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Abstract. Many problems in multi-agent systems can be represented as
a Distributed Constraint Optimization Problem (DCOP) where the goal
is to find the best assignment to variables in order to minimize the cost.
More complex problems including several criteria can be represented as
a Multi-Objective Distributed Constraint Optimization Problem (MO-
DCOP) where the goal is to optimize several criteria at the same time.
However, many problems are subject to changes over time and need to
be represented as dynamic problems. In this paper, we formalize the
Dynamic Multi-Objective Distributed Constraint Optimization Problem
(DMO-DCOP) and introduce the first algorithm called DMOBB to han-
dle changes in the number of objectives.

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) [6, 8, 9] is a funda-
mental problem that can formalize various applications related to multi-agent
cooperation. A DCOP consists of a set of agents, each of which needs to decide
the value assignment of its variables so that the sum of the resulting costs is min-
imized. In the last decade, various algorithms have been developed to efficiently
solve DCOPs, e.g., ADOPT [8], BnB-ADOPT [11], DPOP [9], and OptAPO [6].
Many multi-agent coordination problems can be represented as DCOPs, e.g.,
distributed resource allocation problems including sensor networks [4], meeting
scheduling [5], and the synchronization of traffic lights [3].

A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP)
[2, 7] is an extension of a mono-objective DCOP. Algorithms for solving an MO-
DCOP provide all the solutions that offer an interesting trade-off between the
different objectives Compared to DCOPs, there exists only two MO-DCOP algo-
rithms, the Bounded Multi-Objective Max-Sum algorithm (B-MOMS) [2] and
a distributed search method with bounded cost vectors [7] generalizes ADOPT
for MO-DCOPs.

Now consider a dynamic environment where many changes can occur. Many
real world problems take place in such environment but the previous models
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(DCOP and MO-DCOP) do not take changes into account. There exists some
works for dynamic DCOPs [1, 12], however, as far as the authors are aware,
there exists no work on considering multiple criteria in a dynamic environment.

As an example, imagine a set of unmanned vehicles searching for survivors
while maintaining a wireless communication network between them. Those ve-
hicles care about several objectives such as the fuel consumption, the quality of
the communication network, the distance to the base, etc. We do not know if
changes to the problem might occur but assume the topology of the problem (the
agents and their ordering) will not change. Now, while searching for survivors,
the vehicles are warned about several dangerous areas in their research zone.
The vehicles need to react to this new information in order to avoid dangerous
spots and new solutions are required to take every objectives into account.

In this paper, we first propose a Dynamic Multi-Objective Distributed Con-
straint Optimization Problem (DMO-DCOP) which is the extension of an MO-
DCOP and a dynamic DCOP. Furthermore, we develop the first algorithm called
Dynamic Multi-Objective Branch and Bound (DMOBB) for solving a DMO-
DCOP. This algorithm focuses on a change in the number of objectives and
utilizes (i) a special graph structure called a pseudo-tree, which is widely used
in DCOP algorithms, (ii) a Decentralized Synchronous Branch and Bound. We
adapted it for MO-DCOPs and DMO-DCOPs.

The remainder of this paper is organized as follows. Section 2 and 3 provides
some preliminaries on DCOPs and MO-DCOPs. Section 4 formalizes a DMO-
DCOP and introduces a novel algorithm for solving a DMO-DCOP which can
guarantee to find all Pareto solutions. Section 5 empirically evaluates our pro-
posed algorithm. Finally, we conclude in Section 6 and provide some perspectives
for future work.

2 DCOP

A Distributed Constraint Optimization Problem (DCOP) [8, 9] is a fundamental
problem that can formalize various applications for multi-agent cooperation.

