 0 25.04

7 - 650 - 1.16 3.08 - 0 23.54

7 x 650 - 1.34 3.03 - 0 31.86

7 - 650 90 1.35 3.35 174.34 716877 12.15

7 x 650 90 1.35 3.13 178.90 716877 21.16

7 - 650 180 1.35 3.37 179.74 477918 15.18

7 x 650 180 1.37 3.04 187.10 477918 23.53

Method Lindner et al.

- - - - 1.13 4.39 - - 71.87

Method Lefloch et al.

- - - - 1.46 4.40 - - 25.60

The result of our tested setups is a good correction compared to the input
mean error that can be seen in Table 1. Furthermore in comparison with Lindner
and Lefloch, our method gives slightly better (dragon scene) or nearly equal
(buddha scene) results and is also suitable for real-time applications with a
framerate of 50–100 FPS allowing additional data processing as requested. Note:
Compared to the evaluation of Lefloch et al. [9], we use a smaller clamping
distance (3.85m) to remove the wall, explaining the slightly different mean and
sigma values. In our opinion a good default parameter set is a threshold θ = 650
and MWS = 5. Another helpful setting is a direction restriction to the mean
motion direction. The default settings and the search area restriction significantly
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Table 3. The statistic evaluation of the dragon scene and the behavior of the mean
error in relation to different parameters. Statistics are shown for different motion win-
dows sizes, neighborhood filtering (NH) on(x) and off(-), binarization thresholds θ and
a search space restriction ρ.

Dragon Scene Distance errors from Ground-truth corrected
MWS NH θ ρ (◦) Mean (cm) Sigma (cm) ϕ (◦) Rejected Directions � Time (ms)

5 - 0 - 2.08 5.70 - 0 12.09

5 - 650 - 2.09 5.71 - 0 11.97

5 - 3276 - 2.43 6.04 - 0 11.57

5 - 5243 - 2.62 6.01 - 0 10.89

5 x 650 - 2.22 5.51 - 0 14.31

5 - 650 90 2.12 5.49 186.68 259320 9.40

5 x 650 90 2.37 5.75 206.36 118916 11.89

5 - 650 180 2.16 5.68 182.36 172880 9.83

5 x 650 180 2.33 5.70 198.20 131326 13.13

7 - 0 - 2.07 5.65 - 0 21.44

7 - 650 - 2.07 5.65 - 0 20.55

7 x 650 - 2.35 5.48 - 0 26.45

7 - 650 90 2.44 5.63 210.65 176064 11.30

7 x 650 90 2.17 5.66 184.70 583470 17.61

7 - 650 180 2.18 5.77 184.02 388980 14.28

7 x 650 180 2.42 5.64 201.35 206714 20.67

Method Lindner et al.

- - - - 2.26 7.57 - - 80.76

Method Lefloch et al.

- - - - 3.14 8.00 - - 24.07

optimize the system performance and the motion compensation quality. Our tests
were executed on an Intel Core i7-3770K CPU @ 3.50 GHz and an NVIDIA
GeForce GTX 680, 2GB graphics card.

5.2 Qualitative Results

This part of the evaluation shows the behavior of real environments and ap-
plications. Two different setups are built. Unfortunately, there are no ground-
truth values for these real world data sets, therefore they are limited to a
visual comparison. The first scene shows a moving hand as can be seen in
Fig. 10. The hand is moved very fast from one side to the other. The fig-
ure shows how the blurred images are corrected using our proposed method.
Furthermore the images also show the motion area and direction restriction
(MWS = 5, θ = 650, angle = 90◦). It can be seen that the blur is fully
corrected.
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Fig. 10. Hand scene: the left column contains images with motion artifacts, the middle
column contains the corresponding motion compensated images using our proposed
method and the right column contains the related flow images (red: horizontal motion,
green: vertical motion). The mean estimated motion direction for the top row is � =
125.08◦, for the bottom row � = 91.91◦.

The second evaluated scene contains a car moving lateral in front of the cam-
era. Motion occurs mainly on edges, the mirror and the wheels. The visual de-
termined movement direction is about 270◦. The algorithm is parameterized
with MWS = 5, θ = 650, angle = 90◦. Area, direction and also the correc-
tion is successfully applied and leads to the expected results as can be seen in
Fig. 11.
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Fig. 11. Car scene: The left column contains images with motion artifacts, the middle
column contains the corresponding motion compensated images using our proposed
method and the right column contains the related flow images (red: horizontal motion,
green: vertical motion). The mean estimated motion direction for the top row is � =
228.20◦, for the bottom row � = 232.71◦.

6 Conclusion

In this paper we presented a new method for a fast motion artifact compensa-
tion for Time-of-Flight cameras. The approach is based on several assumptions
such as linear motion between the four consecutive phase images of the PMD
camera. Our algorithm uses a thresholding and binarization method to restrict
the artifact correction area to spaces where in fact motion occurs. Furthermore
we propose an approach to find pixel correspondences in a local neighborhood
(motion field estimation), a local search area minimization by tracking the mean
motion direction of a previous frame and an optional motion field smoothing.
We show that the algorithm gives good results for simulated data (linear and
non linear motion) and also for real data. Furthermore we show that we get
comparable results in the mean value correction (compared to Lindner et al. [8]
and Lefloch et al. [9]) and the algorithm can work in real-time (execution time
about 10 ms and a frame rate of up to 100 FPS).

The proposed method still has a high potential to be optimized so that it also
supports phase image motion correction. Furhthermore the threshold θ can be
automatically adapted via statistics of the observed scene. The algorithm is also
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designed in a way that allows for easy porting to smaller hardware as an FPGA
(no subpixel flow, possibility of lookup-tables for the search area reduction and
parallelization).
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Abstract. In recent years, depth cameras gained increasing acceptance
in the areas of robotics and autonomous systems. However, on mobile
platforms depth measurements with continuous wave amplitude modula-
tion Time-of-Flight cameras suffer from motion artifacts, since multiple
acquisitions are required in order to compute one depth map (resulting in
longer effective exposure times). Some lenses of different manufacturers
include image stabilizers, but they are only able to compensate for small
image shifts. Moreover, when performing a phase unwrapping based on
the acquisition of multiple depth maps with different modulation frequen-
cies, the motion artifacts are significantly more severe. In this paper, a
method to compensate camera motions during the acquisition of a single
depth map as well as for multiple depth maps is presented. Image shifts
are estimated firstly and after normalization the individual phase images
are shifted accordingly. The proposed approach is evaluated on different
scenes and it is able to facilitate ToF imaging on mobile platforms.

