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Abstract. In this chapter we review the problem of object class recognition in large
image collections. We focus specifically on scenarios where the classes to be recog-
nized are not known in advance. The motivating application is ”object-class search
by example” where a user provides at query time a small set of training images
defining an arbitrary novel category and the system must retrieve images belong-
ing to this class from a large database. This setting poses challenging requirements
on the system design: the object classifier must be learned efficiently at query time
from few examples; recognition must have low computational cost with respect to
the database size; finally, compact image descriptors must be used to allow storage
of large collections in memory. We review a method that addresses these require-
ments by learning a compact image descriptor – classemes – yielding good cate-
gorization accuracy even with efficient linear classifiers. We also study how data
structures and methods from text-retrieval can be adapted to enable efficient search
of an object-class in collections of several million images.

1 Introduction

The accuracy of object category recognition is improving rapidly, particularly if
the goal is to retrieve or label images where the category of interest is the primary
subject of the image. However, existing techniques do not scale well to searching in
large image collections. This chapter identifies three requirements for such scaling,
and describes representations and retrieval methods that satisfy them.
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1. Interesting large-scale applications must support recognition of novel categories.
This means that a new category can be presented as a set of training images, and
a classifier learned from these new images can be run efficiently against the large
database. Depending on the application, the user may define the query category
either by supplying a set of image examples of the desired class, by performing
relevance feedback on images retrieved for predefined tags, or perhaps by boot-
strapping the recognition via text-to-image search [12]. In all these cases, the
classifiers cannot be precomputed during an offline stage and thus both training
and testing must occur efficiently at query-time in order to be able to provide
results in reasonable time to the user.

2. Large-scale recognition benefits from a compact descriptor for each image, for
example allowing databases to be stored in memory rather than on disk.

3. The ideal descriptor also provides good results with linear classifiers, such as
linear SVMs, or tf-idf rankers [24], as these can be evaluated efficiently even on
large databases.

Although a number of systems satisfy these desiderata for recognition of spe-
cific object-instances [27, 17], places [6] and whole scenes [43], we argue that these
requirements cannot be addressed by traditional systems in the context of object-
category recognition. This is due to the large computational and storage complexities
of modern object-classifiers, which rely on high-dimensional image descriptors and
expensive non-linear decision functions. For example, the current state-of-the-art in
categorization is represented by multiple kernel combiners, such as the LP-β clas-
sifier [13], which compute non-linear (kernel-based) functions of multiple low-level
features. These nonlinearities are critically necessary to achieve good classification
accuracy: for example, compare in figure 2 the difference in accuracy between LP-
beta13 and Xsvm, which represent, respectively, a multiple kernel combiner and a
linear SVM trained on the same combination of low-level features. However, kernel-
based classifiers cannot be used in our search setting, since the classes to recognize
are not known at the time of the creation of the database and thus the kernel-distances
cannot be precomputed: novel-class recognition with non-linear models would re-
quire evaluating the kernel-distance between each database image and (a subset of)
the training images provided at query-time, which clearly cannot be accomplished
in the real-time demanded by a search application. Furthermore, the multiple, high-
dimensional image descriptors needed by LP-β would pose challenging storage re-
quirements for large databases.

In this chapter we describe a system that addresses these requirements by us-
ing multiple-kernel combiners as an image representation instead of as a classifi-
cation model: the idea is to use an image descriptor containing as entries the out-
puts of a set of predefined category-specific classifiers applied to the image. Be-
cause these basis-classifiers provide a rich coding of the image, simple linear mod-
els (e.g., linear SVMs) trained on this representation can approach state-of-the art
accuracy, satisfying the requirements listed above. The obvious (but only partially
correct) intuition is that a novel category, say duck, can be effectively expressed in
terms of the outputs of the basis-classifiers (which we refer to as “classemes”), de-
scribing either objects similar to ducks, or objects seen in conjunction with ducks.
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Table 1 Highly weighted classemes. Five classemes with the highest LP-β weights for
the retrieval experiment, for a selection of Caltech256 categories. Some may appear to make
semantic sense, but it should be emphasized that our goal is simply to create a useful fea-
ture vector, not to assign semantic labels. The somewhat peculiar classeme labels reflect the
ontology used as a source of base categories.

