
No Free Lunch versus Occam’s Razor

in Supervised Learning

Tor Lattimore1 and Marcus Hutter1,2,3

1 Australian National University, Canberra, Australia
2 ETH Zürich, Switzerland

3 NICTA
{tor.lattimore,marcus.hutter}@anu.edu.au

Abstract. The No Free Lunch theorems are often used to argue that
domain specific knowledge is required to design successful algorithms.
We use algorithmic information theory to argue the case for a universal
bias allowing an algorithm to succeed in all interesting problem domains.
Additionally, we give a new algorithm for off-line classification, inspired
by Solomonoff induction, with good performance on all structured (com-
pressible) problems under reasonable assumptions. This includes a proof
of the efficacy of the well-known heuristic of randomly selecting training
data in the hope of reducing the misclassification rate.

Keywords: Supervised learning, Kolmogorov complexity, no free lunch,
Occam’s razor.

1 Introduction

The No Free Lunch (NFL) theorems, stated and proven in various settings and
domains [16,26,27], show that no algorithm performs better than any other when
their performance is averaged uniformly over all possible problems of a particular
type.1 These are often cited to argue that algorithms must be designed for a
particular domain or style of problem, and that there is no such thing as a
general purpose algorithm.

On the other hand, Solomonoff induction [18,19] and the more general AIXI
model [9] appear to universally solve the sequence prediction and reinforcement
learning problems respectively. The key to the apparent contradiction is that
Solomonoff induction and AIXI do not assume that each problem is equally
likely. Instead they apply a bias towards more structured problems. This bias
is universal in the sense that no class of structured problems is favored over
another. This approach is philosophically well justified by Occam’s razor.

The two classic domains for NFL theorems are optimisation and classification.
In this paper we will examine classification and only remark that the case for
optimisation is more complex. This difference is due to the active nature of
optimisation where actions affect future observations.

1 Such results have been less formally discussed long before by Watanabe in 1969 [25].

D.L. Dowe (Ed.): Solomonoff Festschrift, LNAI 7070, pp. 223–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 T. Lattimore and M. Hutter

Previously, some authors have argued that the NFL theorems do not disprove
the existence of universal algorithms for two reasons.

1. That taking a uniform average is not philosophically the right thing to do,
as argued informally in [7].

2. Carroll and Seppi in [1] note that the NFL theorem measures performance as
misclassification rate, where as in practise, the utility of a misclassification
in one direction may be more costly than another.

We restrict our consideration to the task of minimising the misclassification rate
while arguing more formally for a non-uniform prior inspired by Occam’s razor
and formalised by Kolmogorov complexity. We also show that there exist algo-
rithms (unfortunately only computable in the limit) with very good properties
on all structured classification problems.

The paper is structured as follows. First, the required notation is introduced
(Section 2). We then state the original NFL theorem, give a brief introduction
to Kolmogorov complexity, and show that if a non-uniform prior inspired by
Occam’s razor is used, then there exists a free lunch (Section 3). Finally, we give
a new algorithm inspired by Solomonoff induction with very attractive properties
in the classification problem (Section 4).

2 Preliminaries

Here we introduce the required notation and define the problem setup for the
No Free Lunch theorems.

Strings. A finite string x over alphabet X is a finite sequence x1x2x3 · · ·xn−1xn
with xi ∈ X . An infinite string x over alphabet X is an infinite sequence
x1x2x3 · · · . Alphabets are usually countable or finite, while in this paper they
will almost always be binary. For finite strings we have a length function defined
by �(x) := n for x = x1x2 · · ·xn. The empty string of length 0 is denoted by ε.
The set Xn is the set of all strings of length n. The set X∗ is the set of all finite
strings. The set X∞ is the set of all infinite strings. Let x be a string (finite or
infinite) then substrings are denoted xs:t := xsxs+1 · · ·xt−1xt where s ≤ t. A
useful shorthand is x<t := x1:t−1. Let x, y ∈ X∗ and z ∈ X∞ with �(x) = n and
�(y) = m then

xy := x1x2, · · ·xn−1xny1y2 · · · ym−1ym

xz := x1x2, · · ·xn−1xnz1z2z3 · · ·
As expected, xy is finite and has length �(xy) = n+m while xz is infinite. For
binary strings, we write #1(x) and #0(x) to mean the number of 0’s and number
of 1’s in x respectively.

