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Abstract. The analysis of human activities is one of the most intriguing and important
open issues in the video analytics field. Since few years ago, it has been handled fol-
lowing primarily Computer Vision and Pattern Recognition methodologies,where an
activity corresponded usually to a temporal sequence of explicit actions (run, stop, sit,
walk, etc.). More recently, video analytics has been faced considering a new perspec-
tive, that brings in notions and principles from the social, affective, and psychological
literature, and that is called Social Signal Processing (SSP). SSP employs primarily
nonverbal cues, most of them are outside of conscious awareness, like face expres-
sions and gazing, body posture and gestures, vocal characteristics, relative distances
in the space and the like. This paper will discuss recent advancements in video an-
alytics, most of them related to the modelling of group activities. By adopting SSP
principles, an age-old problem -what is a group of people?- is effectively faced, and
the characterization of human activities in different respects is improved.

Introduction

Detecting human interactions represents one of the most intriguing frontiers of the
automated surveillance since more than a decade. Recently, sociologic and psycho-
logical findings have been considered into video surveillance algorithms, especially
thanks to the advent of Social Signal Processing work, a recent multi-disciplinary
area where computer vision and social sciences converge. This chapter follows this
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Fig. 1 F-formations: a-d) The component spaces of an F-formation: vis-a-vis, L, side-by-
side, and circular F-formations, respectively. O-spaces are drawn in orange. e) Cocktail-party
scene where some o-spaces are superimposed in orange.

direction and proposes a detailed overview on our recent activity on the analysis
of group activities. In particular, we will present three scenarios where a group of
interacting people is first detected, using positional and orientation features [15];
subsequently, the group is characterized by inferring the social relations between
the participants exploiting proxemics cues [18]; finally, voice activity is detected by
employing solely visual cues [16].

1 Analysis of Social Interactions Using F-formations

The first contribution is devoted to detect social interactions using statistical analysis
of spatial-orientation arrangements that have a sociological relevance ([15]). As so-
cial interactions we intend the acts, actions, or practices of two or more people mu-
tually oriented towards each other; more in general, any dynamic sequence of social
actions between individuals (or groups) that modify their actions and reactions by
their interaction partner(s). We analyze quasi-stationary people in an unconstrained
scenario identifying those subjects engaged in a face-to-face interaction, i.e., a scene
monitored by a single camera where a variable amount of people (10-20) is present.
We import into the analysis the sociological notion of F-formation as defined by
Adam Kendon in the late 70s ([39]).

Simply speaking, F-formations are spatial patterns maintained during social in-
teractions by two or more people. Quoting Kendon, “an F-formation arises when-
ever two or more people sustain a spatial and orientational relationship in which
the space between them is one to which they have equal, direct, and exclusive ac-
cess.”. In practice, an F-formation is the proper organization of three social spaces:
o-space, p-space and r-space (see Fig. 1a-d).

The o-space is a convex empty space surrounded by the people involved in a so-
cial interaction, where every participant looks inward into it, and no external people
is allowed in this region. This is the most important part of an F-formation. The
p-space is a narrow stripe that surrounds the o-space, and that contains the bodies of
the talking people, while the r-space is the area beyond the p-space.

There can be different F-formations as visible in Fig. 1a-d. In the case of two
participants, typical F-formation arrangements are vis-a-vis, L-shape, and side-by-
side. When there are more than three participants, a circular formation is typically
formed [44].
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Our approach aims at detecting the o-space, taking as input a calibrated scenario,
in which the position of the people and their head’s orientations have been estimated.
In particular, we design an F-formation recognizer which is the main contribution of
the work. This algorithm is based on a Hough-voting strategy, which lies between an
implicit shape model [47], where weighted local features vote for a location in the
image plane, and a mere generalized Hough procedure where the local features have
not to be in a fixed number as in the implicit shape model. This approach provides
the estimation of the o-spaces, so as of the identity of the people that form them, thus
individuating people which are socially interacting. In such regard, our approach is
the first to use F-formations detection in order to discover social interactions solely
from visual cues.

Our approach has been tested on about a hundred of simulated scenarios, and two
real annotated datasets, one of which is novel. In these last two cases tens of individ-
uals were captured while they were enjoying coffee breaks, in indoor and outdoor
environment, giving rise to heterogeneous real crowded scenarios. Our approach ob-
tains convincing results, that are reported in a comparative way, quoting the unique
(to the best of our knowledge) previous work dealing with the same topic.

The rest of the Section is organized as follows. In Sec.1.1, a review of the litera-
ture concerning the interaction modelling in surveillance settings is given. The pro-
posed approach is detailed in Sec. 1.2, and the experiments are reported in Sec. 1.3.
Finally, Sec. 1.6 concludes the paper with remarks and a discussion on the several
possible future developments.

1.1 Group Interaction Discovery: State of the Art

A dated but interesting review on methods that consider human interactions is pre-
sented in [2], that focuses especially on motion cues. Pioneering studies on inter-
actions focus on two-agent behaviors, employing statistical learning [56], a mix
between syntactical and statistical pattern recognition paradigms [36], or Action-
Reaction Learning [37]. Interactions among a larger number of people are usually
modeled in meeting scenarios or smart rooms, exploiting a large number of hetero-
geneous sensors, thus solving many problems of occlusions and low image quality.
In this case, many subtle social interactions can be observed and modeled, mostly
by encoding turn-taking mechanisms. The interested reader may refer to [24] for a
comprehensive review. Moving to unconstrained scenarios, as those typical of the
videosurveillance field, the spectra of the activities modeled becomes narrower. In
[34] a Semi Markov framework captures simple events (as running, approaching,
etc.), where interaction is modeled by logic operators that assembly together sim-
ple events (performed by a single person) into multi-thread events. More recently,
in [55, 12], group activities are encoded with three types of localized causalities,
namely self-causality, pair-causality, and group-causality, which characterize the lo-
cal interaction/reasoning relations within, between, and among motion trajectories
of different humans, respectively. In [48], group interactions with a varying num-
ber of subjects are investigated, employing an asynchronous hidden Markov model
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as a hierarchical activity model. They distinguish symmetric (like i talks with j)
and asymmetric dynamics activities (like i follows j). A discriminative approach
is proposed in [45], in which two kinds of interactions are introduced. The first,
group-person interaction, helps in individuating the action of a person by suggest-
ing a context; the second, person-person interaction, identifies a group activity.

These approaches suffer from lack of generalization: they focus on a restricted
set of actions, which are specific for a particular scenario. In this sense, a versatile
generative model is presented in [72], where interacting events in crowded scene are
modelled in an unsupervised way, and interactions are modeled as co-occurrences
of atomic events. No tracking is performed due to the high people density, and local
motions are considered as low-level features instead.

Approaches where sociological aspects are taken into account are [59, 65, 58,
45, 62, 6]. The keystone model that explains and simulates the human dynamics
in crowd as a gas-kinetic phenomenon is the social force model (SFM) [32]. Here,
interacting means being close each other during a walk or a run, and is explained as
a balance between repulsive and attractive terms. The social force model has been
modified in [59], where SFM is embedded as model for the dynamics in a track-
ing framework. Independently, a variational learning strategy is proposed in [65],
where a dynamic model is trained for predicting the position of moving subjects,
employing the SFM. In [58], a versatile synergistic framework for the analysis of
multi-person interactions and activities in heterogeneous situations is presented. An
adaptive context switching mechanism is designed to mediate between two stages,
one where the body of an individual can be segmented into parts, and the other
facing the case where people are assumed as rigid bodies. The concept of spatio-
temporal personal space is also introduced to explain the grouping behavior of peo-
ple. They extend the notion of personal space [3] to that of spatio-temporal personal
space. Personal space is the region surrounding each person, that is considered per-
sonal domain or territory. Spatio-temporal personal space takes into account the
motion of each person, modifying the geometry of the personal space into a sort of
cone. This multi-person interaction approach share some similarities with our pro-
posal, however, the sequences presented in the paper show very few people (max 3),
and simpler situations. A quite novel perspective for detecting interactions in video
surveillance scenarios come from the estimation of the human gaze (i.e., the head
direction) in low resolution images [61]: in [6] the head direction serves to infer
a 3D visual frustum as approximation of the focus of attention (FOA) of a person.
Given the FOA and proximity information, interactions are estimated: the idea is that
close-by people whose view frustum is intersecting are in some way interacting. In
the experiments, we compared with this approach, abbreviated as IRPM. The same
idea has been explored, independently, in [62]. Our approach improves this intu-
ition, studying more in detail how people are usually located w.r.t each other during
the interaction.
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Fig. 2 Scheme exemplifying the proposed approach. (a-c) Two subjects exactly facing each
other at a fixed distance vote for the same center of the circumference representing the o-
space. (d) The 2 subjects do not face each other exactly in real cases. (e-f) Several positions
and head orientations are drawn from Gaussian distributions associated to the subjects so as
to deal with the uncertainty of real scenarios, making the proposed approach more robust.

