
Principles of Solomonoff Induction and AIXI

Peter Sunehag1 and Marcus Hutter1,2

1 Research School of Computer Science, Australian National University, Canberra,
ACT, 0200, Australia

2 Department of Computer Science, ETH Zurich, Switzerland
{Peter.Sunehag,Marcus.Hutter}@anu.edu.au

Abstract. We identify principles characterizing Solomonoff Induction
by demands on an agent’s external behaviour. Key concepts are ratio-
nality, computability, indifference and time consistency. Furthermore, we
discuss extensions to the full AI case to derive AIXI.

Keywords: Computability, Representation, Rationality, Solomonoff
induction.

1 Introduction

Ray Solomonoff [17] introduced a universal sequence prediction method that in
[19,6,11] is argued to solve the general induction problem. [5] extended Solomonoff
induction to the full AI (general reinforcement learning) setting where an agent
is taking a sequence of actions that may affect the unknown environment to
achieve as large amount of reward as possible. The resulting agent was named
AIXI. Here we take a closer look at what principles underlie Solomonoff induc-
tion and the AIXI agent. We are going to derive Solomonoff induction from four
general principles and discuss how AIXI follows from extended versions of the
same.

Our setting consists of a reference universal Turing machine (UTM), a binary
sequence (produced by an environment program (not revealed) on the reference
machine) fed incrementaly to the agent and a loss function (or reward structure).
We give the agent in question the task of choosing a program for the reference
machine so as to minimize the loss. The loss is in general defined to be a func-
tion from a pair of programs, an environment program and an agent program,
to real numbers. The loss function can be such that it is only the prediction (for
a certain number of bits) produced by the program that matters or it can care
about exactly which program was presented. A loss function of the latter kind
leads to the agent performing the task of prediction, which is what Solomonoff
induction is primarily concerned with while the latter can be viewed as identi-
fying an explanatory hypothesis, which is more closely related to the minimum
message length principle [23,24,22,3] or the minimum description length princi-
ple [12,4,13]. Solomonoff induction is using a mixture of hypothesis to achieve
the best possible prediction. Note that the fact that we pick one program does
not rule out that the choice is internally based on a mixture. In the case when

D.L. Dowe (Ed.): Solomonoff Festschrift, LNAI 7070, pp. 386–398, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Principles of Solomonoff Induction and AIXI 387

the loss only cares about the prediction, the program is only a representation of
that prediction and not really a hypothesis.

The principles are designed to avoid stating what the internal workings of the
agent should be and instead derive those as a consequence of the demands on
the behaviour. Thus we demand rationality instead of stating explicitly that the
agent should have probabilistic beliefs and we demand time consistency instead
of explicitly stating probabilistic conditioning. The computability principle is
avoiding saying that the agent should have a hypothesis class that consists of all
computable environments by instead demanding that it deliver a computation
procedure (a program for our reference machine) that produces its prediction for
the next few bits.The indifference principle states what the initial preferences of
the agent must be, i.e. a demand for how the initial decision should be taken.
The choice is based on symmetry with respect to a chosen representation scheme
for sequences, e.g. programs on a reference machine. In other words we do not
allow the agent to be biased in a certain sense that depends on our reference
machine. Informally we state the principles as follows:

1. Computability: If we are going to guess the future of a sequence, we should
choose a computation procedure (a program for the reference machine) that
produces the predicted bits

2. Rationality: We should choose our predicted sequence such that the de-
pendence on the priorities (formalized by a reward (or loss) structure) is
consistent.

3. Indifference: The initial choice between programs only depends on their
length and the priorities (again formalized by reward (or loss))

4. Time Consistency: The choice of program does not change by a new ob-
servation if the program’s output is consistent with the oberservation and
the reward structure is still the same and concerned with the same bits

Our reasoning leading from external behavioural principles to a completely
defined internal procedure can be summarized as follows; The rationality prin-
ciple tells us that we need to have probabilistic beliefs over some set of alter-
natives; The computability principle tells us what the alternatives are, namely
programs; The indifference principle leads to a choice of the original beliefs; The
time-consistency principle leads to a simple procedure for updating the beliefs
that the second principle tells us must exist, namely conditioning. In total it
leads to Solomonoff Induction.