1 Introduction

Depth imaging devices act as an important sensor in the areas of robotics, au-
tonomous systems and similar research fields. However, as camera motions during
an image acquisition result in a blur for color imaging, they result in motion ar-
tifacts for depth imaging. These artifacts consist of invalid depth measurements
and can in general assume any value. Most Time-of-Flight depth cameras, e.g.
based on the Photonic Mixer Device (PMD), utilize multiple images namely
phase images to compute one depth map. Motion artifacts are here caused by
camera motions during the acquisition of a single phase image and in between the
acquisitions of the phase images. The former case can usually be neglected due
to the relatively short exposure times which are commonly applied. Since typical
acquisition times for all phase images required to obtain one depth map lie be-
tween 10 ms and 50 ms, the camera can be subject to significant motion during
that time on mobile platforms. Two features in the scene induce motion artifacts
for continuous wave amplitude modulation ToF depth cameras. The first one are
of course edges, which result in measuring different distances, i.e. phase shifts.
Secondly, different reflectivities introduce motion artifacts additionally and the
reason for this will be discussed later on.

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 289–301, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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An approach to compensate camera motions in between multiple phase images
is proposed in this paper. It works by firstly estimating the lateral camera mo-
tion in between phase images and then by shifting the phase images accordingly.
Several peculiarities of PMD chips have to be considered and will be discussed
in the course of this paper. Moreover, when a multi-frequency phase unwrap-
ping approach is applied in order to extend the measurement range, motion
artifacts become a severe limitation. Therefore, we extend the proposed image
stabilization technique to multiple depth maps.

The paper is structured as follows. The related research is discussed in Sec-
tion 2 and in Section 3 the hardware used in this paper is presented. Afterwards,
the proposed method is presented in Section 4. Experiments to demonstrate the
capabilities and limitations of the proposed approach are reviewed in Section 5
and the paper ends with a conclusion in Section 6.

2 Related Work

In [1] Lottner et al. analyze motion artifacts encountered for sufficiently fast
motion of objects in the scene when using PMD cameras. Lindner and Kolb
introduce in [2] motion compensation based on optical flow for moving objects
in videos acquired with PMD cameras. In an industry environment motion com-
pensation is demonstrated by Hussmann et al. in [3] and [4]. They perform the
motion compensation on PMD depth maps and the motion is detected by com-
parison of binary foreground maps. Axial motion of ToF cameras is discussed in
[5] using the Windowed Discrete Fourier Transform.

Unlike most previous approaches, the proposed method does not treat mo-
tion artifacts like so-called flying pixels and tries to remove them by estimating
local motion. These approaches produce visibly nice results but may also result
in incorrect contours of objects (since a flying pixel is caused by a mixture of
multiple distances). Instead, whole phase images are shifted in relation to each
other in order to account for the observed camera motion. This method is com-
putationally inexpensive and does not introduce incorrect measurements. The
approach neglects camera rotations around the roll axis, since this kind of rota-
tion typically causes small effects for short acquisition times and since rotating
a phase image to compensate it would introduce aliasing.

Phase unwrapping to remove ambiguities in depth measurements is a com-
mon task in several research areas, e.g. remote sensing. In the context of depth
imaging, a probabilistic approach to remove ambiguities in a single depth im-
age is proposed in [6]. An optimization is performed based on a cost function
aiming at the removal of discontinuities. In [7] this method is extended to incor-
porate multiple measurements with different modulation frequencies and hence
different ambiguity ranges. A different approach based on a single depth map
is introduced in[8]. The unambiguous depth of an object is inferred here by ob-
serving how much infrared light it reflects. The approach does not handle each
pixel individually, but finds edges in the depth map in order to account for the
different reflectivity of objects, which would otherwise compromise the results.
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Phase unwrapping methods are in general not completely stable and a method to
obtain smooth results in subsequent phase unwrapped depth maps is described
in [9]. Moreover, in [10] phase unwrapping is performed with the help of stereo
information.

3 ZESS MultiCam with Medium-Range Lighting

Recently, a new version of the MultiCam (cf. [11]) equipped with Gigabit Ether-
net, a 3 megapixel color CMOS chip and the 19k PMD chip of PMD Technolo-
gies was developed. Both chips share the same lens utilizing a Bauernfeind prism
with an integrated beam splitter. The heart of the camera is a Xilinx FPGA chip
and the camera features a C-mount lens adapter. See Fig. 1 for a picture and
specifications of the MultiCam.

MultiCam characteristics

Interface Gigabit Ethernet

Lens adapter C-mount

Frame rate 12 fps (up to 80 fps with
reduced 2D resolution)

Color chip Aptina MT9T031

- Resolution 2048 × 1536

- Chip size 6.55 mm× 4.92 mm

PMD chip PMDTec 19k

- Resolution 160× 120

- Chip size 7.2 mm× 5.4 mm

Fig. 1. The MultiCam, a 2D/3D monocular camera, and its specifications

We developed a medium-range lighting system, which can be easily scaled up,
and it was designed to capture large viewing angles, e.g. 40 degrees. The light is
produced by chip LEDs with a maximum continuous optical power of 3.5 Watt,
which are available from Osram (SFH-4750). These LEDs have an emission peak
at 860 nm, the active area is relatively dense unlike large LED arrays and they
feature low and symmetric rise and fall times of only 10 ns. Three prototypes
with up to 26 LEDs with 3.5 Watt continuous optical power each are shown in
Fig. 2. A collimator with a half angle of 11 degrees is mounted on each LED and
the LEDs are adjusted to cover the observed area. With this lighting systems
we can capture scenes up to 70 meters for smaller viewing angles and depending
on the exposure times possible. The device in Fig. 2(c) is mounted on a rotary
table, which was used to simulate camera motions in the experiments.

Measurement results of an outdoor scene are shown in Fig. 3 using only 8
LEDs. The distance to the building is 50 meters. The results demonstrate the
capabilities of this approach with weaknesses at small objects and highly struc-
tured objects due to the limited lateral resolution of the PMD chip.
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(a) Compact 10 LED de-
vice

(b) Flexible 20 LED de-
vice

(c) 26 LED device on a ro-
tary table

Fig. 2. Three medium-range development prototypes with 10, 20 and 26 LEDs
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Fig. 3. Measurement results obtained with the medium-range lighting using 8 LEDs.
A modulation frequency of 20 MHz and an exposure time of 6 ms were used and the
distance to the building is 50 meters.

4 ToF Image Stabilization

Continuous wave amplitude modulation based ToF imaging operates normally
by acquiring four images under different phase shift. Motion artifacts in the
computed depth map occur obviously when measurement samples of objects with
different distances are combined resulting in a so-called mixed phase. However,
when working with PMD chips, motion artifacts additionally occur for different
intensities, e.g. on a checkerboard. Different effective offsets and gains of both
channels of PMD pixels caused by significant variations in the chip will not get
canceled out in the four phase algorithm as when all samples originate from one
PMD pixel. For details on PMD imaging see [12] or [13].