1.2 A Socially-driven Method for Detecting Group Interactions

An F-formation can be specified by the related o-space and the oriented positions of
the participants. Suppose we know the oriented positions of the subjects in the scene
on the ground plane. Our algorithm jointly estimates the o-space(s) and the subjects
involved in the related F-formation(s). The main idea is sketched through the toy
example of Fig. 2a-c. Let us focus on K = 2 subjects, i and j, located at positions
(xi,yi) and (x j,y j) with head orientation αi and α j , respectively. They are exactly
facing each other, as depicted by the dashed line connecting their heads (Fig. 2a).
Let us also suppose they are at a distance where social interaction can take place,
i.e., d = 1.5 meters 1. Given these (hard) constraints, each k-th subject votes for a
candidate center C(k) of the o-space, which has coordinates xC(k),yC(k):

C(k) =
[
xC(k),yC(k)

]
= [xk + r · cos(αk),yk + r · sin(αk)] , k = 1, . . . ,K (1)

where the radius r = d/2 = 0.75. Each vote is accumulated in an intensity accu-
mulation space AI , at entry x̃C(k), ỹC(k), where the tilde refers to the closest integer
approximation (opportunely rounding the real value resulting from Eq. (1)) deter-
mined by the discretisation of the space AI . At the same time, the ID labels i and
j are stored at the same entry of a label accumulation space AL, having the same
size of AI . In the toy example of Fig. 2a, both people vote for a coincident location
(Fig. 2b), which becomes the center of a candidate o-space (Fig. 2c).

To recover the subjects related to this candidate o-space, it is sufficient to access
the labels in AL associated to the votes in that location. We now know that the
center of the candidate o-space has been voted by subjects i and j. At this point,
the important condition of “no-intrusion” should be checked for the sociological
consistence of the candidate o-space. The no-intrusion condition states: a candidate
o-space for the subjects i and j does not have to contain other subjects different
from i and j. If the no-intrusion condition is fulfilled the candidate o-space becomes
a valid o-space.

1 We will discuss this assumption later in the experiments.
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One could object that the scenario depicted in Fig. 2a-c would be very rare.
In fact, our experiments on real data suggest that people engaged in a discussion
are rarely positioned on an exact circumference and facing its center. Moreover,
computer vision methods are still not capable of estimating head orientation with
high precision, and only a coarse quantization of this angle is typically considered
in the current state of the art [10]. These two facts make the above deterministic,
hard scheme ineffective. For example, no candidate o-space would be detected for
the case in Fig. 2d where the subjects do not lie on the same diameter.

In order to deal with this problem, we inject uncertainty in the voting procedure,
proposing an algorithm which is sketched in Fig. 2e-f. The proposed procedure is
structured in three distinct stages and in the following we present an explanation for
each step2.
Sampling. We assume the positions and the (head) orientation of the different sub-
jects as uncertain to some extent and modeled as random Gaussian variables, i.e.,

[xk,yk,αk]
T ∼ N (μk,Σk) (2)

where μk = [xk,yk,αk]
T and Σk = Σ = diag(σ2

x ,σ2
y ,σ2

α). We transfer this uncertainty
in the voting approach by drawing N − 1 (being μk the N-th sample) i.i.d samples
from every k-th distribution3, as depicted in Fig. 2e. Each n-th sample of the k-th
subject sn,k = [xn,k,yn,k,αn,k]

T has associated a weight wn,k, which is the likelihood
of being extracted from its generating distribution, i.e., wn,k = N (sn,k|μk,Σ) and a
label ln,k = k, that links it to the related k-th individual.
Voting. Each sample votes for a candidate position in the same way of Eq. 1. The
vote in the accumulation space AI given by the n-th sample with weight wn,k adds
wn,k in the accumulator, thus modeling the uncertainty associated to that sample.
In this way, the accumulation space grows in number of votes, which are sparsely
distributed. The accumulation of identity labels in AL is done similarly for each
sample as explained for the toy example in Fig. 2. Once the accumulation process is
finished, the matrix AI is revised with ˜AI:

˜AI(x,y) = card(x,y) ·AI(x,y) for each x,y ∈ AI(x,y) (3)

where card(x,y) counts the different subjects that voted in AI(x,y). Such informa-
tion is easily extracted from AL(x,y). In this way, a high vote is given in those
positions that have been voted with strong weights by many subjects. After that, the
o-space may be found by looking for the maximum values of ˜AI , and the associated
subjects can be identified by checking AL.
O-space validation. The evaluation of the no-intrusion condition is performed by
analyzing how strong is the presence in the o-space of an external subject. Following

2 Additional material at http://profs.sci.univr.it/˜cristanm/
publications.htmlincludes a pdf with a summary of the algorithm as a scheme.

3 In this paper, we fix Σ and the number of samples for all the people observed. However,
interesting policies can be adopted in dependence on the certainty we have in the k-th
subject (for example due to the tracker providing the subject position, or to the classifier
estimating the head orientation).

http://profs.sci.univr.it/~{}cristanm/publications.html
http://profs.sci.univr.it/~{}cristanm/publications.html
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a probabilistic approach, we compute the maximum weight w∗
n,h of a sample of an

external subject h which falls in the candidate o-space. A high w∗
n,h in an o-space of

center (xc,yc) mirrors a high probability that h is invading that o-space. A threshold
τINT R is used to detect the invading external subject. If this happens, the o-space is
invalid, and the intensity accumulator is updated imposing ˜AI(xc,yc) = 0, and the
search for the maximum value on the updated AI is repeated.

This algorithm extends naturally to F-formations composed by more than two
subjects and to more F-formations in the same scene thanks to the characteristics
of the Hough voting scheme. Actually, in a crowded situation, there could easily
be more than one F-formation. Thus, we need to check all the possible o-spaces
efficiently, and this is done in the following way. Consider the case of two subjects i
and j with their o-space detected as described in the O-space validation stage. The
accumulators AI and AL are then updated by pruning away the votes given by {wn,i}
and {wn, j} in AI , respectively, and removing the labels i and j from AL. Then, ˜AI

is re-computed. The max search process on ˜AI and the no-intrusion check are thus
repeated, and this is iterated until no more o-spaces are found. This strategy has also
the beneficial effect of providing the F-formations in decreasing order of likelihood,
assuming the likelihood of an F-formation proportional to the accumulation of votes
(which can be assimilated to probabilities) in the center of the related o-space stored
in AI .

1.3 Experiments

Our algorithm has been tested on synthetic and real data. The former proves the ef-
fectiveness of our algorithm in detecting groups disregarding a-priori errors due to
bad tracking or wrong head orientation estimations. The latter considers two differ-
ent real scenarios, one indoor and one outdoor, where errors may occur.

As accuracy measures, we estimate that a group has been correctly estimated if
at least �(2/3 · |G|)� of their components are found, where |G| is the cardinality of
group G. This rule has an exception that holds in the case |G|= 2. In that case, all the
components must be detected. Given this, for each situation analyzed we estimate
the precision and recall of finding groups, averaged over time.

