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Abstract. We present an efficient route minimization algorithm for the
vehicle routing problem with time windows. The algorithm uses a generic
agent decomposition of the problem featuring a clear separation between
the local planning performed by the individual vehicles and the abstract
global coordination achieved by negotiation — differentiating the pre-
sented algorithm from the traditional centralized algorithms. Novel ne-
gotiation semantics is introduced on the global coordination planning
level allowing customers to be temporarily ejected from the emerging
solution being constructed. This allows the algorithm to efficiently back-
track in situations when the currently processed customer cannot be fea-
sibly allocated to the emerging solution. Over the relevant widely-used
benchmarks the algorithm equals the best known solutions achieved by
the centralized algorithms in 90.7% of the cases with an overall rela-
tive error of 0.3%, outperforming the previous comparable agent-based
algorithms.

Keywords: multi-agent systems, logistics, optimization, VRPTW.

1 Introduction

The vehicle routing problem with time windows (VRPTW) is one of the most
important and widely studied problems within the operations research (OR)
domain featuring in many distribution and logistic systems. It is a problem
of finding a set of routes starting and ending at a single depot serving a set
of geographically scattered customers, each within a specific time-window and
with a specific demand of goods to be delivered. The primary objective of the
VRPTW is to find the minimal number of routes serving all customers.

Real world applications of VRPTW and routing problems in general are often
very complex and semantically rich, featuring heterogenous fleets with varied op-
erational costs [20], specific constraints e.g. loading constraints [29], driver shift
times [26] reflecting also the typical real-world challenges e.g. traffic congestions,
breakdowns, customers rescheduling etc.
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The multi-agent (MA) systems are an emerging architecture with respect
to modeling new-generation systems based on smart actors and their intelligent
coordination, promoting the autonomy of the individual actors. The outstanding
attribute inherent to most MA planning techniques is thus the clear separation
of local planning of the actors and the global coordination of their individual
plans [2,15]. This enables for the problem specific constraints — such as the
time-windows and capacity constraints inherent to VRPTW or those mentioned
above — to be incorporated by developing fitting local planning strategies for the
individual actors (vehicles). The global coordination mechanism, on the other
hand, remains abstract and can be applied over a wide range of problems similar
in nature e.g. general task allocation problems [28].

Within this work we present a significant extension to the global coordination
framework extending the previous similar works [28,13]. The extension is based
on introducing a specific backtracking strategy to the abstract allocation process
based on the ejection principle [19], denoted here as rotations. The contribution
is significant for two reasons: (i) it enables the resulting VRPTW algorithm to
significantly outperform the previous comparable agent-based algorithms with
a performance closely matching the established centralized algorithms and (ii)
similar concepts within the coordination framework can be applied in a number
of other similar problems — namely in highly constrained task allocation prob-
lems with scheduling/sequencing aspects e.g. general scheduling and temporal
resource allocation problems and their extensions.

Thus a VRPTW algorithm is presented and the solving process is outlined in
detail. The semantic of the negotiation based coordination process is analyzed
and compared to the previous similar methods. In order to provide a relevant
comparison of the presented algorithm to the best known centralized algorithms
the experimental evaluation is based on the two most widely used benchmarks
known from the OR literature. The comparison to the previous similar agent-
based algorithms is provided as well.

As mentioned above, the presented algorithm differentiates itself from the
traditional algorithms by featuring the clear separation between the problem
specific agents’ local decision making and the abstract global coordination, rep-
resenting the core feature inherent to cooperative multi-agent planning [2,15].
On the other hand the finer details inherent to agency e.g. alternative agent
behavioral patterns and commitment semantics [17], the complexity of the un-
derlying network communication [6] or semantically rich problem extensions [10]
are not discussed in detail, presenting further opportunities for future research.

2 Problem Statement and Notations

As mentioned above, the VRPTW consists of finding a set of routes starting and
ending at a single depot serving a set of geographically scattered customers. The
primary optimization criteria is to find a minimal set of such routes serving all
the customers within the given time windows.

Let {1..N} represent the set of customers with the depot denoted as 0. For
each customer ci let (ei, li, si, di) denote the earliest/latest service start times
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(time window), service time and the demand. Let a sequence of customers
〈c0, c1, ..cm, cm+1〉 denote a single route with c0 and cm+1 denoting the depot.
Let D denote the vehicle capacity and let ti,j correspond to the travel time
between customers ci and cj with all mutual travel times being known.

