
D.L. Dowe (Ed.): Solomonoff Festschrift, LNAI 7070, pp. 155–173, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Critical Survey of Some Competing Accounts
of Concrete Digital Computation

Nir Fresco

School of History and Philosophy, The University of New South Wales, Sydney, Australia
Fresco.Nir@Gmail.com

Abstract. This paper deals with the question: what are the key requirements for
a physical system to perform digital computation? Oftentimes, cognitive
scientists are quick to employ the notion of computation simpliciter when
asserting basically that cognitive activities are computational. They employ this
notion as if there is a consensus on just what it takes for a physical system to
compute. Some cognitive scientists in referring to digital computation simply
adhere to Turing computability. But if cognition is indeed computational, then it
is concrete computation that is required for explaining cognition as an
embodied phenomenon. Three accounts of computation are examined here: 1.
Formal Symbol Manipulation. 2. Physical Symbol Systems and 3. The
Mechanistic account. I argue that the differing requirements implied by these
accounts justify the demand that one commits to a particular account when
employing the notion of digital computation in regard to physical systems,
rather than use these accounts interchangeably.

Keywords: Concrete computation, Computability, Symbols, Semantics,
Information Processing, Cognitive Systems, Turing Machines.

1 Introduction

All too often, cognitive scientists are quick to employ the notion of computation
simpliciter when asserting basically that cognitive activities are computational.
Unfortunately, it seems that a clearer understanding of computation is distorted by
philosophical concerns about cognition. Some researchers in referring to digital
computation simply adhere to Alan Turing’s notion of computability when attempting
to explain cognitive behaviour. Still, classical computability theory studies what
functions on the natural numbers are computable, and not the spatiotemporal
constraints that are inherent to cognitive phenomena.

Any analysis of cognitive phenomena that is based solely on mathematical
formalisms of computability, is at best incomplete. It has been proven that Emil Post’s
machines, Stephen Kleene’s formal systems model, Kurt Gödel’s recursive functions
model, Alonzo Church’s lambda calculus, and Turing Machines (TMs) – are all
extensionally equivalent. They all identify the same class of functions, in terms of the
sets of arguments and values that they determine, as computable (Kleene 2002:
pp. 232-233).

156 N. Fresco

However, concrete digital computation as it is actualised in physical systems
seems to be a more appropriate candidate for the job of explaining cognitive
phenomena.1 It is not in vain that the reigning trends in contemporary cognitive
science (whether it be connectionism or dynamicism) emphasise the embeddedness
and embodiment of cognitive agents. This is one motivation for examining extant
accounts of concrete computation, before we can make any sense of talk about
'cognitive computation', 'neural computation' or 'biological computation'.

There are many extant accounts of digital computation in physical systems on
offer. Only three accounts are examined in this paper for lack of space.2

1. According to the Formal Symbol Manipulation (FSM) account, a physical system
performs digital computation when it processes semantically interpreted (not just
interpretable) symbols (Pylyshyn 1984: pp. 62, 72).

2. According to the Physical Symbol Systems (PSS) account, a physical system
performs digital computation when it consists of symbols and processes operating
on these symbols that designate other entities (Newell 1980: p. 157).

3. According to the Mechanistic account, a physical system performs digital
computation if it manipulates input strings of digits, depending on the digits’ type
and their location on the string, in accordance with a rule defined over the strings
(and possibly the system’s internal states) (Piccinini and Scarantino 2011: p. 8).

No novel account of computation is offered here. The goal of this paper is to
examine the conflict among well-known accounts and argue that they imply
sufficiently distinct requirements for a physical system to compute to justify the
demand that one commits to a particular account when employing the notion of
concrete digital computation. Whilst the main driver here is cognitive science, this
demand is unbiased. It applies just as well to biology, astronomy and any other
science in which 'computation' is employed as explanans for some physical
phenomenon. In the following three sections, I survey the FSM, PSS and Mechanistic
accounts respectively. In the fifth section, I defend my argument for the non-
equivalence of extant accounts of concrete computation.

2 The Formal Symbol Manipulation Account

According to this account digital computing systems are formal symbol manipulators.
They manipulate symbol tokens which themselves are representations of the subject
matter the computation is about, in accordance with some purely formal principles

1 For the purposes of this paper, I shall remain neutral on whether cognition can indeed be fully

explained computationally. Arguably, cognition involves the processing of information, and it
is not entirely clear that information processing is equivalent to digital computation. This
question can remain unanswered for now.

2 These particular three accounts nicely demonstrate that extant accounts of computation are
not only intensionally different, but also extensionally different, irrespective of their
representational character. For a detailed analysis of Turing’s account, Hilary Putnam & John
Searle’s trivialisation of computation, a reconstruction of Brian C. Smith’s participatory
account and the Algorithm Execution account see Fresco (2011).

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 157

(Scheutz 2002: p. 13). Although these manipulated symbols have both semantic and
syntactic properties, only the latter are causally efficacious. Chief proponents of this
account are Jerry Fodor (1975), Zenon Pylyshyn (1984; 1989) and John Haugeland
(1985). Fodor asserts that ”computations just are processes in which representations
have their causal consequences in virtue of their form” (Fodor 1980: p. 68).
Haugeland’s well-known formalist’s motto stated that “if you take care of the syntax,
the semantics will take care of itself” (Haugeland 1985: p. 106). A computing system
as an interpreted automatic formal system takes care of the syntax.

Furthermore, such systems are organised in three distinct levels: the semantic level,
the symbolic level and the physical level (Pylyshyn 1989: pp. 58-59). This
explanation framework of complex systems has some similarity to David Marr’s
tripartite model of complex systems: the computational level, the algorithmic level
and the physical level (Marr 1982: p. 22). At the semantic level, symbolic expressions
are transformed in the computing system in a way that coherently preserve their
meaning and ensures that they continue to "make sense" when semantically
interpreted. Marr’s computational level, however, is a function-theoretic
characterisation of the system in terms of the function it computes (i.e., its
computational capacity). This computation may contingently involve the assignment
of semantic contents. At the symbolic level the system operates in terms of
representations and their transformations. Computing systems can operate at the
semantic level only because of this middle level. Marr’s algorithmic level also need
not be aligned with the symbolic level, for his analysis is not necessarily committed to
symbol-manipulation computation. At the physical level, the state transitions of the
computing system correspond to some symbolic expressions and are connected by
physical laws (Pylyshyn 1984: p. 58). This particular level is indeed analogous to
Marr’s physical level.