In addition, to further promote the versatility of our framework, we build for each
sequence a relation matrix P2 that represents how many times two people stand
in the same group for a certain period of time. Actually, during a party, people
may change groups, standing alone for a while, re-joining a conversation, etc.. P2

analyzes the strength of pairwise relations and, for example, is capable to indicate,
given a person, who is the subject with which she/he is interacting most. This matrix
has been employed in other social signalling techniques [22], and we can compare it
with the analogous matrix built employing the ground-truth data. A measure of the
similarity between the two matrices has been performed employing the Mantel Test
[50], which is commonly used in cluster analysis to test the correlation between
two distance matrices. It operates by evaluating correlations scores from repeated
randomizations of the entries of the matrices. If randomizations frequently produce
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a correlation stronger or as strong as the original data, there is little evidence that
the correlation between the two matrices differs from zero. In rough terms, it is
a measure of similarity between matrices which actively takes into account their
structure.

The proposed method is compared with the Inter-Relation Pattern Matrix
method4 (IRPM) proposed in [6], whose description is reported in Sec. 1.1.

The free parameters of the method are the radius r, the variances σ2
x ,σ2

y ,σ2
α , the

number of samples per-person N, and the threshold τINT R of the no-intrusion con-
dition. Choosing such values is very intuitive, and it can be driven by sociological
and empirical considerations. As an example, the setting of the radius r is a mat-
ter of pure sociological aspects: Hall [29] defines 4 relational ranges of distances
that witness the type of relation a subject has with the others, and are (expressed
in meters): [0,0.45] for intimate relations, (0.45,1.2] for casual/personal relations,
(1.2,3.5] for social/consultive relations, and > 3.5 for no-relation. Now, suppose
that two people are involved in a vis-a-vis interaction. They may make a circular
o-space whose diameter is 2r. In all the other F-formations, the distance among two
people is < 2r. Therefore, r represents half of the maximal distance two people may
lie in the space and being judged as connected in an F-formation. If we set r = 60cm,
we are interested in a upper bound that becomes the casual/personal range, because
2r = 120cm

The parameters σ2
x and σ2

y allow to project the position of the people in different
positions, covering a range of 3σx(y). In other words, these values allow to be flexible
about the classes of relations taken into account by the r parameter. We fix σ =σ2

x =
σ2

y = 400cm, considering thus a range of maximal distances for the F-formations of
2[r − 3σ ,r + 3σ ] = [0,240]cm. The value of σ2

α depends on the quantization of
the head orientation. We employ 4 head orientations, so σ2

α = 0.005 is a reasonable
value. The parameter N can be instead chosen by considering computational aspects.
In the current, non-optimized MATLAB version it takes averagely 15 second per
frame using N = 800.

Finally, the last parameter τINT R checks the weights (i.e. likelihood probabilities)
of the intruder samples. Therefore, its setting mirrors how tolerant we want to be
in considering a sample as a genuine representative of an intruder, depending on its
weight. We fix τINT R = 0.7. Once the parameters are set, they are kept fixed for all
the experiments.

1.4 Synthetic Data

A psychologist provided 100 different situations, where some subjects take part in
an F-formation and other do not (examples in Fig. 3d). The input of the tested algo-
rithms is the actual position and head orientation of each subject. The data has been
annotated to obtain ground truth of the F-formations. We apply our algorithm and
IRPM to all the situations, averaging the precision and the recall scores of all the

4 The code is available at
http://www.lorisbazzani.info/code-datasets/irpm/

http://www.lorisbazzani.info/code-datasets/irpm/
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Fig. 3 Experiments with synthetical data (see text). The figure is better viewed in color.
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Fig. 4 Experiments with real data (see text). In the tables, p, r, M stand for (mean) precision,
recall, and Mantel score, respectively.

situations. Fig. 3a shows an examplar situation from the synthetic dataset. Fig. 3b
depicts how the sampling process propagates instances of a subject in gray, the votes
of the intensity accumulator in green, and the resulting o-spaces in blue. A quali-
tative analysis has been reported in Fig. 3b. The ground truth is depicted in dotted
green, whereas the results of our approach and IRPM are in blue and in red, respec-
tively. Our approach is able to model interactions where IRPM fails. In case (iii),
our approach fails in estimating the two vis-a-vis interaction, being them very close.
In general, looking at the global results in Fig. 3c, one can note that our proposal
gets higher rates for both precision and especially for the recall.

1.5 Real Scenarios

The outdoor situation is represented by a novel dataset, dubbed CoffeBreak and
downloadable at http://profs.sci.univr.it/˜cristanm/datasets
.html. It represents a coffee-break scenario of a social event that lasted 4 days, cap-
tured by two cameras. The dataset is part of a social signaling project whose aim is
to monitor how social relations evolve over time. Nowadays, only 2 sequences of a
single day of a single camera have been annotated, each one covering a period of av-
eragely 1 minute. A psychologist annotated the videos indicating the groups present
in the scenes, for a total of 45 frames for Seq1 (a frame in Fig. 4a-b) and 75 frames

http://profs.sci.univr.it/~{}cristanm/datasets.html
http://profs.sci.univr.it/~{}cristanm/datasets.html
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for Seq2 (see Fig. 4c). The annotations have been done by analyzing each frame and
a set of questionnaires that the subjects filled in. The dataset is still challenging from
the tracking and head pose estimation point of view, due to multiple occlusions. This
enables us to test our technique in a very noisy situation.

Since CoffeBreak is a crowded scenario, occlusions make extremely hard full hu-
man bodies detection. Thus, the subjects’ heads are the only cues to perform track-
ing in a robust way. To extract the head locations of all the subjects in the scene
we adopted a system based on class-specific Hough forests [23] trained on human
heads in all possible orientations. This allowed us to reliably detect all the possible
head candidates in the scene, independently from their orientation with respect to
the ground plane. After performing head detection in all the frames, such detections
needed to be filtered and linked in order to generate plausible ground plane trajecto-
ries of all the subjects. To this end, the ground plane homography and an estimation
of the average height of the subjects were used to compute the ground plane location
corresponding to each head detection. Consecutive detections corresponding to the
same subject were linked by matching appearance descriptors. Finally, head orien-
tation detection has been performed on 4 classes employing the covariance based
approach of [69] (see Fig. 4a). Once the oriented positions of the head are given,
we estimate the ground plane homography given a set of measurements obtained
on site.

The mean precision, recall score and the Mantel correlation reported in Fig. 3d
show that our approach outperforms IRPM. In Fig. 3a-b some qualitative results are
depicted: in Fig. 3a we have the head detection results together with the orientation.
In Fig. 3b, the blue segments indicate the groups found by our approach (the ground
truth is (6,7),(11,12,5),(3,10)). IRPM did not find any groups in that frame.

The indoor data come from a publicly available dataset for group detection, called
GDet 2010 and downloadable at http://www.lorisbazzani.info/code
-datasets/multi-camera-dataset/. The dataset is made by 12 subse-
quences of about 2 minutes each, with the availability of the full camera calibration
parameters. GDet 2010 videos consider a vending machines area where people take
coffee and other drinks, and chat in the spare time. The videos have been acquired
with two monocular cameras, located on opposite angles of a room close to the
floor. People involved in the experiments were not aware of the aim of the trials
and behaved naturally. The ground truth has been made by a psychologist like in
the CoffeeBreak scenario. Afterwards, some of them were asked to fill in a form
inquiring if they talked to someone in the room and to whom. The videos have been
analyzed by a psychologist, that noted the social exchanges occurred and produced
the ground truth of social interactions. In this case, people tracking has been per-
formed using Hybrid Joint-Separable (HJS) filter proposed in [46], for its capability
of dealing with occlusions by means of the estimation of the occlusion maps ex-
ploiting the camera calibration. Given the bounding boxes of the tracked people, the
head is approximately located within a bounding box. Then, head pose estimation
is performed like in the CoffeeBreak scenario.