A DCOP is defined with a set of agents S, a set of variables X , a set of
constraint relations C, and a set of reward functions O. An agent i has its own
variable xi. A variable xi takes its value from a finite, discrete domain Di. A
constraint relation (i, j) means there exists a constraint relation between xi and
xj . For xi and xj , which have a constraint relation, the reward for an assignment
{(xi, di), (xj , dj)} is defined by a reward function ri,j(di, dj) : Di × Dj → R

+.
For a value assignment to all variables A, let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj,dj)}⊆A
ri,j(di, dj), (1)

where di ∈ Di and dj ∈ Dj. Then, an optimal assignment A∗ is given as
argmaxA R(A), i.e., A∗ is an assignment that maximizes the sum of the value of
all reward functions. A DCOP can be represented using a constraint graph, in
which a node represents an agent/variable and an edge represents a constraint.
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Table 1. Example of MO-DCOP

A1 A2 cost A2 A3 cost A1 A3 cost
a a (5,2) a a (0,1) a a (1,0)
a b (7,1) a b (2,1) a b (1,0)
b a (10,3) b a (0,2) b a (0,1)
b b (12,0) b b (2,0) b b (3,2)

3 MO-DCOP

A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP)
[2, 7] is the extension of a mono-objective DCOP. An MO-DCOP is defined
with a set of agents S, a set of variables X , multi-objective constraints C =
{C1, . . . , Cm}, i.e., a set of sets of constraint relations, and multi-objective func-
tions O = {O1, . . . , Om}, i.e., a set of sets of objective functions. For an objective
l (1 ≤ l ≤ m), a cost function f l

i,j : Di ×Dj → R, and a value assignment to all
variables A, let us denote

Rl(A) =
∑

(i,j)∈Cl,{(xi,di),(xj,dj)}⊆A
f l
i,j(di, dj), where di ∈ Di and dj ∈ Dj . (2)

Then, the sum of the values of all cost functions for m objectives is defined
by a cost vector, denoted R(A) = (R1(A), . . . , Rm(A)). Finding an assignment
that minimizes all objective functions simultaneously is ideal. However, in gen-
eral, since trade-offs exist among objectives, there does not exist such an ideal
assignment. Thus, the optimal solution of an MO-DCOP is characterized by us-
ing the concept of Pareto optimality. Because of this possible trade-off between
objectives, the size of the Pareto front is exponential in the number of agents,
i.e., every possible assignment can be a Pareto solution in the worst case. An
MO-DCOP can be also represented using a constraint graph.

Definition 1 (Dominance). For an MO-DCOP and two cost vectors R(A)
and R(A′) obtained by assignments A and A′, we say that R(A) dominates
R(A′), denoted by R(A) ≺ R(A′), iff R(A) is partially less than R(A′), i.e., (i)
it holds Rl(A) ≤ Rl(A′) for all objectives l, and (ii) there exists at least one
objective l′, such that Rl′(A) < Rl′(A′).

Definition 2 (Pareto solution). For an MO-DCOP and an assignment A, we
say A is the Pareto solution, iff there does not exist another assignment A′, such
that R(A′) ≺ R(A).

Definition 3 (Pareto Front). For an MO-DCOP, the Pareto front is the set
of cost vectors obtained by the Pareto solutions. Solving an MO-DCOP is to
find the Pareto front.

Example 1 (MO-DCOP). We show a bi-objective DCOP using the example rep-
resented with Table 1. The table shows three cost tables among three agents.
The Pareto solutions of this problem are {{{(A1, a), (A2, a), (A3, a)} → (6, 3)},
{{(A1, a), (A2, b), (A3, b)} → (10, 1)}}.
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4 Dynamic Multi-Objective Distributed Constraint
Optimization Problem

In this section, we formalize a Dynamic Multi-Objective Distributed Constraint
Optimization Problem (DMO-DCOP). Furthermore, we develop the Dynamic
Multi-Objective Branch and Bound (DMOBB), the first algorithm for solving a
DMO-DCOP and provide its complexity.

4.1 Model

ADynamic Multi-Objective Distributed Constraint Optimization Problem (DMO-
DCOP) is the extension of an MO-DCOP. A DMO-DCOP is defined by a se-
quence of MO-DCOPs.

< MO-DCOP1,MO-DCOP2, ...,MO-DCOPk > . (3)

In this paper, we assume that

– only the number of objective functions changes,
– the number of agents/variables, domains, and costs for current constraints

does not change.

Solving a DMO-DCOP is to find a sequence of Pareto front

< PF1, PF2, ..., PFk >, (4)

where PFi (1 ≤ i ≤ k) is the Pareto front of MO-DCOPi. Since we do not know
how many objective functions will be removed/added in the next MO-DCOP, it
is a reactive approach.