The objective of the VRPTW is finding a minimal set of routes serving all
customers. For each route 〈c0, c1, ..cm, cm+1〉 the sum of corresponding cus-
tomers’ demands must be lower than the capacity of the vehicle serving the
route

∑m
1 di ≤ D (capacity constraint) while the service at each customer ci

must begin within the interval given by (ei, li) (time-windows constraints).
Given a route 〈c0, c1, ..cm, cm+1〉 let (Ei, Li) correspond to the earliest and

latest possible service start at customer ci computed recursively according to:

E1 = max (e1, t0,1)

Ei = max (ei, Ei−1 + si−1 + ti−1,i) (1)

and

Lm = lm

Li = min (li, Li+1 − ti,i+1 − si) (2)

As shown in [5], the time window constraints are satisfied when Ei ≤ Li for
all i ∈ 1..m. The capacity constraint is satisfied when

∑m
1 di ≤ D.

3 Related Work

The VRPTW has been extensively studied for for almost thirty years with the
classical Solomon’s [27] article dating back to 1987. The full review of relevant
OR literature is outside the scope of this study, however we refer the reader to the
excellent surveys of recent (up to 2005) literature provided by [3,4]. Instead we
briefly introduce the state-of-the-art traditional algorithms and concentrate on
the relevant agent-based studies. The performance of the individual algorithms
is evaluated using the cumulative number of vehicles (CNV) metric used widely
within OR field, corresponding to the total number of routes/vehicles over all
problem instances across the whole corresponding set of problem instances.

3.1 Traditional Algorithms

As already mentioned, the majority of successful VRPTW algorithms combine
several methods in a multi-phase solving approach. Thus within the initial con-
struction phase a set of initial solutions is generated. The route minimization
can be part of this phase (as it is with the presented algorithm) or it can be em-
bedded as a separate phase - addressing the primary objective. The secondary
objectives are typically addressed in an additional phase within which the num-
ber of routes remain constant [3,4,24,19,25]. The route minimization is also con-
sidered as being the computationally hardest phase of solving the VRPTW [3,4].
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Thus developing efficient route minimization heuristics as a key initial step in
providing efficient VRPTW algorithms.

The algorithm introduced in [19] is based on the ejection pools (EP) principle,
performing very good potentially unfeasible insertions of customers to individ-
ual routes and subsequently recovering the feasibility by ejecting some other
customers from the unfeasible routes. The insertion-ejection phase is interleaved
with a local search procedure dynamically improving the solution throughout
the solving process.

The algorithm presented by [25] is based on embedding a branch-and-price
algorithm based on a modification of an exact algorithm presented in [9] into a
large neighborhood search procedure based on series of destructive and recre-
ative steps. Thus a subset of (routed or unrouted) customers is selected based on
one of the four various operators introduced to provide means of search diversi-
fication and the identified customers are removed from the partial solution. The
neighborhood corresponding to the partial solutions obtained by reinserting the
removed customers is traversed using a branch-and-price algorithm in an effort
to identify the next best partial solution and the process continues from there.

A memetic algorithm [22] achieving the contemporary best CNV of 405 and
10304 over the Solomon’s and Homberger’s benchmark respectively is presented
in [24]. Initial feasible solutions are generated using an adaptation of the EP
principle used by [19]. The EP mechanism is accompanied by a powerful feasible
insertion method denoted as squeeze as well as a search diversification perturb
procedure. The squeeze method also employs a specific adaptive local search
procedure used to repair potentially unfeasible intermediate solutions using a
heuristic carried over from [19]. The route minimization phase is followed by
a travel time minimization phase combining an evolutionary algorithm used for
traversing the more distant parts of the search space (the exploration phase) with
a local search based improvement phase providing for traversing the immediate
neighborhoods of the examined solutions (referred to as the exploitation phase).
The exploration algorithm is based on adaptation of the known EAX operator
[23], while the exploitation phase combines two alternative hill-climbing methods
aimed at (i) reducing the level of unfeasibility within the intermediate emerging
solution and (ii) reducing the travel time.