We can not remove any of the principles without losing the complete specifi-
cation of a procedure. The first property is part of the set up of what we ask the
agent to do. Without the second we lose the restriction that we take decisions
based on maximum expected utility with respect to probabilistic beliefs and one
could then have an agent that always chose the same program (e.g. a very short
one). Without the third principle we could have any apriori beliefs and without
the fourth the agent could after a while change its mind regarding what beliefs
it started with.

388 P. Sunehag and M. Hutter

1.1 Setup

We are considering a setting where we give an agent a task that is defined by a
reference machine (a UTM) , a reward structure (or loss function if we negate)
and a binary sequence that is presented one bit at a time. The binary sequence
is generated by a program for the reference machine.

The agent must (as stated by the first principle) chose a program (whose
output must be consistent with anything that we have seen in case we have
made observations) for the reference machine and then use its output (which
can be of finite or infinite length) as a prediction. If we want to predict at least
h bits we have to restrict ourself to machines that output at least h bits. We will
consider an enumeration of all programs Ti. We are also going to consider a class
of reward structures Ri,j . The meaning is that if we guess that the sequence is
(as the output of) Ti and the actual sequence is Tj, then we receive reward Ri,j .
Note that for any finite string there are always Turing machines that computes
it. We will furthermore suppose that ∀i, Ri,j → 0 as j → ∞. This means that
we consider it to be a harder and harder task to guess Tj as j gets really large.
This assumption is not strictly necessary as we will discuss later.

1.2 Outline

Section 2 provides background on Solomonoff induction and AIXI. In Section 3
we deal with the first two principles mentioned above about rationality and com-
putability. In Section 4, we discuss the third principle which defines a prior from
a (Universal Turing Machine) representation. Section 5 describes the sequence
prediction algorithm that results from adding the fourth principle to what has
been achieved in the previous sections. Section 6 extends our analysis to the case
where an agent takes a sequence of actions that may affect its environment. Sec-
tion 7 concerns equivalence between our beliefs over deterministic environments
and beliefs over a much larger class of stochastic environments.

2 Background

2.1 Sequence Prediction

We consider both finite and infinite sequences from a finite alphabet X . We
denote the finite strings by X ∗ and we use the notation x1:t := x1, x2, ..., xt for
the first t elements in a sequence x. A function ρ : X ∗ → [0, 1] is a probability
measure if

ρ(x) =
∑

a∈X
ρ(xa) ∀x ∈ X ∗ (1)

and ρ(ε) = 1 where ε is the empty string. Such a function describes a priori
probabilistic beliefs about the sequence. If the equality in (1) is instead ≥ and
ρ(ε) ≤ 1 then we have a semi-measure. We define the probability of seeing the

Principles of Solomonoff Induction and AIXI 389

string a after seeing x as being ρ(a|x) := ρ(xa)/ρ(x). If we have a loss function
L : X × X → R, we ([6]) choose, after seeing the string x, to predict

argmin
a∈X

∑

b∈X
L(a, b)ρ(b|x). (2)

More generally, if we have an alphabet Y of actions we can take and a loss
function L : Y × X → R we make the choice

argmin
a∈Y

∑

b∈X
L(a, b)ρ(b|x). (3)

2.2 The Solomonoff Prior

Ray Solomonoff [17] defined a set of priors that only differ by a multiplicative
constant. We call them Solomonoff priors. To define them we need to first intro-
duce some notions about Turing machines [21].

