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Abstract. An unknown process is generating a sequence of symbols,
drawn from an alphabet, A. Given an initial segment of the sequence,
how can one predict the next symbol? Ray Solomonoff’s theory of in-
ductive reasoning rests on the idea that a useful estimate of a sequence’s
true probability of being outputted by the unknown process is provided
by its algorithmic probability (its probability of being outputted by a
species of probabilistic Turing machine). However algorithmic proba-
bility is a “semimeasure”: i.e., the sum, over all x ∈ A, of the condi-
tional algorithmic probabilities of the next symbol being x, may be less
than 1. Solomonoff thought that algorithmic probability must be normal-
ized, to eradicate this semimeasure property, before it can yield accept-
able probability estimates. This paper argues, to the contrary, that the
semimeasure property contributes substantially, in its own right, to the
power of an algorithmic-probability-based theory of induction, and that
normalization is unnecessary.
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1 Introduction

This paper is about whether a certain property of algorithmic probability (ALP)
– namely, its so-called “semimeasure” property – should be regarded as a “bug”
(i.e., as a source of theoretical weakness, that must be worked around and cor-
rected for) or as a “feature” (i.e., as serving a useful or necessary function) within
the context of an ALP-based theory of inductive reasoning. I will begin by de-
scribing ALP and its application to inductive inference. Next I will describe the
semimeasure property of ALP, and explain why it is commonly considered to be
a bug that must be eradicated and patched over with an ad hoc normalization
procedure. Finally I will contend that this negative assessment of the semimea-
sure property’s worth is incorrect. I will argue that the semimeasure property is
properly seen as being a valuable and important feature of ALP, which makes
a major contribution to the power, scope and elegance of an ALP-based theory
of inductive reasoning. I will demonstrate that to normalize ALP is to pay a
high price, in terms of lost theoretical elegance, in order to attain a result – the
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elimination of the semimeasure property – that is wholly undesirable in the first
place. It is to “cut off the nose of ALP to spite its face”, so to speak.

2 Notation

The symbol, ∧, denotes the empty string, “”. |x| denotes the length, in symbols,
of the string, x. E.g., | ∧ | = 0 and |ABC| = 3. xy denotes the concatenation
of strings x and y. ∧x = x = x∧, and |xy| = |x| + |y|. The prefixes of a string
include all initial segments of the string. Every string is a prefix of itself, ∧ is a
prefix of every string, and x is a prefix of xy.

3 Algorithmic Probability (ALP)

The concept of ALP involves a type of computing device that I shall here call a
Solomonoff machine. Such a machine is a finite state automaton equipped with
an indefinitely expandable internal working memory, which accepts a sequence
of randomly generated binary digits as input, and which emits another sequence
of binary digits as output. At each step, the machine either might or might
not accept a randomly generated digit of input, and might or might not emit
a digit of output. Over the full course of its operation it might accept either a
finite, or an infinite, number of input digits, and it might emit either a finite,
or an infinite, number of output digits. It has no capacity to retract or modify
its output, so each digit of output is “set in stone” the moment it is produced.
The indeterministic process that generates its input is “fair”, 0s and 1s being
equiprobable.

A Solomonoff machine can be concretely realized as a probabilistic “mono-
tonic” Turing machine with three tapes, these being: (i) a two-way, read-only,
initially blank work tape; (ii) a one-way, read-only input tape pre-inscribed with
an ongoing randomly generated binary sequence; and (iii) a one-way, write-only,
unidirectionally accessible, initially blank output tape with the alphabet, {0, 1}.

Let Sx denote a particular Solomonoff machine (having some particular state-
transition table).

The string, y, encodes the string, z, on Sx, iff any input to Sx prefixed by
y will result in Sx’s output being prefixed by z. (So, for example, if Sa’s out-
put must start with 11 provided its input starts with 010, then 010 encodes
11 on Sa.)1

Let Fx be the function computed by Sx. Fx(y) = z iff z is the longest string
encoded by y on Sx. (So, for example, if 010 encodes 11 on Sa, but if it encodes
neither 110 or 111 on Sa, then Fa(010) = 11.)