Classification. Informally, a classification problem is the task of matching fea-
tures to class labels. For example, recognizing handwriting where the features
are images and the class labels are letters. In supervised learning, it is (usu-
ally) unreasonable to expect this to be possible without any examples of correct

No Free Lunch versus Occam’s Razor in Supervised Learning 225

classifications. This can be solved by providing a list of feature/class label pairs
representing the true classification of each feature. It is hoped that these exam-
ples can be used to generalize and correctly classify other features.

The following definitions formalize classification problems, algorithms capable
of solving them, as well as the loss incurred by an algorithm when applied to
a problem, or set of problems. The setting is that of transductive learning as
in [3].

Definition 1 (Classification Problem). Let X and Y be finite sets repre-
senting the feature space and class labels respectively. A classification problem
over X,Y is defined by a function f : X → Y where f(x) is the true class label
of feature x.

In the handwriting example, X might be the set of all images of a particular
size and Y would be the set of letters/numbers as well as a special symbol for
images that correspond to no letter/number.

Definition 2 (Classification Algorithm). Let f be a classification problem
and Xm ⊆ X be the training features on which f will be known. We write fXm

to represent the function fXm : Xm → Y with fXm(x) := f(x) for all x ∈ Xm.
A classification algorithm is a function, A, where A(fXm , x) is its guess for the
class label of feature x ∈ Xu := X−Xm when given training data fXm . Note we
implicitly assume that X and Y are known to the algorithm.

Definition 3 (Loss function). The loss of algorithm A, when applied to classi-
fication problem f , with training data Xm is measured by counting the proportion
of misclassifications in the testing data, Xu.

LA(f,Xm) :=
1

|Xu|
∑

x∈Xu

[[A(fXm , x) �= f(x)]]

where [[]] is the indicator function defined by, [[expr]] = 1 if expr is true and 0
otherwise.

We are interested in the expected loss of an algorithm on the set of all problems
where expectation is taken with respect to some distribution P .

Definition 4 (Expected loss). Let M be the set of all functions from X to
Y and P be a probability distribution on M. If Xm is the training data then the
expected loss of algorithm A is

LA(P,Xm) :=
∑

f∈M
P (f)LA(f,Xm)

3 No Free Lunch Theorem

We now use the above notation to give a version of the No Free Lunch Theorem
of which Wolpert’s is a generalization.

226 T. Lattimore and M. Hutter

Theorem 1 (No Free Lunch). Let P be the uniform distribution on M. Then
the following holds for any algorithm A and training data Xm ⊆ X.

LA(P,Xm) = |Y − 1|/|Y | (1)

The key to the proof is the following observation. Let x ∈ Xu, then for all y ∈ Y ,
P (f(x) = y|f |Xm) = P (f(x) = y) = 1/|Y |. This means no information can be
inferred from the training data, which suggests no algorithm can be better than
random.

Occam’s razor/Kolmogorov Complexity. The theorem above is often used
to argue that no general purpose algorithm exists and that focus should be placed
on learning in specific domains.

The problem with the result is the underlying assumption that P is uniform,
which implies that training data provides no evidence about the true class labels
of the test data. For example, if we have classified the sky as blue for the last
1,000 years then a uniform assumption on the possible sky colours over time
would indicate that it is just as likely to be green tomorrow as blue, a result
that goes against all our intuition.

How then, do we choose a more reasonable prior? Fortunately, this question
has already been answered heuristically by experimental scientists who must
endlessly choose between one of a number of competing hypotheses. Given any
experiment, it is easy to construct a hypothesis that fits the data by using
a lookup table. However such hypotheses tend to have poor predictive power
compared to a simple alternative that also matches the data. This is known as the
principle of parsimony, or Occam’s razor, and suggests that simple hypotheses
should be given a greater weight than more complex ones.