A monotone Turing machine T (which we will just call Turing machine and
whose exact technical definition can be found in [8]) is a function from a set
of (binary) strings to binary sequences that can either be finite or infinite. We
demand that it be possible to describe the function as a machine with unidi-
rectional input and output tapes, read/write heads, a bidirectional work tape
and a finite state machine that decides the next action of the machine given the
symbols under the head on the input and work tape. The input tape is read only
and the output tape is write only. We write that T (p) = x∗ if output of T starts
with x when given input (program) p.

A universal Turing machine is a Turing machine that can emulate all other
Turing machines in the sense that for every Turing machine T there is at least one
prefix p, such that when px is fed to the universal Turing machine, it computes
the same output as T would when fed x (See [8,5] for further details).

A sequence is called computable if some Turing machine outputs it, or in other
words, if for every universal Turing machine there is a program p that leads to
this sequence being the output.

We can also define what we will call a computable environment from a Turing
machine. A computable environment is something which you (an agent) feed
an action to and the environment outputs a string which we call a perception.
We can for example have a finite number of possible actions and we put one
after another on the input tape of the machine. We wait until the previous input
has been processed and one of finitely many outputs has been produced. The
machine might halt after a finite number of actions have been processed or it
might run for ever.

Definition 1 (Semi-measure from Turing Machine). Given a Turing ma-
chine T , we let

λT (x) :=
∑

p:T (p)=x∗
2−l(p) (4)

390 P. Sunehag and M. Hutter

where l(p) is the length of the program (input) p and T (p) = x∗ means that T
starts with outputting x when fed p, though it might continue and output more
afterwards.

If the Turing machine T in Definition 1 is universal we call λT a Solomonoff
distribution. Solomonoff induction is defined by letting ρ in Section 2.1 be the
Solomonoff prior for some universal Turing machine. If U is a universal Turing
machine and T is any Turing machine there exists a constant c > 0 (namely
2−l(q) where q is the prefix that encodes T in U) such that

λU (x) ≥ cλT (x) ∀x ∈ X ∗. (5)

The set {λT | T Turing} can be identified with [8] with all lower semi-computable
semi-measures (see [8] for definitions and proofs). The property expressed by
(5) is called universality (or dominance) and is the key to proving the strong
convergence results of Solomonoff Induction [18,8,5,6].

2.3 AIXI

In the active case where an agent is taking a sequence of actions to achieve
some sort of objective, we are trying to determine the best policy π, defined as a
function from a history a1q1, ..., atqt of actions at and perceptions qt to a choice
of the next action at+1. The function ρ from the sequence prediction case is in
the active case of the form ρ(q1, ..., qt|a1, ..., at) and represent the probability of
seing q1, ..., qt given that we have chosen actions a1, ..., at. We can again define
a “learning” algorithm by conditioning on what we have seen to define

ρ(qt+1, ..., qt+k|q1, ..., qt, a1, ..., at+k) :=
ρ(q1, ..., qt+k|a1, ..., at+k)

ρ(q1, ..., qt|a1, ..., at) . (6)

If at = π(a1q1, ..., at−1qt−1) ∀t and q = q1, q2, ..., then we also write ρ(q|π) for
the left hand side in (6).

Suppose that we have an enumerated set of policies {πi} to choose from. Given
a definition of reward R(q) for a sequence of percepts q = q1, q2, ... that can for
example be defined as in reinforcement learning by splitting qt into observation
ot and reward rt and using a discounted reward sum

∑
t γ

trt [15,5], then we can
define

R(π) := EρR(q) :=
∑

q

R(q)ρ(q|π) (7)

and make the choice

π∗ := argmax
π

R(π). (8)

If we have a class of environments {Tj} (say the computable environments)
and if ρ is defined by saying that we assign probability pj to Tj being the true
environment, then we let Ri,j = R(q) if q is the sequence of perceptions resulting

Principles of Solomonoff Induction and AIXI 391

from using policy πi in environment Tj . Then R(πi) =
∑

j pjRi,j and we choose
the policy with index

argmax
i

∑
pjRi,j . (9)

As outlined in [5], one can choose a Solomonoff distribution also over active
environments. The resulting agent is referred to as AIXI.