The FSM account identifies six key requirements for a physical system to perform
digital computation.3 The first requirement is that the system be programmable to
allow maximal plasticity of function. In order to exclude such systems as mere
calculators and interpreted automatic systems that are not formal (e.g., analogue
computers), the class of computing systems is restricted to those that are
programmable (Haugeland 1985: pp. 258-259). It is one of the foundational principles
of computer science that the operations of digital computing systems be fully
programmable (ibid: p. 126). Despite the rigidity of the physical structure of digital
computing systems and the interconnections of their components, these systems are
capable of maximal plasticity of function. This plasticity is enabled by their operation

3 Pylyshyn argues that there is a missing requirement specifying what makes it the case that a

symbol X represents, say, a particular daisy, rather than something else. The computational
theory of mind has always been missing that part (Pylyshyn, personal communication).
Specifically, he argues that the minimum function needed for this representation relation to
obtain is that there be some causal or nomologically supported dependency between the daisy
and X (Pylyshyn 2007: p. 82). However, it is not clear that conventional digital computing
systems require that a similar causal relation obtain between a symbol and an external
represented object for them to compute (a representation internal to the computing system,
e.g., an instruction in memory, is not problematic).

158 N. Fresco

being programmable to behave in accordance with any finitely specifiable function
(Pylyshyn 1984: p. 53). It is also the basis for Turing’s vision that a computer can (in
principle) be made to exhibit intelligent activity to an arbitrary degree (thereby
passing the Turing’s test).

The second requirement is that the system operate using internally represented
rule-governed transformations of interpretable symbolic expressions. As a formal
system, by following the formal rules of transformation operating on symbolic
expressions the semantic interpretation must make sense of those expressions. The
computing system operates as a black box that automatically manipulates the
symbolic tokens according to formal rules and when interpreted they make “sense in
the contexts in which they’re made” (Haugeland 1985: p. 106). The regularities of
computing systems are rule-governed, rather than law-like. So any explanation of a
computational process must make reference to what is represented by the
(semantically interpreted) computational states and rules, rather than just to causal
state transitions (Pylyshyn 1984: p. 57).

Moreover, it is a key property of computing systems that semantic interpretations
of computational states must be consistent. Since computations follow a particular set
of semantically interpreted rules, semantic interpretations of computational states
cannot be given capriciously (ibid: p. 58), still these interpretations need not be
unique. This is analogous to the rules of existential generalisations, universal
instantiations etc. that apply to formulas in virtue of their syntactic form, but their
salient property is semantical in that they are truth preserving (Fodor & Pylyshyn
1988: p. 29).

The third requirement is that the computational states of the system must
correspond to equivalence classes of physical states such that their members are
indistinguishable from the point of view of their function (Pylyshyn 1984: p. 56).
There exists a primitive mapping from atomic symbols to relatively elementary
physical states, and a mapping specification of the structure of complex expressions
onto the structure of relatively complex physical states. The structure-preserving
mapping is typically given recursively. This ensures that the relation between atomic
symbols (e.g., ‘A’ and ‘B’), and composite expressions (e.g., ‘A&B’), is encoded in
terms of a physical relation between constituent states that is functionally equivalent
to the physical relation used to encode the relation between more complex
expressions (e.g., ‘A&B’ and ‘C’) and their composite expression (e.g., ‘(A&B)&C’).
Furthermore, the physical counterparts of the symbolic expressions and their
structural properties cause the behaviour of the computing system. If you change the
symbols, the system will behave differently (Fodor & Pylyshyn 1988: pp. 14, 17).

The fourth requirement is that the system support an arbitrarily large number of
representations (Pylyshyn 1984: p. 62). Conventional computing systems’
architecture requires that there be distinct symbolic expressions for each object, event
or state of affairs it can represent (Fodor & Pylyshyn 1988: p. 57). This raises the
question how so many semantically interpreted operations are possible if the number
of expressions is arbitrary large. For a fixed number of expressions some sort of a
lookup table could be implemented. However, this is not possible for an arbitrarily

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 159

large number of representations (Pylyshyn 1984: pp. 61-62). Instead, this capability is
achieved by the fifth requirement.

The fifth requirement is that the system be capable of capitalising on the
compositional nature of expressions as determined by the constituent expressions and
the rules used to combine them. By supporting simple rules that operate on simple
individual symbols the system is capable of an arbitrary large number of symbolic
expressions. Complex expressions are realised and transformed by means of
instantiating constituent expressions of representations (ibid). The semantics of
composite symbolic expression is determined in a consistent way by the semantics of
its constituents (Fodor & Pylyshyn 1988: p. 16). For instance, the semantics of ‘the
daisies in the vase on the table by the door’ is determined by ‘the daisies in the vase
on the table’, which is determined by ‘the daisies in the vase’. Most of the symbolic
expressions in computing systems as interpreted automatic formal systems are
complexes, whose semantics is determined by their systematic composition
Haugeland 1985: p. 96).

Finally, implicitly, the sixth requirement is that the system’s functional
architecture include an accessible memory. As in the idealised TM, a computing
system must have a memory that allows writing of symbolic expressions and then
reading them. This memory may consist of a running tape, a set of registers or any
other storage media (Pylyshyn 1989: p. 56). The memory’s capacity, its organisation
and means of accessing it are properties of the specific functional architecture of the
system. Most modern architectures are register-based, in which symbols and symbolic
expressions are stored and later retrieved by their numeric or symbolic address (ibid:
pp. 72-73). Although the set of computable functions does not depend on the
particular system implementation of the memory, the time complexity of computation
does vary (retrieving a particular string from a table could be, under certain
conditions, be made independent of the number of strings stored and the size of the
table) (Pylyshyn 1984: p. 97-99).

3 The Physical Symbol Systems Account

According to this account, championed by Allen Newell and Herbert Simon, digital
computing systems are physical symbol systems.4 They consist of sets of symbols,
which are physical patterns that can occur as components of symbol structures or
expressions (Newell and Simon 1976: p. 116). Computing systems also include a
collection of processes that operate on these expressions to create, modify or destroy
other expressions. Further, a physical symbol system is situated in a world of objects
that is wider than just these symbolic expressions. The PSS account is indeed similar
to the FSM account (as will be shown below), but there are also some differences that
cannot be easily dismissed.