A quantitative analysis of the results on a subset of sequences is reported in
Fig. 4e. Even in this case, our approach outperforms IRPM. Note the values of the

http://www.lorisbazzani.info/code-datasets/multi-camera-dataset/
http://www.lorisbazzani.info/code-datasets/multi-camera-dataset/
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Mantel tests: in general, our approach draws a social situation in terms of pairwise
relations which is close to the ground truth.

1.6 Remarks

This section presents a sociologically principled method for the detection and anal-
ysis of human interactions exploiting F-formations. An F-Formation is a plausible
ensemble of possible spatial and orientational organisation people assume during
the course of an interaction. Our approach aims at automatically detecting the main
social space identified by the sociological findings, the so called o-space, which is
a space internal to the interacting people in which no other people are allowed to
lie. The net result is a brand new robust interaction detection algorithm based on a
well-established sociological theory able to deal with simple to moderately crowded
scenes.
The approach has been tested on synthetic data and real scenarios proving its ro-
bustness and accuracy in the disparate situations addressed. This is appreciable per
se (as compared to ground truth) and also ameliorates the current state of the art
results of the IRPM-based method. These results are obtained dealing with complex
scenario in which the people detection, the orientation of their heads, and tracking
are difficult, likely producing inaccurate input data. Still, our algorithm performs
quite well in detecting interactive groups thanks to the statistical voting process.
So far in the literature, this is the first approach that discovers social interactions
based on the automatic detection of F-formations solely from visual cues. Many
improvements can be certainly envisaged for the future work. From the algorith-
mic point of view, clear and obvious improvements may derive from the use of the
temporal information provided by the tracking, so as from the adoption of more
reliable and efficient people detection and head orientation classification methods.
From the application perspective, additional features extracted from the detected F-
formations may support the comprehension of the interactions, possibly predicting
the likely outcome, which can be useful in evaluating situations of social interest.

2 Inferring Social Relations from Interpersonal Distances

The second contribution is about the characterization of the group interaction aimed
at the recognition of the relations among the interlocutors by using proxemic cues
[18]. Proxemics can be defined as the “[...] the study of man’s transactions as he
perceives and uses intimate, personal, social and public space in various settings
[...]”, quoting Hall [30, 31], the anthropologist who first introduced this term in
1966. In other words, proxemics investigates how people use and organize the space
they share with others to communicate, typically outside conscious awareness, so-
cially relevant information such as personality traits (e.g., dominant people tend to
use more space than others in shared environments [49]), attitudes (e.g., people that
discuss tend to seat in front of the other, whereas people that collaborate tend to seat
side-by-side [63]), etc..
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This section focuses on one of the most important aspects of proxemics, namely
the relationship between physical and social distance. In particular, the section
shows that interpersonal distance (measured automatically using computer vision
techniques) provides physical evidence of the social distance between two individ-
uals, i.e. of whether they are simply acquainted, friends, or involved in a romantic
relationship. The proposed approach consists of two main stages: the first is the au-
tomatic measurement of interpersonal distances, the second is the automatic analysis
of interpersonal distances in terms of proxemics and social relations (see Section 2.3
for details).

The choice of distance as a social relation cue relies on one of the most basic
and fundamental findings of proxemics: People tend to unconsciously organize the
space around them in concentric zones corresponding to different degrees of inti-
macy [30, 31]. The size of the zones changes with a number of factors (culture,
gender, physical constraints, etc.), but the resulting effect remains the same: the
more two people are intimate, the closer they get. Furthermore, intimacy appears
to correlate with distance more than with other important proxemic cues like, e.g.,
mutual orientation [26]. Hence, it is reasonable to expect that the distance accounts
for the social relation between two people.

One of the main contributions of the paper is that the experiments consider an
ecological scenario (standing conversations) where more than two people are in-
volved. This represents a problem because in this case distances are not only de-
termined by the degree of intimacy, but also by the need of ensuring that every
person can participate in the interaction. This leads to the emergence of stable spa-
tial arrangements, called F-formations (see Section 2.1 for more details) [39], that
impose a constraint on interpersonal distances and need to be detected automati-
cally. Furthermore, not all distances can be used because, in some cases, they are
no longer determined by the degree of intimacy, but rather by geometric constraints.
The approach proposed in this work is to consider only the distances between people
adjacent in the F-formation (see Section 2.4 for more details) [39].

The other important contribution is that, in contrast with other works in the litera-
ture, the radii of the concentric zones corresponding to different degrees of intimacy
are not imposed a-priori, but rather learned from the data using an unsupervised ap-
proach. This makes the technique robust with respect to the factors affecting prox-
emic behavior, like culture, gender, etc., as well as environmental boundaries. In
particular, the experiments show how the organization into zones changes when de-
creasing the space at disposition of the subjects and how the unsupervised approach
is robust to such an effect.

Standing conversations are an ideal scenario not only because they offer excellent
examples of proxemic behavior, but also because they allow one to work at the
crossroad between surveillance technologies, often applied to monitor the behavior
of people in public spaces, and domains like Social Signal Processing that focus on
automatic understanding of social behavior. This is expected to lead, on the long-
term, to socially intelligent surveillance and monitoring technologies [17].

The rest of this section is organized as follows. Section 2.1 introduces the main
concepts of proxemics, and Section 2.2 provides a brief survey of the state-of-the-
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art in computational proxemics. Section 2.3 presents the approach, and Section 2.4
reports the experiments and results. Finally, Section 2.5 draws some conclusions.

2.1 Fundamentals of Proxemics

The wide spectrum of nonverbal behavioral cues displayed during social interactions
(facial expressions, vocalizations, gestures, postures, etc.) is well known to convey
information about social and affective aspects of human-human interaction (atti-
tudes, personality, emotions, etc.) [60]. Proxemics has shown that the way people
use, organize and share space during gatherings and encounters is a nonverbal cue
and it conveys, like all other cues, social and affective meaning [42]. This section
provides a short description of the main findings of the discipline, with particular
attention to phenomena that can be observed in standing conversations, the scenario
investigated in the experiments of this work.

From a social point of view, two aspects of proxemic behavior appear to be par-
ticularly important, namely interpersonal distances and spatial arrangement of inter-
actants.

The rest of this section focuses on both aspects, including the most important
factors that influence them.

2.1.1 Interpersonal Distances

Interpersonal distances have been the subject of the earliest investigations on prox-
emics and one of the main and seminal findings is that people tend to organize the
space around them in terms of four concentric zones associated to different degrees
of intimacy:

• Intimate Zone: distances for unmistakable involvement with another body (lover
or close friend). This zone is typically forbidden to other non-intimate persons,
except in those situations where intrusion cannot be avoided (e.g. in elevators).

• Casual-Personal Zone: distances established when interacting with familiar peo-
ple, such as colleagues or friends. This zone is suitable for having personal con-
versations without feeling hassled. It also reflects mutual sympathy.

• Socio-Consultive Zone: distances for formal and impersonal relationships. In this
zone, body contact is not possible anymore. It is typical for business conversa-
tions, consultation with professionals (lawyers, doctors, officers, etc.) or seller-
customer interactions.

• Public zone: distances for non-personal interaction with others. It is a zone typi-
cal for teachers, speakers in front of a large audience, theater actors or interper-
sonal interactions in presence of some physical barrier.

In the case of Northern Americans, the four zones above correspond to the follow-
ing ranges: less than 45 cm (intimate), between 45 and 120 cm (casual-personal),
between 120 and 200 cm (socio-consultive), and beyond 200 cm (public). While the
actual distances characterizing the zones depend on a large number of factors (e.g.,
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culture, gender, physical constraints, etc.), the partition of the space into concentric
areas seems to be common to all situations.

2.1.2 Spatial Arrangement: The F-Formations

The spatial arrangement during social interactions addresses two main needs: The
first is to give all persons involved the possibility of participating, the second is to
separate the group of interactants from other individuals (if any). The result are the
F-formations, stable patterns that people tend to form during social interactions (in-
cluding in particular standing conversations): “an F-formation arises whenever two
or more people sustain a spatial and orientational relationship in which the space
between them is one to which they have equal, direct, and exclusive access” [39].