3.2 Agent-Based Algorithms

A number of approaches and systems have been proposed addressing a variety
of routing and logistic problems relying on decentralized agent-based planning
techniques. A survey of some of the most interesting works is provided for ex-
ample by [7]. Also a number of studies was presented addressing the VRPTW in
particular. However, as discussed in detail within the Section 5 there are some
common deficiencies shared by most of these works, namely that (i) a relevant
comparison of the presented algorithms to the established traditional algorithms
is missing and (ii) where provided, it reveals a relatively weak performance of
these algorithms. Thus within this work we present an agent-based VRPTW
algorithm which boast a vastly improved performance and provide support for
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such a claim by pitting it against both the most relevant benchmarks known
from the OR literature.

The algorithm presented in [10] is built around the concepts of Shipping Com-
pany Agents (SCA) representing individual shipping companies and their respec-
tive fleets of Truck Agents (TA). After registering a customer, the SCA nego-
tiates with his fleet of TAs to estimate the price of serving the customer. The
other SCAs are contacted as well and based on the corresponding cost estimates
the SCA may assign the customer to one of its trucks or decide to cooperate
with another company. The planning within each fleet is done dynamically and
is based on the well known contract net protocol (CNP) [8] accompanied by a
simulated trading improvement strategy based on finding the optimal customer
exchanges by solving a modification of the maximal pairing problem on a graph
representing the proposed exchanges originally presented in [1]. Both cooper-
ative and competitive models are explored with respect to the cooperation of
individual SCAs. Also a specific model for simulating traffic jams is presented.

The algorithm for the closely related pickup and delivery problem with time
windows (PDPTW) presented by [14] is essentially a parallel insertion procedure
with a subsequent improvement phase consisting of reallocating some randomly
chosen tasks from each route. The used cost structure is based on the well known
Solomon’s I1 insertion heuristic [27].

The algorithm presented by [18] is based on agents representing individual
customers, routes and a central planner agent. A sequential insertion procedure
based on Solomon’s I1 heuristic is followed by an improvement phase in which
the agents propose moves gathered in a move pool with the most advantageous
move being selected and performed. Additionally, a route elimination routine is
periodically invoked — which is not well described in the text.

In [6] an algorithm is introduced based on Order agent — Scheduling agent
— Vehicle agent hierarchy. The algorithm is based on a modified CNP insertion
procedure limiting the negotiation to agents whose routes are in proximity of the
customer being allocated in an effort to minimize the number of negotiations.

The algorithm presented in [12] features a similar agent architecture as the
one used within this study inspired by the general agent architecture for task
allocation problems presented in [28]. The negotiation process corresponds to
a parallel customer insertion procedure with a specific iterative improvement
method being periodically invoked after processing each customer. Also, an ad-
ditional final improvement method is invoked at the end of the solving process
after all customers have been allocated. Several alternative improvement meth-
ods are introduced based on relocating alternative sets of customers between
the individual routes. The used local planning strategy corresponds to the well
known travel time savings heuristics [27].

An improved version of the algorithm is presented in [13]. An alternative
slackness savings based vehicles’ local planning strategy is introduced based on
[21] as well as the set of refined improvement methods to be used throughout the
solving process. Also a specific parallel execution wrapper is introduced based
on running in parallel the individual algorithm instances corresponding to the
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previously discussed algorithm differentiated by the order in which the customers
are processed as well as the choice of the perticular improvement methods being
used. The algorithm achieves a CNV of 10949 over the two mentioned bench-
marks, corresponding to 2.2% relative error compared to [24], representing the
best comparable result for an agent-based algorithm.

4 Agent-Based Algorithm for VRPTW with Rotations

Within this work we present an extension to the global coordination framework
used by the previous similar works [28,13]. The main contributions is the intro-
duction of a novel negotiation semantics allowing customers to be temporarily
ejected from the emerging solution being constructed by means of rotations,
providing for an efficient backtracking strategy. This enables the algorithm to
proceed in situations where the semantic used by the previously presented algo-
rithms got stuck and the negotiation process failed.

