
SAT-Based Bounded Model Checking

for Weighted Interpreted Systems
and Weighted Linear Temporal Logic∗
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Abstract. We present a SAT-based bounded model checking (BMC)
method for the weighted interpreted systems (i.e. interpreted systems
augmented to include a weight function, one per each agent, that asso-
ciates weights with actions, which are arbitrary natural numbers) and
for properties expressible in the existential fragment of a weighted linear
temporal logic with epistemic components (WELTLK). Since in BMC
we translate both the system model and the checked specification to a
propositional formula that is later analysed by a SAT-solver, we report
on a propositional encoding of both the weighted interpreted systems
and the WELTLK formulae. This encoding is designed specifically for
managing weighted temporal operators and knowledge operators, which
are commonly found in properties of multi-agent systems in models of
which we assume that acting of agents may cost. We implemented the
proposed BMC algorithm as a new module of VerICS, and we evaluated
it by means of the following two examples: a weighted generic pipeline
paradigm and a weighted bits transmission problem.

1 Introduction

Agents are autonomous and intelligent entities that can be engage in social
activities such as coordination, negotiation, cooperation, etc. A multi-agent sys-
tem (MAS) [16] is a distributed system composed of multiple interacting agents
within an environment. There are variety of models of MASs, the most widely
studied of which is the interpreted system (IS) [7], designed for reasoning about
the agents’ epistemic and temporal properties, and the deontic interpreted system
(DIS) [12] that extends IS to make possible reasoning about correct functioning
behaviour of MASs. An important assumption in this line of models is that there
are no costs associated to agents’ actions. The models become more expressive
when this restriction is dropped. For example, the formalism of weighted deontic
interpreted systems (WDISs) [17] extends DISs to make the reasoning possible
about not only temporal, epistemic and deontic properties, but also about agents
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quantitative properties. In the Kripke model of WDIS each transition is labelled
not only by a joint action, but also by a positive integer value (e.g. 100 units)
that represents the cost of acting agents. Such transitions could be simulated in
the Kripke model of DIS by inserting 99 intermediate states. However, this in-
creases the size of the Kripke model, and so it makes the model checking process
more difficult.

Bounded model checking (BMC) [3,14] is one of the symbolic model checking
techniques [4,16] that has gained popularity due to the immense success of SAT-
solvers. In classical SAT-based BMC, we translate the existential model checking
problem for a temporal epistemic logic to the satisfiability problem of a propo-
sitional formula. More precisely, we represent a counterexample of the bounded
length by a propositional formula, and we check the satisfiability of the resulting
propositional formula with a specialised SAT-solver. If this formula is satisfiable,
then the SAT-solver returns a satisfying assignment that can be converted into
a concrete counterexample showing the source of an error. Otherwise, the bound
is increased until an error is found, or a pre-determined completeness threshold
is reached (in practice, this is a rare case), or a pre-determined time/memory
limits are reached.

Specification languages are most useful when they can be verified automati-
cally. Therefore to model check the requirements of MASs various extensions of
temporal logics [5] with epistemic (representing knowledge) [7], doxastic (rep-
resenting beliefs) [10], and deontic (representing the distinction between ideal/
correct behaviour and actual – possibly incorrect – behaviour of the agents)
[12] components have been proposed. In this paper we aim at completing the
picture of applying the SAT-based BMC techniques to MASs by looking at the
existential fragment of the weighted LTLK (i.e. weighted LTL extended with
epistemic components, called WLTLK), interpreted over the weighted interpreted
systems (WISs), i.e. the WDISs formalism in which deontic properties cannot
be expressed [17]. We restrict the presented BMC formalism to WISs, because
adding the deontic modalities to the BMC method for the existential fragment
of WLTLK that we present in the paper is straightforward.

The original contributions of the paper are as follows. First of all, we introduce
the WLTLK language and its existential fragment, called WELTLK. In the sec-
ond place, we propose a SAT-based BMC technique for WISs and for WELTLK.
Finally, we report on the implementation of the proposed BMC method as a
new module of VerICS [9], and evaluate it experimentally by means of a modi-
fied generic pipeline paradigm [13] and a modified bit transmission problem [1].
We would like to point out that to the best of our knowledge, this is the first
work which provides a practical BMC algorithm for WELTLK interpreted over
weighted interpreted systems. Moreover, the novelty with respect to [17] is the
following: the language (WELTLK), a propositional encoding of WELTLK, a
new propositional encoding of the weighted transition relation, an implemen-
tation, an experimental evaluation, and a new case study. Further, we do not
compare our results with other model checkers for MASs, e.g. MCMAS [11] or
MCK [8], simply because they do not support WELTLK and WIS.
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The structure of the paper is as follows. In Section 2 we introduce WISs and
WLTLK together with its existential fragment. In Section 3 we define a SAT-
based BMC for WELTLK interpreted over WISs. In Section 4 we discuss our
experimental results. In Section 5 we conclude the paper.

2 Preliminaries

Weighted Interpreted Systems. Let Ag = {1, . . . , n} denote the non-empty
and finite set of agents, and E be a special agent that is used to model the
environment in which the agents operate. The set of agents Ag together with the
environment E constitute a multi-agent system (MAS). In the paper we use the
weighted interpreted system (WIS), a formalism defined later on in the section,
to model MAS. In the WIS formalism, each agent c ∈ Ag∪{E} is modelled using
a non-empty set Lc of local states, a non-empty set ιc ⊆ Lc of initial states, a
non-empty set Actc of possible actions, a protocol function Pc : Lc → 2Actc that
define rules according to which actions may be performed in each local state, a
(partial) evolution function tc : Lc×Act→ Lc with Act = Act1×· · ·×Actn×ActE
(each element of Act is called a joint action), a weight function dc : Actc → IN,
and a valuation function Vc : Lc → 2PV that assigns to each local state a set
of propositional variables that are assumed to be true at that state. Further, we
do not assume that the sets Actc are disjoint for all c ∈ Ag ∪ {E}.