A given Solomonoff machine will usually produce any one of a variety of differ-
ent outputs with different probabilities, its output depending on which particular
random input it is fed with. Let Px denote the probability distribution, over bi-
nary output strings, associated with Sx. Px(z) = q just in case the probability

1 This is similar to the notion of Educated Turing Machine in [1, sec. 4][2, sec. 2.3].
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of Sx’s output being prefixed by the binary string, z, is q. Px(w|z) denotes the
conditional probability of Sx’s next symbols of output constituting the binary
string w, given that Sx’s output to date is z. Px(w|z) = Px(zw)/Px(z).

The string, p, is a program that causes Sx to simulate Sy, iff, for any string
z, Fx(pz) = Fy(z). In other words, the effect of Sx receiving an input pre-
fixed by a program that causes Sx to simulate Sy is to cause Sx to “change
personalities” (so to speak), by thereafter exhibiting input-output behavior in-
distinguishable from that of Sy. (∧ is a program that causes every Solomonoff
machine to simulate itself.)

A universal Solomonoff machine is a Solomonoff machine that can be pro-
grammed to simulate any Solomonoff machine. That is, if Su is universal,
then for any Solomonoff machine, Sx, there is a program that causes Su to
simulate Sx.

Let the reference machine, Sm, be some particular universal Solomonoff ma-
chine that has been selected, by us, to serve as our benchmark for measuring
the ALP of strings. The ALP of any string, x, is simply Pm(x). That is, a
string’s ALP is the probability of our reference machine’s output being prefixed
by the string. ALP is obviously machine-dependent, in the sense that the ALP
of a string will tend to vary depending on which particular universal Solomonoff
machine we choose to be our reference machine.

4 The Semimeasure Property of ALP

A probability distribution, ρ, over binary sequences is a measure if and only if
ρ(x) = ρ(x0) + ρ(x1) for any string, x. In other words, it is a measure if the
conditional probabilities it assigns to the next symbol after x being a 0 and
to the next symbol after x being a 1 must always, for any x, sum to unity.
On the other hand, ρ is a semimeasure if and only if there is some string, x,
such that ρ(x) > ρ(x0) + ρ(x1). For example, suppose that ρ(010) = 0.6, while
ρ(0100) = 0.3 and ρ(0101) = 0.1. This being so, not all the probability assigned
by ρ to the sequence “010” is split between and inherited by the two, longer
strings “0100” and “0101”. Some of the shorter string’s probability (0.2 of the
0.6) instead “goes missing”, so to speak. This makes ρ a semimeasure.

Recall that Pm(x) is the probability of Sm’s output being prefixed by x.
Having outputted x, Sm must next do one of three different things: (i) it might
output another 0; (ii) it might output another 1; or (iii) it might stop out-
putting 0s and 1s once and for all as a result of either having halted or having
gone into an infinite, unproductive loop. Sm always, for any x, has a non-zero
probability of doing the last of these things (there being a non-zero probability
that Sm’s random input will start with a program that causes it to simulate a
second Solomonoff machine that will always, regardless of its input, output x
and then halt). It follows that Pm(x) > Pm(x0)+Pm(x1), which makes Pm a
semimeasure, not a measure.
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5 ALP’s Application to Induction, and the Semimeasure
Problem

ALP was discovered by Ray Solomonoff, who used it as the central ingredient of
a theory of inductive reasoning [3, 4]. The theory concerns a method for accom-
plishing a certain type of sequence prediction task. By way of illustrating the task,
let’s imagine that a black box has fallen to Earth from a place unknown. Attached
to the black box’s exterior is a symbol-stamping mechanism, through which is
threaded an initially blank tape. Casual inspection of the mechanism reveals that
it is capable of stamping only two types of symbols onto the tape – 0s and 1s –
and that each symbol will be stamped on the tape to the immediate right of its
predecessor. Both the ordering of these symbols, and the timing of each symbol’s
delivery, are under the control of a process hidden within the black box. We have
little or no idea what this process might be, but the gradually accumulating se-
quence of symbols it produces is exposed to our view. The black box receives no
input. Let the black box task be the task of making a probabilistic prediction about
the black box’s next symbol of output, based on its observed output-to-date.

