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Abstract. Aiming at alleviating the range anxiety problem in electric
vehicles taking advantage of well-developed computational intelligence,
this paper designs a multi-day tour-and-charging scheduler and measures
its performance. Some tour spots have charging facilities for the vehicle
battery to be charged during the tour. Our scheduler finds a multi-day
visiting sequence, permitting different day-by-day start and end points.
To exploit genetic algorithms for the extremely vast search space, a fea-
sible schedule is encoded to an integer-valued vector having (n+m-1)
elements, where n is the number of places to visit and m is the number
of tour days. The cost function evaluates the waiting time, namely, the
time amount the tourist must wait for the battery to be charged enough
to reach the next place. It also integrates the time budget constraint
and quantizes the tour length. The performance measurement result ob-
tained from a prototype implementation shows that our scheme achieves
100 % schedulability until 13 places for the 2-day trip and 17 places for
the 3-day trip on given parameter setting.

Keywords: Electric vehicle, multi-day trip, tour-and-charging schedule,
genetic algorithm, waiting time.

1 Introduction

Energy efficiency is the most important keyword in the future power grid [1].
According to the development and penetration of electric vehicles, or EVs in
short, the smart grid extends its coverage to the transport system [2]. Not just
efficient power consumption, EVs have many environmental benefits over their
counterparts, namely, gasoline-powered vehicles, as it is not necessary to burn
fossil fuels. Hence, many modern cities are trying to accelerate the large deploy-
ment of EVs and are building city-wide charging facilities. However, in spite of
recent improvement in battery technologies, it is not yet quite sure that the cost
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advantage in operating EVs outweighs their main drawback stemmed from range
anxiety. If a user wants to drive more than the battery capacity, the EV must
be charged somewhere on the route. It may take a few hours with slow chargers.
Moreover, battery switch systems for EVs are rarely commercialized yet.

In the mean time, EV-based rent-a-car services are now appearing, not just
in the form of a short-term hourly sharing model but also a long-term multi-day
rental [3]. As their driving distance is highly likely to exceed the driving range of
a fully-charged EV, drivers are facing the problem of deciding when and where
to charge their EVs during their trips. Here, the visiting sequence is important,
as drivers must wait and waste their time when they want to go to the next place
but current battery remaining is not enough [4]. Moreover, in some places such
as shopping malls and tour spots, EVs can be charged in parking areas while the
drivers are taking their desired activities. How much an EV can fill electricity
definitely depends on the stay time at a place. In case the number of visit places
increases and charging facilities are limitedly available, this problem gets even
more complex, and it is necessary to exploit sophisticated computer algorithms,
mainly in artificial intelligence domains.

Generally, tourists select the set of tour places they want to visit while plan-
ning their tours. From tourist information, the stay time and the availability of
chargers can be retrieved. Even if the scheduling problem is one of the most pop-
ular applications in computer sciences, it must be adapted for problem-specific
constraints and scheduling goals. For example, the daily tour time, that is, the
sum of driving and stay time at all places, is limited, while the waiting time
must be kept as small as possible. Moreover, for multi-day trips, its search space
grows too much, making it necessary to exploit suboptimal techniques such as
genetic algorithms. Here, the modern well-organized communication infrastruc-
ture provides an efficient channel for such intelligent services to be delivered
even to mobile users [5]. Moreover, the seamless interaction between many dif-
ferent objects over the Internet makes it possible for users easily specify their
requirement and receive map-enriched information on diverse types of devices.

In this regard, this paper designs a multi-day tour-and-charging scheduler for
EVs, aiming at reducing the inconvenience brought by their long charging time
and short driving range [1]. Our research team has been developing a tour sched-
uler, mainly focusing on single day trips taking EVs. This effort includes waiting
time estimation, genetic scheduler design, and orienteering problem modeling.
The genetic scheduler will be extended for multi-day trips and its performance
will be evaluated to check if it can be practically applied for an information
service on EV-based rent-a-car systems. To this end, our scheme encodes each
multi-day tour schedule to an integer vector, in which negative numbers are in-
serted to separate each day schedule. In addition, the relevant constraints are
investigated and the corresponding fitness function is defined. The scheduling
goal is to reduce the waiting time, for which tourist wait until their EV gets
enough power to reach the next place along the route.