Until recently, Occam’s razor was only an informal heuristic. This changed
when Solomonoff, Kolmogorov and Chaitin independently developed the field of
algorithmic information theory that allows for a formal definition of Occam’s
razor. We give a brief overview here, while a more detailed introduction can
be found in [13]. An in depth study of the philosophy behind Occam’s razor
and its formalisation by Kolmogorov complexity can be found in [12,15]. While
we believe Kolmogorov complexity is the most foundational formalisation of
Occam’s razor, there have been other approaches such as MML [23] and MDL
[8]. These other techniques have the advantage of being computable (given a
computable prior) and so lend themselves to good practical applications.

The idea of Kolmogorov complexity is to assign to each binary string an integer
valued complexity that represents the length of its shortest description. Those
strings with short descriptions are considered simple, while strings with long
descriptions are complex. For example, the string consisting of 1,000,000 1’s can
easily be described as “one million ones”. On the other hand, to describe a string
generated by tossing a coin 1,000,000 times would likely require a description
about 1,000,000 bits long. The key to formalising this intuition is to choose a
universal Turing machine as the language of descriptions.

Definition 5 (Kolmogorov Complexity). Let U be a universal Turing ma-
chine and x ∈ B∗ be a finite binary string. Then define the plain Kolmogorov

No Free Lunch versus Occam’s Razor in Supervised Learning 227

complexity C(x) to be the length of the shortest program (description) p such
that U(p) = x.

C(x) := min
p∈B∗

{�(p) : U(p) = x}

It is easy to show that C depends on choice of universal Turing machine U only
up to a constant independent of x and so it is standard to choose an arbitrary
reference universal Turing machine.

For technical reasons it is difficult to useC as a prior, so Solomonoff introduced
monotone machines to construct the Solomonoff prior, M. A monotone Turing
machine has one read-only input tape which may only be read from left to right
and one write-only output tape that may only be written to from left to right. It
has any number of working tapes. Let T be such a machine and write T (p) = x
to mean that after reading p, x is on the output tape. The machines are called
monotone because if p is a prefix of q then T (p) is a prefix of T (q). It is possible
to show there exists a universal monotone Turing machine U and this is used to
define monotone complexity Km and Solomonoff’s prior, M.

Definition 6 (Monotone Complexity). Let U be the reference universal
monotone Turing machine then define Km, M and KM as follows,

Km(x) := min {�(p) : U(p) = x∗}
M(x) :=

∑

U(p)=x∗
2−�(p)

KM(x) := − logM(x)

where U(p) = x∗ means that when given input p, U outputs x possibly followed
by more bits.

Some facts/notes follow.

1. For any n,
∑

x∈Bn M(x) ≤ 1.
2. Km, M and KM are incomputable.
3. 0 < KM(x) ≈ Km(x) ≈ C(x) < �(x) +O(1)2

To illustrate why M gives greater weight to simple x, suppose x is simple then
there exists a relatively short monotone Turing machine p, computing it. There-
fore Km(x) is small and so 2−Km(x) ≈ M(x) is relatively large.

Since M is a semi-measure rather than a proper measure, it is not appropri-
ate to use it in place of P when computing expected loss. However it can be
normalized to a proper measure, Mnorm defined inductively by

Mnorm(ε) := 1 Mnorm(xb) := Mnorm(x)
M(xb)

M(x0) +M(x1)

2 The approximation C(x) ≈ Km(x) is only accurate to log �(x), while KM ≈ Km
is almost always very close [5,6]. This is a little surprising since the sum in the
definition of M contains 2−Km. It shows that there are only comparitively few short
programs for any x.

228 T. Lattimore and M. Hutter

Note that this normalisation is not unique, but is philosophically and tech-
nically the most attractive and was used and defended by Solomonoff. For
a discussion of normalisation, see [13, p.303]. The normalised version satisfies∑

x∈Bn Mnorm(x) = 1.
We will also need to define M/KM with side information, M(y;x) := M(y)

where x∗ is provided on a spare tape of the universal Turing machine. Now define
KM(y;x) := − logM(y;x). This allows us to define the complexity of a function
in terms of its output relative to its input.