Now for a given set of agents Ag, the environment E and a set of proposi-
tional variables PV , we define the weighted interpreted system (WIS) as a tuple
({ιc, Lc, Actc, Pc, tc,Vc, dc, }c∈Ag∪{E}). Next, for a given WIS we define: (1) a
set of all possible global states S = L1 × . . . × Ln × LE ; by lc(s) we denote the
local component of agent c ∈ Ag ∪ {E} in a global state s = (�1, . . . , �n, �E); and
(2) a global evolution function t : S × Act → S as follows: t(s, a) = s′ iff for all
c ∈ Ag, tc(lc(s), a) = lc(s

′) and tE(lE(s), a) = lE(s′). In brief we write the above

as s
a−→ s′. Now, for a given WIS we define a weighted model (or a model) as a

tuple M = (ι, S, T,V , d), where
– ι = ι1 × . . .× ιn × ιE is the set of all possible initial global state;
– S is the set of all possible global states as defined above;
– T ⊆ S × Act × S is a transition relation defined by the global evolution

function as follows: (s, a, s′) ∈ T iff s
a−→ s′. We assume that the relation T

is total, i.e. for any s ∈ S there exists s′ ∈ S and a non empty joint action
a ∈ Act such that s

a−→ s′;
– V : S → 2PV is the valuation function defined as V(s) =

⋃
c∈Ag∪{E} Vc(lc(s));

– d : Act → IN is a “joint” weight function defined as follows: d((a1, . . . ,
an, aE)) =

∑
c∈Ag∪{E} dc(ac); note that this definition is reasonable, since

we are interested in MASs, in which transitions carry some cost.
Given a WIS one can define the indistinguishability relation ∼c⊆ S × S for

agent c as follows: s ∼c s
′ iff lc(s

′) = lc(s). Further, a path in M is an infinite

sequence π = s0
a1−→ s1

a2−→ s2
a3−→ . . . of transitions. For such a path, and for j ≤

m ∈ IN, by π(m) we denote the m-th state sm, by πm we denote the m-th suffix

of the path π, which is defined in the standard way: πm = sm
am+1−→ sm+1

am+2−→
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sm+2 . . .. Next, by π[j..m] we denote the finite sequence sj
aj+1−→ sj+1

aj+2−→ . . . sm
with m − j transitions and m − j + 1 states, and by Dπ[j..m] we denote the
(cumulative) weight of π[j..m] that is defined as d(aj+1) + . . .+ d(am) (hence 0
when j = m). By Π(s) we denote the set of all the paths starting at s ∈ S, and
by Π =

⋃
s0∈ιΠ(s0) we denote the set of all the paths starting at initial states.

The Logic WLTLK and Its Existential Fragment. WLTLK extends LTL
with cost constraints on temporal modalities and with epistemic modalities. In
the syntax of WLTLK we assume the following: p ∈ PV is an atomic proposition,
c ∈ Ag, Γ ⊆ Ag, I is an interval in IN = {0, 1, 2, . . .} of the form: [a, b) and [a,∞),
for a, b ∈ IN and a 
= b, and right(I) = b if I = [a, b), otherwise right(I) =∞. In

the semantics we assume the following definitions of epistemic relations: ∼E
Γ

def
=

⋃
c∈Γ ∼c, ∼C

Γ

def
= (∼E

Γ )
+ (the transitive closure of ∼E

Γ ), ∼D
Γ

def
=

⋂
c∈Γ ∼c, where

Γ ⊆ Ag.
The WLTLK formulae in the negation normal form are defined by the follow-

ing grammar:
ϕ ::=true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | XIϕ | ϕUIϕ | ϕRIϕ

| Kcϕ | Kcϕ | EΓϕ | EΓϕ | DΓϕ | DΓϕ | CΓϕ | CΓϕ
The temporal modalities XI , UI and RI are, respectively, named as the

weighted next step, the weighted until and the weighted release. The derived basic
temporal modalities for weighted eventually and weighted globally are defined as

follows: FIϕ
def
= trueUIϕ and GIϕ

def
= falseRIϕ. Hereafter, if the interval I is

of the form [0,∞), then we omit it for the simplicity of the presentation.
The epistemic modality Kcϕ represents “agent c knows ϕ” while the modality

Kcϕ
def
= ¬Kc¬ϕ is the corresponding dual one representing “agent c considers ϕ

possible”. The epistemic modalities DΓ ,EΓ , and CΓ represent distributed knowl-
edge in the group Γ , “everyone in Γ knows”, and common knowledge among
agents in Γ , respectively. The epistemic modalities DΓ ,EΓ , and CΓ are the cor-
responding dual ones. The WELTLK is the existential fragment of WLTLK,
defined by the following grammar:

ϕ ::=true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | XIϕ | ϕUIϕ | ϕRIϕ

| Kcϕ | EΓϕ | DΓϕ | CΓϕ.
A WLTLK formula ϕ is true (valid) along the path π (in symbols M,π |= ϕ)

iff M,π0 |= ϕ, where the satisfaction relation |= is defined inductively, with the
classical rules for propositional operators and with the following rules for the
temporal and epistemic modalities:
M,πm |= XIα iff Dπ[m..m+ 1] ∈ I and M,πm+1 |= α,
M,πm |= αUIβ iff (∃i ≥ m)(Dπ[m..i] ∈ I and M,πi |= β and