4 The PSS hypothesis deals primarily with the intelligence of symbol systems and relates to

minds and artificial intelligence. I will mostly limit my discussion to the PSS account of
computation.

160 N. Fresco

Newell and Simon (1976: p. 117) maintained that a physical symbol system is an
instance of a Universal Turing machine (UTM). They discovered that UTMs always
contain within them a particular notion of symbol and symbolic behaviour.
Tautologically, physical symbol systems are universal (Newell 1980: p. 155). Their
capacity to solve problems is accomplished by producing and progressively
modifying symbol structures until they produce a solution structure, particularly by
means of a heuristic search5 (Newell and Simon 1976: p. 120). There are two basic
aspects to each search, namely its object (i.e., what is being searched) and its scope
(i.e., the set of objects within which the search is conducted). In computing systems
each aspect must be made explicit in terms of specific structures and processes, since
a system cannot search for an object that it cannot recognise (Haugeland 1985: p.
177). Computing systems (as all UTMs) solve problems mostly by using heuristic
search, for they have limited processing resources.

The PSS account identifies seven key requirements for a physical system to
perform digital computation. The first requirement is that the system consist of a set
of symbols and a set of processes that operate on them and produce through time an
evolving collection of symbolic expressions. At any given time, the system contains a
collection of symbolic structures and processes operating on expressions to produce
other expressions. Such processes are the creation, modification, reproduction and
destruction of symbolic expressions through time (ibid: p. 116). These processes
operate on and transform internal symbolic structures, or in other words the system
executes computer programs that operate on data structures (Bickhard and Terveen
1995: p. 92).

The second requirement is that the system either affect a designated object or
behave in ways that are dependent on that object. An entity (i.e., a symbol) X
designates (i.e., is about or stands for) an entity (e.g., an object or a symbol) Y
relative to a process P, if when X is P’s input, P’s behaviour depends on Y.
Designation is grounded in the physical behaviour of P when its action could be at a
distance if X (the input to P) stands for a distal object. This ‘action at a distance’ is
accomplished by a mechanism of access (that is realised in physical computing
systems) to three types of entities: symbol structures, operators6 and roles in symbol
structures. The set of processes includes programs, whose input could also be
symbolic expressions. If an expression can be created at Ti that is dependent on an
entity in some way, processes can exist in the system that at Ti+1, take that expression
as input and behave in a way dependent on that entity. Thus, these expressions
designate that entity (Newell 1980: pp. 156-157).

The third requirement is that the system be capable of interpreting an expression, if
it designates some process and given that expression the system can execute that
process. Interpretation is defined as the act of accepting an expression that designates
a process as input and then executing that process (ibid: pp. 158-159). This is similar

5 It is not clear that artificial digital computing systems (e.g., physical instantiations of UTMs)

must use heuristic search as the only means for solving computational problems. Clearly,
many algorithms are not based on any search mechanism, but rather a finite sequence of
instructions to solve a particular problem.

6 Operators are symbols that have an external semantics built into them (Newell 1980: p. 159).

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 161

to the process of indirectly executing computer programs by an interpreter program.
The interpreter reads an expression E as input and if it is recognised as a program (or
a procedure), rather than a data structure, it is then executed. This capability is
necessary to allow the flexibility of UTMs to create expressions for their own
behaviour and then produce that very behaviour. The total processes in the computing
system can be decomposed to the basic structure of (control + (operators + data)) that
is paradigmatic in all programming languages. The control continuously brings
together operators and data to yield the desired behaviour.

The fourth requirement is the existence of expressions that designate every process
of which the machine is capable (Newell and Simon 1976: p. 116). This requirement
is self-explanatory and is necessary to support the full plasticity of behaviour of
UTMs.

The fifth requirement is that the system be capable of distinguishing between some
expressions as data and others as programs (Newell 1980: p. 166). This is a property
of all UTMs that must be able to recognise some expressions as data when creating or
modifying them at time Ti and then interpret them as programs at time Tj. The concept
of universality, which is one of Turing’s seminal contributions, unifies data and
programs by way of the UTM taking programs of other (simulated) machines as data
(as well as the inputs inscribed on the tapes of those simulated machines).

The sixth requirement is that the system have a stable memory to ensure that once
expressions are created they continue to exist until they are explicitly modified or
deleted (Newell and Simon 1976: p. 116). This requirement stems from the coupling
of read/write operations in computing systems. Each of these operations requires its
counterpart to be productive in affecting the system’s behaviour. A read operation
only retrieves expressions that were written to memory (and persisted). Conversely, a
write operation of expressions, which are never subsequently read, is redundant
(Newell 1980: p. 163).

Lastly, the seventh requirement is that the system be capable of handling an
unbounded number of expressions and realising the absolute maximal class of
input/output functions using these expressions. This requirement is weaker than the
requirement for unbounded memory. The structural requirements for universality are
not dependent on unbounded memory. Rather they are dependent on the system’s
capability to handle an unbounded number of expressions (Newell and Simon 1976:
p. 116) and realise the absolute maximal class of input/output functions using these
expressions (Newell 1980: p. 178).

4 The Mechanistic Account of Computation

According to the Mechanistic account, proposed by Gualtiero Piccinini (2007), digital
computing systems are digit-processing mechanisms. They are mechanisms, which
can be ascribed the function of generating output strings from input strings in
accordance with a general rule (or map) that applies to all strings and depends on the
input strings and (possibly) internal states for its application (ibid: p. 516). This
account relies essentially on three conceptual elements: I. Medium independence of

162 N. Fresco

the vehicles (digits) processed. They could be implemented in a variety of ways (such
as mechanical components, electronic components, optical components etc.); II. The
function of the system is to process those vehicles irrespective of their particular
physical implementation; III. The operation of the system is performed in accordance
with rules, which need not necessarily be algorithms or programs (as in the case of
special purpose TMs or finite state automata, hereafter FSA).

Moreover, the mathematical notion of computation (i.e., computability) only
applies directly to abstract systems, such as TMs or FSA, but not to physical systems.
Computability is typically defined over strings of letters (often called symbols) from a
finite alphabet (ibid: pp. 509-510). But not every process that is defined over strings
of letters counts as computation (e.g., the generation of a random string of letters). To
overcome this gap, Piccinini (2007: pp. 510-512) introduces the notion of a digit as
the concrete counterpart to the formal notion of a letter. A digit is a stable state of a
component that is processed by the mechanism.7 Strings of digits (i.e., sequences of
digits) can be either data or rules, so they are essentially the same kind of thing and
differ only in the functional role they play during processing by the computing system
(Piccinini and Scarantino 2011: pp. 7-8). Digits are permutable. Components that
process digits of one type are functionally capable of processing digits of any other
type.