Definition 7 (Complexity of a function). Let X = {x1, · · · , xn} ⊆ Bk and
f : X → B then define the complexity of f , KM(f ;X) by

KM(f ;X) := KM(f(x1)f(x2) · · · f(xn);x1, x2, · · · , xn)
An example is useful to illustrate why this is a good measure of the complexity
of f .

Example 1. Let X ⊆ Bn for some n, and Y = B and f : X → Y be defined by
f(x) = [[xn = 1]]. Now for a complex X , the string f(x1)f(x2) · · · might be diffi-
cult to describe, but there is a very short program that can output f(x1)f(x2) · · ·
when given x1x2 · · · as input. This gives the expected result that KM(f ;X) is
very small.

Free Lunch Using Solomonoff Prior. We are now ready to use Mnorm as a
prior on a problem family. The following proposition shows that when problems
are chosen according to the Solomonoff prior that there is a (possibly small) free
lunch.

Before the proposition, we remark on problems with maximal complexity,
KM(f ;X) = O(|X |). In this case f exhibits no structure allowing it to be
compressed, which turns out to be equivalent to being random in every intuitive
sense [14]. We do not believe such problems are any more interesting than trying
to predict random coin flips. Further, the NFL theorems can be used to show
that no algorithm can learn the class of random problems by noting that almost
all problems are random. Thus a bias towards random problems is not much of
a bias (from uniform) at all, and so at most leads to a decreasingly small free
lunch as the number of problems increases.

Proposition 1 (Free lunch under Solomonoff prior). Let Y = B and fix a
k ∈ N. Now let X = Bn and Xm ⊂ X such that |Xm| = 2n − k. For sufficiently
large n there exists an algorithm A such that

LA(Mnorm, Xm) < 1/2

The proof is omitted due to space limitations, but the idea is very simple.
Consider the algorithm such that A(f |Xm , x) = 1 if f(x) = 1 for all x ∈ Xm and
A(f |Xm , x) is random otherwise. Then show that if the amount of training data
is extremely large relative to the testing data then the Solomonoff prior assigns

No Free Lunch versus Occam’s Razor in Supervised Learning 229

greater weight to the function f1(x) := 1 for all x than the set of functions
satisfying f(x) = 1 for all x ∈ Xm but f(x) �= 1 for some x ∈ Xu.

The proposition is unfortunately extremely weak. It is more interesting to
know exactly what conditions are required to do much better than random. In
the next section we present an algorithm with good performance on all well
structured problems when given “good” training data. Without good training
data, even assuming a Solomonoff prior, we believe it is unlikely that the best
algorithm will perform well.

Note that while it appears intuitively likely that any non-uniform distribution
such as Mnorm might offer a free lunch, this is in fact not true. It is shown in
[17] that there exist non-uniform distributions where the loss over a problem
family is independent of algorithm. These distributions satisfy certain symmetry
conditions not satisfied by Mnorm, which allows Proposition 1 to hold.

4 Complexity-Based Classification

Solomonoff induction is well known to solve the online prediction problem where
the true value of each classification is known after each guess. In our setup,
the true classification is only known for the training data, after which the al-
gorithm no longer receives feedback. While Solomonoff induction can be used
to bound the number of total errors while predicting deterministic sequences, it
gives no indication of when these errors may occur. For this reason we present a
complexity-inspired algorithm with better properties for the offline classification
problem.

Before the algorithm we present a little more notation. As usual, let X =
{x1, x2, · · · , xn} ⊆ Bk, Y = B and let Xm ⊆ X be the training data. Now define
an indicator function χ by χi := [[xi ∈ Xm]].

Definition 8. Let f ∈ Y X be a classification problem. The algorithm A∗ is
defined in two steps.

f̃ := argmin
f̃∈Y X

{
KM(f̃ ;X) : χi = 1 =⇒ f̃(xi) = f(xi)

}

A∗(fXm , xi) := f̃(xi)

Essentially A∗ chooses for its model the simplest f̃ consistent with the training
data and uses this for classifying unseen data. Note that the definition above
only uses the value yi = f(xi) where χi = 1, and so it does not depend on
unseen labels.