In practice, the reason this descriptor will work is slightly more subtle. It is not
required or expected that these base categories will provide useful semantic la-
bels, of the form water, sky, grass, beak. On the contrary, the assumption
is that modern category recognizers are essentially quite dumb; so a swimmer rec-
ognizer looks mainly for water texture, and the bomber plane recognizer con-
tains some tuning for “C” shapes corresponding to the airplane nose, and perhaps
the “V” shapes at the wing and tail. Even if these recognizers are perhaps over-
specialized for recognition of their nominal category, they can still provide useful
building blocks to the learning algorithm that learns to recognize the novel class
duck. Table 1 lists some highly-weighted classemes used to describe an arbitrarily
selected subset of the Caltech256 categories. Each row of the table may be viewed
as expressing the category as a weighted sum of building blocks; however the true
building blocks are not the classeme labels that we can see, but their underlying
dumb components, which we cannot. To complete the duck example, it is a combi-
nation of body of water, bomber plane, swimmer, as well as walking
and straight. To gain an intuition as to what these categories actually represent,
Figure 1 shows the training sets for the latter two. Examining the training images,
we suggest that walking may represent “inverted V outdoors” and straight
might correspond to “clutter and faces”.

2 Background

Before describing the details of the system, and experimental investigations, we
shall briefly summarize related literature.

The closest existing approach is probably image representation via attributes [11,
19]. Here object categories are described by a set of boolean attributes, such as “has
beak”, “no tail”, “near water”. Classifiers for these attributes are built by acquiring
labels using Amazon’s Mechanical Turk. In contrast, classemes are not designed to
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Fig. 1 Classeme training images. A subset of the training images for two of the 2659
classemes: walking, and straight. The top 150 training images are downloaded from
Bing image search with no filtering or reranking. As discussed in the text, we do not require
classeme categories to have a semantic relationship with the novel class; but to contain some
building blocks useful for classification.
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have specific semantic meanings, but rather to capture intersections of properties.
Furthermore, they are trained using data directly obtained from web image search,
without human cleanup. In addition, most prior attribute-based methods have re-
lied on a “zero-shot” learning approach: instead of learning a classifier for a novel
category from training examples, a user designs the classifier by listing attributes,
limiting such systems to categories for which humans can easily extract attributes,
and increasing the workload on the user even for such categories. A related idea is
the representation of images in terms of distances to basis classes, which has been
previously investigated as a way to define image similarities [42], to perform video
search [15], or to enable natural scene recognition and retrieval [41].

The approach considered here is also evocative of Malisiewicz and Efros’s
“Recognition by Association” [23], in which object classes are represented by sets
of object instances to which they are associated. In contrast, classemes represent
object classes as a combination of other object classes to which they are related.
This change of viewpoint enables the use of powerful kernel-based classifiers.

Because classemes represent images by a (relatively) low-dimensional feature
vector, the approach is related to dimensionality reduction techniques and methods
to learn compact codes for images [43, 36, 33, 31, 9]. These data-driven techniques
find low-dimensional, typically nonlinear, projections of a large feature vector rep-
resenting each image, such that the low-dimensional vectors are an effective proxy
for the original. These techniques can achieve tremendous compressions of the im-
age (for example to 64 bits [43]), but are of course correspondingly lossy, and have
not been shown to be able to retain category-level information.

It is also useful to make a comparison to existing categorization systems in terms
of how far they meet the requirements we have set out. In the discussion below,
let N be the size of the test set (i.e. the image database, which may in principle be
very large). Let n be the number of images in the training set, typically in the range
5− 100 per class. Let d be the dimensionality of the representation stored for each
image. For example, if a histogram of visual words is stored, d is the minimum
of the number of words detected per image and the vocabulary size. For a GIST
descriptor [28], d is of the order of 1000. For multiple-kernel techniques [13], d
might be of the order of 20,000. For the system in this paper, d can be as low as
1500, while still leveraging all the descriptors used in the multiple-kernel technique.
Note that although we shall later be specific about the number of bits per element of
d, this is not required for the current discussion.