The rest of this paper is organized as follows: Section 2 reviews some related
works. Section 3 describes the proposed scheme in detail, focusing on how to
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encode a schedule for multi-day tour to apply genetic operations. After Section
4 demonstrates and discusses the performance measurement results, Section 5
concludes this paper with a brief introduction of future work.

2 Related Work

As for an example of a multi-day trip scheduler, the City Trip Planner creates
personalized tour routes and is currently providing services in world’s most fa-
mous cities including New York [6]. Even though this service is not developed
for EVs, it models tour scheduling as a team orienteering problem with time
window. For a given set of user-selected spots, tour time at each spot, and tour
length constraint, this service tries to maximize the sum of scores gained by visit-
ing tour spots. The authors design a fast local search heuristic to respond to the
user request within a reasonable time bound [7]. The search procedure iterates
shake and insertion steps, removing and inserting some tour places, based on
the estimated time window the tour spot can be placed. It automatically inserts
those tour spots not selected but thought to be preferred by a tourist. It will be
advantageous to insert the spots having charging facilities in the tour schedule
generation for EVs.

Multi-day scheduling is quite similar to the multiple Traveling Salesman Prob-
lem (mTSP) in that each personal schedule can be mapped to a daily tour
schedule [8]. In multi-day scheduling, the tourists do not have to return to the
starting place. It has much more time complexity than the classic TSP, as the
number of places to visit is much larger. Intuitively, to cope with this problem,
a decomposition approach may cluster the places to visit into several groups [9].
In addition, it can be solved by exact solutions, heuristics, and transportations.
For example, [10] first represents a visiting sequence by a chromosome having
negative numbers (pseudo cities) to separate day-by-day schedules and runs evo-
lutionary searches to achieve multi-objective goals. This encoding scheme will
be exploited by this paper. In addition, mTSP is applied for vehicle routing
problems which embrace multiple vehicles [11]. Here, vehicle specific constraints
can be integrated in heuristic-based searches such as the Tabu scheme.

As for charging reservation over the route, [12] proposes a charging schedul-
ing scheme with minimal waiting time on the large-scale network consisting of
large number of charging stations cooperating with each other. The authors first
define the waiting time as the sum of queuing time and charging time. Based on
the theoretical analysis and observation that the overall waiting time is mini-
mized if charging demand of all charging stations is balanced, a load distribution
method is designed. Here, an EV can issue the next charging reservation request
periodically. The EV-issued reservation request is forwarded to the charging sta-
tions within the driving range along the chain of the ad-hoc style communication
network. Each station estimates the waiting time for the request and the result
is sent backward to the issuer. The best one is selected and confirmed to both
the EV and the charging station. As contrast to this model which just considers
the next reservation, our scheme can build an entire tour schedule and possibly
make a reservation.
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In [13], authors have developed a waiting time estimation model for EV-based
multi-destination tours. A genetic scheduler finds a visiting sequence having
smaller waiting time just as the classical TSP reduces the tour distance, con-
sidering the charging facility availability, stay time, inter-destination distance.
Moreover, to further reduce the waiting time, system-recommended tour spots,
usually equipped with chargers, are added in the tour schedule [14]. This sched-
uler is a hybrid version of the ordinary TSP for user-selected spots and the
selective TSP, or orienteering problem, for system-recommended spots. A chro-
mosome includes all candidate recommended spots, while some of them will be
deactivated with a tunable omission degree to exclude from the visit schedule.
The scheduling goal is to reduce the waiting time and include as many spots as
possible.