The proposed acquisition procedure is outlined as follows: Firstly, the phase
images are normalized using the calibration method described in Section 4.1.
Then the lateral image shifts between the first phase image and all three con-
secutive phase images, which are caused by rotations around and motions on
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the pitch and jaw axis of the camera (perspective effects can be neglected), are
estimated with the method detailed in Section 4.2. Afterwards, the phase images
are shifted and the standard PMD computations to obtain depth, modulation
amplitude and grayscale images are performed as described in Section 4.3. Am-
biguities of depth measurements in larger scenes can be resolved with the phase
unwrapping approach discussed in Section 4.4 while compensating for these cam-
era motions.

4.1 Intensity Calibration for PMD Chips

When camera motions are compensated by combining measurements of different
pixels, e.g. by using shifted phase images, pixel values must be comparable.
However, this requires an intensity calibration of all PMD pixels to account for
the fixed pattern noise. The same calibration is necessary in most applications,
in which the grayscale image of a PMD camera is utilized in a given task. In
Fig. 4 the raw intensity values for one channel of a phase image are shown.
Current PMD imaging chips utilize three AD converters with different effective
offsets and gains, which results in vertical lines in addition to pixel variations. In
order to perform the normalization, a set of images with different exposure times
of a uniformly lit diffuse glass is acquired. The relative offset and gain for both
channels of each pixel can be estimated based on these images, which enables an
affine normalization of the phase images. The resulting intensity values for one
channel are also given in Fig. 4.

The exact calibration procedure is detailed in the following. Let Γi for Γ ∈
[A,B] and i = 1, . . . , n be n phase images for a PMD channel Γ . The index i de-
scribes here different acquisitions, since the phase is not of importance now. The

pixels of the image are denoted by Γ
(x,y)
i and let ti be the associated integration

time. Then the average pixel value μ
(x,y)
Γ is given by

μ
(x,y)
Γ =

1

n

n∑
i=1

Γ
(x,y)
i . (1)

Fig. 4. Affine normalization of a PMD phase image. Left: original phase image for the
first PMD channel, right: normalized image.
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The affine parameters for each channel α
(x,y)
Γ and β

(x,y)
Γ are calculated with

τi =ti − 1

n

n∑
j=1

tj (2)

α
(x,y)
Γ =

∑n
i=1 τi ·

(
Γ

(x,y)
i − μ

(x,y)
Γ

)
∑n

i=1 τ
2
i

(3)

β
(x,y)
Γ =μ

(x,y)
Γ − α

(x,y)
Γ

1

n

⎛⎝ n∑
j=1

tj

⎞⎠ . (4)

Now the normalized pixel value Γ̂ (x,y) of a PMD channel Γ for an acquired pixel
value Γ (x,y) can be computed with

μα
Γ =

1

|Γ |
∑

(x,y)∈Γ

α
(x,y)
Γ (5)

Γ̂ (x,y) =
(
Γ (x,y) − β

(x,y)
Γ

)
· μα

Γ

α
(x,y)
Γ

. (6)

All recent PMD chips feature a mechanism to remove ambient light (Suppres-
sion of Backlight Illumination - SBI), which enables outdoor imaging. However,
the SBI obviously also effects the intensity values, which will disturb motion es-
timates based on these intensity images. In order to characterize this behavior, a
dataset consisting of 100 images for integration times between 0.1 ms and 5 ms
with a step size of 0.1 ms was acquired. The raw values for both channels A and
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Fig. 5. Response curves of a PMD chip and the calculated as well as corrected intensity
for different exposure times. Shown are the raw values for both channels of a single pixel
and four phase offsets in the first graph and the intensity values using the standard
formula as well as with SBI correction in the second.
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B as well as for the four phase images are displayed for one pixel in Fig. 5(a).
One can clearly observe the linear region of the PMD chip up to 0.8 ms. The SBI
is active for higher integration times. The PMD chip enters the saturation region
for one phase image when applying integration times larger than 2.5 ms. In 5(b)

the resulting phase intensity values I
(x,y)
i = A

(x,y)
i +B

(x,y)
i are plotted. In order

to obtain increasing intensity values a correction was applied as follows. If the

value Γ
(x,y)
i of one channel Γ ∈ [A,B] of a PMD pixel exceeds a threshold, e.g.

γthres = 36500, a normalization term of 3 · |A(x,y)
i −B

(x,y)
i | is added to the phase

intensity I
(x,y)
i . If the intensity response of a PMD chip is known for a given

lens, the real intensity can be determined for an exposure time and modulation
amplitude.

4.2 Motion Estimation

Vandewalle et al. introduced a method for planar motion estimation based on
the Fourier Transformation in [14]. Since fast rotations around the roll axis are
rarely observed in typical situations, the method is reduced to lateral image shifts
for an increased robustness as well as to avoid aliasing when rotating images.

Let f(x) be the reference image and g(x) the actually observed one with
g(x) = f(x + Δx) with Fourier Transformations F (ξ) and G(ξ). Then the fol-
lowing holds

G(ξ) =

∫
g(x)e−i2πξT ·xdx (7)

=

∫
f(x+Δx)e−i2πξT ·xdx (8)

=

∫
f(x̂)e−i2πξT ·(x̂−Δx)dx̂ (9)

=ei2πξ
T ·Δx ·

∫
f(x̂)e−i2πξT ·x̂dx̂ (10)

=ei2πξ
T ·Δx · F (ξ) (11)

with a substitution x̂ = x+Δx.

Therefore, the phase difference ei2πξ
T ·Δx can be obtained given F (ξ) and G(ξ)

with

ξT ·Δx =
1

2π
arg

(
G(ξ)

F (ξ)

)
. (12)

Instead of computing Δx with for a single ξ, Vandewalle et al. argue to construct
a system of linear equations for a set of frequencies and to use the least squares
estimate for Δx in order to avoid aliasing.

4.3 Intra-frame Motion Compensation

High accuracy motion compensation for dynamic scenes including local and
global motion is difficult to perform in real-time, in particular when it serves as
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a pre-processing step and other image processing tasks are should be processed
in parallel. In order to accomplish motion compensation (MC) in real-time, we
simplify the task by considering only global motions, neglecting roll and by re-
stricting image shifts to full pixels. Let Ai and Bi with i = 1, 2, 3, 4 be the phase
images for PMD channel A and B respectively acquired with the i-th phase shift
and let Ii = Ai +Bi be the phase intensity image. With the motion estimation
method detailed in Section 4.2 the lateral image shifts Δi between I1 and Ii for
i = 2, 3, 4 can be determined and rounded to the nearest integer. These image
shift are applied to the associated phase images (can be replaced with pointer
arithmeticians) and the PMD calculations for demodulation are performed.