Boiman et al. [4] shows one of the most intriguing results on the Caltech256
benchmark: a nearest-neighbour-like classifier on low-level feature descriptors pro-
duces excellent performance, especially with small training sets. Its training cost is
effectively zero: assemble a bag of descriptors from the supplied training images
(although one might consider building a kd-tree or other spatial data structure to
represent large training sets). However, the test-time algorithm requires that each
descriptor in the test image be compared to the bag of descriptors representing the
class, which has complexity O(nd). It may be possible to build a kd-tree for the test
set, and reverse the nearest-neighbor lookups, but the metric is quite asymmetric, so
it is not at all clear that this will preserve the properties of the method.
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For the multilple-kernel system of Gehler and Nowozin [13] the complexity is
again O(nd), but with large d, and a relatively large constant compared to the
nearest-neighbor approach.

Another class of related techniques is the use of classifier combination other than
multiple-kernel approaches. Zehnder et al. [44] build a classifier cascade which en-
courages feature sharing, but again requires the set of classes to be predefined, as is
true for Griffin and Perona [14] and Torralba et al. [37]. Heitz et al. [16] propose to
learn a general cascade similar to classemes (although with a different goal). How-
ever, the classeme approach simplifies training by pre-training the first layer, and
simplifies testing by successfully working with simple top-layer classifiers.

3 Method Overview

The approach is now described precisely, but briefly, with more details supplied
in §4. There are two distinct stages: once-only classeme learning; followed by any
number of object-category-related learning tasks. Note that there are distinct train-
ing sets in each of the two stages.

3.1 Classeme Learning

A set of C category labels is drawn from an appropriate term list. For each category
c ∈ {1..C}, a set of training images is gathered by issuing a query on the category
label to an image search engine.

A one-versus-all classifier φc is trained for each category. The classifier output is
real-valued, and is such that φc(x)> φc(x′) implies that x is more similar to class c
than x′ is. Given an image x, then, the feature vector (descriptor) used to represent
x is the classeme vector f(x) = [φ1(x), . . . ,φC(x)].

Given the classeme vectors for all training images, it may be desired to perform
some feature selection on the descriptors. We shall assume this has been done in the
sequel, and simply write the classeme vector in terms of a reduced dimensionality
d ≤C, so f(x) = [φ1(x), . . . , φd(x)]. Where d is not specified it may be assumed that
d =C.

Given the parameters of the φc, the training examples used to create the classemes
may be discarded. We denote by Φ the set of functions {φc}d

c=1, which encapsulates
the output of the classeme learning, and properly we shall write f(x) = f(x;Φ).

3.2 Using the Classemes

Given Φ , the rest of the approach is conventional. A typical situation might be that a
new object category, or set of categories, is defined by a set of training images (note
again that this is a new set of training images, unrelated to those used to build Φ).
The training images are converted to classeme vectors, and then any classifier can be
trained taking the classeme vectors as input. As shown in experiments, the features
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are sufficiently powerful that simple linear classifiers applied to the classemes can
give accuracies commensurate with much more expensive classifiers applied to the
low-level image features. Useful candidate classifiers might be those which make a
sparse linear combination of input features, so that the test cost is a small fraction of
d per image; or predicate-based classifiers so that test images with nonzero score can
be retrieved rapidly using inverted files [27, 38], achieving test complexity sublinear
in N, the size of the test set.

4 Further Details

Several details are now expanded.

4.1 Selecting Category Labels

The set of category labels used to build the classemes should consist primarily of vi-
sual concepts. This will include concrete nouns, but may also include more abstract
concepts such as “person working”. The category labels should be chosen to be rep-
resentative of the type of applications in which one plans to use the descriptors. As
the focus of this study is general-category recognition, here we consider concepts
selected from the Large Scale Concept Ontology for Multimedia (LSCOM) [26].
The LSCOM categories were developed specifically for multimedia annotation and
retrieval, and have been used in the TRECVID video retrieval series. This ontology
includes concepts selected to be useful, observable and feasible for automatic de-
tection, and as such are likely to form a good basis for image retrieval and object
recognition tasks. The LSCOM CYC ontology dated 2006-06-30 [22] was selected
as the reference data set of concepts. From the initial 2832 unique concepts, the
following categories were removed: 97 classes denoting abstract groups of other
categories (marked in angle brackets in [22]); plural categories that also occurred
as singulars; some people-related categories which were effectively near-duplicates.
A total of C = 2659 categories were preserved by this filtering: the final list of
concepts is available in [40]. Some examples have already been seen in table 1.
This filtering was intentionally conservative in removing categories because, as dis-
cussed in the introduction, it is not easy to predict a priori what categories will be
useful.