The mechanistic account identifies four key requirements for a physical system to
perform digital computation. The first requirement is that the system process tokens of
the same digit type in the same way and tokens of different digit types in different
ways. Under normal conditions, digits of the same type in a computing system affect
primitive components of the system in sufficiently similar ways, thereby their
dissimilarities make no difference to the output produced. For instance, two inputs to
a XOR gate that are sufficiently close to a certain voltage (labelled type '1') yield an
output of a voltage sufficiently close to a different specific value (labelled type '0').
However, that does not imply that for any two input types, a primitive component
always yields outputs of different types. Two different inputs can yield the same
computational output, such in the case of a NOR gate. Input types '1,1', '0,1' and '1,0'
give rise to outputs of type ‘0’. Still, it is essential that the NOR gate yield different
responses to tokens of different types, thus responding to input types '0,0' differently
from other input types. Differences between digit types must suffice for the
component to differentiate between them, so as to yield the correct outputs.

The second requirement is that the system process all digits belonging to a string
(of digits) during the same functionally relevant time interval and in a way that
respects the ordering of the digits within that string. When a computing system is
sufficiently large and complex, there has to be some way to ensure synchronisation
among all digits belonging to a particular string. The components of a computing
system interact over time, and given their physical characteristics, there is only a

7 In ordinary electronic computers digits are states of physical components of the machine

(e.g., memory cells). In other cases, such as old punched card computers, strings of digits
were implemented as sequences of holes (or lack thereof) on cards (Piccinini, personal
communication).

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 163

limited amount of time during which their interaction can produce the correct result,
which is consistent with the ordering of digits within strings. In primitive computing
components and simple circuits it is mostly the temporal ordering of digits that is
responsible for producing the correct result. So if, for example, digits, which are
supposed to be summed together, enter an adder mechanism at times that are too far
apart, they will not be added correctly (ibid: p. 513). In more complex components,
processing of all digits belonging to a string must proceed in a way that also respects
the spatial ordering of the digits within the string. Each digit in the sequence must be
processed until we reach the last digit in the string. In some atypical cases the
ordering of digits makes no difference to a computation (e.g., summing up all the
numbers in an array or calculating the length of a sequence of symbols).

The third requirement is that all the system’s components that process digits stabilise
only on states that count as digits. Components can be in one of several stable states. In
a binary computing system memory cells, for instance, can be in either of two stable
states, each of which constitutes a digit. Upon receiving some physical stimulus (e.g.,
the pressing of a key), a memory cell enters a state on which it must stabilise. Memory
cells stabilise on states corresponding to either of two digit types, typically labeled '0'
and '1', that are processed by the computing system. If memory cells did not have the
capacity to stabilise on one of these digit types, the memory would cease to function as
such and the computer would cease to operate normally (ibid: p. 511).

The fourth requirement is that the components of the system be functionally
organised and synchronised so that external inputs, together with the digits stored in
memory, be processed by the relevant components in accordance with a set of
instructions.8 During each time interval, the processing components transform
external input (if such exists) and previous memory states in a manner that
corresponds to the transition of each computational state to its successor. The external
input combined with the initial memory state constitute the initial string of a particular
computation. Intermediate memory states constitute the relevant intermediate strings.
Similarly, the output produced by the system (together with the final memory state)
constitutes the final string. As long as the components of the system are functionally
organised and synchronised so that their processing respects the well-defined ordering
of the manipulated digits, the operation of the system can be described as a series of
snapshots. The computational rule specifies the relationship that obtains between
inputs and their respective outputs produced by modifying snapshots according to a
set of instructions (ibid: pp. 509, 515).

5 Discussion

The literature contains many attempts to clarify the notions of computation simpliciter
and digital computation, in particular. Matthias Scheutz, for example, has argued that

8 Strictly, this requirement applies to systems that Piccinini dubs “fully digital” computing

systems (Piccinini, personal communication). Other systems, which he dubs “input-output”
digital computing systems, take digital inputs and produce digital outputs in accordance with
a rule, but do not execute a step-by-step program (e.g., some connectionist networks).

164 N. Fresco

there is no satisfactory account of implementation to answer questions critical for
computational cognitive science (1999: p. 162). He does not offer a new account of
concrete computation. Instead he suggests approaching the implementational issue by
starting with physical digital systems progressively abstracting away from some of
their physical properties until a (mathematical) description remains of the function
realised. In a similar vein, David Chalmers (2011) also focuses on the
implementational issue, only to offer a new mathematical formalism of computability
that is based on combinatorial state automata (supplanting the traditional finite state
automata). He too argues that a theory of implementation is crucial for (digital)
computation to establish its foundational role in cognitive science. The motivation
behind both Scheutz and Chalmers’ efforts to clarify the notion of implementation is
to block attempts by Putnam and Searle (and others) to trivialise computation (and
undermine computationalism).

Other notable discussions of computation in cognitive science include David Israel
(2002), Oron Shagrir (2006), Piccinini (2006, Piccinini & Scarantino 2011), Smith
(2002, 2010) and the (long) list continues. Israel (2002) claims that often it seems that
a better understanding of computation is hampered by philosophical concerns about
mind or cognition. Yet “[o]ne would, alas, have been surprised at how quick and
superficial such a regard [to computation] has been” (ibid: p. 181). Shagrir (2006)
examines a variety of individuating conditions of computation showing that most of
them are inadequate for being either too narrow or too wide. Although he does not
provide a definitive answer as to what concrete computation is, he points out that
neither connectionism nor neural computation nor computational neuroscience is
compatible with the widespread assumption that digital computation is executed over
representations with combinatorial structure.

Importantly, two uncommon examples of genuine attempts to explicate the notion
of computation are Piccinini's and Smith's. Piccinini (2006) demonstrates how on
various readings of computation, some have argued that computational explanation is
applicable to psychology, but not, for instance, to neuroscience. Still, neuroscientists
routinely appeal to computations in their research. Elsewhere, Piccinini examines the
implications of different types of digital computation (as well as their extensions’
relations of class inclusion) for computational theses of cognition (Piccinini and
Scarantino 2011).