Two types of method for accomplishing the black box task may be distin-
guished. A three-way method is a method which accepts any given binary string
of the black box’s output-to-date, and then assigns conditional probabilities to
each of three distinct possibilities, these being: (i) the next symbol will be a 0;
(ii) the next symbol will be a 1; and (iii) the black box will never output another
0 or 1 again, and so the next symbol on the black box’s output tape (together
with all subsequent symbols) will default to (where represents a blank). A
two-way method, on the other hand, assigns conditional probabilities to only two
possibilities: (i) the next symbol will be a 0; and (ii) the next symbol will be a 1.
A two-way method should obviously be used only if the possibility of the black
box’s output terminating can be dismissed out of hand. Such might be the case
because one knows from the outset that the process operating in the box will
keep producing binary digits forever (e.g., perhaps one has been told as much
by a trustworthy source who has looked into the box).

Let μ(x) denote the true, objective probability of the black box’s output being
prefixed by the binary string, x, and let μ(y|x) denote the conditional probability
of the black box’s next symbols of output comprising the string, y, given that
its output-to-date is x. μ(y|x) = μ(xy)/μ(x). If the process in the black box is
somehow guaranteed by facts about its constitution to keep producing 0s and
1s forever, then μ will be a measure. Otherwise, if there is a non-zero objective
probability of the black box’s output terminating at some point, then μ will be a
semimeasure. If the process in the black box is deterministic then, for any string
x, either μ(x) = 0 or μ(x) = 1. If it is indeterministic then there will be some
strings x such that 0 < μ(x) < 1.

The essential idea behind Solomonoff’s theory of induction is that we should
predict the output of the black box (or equivalent symbol source) by assuming
it has the same output producing dispositions as our reference machine. In its
simplest form, the idea is that we should use Pm(x) as an estimate of μ(x) (or,
equivalently, Pm(y|x) as an estimate of μ(y|x)). So, for instance, if the reference
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machine would, if its output-to-date were “0011”, have a probability of 0.3 of
next outputting a 0, and if the black box’s output-to-date is “0011”, then, so the
idea goes, we should assign a probability of 0.3 to the black box’s next symbol
of output being a 0.2

Solomonoff focused specifically on using ALP to develop a two-way method for
predicting the extension of a binary string. He seems not to have considered us-
ing it to construct a three-way method. Hence, at least as far as Solomonoff was
concerned, μ must be a measure, and there are only two things that the black
box might legitimately do next – output a 0, or output a 1. (Indeed, Li and Vi-
tanyi report that Solomonoff, “viewed the notion of measure as sacrosanct” [12,
p. 280].) But, as we have seen, Pm is a semimeasure, and there are, at any point
in time, three things the reference machine might do next – output a 0, output
a 1, or stop producing binary output. Hence a problem arises (the “semimeasure
problem”, as I will call it). Since a two-way method must divide conditional prob-
ability only between the possibilities of the next symbol being a 0 or of it being a
1, the conditional probabilities it assigns to these two possibilities should sum to
unity. However, because the reference machine divides probability between three
future possibilities, not just two, the conditional probabilities it apportions to 0
and to 1 may (and in fact, always will) sum to a value less than unity.

Solomonoff addressed this problem by describing a normalization operation
that converts the semimeasure, Pm, into a corresponding measure, Pm′ [4, 13].
This operation works by, in effect, taking the probability of the reference ma-
chine receiving a random input that will cause it to terminate its output after
outputting the binary string, x, and then redistributing this probability back
over all random inputs to the reference machine that will cause it to output at
least one more 0 or 1 after x. This is done recursively, for progressively longer
strings, x. That is:

Pm′(∧) = 1

Pm′(x0) = Pm′(x)
Pm(x0)

Pm(x0) + Pm(x1)

Pm′(x1) = Pm′(x)
Pm(x1)

Pm(x0) + Pm(x1)