3 Choosing a Program

In this section we describe the setup of the second principle mentioned in the
introduction, namely rationality. The section is much briefer than what is suit-
able for the topic and we refer the reader to our companion paper [16] for a
more compherensive treatment. Rationality is meant in the sense of internal
consistency [20], which is how it has been used in [9] and [14]. We set up simple
axioms for a rational decision maker, which implies that the decisions can be
explained (or defined) from probabilistic beliefs. The approach to probability
by [10,1] is interpreting probabilities as fair betting odds. There is an intuitive
similarity between our setup to the idea of explaining/deriving probabilities as
a bookmaker’s betting odds as done in [1] and [10].

Before we consider the question regarding which program we want to choose
we will first consider the question if we are prepared to accept guessing Ti for
a given R = {Ri,j} (i.e. accepting this bet). We suppose that the alternative
is to abstain (reject) and receive zero reward. We introduce rationality axioms
and prove that we must have probabilistic beliefs over the possible sequences.
Note that for any given i, we have a sequence Ri,j in c0 (the space of real valued
sequences that converge to 0). We will set up some common sense rationality
axioms for the way we make our decisions. We will demand that a decision can
be taken for any reward structure r (Ri,j with fixed i) from c0. If r is acceptable
and λ ≥ 0 then we want λr to be acceptable since this is simply a multiple
of the same. We also want the sum of two acceptable reward structures to be
acceptable. If we cannot lose (receive negative reward) we are prepared to accept
while if we are guaranteed to gain we are not prepared to reject it. We cannot
remove any axiom without losing the conclusion.

Definition 2 (Rationality). Suppose that we have a function z : c0→{−1, 1, 0}
defining the decision reject/accept/either (−1/1/0) and Z = {r ∈ c0 | z(r) ∈
{0, 1}}.
1. z(r) ∈ {0, 1} if and only if z(−r) ∈ {−1, 0}
2. r, s ∈ Z, λ, γ ≥ 0 then λr + γs ∈ Z
3. If rk ≥ 0 ∀k then r ∈ Z while if rk > 0 ∀k then z(r) = 1.

The following theorem connects our Rationality axioms with the Hahn-Banach
theorem [7] and concludes that rational decisions can be described with a positive
continuous linear functional on the space of reward structures. The Banach space
dual of c0 is �1 which gives us a probabilistic representation of underlying beliefs.

392 P. Sunehag and M. Hutter

Theorem 1 (Linear Separation). Given the assumptions in Definition 2 there
exists a positive continuous linear functional f : c0 → R defined by f(r) =∑

j rjpj where r = {rj}, pj ≥ 0 and
∑

j pj < ∞, such that

{x | f(r) > 0} ⊆ Z ⊆ {r | f(r) ≥ 0}. (10)

Proof. The second property tells us that Z and −Z are convex cones. The first
and third property tells us that Z
= R

m. Suppose that there is a point r that
lies in both the interior of Z and of −Z. Then the same is true for −r according
to the first property and for the origin. That a ball around the origin lies in
Z means that Z = R

m which is not true. Thus the interiors of Z and −Z
are disjoint open convex sets and can, therefore, be separated by a hyperplane
(according to the Hahn-Banach theorem) which goes through the origin (since
according to the first and third property z(0) = 0). The first property tell us that
Z ∪ −Z = R

m. Given a separating hyperplane (between the interiors of Z and
−Z), Z must contain everything on one side. This means that Z is a half space
whose boundary is a hyperplane that goes through the origin and the closure Z̄
of Z is a closed half space and can be written as {r | f(r) ≥ 0} for some f in the
Banach space dual c′0 = �1 of c0. The third property tells us that f is positive.

