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Preface

Computer vision is the science and technology of making machines that see. It is
concerned with the theory, design and implementation of algorithms that can auto-
matically process visual data to recognize objects, track and recover their shape and
spatial layout.

The International Computer Vision Summer School - ICVSS was established
in 2007 to provide both an objective and clear overview and an in-depth analysis
of the state-of-the-art research in Computer Vision. The courses are delivered by
world renowned experts in the field, from both academia and industry, and cover
both theoretical and practical aspects of real Computer Vision problems. The school
is organized every year by University of Cambridge (Computer Vision and Robotics
Group) and University of Catania (Image Processing Lab). Different topics are cov-
ered each year. A summary of the past Computer Vision Summer Schools can be
found at: http://www.dmi.unict.it/icvss

This edited volume contains a selection of articles covering some of the talks
and tutorials held during recent editions of the school and covering some of the key
topics in computer vision. The chapters provide both an in-depth overview of chal-
lenging areas and key references to the existing literature. The main topics covered
by the chapters include the visual field, advanced algorithms for visual feature ex-
traction and description, feature matching and image registration, object detection
and recognition, object tracking, image segmentation. Each chapter contains key
references to the existing literature.

It is our hope that graduate students, young and senior researchers, and aca-
demic/industrial professionals will find the book useful for understanding and re-
viewing current approaches in Computer Vision, thereby continuing the mission of
the International Computer Vision Summer School.

Sicily, Sept 2013 Roberto Cipolla
Sebastiano Battiato

Giovanni Maria Farinella

http://www.dmi.unict.it/icvss
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DAIS, Università Ca’ Foscari Venezia, Italy
e-mail: srotabul@dais.unive.it

Marco Cristani
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e-mail: jan.koenderink@ppw.kuleuven.be

Jonathan Masci
IDSIA, USI and SUPSI, Switzerland
e-mail: jonathan@idsia.ch
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The Visual Field: Simultaneous Order in
Immediate Visual Awareness

Jan Koenderink, Andrea van Doorn, and Whitman Richards

1 Introduction

When you open your eyes in bright daylight, you become visually aware of the
scene in front of you. That is to say, generically, for you might be blind, halluci-
nate, and so forth. To many people visual awareness appears three-fold extended
in space, and evolving over time. One makes out objects and processes in intricate
interrelations. Here we are mainly interested in immediate visual awareness of the
type that happens when you look at a painting. We assume you close one eye and
hold your position with respect to the canvas. This restriction cuts down on the com-
plexity, for instance, it plays down the importance of visuomotor factors, binocular
multiperspective, and scene changes.

Assuming a “painter’s attitude” [51, 23], you become aware of a two-fold ex-
tended manifold with various qualities residing at different locations. Such qualities
are colors, shapes, and so forth. One of such qualities is “depth” [47, 48].

The structure of the two-fold extendedness is conventionally denoted “the visual
field” [73]. It is an aspect of visual awareness that is at quite a remove from the
immediate awareness you have when you open your eyes in a generic daily life
setting. However, it is evidently a “presentation”, that is to say it happens to you, it
is pre-cognitive, not a product of reflective thought. The structure of the visual field
has been the subject of numerous researches in psychophysics and experimental
phenomenology. In this chapter we attempt a formal structural description.
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We will take it for granted that the reader is familiar with the basic optics, physi-
ology, and psychophysics that relate to the topic [20, 64]. We will summarily discuss
some aspects of local sign though, since these are perhaps less familiar. Although
we do not explicitly discuss changes of fixation, these are implicit in our account.
We treat them as not essentially distinct (except for time course and so forth) from
re-directions of attention.

2 Local Sign

The term “local sign” (G.: Localzeichen) is due to Hermann Lotze (1817–1881),
possibly a development of Ernst Heinrich Weber’s (1795–1878) perceptive fields
(G.: Empfindungskreisen; [53, 82]). Lotze notices that the brain apparently asso-
ciates directions in external space with fibers of the optic nerve. Awareness is of
such directions, instead of somatic locations. He understands that these (at least in
awareness, not necessarily in automatic visuomotor behavior) have somehow to be
learned, since they cannot be understood on purely anatomical (such as somatotopic
maps [61]) or physiological (such as biochemical gradients [71]) grounds. Lotze’s
hypothesis is that the local signs are learned through the optical consequences of
voluntary eye movements.

A related, though different, notion was contributed by Platt [67]. Here the idea is
that an eye moment has the effect (at least within a sufficiently short time interval)
of shifting straight lines in the retinal image, that are oriented along the movement,
along themselves. Thus, the movement reveals sets of mutually collinear retinal
locations, at least in principle. This is a very general concept. Notice that it, unlike
Lotze’s proposal, does not yield a metrical structure. It merely reveals (at least in
principle) the equivalence classes of mutually parallel lines in the visual field.

A very different proposal is due to Hermann von Helmholtz (1821–1894) (see
[35]). Helmholtz was trained as an army general practitioner and had first hand
experience with various diseases. He noticed that in cases of acute toothache the
patient is often unable to indicate whether the source of the pain is in the upper
or in the lower jaw. Pushing against the two places individually soon localizes the
trouble. Why is this? According to Helmholtz obviously because the nerves serving
opposite teeth invariably are stimulated in synchrony during the chewing of food.
This signals to the brain that their Empfingdungskreisen overlap. Generalizing from
this, correlation of neural activity is likely to give rise to awareness of spatial overlap
of receptive fields on the sensitive body surface.

Starting from this idea one may derive the topology of the visual field from the
correlation structure of the optic nerve activity [32, 33]. Unlike Lotze’s mechanism,
this yields a visual field structure that is unrelated to the visual directions in external
space (“internal”, as opposed to Lotze’s “external” local sign).

A concept that has been around since the advent of precise eye movement record-
ings is that temporal signals might be used to obtain fine spatial detail resolution.
We find it hard to associate a specific author with the idea. A modern account is



The Visual Field 3

framed in analogy with the function of the whiskers in animals like the rat (the
vibrissal array, [1]).

In this paper we will refer frequently to the “Lotze, Platt, and Helmholtz mecha-
nisms” of local sign. These principles have been largely framed in the context of the
brain. However, each of them is evidently important to immediate visual awareness.

Theories of automatic visuomotor actions might do without local sign at all, as
has been forcefully demonstrated by Braitenberg [6].

In the contemporary understanding of vision the brain is much like a special
purpose computer. This computer implements “inverse optics” computations in a
bottom-up fashion, eventually leading to a visual representation of the scene in front
of the eye. The basic ideas have been formulated by David Marr (1945-1980), in his
highly influential posthumous book “Vision” [55]. However, it may be seriously
doubted whether inverse optics algorithms are up to such a task, given the inherent
ambiguities of the optical structure. This has become increasingly clear thanks to the
developments in computer vision [17]. At this point we stress the obvious fact that
such a bottom up “representation” would be meaningless from a phenomenological
perspective [38].

3 The Fuzzy Line

The visual field does not have infinite resolution. Unlike the Euclidean plane, it is
“fuzzy”1. The “points” are actually perceptive fields (G.: Empfindungskreisen) that
may be quite large2. Moreover, one may have perceptive fields of a range of sizes at
any specific location [44, 4].

For the sake of conciseness we consider the simpler case of the fuzzy line here. It
illustrates most of the properties we require in this chapter. There have been previous
attempts at the construction of fuzzy geometries [24, 25, 8], but for our purpose we
need somewhat different structures.

We use “gaussian points”, that we interpret as perceptive fields in psychophysical,
and/or receptive fields in neurophysiological interpretations. They have a gaussian
profile, characterized by a location and a width3 (see figure 1). In the physiological
interpretation they yield a single parameter when confronted with the retinal image,
proportional to the average irradiance for the given weight. This makes them true
“points” in the Euclidean sense (DEFINITION 1 of the Elements: “a point is that
which has no parts”4 [14]).

Different from Euclidean points, gaussian points may overlap though. We define
two measures of relation. The overlap is the correlation5. It takes values between
zero and one, and may be found from experience with numerous retinal images.

Another useful notion is the support of the point, which is the segment contained
between the points of inflection of the weight6 . The range can be obtained from
responses to punctate-like stimulation. Given this definition we may define another
measure of overlap, the “intersection”. The interaction is false or true according to
whether the common segment is empty or not. This may be found from the simul-
taneous activity under punctate stimulation.
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Fig. 1 This is the weight for a fuzzy point at location x = 0 and width σ = 1. The weight
has been scaled such that the total integrated weight is unity. Thus, it is different from the
conventional “fuzzy membership function”.

Given the notions of support and intersection we may construct a relation of
domination (figure 2). Given two points P and Q (say), then we say that P domi-
nates Q if, and only if it is the case that for any R such that R intersects with Q, it
is the case that R also intersects with P . The domination cannot be obtained from
the overlap relation7.

P Q R

Fig. 2 The concept of “domination”. At top left two regions, P and Q, such that (visually)
Q ⊂ P . How can this relation be given a purely functional meaning? The idea is shown
in the figure at top center: the region R, which overlaps with the region Q automatically
overlaps with the region P . The other subfigures show various geometries, apparently this
relation continues to hold. We use it as a functional definition of the relation of domination
of one region by another.
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Notice that all these properties may be obtained by learning over huge sets of
retinal images. The Helmholtz mechanism provides a topological structure, at least
in restricted neighborhoods. The Lotze mechanism provides a coarse metric. The
Platt mechanism allows one to pick out collinear points of similar widths, a projec-
tive property. When augmented with a temporal metric (the vibrissal mechanism),
it provides a refined metric in local regions. In the case learning never stops, the ge-
ometry will keep up with various external changes, like growth in early childhood,
change of spectacles later in life.

That the Helmholtz principle requires active development is clear from patients
(tarachopic amblyopes) with intact, coarse Lotze local sign, but lack of fine grained,
local Helmholtz local sign [22]. Since there is apparently nothing physiologically
wrong with these patients, tarachopia is apparently a form of “Seelenblindheit” (ag-
nosia).

It is important to notice that the fuzziness has important consequences that make
the fuzzy geometry quite different from Euclidean geometry. Most importantly,
while various interpolation-like manipulations work as expected, extrapolation-like
manipulations do not work at all.

Here is an illustrative example. Given two points one has a “yardstick”. By it-
eratively translating the yardstick over its own length we produce a discrete affine
scale of mutually equidistant, collinear points. On the fuzzy line the fuzziness grows
though, and after a finite number (typically: a few) of iterations the width of the
newly added points will exceed the length of the yardstick8! On the other hand, in-
terpolation has the opposite effect: the interpolated points have less width than the
fiducial points (see figure 3).
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Affine scale: extrapolation
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Affine scale: interpolation

Fig. 3 Examples of affine scales. At left a case of extrapolation, at right a case of interpo-
lation. As one extrapolates the width soon “explodes”. Interpolation is fully stable though,
the interpolated points are actually “sharper”. The gray dot sequences indicate the Euclidean
equivalent point series. The black dots indicate the fiducial point pair.

The overlap yields a kind of distance between points. One minus the overlap
is zero for two identical points (same location, same width), and increases up to
maximally one when the points are very different, either in location or width. Points
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with less than a certain small difference from a given point lie inside a circular
region centered on the given point in the parameter (that is x–σ ) plane9.

The parameter plane turns out to have the metric of the hyperbolic plane10.

4 The Fuzzy Plane

Most of the properties of the fuzzy plane can be immediately interpreted in analogy
with the fuzzy line. The major changes have (obviously) to do with the additional
dimension. Here we mention only a few topics, sufficient for our cause. Although it
is not that hard to treat the fuzzy plane analytically, the relevant formulas are rather
complicated. Since it is very easy to simulate the fuzzy plane, we opt for that here.
It suffices to illustrate the major facts.

Consider geometrical constructions that start from a fiducial point configuration,
and result in a target point. Perhaps the simplest example would be the bisection of
a segment defined by two points (see figure 4). It is almost trivial to simulate this.
One considers two points, each one drawn from the gaussian probability density
function defined by the location and width of one of the endpoints. One finds the
midpoint by Euclidean methods. Evidently this midpoint will turn out to be different
any time you do this. After many trials you obtain a point cloud that approximates
the probability density function that corresponds to the end result (a fuzzy point).
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Fig. 4 The bisection operation. At left the simulation of bisection of two fuzzy points. At
right a histogram of the distances between pairs of points from the simulation. The points
are indicated in gray, the intersection in black. For the simulation we draw two points, one
near{0,0}, the other near {1,0} (the gray points) and find the bisection (black). The simulated
bisections are in the general neighborhood of {0.5,0}. Apparently the distance between the
fuzzy points is also fuzzy.

A similar method applies to a large variety of constructions (see figure 5). The
results suggest that the geometry of the fuzzy plane is perhaps less trivial than one
may expect. For instance, something like the “point of intersection” of two lines
(each defined through a pair of points) is typically not a generic point. If the lines
mutually subtend a narrow angle, the intersection is more similar to a line segment
(see figure 6). In developing this geometry one needs to introduce geometrical
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Fig. 5 The angle subtended by three fuzzy points {1,1}, {0,0}, and {1,0}. The lines indicate
the corresponding Euclidean angle of 45◦. At right the histogram of the angles subtended by
triples from a simulation. Apparently the angle is fuzzy too (about 45◦ ±5◦).
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Fig. 6 The intersection of two lines. Each line is defined by a pair of fuzzy points (depicted in
gray), the horizontal line through the points {0,0}, and {1,0}, the oblique line through {0,1},
and {1,0.8}. The Euclidean intersection is the point {5,0}. The corresponding Euclidean
lines are drawn in gray. They mutually subtend a rather narrow angle. Notice that the sim-
ulated intersections can be anywhere, although they cluster about the Euclidean result. The
cluster is very unlike a fuzzy point though. It is evidently elongated, and thus “line-like”.

entities that have simultaneously point-like and line-like properties. Interesting as
such observations are, we will not pursue them in this paper11.

5 Atlas Structure: The Self-Similar Fuzzy Line and Plane

A notion of distance is necessarily complicated when points have different sizes.
One way to grasp the essential idea is to consider a simple example, that we will
refer to as the “atlas model”.

Atlases contain maps of limited size, and of various scale. Thus Paris and
Berlin are both on the map of continental Europe. The Tour Eiffel will be on a map
of central Paris, the Brandenburger Tor on a map of central Berlin. These landmarks
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are not to be found on a single map though. The distance between the Tour Eiffel
and the Brandenburger Tor is measured on the highest resolution map that (via many
levels of indirection) contains them both. This map will have a rather low resolution.
The distance is simply the distance Paris–Berlin on the map of continental Europe.
The distance between the Arc de Triomphe and the Brandenburger Tor is the same as
the distance between the Tour Eiffel and the Brandenburger Tor. Yet the Tour Eiffel
and the Arc de Triomphe have a well defined distance as measured on the map of
central Paris.

This induces a planar structure that is quite different from the familiar Euclidean
plane.

The “location” in the spatial domain is defined hierarchically,12 as familiar from
daily life experience [69]. For instance, suppose you forgot a key, where would
you look? Certainly in your home town, your neighborhood, your house, a certain
room, a certain desk, a certain drawer, somewhere in the mess you probably expect
there. If you had to specify the location over the phone it would depend on who you
were speaking to (a stranger, your neighbor, or your spouse) where in the sequence
you would start. Almost certainly you would describe some nested order though.
The essential gain of such a description lies in the fact that you refer only to local
structures. Doing this iteratively gets you by way of local methods (in the scale
dimension) to “global” relations (in the space dimensions), though only indirectly
so. This closely resembles the use of an atlas.

Such a formal structure appears fit to describe well known properties of the visual
field. We discuss some of the major features here.

A map is defined by a (central) location, a scope, and a grain size. The location
tells you that “this is a map of such-and-so”, the scope tells you the “size” of the area
that is covered by the map, and the grain size tells you the “resolution”. Anything
smaller than the resolution is either omitted, or represented with a conventional
sign, that is a point–like entity without internal structure. In typical cases the ratio
of the grain size to the scope is fixed throughout the atlas13. The inverse square
of the ratio (for a planar map) is the “number of pixels”, that is the number of
independent entities represented in the map. In conventional geographical atlases it
is large (a million say), in the visual field it is rather small, say ten to a hundred.
This ratio is an important number that characterizes the atlas. We assume it will be
fixed by neuroanatomical/physiological constraints14. For the sake of experimental
phenomenology it is just a “constant of nature” descriptive of the human condition.

Modeling the atlas structure is straightforward. We represent maps just as we do
points, with all the obvious consequences (thus maps overlap, have intersections,
and may dominate each other).

A map contains points that intersect with it and have a width equal to the grain
size of the map. A point is located on a map if it is close to a point of the map.
Here “close” may be defined as having an overlap of at least some characteristic
number, say one half. The precise magnitude of the number is not really important.
When two points are both located on the same map, we may measure their distance
on the map. In reporting it one mentions both the distance and the grain size, for
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instance 5 ± 2. Thus “distance” is indexed by resolution, one actually has a one-
parameter family of distance functions. Two distances are different if they differ by
more than the combined uncertainty (grain size)15. (See figures 7 and 8.)

Things start to be slightly interesting when one or perhaps both of the points
are not on the map. Consider why a point might not be on a map. It may happen
either because the point is too large, or because it is too small. These cases are
categorically different. Europe is not on the city plan of Amsterdam: it is too large.
Tietjerksteradeel (pronounce Tytsjerksteradiel) is not on the map of Europe because
it is too small16. But Tietjerksteradeel might (through some conventional mark17)
be indicated on the map of Europe, whereas it is evidently impossible to indicate
Europe on the city plan of Amsterdam. This is not due to some lack of conventional
signs.

A point may dominate a set of points belonging to a map, and this set may be a
proper subset of the set of all points belonging to the map. In such a case the point
is an “area” in terms of the map18. Then points of the atlas may be designated a
distance from the area, for instance, the minimum distance of the given point in the
atlas to any point of the area.

Fig. 7 The rectangular area at left is represented by the atlas area at right. Notice that the
rectangular shape has become lost. It is retained in atlases of higher resolution, although
these might only cover a corner.

If a point is too small, one needs to find a suitable “representative” in the atlas.
Possible representatives of a point are points that dominate the point. If the points
have representatives in the map, then these representatives define a small area in the
map19. Any point of the area can be used to represent the point on the map.

A problem might be that the dominance relation may hardly be expected to be
defined for points with extremely different width. The reason is that one cannot have
a “punctate stimulation” that is effectively punctate for both, and simultaneously
potent enough to excite both. In such cases the Helmholtz local sign mechanism
has to break down. In practice there will be some vaguely defined limit on the ra-
tio of widths. Thus points may be “really too small” or “really too large”. In the case
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Fig. 8 The two gray dots (at left) have the same representative (right), whereas the black dot
(left) has a different representative. Thus each of the gray dots has the same distance to the
black dot in terms of this atlas. The mutual distance of the gray dots is zero, or rather 0±1. Of
coarse a finer grained atlas would “resolve” the gray dots, and assign them a finite distance.

of the visual field one cannot use the conventional methods of cartography. Any
relation has to exist, that is to say, has to be relatable to prior experience, in order to
be possibly meaningful20.

From a formal point of view it is nice not to put arbitrary restrictions on atlas
size. That is to say the point width and grain size could be infinitely small, and the
scope of a map could be infinitely large. In real life one meets such restrictions of
course. The visual field is about a hundred and eighty degrees in diameter, thus of
finite extent, and the best resolution is about a minute of arc, thus not infinitesimally
small.

Moreover, the resolution (smallest grain size) depends on the eccentricity, that is
the distance to the center of the visual field. (See figure 9.) This leads to (important)
complications that we have considered in some detail before [43]. It also forces the
use of saccadic eye fixations, most of them involuntary, and evidently part of the
micro genetic process. In this paper we have ignored this aspect, it is crucial to any
understanding of the actual system.

When we ignore arbitrary constraints, the fuzzy plane, augmented with an atlas
structure, is a self-similar entity ([54]). That is to say, if you scale all spatial dimen-
sions by the same factor, you obtain an entity that is congruent to the original. That
is why we refer to the “self-similar fuzzy plane”.

It is an ideal, but quite apt, formal description of the structure of the visual field.
The self-similarity has a firm basis in psychophysical fact [79, 43, 40, 41, 42, 44,
76, 75, 4].

We propose that the formal structure may be fleshed out either in neurophysiol-
ogy or in experimental phenomenology. These interpretations will be categorically
different, of course.
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Fig. 9 A schematic model of the structure of the global visual field (illustration of a structure
proposed by [43]). In reality there are many more cells, of course. One has a superposition
of atlases of many sizes. Near the center the full range of sizes is present, near the periphery
only coarser ones. Each atlas, also the coarser ones (represented in darker tint here) cover a
convex part centered on the fovea. Thus, in this drawing, the finer atlases are drawn “on top”
of the coarser ones.

5.1 The Self-similar Fuzzy Plane as a Sampling Structure in
Physiology

In the physiological interpretation the fuzzy self-similar plane is essentially a sam-
pling structure. (E.g., the structure shown in figure 9 has to be understood in that
way.) That is to say, it is embodied, the elements are invariably present as neural
structures. A “point” is to be thought of as an operator, an element that responds
with a scalar variable (e.g., spike firing rate) when a retinal image is presented to the
system [45]. The variable could be a local sample, with certain spatial uncertainty,
of the retinal irradiance. In reality the simplest receptive fields, the embodiments of
points, have a more intricate structure. The elementary sample is closer to a fuzzy,
directional partial derivative of the retinal irradiance.

In this interpretation the self-similar fuzzy plane is part of an algorithmic struc-
ture, like a special purpose computer. It might implement bottom up inverse optics
processes as mentioned above.
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5.2 The Self-similar Fuzzy Plane as a Model of the Microgenesis
of Visual Presentations

In the interpretation of experimental psychology the formal self-similar fuzzy plane
is a virtual, potential entity. Its elements may actualize if there is awareness, they
are created with the awareness.

Microgenesis generates presentations in legato fashion at a rate of roughly ten
per second, it is a systolic process [7]. The awareness is spatially structured along
the way of the formal structure. Not all elements need to be present. For instance,
there will be no points in the awareness of an extent of blue sky.

The points are like the dots of paint of a painter21, placed with a fine or a broad
brush as the case may be. The points have no existence except as part of a map.
The map has no existence except in terms of an atlas. Points as such rarely play a
role in awareness, except perhaps in laboratory settings. The finest articulations of
a presentation are still map-like. From a formal perspective the self-similar fuzzy
plane might be described in terms of an infinite hierarchy of maps, with the “points”
as formal limits that are never actually reached [83].

Most natural non-composite parts of awareness are like the touches or strokes
applied by the painter. They will typically be areas in some atlas. Thus they have
not only size and shape (in terms of the atlas), but also a resolution (characteristic
of the atlas). Points will hardly ever occur as natural, non-composite parts.

A map may perhaps be likened to a small22 thumbnail sketch. The atlas is then
a collection of thumbnail sketches arranged in an order that is at least patch-wise
hierarchical. Elements gain a meaning, or significance from their embedding in
super-elements (the local context), whereas they themselves are partial causes of
that super-element.

Thus the presentations (momentary visual awarenesses) have a tight structure of
mutual dependencies. This structure is built from the bottom up, and grows through
progressive diversification and pruning, like an evolutionary process. It is a living
structure in the sense of having been constructed simultaneously with the presenta-
tion.

The microgenetic process generates “hallucinations” galore, and checks them
against the optical structure at the sensitive body surface23. Hallucinations start off
as very coarse “gist” [60]. Each systole of microgenesis generates numerous con-
tenders, finally (when no further evolution is possible) one makes it into awareness.
The losers in the evolution are like virtual alternative realities. Occasionally one be-
lieves to catch glimpses of them [29]. They may be likened to the premières pensées
of the academic painter, thumbnail sketches that were eventually put aside. All these
— even though put aside — were important in the genesis of the final work.

Diversification sets in as the current hallucination fails to account for the di-
versity encountered in the frond-end. The diversification is intentional. Thus, it is
meaningful, but the meaning is more like a prior conviction.

Pruning occurs if the hallucination is more articulate, or differently articu-
lated than the optical structure warrants. At such occasions the hallucination is
“controlled”, because contradicted by nature. At such an occasion the microgenetic
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process gains information in the sense of meaning (as opposed to mere structure).
It is learning by mistake. In Erwin Schrödinger’s (1887-1961) view this is where
nature lights up to mind24. It is a spark of enlightenment [72]. This is how presen-
tations can be meaningful and conducive to biological fitness. It is how one may
imagine awareness to be generated, although of course not in the sense of causality
conventionally adopted in the exact sciences.

Microgenesis freewheels in case the front-end is not filled with optical structure
(eyes closed, darkness). In such cases one is aware of “visions”, or dream images.
Microgenesis often results in presentations that contain elements for which no im-
mediate optical structures are present (e.g, Kanizsa’s [31] amodal completions), or
where certain optical structures are apparently ignored. Often large parts of the op-
tical structure are summarily accounted for (the leaves of grass of the lawn say) as
“texture”. This is similar to the artist’s use of hatching to fill areas25.

In each systole microgenesis rebuilds the structure from scratch. Awareness is
always now. The presentation is likely to be similar to the preceding one, although
the evolutionary process may end up in a slightly different result, showing another
page of the atlas so to speak, one that didn’t develop before.

6 Metameric Images in the Fuzzy Self-Similar Plane

If locations in the visual field are only approximately determined, then local per-
turbations with amplitudes less than the uncertainty should not be detectable. If the
field is indeed self-similar, then the permissable perturbation of the relative posi-
tion of two points should depend upon their widths and mutual distance. Given an
image, the set of all images that represent permissible perturbations should be an
equivalence set with respect to visual awareness. We call it a “metamer”, a term
coined by Wilhelm Ostwald [62] (with a chemistry background, that is where the
term “metamer” derives from), in the setting of colorimetry. In this section we ex-
plore such metameric images.

It is easy enough to prepare metameric images. First we implement the generation
of perturbations at some fixed scale. Then we generate perturbations at many scales,
and add them with the required weights. (See figure 10.)

The resulting images are interesting, since they look entirely “natural”. (See fig-
ure 11.) Moreover, they are hard to distinguish in slightly eccentric fixation or at
cursory glance. They are very similar to the metameric images described by Free-
man [18], and used by Balas [3] to account for such perceptual effects as the “crowd-
ing” phenomenon [63].

The image at top left in figure 11 is the original one. It is also a member of the
metamer. That it would ever come up in awareness has zero probability because the
metamer is of infinite cardinality.

The crowding phenomenon (figure 12) may be understood as deriving from spa-
tial uncertainty that is large with respect to the details to be resolved. It can be
modeled in various ways [3, 18]. The present model works just as well.
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512�512 256�256 128�128

64�64 32�32 16�16

Fig. 10 A statistically self-similar displacement field. The figures are nested areas of differ-
ent size. In each case the mean has been subtracted. Notice that there is statistically similar
(random) structure on any scale. In the case of some arbitrary smooth field such a process of
zooming in would eventually converge to a uniform, unidirectional field. You may see this
watching a weather channel on TV. The wind pattern in your local area is always uniform, no
matter how complicated on the continental scale.

7 The Pointless Order

A notion of “pointless order” is based upon the local sign concept proposed by
Helmholtz. The essential idea it that correlation between activation in nerve fibers
might be a cue that the receptive fields on the sensitive body surface at which the
activation arose are spatially overlapping. Thus the correlation structure of the op-
tic nerve induces overlap relations that may again be interpreted as a Čech homol-
ogy [9, 32, 35]. The topology reveals that the visual field is two-fold extended, and
so forth. It is a very powerful idea, much advanced over ideas based on anatomical
somatotopy as are still commonly held today.

Helmholtz’s notion may be generalized in various ways. Here we apply it to
the Gestalt [56] mereotopology [83, 80]. A structure obtains a location within a
superstructure on the basis of its parthood–relations. Here “part” is understood in a
serial way, e.g., although a leaf is perhaps most naturally seen as part of a twig, we
extend parthood to the tree (of which the twig is a part), the forest (of which the tree
is a part), and so forth. Such a Gestalt mereotopology may be constructed over the
geometry provided by the self-similar fuzzy plane.
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Fig. 11 A fiducial image is shown on top left. All other images are metameric copies ob-
tained via self-similar displacement fields. Try to fixate to the side, you will notice that the
metameric images become hard to distinguish from each other. The images may be described
as “metamers of the cursory glance”.

Fig. 12 The “crowding” phenomenon. Various amounts of disorder have been applied. At
some point the letters start to intermingle, and apparently “crowd” each other.
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Parthood induces a partial order of structures. The simplest local structures are
illustrated in figure 13. Although the pointless order can be very intricate, and typi-
cally is very intricate in immediate visual awareness, only simple substructures are
relevant at any time. One has to think of simple “puzzles”, grouping of (much) less
than a dozen [57] pieces.

A B C D
Fig. 13 Simple examples of the implicate order of two structures. At top we show the
parthood relations as Venn diagrams [81], at bottom we draw the corresponding Hasse di-
agrams [5]. In A the two structures are unrelated. The Hasse diagram is not even connected.
In B the two structures are connected through a third structure that is part of both, like a bag
of marbles. In C the two structures are related through a third structure of which both are a
part, like the fingers of a hand. In D the two structures are both connected and related. The
Hasse diagram is a lattice.

In terms of the atlas simile, figure 13 A shows the relation between Milwaukee
and Paris (none). Figure 13 B shows the connection between the Via Appia and
the Via Aurelia (both contain Rome). Figure 13 C shows the relation between the
Arc de Triomphe and the Tour Eiffel (both in Paris). Figure 13 D again shows the
relation between the Via Appia and the Via Aurelia, now more detailed (both contain
Rome and are contained in Italy). Notice that the structure depends on the view,
e.g., whether you take Italy into account when you focus on Rome. This is entirely
typical. The grouping process fluctuates both with respect to location and scope. A
single map leads to numerous groupings, according to the current “set” [39].

In figure 14 we show how these notions apply to Gestalt formation by grouping.
In figure 14 upper left one has two oblique lines, each formed through the group-
ing of seven collinear points. The two lines are mutually unrelated, one point doing
double duty: different “copies” apparently belong to different lines. In figure 14 up-
per center this point has individuality. It is part of both lines, the lines are mutually
connected. In figure 14 upper right this connectedness has been destroyed, this case
is much like the one at upper left. In figure 14 center left the two lines are part of a
cross, the cross being part of an “OXO” Gestalt. Here the lines are related through
the superordinate OXO Gestalt, although they have lost much of their individuality.
In figure 14 mid-center the lines are both connected and related. In figure 14 center
right the cross has regained individuality because the OXO Gestalt is much weak-
ened (the cross tends to be part of a weak “OX” Gestalt). In figure 14 bottom left the
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cross appears as a separate Gestalt, like in that on top left. This also happens at bot-
tom center, where the two O’s group through “common fate”, although the X might
be part of a triangular Gestalt with OO as base, and the cross as vertex. In figure 14
bottom right the cross groups with the leftside O through proximity. It becomes part
of an OX configuration, whereas at bottom center it retains its individuality. In mi-
crogenesis all such interpretations (and many more) are simultaneously entertained.
Anything one does to the pattern (think of relative movements, for instance) will
change their chances to pop up in immediate visual awareness.

Fig. 14 Various cases of pointless order in grouping

In figure 15 we illustrate the extended meaning of “parthood”. At top left one
sees two circles and two disks. Each disk is seen to “belong” to one of the circles,
due to spatial inclusion. There is a tendency to group all elements as “two eyes”.
This tendency is much reduced by adding another “eye” (top right), although there
is a weak tendency to fluctuate between a pair of eyes at left or one at right. In
figure 15 center right the eyes become part of a face. The outer circle relates the pair
of eyes to the line segment. In the figure at center left the same is achieved through
the addition of a piecewise straight stroke. The eyes become again part of a face,
although not spatially included in it. In the figures at bottom the weak tendency to
see eye pairs in a row of three circles with internal disks (top right) has been much
strengthened through the addition of some elements. One sees two “faces”, one eye
doing double duty. The center eye tends to be part of either the left or the right face
as one shifts attention, though it is also possible to see it as part of both faces by
attending to the figure as a whole.
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Fig. 15 Various cases of pointless order in grouping illustrating cases where “parthood” is
not necessarily the same as spatial inclusion

Fig. 16 A Hasse diagram of Gestalt relations. The “Janus face” is spontaneously seen as the
merge of two single faces. Each face is seen as the grouping of two sub-Gestalts, these again
can be broken down. . . Although one obtains glimpses of yet other sub-Gestalts (such as a
row of “three eyes”) these tend to be less salient. Notice that with 12 parts there exist 4094
proper subgroups, few of which are salient. Visual awareness is very selective.
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The changes in Gestalt formation through grouping in those figures can be for-
mally described as the formation or breaking of links in the Hasse diagrams that
describe the partial order of parthood. An example is shown in figure 16. The super-
Gestalt, a “Janus face”, is built from twelve atomic glyphs. The set of all feasible
groupings is the powerset, of cardinality 4095 (not counting the empty set). The full
lattice of inclusion is huge (over half a million relations). The most salient Gestalts
that feature in visual awareness are plotted in the Hasse diagram. It includes only
a tiny subset of the formal possibilities. Most random groupings fail to be salient
at all. The various “solutions” may be rated by a measure of Gestalt Prägnanz. A
number of formal metrics are available [15, 12]. There will be numerous local max-
ima, and models of the microgenetic process should take all of these into account as
potential contenders to the role of next presentation. Some artists play intentionally
on this ever fluctuating ambiguity of visual microgenesis [65].

7.1 Awareness and Hallucination

In cases where the evolutionary process may equally well take two different routes,
one often notices sudden flips of awareness. One presentation alternates with an-
other. Well known instances are the necker-cube [58], and the duck-rabbit [30]. The
alternation rates are slower than the systolic rate of microgenesis, suggesting that
one important determinant of any presentation is the immediately preceding one.

In a “good look” which involves a few dozen presentations one thus “pages
through the atlas”. In this view the atlas exists over time, and is continually
“reprinted” as a perhaps slightly different edition.

This account is a variety of vision as controlled hallucination. A common ob-
jection is that hallucination will have zero probability to be “veridical”. From an
evolutionary perspective “veridical perception”26 should be replaced with “percep-
tion subserving fitness” though [74, 52, 69, 26]. In this setting fitness implies effi-
cacious optically based behavior. This again implies that the hallucinations should
sufficiently account for the optical structure impinging on the retinas, this is the
“control” part of “controlled hallucination”. Thus, the objections from veridicality
against a “top-down” account of presentations are misplaced.

When the optical structure is lacking in relation to possible scenes, hallucination
is hardly, and if so arbitrarily constrained. This happens when you view some ran-
dom pattern for instance. You are aware of fleeting representations that are mainly of
your own making. Such cases have been discussed in the art of painting (the polemic
between Sandro Botticelli and Leonardo da Vinci27). Thus Sandro Botticelli would
become aware of Olympic scenes or fantasy landscapes, Leonardo da Vinci of bat-
tles, a modern teenager perhaps of witches with machine guns. It is the basis of the
Rorschach test [70]. Such presentations follow up in arbitrary order, sometimes one
believes to just catch a glimpse of something, sometimes the presentations last for a
glance. Similar phenomena have been described throughout the ages, in psychology
starting with William James [29].
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Another objection is that hallucinations have no natural way to get started. This is
true if you think of perceptions as necessarily being imposed like Aristotle’s notion
of the wax receiving the form of the seal, otherwise a natural starting point would
be the person’s emotional core. It is not an issue in practice, because one important
influence on the present systole of microgenesis is the previous one. Thus, in the
large majority of cases, the microgenetic process is partly constrained by the previ-
ous one from the earliest stage. In (very singular) cases of a “scene cut” (say you
are blindfolded, magically transported to the Sahara and the blindfold is suddenly
removed28), you need to start from scratch.

No doubt bottom-up processes must play a role then. They are fast and automatic,
even partly protopathic. Because of that they cannot be involved in awareness29,
which is all meaning and quality. However such processes may provide a “gist” that
influences the initial microgenesis, much like the patterns that started off Sandro
Botticelli as he threw a paint-soaked sponge against the wall and contemplated the
ensuing patterns. Such processes may well go on at all levels, generating fleeting
structures that — although in themselves meaningless — are like proto-objects, and
when picked up by microgenesis become seeds that decisively influence the course
of diversification.

Awareness is likely to converge very soon on something conducive to increased
fitness. This is because microgenesis is likely to win any reasonable game of “twenty
questions” against nature [38].

8 Conclusions

The visual field is a two-fold extended entity. Its structure is very different from that
of the familiar Euclidean plane though. Differences exist on many levels, from local
to global, and in projective and metrical properties.

It is perhaps surprising that one may discuss the formal structure of the visual
field at all. After all the visual field is not like a pre-existing canvas upon which
visual awareness draws colored patches. The visual field is a living entity that is
generated along with the awareness. Microgenesis creates presentations in roughly
a tenth of a second. As is well known [2, 49, 50] the temporal and spatial order
of the presentations may be different from that of the optical structure delivered to
the eye. The awareness tends to be more coherent than the optical structure when
the latter is artificially put in local disarray [49, 50]. Thus, it is not that the visual
field may be regarded as a “container” with well defined structure, in the Newtonian
sense [59]. It is more like a Leibnitzian system of relations that only exists relative
to the relata [10].

From a neurophysiological viewpoint the awareness is somehow related to
(though one has not the faintest notion how the ontological gap might be bridged)
the combination of motor commands, present state, and neural nerve activity. From
a phenomenological perspective visual awareness simply happens. In experimental
phenomenology one notices relations with situational awareness, emotional state,
current activity, and the optical structure present at the eyes. The formal account
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offered here may find application in both neurophysiology and experimental phe-
nomenology, though obviously in (very) different ways.

When applying these ideas to neurophysiology one has to deal with a huge variety
of boundary conditions that are quite alien to the ideal, formal account. Nothing
can be continuous, thus one has to discretize, nothing can be arbitrarily small or
large, thus one has to introduce numerous arbitrary (from the ideal perspective)
parameters, and so forth. Moreover, in animal physiology one easily extends the
studies of the system to situations that are not in the normal range of the free living
animal. Sometimes the constraints are so pressing that they force structures that are
perhaps in doubtful taste from an ideal point of view. The upside is that one may
obtain models that are really interesting because of their capability to describe actual
brain structures.

Our own interest is mainly experimental phenomenology. Here one meets with
completely different constraints. In describing the phenomena one prefers ideal,
formal systems that happen to fit the phenomena. In practice the level of detailing
in experimental phenomenology is restricted, moreover the range of situations is
necessarily restricted to the normal human environment. Thus, it is perhaps less
surprising that one often finds simple formal descriptions to apply really well, even
in a quantitative sense [48].

The self-similar fuzzy plane is such a simple formal system. In its simplest form,
as described in this paper, it already accounts for a large variety of phenomeno-
logical facts30. One extension that is soon required is the non-uniform nature of
the visual field, with its minimum grain size increasing gradually from center to
periphery [40, 41, 42]. Such an extension requires one to take account of involun-
tary fixational saccades. To construct such a description should be straightforward.
From a formal perspective the eye-movements are just another mode of addressing
the atlas, a mere implementation issue31.

Another complication is the nature of the points. In the present account we mod-
eled points in terms of gaussian weights. Such a point should be understood as an
operator. It operates on the retinal illuminance pattern, and it yields a sample of the
irradiance at a given location, with a given resolution. The sample is a scalar value,
representative for the magnitude of the local illuminance. This is a simplification
in various ways. One is the lack of spectral resolution. This is easily enough taken
care of through the introduction of points with different spectral sensitivities. (Red,
green and blue points, say.)

A more important issue is the structure of a point. The gaussian point is indeed
a “point” in the sense of Euclid’s “that which has no parts”. It makes the fuzzy line
formally into a scale space. It is well known that the neurophysiology of the periph-
eral visual system implies that points have considerable structure. A simple model
constructs the point as a jet space [13], up to about the fourth order [45, 36, 37, 46].
A jet contains all fuzzy spatial derivatives, thus the point actually represents the lo-
cal illuminance structure in terms of a truncated Taylor series. This has important
consequences. For instance, the Helmholtz local sign mechanism now has much
more “to work on”. One regards the correlation matrix for the full jet instead of just
a single number. Such studies have already yielded important insights [21, 18], with
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immediate applications to experimental phenomenology [3] and theoretical neuro-
physiology [66].

Working out the structure of such an “augmented fuzzy self-similar plane” will
be a major, though most worthwile undertaking.

As a final issue we mention the use we repeatedly made of a very general prin-
ciple, that might easily be overlooked as essentially trivial. It is that nothing may
enter awareness that cannot be ultimately traced to prior awareness32. In a sense
awareness is a cross-section of recapitulated experience. The notion has been for-
mulated explicitly by von Uexküll (1864–1944) [77]. It is a principle implicitly used
by Lotze, Helmholtz and Platt in their understanding of local sign. This principle is
often ignored, or violated in main stream research. For instance, this mistake is at
the basis of such common notions as the importance of somatotopy to the awareness
of a coherent two-dimensional visual field, the contemporary neglect of the concept
of local sign, or the reliance on feature detectors. Although the principle is very
general, we have used it to put strong constraints on the formal structure of the vi-
sual field. In our framing it does not apply to sensory motor reflexes and automatic
behavior. For instance, freshly hatched chickens show remarkable optically guided
behavior33 [78]. To hold that this would be accompanied by a keen visual aware-
ness would violate the principle as stated. Far reaching implications of the principle
remain to be developed.

Notes

1“Fuzzy” is a convenient term although our discussion does not fully conform to classical
“fuzzy set theory” [84].

2The construction of the Euclidean plane with circular disks replacing the points (Hunt-
ington’s [27]’s original idea of points as “one inch spheres”) superficially looks like it might
describe the Empfingdungskreisen. However, the disks are located with infinite precision, thus
this is not a “fuzzy plane” at all.

3The weight is defined as g(u;x,σ) = exp(−(u− x)2/2σ2)/
√

2πσ ; x the location, σ the
width parameter. Thus the fuzzy line is closely related to “scale space” [34], [16]

4Strangely, Euclid defines points twice (the second definition being DEFINITION II: “The
extremities of lines are points”) and makes no further use of the definition(s), never refer-
ring to them in the remainder of the text. Perhaps the definitions were added later as an
afterthought.

5First define the symmetric binary relation (g1,g2) as
∫+∞
−∞ g(u;x1,σ1)g(u;x2,σ2)du, and

let |g|2 = (g,g).
Then the correlation can be defined as C(x1,σ1;x2,σ2) = (g1,g2)/|g1||g2|.

6The support of g(u;x,σ) is {x−σ ,x+σ}.
7A certain overlap specifies either spatial separation, or a different width. Moreover, it

remains undecided which of the points is the larger. We have not been able to find a way to
decide on this on the basis of sampled retinal inputs.

8Very roughly the length of the yardstick divided by the width of the points is the maxi-
mum number of “reasonable” iterations.

9The squared distance of a point with parameters {x + dx,σ + dσ} from a fiducial
point {x,σ} (where dx and dσ are supposed “infinitesimal” is ds2 ∝ (dx2 +dσ2)/σ2).
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10This is evident from the metric mentioned in the previous note. Interesting as this is from
a formal viewpoint, we will not use this fact further in the paper. It may well have application
in scale space theory [34], [16], and is most attractive from a formal perspective.

11Hjelmslev [24, 25] was one of the first mathematicians to consider such problems.
12Notice that such a structure greatly reduces computational complexity. The recursive

subdivision of a domain of N elements reduces search times from being proportional to N to
being proportional to logN [11].

13In conventional atlases the page size and either the printing technique or your visual
acuity at normal reading distance determine this ratio.

14There may actually be physical bounds on the grain size due to the structure of electro-
magnetic radiation. We ignore such (and several other) complications. They are not imme-
diately relevant to the discussion, and fairly obvious when one has to deal with them. Such
possible complications will not give rise to surprises.

15The grain size to use when the two grain sizes are s1 and s2 (say) is
√

s2
1 + s2

2, this is just
Gauss’s law of error propagation [19].

16Tietjerksteradeel counted 32.172 inhabitants on april first 2011.
17In cartography this is known as “generalization” [28].
18For instance “Central Park” is an area on maps of central New York.
19Of diameter 0±1.
20It is basic to require that anything that enters awareness has somehow to be related to

prior experience. Notice that this general principle has very important consequences for the
possible structure of the visual field. The concept is due to von Uexküll [77].

21This does not imply that we commit ourselves to a naı̈ve “picture in the brain” theory.
22“Small” in the sense of not highly structured. The actual “size” being irrelevant in a self-

similar structure. Judging from psychological data [57] it is unlikely that the maps will be
highly structured.

23With “sensitive body surface” one may mean a variety of things. For vision the retina
would be the outermost surface. However, the neural process that accompanies microgenesis
most likely address one or more cortical layers. Here the optical structure — still meaningless
and uninterpreted — is stored in a volatile buffer that is continually overwritten. It has been
cleared of a priori meaningless structure, and is made available in a convenient format. From
our perspective we need not differentiate between the scene, the retinal irradiance, the primary
visual cortex, . . . . They are just some of the multiple levels of indirection involved.

24Schrödinger’s suggestion is the only “bridging hypothesis” known to us that connects the
mental to the physical in a way that makes at least intuitive sense and does not insult our ra-
tional understanding. It is not a causal connection of course [38]. That would be nonsensical,
and was not Schrödinger’s intention.

25The hatching has no relation to the optical structure for the area. It is either arbitrary
(e.g., mutually parallel oblique strokes), or symbolic, perhaps suggesting “foliage”, and so
forth.

26The notion of “veridicality” is meaningless on many counts [38]. However, we can hardly
discuss this in the present paper.

27Perhaps starting with the account by Pliny [68] on painting practices by Apelles
28Such cases are rare and singular, though popular examples in philosophical discussions

tend to focus on them.
29This is another application of Schrödinger’s principle.
30Notice that we say “phenomenological”, rather than “psychophysical”. Reason is that

awareness implies first person accounts, whereas psychophysics relies (by design) on third
person accounts, or, perhaps better, on “intersubjectivity”. Much of psychophysics is really
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“non-invasive physiology”. Saying that, it is nevertheless the case that the present formalism
may be applied in many cases to describe psychophysical findings.

31This is similar to having a variety of memories in a computer, say a disk, RAM banks,
and caches on the processor chip. From a formal viewpoint there is no need to differentiate
between those.

32The principle is, of course, connected to Schrödinger’s hypothesis. A spark of awareness
is due to a contradicted expectation. But expectations must be due to prior experience.

33The newly hatched chicken can have no expectations. Its actions are automatic. Applying
Schrödinger’s principle this means that the chicken is not aware. It is a true zombie. For
instance, a newly hatched chicken will take the first thing in its ken for “the mother hen”. It
even does this if it happens to be the cat. To a zombie that makes no difference, of course.
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9. Čech, E.: Théorie générale de lhomologie dans un espace quelconque. Fundamenta

Mathematicæ 19, 149–183 (1932)
10. Clarke, S.: A Collection of Papers, which passed between the late Learned Mr Leibnitz,

and Dr Clarke, In the Years 1715 and 1716, by Samuel Clarke D D. James Knapton,
London (1717)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 3rd
edn. MIT Press, Cambridge (2009)

12. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and Selec-
tion in Posets. In: Mathieu, C. (ed.) Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, New York, pp. 392–401 (January 2009)
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tectures fonctionnelles, Ecole Polytechniques editions, Paris (2009)
67. Platt, J.R.: How we see straight lines. Scientific American 202, 121–129 (1960)
68. Pliny the Elder (77–79CE) Historia Naturalis
69. Riedl, R.: Biologie der Erkenntnis: Die stammesgeschichtlichen Grundlagen der Ver-

nunft. Parey, Berlin (1980)



The Visual Field 27

70. Rorschach, H.: Rorschach Test – Psychodiagnostic Plates. Hogrefe Publishing Corp.,
Cambridge (1927)

71. Sansom, S.N., Livesey, F.J.: Gradients in the Brain: The Control of the Development of
Form and Function in the Cerebral Cortex. Cold Spring Harb. Perspect. Biol. 1, a002519
(2009)

72. Schrödinger, E.: Mind and Matter. Cambridge University Press, Cambridge (1958)
73. Smythies, J.: A note on the concept of the visual field in neurology, psychology, and

visual neuroscience. Perception 25, 369–371 (1996)
74. Tinbergen, N.: The study of instinct. Oxford Clarendon Press, London (1951)
75. Toet, A., Koenderink, J.J.: Differential spatial displacement discrimination thresholds for

gabor patches. Vison Research 28, 133–143 (1988)
76. Toet, A., van Eekhout, P., Simons, H.L.J.J., Koenderink, J.J.: Scale invariant features of

differential spatial displacement discrimination. Vison Research 27, 441–451 (1987)
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A Primer for Colour Computer Vision

Graham D. Finlayson

Abstract. Still, much of computer vision is predicated on greyscale imagery. There
are good reasons for this. For much of the development of computer vision greyscale
images were all that was available and so techniques were developed for that
medium. Equally, if a problem can be solved in greyscale - and many can be -
then the added complexity of starting with 3 image planes as oppose to 1 is not
needed. But, truthfully, colour is not used ubiquitously as there are some important
concepts that need to be understood if colour is to be used correctly. In this chap-
ter I summarise the basic model of colour image formation which teaches that the
colours recorded by a camera depend equally on the colour of the prevailing light
and the colour of objects in the scene. Building on this, some of the fundamental
ideas of colorimetry are discussed in the context of colour correction: the process
whereby acquired camera RGBs are mapped to the actual RGBs used to drive a
display. Then, we discuss how we can remove colour bias due to illumination. Two
methods are presented: we can solve for the colour of the light (colour constancy) or
remove it through algebraic manipulation (illuminant invariance). Either approach
is necessary if colour is to be used as a descriptor for problems such as recognition
and tracking. The chapter also touches on aspects of human perception.