In practice, an F-formation is the proper organization of three social spaces (see
Figure 1 ): O-space, P-space and R-space. The O-space (the most important compo-
nent of an F-formation) is a convex empty space surrounded by the people involved
in a social interaction, every participant looks inward into it, and no external people
are allowed in this region. The P-space is a narrow stripe that surrounds the O-space
and that contains the bodies of the interactants, the R-space is the area beyond the
P-space. There can be different F-formations:

• Vis-à-vis: An F-formation in which the absolute value of the angle between par-
ticipants is approximately 180o, and both participants share an O-space.

• L-shape: An F-formation in which the absolute value of the angle between par-
ticipants is approximately 90o, and both participants share an O-space.

• Side-by-side: An F-formation in which the absolute value of the angle between
participants is approximately 0o, and both participants share an O-space.

• Circle: An F-formation where people is organized in a circle, so that the config-
uration between adjacent participants can be considered as a hybrid between a
L-shape and a Side-by-side F-formation.

The same contextual factors that influence the concentric zones described above,
affect F-formations as well.

2.1.3 Context Effects on Proxemics

Proxemic behavior is affected by a large number of factors and culture seems to be
one of the most important ones, especially when it comes to the size of the four
concentric zones described above. In particular, cultures seem to distribute along a
continuum ranging from “contact” (when the size of the areas is smaller) to “non-
contact” (when the size of the areas is larger) [31]. Further evidence in this sense
is proposed in [73], where people from “contact” cultures are shown to approach
one another more than the others, and in [66], where the culture effect has been
shown to depend on whether one considers shape of territory, size, central tenden-
cies of encroachment, or encroachment variances (the observations were conducted
on beaches). In the same vein, interpersonal distances seem to be affected by ethnic-
ity: e.g., black Americans and Mexicans living in the States appear to have different
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”contact” tendencies [31, 5]. The effect of culture seems to change when interaction
participants have seats at disposition. In this case, people from supposedly “non-
contact” cultures tend to seat closer than the others [33]. Furthermore, the seating
arrangement seems not to depend on culture [51].

Seating is just one of the many environmental characteristics that can influence
the requirements on interpersonal distance and personal space. The literature has
investigated the effect of many other characteristics as well, including lighting [1],
indoor/outdoor [13], crowding [27] and room size [75, 64, 14]. The work in [1]
investigates the effect of lighting with stop-distance techniques: Experimenters get
closer and closer to a subject that remains still and says “stop” when she starts feel-
ing uncomfortable. Subjects in bright conditions (600 lx) allow the experimenters
to come significantly closer than the subjects in dim conditions (1.5 lx). A similar
effect has been observed for the size of the place where people interact: people al-
low others to come closer in larger rooms [75], when the ceiling is higher [64][14],
and in outdoor spaces [13]. The effects of crowding have been studied as well [27]:
Social density was increased in a constant size environment for a limited period of
time and participants of larger groups reported greater degrees of discomfort and
manifested other forms of stress.

2.2 Computational Proxemics: State-of-the-Art

To the best of our knowledge, only a few works have tried to apply proxemics in
computing. One probable reason is that current works on analysis of human behavior
have focused on scenarios where proxemics do not play a major role or have relied
on laboratory settings that impose too many constraints for spontaneous proxemic
behavior to emerge (e.g., small groups in smart meeting rooms) [25, 70].

Most of the computing works that can be said to deal with proxemics concern the
dynamics of people moving through public spaces. These works typically model
repulsive/attractive phenomena by adopting the Social Force Model (SFM) [32]. In
particular, the work in [59, 65] improves the perfomance of a tracking approach by
taking into account the distance between a subject being tracked and the other sub-
jects appearing in a scene. An attempt to interpret the movement of people in social
terms has been presented in [28], where nine subjects (asked to speak among them
about specific themes) were left free to move in a 3m× 3m area for 30 minutes. An
analysis of mutual distances in terms of the zones described in Section 2.1 allowed
to discriminate between people who did interact and people who did not. In a similar
way, mutual distances have been used to infer personality traits of people left free
to move in a room [76]. The results show that it is possible to predict Extraversion
and Neuroticism ratings based on velocity and number of intimate/personal/social
contacts (in the sense of Hall) between pairs of individuals looking at one other.

Another frequent application area is social robotics. Early approaches in the do-
main simply aimed at making robots to respect the personal space of users [54],
but more recent works deal with the initiation, maintenance, and termination of so-
cial interactions by modulating reciprocal distances, showing that people use similar
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proxemic rules when interacting with robots and when interacting with other people
[68]. In [9] a generative model has been developed for selecting a set of reactive
behaviors that depend on the distance, speed, and sound of interactants. Distance
cues are used by the Roboceptionist [53] for recognizing “Present”, “Attending”,
“Engaged”, and “Interacting” people at the entrance of the Robotics Institute at
Carnegie Mellon University. In [57], a model for human-robot interaction in a hall-
way is proposed. The idea is to exploit proxemic cues for letting the robot to react
properly at the passage of an individual in a narrow corridor. In [43], a user study
focuses on the interaction between a human and a robot in a domestic environ-
ment. Interactions were analyzed exploiting the four zones and the F-formations
introduced in Section 2.1. The researchers found the Personal zone to be the most
commonly occupied one and the “vis-à-vis” F-formation to be the most frequent
spatial arrangement.

2.3 Detecting a Flexible Set of Socially Meaningful Distances

The proposed approach includes two main stages: the first is the detection of F-
formations, and the second is the inference of social relations from interpersonal
distances.

2.3.1 Detection of F-Formations

The goal of this stage is to detect F-formations in videos portraying people involved
in standing conversations. The first step is to track the people with a fish-eye camera
pointing at interactants in a bird-eye view setting (see Figure 5 for an example).
This corresponds to a realistic surveillance scenario and allows one to track people
with satisfactory precision (tracking has been performed by exploiting a particle
filter on each person [4], employing a standard background subtraction algorithm
for highlighting the moving objects [67]. The results of our approach that have been
obtained with this tracking strategy have been compared with those obtained via
manual tracking, showing very similar results). The detection of the F-formations is
performed over the output of the tracking step using the approach described in [15].
The output of the F-formations detection algorithm has been validated by hand and
it did not produce any error.

F-formations lasting for less than 5 seconds (50 frames in our implementation)
have not been taken into consideration in the experiments of this work. The reason is
that the next stage of the processing requires the application of a clustering algorithm
and 50 frames is a reasonable amount of data needed to avoid the so-called “curse
of dimensionality” [20].

2.3.2 Inference of Social Relations

The output of the first stage is a list of pairs where each element includes two
subjects that are adjacent in a detected F-formation. Furthermore, the first stage
provides the 2D position of each subject on the surface of the room. Such data
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is accumulated during a time interval (called the “stable period” hereafter) that
does not include creation, break or modifications of an F-formation (e.g., no people
change their position in the P-region). This ensures that during the time interval un-
der analysis all causes that might change the current F-formation are absent. Such
causes can be novel people being involved, people leaving, a change in the envi-
ronmental conditions like rain (people look for a repair), an intruder (e.g., a vehicle
passing by and disrupting the F-formation), etc.. The satisfaction of the conditions
above is automatically verified by checking that the relative distances between sub-
jects in a F-formation do not change abruptly (i.e., the changes do not exceed a
threshold learned automatically from the data).

During the stable period, the approach collects and pools together all pairwise
distances between individuals (for a sketch, see Figure 1 (f)). Distances are col-
lected between the centers of mass of the tracked blobs, where each blob corre-
sponds to a separate person. These are shown to distribute according to different
modes (see Section 2.4) that should correspond to the concentric zones described
in Section 2.1. The modes have been separated via Gaussian clustering by employ-
ing the Expectation-Maximization (EM) [19] learning method. The EM employed
here is a variation of the original formulation [21]; it is performed by means of a
model selection strategy that is injected in the learning stage and that shows several
properties that fit well with the situation at hand. First, it allows one to automati-
cally select in an unsupervised way the right number of Gaussian components (in
an Information Theory sense). This is a very important aspect, that permits to let the
natural separation of the data emerge without human intervention. Second, it deals
satisfactorily with the initialization issue, i.e., the Gaussian parameters fit the data
realizing a nearly-global optimal fit, minimizing the probability of overfitting (i.e.,
a Gaussian component that fit only a few data). In addition, the Gaussian clustering
takes into account in a principled way the noise due to possibly unprecise tracking,
incorporating it as a variance of the measures.