2 Solomonoff’s theory of induction is to be contrasted with the closely related Mini-
mum Message Length (MML) approach of Wallace and Boulton [5–10]. For a com-
parison of the two approaches, see [1] and [2, p. 404]. Some proponents of MML
argue that Solomonoff’s theory isn’t really a theory of “induction” at all (see, for
instance, [2, p. 405–407] and [11, p. 930–931]), with one of the thoughts being that,
whereas genuine induction involves reasoning from a body of observations to a gen-
eral hypothesis, Solomonoff’s procedure yields no such general hypothesis, and in-
stead yields only predictions about future observations (of upcoming 0s and 1s). I
contend that Solomonoff’s procedure is genuinely inductive, in at least the sense
that it yields predictions about the future behaviour of the black box that are not
deductively implied by anything that is known about the black box or its output to
date. However pursuing this issue would take me far from the topic of this paper.
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Solomonoff’s considered proposal was that we should predict the black box’s
output by using the measure, Pm′, rather than the un-normalized semimeasure,
Pm, as an estimate of μ [4].

6 “Bug” or “Feature”?

Solomonoff himself made mention of a distinction between the “features” and
“bugs” of ALP while defending his theory of induction from a pair of criti-
cisms [14]. The first criticism concerns the fact that the values of Pm(x) and
Pm′(x) are uncomputable, and hence largely unknowable in practice. The second
concerns the fact that these values are also radically dependent on our partic-
ular choice of reference machine, and to this extent arbitrary and subjective.
Solomonoff responded to these criticisms by maintaining that both the uncom-
putability and the machine-dependence of ALP are to be properly seen as playing
useful, and indeed indispensible, roles in his theory of induction, rather than as
being sources of theoretical weakness. Specifically, he held that uncomputability
is simply a necessary flipside of completeness: that ALP is uncomputable pre-
cisely because it can be used to detect and extrapolate any computable regularity
or pattern in a sequence of data [15]. In a similar vein, he held that machine de-
pendence is vital in enabling us to factor in whatever prior information we might
possess about the symbol source. Our prior knowledge about the symbol source
should, Solomonoff maintained, be directly reflected in our particular choice of
reference machine [16]. He summed up the situation by saying that both ALP’s
uncomputability and its machine-dependence count as “necessary features” of
his theory, not as “bugs” [14].

Following Solomonoff’s lead, let’s count among the “features” of ALP any of
its properties that should be celebrated by a proponent of an ALP-based theory
of induction for the valuable role they play in the theory, and let’s count among
its “bugs” those of its properties (if any) that are to be regretted for the problems
and weaknesses they introduce. When Solomonoff held that uncomputability and
machine-dependence are features, not bugs, of ALP, he was charging critics of
his theory of induction with overlooking ways in which these properties can be
turned to the theory’s advantage, by being made to serve useful or necessary
functions within it. It is clear that Solomonoff himself regarded the semimeasure
property as a genuine “bug” in the idea that we should use ALP to predict the
output of the symbol source, for – as just explained – he used a normalization
procedure to eradicate it, and did not attempt to show that it can be exploited to
play a useful role in the theory. I will now try to show that it is instead properly
regarded as being a very valuable “feature”.

7 Another Way of Tackling the Semimeasure Problem

We’ve seen that the semimeasure problem arises because, whereas the black box
must do one of only two things next – output a 0, or output a 1 – the reference
machine can instead do either one of three things next – output a 0, output a 1,
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or terminate its output. However this disparity between the ranges of behaviours
the two devices can exhibit arises only when it is stipulated from the outset that
the black box’s output can’t terminate. When a three-way method is used to
predict the black box’s output, no such stipulation is in force. Hence, provided
we use ALP to construct a three-way method, rather than a two-way method,
then each and every possible behaviour of the reference machine corresponds
directly to a possible behaviour of the black box, and vice versa.