4.4 Phase Unwrapping

Continuous wave amplitude modulation Time-of-Flight depth measurements do
not measure distances directly, but derive the distance from the phase difference
between emitted and received light. This means that the distance measured is
ambiguous and multiples of the half wavelength λ = c

2ν with c being the speed of
light can be added. If the observed scene contains longer distances than λ and if
the modulation frequency should not be decreased in order the to maintain the
depth resolution, a method to perform a phase unwrapping is required to retrieve
correct distances. In the following, a method which combines the depth maps
obtained with two different modulation frequencies is presented, which extends
the unambiguous range to the lowest common multiple of both half wavelengths.
Let d1, d2, . . . , dn be distances measured with modulation frequencies
ν1, ν2, . . . , νn. Then the most likely absolute distance d̂i = di + ki

c
2νi

of all
measurements combined can be obtained by minimizing the squared difference
of all proposed real distances

mink1,...,kn∈N0

⎧⎨⎩
n−1∑
i=1

n∑
j=i+1

(
di + ki

c

2νi
− dj − kj

c

2νj

)2
⎫⎬⎭ . (13)

The obvious approach is to combine a small frequency (e.g. 1 MHz with an
ambiguity range of 150 m) and a larger frequency with a high depth resolution.
However, this poses a significant challenge to the lighting devices. In practice,
the frequencies must be similar to avoid damages and unstable behavior or low
power lighting. If the size of the set is small, e.g. just two, the minimization
can be performed by just calculating all possibilities (up to a given maximum
distance).

Motion artifacts are even more prominent when phase unwrapping is con-
ducted. However, the motion compensated depth maps acquired with two (or
more) modulation frequencies can also be motion compensated (inter-frame
MC). The camera motion can then be estimated based on both first phase in-
tensity images I1 and the depth maps are shifted accordingly. Alternatively, the
camera motion can be estimated based on all four pairs of phase intensity images
by averaging the image shifts.
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5 Experiments

In Fig. 6 an example for the intra-frame MC is given for a test setup acquired
with an exposure time of 5 ms, a 50 mm lens and two different modulation
frequencies. A motion between phase images of about 1.2 pixels is estimated
and subsequent images with different modulation frequencies are shown. The
results demonstrate that the motion artifacts can be largely reduced. However,
at the edges of objects and high contrast regions some artifacts persist, since
only full pixel shift are applied.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

(a) Color image 17 MHz
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

(b) Color image 19 MHz

Depth map

20 40 60 80 100 120 140 160

20

40

60

80

100

120

D
is

ta
nc

e 
[m

]

9.5

9.55

9.6

9.65

9.7

9.75

9.8

9.85

9.9

9.95

10

(c) Depth map 17 MHz

Depth map

20 40 60 80 100 120 140 160

20

40

60

80

100

120

D
is

ta
nc

e 
[m

]

9.5

9.55

9.6

9.65

9.7

9.75

9.8

9.85

9.9

9.95

10

(d) Depth map 19 MHz
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(e) MC depth map 17 MHz
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(f) MC depth map 19 MHz

Fig. 6. Results for real-time motion compensation experiment involving a moving cam-
era and two modulation frequencies
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Depth maps with phase unwrapping
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(a) Phase unwrapping

Compensated depth maps with phase unwrapping
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(b) Phase unwrapping for MC depth maps

Depth maps with compensated phase unwrapping
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(c) MC phase unwrapping

Compensated depth maps with compensated phase unwrapping
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(d) MC phase unwrapping for MC depth
maps

Fig. 7. Demonstration of severe motion artifacts when performing phase unwrapping.
Results for normal and motion compensated (MC) phase unwrapping based on stan-
dard and motion compensated depth maps.

In Fig. 7 four cases to perform the phase unwrapping are considered: Without
motion compensation, with two motion compensated depth maps, with two nor-
mal depth maps but with inter-frame MC and finally with motion compensated
depth maps and inter-frame MC. The results demonstrate how important the
proposed method is for medium-range depth imaging with phase unwrapping on
mobile platforms or when other camera motions occur.

A more realistic experiment to demonstrate the intra-frame MC is displayed
in Fig. 8. Here a modulation frequency of 20 MHz, a 8.5 mm lens and an ex-
posure time of 10 ms were used. A fast motion was introduced and results in
motion artifacts at the edges of objects, which are successfully removed when
applying the MC. Only flying pixels at the edges of objects remain, which can-
not be corrected without affecting the contours of objects. However, a simple
thresholding with the modulation amplitude usually allow to remove them.

Results for another experiment to demonstrate the inter-frame MC with a
different camera, lens and illumination system are depicted in Fig. 9. The camera
and the illumination system were mounted on a rotation table and depth maps
were acquired with alternating modulation frequencies of 17 and 19 MHz and
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Fig. 8. Experiment to evaluate the intra-frame MC using a single modulation frequency
of 20 MHz

an exposure time of 5 ms. The results show how the incorrect estimation of the
real distances can be reduced at discontinuities, e.g. at the doors. It should be
mentioned here that we observe multi-path reflections on the reflective floor.

The inter-frame is not effective for slow camera motions and short acquisition
times. The angular velocity v which results in an image shift of one pixel between
the first and the last phase image can serve as a criterion and it is calculated
with

v =
α cam

N · t acq
(14)

in degrees per second for an opening angle of α cam, N pixels in direction of the
rotation and an acquisition time of t acq = 3 ∗ (t exp + t ro). Here t exp is the
exposure time for a phase image and t ro is the read-out time of the PMD chip.
In the experiments we get for a horizontal rotation (yaw axis), the 19k PMD
chip and an exposure time of 5 ms a velocity of 14.2◦/s for a 8.5 mm lens and
for a 50 mm lens a critical angular velocity of 2.6◦/s.
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(b) Depth map 17 MHz
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(c) Depth map 19 MHz
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(d) Phase unwrapping
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(e) MC phase unwrapping

Fig. 9. Phase unwrapping experiment on a rotation table. An image shift of 3 pixels
was detected between the first phase images of both acquisitions.