If KM(f ;X) is “small” then the function we wish to learn is simple so we
should expect to be able to perform good classification, even given a relatively
small amount of training data. This turns out to be true, but only with a good
choice of training data. It is well known that training data should be “broad
enough”, and this is backed up by the example below and by Theorem 2, which
give an excellent justification for random training data based on good theoretical

230 T. Lattimore and M. Hutter

Fig. 1. A simple problem

(Theorem 2) and philosophical (AIT) underpinnings. The following example
demonstrates the effect of bad training data on the performance of A∗.

Example 2. Let X = {0000, 0001, 0010, 0011, · · · , 1101, 1110, 1111} and f(x) be
defined to be the first bit of x as in Figure 1. Now suppose χ = 1808 (So the
algorithm is only allowed to see the true class labels of x1 through x8). In this
case, the simplest f̃ consistent with the first 16 data points, all of which are
zeros, is likely to be f̃(x) = 0 for all x ∈ X and so A∗ will fail on every piece of
testing data!

On the other hand, if χ = 001010011101101, which was generated by tossing
a coin 16 times, then f̃ will very likely be equal to f and so A∗ will make no
errors. Even if χ is zero about the critical point in the middle (χ8 = χ9 = 0)
then f̃ should still match f mostly around the left and right and will only be
unsure near the middle.

Note, the above is not precisely true since for small strings the dependence
of KM on the universal monotone Turing machine can be fairly large. However
if we increase the size of the example so that |X | > 1000 then these quirks
disappear for natural reference universal Turing machines.

Definition 9 (Entropy). Let θ ∈ [0, 1]

H(θ) :=

{
−[θ log θ + (1− θ) log(1− θ)] if θ �= 0 and θ �= 1

0 otherwise

Theorem 2. Let θ ∈ (0, 1) be the proportion of data to be given for training
then:

1. There exists a χ ∈ B∞ (training set) such that for all n ∈ N, θn − c1 <
#1(χ1:n) < θn+ c1 and nH(θ)− c2 < KM(χ1:n) for some c1, c2 ∈ R

+.
2. For n = |X |, the loss of algorithm A∗ when using training data determined

by χ is bounded by

LA∗(f,Xm) <
2KM(f ;X) +KM(X) + c2 + c3

n(1− θ − c1/n) log(1 − θ + c1/n)−1

where c3 is some constant independent of all inputs.

No Free Lunch versus Occam’s Razor in Supervised Learning 231

This theorem shows that A∗ will do well on all problems satisfying KM(f ;X) =
o(n) when given good (but not necessarily a lot) of training data. Before the
proof, some remarks.

1. The bound is a little messy, but for small θ, large n and simple X we get

LA∗(f,Xm)
≈
< 2KM(f ;X)/(nθ).

2. The loss bound is extremely bad for large θ. We consider this unimportant
since we only really care if θ is small. Also, note that if θ is large then the
number of points we have to classify is small and so we still make only a few
mistakes.

3. The constants c1, c2 and c3 are relatively small (around 100-500). They rep-
resent the length of the shortest programs computing simple transformations
or encodings. This is dependent on the universal Turing machine used to de-
fine the Solomonoff distribution, but for a natural universal Turing machine
we expect it to be fairly small [9, sec.2.2.2].

4. The “special” χ is not actually that special at all. In fact, it can be generated
easily with probability 1 by tossing a coin with bias θ infinitely often. More
formally, it is a μ Martin-Löf random string where μ(1|x) = θ for all x. Such
strings form a μ-measure 1 set in B∞.