The following proposal for resolving the semimeasure problem therefore sug-
gests itself: whereas Solomonoff used ALP to construct a two-way method for
predicting the extension of a binary sequence, we will instead use it to construct
a three-way method. In other words, we will include the possibility of the black
box’s output terminating among the set of alternative outcomes to which a prob-
ability must be assigned. The probability we assign to the black box’s output
terminating after it has outputted the string, x, will be identical to the prob-
ability of the reference machine’s output terminating after it has outputted x.
Under this proposal, ALP’s semimeasure property doesn’t merely cease to be a
“bug” in an ALP-based theory of induction, but instead acquires the status of
being a useful and necessary “feature”, for in order for a three-way method to
assign a certain quantity of probability to the possibility that the sequence has
terminated, it must leave the selfsame quantity of probability unassigned either
to the possibility that the next symbol will be a 0 or to the possibility that it
will be a 1. Hence the probability distribution that such a method is based on
must be a semimeasure, and cannot be a measure.

We now have two proposals on the table, which I will call Solomonoff’s pro-
posal (it being the proposal that Solomonoff championed) and the new proposal
respectively. According to Solomonoff’s proposal, the proper goal of an ALP-
based theory of induction is to construct a maximally reliable two-way method
for predicting the continuation of a binary series, and the normalized measure,
Pm′(x), should be used as an estimate of μ(x). According to the new proposal,
on the other hand, ALP is best used to construct a three-way method for making
such predictions, and the unnormalized semimeasure, Pm(x), should be used as
an estimate of μ(x). Both proposals circumvent the semimeasure problem, and
are on an equal footing in this respect, but I will now offer reasons to believe
that the new proposal is nevertheless superior to Solomonoff’s.

The first and most important reason concerns Solomonoff’s own grounds for
thinking that ALP-based predictions about the black box’s output are likely to
be any good. I will argue that these grounds offer stronger support to the new
proposal than they do to Solomonoff’s own proposal.

The following concepts and notation will be useful. Let a padded string be
a binary string with a appended to its rightmost end. (E.g., “0110 ” is a
padded string.) Let ρ(x ) denote the probability assigned by ρ to the possibility
that the binary string, x, won’t be followed by any more 0s or 1s. That is,
ρ(x ) = ρ(x) − ρ(x0) − ρ(x1). Notice that if ρ assigns a non-zero probability
to any padded string, then ρ is a semimeasure. Let’s say that the distribution,
ρ dominates the distribution, ν, iff there is some non-zero probability, p, such
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that, for any binary or padded string x, ρ(x) ≥ pν(x). So, for example, if, for
any binary or padded x, the probability assigned by ρ to x never undershoots
the probability assigned by ν to x by more than a multiplicative factor of, say,
0.3, then ρ dominates ν (to within a factor of 0.3).

Now, let’s suppose that we use a distribution, ρ as an estimate of μ. It can
be shown [4] that, on assumption that ρ dominates μ, then, as time goes by and
as the black box’s output-to-date grows in length, the conditional probabilities
that we assign to the next symbol by using ρ will rapidly converge to match the
true, objective probabilities that are assigned to this symbol by μ. That is, if
o1...n denotes the black box’s first n symbols of output and on denotes its nth

symbol of output, then limn→∞[ρ(on|o1...n−1)− μ(on|o1...n−1)] = 0.
This is encouraging, for it means that our estimate of μ will yield good predic-

tions in the long run provided that it dominates μ. But how can we arrange for
our estimate of μ to dominate μ when – ignorant as we are about what is in the
black box – we know little or nothing about the nature of μ itself? Solomonoff’s
answer is that we can maximize our chances of “catching” μ within the set of
distributions that are dominated by our estimate simply by casting our net very
widely indeed. A probability distribution, ρ is computable iff there is a classical
Turing machine that will, when given a binary string, x, as input, output an
encoding of ρ(x). Solomonoff showed that Pm′ is “universal” in the sense that
it dominates every computable measure [4]. Hence Pm′ will dominate μ if μ is a
computable measure.