But as far as I am aware, nobody else in the literature has ever undertaken a more
ambitious project than Smith to systematically examine the extant accounts of
computation and their role in both computer science and cognitive science. In his
2002 “The foundations of computing”, Smith lists the following six construals of
computation: FSM, Effective Computability, Algorithm Execution, Digital State
Machines, Information Processing and PSS. 9 His Age of Significance project (which
is now long coming) aims to shed some light on the murky notion of computation,
putting each one of these construals under careful scrutiny (Smith 2010). Surprisingly
enough, Smith concludes that there is no adequate account of computation and never

9 In an unpublished chapter from the Age of Significance, Smith adds the following construals:

Calculation of a Function, Interactive Agents, Dynamics and Complex Adaptive Systems.

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 165

will be one. For computers per se are not “a genuine subject matter: they are not
sufficiently special” (ibid: p. 38). Pace Smith, I do not believe that there is a
compelling reason to reject all accounts of computation as inadequate, let alone to
preclude the possibility of ever coming up with an adequate account. Still, I strongly
agree that the accounts are different and many of them are indeed inadequate for
explaining concrete computation.

My main argument here proceeds as follows:

• (P1) There are many accounts of digital computation at our disposal.
• (P2) These accounts establish different (but not all irreducibly different)

requirements for a physical system to perform digital computation.
• (P3) Therefore, extant accounts of computation are non-equivalent.
• (P4) Cognitive capacities are sometimes explained by invoking digital

computation terminology.
• (P5) When employing an equivocal interpretation, one needs to commit

to an explicit interpretation (or account).
• Therefore, one needs to commit to an explicit account of computation

when explaining cognitive capacities by invoking digital computation
terminology. Specifically, any computational thesis of cognition is
unintelligible without a commitment to a specific account of
computation.

The truth of the first premise is evident in the philosophical literature (cf. Piccinini
2007; Shagrir 1999; and Smith 2002, 2010). In addition to the FSM, PSS and
Mechanistic accounts examined here, there are also the Algorithm Execution account,
the Gandy-Sieg account, the Information Processing account as well as others.

Similarly, premise four (at least) seems self-evident. Computationalists take
premise four for granted (Fodor 1975, Pylyshyn 1984, Newell & Simon 1976, Marr
1982, van Rooij 2008) and so do some connectionists. Radical dynamicists do not
subscribe to the computational theory of mind (Van Gelder & Port 1995, Thelen &
Smith 1994), yet they reject it without committing to any particular account of
computation proper. For they presuppose that digital computation is inherently
representational. Other dynamicists do not deny that some aspects of cognition may
be representational and be subject to a computational explanation.

Yet, this presupposition is unjustified. Digital computation (but not
computationalism) could be explained without invoking any representational
properties (barring internal representations) by appealing to causal or functional
properties instead (see Fresco 2010 and Piccinini 2008a). As van Rooij (2008: p. 964)
rightly points out, computation and computationalism have become associated with
the symbolic tradition, but only sometimes with specific models in this tradition.
Some accounts of concrete digital computation are indeed representational (cf. the
reconstruction of Smith’s participatory account in Fresco (2011) as well as the FSM
and PSS accounts discussed above), but others need not be (cf. Copeland 1996,
Chalmers 1994, the Mechanistic account discussed above). This simply reinforces the
need to commit to a particular account of computation.

166 N. Fresco

Moreover, premise five simply calls for disambiguation when there is an
equivocation in terms. When some phenomenon is open to two interpretations or
more, we should commit to one interpretation to avoid ambiguity. For instance, the
concept depression has at least two typical meanings. In the sentence, “The great
depression started in most countries in 1929 and lasted for a long time”, it is clear that
‘depression’ means a long-term downturn in economic activity. On the other hand, in
the sentence, “Long depression leads to making irrational decisions”, ‘depression’
means something different. Similarly, when one asserts that hierarchical planning or
linguistic tasks, for example, are computational, one ought to commit to a particular
account of computation.10 Is it in virtue of executing an algorithm, formally
manipulating symbols, or implementing a TM that cognitive agents engage in
hierarchical planning?

Furthermore, the commitment to a particular interpretation should be consistent to
avoid further ambiguity. From the two sentences above it follows that irrational
decisions were made in the countries that suffered the Great Depression in 1929. This
conclusion would only validly follow from its premises, if 'depression' had the same
interpretation in both premises. Otherwise, whilst this conclusion may be plausible, it
does not follow. This is also known as the fallacy of equivocation. Similarly, if one
explains a particular cognitive capacity in virtue of an explicit account of concrete
digital computation, one has to consistently adhere to that account. An explanation of
a linguistic task in virtue of formal symbol manipulation and then in virtue of
algorithm execution ceases to be a coherent story, since they are not equivalent.

Importantly, not only are the extant accounts of concrete digital computation
intensionally different, they are also extensionally different. These accounts offer
different perspectives on what a physical computing system does. But rather than
having the same extension, these accounts end up denoting different classes of
computing systems. For example, the second requirement of the FSM account
excludes computing systems that are neither program-controlled nor programmable11.
For such systems do not follow semantically represented rules, instead the “rules” are
hardwired. A physical symbol system is explicitly classified by Newell and Simon as
an instance of a UTM (1976: p. 117). This classification is also derivable from the
conjunction of the fourth and fifth requirements of the PSS account. Also, the FSM
and PSS accounts exclude computing systems such as Gandy machines12 and discrete
neural networks, for they violate Turing’s locality condition and do not necessarily
operate on explicit symbolic expressions. The Mechanistic account, on the other hand,

10 To be clear, digital computation is not ambiguous in the same sense that depression is. The

aforementioned accounts offer specific proposals for how 'digital computation' should be
understood, but they are still related by a more general sense of 'digital computation'. The
example above is simply meant to emphasise the need for disambiguation.

11 A special purpose TM is an example of a program-controlled system that is not
programmable.

12 A Gandy machine (introduced by Turing’s student, Robin Gandy in 1980) can be
conceptualised as multiple TMs working in parallel, sharing the same tape and possibly
writing on overlapping regions of it.

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 167

is far less restrictive in terms of the systems it classifies as digital computing systems,
including UTMs, and special purpose TMs, but also FSAs, discrete neural networks,
primitive logic gates and even hypercomputers (see figure 1).