1 Colour Image Formation

The visible spectrum occupies a very small part of the electromagnetic spectrum.
For humans and cameras the visible spectrum lies approximately between 400 and
700 Nanometres[27] (see Figure 1).
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Fig. 1 The Visible Spectrum (Image taken from http://en.wikipedia.org/wiki/
Electromagnetic spectrum)

The spectral power distribution illuminating a scene is denoted E(λ ). The light
strikes an object with surface spectral reflectance S(λ ) and the light reflected is pro-
portional to the multiplication of the two functions (this product is sometimes called
the colour signal). The light is then sampled by a sensor with a spectral sensitivity
R(λ ). The various spectral quantities are shown in Figure 2. The integrated response
of a sensor to light and surface is calculated in (1).

ρE,S
k =

∫

ω
Rk(λ )E(λ )S(λ )dλ k ∈ {R,G,B} (1)

Where ω denotes the visible spectrum. Immediately, we see that light and surface
play, mathematically, the same symmetric role. Each is as important as the other in
driving image formation.

Notice that (1) includes no information about either the location of the light
sources or the location of the viewer. This is because (1) is an accurate model only
for the matte - or Lambertian - aspect of reflectances. Lambertian surfaces scatter
the incoming light in all directions equally and they appear to have the same colour
viewed from any position[15].

1.1 Colour Correction

Suppose we take a picture with a camera and then we wish to display it on a colour
monitor. The raw acquired image cannot be used to directly drive a display. Rather,
the image is transformed to a format suitable for display through a process called
colour correction.

To understand colour correction, let us assume that the camera samples light like
we do (for the purposes of this example, let us assume the camera curves equal those
shown in 2c). How then do we transform the RGBs a camera measures to those that
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a) b)

c) d)

Fig. 2 Middle left shows the spectrum of a bluish light (power concentrated in the shorter
wavelengths). The reflectance spectrum of a dark green surface is shown in 2b). Bottom left
(2c) we show the XYZ colour matching functions. These are not the sensitivities of an actual
camera rather they are reference curves useful for the standard communication of colour[27,
17]. Lastly, in 2d) we show the curves for a commercial camera (Sigms SD9). Notice how
differently they sample light compared with the XYZ functions.
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drive a display to arrive at the reproduction we seek (i.e. a displayed image that
looks like the scene we took a picture of).

To answer this question let us assume that a monitor has 3 colour outputs with
spectral power distributions in the short (or blue), medium (green) and long (red)
parts of the visible spectrum. The camera response to each display colour is written
as:

ρ p
q =

∫

ω
Rk(λ )Pq(λ )dλ k ∈ {R,G,B} q ∈ {l,m,s} (2)

in (2) Pq(λ ) denotes the spectral output of the three channels of a colour display.
Notice that both equations (1) and (2) are linear systems (double the light double
the response). The import of this here is that the response of the camera red sensor
to the long and medium display outputs turned on together - e.g. at 50% and 75%
intensities - is simply the sum of the individual responses:

ρ0.5l+0.75m
k =

∫
ω Rk(λ )[0.5Pl(λ )+ 0.75Pm(λ )]dλ

= 0.5
∫
ω Rk(λ )Pl(λ )dλ + 0.75

∫
ω Rk(λ )Pm(λ )dλ

(3)

An implication of (3) is that the camera response to an arbitrary intensity weight-
ing of the display outputs can be written as a matrix equation:

⎡

⎣
ρr

ρg

ρb

⎤

⎦=

⎡

⎣
ρ l

r ρm
r ρ s

r
ρ l

g ρm
g ρ s

g

ρ l
b ρm

b ρ s
b

⎤

⎦

⎡

⎣
α
β
γ

⎤

⎦⇒ ρ = Mα (4)

here α , β and γ vary the intensity of the colour channels (from 0 to 100% or
minimum to maximum power). We are now in a position to solve for the display
weights i.e. solve for the correct RGBs to drive the display. Denoting the 3-vector of
responses in (1) as ρ then the correct image display weights α (the values recorded
in an image pixel) is calculated as:

α = M−1ρ (5)

Equation (5) is called colour correction[26]. Note the 3x3 matrix M−1 is fixed
for a given camera and display. Equation (5) is also the exact solution for colour
matching (i.e. how we mix three primary lights to match an arbitrary test light).

However, in reality, it is never the case that a camera samples light like colour
matching functions. Thus, the mapping which takes acquired RGBs to display out-
puts is approximate (and is solved for through regression[26]). We will return to this
problem again in section 4 - see equation (15).

For historical reasons, displays typically have a non-linear transfer function. That
is, the brightness output is (roughly) the square of the rgb driving the display. Thus
the values stored in an image are the square-root of the weights calculated in (5).
This process is called gamma correction.

Colour correction is a first order effect. The raw images recorded by a camera are
not suitable for display, The effect of colour correction is illustrated in Figure 3.
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Fig. 3 Left: image before colour correction. Right shows the corrected colours

2 Colour Constancy and Illuminant Estimation

The colours we see in the world do not depend on the colour of the illuminant. A
white T-shirt looks white whether it is viewed in direct sunlight (yellowish colour of
light) or in deep shadow (bluish light). Indeed, from an evolutionary point of view
such colour constancy is clearly very desirable. As an example, in primate vision
it has been proposed that colour is an important cue for judging the ripeness of
fruit[24].

More generally, we do not expect the colour of the world to change as we move
from one environment to another. Indeed, colour is often the primary designator
we use in describing objects e.g. the red car or the green door. Yet, physically, the
colour signal reflected from a surface may not, is typically not, the same as the
object reflectance.

The idea that the colour we see was not a property of the spectrum of light en-
tering the eye (the Newtonian view) is a relatively modern notion. Indeed, Edwin
Land (the progenitor of Polaroid corporation) sparked a huge debate in the colour
community when, in the 1950s, 60s and 70s, he proposed his Retinex Theory[19] of
colour vision (to account for the phenomenon of colour constancy).

Simply, and perhaps somewhat obviously in hindsight, the Retinex theory pro-
poses that the colours we see depend on the context in which we see them. Figure 4
(an example from Beau Lottos lab) illustrates this point. The same physical sample,
viewed in two different illumination contexts, looks like it has a different colour.

In Figure 5, we show a colour constancy example from the Computer Vision
literature[1]. Here the same object is captured under 4 different lights. It is remark-
able how much the colour varies. It is evident then that raw colour does not correlate
with object colour. Only if an object’s colour is independent of illumination can it
be used for recognition, indexing or tracking.
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Fig. 4 The brown and orange surface chips on the top and front sides emit physically the
same light. We see them as different colours as we perceive them both as a function of other
colours in the scene and our physical interpretation of the scene. Clearly, we interpret the
front cube face as being in shadow. The right hand panel of the figure (by using a black mask
to remove the local context) demonstrates the chips reflect the same identical physical signal
(from http://www.lottolab.org/).

Fig. 5 The same object viewed under 4 common lights. It is remarkable how much the
colours of the object depends on the colour of the prevailing light[1]
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However, getting the colour right is in itself of great interest as a problem in
digital photography. We are very attuned (and highly critical) judges of the colours
that look right or which look wrong when we look at photographs. Figure 6 shows
an example of colour constancy from digital photography. To recover the image on
the right we must estimate the illuminant colour and then remove its bias from the
image. In photography, this process is often called ’White point adjustment’.

2.1 Estimating the Illuminant

Simple as Equation (1) is, it is in fact quite complex. Even assuming we know
the spectral sensitivities of our camera, it is not immediately apparent that we can
decouple and recover light E(λ ) from reflectance S(λ ) . Indeed, each RGB supplies
only 3 measurements which is not a propitious starting point for determining how
we can solve the colour constancy problem.

To understand how we can, practically, solve the colour constancy problem, let
us begin by making simplifying assumptions. First, let us assume that rather than
recovering the spectrum of the light (or the spectrum of the surface reflectance)
we instead wish only to recover the RGB of the light and the RGB of the surface.
Second, let us assume that the camera measured RGB is the multiplication of the

Fig. 6 Left shows raw camera image, right after colour constancy (called white balance ad-
justment in photography). From http://en.wikipedia.org/wiki/Color balance
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RGB of the light and the RGB of the surface (this assumption is commonly made in
computer graphics[3]). The RGB model of colour image formation is written as:

ρS
k =

∫

ω
S(λ )Rk(λ )dλ ρE

k =

∫

ω
E(λ )Rk(λ )dλ

ρE,S
k = ρE

k ρS
k (RGB model of image formation)

Remarkably, these assumptions, with certain caveats, generally hold[6]. An im-
portant interpretation of ρS

k is that it is the colour of the surface viewed under a
white uniform light E(λ ) = 1 . Subject to this observation, colour constancy can be
thought of as mapping the rgbs measured in an image back to a reference lighting
condition. That is, the colour constancy problem involves solving for ρS

k . Clearly,
if we can estimate the illuminant (solve for the rgb of the light) then by dividing out
we can estimate the surface colour.

2.2 The Maloney Wandell Algorithm

In 1986 Maloney and Wandell[22] presented perhaps the first formal treatments of
the colour constancy problem. Their idea was that if light and surface were mod-
elled by 3- and 2-dimensional linear models it would be possible to solve for colour
constancy at a colour edge (i.e. given the rgb response of just two coloured surfaces).

Linear models of light and surface are written as

E(λ ) = Σ3
i=1εiEi(λ ) S(λ ) = Σ3

j=1σiSi(λ ) (6)

The intuition bbehind Maloney and Wandells approach is simple equation count-
ing. Given two RGBs we have 6 measurements. Assuming the same light and two
reflectances in a scene there are 2*2+3=7 unknowns. However, given the image for-
mation equation (1) it is clear that we cannot distinguish between a bright light illu-
minating a dim scene or the converse. Thus, there are 6 equations and 6 unknowns
to solve for. So, under the linear model assumptions (6), it is plausible we can es-
timate the RGB of the light given a pair of rgbs (for two different surfaces viewed
under the same illuminant). Further, and crucially, 2- and 3-dimensional models
for surface and light capture most of the variation found in typical reflectances and
illuminations[22, 21].

So, how does plausibility translate into an actual algorithm? Well, here, we do not
present their exact solution method (which is very general) but rather the equivalent
algorithm that is simpler to implement[5] (which follows from the RGB model of
image formation). We begin by observing that if reflectance has two degrees of
freedom then this means that the RGB response of any surface under a single light
must lie on a 2-dimensional plane. This idea is illustrated by the plane on the left of
Figure 7.
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Fig. 7 Left shows the plane of RGBs measured by camera (spanned by the two actual mea-
surements shown as dotted lines) under an unknown light. Right, the set of all camera mea-
surements - also a plane - for a white reference light. The mapping taking right to left defines
the colour of the unknown light.

The plane on the right shows the set of all possible camera responses for known
white light reference conditions. Let us now rewrite the RGB model of image for-
mation as the matrix equation:

⎡

⎢⎣
ρE,S

R

ρE,S
G

ρE,S
B

⎤

⎥⎦=

⎡

⎣
ρE

R 0 0
0 ρE

G 0
0 0 ρE

B

⎤

⎦

⎡

⎣
ρS

R
ρS

G
ρS

B

⎤

⎦⇒ ρ = Mα (7)

Because there is a unique diagonal matrix mapping one plane to any other
plane[5] then if we can find the diagonal matrix mapping the plane in the right
of Figure 7 (the plane where rgbs lie under a white light) to the plane we observe
for our RGB camera (the one on the left) then we have solved for the colour of the
light. The diagonal matrix D and the colour of the light are one and the same thing).

Finally, by dividing out, we can solve for the colour of the surfaces.

ρE,S
k

ρE
k

= ρS
k (8)

Unfortunately, as elegant as this algorithm is, it actually delivers terrible colour
constancy performance (the linear model assumptions do not hold sufficiently well).
However, the idea that the colours we observe in an image provide prima facie
evidence about the colour of the light is a good one: the reddest red RGB cannot
be measured under the bluest light[12]. This idea is a the heart of many modern
illuminant estimation algorithms.
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Moreover, and more importantly, the tool of linear models has proven to be in-
valuable both to understanding complex problems and arriving at tractable algorith-
mic solutions.

2.3 Statistical Illuminant Estimation

Curiously, most illuminant estimation algorithms are based on a much simpler
heuristic idea. Specifically, that the colour bias due to the illumination will manifest
itself in summary statistics calculated over an image. If the colour of the prevailing
light is yellowish then the mean of the image will be more yellow than it ought to
be. So, it is reasoned, mapping the mean of the image so it is neutral (the mean of
the red, green and blue channels are all equal) should deliver colour constancy. This
approach is called grey-world colour constancy. It is easy to show that dividing by
the mean is mathematically correct if the expected colour of every scene is gray[13].

In Lands Retinex theory[19] it was (effectively) argued that the maximum red,
maximum green and maximum blue channels response is a good estimate of the
colour of the light. Should every scene contain a white reflectance then this simple
maxRGB approach will work. It would, for example work for the example shown
in Figure 6. However, it is easy to find examples of images where neither max RGB
nor grey world work very well.

It was observed[11] that the grey-world and maxRGB algorithms are simply the
p = 1 and p =∞ Minkoswki norms. Minkowski illuminant estimation is, assuming
N pixels in an image, written as:

ρE
k = [Σi=1N[ρk,i]

p/N](1/p) (9)

Remarkably, across a number of image datasets[10] a p-norm of 4 or 5 returns
more accurate estimates of the illuminant than either max RGB or grey-world.

2.4 Evaluating Illuminant Estimation Algorithms

What do we mean if we say that one illuminant estimation algorithm works better
than another? (i.e. that a p=4 Minkowski norm approach works best). In answering
this question it is common to assume that the measured physical white point (the
rgb of a white tile placed in the scene) is the correct answer. The angle between the
estimated rgb of the illuminant and the actual true white point (the rgb for the white
tile) is taken to be a measure of how accurate an estimate of the illuminant actually
is.

The reference[14] provides a broad survey of a large number of illuminant es-
timation algorithms evaluated on a large number of data sets. The reported experi-
ments convey two important messages. First illuminant estimation is a hard problem
and even the best algorithms can fail (sometimes spectacularly). Second, progress
on improving illuminant estimation is slow: its taken 30 years to provide a modest
increase in performance.
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Camera manufacturers remain interested in improving their white balance algo-
rithms. Not only do they seek methods which work better, they are interested in
identifying images that have multiple lights (sun and shadow) [16]. Modern algo-
rithms have implemented Face detectors to aid estimation[23, 2].

3 Illuminant Invariants

The colours in two pictures of the same object observed from different viewpoints
can be quite appear to be quite differen from each other and so, it is not always
easy to find corresponding parts from two images that are the same (a necessary
step to solve the stereopsis or shape from motion problems). Thus, in carrying out
geometric matching it is common to seek geometric invariants i.e. features which do
not change with a change in viewpoint. In David Lowes famous SIFT detector[20]
features are sought that are invariant to scale and rotation. However, photometric
invariance is also a useful property.

In the colour world, Swain and Ballard found that the distribution of colours
in an image provides a useful cue for object recognition and object localisation[25].
Unfortunately, a precondition for that method to work is that image colour correlates
with object colour. Yet, as we have seen in section 2, the same object will have a
different image colour when viewed under differently coloured lights. Indeed, the
same physical colour might have a range of intensities (i.e. shading) if the object has
shape or the illumination intensity varies across a scene. Equally, if the colour of the
light changes then the physical recorded colour will change as well. In either case,
matching colour (e.g. to a database of images) without considering this problem can
result in very poor recognition performance

Colour change due to changing lighting intensity (due to Lamberts law) and light-
ing colour is illustrated in Figure 8. The simple test image shown at the top of the
figure is imaged under 3 coloured lights and from 3 different light positions. Directly
below the image capture diagram we show the corresponding 3x3 image patches for
the 9 imaging conditions. It is apparent that there is a remarkable variety of different
coloured images resulting from the same physical scene.

If we think of this simple colour edge as a region of interest in the image, then
Figure 8 informs us the edge RGBs change when the viewing condition changes.
Photometric normalisatiion methods seek simple algebraic formulae or algorithms
for canceling out this image variation.

3.1 Intensity Invariance

We can normalise for the lighting geometry of the scene - the intensity variation of
the object RGBs due to shading and the position of the light source - simply, by
dividing each RGB by its magnitude:
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⎡

⎣
r
g
b

⎤

⎦=

⎡

⎣
R/(R+G+B)
G/R+G+B)
B/R+G+B

⎤

⎦ (10)

Clearly [R G B] and [kR kG kB] have the same normalised output. Note also
post-normalisation that b=1-r-g. That is, by removing intensity the colour at each
pixel is parameterised by just two numbers. The tuple (r,g) is sometimes called the
chromaticity of the RGB.

Fig. 8 Top a simple wedge is viewed under a light source. The light source can be one of 3
different colours and be place at 3 different positions. The upper 3x3 image outputs show the
range of recorded colours for the wedge for the 3 lighting positions and 3 light colours. The
last row shows the output of intensity normalisation and the last column the result of colour
normalisation. The patch bottom right is the output of colour and intensity nomalisations
carried out iteratively.
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The effect of intensity normalisation is shown in the bottom row of Figure 8. It is
clear when ony the intensity varies that intensity normalisation suffices to make the
colour images the same.

3.2 Colour Invariance

We achieve invariance to the colour of the light in a similar way though now we
work not with the RGB at each pixel but rather with all the pixel values in a single
colour channel. The RGB of the ith pixel is made invariant to the colour of the light
by calculating:

⎡

⎣
Ri

Gi

Bi

⎤

⎦=

⎡

⎣
Ri/μ(R)
Gi/μ(G)
Bi/μ(B)

⎤

⎦ (11)

In (11) we divide each pixel value by the average of all the pixels (in the same
colour channel). Because we are adopting the RGB model of image formation (from
section 2) the illuminant colour must appear in both the numerator and denominator
of the right hand side of (11) and, so, must cancel.

The effect of this illuminant normalisation is shown in the right hand column of
Figure 8. If only the illuminant colour changes then (7) suffices to normalise the
colours (all the images in the same row have the same output colours).

However, by dividing by the mean is similar to the grey-world colour constancy
algorithm discussed in section 2 (we divide by the p=1 norm of Eq. (9)). The only
difference is that in colour constancy research we wish the normalised colours to
look correct. The bar is set lower for colour invariance: it suffices that same object
viewed under different lights is normalised to the same (albeit often false) image
colours.

3.3 Comprehensive Normalisation

Remarkably, in[8] it was shown that if we iteratively calculate (10) (intensity invari-
ance) and then (11) (colour invariance) then this process converges to an output that
is independent of lighting geometry and light colour. The 9 input images in Figure
8 all converge to the same single output shown bottom right. Importantly, colour
normalisation (intensity, colour and comprehensive) has been shown to be useful
for object recognition and image indexing[8].

3.4 Colour Constancy at a Pixel

Let us suppose that we could calculate intensity and colour invariance at a pixel i.e.
at an image containing a single RGB pixel. We cannot do this using comprehensive
normalisation. Indeed, any input pixel will, by iteratively applying (10) and (11),
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result in the triple (1,1,1) i.e. we get invariance in a trivial sense (all input RGBs
map to the same output colour).

In fact under typical illuminant conditions it is, remarkably, possible to find a
single scalar value that is independent of the intensity and is independent of the
colour of the light. To see this, we begin by adopting an alternative chromaticity
definition:

[
r
b

]
=

[
R/G
B/G

]
(12)

Note for all RGBs G/G=1 and so we ignore this term ([r b]t ] encodes RGB up to
an unknown intensity) The formula in (12) is useful because it implies that[4]:

[
rE,S

bE,S

]
=

[
rE 0
0 bE

][
rS

bS

]
(13)

i.e. the chromaticity response is a simple multiplication of the chromaticity of the
light and the chromaticity of the reflectance. The diagonal model of (3) for RGBs
holds for spectral band ratios too.

In[7] the following experiment is carried out. A picture of a Macbeth colour
checker, shown in the top of Figure 9, is captured. There we mark 7 basic colours:
Red, Orange, Yellow, Green, Blue, Purple and White patches. We now take pictures
of these patches under 10 different typical lights ranging from indoor yellow tung-
sten to white cloudy day light to blue sky i.e. a range of typical lights For each of the
7 patches we plot the spectral band ratios on a log-log scale. We plot these results
in the graph shown at the bottom of Figure 9.

Note, that as the illumination changes the spectral band ratios sweep out a line on
the log-log plot. More importantly, the slope of each line is the same for all surface
colours but the intercept varies. Clearly then, the intercept can be used as an scalar
measure of reflectance which, empirically at least, does not vary with illumination.

Suppose we take a picture of the world where there are cast shadows. The light
colour in and out of the shadow are different (the light for the shadow region is much
bluer). Assuming that the data shown in Figure 9 holds in general (implies that there
is an intrinsic reflectance invariant calculable at a pixel) then we should be able to
simply - trivially - remove shadows.

First, we remember we know the slope of the lines in Figure 9. Second, for a given
RGB we calculate its log spectral band ratio coordinates. Then we can calculate the
intercept (with either the x- or y- axis). We then take the scalar image of intercepts
and recode as a greyscale image. In Figure 10 we show the outputs of applying this
methodology. The shadows magically disappear.

In general, the grey-scale invariant image, that is independent of the colour of
the light and intensity, conveys salient information and has been shown to be use-
ful in applications ranging from scene understanding[9], to object recognition[7] to
tracking[18].

The reader will, no doubt, be curious as to why spectral band ratios on a log
log plot look as they do in Figure 9. Well, it turns out that most lights (at least in
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Fig. 9 Top, Macbeth colour checker. Bottom, log spectral band ratios for marked surfaces
for 10 lights (the dots shown).

terms as how they project to form RGBs) can be thought of as Planckian black-body
radiators. The colour of black-body radiators is parameterised by one number: tem-
perature. Because of the form of the mathematical equation that models black-body
radiation, it turns out that the log-log plot must look like Figure 8. For a description
of why this is the case, the reader is referred to [7].

4 Computer Vision and Colour Perception

There are many applications where we would like a machine vision to see like we do.
Unfortunately, we do not have good operational models of our own vision system so
we, instead, seek to equip machine vision systems with simpler -though, still useful
- competences. In the applied colour industries there are specialised measurement
devices that attempt to numerically gauge the similarity of colour pairs. Figure 10
illustrates the industrial colour difference problem. Perceptual relevance in machine
vision is sometimes taken to mean that the vision system might be used for colour
difference assessment.
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Fig. 10 Left, Raw camera image. (As described in the text), illuminant invariant calculated
in the right: the shadows magically disappear.).

Assuming we had camera sensors with sensitivities the same as those shown in
2c (not generally the case) and if we also knew the colour of the light then there
are standardised formula[27] for mapping camera measurements to, so called, Lab
values. Euclidean distance in Lab space approximately account for the perceived
difference between stimuli. Specifically, a distance of 1 correlates with a just no-
ticeable difference. We recapitulate the CIE Lab[27] equations below:

⎡

⎣
x
y
z

⎤

⎦=

⎡

⎣
x/xn

y/yn

z/zn

⎤

⎦

⎡

⎣
L
a
b

⎤

⎦=

⎡

⎣
0 1160

500 −500 0
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⎤

⎦

⎡
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x1/3

y1/3

z1/3

⎤

⎦+

⎡

⎣
−16

0
0

⎤

⎦ (14)

Here x, y and z are the responses of a camera with sensitivities 2c. The triple
(xn,yn,zn) is the camera response to the illuminant. The Lab formula was derived
[27] by fitting psychophysical data (real colour difference judgements made by peo-
ple). In Figure 11, the ’Delta E’ colour difference is about 9 indicating a visually
significant colour difference.

To use a vision system for colour grading when the sensitivities are not like those
in 2c (the actual sensitivities of a commercial camera are shown in 2d) then this
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Fig. 11 Two similar colour patches are measured and their colours summarised according
to three (L, a and b) coordinates. The Euclidean distance between the triples correlates with
perceived colour difference.

means that the actual camera colours must be mapped to approximate corresponding
xyzs. This mapping is often solved for as a simple linear transform:

min
T

||RN×3T3×3 −XN×3|| (15)

where, RN×3 above is a set of measured RGBs for a calibration target (e.g. of
the kind shown on the left of Figure 9). XN×3 are the corresponding measured
XYZs. Once we have solved for the best regression matrix T we can use a camera
to measure arbitrary scenes and calculate Labs according to the above formulae.

4.1 Colour Difference Formulae and Computer Vision (a
Cautionary Remark)

That we might carry out a simple calibration and recover approximate Lab values is
all well and good if we wish to carry out colour measurement. But, the reader should
be aware that Euclidean distance on CIE Lab values only models small colour dif-
ferences. If a pair of colours are compared and found to be (say) 20 units apart, this
means almost nothing at al. i.e. we cannot measure the perceived closeness of red
and green using Lab colour differences.

Unfortunately, in computer vision researchers sometimes assume that once we
transform to Lab then we have somehow carried out a ’perception transform’. It is
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naively proposed that, simply, by transforming to Lab space we can claim perceptual
relevancy. One cannot. It is often quite inappropriate to claim that a given tracking,
recognition, object finding algorithm in Lab space says anything much about our
own perception or how we ourselves solve these problems.

5 Conclusion

Colour is a huge field and is studied in physics, computer science, psychology and
neuroscience (among other fields). While great progress has been made in the last
100 years, colour is still far from a solved problem. That this is so, accounts, in part,
for colour sometimes being used wrongly in computer vision.

In this short primer we have tried to introduce the reader to colour in computer vi-
sion. We have explained how camera RGBs are mapped to image colours that drive
the display (colour correction). Removing colour bias due to illumination (colour
constancy) is perhaps the most studied aspect of colour in computer vision. Solving
for colour constancy is essential if colour is to be used as an absolute correlate to
reflectance. However, relative measures of colour - functions of proximate pixels -
can be used to cancel illumination effects (colour invariance). Remarkably, we can
calculate a grey-scale invariant at a pixel which cancels the colour and intensity of
the light (with respect to which shadows, magically, disappear).

The assumption that a camera system might easily play a surrogate role for our
own vision system is a seductive idea. The good news is that, yes, colour cameras
can be used for colour measurement. The bad news is that colour measurement does
not really say anything very profound about how we see
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Descriptor Learning for Omnidirectional Image
Matching

Jonathan Masci, Davide Migliore, Michael M. Bronstein, and Jürgen Schmidhuber

Abstract. Feature matching in omnidirectional vision systems is a challenging prob-
lem, mainly because complicated optical systems make the theoretical modelling of
invariance and construction of invariant feature descriptors hard or even impossible.
In this paper, we propose learning invariant descriptors using a training set of similar
and dissimilar descriptor pairs. We use the similarity-preserving hashing framework,
in which we are trying to map the descriptor data to the Hamming space preserv-
ing the descriptor similarity on the training set. A neural network is used to solve
the underlying optimization problem. Our approach outperforms not only straight-
forward descriptor matching, but also state-of-the-art similarity-preserving hashing
methods.

1 Introduction

Feature-based matching between images has become a standard approach in com-
puter vision literature in the last decade, in many respects due to the introduction of
stable and invariant feature detection and description algorithms such as SIFT [22]
and similar methods [26, 2, 37]. The usual assumption guiding the design of feature
descriptors is invariance across viewpoints, which should guarantee that the same
feature appearing in two different views has the same descriptor. Since perspective
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transformations are approximately locally affine, it is common to construct affine-
invariant descriptors [20].

While being a good model in many cases, affine invariance is not sufficiently
accurate in cases of wide baseline (very different view points) or even more compli-
cated setting of optical imperfections such as lens distortions, blur, etc. In particular,
in omnidirectional vision systems the distortion is introduced intentionally (e.g., us-
ing a parabolic mirror [24]) to allow a 360◦ view. Designing invariant descriptors
for such cases is challenging, as the invariance is complicated and cannot be easily
modeled.

An alternative to ‘invariance-by-construction’ approaches which rely on a sim-
plified invariance model is to learn the descriptor invariance from examples. Recent
work of Strecha et al. [34] showed very convincingly that such approaches can sig-
nificantly improve the performance of existing descriptors.

In this paper, we consider the learning of invariant descriptors for omnidirec-
tional image matching. We construct a training set of similar and dissimilar de-
scriptor pairs including strong optical distortions, and use a neural network to learn
a mapping from the descriptor space to the Hamming space preserving similarity
on the training set. Experimental results show that our approach outperforms not
only straightforward descriptors, but also other similarity-preserving hashing meth-
ods. The latter observation is explained by the suboptimality of existing approaches
which solve a simplified optimization problem.

The main contribution of this paper is two-fold. First, we formulate a new
similarity-sensitive hashing algorithm. Second, we use this approach to learn
smaller invariant descriptors suitable for feature matching in omnidirectional im-
ages. The rest of the paper is organized as follows. In Section 2, we overview the
related works. Section 3 is dedicated to metric learning and similarity-preserving
hashing methods. In Section 4, we describe our NNhash approach. Section 5 con-
tains experimental results. Finally, Section 6 discusses potential future work and
concludes the paper.

2 Background

Although feature-based correspondence problems have been investigated in depth
for standard perspective cameras, omnidirectional image matching still remains an
open problem, largely because of the complicated geometry introduced by lenses
and curved mirrors. Broadly speaking, the existing approaches either try to reduce
the problem to the simpler perspective setting, or design special descriptors suitable
for omnidirectional images.

Svoboda et al. [35] proposed to use adaptive windows around interest points
to generate normalized patches with the assumption that the displacement of the
omnidirectional system is smaller than the depth of the surrounding scene. Nayar
[27] showed that, given the mirror parameters, it is possible to generate a perspective
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version of the omnidirectional image and Mauthner et al. [23] used this approach
to generate perspective representation of each interest point region. This unwarp-
ing procedure removes the non-linear distortions and enables the use of algorithms
designed for perspective cameras. Micusik and Pajdla [25] checked the candidate
correspondences between two views using the RANSAC algorithm and the epipo-
lar constraint [12]. Construction of scale-space by means of diffusion on manifolds
was used in [3, 15, 10] for the construction of local descriptors. Puig et al. [28] inte-
grated the sphere camera model with the partial differential equations on manifolds
framework.

Another possible solution is to consider different kind of features to exploit partic-
ular invariance in omnidirectional systems, for example, extracting one-dimensional
features [5] or vertical lines [31] and defining descriptors suitable for omnidirec-
tional images.

More recently, it was shown in [34] that one can approach the design of invariant
descriptors from the perspective of metric learning, constructing a distance between
the descriptor vectors from a training set of similar and dissimilar pairs [1, 41]. In
particular, similarity-preserving hashing methods [13, 33, 42, 21, 29] were found
especially attractive for descriptor learning, as they significantly reduce descriptor
storage and comparison complexity. These methods have also been applied to image
search [16, 38, 18, 17, 19, 40], video copy detection [7], and shape retrieval [6].

In [30], binary codes were produced using a restricted Boltzmann machine and
in [42] using spectral hashing in an unsupervised setting. The authors showed that
the learnt binary vectors capture the similarities of the data. With such an approach
it is however impossible to explicitly provide information about data similarities.
Since in our problem it is easy to produce labeled data, supervised metric learning
is advantageous.

3 Similarity Preserving Hashing

Given a set of keypoint descriptors, represented as n-dimensional vectors in R
n,

the problem of metric learning is to find their representation in some metric space
(Z,dZ) by means of a map of the form y : Rn → (Z,dZ). The metric dZ ◦ (y× y)
parametrizes the similarity between the feature descriptors, which may be difficult
to compute in the original representation. Typically, (Z,dZ) is fixed and y is the
map we are trying to find in such a way that, given a set P of pairs of descriptors
from corresponding points in different images (positives) and a set N of pairs of
descriptors from different points (negatives), we have dZ(y(x),y(x+)) ≈ 0 for all
(x,x+) ∈ P and dZ(y(x),y(x−))
 0 for all (x,x−) ∈ N with high probability.

A particular setting of this problem, where Z = {±1}m is the m-dimensional
space of binary strings and dHm(y,y′) = m

2 − 1
2 ∑m

i=1 sign(yiy′i) is the Hamming met-
ric, the problem is referred to as similarity-preserving hashing. Here, we limit our
attention to affine embeddings of the form
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y = sign(Px+ t) , (1)

where P is an m×n matrix and t is an m×1 vector. Our goal is to find such P and t
that minimize one of the following cost functions,

Lc(P, t) = E{y(x)Ty(x−)−αy(x)Ty(x+)}, or

Ld(P, t) = E{α‖y(x)− y(x+)‖2 −‖y(x)− y(x−)‖2}

for (x,x+) ∈ P and (x,x−) ∈ N . Both cost functions try to map positives as close
as possible to each other (expressed as large correlations or small distance), and
negatives as far as possible from each other (small correlation or large distance),
in order to ensure low false positive (FPR) and false negative (FNR) rates. α > 0
is a parameter determining the tradeoff between the FPR and FNR. In practice, the
expectations are approximated as means on some sufficiently large training set.

The problem minP,t L(P, t) is a non-linear non-convex optimization problem
without an obvious simple solution. It is commonly approached by the following
two-stage relaxation: first, approximate the map y ≈ Px by removing the sign and
the offset vectors, minimizing

L̂c(P) = E{(Px)T(Px−)−α(Px)T(Px+)}, or

L̂d(P) = E{α‖P(x− x+)‖2 −‖P(x− x−)‖2}

w.r.t. to P (introducing some regularization, e.g., PTP = I, in order to avoid a trivial
solution P= 0). Second, fix P∗ = argminP L̂(P) and solve t∗ = argmint L(P∗, t) w.r.t.
t. To further simplify the problem, it is also common to assume separability, thus
solving independently for each dimension of the hash.

3.1 Similarity-Sensitive Hashing (SSH)

In [33], the above strategy was used for the approximate minimization of the cost
Lc. The computation of optimal parameters P and t was posed as a boosted binary
classification problem, where dH(y,y′) acts as a strong binary classifier, and each
dimension of the linear projection sign(pix + ti) is considered a weak classifier
(here, pi denotes the ith row of P). This way, AdaBoost can be used to find a greedy
approximation of the minimizer of Lc by progressively constructing P and t. At the
i-th iteration, the i-th row of the matrix P and the i-th element of the vector t are
found minimizing a weighted version of Lc. Since the problem is non-linear, such an
optimization is a challenging problem. In [33], random projection directions were
used. A better method for projection selection similar to linear discriminative anal-
ysis (LDA) was proposed [7, 8]. Weights of false positive and false negative pairs are
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increased, and weights of true positive and true negative pairs are decreased, using
the standard AdaBoost reweighting scheme [11].

3.2 Covariance Difference Hashing (Diff-Hash)

Strecha et al. [34] used the following relaxation of the problem. First, a simplified
problem without the sign non-linearity and threshold is solved for projection matrix
P,

min
PTP=I

E{(Px)T(Px−)|(x,x−) ∈ N }

−αE{(Px)T(Px+)|(x,x+) ∈ P}. (2)

The constraint PTP = I is rather arbitrary and required to avoid the trivial solution
P = 0. This problem can be rewritten as

min
PTP=I

tr(PT(Σ− −αΣ+)P), (3)

where Σ± denote the n × n covariance matrices of the positive and negative data,
respectively. The solution of (2) is given explicitly as

P = [λ 1/2
1 v1, . . . ,λ

1/2
m vm]

T = Λ1/2
m Vm,

the m smallest eigenvectors of the matrix Σ− −αΣ+ = VΛVT of weighted covari-
ance differences (here we assume eigenvalues and corresponding eigenvectors are
sorted in increasing order). The relaxed problem is thus separable and can be solved
separately in each dimension (in particular, adding dimension m+1 amounts to tak-
ing the next eigenvector and does not require recomputing the previous dimensions).

Second, fixing the projection P = Λ1/2
m Vm, find the threshold vector by solving

min
{ai}

∑m
i=1E{sign(pT

i x+ ai)sign(pT
i x+ ai)|N }

−α∑m
i=1E{sign(pT

i x+ ai)sign(pT
i x+ ai)|P}.

The problem is separable and can be solved independently in each dimension i. The
terms in the problem can be identified with the false positive and negative rates as
function of the threshold ai,

FNR(ai) = Pr(pT
i x+ ai < 0 and pT

i x′+ ai > 0|P)

+ Pr(pT
i x+ ai > 0 and pT

i x′+ ai < 0|P)

and

FPR(ai) = Pr(pT
i x+ ai < 0 and pT

i x′+ ai < 0|N )

+ Pr(pT
i x+ ai > 0 and pT

i x′+ ai > 0|N ).
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The above probabilities can be estimated from histograms (cumulative distributions)
of pT

i x and qT
i y on the positive and negative sets. The optimal threshold is obtained

by means of one-dimensional search,

min
a

αFNR(a)+FPR(a). (4)

3.3 LDAHash

A similar method was derived in [34] by transforming the coordinates as C−1/2
− x,

which allows to write minP L̂d(P) as

min
P

tr{P(C+C−1
− )PT} s.t. PTP = I. (5)

This approach resembles linear discriminant analysis (LDA), hence the name LDA-
hash. Requiring an orthonormal projection matrix P, the problem has a separable
closed-form solution consisting of the m smallest eigenvectors of (C+C−1

− ).

4 Neural Network Hashing (NNhash)

The problem of existing and most successful similarity-preserving hashing ap-
proaches such as LDA- or diff-hash is that they do not solve the optimization prob-
lem minP,t L(P, t) but rather its relaxation. As a result, the parameters P∗, t∗ found
by these methods in the aforementioned two-stage separable scheme is suboptimal,
i.e., L(P∗, t∗) > minL. Our experience shows that in some cases, the suboptimality
is dramatic (at least an order of magnitude).

A way of solving the ‘true’ optimization problem is by formulating it in the neu-
ral network (NN) framework and exploiting numerous optimization techniques and
heuristics developed in this field. Since we have a way of cheaply producing labeled
data, we decide to adopt the siamese network architecture [32, 14] which, contrary
to conventional models, receives two input patterns and minimizes a loss function
similar to equation (2),

Lnn(P, t) =
1
2
‖y(x)− y(x+)‖2 +

1
2
(max{0,m−‖y(x)− y(x−)‖})2, (6)

where the constant m represents the margin between dissimilar pairs. The margin
is introduced as regularization to avoid the system from minimizing the loss just
pulling two vector as far apart as possible. The embedding is then learned to make
positive pairs as close as possible and negative pairs at least at distance m.

Network architecture of this type can be traced back to the work of Schmidhuber
and Prelinger [32] on problems of predictable classification. In [14], siamese
networks were used to learn an invariant mapping of tiny images directly from
pixel representation, whereas in [36] a similar approach is used to learn a model that
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is highly effective at matching people in similar pose which exhibits invariance to
identity, clothing, background, lighting, shift and scale. An advantage of such ar-
chitecture is that one can create arbitrarily complex embeddings by simply stacking
many layers in the network. In all our experiments, in order to make a fair compari-
son to other hashing methods, we adopt a simple single layer architecture, wherein
y(x) = sign(Px+ t). Network training attempts to find P, t that minimize Lnn (which
is a regularized version of Ld). Since we solve a non-linear problem without intro-
ducing any simplification or relaxation, the results are expected to be better com-
pared to hashing methods described in Section 3. In the following, we refer to our
method as NNhash.

Since a binary output is required, we adopt tanh(β t) ≈ sign(t) as the non-linear
activation function for our siamese network, which enforces binary vectors when
either m or the steepness β of the function is increased. Since the problem is highly
non-convex, it is liable to local convergence, and thus there is no theoretical guar-
antee to find the global minimum. However, by initializing P, t by the solution ob-
tained by one of the standard hashing methods, we have a good initial point that can
be improved by network optimization,

5 Results

5.1 Data

In our experiments, we used the Rawseeds dataset [4, 9]. The dataset contained
video sequences of a robot equipped with an omnidirectional camera system based
on a parabolic mirror moving in an indoor and outdoor scene. The image undergoes
significant distortion since different parts of the scene move from the central part of
the mirror to the boundaries.

We used the toolbox of Vedaldi [39] to compute SIFT features in each frame
of the video. Since the robot movement is slow, the change between two adjacent
frames in the dataset is infinitesimal, and SIFT features can be matched reliably.
Tracking features for multiple frames, we constructed the positive set as the tran-
sitive closure of these adjacent feature descriptor pairs. This way, the positive set
included also descriptors distant in time, and, as a result of robot motion located at
different regions in the image and thus subject to strong distortions. As negatives,
we used features not belonging to the same track.

In addition to the Rawseeds dataset, we created synthetic omnidirectional
datasets using panorama images that were warped simulating the effect of a
parabolic mirror. The warping intentionally was not the same as in Rawseeds
dataset. By moving the panorama image, we created synthetic motion with known
pixel-wise groundtruth correspondence (Figure 5). The positive and negative sets
for synthetic data were constructed as described above.
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Fig. 1 A few frames from the Rawseeds dataset examplifying how a descriptor changes over
time due to camera motion throughout the scene. First row: omnidirectional images of the
indoor dataset, shown at times 1 (left), 5 (middle) and 50 (right). Second row: SIFT descrip-
tors at point indicated in red. Third row: binary descriptors of length 32 produced by NNhash
trained on outdoor images.

5.2 Methods

We compared the SSH [33], diff-hash [34], and our NNhash methods. For the
NNhash training we used scaled conjugate gradient over the whole batch of de-
scriptors, which we normalize in the range [−1..1]. We used a margin m = 5 in
all cases. The steepness factor for tanh is β = 1 in the case of 32 bit while for 64
bit we gradually increased it up to 3 so to have a smooth binarization. We reached
convergence in about 50 epochs in all cases.

5.3 Performance Degradation in Time

For this experiment, we constructed the training set using descriptors extracted from
about 300 consecutive frames of the outdoor sequence (similar results were obtained
when using outdoor or synthetic data for training). We considered descriptors that
could be tracked for at least 60 consecutive frames and selected as positives pairs of
descriptors belonging to these tracks.

To avoid bias, we selected pairs of descriptors in frames ti, t j in such a way that
the time difference Δ t = |ti − t j| between the frames was uniformly distributed. The
training was performed on a positive set of size 105 and on a negative set of size 106

to produce hashes of length 32 and 64 bits.
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10 ≤ Δ t ≤ 30 20 ≤ Δ t ≤ 40

Fig. 2 ROC curve for the outdoor dataset, with frames taken at various distance Δ t. Each
hashing method is shown with 32 and 64 bits. Note significant performance degradation of
SIFT and only minor performance degradation of NNhash.

Table 1 Descriptor matching performance using different methods and descriptor size for
frames with time range 10 ≤ Δ t ≤ 30.

m EER FPR@1% FPR@0.1%
SIFT 1024 1.91% 3.08% 13.87%

NNhash 32 1.66% 3.77% 23.81%
64 1.31% 1.92% 9.48%

DiffHash 32 4.41% 9.36% 29.95%
64 2.57% 5.17% 18.30%

SSH 32 4.02% 15.64% 36.41%
64 2.22% 4.90% 16.74%

Table 2 Descriptor matching performance using different methods and descriptor size for
frames with time range 20 ≤ Δ t ≤ 40.

m EER FPR@1% FPR@0.1%
SIFT 1024 3.31% 7.47% 27.94%

NNhash 32 2.70% 6.98% 24.98%
64 2.38% 4.54% 14.22%

DiffHash 32 5.17% 12.55% 37.49%
64 3.69% 8.75% 27.34%

SSH 32 5.52% 24.10% 47.29%
64 3.46% 9.48% 27.66%

Testing was performed on a different portion of the same sequence, where frames
at distance 10 ≤ Δ t ≤ 30 (Figure 2, left) and 20 ≤ Δ t ≤ 40 (Figure 2, right) were
used. A few phenomena can be observed in Figure 2 showing the ROC curves
of straightforward SIFT matching using the Euclidean distance and matching of
learned binary descriptors using the Hamming distance. First, we can see that even
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Fig. 3 Left: ROC curve for the models trained on outdoor data and tested on indoor data with
descriptors taken at 35 ≤ Δ t ≤ 60. Right: ROC curve for synthetic trained models. Testing
performed on indoor real descriptors.

SIFT NNhash

DiffHash SSH

Fig. 4 Visual comparison of the matches produced on outdoor data with Δ t = 70. Ground
truth matches are plotted in red and descriptor matches (1-closest) in green. Ideally (if match-
ing completely coincides with the groundtruth), only green lines should be visible. Interesting
matches appear on the bottom-left portion of the image where NNhash learns invariance to
high distortions.

with very compact descriptors (as small as 64 bit, compared to 1024 bit required
to represent SIFT) we match or outperform SIFT. These results are consistent with
the study in [34]. Second, we observe that NNhash significantly outperforms other
hashing methods for the same number of bits. This is a clear indication that SSH
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Fig. 5 Illustrative example of how synthetic data is generated. First row from left to right:
the original omnidirectional image, the synthetic image from the first shift of 5 pixels, the
synthetic image after 14 vertical shifts. Second to fourth rows: unwarped panorama images
generated from images in the first row.

and diff-hash methods are finding a suboptimal solution by solving a relaxed prob-
lem, while NNhash attempts to solve the full non-linear non-convex optimization
problem.

Comparing Figure 2 (left and right) and Tables 1–2, we can observe how the
matching performance degrades if we increase the time between the frames (from
10 − 30 frames to 20 − 40 frames). Because of significant distortions caused by
the parabolic mirror, objects moving around the scene appear differently. This phe-
nomenon is especially noticeable when the distance between the frames (Δ t) is
large. SIFT shows significant degradation, while NNhash, trained on a dataset in-
cluding positive pairs at distances up to Δ t = 60 degrades only slightly (even a
32-bit NNhash performs better than SIFT). This is a clear indication that we are
able to learn feature invariance.

Finally, Figure 4 shows a visual example of feature matching using different
methods. NNhash produces matches most similar to the groundtruth (shown in
green).
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5.4 Generalization

To test for generalization we perform experiments of transfer learning from outdoor
data to indoor data and from synthetic data to real data.

Figure 3-left shows the performance of descriptors trained on outdoor and tested
on indoor data. We can see that even though the data used for training is very dif-
ferent from the one used for testing (i.e. see Figure 1 and Figure 4 for a visual com-
parison) we achieve better performance than SIFT with just 64 bits. Figure 3-right
shows the performance of descriptors trained on synthetic and tested on indoor data.
All learning methods perform better than SIFT. The discrepancy between NNhash
and the other algorithms is less pronounced that in the real case.

6 Discussion, Conclusions, and Future Work

We presented a new approach for feature matching in omnidirectional images based
on similarity-sensitive hashing and inspired by the recent work [34]. We learn a
mapping from the descriptor space to the space of binary vectors that preserves the
similarity of descriptors on a training set. By carefully constructing the training set,
we account for descriptor variability, e.g. due to optical distortions. The resulting
descriptors are compact and are compared using the Hamming metric, offering sig-
nificant computational advantage over other traditional metrics such as L2. Though
tested with SIFT descriptors, our approach is generic and can be applied to any
feature descriptor.

We compared several existing similarity-preserving hashing methods, as well as
our NNhash method based on a neural network. Experimental results show that
NNhash outperforms other approaches. An explanation to this behavior is the fact
that of today’s state-of-the-art similarity-preserving hashing algorithms like SSH or
LDAHash solve a simplified optimization problem, whose solution does not neces-
sarily coincide with the solution of the “true” non-linear non-convex problem. We
showed that using a neural network, we can solve the “true” problem and yield better
performance.

Finally, our discussion in this paper was limited to simple embeddings of the form
sign(Px+ t) which in some cases are too simple. The neural network framework
seems to us a very natural way to consider more generic embeddings using multi-
layer network architectures.
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Visual Correspondence, the Lambert-Ambient
Shape Space and the Systematic Design of
Feature Descriptors

Stefano Soatto and Jingming Dong

Abstract. In this expository article, we justify the use of sparse local descriptors for
correspondence, and illustrate a systematic method for their design. Correspondence
is the process that allows using image data to infer properties of the “scene,” where
the scene can refer to a specific object or landscape, or can be abstracted into a cat-
egory label to take into account intra-class variability. As the generality increases,
the complexity of nuisance factors does too, so global pixel-level correspondence
is not viable, and one has to settle instead for sparse descriptors. These should be
co-designed with the classifier, and for a given classifier family, one can design
the descriptors to be invariant to uninformative nuisances that are explicitly mod-
eled, insensitive to other nuisances that are not explicitly modeled, and maximally
discriminative, relative to the chosen family of classifiers. Existing descriptors are
interpreted in this framework, where their limitations are illustrated, together with
pointers on how to improve them.

1 Visual Correspondence

Correspondence is the process of attributing properties of different images to the
same underlying “scene.” Depending on what one means by “scene,” various nui-
sance factors contribute to the variability that different images exhibit, so establish-
ing correspondence largely entails dealing with the effects of such nuisances.

In the simplest case where the “scene” is some static layout of surfaces (“ob-
jects”) and the images are taken from nearby vantage points, under constant il-
lumination and camera rotation, different images are related by a simple (global
projective) transformation. Other than around the boundary, every point in one im-
age can be put into one-to-one correspondence with a point in another image, and
multiple images can be collated into a mosaic (Fig. 1). The same goes for arbitrary
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camera motion in three-dimensional (3-D) space when the scene is planar [15] (Fig.
1). In both cases, the only nuisance variability is a projective deformation of the
image domain.1

Fig. 1 Viewpoint changes induce relatively simple nuisance transformations of the image
only when the viewpoint changes are small relative to the distance from the scene (for in-
stance, pure rotational motion, top from [15]), or when the scene is planar (middle, from
[15]). In both cases, occlusion phenomena are negligible or absent, and the deformation of
the image domain can be represented by a global projective transformation. Even when par-
allax is present (bottom), one can establish (possibly non-unique) correspondence between
every point on the co-visible domain (from [2]).