2.4 Testing the Flexible Distances

This section presents experiments and results obtained in this work.

2.4.1 Experimental Setup

The goal of the experiments is to investigate spontaneous standing conversations
in a public space, hence the tests have been performed in an outdoor area of size
3m×7m (see Fig. 5, row (i), column (a)). The area is empty (no physical constraints
or obstacles) and two groups of subjects have been invited, in two separate sessions,
to move and behave normally through it. The subjects were told that the experiments
were aimed at testing a tracking approach and were unaware of the real motivations
behind the experiments. During the sessions, the subjects were left alone and no
researcher involved in this work was present.

The experiment took place on February 2011, on a sunny day. The area was mon-
itored with a Unibrain Fire-i Digital Camera, on which fisheye optics was mounted.
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The camera was located 7 meters above the floor, and it was held to an architectural
element of the infrastructure. Therefore, the impact of the capture device onto the
ecology of the environment was minimal. The acquisition frame rate was 10 frames
per second. After the data acquisition, video data were rectified for correcting the
spherical distortion. The two sessions were 15 minutes long for a total of around
20000 frames. One quarter of hour is a duration long enough to collect evidence
of pre-existing social relations and short enough to avoid the emergence of new
relations. The first session was recorded at 11 AM and the second at 2 PM.

Each session was split into three 5 minutes long segments corresponding to three
different experimental conditions:

• Condition 1: the subjects are free to move through the entire area
• Condition 2: the movements of the subjects are restricted to an area of size 3m×

3.5m
• Condition 3: the movements of the subjects are restricted to an area of size

1.5m× 2.0m

The physical restrictions were represented by lines and marker on the floor. The goal
was to measure the effect of the amount of available space on proxemic behavior.

2.4.2 Results of Session 1

The first session involved six subjects (see Fig. 5): two undergraduate students (a
and b), an assistant professor (c), and three PhD students working in the same labo-
ratory (d, e, f ), two of them working on the same topic (e and d). The PhD students
and the assistant professor were acquainted before the experiment. The undergrad-
uate students are friends, but they never met before the other subjects. In Fig. 5
row (i) we show the results obtained in the longest stable period (subjects free to
move in the entire area, see Section 2.3.2), that in this case lasted 108 frames. The
image in column (a)-(b) is the last of the period5. In that interval, the group was
split into three dyads. The histogram in Figure 5-row (i) shows the distribution of
the interpersonal distances between members of the same dyad. The application of
a clustering approach shows the existence of two modes centered on 48 and 64 cm,
respectively. The tables in the figure report the fraction of time distances between
each pair of adjacent individuals belong to a given mode for each condition, with
the value in bold red indicating the highest (most frequent cluster membership) frac-
tion. The two modes seem to account for two of the zones identified by Hall and,
not surprisingly, the dyad involving the assistant professor is the only one where
the distance belongs with higher probability to the second mode most of the times.
This confirms that the higher social distance between the assistant professor and the
PhD student results into a physical distance that is higher (on average) than the one
between subjects a and b (who are friends and both undergraduate students), as well
as the one between subjects d and e (who are both PhD students).

5 The same applies for all the other pictures in the column (a)-(b), i.e., they are the last
frames of the corresponding stable period.
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In Condition 2 (3× 3.5 meters), the longest stable interval (122 frames) corre-
sponds to a circle F-formation, including all subjects (see Fig. 5-row (ii), pictures
at left). The clustering of the interpersonal distances of adjacent subjects reveals
this time a three-mode distribution with modes at 44, 69 and 99 cm, respectively.
The first mode accounts for the distance between a and b (the two undergraduate
friends). The second mode accounts for the distances between c, d, e and f (the three
PhD students and the assistant professor belonging to the same research group). The
third mode accounts mainly for the distances between a and e and between b and c
(the only pairs where the members were unacquainted before the experiments). In
this condition too, the physical distances comply with the social information, even
though the distance between the assistant professor and the PhD students does not
reflect the difference of status.

In Condition 3 (1.5× 2 meters), the longest stable period lasted for 914 frames.
People form a circular F-formation, giving now rise to four distinct modes in the
space of the pairwise distances (see Fig. 5-row (iii)). Once again, two close friends
a and b stand at the closest distances, separated from the rest of the subjects. In
particular, subjects b and c stand at a very high distance if compared to the other
measurements. This highlights the separation that holds between subjects that have
different status, i.e., the student and the assistant professor.

The variations across the different conditions suggest the following considera-
tions:

• The histograms show that the modes correspond to shorter distances as the space
gets smaller. However, different social relations still result into different modes.

• The fraction of distances that fall in the first mode is 67% in Condition 1, 34% in
Condition 2, and 22% in Condition 3.

In other words, the results confirm the findings about the effect of the space at
disposition of interpersonal distances and, in particular, the effects of [75] stating
that subjects prefer to keep higher distances when the environment gets smaller.

The results shown here analyzed the longest stable period in each session. Any-
way, in all the other stable periods, the results were qualitatively similar.

2.4.3 Results of Session 2

The second session involved 7 subjects (see Fig. 6): five undergraduate students
acquainted with one another (subjects a, b, c, d and g), two PhD students that are
close friends (subjects e and f ), and the representative of the students in the School
of Computer Science (subject c).
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Fig. 5 The pictures of column (a) show the physical space in which people were free to move.
The pictures in column (b) are zoomed versions of those in (a), showing the F-formations
detected in each of the three stages. The color of the links corresponds to the color of the
most frequent mode to which the distances between the linked individuals belongs to. Rows
(i)-(ii)-(iii) refer to Condition 1-2-3, respectively (see text). Histograms in column (c) show
the distributions of the distances and the related clustering. The tables in column (d) report
the fraction of time distances between each pair of adjacent individuals belong to a given
mode. Each mode is identified by the mean, and by the range (in centimeters) of distances it
covers (written in squared parentheses). The figure is best viewed in colors.
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Fig. 6 The pictures of column (a) show the physical space in which people were free to move.
The pictures in column (b) are zoomed versions of those in (a), showing the F-formations
detected in each of the three stages. The color of the links corresponds to the color of the
most frequent mode to which the distances between the linked individuals belongs to. Rows
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mode. Each mode is identified by the mean, and by the range (in centimeters) of distances it
covers (written in squared parentheses). The figure is best viewed in colors.
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In Condition 1 (see Fig. 6-row (i)), the group has split into F-formations includ-
ing 2− 3 people each. Fig. 6 shows the picture of the configuration that has lasted
for the longest time (152 frames). The interpersonal distances cluster according to
three modes. In the F-formation including three people, the two PhD students (who
are close friends) appear to be closer (on average) than the third component (an
undergraduate student they are not acquainted with them).

In Condition 2 (see Fig. 6-row (ii)), the most stable configuration is a circle that
holds for 629 frames. In this case, the modes are five, but only the first three are
used to a significant extent (see the tables of column (d) with the fractions of time
distances belong to a given Gaussian component). The two PhD students (e and f )
and two undergraduate students (g and d) appear to be closer to one another than
the other participants. In the former case, this reflects the fact that they were close
friends before the experiment, whereas in the latter, it corresponds to the fact that
the two students have a romantic relationship, as it emerged from the questionnaires
collected after the experiments. The situation for the other participants is less clear,
but this probably happens because all participants are students and their social dis-
tances are thus similar. The only factors that seem to make some students closer (see
above) are then personal.