Theorem 1 also leads us to how to choose between different options. If we
consider picking Ti over Tk we will do (accept) that if Ri,· − Rk,· is accepted.
This is the case if

∑
pjRi,j >

∑
pjRk,j . The conclusion is that if we are presented

with Ri,j and a class {Tj} and we assign probability pj to Tj being the truth,
then we choose

argmax
i

∑

j

Ri,jpj . (11)

Remark 1. If we replace the space c0 by �∞ as the space of reward structures in
Theorem 1, the conclusion (see [16]) is instead that f is in the Banach space dual
�′∞ of �∞ which contains �1 (the countably additive measures) but also functions
that cannot be written on the form f(r) =

∑
j rjpj . �

′
∞ is sometimes called the

ba space [2] and it consists of all finitely additive measures.

4 Representation

In this section we will discuss how indifference together with a representation
leads to a choice of prior weights. The representation will be given in terms
of codes that are strings of letters from a finite alphabet and it tells us which
distinctions we will apply our indifference principle to. Choosing the first bit
can be viewed as choosing between two propositions, e.g. x is a vegetable or
x is a fruit. More choices follow until a full specification (a code word for the
given reference machine) is reached. The section describes the usual material on
the Solomonoff distribution (see [8]) in a way that highlights in what sense it is
based on indifference. The indifference principle itself is an external behavioural
principle.

Principles of Solomonoff Induction and AIXI 393

Definition 3 (Indifference). Given a reward structure for two alternative out-
comes of an event where we receive R1 or R2 depending on the outcome, then if
we are indifferent we accept this bet if R1 + R2 > 0. For an agent with proba-
bilistic beliefs that maximize expected utility this means that equal probability is
assigned to both possibilities.

We will discuss examples that are based on considering the set {apple, orange,
carrot} and the representation that is defined by first separating fruit from veg-
etables and then the fruits into apples and oranges.

Example 1. We are about to open a box within which there is either a fruit or
a vegetable. We have no other information (except possibly, a list of what is a
fruit and what is a vegetable).

Example 2. We are about to open a box within which there is either an apple,
or an orange or a carrot. We have no other information.

Consider a representation where we use binary codes. If the first digit is a
0 it means a vegetable, i.e. a carrot. No more digits are needed to describe
the object. If the first digit is a 1 it means a fruit. If the next digit after the
1 is a 0 its an apple and if it is a 1 its an orange. In the absence of any other
background knowledge/information and given that we are going to be indifferent
for this choice, we assign uniform probabilities for each choice of letter in the
string. For our examples this results in probabilities Pr(fruit) = Pr(vegetable) =
1/2. After concluding this we consider the next distinction and conclude that
Pr(apple|fruit) = Pr(orange|fruit) = 1/2. This means that the decision maker
has the prior beliefs Pr(carrot) = 1/2, Pr(apple) = Pr(orange) = 1/4.

An alternative representation would be to have a trinary alphabet and give
each object its own letter. The result of this is Pr(apple) = Pr(orange) =
Pr(carrot) = 1/3, Pr(fruit) = 2/3 and Pr(vegetable) = 1/3.

The following formalizes the definition of a code and a prefix free code. Since
we are assuming that the possible outcomes are never special cases of each other
we need our code to be prefix free. Furthermore, Kraft’s inequality says that∑

c∈C 2
−length(c) ≤ 1 if the set of codes C is prefix free.

Definition 4 (Codes). A code for a set A is a set of strings C of letters from
a finite alphabet B and a surjective map from C to A. We say that a code is
prefix-free if no code string is a proper prefix of another.

Definition 5 (Computable Representation). We say that a code is a com-
putable representation if the map from code-strings to outcomes is a Turing
machine.

In the definition below we provide the formula for how a binary representation
of the letters in an alphabet leads to a choice of a distribution. It is easily
extended to non-binary representations.

394 P. Sunehag and M. Hutter

Definition 6 (Distribution from representation). Given a binary prefix-
free code for A (our possible outcomes), the expression

wa =
∑

c code for a

2−length(c), a ∈ A

defines a measure over A.