(∀m ≤ j < i)M,πj |= α),
M,πm |= αRIβ iff (∀i ≥ m)(Dπ[m..i] ∈ I implies M,πi |= β) or (∃i ≥ m)

(Dπ[m..i] ∈ I and M,πi |= α and (∀m ≤ j ≤ i)M,πj |= β),

M,πm |= Kcα iff (∀π′ ∈ Π)(∀i ≥ 0)(π′(i) ∼c π(m) implies M,π′i |= α),

M,πm |= Kcα iff (∃π′ ∈ Π)(∃i ≥ 0)(π′(i) ∼c π(m) and M,π′i |= α),

M,πm |= YΓα iff (∀π′ ∈ Π)(∀i ≥ 0)(π′(i) ∼Y
Γ π(m) implies M,π′i |= α),
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M,πm |= Y Γα iff (∃π′ ∈ Π)(∃i ≥ 0)(π′(i) ∼Y
Γ π(m) and M,π′i |= α),

where Y ∈ {D,E,C}.
A WLTLK formula ϕ existentially holds in the model M (denoted M |= ϕ)

iff M,π |= ϕ for some path π ∈ Π . The existential model checking problem asks
whether M |= ϕ.

3 Bounded Model Checking for WIS and for WELTLK

As usual we begin with defining the notion of k-paths and loops, which are
required by the bounded semantics - the basis of each SAT-based BMC.

Let M be a model, and k ∈ IN a bound. A k-path πl is a pair (π, l), where π

is a finite sequence s0
a1−→ s1

a2−→ . . .
ak−→ sk of transitions. A k-path πl is a loop

if l < k and π(k) = π(l). Note that if a k-path πl is a loop, then it represents

the infinite path of the form uvω, where u = (s0
a1−→ s1

a2−→ . . .
al−→ sl) and

v = (sl+1
al+2−→ . . .

ak−→ sk). Πk(s) denotes the set of all the k-paths of M that
start at s, and Πk =

⋃
s0∈ιΠk(s

0).
Let k ∈ IN be a bound, 0 ≤ m ≤ k, 0 ≤ l ≤ k, and ϕ a WELTLK formula.

As in the definition of semantics we need to define the satisfiability relation on
suffixes of k-paths, we denote by πm

l the pair (πl,m), i.e. the k-path πl together
with the designated starting point m. Further, M,πm

l |=k ϕ denotes that the
formula ϕ is k-true along the suffix (π(m), . . . , π(k)) of π.

A WELTLK formula ϕ is k-true along the k-path πl (in symbols M,πl |=k ϕ)
iff M,π0

l |=k ϕ, where where the bounded satisfaction relation |=k is defined
inductively, with the classical rules for propositional operators and with the
following rules for the temporal and epistemic modalities:
M,πm

l |=k XIα iff (m < k and Dπ[m..m+ 1] ∈ I and M,πm+1
l |=k α) or

(m = k and l < k and π(k) = π(l) and Dπ[l..l + 1] ∈ I
and M,πl+1

l |=k α),

M,πm
l |=k αUIβ iff (∃m ≤ j ≤ k)(Dπ[m..j] ∈ I and M,πj

l |=k β and
(∀m ≤ i < j)M,πi

l |=k α) or (l < m and π(k) = π(l)

and (∃l < j < m)(Dπ[m..k] +Dπ[l..j] ∈ I and M,πj
l |=k β

and (∀l < i < j)M,πi
l |= α and (∀m ≤ i ≤ k)M,πi

l |=k α)),
M,πm

l |=k αRIβ iff (Dπ[m..k] ≥ right(I) and (∀m ≤ j ≤ k)(Dπ[m..j] ∈ I
implies M,πj

l |=k β)) or (Dπ[m..k] < right(I) and π(k) = π(l)

and (∀m ≤ j ≤ k)(Dπ[m..j] ∈ I implies M,πj
l |=k β) and

(∀l ≤ j ≤ k)(Dπ[m..k] +Dπ[l..j] ∈ I implies M,πj
l |=k β)) or

(∃m ≤ j ≤ k)(Dπ[m..j] ∈ I and M,πj
l |=k α and

(∀m ≤ i ≤ j)M,πi
l |=k β) or (l < m and π(k) = π(l)

and (∃l < j < m)(Dπ[m..k] +Dπ[l..j] ∈ I and M,πj
l |=k α

and (∀l < i ≤ j)M,πi
l |= β and (∀m ≤ i ≤ k)M,πi

l |=k β)),

M,πm
l |=k Kcα iff (∃π′

l′ ∈ Πk)(∃0 ≤ j ≤ k)(M,π′j
l′ |=k α and π(m) ∼c π

′(j)),
M,πm

l |=k Y Γα iff (∃π′
l′ ∈ Πk)(∃0 ≤ j ≤ k)(M,π′j

l′ |=k α and π(m) ∼Y
Γ π′(j)),

where Y ∈ {D,E,C}.
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Let m be a formula evaluation position, k a bound, and p, q ∈ PV. An illus-
tration of the bounded semantics is shown in Fig. 1.

M,πm
l |=k X[3,5)p for m < k, M,πm

l |=k X[3,5)p for m = k, π(l) = π(k),
l < k

M, πm
l |=k pU[5,10)q, M,πm

l |=k pU[5,10)q for π(l) = π(k), l < m

1st or: M,πm
l |=k pR[5,10)q, 2nd or: M,πm

l |=k pR[2,20)q

2nd or: M,πm
l |=k pR[6,∞)q, 3rd or: M,πm

l |=k pR[5,10)q

4th or:M,πm
l |=k pR[5,10)q

M, πm
l |=k Kcp M, πm

l |=k Y Γ p, where Y ∈ {D,E,C}

Fig. 1. Evaluation of temporal (the gray states are the same) and epistemic (the gray
states are epistemically equivalent) formulae

LetM be a model, and ϕ a WELTLK formula. We use the following notations:
M |=k ϕ iff M,πl |=k ϕ for some πl ∈ Πk. The bounded model checking problem
asks whether there exists k ∈ IN such that M |=k ϕ.