 The Mechanistic Account –

 Logic gates, Flip-flops, Discrete neural nets, hypercomputers

 The FSM Account –

 Special purpose TMs

 The PSS Account -

 Universal TMs

Fig. 1. With the exception of hypercomputers, UTMs are the most powerful and flexible
computing systems in the class above (e.g., they can simulate any discrete neural net). Still,
UTMs (and physical approximations thereof) do not exhaust all types of digital computing
systems. The Mechanistic account is the broadest of the three accounts examined.

Prima facie, it might seem that premise two is self-defeating, but this is not the
case. A possible consequence of all the requirements not being irreducibly different is
some overlap between requirements of various accounts. Thus, the requirements that
are implied by one account could be reduced to some of the other requirements.13 And
if all the requirements could be reduced to a coherent minimal set of key
requirements, then this would constitute a single account of computation. Premise
three would then no longer follow from the preceding premises. However, premise
two suggests that although some of the requirements may overlap, not all of them do.
For instance, the fourth key requirement of the Mechanistic account presupposes in
some cases the existence of memory (whose cells stabilise on certain digits). Similarly,
the sixth requirement of the PSS account and the sixth requirement of the FSM account
both demand memory for storing and retrieving symbolic expressions. Still, some
requirements of one account, such as spatiotemporal synchronisation of processing
digits belonging to the same string (i.e., the Mechanistic account second requirement),
cannot be reduced to any of the requirements of the competing accounts.

Possible challenges to my conclusion might be that some of the key requirements
implied by different accounts could be synthesised or that one could simultaneously
subscribe to two accounts or more. The first challenge may result in sidestepping the
demand to commit to an explicit account. But even if that were the case, such a
synthesis would simply yield a new (possibly adequate!) account of computation. The
second challenge needs unpacking. It can be interpreted in one of two ways. Firstly, it
could be interpreted as subscribing to more than one account simultaneously for

13 An overlap among requirements clearly does not imply a reduction from one requirement to

another. My intent here is to address a possible criticism to the effect that premise three
would no longer follow as an intermediate conclusion from its preceding premises.

168 N. Fresco

explaining different cognitive capacities respectively. I do not see that as a problem.
There is still a need to commit to a particular account for each relevant cognitive
capacity. But this could have some other consequences, such as explaining cognitive
behaviour in a non-unified manner by resorting to a plethora of computational
models. It will require a compelling account of how the different computational
(cognitive) subsystems interrelate.

Secondly, the challenge could be interpreted as subscribing to several accounts
simultaneously, since cognitive explanations by nature span multiple levels. This is
consistent with Marr’s (1982) tripartite analysis. For instance, we could hold that (1)
cognitive computations are inherently representational. At the same time, we could
also hold without being inconsistent that (2) these computations are constrained in
terms of any one of the formalisms of computability, and lastly that (3) they occur in
the brain, which is embodied and situated in the real world. This is all well and good.
Still, as I have argued above, concrete computation (but perhaps not cognitive
computation) could be explained without necessarily invoking any representational
properties (e.g., by the Mechanistic account above or the Algorithm Execution
account in Copeland 1996). If one wishes to commit to a representational account of
digital computation, since cognition is representational, one should firstly justify why
computation proper is representational. Also, subscribing to an account of concrete
computation and to a formalism of computability simultaneously does not introduce
any conflict.

Although some of the key requirements of the three accounts overlap, others do
not, suggesting that there is sufficient dissimilarity between these accounts. For
example, the conjunction of the fourth14 and fifth requirements of the PSS account can
be reduced to the FSM account’s first requirement. The PSS account’s fourth and fifth
requirements amount to the universality property of soft-programmable computing
systems that is achieved by means of symbolic expressions used either as data or as
programs ensuring maximal plasticity of function. In addition, both the FSM
account’s fourth requirement and the first part of the PSS account’s seventh
requirement demand the capacity to handle an unbounded number of representations15
(or symbolic expressions designating some entities).

Another seemingly important similarity between the FSM and PSS accounts (but
not the Mechanistic account) is that computing systems engage in information
processing at the symbolic level. For instance, Fodor and Pylyshyn (1988: p. 52)
claim that “conventional computers typically operate in a 'linguistic mode', inasmuch

14 The PSS account’s fourth requirement demands the existence of expressions that represent

every process of which the machine is capable to support the full plasticity of behaviour of
the computing system. But it is not clear why it is necessary that every such expression exist.
There could be a mismatch between the set of all functions and the set of all expressions
representing them. For instance, some functions could be the serial invocation of several
expressions (themselves representing other functions).

15 Only the FSM account explicitly states that the unbounded number of representations is
produced by means of compositionality.

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 169

as they process information by operating on syntactically structured expressions”. As
well, Newell and Simon’s (1972: p. 870) fundamental working assumption is that “the
programmed computer and human problem solver are both species belonging to the
genus IPS” (that is information processing systems). The Mechanistic account, on the
other hand, does not equate information processing and digital computation.16 Still, it
is not clear in what sense the information-processing characterisation of computing
systems adds anything operative to the classification of certain physical systems as
performing digital computation. This is stipulating that processing of information
amounts to the production, modification and deletion of information.

A well-known non-semantic reading of information is based on Claude Shannon’s
concept of information (1948), but it is not clear what processing of Shannon
Information amounts to. His theory dealt with information syntactically: whether and
how much information is conveyed. Its basic idea is coding messages into a binary
system at the bare minimum of bits we need to send to get our message across while
abstracting from the physical media of communication. The amount of information
conveyed is defined as the uncertainty (or entropy) associated with particular
messages. The deletion and modification of information is only possible in the
presence of noise. Noisy channels may displace information, but this is not the same
as a deliberate deletion of information in computing systems, say to free up memory
resources or reduce the size of a database. Although error detection and correction
methods modify information to offset noise, symbolic expressions could be modified
for many purposes other than error correction. The production of new information is
more problematic, for the only source of new information, according to Shannon
(1948: p. 12), is uncertainty.

Another possible non-semantic reading of information is based on Algorithmic
Information, which was introduced by Ray Solomonoff and Andrei Kolmogorov. But
even on this reading, it is not immediately clear what information processing amounts
to in the context of concrete computation. The algorithmic information of a string X is
defined as the length of the shortest program on a UTM that generates X as its output.
Algorithmic information seems a more suitable candidate as the basis of an
information processing characterisation of computation. For it is defined over
algorithms, rather than over randomness of messages. Yet, the problem of processing
algorithmic information remains, as it is invariant to the process of computation itself.