Proof (Theorem 2). The first is a basic result in algorithmic information the-
ory [13, p.318]. Essentially choosing χ to be Martin-Löf random with respect
to a Bernoulli process parameterized by θ. From now on, let θ̄ = #1(χ)/n.
For simplicity we write x := x1x2 · · ·xn, y := f(x1)f(x2) · · · f(xn), and ỹ :=
f̃(x1)f̃(x2) · · · f̃(xn). Define indicator ψ by ψi := [[χi = 0 ∧ yi = ỹi]]. Now note
that there exists c3 ∈ R such that

KM(χ1:n) < KM(ψ1:n; y, ỹ) +KM(y;x) +KM(ỹ;x) +KM(x) + c3 (2)

This follows since we can easily use y, ỹ and ψ1:n to recover χ1:n by χi = 1 if and
only if yi = ỹi and ψi �= 1. The constant c3 is the length of the reconstruction
program. Now KM(ỹ;x) ≤ KM(y;x) follows directly from the definition of f̃ .
We now compute an upper bound on KM(ψ). Let α := LA∗(f,Xm) be the
proportion of the testing data on which A∗ makes an error. The following is easy
to verify:

1. #1(ψ) = (1− α)(1 − θ̄)n
2. #0(ψ) = (1− (1 − α)(1 − θ̄))n
3. yi �= ỹi =⇒ ψi = 0
4. #1(y ⊕ ỹ) = α(1− θ̄)n where ⊕ is the exclusive or function.

We can use point 3 above to trivially encode ψi when ỹi �= yi. Aside from these,
there are exactly θ̄n 0’s and (1− α)(1− θ̄)n 1’s. Coding this subsequence using
frequency estimation gives a code for ψ1:n given y and ỹ, which we substitute
into (2).

nH(θ̄)− c2 ≤ KM(χ1:n) ≤ KM(ψ1:n; y, ỹ) +KM(y;x) +KM(ỹ;x)

+KM(x) + c3 (3)

≤ 2KM(y;x) +KM(x) + nJ(θ̄, α) + c3

232 T. Lattimore and M. Hutter

where J(θ̄, α) :=
[
θ̄ + (1− θ̄)(1− α)

]
H

(
θ̄/

[
θ̄ + (1− θ̄)(1 − α)

])
. An easy tech-

nical result (Lemma 1 in the appendix) shows that for θ̄ ∈ (0, 1)

0 ≤ α(1 − θ̄) log
1

1− θ̄
≤ H(θ̄)− J(θ̄, α)

Therefore nα(1− θ̄) log 1
1−θ̄

≤ 2KM(y;x) +KM(x) + c2 + c3. The result follows
by rearranging and using part 1 of the theorem. �
Since the features are known, it is unexpected for the bound to depend on their
complexity, KM(X). Therefore it is not surprising that this dependence can be
removed at a small cost, and with a little extra effort.

Theorem 3. Under the same conditions as Theorem 2, the loss of A∗ is bounded
by

LA∗(f,Xm) <
2KM(f ;X) + 2 [log |X |+ log log |X |] + c

n(1− θ − c1/n) log(1− θ + c1/n)−1

where c is some constant independent of inputs.

This version will be preferred to Theorem 2 in cases where KM(X) > 2
[log |X |+ log log |X |]. The proof of Theorem 3 is almost identical to that of
Theorem 2.
Proof sketch: The idea is to replace equation (2) by

KM(χ1:n, x) < KM(ψ1:n; y, ỹ) +KM(y;x) +KM(ỹ;x) +KM(x) + c3 (4)

Then use the following identitiesK(χ1:n;x,K(x))+K(x)<K(χ1:n, x)−K(�(x))<
KM(χ1:n, x) where the inequalities are true up to constants independent of x and
χ. Next a counting argument in combination with Stirling’s approximation can be
used to show that formostχ satisfying the conditions inTheorem2 haveKM(χ1:n)
< K(χ1:n) < K(χ1:n;x,K(x)) + log �(x) + r for some constant r > 0 indepen-
dent of x and χ. Finally use KM(x) < K(x) for all x and K(�(x)) < log �(x) +
2 log log �(x) + r for some constant r > 0 independent of x to rearrange (4) into

KM(χ1:n) < KM(ψ1:n; y, ỹ) +KM(y;x) +KM(ỹ;x) + 2 log �(x)

+ 2 log log �(x) + c

for some constant c > 0 independent of χ, ψ, x and y. Finally use the techniques
in the proof of Theorem 2 to complete the proof. �

5 Discussion

Summary. Proposition 1 shows that if problems are distributed according to
their complexity, as Occam’s razor suggests they should, then a (possibly small)
free lunch exists. While the assumption of simplicity still represents a bias to-
wards certain problems, it is a universal one in the sense that no style of struc-
tured problem is more favoured than another.