6 Conclusion

Operating a depth camera on a mobile platform poses challenges in general and
for ToF depth cameras motions of the camera during the acquisition on a depth
map results in motion artifacts. The longer the acquisition time is, the more
severe are the motion artifacts. This is in particular a problem when measuring
larger scenes due to required larger exposure times or even when fusing multiple
depth maps for phase unwrapping as well as in order to reduce noise. In this
paper, real-time methods to reduce these motion artifacts significantly are pre-
sented. Based on methods to calibrate the fixed pattern noise and to estimate
image shifts, phase images are aligned before processing in order to reduce the
motion artifacts originating from global motions in the images. Similarly, multi-
ple depth maps are fused with the proposed approach to obtain depth measure-
ments of larger scenes. The approach was evaluated with several experiments to
confirm its capabilities and in order to decide if the methods are required for a
given application.
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On the Calibration of Focused Plenoptic

Cameras
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Abstract. Plenoptic cameras provide a robust way to capture 3D infor-
mation with a single shot. This is accomplished by encoding the direction
of the incoming rays with a microlens array (MLA) in front of the cam-
era sensor. In the focused plenoptic camera, a MLA acts like multiple
small cameras that capture the virtual scene on the focus plane of a
main lens from slightly different angles, which enables algorithmic depth
reconstruction. This virtual depth is measured on the camera side, and
independent of the main lens used. The connection between actual lat-
eral distances and virtual depth, however, does depend on the main lens
parameters, and needs to be carefully calibrated. In this paper, we pro-
pose an approach to calibrate focused plenoptic cameras, which allows a
metric analysis of a given scene. To achieve this, we minimize an energy
model based upon the thin lens equation. The model allows to estimate
intrinsic and extrinsic parameters and corrects for radial lateral as well
as radial depth distortion.

Keywords: focused plenoptic camera, plenoptic 2.0, metric calibration,
calibration, depth distortion, Raytrix.

1 Introduction

While normal 2D cameras only record the intensity of light at a certain position
on the image sensor, plenoptic cameras capture the complete 4D lightfield on po-
sition on the image sensor, plenoptic cameras capture the complete 4D lightfield
on the sensor plane. The 4D lightfield is an intensity function that not only de-
pends on the position on the imaging plane, but also the incident direction. This
additional information allows an algorithmic 3D reconstruction of the captured
scene [19,4,10,11].

The idea of plenoptic cameras originates in the early 20th century. First de-
scribedusing a grid of pinholes inside a cameraby Ives in 1903 [6], Lippmann in 1908
proposed the use ofmicrolenses in front of the image plane [8]. Emerging from these
concepts, a lot of research on plenoptic cameras has been done, varying from se-
tups withmultiple independent cameras over such oneswithmicrolenses in front of

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 302–317, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Detail of a raw image captured by a plenoptic 2.0 camera by Raytrix. Ob-
jects closer to the camera are visible in more microlens images. The different types
of microlenses can be distinguished in this image by comparing the sharpness of the
projections.

an image sensor. Several improvements to the design have been proposed, for ex-
ample, cameras manufactured by Raytrix1 employ multiple types of microlenses
to accomplish a larger depth of field. Based on the different types of input data,
a multitude of different concepts for estimating depth, like EPI stacks [19,18,4,2],
focus stacks [10,11], or multiview stereo approaches [7,1] has been introduced.

For any kind of 3D camera, it is of interest to be able to metrically measure
the depth and determine the extent of a captured object. Hence, a lot of work
has been put into calibrating plenoptic cameras. Vaish et al. [16] and Svoboda
et al. [15] work on calibrating plenoptic multi-camera arrays while Dansereau et
al. [5] deal with the calibration of unfocused lenslet-based plenoptic cameras like
the ones commercially available from Lytro2.

This paper concentrates on the metric depth reconstruction with focused
lenslet-based plenoptic cameras or plenoptic 2.0 cameras [9] as commercially
available from Raytrix [12] (see figure 3). The idea of depth reconstruction with
a focused plenoptic camera is to find the virtual point an object point is focused
on by the main lens. Since points at different distances to the main lens are
focused upon different distances behind the main lens, a reconstruction of the
original 3D scene is possible.

The location a scene point is projected to on the sensor side of the camera
does not only depend on the point‘s distance to the camera, but also on the
focal length and focus distance of the main lens. A metric surveying of objects
is impossible without knowing the exact parameters of the camera. Our contri-
bution is to introduce a model of how to estimate those parameters to calibrate
a plenoptic 2.0 camera.

The paper is organized as follows. First, a brief introduction to camera mod-
els is given and afterwards, the depth estimation algorithm implemented in a

1 see www.raytrix.de
2 see www.lytro.com
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Raytrix camera is described in terms of these models. In section 2.3, distor-
tion models are introduced, which allow for the correction of lens errors. Here
we propose a novel type of distortion model, which corrects for distortion in
depth dimension. The effect of this type of distortion is that objects located
on a plane perpendicular to the optical axis are projected to different virtual
depths depending on their position in the frame. Section 3 describes the final
calibration model, after which we show results on a number of different camera
configurations. Finally, we give an outlook on possible future work.

2 Theoretical Background

The concept behind calibrating a camera lens combination is that multiple im-
ages of a known object (e.g. a checkerboard or a dot grid) are taken. The known
dimensions of the model and the extracted projections on the sensor are then
leveraged to estimate the intrinsic and extrinsic camera parameters. The extrin-
sic camera parameters describe the position and rotation of the model points
in relation to the camera, while the intrinsic camera parameters parametrize
the projection through the lens. Additionally, correction parameters like lens
distortion must be calculated.

In this chapter,we introduce the theoretical background for these topics. First, a
short introduction to cameramodels is given, which is an important prerequisite to
understand depth estimation with a plenoptic camera. Second, we shed some light
on lens distortion models and introduce the proposed depth distortion model.

2.1 Camera Models

In order to describe the perspective projections and optical properties of cameras,
multiple camera models have been proposed over time. One of the most simple
models is the pinhole camera model, which is often used in computer graphics. In
this model, points in the object space are projected through the optical center
(the pinhole) onto an image plane resulting in a 2D representation of the 3D
object space.

While this model is useful for generating 2D images in computer graphics or
even for calibrating 2D cameras [20], any depth information is lost by the pro-
jection. Hence, a more physically motivated model has to be chosen to describe a
plenoptic camera. The thin lens model describes the distance between an object
in front of the camera and the virtual point where the light emitted from that
object is focused on behind the lens.

Looking at figure 2, one can see rays emerging from the two object points O1

andO2. Each ray is bent according to the focal point of the lens and focused upon
I1 and I2, respectively. The intercept theorem leads to the thin lens equation,
which describes the connection between an object at a distance b along the
optical axis from the camera, the distance of its focused representation a and
the focal length f of the lens as

1

f
=

1

a
+

1

b
. (1)
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H
Main Lens

O1

Image Plane

a1

b2 a2

O2

I1

I2

b1

f f

Fig. 2. Thin Lens Camera Model. Object points Oi are projected through the lens and
focused to virtual image points Ii behind the lens. If a virtual image point lies upon
the image plane, the point is in focus and therefore captured sharply, while points
away from the focus plane are projected in front or behind the image plane and hence
appear blurred. This effect is called depth of field (DOF).