The following theorem states that for a given model and a WELTLK formula
there exists a bound k such that the model checking problem (M |= ϕ) can be
reduced to the bounded model checking problem (M |=k ϕ). The theorem can
be proven by induction on the length of the formula ϕ; we assume the size of M
is the sum of the number of transitions and the number of states.

Theorem 1. Let M be a model and ϕ a WELTLK formula. Then, the following
equivalence holds: M |= ϕ iff there exists k ≤ |M | · |ϕ| · 2|ϕ| such that M |=k ϕ.

Note however that from the BMC point of view the bound k that makes the
bounded and unbounded semantics equivalent is insignificant. This is because
the BMC method for large k is unfeasible.
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Translation to SAT. Let M be a model, ϕ a WELTLK formula, and k ≥ 0
a bound. The presented propositional encoding of the bounded model checking
problem for WELTLK is based on the BMC encoding of [18], and it relies on
defining the propositional formula: [M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k which is satisfi-
able if and only if M |=k ϕ holds.

The definition of [Mϕ,ι]k assumes that the states and the joint actions of M ,
and the sequence of weights associated to the joint actions are encoded sym-
bolically, which is possible, since both the set of states and the set of joint
actions are finite. Formally, let c ∈ Ag ∪ {E}. Then, each state s ∈ S is
represented by a vector w = (w1, . . . , wn, wE) (called a symbolic state) of sym-
bolic local states, where each symbolic local state wc is a vector of proposi-
tional variables. Next, each joint action a ∈ Act is represented by a vector
a = (a1, . . . , an, aE) (called a symbolic action) of symbolic local actions, where
each symbolic local action ac is a vector of propositional variables. Next, each
sequence of weights associated to a joint action is represented by a sequence
δ = (d1, . . . , dn+1) of symbolic weights. The symbolic weight dc is a vector
(d1, . . . , dx) of propositional variables (called weight variables), whose length
x depends on the weight functions dc. Further, in order to define [Mϕ,ι]k we
need to specify the number of k-paths of the model M that are sufficient to
validate ϕ. To calculate the number, we define the following auxiliary func-
tion fk : WELTLK → IN: fk(true) = fk(false) = fk(p) = fk(¬p) = 0,
where p ∈ PV; fk(α ∧ β) = fk(α) + fk(β); fk(α ∨ β) = max{fk(α), fk(β)};
fk(XIα) = fk(α); fk(αUIβ) = k·fk(α)+fk(β); fk(αRIβ) = (k+1)·fk(β)+fk(α);
fk(CΓα) = fk(α) + k; fk(Y α) = fk(α) + 1 for Y ∈ {Kc,DΓ ,EΓ }. Now, since in
the BMC method we deal with the existential validity, the number of k-paths
sufficient to validate ϕ is given by the function f̂k : WELTLK → IN that is
defined as f̂k(ϕ) = fk(ϕ) + 1.

Given the above, the j-th symbolic k-path πj is defined as the following

sequence of transitions: (w0,j
a1,j ,δ1,j−→ w1,j

a2,j ,δ2,j−→ . . .
ak,j ,δk,j−→ wk,j , u), where

wi,j are symbolic states, ai,j are symbolic actions, δi,j are sequences of symbolic

weights, for 0 ≤ i ≤ k and 1 ≤ j ≤ f̂k(ϕ), and u is the symbolic number that is a
vector u = (u1, . . . , uy) of propositional variables with y = max(1, �log2(k+1)�).

Let w and w′ be two different symbolic states, δ a sequence of symbolic weighs,
a a symbolic action, and u be a symbolic number. We assume definitions of
the following auxiliary propositional formulae: p(w) - encodes the set of states
of M in which p ∈ PV holds, Is(w) - encodes the state s of the model M ,
Tc(wc, (a, δ), w′c) - encodes the local evolution function of agent c, H(w,w′) -
encodes equality of two global states, Hc(w,w

′) - encodes the equivalence of two
local states of agent c, N∼

j (u) - encodes that the value j is in the arithmetic
relation ∼∈ {<, �, =, �, >} with the value represented by the symbolic
number u, Llk(πn) := N=

l (un)∧H(wk,n, wl,n), BI
k(πn) - encodes that the weight

represented by the sequence δ1,n, . . . , δk,n is less than right(I), DI
a,b(πn) for

a ≤ b - if a < b, then it encodes that the weight represented by the sequence
δa+1,n, . . . , δb,n belongs to the interval I; otherwise, i.e. if a = b, then DI

a,b(πn)

is true iff 0 ∈ I, DI
a,b;c,d(πn) for a ≤ b and c ≤ d - if a < b and c < d, then
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it encodes that the weight represented by the sequences δa+1,n, . . . , δb,n and
δc+1,n, . . . , δd,n belongs to the interval I; if a = b and c < d, then it encodes that
the weight represented by the sequence δc+1,n, . . . , δd,n belongs to the interval I;
if a < b and c = d, then it encodes that the weight represented by the sequence
δa+1,n, . . . , δb,n belongs to the interval I; if a = b and c = d, then DI

a,b;c,d(πn) is
true iff 0 ∈ I. A(a) - encodes that each symbolic local action ac of a has to be
executed by each agent in which it appears.