However, as soon as there is some parallax (the translation of the optical center,
or baseline, is non-zero) and the scene is not flat, the domain deformation cannot be
captured by a simple (global, finite-dimensional, invertible) transformation. Never-
theless, for sufficiently simple scenes and sufficiently small motions, it is possible

1 For tutorial material on projective transformations, see Chapter 3 of [15].
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to determine a domain deformation that brings co-visible points into one-to-one cor-
respondence (Fig. 1 bottom). In fact, typically there are infinitely many such defor-
mations, and one can impose additional conditions to choose among them (regular-
ization). The linear component of such a deformation is called optical flow, and can
be determined along with the collection of points that are visible in one image but
occluded in another [2] (Fig. 2). If the scene is static, establishing correspondence
is equivalent to reconstructing a range (depth) map of the scene [22].

Fig. 2 Occluded regions are regions of one image that back-project onto portions of the
scene that are not visible in another image. They can be determined by comparing multiple
images of the same scene, and inferred together with the domain deformation w or its linear
component (optical flow) by solving a convex variational optimization problem [3].

When the baseline is large,2 however, occlusion phenomena become ubiquitous
and the optical flow becomes increasingly complex.3 Rather than modeling corre-
spondence as a very complex function defined globally on the image domain, as
customary in functional approximation one can partition the domain into regions or
segments each of which independently transforms via a relatively simple map, for
instance a projective, affine, or similarity transformation. Because correspondence
cannot be established for large portions of the image domain [9] (the aperture prob-
lem, addressed by regularization in the short-baseline case), such correspondence
can typically be established only for a relatively small set of regions, usually of
relatively small size.

Even when not susceptible to the aperture problem, because global consistency is
not enforced, there are typically multiple regions that could potentially correspond,
in the sense that they “look similar” – up to a small-dimensional transformation –
in different images. More importantly, the actual correspondent may not be one of
them. Because of changes of illumination, or violation of the Lambertian assump-
tion implicit in correspondence [2], actual intensity values at or around correspond-
ing points can be rather different. So, it is customary to include among nuisance
factors not only (geometric) transformations of the domain of the image, but also

2 The distance between the optical centers is large relative to the distance to the scene.
3 In fact, as complex as an arbitrary infinite-dimensional homeomorphism of the image do-

main [23]. A homeomorphism is a continuous and invertible transformation of the plane,
with continuous inverse.
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(photometric) transformations of its range. For instance, photometric changes can
be modeled locally as a monotonic continuous (a.k.a. contrast) transformation.

The situation is even less predictable when the “scene” is not static but can instead
deform. In this case, correspondence based on local properties of the image can
at best be hypothesized, but any hypothesis would have to be validated against a
model of the intrinsic deformation of the scene or objects within. Worse yet, such
a “deformation” can be geometric (as in a deformable object) or photometric, when
the “scene” is not a specific object, but a category label, where each object within
the category can exhibit intrinsic photometric variability.

In this case, two or more images are in correspondence if they portray the same
“scene,” that is if they portray (possibly different) objects belonging to the same
category. In addition to nuisance variability, which we seek to discount or eliminate,
we then have intrinsic variability, often represented in the form of a training set,
against which we must test our correspondence hypothesis.

Correspondence then is naturally framed as a statistical hypothesis testing prob-
lem, whereby images provide a mechanism for hypothesis generation (bottom-up)
and models or assumptions provide a mechanism for validation (top-down). Among
the nuisance variability that we seek to eliminate in the hypothesis generation pro-
cess are domain deformations due to changes of viewpoint, and range deformations
due to illumination. Among the assumptions that we may want to enforce in the val-
idation stage are co-visibility (a basic requirement of all forms of correspondence),
rigidity and photometric equivalence up to contrast (if we are interested in a specific
static object or scene) and intrinsic photometric and geometric variability (if we are
interested in a deforming object or in a category of objects).

In this expository paper we formalize the notions above – that serve to motivate
the necessity for local feature detection and invariant description – in a manner that
allows the reader not only to use existing feature descriptors, but also compare them
on analytical grounds, and hopefully design better ones.

2 Nuisance Groups, Orbits and Shape Spaces

In this tutorial section, we deal with transformations that exhibit the structure of
a group, acting either on the domain or the range of the image. We start with the
simplest case of Euclidean (planar) shape spaces, and show how the concepts can
be extended to more complex groups.

A group is a set G with an operation (composition) that combines two elements g1

and g2 into an element g1 ◦g2 ∈ G of the same set, has an element e ∈ G (the “null”
or “identity”) that leaves the operand unchanged g ◦ e = g, and each element g has
an inverse, that is another element g−1 of the group that, composed with it, gives
the null element. A group can act on a space X by transforming an element x ∈ X
into another element of the same space. We indicate the action with g(x) or g ◦ x
or simply gx. Examples include the general linear group GL(n) of n× n invertible
matrices, acting on R

n, where composition is represented by matrix multiplication.
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There are many groups that can act on an image. The simplest is planar trans-
lation, due for instance to camera calibration or to a change of viewpoint, that can
however generate domain deformations that are as complex as a generic (infinite-
dimensional) diffeomorphism.4 Similarly, a linear or affine transformation of the
pixel values can be due to camera auto-gain control or to changes of illumination.
Such nuisance variability is typically uninformative, although there may be appli-
cations where it is not [21]. The reason for studying group transformations is that
they organize the data into orbits that are equivalence classes, and can therefore be
represented by any one element of the class. In other words, the entire variability
due to a group transformation, no matter how complex or high-dimensional, can be
collapsed to a single element by choosing a suitable (canonical) representative for
each class.

We will first illustrate the concept with triangles, as a special case of classical
finite-dimensional shape space [11]. Each triangle can be described by the co-
ordinates of its three vertices, x1,x2,x3 ∈ R

2, or equivalently by a 2 × 3 matrix
x = [x1,x2,x3] ∈ R

2×3 ∼ R
6. Therefore, a triangle can be thought of as a “point”

in six-dimensional space X = R
6. However, depending on the reference frame with

respect to which the coordinates are expressed, we have different coordinates x ∈ X .
Indeed, if we “move” the triangle around the plane, its coordinates will describe
a trajectory in X , and yet we want to capture the fact that it is the same triangle.
Shape Spaces are designed to capture precisely this concept: The shape of a config-
uration is what is preserved regardless of the choice of coordinates, or equivalently
regardless of the motion of the object.

Now, even on the plane, one can consider different kinds of coordinates, or equiv-
alently different kinds of motions, or different kind of groups acting on the tri-
angles. For instance, one can consider Euclidean coordinates, or correspondingly
rigid motions, whereby the triangles are transformed in such a way as to preserve
distances, angles and orientation. In this case, the matrix of coordinates x ∈ X is
transformed via multiplication by a rotation matrix R ∈ SE(2), that is a matrix of

the form R =

[
cosθ −sinθ
sinθ cosθ

]
for some θ ∈ [0,2π) and the addition of an offset

T ∈ R
2 (a translation vector). So if we indicate with g = (R,T ) ∈ SE(2) the group

of rigid motions, and with gx the action of the group on the coordinates, we have
that x′ = gx ∈ R

2×3 and the transformed coordinates are x′i = Rxi + T . However,
we could also consider the similarity group where the rectangles are allowed to be
scaled, while retaining the angles, in which case g = (αR,T ) and points are trans-
formed via x′i = αRxi + T for some α > 0, or the affine group where R ∈ GL(2)
is an arbitrary 2× 2 invertible matrix. In any case, what we want to capture as the
“essence” of the triangle x ∈ S is what remains unchanged as the group acts on the
object of interest by transforming its coordinates.

4 A diffeomorphism of the plane is a continuous and differentiable transformation that has a
differentiable inverse. The set of all planar diffeomorphisms is a group.
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2.0.1 Orbits

Geometrically, we can think of the group G � g acting on the space X by generating
orbits, that is equivalence classes

[x]
.
= {gx | g ∈ G}.

Different groups will generate different orbits. Remember that an equivalence class
is a set that can be represented by any of its elements, from which we can construct
the entire orbit by acting with the group. As we change the group element g, the
coordinates gx change, but what remains constant is the entire orbit [gx] = [x] for
any g ∈ G. Therefore, the entire orbit is the object we are looking for; it is the
maximal invariant to the group G. We now need an efficient way to represent this
orbit algebraically, and to compare different orbits.

2.0.2 Max-Out

The simplest approach consists of using any point along the orbit to represent it.
For instance, if we have two triangles we simply describe their “shape” by their
coordinates x,y ∈R

2×3. However, when comparing the two triangles we cannot just
use any norm inR2×3, for instance d(x,y)= ‖x−y‖, lest the same triangle, written in
two different reference frames, would have non-zero distance, for instance if y = gx,
we have d(x,y) = ‖x− gx‖ = ‖e− g‖‖x‖ which is non-zero so long as the group
element g is not the identity e. Instead, when comparing two triangles we have to
compare all points on their two orbits,

d(x,y) = min
g1,g2

‖g1x− g2y‖
R6 .

This procedure is called max-out, and entails solving an optimization problem every
time we have to compute a distance (Fig. 3)

2.0.3 Canonization

As an alternative, since we can represent any orbit with one of its elements, if we can
find a consistent way to choose a representative of each orbit, perhaps we can then
simply compare such representatives, instead of having to search for the shortest
distance along the two orbits. The choice of a consistent representative, also known
as a canonical element, is called canonization. The choice of canonization is not
unique, and it depends on the group. The important thing is that it must depend
on each orbit independently of others. So, if we have two orbits [x] and [y], the
canonical representative of [x], call it x̂, cannot depend on [y]. To gain some intuition
on the canonization process, consider again the case of triangles. If we take one of its
vertices, for instance x1, to be the origin, so that x1 = 0, or equivalently T =−x1, and
transform the other points to the same reference frame, we have that all triangles are
now of the form [0,x2 − x1,x3 − x1] = [0,x′2,x

′
3]. What we have done is to canonize

the translation group. The result is that we have eliminated two degrees of freedom,
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R
6 R

6
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Fig. 3 Pictorial representation of equivalence classes (orbits), and their comparison via max-
out (left), marginalization (middle), and canonization (right). In max-out, one has to search
along each orbit for the smallest distance between two points. In marginalization, one has to
average all distances relative to the strength imposed by the prior. In canonization, each orbit
is represented by a canonical element, and all canonical elements live on the “base space”
of the orbit space, where they are compared using either a cordal distance (in the embedding
space R6, or more correctly using a geodesic distance, which is the length of the shortest path
on the base space.

and now every rectangle can be represented in a translation-invariant manner by a
2× 2 matrix [x′2,x

′
3] ∈ R

2×2.
We can now repeat the procedure to canonize the rotation group, for instance by

applying the rotation R(θ ) that brings the point x′2 onto the horizontal axis. By doing
so, we have canonized the rotation group. We can also canonize the scale group, by
multiplying by a scale factor α so that the point x2 not only is on the horizontal axis,
but is at distance one from the origin, or equivalently has coordinates [1,0]T . By
doing so, we have canonized the scale group, and now every triangle is represented

by x =

[
0
0

1
0

1
α RT (θ )x′3

]
. So, every triangle is represented by a two-dimensional

vector x̂ = 1
α RT (θ )[x3 − x1] ∈ R

2. With this procedure, we have canonized the sim-
ilarity group. Note that all three vertices contribute to these two coordinates, as x2

is used to compute θ and α . However, each triangle is now represented by just
two numbers, instead of six that we started with. These two numbers can be easily
visualized in a graph (Fig. 4).

If we now want to compare triangles, we can just compare their canonical repre-
sentative, without solving an optimization problem:

d(x,y) = ‖x̂− ŷ‖
R2 .
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R
2

R
2 × SO(2)

R
2 × SO(2)× R A(2)

Fig. 4 Similarity shape space of triangles. We show the vertices of random triangles be-
longing to two classes: Isosceles (green) and scalene (red). On the top-left, we show the
coordinates of the vertices after canonizing translations (so one of the vertices is always at
the origin). They do not exhibit any discernible characteristic. On the top-right we show the
same after canonizing rotation and translation. Here the isosceles appear to exhibit some reg-
ularity, as one vertex is always at zero (not shown) and the other is either on the horizontal
or vertical axis (the third vertex can be anywhere on the plane). On the bottom-right we show
the same after canonizing translation, rotation and scale. Here it is clear that isosceles are
distributed on a subset of measure zero and can be easily discriminated. On the bottom-right
we show the case where an affine transformation is quotiented out. Both sets distribute on a
subset of measure zero of the plane. The multiple periodic repetitions (symmetries) are due
to the fact that canonization mechanism chosen is not invariant to permutations.

This is a so-called cordal distance; we will describe the more appropriate notion of
geodesic distance later.

Note that choosing a canonical representative of the orbit x̂ is done by choosing a
canonical element of the group, that depends on x, ĝ = ĝ(x), and then un-doing the
group action,

x̂ = ĝ−1(x)x.

It is an easy exercise to show that x̂ is now invariant to the group, in the sense that
ĝ′x = x̂ for any g′ ∈ G. This procedure is very general, and we will repeat it in
different contexts below. Note that the larger the group that we are canonizing (this
procedure is also called quotienting out), the smaller the quotient, to the point where
the quotient collapses into a single point. Consider for instance the case of triangles
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where we try to canonize the affine group. By doing so all triangles would become
identical, since it is always possible to transform any triangle into any other triangle
with an affine transformation.

Geometrically, the canonization process corresponds to choosing a base of the
orbit space, or computing the quotient of the space X with respect to the group
G. Consequently, the base space is often written as X/G. Note that the canonical
representative x̂ lives in the base space that has a dimension equal to the dimension
of X minus the dimension of the group G. So, the quotient of triangles relative
to the translation group is 4-dimensional, relative to the group of rigid motion it
is 3-dimensional, relative to the similarity group it is 2-dimensional, and relative
to the affine group it is 0-dimensional. By a similar procedure one could consider
the quotient of the set of quadrilaterals x = [x1,x2,x3,x4] ∈ R

2×4 with respect to
the various groups. In this case, the quotient with respect to the affine group is an
8− 6 = 2-dimensional space. However, the quotient of quadrilaterals with respect
to the projective group is 0-dimensional, as vertices of different quadrilaterals can
be mapped onto one another by a projective transformation [15].

One could continue the construction for an arbitrary number of points on
the plane, and quotient out the various group: translation, Euclidean, similarity,
affine, projective, . . . where does it stop? Unfortunately, the next stop is infinite-
dimensional, the group of diffeomorphisms [23], and a diffeomorphism can send
any finite collection of points to arbitrary locations on the plane. Therefore, just
like affine transformations for triangles, and projective transformations for quadri-
laterals, the quotient with respect to diffeomorphisms collapses any arbitrary (finite)
collections of N points into one element of RN . However, as we will see, there are
infinite-dimensional spaces that are not destroyed by the diffeomorphic group [23].

2.0.4 Comparing Canonical Elements: Procrustes and Geodesic Distances

As we have seen, the canonization procedure enables us to reduce the dimension
of the space by the dimension of the group. For instance, triangles live in a 6-
dimensional space, but once we quotient (or “mod-out”) similarities, they can be
represented by x̂ ∈ R

2. That is, the canonical representatives can be displayed on
a planar plot. Consider, for instance, two collections of random triangles: One is
made of isosceles triangles, one is made of scalenes. If visualized as triangles, it
is very difficult to separate them. Visualizing them in their native 6-dimensional
space is obviously a challenge. However, if we visualize the quotient, their structure
emerges clearly (Fig. 4).

Of course, the mod-out operation (canonization) alters the geometry of the space.
For instance, triangles belong to the linear space R

2×3 ∼ R
6. In that space, one

can sum triangles, multiply them by a scalar, and still obtain triangles. In other
words, X is a linear space. However, the quotient X/G is not necessarily a linear
space, in the sense that summing or scaling canonical representative may not yield
a valid canonical representative. Indeed, the quotient space X/G is in general a
homogeneous space that is non-linear (curved) even when the native space X and
the group G are linear. Therefore, when considering a distance in the base space as
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we have done above, one should in principle choose a geodesic distance (the length
of the shortest path between two points that remains in the space) as opposed to a
cordal distance that is the distance in the embedding space as we have done above.

In addition, the canonization procedure significantly distorts the original space.
Consider in fact a collection of triangles that is represented by a Gaussian distri-
bution in the space X = R

6. Once we canonize each of them with respect to the
Similarity group, the resulting distribution in the quotient space X/G is not Gaus-
sian, but rather part of what are known as Procrustean distributions [11].

2.0.5 Not All Canonizations Are Created Equal

It is important to notice that the canonization mechanism is not unique. To canonize
translation, instead of choosing x1, we could have chosen x2, or x3, or any combina-
tion of them, for instance the centroid. Similarly, for rotation we fixed the direction
of the segment x1x2, but we could have chosen the principal direction (the singular
vector of the matrix x corresponding to its largest singular value).

In principle, no canonization mechanism is better than the other, in the sense
that they all achieve the goal of quotienting-out (eliminating) the group. However,
consider two triangles that are equivalent under the similarity group (i.e., they can
be transformed into one another by a similarity transformation), but where the or-
der of the three vertices in x is scrambled: x = [x1,x2,x3] and x̃ = [x2,x1,x3]. Once
we follow the canonization procedure above, we will get two canonical representa-
tives x̂ �= ˆ̃x that are different. What happens is that we have eliminated the similarity
group, but not the permutation group. So, we should consider not one canonical rep-
resentative, but 6 of them, corresponding to all possible reorderings of the vertices.
One can easily see how this procedure becomes unworkable when we have large
collection of points, x ∈ R

2×N ,N >> 2.
If, however, we had canonized translation using the centroid, rotation using the

principal direction (singular vector corresponding to the largest singular value), and
scale using the largest singular value, then we would only have to consider symme-
tries relative to the principal direction, so that choice of canonization mechanism is
more desirable.

2.0.6 Structural Stability of the Canonization Mechanism

Requiring that the canonization mechanism be unique is rather stiff. Geometrically,
it corresponds to requiring that the homogeneous space X/G admits a global coor-
dinate chart, which is in general not possible, and one has instead to be content with
an atlas of local coordinate charts.

However, what is desirable is to make sure that, as we travel smoothly along an
orbit [x] via the action of a group g, the canonical representative x̂ = x̂(gx) does not
all of a sudden “jump” to another chart.

Consider, again, the example of triangles. Suppose that we choose as a canonical
representative for translation the point that has the smallest abscissa (the “left-most”
point). As we rotate the triangle around, the canonical representative switches,



Visual Correspondence, Lambert-Ambient Shape Space and the Systematic Design 73

which is undesirable. A more “stable” canonization mechanism is to choose the
centroid as canonical representative, as it is invariant to rotations. The notion of
“structural stability” is critical to the canonization process [21], and involves the re-
lation between the group that is being canonized and all the other nuisances (which
may or may not be groups). The design of a suitable canonization mechanism should
take such an issue into account.

2.1 Extension to Infinite-Dimensional Shape Spaces

The general intuition behind the process of eliminating the effects of the
group G from the space X is not restricted to finite-dimensional spaces, nor
to finite-dimensional groups. We can mod-out finite-dimensional groups from
infinite-dimensional spaces, and then infinite-dimensional groups from infinite-
dimensional spaces. When we talk about infinite-dimensional spaces we refer to
function spaces, that are characterized by a (finite-dimensional) domain X , a finite-
dimensional range, and a map from the former to the latter.

As an example, we will consider images as elements of the function space I that
maps the plane onto the positive reals, I : R2 → R.

2.1.1 Transformations of the Range of a Function (Left Action)

In the previous section we have considered affine transformations of R2. We now
consider affine transformation of R, and apply them to the range of the function I :
R

2 →R; x �→ I(x). For simplicity we assume that I is smooth, defined on a compact
subset D ⊂R

2, and has a bounded range. An affine transformation is defined by two
scalars α,β , with α �= 0, and transforms the range of the function I(·) via g ◦ I

.
=

αI +β . Therefore, the orbits we consider are of the form [I] = {αI+β ,α > 0,β ∈
R}, and the function g ◦ I is defined by g ◦ I(x) = αI(x)+β .

As in the finite-dimensional case, there are several possible canonization mech-
anisms. The simplest consists in choosing the canonical representative of β to be
the smallest value taken by I, β = minx∈D⊂R2 I(x) and the canonical representative
of α to be the largest value α = maxx∈D⊂R2 I(x). However, one could also choose
the mean for β and the standard deviation for α . This is no different than if I was
an element of a finite-dimensional vector space. In either case, the canonical group
element {α̂, β̂}= ĝ(I) is determined from the function I, and is then “un-done” via

ĝ−1 ◦ I = I−β̂
α̂ . Again, we have that the canonical element is Î = ĝ−1(I)◦ I.

More interesting is the case when the group acting on the range is infinite-
dimensional. Consider for instance all contrast functions, that is functions k :R→R

that are continuous and monotonic. These form a group, and indeed an infinite-
dimensional one. The equivalence class we consider is now

[I] = {k ◦ I,k ∈ H },

and g ◦ I(x) = k(I(x)), where H is the set of contrast transformations.
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A canonization procedure for contrast transformations is equivalent to a “dy-
namic time warping” [12] of the range of the function5 that is chosen in a way that
depends on the function itself. The affine range transformation was a very special
case. It has been shown in [1] that the quotient of real-valued functions with respect
to contrast transformations is the equivalence class of iso-contours of the function.
So, by substituting the value of each pixel with the curvature of the iso-intensity
curves, one has effectively canonized contrast transformations. Equivalently, be-
cause the iso-contours are normal to the gradient direction, one can canonize con-
trast transformations by considering, instead of the value of I at x, the direction of
the gradient of the image at x. This explains the popularity of the use of gradient
direction histograms in image analysis [14].

Note that in all these cases, the canonical element of the group g = {α,β} or
g = k(·), is chosen in a way that depends only on the function I(·) in question, so
we can write the canonical element as ĝ = ĝ(I) and, as usual, we have

Î = ĝ−1(I)◦ I.

2.1.2 Transformations of the Domain of a Function (Right Action)

We have already seen how to canonize finite-dimensional groups of the plane for the
case of triangles (or three points on the image domain). The orbits we consider are
of the form I ◦ g(x)

.
= I(gx). So, if we want to canonize domain transformations of

the function I, that is if we want to represent the quotient space of the equivalence
class

[I] = {I ◦ g,g ∈ G},
we need to find canonical elements ĝ that depend on the function itself. In other
words, we look for canonical elements ĝ = ĝ(I). As a simple example, we could
canonize translation by choosing the highest value of I (location of the brightest
pixel), and rotation using the principal curvatures of the function I at the maximum,
or the direction to the second-brightest pixel. However, instead of the maximum of
the function I we could choose the maximum of any operator (functional) acting on
I, for instance the Hessian of Gaussian ∇2G ∗ I(x)

.
=
∫

D ∇2G(x− y)I(y)dy, where
D is a neighborhood around the extremum. Similarly, instead of choosing the prin-
cipal curvature of the function I, we could choose the principal directions of the
second-moment matrix

∫
D ∇IT∇I(x)dx. In either case, once we have a canonical

representative for translation and rotation, we have ĝ, and everything proceeds just
like in the finite-dimensional case.

More interesting is the case when the group g is infinite-dimensional, for instance
the set W of planar diffeomorphisms w : R2 →R

2. In this case we consider the orbit
[I] = {I ◦g,g ∈ W } where the function I ◦g(x)

.
= I(w(x)). It has been shown in [27]

that this is possible. Below we discuss the case of jointly eliminating domain and
range diffeomorphisms.

5 The name is misleading, because that there is nothing dynamic about dynamic time warp-
ing, and there is no time involved.
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2.1.3 Joint Domain and Range Transformations (Left and Right Actions)

So far we have considered functions with groups acting either on the range g◦ I(x)
.
=

k(I(x)) or on the domain I ◦g(x)
.
= I(w(x)). However, there is nothing that prevents

us from considering groups acting simultaneously on the domain and range, so long
as their joint action can be considered as the action of the product group. In this
case, we consider orbits of the kind

[I] = {g1 ◦ I ◦ g2, g1 ∈ G1, g2 ∈ G2}.

The canonization mechanism is the same, leading to ĝ1(I), ĝ2(I), from which we
can obtain the canonical element

Î
.
= ĝ−1

1 (I)◦ I ◦ ĝ−1
2 (I).

In [23] it is shown that the quotient of images – interpreted as integrable functions
and approximated with Morse functions – modulo contrast transformations and dif-
feomorphisms (the group closure of viewpoint-induced domain deformations) is the
Attributed Reeb Tree (ART) of the image. In Section 3 we elaborate further on the
geometry of the shape space of the Lambert-Ambient model.

The functional ĝ(I) that chooses the canonical element of the group is also called
a co-variant detector, in the sense that it varies with the group. Once a co-variant
detector has been determined, the canonical representative automatically determines
a statistic, Î

.
= I ◦ ĝ−1(I), that is a function of the image known as invariant descrip-

tor. It is invariant in the sense that, as the group g changes, the canonical element
changes with it, but the image referred to the canonical reference frame does not.

As far as eliminating the effects of the nuisance group G, any co-variant detec-
tor function is equivalent. Where they differ is in how they address all the other
(non group) nuisances such as noise an quantization. Ideally, one would want the
canonization procedure to commute with non-group nuisances, so that the results of
canonization before and after noise or quantization are “the same.” We will articu-
late later what “same” means in this context.

3 The Geometry of the Lambert-Ambient Model

The previous section introduced the notion of a shape space as the quotient of a
space X modulo the action of a group G, or X/G. We have seen that both the space
and the group can be rather complex, including infinite-dimensional. For instance,
X can be the set of radiance functions defined on surfaces in space, and G the (group
closure of the) set of domain deformations induced by a viewpoint change. In this
section we instantiate the specific case of a Lambertian scene viewed under ambient
illumination, to highlight the geometry of the quotient of the set of resulting images
under changes of viewpoint and contrast.

We consider an object of interest that is static and Lambertian, so it can be de-
scribed by its geometry, a surface S : D ⊂R

2 →R
3; x0 �→ S(x0) and its photometry,
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the albedo ρ : S → R
+; p �→ ρ(p). We assume an ambient illumination model that

modulates the albedo with a simple contrast transformation k : R → R; I �→ k(I).
The scene is viewed from a vantage point determined by (R,T ) ∈ SE(3), so that
the point p projects onto the pixel with coordinate x = π(Rp+T), with R ∈ SO(3)
an orthogonal matrix with unit determinant, and T ∈ R

3. In the absence of occlu-
sions, regardless of the shape of S, the map from x0 to x is a homeomorphism,
x = π(RS(x0)+T )

.
= w−1(x0); the choice of name w−1 is to highlight the fact that

it is invertible. If we assume (without loss of generality given the visibility assump-
tion) that p is the radial graph of a function Z : R2 → R (the range map), so that
is p = x̄Z(x), where x̄ = [x, y, 1]T are the homogeneous coordinates of x ∈ R

2, we
have that

w(x) =
[e1e2]

T RT (x̄Z(x)−T )

eT
3 RT (x̄Z(x)−T )

and w−1(x) =
[e1e2]

T (RS(x)+T)

eT
3 (RS(x)+T)

. (1)

where ei are the i-th coordinate vectors. Putting all the elements together we have a
model that is valid under assumptions of Lambertian reflection, ambient illumina-
tion, and co-visibility:

I(x) = k ◦ρ ◦ S ◦w(x)+ n(x), x ∈ D. (2)

In relating this model to the previous discussion on canonization, a few considera-
tions are in order:

• There is an additive term n, that collects the results of all unmodeled uncertainty.
Therefore, one has to require not only that left- and right- canonization commute,
but also that the canonization process be structurally stable with respect to such
uncertainty (often referred to as “noise”). If we are canonizing the group g (ei-
ther k or w), we cannot expect that ĝ(I) = ĝ(I − n), but we want ĝ to depend
continuously on n, and not to exhibit jumps, singularities, bifurcations and other
topological accidents. This goes to the notion of structural stability and proper
sampling addressed in [13].

• If we neglect the “noise” term n, we can think of the image as a point on the orbit
of the “scene” ρ ◦ S. Because the two are entangled, in the absence of additional
information we cannot determine either ρ or S, but only their composition. This
means that if we canonize contrast k and domain diffeomorphisms w, we obtain
an invariant descriptor that lumps into the same equivalence class all objects that
are homeomorphically equivalent to one another [27]. The fact that w(x) depends
on the scene S (through the function Z) shows that when we canonize viewpoint
g we lose the ability to discriminate objects by their shape (although see later
on occlusions and occluding boundaries). Thus, with an abuse of notation, we
indicate with ρ the composition ρ ◦ S.

We now show that the planar isometric group SE(2) can be isolated from the diffeo-
morphism w, in the sense that

w(x) = w̃◦ g(x) = w̃(gx) (3)
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for a planar rigid motion g ∈ SE(2) and a residual planar diffeomorphism w̃, in
such a way that the residual diffeomorphism w̃ can be made (locally) independent
of planar translations and rotations. More specifically, if the spatial rigid motion
(R,T ) ∈ SE(3) has a rotational component R that we represent using angles θ for
cyclo-rotation (rotation about the optical axis), and ω1,ω2 for rotation about the
two image coordinate axes, and translational component T = [T1,T2,T3]

T , then the
residual diffeomorphism w̃(x) = w̃(x) can be made locally independent of T1,T2 and
θ . To see that, note that Ri(θ ) = exp(̂e3θ ) is the in-plane rotation, and Ro(ω1,ω2) =
exp(̂e2ω2)exp(̂e1ω1) is the out-of-plane rotation, so that R = RiRo. In particular,

Ri =

[
R1(θ ) 0

0 1

]
where R1(θ )

.
=

[
cosθ −sinθ
sinθ cosθ

]
.

We write Ro in blocks as

Ro =

[
R2 r3

rT
4 r5

]

where R2 ∈R
2×2 and r5 ∈R. We can then state the claim:

Theorem 0.1. The diffeomorphism w : R2 → R
2 corresponding to a vantage point

(R,T ) ∈ SE(3) can be decomposed according to (3) into a planar isometry g ∈
SE(2) and a residual diffeomorphism w̃ : R2 → R

2 that can be made invariant to
R1(θ ) and arbitrarily insensitive to T1,T2, in the sense that ∀ ε ∃ δ such that ‖x‖ ≤
δ ⇒‖ ∂ w̃

∂Ti
‖ ≤ ε for i = 1,2.

This means that, by canonizing a planar isometry, one can quotient out spatial trans-
lation parallel to the image plane, and rotation about the optical axis, at least in a
neighborhood of the origin.

Proof:We write the diffeomorphism explicitly as

w(x) =
[e1e2]

T (RiRox̄Z(x)+T )

rT
4 xZ(x)+ r5 +T3

=
R2R1(θ )xZ(x)+r3Z(x)+ [T1,T2]

T

rT
4 xZ(x)+ r5 +T3

(4)

and define the disparity d(x) = 1/Z(x), so the above expression becomes

w(x) =
R2R1(θ )x+r3 +[T1,T2]

T d(x)

rT
4 x+(r5 +T3)d(x)

(5)

We can now apply a planar isometric transformation ĝ ∈ SE(2) defined in such a way that
w̃(x) = w ◦ ĝ−1(x) satisfies w̃(0) = 0, and w̃(x) does not depend on R1(θ ). To this end, if
ĝ = (R̂, T̂ ), we note that

w̃(x)
.
= w◦ ĝ−1(x) =

R2R1(θ )R̂T (x− T̂ )+r3 +[T1,T2]
T d̃(x)

rT
4 x+(r5 +T3)d̃(x)

(6)

and d̃(x) = d ◦ ĝ−1(x) = d(R̂T (x− T̂ )) is an unknown function, just like d was. We now see
that imposing6

6 It may seem confusing that the definition of T̂ is “recursive” in the sense that T̂ =
R−1

2 [T1,T2]
T d̃(x) = R−1

2 [T1,T2]
T d(R̂T (x − T̂ )). This, however, is not a problem because

T̂ is chosen not by solving this equation, but by an independent mechanism of imposing
that w̃(0) = 0, that is a “translation co-variant detector.”
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R̂
.
= R1(θ ) and T̂ = R−1

2 [T1,T2]
T d̃(0) (7)

we have that the residual diffeomorphism is given by

w̃(x) =
R2x+[T1,T2]

T (d̃(x)−d0)

rT
4 x+(r5 +T3)d̃(x)

. (8)

Note that w̃ does not depend on R1(θ ); because of the assumption on visibility and piecewise
smoothness of the scene, d̃ is a continuous function, and therefore the function d̃(x)−d0 in a
neighborhood of the origin x = 0 can be made arbitrarily small; such a function is precisely
the derivative of w̃ with respect to T1,T2.

In the limit where the neighborhood is infinitesimal, or when the scene is fronto-
parallel, so that d̃(x) = const., we have that

w̃(x)� R2x

rT
4 x+(r5 +T3)d̃(x)

, x ∈ Bε(0) (9)

where Bε is a neighborhood (“ball”) of radius ε around the point x. A canonization
mechanism can be designed to choose R̂, for instance so that the ordinate axis of the
image is aligned with the projection of the gravity vector onto the image.

The consequence of this theorem, and the previous observation that S and ρ can-
not be disentangled, are that we can represent the Lambert-Ambient model (2) as

I(x) = k ◦ρ ◦ w̃◦ g(x)+ n(x). (10)

In the absence of noise n, the canonization process would enable us to mod-out
k, w̃ and g, and would yield a canonical element Î that belongs to the equivalence
class [ρ ] under viewpoint and contrast transformations. This is precisely the ART
introduced in [23].

In the presence of noise, the group g acts linearly on the image, in the sense that
(I1 + I2)◦ g = I1 ◦ g+ I2 ◦ g. So, the canonization process effectively eliminates the
dependency on g:

I ◦ ĝ−1(x) = k ◦ρ ◦ w̃(x)+ ñ(x) (11)

where ñ(x)
.
= n ◦ ĝ−1(x). Because ĝ is an isometry, ñ will be a transformed real-

ization of a random process that has the same statistical properties (e.g. mean and
covariance) of n. Although w̃ also acts linearly on the image, ñ ◦ w̃−1 does not have
the same statistical properties of ñ, because the diffeomorphism w̃ alters the distri-
bution of ñ. Therefore, the canonization process for w̃ does not commute with the
additive noise and cannot be performed in an exact fashion.

Similarly, the general contrast transformation k does not act linearly on the image,
in the sense that k−1 ◦ (I1+ I2) �= k−1 ◦ I1+ k−1 ◦ I2. Similarly to what we have done
for w, we can isolate the affine component of k, that is the contrast transformation
I �→ αI+β , and canonize that. For simplicity, we just assume that k is not a general
contrast transformation, but instead an affine contrast transformation. By canonizing
it we have

k̂−1 ◦ I ◦ ĝ−1(x) = ρ ◦ w̃(x)+ n′(x) (12)
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where now n′(x) has a statistical description that can be easily derived as a function
of the statistical description of n and the values of α,β in the contrast canonization
(if μ and σ are the mean and standard deviation of n′, then (μ−β )/α and σ/α are
the mean and standard deviation of n′). If we summarize the canonization process
as a functional φ acting on the image, and forgo all superscripts, we have

φ(I(x)) = ρ ◦w(x)+ n(x). (13)

When the noise is “small” one can think of φ(I) as a small perturbation of a point
on the base space of the orbit space of equivalence classes [ρ ◦w] under the action
of planar isometries and affine contrast transformations.

So, even if domain deformations under a general viewpoint change in front of a
non-planar scene induce a (subset of a) group transformation, only a small subgroup
can be canonized without a loss. We will therefore have to deal with the residual
transformation w̃, which we will do later, after we have discussed other nuisances
that not only cannot be canonized without a loss, but cannot be canonized at all since
they are not groups.

3.1 Occlusions

In the presence of occlusions, including self-occlusions, the map w is not, in general,
a diffeomorphism. Indeed, it is not even a function, in the sense that for several
locations in the image, x ∈ Ω , it is not possible to find any transformation w(x) that
maps the radiance ρ onto the image I. In other words, if D is the image-domain, we
only have that

I(x) = k ◦ρ ◦w(x), x ∈ D\Ω . (14)

The image in the occluded region Ω can take arbitrary values that are unrelated to
the radiance ρ in the vicinity of the point S(w(x)) ∈ R

3; we call these values β (x).
Therefore, neglecting the role of the additive noise n(x) for now, we have

I(x) = k ◦ρ ◦w(x)(1− χΩ(x))+β (x)χΩ (x), x ∈ D (15)

where χA(x) is the characteristic function of the set A; that is, χA(x) = 1 if x ∈ A
and zero otherwise. The canonization mechanism acts on the image I, and has no
knowledge of the occluded region Ω . Therefore, φ(I) may eliminate the effects of
the nuisances k and w, if it only depends on the values of the image in the visible
region, or it may not – if it depends on the values of the image in an occluded region.
If φ(I) is computed in a region R̂T Bσ (x− T̂ ), then the canonization mechanism is
successful if

R̂T Bσ (x− T̂ )⊂ D\Ω . (16)

And fails otherwise. Whether the canonization process succeeds or fails can only
be determined by comparing the statistics of the canonized image φ(I) with the
statistics of the radiance, ρ , which is of course unknown. However, under the
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Lambertian assumption, this can be achieved by comparing the canonical repre-
sentation of different images.

3.1.1 Determining Co-Visibility

If range maps were available, one could test for co-visibility as follows: Let Z : D ⊂
R

2 → R
+;x �→ Z(x;S) be defined as the distance of the point of first intersection of

the line through x with the surface x:

Z(x;S) = min{Z > 0 | x̄Z ∈ S}. (17)

When the surface is moved, the range map changes, not necessarily in a smooth way
because of self-occlusions:

Z(x;RS+T ) = min{Z > 0 | Rx̄Z+T ∈ S}. (18)

A point with coordinates x0 on an image is co-visible with a point with coordinates
x in another image taken by a camera that has moved by (R,T ) ∈ SE(3) if

x̄Z(x;RS+T ) = Rx̄0Z(x0;S)+T. (19)

An alternative expression can be written using the third component of the equation
above, that is

Z(x;RS+T ) = eT
3 (RS(x0)+T ). (20)

Therefore, the visible domain D\Ω is given by the set of points x that are co-visible
with any point x0 ∈ D. Vice-versa, the occluded domain is given by points that are
not visible, i.e.

Ω = {x ∈ D | Z(x;RS+T ) �= eT
3 (Rx̄0Z(x0;S)+T), x0 ∈ D }. (21)

The region Ω can be inferred from multiple images of the same scene, along with
the diffeomorphism w, under the assumption of Lambertian reflection and ambient
illumination, by solving a variational optimization problem [2].

To summarize, from the shape space of the Lambert-Ambient model we have:

• In the absence of noise, n = 0 and occlusions Ω = /0, the shape space of the
Lambert-Ambient model is the set of Attributed Reeb Trees [23].

• In the presence of additive noise n �= 0, but no occlusions, Ω = /0, the shape space
is the collection of radiance functions composed with domain diffeomorphisms
with a fixed point (e.g. the origin) and a fixed direction (e.g. gravity).

• In the presence of noise and occlusions, the shape spaces is broken into local
patches that are the domain of attraction of covariant detectors. The size of the
region depends on scale and visibility and cannot be determined from one datum
only. Co-visibility must be tested as part of the correspondence process, by test-
ing for geometric and topological consistency, as well as photometric consistency
[2].
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This construction justifies the use of local descriptors, that would otherwise be detri-
mental in light of the Data Processing Inequality [6].

4 Co-variant Detectors, Invariant Descriptors

The previous section described a procedure to eliminate the effects of a nuisance
group by (i) determining a canonical element of the group based on one datum
ĝ(I), and (ii) inverting the canonical element so that the datum, in the (moving)
reference frame of the canonical element, I ◦ ĝ−1(I) does not change with the group.
So, the data itself, in the canonical reference frame, is by construction invariant to
the group.

In this section, we will give specific examples of functions that select a canonical
element in (i), that are co-variant detectors. They are all equivalent as far as elim-
inating the effects of the nuisance group (ii). However, they all differ in the way in
which they handle all other nuisances. Therefore, the data in the canonical frame
is often further processed to generate statistics that, in addition to being invariant
to the nuisance group, are also insensitive to all other nuisances, including those
not explicitly modeled. These statistics (functions of the data) are called invariant
descriptors.

We will first formalize the notion of co-variant detector, then show that most of
the commonly used detectors can be understood as special cases of canonization.
Then we will show how to handle the residual variability, and frame existing invari-
ant descriptors in this framework, where it becomes evident that there are systematic
ways of handling residual nuisances, which we do in Section 5.

We consider the set of digital images I to be (piece-wise constant) functions
I : R2 →R

2; x ∈Bε(xi j) �→ Ii j, that can be identified with the set of matrices RN×M .
A differentiable functional ψ : I ×G →R;(I,g) �→ψ(I,g) is said to be local, with
effective support σ if its value at g only depends on a neighborhood of the image
of size σ > 0, up to a residual that is smaller than the mean quantization error.
For instance, for a translational frame g, if we call I|Bσ (g)

an image that is identical
to I in a neighborhood of size σ centered at position g ≡ T , and zero otherwise,
then ψ(I|Bσ (g)

,g) = ψ(I,g)+ ñ, with |ñ| ≤ 1
NM ∑i, j |ni j|. For instance, a functional

that evaluates the image at a pixel g ≡ T = x ∈ Bε (xi j), is local with effective
support ε . For groups other than translation, we consider the image in the reference
frame determined by g, or equivalently consider the “transformed image” I ◦ g−1,
in a neighborhood of the origin, so ψ(I,g) = ψ(I ◦ g−1,e), where e is the identity
element of the group G.

If we call ∇ψ .
= ∂ψ

∂g the gradient of the functional ψ with respect to (any)

parametrization of the group,7 then under certain (so-called “transversality”) con-
ditions on ψ , the equation ∇ψ = 0 locally determines g a function of I, g =
ĝ(I), via the Implicit Function Theorem. Such conditions are independent of the

7 The following discussion is restricted to finite-dimensional groups, but it could be extended
with some effort to infinite-dimensional ones.
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parametrization and consist of the Hessian matrix H(ψ)
.
=∇∇ψ being non-singular,

det(H(ψ)) �= 0. The function ĝ is unique in a neighborhood where the transver-
sality condition is satisfied, and is called a (local) canonical representative of the
group. If the canonical representative co-varies with the group, in the sense that
ĝ(I ◦ g) = (ĝ ◦ g)(I), then the functional ψ is called a co-variant detector. Each
co-variant detector determines a local reference frame so that, if the image is trans-
formed by the action of the group, a hypothetical observer attached to the co-variant
frame would see no changes. We summarize this in the following definition:

Definition 1 (Co-variant detector). A differentiable functional ψ : I × G → R;
(I,g) �→ ψ(I,g) is a co-variant detector if

1. The equation det (H(ψ(I,g))) = 0 locally determines a unique isolated ex-
tremum in the frame g ∈ G, and

2. if ∇ψ(I, ĝ) = 0, then ∇ψ(I ◦ g, ĝ◦ g) = 0 ∀ g ∈ G, i.e. , ψ co-varies with G.

The first “transversality” condition [8] corresponds to the Jacobian of ∇ψ with re-
spect to g being non-singular:

|J∇ψ | �= 0. (22)

In words, a co-variant detector is a functional that determines an isolated group
element in such a way that, if we transform the image, the group elements is trans-
formed in the same manner. We have already seen simple examples of co-variant
detectors; more realistic examples will follow shortly.

The transversality condition (22) guarantees that ĝ, the canonical element, is an
isolated (Morse) critical point [17] of the derivative of the function ψ via the Im-
plicit Function Theorem [8]. So a co-variant detector is a statistic (a feature) that
“extracts” a group element ĝ. With a co-variant detector we can easily construct an
invariant descriptor, or local invariant feature, by considering the data itself in the
reference frame determined by the detector:

Definition 2 (Canonized descriptor). For a given co-variant detector ψ that fixes
a canonical element ĝ via ∇ψ(I, ĝ(I)) = 0 we call the statistic

φ(I) .
= I ◦ ĝ−1(I) | ∇ψ(I, ĝ(I)) = 0. (23)

an invariant descriptor.

Where they differ is in how they behave relative to all other nuisances. Later we
will give more examples of detectors that are designed to “behave well” with respect
to other nuisances. In the meantime, however, we state more precisely the fact that,
as far as dealing with a group nuisance, all co-variant detectors do the job.

Theorem 0.2 (Canonized descriptors are complete features). Let ψ be a co-
variant detector. Then the corresponding canonized descriptor (23) is an invariant
sufficient statistic.
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Proof: To show that the descriptor is invariant we must show that φ(I ◦ g) = φ(I).
But φ(I ◦g) = (I ◦g)◦ ĝ−1(I ◦g) = I ◦g◦ (ĝg)−1 = I ◦g◦g−1ĝ−1(I) = I ◦ ĝ−1(I). To
show that it is complete it suffices to show that it spans the orbit space I /G, which
is evident from the definition φ(I) = I ◦ g−1.

Example 0.1 (SIFT detector and its variants). To construct a simple translation-
covariant detector, consider an isotropic bi-variate Gaussian function

N (x;μ ,σ2) = 1
2πσ exp(−‖x−μ‖2

2σ2 ); then for any given scale σ , the Laplacian-of-

Gaussian (LoG) ψ(I,g)
.
= ∇2N (x;g,σ2) ∗ I(x) is a linear translation-covariant

detector. If the group includes both location and scale, so ḡ = (g,σ2), then the
same functional can be used as a translation-scale detector. Other examples are

the difference-of-Gaussians (DoG) ψ(I,g)
.
= N (x;g,σ2)−N (x;g,k2σ2)

k−1 ∗ I(x), with typi-
cally k = 1.6, and the Hessian-of-Gaussian (HoG) is ψ(I,g) = detH(N (x;g,σ2)).
Among the most popular detectors, SIFT uses the DoG, as an approximation of the
Laplacian.

Example 0.2 (Harris’ corner and its variants). Harris’ corner and its variants
(Stephens, Lucas-Kanade, etc.) replace the Hessian with the second-moment ma-
trix:

ψ(I,g)
.
= det

(∫

Bσ (g)
∇T I∇I(x)dx

)
. (24)

One can obtain generalizations to groups other than translation in a straightforward

manner by replacing N (x;g,σ2) with 1
2πσdetJ exp(− ‖g−1(x)‖2

2σ2det(Jg)2 ) where Jg is the Ja-

cobian of the group. For instance, for the affine group g(x) = Ax+T , we have that

ψ(I,g) =∇2
(

1
2πσdetA exp(−‖A−1(x−T )‖2

2σ2det(A)2 )
)

is an affine-covariant (Laplacian) detec-

tor. One can similarly obtain a Hessian detector or a DoG detector. The Euclidean
group has A ∈ SO(2), so that detA = 1, and the similarity group has σ̃A, with deter-
minant σ̃ .

Unlike the Laplacian of Gaussian or Hessian of Gaussian, this is not a linear
functional, and therefore it does not commute with additive nuisances such as quan-
tization or noise [21].

Example 0.3 (Harris-Affine). The only difference from the standard Harris’ corner
is that the region where the second-moment matrix is aggregated is not a spheri-
cal neighborhood of location g with radius σ , but instead an ellipsoid represented
by a location T ∈ D ⊂ R

2 and an invertible 2× 2 matrix A ∈ GL(2). In this case,
g = (T,A) is the affine group, and the second-moment matrix is computed by con-
sidering the gradient with respect to all 6 parameters T,A, so the second-moment
matrix is 6×6. However, the general form of the functional is identical to (24), and
shares the same limitations.
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Although these detectors are not local, their effective support can be considered
to be a spherical neighborhood of radius a multiple of the standard deviation σ > 0,
so they are commonly treated as local.8

The assumption of differentiability in a co-variant detector is not necessary; in
[21] it is shown how to construct co-variant detectors that are not differentiable.
Indeed, canonization itself is not necessary to design invariant descriptors. We have
already mentioned “blurring” as a way to reduce (if not eliminate) the dependency
of a statistic on a group, although that does not yield a sufficient statistic in general
[18] (however, some hierarchical multi-scale blurring method is lossless in the limit
[5]).

Indeed, even the first condition in the definition of a co-variant detector is not
necessary in order to define an invariant descriptor: Assume that the image I is such
that for any functional ψ , the equation ∇ψ(I,g) = 0 does not uniquely determine
ĝ = ĝ(I). That means that |J∇ψ |= 0 for all ψ , and therefore all statistics are already
(locally) invariant to G. More in general, where the structure of the image allows a
“stable” and “repeatable” detection9 of a frame ĝ, this can be inverted and canonized
φ(I) = I ◦ ĝ−1. Where the image does not enable the detection of a frame ĝ, it means
that the image itself is already invariant to G.

We emphasize that detectors’ only purpose is to avoid marginalizing the invert-
ible component of the group G. However, at best such detectors can yield no im-
provement over marginalizing the action of G, that is using no detector at all. There-
fore, one should always marginalize or max-out the nuisances if this process is vi-
able given resource constraints such as the need to minimize processing at decision
time. This is a design choice that has been explored empirically: In visual category
recognition, some researchers prefer to use features selected around “keypoints,”
whereas others prefer to compute “dense descriptors” at each pixel, or at a regular
sub-sampling of the pixel grid, and let the classifier sort out which are informative,
at decision time.