In Condition 3 (see Fig. 6-row (iii)), a circular F-formation holds for 592 frames
and corresponds to the longest stable interval. There are three modes visibile in
the histogram. The PhD students are clearly separated from the rest of the circle
(distances belonging to the third mode), while they are very close to one other. The
couple (d and g) is tighter than the other dyads as well. In this case again, closer
personal relations result into smaller distances.

It is worth to note that the effect of the amount of space at disposition leads to the
same conclusions as in session 1 (see end of Section 2.4.2).

2.5 Remarks

This section has presented a study and preliminary experiments on the inference
of social relations from interpersonal distances measured automatically via a com-
puter vision approach. The results show that, in accordance with the findings of
proxemics, people involved in casual standing interactions tend to get closer when
their social relation is more intimate. The experiments have been performed on a
limited number of individuals (13 in total), but the setting is fully unconstrained and
spontaneous and the results appear to be consistent with the expectations.

An unsupervised analysis of interpersonal distances reveals that the four zones
predicted by Hall in his seminal work emerge independently of the space at dispo-
sition of the interactants. The radii of the concentric zones are smaller than those
measured in [30, 31] for Northern-Americans, but this should not be surprising as
the subjects are from Italy, a culture likely to be more “contact” than the American
one. Furthermore, the space available to the subjects has been progressively reduced
and this has further contributed to reduce the size of the zones. The effects expected
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from the reduction of the space have been actually observed, especially when it
comes to the tendency to increase interpersonal distances.

The detection of the F-formations appears to be crucial to perform a correct anal-
ysis of the interpersonal distances. In fact, previous works in the literature did not
consider the geometric constraints imposed by the F-formations and the results have
been inconsistent. In contrast, by limiting the analysis only to the distances of negh-
boring (adjacent) people, our experiments obtain results where social and physical
distances match one another.

The next steps to be performed include not only experiments including a larger
number of subjects, but also an attempt to use the statistical distributions learned
from the data to predict automatically the degree of intimacy between individuals.
This would represent a major step towards the development of socially intelligent
surveillance technologies.

3 Voice Activity Detection Using Visual Cues in Groups

Following the analysis of non-verbal cues for the detection of social signals, our last
contribution is related to the characterization of the group interactions by proposing
a Voice Activity Detection approach only based on the automatic measurement of
the persons’ gesturing activities [16]. This work takes inspiration from the observa-
tion that people accompany speech with gestures, the range of visible bodily actions
that are, more or less, generally regarded as part of a person‘s willing expression
([40]). Far from being independent phenomena, speech and gestures are so tightly
intertwined that every important investigation of language has taken gestures into
account, from De Oratore by Cicero (1st Century B.C.) to the latest studies in cog-
nitive sciences ([52, 38]) showing that the two modalities are components of a single
overall plan ([40]).

This work presents a method for estimating the level of gesturing as a means to
perform Voice Activity Detection (VAD), i.e. to automatically recognize whether
a person is speaking or not. The main rationale is that audio, the most natural and
reliable channel when it comes to VAD, might be unavailable for technical, legal,
privacy related issues or simply for a noisy scenario. A condition that applies in
particular to surveillance scenarios where people are monitored in public spaces
and are not necessarily aware of being recorded.

Previous works take advantage of restrictive experimental setups in a smart meet-
ing room [35], deploying a system ”in the wild” designing a more credible setup
for a video surveillance system. We use solely visual cues obtained from only one
camera positioned 7 meters above the scene. In particular, the experiments focus
on people involved in standing conversations, with an automatic person tracking
system that follows each individual. Our VAD method is based on a local optical
flow-based descriptor extracted for each individual body, that encodes its energy
and complexity using an entropy-like measure. This allows one to discriminate be-
tween body oscillations or noise introduced by the tracker, where the optical flow
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is low and homogeneous, and genuine gestures, where the movement of head, arms
and trunk produces a local flow field which is diverse in both intensity and direction.

The descriptor extracted for each participant produces a signal that can be used
for VAD. The proposed approach is interesting for three main aspects. First, the
relationship between speech and gestures has been widely documented and studied,
but relatively few quantitative investigations of this phenomenon have been made.
Second, approaches similar to ours might help to infer information about privacy
protected data (speech in this case) from publicly accessible data (gestures in this
case): this is also important for establishing whether the simple absence of a certain
channel is sufficient to protect the privacy of people and how much. Finally, inferring
missing data from available ones can make techniques dealing with challenging
scenarios more effective and reliable.

As in the previous section, we suppose to have tracked each individual and addi-
tionally to have detected the F-formation. Thus, a square Region of Interest (ROI) is
defined around each person. The size of the ROI is set automatically to include all
gestures of the individual. Areas where multiple ROIs overlap have been ignored to
avoid possible confusions between neighboring people.

The measurement technique is applied to each ROI individually and it is expected
to accomplish two goals: the first is to discriminate between gestures and postural
oscillations typically observed when people stand. The second is to normalize the
tracking errors that cause abrupt and spurious shifts of the ROI. The body parts most
commonly involved in gesturing are hands, arms, head, and trunk. Their individual
movements tend to be very different during gesturing and the measurement values
associated to a given ROI try to capture such an aspect:

v(t) = maxint({ f (t)})× Sint({ f (t)})× Sori({ f (t)}) (4)

where { f (t)} is the set of motion flow vectors associated to each pixel of the ROI at
time t, Sint({ f (t)}) is the entropy of the motion flow intensities, and Sori({ f (t)}) is
the entropy of the orientation values, both calculated over { f (t)}6. The maximum
over the flow intensities values maxint({ f (t)}) encodes the “energy” associated to
the movement, while the two entropic terms serve to highlight those motion flow
values which exhibit higher variability in intensity and orientation. In this way, pos-
tural oscillations and shifts due to unprecise tracking receive a low score because
they cause a global, homogeneous set of intensities and orientations, correspond-
ing to low entropy values. Alternative expressions of v(t) have been considered that
use mean and median rather than maximum, or do not include one of the entropy
terms. In all cases, the resulting performance is lower than the one obtained with the
expression above. A graphical idea of the measurement is given in Figure 7 where
colours shift towards red when gesturing activity is higher.

6 The optical flow has been obtained with the package available at the following URL:
http://server.cs.ucf.edu/˜vision/source.html.

http://server.cs.ucf.edu/~vision/source.html
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Fig. 7 Qualitative analysis of our descriptor: in the sequence above, an high tonality of red
means great gesture activity.

Seq. 2Seq. 1 Seq. 3 Seq. 4

Fig. 8 Some frames of the video sequences used

3.1 Experiments on the Visual VAD

The goal of the experiments is twofold: first, to provide a quantitative measure of the
correlation between gestures and speech; second, to measure the effectiveness of the
function v(t) (see Section 3.1.2) in a VAD task. Both tasks have been accomplished
over TalkingHeads, a new dataset publicly available upon request7 (see some frames
in Figure 8).

The dataset contains four conversations lasting, on average, 6 minutes. The data
was recorded in a 3.5× 2.5 meters wide outdoor area, during a cloudy day in sum-
mer. The total number of subjects is 15 (1 female and 14 males), with 4 different
participants per conversation (only one subject participated in two conversations).
The subjects include 4 academics, 5 undergraduate students, 2 MSc students, 3 post-
doctoral researchers, and 1 PhD student. The ages range between 20 and 40 years
and the subjects were unaware of the actual goals of the experiments.

7 http://profs.sci.univr.it/˜cristanm/datasets/TalkingHeads/

http://profs.sci.univr.it/~cristanm/datasets/TalkingHeads/
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Fig. 9 Examples of signals employed in the analysis. (a) Audio input signal. (b) Video sig-
nal produced by our descriptor of a subject involved in the Seq.1. (c) The video signal was
smoothed for evaluating the crossmodal correlation (Sec. 3.1.1). (d) The video signal was
thresholded for the audio classification (Sec. 3.1.2).