The formula [Mϕ,ι]k, which encodes the unfolding of the transition relation

of the model M f̂k(ϕ)-times to the depth k, is defined as follows:

[Mϕ,ι]k :=
∨

s∈ι

Is(w0,0) ∧
̂fk(ϕ)∨

j=1

H(w0,0, w0,j) ∧
̂fk(ϕ)∧

j=1

k∨

l=0

N=
l (uj)∧ (1)

̂fk(ϕ)∧

j=1

k−1∧

i=0

T (wi,j , (ai,j , δi,j), wi+1,j)

where wi,j , ai,j, δi,j , and uj are, respectively, symbolic states, symbolic actions,
sequences of symbolic weights, and symbolic numbers, for 0 ≤ i ≤ k and 1 ≤
j ≤ f̂k(ϕ). Moreover, T (w, (a, δ), w′) is defined as follows:

T (w, (a, δ), w′) :=
∧

c∈Ag∪{E}
Tc(wc, (a, δ), w′c) ∧ A(a) (2)

Let Fk(ϕ) = {j ∈ IN | 1 ≤ j ≤ f̂k(ϕ)}, and [ϕ]
[m,n,A]
k denote the translation

of ϕ along the n-th symbolic path πm
n with the starting point m by using the

set A ⊆ Fk(ϕ). Then, the next step is a translation of a WELTLK formula ϕ to

a propositional formula [ϕ]M,k := [ϕ]
[0,1,Fk(ϕ)]
k .

Let A be a set of k-paths such that |A| = f̂k(ϕ). In order to define [ϕ]M,k,
we have to know how to divide the set A into subsets needed for translating the
subformulae of ϕ. To accomplish this goal we use some auxiliary functions (gl,
gr, gs, h

U
k , h

R
k ) that were defined in [18].

Definition 1 (Translation of the WELTLK formulae). Let M be a model,
ϕ a WELTLK formula, and k ≥ 0 a bound. We define inductively the translation
of ϕ over a path number n ∈ Fk(ϕ) starting at the symbolic state wm,n as
shown below, where A ⊆ Fk(ϕ), n

′ = min(A); we assume the classical rules for
propositional operators.

[XIα]
[m,n,A]
k :=

⎧
⎨

⎩

DI
m,m+1(πn) ∧ [α]

[m+1,n,A]
k , if m < k

∨k−1
l=0 (DI

l,l+1(πn) ∧ Llk(πn) ∧ [α]
[l+1,n,A]
k ), if m = k

[αUIβ]
[m,n,A]
k :=

∨k
j=m(DI

m,j(πn) ∧ [β]
[j,n,hU

k (k)]
k ∧

∧j−1
i=m[α]

[i,n,hU
k (i)]

k )∨
(
∨m−1

l=0 (Llk(πn))∧
∨m−1

j=0 (N>
j (un) ∧ [β]

[j,n,hU
k (k)]

k ∧
∨m−1

l=0 (N=
l (un) ∧DI

m,k;l,j(πn))∧
∧j−1

i=0 (N>
i (un)→ [α]

[i,n,hU
k (i)]

k ) ∧
∧k

i=m[α]
[i,n,hU

k (i)]
k ),

[αRIβ)]
[m,n,A]
k :=

∨k
j=m(DI

m,j(πn) ∧ [α]
[j,n,hR

k (k)]
k ∧

∧j
i=m[β]

[i,n,hR
k (i)]

k )∨
(
∨m−1

l=0 (Llk(πn))∧
∨m−1

j=0 (N>
j (un) ∧ [α]

[j,n,hR
k (k)]

k ∧
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∨m−1
l=0 (N=

l (un) ∧DI
m,k;l,j(πn))∧

∧j
i=0(N>

i (un)→ [β]
[i,n,hR

k (i)]
k ) ∧

∧k
i=m[β]

[i,n,hR
k (i)]

k )∨
(¬BI

k(πn) ∧
∧k

j=m(DI
m,j(πn)→ [β]

[j,n,hR
k (k)]

k ))∨
(BI

k(πn) ∧
∧k

j=m(DI
m,j(πn)→ [β]

[j,n,hR
k (k)]

k )∧
∨k−1

l=0 [Llk(πn) ∧
∧k

j=l(DI
m,k;l,j(πn)→ [β]

[j,n,hR
k (k)]

k )]),

[Kcα
[m,n,A]

k :=
∨

s∈ι Is(w0,n′) ∧
∨k

j=0([α]
[j,n′,gs(A)]
k ∧Hc(wm,n, wj,n′)),

[DΓα]
[m,n,A]

k :=
∨

s∈ι Is(w0,n′) ∧
∨k

j=0([α]
[j,n′,gs(A)]
k ∧

∧
c∈Γ Hc(wm,n, wj,n′)),

[EΓα]
[m,n,A]

k :=
∨

s∈ι Is(w0,n′) ∧
∨k

j=0([α]
[j,n′,gs(A)]
k ∧

∨
c∈Γ Hc(wm,n, wj,n′)),

[CΓα]
[m,n,A]

k := [
∨k

j=1(EΓ )
jα]

[m,n,A]
k .

The theorem below states the correctness and the completeness of the pre-
sented translation. It can be proven by induction on the complexity of the given
WELTLK formula.

Theorem 2. Let M be a model, and ϕ a WELTLK formula. Then for every
k ∈ IN, M |=k ϕ if, and only if, the propositional formula [M,ϕ]k is satisfiable.