Though the formula in Definition 6 uniquely determines the weights given a
representation, there is still a very wide choice of representations. We are going
to deal with this concern to restrict ourself to the class of universal represen-
tations with the property that given any other computable representation, the
universal weights are at least a constant times the weights resulting from the
other representation. See [17,8,5] for a more extensive treatment. These universal
representations are defined by having a universal Turing machine (in our case
the given reference machine) as the map from codes to outcomes.

Definition 7 (Universal Representation). If a universal Turing machine is
used for defining the map from codes to outcomes we say that we have a universal
(computable) representation.

The weights that result from using a universal representation wU
a satisfy the

property that if wa are the resulting weights from another computable represen-
tation, then there is C > 0 such that wU

a ≥ Cwa ∀a ∈ A. This follows directly
from the universality of the Turing machine, which means that any other Turing
machine can be simulated on the universal one by adding an extra prefix (inter-
preter) to each code. That is, feeding ic to the universal machine gives the same
output as feeding c to the other machine. The constant C is 2−length(i).

Theorem 2. Applying Definition 6 together with a representation of finite strings
based on a universal Turing machine gives us the Solomonoff semi-measure.

Proof. Given a universal Turing machine U we create a set of codes C from all
programs that generate an output of at least h bits. We let the code c ∈ C
represent the finite string x ∈ X ∗ with l(x) = h if U(c) = x∗. We show below
that this representation together with Definition 6 leads to the Solomonoff dis-
tribution for the next h bits. By considering all h ≥ 1 we recover the Solomonoff
semi-measure over X ∗.

Formally, given x ∈ X ∗ we let (in Definition 6) a = x and we define ρ(x) := wa

and conclude that
ρ(x) =

∑

U(p)=x∗
2−length(p)

which is the Solomonoff semi-measure.

Remark 2 (Unique Representation). Given a universal Turing machine, we could
choose to let only the shortest program that generates a certain output represent
that output, and not all the programs that generate this output. The length of

Principles of Solomonoff Induction and AIXI 395

the shortest program p that gives output x is called the Kolmogorov complexity
K(x) of x. Using only the shortest program leads to the slightly different weights

wx = 2−K(x)

compared to Definition 6. Both weighting schemes are, however, equivalent
within a multiplicative constant [8].

5 Sequence Prediction

We will in this section summarize how Solomonoff Induction as described in
[6] follows from what we have presented in Section 3 and Section 4 together
with our fourth principle of time consistency. Consider a binary sequence that
is revealed to us one bit at a time. We are trying to predict the future of the
sequence, either one bit, several bits or all of them. By combining the conclusions
of Section 3 and 4, we can define a sequence prediction algorithm which turns
out to be Solomonoff Induction. The results from Section 3 tells us that if we
are going to be able to make rational guesses about which computable sequence
we will see, we need to have probabilistic beliefs.

If we are interested in predicting a finite number of bits we need to design the
reward structure in Section 3 to reflect what we are interested in. If we want to
predict the next bit we can let Ri,j = 1 if Ti and Tj have the same next bit and
Ri,j = −1 otherwise. This leads to (a weighted majority decision to) predicting 1
if
∑

j|Tj produces 1 pj >
∑

j|Tj produces 0 pj and 0 if the reverse inequality is true.
The reasoning and result generalizes naturally to predicting finitely many bits
and we can interpret this as minimizing the expected number of errors.

5.1 Updating

Suppose that we have observed a number of bits of the sequences. This result in
contradictions with many of the sequences and they can be ruled out. We next
formally state the fourth principle from the introduction.

Definition 8 (Time-consistency). Suppose that we are observing a sequence
x1, x2, ... one bit at a time (xt at time t). Suppose that we (at time t) want
to predict the next h bits of a sequence and our decisions (for any t and h)
are defined by a function zth from the set of all reward structures (Rm×m where
m = 2h in the binary case) to the set of strings of length h.

Suppose that if zth+1(r) = y and y starts with xt+1. If it then follows that

zt+1
h (r′) = y where r′ is the restriction of r to the strings that start with xt+1

(and we identify such a string of length h + 1 with the string of length h that
follow the first bit) and if this implication is true for any t, r, h we say that we
have time-consistency.