That’s the good news. The bad news is that if μ is a semimeasure – which
is to say, if the process in the black box has the capacity to produce a termi-
nating output – then Solomonoff’s convergence result doesn’t provide us with
any assurance that Pm′ will yield accurate probabilistic predictions in the long
run. This limitation of Pm′ is unsurprising, for, after all, Pm′ was designed by
Solomonoff to provide us with a two-way method for making predictions, and
as such it is to be used only when it is known that the black box’s output won’t
terminate. But it is still a very serious limitation, for, after all, it is perfectly
possible that the process in the black box will stop outputting 0s and 1s at some
point.3 Ideally, we would like our estimate of μ to yield accurate predictions
irrespective of what is in the black box, and irrespective of the nature of μ. The
more distributions that are dominated by our estimate of μ, the smaller the risk
of μ escaping domination by it, and so the greater the chances that the estimate
will lead us to the true probabilities [17, p. 28]. In order for the estimate to
be able to lead us to the true probabilities even if the black box can produce

3 For example, C.S. Wallace [2, p. 407] imagines a process that examines all the stable
isotopes of the chemical elements, one by one, in order of their atomic weight, out-
putting extensive data about their physical, chemical and spectroscopic properties
as it goes. After examining lead-208 the process will stop, lead-208 being the last
stable isotope, and so the sequence of data it is producing will terminate at this
point. A predictor who has observed a sufficiently long initial segment of this data
sequence should ideally be able to predict both that the sequence will eventually
terminate, and the point at which it will do so.
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a terminating output, we need it to dominate, not just distributions that are
measures, but also distributions that are semimeasures.

Is there a distribution we might use as our estimate of μ, which dominates,
not just all computable measures, but also all computable semimeasures? Indeed,
there is, and it is none other than the original, unnormalized version of ALP,
Pm. As a first step to understanding why Pm dominates such a large class of
distributions, it will help to introduce the notion of a Solomonoff distribution,
this simply being a distribution that is associated with some particular (universal
or non-universal) Solomonoff machine. That is, ρ is a Solomonoff distribution
iff there is some Solomonoff machine, Sy, such that, for all binary strings x,
ρ(x) = Py(x). Some Solomonoff distributions are measures, while others are
semimeasures. The Solomonoff distribution, Px, is a measure iff, regardless of
which randomly generated input the corresponding Solomonoff machine, Sx, is
supplied with, its binary output will never stop. On the other hand, if there is at
least one possible input to Sx that will result in its output terminating at some
point, then Px is a semimeasure.

It is easily shown that Pm dominates all Solomonoff distributions, including
all those that are measures and all those that are semimeasures. To see this,
suppose ρ is some Solomonoff distribution. This being so, there will be some
Solomonoff machine, St, whose probability of producing an output prefixed by
x is ρ(x). Since our reference machine, Sm, is universal, there will be some
program, g, that will cause it to simulate St. The probability of g occurring as
a prefix of Sm’s randomly generated input is simply 1/2|g|. If g does occur as
a prefix of Sm’s input, then, when Sm has read in g, it will begin simulating
St, and from this point forward it will exhibit output-producing propensities
indistinguishable from those of St. Thus Sm has a probability of at least 1/2|g| of
simulating St, and if it does simulate St then it will, like St, have a probability of
ρ(x) of producing an output prefixed by x. This means that Sm’s own probability
of producing an output prefixed by x must be at least 1/2|g|ρ(x), from which it
follows that Pm dominates ρ (to within a factor of 1/2|g|). As for ρ, so for any
Solomonoff distribution, whether it be a measure or a semimeasure.

Every computable distribution – whether it be a measure or a semimeasure –
is a Solomonoff distribution. In order to see this, recall that if ρ is computable
then there is a classical Turing machine that, when given a binary string x as
input, will produce an encoding of ρ(x) as output. Given this classical Turing
machine, we can easily engineer a Solomonoff machine, Sh, that simulates the
classical Turing machine in order to determine, for any binary string x, the value
of ρ(x), and which then outputs a sequence prefixed by x with a probability of
ρ(x), while using the randomly generated sequence of 0s and 1s on its own input
tape as a source of indeterminism. Since Sh’s design ensures that Sh(x) = ρ(x)
for all binary x, ρ is a Solomonoff distribution.