3 Tour Scheduler

3.1 Overview

Let S = {S1, S2, ..., Sn} be the set of tour spots an EV driver wants to visit
during the whole trip. They are all different, have their own stay time, and must
be visited just once. The stay time will be affected by many factors such as user
preference, weather, and the like. Considering the scheduling goal of reducing
the waiting time, stay time will be set to the reasonable lower bound of the entire
distribution. The stay time at Si will be denoted by T (Si). In addition, we assume
that the start and end points are given for every day, namely, H = {(Hs

i , H
e
i )}

for 1 ≤ i ≤ m, where m is the number of tour days. Generally, He
i = Hs

i+1,
as a tour team stays at a hotel and starts the next day trip from the same
hotel. The start point of the first tour day, namely, Hs

1 , and the end point of the
last tour day, namely, He

m, will be pick-up and return stations of an EV rental
service, respectively. Based on the road network, the distance between every pair
of two spots is given for tour scheduling and Dist(Si, Sj) represents the distance
between Si and Sj .

The genetic algorithm is one of the most widely-used suboptimal search tech-
niques, built upon the principle of natural selection and evolution [15]. Beginning
from initial population consisting of given number of feasible solutions, genetic
iterations improve the fitness of solutions generation by generation. Each gen-
eration is created from its parent generation by applying genetic operators such
as selection, crossover, and mutation. To apply those operators, it is necessary
to represent a feasible solution as an integer-valued vector. For example, the
crossover operator swaps substrings from two parents, Hence, the first step of
the multi-day tour-and-charging scheduler design is to encode a multi-day sched-
ule. Basically, n user-selected tour spots are included in the schedule. Then, if
the number of tour days is m, (m-1) different negative numbers are added, cre-
ating a vector of (n+m-1) discrete elements [10]. After all, a multi-day schedule
can be handled just like a single-day schedule.
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Figure 1 shows an example which builds a 3-day schedule for 9 places, namely,
from S1 to S9. Hence, n is 9 and m is 3. This example also includes a chromosome
for a visiting schedule, in which each daily schedule is separated by -1 and -
2, resulting in 3 groups. Even if -2 comes first, it doesn’t matter, as negative
numbers are used just for separation of each daily schedule. Hence, the total
length of a chromosome is 11. Each day has 3 places to visit, while the total
trip begins and ends at rent-a-car station in the airport. The tourists stay at a
hotel at the first and second days, respectively. The evaluation step calculates
the predefined cost, such as the waiting time and total tour length, for each
subschedule and hotel specification.

)

1
s H1

e H2
s H2

e H3
eH3

s

S7 S9 S4S1

S6, , S7, S9,

Airport pick−up station
Airport return station

Hotel 1 Hotel 2

S3 S5 S8 S2 S6

3, S5 ,,S1,S −2 S2S8 ,, −1 S4(

H

Fig. 1. Effect of genetic iterations

3.2 Fitness Function

A fitness function, or cost function evaluates the quality of a schedule. The
schedules in the population are sorted by fitness values. Straightforwardly, the
higher the cost, the lower the fitness. Hence, they can be used interchangeably.
To estimate the waiting time, our cost function defines two primitive operations,
namely, Move and Stay. Along a tour route, two operations are invoked in
turn. Here, both the waiting time and the tour time of a schedule, globally
defined as W and Li ( 1 ≤ i ≤ n), are estimated spot by spot. First, the Move
operation accounts for driving between two spots. If battery remaining is enough,
this operation just decreases battery remaining without changing the waiting
time. Otherwise, the lacking battery amount and then corresponding charging
time are calculated. The waiting time increases by the charging time. The tour
time also increases by the charging time in addition to the driving time.

Next, the Stay operation traces battery charging at a tour spot. If a tour spot
has no chargers, battery remaining does not increase. Otherwise, it
linearly increases according to the stay time. Here, any battery charge and dis-
charge model can be employed [16]. However, it should not exceed the maxi-
mum capacity, BMax. Hence, the visiting sequence had better avoid two or more
consequent spots having chargers and long stay time. For an example of 2-day
trip specified by {(Hs

1 , H
e
1), (H

s
2 , H

e
2)}, and {S1, S2,−1, S3, S4}, the waiting time

can be calculated by sequentially invoking Move(Dist(Hs
1 , S1)), Stay(T (S1)),

Move(Dist(S1, S2)), Stay(T (S2)), and Move(Dist(S2, H
e
1)) for the first day
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whileMove(Dist(Hs
2 , S3)), Stay(T (S3)),Move(Dist(S3, S4)), Stay(T (S4)), and