As one can see in figure 2, this model also describes the effect of depth of field
(DOF): an object that is at the focus distance of the camera (in this case a2)
is focused precisely onto the image plane resulting in a sharp representation of
that point in the image, while an object in front (or behind) that focus plane is
focused behind (or in front) of the image plane (O1 and I1). Hence, the light of
an object point that is out of focus influences a larger area, resulting in a blurred
representation of that point.

The thin lens model only holds for lenses whose thickness is negligible in
comparison to its focal length. As this must not always be the case, the thin lens
model can be extended to the thick lens model. This model includes an offset (the
lens thickness) to the model, hence, the thin lens model is a special case of the
thick lens model. It can be shown that any combination of lenses – in particular
any single lens – can be approximated by the thick lens model, although multiple
effects like aberrations or distortion are not included. While with normal camera
lenses, the difference between both models is negligible, especially in the field
of microscopy the thin lens model can not be used to describe the optics of the
lens.

Consequently, the thick lens model would be the perfect model to build the
basis for the desired calibration algorithm. Unfortunately, the given information
is generally not sufficient to distinguish between the thin lens and the thick
lens model, as this requires knowledge of the absolute distance between a point
in front and one behind the camera. Hence, the lens thickness is impossible to
estimate by only using calibration targets. For this reason, we will use the thin
lens model for the remainder of the paper in order to model the main lens.

If the coordinate system is placed with its origin at the intersection of the main
lens axis with the lens plane and the z-axis running along the main lens axis, the
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thin lens projection can be expressed as matrix multiplication in homogeneous
coordinates

ĩ = Ao, i =
ĩ

ĩ4
,

with i =

⎛⎜⎜⎝
i1
i2
i3
1

⎞⎟⎟⎠ , ĩ =

⎛⎜⎜⎝
ĩ1
ĩ2
ĩ3
ĩ4

⎞⎟⎟⎠ , o =

⎛⎜⎜⎝
o1
o2
o3
1

⎞⎟⎟⎠ and A :=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

f 1

⎞⎟⎟⎠ . (2)

Above, the point o is the object point in front of the camera, i the virtual point
onto which o is projected by the main lens, and A the projection matrix. The
multiplication Ao leads to the representation ĩ of i in homogenous coordinates,
from which i can easily be recovered.

2.2 Depth Estimation

The image in a plenoptic 2.0 camera is captured through a microlens array, see
figure 1. This allows algorithms to estimate the virtual depth of a given scene.
As described by the thin lens model, an object point is focused behind the main
lens onto a virtual image point. The cone of rays between this virtual point and
the lens is split up by the microlenses and focused at different points onto the
image plane, see figure 3. As only the position of these projections is of interest,
the pinhole model is sufficient to describe the effect of the microlenses.

Looking at just the microlens array, in figure 4 one can see how the projec-
tion i1 and i2 arise as the projections of the main lens’ virtual image point i

Main LensMicro LensesImage Plane

a
b

bL

h

D

D

D i

i1

i2

Fig. 3. Schematics of a plenoptic camera. An object point (not shown) is projected
through the main lens (right side) onto the virtual image point i. The resulting light
cone is split up by the microlenses and focused onto the image plane at i1 and i2.
Thus, depth estimation can be performed by finding corresponding projections and
calculating the parallax.
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Micro LensesImage Plane

D

D

D

i

i1

i2

c1

c2

b
a

Fig. 4. The Raytrix plenoptic camera estimates depth with correspondence search in
the microlens domains. The result of the internal algorithm is a virtual depth v := a/b
for each pixel given in multiples of the distance b between microlens array and image
plane.

onto the image plane. The depth reconstruction works similar to that in stereo
cameras: a pair of microlenses is chosen, corresponding points are identified and
triangulated. To identify matching projections in multiple lenses, pixel patches
are compared. The usually chosen photoconsistency measure is the sum of ab-
solute differences over small pixel patches along the epipolar lines. For this to
work, sufficient object structure and image contrast are needed.

We define the virtual depth v of the image point i as the distance between i
and the MLA, given in multiples of the distance b between the sensor and the
MLA, as returned by the depth estimation algorithm of the Raytrix camera.
Thus, v = a

b , see figure 3. As one can see in figure 4, the virtual depth can
be computed from the detected correspondences using the intercept theorem.
Assuming the distance D = ‖c1 − c2‖ between the microlens centers c1 and c2
to be known, the intercept theorem leads to

v :=
a

b
=

‖i− c1‖
‖i1 − c1‖ =

D

‖i1 − i2‖ . (3)

To calibrate this model, we need to estimate this distance b as well as the
distance h between the main lens and the MLA. Knowledge of both allows virtual
depths to be transformed to metric distances: bL = h + v · b, which can be
projected in front of the camera by the thin lens equation (see eq. 1).

The virtual depth can also be used to reconstruct the refocused image [13].
This refocused image is equivalent to a picture a common 2D camera would have
taken. Due to the increasing redundancy for higher virtual depths, the relative
resolution decreases. As each point has to be projected at least 4 times – twice
for every dimension of the image – for depth estimation to work the resolution
of the refocused image is one quarter of the raw image.
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2.3 Distortion Models

Lateral Distortion. Distortion describes errors in the geometric projection
through a lens. It represents a deviation from the ideal rectilinear projection
which maps straight lines to straight lines. Distortion can follow many patterns,
but in general it is primarily radially symmetric due to the symmetric design of
a lens.

However, in applications the distortion is not always perfectly radially sym-
metric. Therefore, multiple extensions of the pure radial distortion model have
been introduced. One of the most prominent and widely used is Brown’s distor-
tion correction model from 1966 [3],

xu =(xd − xc)(1 + k1r
2 + k2r

4 + · · · )
+ (p1(r

2 + 2(xd − xc)
2) + 2p2(xd − xc)(yd − yc))(1 + p3r

2 + · · · ),
yu =(yd − yc)(1 + k1r

2 + k2r
4 + · · · )

+ (p2(r
2 + 2(yd − yc)

2) + 2p1(xd − xc)(yd − yc))(1 + p3r
2 + · · · ).

(4)

Here the point (xu, yu) is the undistorted and (xd, yd) the distorted image
point. The parameters ki describe the radial distortion and the parameters pi
the tangential distortion. (xc, yc) is an offset as the origin of the distortion is
not necessarily the center of the image. The radius r is defined by the Euclidean
distance to the origin of distortion

√
(xd − xc)2 + (yd − yc)2.