Remark 1 (Aliasing and Proper Sampling). Canonization entails the compu-
tation of the Jacobian, which is a differential operation on the image. However,
images are discrete, merely a sampled version of the underlying signal (assuming
that is piecewise differentiable), that is the radiance of the scene. In any case, the
differentiable approximation, or the computation of the Jacobian, entails a choice of
scale, depending on which any given “structure” may or may not exist: A differential

8 Varying the scale parameter σ produces a scale-space, whereby the locus of extrema of ψ
describes a graph in R

3, via (x,σ) �→ x̂ = ĝ(I;σ). Starting from the finest scale (smallest
σ ), one will have a large number of extrema; as σ increases, extrema will merge or dis-
appear. Although in two-dimensional scale space extrema can also appear as well as split,
such genetic effects (births and bifurcations) have been shown to be increasingly rare as
scale increases, so the locus of extrema as a function of scale is well approximated by a
tree, which is the co-variant detection tree [13].

9 “Stability” will be captured by the notion of Structural Stability, and “repeatability” by the
notion of Proper Sampling.
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operator such as the Jacobian could be invertible at a certain scale, and not invert-
ible at a different scale at the same location. Because the “true” scale is unknown
(and it could be argued that it does not exist), canonizability alone is not sufficient
to determine whether a region can be meaningfully canonized. “Meaningful” in
this context indicates that a structure detected in an image corresponds to some
structure in the scene, and is not instead a sampling artifact (“aliasing”) due to the
image formation process, for instance quantization and noise. Therefore, an addi-
tional condition must be satisfied for a region to be “meaningfully” canonized. This
is the condition of Proper Sampling described in [21].

In [20] it is shown that the only nuisances that can be canonized without a loss are
planar isomorphisms an affine contrast changes; all other nuisances have to either be
properly marginalized, that requires solving a complex integration or optimization
at decision time, or averaged out as described above. What we have in the end, for
each image I, is a set of multiple descriptors (or templates), one per each canonical
translation and, for each translation, multiple scales, canonized with respect to ro-
tation and contrast, but still dependent on deformations, complex illumination and
occlusions:

φ(I) = {ki j ◦ρ(S jRi jx+Tivi j(x))+ ni j(x), (25)

i, j = 1, . . .NT ,NS|Bσ j (x+Ti)∩D = /0}

where vi j is the residual of the diffeomorphism w(x) after the similarity transforma-
tion αx+T has been applied, i.e. , vi j(x) = w(x)−α jRi jx−Ti. If we call the frame
determined by the detector ĝi j = {α j,Ti,Ri j,ki j}, we have that

φ(I) = {I ◦ ĝ−1
i j }NT ,NS

i, j=1 . (26)

Note that the selection of occluded regions, which is excluded from the descriptor,
is not known a-priori and will have to be determined as part of the matching process.

In the case of video data, {It}T
t=1, one obtains a time series of descriptors,

φ({It}T
t=1) = {It ◦ ĝ−1

i j (t)}NT ,NS,T
i, j,t=1 (27)

where the frames ĝi j(t) are provided by the feature detection mechanism that, in the
case of video, consists of a tracking procedure. Note that if we want to canonize
a nuisance, in the process of making the feature invariant to the nuisance, we may
end up making it also invariant to some components of the scene. In other words, by
abusing canonization we may end up throwing away the baby (scene) with the bath
water (nuisances).

The simplest example is the interaction of viewpoint and shape. In the model
(1), we see immediately that the viewpoint (R,T ) and shape S interact in the motion
field w(x) = π(Rπ−1(x)+T ), where p = π−1(x) ∈ S depends on the shape of the
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scene. It is shown in [23] that the group closure of domain warpings w spans the
entire group of diffeomorphisms, which can therefore be canonized – if we exclude
the effects of occlusion and quantization. However, necessarily the canonization
process eliminates the effects of the shape S in the resulting descriptor, which is the
ART. This means that if we want to perform recognition using a (true) viewpoint-
invariant, no matter how it is constructed, then we will lump all objects that have the
same radiance, modulo a diffeomorphism, into the same class. That means that, for
instance, all white objects are indistinguishable using a viewpoint invariant statistic,
regardless of how such an invariant is constructed. Of course, as pointed out in [27],
this does not mean that we cannot recognize different objects that have the same
radiance. It just means that we cannot do it with a viewpoint invariant, and instead
we have to resort to marginalization or extremization.

The same phenomenon occurs with reflectance (a property of the scene) and illu-
mination (a nuisance), as discussed in the appendix of [21]. Deciding how to man-
age the scene-nuisance interaction is ultimately a modeling choice, that should be
guided by two factors. The first is the priority in terms of speed of execution (bias-
ing towards canonizing nuisances) vis-a-vis discriminative power (biasing towards
marginalization to avoid multiple scenes collapsing into the same invariant descrip-
tor). The second is a thorough understanding of the interaction of the various factors
and the ambiguities in the image formation model. This means that one should un-
derstand, given a set of images, what is the set of all possible scenes that, under
different sets of nuisances, can have generated those images. This is the set of indis-
tinguishable scenes, that therefore cannot be discriminated from their images. This
issue is largely still an open problem.

If we are given a sequence of images {It} of a static scene, or a rigid object,
then the only temporal variability is due to viewpoint gt , which is a nuisance for
the purpose of recognition, and therefore should be either marginalized/max-outed
or canonized. In other words, there is no “information” in the time series {ĝt} (of
course, this is not the case if the purpose os navigation, or another task where view-
point is informative). Once we have the tracking sequence available, the temporal
ordering is irrelevant. This is not the case when we have a deforming object, say
a human, where the time series contains information about the particular action or
activity, and therefore temporal ordering is relevant. In this manuscript we focus on
rigid scenes, where S does not change over time, or rigid objects, which are just a
simply connected component of the scene Si (detachable objects [3]).

The simplest descriptor that aggregates the temporal data is the (class-
conditional) mean or median [13]. However, after we canonize the invertible-
commutative nuisances, via the detected frames ĝt , we do not need to blur them,
and instead we can construct the template below, where averaging is only performed
with respect to the nuisances ν , rather than all nuisances. The prior dP(ν) is gener-
ally not known, and neither is the class-conditional density dQc(ξ ). However, if a
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sequence of frames10 {ĝk}T
k=1 has been established in multiple images {Ik}T

k=1, with
Ik = h(gk,ξk,νk), then it is easy to compute the best (local) template via11

φ(Îc) =

∫

I
φ(I)dP(I|c) = ∑

νk ∼ dP(ν)
ξk ∼ dQc(ξ )

φ ◦ h(ĝkξk,νk) =∑
k

I ◦ ĝk = ∑
k,i, j

φi j(Ik)

(28)
where φi j(Ik) are the components of the descriptor defined in eq. (25) for the k-th
image Ik that come as a byproduct of a tracking procedure. Note that we are tracking
reference frames ĝk, not just their translational component (points) xi. The template
above Îc, therefore, is an averaging of the gradient direction, in a region determined
by ĝk, according to the nuisance distribution dP(ν) and the class-conditional distri-
bution dQc(ξ ), as represented in the training data. This “best-template descriptor”
(BTD) is implemented in [13]. It is related to [7, 4, 24] in that it uses gradient
orientations, but instead of performing spatial averaging by coarse binning, it uses
the actual (data-driven) measures and average gradient directions weighted by their
standard deviation over time. The major difference is that composing the template
requires local correspondence, or tracking, of regions ĝk, in the training set. Of
course, it is assumed that a sufficiently exciting sample is provided, lest the sample
average on the right-hand side of (28) does not approximate the expectation on the
left-hand side. Sufficient excitation is the goal of active exploration [26].

Note that, once the template descriptor is learned, with the entire scale semi-
group spanned in dP(ν),12 recognition can be performed by computing the descrip-
tors φi j at a single scale (that of the native resolution of the pixel). This significantly
improves the computational speed of the method, which in turn enables real-time
implementation even on a hand-held device [13]. It should also be noted that, once a
template is learned from multiple images, recognition can be performed on a single
test image.

It should be re-emphasized that the best-template descriptor is only the best
among templates, and only relative to a chosen family of classifiers (e.g. nearest
neighbors with respect to the Euclidean norm). For non-planar scenes, the descriptor
can be made viewpoint-invariant by averaging, but that comes at the cost of losing
the ability to discriminate based on shape. If we want to recognize by shape, we can
marginalize viewpoint, but that comes at a (computational) cost as it corresponds to
performing (implicit) reconstruction [21].

It should also be emphasized that the template above is a first-order statis-
tic (mean) from the sample distribution of canonized frames. Different statis-
tics, for instance the median, can also be employed [13], as well as multi-modal

10 We use k as the index, instead of t, to emphasize the fact that the temporal order is not
important in this context.

11 This notation assumes that the descriptor functional acts linearly on the set of images I ;
although it is possible to compute it when it is non-linear, we make this choice to simplify
the notation.

12 Either because of a sufficiently rich training set, or by extending the data to a Gaussian
pyramid in post-processing.
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descriptions of the distribution [28] or other dimensionality reduction schemes to
reduce the complexity of the samples.

5 Aggregating Residual Variability

In the previous section we have seen that, after canonization, in general we still have
residual variability due to nuisance factors that are not canonized. In the absence of
occlusions, this is the residual illumination variability due to the non-affine com-
ponents of contrast transformations, and the residual viewpoint-induced variability
due to the non-affine component of domain deformations. Since occlusions can be
guessed, but not determined in a single image, a decision on co-visibility is deferred
to correspondence time, and co-variant detectors, and their corresponding invariant
descriptors, are computed locally. The question that remains, then, is how to deal
with such residual variability.

Let us assume, for the moment, that a scene or object is viewed from a moving
camera, and that (short-baseline) correspondence has been established for a local
region. This means that, for that region, a certain point has been tracked through the
image sequence {It}T

t=0, or equivalently translation has been canonized, in the sense
that, relative to the moving frame that has its origin at the tracked point, the region
does not translate. We can also canonize rotation, scale, and the affine group [25], as
well as local contrast transformations [10], if so desired. If we now imagine taking
the regions around the canonized frame at each instant of time (a “stack” of image
regions, or patches, around the local moving frame), depending on the scene’s shape,
reflectance and illumination, these regions can exhibit more or less variability. If
these regions back-project onto a planar Lambertian surface in constant ambient
illumination, there will be minimal if any variability. If the regions back-project
onto a highly curved specular surface, there will be significant variability among the
local regions (Fig. 5).

Fig. 5 Tracking provides a collection of local frames and their temporal correspondence.
Each frame in a track can be interpreted as a sample from the class-conditional distribution
that is, by construction, invariant to the nuisance group. Local descriptors can then be con-
structed by computing statistics from such a distribution, for instance first-order statistics such
as the mean or median [13]. Panel (a) shows image patches around a tracked feature point;
(b) shows a contrast invariant (gradient orientation) in the corresponding image patches; (c)
shows the mean patch; (d) shows the aggregated orientation histogram. In this case, the por-
tion of the scene being tracked is nearly fronto-parallel and planar, so the different patches
exhibit modest variability along the track.
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Fig. 6 The same panels as in Figure 5 are shown for a portion of the scene that is not planar
and fronto-parallel, thus showing patches that exhibit significant variability.

Fig. 7 When the tracking mechanism fails, because the assumptions underlying it (co-
visibility, constant illumination, Lambertian reflection) are violated, the resulting patches can
exhibit significant variability, including discontinuous variability. In the specific case of this
example, there is jump between frame 7 and 8.

Fig. 8 For the case in Fig. 7 a simple (first-order) statistic such as the mean or the median is
not representative of the class-conditional distribution. However, aggregating means for each
mode of th distribution yields multi-modal descriptors such as the one corresponding to the
first 7 frames in Fig. 7(a); (c) shows the mean patch for the first feature point corresponding
to the last 6 frames in Fig. 7(a).

Now, if we have a video with short-baseline correspondence established (“train-
ing set”), we could consider these regions ψ(It) as samples from the object-
specific distribution p(ψ |c) where c is the object or scene or “class” label.
Knowing this distribution would allow us to establish correspondence by com-
puting the likelihood of a region in a new image Ĩ (“test set”) via p(ψ(Ĩ)|c).
Thus, the object-specific residual variability has been learned, and correspon-
dence is a statistical classification problem. One can then aggregate the class-
conditional distribution p(ψ |c) into a classifier. One of the simplest classifiers
is the distance to the mean of the distribution: We would first compute the
mean ψ̂ =

∫
ψdP(ψ |c) from the training set, assuming that ψ lives in some vec-

tor space, and then compute some distance from the test set to the mean d(ψ(Ĩ), ψ̂).
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Fig. 9 Construction of the mean and median template for the example in the previous figure.
If the distribution is not partitioned into its multiple modes, the mean is a poor representa-
tive, and the mean template looks “blurry”. If the distribution is broken into its modes, each
template is sharper and more representative of the distribution around the mode (Fig. 8).

Instead of the mean, one could compute the median, or mode, or other statistic of
the class-conditional distribution. This process is illustrated in Fig. 9.

What if we do not have a real training set (a video with short-baseline corre-
spondence established), but instead only have one image? We could select a de-
scriptor computed on that image as the mean ψ̂ .

= ψ(I). However, this may not
be representative of the distribution. Instead, one can “guess” or hypothesize a dis-
tribution dP(ψ), and average with respect to that distribution, instead of the true
(object-specific) one. Of course, in this process necessarily the distribution is not
object-specific, so we would be blurring in the same way all descriptors, regardless
of whether the data exhibits small or large variability (Fig. 5). This is essentially
what most existing single-view descriptors do, although the distribution is not ex-
plicitly described, but is instead implicit in the choice of quantization, binning, or
discretization employed by the algorithm.

In the presence of multiple views, one can do better by averaging relative to the
object-specific distribution. In [13], the mean, median, and mode of the marginals
were used to develop a template descriptors, whereas in [16], kernel PCA was used
to aggregate the class conditional (with PCA being a special case). However, other
choices of dimensionality reduction are possible, and can be exercised as part of
the design process. Fig. 5 illustrates the process of aggregating statistics from a
training set.

Example 0.4 (SIFT and HOG revisited). If instead of a sequence {Ik} one had only
one image available, one could generate a pseudo-training set by duplicating and
translating the original image in small integer intervals. The procedure of building a
temporal histogram described above then would be equivalent to computing a spa-
tial histogram of gradient orientations. Depending on how this histogram is binned,
and how the gradient direction is weighted, this procedure is essentially what SIFT
[14] and HOG [7] do. So, one can think of SIFT and HOG as a special case of
template descriptor where the nuisance distribution dP(ν) is not the real one, but a
simulated one, for instance a uniform scale-dependent quantized distribution in the
space of planar translations.

We call the distributional aggregation, rather than the averaging, of {φi j(Ik)} in (28)
the Time HOG or Time SIFT, depending on how the samples are aggregated and
binned into a histogram. Although a step up from template descriptors, Time SIFT
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and Time HOG still discard the temporal ordering in favor of a static descriptor. In
cases where the temporal ordering is important, as in the recognition of temporal
events, one should instead retain the time series {φ(It)} and compare them using
dynamic time warping [19], which corresponds to marginalizing, or max-outing,
time. This process is considerably more onerous, computationally, at decision time,
and well beyond the scope of this expository paper.

6 Conclusion

Local descriptors are ubiquitous in visual recognition and categorization of both ob-
jects and scenes. They can either be paired with a detector and associated to a sparse
collection of “informative” locations, or attached to every pixel in the image. Their
design has, so far, been largely driven by intuition and some biological inspiration,
but never framed analytically and designed according to some optimality principle.

In this manuscript, we have shown that local descriptors arise from the need to
establish correspondence under changes of viewpoint that induce (self) occlusions.
While the decision as to whether a region of the scene is co-visible in multiple im-
ages, or occluded, can only be performed at decision time, marginalizing occluded
regions is complex and time consuming. It can be simplified by analyzing the image
(breaking it down into pieces) and describing it locally, thus leaving the decision
as to whether a region is co-visible or not to decision time, where it becomes a
combinatorial matching process. Such analysis process would seem to violate the
Data Processing Inequality, but it can be justified if the resulting descriptors are
sufficient statistics [21]. This, unfortunately, is not the case unless the data forma-
tion process can be actively controlled, or a “sufficiently exciting” training input is
provided. This is clearly not the case when descriptors are computed from a single
image. Nevertheless, this is the most common practice in the literature. Since the
true (class-specific) distribution is not available, blurring is performed relative to a
generic distribution, often implicit in the choice of algorithm.

When multiple views are available and a tracking procedure provides correspon-
dence of local frames, such a blurring can be computed relative to the class-specific
distribution. Thus, the use of multiple views during training (construction of the
descriptors) is beneficial; if these views are temporally adjacent, correspondence of
local frames can be easily obtained through tracking.
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Classemes: A Compact Image Descriptor for
Efficient Novel-Class Recognition and Search

Lorenzo Torresani, Martin Szummer, and Andrew Fitzgibbon

Abstract. In this chapter we review the problem of object class recognition in large
image collections. We focus specifically on scenarios where the classes to be recog-
nized are not known in advance. The motivating application is ”object-class search
by example” where a user provides at query time a small set of training images
defining an arbitrary novel category and the system must retrieve images belong-
ing to this class from a large database. This setting poses challenging requirements
on the system design: the object classifier must be learned efficiently at query time
from few examples; recognition must have low computational cost with respect to
the database size; finally, compact image descriptors must be used to allow storage
of large collections in memory. We review a method that addresses these require-
ments by learning a compact image descriptor – classemes – yielding good cate-
gorization accuracy even with efficient linear classifiers. We also study how data
structures and methods from text-retrieval can be adapted to enable efficient search
of an object-class in collections of several million images.

1 Introduction

The accuracy of object category recognition is improving rapidly, particularly if
the goal is to retrieve or label images where the category of interest is the primary
subject of the image. However, existing techniques do not scale well to searching in
large image collections. This chapter identifies three requirements for such scaling,
and describes representations and retrieval methods that satisfy them.
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1. Interesting large-scale applications must support recognition of novel categories.
This means that a new category can be presented as a set of training images, and
a classifier learned from these new images can be run efficiently against the large
database. Depending on the application, the user may define the query category
either by supplying a set of image examples of the desired class, by performing
relevance feedback on images retrieved for predefined tags, or perhaps by boot-
strapping the recognition via text-to-image search [12]. In all these cases, the
classifiers cannot be precomputed during an offline stage and thus both training
and testing must occur efficiently at query-time in order to be able to provide
results in reasonable time to the user.

2. Large-scale recognition benefits from a compact descriptor for each image, for
example allowing databases to be stored in memory rather than on disk.

3. The ideal descriptor also provides good results with linear classifiers, such as
linear SVMs, or tf-idf rankers [24], as these can be evaluated efficiently even on
large databases.

Although a number of systems satisfy these desiderata for recognition of spe-
cific object-instances [27, 17], places [6] and whole scenes [43], we argue that these
requirements cannot be addressed by traditional systems in the context of object-
category recognition. This is due to the large computational and storage complexities
of modern object-classifiers, which rely on high-dimensional image descriptors and
expensive non-linear decision functions. For example, the current state-of-the-art in
categorization is represented by multiple kernel combiners, such as the LP-β clas-
sifier [13], which compute non-linear (kernel-based) functions of multiple low-level
features. These nonlinearities are critically necessary to achieve good classification
accuracy: for example, compare in figure 2 the difference in accuracy between LP-
beta13 and Xsvm, which represent, respectively, a multiple kernel combiner and a
linear SVM trained on the same combination of low-level features. However, kernel-
based classifiers cannot be used in our search setting, since the classes to recognize
are not known at the time of the creation of the database and thus the kernel-distances
cannot be precomputed: novel-class recognition with non-linear models would re-
quire evaluating the kernel-distance between each database image and (a subset of)
the training images provided at query-time, which clearly cannot be accomplished
in the real-time demanded by a search application. Furthermore, the multiple, high-
dimensional image descriptors needed by LP-β would pose challenging storage re-
quirements for large databases.

In this chapter we describe a system that addresses these requirements by us-
ing multiple-kernel combiners as an image representation instead of as a classifi-
cation model: the idea is to use an image descriptor containing as entries the out-
puts of a set of predefined category-specific classifiers applied to the image. Be-
cause these basis-classifiers provide a rich coding of the image, simple linear mod-
els (e.g., linear SVMs) trained on this representation can approach state-of-the art
accuracy, satisfying the requirements listed above. The obvious (but only partially
correct) intuition is that a novel category, say duck, can be effectively expressed in
terms of the outputs of the basis-classifiers (which we refer to as “classemes”), de-
scribing either objects similar to ducks, or objects seen in conjunction with ducks.
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Table 1 Highly weighted classemes. Five classemes with the highest LP-β weights for
the retrieval experiment, for a selection of Caltech256 categories. Some may appear to make
semantic sense, but it should be emphasized that our goal is simply to create a useful fea-
ture vector, not to assign semantic labels. The somewhat peculiar classeme labels reflect the
ontology used as a source of base categories.

In practice, the reason this descriptor will work is slightly more subtle. It is not
required or expected that these base categories will provide useful semantic la-
bels, of the form water, sky, grass, beak. On the contrary, the assumption
is that modern category recognizers are essentially quite dumb; so a swimmer rec-
ognizer looks mainly for water texture, and the bomber plane recognizer con-
tains some tuning for “C” shapes corresponding to the airplane nose, and perhaps
the “V” shapes at the wing and tail. Even if these recognizers are perhaps over-
specialized for recognition of their nominal category, they can still provide useful
building blocks to the learning algorithm that learns to recognize the novel class
duck. Table 1 lists some highly-weighted classemes used to describe an arbitrarily
selected subset of the Caltech256 categories. Each row of the table may be viewed
as expressing the category as a weighted sum of building blocks; however the true
building blocks are not the classeme labels that we can see, but their underlying
dumb components, which we cannot. To complete the duck example, it is a combi-
nation of body of water, bomber plane, swimmer, as well as walking
and straight. To gain an intuition as to what these categories actually represent,
Figure 1 shows the training sets for the latter two. Examining the training images,
we suggest that walking may represent “inverted V outdoors” and straight
might correspond to “clutter and faces”.

2 Background

Before describing the details of the system, and experimental investigations, we
shall briefly summarize related literature.

The closest existing approach is probably image representation via attributes [11,
19]. Here object categories are described by a set of boolean attributes, such as “has
beak”, “no tail”, “near water”. Classifiers for these attributes are built by acquiring
labels using Amazon’s Mechanical Turk. In contrast, classemes are not designed to
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Fig. 1 Classeme training images. A subset of the training images for two of the 2659
classemes: walking, and straight. The top 150 training images are downloaded from
Bing image search with no filtering or reranking. As discussed in the text, we do not require
classeme categories to have a semantic relationship with the novel class; but to contain some
building blocks useful for classification.
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have specific semantic meanings, but rather to capture intersections of properties.
Furthermore, they are trained using data directly obtained from web image search,
without human cleanup. In addition, most prior attribute-based methods have re-
lied on a “zero-shot” learning approach: instead of learning a classifier for a novel
category from training examples, a user designs the classifier by listing attributes,
limiting such systems to categories for which humans can easily extract attributes,
and increasing the workload on the user even for such categories. A related idea is
the representation of images in terms of distances to basis classes, which has been
previously investigated as a way to define image similarities [42], to perform video
search [15], or to enable natural scene recognition and retrieval [41].

The approach considered here is also evocative of Malisiewicz and Efros’s
“Recognition by Association” [23], in which object classes are represented by sets
of object instances to which they are associated. In contrast, classemes represent
object classes as a combination of other object classes to which they are related.
This change of viewpoint enables the use of powerful kernel-based classifiers.

Because classemes represent images by a (relatively) low-dimensional feature
vector, the approach is related to dimensionality reduction techniques and methods
to learn compact codes for images [43, 36, 33, 31, 9]. These data-driven techniques
find low-dimensional, typically nonlinear, projections of a large feature vector rep-
resenting each image, such that the low-dimensional vectors are an effective proxy
for the original. These techniques can achieve tremendous compressions of the im-
age (for example to 64 bits [43]), but are of course correspondingly lossy, and have
not been shown to be able to retain category-level information.

It is also useful to make a comparison to existing categorization systems in terms
of how far they meet the requirements we have set out. In the discussion below,
let N be the size of the test set (i.e. the image database, which may in principle be
very large). Let n be the number of images in the training set, typically in the range
5− 100 per class. Let d be the dimensionality of the representation stored for each
image. For example, if a histogram of visual words is stored, d is the minimum
of the number of words detected per image and the vocabulary size. For a GIST
descriptor [28], d is of the order of 1000. For multiple-kernel techniques [13], d
might be of the order of 20,000. For the system in this paper, d can be as low as
1500, while still leveraging all the descriptors used in the multiple-kernel technique.
Note that although we shall later be specific about the number of bits per element of
d, this is not required for the current discussion.

Boiman et al. [4] shows one of the most intriguing results on the Caltech256
benchmark: a nearest-neighbour-like classifier on low-level feature descriptors pro-
duces excellent performance, especially with small training sets. Its training cost is
effectively zero: assemble a bag of descriptors from the supplied training images
(although one might consider building a kd-tree or other spatial data structure to
represent large training sets). However, the test-time algorithm requires that each
descriptor in the test image be compared to the bag of descriptors representing the
class, which has complexity O(nd). It may be possible to build a kd-tree for the test
set, and reverse the nearest-neighbor lookups, but the metric is quite asymmetric, so
it is not at all clear that this will preserve the properties of the method.
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For the multilple-kernel system of Gehler and Nowozin [13] the complexity is
again O(nd), but with large d, and a relatively large constant compared to the
nearest-neighbor approach.

Another class of related techniques is the use of classifier combination other than
multiple-kernel approaches. Zehnder et al. [44] build a classifier cascade which en-
courages feature sharing, but again requires the set of classes to be predefined, as is
true for Griffin and Perona [14] and Torralba et al. [37]. Heitz et al. [16] propose to
learn a general cascade similar to classemes (although with a different goal). How-
ever, the classeme approach simplifies training by pre-training the first layer, and
simplifies testing by successfully working with simple top-layer classifiers.

3 Method Overview

The approach is now described precisely, but briefly, with more details supplied
in §4. There are two distinct stages: once-only classeme learning; followed by any
number of object-category-related learning tasks. Note that there are distinct train-
ing sets in each of the two stages.

3.1 Classeme Learning

A set of C category labels is drawn from an appropriate term list. For each category
c ∈ {1..C}, a set of training images is gathered by issuing a query on the category
label to an image search engine.

A one-versus-all classifier φc is trained for each category. The classifier output is
real-valued, and is such that φc(x)> φc(x′) implies that x is more similar to class c
than x′ is. Given an image x, then, the feature vector (descriptor) used to represent
x is the classeme vector f(x) = [φ1(x), . . . ,φC(x)].

Given the classeme vectors for all training images, it may be desired to perform
some feature selection on the descriptors. We shall assume this has been done in the
sequel, and simply write the classeme vector in terms of a reduced dimensionality
d ≤C, so f(x) = [φ1(x), . . . , φd(x)]. Where d is not specified it may be assumed that
d =C.

Given the parameters of the φc, the training examples used to create the classemes
may be discarded. We denote by Φ the set of functions {φc}d

c=1, which encapsulates
the output of the classeme learning, and properly we shall write f(x) = f(x;Φ).

3.2 Using the Classemes

Given Φ , the rest of the approach is conventional. A typical situation might be that a
new object category, or set of categories, is defined by a set of training images (note
again that this is a new set of training images, unrelated to those used to build Φ).
The training images are converted to classeme vectors, and then any classifier can be
trained taking the classeme vectors as input. As shown in experiments, the features
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are sufficiently powerful that simple linear classifiers applied to the classemes can
give accuracies commensurate with much more expensive classifiers applied to the
low-level image features. Useful candidate classifiers might be those which make a
sparse linear combination of input features, so that the test cost is a small fraction of
d per image; or predicate-based classifiers so that test images with nonzero score can
be retrieved rapidly using inverted files [27, 38], achieving test complexity sublinear
in N, the size of the test set.

4 Further Details

Several details are now expanded.

4.1 Selecting Category Labels

The set of category labels used to build the classemes should consist primarily of vi-
sual concepts. This will include concrete nouns, but may also include more abstract
concepts such as “person working”. The category labels should be chosen to be rep-
resentative of the type of applications in which one plans to use the descriptors. As
the focus of this study is general-category recognition, here we consider concepts
selected from the Large Scale Concept Ontology for Multimedia (LSCOM) [26].
The LSCOM categories were developed specifically for multimedia annotation and
retrieval, and have been used in the TRECVID video retrieval series. This ontology
includes concepts selected to be useful, observable and feasible for automatic de-
tection, and as such are likely to form a good basis for image retrieval and object
recognition tasks. The LSCOM CYC ontology dated 2006-06-30 [22] was selected
as the reference data set of concepts. From the initial 2832 unique concepts, the
following categories were removed: 97 classes denoting abstract groups of other
categories (marked in angle brackets in [22]); plural categories that also occurred
as singulars; some people-related categories which were effectively near-duplicates.
A total of C = 2659 categories were preserved by this filtering: the final list of
concepts is available in [40]. Some examples have already been seen in table 1.
This filtering was intentionally conservative in removing categories because, as dis-
cussed in the introduction, it is not easy to predict a priori what categories will be
useful.

4.2 Gathering Category Training Data

For each category label, a set of training images was gathered by taking the top
150 images from the bing.com image search engine. For a general application
these examples would not need to be manually filtered in any way, but in order to
perform fair comparisons against the Caltech image database, near duplicates of
images in that database were removed by a human-supervised process. Conversely,
we did not remove overlap between the classeme terms and the Caltech categories

bing.com
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(28 categories overlap, see data on [40]), as a general-purpose system can expect
to see overlap on a small number of queries. We also ran a test, not reported here,
where classemes overlapping with Caltech256 labels were removed; the resulting
performance was essentially unchanged.

4.3 Learning Classifiers φc

The classification model used for the φc(·) is the LP-β kernel combiner of Gehler
and Nowozin [13]. While they used 39 kernels, the experiments presented in this
chapter are based on a set of 13 kernels. The kernels are defined in terms of the χ2

distance between feature vectors as follows: k(x,x′) = exp(−χ2(x,x′)/γ), where
γ is a hyper-parameter set as in [13] to be the average of the χ2 distances in the
training set. The following 13 feature types were used:

• Kernel 1: Color GIST, d1 = 960. The GIST descriptor [28] is applied to color
images. The images were resized to 32×32 (aspect ratio is not maintained), and
then orientation histograms were computed on a 4 × 4 grid. Three scales were
used with the number of orientations per scale being 8,8,4.

• Kernels 2-5: Pyramid of Histograms of Oriented Gradients, d2..5 = 1700. The
PHOG descriptor [7] is computed using 20 bins at four spatial pyramid scales.

• Kernels 6-9: PHOG (2π unwrapped), d6..9 = 3400. These features are obtained
by using unoriented gradients quantized into 40 bins at four spatial pyramid
scales.

• Kernels 10-12: Pyramid self-similarity, d10..12 = 6300. The Shechtman and Irani
self-similarity descriptor [34] was computed as described by Bosch [5]. This
gives a 30-dimensional descriptor at every 5th pixel. We quantized these descrip-
tors into 5000 clusters using k-means, and a pyramid histogram was recorded
with three spatial pyramid levels.

• Kernel 13: Bag of words. d13 = 5000 SIFT descriptors [21] were computed at
interest points detected with the Hessian-Affine detector [25]. These descriptors
were then quantized using a vocabulary of size 5000, and accumulated in a sparse
histogram.

A binary LP-β classifier was trained for each classeme, using a setup following the
one described in section 7 of [13] in terms of kernel functions, kernel parameters,
values of ν and number of cross validations. The only difference is that the objective
of their equation (4) was modified in order to handle the uneven training set sizes.
We used N+ = 150 images as positive examples, and one image chosen at random
from each of the other training sets as negative examples, so N− =C−1. The objec-
tive was modified by scaling the positive entries in the cost vector by (νN+) and the
negative entries by (νN−). The cross-validation yields a per-class validation score
which is used for feature selection.
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4.4 Feature Selection

In order to perform feature selection on the classeme vectors f, the classemes were
first sorted in increasing order of cross-validation error. Given a desired feature di-
mensionality, d, the reduced classeme vector was obtained by selecting the first d
components f(x) = [φ1(x), . . . ,φd(x)]. Again in situations where d is not specified it
may be assumed that d =C

4.5 Classeme Quantization

For a practical system, the classeme vectors should not be stored in double preci-
sion, but instead an explicit quantization of the values should be used. This may
be achieved by a simple quantization, or by defining binary “decision stumps” or
predicates. Quantization can be performed either at novel-category learning time
(i.e. on the novel training set) or at classeme-learning time. For 1-bit quantization,
simple thresholding at 0 was used. For higher quantization numbers, the follow-
ing “histogram-equalized” quantization was used. Given a training set of classeme
vectors {fi}n

i=1, write fi = [φik]
d
k=1. Write the rows of the matrix [f1, . . . , fn] as

rk = [φik]
n
i=1. To quantize to Q levels, quantization centres ziq are chosen as follows:

r′k = sort(rk), defining a matrix φ ′
ik. Then make the set Zk = {φ ′

�nq/(Q+1)�,k}Q
q=1, and

each value φik is replaced by the closest value in Zk.

5 Experiments

Given the simplicity of the approach, the first question that naturally arises is how
it compares to the state-of-the-art recognition approaches. Here we compare to the
LP-β kernel combiner as this is the current front-runner. Note that the key metric
here is performance drop with respect to LP-β with the same 13 kernels used by
classemes. As the classeme classifiers introduce an extra step in the recognition
pipeline, performance might be expected to suffer from a “triangle inequality”: the
raw kernel combiner can optimize kernels for the final classes to recognize, while
the classifiers using classemes as representation are forced to use the kernels trained
on the LSCOM classes. The experiments show that this does happen, but to a small
enough extent that the classemes remain competitive with the state of the art, and
are much better than the closest “efficient” system.

There are two main experiments. In the first, we wish to assess the representa-
tional power of classemes with respect to existing methods, so we use the standard
Caltech256 accuracy measure, with multiclass classifiers trained on all classes. In
the second, we want to test classemes in a framework closer to their intended use,
so we train one-vs-all classifiers on each class separately, and then report precision
on ranking a set of images including distractors from the other classes.
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Fig. 2 Caltech256. A number of classifiers are compared on the Caltech256 dataset. LP-
beta [13], MKL: Multiple Kernel learning [1], as implemented in [13], LPbeta13: LP-β on
our low-level features (§4.3); Xsvm SVM trained on the concatenation of our low-level fea-
tures. The classeme-based classifiers are: Csvm: SVM, floating point, d = 1500; Cq4svm:
SVM, input quantized to 4 bits per channel (bpc), d = 1500; Cq1svm: SVM, input quantized
to 1 bit, d = 1500. The key-result is this: on 30 training examples, and using the same under-
lying features, Csvm has 36% accuracy, and LPbeta13 has 42% accuracy, but the classeme-
based system is orders of magnitude faster to train and test.

5.1 Experiment 1: Multiclass Classification

In this experiment we study the performance of classemes using the multiclass linear
SVM of Joachims [18] as classification model, since this is an efficient classifier
to train and test and thus it is well suited to our motivating problem. The SVM
regularization parameter was set to be λ = 3000. All classeme-based results are
presented for the case d = 1500, as using more than 1500 classemes was found to
yield no further improvements.

Figures 2 shows the multi-class accuracy for different classifiers as a function of
the number of training examples per class, using 25 test examples per category. It
can be seen that the classeme-based SVM (Csvm) greatly outperforms an SVM di-
rectly trained on the same low-level features (Xsvm) and it matches the accuracy of
the nonlinear classifier trained using multiple kernel learning [1]. Only LPbeta13
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Fig. 3 Accuracy versus compactness of representation on Caltech-256. On both axes, higher
is better. (Note logarithmic y-axis). The lines link performance at 15 and 30 training
examples.

(the version of LP-β using the same low-level features exploited by classemes)
provides higher accuracy. However the size of the representation is considerably
reduced for classemes compared to LP-β : 2.5KB versus 23KB. Furthermore, the
training and test times of our approach are considerably lower than LP-β : training
the multiclass classifier Csvm with 5 examples for each Caltech class takes about
9 minutes on a AMD Opteron Processor 280 2.4GHz while the method of [13]
requires more than 23 hours on the same machine; predicting the class of a text
example takes 0.18ms with our model and 37ms with LP-β .

In addition, when moving from floating point classemes (Csvm) to a quantization
of 4 bits per channel (Cq4svm) the change in accuracy is negligible. Accuracy drops
by only 2–4 percentage points using a 1 bit per channel SVM (Cq1svm, d = 1500,
187.5 bytes per image). However, this representation increases the number of images
that can be stored in an index by a factor of 100 over LP-β , which is especially
significant for RAM-based indices.

Figure 3 shows accuracy versus compactness for different classification systems.
In this plot we include also the performance of Naive Bayes Nearest Neighbor
(nbnn) [4] and Efficient Match Kernel (EMK) [3]. It can be seen that classemes
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Fig. 4 Class retrieval in Caltech256. Percentage of the top 25 in a 6400-document set which
match the query class. Random performance is 0.4%.

using 1 bit per channel provide a significant saving in terms of storage requirement
compared to all other methods, while still yielding near state-of-the-art accuracy.

5.2 Experiment 2: Retrieval

The retrieval experiment attempts to gain insight into the behaviour of classemes in
a class-retrieval task. A query against the database is specified by a set of training
images taken from one category, and the retrieval task is to order the database by
similarity to the query.

Evaluation on Caltech256. We start by studying performance on the Caltech256
data set. The test database is formed by sampling 25 images from each Caltech
category. Success is measured as precision at 25: the proportion of the top 25 images
which are in the same category as the query (training) set. The maximum score is 1,
obtained if all the matching images are ranked above all the distractors. For this
experiment, we compare classemes with bags of visual words (BOW), which are a
popular model for efficient image retrieval. We use as BOW features the quantized
SIFT descriptors of Kernel 13.

We consider two different retrieval methods. The first method is a linear SVM
learned for each of the Caltech classes using the one-vs-the-rest strategy. We com-
pare these classifiers to the Rocchio algorithm [24], which is a classic information
retrieval technique for implementing relevance feedback. In order to use this method
we represent each image as a document vector d(x). In the case of the BOW model,
d(x) is the traditional tf-idf-weighted histogram of words. In the case of classemes
instead, we define d(x)i = [φi(x)> 0] · idfi, i.e. d(x) is computed by multiplying the
binarized classemes by their inverted document frequencies. Given, a set of relevant
training images Dr, and a set of non-relevant examples Dnr, Rocchio’s algorithm
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Fig. 5 Class-retrieval precision versus search time for the 10-million ImageNet database: x-
axis is search time; y-axis shows percentage of true positives ranked in the top 10 (for each
query class, the database contains n−

test = 9,671,611 distractors and n+test = 450 true positives).
The curve for each method is obtained by varying the hyperparameter in the learning objective
of the classifier, thus producing different accuracy-speed tradeoffs (see details in the text).

computes the document query

q = β
1

|Dr| ∑
xr∈Dr

d(xr)− γ
1

|Dnr| ∑
xnr∈Dnr

d(xnr) (1)

where β and γ are scalar values. The algorithm then retrieves the database docu-
ments having highest cosine similarity with this query. In our experiment, we set
Dr to be the training examples of the class to retrieve, and Dnr to be the remaining
training images. We report results for two different settings: (β ,γ) = (0.75,0.15),
and (β ,γ) = (1,0) corresponding to the case where only positive feedback is used.

Figure 4 shows that methods using classemes consistently outperform the algo-
rithms based on traditional BOW features. Furthermore, SVM yields much better
precision than Rocchio’s algorithm when using classemes.

Evaluation on ImageNet (10M images). We now move on to present results
on the large-scale ImageNet dataset [8], which includes about 10-million images
representing over 15,000 categories (in this experiment we used 15,203 classes).
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We randomly selected 400 categories as query classes. For each of these classes
we capped the number of true positives in the database to be n+test = 450. The total
number of distractors for each query is n−

test = 9,671,611. Due to the size of the
collection, we restrict our analysis to the binary version of classemes (1 bit per
channel), using d = 2659.

We use this large-scale database to evaluate the speed-up achievable by imple-
menting linear classification via inverted lists [24]. Inverted lists (also known as
inverted indices) have been widely used for image search but predominantly for
retrieval of near-duplicates or particular object-instances [35, 27, 30]. Instead here
we adopt them to efficiently calculate the inner product between the weight vector
learned at query-time and the binary classeme vector associated to each database
image. This can be achieved by storing an inverted list for each classeme feature,
enumerating the database images containing that particular classeme entry. The in-
verted lists allow the ranker to skip over classemes having value zero. A further
speedup can be obtained by using a sparse classification model where the weight
vector is constrained to have very few non-zero entries so that the evaluation cost
will be a small fraction of the number of features (d). We use an �1-regularized lo-
gistic regression [10] (L1-LR) to test the advantages of a sparse classifier over the
traditional �2-regularized SVM (L2-SVM).

For each query category we trained these two classification models using the one-
vs-the-rest strategy, with a training set consisting of n+ = 10 positive examples and
n− = 15,202 negative images obtained by sampling one training image for each of
the negative classes. The results are summarized in figure 5. The x-axis shows av-
erage retrieval time per query, measured on a single-core computer with 16GB of
RAM and an Intel Core i7-930 CPU @ 2.80GHz. The y-axis reports precision at
10 which measures the proportion of true positives in the top 10. The performance
curve of each method was generated by varying the regularization hyperparame-
ter λ in the learning objective of the classifier. While λ is traditionally viewed as
controlling the bias-variance tradeoff, for the L1-LR classifier it can be interpreted
as a parameter balancing generalization accuracy versus sparsity, and thus retrieval
speed. It can be seen that inverted indices speed up considerably the retrieval, partic-
ularly in the case of L1-LR which tends to generate sparser weight vectors for which
inverted indexing is especially advantageous: using this model ranking the entire 10-
million dataset takes about 30 seconds, with an average precision@10 above 30%.
As a reference, random retrieval would produce precision@10 roughly equivalent
to 0.005%. Learning a L1-LR or an L2-SVM classifier for a query category in this
experiment takes roughly 2 seconds.

We would like also to comment on the memory usage. Representing the database
as a bit-map of all classemes would require a space of (2659/8)× N bytes for a
database containing N images, which in this case amounts to about 3GB. The in-
verted list architecture requires more space. We represented the image IDs in in-
verted files using one byte per image: we achieve this by storing only ID displace-
ments (which in our experiment happened to be always smaller than 255) between
consecutive images in the list. Using this encoding, the total storage requirement for
the 10M data set was roughly 9GB.
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6 Discussion

In this chapter we have describe the learning of the classeme descriptor which is
a representation intended to be useful for efficient high-level object recognition.
By using the noisy training data from web image search in a novel way – to train
“category-like” classifiers – the descriptor is essentially given access to knowledge
about what humans consider “similar” when they search for images on the web (note
that most search engines are considered to use “click-log” data to rank their image
search results, so the results do reflect human preferences). The experiments have
shown that this knowledge is effectively encoded in the classeme vector, and that
this vector, even when quantized to below 200 bytes per image, gives competitive
object category recognition performance.

A natural question is whether the weakly trained classemes actually do contain
any semantic information, although we have emphasized that this is not the main
motivation for their use.

We have focused here on object category recognition as characterized by the
Caltech256 training data, which are adequate for clip-art search, but which will not
be useful for, for example, home photo retrieval, or object indexing of surveillance
footage. It should be straightforward to retrain the classemes on images such as the
PASCAL VOC images, but a sliding-window approach would probably be required
in order to achieve good performance.

Classemes were originally introduced in [39]. A further extension of this idea was
presented in [2] where the classeme classifiers were trained jointly (as opposed to in-
dependently) by directly optimizing an objective measuring linear classification ac-
curacy. A related approach is proposed by Li et al. [20] where the location-dependent
output of object detectors evaluated on the image is used as a representation. The ad-
vantage of this descriptor is that it encodes spatial information; furthermore, object
detectors are more robust to clutter and uninformative background than classifiers
evaluated on the entire image. In [9] classemes were empirically shown to be useful
also for low-level retrieval tasks such as finding images of the same scene as the query,
particularly when used in conjunction with local-appearance descriptors [21, 29].
Also in [9], several binary encoding methods are presented to further compress the
size of classemes while preserving their good retrieval properties. Some of these com-
pression methods as well as a top-k ranking scheme are explored in [32] to further
boost the efficiency of object-class retrieval in large databases using classemes.

Additional material including the list of classeme labels, the classeme training
images, precomputed feature vectors for standard datasets, as well as software to
extract this descriptor may be obtained from [40].
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The Enhanced Flock of Trackers

Tomáš Vojı́ř and Jiřı́ Matas

Abstract. The paper presents contributions to the design of the Flock of Trackers
(FoT). The FoT estimates the pose of the tracked object by robustly combining
displacement estimates from a subset of local trackers that cover the object and has
been. The enhancements of the Flock of Trackers are: (i) new reliability predictors
for the local trackers - the Neighbourhood consistency predictor and the Markov
predictor, (ii) new rules for combining the predictions and (iii) introduction of a
RANSAC-based estimator of object motion. The enhanced FoT was extensively
tested on 62 sequences. Most of the sequences are standard and used in the literature.
The improved FoT showed performance superior to the reference method. For all
62 sequences, the ground truth is made publicly available.

1 Introduction

The term ”visual tracking” covers a broad range of methods for estimation of the
pose and state of some entity in a sequence of images assuming temporal depen-
dence of the estimated quantities. The complexity of the tracked entity may range
from a rectangular region to a deformable or articulated object like human or animal
body. The pose refers to geometric parameters of the entity, in 2D tracking typically
a position, often with scale and rotation. The state represents all other information
about the object, e.g. its past appearance, dynamics or even a discriminative classi-
fier for redection [8, 6] or pointers to objects in the image with correlated motion [5].

Short-term frame-to-frame tracking is the most widely used form of visual track-
ing. It formulates the problem as a sequential casual estimation of the pose of an
object in the next frame given the pose in the current frame. Short term trackers do
not consider the problems of object re-detection after occlusion or disappearance -
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some pose parameters are always output, regardless of the fact the tracked entity is
no more (visible) in the field of view. Prominent examples of short term trackers
are the Lucas-Kanade [11] and mean-shift [3] trackers. The popularity of short-term
trackers stems from their simplicity and, consequently, high speed and applicability
in a wide range of conditions.

The Flock of Trackers (FoT). Recently, Kolsch and Turk [9] and Kalal et al.
[8, 6] have shown that a very robust short-term tracker is obtained if a collection
(a ”flock”) of local short-term trackers covering the object is run in parallel and the
object motion is estimated from the displacements or, more generally, from trans-
formation estimates of the local trackers. Each local tracker is attached to a certain
area specified in the object coordinate frame. Following [8, 6, 14], we adopted the
Lucas-Kanade [11] algorithm for local tracking.

The block structure of the Flock of Trackers is illustrated in Fig. 1. In its simplest
form, the FoT requires only two components: a local short-term tracker, multiple
instance of which are run on different areas of the object and provide image-to-
image correspondence, and a (global) object motion estimation module robustly
combining the local estimates.

The FoT is a very attractive short-term tracker. In comparison to many recently
published methods, it is relatively simple and transparent and yet its performance
is close to the state of the art [14]. Its internal structure allows handling heavy par-
tial occlusion and local non-rigid changes and it makes the pose estimation robust,
since it does not depend on a single global property of the object but rather on a
composition of many local (weak) features. The FoT is slower then a monolithic
short-term tracker, but not by orders of magnitude since the local trackers operate
on small patches are thus fast.

In this chapter we show that the performance of the FoT is significantly improved
if the object motion module is provided with a confidence measure in the reliability
of the local tracker motion estimates. We propose (i) new reliability predictors for
the local trackers, (ii) new rules for combining the predictions and (iii) introduce a
new, RANSAC-based estimator of the object motion.

The local tracker reliability predictors presented in the chapter fall into two
groups. The first group contains methods that are applicable to any short-term
tracker and includes estimators based on the apparent magnitude of the intra-frame
appearance change like the sum of squared intensity differences (SSD), the nor-
malized cross-correlation (NCC) and the forward-backward procedure (FB). The
forward-backward procedure runs the Lucas-Kanade tracker [11] twice, once in the
forward direction time, as in a standard implementation, and then a second (extra)
run is made in the reverse direction. The probability of being an oulier, i.e. of tracker
failure, is a function of the distance of the initial position and the position reached
by the FB procedure.

The second group of local tracker reliability predictors includes two estimators
applicable only to trackers running multiple local trackers, such as the FoT. One, a
new predictor based on the consistency of motion estimates in a local neighbourhood
(PN), exploits the fact that it is unlikely for a local motion estimate to be correct if it
differs significantly from other motion estimates in its neighbourhood. The second
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new predictor reflects past performance of the local tracker. If a local tracker motion
estimate has (often) been an outlier in the (recent) past, i.e. it was inconsistent with
the global motion estimate, it is not likely to be correct in the current frame. This
occurs for instance when the area covered by the local tracker is occluded or because
the area is not suitable for tracking (e.g. it has near constant intensity). This local
predictor of tracker reliability is called the Markov predictor (PM), since it models
the sequence of predicted states (either inlier or outlier) as a Markov chain.

The Markov predictor uses the global object motion estimates as ground truth in
judging the correctness of local tracker motion. Naturally, the global motion esti-
mate may be correct or incorrect, but the latter case need not be considered since
the FoT has failed anyway.