4.2 Gathering Category Training Data

For each category label, a set of training images was gathered by taking the top
150 images from the bing.com image search engine. For a general application
these examples would not need to be manually filtered in any way, but in order to
perform fair comparisons against the Caltech image database, near duplicates of
images in that database were removed by a human-supervised process. Conversely,
we did not remove overlap between the classeme terms and the Caltech categories

bing.com
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(28 categories overlap, see data on [40]), as a general-purpose system can expect
to see overlap on a small number of queries. We also ran a test, not reported here,
where classemes overlapping with Caltech256 labels were removed; the resulting
performance was essentially unchanged.

4.3 Learning Classifiers φc

The classification model used for the φc(·) is the LP-β kernel combiner of Gehler
and Nowozin [13]. While they used 39 kernels, the experiments presented in this
chapter are based on a set of 13 kernels. The kernels are defined in terms of the χ2

distance between feature vectors as follows: k(x,x′) = exp(−χ2(x,x′)/γ), where
γ is a hyper-parameter set as in [13] to be the average of the χ2 distances in the
training set. The following 13 feature types were used:

• Kernel 1: Color GIST, d1 = 960. The GIST descriptor [28] is applied to color
images. The images were resized to 32×32 (aspect ratio is not maintained), and
then orientation histograms were computed on a 4 × 4 grid. Three scales were
used with the number of orientations per scale being 8,8,4.

• Kernels 2-5: Pyramid of Histograms of Oriented Gradients, d2..5 = 1700. The
PHOG descriptor [7] is computed using 20 bins at four spatial pyramid scales.

• Kernels 6-9: PHOG (2π unwrapped), d6..9 = 3400. These features are obtained
by using unoriented gradients quantized into 40 bins at four spatial pyramid
scales.

• Kernels 10-12: Pyramid self-similarity, d10..12 = 6300. The Shechtman and Irani
self-similarity descriptor [34] was computed as described by Bosch [5]. This
gives a 30-dimensional descriptor at every 5th pixel. We quantized these descrip-
tors into 5000 clusters using k-means, and a pyramid histogram was recorded
with three spatial pyramid levels.

• Kernel 13: Bag of words. d13 = 5000 SIFT descriptors [21] were computed at
interest points detected with the Hessian-Affine detector [25]. These descriptors
were then quantized using a vocabulary of size 5000, and accumulated in a sparse
histogram.

A binary LP-β classifier was trained for each classeme, using a setup following the
one described in section 7 of [13] in terms of kernel functions, kernel parameters,
values of ν and number of cross validations. The only difference is that the objective
of their equation (4) was modified in order to handle the uneven training set sizes.
We used N+ = 150 images as positive examples, and one image chosen at random
from each of the other training sets as negative examples, so N− =C−1. The objec-
tive was modified by scaling the positive entries in the cost vector by (νN+) and the
negative entries by (νN−). The cross-validation yields a per-class validation score
which is used for feature selection.
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4.4 Feature Selection

In order to perform feature selection on the classeme vectors f, the classemes were
first sorted in increasing order of cross-validation error. Given a desired feature di-
mensionality, d, the reduced classeme vector was obtained by selecting the first d
components f(x) = [φ1(x), . . . ,φd(x)]. Again in situations where d is not specified it
may be assumed that d =C

4.5 Classeme Quantization

For a practical system, the classeme vectors should not be stored in double preci-
sion, but instead an explicit quantization of the values should be used. This may
be achieved by a simple quantization, or by defining binary “decision stumps” or
predicates. Quantization can be performed either at novel-category learning time
(i.e. on the novel training set) or at classeme-learning time. For 1-bit quantization,
simple thresholding at 0 was used. For higher quantization numbers, the follow-
ing “histogram-equalized” quantization was used. Given a training set of classeme
vectors {fi}n

i=1, write fi = [φik]
d
k=1. Write the rows of the matrix [f1, . . . , fn] as

rk = [φik]
n
i=1. To quantize to Q levels, quantization centres ziq are chosen as follows:

r′k = sort(rk), defining a matrix φ ′
ik. Then make the set Zk = {φ ′

�nq/(Q+1)�,k}Q
q=1, and

each value φik is replaced by the closest value in Zk.