Data were captured at 25 frames per second with a camera positioned 7 meters
above the floor and facing downward. The subjects were asked to wear differently
colored shirts, in order to make the tracking/localization easier. Tracking has been
performed by simple template association. The motion flow has been computed by
considering one frame every 4, reducing the video sampling period to 160 ms. The
audio was recorded at 44100 Hz with 4 wireless headset microphones, each trans-
mitting to its own receiver.

Each audio recording has been segmented into speech and non-speech segments
using a robust VAD algorithm based on pitch [41]. This latter was extracted at reg-
ular time steps of 10 ms with Praat [8], a package including the pitch extraction
technique described in [7]. The motivation behind this choice is not only that si-
lence segments are characterized by frequencies way higher than those observed
in speech, but also that the pitch tends to be correlated with the “beat” gesture
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Fig. 10 Visual analysis of the audio and video smoothed data: each plot depicts the smoothed
audio (solid blue) and the smoothed video (dashed red) signals for each participant to the
dialog. The thumbnails give the feeling of the gesturing activity carried out in a particular
instant.

typically accompanying syllables where the intonation is stressed [11, 74]. Then,
in order to synchronize audio and video data, audio was resampled according to the
video frame rate, averaging the pitch values occurring in each time period. The av-
eraged pitch values constituted the samples of the audio signal that will be analyzed
in the following.

3.1.1 Pitch-Gesturing Correlation Analysis

This section shows how the correlation between the pitch (as extracted with Praat),
and the gesturing activity (as measured with the approach proposed above) has been
measured.

After the application of the techniques described in the previous sections, each
sequences results into two signals per person, showing the value of pitch and v(t)
at regular time steps of 160 ms. Plots (a) and (b) of Figure 9 provide an example
of such signals. The simple visual inspection shows that the two signals tend to
change according to one another. However, v(t) appears to be more noisy of the
pitch because of the sensibility of the optical flow. Hence, both signals have been
smoothed with an average filter applied to 8 s long windows. Figure 9 (c) shows the
smoothed version of v(t), while the smoothed audio and video signals of a complete
conversation, normalized with respect to their maximum value, are compared in
Fig. 10.

Table 1 reports the Pearson correlation coefficients between v(t) and pitch. Off-
diagonal values account for correlations between signals extracted from different
individuals. In this way, it is possible to better assess how strong is the correlation
between speech and gestures for a given individual.
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Table 1 Quantitative measures: correlation coefficients matrix for Seq. 1 . The matrix rows
and columns corresponds respectively to the four subsampled video signals (Vsub) and the
four subsampled audio signals (Asub) (the non-significant coefficients (p-value≥ 0.05) are
underlined in red.

A sub.1 A sub.2 A sub.3 A sub.4
V sub.1 0.7310 0.1338 0.2490 0.0670
V sub.2 0.1900 0.6454 0.4460 0.0254
V sub.3 0.1867 0.1966 0.4838 -0.0356
V sub.4 -0.2592 0.0472 0.0389 0.4204

We performed a similar analysis on the other conversations, with the same param-
eters, obtaining in total four correlation matrices. Mediating over all the entries in
the main diagonal (they were all statistically significant), we obtained a mean cor-
relation score of 0.53, while considering the statistically significant off-diagonals
entries we get 0.19. This suggests that v(t) might be a reliable indicator of voice
activity. Hence, in the following section, we show how the video signal can be em-
ployed to perform VAD.

3.1.2 Voice Activity Detection

The VAD task proposed in this section consists of labeling each frame as speech
or non− speech. As an approximation, each person is treated independently of the
others even though the exchange of turns (the opportunity of speaking) tends to
follow regularities that might be helpful in improving the performance. The original
pitch signal, which has non-zero entries only when the subjects talk, is used as
groundtruth.

As a video signal to be used to infer speech, we considered the smoothed signal
described above for the correlation analysis. In this way, high frequency components
of the original signal have been filtered. The discrimination between speech and
non-speech samples has been performed with a thresholding technique. Essentially,
as suggested by Fig. 9 and Fig. 10, the video signal has a continuous component
caused by small values of optical flow that are always present in the analysis. For this
reason, we subtracted the mean to the signal, and we keep the intensities above zero,
setting them at 1’s. Smoothing and subtraction of the mean represent a thresholding
operation that does not need the tuning of any parameter.

At this point, we can compare the two signals, and the detailed analysis of Seq. 1
is shown in Fig. 11.

For the sake of clarity, we report in the figure the (normalized) continuous signals,
and not their binary versions which were actually used. As visible, many of the
speech samples are correctly captured by the video signal. The figure also reports the
precision, recall and accuracy values. In this sequence, the classifier tends to have
low recall and high precision (assuming the speech as positive values). Considering
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Fig. 11 Audio classification by video analysis. Each plot portrays the audio (solid blue) and
the video (dashed red) signals for each participant to the dialog. For the sake of clarity, we
report the (normalized) continuous signals, and not their binary versions (that we used). Pre-
cision, recall and accuracy scores related to each individual are also indicated.

all the subjects employed, we reach an average accuracy of 71%, average precision
of 67%, and average recall of 40%.

4 Remarks

This work has proposed a gesturing-based approach for performing VAD, the auto-
matic detection of people that speak. The reason for using gestures in VAD, typically
performed using speech recordings, is that the use of microphones is difficult or ille-
gal in many scenarios of potential interest, including surveillance of public spaces,
monitoring of potentially dangerous plants, etc. The core idea behind the approach
is that cognitive sciences have demonstrated that speech and gestures, far from being
independent expression modalities, are two faces of the same phenomenon. There-
fore, gestures can be considered a reliable evidence of speech taking place at the
same time.

The preliminary results presented in this paper provide a quantitative confirma-
tion of the finding above and, most importantly, show that the detection of gesturing
activity helps to predict whether a person is speaking or not with an accuracy of 71
percent (on a frame-by-frame basis). While not being conclusive about the possibil-
ity of reconstructing the actual turns and of performing diarization, the results are
certainly promising in the direction of reconstructing conversational dynamics in
absence of audio. This appears particularly important as turn-organization has been
widely shown to be fundamental in inferring socially important information such as
roles, dominance, personality, etc [71].

Besides, this work shows that it is possible to infer information about missing
data (speech in this case) from available evidence (videos in this case). In a surveil-
lance setup like the one of the experiments, this opens two conflicting perspectives:
on one hand, surveillance approaches can be significantly improved by predicting
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phenomena considered so far non-accessible with the sensors at disposition. On the
other hand, privacy protection measures applied so far (i.e., legal limitation on the
use of microphones in public spaces) might become obsolete and uneffective. In this
respect, experiments of the type presented in this work might change the notion of
privacy and of its protection.

Future work can take two major directions: the first is to move from VAD to full
diarization. This requires the application of probabilistic sequential models taking
into account temporal constraints between neighboring frames and a larger amount
of data. The second is to try automatic conversation analysis based on gestures and
to verify whether (and to what extent) it is possible to perform tasks like role recog-
nition, conflict detection, etc., typically performed using turn-organization and other
conversational cues.

5 Conclusions

The realms of automated surveillance and monitoring tend to focus solely on Com-
puter Vision and Pattern Recognition (CVPR) techniques, neglecting social, affec-
tive and emotional aspects of human behavior even if this is, in ultimate analysis,
their main subject of interest. Actually, the cross-pollination between social psy-
chology and CVPR could lead to new research questions as well as to application
domains that, so far, have not been the subject of attention in the computing com-
munity. In this chapter we show how the modeling of groups of people may be
performed by considering social and psychological theories: in particular, we ana-
lyze the detection of groups, their characterization in terms of social links among
the participants, and the inference of speech data from video cues only. Due to our
initial good results, we are deeply convinced that the cross-fertilization of human
and computer sciences for surveillance and monitoring is going to be inevitably
extended, and only in this way a new generation of surveillance systems can be
designed, making the necessary jump to go beyond the current technology, so far
advanced in incremental steps.

Acknowledgements. The authors will thanks Andrea Fossati, Alessio Del Bue, Loris Baz-
zani, Alessandro Vinciarelli, Anna Pesarin, Giulia Paggetti, Diego Tosato for their remarkable
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