Combination of predictors. With the exception of the forward-backward proce-
dure, the evaluation of the reliability prediction is fast in comparison with the time
it takes to calculate the local motion estimate. It is therefore reasonable to combine
all fast predictors to achieve high accuracy and avoid, if possible, the FB procedure.
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Fig. 1 Block structure of the Flock of Trackers (FoT). Correspondences (motion estimates)
between two images, given the previous object pose and two consecutive images, are pro-
duced by local trackers. Simultaneously, reliability is estimated for each motion estimate.
The object pose in the next frame is robustly estimated from a subset of most reliable motion
estimates called tentative inliers.
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We show that the Markov and Neighbourhood predictors, both on their own and
when combined with the normalized cross-correlation predictor Pρ , are more reliable
than the normalized cross-correlation predictor combined with the FB procedure used
in the reference method [7]. The new predictors are computed efficiently at a cost of
about 10% of the complete FoT procedure whereas the forward-backward procedure
slows down tracking approximately by a factor of two, since the most time consum-
ing part of the process, the Lucas-Kanade local optimization, is run twice. With the
proposed combination of reliability predictors, a FoT with much higher robustness
to local tracker problems is obtained with negligible extra computational cost.

We introduce and compare two predictor combination schemes: a predictor com-
bination method approximating a likelihood-based decision (denoted as PΘ ) and
a simple ad-hoc predictor combination (denoted as P∧ combination). The ad-hoc
combination sets a reliability threshold for each predictor (i.e. Pρ , PM , PN) and the
local tracker has to satisfy all of the condition to be used for pose estimation. The
likelihood-based method orders the local trackers based on their likelihood of being
correct. It allows choosing either the n best local trackers or a variable size subset
that on average maintains a certain level of the inlier ratio for robust object pose
estimation. In experiments, we set the operating point of the PΘ combination so
that the number of the local trackers in the predicted inlier set (i.e. points, from
which the object pose is estimated) is the same in each frame for the P∧ and the
PΘ methods. The methods are evaluated by inlier prediction precision and by how
many true inliers were in a predicted set.

Finally, we turn our attention to robust object motion estimation that takes as
input the local motion estimates equipped with their reliability predictions.

The reference method is the Median-Flow (MF) [7] tracker which was shown to
be comparable to the state-of-the-art where object motion, which is assumed to be
well modelled by translation and scaling, is estimated by the median of a subset of
local tracker responses.

Theoretically, the median with the breakdown point 0.5 is robust up to 50% of
corrupted data. Since a single displacement vector give an estimate of the trans-
lation, the median as a translation estimator is robust up to 50% of incorrect
local trackers. For scale estimation a ratio of pairwise distances of local track-
ers is used as an estimate of scale change, therefore a median is robust up to
100× (1−√

0.5)%
.
= 29% of incorrect local trackers for scale estimation step.

In practice, the outlier tolerance is often lower since the outliers ”conspire”. The
outlier motion estimates originate from occluded or background areas. All local mo-
tion estimates in such areas are typically consistent with a motion of the occluding
object or the background, i.e. they are higher or lower than the tracked object mo-
tion and bias the median based estimate. In challenging tracking scenarios presented
in Section 6, the inlier percentage was often not sufficient for the median-based es-
timation of global motion and it failed when used without local tracker reliability
prediction.

We show that RANSAC [2, 4] followed by least square fitting of inliers (LS)
as model estimator is a preferable alternative to the median estimator. There are
three main advantages of using the RANSAC+LS estimator: the model is estimated
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consistently (i.e. translation estimation is not separated from scale estimation), the
motion model is not constrained to translation, scale and rotation; affine transforma-
tion or a homography requires only to change the sample size and it handles higher
outlier percentages.

The rest of the paper is structured as follows. Section 3 proposes two new pre-
dictors of local tracker failure and discusses the predictor parameters selection. Sec-
tion 4 discusses predictor combinations. Section 5 introduce RANSAC as a model
estimator. Finally, Section 6 evaluates the proposed improvements. Conclusions are
given in Section 7. This paper is an extension of a workshop paper [14].

2 Related Work

The work presented in the chapter builds on Kalal et al. [7] who mainly used the
FoT as a tracking component of the powerful Tracking-Learning-Detection system,
or TLD in short, long-term tracker [8]. Interestingly, with the improvements in pre-
sented in the chapter, the FoT with the combined new reliability prediction of local
trackers approaches performance of the TLD framework on sequences where rede-
tection is not needed, and yet is significantly faster.

The baseline FoT [7] places local trackers on a regular grid, i.e. the local trackers
cover the object uniformly. Object motion, which is assumed to be well modelled by
translation and scaling, is estimated by the median of a subset of local tracker dis-
placement estimates (translation) and the median of the relative change of distance
between positions of local tracker pairs (scale).

For reliability prediction of local trackers, Kalal et al. [7] use several standard
local tracker filtering methods, namely the normalised cross-correlation (or sum
of squared differences) of the corresponding patches, and the consistency of the
forward-backward procedure.

The original idea of exploiting a collection of trackers goes back at least to Klsch
et al. [9] who proposed the Flock of Features for fast hand tracking using local
trackers (Lucas-Kanade [11]) with color histograms for replenishing of failed local
trackers. They also enforce ”flock behaviour” [12] to detect failing local trackers.
The output of their tracker is the median position of the local trackers, which mani-
fests the flock behaviour.

Adam et al. [1] introduced FragTrack, which represents object by multiple patches
(histograms of local areas). During tracking, each patch votes for an object pose by
comparing its histogram to neighbourhood patch histograms. Robust statistics is then
used to combine votes from multiple patches. Nejhum et al. [13] combine global de-
scription (histogram over the whole object) and a small number of rectangular blocks
(weighted histograms) to determinate the most probable object location. An approx-
imate boundary contour is then extracted using graph-cut segmentation. Block posi-
tions and weights are then updated. Kwon et al. [10] use local patch-based appearance
model and an efficient scheme for online evolution of the local patch topology. For
each frame, the Maximum a Posteriori (MAP) estimate is computed from the obser-
vation and transition models of local patches in a Bayesian manner.
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3 Tracker Reliability Prediction Methods

In this section, two novel methods for the local tracker reliability prediction are
presented: section 3.3 describes the Neighbourhood consistency reliability predic-
tor and section 3.4 presents the Markov predictor based on the long-term behaviour
of the local tracker. Before that, two predictors used in the literature are described:
the reliability predictor Pρ based on normalised cross-correlation of the correspond-
ing patches in consecutive frames (section 3.1) and the forward-backward predictor
(section 3.2

3.1 The NCC Reliability Predictor Pρ

The first step of the predictor is to calculate for each local tracker the normalized
cross-correlation NCC, eq. 1 between the patches T1 and T2 at corresponding posi-
tions and size (w,h) given by the motion estimate:

T ′
1(x,y) = T1(x,y)− 1/(w ·h) ·∑x′,y′ T1(x′,y′)

T ′
2(x,y) = T2(x,y)− 1/(w ·h) ·∑x′,y′ T2(x′,y′)

NCC =
∑x,y(T

′
1(x,y) ·T ′

2(x,y))√
∑x,y T ′

1(x,y)
2 ·∑x,y T ′

2(x,y)
2

(1)

The Pρ predictor, introduced in [7] works as a ranking filter. It is difficult to find
a general function linking the NCC to tracker reliability, since NCC values for all
local trackers may change dramatically from frame to frame due to an illumination
change, shadows, small drifts, etc. The local trackers are thus only sorted by NCC
and their rank is used as a predictor.
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Fig. 2 Properties of the Pρ predictor averaged over a subset of the test sequences and all
frames. (a) The histogram of NCC ranks ρ for local trackers with correct motion estimates
(green) and incorrect motion estimates (red). (b) The correct/incorrect motion estimate ratio
as a function of NCC rank ρ (green), the reciprocal value in red.
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The top 50% of the local trackers are predicted to be inlier (correct motion es-
timate), the rest as outliers (incorrect motion estimate). The threshold was selected
empirically. Figure 2(a) shows the histogram of ranks for both inliers and outliers and
supports the choice to filter 40%-50% of the worst local trackers, as the probability of
being an inlier in the bottom half of the ranks is smaller than the probability of being
an outlier. This is illustrated in figure 2(b) in terms of the likelihood ratio of being an
inlier/outlier. Another interesting fact is that probability of being an outlier slightly
rises around the 1-5 rank. This is caused by local trackers that are placed on the back-
ground (due to the bounding box representation of object or tracker drift) where a
zero motion is estimated. The NCC values are very high on the static background.

Experimentally we observed that the Pρ predictor is sensitivity to local tracking
precision of the model and candidate patch - small misalignment may induce ar-
bitrary large similarity difference. This often happens for articulated or non-rigid
objects.

3.2 The Forward-Backward Reliability Predictor PFB

This underlying idea behind the forward-backward predictor is that the process of
motion estimation between two images is independent of the order of the images.
In an error-free situation, tracking an image region using Lucas and Kanade [11]
gradient optimization from frame 1 → 2 and then the resulting image region from
2 → 1 will end up in the original position in the frame 1.
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Fig. 3 A reference point of a regions of interest is tracked forward in time (from frame
t → t +1 → t +2) and then backward. The positional forward-backward error ε =‖ c−cfb ‖2

is then used as a measure of tracker reliability.
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When the deviation from the original position in frame 1 is large, then at least
one of the two motion estimates is inaccurate. It is not unreasonable to assume
that reliability of the motion estimate is a monotonic function of the distance of
the original position and the position reached by the forward-backward procedure.
The process may be generalised and the forward and backward direction tracking
computed over larger number of frames. This is illustrated in Fig. 3.

Figure 4(a) shows the histogram of FB distance ranks for correct and incorrect
motion estimates and supports the choice to filter 30%− 50% of the worst local
trackers, as the probability of being an inlier in the bottom half of the ranks is smaller
than the probability of being an outlier. Figure 4(b) depicts the ratio of being an
inlier or outlier respectively as function of the rank. Similarly to Pρ predictor, the
probability of being an outlier rises around the 1-5 rank. This is also caused by local
trackers that are on the background and thus are consistent with FB procedure.
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(b)

Fig. 4 Properties of the PFB predictor averaged over a subset of the test sequences and all
frames. (a) The histogram of FB ranks for local trackers with correct motion estimates (green)
and incorrect motion estimates (red). (b) The correct/incorrect motion estimate ratio as a
function of the FB rank (green), the reciprocal value in red.

3.3 The Neighbourhood Consistency Predictor PN

The assumption behind the neighbourhood consistency predictor is that the motion
of neighbouring local trackers is often very similar, whereas a failing local tracker
returns a random displacement.

The PN predictor is implemented as follows. For each local tracker i, a set of
neighbouring local trackers Ni is defined. In all experiments, Ni included the four
nearest neighbours of i. The neighbourhood consistency score SN

i , the number of
the neighbourhood local trackers that have a similar displacement. The process is
visualised in Fig. 5.

We tested two definitions of the scoring functions given in eq. 2 and eq. 3. The
latter has superior performance and was adopted.
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Fig. 5 Neighbourhood score computation for two pairs of correspondences. Each unique pair
of correspondences (green) i, j ∈ 1,2,3,4 generate a similarity transformation Ti j . The tested
(blue) correspondence x is transform by the estimated similarities and the reprojection error
εi j =‖ x̂i j − x′ ‖2 is computed. The final score is the number of εi j < varepsilonN (number
of x̂i j points inside green circle around x′).

S’N
i =

1
Z ∑

j∈Ni

[
|∠i j|< ε∠ &

‖Δ j‖
‖Δi‖ ∈ (εl ,εh)

]

where [expression] =

{
1 if expression is true
0 otherwise

(2)

and where ε∠ is the maximum angle threshold, (εl ,εh) bounding range for the ratio
of displacement magnitudes, Δi is the displacement of local tracker i and Z = 4

Ni
is normalization to 4-neighbourhood (to account for corners and sides of bounding
box). A local tracker is defined to be consistent if SN

i ≥ θ , where θ is a threshold
for this predictor.

SN
i =

1
Z ∑

j,k∈Ni
j �=k

[‖ Tjkxi − x′
i ‖2< εN

]

where [expression] =

{
1 if expression is true
0 otherwise

(3)

Scoring function SN
i counts the number of triplets of consistent local tracker. The

transformation Tjk calculated from motion estimates of trackers j and k is applied
on the reference point x of tracker i. If the transformed position Tjkxi is within
εN of its corresponding point x′

i, one is added to the score. In experiments, εN

was set to 2.
When used as a decision function which is required in one of the predictor com-

bination methods described in the next section, there are finite number of possible
thresholds depending on the number of neighbourhood local trackers.

Figure 6(a) shows a normalized cumulative histogram of the local tracker state
for values of SN normalized to range < 0,1 >. Threshold θN = 1/6 is chosen (i.e.
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(b)

Fig. 6 Properties of the PN predictor averaged over a subset of test sequences and all frames,
(a) The normalized cumulative histogram of the local tracker state for SN , (b) The Precision-
Recall curve for PN predictor

SN greater or equal to 1/3 to predict an inlier state) as a good trade off between the
ratio of filtered outliers and the false negative rate. Figure 6(b) shows the operating
point of this threshold on the Precision-Recall curve.

3.4 The Markov Reliability Predictor PM

The Markov reliability predictor (PM) is based on the model of the past performance
of a local tracker bound to a region specified by object coordinate frame. The model
is in the form of a Markov chain with two states, st ∈ {0,1}, depicted in Fig. 7.

The predicted state (i.e. being correct - inlier or incorrect - outlier) of the local
tracker depends on its state in the previous time instance and on the transition prob-
abilities. The behaviour of each local tracker i at time t is modeled by transition
matrix Ti

t described in Eq. 4, where st is the current state of the local tracker and
whose columns sum to 1.

Ti
t =

[
pi(st+1 = 1 | st = 1) pi(st+1 = 1 | st = 0)
pi(st+1 = 0 | st = 1) pi(st+1 = 0 | st = 0)

]
(4)

The prediction that certain local tracker would be an tentative inlier (or an outlier)
is done according to equation 5.

[
pi(st+1 = 1)
pi(st+1 = 0)

]
= Ti

t ·
[

pi(st = 1)
pi(st = 0)

]
(5)

where pi(st = 1) ∈ {0,1} is binary and depends on the previous state (inlier/outlier)
of the ith local tracker. The left side of equation 5 are then probabilities that next
state would be inlier (outlier).
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Fig. 7 The state diagram of the Markov chain for the local tracker in the form of a two-state
probabilistic automaton with transition probabilities pi, where i identifies the local tracker
and initial state st=0 = 1.

In the update stage, transition probabilities are re-estimated as follows :

pi(st+1 = 1 | st = 1) =
ni

11

ni
1

pi(st+1 = 1 | st = 0) =
ni

01

ni
0

(6)

where n1 and n0 are numbers for the local tracker i being inlier (outlier respec-
tively), and n11 and n01 are relative frequency for event that the local tracker i was
inlier (outlier respectively) in the time t and inlier in the time t + 1, for t ∈ (0, t〉.
The current state of the local tracker being inlier (outlier) is obtained by identifying
local trackers that support the estimated global motion model.
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(b)

Fig. 8 Properties of the PM predictor averaged over a subset of test sequences and all frames,
(a) The normalized cumulative histograms of a the local tracker state for p(st+1 = 1) values
quantized to 100 bins, (b) The Precision-Recall curve for the PM predictor

When used as a decision function which is required in one of the predictor com-
bination methods described in the next section, the observed characteristics support
the natural choice of tresholding the inlier probability at 0.5. Figure 8(a) depicts the
normalized cumulative histograms of a local tracker state for the Markov predictor
values quantized to 100 bins. It shows how many inliers/outliers would be filtered
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out for different values of the θM threshold. The selected threshold 0.5 filtered out
4% of inliers and more than 35% of outliers. Figure 8(b) shows the operating point
for threshold 0.5 on the Precision-Recall curve.

4 Methods for Combining Tracker Reliability Predictions

This section describes two predictor combination methods – PΘ and P∧ and dis-
cusses their advantages and disadvantages. The explanation of the combination
methods is elaborate for the combination of three predictors Pρ , PN , PM.

4.1 The PΘ Combination Method

The PΘ combination estimates the likelihood of a local tracker being an in-
lier. The local tracker inlier likelihood is a function of three variables (i) Pρ
rank ∈ {1,2, . . . ,100} quantized equally to 25 bins, ρ = � rank

25 � (ii) The PN score
∈ {0,1,2,3,4} in case of four-neighbourhood (iii) PM probability ∈ (0,1) quantized
equally to 25 bins. In the training phase a inlier/outlier likelihood ratio is estimated
for all the combinations of variables using a Bayesian approach. resulting in a table
with dimensions 25× 5× 25. The combination can work in two modes (1) choose
the fix threshold for local trackers inlier/outlier likelihood (2) take the n best local
trackers, to form a local trackers subset for object pose estimation.

The advantage of this combination is a possibility to take an quasi-optimal de-
cision (assuming independence of the individual predictors). The problem is for-
mulated as a hypothesis test whether a local tracker is an inlier (outlier) given the
likelihood ratio using a standard criterion such as NeymanPearson or min-max. The
disadvantage is the need of the learning phase to the estimate local tracker inlier
likelihood, which may overfit to the training data. In practice, the likelihood esti-
mate generalized well enough to work in various scenarios.

4.2 The P∧ Combination Method

The P∧ predictor combination method computes responses of its constituent pre-
dictors and makes a binary decision for each of them (reliability below a threshold
is interpreted as an outlier and visa versa). The final decision about the local tracker
failure is a logical ”and” function:

f (Pρ ,PN ,PM) = ρ > median(ρ)
∧ SN > θN

∧ p(st+1 = 1)> θM

(7)

The P∧ combination method assumes that since local tracker predictors exploit
complementary information (i.e. Pρ predictor – local appearance, PM – temporal
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behaviour, PN predictor – spatial consistency), parameters and threshold values of
the inlier/outlier decision may be set independently.

5 RANSAC

The median estimator is robust and has a breakdown point 0.5. However, as shown in
the experimental section, the percentage of correct local motion estimates is lower in
many situations. Moreover, the median is biased if the noise is biased, which causes
drifting of the tracker. This drifting happens in cases, where the background is static
or locally static around the object of interest, e.g. when the bounding box is not a
precise representation of the object shape and some local trackers are placed on the
background.

We propose to use RANSAC for transformation estimation and show experimen-
tally its superiority. This method has two main advantages over the median: (1) Is
more robust to outliers (2) using unbiased least-square fitting to estimate transfor-
mation (up to homography).

6 Performance Evaluation

6.1 The Test Data

The performance of the FoT with combined reliability prediction of local track-
ers and RANSAC-based object motion estimation was tested on challenging video
sequences collected from a number of recently published papers. The sequences
include object occlusion (or disappearance), illumination changes, fast motion,
different object sizes and object appearance variance. The videos vary in length,
contain highly articulated object and background clutter; some have poor visual
quality. Targets in the sequences exhibit out-of-plane and in-plane rotation and some
have homogeneous surfaces almost without texture. The sequences are described
in Tab. 1. For details about the sequences visit http://cmp.felk.cvut.cz/
˜vojirtom/dataset. The lists of authors who kindly provided the sequences
is available on the web site.

6.2 The Experimental Set-Up

In all experiments, a frame was considered correctly tracked if the overlap with
the ground truth is greater than 0.5, with the exception of experiment 6.6 where
the influence of the initialization of the tracker was assessed. Since in this case the
bounding boxes are randomly generated and may not fully overlap the object, the
threshold was lower to 0.3, see Fig. 12. The overlap was measured as o = area(T∩G)

area(T∪G) ,
where T is object bounding box reported by the tracker and G is ground truth
bounding box.

http://cmp.felk.cvut.cz/~vojirtom/dataset
http://cmp.felk.cvut.cz/~vojirtom/dataset


126 T. Vojı́ř and J. Matas

Table 1 Overview of the test sequences. Basic information (left) and sample images
with the selected object of interest (right) are shown. Full information about the se-
quences (authors, papers reporting results on the data, etc. ) and the data are available at
http://cmp.felk.cvut.cz/∼vojirtom/dataset.

Seq. ID name #frames #target visible preview
1 OccludedFace2 815 815
2 girl 501 475
3 surfer 842 762
4 Vid A 602 602
5 Vid B 629 629
6 Vid C 404 404
7 Vid D 947 947
8 Vid E 305 305
9 Vid F 453 416
10 Vid G 716 716
11 Vid H 412 412
12 Vid I 1017 994
13 Vid J 388 383
14 Vid K 1020 1020
15 Vid L 1308 1308
16 dinosaur 326 326
17 gymnastics 567 567
18 hand 244 244
19 hand2 267 267
20 torus 264 264
21 head motion 2351 2351
22 shaking camera 990 990
23 track running 503 397
24 cliff-dive1 76 76
25 cliff-dive2 69 61
26 motocross1 164 164
27 motocross2 23 23
28 mountain-bike 228 228
29 skiing 81 81
30 volleyball 500 500
31 CarChase 9928 8660
32 Motocross 2665 1412
33 Panda 3000 2730
34 Volkswagen 8576 5141
35 car 945 860
36 david 761 761
37 jumping 313 313
38 pedestrian3 140 140
39 pedestrian4 338 266
40 pedestrian5 184 156
41 diving 231 218
42 gym 767 767
43 jump 122 111
44 trans 124 124
45 Asada 661 661
46 drunk2 1821 911
47 dudek-face 1145 1145
48 faceocc1 899 899
49 figure skating 624 624
50 woman 597 597
51 board 698 698
52 box 1161 1129
53 lemming 1336 1305
54 liquor 1741 1704
55 Sylvestr 1344 1344
56 car11 393 393
57 dog1 1353 1350
58 trellis 569 569
59 coke 292 270
60 person 331 326
61 tiger1 354 354
62 tiger2 365 365
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In the experiments, the predictor of neighbourhood consistency (PN) and the
Markov predictor (PM) were run as explained in Section 3. The normalized cross-
correlation (Pρ ) and the forward-backward procedure rank local trackers and treat
the top 50% as inliers. Combinations of two or more predictors use the P∧ ap-
proach. Predictors are denoted by the names of their error measure, except for the
combination PM +Pρ +PN which is abbreviated to Σ .

6.3 Comparison of P∧ Combination vs. PΘ Combination

The P∧ predictor combination is compared with the PΘ combination in terms of
inlier prediction precision. To make results comparable the measurement was done
at the operating point of P∧ combination, since this method does not guarantee
a number of predicted inliers and does not have any means for choosing n-best in
contrast to PΘ combination.

The PΘ combination needs to learn likelihoods for the combined likelihood ta-
ble of three criterion variables. A leave one out cross-validation was used to split
the dataset to the training and validation sets. That means that for evaluation on se-
quence i the table is learned on all sequences except the sequence i. True inliers were
extracted by comparing frame-to-frame tracking results with corresponding ground
truth positions and criteria variables were recorded. The recorded values (PN Score,
PM probability, Pρ rank) were quantized (to 5, 25, 25 bins) and used to compute the
inlier - outlier likelihood. Entries of the combined likelihood table are addressed by
the quantized criteria values.

Table 2 The comparison of the P∧ predictor combination and the PΘ combination in terms
of inlier prediction precision ± variation. Averaged performance over a subset of sequences
is reported in the last row. The subset of sequences was selected such that it includes mainly
rigid objects; in some sequences also articulated objects (pedestrians) are tracked.

Seq. Θ ∧
17 0.713±0.132 0.738±0.134
20 0.875±0.022 0.919±0.021
31 0.894±0.040 0.922±0.043
32 0.857±0.060 0.895±0.058
33 0.952±0.029 0.773±0.166
34 0.943±0.007 0.965±0.005
35 0.958±0.008 0.977±0.008
36 0.945±0.006 0.966±0.004
37 0.680±0.073 0.730±0.068
38 0.623±0.053 0.684±0.060
39 0.925±0.013 0.945±0.026
40 0.967±0.002 0.986±0.001
55 0.980±0.006 0.986±0.006
59 0.924±0.008 0.967±0.006

Mean 0.874±0.033 0.890±0.043



128 T. Vojı́ř and J. Matas

Results in table 2 show that the two combination methods perform similarly.
The P∧ predictor combination has an advantage that it does not require learning
in advance. We choose to use the P∧ predictor combination to keep the tracker as
independent as possible of the training data and other external variables (e.g. the
precision of the ground truth used for extracting true inliers, the size of the dataset,
diversity of dataset, etc.).

6.4 Comparison of the Reliability Prediction Methods

We compared performance of individual predictors and combinations PFB◦ρ (refer-
ence [7]), PN◦M and PΣ . All parameters for predictors were fixed for all sequences,
as described in Section 4.2.

The performance was measured by the recall and the number of reinitialization
needed to track the whole sequences (reinitialization after object disappearance are
not counted). The recall is defined as the ratio of the number of frame where the
estimated object rectangle had an overlap with the ground truth rectangle higher then
0.5 and the number of frames where the object is visible. Approximately speaking,
recall is the percentage of the frames with the tracked object visible where the object
was correctly tracked.

The results are summarized in tables 3 and 4. Both tables have the same structure.
Each line starting with a number presents results on one of the 62 sequence. The last
two lines summarize performance. The #best line compares the median flow object
motion estimator (m, left) and the RANSAC-based estimator (r, right) by counting
the number of sequences when median flow outperformed RANSAC (the number
before the ”:”), where RANSAC dominated (the number after the ”:”), the number
of ”draws” is given in parentheses.

According to both the recall (table 3) and reinitialization (table 4) criteria,
RANSAC performs better for all reliability predictors and their combinations. Re-
sults for different predictors and combinations are presented in different columns.
The final line of the table compares the mean recall and reinitialization. RANSAC
performs better in terms of the mean too.

The ”mean” row allows comparison of the the reliability predictors, both individ-
ually and in combination. The combinations PN◦M and PΣ perform the best, clearly
better than any individual tracker and slightly better than the forward-backward pro-
cedure combined with the NCC. Note that the PΣ and even more PN◦M are signifi-
cantly faster than the FB procedure.

Fig. 9 visualizes the performance for selected combinations of predictors in a
manner facilitating comparison. Two combinations of predictors PΣ and PN◦M are
clear the most reliable methods.

Visualization of predictor performance on selected frames from two challanging
sequences are shown in Figs. 10 (motor-bike) and 11 woman. Predictor score is
encoded in a ”heat map” (red - high score, blue - low score). Green/Red boxes below
predictor score encodes false positive (red dot with red background), false negative
(green dot with red background), true positive (green dot with green background)
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and true negative (red dot with green background). On the right side of the image,
a cut out shows the outlier (red) and inlier (green) motion estimates. The green-on-
black images shows the area covered by inlier local trackers.

For the motor-bike sequence, it is somewhat surprising that the motion estimates
on the biker are small. The biker is tracked by the cameraman and the position of
the bike in the image stays roughly the same, the background exhibits fast apparent
motion in the oposite direction. The FoT handle are rather large change of apperance
of the biker between frames #31 and #77.

The woman sequence is more challenging, due to occlusion and changes of ap-
pearance due to walking, the number of local trackers providing correct motion
estimates is small, as low as 19 out of 90 in frame # 18.
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Fig. 9 Comparison of the best performing predictor combinations and estimators in terms
(a) Recall and (b) the number of reinitialization. Sequences (x-axis) are sorted by the recall
measure of the PΣ with RANSAC estimator.

6.5 Comparison the Speed of the Reliability Prediction Methods

The FoT tracker is intended for real-time performance and thus the speed of lo-
cal tracker predictor is important. The experiment was performed on all sequences
listed in Tab. 1 and then the results were averaged. Speed was measured as the av-
erage time needed for frame-to-frame tracking. For results see Tab. 5. Processing
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Table 3 The recall of the FoT on 62 sequences. For details, see text.

����Seq.
P /0 ρ N FB M FB◦ρ N ◦M Σ

m � r m � r m � r m � r m � r m � r m � r m � r

1 0.13 � 0.18 0.12 � 0.18 0.12 � 0.18 0.11 � 0.19 0.12 � 0.18 0.11 � 0.19 0.13 � 0.18 0.13 � 0.18
2 1.00 � 0.40 1.00 � 0.47 0.47 = 0.47 1.00 � 0.70 0.47 � 0.23 1.00 � 0.70 0.22 � 0.23 0.22 � 0.23
3 0.02 � 0.06 0.02 � 0.06 0.07 = 0.07 0.06 = 0.06 0.07 � 0.06 0.06 = 0.06 0.07 � 0.06 0.07 � 0.06
4 0.11 = 0.11 0.11 = 0.11 0.11 = 0.11 0.12 = 0.12 0.11 = 0.11 0.12 = 0.12 0.13 � 0.11 0.12 � 0.11
5 0.22 � 0.38 0.24 � 0.35 0.35 � 0.38 0.23 � 0.44 0.47 � 1.00 0.23 � 0.44 0.38 � 0.80 0.38 = 0.38
6 0.50 � 1.00 0.51 � 1.00 0.47 � 1.00 0.44 � 1.00 0.48 � 1.00 0.44 � 1.00 0.47 � 1.00 0.46 � 0.90
7 0.57 � 0.39 0.57 � 0.39 0.57 � 0.35 0.39 � 0.38 0.58 � 0.39 0.39 � 0.38 0.58 � 0.39 0.54 � 0.35
8 0.57 � 0.58 0.57 � 0.58 0.57 � 0.58 0.57 � 0.58 0.57 = 0.57 0.57 � 0.58 0.57 � 0.58 0.57 � 0.58
9 0.23 � 0.32 0.23 � 0.29 0.28 � 0.29 0.24 � 0.25 0.36 � 0.28 0.24 � 0.25 0.28 � 0.29 0.36 � 0.29
10 0.83 � 1.00 0.83 � 1.00 0.84 � 1.00 0.81 � 1.00 0.84 � 1.00 0.81 � 1.00 0.82 � 1.00 0.83 � 1.00
11 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00
12 0.09 � 0.12 0.10 � 0.11 0.09 � 0.11 0.07 � 0.11 0.08 � 0.11 0.07 � 0.11 0.08 � 0.11 0.08 � 0.11
13 0.20 � 0.17 0.20 � 0.17 0.20 � 0.17 0.21 � 0.16 0.27 � 0.16 0.21 � 0.16 0.31 � 0.16 0.31 � 0.16
14 0.64 � 0.42 0.64 � 0.54 0.52 � 0.97 0.52 � 1.00 0.64 � 0.43 0.52 � 1.00 0.52 � 0.47 0.52 � 0.79
15 0.16 � 0.78 0.16 � 0.74 0.16 � 0.74 0.16 � 0.59 0.16 � 0.56 0.16 � 0.59 0.16 � 0.50 0.16 � 0.50
16 0.25 � 0.39 0.25 � 0.39 0.25 � 0.38 0.19 � 0.14 0.27 � 0.39 0.19 � 0.14 0.39 = 0.39 0.39 = 0.39
17 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.14 � 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15
18 0.09 � 0.16 0.09 � 0.15 0.11 � 0.09 0.09 = 0.09 0.13 � 0.09 0.09 = 0.09 0.16 � 0.17 0.16 � 0.17
19 0.09 � 0.22 0.09 � 0.14 0.07 � 0.26 0.04 � 0.14 0.05 � 0.14 0.04 � 0.14 0.05 � 0.25 0.05 � 0.25
20 0.20 � 0.52 0.20 � 0.56 0.21 � 0.60 0.16 � 0.22 0.46 � 0.58 0.16 � 0.22 0.54 � 1.00 0.54 � 1.00
21 0.77 � 0.80 0.76 � 0.52 0.77 � 0.80 0.58 � 0.79 0.77 � 0.81 0.58 � 0.79 0.77 � 0.81 0.77 � 0.81
22 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15
23 0.09 � 0.21 0.10 � 0.21 0.09 � 0.21 0.20 � 0.22 0.13 � 0.82 0.20 � 0.22 0.13 � 0.14 0.13 � 0.14
24 0.34 � 0.42 0.34 � 0.41 0.34 � 0.41 0.53 � 0.42 0.42 � 0.41 0.53 � 0.42 0.43 � 0.42 0.43 � 0.42
25 0.15 � 0.13 0.16 � 0.11 0.15 � 0.11 0.13 � 0.18 0.11 � 0.13 0.13 � 0.18 0.15 � 0.10 0.15 � 0.10
26 0.18 � 0.04 0.18 � 0.03 0.45 � 0.04 0.23 � 0.03 0.16 � 0.03 0.23 � 0.03 0.05 � 0.03 0.05 � 0.03
27 0.83 � 0.70 0.83 � 0.70 0.83 � 0.70 0.83 = 0.83 0.57 � 0.91 0.83 = 0.83 0.57 � 0.74 0.57 � 0.74
28 0.40 � 0.99 0.40 � 0.99 0.43 � 0.99 0.38 � 0.99 0.82 � 0.99 0.38 � 0.99 0.82 � 0.99 0.82 � 0.99
29 0.07 � 0.10 0.07 � 0.10 0.07 � 0.10 0.09 = 0.09 0.06 � 0.07 0.09 = 0.09 0.06 � 0.09 0.06 � 0.09
30 0.23 � 0.22 0.23 � 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22
31 0.50 � 1.00 0.48 � 0.58 1.00 � 0.57 1.00 � 0.58 0.75 � 0.50 1.00 � 0.58 0.61 � 1.00 0.61 � 1.00
32 0.01 � 0.02 0.01 � 0.02 0.02 = 0.02 0.03 � 0.04 0.01 � 0.02 0.03 � 0.04 0.02 = 0.02 0.02 = 0.02
33 0.45 � 0.60 0.59 � 0.32 0.59 � 0.50 0.01 = 0.01 0.39 � 1.00 0.01 = 0.01 0.59 � 1.00 0.59 � 0.81
34 0.13 � 0.24 0.14 � 0.11 0.11 � 0.24 0.05 = 0.05 0.14 � 0.12 0.05 = 0.05 0.18 � 0.12 0.18 � 0.12
35 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
36 0.02 = 0.02 0.02 = 0.02 0.02 = 0.02 0.03 � 0.02 0.02 � 0.03 0.03 � 0.02 0.02 � 0.03 0.02 = 0.02
37 0.06 � 0.19 0.06 � 0.09 0.07 � 0.09 0.14 � 0.09 0.11 � 0.32 0.14 � 0.09 0.04 � 0.19 0.04 � 0.19
38 0.58 � 0.54 0.58 � 0.53 0.50 � 0.70 0.66 � 0.71 1.00 � 0.56 0.66 � 0.71 1.00 � 0.60 1.00 � 0.60
39 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 0.92 � 1.00 1.00 = 1.00 0.89 � 1.00 0.89 � 1.00
40 0.05 � 0.04 0.05 = 0.05 0.18 � 0.24 0.19 � 0.23 0.05 = 0.05 0.19 � 0.23 0.18 � 0.04 0.19 � 0.04
41 0.13 � 0.12 0.13 � 0.12 0.13 � 0.12 0.12 = 0.12 0.17 � 0.12 0.12 = 0.12 0.16 � 0.12 0.16 � 0.12
42 0.04 � 0.03 0.07 � 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03
43 0.06 � 0.09 0.06 � 0.10 0.10 = 0.10 0.11 � 0.10 0.15 � 0.14 0.11 � 0.10 0.14 � 0.12 0.14 � 0.12
44 0.51 � 0.38 0.44 � 0.39 0.41 � 0.50 0.56 � 0.38 0.35 � 0.40 0.56 � 0.38 0.35 = 0.35 0.35 = 0.35
45 0.08 = 0.08 0.08 � 0.15 0.15 � 0.09 0.08 = 0.08 0.07 � 0.09 0.08 = 0.08 0.09 � 0.08 0.09 � 0.08
46 0.04 � 0.20 0.04 � 0.17 0.03 � 0.19 0.02 = 0.02 0.01 � 0.61 0.02 = 0.02 0.01 � 0.17 0.01 � 0.17
47 0.18 = 0.18 0.18 = 0.18 0.18 � 0.29 0.49 � 0.29 0.18 = 0.18 0.49 � 0.29 0.18 = 0.18 0.18 = 0.18
48 0.10 � 0.58 0.10 � 0.69 0.10 � 0.58 0.09 � 0.25 0.07 � 0.36 0.09 � 0.25 0.07 � 0.75 0.07 � 0.75
49 0.05 = 0.05 0.05 � 0.04 0.05 � 0.03 0.04 � 0.05 0.04 � 0.05 0.04 � 0.05 0.08 � 0.04 0.08 � 0.04
50 0.06 � 0.12 0.07 � 0.11 0.06 � 0.12 0.14 � 0.12 0.42 � 0.12 0.14 � 0.12 0.05 � 0.12 0.05 � 0.12
51 0.06 � 0.21 0.06 � 0.63 0.08 � 0.56 0.05 � 0.23 0.22 = 0.22 0.05 � 0.23 0.48 � 0.22 0.48 � 0.22
52 0.05 � 0.26 0.08 � 0.24 0.09 � 0.27 0.13 � 0.26 0.05 � 0.26 0.13 � 0.26 0.10 � 0.29 0.10 � 0.27
53 0.02 � 0.25 0.02 � 0.25 0.03 � 0.25 0.03 � 0.25 0.09 � 0.25 0.03 � 0.25 0.09 � 0.25 0.09 � 0.25
54 0.21 � 0.23 0.21 � 0.23 0.21 � 0.23 0.21 � 0.23 0.23 = 0.23 0.21 � 0.23 0.23 = 0.23 0.23 = 0.23
55 0.26 � 0.43 0.26 � 0.43 0.26 � 0.40 0.26 � 0.49 0.26 � 0.40 0.26 � 0.49 0.26 � 0.45 0.26 � 0.45
56 0.58 � 0.52 0.58 � 0.53 0.65 � 0.54 0.50 � 0.54 0.48 � 0.73 0.50 � 0.54 0.53 � 0.69 0.53 � 0.52
57 0.31 � 0.33 0.32 � 0.34 0.33 � 0.32 0.35 � 0.32 0.34 � 0.32 0.35 � 0.32 0.35 � 0.33 0.35 � 0.33
58 0.04 � 0.67 0.04 � 0.45 0.04 � 0.45 0.04 � 0.41 0.04 � 0.44 0.04 � 0.41 0.04 � 0.45 0.04 � 0.45
59 0.14 = 0.14 0.14 = 0.14 0.14 = 0.14 0.14 = 0.14 1.00 � 0.14 0.14 = 0.14 1.00 � 0.70 1.00 = 1.00
60 0.05 � 0.06 0.05 � 0.06 0.05 � 0.06 0.06 = 0.06 0.11 � 0.08 0.06 = 0.06 0.10 � 0.07 0.10 � 0.07
61 0.07 � 0.08 0.07 � 0.08 0.08 = 0.08 0.07 � 0.08 0.11 � 0.08 0.07 � 0.08 0.11 � 0.10 0.11 � 0.10
62 0.11 � 0.09 0.11 � 0.09 0.16 � 0.11 0.22 � 0.17 0.11 = 0.11 0.22 � 0.17 0.23 � 0.11 0.23 � 0.11

#best 15:36 (11) 18:34 (10) 14:33 (15) 15:28 (19) 19:31 (12) 15:28 (19) 21:30 (11) 21:27 (14)
mean 0.26:0.34 0.26:0.32 0.27:0.35 0.27:0.32 0.30:0.35 0.27:0.32 0.30:0.36 0.30:0.36
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Table 4 The number of reinitialisations of the FoT on 62 sequences. For details, see text.

����Seq.
P /0 ρ N FB M FB◦ρ N ◦M Σ

m � r m � r m � r m � r m � r m � r m � r m � r

1 26 � 21 24 � 22 23 = 23 20 = 20 25 � 18 20 = 20 24 � 21 24 � 21
2 0 � 4 0 � 3 2 � 3 0 � 3 3 � 4 0 � 3 2 � 3 4 = 4
3 21 � 16 20 � 12 15 � 11 13 � 9 14 = 14 13 � 9 17 � 11 17 � 9
4 45 � 50 48 � 44 46 � 44 40 � 48 28 � 39 40 � 48 28 � 42 25 � 37
5 9 � 2 7 � 1 3 � 2 4 � 3 2 � 0 4 � 3 2 � 1 2 = 2
6 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0 1 = 1
7 10 � 14 10 � 15 10 � 14 9 � 14 9 � 14 9 � 14 9 � 14 9 � 14
8 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2
9 13 � 15 14 � 15 18 � 16 17 � 16 7 � 13 17 � 16 9 � 12 7 � 12
10 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0 1 � 0
11 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0
12 23 � 13 22 � 15 18 � 11 13 = 13 19 � 10 13 = 13 13 � 9 13 � 12
13 5 = 5 5 = 5 6 � 5 4 � 6 4 � 5 4 � 6 4 � 5 4 � 6
14 2 = 2 2 � 1 2 � 1 3 � 0 2 = 2 3 � 0 2 = 2 2 � 1
15 5 � 1 5 � 2 5 � 2 6 � 3 6 � 3 6 � 3 7 � 3 7 � 3
16 10 � 8 9 = 9 9 � 10 15 � 9 5 � 7 15 � 9 5 � 7 5 � 7
17 52 � 53 52 � 57 51 � 54 57 � 56 49 � 55 57 � 56 49 � 51 49 � 51
18 21 � 14 20 � 12 16 � 13 25 � 18 17 � 11 25 � 18 14 = 14 14 � 13
19 35 � 26 33 � 26 29 � 26 46 � 35 44 � 21 46 � 35 29 � 26 29 � 24
20 8 � 2 8 � 2 6 � 2 9 � 3 3 � 2 9 � 3 2 � 0 2 � 0
21 2 � 1 2 = 2 2 � 1 1 = 1 2 � 1 1 = 1 2 � 1 2 � 1
22 95 � 91 95 � 91 90 � 89 91 � 95 93 = 93 91 � 95 90 � 91 90 � 89
23 11 � 4 9 � 4 5 � 2 10 � 7 10 � 1 10 � 7 12 � 11 12 � 11
24 4 = 4 5 � 4 5 � 4 3 = 3 4 = 4 3 = 3 3 � 4 3 � 4
25 36 � 26 35 � 22 17 � 19 7 � 8 19 � 17 7 � 8 6 � 13 6 � 9
26 14 � 17 11 � 16 6 � 19 15 � 18 13 = 13 15 � 18 15 � 18 15 � 19
27 2 = 2 2 = 2 1 � 2 1 � 2 3 � 1 1 � 2 1 � 2 1 � 2
28 6 � 2 6 � 2 5 � 2 8 � 2 3 � 2 8 � 2 4 � 2 3 � 2
29 22 � 18 23 � 16 19 = 19 28 � 24 24 � 18 28 � 24 21 � 18 21 � 19
30 14 � 15 10 � 16 13 � 14 21 � 16 11 = 11 21 � 16 6 � 14 5 � 13
31 1 � 0 1 = 1 0 � 1 0 � 1 2 � 1 0 � 1 2 � 0 2 � 0
32 220 � 83 210 � 79 110 � 76 77 � 70 193 � 80 77 � 71 107 � 65 103 � 69
33 5 � 1 3 � 1 2 � 1 4 � 2 6 � 0 4 � 2 2 � 0 2 � 1
34 12 � 9 12 � 13 9 � 10 68 � 63 9 � 10 68 � 63 10 � 13 11 = 11
35 59 � 27 56 � 29 45 � 33 56 � 50 66 � 32 56 � 50 55 � 36 55 � 34
36 67 � 76 68 � 77 69 � 79 66 � 78 68 � 76 66 � 78 63 � 73 63 � 76
37 13 � 2 13 � 3 8 � 2 5 = 5 10 � 1 5 = 5 10 � 1 8 � 1
38 3 � 4 3 � 4 4 � 3 2 = 2 0 � 4 2 = 2 0 � 3 0 � 3
39 0 = 0 0 = 0 0 = 0 0 = 0 1 � 0 0 = 0 1 � 0 1 � 0
40 26 � 10 23 � 11 18 � 9 16 � 8 20 � 10 16 � 8 20 � 7 15 � 10
41 21 � 22 21 = 21 22 = 22 24 = 24 18 � 22 24 = 24 21 � 22 21 � 23
42 13 � 17 14 = 14 13 � 16 15 � 18 9 � 14 15 � 18 12 � 14 10 � 14
43 10 � 9 10 � 11 9 � 11 10 � 12 8 � 7 10 � 12 7 = 7 7 � 10
44 2 = 2 2 = 2 2 = 2 2 � 3 3 � 2 2 � 3 3 = 3 3 = 3
45 53 � 46 53 � 48 42 � 44 52 � 50 33 � 35 52 � 50 32 � 29 32 � 29
46 7 � 3 7 � 3 5 � 3 7 = 7 8 � 3 7 = 7 6 � 3 8 � 4
47 7 � 4 7 � 3 6 � 4 8 � 4 8 � 4 8 � 4 7 � 4 7 � 4
48 3 � 6 3 = 3 8 � 7 10 � 7 7 � 8 10 � 7 8 � 2 8 � 2
49 34 � 37 35 � 34 32 � 37 37 � 38 26 � 22 37 � 38 17 � 24 17 � 23
50 26 = 26 28 = 28 27 = 27 34 � 28 5 � 13 34 � 28 8 � 11 17 � 13
51 8 � 5 6 � 5 6 � 5 13 � 3 10 � 5 13 � 3 12 � 4 12 � 4
52 15 � 9 14 � 11 10 = 10 15 � 9 18 � 9 15 � 9 17 � 10 18 � 11
53 32 � 9 34 � 8 23 � 9 37 � 16 41 � 11 37 � 16 33 � 13 33 � 14
54 11 � 5 11 � 5 11 � 5 18 � 11 12 � 5 18 � 11 10 � 9 10 � 8
55 5 � 4 5 � 4 5 � 4 5 � 4 5 � 4 5 � 4 5 � 4 5 � 4
56 10 � 4 10 � 3 7 � 3 8 � 3 8 � 4 8 � 3 9 � 4 9 � 5
57 8 � 6 7 � 5 4 � 3 6 � 4 6 � 3 6 � 4 12 � 5 10 � 3
58 14 � 1 13 � 2 6 � 3 4 � 3 13 � 2 4 � 3 5 � 2 7 � 4
59 5 � 4 4 = 4 3 � 4 4 = 4 0 � 4 4 = 4 0 � 1 0 = 0
60 8 � 7 8 = 8 8 � 9 9 = 9 7 � 8 9 = 9 6 � 9 6 � 9
61 34 � 30 31 � 32 20 � 29 43 = 43 40 � 21 43 = 43 31 � 23 36 � 25
62 37 � 25 33 � 24 19 � 25 48 � 46 32 � 31 48 � 46 28 = 28 28 � 30

#best 13:40 (9) 11:36 (15) 19:34 (9) 14:34 (14) 17:37 (8) 14:34 (14) 22:33 (7) 19:35 (8)
mean 20.4:14.9 19.8:14.7 15.8:14.6 18.9:17.1 18.0:13.4 18.9:17.1 15.1:13.3 15.1:13.5
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Fig. 10 Visualization of predictors performance on sequence mountain-bike. For details, see
text.
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Fig. 11 Visualization of predictors performance on sequence woman. For details, see text.

time for I/O operations, including image loading, and other tasks not relevant to
tracking were excluded. The PΣ predictor performs 41% faster than PFB◦ρ . Most
of the additional computation of PΣ over the P/0 lies in computation of normalized
cross-correlation. Therefore, the PN◦M overhead is negligible compared to reference
predictor P/0 (i.e. tracker without any predictor) and is more than two times faster
then PFB◦ρ .

Table 5 A comparison of the speed of tracking reliability prediction methods. All times are
in milliseconds. The values are averaged over all sequences.
�����Seq.

P /0 ρ FB FB◦ρ N ◦M Σ
m � r m � r m � r m � r m � r m � r

Time [ms] 1.53 � 1.55 2.44 � 2.87 2.52 � 2.89 3.43 � 3.58 1.58 � 1.72 2.43 � 2.52
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6.6 Robustness to Bounding Box Initialization

For a tracking algorithm, it is highly desirable not to be sensitive to the initial pose
specified by the object bounding box as it is often selected manually, with unknown
precision.

If a part of the bounding box does not cover the object, the PM predictor soon
discover that the local trackers are consistently in the outlier set. This property can
be used to define the object more precisely, e.g. as the set of object parts that are
likely to be inliers according to PM (see Figs. 10 and 11 ). Thus, with PM , the global
tracker may be insensitive to initialization.

This experiment tested the assumption on the challenging sequence Pedestrian 1,
where an articulated object is tracked in a sequence containing background clutter
and fast motions, which emphasize the need for correct initialization. We randomly
generated 100 initial bounding boxes overlapping the object of interest (Fig. 12) and
counted the correctly tracked frames (Tab. 6).

In the experiment, a frame was declared as correctly tracked if the overlap with
the ground truth was greater than 0.3. The tracker with the PΣ predictor performed
about 90% better than the tracker with the PFB◦ρ predictor and it was able to track
the object correctly up to frame 84 on average.

Table 6 Evaluation of filtering methods in terms of the number of correctly tracked frames
with randomly initialized bounding box (see. Fig. 12). The “score” is the total number of
correctly tracked frames, the mean and the median of the same quantity are presented in the
right column.

Method Score mean (median)

PFB◦ρ [ref] 4493 45 (21)
PΣ 8438 84.4 (99.5)

Figs. 13(a) and 13(b) show the histograms of the number of correctly tracked
frames for 100 runs with different initialization and Fig. 13(c) shows the 2D his-
togram of the number of correctly tracked frames by PFB◦ρ and PΣ initialized

Fig. 12 Examples of randomly generated initial bounding boxes (yellow) randomly gener-
ated within the red rectangle.
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Fig. 13 Histograms of the number of correctly tracked frames for tracker with (a) PFB◦ρ and
(b) PΣ . (c) The 2D histogram of the number of correctly tracked frames by PFB◦ρ and PΣ
initialized with the same random bounding box.

with the same random bounding box (to compare performance for individual ran-
dom initialization).

7 Conclusions

We have presented a set of enhancements of the Flock of Trackers. First, new relia-
bility prediction methods were introduced - the Neighbourhood consistency predic-
tor and the Markov predictor.