Brown deducts this formula from the thin prism model, which states that
any skew of lenses inside a lens can be obtained by combining a perfect lens
which is also perfectly aligned with a thin prism. The distortion model was
designed to be an approximation to ray-tracing. In general, the even degrees of
the polynomials are predominant. Hence, in most calibration algorithms, only
these degrees are taken into account. The distortion model we use includes the
coefficients k1, k2, p1, p2 and p3.

Distortion in Direction of the Optical Axis. A second kind of distortion is
that of distortion in direction of the optical axis which in this paper we term the
depth distortion. It originates from the Petzval field curvature which describes
a slight change of focal length for points at greater distance from the optical
axis [14]. This kind of distortion does not effect the position of a point in lateral
direction, but the distance it is projected to in depth dimension. Hence, in 2D
imaging it would only result in a slight blur at the image corners. But as one
can observe in figure 5, the effect leads to a depth distortion for the plenoptic
camera. As this kind of distortion behaves similarly to the lateral distortion, we
model it with a structurally similar formula depending on the off-center radius r.

Although in this way, this kind of distortion can be easily compensated for,
another aspect has to be taken into account as well. The depth distortion changes
over the depth range of the camera. Therefore, the distortion does not only
depend on the radius but also on the virtual depth. We think the reason for
the change in the depth distortion over the depth range is that the main lens is



On the Calibration of Focused Plenoptic Cameras 309

Fig. 5. Color-coded 3D representation of a plane captured by a Raytrix camera with a
standard Nikon AF Nikkor 50mm 1:1.8D lens. The depth distortion bends the plane,
with the effect becoming stronger with increasing radius from the center. The difference
between the estimated depth at the center and the border is about 0.5 virtual depth
units, corresponding to approximately 3mm if reprojected in front of the camera.
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Fig. 6. Depth radial distortion for different virtual depths. The depth distortion in-
creases in magnitude with increasing radius from the image center, but also with in-
creasing virtual depth. The dependence on virtual depth is approximately linear.
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optimized in a way that the effect of Petzval field curvature is minimal at the
image plane, while the focused plenoptic camera calculates depth behind this
plane. Hence, the main lens correction is not sufficient in this scenario.

Further experimental analysis of the depth distortion suggests that the dis-
tortion changes linearly with the virtual depth. Figure 6 visualises this behavior.
Thus, we suggest calculating the depth distortion depending on the radius which
is linearly adapted by the virtual depth,

r′ =r · (s1 + vd · s2) (5)

vu =vd + t1r
′ + t2r

′2 +3 r
′4, (6)

where vu is the undistorted and vd the distorted virtual depth, respectively,
while si are the radial and ti the depth distortion coefficients to be determined
during calibration.

3 The Calibration Model

The main idea behind the calibration is to capture a target with a known pattern
(in our case a dot pattern with a known grid size – see figure 7(a)). These dots
are detected in the image and their virtual depth is calculated. We now need to
establish the model parameters such that the detected virtual points are equal
to the projection of a model grid with the correct size.

To detect these virtual points first the virtual depth of the given scene and
the refocused image have to be calculated as described by Perwaß[13]. The dot
pattern has to be detected and positions have to be converted to metric distances.
The pixel size is known but due to the different resolution of the depth map and
the refocused image it has to be adapted.

(a) Target capture setup (b) Linear axis used to measure the ground truth

Fig. 7. Experimental setup to (a) capture individual targets and to (b) measure the
ground truth depth of a target plane
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parameter model variable number of unknowns
in
tr
in
si
c

focal length f 1
focus distance h 1
distance between MLA and sensor b 1
distortion offset xc, yc 2
lateral distortion ki, pi 5
depth distortion si, ti 5

ex
t. rotation Rj 3

translation Tj 3

total 21

Fig. 8. Parameters to be optimized for during calibration

As in 2D calibration approaches, the unknown variables can be divided into
two groups: the extrinsic and the intrinsic camera parameters, see figure 8. The
former describe the position and rotation of the calibration target (or the camera,
depending on the point of view), the latter the characteristics of the modeled
plenoptic camera like focal length and the distance between the image plane
and the modeled lens. A parameter specific to plenoptic cameras is the distance
between the microlens array and the image plane (corresponding to the factor
between virtual and metric depth). Due to imperfect lenses, we also have to
compensate for distortion. For that, the distortion models previously introduced
will be used.

The parameters are estimated by minimizing the residual between the rotated,
translated and projected model points (which is equivalent to a rotated and
translated camera) and the measured image points. The distortion model is
applied to the measured points as they are supposed to rectify images. The
residual, which depends on the unknowns summarized in figure 8, is given by

R =

C∑
j=1

Nj∑
i=1

(dist(pji)− πA(TjRjmji))
2, (7)

where C is the number of targets used for calibration, Nj is the number of points
found on target j. For each i, j, the vector pji represents the measured point,
mji the corresponding model point, Rj the rotation matrix of target j and Tj

the translation matrix of that target. The projection πA is computed according
to the thin lens camera model and depends on the projection matrix A, i.e.
ultimately only on the focal length f , see equation 2. dist(·) represents both the
lateral (see section 2.3) as well as the depth distortion (see equation 6).

As can be seen in figure 8, we need 15 parameters to describe the intrinsic
characteristics of the camera and 6 for the position of each target. Hence, for C
targets, a total of 6C + 15 parameters are used.

As the overall energy is non-convex and has local minima, for more robust
results, the optimization proceeds in several steps. First, only the initial pose
is estimated. For this, the parameters for focal length f , focus distance h and
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multilens array distance b are initialized with their theoretical quantities from
the technical specifications of lenses and cameras. As these values are usually
close to the final results, this is a good choice to start the optimization with.
However, due to small deviations in manufacturing, they might not be exact,
and we find that optimization is still required.

Afterwards, all model parameters except for the distortion are estimated. If a
good initialization for the distance b between the MLA and the sensor is unknown
and therefore might be far off, we suggest an iterative approach to determine this
parameter: should the change in b be above a certain threshold after optimizing
the whole model for the first time, all parameters except b are reset to the initial
values. This is suggested especially for higher focal length as the algorithm might
otherwise converge to local optima which are far off.

Finally, the distortion parameters are computed. As the undistorted model
already tried to (erroneously) compensate for the distortion, we suggest iterating
this part with a linear scaling factor to the lateral distortion, which is gradually
phased out during optimization iterations.