Since Pm dominates all Solomonoff distributions, and since all computable
distributions are Solomonoff distributions, Pm dominates all computable distri-
butions, including not just all the computable measures that are dominated by
Pm′, but also all computable semimeasures. This being so, a three-way inductive
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reasoning method based on Pm is inherently less risky than a two-way method
based on Pm′. The conditions that μ must satisfy in order for the former method
to be guaranteed to yield accurate probabilistic predictions in the long run are
considerably weaker and less demanding than those it must satisfy in order for
the latter method to yield the same guarantee. The point might be put by saying
that Pm is “more universal” than Pm′, in the sense that Pm dominates a much
larger class of computable distributions than Pm′ does.

The second reason for preferring the new proposal to Solomonoff’s proposal
is pragmatic, and concerns the practical utility of the inductive methods they
prescribe. We can safely use Solomonoff’s two-way method only when we can be
certain, ahead of time, that the process we are predicting will keep outputting
symbols forever. It is, however, surely impossible to find any real-life example
of a process that satisfies this condition. Science teaches us that the universe
we inhabit is governed by the second law of thermodynamics, and that it is
fated, if not to a Big Crunch, then to heat-death. Hence, far from it being the
case that we can ever be perfectly certain that a symbol source we are dealing
with will keep producing output for eternity, the smart money will always be on
its output eventually terminating. Our background knowledge about our world
may provide us with but little information about the likely symbol-producing
propensities of the black box, but it does at least tell us that terminations of
output are probably in the offing. This being so, we must, when we are doing
induction in the real world, use a method that will yield acceptable results if μ
is a semimeasure. A three-way method based on Pm satisfies this requirement,
while a two-way method based on Pm′ does not.

The third reason has to do with the comparative simplicity and elegance of the
two proposals. The fundamental idea behind an ALP-based theory of induction
is that an hypothesis that attributes certain output-producing dispositions to a
symbol source can be represented by a program that causes the reference machine
to itself manifest these selfsame output-producing dispositions. Some programs,
of course, cause the reference machine to have a non-zero probability of produc-
ing a terminating output. Solomonoff thought that such terminating programs
“do not result in useful output” [13, p. 567]. But if we take to its natural conclu-
sion the idea that programs represent hypotheses about the output-producing
dispositions of the symbol source, then why should we not hold instead that
such a program, which causes the reference machine to have a certain chance
of producing an output that ends, represents a hypothesis that says the symbol
source has this same chance of producing an output that ends? Why not indeed!
There is no principled reason not to, and if we do then the resulting theory of
induction is both more elegant, in view of the fact that it doesn’t arbitrarily
treat terminations of output differently than 0s and 1s, and more predictively
powerful, since it yields a three-way method that can cope with terminations
of output, rather than a two-way method that can’t. On the other hand, if,
like Solomonoff, we treat the reference machine’s terminating outputs as being
predictively meaningless, then we are left to confront the semimeasure problem,
and must wheel in a normalization operation to surmount it. The inclusion of
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a normalization operation further complicates the theory and detracts from its
elegance.

The final reason I offer for thinking that the new proposal should be pre-
ferred over Solomonoff’s proposal concerns certain technical objections to the
normalization operation that the new proposal avoids by simply dispensing with
normalization altogether. These include, for instance, the objection that there
are several rival methods of normalizing, each yielding measures with different
properties, and no very compelling reason to choose one over another [12, p. 281];
the objection (due to Robert M. Solovay) that every choice of normalization op-
eration has an unboundedly large impact on the relative probabilities assigned
to some particular sequence [12, p. 301] (but c.f. [18]); and the objection that,
while Pm is at least lower semicomputable, Pm′ is not even computable in this
restricted sense.

To conclude, it is my contention that ALP’s property of being a semimeasure
appears to be a “bug” in an ALP-based theory of induction only if one insists
on trying to whack the round peg of ALP into the square hole of a two-way
method for predicting a black box’s output. The semimeasure problem evapo-
rates entirely if one accepts terminations of output as being events worthy of
prediction, and therefore uses ALP to construct a three-way method for making
predictions.
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