Move(Dist(S4, H
e
2)) for the second day. The total waiting time is the sum of

those two. At the same time, per-day tour length, Li, and total tour length,∑
Li, are calculated for the evaluation of fitness or cost of a tour schedule.
Users can set an upper bound on the daily tour length. Hence, each daily

tour time is compared with this time budget, and if it is larger than the budget,
the schedule is not valid. However, it is not discarded in the population as it
can contribute to the improvement of fitness by reproduction. Instead, its cost
function gives the largest value to it. Next, the waiting time is most critical to
the user-side convenience, and it must be kept as small as possible. Besides, we
can assign the tour length of each day as evenly as possible to make room for
another activities or rest. Otherwise, we can also pack the tour schedule to as
small number of tour days as possible, making a large free time chunk. It is hard
to decide which one is better, but either requirement can be taken into account
in the cost function. For the first case, the longest tour length is counted in the
cost function. After all, the cost function F for a visiting sequence, x, is defined
as follows:

F (x) =

{
∞ for ∃i Li ≥ Tb,

W × 1000.0 +Max(Li) for 1 ≤ i ≤ m.

where W is the waiting time and Tb is the time budget.

4 Experiment Result

This section measures the performance of our tour scheduling scheme via a proto-
type implementation using Microsoft Visual Studio 2012. It employs the Roulette
wheel selection method and randomly sets the initial population of chromosomes,
or feasible solutions encoded by an integer vector. For better population diversity,
it does not permit duplicated chromosomes in the contemporary population. As
contrast, (S1,−1, S2) and (S2,−1, S1) are logically equivalent, having the same
cost value. However, they are allowed to coexist in the population, as they can
generate different offsprings. The inter-spot distance exponentially distributes
with the average of 15.0 km. No two spots are separated by more than the driv-
ing range, which is the distance reachable with full battery capacity. In addition,
the stay time also distributes exponentially with the average of 30 minutes, with
its maximum limited to 2 hours.

The first experiment measures the effect of genetic iterations on performance
metrics such as waiting time, longest daily tour time, and total tour time. As for
genetic parameters, the population size is set to 32 and the number of iterations
to 1,000. Its execution time is less than 1 second, regardless of the number of
places to visit, for practical use. We select two sets of user-selected tour places,
one for 16 places in 2 days and the other for 23 places in 3 days. As shown in
Figure 2(a), the two cases begin from the cost of 1,000, which means no valid
schedule is included in the initial population. Then, the 2-day case finds a feasible
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Fig. 2. Effect of genetic iterations

solution after about 36 iterations, while the 3-day case after 106 iterations. For
the 3-day case, the cost remains 10.0 temporarily, but goes down to 0 after 106
iterations. This result indicates that the time budget constraint is more critical
to the cost function.

Next, Figure 2(b) plots the longest daily tour time for the two cases. Here, the
value of 0 is meaningless as it takes place when there is no valid schedule. After
the valid schedule is found, the daily tour time has non-zero values and then
converges to a stable value. For the 2-day case, the longest daily tour becomes
416 minutes and then converges to 396 minutes. In addition, for the 3-day case
it temporarily becomes 800 minutes and then converges to 351 minutes. For the
case having larger number of places to visit, the longest daily tour time changes
more often, or have more descending stages. Figure 2(c) plots the change in
total tour length for above two cases. The total tour time in the 23-place case is
definitely longer than that in the 16-place case. The initial value of the total tour
time is 929 and 1,204 minutes, respectively. Then, each of them drops sharply
when feasible schedules are found. After those points, the total tour length shows
just minor improvement. During this iteration interval, the waiting time has
already touched 0, and no more improvement is expected for it.
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Now, the second experiment measures the schedulability of the proposed tour-
and-charging scheduler according to the number of tour spots, average stay time,
and the availability of chargers at each tour spot. The schedulability is the ratio
of successfully finding a schedule having no waiting time out of 50 sets. Figure
3(a) plots the schedulability obtained by changing the number of tour spots from
10 to 20 for the 2-day trip and from 17 to 27 for the 3-day trip, respectively.
For the 2-day case, up to 12 places, all selection sets are schedulable, and the
schedulability begins to drop from 13 places, and touches zero on 19 places.
Even 1 set is scheduled when the number of places is 20, it can be disregarded.
Likewise, for the 3-day trip, all sets can be scheduled up to 17 places and no set
can create a feasible schedule on 27 places.
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Fig. 3. Schedulablity measurement