Theorem 3. Suppose that we have a semi-measure ρ : X ∗ → [0, 1] and that we
at time 0 (given any loss L) predict the next h bits according to

argmin
y1∈Xh

∑

y2∈Xh

L(y1, y2)ρ(y2). (12)

396 P. Sunehag and M. Hutter

If we furthermore assume time-consistency and observe x ∈ X ∗, then we predict

argmin
y1∈Xh

∑

y2∈Xh

L(y1, y2)ρ(xy2|x). (13)

Proof. Suppose that there are y1, y2 and x such that ρ(xy1|x)
ρ(xy2|x)
=

ρ(xy1)
ρ(xy2)

. This obvi-

ously contradicts time-consistency. In other words, time-consistency implies that
relative beliefs in strings that are not yet contradicted remains the same. There-
fore, the decision function after seeing x can be described by a semi-measure
where the inconsistent alternatives have been ruled out and the others just renor-
malized. This is what (13) is describing. The only remaining point to make is
that we have expressed (12) and (13) in terms of loss instead of reward though
it is simply a matter of changing the sign and max for min.

6 The AIXI Agent

In this section we discuss extensions to the case where an agent is choosing a
sequence of actions that affect the environment it is in. We will simply replace the
principle that says that we predict computable sequences by one that says that
we predict computable environments. The environments are such that the agent
takes an action that is fed to the environment and the environment responds
with an output that we call a perception. There is a finite alphabet for the
action and one for the perception.

Our aim is to choose a policy for the agent. This is a function from the
history of the actions and perceptions that has appeared so far, to the action
which the agent chooses next. Suppose that a class {πi} of policies, a class of
(all) computable environments {Tj} and a reward structure Ri,j which is the
total reward for using policy πi in environment Tj . To assume the property that
limj Ri,j = 0 ∀i, would mean that we assume that the stakes are lower in the
environments of high index. This somewhat restrictive and there are alternatives
to making this assumption (that the reward structure is in c0) and we investigate
the result of assuming that we instead have the larger space �∞ (see Remark 1)
in a separate article [16] on rationality axioms and conclude that the difference
is that we get finite additivity instead of countable additivity for the probability
measure but that we can get back to countable additivity by adding an extra
monotonicity assumption. The arguments in Section 3 imply (given c0 reward
structure) that we must assign probabilities {pj} for the environment being Tj

and choose a policy with index

argmax
i

∑

j

Ri,jpj . (14)

This is what the AIXI agent described in [5] is doing. The AIXI choice of weights
pj correspond to the choice 2−K(ν) (as in Remark 2), but for the class of lower
semi-computable ν discussed below in Section 7.

Principles of Solomonoff Induction and AIXI 397

The same updating technique as in Section 5, where we eliminate the envi-
ronments which are inconsistent with what has occurred, is being used. This
is deduced from the same time-consistency principle as for sequence prediction,
just stating that the relative belief in environments that are still consistent will
remain unchanged. This leads to the AIXI agent from [5].

7 Remarks on Stochastic Lower Semi-computable
Environments

Having the belief that the environment is computable does seem like a restrictive
assumption though we will here argue that it is in an interesting way equivalent
to having beliefs over all lower semi-computable stochastic environments. The
Solomonoff prior is based on having belief 2−l(p) in having input program p
defining the environment. We can (proven up to a multiplicative factor in [8] and
exact identity in [25]), however, rewrite this prior as a mixture

∑
ν wνν over all

lower semi-computable environments ν where wν > 0 for all ν. Therefore, acting
according to our Solomonoff mixture over computable enviroments is identical
to acting according to beliefs over a much larger set of environments where we
have randomness.