5 Experiments

Given the simplicity of the approach, the first question that naturally arises is how
it compares to the state-of-the-art recognition approaches. Here we compare to the
LP-β kernel combiner as this is the current front-runner. Note that the key metric
here is performance drop with respect to LP-β with the same 13 kernels used by
classemes. As the classeme classifiers introduce an extra step in the recognition
pipeline, performance might be expected to suffer from a “triangle inequality”: the
raw kernel combiner can optimize kernels for the final classes to recognize, while
the classifiers using classemes as representation are forced to use the kernels trained
on the LSCOM classes. The experiments show that this does happen, but to a small
enough extent that the classemes remain competitive with the state of the art, and
are much better than the closest “efficient” system.

There are two main experiments. In the first, we wish to assess the representa-
tional power of classemes with respect to existing methods, so we use the standard
Caltech256 accuracy measure, with multiclass classifiers trained on all classes. In
the second, we want to test classemes in a framework closer to their intended use,
so we train one-vs-all classifiers on each class separately, and then report precision
on ranking a set of images including distractors from the other classes.
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Fig. 2 Caltech256. A number of classifiers are compared on the Caltech256 dataset. LP-
beta [13], MKL: Multiple Kernel learning [1], as implemented in [13], LPbeta13: LP-β on
our low-level features (§4.3); Xsvm SVM trained on the concatenation of our low-level fea-
tures. The classeme-based classifiers are: Csvm: SVM, floating point, d = 1500; Cq4svm:
SVM, input quantized to 4 bits per channel (bpc), d = 1500; Cq1svm: SVM, input quantized
to 1 bit, d = 1500. The key-result is this: on 30 training examples, and using the same under-
lying features, Csvm has 36% accuracy, and LPbeta13 has 42% accuracy, but the classeme-
based system is orders of magnitude faster to train and test.

5.1 Experiment 1: Multiclass Classification

In this experiment we study the performance of classemes using the multiclass linear
SVM of Joachims [18] as classification model, since this is an efficient classifier
to train and test and thus it is well suited to our motivating problem. The SVM
regularization parameter was set to be λ = 3000. All classeme-based results are
presented for the case d = 1500, as using more than 1500 classemes was found to
yield no further improvements.

Figures 2 shows the multi-class accuracy for different classifiers as a function of
the number of training examples per class, using 25 test examples per category. It
can be seen that the classeme-based SVM (Csvm) greatly outperforms an SVM di-
rectly trained on the same low-level features (Xsvm) and it matches the accuracy of
the nonlinear classifier trained using multiple kernel learning [1]. Only LPbeta13
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Fig. 3 Accuracy versus compactness of representation on Caltech-256. On both axes, higher
is better. (Note logarithmic y-axis). The lines link performance at 15 and 30 training
examples.

(the version of LP-β using the same low-level features exploited by classemes)
provides higher accuracy. However the size of the representation is considerably
reduced for classemes compared to LP-β : 2.5KB versus 23KB. Furthermore, the
training and test times of our approach are considerably lower than LP-β : training
the multiclass classifier Csvm with 5 examples for each Caltech class takes about
9 minutes on a AMD Opteron Processor 280 2.4GHz while the method of [13]
requires more than 23 hours on the same machine; predicting the class of a text
example takes 0.18ms with our model and 37ms with LP-β .

In addition, when moving from floating point classemes (Csvm) to a quantization
of 4 bits per channel (Cq4svm) the change in accuracy is negligible. Accuracy drops
by only 2–4 percentage points using a 1 bit per channel SVM (Cq1svm, d = 1500,
187.5 bytes per image). However, this representation increases the number of images
that can be stored in an index by a factor of 100 over LP-β , which is especially
significant for RAM-based indices.