Next, two methods for combining predictors, the ad-hoc P∧ and the likeli-
hood thresholding PΘ , were proposed and compared and similar performance was
achieved. We decided to use P∧, because it is a straightforward approach without
the need of learning the relevant statistics in advance.
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Combined with the normalized cross-correlation predictor, the new Markov and
Neighbourhood consistency predictors form a reliable compound predictor PΣ . The
PΣ predictor was compared with the published PFB◦ρ predictor and outperformed it
in all criteria, i.e. in speed, recall, the number of reinitialization and the robustness
to bounding box initialization. The simpler PN◦M combination performed almost
identically and is faster. Finally, we have shown that the RANSAC-based global
object motion estimator outperforms the published median flow algorithm.

The enhanced FoT was extensively tested on 62 sequences. Most of the sequences
are standard and used in the literature. The improved FoT showed performance su-
perior to the reference method, which competes well with the state-of-the-art [14].

For all 62 sequences, the ground truth is available at http://cmp.felk.
cvut.cz/ vojirtom/dataset . For some of the sequences the ground truth
has not been in the public domain till now.

Acknowledgements. The authors were supported by Czech Science Foundation Project
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Registration and Segmentation in Medical
Imaging

Daniel Rueckert and Julia A. Schnabel

1 Introduction

The analysis of medical images plays an increasingly important role in many
clinical applications. Different imaging modalities often provide complementary
anatomical information about the underlying tissues such as the X-ray attenuation
coefficients from X-ray computed tomography (CT), and proton density or pro-
ton relaxation times from magnetic resonance (MR) imaging. The images allow
clinicians to gather information about the size, shape and spatial relationship be-
tween anatomical structures and any pathology, if present. Other imaging modali-
ties provide functional information such as the blood flow or glucose metabolism
from positron emission tomography (PET) or single-photon emission tomography
(SPECT), and permit clinicians to study the relationship between anatomy and phys-
iology. Finally, histological images provide another important source of information
which depicts structures at a microscopic level of resolution.

At the same time the amount and complexity of the data generated by medical
imaging modalities is also significantly increasing: Patients are often imaged with
3D imaging modalities but also are monitored over time to assess disease status or
response to therapy. These longitudinal datasets produce 4D imaging data which is
even more complex and costly to analyse by clinicians.

In order to fuse complementary image information, or detect structural or physio-
logical changes occurring over time, the images need to be first brought into geomet-
ric alignment. The process of aligning an image pair, or a set of image sequences,
is called image registration. Another key step in medical image analysis is the
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segmentation of the objects of interest. The result of this segmentation process is
the grouping or labelling of voxels into meaningful, disjoint regions or objects. High
demand on clinical expert time requires automation of both processes.

Recent advances in medical image analysis have led to the development of robust
and accurate registration and segment ion algorithms. In addition, many of the state-
of-art image segmentation techniques are use image registration, either implicitly or
explicitly. The purpose of this chapter is to provide an introduction into some of
the most commonly used image registration algorithms as well as their use in the
context of image segmentation.

2 Registration

Image registration aims to find corresponding anatomical or functional locations in
two or more images. Image registration can be applied to images from the same
subject acquired by different imaging modalities or at different time points as well
as to images acquired from different subjects. To bring images into registration it is
usually necessary to estimate a geometric transformation which aligns the images.
Most non-rigid registration techniques use either elastic [3, 24], fluid [12, 11, 6, 4]
or other deformation models [53, 19, 33, 56, 59] to represent this geometric trans-
formation. In this chapter we focus on registration algorithms which use a particular
deformation model, namely free-form deformations based on B-splines.

In general, finding the optimal geometric transformation is achieved by mini-
mization of a cost function which measures the degree of (mis-)alignment of the
images as a function of the geometric transformation. Most registration algorithms
use a cost function based on image intensity information to directly to measure
the degree of (mis-)alignment of the images. These methods are called voxel-based
registration techniques and are especially successful since they do not require any
feature extraction or segmentation of the images. Comprehensive reviews of image
registration techniques can be found in [44, 27, 65].

The goal of image registration is to relate any point in the reference or target
image to the source image, i.e. to find the optimal transformation T : p �→ p′ which
maps any point in the target image IA into its corresponding point in the source
image IB. The transformation T can be separated into two components: A global
component (e.g. a rigid or affine transformation) and a local component. Thus, the
transformation T can be written as:

T(p) = Tglobal(p)+Tlocal(p) (1)

The global transformation typically accounts for variations in the position, orienta-
tion and scaling between the two images. However, the global transformation can-
not account for any local deformations. A common model for the local transforma-
tions is based on a free-form deformation model based on B-splines which will be
reviewed in the next section.
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Free-Form Deformations

Free-form deformations (FFDs) are a concept stemming from the computer graphics
community, developed for modeling 3D deformable objects [55]. In image registra-
tion, they have been adopted to deform an entire image volume by manipulating an
underlying mesh of regularly spaced control points, using smooth and continuous
interpolation techniques in between. In particular, using FFDs in combination with
cubic B-splines for medical image registration was first proposed by Rueckert et
al. [52, 53], and have attracted significant further interest in the medical imaging
community [48, 50, 36, 45].

To define a spline-based FFD we denote the domain of the image volume as
Ω = {p = (x,y,z) | 0 ≤ x < X ,0 ≤ y < Y,0 ≤ z < Z}. Let Φ denote a nx × ny × nz

mesh of control points φi, j,k with uniform control point spacing δ . Then, the FFD
can be written as the 3D tensor product of the familiar 1D cubic B-splines:

Tlocal(p) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)φi+l, j+m,k+n (2)

where i = � x
δ  −1, j = � y

δ  −1,k= � z
δ  −1,u= x

δ −� x
δ  ,v = y

δ −� y
δ  ,w = z

δ −� z
δ  

and where Bl represents the l-th basis function of the B-spline [37, 38]:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2+ 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

Other spline-based methods used in medical imaging include thin-plate splines [5]
or elastic-body splines [20], which however suffer from the disadvantage of global
control, making them computationally complex for modelling localised deforma-
tions. B-splines, in contrast, are locally controlled due to the finite support of the
cubic basis functions, which allow for computationally very efficient local defor-
mation modelling. More specifically, changing a control point φi, j,k only affects the
local neighbourhood around this point.

One advantage of using B-splines is that analytic derivatives of the transformation
can be calculated by differentiating the B-spline basis functions. The first order
derivative of Tlocal(p) with respect to x thus becomes:

∂Tlocal(p)
∂x

=
1
δx

3

∑
l=0

3

∑
m=0

3

∑
n=0

dBl(u)
du

Bm(v)Bn(w)φi+l, j+m,k+n (3)

with the other derivatives taking analogous forms. Calculating the derivatives of
transformations is useful for investigating the quality of the deformation field
or for explicit regularization during optimization. For example, the determinant
of the Jacobian matrix of the transformation (also called the Jacobian) can give
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invaluable insights into local deformation properties in terms of infinitesimal local
volume changes due to contraction or expansion. At any point p it is is defined as:

J(p) = det

⎛

⎜⎜⎝

∂Tx(p)
∂x

∂Tx(p)
∂y

∂Tx(p)
∂ z

∂Ty(p)
∂x

∂Ty(p)
∂y

∂Ty(p)
∂ z

∂Tz(p)
∂x

∂Tz(p)
∂y

∂Tz(p)
∂ z

⎞

⎟⎟⎠=

⎧
⎨

⎩

> 1 : volume expansion
= 1 : no volume change
< 1 : volume contraction

(4)

For negative values, the transformation is folding and becomes no longer invertible;
for very large positive values, the transformation is undergoing tearing.

Fig. 1 Successive levels of subdivision of a B-spline FFD defined for a cardiac MR image

The resolution and computational complexity of the FFD mesh Φ is controlled
by the spacing of the control points φ , which act as parameters (or degrees of free-
dom) of the transformation. A large control point spacing allows to model global
deformations, whereas a small spacing allows to model very localised, small de-
formations. To combine both properties efficiently, multi-level B-splines [39] can
be used for recovering deformations in a coarse-to-fine fashion [54]. Furthermore,
computational complexity can be reduced by using accurate B-spline subdivision
between resolution levels (see Figure 1). For example in 1D, the B-spline resolution
can be doubled by computing the new the control point positions φ ′ of the refined
grid from the coarse control points φ [23] as:

φ ′
2i+1 =

1
2
(φi +φi+1) and φ ′

2i =
1
8
(φi−1 +φi+1 + 6φi) (5)

Generalizing this equation to 3D is straightforward, and is achieved by applying
again the 3D tensor product. FFDs can also be made non-uniform by assigning a
control point status for each φ , allowing it to deform if active, or remain fixed if pas-
sive. In combination with multi-level splines, a strategy can be to keep the number
of active control points fixed per level to have a constant computational complexity
per level, by successively focussing into deformations of regions of interest [54]. An
alternative to non-uniform multi-level B-splines for FFDs are non-uniform rational
B-splines (NURBS), as proposed by Wang and Jiang [63] in the context for FFD
based registration.
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A common approach is to define FFDs in a Cartesian coordinate system. How-
ever, some clinical applications can be easier described in other coordinate systems.
For example, Chandrashekara et al. [9] proposed the use of a FFD model defined
in a polar coordinate system for the registration of cardiac MR images, due to the
cyclic motion involved. Similarly, Lin et al. [40] proposed extended free-form defor-
mations (EFFD) [17] for the registration of cardiac MR images. A more recent and
generic approach was developed by Chandrashekara et al. [8] again, where FFDs are
defined on lattices of arbitrary topology [42], which has the advantage that a control
point mesh Φ can be adapted to the geometry of the anatomy under investigation,
such as the epi- and endocardial surfaces of the left cardiac ventricle.

In the following, we will discuss the use of voxel-based similarity measures,
which can be used in conjunction with B-spline FFDs (amongst other deformation
models) in order to solve an image registration problem.

Voxel-Based Similarity Measures

To relate a point in the target image to the source image, one must define a similarity
criterion (or cost function) which measures the degree of alignment between both
images. A popular choice for this are voxel-based similarity measures which use the
image intensities directly and do not require the extraction of any features such as a
landmarks, curves or surfaces. The simplest statistical measure of image similarity
is based on the squared sum of intensity differences (SSD) between IA and IB,

SSSD =−1
n ∑(IA(p)−IB(T(p)))2 (6)

where n is the number of voxels in the region of overlap. This measure is based on
the assumption that both imaging modalities have the same characteristics. If the
images are correctly aligned, the difference between them should be zero except for
the noise produced by the two modalities. If this noise is Gaussian distributed, it can
be shown that the SSD is the optimal similarity measure (Viola [60]). Since this sim-
ilarity measure assumes that the imaging modalities are identical, their application
is restricted to mono-modal applications such as serial registration [29, 28].

In a number of cases, the assumption of identical imaging modalities is too re-
strictive. A more general assumption is that of a linear relationship between the two
images. In these cases, the similarity between both images can be expressed by the
normalised cross correlation (CC)

SCC =
∑(IA(p)− μA)(IB(T(p))− μB)√
(∑IA(p)− μA)2(∑IB(T(p))− μB)2

(7)

where μA,μB correspond to average voxel intensities in both images. Nevertheless,
the application of this similarity measure is largely restricted to mono-modal regis-
tration tasks.
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Note that both similarity measures make strong assumptions about the relation-
ship of the image intensities in both images which is not suitable for multi-modality
registration. Even in the case of mono-modality registration this assumption is of-
ten violated, e.g. in contrast-enhanced imaging. To deal with this challenge several
similarity measures have been proposed that are based on the information content
or entropy of the registered image. An important step to understanding these meth-
ods is the feature space of the image intensities which can also be interpreted as the
joint probability distribution: A simple way of visualizing this feature space is by
accumulating a two-dimensional histogram of the co-occurrences of intensities in
the two images for each trial alignment. If this feature space is visualized for dif-
ference degrees of image alignment it can be seen that the feature space disperses
as misalignment increases, and that each image pair has a distinctive feature space
signature at alignment.

In an information theoretic framework the information content of images can be
defined as the Shannon-Wiener entropy, H(IA) and H(IB) of images IA and IB:

H(IA) =− ∑
a∈IA

p(a) log p(a) (8)

and
H(IB) =− ∑

b∈IB

p(b) log p(b) (9)

where p(a) is the probability that a voxel in image IA has intensity a and p(b) is the
probability that a voxel in image IB has intensity b. The joint entropy H(IA,IB)
of the overlapping region of image IA and IB may be defined by

H(IA,IB) =− ∑
a∈IA

∑
b∈IB

p(a,b) log p(a,b) (10)

where p(a,b) is the joint probability that a voxel in the overlapping region of image
IA and IB has values a and b, respectively.

To derive a measure of image alignment one can use concepts from information
theory such as mutual information [13, 61]. Mutual information (MI) is defined in
term of entropies as

SMI(IA;IB) = H(IA)+H(IB)−H(IA,IB) (11)

and should be maximal at alignment. Mutual information is a measure of how one
image “explains” the other but makes no assumption of the functional form or
relationship between image intensities in the two images. It has been shown by
Studholme [58] that mutual information itself is not independent of the overlap
between two images. To avoid any dependency on the amount of image overlap,
Studholme suggested the use of normalised mutual information (NMI) as a measure
of image alignment:
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SNMI(IA;IB) =
H(IA)+H(IB)

H(IA,IB)
(12)

Similar forms of normalised mutual information have been proposed by Maes et al.
[43].

Information-theoretic voxel similarity measures are based on the notion of the
marginal and joint probability distributions of the two images. These probability dis-
tributions can be estimated in two different ways: The first method uses histograms
whose bins count the frequency of occurrence (or co-occurrence) of intensities. Di-
viding these frequencies by the total number of voxels yields an estimate of the
probability of that intensity. The second method is based on generating estimates of
the probability distribution using Parzen windows [21] which is a non-parametric
technique to estimate probability densities. The Parzen-based approach has the ad-
vantage of providing a differentiable estimate of mutual information which is not
the case of the histogram-based estimate of mutual information.

A disadvantage of the voxel-similarity based measures described above is that
they are global and do not take spatial context into account. Recent developments
in the field include structural image representations, where the idea is to extract
feature vectors for each image voxel from a spatial neighbourhood, which then can
be directly compared between different images using very simple measures such
as SSD. One such example is the modality independent neighborhood descriptor
(MIND) developed by Heinrich et al. [31]. MIND provides a vector representation
and is based on the principles of image self-similarity originally proposed for non-
local means filtering by Buades et al. [7] for the purpose of image denoising. In
that work, in order to estimate a noise-free intensity for a given voxel, a weighted
average of all other voxels in the non-local neighborhood N in the image I are
calculated as:

Inew(xi) = ∑
j∈N

w(xi,x j)I (x j) (13)

with the weights w between the voxel of interest, xi to a neighborhood voxel x j

calculated as:

w(xi,x j) = exp
−∑Δx ‖I (xi+Δx)−I (x j+Δx)‖2

√
2σ2 (14)

where Δx is defined over the range of voxels within a patch, and σ defines the
local variance of the noise estimate from the data. MIND is then based on the SSD
between the weights obtained from an image pair, by calculating the vector distance
(or SSD). It was shown to be a very robust measure for noisy data due to its in-
trinsic smoothing properties, and applicable to the challenging task of multi-modal
lung image registration, due to its relative independence from the underlying image
intensities and bias fields.
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Optimization

Like many other problems in computer vision, image registration can be formulated
as an optimisation problem whose goal is to minimise an associated energy or cost
function. A generic optimisation procedure for image registration is outlined in Fig-
ure 2. The objective or cost function used in image registration can be written as:

C =−S +λP (15)

This type of cost function comprises two competing goals: The first term represents
the cost associated with the voxel-based image similarity measure S , while the sec-
ond term P penalizes certain transformations and thus constrains the behavior of
the transformation (different penalty functions will be discussed in the next section).
The parameter λ is a weighting parameter which defines the trade-off between the
alignment of the two images and the penalty function of the transformation. From
a probabilistic point of view, the cost function in eq. (15) can be explained in a
Bayesian context: The similarity measure can be viewed as a likelihood term which
expresses the probability of a match between source and target image while the
penalty function represents a prior which encodes a-priori knowledge about the ex-
pected transformation.

In most implementations of free-form image registration, the cost function is
minimised via gradient descent optimisation. However, this can be computationally
very expensive. More recently, Modat et al. [47] proposed an efficient and paral-
lelizable version of the gradient descent algorithm for free-form image registration.
They report run times of less than 1 minute using a GPU implementation of the algo-
rithm. An alternative approach based on discrete optimisation via Markov Random
Fields (MRFs) have been proposed by Glocker et al. [25] and further developed by
Heinrich [32]. A comparison of different optimization strategies for FFDs can be
found in [35].

Penalty Functions for Free-Form Deformations

Typically, non-rigid image registration is an ill-posed problem. Thus, it is necessary
to add some constraints to render the problem well-posed. A common approach is
enforce the smoothness of the deformation [53]. Free-form deformations based on
B-splines are intrinsically smooth (at least relative to the control point spacing),
however additional smoothness can be enforced by adding a penalty term which
regularizes the transformation. The general form of such a smoothness penalty term
has been described by Wahba [62]. In 3D, the penalty term takes the following form

Psmooth =

∫ (∂ 2T
∂x2

)2

+

(
∂ 2T
∂y2

)2

+

(
∂ 2T
∂ z2

)2

+

2

(
∂ 2T
∂xy

)2

+ 2

(
∂ 2T
∂xz

)2

+ 2

(
∂ 2T
∂yz

)2

dp (16)
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Fig. 2 Outline of a generic image registration algorithm.

This quantity is the 3D counterpart of the 2D bending energy of a thin-plate of
metal and defines a cost function which is associated with the smoothness of the
transformation. Note that this regularization term is zero for an affine transformation
and therefore penalises only non-affine transformations [62].

FFDs using B-splines have implicit assumptions of smoothness of the deforma-
tions. However, they can still suffer from physiologically implausible, if unrealistic,
local changes of volume in tissues or bone. To impose physical plausibility onto the
deformations, Rohlfing et al. suggested a constraint which preserves volume [50]:

Pvolume =

∫
|log(J(p))|dp (17)

Here J(p) is the determinant of the Jacobian matrix J of the free-form deformation.
As mention previously the Jacobian measures how infinitesimal volumes change un-
der the transformation. This function therefore penalizes the compression or expan-
sion of tissues or organs during the registration. It should be noted that the penalty
term above penalizes volume changes over the entire domain, however due to the
integration there may be small regions in the image which show a large volume
change while the majority of regions show no volume change. Other authors have
proposed a rigidity constraint which forces the deformation in certain regions to be
nearly rigid [41], e.g.

Prigidity =

∫
||J(p)J(p)T − 1||dp (18)

The penalty functions above do not guarantee that the resulting deformation field
is diffeomorphic (smooth and invertible). In order to ensure that the FFD is diffeo-
morphic it is possible to add a penalty function which penalizes non-diffeomorphic
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transformations, e.g. transformations which introduce folding. One suitable penalty
function for this has the following form:

P f olding =
∫

P(p)dp (19)

where

P(p) =

{
γ2

|(J(p)|2 − 2 if |J(p)| ≤ γ
0 otherwise

(20)

A similar penalty function was first proposed by Edwards et al. [22] and effec-
tively penalises any transformations for which the determinant of the Jacobian falls
below a threshold γ . By penalising Jacobians that approach zero, one can prevent
the transformation from collapsing and ensure diffeomorphisms. Note that simply
using a smoothness penalty function would not be sufficient to guarantee a diffeo-
morphic transformation, since it is possible for a transformation to be smooth but
non-diffeomorphic.

Diffeomorphic Free-Form Deformations

In general, most registration algorithms make the assumption that similar structures
are present in both images. Therefore it is desirable that the deformation field be
smooth and invertible (so that every point in one image has a corresponding point
in the other). Such smooth, invertible transformations are called diffeomorphisms.
Choi and Lee [10] have derived sufficient conditions for the injectivity of FFDs
which are represented in terms of control point displacements. These sufficient con-
ditions can be easily tested and can be used to guarantee a diffeomorphic FFD.
Without loss of generality we will assume in the following that the control points
are arranged on a lattice with unit spacing. Let Δci, j,k = (Δxi, j,k,Δyi, j,k,Δzi, j,k) be
the displacement of control point ci, j,k. Let δx = max |Δxi, j,k|, δy = max |Δyi, j,k|,
δz = max |Δzi, j,k|.
Theorem 0.1. A FFD based on cubic B-splines is locally injective over all the do-
main if δx <

1
K , δy <

1
K and δz <

1
K .

Choi and Lee [10] have determined a value of K ≈ 2.48 so that the maximum dis-
placement of control points given by the bound 1

K is approximately 0.40. This means
that the maximum displacement of control points is determined by the spacing of
control points in the lattice. For example, for a lattice with 20mm control point spac-
ing the maximum control point displacement is 8mm while for a lattice with 2.5mm
control point spacing the maximum control point displacement is 1mm. In practice
the bounds on the displacements are too small to model any realistic deformations.
To model large deformations one can use a composition of FFDs as proposed in
[26]. For each FFD in this composition, the maximum control point displacement is
limited by theorem 1. This a fundamentally different to the multi-level FFDs men-
tioned earlier since the FFDs are concatenated,
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T(p) = Tn ◦Tn−1 ◦ · · · ◦T2 ◦T1(p) (21)

so that the final deformation is a composition of FFDs. Since the composition of
two diffeomorphisms produces a diffeomorphism one can construct a diffeomorphic
deformation by ensuring that each individual FFD is diffeomorphic.

3 Segmentation

The amount of data produced by imaging increasingly exceeds the capacity for ex-
pert visual analysis, resulting in a growing need for automated image analysis. In
particular, accurate and reliable methods for segmentation (classifying image re-
gions) are a key requirement for the extraction of information from images. In recent
years many approaches to image segmentation have emerged that use image regis-
tration as a key comment. Many of these approaches are based on so-called atlases.
An atlas can be viewed as a map or chart of the anatomy or function, either from
a single individual or from an entire population. In many cases atlases the atlases
are annotated to include geometric information about points, curves or surfaces, or
label information about voxels (anatomical regions or function).

Atlases can be used as prior information for image segmentation. In general, an
atlas A can be viewed as a mapping from a set of spatial coordinates (i.e. the voxels)
to a set of labels Λ = {1, · · · ,L}. By warping the atlas to the target, one can make
the atlas and its prior information subject-specific and obtain a segmentation L of
image I :

L = A ◦TA →I (22)

Indeed the earliest approaches to segmentation via registration have used such ap-
proaches: By registering a labelled atlas to the target images and transforming the
segmentation of the atlas into the coordinate system of the subject one can ob-
tain a segmentation of the subject’s image [46, 14]. This segmentation approach
is simple yet effective since the approach can segment any of the structures that
are present and annotated in the atlas. However, the accuracy and robustness of the
segmentation is dictated by the accuracy and robustness of the image registration.
Errors in the registration process will directly affect the accuracy of the propagated
segmentation.

Multi-atlas Segmentation

In the area of machine learning it is well know that the performance of pattern recog-
nition techniques can be boosted using combining classifiers [34]. This concept can
be exploited in the context of atlas-based segmentation: Assuming the availability
of multiple atlases, the output of atlas-based segmentation using a particular atlas
instance can be viewed the output of the classifier. Combining the output of multiple
classifiers (or segmentations) into a single consensus segmentation has been show
to reduce random errors in the individual atlas-to-image registration resulting in an
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improved segmentation [49, 30]. Using this method each atlas is registered to the
the target image in question. The resulting transformation is then used to transform
the segmentation from the atlas into the coordinate system of the target image. An
example of this process is shown Figure 3.

Atlas SegmentationRegistration Unseen data

Decision 
fusion

Final segmentation

Fig. 3 Example of multi-atlas segmentation [30]: A set of annotated atlases is registered to an
unseen image (target image). Each pair of atlas and registration produces a single segmenta-
tion which may contain errors. The segmentations are then merged into a single segmentation
through a decision or vote fusion step into a final consensus segmentation.

By applying classifier fusion techniques at every voxel in subject space the final
consensus segmentation can be applied. Several classifier fusion techniques can be
used, see [34] for a detailed review and discussion of the different classifier fusion
techniques. One of the most popular techniques is the majority vote rule [49]: It
simply uses a winner-takes-all approach in which each voxel is assigned the label
that gets the most votes from the individual segmentations. Assuming K classifiers
(i.e. atlases) final segmentation L (p) can be expressed as

L (p) = max[ f1(p), · · · , fL(p)] (23)

where

fl(p) =
K

∑
k=1

wk,l(p) for l = 1, · · · ,L (24)

and

wk,l(p) =
{

1, if l = ek(p)
0, otherwise

(25)

Here ek denotes the output or label of classifier k. An extension of multi-atlas seg-
mentation has been proposed in [1]. In their work a large number of atlases are used.
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However, instead of using all atlases for for multi-atlas segmentation, only the most
similar atlases are used: In the first step all atlases are registered to a common stan-
dard space using a coarse registration (e.g. affine registration). In addition, the target
image is also aligned to the common standard space. After this initial alignment the
similarity between each atlas and the target image can be determined using an im-
age similarity measure S , e.g. sums of squared differences (SSD), cross-correlation
(CC), mutual information (MI) [15, 61] or normalised mutual information (NMI)
[57]. This allows the ranking of all atlases with respect to the similarity to the target
image. The m top-ranked atlases are then registered non-rigidly to the target image
and as before a classifier fusion framework is applied to obtain a final consensus
segmentation.

The use of a common standard space allows the pre-registration of all atlases
to the standard common space avoiding the necessity for performing registration of
each atlas to the target image for atlas selection. In principle it is also possible to rank
atlases based on meta-information available from the atlases and the target image.
Such meta-information can include gender, age, handedness and clinical status. In
this case atlas selection can be carried out independently from the actual image data
and does not require any initial registration for the atlas selections step.

Atlas
Affine

registration
Standard 

space
Selection of

similar atlases
Non-rigid

registration

X

X

Unseen 
data 

Individual 
segmentations 

Decision
fusion

Unseen 
data 

Fig. 4 Example of multi-atlas segmentation with atlas selection[1]: A set of annotated atlases
and the unseen image (target image) are affinely registered to a common standard space. In
this common standard space the most similar atlases are then identified using a similarity
measure. The registration of the most similar atlases is then refined using non-rigid reg-
istration and resulting segmentations are fused in a similar fashion to standard multi-atlas
segmentation.

Instead of ranking atlases based on their similarity to the target image and using
the top m atlases for classifier fusion, it is possible to weight each atlas according to
its similarity to the target image. In this case the weight w can be written as
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wk,l(p) =
{

S , if l = ek(p)
0, otherwise

(26)

where S measures the similarity between atlas Ak and the target image. It should be
noted that the atlas selection scheme can be viewed as a special case of the weighted
atlas fusion scheme described above where w = 1 for the top-ranked atlases and
w = 0 for all other atlases.

While weighted voting allows the incorporation of a notation of atlas similarity
into the classifier fusion, it does not account for the fact that images can be dissimilar
at a global level but similar at a local level and vice versa. For example, two brain
MR images may have ventricles that are very different in size and shape but their
hippocampi may have similar shape and size. Since the ventricle is much larger than
the hippocampus, its appearance will dominate the similarity calculations. A more
flexible approach is to measure image similarity locally and to adjust the weighting
function accordingly:

wk,l(p) =
{

S (p), if l = ek(p)
0, otherwise

(27)

Another approach is based on simultaneous truth and performance level estima-
tion (STAPLE) [64]. The STAPLE framework was initially created in order to fuse
several manual or automated segmentations of the same image. More specifically it
computes a probabilistic estimate of the true segmentation as a measure of the per-
formance level represented by each segmentation in an expectation-maximization
(EM) framework. This framework has extended to account for spatially varying per-
formance by extending the performance level parameters to account for a smooth,
voxelwise performance level field that is unique to each atlas-based segmentation
[16, 2].

4 Patch-Based Segmentation

A key challenge for multi-atlas segmentation techniques is the reliance on non-rigid
registrations between the atlases and the target image. This introduces two disadvan-
tages: First, the multi-atlas segmentation is computationally very expensive since
each atlas must be registered. Secondly, each registration must be very accurate in
order to guarantee good segmentation performance. However, this is difficult in the
presence of large anatomical variations between the atlas database and the target
image.

To overcome this problem, a patch-based label fusion strategy has been proposed
in [18, 51]. In this approach the assumption of accurate correspondences between
the atlas and the target image is relaxed. Instead a patch from the target image is
compared to patches within a certain search region in the atlas database. In the
subsequent label fusion strategy a patch-based weighting is used instead of a voxel-
based weighting in order to fuse the labels. An overview of this approach is shown
in Figure 5.
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Atlas selection Patch selection Label fusion

Fig. 5 Example of patch-based segmentation as proposed in [18, 51]: A set of atlas is first
selected based on similarity. After this the most similar patches from the atlases are extracted
and used in a weighted label fusion strategy to form the final estimate of the segmentation.

The first stage of the patch-based segmentation is very similar to multi-atlas seg-
mentation with patch selection. The most similar atlases are selected based on a
voxel similarity measure. After atlas selection, for each voxel and patch in the target
image a search volume Vp is defined as a cubic region centred around that voxel.
The search region defines the area in which we expect to find corresponding patches
in the atlas database. In addition to atlas selection, a separate patch selection is also
perform to reduce the computational complexity. This is done using the following
structural similarity measure:

S =
2μiμ j,k

μ2
i + μ2

j,k

2σiσ j,k

σ2
i +σ2

j,k

(28)

Here μ represents the mean intensity and σ represents the standard deviation of the
intensities in the patches centered on voxel pi (the voxel under consideration) and
voxel p j,k at location j in atlas k. All patches for which the structural similarity
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measure is above a certain threshold γ are then retained for weighted label fusion.
For this the weights are computed based on the patch similarity in terms of SSD:

w(pi,p j,k) =

{
exp

−||P(pi)−P(p j,k)||22
h , if S > γ

0, otherwise
(29)

where P(pi) represents a stacked column vector of the intensities patch centered at
pi and h is a bandwidth parameter that controls how many samples are taken into
account in the averaging. The final label is then obtained as the majority vote of f :

f (p) =
∑K

k=1 ∑ j∈Vi
w(pi,p j,k)e j,k

∑K
k=1 ∑ j∈Vi

w(pi,p j,k)
(30)

In this formulation e j,k denotes the label of atlas k and location j.
One of the most significant advantages of patch-based label fusion over atlas-

based label fusion methods is that the accuracy of the registration is far less impor-
tant. This is due to the fact that for each patch corresponding matches are searched
for within a certain search region. In atlas-based label fusion this search region is
effectively one voxel big. In contrast to this patch-based label fusion methods use
search regions that are much bigger. As a result they can much better accommodate
misregistration between the atlas and target image. In fact in [18, 51] only affine
registrations are used to align the atlases and the target image. Despite this, the
patch-based segmentation has been shown to be highly accurate and robust.

5 Summary and Conclusions

In this chapter we have presented a number of theoretical and practical aspects of
medical image registration and segmentation. Medical image registration is widely
used, both in clinical applications (e.g. image fusion, image-guided therapy or
image-guided surgery) as well as a tool for biomedical research (e.g. to study popu-
lations in clinical trials). Despite this non-rigid registration is very much an area of
on-going research and many most algorithms are still in the stage of development
and evaluation. The lack of a generic gold standard for assessing and evaluating the
success of non-rigid registration algorithms is one of their most significant draw-
backs.

Registration algorithms also play a crucial role in state-of-the-art segmentation
techniques. The advantage of atlas-based segmentation techniques is their generic
nature: Different annotations present in the atlas can be propagated to the target
image without the need to customise the process to different anatomical regions
or objects. Moreover, multi-atlas techniques have been show to be very accurate
and robust since they do not depend on individual registrations. This means that
registration failures can be easily compensated for, especially if robust label fusion
schemes such as majority voting is used.
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Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 454–459. Springer, Heidelberg
(1999)

58. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D
medical image alignment. Pattern Recognition 32(1), 71–86 (1998)

59. Thirion, J.-P.: Image matching as a diffusion process: An analogy with Maxwell’s
demons. Medical Image Analysis 2(3), 243–260 (1998)

60. Viola, P.: Alignment By Maximization of Mutual Information. PhD thesis, Massachusetts
Institute of Technology. A.I. Technical Report No. 1548 (1995)

61. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. In: Proc. 5th
International Conference on Computer Vision (ICCV 1995), pp. 16–23 (1995)

62. Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied
Mathematics (1990)

63. Wang, J., Jiang, T.: Nonrigid registration of brain mri using nurbs. Pattern Recognition
Letters 28(2), 214–223 (2007)

64. Warfield, S.K., Zhou, K.H., Wells, W.M.: Simultaneous truth and performance level esti-
mation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans-
actions on Medical Imaging 23(7), 903–921 (2004)
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Clustering Games

Marcello Pelillo and Samuel Rota Bulò

Abstract. Clustering refers to the process of extracting maximally coherent groups
from a set of objects using pairwise, or high-order, similarities. Traditional ap-
proaches to this problem are based on the idea of partitioning the input data into
a predetermined number of classes, thereby obtaining the clusters as a by-product
of the partitioning process. In this chapter, we provide a brief review of our recent
work which offers a radically different view of the problem. In contrast to the clas-
sical approach, in fact, we attempt to provide a meaningful formalization of the very
notion of a cluster and we show that game theory offers an attractive and unexplored
perspective that serves well our purpose. To this end, we formulate the clustering
problem in terms of a non-cooperative “clustering game” and show that a natural
notion of a cluster turns out to be equivalent to a classical (evolutionary) game-
theoretic equilibrium concept. We prove that the problem of finding the equilibria
of our clustering game is equivalent to locally optimizing a polynomial function
over the standard simplex, and we provide a discrete-time dynamics to perform this
optimization, based on the Baum-Eagon inequality. Experiments on real-world data
are presented which show the superiority of our approach over the state of the art.

1 Introduction

Clustering is the problem of organizing a set of objects into groups, or clusters, in
such a way as to have similar objects grouped together and dissimilar ones assigned
to different groups, according to some similarity measure (see, e.g., [40]). Recently,
a wave of excitement has spread across the machine learning and computer vision
communities around this problem mainly because of the important development
of spectral methods [54]. At the same time, there is also growing interest around
fundamental questions pertaining to the very nature of the clustering problem (see,
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e.g., [44, 1, 76]). Yet, despite the tremendous progress in the field, the clustering
problem remains elusive and a satisfactory answer even to the most basic questions
is still to come.

Upon scrutinizing the relevant literature on the subject, it becomes apparent that
the vast majority of the existing approaches deal with a very specific version of the
problem, which asks for partitioning the input data into coherent classes. In fact,
almost invariably, the problem of clustering is defined as a partitioning problem,
and even the classical distinction between hierarchical and partitional algorithms
[41] seems to suggest the idea that partitioning data is, in essence, what clustering is
all about (as hierarchies are but nested partitions). This is unfortunate, because it has
drawn the community’s attention away from different, and more general, variants of
the problem and has led people to neglect underdeveloped foundational issues. As
J. Hartigan clearly put it more than a decade ago: “We pay too much attention to the
details of algorithms. [...] We must begin to subordinate engineering to philosophy.”
[32, p. 3].

The partitional approach is attractive as it leads to elegant mathematical and algo-
rithmic treatments and allows us to employ powerful ideas from such sophisticated
fields as linear algebra, graph theory, optimization, statistics, information theory,
etc. However, there are several reasons for feeling uncomfortable with this oversim-
plified formulation. Probably the best-known limitation of the partitional approach
is the typical (algorithmic) requirement that the number of clusters be known in
advance, but there is more than that.

To begin, the very idea of a partition implies that all the input data will have to
get assigned to some class. This subsumes the old philosophical view which gives
categories an a priori ontological status, namely that they exist independent of hu-
man experience, a view which has now been discredited by cognitive scientists, lin-
guists, philosophers, and machine learning researchers alike (see, e.g., [46, 20, 31]).
Further, there are various applications for which it makes little sense to force all
data items to belong to some group, a process which might result either in poorly-
coherent clusters or in the creation of extra spurious classes. As an extreme example,
consider the classical figure/ground separation problem in computer vision which
asks for extracting a coherent region (the figure) from a noisy background [34, 69].
It is clear that, due to their intrinsic nature, partitional algorithms have no chance
of satisfactorily solving this problem, being, as they are, explicitly designed to par-
tition all the input data, and hence the unstructured clutter items too, into coherent
groups. More recently, motivated by practical applications arising in document re-
trieval and bioinformatics, a conceptually identical problem has attracted some at-
tention within the machine learning community and is generally known under the
name of one-class clustering [30, 19].

The second intrinsic limitation of the partitional paradigm is even more severe
as it imposes that each element cannot belong to more than one cluster. There are
a variety of important applications, however, where this requirement is too restric-
tive. Examples abound and include, e.g., clustering micro-array gene expression
data (wherein a gene often participate in more than one process), clustering docu-
ments into topic categories, perceptual grouping, and segmentation of images with
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transparent surfaces. In fact, the importance of dealing with overlapping clusters
has been recognized long ago [42] and recently, in the machine learning commu-
nity, there has been a renewed interest around this problem [9, 33]. Typically, this
is solved by relaxing the constraints imposed by crisp partitions in such a way as to
have “soft” boundaries between clusters.

Finally, we would like to mention another restriction of current state-of-the-art
approaches to clustering which, admittedly, is not caused in any direct way by the
partitioning assumption but, rather, by the intrinsic nature of the technical tools used
to attack the problem. Indeed, it is typically assumed that object similarities are ex-
pressed as pairwise relations, but in some applications, such as, for example, face
clustering [4], perceptual grouping [29], parametric motion segmentation [29, 70],
and image categorization [39], higher-order relations turn out to be more appropri-
ate, and approximating them in terms of pairwise interactions can lead to substantial
loss of information. As an illustrative example, taken from [4], consider the prob-
lem of grouping a given set of d-dimensional Euclidean points into lines. As every
pair of data points trivially defines a line, there is no meaningful pairwise measure
of similarity for this problem. However, it makes perfect sense to define similarity
measures over triplets of points that indicate how close they are to being collinear.
Clearly, this example can be generalized to any model fitting problem, where the
deviation of a set of points from the model provides a measure of their dissimilarity.
The problem of data clustering using high-order similarities is usually referred to
as hypergraph clustering, since we can represent any instance of this problem by
means of a hypergraph [15], where vertices are the objects to be clustered and the
(weighted) hyperedges encode high-order similarities. Clearly, the classical pair-
wise (i.e., graph-based) clustering problem is but a special case of the hypergraph
formulation. Recently there has been some interest around this problem in computer
vision and machine learning (see, e.g., [77, 4, 70, 29]) but, again, all the approaches
developed so far adhere to the partitional paradigm.1

In this chapter we review our recent work on clustering, which offers a radically
different perspective to the problem [65, 66, 45]. Instead of insisting on the idea of
determining a partition of the input data, and hence obtaining the clusters as a by-
product of the partitioning process, we reverse the terms of the problem and attempt
instead to derive a rigorous formulation of the very notion of a cluster. This allows
one, in principle, to deal with more general problems where clusters may overlap
and/or clutter points may get unassigned. Clearly, the conceptual question “what is a
cluster?” is as hopeless, in its full generality, as is its companion “what is an optimal
clustering?” which has dominated the literature in the past few decades, both being
two sides of the same coin. An attempt to answer the former question, however,
besides shedding fresh light into the nature of the clustering problem, would allow
us, as a consequence, to naturally overcome the major limitations of the partitional
approach alluded to above, and to deal with more general problems where, e.g.,
clusters may overlap and clutter elements may get unassigned, thereby hopefully
reducing the gap between theory and practice.

1 It is worth noting that many of these algorithms, though designed to deal with higher-order
relations, can easily be reduced to the standard pairwise case, as shown in [3].
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The starting point of our approach is the elementary observation that a “cluster”
may be informally defined as a maximally coherent set of data items, i.e., as a subset
of the input data C which satisfies both an internal criterion (all elements belonging
to C should be highly similar to each other) and an external one (all elements out-
side C should be highly dissimilar to the ones inside). In our endeavor to provide
a formal definition of such a notion, we found that game theory offers an elegant
and general perspective that serves well our purposes. The basic idea behind our
framework is that the clustering problem can be considered as a non-cooperative
“clustering game.” Within this context, the notion of a cluster turns out to be equiv-
alent to a classical equilibrium concept from (evolutionary) game theory, as the
latter reflects both the internal and external cluster conditions alluded to before. We
also show that there exists a one-to-one correspondence between these equilibria
and the local solutions of a linearly-constrained polynomial optimization problem,
thereby generalizing the work described in [60]. This characterization allows us to
employ a powerful class of dynamical systems to extract our clusters, based on the
well-known Baum-Eagon inequality, which generalize classical (pairwise) replica-
tor dynamics [75, 35] from evolutionary game theory to higher-order interactions.
A distinguishing feature of our approach is that, unlike standard partitional tech-
niques, we do not need to know the number of clusters is advance as we extract
them sequentially. Experiments on various synthetic and real-world problems show
the superiority of the proposed approach over state-of-the-art techniques.

In the sequel, to keep the discussion as general as possible, we shall focus on the
hypergraph version of the problem. Interestingly, note that the graph (i.e., pairwise)
version turns out to be equivalent to the dominant-set notion of a cluster introduced
in [59, 60], for which no game-theoretic interpretation was originally given.

2 Notions from Evolutionary Game Theory

According to classical game theory [25], a game of strategy can be formalized as
a triplet Γ = (P,S,π), where P = {1, . . . ,k} is a set of k ≥ 2 “players” (or agents),
S = {1, . . . ,n} is a set of pure strategies (or actions) available to each player, and
π : Sk → R is a payoff function, which assigns a utility to each strategy profile s =
(s1, . . . ,sk) ∈ Sk, which is an (ordered) set of pure strategies played by the different
players.2 A game Γ is super-symmetric if its payoff function is super-symmetric,
i.e., if it is invariant under permutations of the strategy profile. In the sequel we will
deal only with such games and therefore we assume π to be super-symmetric.

Evolutionary game theory originated in the early 1970’s as an attempt to apply
the principles and tools of game theory to biological contexts, with a view to model
the evolution of animal, as opposed to human, behavior (see the classical work by
J. Maynard Smith [55] who pioneered the field). It considers an idealized scenario
whereby individuals are repeatedly drawn at random from a large, ideally infinite,

2 We note that although we restrict ourselves to games where all players share the same
set of pure strategies and payoff function, in more general settings each agent can well be
associated to its own pure strategy set and payoff function.
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population to play a game Γ = (P,S,π). In contrast to classical game theory, here
players are not supposed to behave rationally or to have complete knowledge of the
details of the game. They act instead according to an inherited behavioral pattern, or
pure strategy, and it is supposed that some evolutionary selection process operates
over time on the distribution of behaviors. Here, and in the sequel, an agent with
preassigned strategy j ∈ S will be called j-strategist. The state of the population
at a given time t can be represented as a n-dimensional vector x(t), where x j(t)
represents the fraction of j-strategists in the population at time t. Hence, the initial
distribution of preassigned strategies in the population is given by x(0). The set of
all possible states describing a population is given by

Δ =

{
x ∈ R

n : ∑
j∈S

x j = 1 and x j ≥ 0 for all j ∈ S

}

which is called standard simplex. As time passes, the distribution of strategies in the
population changes under the effect of a selection mechanism which, by analogy
with Darwinian process, aims at spreading the fittest strategies in the population to
the detriment of the weakest one which, in turn, will be driven to extinction (we
postpone the formalization of one such selection mechanism to Section 4). For no-
tational convenience, we drop the time reference t from a population state and we
refer to x ∈ Δ as a population rather than population state. Moreover, we denote by
σ(x) the support of x ∈ Δ :

σ(x) = { j ∈ S : x j > 0}

which is the set of strategies that are alive in a given population x.
We will find it useful to define the following function u : Δ k → R:

Uy(1), . . . ,y(k) = ∑
(s1,...,sk)∈Sk

π(s1, . . . ,sk)
k

∏
i=1

y(i)si , (1)

which is invariant under any permutation of its arguments due to the super-symmetry
of the payoff function π . Also, we will use the notations x[k] as a shortcut for a
sequence (x, . . . ,x) of k identical states x, and e j to indicate the n-vector with x j = 1
and zero elsewhere. Now, it is easy to see that the expected payoff earned by a j-
strategist ( j ∈ S) in a population x ∈ Δ is given by Ue j,x[k−1], while the expected
payoff over the entire population is given by Ux[k].

A fundamental notion in game theory is that of an equilibrium [75]. Intuitively,
an evolutionary process reaches an equilibrium x ∈ Δ when every individual in the
population obtains the same expected payoff and no strategy can thus prevail upon
the other ones. Formally, x ∈ Δ is a Nash equilibrium if

Ue j,x[k−1] ≤ Ux[k] , for all j ∈ S . (2)
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In other words, at a Nash equilibrium every agent in the population performs at most
as well as the overall population expected payoff. Within a population-based setting,
however, the notion of a Nash equilibrium turns out to be too weak as it lacks stabil-
ity under small perturbations. This motivated J. Maynard Smith, in his seminal work
[55], to introduce a refinement of the Nash equilibrium concept generally known as
an Evolutionary Stable Strategy (ESS). His original work involved pairwise interac-
tions (two-player games), but his notion has later been generalized to multi-player
games [17]. Formally, assume that in a population x ∈ Δ , a small share ε of mutant
agents appears, whose distribution of strategies is y ∈ Δ . The resulting post-entry
population is then given by wε = (1− ε)x+ εy. Biological intuition suggests that
evolutionary forces select against mutant individuals if and only if the expected pay-
off of a mutant agent in the postentry population is lower than that of an individual
from the original population, i.e.,

Uy,w[k−1]
ε < Ux,w[k−1]

ε . (3)

Hence, a population x ∈ Δ is said to be evolutionary stable if inequality (3) holds
for any distribution of mutant agents y ∈ Δ \ {x}, granted the population share of
mutants ε is sufficiently small. It can be shown that an ESS is a refinement of the
notion of a Nash equilibrium in the sense that every ESS is necessarily a Nash
equilibrium (see, [75] for pairwise contests and [17] for k-wise contests).

3 Clustering as a Non-cooperative Game

For the sake of generality, we shall focus on the hypergraph version of the cluster-
ing problem, whereby high-order similarities among objects are involved, the clas-
sical pairwise (i.e., graph-based) case being but a special instance of this general
formulation.

An instance of the hypergraph clustering problem can be described by an edge-
weighted hypergraph [15], which is formally defined as a triplet H = (V,E,ω),
where V = {1, . . . ,n} is a finite set of vertices, E ⊆ 2V \ { /0} is the set of
(hyper-)edges (here, 2V is the power set of V ), and ω : E →R+ is a real-valued func-
tion, which assigns a positive weight to each edge. Within our clustering framework
the vertices in H correspond to the objects to be clustered, the edges represent (pos-
sibly) high-order neighborhood relationships among objects, and the edge-weights
reflect similarity among linked objects. Although hypergraphs may have edges of
varying cardinality, in this paper we will focus on a particular class of hypergraphs,
called k-graphs, whose edges have fixed cardinality k ≥ 2 (clearly, if k = 2 we get
back to the standard notion of a graph). Note that for simplicity, here we restrict
ourselves to positive similarities, although the proposed framework can easily be
generalized to deal with negative weights as well.

Given a weighted k-graph H = (V,E,ω), representing an instance of a hyper-
graph clustering problem, we cast it into a k-player (hypergraph) clustering game
Γ = (P,V,π) where the players’ pure strategies correspond to the objects to be
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clustered and the payoff function π is proportional to the similarity of the ob-
jects/strategies (v1, . . . ,vk) ∈ V k selected by the players:

π(v1, . . . ,vk) =

{
1
k!ω ({v1, . . . ,vk}) if {v1, . . . ,vk} ∈ E ,

0 otherwise .
(4)

Here, the constant of proportionality 1/k! has been chosen to simplify later algebraic
derivations.

Our clustering game will be played within an evolutionary setting wherein the
k players, each of which is assumed to play a pre-assigned strategy, are repeat-
edly drawn at random from a large population. Here, given a population x ∈ Δ , x j

( j ∈ V ) represents the fraction of players that is programmed to select j from the
objects to be clustered. A dynamic evolutionary selection process, as the one de-
scribed in the next section, will then make the population x evolve according to a
Darwinian survival-of-the-fittest principle in such a way that, eventually, the better-
than-average objects will survive and the others will get extinct. It is clear that the
whole dynamical process is driven by the payoff function π which, in our case, has
been defined in (4) precisely to favor the evolution of highly coherent objects. Ac-
cordingly, the support σ(x) of the converged population x does represent a cluster,
the non-null components of x providing a measure of the degree of membership of
its elements. Indeed, the expected population payoff Ux[k] can be regarded to as a
measure of the cluster’s internal coherency in terms of the average similarity of the
objects forming the cluster, whereas the expected payoff Ue j,x[k−1] of a player se-
lecting object j ∈ V in x measures the average similarity of object j with respect to
the cluster.

We claim that, within this setting, the clusters of a hypergraph clustering problem
instance can be characterized in terms of the ESS’s of the corresponding (evolution-
ary) clustering game, thereby justifying the following definition.

Definition 0.1 (ESS-cluster). Given an instance of a hypergraph clustering problem
H = (V,E,ω), an ESS-cluster of H is an ESS of the corresponding hypergraph
clustering game.

For the sake of simplicity, when it will be clear from context, the term ESS-cluster
will be used henceforth to refer to either the ESS itself, namely the membership
vector x ∈ Δ , or to its support σ(x) =C ⊆ V .