In Section 4 we gave a complexity-based classification algorithm and proved
the following properties:

No Free Lunch versus Occam’s Razor in Supervised Learning 233

1. It performs well on problems that exhibit some compressible structure,
KM(f ;X) = o(n).

2. Increasing the amount of training data decreases the error.

3. It performs better when given a good (broad/randomized) selection of train-
ing data.

Theorem 2 is reminiscent of the transductive learning bounds of Vapnik and
others [3,20,21], but holds for all Martin-Löf random training data, rather than
with high probability. This is different to the predictive result in Solomonoff
induction where results hold with probability 1 rather than for all Martin-Löf
random sequences [11]. If we assume the training set is sampled randomly, then
our bounds are comparable to those in [3].

Unfortunately, the algorithm of Section 4 is incomputable. However Kol-
mogorov complexity can be approximated via standard compression algorithms,
which may allow for a computable approximation of the classifier of Section
4. Such approximations have had some success in other areas of AI, including
general reinforcement learning [22] and unsupervised clustering [2].

Occam’s razor is often thought of as the principle of choosing the simplest
hypothesis matching your data. Our definition of simplest is the hypothesis that
minimises KM(f ;X) (maximisesM(f ;X)). This is perhaps not entirely natural
from the informal statement of Occam’s razor, since M(x) contains contribu-
tions from all programs computing x, not just the shortest. We justify this by
combining Occam’s razor with Epicurus principle of multiple explanations that
argues for all consistent hypotheses to be considered. In some ways this is the
most natural interpretation as no scientist would entirely rule out a hypothe-
sis just because it is slightly more complex than the simplest. A more general
discussion of this issue can be found in [4, sec.4]. Additionally, we can argue
mathematically that since KM ≈ Km, the simplest hypothesis is very close to
the mixture.3 Therefore the debate is more philosophical than practical in this
setting.

An alternative approach to formalising Occam’s razor has been considered
in MML [23]. However, in the deterministic setting the probability of the data
given the hypothesis satisfies P (D|H) = 1. This means the two part code reduces
to the code-length of the prior, log(1/P (H)). This means the hypothesis with
minimum message length depends only on the choice of prior, not the complexity
of coding the data. The question then is how to choose the prior, on which MML
gives no general guidance. Some discussion of Occam’s razor from a Kolmogorov
complexity viewpoint can be found in [10,12,15], while the relation between MML
and Kolmogorov complexity is explored in [24].

Assumptions. We assumed finite X , Y , and deterministic f , which is the
standard transductive learning setting. Generalisations to countable spaces may
still be possible using complexity approaches, but non-computable real numbers
prove more difficult. One can either argue by the strong Church-Turing thesis

3 The bounds of Section 4 would depend on the choice of complexity at most logarith-
mically in |X| with KM providing the uniformly better bound.

234 T. Lattimore and M. Hutter

that non-computable reals do not exist, or approximate them arbitrarily well.
Stochastic f are interesting and we believe a complexity-based approach will still
be effective, although the theorems and proofs may turn out to be somewhat
different.

Acknowledgements. We thank Wen Shao and reviewers for valuable feedback
on earlier drafts and the Australian Research Council for support under grant
DP0988049.