The underlying abstract negotiation framework is based on [28] and features
the clear separation between the local planning of individual vehicles and the
abstract global coordination achieved by negotiation — differentiating the pre-
sented algorithm from the traditional centralized algorithms. Thus, as already
mentioned, the abstract coordination mechanism is generic and can be applied
to a variety of problems that are similar in nature [28] — by developing a fit-
ting local planning strategy to be used by individual vehicles (agents/resources
in general). This enables for transparent inclusion of specific extensions such
as heterogeneities within the fleet [20], loading or cargo organization strategies
[29], driver-relevant constraints [26]. Alternatively the autonomic nature of the
system can be exploited by introducing autonomous trajectory/path planning
strategies or reflecting the non-cooperative or tactical aspects of the modeled
system [16].

4.1 Abstract Global Coordination Framework

The abstract negotiation-based framework featuring at the global coordination
level of the overall planning process is a modification of a similar framework
presented in [13]. The underlying agent architecture is carried over featuring a
top layer represented by a Task Agent, middle layer represented by an Allo-
cation Agent and a fleet of Vehicle Agents present at the bottom level of the
architecture.

Task Agent acts as an interface between the algorithm’s computational core
and the surrounding infrastructure. It is responsible for registering the cu-
sotomers and submitting them to the underlying Allocation Agent.

Allocation Agent instruments the actual solving process by negotiating with
the Vehicle Agents, corresponding to the global coordination phase of the
overall planning process. The negotiation is conducted based upon the com-
mitment/decommitment cost estimates provided by the Vehicle Agents.
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Input: Stack of customers C, Fleet of empty vehicles — initial solution σ
Output: Solution σ — complete or partial based on success of the process

Procedure negotiate(C, σ)
1: Initialize rotation counters ∀c ∈ C, c.rts := 0;
2: while (C not empty and rotations < rotationLimit)
3: Pop c̄ ∈ C (LIFO strategy);
4: Cheapest := {v ∈ Feasible(σ, c̄), v.costCommit(c̄) is minimal};
5: if (Cheapest �= ∅) then
6: Randomly select v̄ ∈Cheapest ;
7: v̄.commit(c̄);
8: Shake(σ);
9: else

10: Squeeze(c̄, σ);
11: endif
12: if (c̄ �∈ σ) then
13: Cej := Rotate(c̄, σ);
14: Push Cej to top of C
15: c̄.rts++;
16: rotations++;
17: endif
18: enwhile
19: return σ;
End

Fig. 1. The Abstract Global Coordination Process

Vehicle Agent represents an individual vehicle serving a route. It provides the
Allocation Agent with the above mentioned inputs, computed based on the
Vehicle Agent’s local (private) planning strategy.

Figure 1 illustrates the modified coordination process instrumented by the
Allocation Agent. In essence it consists of a series of negotiation interactions
between the Allocation Agent and the vehicles represented by the Vehicle Agents,
being part of the initially empty emerging solution σ. The process is abstract
and is based solely on the cost estimates computed locally by the vehicles based
upon the particular local planning strategy being used.

The process is started by resetting the rotation counters for all allocated
customers (line 1). As discussed later, the counters are used for determining the
best rotation within the Rotate method (line 13) in an effort to diversify the
search. Follows an attempt to feasibly allocate the customer to the emerging
partial solution σ (lines 3 – 11). Initially the vehicles that can feasibly serve the
customer (the set Feasible(σ, c̄)) at the lowest possible cost (the set Cheapest —
a subset of Feasible(σ, c̄)) are identified based on the cost estimates provided by
the individual Vehicle Agents (line 4). In case Cheapest �= ∅ a random vehicle
from the set is chosen and commits to serving the customer. In such a case
an attempt follows to further improve the emerging solution within the Shake
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method (line 8). In the opposite case a further attempt is made to feasibly
squeeze the customer into the emerging solution σ within the Squeeze method
(line 10).

Both the Shake and the Squeeze methods are based on traversing the neigh-
borhoods of the emerging solution σ in an effort to (i) improve the solution in
a way that increases the chance for future customer allocations (the Shake
method) and (ii) modify it in a way as to enable feasible insertion of c̄ (the
Squeeze method). The semantic of the corresponding negotiation is slightly
different for the two methods and is discussed in detail in Section 4.2.