8 Conclusions

We defined four principles for universal sequence prediction and showed that
Solomonoff induction and AIXI are determined from them. These principles
are computability, rationality, indifference and time consistency. Computability
tells us that Turing machines are the explanations we consider for what we
are seeing. Rationality tells us that we have probabilistic beliefs over these.
Time-consistency leads to the conclusion that we update these beliefs based on
conditional probability and the principle of indifference tells us how to chose
the original beliefs based on how compactly the various Turing machines can be
implemented on the reference machine.

Acknowledgement. This work was supported by ARC grant DP0988049.

References

1. de Finetti, B.: La prévision: Ses lois logiques, ses sources subjectives. In: Annales
de l’Institut Henri Poincar, Paris, vol. 7, pp. 1–68 (1937)

2. Diestel, J.: Sequences and series in Banach spaces. Springer (1984)
3. Dowe, D.L.: MML, hybrid bayesian network graphical models, statistical consis-

tency, invariance and uniqueness. In: Handbook of the Philosophy of Science, HPS.
Philosophy of Statistics, vol. 7, pp. 901–982 (2011)

4. Grünwald, P.: The Minimum Description Length Principle. MIT Press Books, The
MIT Press (2007)

5. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2005)

398 P. Sunehag and M. Hutter

6. Hutter, M.: On universal prediction and Bayesian confirmation. Theoretical Com-
puter Science 384, 33–48 (2007)

7. Kreyszig, E.: Introductory Functional Analysis With Applications. Wiley (1989)
8. Li, M., Vitányi, P.: Kolmogorov Complexity and its Applications. Springer (2008)
9. Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Prince-

ton University Press (1944)
10. Ramsey, F.: Truth and probability. In: Braithwaite, R.B. (ed.) The Foundations of

Mathematics and other Logical Essays, ch. 7, pp. 156–198. Brace & Co. (1931)
11. Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction. En-

tropy 13(6), 1076–1136 (2011)
12. Rissanen, J.: Modeling By Shortest Data Description. Automatica 14, 465–471

(1978)
13. Rissanen, J.: Minimum description length principle. In: Sammut, C., Webb, G.

(eds.) Encyclopedia of Machine Learning, pp. 666–668. Springer (2010)
14. Savage, L.: The Foundations of Statistics. Wiley, New York (1954)
15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction (Adaptive Com-

putation and Machine Learning). The MIT Press (March 1998)
16. Sunehag, P., Hutter, M.: Axioms for rational reinforcement learning. In: Kivinen,

J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925,
pp. 338–352. Springer, Heidelberg (2011)

17. Solomonoff, R.: A Preliminary Report on a General Theory of Inductive Inference.
Report V-131, Zator Co., Cambridge, Ma. (1960)

18. Solomonoff, R.J.: Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Transactions on Information Theory 24, 422–432 (1978)

19. Solomonoff, R.J.: Does algorithmic probability solve the problem of induction?
In: Proceedings of the Information, Statistics and Induction in Science Conferece
(1996)

20. Sugden, R.: Rational choice: A survey of contributions from economics and philos-
ophy. Economic Journal 101(407), 751–785 (1991)

21. Turing, A.M.: On Computable Numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 2(42), 230–265 (1936)

22. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length.
Information Science and Statistics. Springer (2005)

23. Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer
Journal 11, 185–194 (1968)

24. Wallace, C.S., Dowe, D.L.: Minimum message length and Kolmogorov complexity.
Computer Journal 42, 270–283 (1999)

25. Wood, I., Sunehag, P., Hutter, M. (Non-) Equivalence of universal priors. In: Proc.
of Solomonoff Memorial Conference, Melbourne, Australia (2011)

	Principles of Solomonoff Induction and AIXI
	1Introduction
	1.1Setup
	1.2Outline

	2Background
	2.1Sequence Prediction
	2.2The Solomonoff Prior
	2.3AIXI

	3Choosing a Program
	4Representation
	5Sequence Prediction
	5.1Updating

	6The AIXI Agent
	7Remarks on Stochastic Lower Semi-computable Environments
	8Conclusions
	References