The motivation behind the above definition resides in the observation that ESS-
clusters do incorporate the two basic properties of a cluster, i.e.,

• internal coherency: elements belonging to the cluster should have high mutual
similarities;

• external incoherency: the overall cluster internal coherency decreases by intro-
ducing external elements.

The rest of this section is devoted to provide support to this claim.



164 M. Pelillo and S.R. Bulò

1 2 3 4 5

125 234 245 345

Fig. 1 Example of a 3-graph with 5 nodes (circles) and 4 edges (rectangles), represented as
a bipartite graph. Each edge is connected to the vertices it contains.

3.1 Internal Coherency

The internal coherency of an ESS-cluster is a direct consequence of the Nash con-
dition (2), which is satisfied by any ESS. Indeed, if x ∈ Δ is an ESS of a clustering
game, then from (2) it follows that every object belonging to the cluster, i.e., every
object in σ(x), has the same average similarity with respect to the cluster, which in
turn corresponds to the cluster’s overall average similarity. This is formally stated
in the following theorem.

Theorem 0.1. Let H = (V,E,ω) be an instance of a hypergraph clustering problem,
and Γ = (P,V,π) the corresponding clustering game. If x ∈ Δ is an ESS-cluster of
H, with support σ(x) =C, then

Ue j,x[k−1] = Ux[k] , for all j ∈C . (5)

Proof. See [66].

The internal coherency of an ESS-cluster becomes clearer if we analyze it using a
notion from hypergraph theory. Let H = (V,E,ω) be a (weighted) hypergraph and
C ⊆ V . We say that C is a two-cover of H if for any pair of vertices { j, �} ⊆ C
there exists an edge e ∈ E such that { j, �} ⊆ e ⊆ C. Note that if H is a graph (i.e.,
k = 2) then two-covers correspond to cliques, namely, to sets of mutually adjacent
vertices. To illustrate, in the hypergraph shown in Figure 1 the sets {1,2,3,4,5}
and {1,2,4,5} are not two-covers as there is no edge contained in them connecting
vertices {1,3} and {1,4}, respectively, while the set {2,3,4,5} is a two-cover.

The following proposition, which is a weighted counterpart of a result by Frankl
and Rödl [24] on unweighted hypergraphs, provides an interesting connection be-
tween ESS’s and two-covers.

Proposition 0.1. Let H = (V,E,ω) be an instance of a hypergraph clustering prob-
lem, and Γ = (P,V,π) the corresponding clustering game. If x ∈Δ is an ESS-cluster
of H, then its support σ(x) is a two-cover of H.

Proof. See [66].
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Intuitively, the previous result shows that two objects cannot belong to (the sup-
port of) an ESS-cluster if there is no similarity relationship between them within the
cluster. This is a minimal property that a cluster should satisfy in order to guarantee
some form of internal coherency.

3.2 External Incoherency

In addition to the internal coherency property described above, we now show that
ESS-clusters satisfy also a property of external incoherency. This follows, in the first
place, from the Nash condition (2) that we already used to prove internal coherency.
In fact, according to (2), every object external to an ESS-cluster C has an average
similarity with respect to C that cannot exceed the cluster’s overall similarity. More
formally, if x ∈ Δ is a Nash equilibrium with support σ(x) =C, we have

Ue j,x[k−1] ≤ Ux[k] , for all j /∈ C .

However, the Nash condition alone is not enough, as there may still be cases where
the average similarity of an external object equals the cluster’s overall similarity,
thereby violating the external incoherency criterion. As it turns out, to some extent,
this cannot be the case with an ESS, thanks to its additional stability properties.

Theorem 0.2. Let H = (V,E,ω) be an instance of a hypergraph clustering problem,
and Γ = (P,V,π) the corresponding clustering game. Then, x ∈ Δ is an ESS-cluster
of H if and only if for any y ∈ Δ \ {x} and all sufficiently small positive values of ε
the following inequality holds:

Uw[k]
ε < Ux[k] ,

where wε = (1− ε)x+ ε y.

Proof. See [66].

The previous theorem asserts that whenever we try to deviate from an ESS-cluster
x ∈Δ , e.g., by adding an external element to its support, the cluster’s overall average
similarity drops, provided that deviation is not too large. This not only guarantees a
form of external incoherency, but provides also support to the claim that the com-
ponents of x reflect the degree of cluster membership.

Observe that when the number of players k equals 2, i.e., in the presence of
pairwise similarities, our notion of ESS-cluster coincides with that of a dominant
set [60, 73], which is a generalization of a maximal clique to the case of edge-
weighted graphs. In this case a stronger notion of external incoherency holds, which
asserts that no dominant set can be a subset of another. In the case of higher-order
similarities, however, there is no theoretical guarantee that the support of an ESS is
not contained in that of another one. Indeed, in [17] it is shown that such solution
patterns might possibly appear in general games with more than two players (i.e.,
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k > 2). However, this behaviour has never been observed in practice (e.g., on the
instances used in the experiments described below).

4 Evolution Towards a Cluster

In this section, we address the issue of determining an ESS-cluster for a given in-
stance of a hypergraph clustering problem. Unfortunately, this turns out to be a com-
putationally hard problem [21, 57], but good heuristics do exist. Indeed, we show
below that the ESS’s of a clustering game are in one-to-one correspondence with
(strict) local solutions of a non-linear optimization problem, thereby allowing the
use of standard optimization techniques.

Theorem 0.3. Let H = (V,E,ω) be a hypergraph clustering problem, Γ = (P,V,π)
the corresponding clustering game, and f (x) a function defined as

f (x) = Ux[k] = ∑
e∈E

ω(e)∏
j∈e

x j . (6)

Nash equilibria of Γ are in one-to-one correspondence with the critical points 3 of
f (x) over Δ , while ESS’s of Γ are in one-to-one correspondence with strict local
maximizers of f (x) over Δ .

Proof. See [66].

The problem of extracting ESS-clusters can thus be cast into the problem of find-
ing a strict local solutions of (6) in Δ . We will address this optimization task using
a well-known result due to Baum and Eagon [11], who introduced a wide class
of nonlinear transformations in probability domain. Their result generalizes an ear-
lier one by Blakley [16], who discovered similar properties for certain homogeneous
quadratic transformations. The next theorem introduces what is known as the Baum-
Eagon inequality.4

Theorem 0.4 (Baum-Eagon). Let Q(x) be a homogeneous polynomial in the vari-
ables x j with nonnegative coefficients, and let x ∈ Δ . Define the mapping z =M (x)
from Δ to itself as follows:

z j = x j
∂Q(x)
∂x j

/ n

∑
�=1

x�
∂Q(x)
∂x�

, j = 1, . . . ,n. (7)

Then Q(M (x))> Q(x), unless M (x) = x.

3 A point x is said to be a critical (or a KKT) point of an optimization problem if it satisfies
the first-order necessary conditions for being a solution [53].

4 Indeed, the original Baum-Eagon inequality is more general than presented here as it deals
with a maximization problem over a product of simplices.



Clustering Games 167

Although this result applies to homogeneous polynomials, in a subsequent paper
Baum and Sell [13] proved that Theorem 0.4 still holds in the case of arbitrary,
non-homogeneous polynomials and further extended the result by showing that M
increases Q homotopically, which means that for all 0 ≤ η ≤ 1, Q(ηM (x)+ (1−
η)x)≥ Q(x) with equality if and only if M (x) = x.

Another way of looking at Theorem 0.4 is from the standpoint of dynamical sys-
tems theory [52, 48]. The nonlinear operator M defines in fact a discrete dynamical
system and it is therefore of particular interest to study how it behaves in the vicin-
ity of its equilibrium points. In the theory of dynamical systems this is formalized
by the concept of stability. An equilibrium point x is said to be stable if, whenever
started sufficiently close to x, the system will remain near to x for all future times.
A stronger property, which is even more desirable, is that the equilibrium point x be
asymptotically stable, meaning that x is stable and in addition is a local attractor,
i.e., when initiated close to x, the system tends towards x as time increases. One of
the most fundamental tools for establishing the stability of a given equilibrium point
is known as Lyapunov’s direct method. It involves seeking a so-called Lyapunov
function, i.e., a continuous real-valued function defined in state space which is non-
decreasing along any trajectory. Of particular interest are strict Lyapunov functions
which are, instead, strictly increasing along non-constant trajectories. Accordingly,
Theorem 0.4 states essentially that the polynomial Q is a Lyapunov function for the
discrete-time dynamical system defined by M .

The Baum-Eagon inequality provides therefore an effective iterative means for
maximizing polynomial functions in probability domains, and in fact it has served
as the basis for various statistical estimation techniques developed within the the-
ory of probabilistic functions of Markov chains [12]. It has also been employed
for studying the dynamical properties of relaxation labelling processes [61]. Note
that, even in the presence of negative coefficients, it is still possible to use the
Baum-Eagon theorem, and hence the corresponding dynamical system, by applying
a simple transformation to the original polynomial which does preserve the original
solutions. This could be useful, for example, when the edge-weights in the hyper-
graph encode both similarity and dissimilarity information.

Now, let us go back to our clustering problem. Note that the function f defined in
(6) is precisely a homogeneous polynomial with nonnegative coefficients and hence
the Baum-Eagon theorem applies. In this case, we have

∂ f (x)
∂x j

=
1
k

Ue j,x[k−1] , j = 1 . . .n

which yields
n

∑
�=1

x�
∂ f (x)
∂x�

=
1
k

Ux[k]

so that the proposed discrete-time dynamics to extract an ESS-cluster takes the
following form:
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x j(t + 1) = x j(t)
Ue j,x(t)[k−1]

Ux(t)[k]
, j = 1 . . .n . (8)

This dynamics can be given a natural evolutionary interpretation, and in fact
generalizes a classical formalization of natural selection processes in two-player
evolutionary game theory [75, 35], known as “replicator dynamics.” To see this,
recall that Ue j,x[k−1] represents the expected payoff of an i-strategiest in popu-
lation x, while Ux[k] represents the expected payoff over the entire population.
Hence, during the evolution of (8), better-than-average strategies, i.e., those sat-
isfying Ue j,x[k−1] > Ux[k], will spread in the population while the others will get
extinct, giving therefore rise to a Darwinian selection process.

From Theorem 0.4 we can assert that f is a strict Lyapunov function for this
dynamical system and this, in conjunction with the fact that every ESS-cluster is a
strict local maximizer of f in Δ , proves the following theorem which is an obvious
consequence of Lyapunov’s theorem of asymptotically stability [52, 48].

Theorem 0.5. A point x ∈ Δ is an ESS-cluster of an instance of a hypergraph clus-
tering problem if and only if it is an asymptotically stable equilibrium point (and,
hence, a local attractor) for the nonlinear dynamics (8).

In practical applications, without heuristic information about the optimal solu-
tion, it is customary to start out the dynamics from the barycenter of the simplex,
i.e., from the vector x(0) = ( 1

n , . . . ,
1
n)

! ∈ Δ , which is the uniform distribution over
the set of vertices V . This choice ensures that no particular solution is favored.
Moreover, the dynamics (13) satisfies the invariant property σ(x(t)) ⊆ σ(x(0))
for any time t > 0. Hence, in order to allow any vertex i ∈ V to potentially take
part of a solution, we need to select an initial state x(0) with full support, i.e.,
σ(x(0)) = V . In particular, if the numerator of (13) is positive for all j ∈ σ(x(0))
then σ(x(t)) = σ(x(0)) for all finite values of t ≥ 0 and only asymptotically we
might possibly have σ(x∗) � σ(x(0)), x∗ being the limit point of the trajectory,
namely x∗ = limt→∞ x(t). This fact suggests that given a solution x(T ) obtained af-
ter T < ∞ steps of (13), we need to threshold its components in order to get the
support of the corresponding ESS-cluster. Observe also that the components of an
ESS-cluster x provide information about the degree of membership of each element
to the cluster (which could be useful, e.g., to extract a representative of the cluster
found).

Unlike standard partitional techniques, our approach involves extracting one clus-
ter at a time, much in the same spirit as [60, 63, 68]. Depending on the application
at hand, one might want to obtain either overlapping or non-overlapping clusters.
In the latter case, a simple, yet effective “peel-off” strategy, which has also been
used in the experiments reported below, can be as follows: 1) Find an ESS-cluster
with dynamics (8); 2) remove its vertices from the hypergraph; 3) reiterate on the re-
maining vertices. Alternatively, in order to extract overlapping groups one needs to
enumerate the ESS-clusters. In this paper we do not address this issue, but we men-
tion that a possible strategy to accomplish this has been proposed in [74], although
restricted to the standard pairwise case.
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Finally, as pointed out in [13], note that our dynamics (8) contrasts sharply with
gradient methods, for which an increase in the objective function is guaranteed only
when infinitesimal steps are taken, and determining the optimal step size entails
computing higher-order derivatives. We add that performing gradient ascent in Δ
requires some projection operator to ensure that the constraints not be violated, and
this might cause some problems for points lying on the boundary [23, 56]. In (8),
instead, a computationally simple normalization is required. Overall, the complexity
of finding an ESS-cluster with our algorithm turns out to be O(ρ |E|), where |E| is
the number of edges of the hypergraph and ρ is the average number of iteration
needed to converge. In the experiments reported below ρ never exceeded 100. More
efficient algorithms to extract ESS-clusters can well be developed, e.g., along the
lines suggested in [67, 62] for quadratic optimization.

5 Experiments

To test the effectiveness of the proposed approach, we conducted experiments on
synthetic data as well as real-world applications. As for the synthetic experiments,
we address the problem of line clustering in high-dimensional space in Section 5.1
and the problem of model-based 3D point-pattern matching in Section 5.2. Real-
world experiments have been conducted in Section 5.3 on the problem of object
detection in images (in particular, car and pedestrian detection), and on illuminant-
invariant face clustering in Section 5.4. All the experiments, except the one on
object-detection exploit similarities of order k > 2, whereas the the latter relies on
2-graphs. The experimental setting used for the object detection task is described
separately in Section 5.3. Here, we describe the experimental setting used in all
other cases.

We compared our approach against two of the most powerful hypergraph clus-
tering algorithms available in the literature, namely the Clique Averaging algorithm
(CAVERAGE) of Agarwal et al. [4], and the Super-symmetric Non-negative Tensor
Factorization (SNTF) of Shashua et al. [70]. Note that in [4] CAVERAGE was shown
to outperform consistently several existing hypergraph clustering techniques such as
Clique Expansion combined with Normalized cuts [38], Gibson’s Algorithm under
sum and product model [28], the two-phase multi-level algorithm kHMeTiS [43],
and therefore we decided not to include them in our experimental comparisons.
Note also that, unlike CAVERAGE, which resorts to a pairwise approximation of the
high-order similarity function, SNTF works directly on the hypergraph as we do.

Since both CAVERAGE and SNTF, in contrast to our method, require as a param-
eter the number of clusters K, we run them with values of K ∈ {K∗−1,K∗,K∗+1},
where K∗ denotes the correct number of clusters. As in practical application the
optimal number of clusters is not known in advance, this allowed us to assess the
robustness of the approaches in the presence of under- and over- estimation of the
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correct number of clusters.5 As concerns the other free parameters of all competing
algorithms, they were optimally tuned using a small validation set, which consisted
of a set of labeled observations sampled from the same distribution as that used in
the testing phase. As for our algorithm, we used the peel-off strategy described in
the previous section. The quality of the clusterings found by the different algorithms
was evaluated in terms of classification error with minimum-cost bipartite matching
except for the experiment in Section 5.3, where a different evaluation protocol has
been adopted (see the description in the section).

We run the experiments on an AMD Sempron 3Ghz computer equipped with
a 4Gb RAM. In the case of CAVERAGE and SNTF we used the original codes as
provided by the authors (Matlab and C++ implementations, respectively). For our
algorithm, we used a non-optimized Matlab implementation. As for running time,
we report that our algorithm typically took a hundred seconds or so to converge,
CAVERAGE was an order of magnitude faster, while SNTF was an order of mag-
nitude slower. This is indeed to be expected as CAVERAGE, unlike our algorithm
and SNTF, transforms at the outset the original hypergraph into a graph, thereby
greatly reducing the complexity of the problem. On the other hand, like our algo-
rithm, SNTF does not resort to any graph approximation but, by optimizing a single
variable at a time, it has a substantially larger computational complexity.

5.1 Line Clustering

Here, we consider the problem of clustering lines in spaces of dimension greater
than two, i.e., given a set of points in R

d , the task is to extract subsets of collinear
points. This is a typical example where classical pairwise approaches cannot work
because any pair of points defines a straight line, and hence higher-order similarity
relations are needed (see, e.g., [4]). An obvious ternary similarity measure for this
clustering problem can be defined as follows. Given a triplet of points {i, j,k} and
its best fitting line �, we calculate the mean distance d(i, j,k) between each point
and �, and then we obtain a similarity function using a standard Gaussian kernel:
ω({i, j,k}) = exp(−βd(i, j,k)2), where β is a properly tuned precision parameter.

In order to assess the robustness of the competing approaches to both local and
global perturbations, we conducted two kinds of experiments. In the first set of ex-
periments we generated a few lines (from 3 to 5) in a 5-dimensional space [−2,2]5.
Each line consisted of 20 points, which were locally perturbed using a varying
amount of Gaussian noise, namely from σ = 0 to σ = 0.08 (see Figure 2(a) for
a specific example). Figure 2(b–d) shows the results obtained by the competing al-
gorithms in terms of classification error with 3,4 and 5 lines, respectively, as a func-
tion of the noise level. Each plot shows the average performance obtained over 30
randomly generated instances together with the corresponding standard deviations.

5 Note that running any clustering algorithm with K <K∗ prevents it from achieving perfect
results. However, we think that the experiments presented with K = K∗ − 1 do indeed
provide some interesting information concerning the algorithms’ behavior.
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Fig. 2 Results of clustering 3,4 and 5 lines perturbed locally with increasing levels of Gaus-
sian local noise (σ = 0,0.01,0.02,0.04,0.08). (a) Example of three 5D lines (projected in
2D), perturbed with σ = 0.04. (b) Three lines. (c) Four lines. (d) Five lines.

In the first place, note that our algorithm performs essentially as well as as the
best performing parametrization of SNTF on all instances with a level of noise not
exceeding 0.04. As for CAVERAGE, note that even using the correct number of clus-
ters K = K∗, its performances gradually deteriorate as the number of lines is in-
creased. In all cases, both SNTF and CAVERAGE are systematically outperformed
by our algorithm when they are run with a non-optimal value of K. We also observe
that when K = K∗ − 1, the error of CAVERAGE and SNTF is expected to decrease
significantly as we increase K∗, e.g., when we use five instead of four lines, while
this does not happen thereby suggesting that they do not achieve the best possible
result here. Further, as expected, the influence of local noise on their performance is
typically negligible. Indeed, this makes intuitively sense as, once they stick to a par-
tition of the original input data, it is unlikely that the result will change drastically
under moderate local perturbations. On the other hand, our approach appears to be
slightly more vulnerable to local perturbations as points deviating too much from a
cluster’s average collinearity will get excluded, by construction, as they undermine
internal coherency.
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Fig. 3 Results of clustering 2,3 and 4 lines with an increasing number of clutter points
(0,10,20,40). (a) Example of two 5D lines (projected in 2D) with 40 clutter points. (b) Two
lines. (c) Three lines. (d) Four lines.

The second series of experiments aimed at assessing robustness to clutter (global
noise). To this end, we randomly generated a few lines (in our experiments, from 2
to 4) in the 5-dimensional hypercube [−2,2]5, and then added from 0 to 40 clutter
points uniformly drawn from the hypercube (see Figure 3(a) for a specific example).
In order to make the setting more realistic, we also slightly perturbed the original
lines using a local Gaussian noise with standard deviation 0.01 . As in the previous
set of experiments, each generated line consisted of 20 points.

Figure 3(b–d) shows the results obtained by all algorithms as a function of clutter.
As can be clearly seen, our algorithm substantially outperformed both CAVERAGE

and SNTF even when they were fed by the correct number of clusters K∗, and it
worked almost perfectly irrespective of the clutter level. Note also that both com-
petitors achieved better performances when K > K∗, and this is intuitively clear as
the only way to get rid of clutter points is to group them into additional (garbage)
clusters. Nevertheless, due to the intrinsic unstructured nature of clutter points, they
typically did not get assigned to the garbage class but, instead, were associated to the
original groups, thereby making the performance of CAVERAGE and SNTF poorer
and poorer as clutter increases.
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5.2 Model-Based 3D Point-Pattern Matching

We present here a different type of experiment, which highlights the advantages
of our approach over the existing partition-based ones. We consider the problem
of finding in a scene (possibly multiple) copies of a reference 3D model subject
to a similarity transformation (i.e., rescaling + rotation + translation). Here, both
the model and the scene are represented as clouds of 3D points. Motivated by the
approach described in [7] (which deals with pairwise relations only), here we tackle
this problem from a hypergraph clustering perspective.

Let M be a set of 3D points representing the model to be found and let S be
a set of 3D points representing the scene. We denote by A the set of all possible
pointwise correspondences between model and scene points, i.e., A = M ×S .
Given a set of three correspondences e = {(m1,s1),(m2,s2),(m3,s3)} ⊆ A , we
compute the similarity transformation T which minimizes the least-square error

d(e) = ∑|e|
i=1 ‖T (mi)− si‖2 using the Horn method [36]. Consider now the hyper-

graph H = (A ,E ,φ) where the set of vertices is given by the set of correspon-
dences A , the set of hyperedges E consists of subsets of A of cardinality 3, and
φ(e) is the edge-weight function defined as φ(e) = exp(−βd(e)), where β > 0 is
a precision parameter. Intuitively, the function φ(e) can be regarded as a compati-
bility function encoding the likelihood of the correspondences in e to be related by
the same similarity transformation. According to our framework, an ESS-cluster C
of H is a subset of correspondences in A exhibiting both internal coherence and
external incoherence. Therefore, all correspondences in C are mutually highly com-
patible. This, by definition of φ , implies that all correspondences in C are related by
the same similarity transformation between the model and the scene. Hence, C is a
good candidate for being a potential match (i.e., a set of correspondences) providing
a detection of the model in the scene, which is invariant to a similarity transforma-
tion. This motivates the use of our game-theoretic approach in order to address this
matching problem from a clustering perspective. Note that this problem is particu-
larly challenging, for only a small fraction of the correspondences in A will be part
of a solution, the rest being outliers. Indeed, for example, if we consider a scene S
containing any number of distinct instances of a model M , then only a small share
of at most |M |−1 correspondences appearing in A do belong to the solution.

We tested our approach on different artificial datasets. Each dataset is character-
ized by a reference model consisting of 30 random 3D points and a scene which
contains up to 3 instances of the model. Each model instance in the scene is equiv-
alent to the original one modulo a random similarity transformation. Moreover, a
random subset of points of each copy of the model has been dropped (0-20% of
points) in order to introduce structural noise. Consistently with the previous experi-
ments, we considered two types of settings to assess the robustness of the algorithms
to local and global noise. In the first set, we employed a Gaussian perturbation of
the points in the scene, whereas in the second one 3D points (clutter points) were
randomly added to the scene. For each different combination of number of model
instances, noise type and noise level, we generated 20 random datasets. We refer to
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Figures 4(a) and 5(a) for examples of datasets with 3 model instances affected by
local and global noise, respectively.

The hypergraphs we got in the various experimental settings were considerably
large. Indeed, the number of vertices (i.e., potential correspondences) varied be-
tween 1000 and 5000 and the number of edges (i.e., triplets of correspondences)
ranged approximately between 108 and 1010. In order to reduce the size of the edge
set, we adopted a sampling strategy aimed at efficiently excluding triplets that can-
not belong to a good match. This allowed us to limit the number of edges to a
maximum number of 25000 edges.

The evaluation protocol used to assess the quality of the results is given as fol-
lows. First, we clustered the hypergraphs thus obtaining a set of potential matches.
Then, by means of the Horn method, we estimated a similarity transformation from
the pointwise correspondences in each cluster. This yielded a set of m transfor-
mations {Tt}m

t=1, which were used to determine the correspondences between the
scene points and the model points according to the projection error. Specifically,
let di jt = ‖Tt(mi)− s j‖ be the distance between scene point s j and model point mi

mapped according to transformation Tt and consider ( j∗, t∗) ∈ arg min( j,t) di jt . Then
we decided to leave scene point si unassigned if di j∗t∗ > τ (i.e., the point did not
belong to the model) for some fixed threshold τ > 0, while it was assigned to point
m j∗ , otherwise. Let R ⊆ A be the set of assignments obtained according to this
procedure and let G ⊆ A be the set of ground-truth assignments of scene points
to model points. We evaluated the quality of the obtained result in terms of the
share of ground-truth assignments that have been correctly recovered (recall), i.e.,
|G ∩R|/|G |.

In the following, we report only the results obtained by our approach, because
the competitors CAVERAGE and SNTF were unable to provide a meaningful solu-
tion (recall below 10%). In fact, this is not surprising because the structure of the
clustering problem arising from this application is characterized by an amount of
wrong correspondences in A (outliers) that is considerably larger than the num-
ber of correct correspondences and, as demonstrated also by the previous series of
experiments, partition-based approaches like CAVERAGE and SNTF are highly sen-
sitive to outliers. As a consequence, the similarity transformations computed from
the noisy clusters found by these approaches did not correspond to any mapping
between the model and the scene. Our approach on the other hand was very robust
to this kind of global noise and was thus able to perform considerably well also in
challenging situations like the ones addressed in this experiment.

In Figure 4 we report the average recall and standard deviations obtained by
our approach on the experiments with increasing level of local Gaussian noise
(σ = 0,0.001,0.002,0.004,0.008). As experienced in previous sections, our ap-
proach achieves good scores, which slightly drop at increasing levels of noise. In-
deed, larger perturbations of the points in the scene prevent the clustering approach
from finding a correct similarity transformation and, therefore, some points in the
scene are erroneously considered as clutter points. We also note that the drop in the
performance is sharper in case of datasets with 3 model instances. This is due to
the fact that 3 models in the scene lead to a higher density of points and, hence,
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Fig. 4 Results of the experiments on model-based 3D point-pattern matching with 1,2
and 3 model instances perturbed with increasing levels of Gaussian local noise (σ =
0,0.001,0.002,0.004,0.008). (a) Example of a model-based 3D point-pattern matching prob-
lem instance with 3 model instances perturbed with σ = 0.004. (b) Results obtained by our
approach. Note that CAVERAGE and SNTF, which do not appear in the plots, obtained recall
below 10%.

wrong assignments enforced by the local noise are more likely to happen. Addition-
ally, the edge sampling procedure mentioned above lead to less accurate hypergraph
representations in case of datasets with a large number of points.

In Figure 5 we report the results obtained by our approach with a fixed level
of σ = 0.001 local Gaussian noise and with an increasing level of global noise,
expressed in terms of 0,10,20,40 clutter points. The obtained results confirm the
robustness of our approach to clutter points. Indeed, independently from the noise
level and the number of model instances, we achieve an almost constant perfor-
mance between 97%-100%.

5.3 Object Detection

In this section we show an application of our game-theoretic clustering approach
to the problem of finding multiple instances of an object category within an image.
Unlike the experiments that we have seen so far, we rely here on pairwise similari-
ties. By exploiting Hough-voting based detection frameworks, like the Hough Forest
[26] or the Implicit Shape Model [50], we cast the object detection problem into the
problem of grouping hypothesis of an object’s presence. These hypothesis consist in
votes that have been generated by the Hough-based detection algorithms and have
been collected within a generalized Hough space. As opposed to the standard ap-
proaches, which rely on non-maxima suppression (NMS) techniques to individuate
an object from the set of noisy votes, we undertake a similarity-based approach.
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Fig. 5 Results of the experiments on model-based 3D point-pattern matching with 1,2 and
3 object instances with a level of Gaussian local noise of σ = 0.001 and increasing num-
ber of clutter points (0,10,20,40). (a) Example of a model-based 3D point-pattern matching
problem instance with 40 clutter points. (b) Results obtained by our approach. Note that CAV-
ERAGE and SNTF, which do not appear in the plots, obtained recall below 10%.

We first organize the set of voting element derived from Hough-voting based detec-
tion frameworks into a pairwise compatibility matrix representation, where we take
into account geometric information like orientation and object center agreement
between voting elements. In a second step, we analyse this compatibility matrix
with our game-theoretic clustering framework in order to detect groups of votes that
are mutually highly compatible and, by construction, geometrically coherent. These
groups represent our final object hypothesis in contrast to bounding-box delimited
object detections, typically obtained as a result of NMS methods.

We denote with S the set of N observations (voting elements) from an image.
Each observation i ∈ S has a spatial origin yi in the image space, stemming from
voting elements and their respective descriptors Ii. We furthermore assume that we
are given a classification function h(i) for the class label assignment and a probabil-
ity score p(h(i)|Ii) for each voting element i ∈ S. In addition, each voting element
i ∈ S obtains a voting vector di after being classified, pointing towards its associated
object center. All of the above parameters can be obtained from previous works like
the ISM [50] or the Hough Forest [26].

We organize the collected voting elements into a pairwise representation by
means of a compatibility function, which is composed by different terms. One term
consists in the object center certainty which is modelled as a function weighting the
distance between the hypothesized centers of voting elements i, j ∈ S according to

pci j = exp

(
−||(yi +di)− (y j +d j)||2

σ2
h

)
, (9)
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where σh is a parameter to control the allowed deviation. This term may also be
considered as pairwise breakdown of the original Hough center projection. A sec-
ond component of our pairwise representation models the orientation similarities
between the considered pair of votes and the actual relative orientation between the
spatial origins in the image domain. Hence, we define

pϕi j = exp

(
−�(ŷi j, d̂i j)

2

σ2
ϕ

)
, (10)

where �(·, ·) returns the enclosed angle between the normalized vectors ŷi j =
yi−y j

||yi−y j || and d̂i j =
di+d j

||di+d j || , mapped on the interval [0,π ]. This orientation feature pe-

nalizes differences between the observed geometric configuration in the image and
the provided voting information.σϕ allows to control the influence of the orientation
feature. By combining the terms in Equ. (9) and (10), we construct a compatibility
function C : S× S → [0,1] defined as follows:

C(i, j) = p(h(i)|Ii)p(h( j)|I j)pci j pϕi j . (11)

Please note that a voting pair (i, j) has to satisfy not only the geometrical constraints
formulated in Equ. (9) and (10) but also needs to be classified as part of the object
in order to receive a non-zero compatibility value.

The compatibility function C can be regarded as the payoff π of a 2-graph cluster-
ing game, where the voting elements in S represent the data objects to be clustered.
By construction, we have that an ESS-cluster of this game, represents a set of vot-
ing elements that are geometrically compatible in the sense that they provide strong
votes on the same object hypothesis and can thus be regarded as an object detection.

We use the Hough forest [26] in order to provide the required data to construct
compatibility matrix and set σh = σϕ = 9. In every Hough tree t ∈ T , we reduce
the set of voting vectors in every leaf node to the median vote vector d. In order
to keep the resulting payoff matrices at reasonable size, we constrain the number
of considered voting elements to patches with foreground probability ≥ 0.5 and to
locations with a gradient magnitude ≥ 25 for pedestrians and ≥ 10 for cars. Addi-
tionally, we consider only pixels lying on a regular lattice with a stride of 2 which
massively reduces the amount of data to be processed. Unless otherwise stated, we
always grow 15 trees with a maximum depth of 12 on 25000 positive and negative
training samples from the referenced data sets. The considered patch size is 16×16
and all training samples are resized to a similar scale.

We apply our method for localization of cars on the UIUC cars dataset [2] and
pedestrians on the extended TUD crossing dataset [10]. In order to demonstrate the
broad applicability, we also show qualitative mouth detection results on images of
the BioID Face Database.6

UIUC Car Dataset. In our first experiment we evaluate the proposed method on
the single scale UIUC car dataset [2]. The training dataset contains 550 positive

6 BioID Technology Research. http://www.bioid.de/

http://www.bioid.de/
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and 450 negative images while the test dataset consists of 170 test images showing
210 cars. Although the silhouettes of the cars are mostly rigid, some cars are par-
tially occluded or have low contrast while being located in cluttered background.
We achieve a score of 98.5% in terms of equal error rate (EER), hence we are on
par with state-of-the-art methods [47, 26] while identifying the set of votes that are
corresponding to the individual objects. In Figure 6 we show some sample detec-
tions and the groups of votes producing the respective detections. Please note how
our method is able to deal with partial occlusions and successfully groups coherent
object votes.

Fig. 6 Car detections and their contributing votes on selected images of UIUC car databset

Extended TUD Crossing Scene. Next, we evaluated on the extended version of the
TUD crossing database [10], showing several strongly occluded pedestrians walk-
ing on a cross-walk. The extended version includes also overlapping pedestrians
where head and at least one leg are visible. This results in a very challenging data
set consisting of 201 images with 1018 bounding boxes. We used the same training
protocol as described in [8]. Since we are not obtaining bounding boxes but rather
the sets of contributing voting elements for each person, we decided to evaluate the
detection results with the strict criterion introduced in [72]. This criterion accepts
detections as correct when the hypothesized center is within 25 pixels of the bound-
ing box centroid on the original scale. In our case, we determined the centroid by
taking the median of the reprojected center votes for all detected voting elements.
For evaluation, we rescaled the images and the acceptance criterion by a factor of
0.55, such that true positives were counted only within a radius of 13.75 pixels.
After constructing the payoff matrices, we found the ESS-clusters. To provide a
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comparison, we handed the same matrices to the widespread normalized cut (nCut)
algorithm [71] and illustrate the results (F-measure per test image) in the top row in
Figure 7. Since nCut requires the number of clusters to be given, we evaluated it by
providing our number of detections as well as the ground truth number of persons.
As can be seen, our method outperforms the nCut algorithm, even when the true
number of objects is provided. We obtain a mean F-measure score of 79.88% com-
pared to 66.56% and 65.23% for nCut provided with ground truth or our detected
number of persons, respectively. Since nCut aims at partitioning the whole input into
clusters, we tried another setup where we give an additional cluster to the ground
truth number and the detected number of persons from our method, respectively.
This should allow nCut for partitioning the non-person objects. Before computing
the F-measure, we removed the detection associated to the lowest eigenvalue. This
resulted in F-measure scores of 61.94% and 58.79%, hence considerably lower than
before and suggesting that nCut does not group noise in an individual cluster but
rather incorporates it in the individual detections. The bottom row in Figure 7 shows
color-coded, qualitative results of individual detections of our method. Please note
the plausible assemblies of votes from strongly overlapping persons to individual
pedestrians, even in the rightmost image, where a person is missed due to assign-
ment of votes to another person in the back. Moreover, it is possible to hypothesize
for the person’s center by detecting coherent votes of the feet alone (green detection
in first image, yellow detection in forth image).

Mouth Localization. With this experiment we demonstrate yet another appli-
cation of our method. The Hough forest software package provides readily trained
trees for mouth detection, presumably those used in [22]. However, we used these
trees for evaluating on some selected images of the BioID Face Database. The ob-
tained solutions (i. e. the support forming the coherent vote sets) live in the standard
simplex and therefore each voting element is associated with a probability, describ-
ing its individual importance for the set. In Figure 8 we illustrate the importance
of the individual votes on some sample images. It can be seen that elements truly
belonging to the mouth regions are associated with higher probabilities.

5.4 Illuminant-Invariant Face Clustering

In [14] it has been shown that images of a Lambertian object illuminated by a
point light source lie in a three-dimensional subspace. According to this result,
if we assume that four images of a face form the columns of a matrix, then
d = s2

4/(s
2
1 + · · ·+ s2

4) provides us with a measure of dissimilarity, si being the ith
singular value of this matrix. Following [4], we used this dissimilarity measure for
clustering faces in high-dimensional space. We tested our algorithm and its com-
petitors over the Yale Face Database B and its extended version [27, 49], which
contained faces of 38 individuals under 64 different illumination conditions. Specif-
ically, we considered subsets of faces from 4 and 5 randomly drawn individuals (10
faces per individual), with and without outlier faces. The case with outliers con-
sisted in 10 additional faces taken from as many random individuals. For each such
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Fig. 7 Top row: Classification results on extended TUD crossing sequence per image us-
ing single scale evaluation. We obtain a mean F-Measure score of 79.88% in comparison to
66.56% and 65.23% for nCut [71] (provided with ground truth # or our detected # of objects,
respectively). Second and third rows: Successive and missing (last image) detections of pro-
posed method. White bounding boxes correspond to ground truth annotations. Best viewed
in color.

combination, we created 10 different subsets (see Figure 9 for an example with 4
individuals and outlier faces). Similarly to the case of line clustering, we run both
CAVERAGE and SNTF with values of K ∈ {K∗ − 1,K∗,K∗ + 1}, where K∗ is the
correct number of individuals.

Table 1 reports the results obtained by the three approaches in terms of classi-
fication error (mean and standard deviation). The results are consistent with those
obtained in the case of line clustering with the exception of SNTF, which performed
worse than the other approaches. On the other hand, our algorithm and (the optimal-
tuned) CAVERAGE performed comparably well within the no-outlier setting, while
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Fig. 8 Selected mouth detections on BioID Face Database. Color-coded voting elements are
associated to their individual importance for the extracted coherent sets.

Fig. 9 Example of dataset for illuminant-invariant face clustering with 4 individuals (first
four rows) and 10 outlier faces (last row).

our approach dramatically outperformed the other algorithms in the cases compris-
ing outliers.

6 Conclusions

In this chapter, we have reviewed our recent game-theoretic formulation of the clus-
tering problem (more details can be found in [65, 66, 45]). Within our framework
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Table 1 Experiments on illuminant-invariant face clustering. We report the average classifi-
cation error and the corresponding standard deviation.

n. of classes: 4 5
n. of outliers: 0 10 0 10

CAVERAGE K=3 0.26±0.09 0.40±0.10 - -
CAVERAGE K=4 0.03±0.04 0.24±0.07 0.21±0.11 0.65±0.12
CAVERAGE K=5 0.13±0.05 0.12±0.05 0.07±0.07 0.41±0.09
CAVERAGE K=6 - - 0.13±0.08 0.37±0.11

SNTF K=3 0.29±0.10 0.39±0.09 - -
SNTF K=4 0.14±0.06 0.26±0.09 0.28±0.11 0.51±0.12
SNTF K=5 0.19±0.09 0.25±0.13 0.11±0.09 0.43±0.11
SNTF K=6 - - 0.14±0.09 0.39±0.13

HoCluGame 0.06±0.03 0.07±0.02 0.06±0.02 0.07±0.03

the problem is viewed as a non-cooperative game, and classical equilibrium notions
from evolutionary game theory turn out to provide a natural formalization of the
notion of a cluster. We showed that the problem of finding these equilibria (clusters)
is equivalent to solving a polynomial optimization problem with linear constraints,
which we solve using (high-order) replicator dynamics based on the Baum-Eagon
inequality.

In a nutshell, our game-theoretic perspective has the following attractive features:

1. it makes no assumption on the underlying (individual) data representation: like,
e.g., spectral clustering, it does not require that the elements to be clustered be
represented as points in vector space;

2. it does not require a priori knowledge on the number of clusters (since it extracts
them sequentially);

3. it leaves clutter elements unassigned (useful, e.g., in figure/ground separation or
one-class clustering problems)

4. it allows extracting overlapping clusters (see, e.g., [74])
5. it can naturally handle high-order similarities.

Notice that, in the pairwise case, the approach allows also using asymmetric affinity
matrices, which might be useful in several circumstances [73]. The experimental
results presented here on various problems show the superiority of our approach
over the state of the art in terms of quality of solution. Further computer vision
applications of our framework can be found, e.g., in [7, 5, 64, 6, 37].

We are currently studying alternatives to the Baum-Eagon dynamics in order to
improve efficiency (e.g., [67]). We finally note that, inspired by our work in [65], in
a recent paper a parametrized version of our framework has been introduced, which
allows one to control the minimum cluster size [51].

The approach outlined above is but one example of using purely game-theoretic
concepts to model generic machine learning problems (see [18] for another such
example in a totally different context), and the potential of game theory to machine
learning is yet to be fully explored. Other areas where game theory could poten-
tially offer a fresh and powerful perspective include, e.g., semi-supervised learning,
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multi-similarity learning, multi-task learning, learning with incomplete information,
learning with context-dependent similarities. The concomitant increasing interest
around the algorithmic aspects of game theory [58] is certainly beneficial in this
respect, as it will allow useful cross-fertilization of ideas.

Acknowledgements. We would like to thank Peter Kontschieder, Michael Donoser
and Horst Bischof for allowing us to use material from our joint paper [45].
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67. Rota Bulò, S., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: A fast
evolutionary approach. Comp. Vis. and Image Understanding 115, 984–995 (2011)

68. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organiza-
tion: eigenvalues and eigenvectors. Comp. Vis. and Image Understanding 71(1), 110–136
(1998)

69. Shashua, A., Ullman, S.: Structural saliency: The detection of globally salient features
using a locally connected network. In: Int. Conf. Comp. Vision (1988)

70. Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-
negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3954, pp. 595–608. Springer, Heidelberg (2006)

71. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern. Anal.
Machine Intell. 22, 888–905 (2000)

72. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: Int.
Conf. Comp. Vision (2005)
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About 3D Faces

Stefano Berretti, Alberto Del Bimbo and Pietro Pala

Abstract. Identity recognition using 3D scans of the face has been recently proposed
as an alternative or complementary solution to conventional 2D face recognition ap-
proaches based on still images or videos. In fact, face representations based on 3D
data are expected to be much more robust to pose changes and illumination vari-
ations than 2D images, thus allowing accurate face recognition also in real-world
applications with unconstrained acquisition. Based on these premises, in this Chap-
ter we will first introduce the general and main methodologies for 3D face data
acquisition and preprocessing, also presenting some 3D benchmark databases and
performance indicators used for evaluation and comparison. Then, we will discuss
some of the results recently achieved on this subject, also presenting current trends
and challenges of the research.

1 Introduction

Human target recognition has been an active research area in recent years, with sev-
eral biometric techniques developed for measuring unique physical and behavioral
characteristics of human subjects for the purpose of recognizing their identity. In
particular, two different modalities are considered to recognize the identity of a per-
son: verification (authentication) and identification (recognition). Verification (“Am
I who I claim I am?”) involves confirming or denying a person’s claimed identity.
Instead, identification (“Who am I?”) requires the system to recognize a person from
a list of users in the template database. Due to this, identification is a more challeng-
ing problem because it involves one-to-many matching compared to the one-to-one
matching required for verification. The idea of automatically recognizing or authen-
ticating users’ identity is based on the possibility to extract unique physical features
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from the anatomical traits that univocally characterize each individual. The features
that are most used for this goal can be summarized as follows:

• Fingerprints and hand geometry – The most common biometric authentication.
Provides high accuracy, it is easy to implement (though contact with the sensor is
required), showing a low cost. Can be also performed via the Internet (BioWeb);

• Voice recognition – Relies on the voice pattern to authenticate individuals. Very
user friendly. However, changing the voice due to sinus congestion, cold or anx-
iety can produce false negatives results;

• Eye scans – Retinal and iris scans are used for authentication. They provide ac-
curacy where physical contact to the scanner is required. The user must focus in
particular point in the scanner and hold this position. Low-intensity light might
affect the results;

• Facial recognition – Looks for the different parts of the face such as the location,
and shape of the eyes and the nose, cheekbones and the side of the mouth;

• Signature dynamics and typing patterns – Looks for patterns in writing pressures
at different points in the signature, and the writing speed;

• Heartbeat biometric authentication – Identifies the individually unique informa-
tion of the subject heartbeats;

• Infrared hand vein pattern biometric – Uses the shape of the finger vein and in-
frared is used to make the skin tissue transparent, and highly visible to recognize
the veins in the finger.

Table 1 Comparison between biometric technologies

Biometrics Univer- Unique- Perma- Collect- Perfor- Accept- Circum-
sality ness nence ability mance ability vention

Face Ha L M H L H L
Fingerprint M H H M H M H
Hand geometry M M M H M M M
Keystroke dynamics L L L M L M M
Hand vein M M M M M M H
Iris H H H M H L H
Retina H H M L H L H
Signature L L L H L H L
Voice M L L M L H L
Facial Thermogram H H L H M H H
DNA H H H L H L L

a

H = High, M = Medium, L = Low

Table 1 summarizes and rates the main characteristics of the biometric features
used for human identity recognition with respect to: universality (how common
is found in each person); uniqueness (how well separates persons); permanence
(how well resists aging); collectability (how easy it is to acquire); performance (the
achievable accuracy); acceptability (the degree of acceptance by the public); cir-
cumvention (the level of difficulty to circumvent).
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Fig. 1 The impact of different biometric techniques (in percentage)

Depending on the particular application, one or a combination of the diverse
biometric modalities listed in Tab. 1 can be more appropriate. This is evidenced
by the different diffusion and impact that different biometric technologies have on
the global market, as reported in Fig. 1 (data are referred to the year 2010). It can
be observed, that fingerprints is the most largely used biometric technique, mainly
because of its very high accuracy and simplicity, with face recognition following in
third position after middleware solutions.

While biometric technologies are being widely used in forensics for criminal
identification, recent advancements in biometric sensors and matching algorithms
have led to the deployment of biometric authentication in a large number of civilian
and government applications, such as physical access control, computer log-in, wel-
fare disbursement, international border crossing and national ID cards, etc. Before
implementing such technologies within any businesses as a method of authentica-
tion it is imperative to identify risks and cost justifications:

• Biological uniqueness attributes can change over time: injures may change fin-
gerprint features, making it hard to match, the same with retinal changes;

• High frequency of false positives and false negatives, incorrect calibration, and
inaccurate initial reading can cause identity problems;

• Spoofing attack by artificial features is a security problem, especially on a single
biometric feature. A combined solution of authentication might be effective;

• Stolen biometrics presents a problem. While stolen smart cards or passwords can
be reissued or changed, biometric data is there to stay forever or to be excluded
from the authentication system, and users no longer can be authenticated by such
technique. Such incidents can raise security risks and cost;

• The deployment of biometric technology involves collecting biometric data
which can be a big task to take for any organization. The cost of IT re-
sources to deploy and maintain biometric readers is a huge challenge within any
organization.
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Among the biometric techniques listed above, identity recognition based on fa-
cial traits is widely used for its social acceptance, applicability in a range of dif-
ferent contexts and the good balance between risks and benefits associated to its
implementation. In fact, face recognition has its main prerogative in not requiring
contact or closeness between the acquisition sensor and the captured subject, thus
permitting its deployment in a variety of different situations which span from indoor
application with constrained pose and illumination conditions (for example in cap-
turing face images used for personal identification documents) to the surveillance of
vast outdoor areas with unconstrained conditions (as can be the case of a sporting
event) using pan-tilt-zoom (PTZ) active cameras. In fact, automatic human target
identification by detecting and matching human faces in 2D still images and videos
has been an active research area in pattern recognition since 90s [67]. Performance
of 2D face matching systems depends on their capability of being insensitive to crit-
ical factors such as facial expressions, makeup, and aging, but mainly hinges upon
extrinsic factors such as illumination differences, camera viewpoint and scene ge-
ometry. The Face Recognition Vendor Test (FRVT, http://face.nist.gov/)
is an independent evaluation contest of face recognition algorithms carried out every
two/three years by the National Institute of Standards and Technologies (NIST). The
FRVT 2002 [50] showed that performance in the presence of illumination variations
decreases up to 46 percent and similar and higher decreases occur for rotations of
the face with respect to the frontal case. Great progress was documented in the 2006
FRVT [51]. The best performer showed a False Rejection Rate (FRR) interquartile
range between 0.6 and 1.5 percent at 0.001 False Acceptance Rate (FAR) under
controlled illumination, and between 10.3 and 13 percent at 0.001 FAR across illu-
mination changes (see Sect. 3.2 for a definition of FRR and FAR). A performance
decrease of about one order of magnitude was observed at lower resolution.

The inherent limitations of 2D face matching have supported the belief that ef-
fective recognition of identity should be obtained through multi-biometric technolo-
gies. In particular, the exploitation of the geometry of the anatomical structure of
the face rather than its appearance with definition of algorithms and systems for 3D
face matching has been a growing field of research in very recent years. Based on
these premises, there are several topics related to 3D faces which are attracting an
increasing interest:

• 3D face acquisition and preprocessing;
• 3D face datasets with challenging scans for recognition and facial expression

recognition;
• In cooperative contexts

– 3D to 3D face recognition on (large) databases;
– 3D to 3D face recognition with aging;
– 3D to 3D face ethnicity / gender recognition;
– 3D to 3D static facial expressions recognition;

• In semi-cooperative or non-cooperative contexts

– 3D to 3D face recognition in presence of pose variations and occlusions;
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– 4D (3D + time) dynamic facial expression recognition;
– 3D low-resolution to 3D high-resolution face recognition;
– 2D to 3D face recognition hybrid / multimodal.

In particular, 3D face acquisition and preprocessing are the first operations that
precede any 3D face analysis task performed in real contexts. The outcomes of these
operations are of paramount importance in that, depending on their quality, the ac-
curacy achievable by any subsequent 3D face analysis can largely vary. Then, a
substantial different exists between approaches that operate in cooperative or non-
cooperative contexts. In the former case, subjects are aware and collaborate to the
acquisition process. For example, it can be the case of an access control performed
via 3D face acquisition and recognition: in this case the user is asked to assume a
predefined position in front of the scanner device and the acquisition environment
is also set up (for example in terms of background and lighting conditions) in a way
that can maximize the quality of the acquisition. Differently, in the latter case, au-
thors cooperate to the acquisition only partially or not at all, in that they can change
their pose or even move. In the most challenging cases, the environment can be
constituted by outdoor areas with changing illumination conditions, varying back-
ground and crowding, thus making extremely challenging the acquisition of face
scans of sufficient quality for recognition purposes. In summary, the conversion of
3D scans to efficient and meaningful descriptors of the face structure is therefore
crucial to performing fast processing and particularly to permitting indexing over
large data sets for identification. On the other hand, the effectiveness of 3D face
recognition is principally concerned with the capability of achieving invariance to
face expressions, missing parts and occlusions. In fact, while 3D face models are
almost insensitive to lighting conditions, they are affected by pose changes and oc-
clusions, and are even more sensitive than 2D images to face expressions.