In case a feasible slot is not found for the customer c̄ in any of the routes
neither within the initial allocation effort nor within the Squeeze method the
feasible allocation process has failed. Such a situation arises typically towards
the end of the solving process as the individual routes get denser and all of the
possible allocation slots are rendered unfeasible due to capacity or time-window
constraints1. In such a situation an attempt is made to insert the customer to one
of the routes at the expense of ejecting some other customers from that route.
Thus, within the Rotate method (line 13) each of the vehicles tries to identify
a fitting set of customers in its schedule the ejection of which would enable the
customer c̄ to be feasibly inserted — an operation referred to as a rotation —
and the most fitting rotation is identified and performed. As already mentioned
the selection of the most fitting rotation is based on the values of the rotation
counters with the cost of an ejection corresponding to

∑k
i=1 cei .rts, with the

cei , i = 1..k being the ejected customers. The criteria thus favors rotations that
are (i) smaller and (ii) consist of customers that have caused the least number of
rotations and thus are arguably easier to allocate feasibly. The Roate method
is discussed in detail within the Section 4.3.

The process continues with incrementing the rotation counter for the allocated
customer c̄.rts and the global rotations counter. Thus either all customers are
allocated or the rotationLimit is exceeded. In the latter case there still remain
some unserved customers (solution σ is not complete). In such a case the process
can be restarted with a different fleet size or an additional vehicle can be added
to the fleet.

The initial size of the fleet — corresponding to the initial solution σ of empty
vehicles — is thus a significant factor affecting the efficiency of the whole al-
gorithm and should correspond to the theoretical lower bound on the number
of vehicles for the solved problem instance. An estimate of this number can be
computed based upon the total demand of all customers dt =

∑N
i=1 di and the

1 The latter situation is actually much more frequent suggesting the tempo-
ral/schedulling aspects are the dominant constraining factor for the solved problem.
However, we argue that this is also partly due to the fact that the problem instances
from the used benchmarks present a rather simple variant of the underlying multiple
bin-packing problem. Individual customer demands are rather small and distributed
only across several specific values (e.g. 10, 20, 30 with the vehicle capacity being
200) — an observation that might prove to be interesting from the point of view
of the OR community where the used benchmarks are widely used and considered
de-facto standard.
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vehicle capacity D as dt/D. An alternative estimate uses the temporal mutual
incompatibilities between the customers. Two customers are temporally incom-
patible if it’s not possible to start the service in either of them at the earliest
possible moment and then reach the other customer in time, given the corre-
sponding time windows. Considering a graph with nodes corresponding to the
customers and edges to their temporal incompatibilities, the minimal size of the
fleet is given by the size of the maximal clique within this graph [21]. Thus the
overall theoretical lower bound on the size of the fleet is the bigger of these two
numbers. As the max-clique problem is a NP -hard problem in its own right, the
latter number is computed using a well known O(N3) polynomial approximate
algorithm presented in [21].

4.2 The Shake and the Squeeze Methods

As already mentioned, the two methods are based on traversing the closer neigh-
borhoods of the emerging solution σ. With the Shake method an effort is made
to improve the solution by performing improving relocations of customers within
and between the routes. The term improving reflects the fact that only moves
that increase the utility from the point of view of the cost structure provided
by the used local planning strategy are executed. In case of the used travel time
savings (TTS) strategy [13] this corresponds to shaking the customers in a way
as to reduce the traveled distances (with vehicle speed being constant for all
the vehicles, the travel times are proportional to traveled distances). Thus only
relocations that result in decrease in the overall traveled distance of the whole
solution are performed.

The Squeeze method uses a similar semantics, however with some key exten-
sions reflecting the effort to allocate the customer c̄ that has previously failed to
be feasibly allocated. Each relocation effectively consists of removing a customer
(denoted as cr) from the original route v and then requiring all the vehicles to
estimate the feasibility and cost of a possible insertion of cr to their schedules.
Within the Squeeze method, after the relocated customer cr was removed from
the underlying route the feasibility of inserting the customer c̄ is within this
route is examined. In case the insertion of c̄ to v is feasible, it is performed and
an effort is made to feasibly allocate the cr to the thus modified solution. In
case the attempt is successful, the c̄ has been successfully squeezed within the
merging solution σ. In the opposite case the c̄ is removed and the relocation
proceeds by reinserting cr back to v (to either the original or a different slot
within the schedule).