Definition 4 (Evolution of the Pareto Front). For an MO-DCOPi and its
corresponding Pareto front PFi, adding objectives to MO-DCOPi will result
in a new Pareto front PFi+1 such that for all unique cost vectors in PFi, one
of the assignment yielding this cost will still be a Pareto solution in PFi+1.
However, if different assignments yield a same cost in PFi, there is no guarantee
that all assignments will still yield Pareto Solutions in PFi+1. Similarly, in case
several objectives are removed, there is no guarantee that all Pareto solutions of
MO-DCOPi are also the Pareto solutions in MO-DCOPi+1.

4.2 DMOBB Algorithm

To run DMOBB, we first order the agents into a pseudo-tree [10].
A pseudo-tree is a special graph structure widely used in DCOP algorithms.

In a pseudo-tree, there exists a unique root node, and each non-root node has a
parent node. For each node/agent i, we denote the parent node, and children of
i as follows:

– parenti, the parent of the agent i.
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Algorithm 1. Search Algorithm for agent ai
1: i: integer (agent id)
2: children: list of agents
3: PF : set of pairs of assignment and cost vector (local PF for all context)
4: currentPF : set of pairs of assignment and cost vector (local Pareto front for the current context)
5: PFc: set of pairs of assignment and cost vector (children Pareto front)
6: context: vector of integers (ancestors assignment)
7: UB: set of cost vectors (local upper bounds)
8: response: integer
9: di: current value from domain Di being explored
10: currentPF ← ∅
11: if Root agent then// Root agent
12: for each value di of D do
13: UB ← computeUB()
14: send (di, ∅, UB) // Send Value message
15: response← 0 ;PFc ← ∅
16: while response < |children| do // Receive Cost messages
17: if message = (PFci

) then
18: PFc ← (PFc

⊕
PFci

) + δassignment∪di
19: response← response + 1

20: currentPF ← (currentPF 	 PFc)

21: send TERMINATE to all children
22: else
23: while message 
= TERMINATE do
24: message← receive() // Receive Termination message
25: if message = TERMINATE then
26: send TERMINATE to all children

// Receive Value message
27: if message = (new context, γnew context, UBp) then
28: context← new context ; currentPF ← ∅ ; PFc ← ∅
29: for each value di of D do
30: UB ← computeUB()
31: assignment ← context ∪ di

32: γassignment ← δassignment + γnew context

33: if γassignment is not dominated by UB then // Check bounds
34: send (assignment, γassignment, UB) to all children
35: if Leaf agent then // Leaf agent
36: currentPF ← (currentPF 	 δassignment)
37: else
38: response← 0 ;PFc ← ∅
39: while response < |children| do // Receive Cost messages
40: if message = (PFci

) then
41: PFc ← (PFc

⊕
PFci

)
42: response← response + 1

43: currentPF ← (currentPF 	 (PFc + δassignment))

44: send currentPF to parent // Send Cost message

45: add currentPF to PF

Algorithm 2. Algorithm to build UB
46: UB: set of cost vectors (local upper bounds)
47: UBp: set of cost vectors (upper bounds received from the parent)
48: currentPF set of pairs of assignment and cost vector (local Pareto front for the current context)
49: previousPF set of pairs of assignment and cost vector (local Pareto front for the previous search)
50: context: vector of integers (ancestors assignment)
51: addedObjMax: vector of integers with the local maximal value for each newly added objectives.
52: UB ← currentPF 	 UBp

//Find the maximal acceptable cost for the new objectives
53: for each added objective m do
54: for each cost ∈ UB do
55: addedObjMax[m]← max(addedObjMax[m], cost[m])

//Reuse previous bound
56: for each (assignment, cost) ∈ previousPF do
57: if assignment compatible with context then
58: UB ← UB 	 (cost ∪ addedObjMax)
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– childreni, the set of children of i.

We assume that this operation is done as a preprocessing step. Since adding or
removing objectives has no impact on the topology of the problem, the ordering
will stay the same throughout the execution.