For all optimization steps above, the Matlab implementation of the sequen-
tial quadratic programming (SQP) algorithm was used, which proved to be suf-
ficiently accurate and efficient. Depending on the number of targets and the
number of points on each of these the approximate computation time is between
one to fifteen minutes.

4 Results

In order to evaluate the calibration, we use a linear axis as shown in figure 7(b) to
generate ground truth data. A target showing a random noise pattern is placed
perpendicular to the optical axis of the camera and moved along this axis, and
we estimate the virtual depth of the captured scene. Due to possible slight skew
of the target and depth distortion, a skewed paraboloid was fitted to the data
and only the depth measured at the extrema of the paraboloid – i.e. the center of
the distortion – was used for the virtual depth. This paraboloid was also used to
estimate the depth distortion for different virtual depths. In addition, the actual
real-world distance between the image sensor and the target was measured. This
way, it is possible to compare the real distance between camera and object to
the one obtained from calibrating the camera system.

To compare this ground truth data with the calibration parameters from the
optimization, the estimated distances for various virtual depths were reprojected
in front of the camera according to the thin lens model and compared to the
measured data. We observe that absolute distances can generally not be esti-
mated, which is the expected behaviour. On the one hand, the relation between
the virtual depth and the relative change in metric distances is very similar if
focal length, focus distance and distance to the object are increased simultane-
ously. On the other hand, as the lens thickness is neglected, it is not assured
that the model can fit reality. Hence, there is a fixed offset of as much as 20cm
between the calculated and the measured sensor-target distance. This error does
not improve by using more points or targets.
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Fig. 9. A comparison shows that the measured ground truth data (green) and the data
calculated from the calibration (red) correspond quite well (left axis). The difference
between both graphs is plotted in black (right axis). The average relative error is
only 0.36mm, while the absolute error (see text) amounts to 245mm. Three targets
with a total of 2055 points were used for this calibration.

However, if we correct for this fixed offset and only consider the relative differ-
ences between the various virtual depths, the results fit reality very well. Figure
9 shows both the measured depth curve (green) and the shifted estimated curve
(red). Two kinds of errors can be seen. On the one hand there is some noise
present in the ground truth. This is due to measurement errors and the stan-
dard deviation of the estimation. On the other hand, systematic errors can be
seen: the error is not completely random. This might be due to inaccuracies while
identifying the marks on the targets, or because of improperly printed targets –
we have experimented with this, and an error of 1-2% in the distance between
the spots would explain the difference between the two curves quite closely.

We now discuss to what extend other parameters influence the quality of the
calibration. First of all, the number of targets used for the calibration plays an
important role. The more targets used, the better and more robust the results, see
figure 10. This is not surprising, as more data generally works towards reducing
the influence of deviations in measurements on the error. More input data may
also be generated by using a finer dot grid on the targets. Experiments show
that although the quality of the estimate improves with the number of points
per target, the number of targets is generally more important. In general, we
suggest using at least 3 targets with a few hundred points each.
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Fig. 10. The number of images of targets used for calibration plotted against the
average relative error. The data has been generated using multiple camera lens com-
binations. Due to only few samples with more than 9 images used the curve is not as
monotonous as expected.

We have compared multiple lenses on the same camera, and the results for
the distance between the sensor and the MLA are robust, that is this distance
is approximately the same for all lenses. Another point that is important for
calibrating plenoptic cameras is that the actual focal length and focus distance
change for different focal settings of the lens. As one can see in figure 11, the ef-
fective focal length of a Zeiss Makro Planar T* 100mm f/2 ZE is between 110mm
and 130mm depending on the focus distance. This corresponds to the observed
behaviour when mounted on a DSLR.

Furthermore, one can see that the results for the R29 are better than that
of the R5. This is due to several reasons. First, because the R29 creates larger
and sharper images as well as has a higher depth resolution. Second, the R5’s
ground truth data is noisier than that of the R29. Third, the wide angle lenses
used with the R5 are more difficult to calibrate.

Figure 12 shows how depth values on a plane are corrected by the depth dis-
tortion estimation. While figure 12(a) shows initial erroneous depth estimates in
virtual depth for different virtual depths and radii, correcting this data by the
introduced distortion model as shown in 12(b) leads to considerably improved
results. There is close to no systematic error present. This is particularly re-
markable as the correction works on the whole depth range, while the targets
used for the calibration only cover part of it.
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declared on lens computed from calibration
camera dot spacing focal length focus distance focal length focus distance difference

R
5
M

25 300 22.60 300.63 4.22
25 500 24.59 552.55 7.21
50 500 55.93 607.89 1.25
50 700 51.29 741.58 7.33
75 900 79.12 1036.24 3.09

R
2
9
M

4 50 440 55.39 444.82 1.81
16 50 440 56.07 450.45 1.27

50 500 64.11 491.10 1.60
100 440 107.35 332.85 2.00
100 500 131.37 508.46 1.13

4 100 700 119.50 734.66 1.86
16 100 700 120.15 741.30 1.90

Fig. 11. Declared versus calculated values depending on focal length and focus distance
for different cameras and lenses and spacing of the target dots. If no dot spacing distance
is given above, the values were averaged over targets with spacing between 2mm and
8mm. All distances are given in millimeters. In addition, the average relative difference
between the ground truth and the projected depth curve is given.
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(a) Uncorrected depth distortion.
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(b) Corrected depth distortion.

Fig. 12. Depth distortion over different radii and virtual depths. The depth distortion
increases with higher virtual depths and radii. The error is given in virtual depth units.

5 Conclusion

We have presented a way to compute a metric calibration for plenoptic 2.0 cam-
eras. Based upon the thin lens equation, a quadratic residual was determined,
which can be minimized by standard optimization techniques. In addition, dis-
tortion is taken into account. Here, a newly developed model was presented,
which corrects for depth distortion over varying virtual depths and radii.
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We have tested our method on a number of different camera models available
from Raytrix. The results show that although the absolute distance between
an object and the camera can not be precisely estimated, the relative distances
between the virtual depth levels are calculated correctly. The depth distortion
model leads to an accurate correction of the data over the complete depth range,
even if calibration targets only cover part of it.

In the future, we plan to extend the presented model. Investigating another
lateral distortion model might be interesting, which describes the tangential
distortion as a tilt of the main lens. Wang et al. [17] show that in terms of quality,
this is equivalent to the standard model. However, due to the information on the
tilt of the main lens, the correction of the depth distortion as well as the general
depth calibration might be improved.

Another factor which has been neglected are the microlenses itself. First,
calibration might improve if done for each type of microlens separately. Second,
experiments suggest that distortion within the microlenses influences the depth
estimation. Hence, we think that an extension of the model which can correct
for the lateral distortion within the microlenses can further improve results.
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