The importance of the Squeeze method is twofold. On one hand it presents
an opportunity to examine some simple yet helpful moves during the phase
where the emerging solution σ is improved, potentially avoiding the need to
perform a full fledged rotation. On the other hand it marks the place within the
algorithm where there is arguably the biggest potential for further improvement
in terms of performance. The contemporary VRPTW algorithms e.g. [19,24]
present strategies enabling to repair the unfeasible intermediate solutions within
a specific local search procedure guided by an utility function corresponding
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to the level of unfeasibility of the solution. As will be discussed later within
the Section 5.2 we believe such an approach could significantly improve the
convergence and efficiency of the algorithm.

4.3 The Rotate Method

As already mentioned above, the Rotate method enables the algorithm to pro-
ceed even when it is not possible to feasibly allocate the currently processed
customer c̄. In previous similar algorithms [12,13] such a situation caused the
whole allocation process to fail, requiring another vehicle to be added to the
fleet. The situation typically occurs towards the end of the solving process as
the solution gets denser and the schedules of individual routes tighter. Based on
previous findings [13], given the customers are processed in an unfitting order
the situation is even likelier to occur. The resulting algorithms are therefore very
sensitive to the initial customer ordering.

A single rotation thus consists of identifying a specific set of customers to be
ejected from one of the routes such that it is possible to subsequently feasibly
insert the currently processed customer c̄ to the route. In order to identify the
best possible rotation two criteria can be considered — the effects the ejecting of
the specific identified set of customers will have on the solving process and also
the fittingness of the subsequent insertion of c̄ made possible by the ejection.
Considering the first criterion, it is especially important to prevent the rotation
mechanism from cycling by appropriately diversifying the ejections.

Within this work thus an approach is used that is an adaptation of the
insertion-ejection mechanism presented in [23]. For each route the possible ejec-
tions are traversed in a specific way corresponding to the lexicographic ordering.
Let 〈ce1 , ce2 , .., cek〉 denote an ejection of size k from the route 〈c0, c1, ..cm, cm+1〉
with ei ∈ 1..m. The maximal rotation size is bounded by the kmax parame-
ter. Thus for example given kmax = 3 the rotations are traversed in the fol-
lowing order: 〈c1〉, 〈c1, c2〉, 〈c1, c2, c3〉, 〈c1, c2, c4〉 ... 〈c1, c2, cm〉, 〈c1, c3, c4〉 ...
〈c1, cm−1, cm〉, 〈c1, cm〉, 〈c2〉, 〈c2, c3〉 etc. The cost of an ejection is determined
based on the values of the rotation counters as

∑k
i=1 cei .rts and the ejection

with the minimal cost is chosen. In case of equality the following criteria is used
(in following hierarchical order): (i) minimization of the size of the ejection and
(ii) minimization of the travel time increase for the corresponding route after c̄
has been inserted. These criteria have proved to be the most efficient based on
our computational tests being out of scope of this study.

The ejected customers are then added to the set (stack) C using a LIFO
strategy. This means that prior to proceeding to the customer following c̄ in
the original customer ordering, the c̄ and all the ejected customers from the
corresponding chain of rotations have to be feasibly allocated. Such an approach
corresponds to the fact that if any of the customers cannot be feasibly allocated
to the partial solution σ at this point, it is very unlikely it could be allocated
later within the solving process as the solution becomes even more constrained.
It is also supported by our computational experiments not being presented in
detail within this study. Thus in effect the solution is rotated until c̄ can be
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Table 1. Results for alternative settings of the rotationLimit parameter

Set CNV Absolute (relative) error for alternative rotationLimit values
Presented Algorithm

Nagata [24] 2,000 5,000 20,000 1,000×N/5

100 405 5 (1.2%) 4 (1.0%) 3 (0.7%) 3 (0.7%)
200 694 5 (0.7%) 4 (0.6%) 2 (0.3%) 0 (0.0%)
400 1,381 18 (1.3%) 13 (0.9%) 12 (0.9%) 4 (0.3%)
600 2,067 35 (1.7%) 23 (1.1%) 11 (0.5%) 4 (0.2%)
800 2,738 63 (2.3%) 43 (1.6%) 16 (0.6%) 8 (0.3%)
1000 3,424 83 (2.4%) 49 (1.4%) 18 (0.5%) 8 (0.2%)

All 10,709 206 (1.9%) 134 (1.3%) 55 (0.5%) 27 (0.3%)

feasibly allocated, corresponding to an efficient backtracking strategy based on
the introduced search diversification heuristic guiding the ejections.