Figure 3 shows accuracy versus compactness for different classification systems.
In this plot we include also the performance of Naive Bayes Nearest Neighbor
(nbnn) [4] and Efficient Match Kernel (EMK) [3]. It can be seen that classemes
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Fig. 4 Class retrieval in Caltech256. Percentage of the top 25 in a 6400-document set which
match the query class. Random performance is 0.4%.

using 1 bit per channel provide a significant saving in terms of storage requirement
compared to all other methods, while still yielding near state-of-the-art accuracy.

5.2 Experiment 2: Retrieval

The retrieval experiment attempts to gain insight into the behaviour of classemes in
a class-retrieval task. A query against the database is specified by a set of training
images taken from one category, and the retrieval task is to order the database by
similarity to the query.

Evaluation on Caltech256. We start by studying performance on the Caltech256
data set. The test database is formed by sampling 25 images from each Caltech
category. Success is measured as precision at 25: the proportion of the top 25 images
which are in the same category as the query (training) set. The maximum score is 1,
obtained if all the matching images are ranked above all the distractors. For this
experiment, we compare classemes with bags of visual words (BOW), which are a
popular model for efficient image retrieval. We use as BOW features the quantized
SIFT descriptors of Kernel 13.

We consider two different retrieval methods. The first method is a linear SVM
learned for each of the Caltech classes using the one-vs-the-rest strategy. We com-
pare these classifiers to the Rocchio algorithm [24], which is a classic information
retrieval technique for implementing relevance feedback. In order to use this method
we represent each image as a document vector d(x). In the case of the BOW model,
d(x) is the traditional tf-idf-weighted histogram of words. In the case of classemes
instead, we define d(x)i = [φi(x)> 0] · idfi, i.e. d(x) is computed by multiplying the
binarized classemes by their inverted document frequencies. Given, a set of relevant
training images Dr, and a set of non-relevant examples Dnr, Rocchio’s algorithm
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Fig. 5 Class-retrieval precision versus search time for the 10-million ImageNet database: x-
axis is search time; y-axis shows percentage of true positives ranked in the top 10 (for each
query class, the database contains n−

test = 9,671,611 distractors and n+test = 450 true positives).
The curve for each method is obtained by varying the hyperparameter in the learning objective
of the classifier, thus producing different accuracy-speed tradeoffs (see details in the text).

computes the document query

q = β
1

|Dr| ∑
xr∈Dr

d(xr)− γ
1

|Dnr| ∑
xnr∈Dnr

d(xnr) (1)

where β and γ are scalar values. The algorithm then retrieves the database docu-
ments having highest cosine similarity with this query. In our experiment, we set
Dr to be the training examples of the class to retrieve, and Dnr to be the remaining
training images. We report results for two different settings: (β ,γ) = (0.75,0.15),
and (β ,γ) = (1,0) corresponding to the case where only positive feedback is used.

Figure 4 shows that methods using classemes consistently outperform the algo-
rithms based on traditional BOW features. Furthermore, SVM yields much better
precision than Rocchio’s algorithm when using classemes.

Evaluation on ImageNet (10M images). We now move on to present results
on the large-scale ImageNet dataset [8], which includes about 10-million images
representing over 15,000 categories (in this experiment we used 15,203 classes).
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We randomly selected 400 categories as query classes. For each of these classes
we capped the number of true positives in the database to be n+test = 450. The total
number of distractors for each query is n−

test = 9,671,611. Due to the size of the
collection, we restrict our analysis to the binary version of classemes (1 bit per
channel), using d = 2659.

We use this large-scale database to evaluate the speed-up achievable by imple-
menting linear classification via inverted lists [24]. Inverted lists (also known as
inverted indices) have been widely used for image search but predominantly for
retrieval of near-duplicates or particular object-instances [35, 27, 30]. Instead here
we adopt them to efficiently calculate the inner product between the weight vector
learned at query-time and the binary classeme vector associated to each database
image. This can be achieved by storing an inverted list for each classeme feature,
enumerating the database images containing that particular classeme entry. The in-
verted lists allow the ranker to skip over classemes having value zero. A further
speedup can be obtained by using a sparse classification model where the weight
vector is constrained to have very few non-zero entries so that the evaluation cost
will be a small fraction of the number of features (d). We use an �1-regularized lo-
gistic regression [10] (L1-LR) to test the advantages of a sparse classifier over the
traditional �2-regularized SVM (L2-SVM).