Importantly, as stated by Solomonoff, the actual value of Kolmogorov complexity
of a string is incomputable, it can only be approximated (2009: pp. 6-7). This
limitation prevents us from actually having a full description of all the possible
optimal algorithms (that are also enumerable) to solve a specific problem (Calude
2009: p. 82, Calude et al, 2011). Still, a variation on algorithmic information theory,
which is not based on UTMs but rather on Finite State Transducers, does allow us to
compute the complexity of strings. This variation, however, comes at the cost of

16 Instead, according to the Mechanistic account, information processing entails generic

computation (the superclass of both digital computation and analogue computation)
(Piccinini and Scarantino 2011: pp. 33-34). For information is a medium-independent
concept. However, digital computation does not entail information processing, because
although digits could carry information, they need not do so essentially.

170 N. Fresco

Turing universality that does not apply to finite state transducers, since there is no
universal transducer (Calude et al, 2011). Yet, algorithmic information theory will
have a limited capacity to explain cases in which information is deleted and/or
modified whilst the overall information complexity of the computing system does not
decrease.

Other possible candidates for the information processing characterisation of
computing systems alluded to by the FSM and PSS accounts are based on a semantic
reading of information. Two main types of semantic information are factual
information and instructional information. The former type is objective propositional
information representing some facts or states of affairs, and arguably only qualifies as
information if it is true (yet, this is a contentious claim). The latter type is not about
facts or state of affairs, so it is not qualified alethically (Floridi 2009: pp. 35-36).
Instructional information is conveyed either unconditionally (e.g., step 1: do this, step
2: do that) or conditionally (e.g., if X do this, otherwise do that). The subtleties of
semantic information are not discussed further here for lack of space. However, since
algorithms are finite sets of instructions, instructional information seems a plausible
candidate as the basis of characterising digital computation as information processing.

Moreover, the Mechanistic account is grounded in physical mechanisms that
perform computations, whereas both the FSM and PSS accounts are grounded in
symbolic computation and semantics. Digits in the Mechanistic account are not
symbols, but rather states of components (and are as physical as it gets). So, they have
no representational character and their processing is independent of any (external)
semantics. The second requirement of the FSM account, in contrast, emphasises that
symbolic expressions are manipulated according to formal rules and must always be
semantically interpretable even following numerous manipulations. The second
requirement of the PSS account emphasises that symbols are manipulated in virtue of
their semantics.

Incidentally, the semantics of symbols and their manipulation is a key difference
between the PSS and FSM accounts. Although both accounts are based on the
manipulation of symbols at the heart of the computational process, they diverge on
how semantics enters this process. According to the FSM account’s second
requirement, symbols are formally manipulated in virtue of their syntax, but they are
always semantically interpretable. It is a property of automatic formal systems that
symbolic expressions continue to “make sense” when manipulated by truth-preserving
rules. On this view, the formal manipulation of symbols based on their syntax is
sufficient for the operation of the computing system. And the semantics of the
manipulated symbolic expressions is epiphenomenal on their syntax.

However, the second requirement of the PSS account reveals that processes in
computing systems are causally affected by the semantics of symbols. The behaviour
of a process P (with X as its input) depends on a potentially distal entity Y, which is
designated by X. The designation requirement is vague, for it leaves the ways in
which a process depends on some entity unspecified. It might be the case that Newell
and Simon took it for granted that symbols symbolise by definition and so they have
not explicated where their external semantics comes from. If indeed external
semantics is required for computation, then this gap is too big to be left unexplicated.

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 171

Internal access to symbols and expressions in a conventional digital computer is an
assignment operation of, say, a symbol to some other internal entity and it is a
primitive in its architecture (e.g., for memory retrieval). But there is no similar
primitive for the external environment (Bickhard and Terveen 1995: pp. 93-94).

Additionally, the Mechanistic account emphasises the importance of
synchronisation of processing digits belonging to the same string, whereas both the
PSS and FSM accounts ignore temporal constraints of concrete computation.
According to the second requirement of the Mechanistic account, with the growth in
complexity of the computing system it becomes more crucial that digits belonging to
the same string be processed in the same functionally relevant time interval. The other
two accounts, while recognising the temporal aspects of concrete computation, do not
explicitly mandate any temporal constraints on computing systems.

In sum, the above differences discussed as well as others clearly confirm that the
extant accounts of concrete digital computation are not equivalent. The key
motivation behind both the FSM and PSS accounts is advancing a substantive
empirical hypothesis about how human cognition works, namely, that cognition is
essentially a computational system of the specified sort. The Mechanistic account, on
the other hand, has a different and less ambitious motivation. Rather than advancing
an empirical hypothesis about cognition. Piccinini's goal in formulating his account is
to provide a general characterisation of digital computing systems. He attempts to
exclude as many paradigmatic cases of non-computing systems (such as planetary
systems, digestive systems, mouse traps, etc.) as possible. At the same time, his
account classifies many (but not too many) systems as performing digital
computation. The FSM account is more restrictive and excludes any systems that are
neither programmable nor program-controlled from the class of computing systems.
The PSS account is even more restrictive, as it includes only UTMs (and physical
approximations thereof) as genuinely computational.17 Regardless of the (doubtful)
representational character of computation presumed by the FSM and PSS accounts,
they are simply too restrictive as accounts of concrete computation proper.

6 Conclusion

There is no question whether mathematical formalisms of computability are adequate
analyses of abstract computation, but they are of the wrong kind to explain concrete
computation. Any particular formalism does not specify the relationship between
abstract and concrete computation. It is at the physical level that the algorithm (or
more precisely, program) is specified and constrained by the implementing physical
medium. So, stipulating that any complete account of a physical phenomenon must
also consider its physical implementation, an explicit account of concrete
computation has to be specified for a complete account of concrete computing
systems.

17 PSS yields a very restrictive class of computing systems that makes sense when considering

cognitive systems. Since cognition exhibits substantial flexibility, it is unreasonable to
assume that it is an instance of, say, a special purpose TM.