Our encoding of the WELTLK formulae is defined recursively over the struc-
ture of a WELTLK formula ϕ, over the current position m of the n-th symbolic
k-path, and over the set A of symbolic k-paths, which is initially equal to Fk(ϕ).
Next, our encoding does not translate looping and non-looping witnesses sepa-
rately, but it combines both of them. Further, it is parameterised by the bound
k, the set of symbolic k-paths, and closely follows the bounded semantics. There-
fore, for fixed n, m, k and A, each subformula ψ of ϕ requires the constraints of
size O(k · fk(ϕ)) using the encoding of ψ at various positions. Moreover, since
the encoding of a subformula ψ is only dependent on m, n, k, and A, and, mul-
tiple occurrences of the encoding of ψ over the same set of parameters can be
shared, the overall size can be bounded by O(|ϕ| · k · fk(ϕ)). Further the size of
the formula [M,ϕ]k is bounded by O(|T | · k · fk(ϕ) + |ϕ| · k · fk(ϕ)).

The main difficulty in defining of the extension of the BMCmethod for ELTLK
and for the interleaved interpreted systems (IIS) [15] to the BMC method for
WELTLK and for WIS is in the encoding of the weighted conditions and in
the encoding of the global evolution function. This is because, in contrary to
the BMC method of [15], in the WELTLK case we need to deal with joint
actions and paths the transitions of which carry a cost. Thus, we have to take
care of the following issues: (1) the cumulative weight is less/greater than the
given bound k and the considered path is not a loop. (2) the cumulative weight
is less/greater than the given bound k and the considered path is a loop. (3)
the cumulative weight is counted for the joint actions. The translation has to
reflect these possibilities. Further in the IIS case there is no need to encode joint
actions together with the corresponding weights. Only local (or synchronised)
actions and their weights are encoded. In the WIS case the encoding of the global
evolution depends on both the joint actions and the ”joint” weight function.

The main difficulties in the extension of the BMC method for WECTLK and
for the WIS [17] to the BMC method for WELTLK and for WIS are in the
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encoding of the looping conditions. More precisely, in the WECTLK case the
looping conditions are much simpler, since each epistemic and each temporal sub-
formulae of a formula to be tested are evaluated over a new symbolic k-path that
starts at an initial state, and therefore there is no possibility of getting different
infinite paths from the same k-path. In the WELTLK case only epistemic sub-
formulae can be evaluated over a new symbolic k-path that starts at the initial
state. Thus, in the translation of XI , UI and RI we cannot let different sub-
formulae use different ways of bending a path into a loop, and thus, we have to
disable the possibility of getting different infinite paths from the same k-path.

4 Experimental Results

In the section we experimentally evaluate the performance of our BMC en-
coding for WELTLK and for WIS, which is implemented as extensions of our
tool VerICS [9]. We have conducted the experiments using one classical multi-
agent scenario, i.e. the (weighted) modified bit transmission problem, and one
benchmark that is not yet so common in the multi-agent community, i.e. the
(weighted) generic pipeline paradigm. Further, for all the considered examples
we describe specifications as universal formulae, for which we verify the corre-
sponding counterexample formulae that are interpreted existentially and belong
to WELTLK. Moreover, for every specification given, there exists a counterex-
ample, i.e. the WELTLK formula specifying the counterexample holds in the
model of the benchmark.

We computed our experimental results on a computer with Intel Xeon 2 GHz
processor and 4 GB of RAM, running Linux 2.6. We set the CPU time limit to
1800 seconds, and the memory limit to 2GB. Moreover, we used PicoSAT [2] in
version 957 to test the satisfiability of the propositional formulae generated by
our SAT-based BMC encoding.

Weighted Generic Pipeline Paradigm. We adapted the benchmark scenario
of a generic pipeline paradigm [13], and we called it the weighted generic pipeline
paradigm (WGPP). The model of WGPP involves Producer producing data,
Consumer receiving data, and a chain of n intermediate Nodes that transmit
data produced by Producer to Consumer. Producer, Nodes, and Consumer have
different producing, sending, processing, and consuming costs.

This system is scaled according to the number of its Nodes (agents), i.e. the
problem parameter n is the number of Nodes. Fig. 2 shows the local states,
the possible actions, and the protocol for each agent. Null actions are omitted
in the figure. Further, we assume that the following local states ProdReady-0,
NodeiReady-0 and ConsReady-0 are initial, respectively, for Producer, Node i,
and Consumer.

Given Figure 2, the local evolution functions of WGPP are straightforward
to infer. Moreover, in the model we assume the following set of proposition
variables: PV={ProdReady, ProdSend, ConsReady, ConsReceived} with the
following interpretation:
– (M, s) |= ProdReady if lP (s) = ProdReady-0
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ProdReady-0start

ProdSend-1

Send1Produce

Node1Ready-0start

Node1Proc-1

Send1

Node1Send-2

Proc1

Send2

· · · NodenReady-0start

NodenProc-1

Sendn

NodenSend-2

Procn

Sendn+1

ConsReady-0start

ConsReceived-1

ConsumeSendn+1

Fig. 2. The WGPP system

– (M, s) |= ProdSend if lP (s) = ProdSend-1
– (M, s) |= ConsReady if lC(s) = ConsReady-0
– (M, s) |= ConsReceived if lC(s) = ConsReceived-1
Let 1 � i � n, and Min denote the minimum cost that is required to re-

ceive by Consumer the data produced by Producer. We have tested the WGPP
with the following local weight functions: dP (Produce) = 4, dP (send1) = 2,
dC(Consume) = 4, dC(sendn+1) = 2, dNi(sendi) = dNi(sendi+1) = 2 and
dNi(Proci) = 2, and their multiplications by 1,000 and 1,000,000 on the follow-
ing specifications (universal formulae):
– ϕ1= KPG[Min,Min+1)ConsReceived, which expresses that Producer knows

that always the cost of receiving by Consumer the commodity is Min.
– ϕ2= KPG(ProdSend → F[0,Min−dP (Produce))ConsReceived), which states

that Producer knows that always if she/he produces a commodity, then Con-
sumer receives the commodity and the cost is less thanMin−dP (Produce).