References

1. Carroll, J., Seppi, K.: No-free-lunch and Bayesian optimality. In: IJCNN Workshop
on Meta-Learning (2007)

2. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Transactions on Infor-
mation Theory 51(4), 1523–1545 (2005)

3. Derbeko, P., El-yaniv, R., Meir, R.: Error bounds for transductive learning via
compression and clustering. In: NIPS, vol. 16 (2004)

4. Dowe, D.: MML, hybrid Bayesian network graphical models, statistical consis-
tency, invariance and uniqueness. In: Handbook of Philosophy of Statistics, vol. 7,
pp. 901–982. Elsevier (2011)

5. Gács, P.: On the relation between descriptional complexity and algorithmic prob-
ability. Theoretical Computer Science 22(1-2), 71–93 (1983)

6. Gács, P.: Expanded and improved proof of the relation between description com-
plexity and algorithmic probability (2008) (unpublished)

7. Giraud-Carrier, C., Provost, F.: Toward a justification of meta-learning: Is the
no free lunch theorem a show-stopper. In: ICML Workshop on Meta-Learning,
pp. 9–16 (2005)

8. Grünwald, P.: The Minimum Description Length Principle. MIT Press Books,
vol. 1. The MIT Press (2007)

9. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2004)

10. Hutter, M.: A complete theory of everything (will be subjective). Algorithms 3(4),
329–350 (2010)

11. Hutter, M., Muchnik, A.: On semimeasures predicting Martin-Löf random se-
quences. Theoretical Computer Science 382(3), 247–261 (2007)

12. Kirchherr, W., Li, M., Vitanyi, P.: The miraculous universal distribution. The
Mathematical Intelligencer 19(4), 7–15 (1997)

13. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer (2008)

14. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6),
602–619 (1966)

15. Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction. En-
tropy 13(6), 1076–1136 (2011)

16. Schaffer, C.: A conservation law for generalization performance. In: Proceedings of
the Eleventh International Conference on Machine Learning, pp. 259–265. Morgan
Kaufmann (1994)

17. Schumacher, C., Vose, M., Whitley, L.: The no free lunch and problem descrip-
tion length. In: Spector, L., Goodman, E.D. (eds.) GECCO 2001: Proc. of the
Genetic and Evolutionary Computation Conf., pp. 565–570. Morgan Kaufmann,
San Francisco (2001)

No Free Lunch versus Occam’s Razor in Supervised Learning 235

18. Solomonoff, R.: A formal theory of inductive inference, Part I. Information and
Control 7(1), 1–22 (1964)

19. Solomonoff, R.: A formal theory of inductive inference, Part II. Information and
Control 7(2), 224–254 (1964)

20. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer, New
York (1982)

21. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Berlin
(2000)

22. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte Carlo AIXI ap-
proximation. Journal of Artificial Intelligence Research 40, 95–142 (2011)

23. Wallace, C., Boulton, D.: An information measure for classification. The Computer
Journal 11(2), 185–194 (1968)

24. Wallace, C., Dowe, D.: Minimum message length and Kolmogorov complexity. The
Computer Journal 42(4), 270–283 (1999)

25. Watanabe, S., Donovan, S.: Knowing and guessing; a quantitative study of inference
and information. Wiley, New York (1969)

26. Wolpert, D.: The supervised learning no-free-lunch theorems. In: Proc. 6th Online
World Conference on Soft Computing in Industrial Applications, pp. 25–42 (2001)

27. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (1997)

A Technical Proofs

Lemma 1 (Entropy inequality).

0 ≤ α(1 − θ) log
1

1− θ
(5)

≤ H(θ)− [θ + (1− θ)(1 − α)]H

(
θ

θ + (1− θ)(1 − α)

)
(6)

With equality only if θ ∈ {0, 1} or α = 0

Proof. First, (5) is trivial. To prove (6), note that for α = 0 or θ ∈ {0, 1},
equality is obvious. Now, fixing θ ∈ (0, 1) and computing.

∂

∂α

[
H(θ)− [θ + (1− θ)(1 − α)]H

(
θ

θ + (1− θ)(1 − α)

)]

= (1− θ) log
1− α(1− θ)

(1− α)(1 − θ)

≥ (1− θ) log(1− θ)−1

Therefore integrating both sides over α gives,

α(1 − θ) log(1− θ)−1 ≤ H(θ)− [θ + (1− θ)(1 − α)]H

(
θ

θ + (1− θ)(1 − α)

)

as required. �

	No Free Lunch versus Occam’s Razorin Supervised Learning
	1Introduction
	2Preliminaries
	3No Free Lunch Theorem
	4Complexity-Based Classification
	5 Discussion
	References