172 N. Fresco

My main argument was that well-known accounts of concrete computation entail
sufficiently distinct requirements for a physical system to compute, justifying the
demand that one commits to a particular account when employing the notion of
concrete computation. But despite the apparent straightforwardness of this argument,
all too often its implied moral is surprisingly ignored by philosophers and cognitive
scientists alike. The notions of computation simpliciter and digital computation, in
particular, are employed without much awareness of what they mean exactly. At
times, extant accounts are even used interchangeably as though they were equivalent
(when they are not even extensionally equivalent). If we take cognition to be a
physical phenomenon that can be explained computationally, we should state
explicitly what we mean by (digital) computation. Otherwise, a computational thesis
of cognition remains unintelligible.

Acknowledgments. Thanks are due to Eli Dresner, Gualtiero Piccinini and Frances
Egan for providing helpful comments on a recent draft of this paper. I would also like
to thank two anonymous referees for the Solomonoff 85th memorial conference for
useful comments. I am grateful to Phillip Staines for detailed comments on various
drafts of this paper. All these comments contributed to this final version, which, I
trust, is much improved.

References

1. Bickhard, M.H., Terveen, L.: Foundational issues in artificial intelligence and cognitive
science: Impasse and solution. Elsevier Scientific, Amsterdam (1995)

2. Calude, C.S.: Information: The algorithmic paradigm. In: Sommaruga, G. (ed.) Formal
Theories of Information. LNCS, vol. 5363, pp. 79–94. Springer, Heidelberg (2009)

3. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoretical Computer
Science 412(41), 5668–5677 (2011), doi:10.1016/j.tcs.2011.06.021

4. Chalmers, D.: On implementing a computation. Minds and Machines 4, 391–402 (1994)
5. Chalmers, D.J.: A computational foundation for the study of cognition. Journal of

Cognitive Science 12(4), 323–357 (2011)
6. Copeland, B.J.: What is computation? Synthese 108, 335–359 (1996)
7. Floridi, L.: Philosophical conceptions of information. In: Sommaruga, G. (ed.) Formal

Theories of Information. LNCS, vol. 5363, pp. 13–53. Springer, Heidelberg (2009)
8. Fodor, J.A.: The language of thought. Harvard University Press, Cambridge (1975)
9. Fodor, J.A.: Methodological solipsism considered as a research strategy in cognitive

science. Behavioral and Brain Sciences 3, 63–73 (1980)
10. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: a critical analysis.

Cognition 28, 3–71 (1988)
11. Fresco, N.: Explaining computation without semantics: keeping it simple. Minds and

Machines 20, 165–181 (2010)
12. Fresco, N.: Concrete Digital Computation: What Does it Take for a Physical System to

Compute? Journal of Logic, Language and Information 20(4), 513–537 (2011),
doi:10.1007/s10849-011-9147-8

13. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler, H.J.,
Kunen, K. (eds.) The Kleene Symposium, pp. 123–148. North-Holland, Amsterdam (1980)

 A Critical Survey of Some Competing Accounts of Concrete Digital Computation 173

14. Haugeland, J.: AI: the very idea. The MIT Press, Cambridge (1985)
15. Israel, D.: Reflections on Gödel’s and Gandy’s reflections on Turing’s thesis. Minds and

Machines 12, 181–201 (2002)
16. Kleene, S.C.: Mathematical logic. Dover, New York (2002)
17. Marr, D.: Vision: a computational investigation into the human representation and

processing visual information. Freeman & Company, New York (1982)
18. Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood (1972)
19. Newell, A., Simon, H.A.: Computer science as an empirical enquiry: symbols and search.

Communications of the ACM 19, 113–126 (1976)
20. Newell, A.: Physical symbol systems. Cognitive Science 4, 135–183 (1980)
21. Piccinini, G.: Computational explanation in neuroscience. Synthese 153, 343–353 (2006)
22. Piccinini, G.: Computing mechanisms. Philosophy of Science 74, 501–526 (2007)
23. Piccinini, G.: Computation without representation. Philosophical Studies 137, 205–241

(2008a)
24. Piccinini, G.: Computers. Pacific Philosophical Quarterly 89, 32–73 (2008b)
25. Piccinini, G., Scarantino, A.: Information processing, computation, and cognition. Journal

of Biological Physics 37, 1–38 (2011)
26. Pylyshyn, Z.W.: Computation and cognition. The MIT Press, Cambridge (1984)
27. Pylyshyn, Z.W.: Computing in cognitive science. In: Posner, M.I. (ed.) Foundations of

Cognitive Science, pp. 51–91. The MIT Press, Cambridge (1989)
28. Pylyshyn, Z.W.: Things and places: how the mind connects with the world (Jean Nicod

Lectures). The MIT Press, Cambridge (2007)
29. Scheutz, M.: When physical systems realize functions. Minds and Machines 9, 161–196

(1999)
30. Scheutz, M.: Computationalism – the next generation. In: Scheutz, M. (ed.)

Computationalism: New Directions, pp. 1–22. The MIT Press, Cambridge (2002)
31. Shagrir, O.: What is computer science about? The Monist 82, 131–149 (1999)
32. Shagrir, O.: Why we view the brain as a computer. Synthese 153, 393–416 (2006)
33. Shannon, C.E.: A mathematical theory of communication. Mobile Computing and

Communications Review 5, 1–55 (1948)
34. Smith, B.C.: The foundations of computing. In: Scheutz, M. (ed.) Computationalism: New

Directions, pp. 23–58. The MIT Press, Cambridge (2002)
35. Smith, B.C.: Age of significance: Introduction (2010),

http://www.ageofsignificance.org (retrieved May 3, 2010)
36. Solomonoff, R.J.: Algorithmic probability - theory and applications. In: Emmert-Streib, F.,

Dehmer, M. (eds.) Information Theory and Statistical Learning, pp. 1–23. Springer
Science+Business Media, NY (2009)

37. Thelen, E., Smith, L.B.: A dynamical systems approach to the development of cognition
and action. The MIT press, Cambridge (1994)

38. van Gelder, T., Port, R.F.: It’s about time: an overview of the dynamical approach to
cognition. In: van Gelder, T., Port, R.F. (eds.) Mind as Motion. The MIT Press, Cambridge
(1995)

39. van Rooij, I.: The tractable cognition thesis. Cognitive Science 32, 939–984 (2008)

	A Critical Survey of Some Competing Accountsof Concrete Digital Computation
	1 Introduction
	2 The Formal Symbol Manipulation Account
	3 The Physical Symbol Systems Account
	4 The Mechanistic Account of Computation
	5 Discussion
	6 Conclusion
	References