The number of potential ejections is huge. Also testing the feasibility of in-
sertion of c̄ for a particular ejection requires the Ei, Li values (see Equations 1
and 2) to be recomputed along the route [5]. Therefore in order to speed up
the process several pruning strategies have been developed. The first strategy
is trivial - by storing the contemporary best cost ejection all the ejections with
costs higher than this ejection can be ignored. The second strategy is based on
two trivial observations: (i) if a rotation is a subset of an unfeasible rotation (in
terms of allowing c̄ to be inserted after the ejection) it is also unfeasible and
(ii) if a rotation is a superset of a feasible rotation it is feasible and has higher
cost than that rotation. In both of these cases thus the corresponding rotations
can be pruned. The mentioned strategies provide a significant speedup of the
rotation process. However we argue that significant saving could be achieved
by introducing concepts of interesting temporal/spatial neighborhoods to the
overall negotiation process that would enable to limit the number of considered
routes and insertion slots within this and also the other phases of the negotiation
process to only the heuristically identified interesting neighborhoods.

5 Experimental Validation

The experiments were carried out using the two well known benchmarks of
Homberger and Solomon [27,11]. The Solomon’s set consists of 56 problem in-
stances with 100 customers each, while the extended Homberger’s provides for
additional 5 sets of 60 instances with 200, 400, 600, 800 and 1000 customers
respectively sharing otherwise the same basic attributes as the Solomon’s prob-
lems. Thus for each instance size there are 6 instance types provided — the R1,
R2, RC1, RC2, C1, and C2 type, each with a slightly different topology and time
windows properties. For C1 and C2 types the customer locations are grouped in
clusters, unlike the R1 and R2 classes where the customers are randomly placed.
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Table 2. Comparison with previous agent-based VRPTW algorithms

Set CNV Absolute (relative) error
Nagata Agents

[24] Fisher [10] Leong [18] Kalina [12] Kalina [13] Presented

100 405 31 (7.7%) 25 (6.2%) 3 (0.7%)
100-R1 143 30 (21.0%) 11 (7.7%) 2 (1.4%)
200-1000 10,304 573 (5.6%) 331 (3.2%) 24 (0.2%)
All 10,709 240 (2.2%) 27 (0.3%)

The RC1 and RC2 instance types combine the previous two types with a mix of
both random and clustered locations. The C1, R1 and RC1 also differ from C2,
R2 and RC2 in terms of the scheduling horizon, the former having a shorter hori-
zon resulting in routes of about 10 customers on the average, the latter having
a longer horizon providing for routes of around 50 customers.

The presented results correspond to the Travel Time Savings [13] local plan-
ning strategy being used by the individual vehicles and a kmax = 3 setting for
the maximal rotation size.

5.1 Overall Solution Quality Analysis

The performance of the algorithm in terms of the primary optimization crite-
ria is illustrated by Table 1. The results are listed for alternative subsets from
the experimental data identified by the first column, expressed using the previ-
ously discussed cumulative number of vehicles (CNV) metric. The "100" sub-
set corresponds to the Solomon’s benchmark while the "200–1000" rows denote
alternative sizes within the Homberger’s benchmark. The "All" row lists the
overall result over both benchmarks. The second column lists the CNV achieved
by [24] representing the currently best known overall results. The rest of the
columns correspond to the absolute and relative errors in terms of CNV for var-
ious settings for the rotationLimit parameter, with the N denoting the size of
the instance for the setting within the last column.

The Table 2 further presents the comparison of the algorithm to the pre-
vious comparable agent-based algorithms. The notation is similar as with the
previous table with "100-R1" corresponding to the R1-type problems from the
Solomon’s benchmark and the 200–1000 row denoting the complete Homberger’s
benchmark. Note that to our knowledge these are the only comparable results
presented by the previous agent-based VRPTW studies addressing at least spe-
cific subsets of problems from the two benchmarks otherwise widely used within
the OR community.

In the most complex setting the algorithm was able to match the best known
solutions in 90.7% of all tested problem instances, resulting in an overall rela-
tive error of 0.3%. Also importantly, the algorithm significantly outperforms the
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Table 3. Average runtimes for individual instance sizes

Size Lim [19] Prescott-Gagnon [25] Nagata [24] Presented

100 39 min 192.5 min 25 min 9 min
200 93 min 265 min 20.5 min 67 min
400 296 min 445 min 81 min 345 min
600 647 min 525 min 80.4 min 615 min
800 1269 min 645 min 138 min 1253 min
1000 1865 min 810 min 186 min 1765 min

CPU P4-2.8G OPT-2.4G OPT-2.4G K8-2.3G

comparable previously presented agent-based algorithms over the comparable
problem subsets.