– ϕ3= KPG(ProdSend → KCKPF[0,Min−dP (Produce))ConsReceived), which
states that Producer knows that always if she/he produces a commodity,
then Consumer knows that Producer knows that Consumer has received the
commodity and the cost is less than Min− dP (Produce).

– ϕ4= KCG(ProdReady → X[dP (Produce),dP (Produce)+1)ProdSend), which ex-
presses that Consumer knows that the cost of producing of a commodity by
Producer is dP (Produce).

Table 1. WGPP with n nodes

Formula (n, k) - n is the number of nodes, k is the bound ̂fk(ϕ)

ϕ1 (1,3), (2,5), (3,6), (4,6), (5,7), (6,8), (7,8), (8,9), (9,9), (10,10), 2
(15,12), (20,14), (25,16), (30,18), (35,19), (40, 21), (45,22), (50,23)

ϕ2 (1,3), (2,5), (3,6), (4,6), (5,7), (6,8), (7,8), (8,9), (9,9), (10,10), 2
(11,11),(12,11), (13,12), (14,12), (15,12), (20,14), (25,16),

(30,18), (31,18), (32,18), (33,19), (34,19), (35,19)

ϕ3 (1,3), (2,4), (3,5), (4,6), (5,6), (6,7), (7,8), (8,9), (9,9), (10,10) 4

ϕ4 (n, 4) for n ≥ 1 2

The size of the reachable state space of the WGPP system is 4 · 3n, for n ≥ 1.
The length of the counterexamples, and the number of the considered k-paths for
the above formulae are shown in Table 1; note that for formulae ϕ1-ϕ3 we are not
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able to provide a general formula that for a given number of nodes provides the
bound k. The data presented in Table 1 are generated by our implementation.
Moreover, in Table 2 we provide a witness that was generated for formula ϕ1.

Table 2. The witness for WGPP and for formula ϕ1 that consists of two 3-paths

Path nr 0 with l = 3

Step Action Weights Global state

0 〈0, 0, 0〉 〈ProdReady, Node1Ready, ConsReady〉
1 〈Produce, εN1, εC〉 〈4000, 0, 0〉 〈ProdSend, Node1Ready, ConsReady〉
2 〈Send1, Send1, εC〉 〈2000, 2000, 0〉 〈ProdReady, Node1Proc, ConsReady〉
3 〈εP , Proc1, εC〉 〈0, 2000, 0〉 〈ProdReady, Node1Send, ConsReady〉

Path nr 1 with l = 0

0 〈0, 0, 0〉 〈ProdReady, Node1Ready, ConsReady〉
1 〈Produce, εN1, εC〉 〈4000, 0, 0〉 〈ProdSend, Node1Ready, ConsReady〉
2 〈Send1, Send1, εC〉 〈2000, 2000, 0〉 〈ProdReady, Node1Proc, ConsReady〉
3 〈Produce, Proc1, εC〉 〈4000, 2000, 0〉 〈ProdSend, Node1Send, ConsReady〉

The Weighted Bits Transmission Problem. We adapted the scenario of
a bit transmission problem [1], and we called it the weighted bits transmission
problem (WBTP). The WBTP involves two agents, a sender S, and a receiverR,
communicating over a possibly faulty communication channel (the environment),
and there are fixed costs cS and cR associated with, respectively, sending process
of S and R. S wants to communicate some information (e.g., the n-bit number)
to R. One protocol to achieve this is as follows. S immediately starts sending the
n-bit number to R, and continues to do so until it receives an acknowledgement
from R. R does nothing until it receives the n-bit number; from then on it
sends acknowledgements of receipt to S. S stops sending the n-bit number to
R when it receives an acknowledgement. Note that R will continue sending
acknowledgements even after S has received its acknowledgement. This system
is scaled according to the number of bits the S wants to communicate to R.

Each agent of the scenario can be modelled by considering its local states, local
actions, local protocol, local evolution function, local weight function, and local
valuation function. For S, it is enough to consider 2n+1 possible local states
representing the value of the n-bit number that S is attempting to transmit,
and whether or not S has received an acknowledgement from R. Thus, we have:
LS = {0, . . . , 2n − 1, 0-ack, . . . , 2n − 1-ack}. Further, ιS = {0, . . . , 2n − 1}. For
R, it is enough to consider 2n + 1 possible local states representing: the value
of the received n-bit number, if any, and the circumstance in which no number
has been received yet (represented by ε). Thus, we have LR = {0, . . . , 2n− 1, ε},
and ιR = {ε}. For the environment E , to simplify the presentation, we shall
to consider just one local state: LE = {·} = ιE . Now we can define the set of
possible global states S for the scenario as the product LS × LR × LE , and we
consider the following set of initial states ι = {(0, ε, ·), . . . , (2n − 1, ε, ·)}.

The set of actions available to the agents are as follows: ActS = {sendbits, λ},
ActR = {sendack , λ}, where λ stands for no action. The actions for E correspond
to the transmission ofmessages betweenS andR on the unreliable communication
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channel. The set of actions for E is ActE = {↔,→,←,−}, where↔ represents the
action in which the channel transmits any message successfully in both directions,
→ that it transmits successfully from S to R but loses any message from R to
S, ← that it transmits successfully from R to S but loses any message from S
to R, and − that it loses any messages sent in either direction. The set Act =
ActS ×ActR ×ActE defines the set of joint actions for the scenario.