Next, Figure 3(b) shows the effect of the average stay time to schedulability.
With larger stay time, EVs can get more electricity during the trip. However,
it makes both the total tour length and the longest daily tour too long. Hence,
according to the increase in the average stay time, the schedulability gets poorer.
Particularly, when the average stay time is 40 minutes, no set can be scheduled
for the 2-day trip and just 5 can be scheduled for the 3-day trip. Finally, Figure



116 J. Lee and G.-L. Park

3(c) measures the effect of the availability of chargers. At first, we expect that
schedulability will be enhanced with more chargers. However, as the time budget
constraint dominates in tour set scheduling, its effect is not so significant. This
parameter setting makes the schedulability fluctuate between 0.17 and 0.25, no
one outperforming the other.

Additionally, Figure 4(a) plots the actual execution time of the implemented
scheduler on an average performance PC, which consists of 2.4 GHz Intel(R)
Core(TM)2 Duo CPU and 3 GM main memory, running Windows Vista operat-
ing system. The experiment takes a tour of 24 spots for 3 days. The population
size is set to 32 and 64. The effect of population size to accuracy is already
measured in Figure 2, so this experiment focuses on the execution speed accord-
ing to the progress of genetic loops. The execution time of a genetic algorithm
mainly depends on population size and the number of iteration. As shown in
Figure 4(a), even for the population size of 64, the response time is less than 1.8
second. The common genetic operator overhead makes the difference between
two cases 31.4 200 iterations. However, after 2,000 iterations, the increase of the
population size by 2 lead to the increase in the execution time by 2.1 times.
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Fig. 4. Additional experiment

Next, we compare the proposed scheduler with a random scheduling scheme
which randomly generates schedules and selects the best one for the almost
same time duration needed for our scheduler. This scheme has no control policy,
but is quite efficient in large search space and gives us good reference. In this
experiment, 3-day tour is assumed and the population size is set to 32. Figure
4(b) plots the success ratio for both schemes and shows that the proposed scheme
outperforms by 12 % for the case of 20 tour spots. According to the increase in
the number of selected spots, the difference gets smaller, as both schemes can
hardly find a feasible schedule.
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5 Conclusions

The smart grid is extending its coverage area to the transport system for better
energy efficiency, particularly making an effort to prompt the penetration of EVs
into our daily lives. They are suffering from short driving range, long charging
time, and insufficient charging infrastructure. Those problems can be much se-
rious when the trip length exceeds the driving range and the tour lasts for more
than one day. It can be efficiently relieved by intelligent information technologies
commonly available in these days. Accordingly, in this paper, we have designed
a tour-and-charging scheduler for EVs, deciding when and where to charge EVs
as well as the visiting sequence having the acceptable waiting time. Suboptimal
techniques are unavoidably exploited to cope with large search space resulting
from the extended number of places to visit for multi-day tours.

Our scheduler is developed based on the genetic algorithm, one of the most
widely used suboptimal search schemes. To exploit genetic algorithms, a feasible
schedule is encoded to an integer-valued vector having (n+m-1) elements, where
n is the number of places to visit and m is the number of tour days. m-1 negative
number are inserted to separate each day schedule. The cost function mainly
evaluates the waiting time, namely, the time amount the tourist must wait for the
battery to be charged enough to reach the next station. It also integrates the time
budget constraint and quantizes the daily and total tour length. The performance
measurement result obtained from a prototype implementation shows that our
scheme shows 100 % schedulability until 13 places for the 2-day trip and 17
places for the 3-day trip. In addition, for most cases, the reasonable answers are
found in earlier stage of genetic iterations.

As future work, we are planning to apply our scheduler to the actual road
network, specifically, in Jeju city, Republic of Korea. The distribution of tour
places and terrain effect will give us more hints to improve or adapt the tour-
and-charge scheduler proposed in this paper.
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