We show the pseudo-code of DMOBB in Algorithm 1 and 2. During the search
phase, the solution space will be explored to completely determine the Pareto
solutions. The search can start without any prior knowledge or it can use the
Pareto front found during the previous search.

To communicate information between the agents in the pseudo-tree, we use
the following three message types :

Value message: Sent from an agent i to its children, it contains the context
currently being explored, the gamma cost γcontext and the bounds used by
the parent (UBp).

Cost message: Sent from an agent i its parent, it contains the local Pareto
front PFcontext found for the given context context.

Terminate message: Sent from parent to children to indicate the search is
over.

Furthermore, we define 2 operators, the first one is the direct sum for two
Pareto fronts which makes use of the direct sum between two vectors.

PF1

⊕
PF2 =

{
∀(X,Y ) ∈ PF1 × PF2, X

⊕
Y
}

(5)

The second operator is the union of two Pareto fronts that keeps only the
non-dominated cost vectors.

A �B = A ∪B \ {a < b} ∪ {b < a}, a ∈ A, b ∈ B. (6)

We also define the delta cost δcontext+di and the gamma cost γcontext+di. The
delta cost is the sum of constraint costs of all constraints that involve both i and
one of its ancestors for the current value di and the values of ancestor agents
contained in the current context. The gamma cost is the sum of ancestors’ delta
cost plus the local delta cost for context context+ di.

Theorem 1. With DP the DMO-DCOP we want to solve, n the number of
variables, m the number of objectives and |d| the domain size for the variables,
the memory use of an agent to solve DP is given by O(2m|d|n). The total time
required to solve DP is given by O(m2|d|3n|DP |).

5 Experimental Evaluation

In this section, we evaluate the performances of DMOBB and compare them
with the naive method where each MO-DCOP is solved independently. All the
tests are made with a domain size of 2 and a density of 1 (a variable always share
a constraint with all the other variables). We show the results obtained when
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Fig. 2. Varying number of objectives

varying the number of variables and when varying the number of objectives. We
implemented our algorithm in Java using the Jade framework and all tests were
run on 6 cores running at 2.6GHz with 12GB of RAM.

Varying Variables Figure 1 shows the runtime when varying the number of
nodes. Those results are obtained for the complete solving of aDMO-DCOP =<
MO-DCOP1,MO-DCOP2,MO-DCOP3 > with the first MO-DCOP having 3
objectives, the second one 4 and the last one 5. We can see the expected ex-
ponential growth of the runtime making larger problems quickly uncomputable.
However, we can see that the growth when using DMOBB is reduced. The costli-
est operation in our algorithm is the comparison of Pareto fronts. Our algorithm,
even in the worst case, can prune some solutions in the leaf nodes. This reduces
the size of the Pareto fronts that comes up the tree, decreasing the runtime sig-
nificantly. We now consider the influence of the number of objectives on the run-
time. For this test, we solved a DMO-DCOP =< MO-DCOP1,MO-DCOP2 >
such that MO-DCOP1 has m objectives and MO-DCOP2 has m+1 objectives.
We show in figure 2 the runtime it takes to solve MO-DCOP2 for a problem
with 14 variables. We varied m from 1 to 4 and we can see that with bigger m
the improvement compared to the naive method increases. DMOBB has almost
no impact for small problems but we see that we get 30% speedup when solving
a problem with 5 objectives and reusing the previous solutions.

To conclude the experimental part, we have shown that the larger the prob-
lems, the more efficient DMOBB is compared to the naive resolution. How-
ever, on smaller problems, DMOBB offers no advantages compared to the naive
method and can even be less efficient. Note that those results were obtained on
the worst case (random cost vectors and density 1) and that depending on the
problem, better results can be expected.

6 Conclusion

In this paper, we introduced the Dynamic Multi-Objective Distributed Con-
straint Optimization Problem (DMODCOP) and proposed DMOBB, the first
algorithm to solve such problem in a reactive approach. We showed how DMOBB
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is more efficient than the naive method where each problem in the sequence is
solved independently.

As future works, we want to want to abandon the assumption of this paper
that considers only changes in the number of objectives. Since Pareto fronts are
of exponential size in the worst case, we also want to develop an incomplete
algorithm for DMO-DCOPs in order to solve large-scale problem instances.
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