The local weight functions of agents are defined as follows: dS(sendbits) = a
with a ∈ IN, dS(λ) = 0, dR(sendack ) = b with b ∈ IN, dR(λ) = 0, and dE(↔) =
dE(→) = dE(←) = dE(−) = 0. We assume zero-weight for the actions of E , since
we wish to only count the cost of sending and receiving messages.

The local protocols of the agents are the following: PS(0) = . . . = PS(2n −
1) = {sendbits}, PS(0-ack) = . . . = PS(2n − 1-ack) = {λ}, PR(0) = . . . =
PR(2n − 1) = {sendack}, PR(ε) = {λ}, PE(·) = ActE = {↔, →, ←, −}.

It should be straightforward to infer the model that is induced by the informal
description of the scenario we considered above together with the local states,
actions, protocols, and weight functions defined above.

In the model we assume the following set of proposition variables: PV =
{0, . . . ,2n − 1, recack} with the following interpretation:
(M, s) |= i if lS(s) = i or lS(s) = i-ack, for i = 0, . . . , 2n − 1

(M, s) |= recack if lS(s) = 0-ack or . . . or lS(s) = 2n − 1-ack.
We have tested the WBTP on the following specifications (universal formulae):

– ϕ1 = G[a+b,a+b+1)(recack → KS(KR(
∨2n−2

i=0 i))) - the property says that if
an ack is received by S, then S knows that R knows at least one value of
the n-bit numbers except the maximal value, and the cost is a+ b.

– ϕ2 = G[a+b,a+b+1)(KS(
∨2n−1

i=0 (KR(i))) – the property says that S knows that
R knows the value of the n-bit number and the cost is a+ b.

The size of the reachable state space of the WBTP system is 3 · 2n for n ≥ 1.
The number of the considered k-paths is the following: f̂k(ϕ1) = 3 and f̂k(ϕ2) =
2n + 2. The length of the counterexamples for both formulae is equal to 2 for
any n > 0.

4.1 Performance Evaluation

Table 3. The computation time and memory consumption

WGPP with 1 node WBTP with 1 bit
Time (sec.) Memory (MB) Time (sec.) Memory (MB)

Formula x1 x103 x106 x1 x103 x106 x1 x103 x106 x1 x103 x106

ϕ1 0.04 0.13 0.19 1.90 2.67 3.70 0.02 0.03 0.06 1.12 1.38 1.64

ϕ2 0.04 0.11 0.16 1.90 2.82 3.78 0.03 0.05 0.10 1.12 1.66 1.92

ϕ3 0.41 0.71 1.00 5.87 7.22 8.58 - - - - - -

ϕ4 0.09 0.22 0.34 1.91 3.18 4.25 - - - - - -

The experimental results show that our SAT-based BMC method is slightly sen-
sitive to scaling up the weights (see Fig. 3 and Fig. 4). To be more precise, we
observed that when we scale up the weights for both benchmarks and for all
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properties, the computation time and the memory usage grows linearly, regard-
less of the considered number of nodes or n-bit integer value. For example, we
refer the reader to Table 3 for the detailed results we have for WGPP/WBTP
with one node/bit and with the basic weights and their multiplication by 103 or
106. The sensitivity to growing weights follows from the encoding of the cumula-
tive weight. Namely, the number of bits that is required to encode the cumulative
weights depends on the number of agents, on the length of the counterexample
(i.e. the bound k) and the maximal weight that appear in the whole system.
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Fig. 3. WGPP with n nodes

As one can see from the line charts in Fig. 3 for WGPP with the basic
weights, in the time limit set our method is able to verify the formulae ϕ1 - ϕ4,
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respectively, for 50, 32, 9, and 4400 nodes. The high efficiency of our method in
the case of the formula ϕ4 results from the constant length of the counterexam-
ple. In all the other cases we can observe that our method is sensitive to scaling
up the size of benchmarks. This is because the length of the counterexamples
grows with the number of the components, and the efficiency of the SAT-based
BMC strongly depends on the length of the counterexamples. Further, in the
case of the formula ϕ3 we get results for 9 nodes only. This follows from the fact
that apart from the growing length of the counterexample we need to consider
as many as four k-paths.
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Fig. 4. WBTP with n bits integer value

As one can see from the line charts in Fig. 4 for WBTP with the basic weights
(i.e. a = 1, b = 2), in the time limit set our method is able to verify the formulae
ϕ1 and ϕ2, respectively, for 13 and 7 bits integer value. The inferiority of our
method in the case of this benchmark results from the fact that our method
has do deal with the model which has the exponential number of initial states.
Observe that this is not the case in the WGPP benchmark.

5 Conclusions

We have defined and implemented the SAT-based BMC method for WELTLK
and for WISs. The experimental results show that our method is slightly sensitive
to scaling up the weights. Concerning the sensitivity of our SAT-based BMC
encoding to growing size of the checked system, we can observe that it is rather
standard, i.e. the method is not so efficient if many symbolic k-paths are encoded,
and the length of the counterexample grows with the number of agents.
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The BMC for WELTLK and for WISs may also be performed by means of
Ordered Binary Diagrams (OBDD) and Satisfiability Modulo Theories (SMT).
This will be explored in the future. Moreover, our future work includes a compar-
ison of the OBDD- SMT- and SAT-based BMC method for WISs. Further, we
would like to point out that the proposed BMC method can be used for solving
some planing problems that can be formulated in terms of weighted automata.
Namely, we can formalize the notion of the agent as a weighted automaton, and
then apply our BMC technique for WIS that are generated by a given network of
weighted automata. A planning problem defined in terms of weighted automata
was considered, e.g. in [6].
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