For each query category we trained these two classification models using the one-
vs-the-rest strategy, with a training set consisting of n+ = 10 positive examples and
n− = 15,202 negative images obtained by sampling one training image for each of
the negative classes. The results are summarized in figure 5. The x-axis shows av-
erage retrieval time per query, measured on a single-core computer with 16GB of
RAM and an Intel Core i7-930 CPU @ 2.80GHz. The y-axis reports precision at
10 which measures the proportion of true positives in the top 10. The performance
curve of each method was generated by varying the regularization hyperparame-
ter λ in the learning objective of the classifier. While λ is traditionally viewed as
controlling the bias-variance tradeoff, for the L1-LR classifier it can be interpreted
as a parameter balancing generalization accuracy versus sparsity, and thus retrieval
speed. It can be seen that inverted indices speed up considerably the retrieval, partic-
ularly in the case of L1-LR which tends to generate sparser weight vectors for which
inverted indexing is especially advantageous: using this model ranking the entire 10-
million dataset takes about 30 seconds, with an average precision@10 above 30%.
As a reference, random retrieval would produce precision@10 roughly equivalent
to 0.005%. Learning a L1-LR or an L2-SVM classifier for a query category in this
experiment takes roughly 2 seconds.

We would like also to comment on the memory usage. Representing the database
as a bit-map of all classemes would require a space of (2659/8)× N bytes for a
database containing N images, which in this case amounts to about 3GB. The in-
verted list architecture requires more space. We represented the image IDs in in-
verted files using one byte per image: we achieve this by storing only ID displace-
ments (which in our experiment happened to be always smaller than 255) between
consecutive images in the list. Using this encoding, the total storage requirement for
the 10M data set was roughly 9GB.
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6 Discussion

In this chapter we have describe the learning of the classeme descriptor which is
a representation intended to be useful for efficient high-level object recognition.
By using the noisy training data from web image search in a novel way – to train
“category-like” classifiers – the descriptor is essentially given access to knowledge
about what humans consider “similar” when they search for images on the web (note
that most search engines are considered to use “click-log” data to rank their image
search results, so the results do reflect human preferences). The experiments have
shown that this knowledge is effectively encoded in the classeme vector, and that
this vector, even when quantized to below 200 bytes per image, gives competitive
object category recognition performance.

A natural question is whether the weakly trained classemes actually do contain
any semantic information, although we have emphasized that this is not the main
motivation for their use.

We have focused here on object category recognition as characterized by the
Caltech256 training data, which are adequate for clip-art search, but which will not
be useful for, for example, home photo retrieval, or object indexing of surveillance
footage. It should be straightforward to retrain the classemes on images such as the
PASCAL VOC images, but a sliding-window approach would probably be required
in order to achieve good performance.

Classemes were originally introduced in [39]. A further extension of this idea was
presented in [2] where the classeme classifiers were trained jointly (as opposed to in-
dependently) by directly optimizing an objective measuring linear classification ac-
curacy. A related approach is proposed by Li et al. [20] where the location-dependent
output of object detectors evaluated on the image is used as a representation. The ad-
vantage of this descriptor is that it encodes spatial information; furthermore, object
detectors are more robust to clutter and uninformative background than classifiers
evaluated on the entire image. In [9] classemes were empirically shown to be useful
also for low-level retrieval tasks such as finding images of the same scene as the query,
particularly when used in conjunction with local-appearance descriptors [21, 29].
Also in [9], several binary encoding methods are presented to further compress the
size of classemes while preserving their good retrieval properties. Some of these com-
pression methods as well as a top-k ranking scheme are explored in [32] to further
boost the efficiency of object-class retrieval in large databases using classemes.

Additional material including the list of classeme labels, the classeme training
images, precomputed feature vectors for standard datasets, as well as software to
extract this descriptor may be obtained from [40].
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