The effect of the proposed ejection based Rotate method is clearly illus-
trated. The method is based on a powerful search diversification criteria using
the rotation counters c.rts, c ∈ C to express the measure of difficulty of feasibly
allocating individual customers. Considering the most complex setting with the
rotationLimit parameter being linearly proportional to the size of the problem
instance the performance of the algorithm is consistent across alternative in-
stance sizes. This further supports the efficiency of the proposed method with
respect to the existing traditional centralized algorithms. The difference in per-
formance over the Solomon’s 100 customer instances is arguably due to the fact
that over the smaller benchmark the competing algorithms (that are typically
not computationally bound) often use a non-proportionally long running times,
as also illustrated by Table 3.

5.2 Runtime and Convergence Analysis

The comparison in terms of runtime with the traditional VRPTW algorithms is
presented by Table 3. The listed values correspond to the average runtime for
individual instance sizes. The abbreviations in the "CPU" row correspond to
AMD Opteron 2.4GHz, Pentium 4 2.8GHz and AMD K8 2.4GHz processors.

The results show that the convergence of the presented algorithm is signif-
icantly worse than in case of the best compared traditional algorithm [24] as
outlined by the increasing gap between the runtimes for bigger instance sizes.
Note also, that the runtimes listed for the compared algorithm include addressing
also the secondary travel time optimization criteria.

As already mentioned, we argue that this is primarily due to the fact that
the negotiation semantic adopted by the Squeeze and Shake methods is very
simple. When the currently processed customer c̄ cannot be feasible allocated to
the emergent solution σ the solution is rotated until all affected customers can
be squeezed in. The Squeeze method is based on performing simple customer
relocations between the routes. However, at this stage of the solving process,
the solution σ is already tightly constrained and the chance of modifying it
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significantly using the simple negotiation semantic is correspondingly as most
possible relocations are rendered unfeasible due the time-window or capacity
constraints. Thus the number of necessary rotations grows dramatically.

In comparison, the sqeeze method employed by the compared traditional cen-
tralized algorithm [24] corresponds to a much more sophisticated local search
procedure. Apart from customer relocations several other moves are considered.
Most significantly, also the unfeasible moves are considered and a specific cost
function is introduced driving the search process corresponding to the level of un-
feasibility of the underlying intermediate solution. Thus the chance of allocating
the customers affected by the individual rotations into the tightly constrained
solution is higher, resulting in significantly less rotations being performed.

6 Conclusion

Within this paper we introduce an efficient agent-based algorithm for the
VRPTW. The algorithm is based on coordinating the fleet of autonomously
planning vehicles within an abstract global coordination framework based on
agent negotiation. The main contribution of the paper is the extension of the
used negotiation semantic. Core to the novel semantic is the introduction of the
Rotate and Squeeze methods, enabling the algorithm to efficiently backtrack
in situations where the previous algorithms failed. Due to the clear separation
between the local planning and the global coordination the presented frame-
work can be easily adopted to (i) incorporate typical real-word extensions of the
problem and to (ii) solve a variety of task allocation and scheduling problems in
general, further supporting the significance of this study.

The performance of the resulting algorithm is evaluated using the relevant
widely-used benchmarks known from the OR literature. A comparison the tra-
ditional centralized algorithms is presented in terms of algorithm’s performance
and convergence. The algorithm equals the best-known solutions in 90.7% of
all considered problem instances with an average relative error of 0.3%. Also,
a comparison to the previous comparable agent-based algorithms is presented
revealing that the algorithm significantly outperforms these algorithms.

The coordination solving process is discussed in detail. Promising research
opportunities were identified in: (i) introducing more complex negotiation se-
mantics within the Squeeze method enabling for recovering feasibility of in-
termediate infeasible solutions and (ii) exploiting the potential of the algorithm
by adapting it to complex problem variants by introducing real-world relevant
constraints to the local planning strategy — or pitting it against different task
allocation and scheduling problems.
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