The above considerations evidence the richness and potential impact of face
recognition applications based on 3D scans. In the remaining of this Chapter, we
will focus on some of the above trends of investigation giving insights on the state
of the art solutions and on the most promising directions of research. In particular,
the content is organized in four Sections as follows:

• In Sect. 2, we provide some basic information about 3D face acquisition tech-
niques, motivating and discussing the issues related to the preprocessing of the
captured 3D face scans;

• The 3D face datasets that are most widely used as reference for comparing dif-
ferent solutions are reported in Sect. 3. In the same Section, we also report the
most commonly used performance indicators for evaluating and comparing 3D
face recognition approaches;

• Recent 3D face recognition techniques are reported in Sect. 4, where we distin-
guish between methods devised for cooperative scenarios, that are mainly tar-
geted to be robust to expression variations, and solutions that are also capable to
address missing parts and occlusions as can occur in non-cooperative scenarios;

• Finally, in Sect. 5 we draw conclusions and indicate some of the current and
future research directions.



192 S. Berretti, A. Del Bimbo, and P. Pala

2 3D Face Acquisition and Preprocessing

In the last few years, technologies for 3D acquisition have rapidly advanced with
many new 3D scanner devices released for the purpose of acquiring 3D scans of
real objects. The specific characteristics of the acquisition device in terms of scans
resolution and capability to acquire static or dynamic scenes directly influence any
application targeting the analysis of 3D faces. We also observe that 3D sensors pro-
duce point clouds as output of the scanning process. Points have xyz coordinates
in the 3D reference system which, typically, has the sensor at the origin, the z axis
directed outward from the sensor, the y axis directed in the vertical direction, and
the x axis obtained by the cross-product between xy. These 3D points can then be
triangulated to produce a mesh, or projected to the plane orthogonal to the z axis so
as to derive a depth map of the scanned scene.

Independently from the specific device used for the acquisition of 3D face scans,
the output of the scanning process is affected by noise and clutter due to spurious
acquisition of parts of the scene that have no interest for face analysis (for example,
hair, shoulder, neck, ear, etc.). In addition, the acquired faces can also show an
arbitrary pose that needs for some normalization procedure.

In the following, we first present some technological solutions for acquiring 3D
scans of the face, then we give a summary of the preprocessing solutions that are
typically applied to acquired 3D face scans before any subsequent analysis.

2.1 Laser Scanners

Laser scanners are capable to acquire high-resolution 3D models by sweeping a
plane of laser light across the field of view. The movement of this light stripe is ob-
tained by rotating a mirror which is controlled with high precision by a galvanome-
ter. This laser light is reflected from the face surface so that it can be observed by a
single frame captured by the CCD camera. This idea is summarized in Fig. 2. Full
3D face models can be constructed by merging multiple scans of the same subject.

Fig. 2 Basic idea of the
laser scanner acquisition. A
light stripe (the red line in
the figure) is swept across
the field of view. The laser
light is reflected from the
face surface and is observed
by the CCD camera
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As an example, the main characteristics of the Konica Minolta 3D Vivid 910 are
listed below [35]:

• The capture speed varies between 2.5s (at full resolution) to 0.3s in fast mode
(lower resolution);

• The device measures a map of 640× 480 individual points per scan thus pro-
ducing a lattice of about 300,000 vertices (76,000 in fast mode). A color image
is captured with a very short time lapse by the same CCD (at the resolution of
640× 480× 24);

• The geometry accuracy captures the spatial location of 3D points with high pre-
cision (x±0.22mm, y±0.16mm, z±0.10mm). However, the device is sensible to
regions that do not reflect the laser light (black regions like the eyebrows);

• The operating specification indicates best performance when the scanned surface
is at a distance in a range from 0.6 to 2.5m (optimal depth of field is from 0.6 to
1.2m).

2.2 Structured Light Scanning

Structured light scanners project a spatio-temporal pattern of light (which includes
points or lines) on a surface. The projected pattern is structured in a way such that
two cameras viewing the patterns from a slightly different position can triangulate
the positions of the same points of the pattern in the two images to extract 3D scene
properties. This constitutes a very popular method in computer vision and industrial
applications since it also avoids problems of 3D estimation in scenes with complex
texture. The technology for structured light scanners has rapidly evolved resulting
into devices for static acquisition in high-resolution, and devices capable to perform
dynamic real-time acquisition in 3D, though at a lower-resolution. In the following,
we illustrate the main characteristics of two of such devices.

2.2.1 Static Acquisition

The 3dMD structured light scanner [1], is a high resolution scanner specifically de-
vised for 3D face acquisition in tasks where very high accuracy and short acquisition
time are required, such as in medical, dental, biometrics, engineering, and research
applications. The main characteristics of the 3dMD scanner are as follows:

• The coverage angle of the device for face capture is of 180-degree (ear-to-ear);
• The capture speed is of about 1.5ms at the highest resolution;
• The geometry generated by the device is constituted by one continuous point

cloud produced from the two stereo camera viewpoints, which eliminates the
data errors associated with merging/stitching data sets together;

• The geometry accuracy is lower than 0.2mm RMS or better;
• The produced face scans have a 3D mesh with about 50,000 vertices and 100,000

facets, and a texture stereo image with a resolution of 3341× 2027 pixels;
• The operating specifications indicate best performance when the scanned surface

is at a distance in a range between 0.6 to 1.2m.
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The acquisition process of the 3dMD structured light scanner is summarized in
Fig. 3. In (a) and (b) the images acquired by the left / right infrared and RGB cameras
are shown, respectively. The spatial pattern projected by the structured light can be
observed in the infrared images. In (c) the reconstructed 3D face model obtained
from the images in (a) and (b) is reported. A detail of the 3D mesh is shown in (d).

(a) (c)

(b) (d)

Fig. 3 3dMD acquisition: (a)-(b) Face images with the projected structured light pattern
acquired by the infrared camera and by the RGB camera, left and right respectively; (c) 3D
reconstructed face model; (d) Particular of the 3D mesh

2.2.2 Dynamic Acquisition

The MS Kinect [34] is a dynamic structured light scanner which is capable to ac-
quire a stream (video) of depth images thus opening the way to dynamic analysis of
temporal sequences in 3D. This input device is commercialized by Microsoft for the
Xbox 360 video game console and developed by PrimeSense with both proprietary
and open source drivers. In particular, the Kinect depth sensor is a system-on-chip
that provides real-time depth images of a scene through a calibrated stereo pair ex-
ploiting a near-infrared light emitter and near-infrared light CMOS. With respect to
other 3D scanning devices, Kinect is characterized by a low cost and simplicity of
use which make its potential market of increasing importance, though its resolution
is still lower than that exhibited by static scanners or by much costly dynamic depth
scanners. The acquisition specification of the Kinect are listed below:

• The nominal geometry accuracy is of 1cm depth at 2m of distance;
• Depth images at a resolution of 640× 480 and 16-bits are captured at a speed of

around 25-30 frames per second (fps);
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• RGB color images are synchronized with depth images and captured at a resolu-
tion of 640× 480 and 24-bit (RGB at 1280× 960 is also possible, but at 12fps);

• The operative range is between 0.8 to 4m (see Fig. 4(a)).

The Kinect for Windows sensor expands the possibilities with the so called “Near
Mode,” which enables the depth camera to see objects as close as 40cm in front of
the sensor. Fig. 4(a) summarizes the operative range of the device both for the de-
fault and the near mode. This increases the possibility to use the dynamic scanners
for 3D face analysis in real-time. This is shown in Fig. 4(b), where the low resolution
face scan of an individual depth frame of the dynamic stream acquired by the sensor
is reported. As can be observed, the resolution of these scans is still too low for per-
mitting accurate identity recognition and can be more useful for macro-expressions
recognition. However, methods that permit the increment of the resolution by fusing
together depth information from consecutive frames can open the way also to face
recognition applications (see [11] for further reading on this point).

(a) (b)

Fig. 4 Kinect sensor: (a) Operative range when the sensor is used in the default and near
mode, respectively; (b) The 3D face scan obtained by rendering a depth frame in a dynamic
sequence

2.3 Preprocessing

Different sources of noise affect acquired 3D face scans, such as holes, spikes, clut-
ter, etc. In particular, some sources of noise, like holes and spikes are more accen-
tuated in acquisitions performed with laser scanners due to the reflective nature of
their acquisition process which is sensible to dark regions. Instead, clutter and un-
wanted parts are common to any acquisition technique. In general, preprocessing
is required to remove holes, spikes, and to fill missing parts. Then, detection of
some face landmarks is usually required in order to separate the face region from
the unwanted parts of the acquired scene. Finally, for many techniques, pose nor-
malization is also required. A typical preprocessing chain is summarized in Fig. 5.
In the following, some guidelines to clean the scans from noise effect, and to detect
landmarks and perform pose normalization are discussed.
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Fig. 5 Typical preprocessing operations applied to the acquired 3D data

2.3.1 Noise Removal

The noise removal step is discussed in several works on 3D face recognition as
a preliminary and necessary step. A complete processing chain with solutions for
holes filling and spike removal is presented in [41]. In this approach, holes filling
is performed by using cubic interpolation of horizontal slices of the face; Spike
removal is obtained by median filtering, where the 3D coordinates of each point
are replaced with the median of the 3D coordinates of neighboring points. In many
approaches, a final step of smoothing step is performed using Laplacian filtering or
the convolution with a discrete Gaussian kernel [61].

(a) (b)

Fig. 6 Example of noisy acquisition: (a) Missing parts in the eyebrows region; (b) Some
spikes are evidenced in the eyes region; A spike in the nose region can determine a wrong
localization of the nose tip

As an example, Fig. 6(a) shows the effect of holes and missing parts due to dark
regions in a 3D face scan acquired with a laser scanner; In Fig. 6(b) the effect of
spikes are evidenced for the same scan shown in (a). It can be noticed, as spikes are
concentrated in regions of the face, like the eyes (due to the eyelid), or the region jut
under the nose. As shown in (b), the effect of spikes can alter the detection of facial
landmarks (in the example, the nose tip is wrongly detected on a spike).

As discussed in the introduction of Sect. 2, the output of the scanning devices
is typically in the form of a point cloud where points have no predefined distances
among them. In some cases, it is useful to resample the scanned points in order to
define a uniform square grid [41]. This can be easily performed by looking to the
depth value of each point (i.e., the z-coordinate) as the value of a function in the
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xy variable (that is, z = f (x,y)), and interpolating the values of this function in the
points of a regular grid in the xy plane.

2.3.2 Landmarks Detection

Anthropometric studies have given evidence that Euclidean and geodesic distances
computed between 47 landmarks (fiducial points) of the face suffice to discriminate
between different subjects [28]. However, only few fiducial points can be reliably
detected automatically: g-glabella, n-nasion, en-endocanthion, ex-exocanthion, or-
orbital, prn-pronasal, sn-subnasal, al-alare, ch-cheilion, pg-pogonion, gn-gnathion,
go-gonion, me-menton.

Fig. 7 Some of the land-
marks that most characterize
the human face. Euclidean
or geodesic distances com-
puted between pairs of such
landmarks can be used to
discriminate the identify of
different subjects

The nose tip (prn-pronasal in Fig. 7) is considered as the most easily detectable
and stable facial landmark. The majority of 3D face recognition approach require at
least this point in order to perform face cropping aiming to restrict the 3D scan to the
face area or to perform some form of normalization, alignment or preprocessing of
3D faces. For example, in [41] a coarse to fine geometric approach is proposed for
nose tip detection that iteratively performs horizontal slicing of the face and detects
the triangle corresponding to the nose section. The same coarse to fine strategy is
used to identify the inflection points at the base of the nose (alare points): The
two intersection points of the circle centered on the horizontal slice of the face that
includes the nose tip are used to approximate the position of the alare points. In [29],
10 facial landmarks are automatically detected with sufficient accuracy. Given a
depth image in the form (x,y,z(x,y)), the Gaussian surface curvature K, the mean
surface curvature H, and the two principal curvatures k1, and k2 are computed from
the first and second partial derivatives:

K =
zxxzyy − z2

xy

1+ z2
x + z2

y
, H =

zxx(1+ z2
y)+ zyy(1+ z2

x)− 2zxzyzxy

(1+ z2
x + z2

y)
3/2

k1,k2 = H ±
√

H2 −K . (1)

The signs of the Gaussian and the mean curvature values help to identify differ-
ently shaped regions of a surface. The regions with K > 0 are elliptic, those with
K < 0 are hyperbolic, and those with K = 0 are either planar or cylindrical. Re-
gions of the surface with H > 0 are concave, while those with H < 0 are convex.
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The region surrounding the tip of the nose has the highest elliptic Gaussian curva-
ture K > 0, and the highest convex elliptic Gaussian curvature H < 0. For detecting
the nose tip the algorithm searches for the point with the maximum elliptic Gaus-
sian curvature within a 96mm× 96mm central region of each face, which surrounds
the initial estimate of the nose tip (obtained using ICP alignment with a template or
maximum z value). More elaborated operations permit the detection of the follow-
ing points (see also Fig. 7 for the name of facial landmarks): al-alare (i.e., corners
of the nose), ch-cheilion (i.e., mouth corners), en-endocanthion and ex-exocanthion
(i.e., inner and outer eyes corners), and the n-nasion (i.e., the point at the base of the
nose and between the two eyes).

In [5], an automatic approach is presented which permits automatic detection
of 9 facial landmarks with sufficient accuracy. Using depth images of the face, the
nose tip and the alare points are identified with an approach similar to that described
in [29]. Following the anthropometric proportions of the face proposed in [28], these
points are used to define the regions of the face that include the inner and outer eyes
corners and the mouth corners. In practice, a separate region is defined for each
landmark, and each of these regions is used as search windows for en, ex and ch
points, respectively. In particular, in each search window the Scale Invariant Feature
Transform (SIFT) detector algorithm [38] is run, and the SIFT point detected at the
highest scale is retained as landmark of the search window. An example is shown in
Fig. 8 for the right mouth. The leftmost image shows the 3D surface of the search
window for the right mouth corner (ch). The rightmost image shows, with red cir-
cles, the SIFT keypoints detected on the depth map of the search window. The ch
landmark corresponds to the keypoint detected at the highest scale (i.e., the keypoint
represented in the Figure with the longest radial segment colored in blue).

Fig. 8 The 3D search win-
dow used for the detection
of the right ch, and the SIFT
keypoints detected on the
depth map of the search
window are shown on the
left and right, respectively.
The ch landmark is the key-
points detected at the highest
scale (represented with the
longest radial segment in
blue)

2.3.3 Pose Normalization

Pose normalization is the most difficult and time consuming preprocessing operation.
It is needed in the case descriptors extracted from 3D face scans and used for face
analysis are not rotation invariant. The problem is stated as follows: Given the coor-
dinates of a set of points measured in two Cartesian coordinate systems (left, right)
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find the rigid transformation T, between the two systems so that for corresponding
points Pr and Pl we have Pr = T (Pl). The cardinality of both data sets is usually not
equal.

Since pairing between points is unknown, iterative solutions are used. These solu-
tions require initialization and only guarantee convergence to local optimum. Initial-
ization is often performed by using facial landmarks. Iterations alternate between a
matching step and a transformation computation step based on an analytic solution.
A solution to this problem is given by the Iterative Closest Point (ICP) algorithm
that was independently developed by several authors [13, 20, 66]. In each iteration
step, ICP selects the closest points as correspondences and calculates the rotation
and translation (R, t) to find alignment by minimizing the equation:

E(R, t) =
Nm

∑
i=1

Nd

∑
j=1

wi j· ‖ mi −R ·d j + t ‖ , (2)

where M is the model set {mi}Nm
i=1, and D is the data set {d j}Nd

j=1, with Nm and Nd

points, respectively; wi j coefficients permit different weights for each points pair.
The above equation converges if the starting positions of the two sets of points are
close enough; differently it can converge to a minima. Due to this, in some cases the
scans undergo to a preliminary rough alignment based on the correspondence of a
few landmarks of the face [12]. In summary, the ICP algorithm is as follows:

Initialization:

1. Set cumulative transformation, and apply to points.
2. Pair corresponding points and compute similarity (e.g., root mean square dis-

tance).

Iterate:

1. Compute incremental transformation using the current correspondences (i.e.,
analytic least squares solution).

2. Update cumulative transformation, and apply to points.
3. Pair corresponding points and compute similarity.
4. If improvement in similarity is less than threshold ε or number of iterations

has reached the maximum number L terminate.

The worst case complexity of the algorithm is O(NmNd) for two data sets of size
Nm and Nd , respectively. The complexity can be reduced to O(Nm logNd) using a
kD-tree to speed up the search of nearest neighbor.

3 3D Face Datasets and Performance Evaluation

The recent achievements of 3D face analysis techniques are also due to the avail-
ability of large and challenging 3D face datasets with a large variability in terms of
gender, ethnicity and age of the acquired subjects, acquisition devices, conditions
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of acquisition (including subjects with varying expressions, missing parts and oc-
clusions). These challenging datasets have permitted the development of advanced
solutions an their comparison on common benchmark datasets. More recently, a
growing interest is captured also by dynamic 3D acquisition (3D plus time, or 4D),
which allows temporal sequences of 3D scans to be acquired (the MS Kinect is an
example of such devices). In the following, we restrict our discussion to static 3D
face datasets that are used for the purpose of face recognition or facial expression
recognition. In the last part of the Section, we present the performance indicators
that are more commonly used in order to present and compare the verification and
identification accuracy of 3D face recognition approaches.

3.1 3D Face Datasets

Several 3D face databases have been made publicly available for testing algo-
rithms that use 3D data to perform face modeling, analysis and recognition. These
databases have progressively included face scans of subjects that exhibit non-neutral
facial expressions and non-frontal poses. Some of these datasets have been origi-
nally promoted within face recognition competitions. In particular, the Face Recog-
nition Grand Challenge (FRGC) initiative directed by NIST provided common data
sets to be used as a reference for training (FRGC v1.0) and evaluation (FRGC v2.0);
a 3D face matching contest was launched in 2005, with the final results published in
2006 [49]. The SHape REtrieval Contest (SHREC) initiative developed in the frame-
work of the Aim@Shape project at the European Commission organized a special
track for 3D face retrieval in 2008, providing a data set for evaluation (SHREC08
data set) that is smaller, but includes stronger face expressions; final results were
published in late March 2008 [24]. A second SHREC initiative for evaluating 3D
face recognition approaches in the presence of 3D scans with missing parts was
launched in 2011, with the results available in March 2011 [59]. Table 2, reports
the more general datasets that are currently available for the task of 3D face recog-
nition. For each dataset, information about the sensor used during acquisition, the
total number of subjects and acquired scans are reported. Notes about the presence
of scans with missing parts or occlusions and the availability of 2D texture images
associated to the 3D data are also given.

Table 2 Publicly available datasets for 3D face recognition

Database Sensor n◦ subjects n◦ scans Missing data Occlusions Texture

Bosphorus structured light 105 4,666 Yes Yes Yes
BU-3D structured light 100 2,500 No No Yes
FRGC v1.0 laser 275 943 No No Yes
FRGC v2.0 laser 466 4,007 Yes No Yes
FU structured light 53 212 Yes No Yes
Gavab laser 61 549 Yes No No
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Table 3 Main characteristics of the most used 3D face databases that include non-neutral
facial acquisitions

Dataset Expressions Pose

BU-3DFE anger, disgust, fear, happiness, sadness, surprise frontal
Bosphorus action units, anger, disgust, fear, happiness, sad-

ness, surprise
13 yaw and pitch rota-
tions, hand, eyeglasses

FRGC v2.0 not categorized: disgust, happiness, sadness, sur-
prise, puffy

small changes

Gavab smile, laugh, random up, down, left, right

Table 3 summarizes the characteristics of some of the most known and used
3D face databases that include subjects with non-neutral facial expressions. These
datasets can be used both to test the robustness of face recognition algorithms with
respect to the presence of expressions and to investigate solutions for classifying
facial expressions from 3D face scans. In the following sections, some more details
on these datasets are given.

3.1.1 The Face Recognition Grand Challenge Database (FRGC)

The FRGC data set [48] includes 3D face scans partitioned into three subsets,
namely, the Spring2003 subset, also known as FRGC v1.0 (943 scans of 275 in-
dividuals), and the Fall2003 and Spring2004 subsets (4,007 scans of 466 subjects
in total) that are commonly identified as the FRGC v2.0 dataset. Face scans are
acquired with a Konica-Minolta Vivid 910 laser scanner and given as matrices of
3D points of size 480× 640, with a binary mask indicating the valid points of the
face. Due to different distances of the subjects from the sensor during acquisition,
the actual number of points representing a face can vary. Individuals have been ac-
quired with frontal view from the shoulder level, with very small pose variations.
Considering the FRGC v2.0, about 59% of the faces have neutral expression, and
the others show moderate non-neutral expressions of disgust, happiness, sadness,
and surprise. Some scans include small occlusions due to hair. FRGC guidelines
suggest using the Spring2003 for training and the remaining two sets for valida-
tion. This dataset has been extended into the University of Notre Dame biometric
database (UND) [58] with the aim to include scans of side views of the subjects
(from 45 to about 90 degrees) that can be also used for identity recognition based
on the ear shape.

3.1.2 The Bosphorus 3D Face Database

The Bosphorus database has been collected at the Bovgazicci University and made
available during 2008 [55]. It consists of the 3D facial scans and images of 105 sub-
jects acquired under different expressions and various poses and occlusion condi-
tions. Occlusions are given by hair, eyeglasses or predefined hand gestures covering
one eye or the mouth. Many of the male subjects have also beard and moustache.
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The majority of the subjects are Caucasian aged between 25 and 35, with a total of
60 males and 45 females. The database includes a total of 4,666 face scans, with the
subjects categorized into two different classes:

• 34 subjects with up to 31 scans per subject (including 10 expressions, 13 poses,
four occlusions and four neutral faces);

• 71 subjects with up to 54 different face scans. Each scan is intended to cover one
pose and/or one expression type, and most of the subjects have only one neutral
face, though some of them have two. Totally, there are 34 expressions, 13 poses,
four occlusions and one or two neutral faces per subject. In this set, 29 subjects
are professional actors/actresses, which provide more realistic and pronounced
expressions.

Each scan has been also manually labeled with 24 facial landmarks such as nose
tip, inner eye corners, etc., provided that they are visible in the given scan.

3.1.3 The Gavab Database

The Gavab database [43] is characterized by facial scans with very large pose and
expression variations and noisy acquisition1. It includes 3D face scans of 61 adult
Caucasian individuals (45 males and 16 females). For each individual, nine scans
are taken that differ in the acquisition viewpoint and facial expressions, resulting in
a total of 549 facial scans. In particular, for each individual, there are two frontal
face scans with neutral expression, two face scans where the subject is acquired
with a rotated posture of the face (around ±35◦ looking up or looking down) and
neutral facial expression, and three frontal scans in which the person laughs, smiles,
or shows a random expression. Finally, there are also a right side and a left side scans
nominally acquired with a rotation of ±90◦ left and right. This results in about 67%
of the scans having a neutral expression, but just 22% having neutral expression and
frontal pose. Modified scans of this database have been used as data for the SHREC
2008 Shape Retrieval Contest of 3D Face Scans [24], and to test face recognition
accuracy in several other papers as well as to test recognition performance in the
case parts of the face scans are missing [12, 25, 30].

3.1.4 The Binghamton 3D Facial Expression Database (BU-3DFE)

The BU-3DFE database has been recently constructed at the Binghamton Univer-
sity [65]. It was designed to provide 3D facial scans of a population of different
subjects each showing a set of prototypical emotional states at various levels of
intensities. There are a total of 100 subjects in the database, divided between female
(56 subjects) and male (44 subjects). The subjects are well distributed across
different ethnic groups or racial ancestries, including White, Black, East-Asian,

1 The database is publicly available at the following address:
http://gavab.escet.urjc.es/index en.html
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Middle-East Asian, Latino-Americans, and others. During the acquisition, each sub-
ject was asked to perform the six basic facial expressions defined by Ekman, namely,
anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA), and surprise
(SU), plus the neutral (NE) one. Each facial expression has four levels of intensity,
respectively, low, middle, high and highest, except the neutral facial expression.
Thus, there are 25 3D facial expression scans for each subject, resulting in 2500
3D facial expression scans in the database. Each of the 3D facial expression scan
is also associated with a raw 3D face mesh, a cropped 3D face mesh, a set of 83
manually annotated facial landmarks, and a facial pose vector. These data give a
complete 3D description of a face under a specific facial expression. The landmarks
are distributed in correspondence to the most distinguishing traits of the face, that
is, eyes, eyebrows, nose and mouth (plus some landmarks on the face boundary).
Finally, since these 3D data are built from a stereo-camera system that reconstructs
the 3D shape of the face from two different left/right views, two 2D color images
of the left/right view of the face are also acquired and can be used for multi-modal
2D/3D face analysis.

3.1.5 The Florence 2D/3D Face Dataset

The 2D/3D Florence face dataset (UF-2D/3D) has been constructed at the Media In-
tegration and Communication Center of the University of Florence [4]2. The dataset
consists of high-resolution 3D scans of human faces along with several video se-
quences of varying resolution and zoom level. Each subject is recorded under vari-
ous scenarios, settings and conditions. This dataset is being constructed specifically
to support research on techniques that bridge the gap between 2D, appearance-based
recognition techniques, and fully 3D approaches. It is designed to simulate, in a con-
trolled fashion, realistic surveillance conditions and to test the efficacy of exploiting
3D models in real scenarios. The 3D part of the dataset (UF-3D), currently includes
53 subjects (14 females and 39 males, numbered from subject001 to subject053) of
Caucasian ethnicity. The age of the subjects ranges from 20 to 60, with the majority
of the subjects (28) being student at the School of Engineering of the University
of Florence, aged between 20-30 years. The 3D scans of each subject are acquired
in the same session and include two frontal scans with neutral expression (named
as frontal1 and frontal2), and two scans where the subject is rotated of 90◦ on the
left and right side (named left and right, respectively). In all the acquisitions, the
subjects are required to assume a neutral expression, though some scans exhibit
moderate, involuntary, facial expressions. The 3dMD face system [1] scanner has
been used in the acquisition, which produces one continuous point cloud from two
stereo cameras with a capture speed of about 1.5ms at the highest resolution, and a
geometry accuracy lower than 0.2mm RMS.

2 The database is publicly available and can be accessed upon request from the following
address: http://www.micc.unifi.it/masi/research/ffd/
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3.2 Performance Indicators

Different performance indicators are used to evaluate the performance of face recog-
nition methods in verification or identification scenarios.

In general, face verification is solved by measuring the similarity between a probe
scan and a reference scan and comparing it against a similarity threshold: values of
similarity that are greater than the threshold correspond to two matching scans and
permit subjects authentication; conversely, similarity values lower than the thresh-
old are interpreted as corresponding to non-matching scans, thus denying subjects
authentication. Performance indicators for such face verification methods measure
the capability to correctly authenticate qualified subjects, while rejecting fraudulent
attempts of authentications. To this end, the two following quantities are computed:

• False Rejection Rate (FRR) – Average of: Number of rejected verification at-
tempts for qualified person / Number of all verification attempts for qualified
person;

• False Acceptance Rate (FAR) – Average of: Number of successful independent
fraudulent attempts against a person / Number of all independent fraudulent at-
tempts against a person.

Both these quantities vary in the range [0,1]. As shown in Fig. 9(a), FRR and
FAR are strictly correlated. As the similarity threshold increases FRR grows while
FAR lowers, so that by adjusting the FAR/FRR ratio the sensitivity of the system can
be adapted. An high similarity threshold defines a conservative approach to recog-
nition; as the threshold is lower a loose verification is obtained. Equal Error Rate
(EER) represents the system intrinsic error at which FRR = FAR. In the practice
of face verification evaluation, the Receiver Operating Characteristic (ROC) curve
(also referred to as Detection Error Tradeoff curve) is used to represent the cor-
relation between FRR and FAR at a given threshold. The Operating Point (OP) is
defined in terms of FRR achieved for a fixed FAR. As an example, a ROC curve is
reported in Fig. 9(b). In many studies of face recognition, the True Acceptance Rate
(TAR), computed as 1 − FRR, is used instead of the FRR, and the TAR at 0.001
FAR is reported as synthetic performance indicator.

Face identification is performed by measuring the similarity between a probe
scan and a set of scans included in the gallery: The identity of the probe scan is
associated to the subject whose gallery scans has the greatest similarity with the
probe. In general, it happens that the gallery scan whose identity corresponds to the
probe scan has a similarity score that ranks the scan in a position k of the overall list
of sorted similarity scores (with k varying from 1 to N, being N the number of scans
in the gallery). According to this, the performance of face identification approaches
are typically summarized by the Cumulative Matching Characteristic (CMC) curve.
The curve plots the rate of correct recognition (i.e., probability of identification) at
different ranks. The curve is cumulative, so it results monotonically not decreasing
and it reaches 1 at one of the rank k (at the highest rank in the worst case).
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(a) (b)

Fig. 9 Performance indicators: (a) Example of FRR and FAR at varying threshold; (b) Ex-
ample of ROC curve

Fig. 10 Performance in-
dicators: Example of CMC
curve. The probability of
recognition (i.e., recognition
rate) is reported on the ver-
tical axis; the rank k on the
horizontal axis

4 3D Face Recognition

So far, the most promising use of 3D face scans is in performing facial recognition.
In doing so, a preliminary distinction of existing solutions is between methods that
are devised to operate in cooperative scenarios, and methods that can also provide
accurate recognition in semi-cooperative or fully non-cooperative scenarios. In the
following, we review some of the main approaches in both these categories.

4.1 Cooperative 3D Face Recognition

3D face recognition has first been introduced in cooperative scenarios, where both
gallery scans (i.e., scans to be included in a reference set and acquired from subjects
whose identity is known) and probe scans (i.e., scans to be compared with the gallery
set in order to perform recognition, and acquired from subjects whose identity is
unknown) are acquired using a cooperative protocol. This defines the acquisition
conditions giving some constraints (e.g., subjects stay fix in front of the scan, show-
ing a neutral facial expression and without wearing any cap, scarf or glasses) and
corresponds to the cases that are encountered in face verification contexts (i.e., sub-
jects cooperate to be recognized so as to pass some security control or gain access
to some service). In this scenario, facial scans exhibit a frontal pose, with very small
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occlusions or missing parts, with facial expressions representing the main source of
variability in the acquired scans. And though facial expressions shown by the sub-
jects are typically small or moderate, they demand for methods capable to perform
accurate recognition by smoothing the effects due to facial variations induced by
expression changes. A list of the solutions proposed can be derived from the survey
of Bowyer et al. [15], and the literature reviews of [8, 33, 41]. In the following, we
give some more details on some methods.

4.1.1 Existing Approaches

According to an agreed classification [67], the approaches for 3D face recognition
can be distinguished as: holistic (or global), which performs face matching based on
the whole face; region-based (or local), that partition the face surface into regions
and extract appropriate descriptors for each of them; hybrid and multi-modal, that
combine different approaches such as holistic and region-based, or perform both 2D
and 3D matching separately and fuse the two matchings together to achieve bet-
ter recognition accuracy. Generally speaking, holistic methods are sensitive to face
alignment. Moreover, since they take global face measures, they tend to treat face
differences that are due to different facial traits and non-neutral expressions in the
same way. The performance with these methods can also be very much impaired
if the 3D face includes elements like hair, ears, and neck. Region-based approaches
promise much higher effectiveness in that, at least in principle, they can apply differ-
ent processing to distinct face regions and therefore filter out those regions that are
mostly affected by expression changes or spurious elements. Nevertheless, they are
also sensitive to face alignment and useful face regions are hard to detect automat-
ically. Their performance depends on local features and differences in resolution.
Hybrid and multi-modal approaches provide the highest accuracy, but at the expense
of a greater architectural complexity. They are especially suited for verification, less
for identification in that do not permit easy indexing.

Holistic Methods

Among the holistic methods, several authors have attempted to find the main distin-
guishing elements of the faces from the direct analysis of face depth images, after
realignment to a reference face model. Principal Component Analysis (PCA) was
applied to depth images and to both depth and color image channels. Conformal
transformations have been used in [44, 60] among others. Since conformal mapping
is a one-to-one angle preserving transformation, 3D surface matching is reduced to
a simpler 2D image-matching problem. In particular, in [44], a region of interest
of the face, defined as the intersection between a sphere centered on the nose tip
and the 3D face, was mapped onto an isomorphic planar circle and eigenface anal-
ysis was used to compare faces. With this method, the authors reported 95 percent
rank-1 recognition rate on FRGC v1.0 data set, with manual alignment of 3D face
models. In [53], 3D faces were instead represented through iso-depth lines projected
onto the base plane. Then, shapes of the iso-depth lines were compared, exploiting
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differential geometry for 2D planar-closed curves. Since face expressions may in-
duce strong alterations of the iso-depth lines, this approach is likely to be very sen-
sitive to expression changes. A similar approach was followed in [56]. There, the
authors used sample points taken at the intersection between contour curves and
radial profiles originated from the nose tip and calculated the Euclidean distances
between corresponding points of different faces.

As a different approach, some authors have proposed representing 3D faces as
points in low-dimensional feature spaces. The 3D coordinates of face points were
therefore encoded through transformations, and dimensionality reduction was ap-
plied in the feature space. In [60], 3D spherical Gabor filters were used to extract a
view invariant representation of 3D facial models. The authors used a modified ver-
sion of the Hausdorff distance in order to improve the robustness of matching in the
presence of self-occlusions. However, tests were performed on a too small test set to
assess the effectiveness of the approach. In [16], face models were represented with
the geometric moments up to the fifth order computed for the 3D face canonical
surface. Canonical surfaces were obtained from face surfaces by warping accord-
ing to a topology preserving transformation so that the Euclidean distance between
two canonical surface points is equivalent to the geodesic distance between the cor-
responding points of the face surface. However, while the effect of expressions is
attenuated, a similar attenuation also occurs for discriminating features such as eye
sockets and nose. Some limitations of the method were indeed removed in [17].
Other authors have proposed exploiting the full 3D geometrical information of the
face model and performed matching according to pointwise registration, avoiding
calculation of features and the consequent loss of information. In [39], rules of
transformation from neutral to generic expressions were learned from a training
set so as to create synthetic 3D models for any expression. The ICP algorithm was
then used to align the synthesized models to an input model, handling adaptation to
both pose and expression simultaneously. Elastic registration with morphable mod-
els was used in [3, 33, 45]. In particular, in [33] and [45], the points of an annotated
3D face reference model were shifted according to elastic constraints so as to match
the corresponding points of 3D target models in a gallery. Similar morphing was
performed for each query face. Then, face matching was performed by comparing
the wavelet coefficients of the deformation images obtained from morphing. In [3],
a 3D morphable model was learned from face models with neutral expression and
adapted to gallery and query faces using a variant of the nonrigid ICP algorithm.
Distances between the deformation coefficients were used to assess matching. Al-
though registration-based methods support accurate face matching, they perform
matching iteratively and are extremely expensive from the computational viewpoint.
Attempts to reduce the computational complexity have been proposed in [39, 64].

Region-Based Methods

Holistic approaches reveal some limitations in performing accurate recognition in
the presence of facial expressions. Local approaches can be distinguished by the
way in which face regions are detected and segmented. These methods also try to
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smooth the effects of facial expressions by processing differently the regions of the
face that are most affected by expression changes. In [23], Log-Gabor templates
were used to break a single-range image into a predefined number of overlapping
spatial regions at three different frequency scales. These observations were each
classified individually and then combined at the score level. PCA was applied to
the responses of the Log-Gabor filters in each subregion used to reduce the dimen-
sionality. Instead, regions in the proximity of face landmarks were used in [32].
Features were extracted at the landmark regions and face matching was performed
according to Hierarchical Graph Matching, with graph nodes positioned at the land-
marks. In [63], multiple face regions are originated by intersecting 3D face scans
with spheres of increasing radius centered on the middle point between the nose
tip and the nasion. In [19], multiple overlapping regions around the nose are seg-
mented and the scores of ICP matching on these regions are combined together.
This idea is extended in [26] by using a set of 38 regions that densely cover the face
and selecting the best-performing subset of 28 regions to perform matching using
the ICP algorithm. A further improvement of the approach is proposed in [27] by
considering a multi-instance enrollment of gallery scans with multiple expressions
(experiments are provided using up to five scans per individual). Accordingly, up to
140 ICP region matches are required to compute the similarity between a probe scan
and the scans representing an enrolled individual. Robustness to non-neutral facial
expressions is improved at the cost of a greater computational complexity (match-
ing two scans is reported to take more than 2 seconds in [26] and five times longer
in [27]), thus making these approaches more suited to face verification than identi-
fication. The idea of using facial regions of the face is also exploited in [52], where
the circular and elliptical areas around the nose were used together with forehead
and the entire face region for authentication. The Surface Interpenetration Measure
(SIM) were used for the matching. Taking advantage of invariant face regions, a
Simulated Annealing approach was used to handle expressions. Other methods have
performed segmentation of the 3D face into distinct regions according to the values
of the curvature function calculated from the face surface [36]. A crucial limitation
of curvature-based approaches is the extreme sensibility of curvature values to per-
turbations of surface points that may occur due to noise, fallacious acquisition, or
changes of expressions. In most of the cases, face comparison has been restricted
to the comparison of only a few regions, where the effects of expressions are small
or null. In particular, in [36] Extended Gaussian Images – that provide a one-to-one
mapping between curvature normals and the unit sphere – were created for each
convex region and compared by graph matching with relational constraints. The ap-
proach in [61], is one of the best performing solutions on the FRGC v2.0. It used
a Signed Shape Difference Map (SSDM) computed between two aligned 3D faces
as an intermediate representation for the shape comparison. Based on the SSDMs,
three kinds of features were used to encode both the local similarity and the change
characteristics between facial shapes, namely, Haar-like, Gabor, and Local Binary
Pattern (LBP). The most discriminative local features were selected optimally by
boosting, and trained as weak classifiers for assembling three collective strong
classifiers.



About 3D Faces 209

Hybrid and Multimodal Methods

These approaches have shown the best recognition results so far, trying to com-
bine multiple processing paths into a coherent architecture, so as to solve critical
drawbacks of individual methods. Among the multimodal methods, in [18], the au-
thors proposed applying PCA to face depth images and 2D face images separately
and then fusing the results together. In [39], ICP registration of the 3D face models
was combined with Linear Discriminant Analysis applied to 2D face images, to im-
prove the robustness of 2D face matching in the presence of pose and illumination
variations. In [14], central and lateral profiles of the face were extracted and com-
pared in both 3D and 2D. In [32], landmark positions used to define the face regions
were also detected on 2D texture images obtained with the 3D face scan. One of
the best performance on the FRGC v2.0 dataset was obtained with the solution re-
ported in [41] which is both hybrid and multimodal. The authors assembled a fully
automated system performing the following steps:

1. Pose correction (of both the 3D model and the corresponding 2D color image
provided by the scanner);

2. Automatic region segmentation to account for local variations of the face geom-
etry (by detecting the inflection points around the nose tip);

3. Quick filtering of distant faces using SIFTs and 3D Spherical Face Representa-
tion (a quantization of the face point cloud into spherical bins centered at the
nose tip);

4. Matching of the remaining faces applying a modified ICP to a few regions of the
face (eyes, forehead, and nose) that are less sensitive to face expressions. The
similarity scores provided by the two matching engines were fused into a single
similarity measure. Performance of the method in terms of TAR at FAR 0.001 are
99.7% and 98.3% for neutral vs. neutral and neutral vs. non-neutral expressions,
respectively.

There are nevertheless several considerations to be made about these performance
figures. In the FRGC data set, the nose tip of 3D face models is estimated from the
2D images provided by the scanner. To have more precise measures, additional pre-
processing must be performed on the 3D models. Due to this, performance measures
with this data set account for the capability of the system in both identifying the ref-
erence point precisely and performing face recognition effectively. Besides, given
the nature of the FRGC data set, performance measures are markedly representa-
tive of face recognition in the presence of moderate facial expressions [33]. Data
sets with stronger facial expressions to verify invariance to facial expressions in
more challenging conditions are nevertheless available, such as the extended data
set of [33] (obtained as the integration of FRGC v2.0 with the University of Huston
(UH) proprietary database) and the SHREC08 data set. With specific reference to
the method of [41], it must also be observed that, although it performs segmentation
into face regions, invariance to facial expressions is simply obtained by discarding
those face regions that are more affected by expressions. Consequently, many fa-
cial details are missed at important parts, such as mouth, chin, and cheeks. This can
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be very critical in many cases where these details are key distinguishing elements.
Moreover, the method requires prefiltering and iterative point-wise registration to
match individual models. According to this, descriptors cannot be organized us-
ing traditional indexing structures (such as point access methods and metric access
methods) to support efficient identification in very large data sets.

4.1.2 Face Recognition in the Presence of Strong Facial Expressions

The SHape REtrieval Contest (SHREC) initiative developed in the framework of
the Aim@Shape project at the European Commission organized a special track for
3D face retrieval in 2008, providing a data set for evaluation (SHREC08 data set)
that is smaller, but includes stronger face expressions than FRGC v2.0. Final results
were published in late March 2008 [24]. The SHREC08 evaluation in the 3D face
track was performed on a data set of 3D face scans of 61 adult Caucasian individ-
uals (45 males and 16 females) derived from the Gavab database [43]. For each
individual, seven scans are taken that differ in the acquisition viewpoint and facial
expressions, resulting in a total of 427 facial scans. In particular, for each individual,
there are two frontal face scans with neutral expression, two face scans where the
subject is acquired with a slightly rotated posture of the face (looking up or look-
ing down) and neutral facial expression, and three frontal scans in which the person
laughs, smiles, or shows a random expression. This results in about 57 percent of
the scans having a neutral expression, but just 29 percent having neutral expression
and frontal pose. Scans are given as triangular meshes with an average number of
10,000 points. No data were explicitly provided for training or tuning the partici-
pants recognition systems. Instead, each participant was allowed to run up to five
versions of their algorithms with different tunings of the system parameters. Each
result set was computed by measuring the distance of every face scan to any other
face scan in the data set. In practice, each result set is organized in a set of ranked
lists reporting all of the scans of the data set sorted in increasing values of distance
from the query scan.

The best performing approach at the SHREC08 contest was that proposed in [8]
(a preliminary version of the approach was presented in [7]). In this approach, all of
the points of the face are taken into account so that the complete geometrical infor-
mation of the 3D face model is exploited, but differently from registration methods
where matching is obtained by iterative pointwise alignment; here, the relevant in-
formation is encoded into a compact representation in the form of a graph and face
recognition is finally reduced to matching the graphs. Face graphs have a fixed num-
ber of nodes that, respectively, represent iso-geodesic facial stripes of equal width
and increasing distance from the nose tip. Arcs between pairs of nodes are anno-
tated with descriptors referred to as 3D Weighted Walkthroughs (3DWWs) [6] that
capture the mutual spatial displacement between all the pairs of points of the corre-
sponding stripes and show smooth changes of their values as the positions of face
points change. Due to the fixed partitioning into isogeodesic stripes, 3DWWs be-
tween stripes are approximately calculated over the same portions of the face for
all individuals, thus permitting discrimination between structural differences in face
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morphology. Besides, according to the property that iso-geodesic distances do not
vary too much under facial expressions, 3DWWs are principally calculated over the
same set of points of the stripes under any expressions, with limitations to the range
of the possible local modifications, and therefore, to the effects of point shifting.
This smooths the differences due to different expressions of the same individual.
This representation has the great advantage of a very efficient computation of face
descriptors and a very efficient matching operation for face recognition. Moreover,
the approach appears very well suited for the task of face identification in very large
data sets. In fact, face graphs can be arranged in an appropriate index structure so
that the efficiency of search is even improved. The method obtained the best ranking
at the SHREC08 contest, scoring Recognition Rate of 99.53 percent, Mean Average
Precision of 93.49 percent, Mean Average Dynamic Precision of 97.73 percent, and
Mean Normalized Discounted Cumulated Gain@5 of 99.03 percent. This approach
was further developed in [9], by combining the local approach to 3D face recogni-
tion with a feature selection model so as to study the relative relevance of different
regions of the face in discriminating between different subjects. This permitted the
identification of the relevance of individual stripes, thus restricting the match to the
pairs of stripes which are most informative. As a further contribution of this work, it
is quantitatively demonstrated that the relevance of facial regions (stripes) changes
for different ethnic groups, thus opening the way to further optimizations based on
the preliminary recognition of the ethnicity of the subjects.

4.2 Semi-cooperative 3D Face Recognition

In a conventional face recognition experiment, it is assumed that both the probe
and gallery scans are acquired cooperatively in a controlled environment so as to
precisely capture and represent the whole face. Many of the existing methods fol-
lowed this assumption, focusing on face recognition in the presence of expression
variations and reporting very high accuracy on benchmark databases like the FRGC
v2.0 dataset [48]. Differently, solutions enabling face recognition in uncooperative
scenarios are now attracting an increasing interest. In such a case, probe scans are

(a) (b) (c)

Fig. 11 Facial scans from the Gavab database [43]. (a) Frontal face scan with neutral ex-
pression. In (b) and (c) the left and right scans of the subject in (a) are given, respectively.
The original side scans and their pose normalized frontal views are shown in both cases.
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acquired in unconstrained conditions that may lead to missing parts (non-frontal
pose of the face, see Fig. 11), or to occlusions due to hair, glasses, scarves, hand
gestures, etc. These difficulties are further sharpened by the recent advent of 4D
scanners (3D plus time) [1, 34], capable of acquiring temporal sequences of 3D
scans. In fact, the dynamics of facial movements captured by these devices can be
useful for many applications [10, 54], but also increases the acquisition noise and
the variability in subjects’ pose.

4.2.1 Existing Methods

In the following we present semi-cooperative 3D face recognition methods by clas-
sifying them as holistic, local and point-based.

Holistic Methods

Global 3D face representations for partial face matching have been proposed in a
limited number of works. In [17], a canonical representation of the face is proposed
which exploits the isometry invariance of the face surface to manage missing data
obtained by randomly removing areas from frontal face scans. On a small database
of 30 subjects they reported high recognition rates, but no side scans were used for
recognition. Results on partial face matching removing quadrants of FRGC v2.0
probes and using face crops around the nose tip are reported in [62]. This approach
relies on the symmetry of the 3D face scans in order to identify the nose tip and
register depth maps so as to derive a Pure Shape Difference Map (PSDM) between
pairs of matching scans. A Collective Shape Difference Classifier learns off-line the
most discriminative local areas from the PSDM and trains them as weak classifiers
for assembling a collective strong classifier using the real-boosting approach. Un-
fortunately, the symmetry hypothesis used for the registration and fiducial points
detection is often violated when side views of the face are acquired in uncooper-
ative scenarios. Instead, the experiments are conducted just removing parts of the
face after the preprocessing has been performed on the entire scans. The fact that
the same part of the face is removed from both probes and gallery models in order
to generate the PSDM also reduces the concrete applicability of the approach. The
same authors extended the approach in [61], but without providing any experimen-
tation on face data with missing parts. These approaches provide a global modeling
of both gallery and probe scans, but more successful and scalable solutions use local
representations of the face.

Local Methods

A possible way to solve locally the problem of missing data in 3D face acquisition
is to detect the absence of regions of the face and use the existing data to reconstruct
the missing parts. The reconstructed scan can then be used as input to conventional
3D face recognition methods, that assume the entire scan is available. This approach
is followed in [22], focusing on face occlusions induced by glasses, scarves, caps,
or by the subject’s hand. A generic facial model and thresholding on facial surface
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distances are used to detect occlusions. In this way, the occluded areas are detected
and the missing regions are restored using information from the non-occluded parts.
Detection experiments were carried out on a proprietary database containing a train-
ing set of 132 3D scans with various non-occluded facial expressions and a test set
of 76 scans. However, face recognition accuracy was not evaluated. The inter-pose
face recognition solution proposed in [47] and extended in [46], exploits the hy-
pothesis of facial symmetry to recover missing data in facial scans with large pose
variations. First, an automatic face landmarks detector is used to identify the pose of
the facial scan by marking regions of missing data and roughly registering the facial
scan with an Annotated Face Model (AFM) [33]. Then, the AFM is fitted using a
deformable model framework that exploits facial symmetry where data are missing.
Wavelet coefficients extracted from a geometry image derived from the fitted AFM
are used for the match. Experiments have been performed using the University of
Notre Dame (UND) database [58], with the FRGC v2.0 gallery scans and side scans
with 45◦ and 60◦ rotation angles as probes. Since it is based on the left/right facial
symmetry, this solution can work as long as half of the face with respect to the yaw
axis is visible in the scan.

Tackling the problem from an opposite perspective, some methods divide the
face into regions and try to restrict the match to uncorrupted parts of the face. For
example, the approach in [19] relies on the accurate identification of the nose tip
in order to extract multiple overlapping regions around the nose. These regions are
matched using the ICP algorithm and the respective scores are combined together
in order to evaluate face similarity. This idea is extended in [26] by using a set of 38
regions that densely cover the face, and selecting the best-performing subset of 28
regions to perform matching using the ICP algorithm. A recognition experiment ac-
counting for partial match is reported that uses the left and right parts of the FRGC
v2.0 probes. However, only experiments where some of the extracted regions have
been removed are reported, rather than the more general case in which also parts of
the regions are missing. And this latter effect is expected to substantially affect the
ICP matching. In [2], a part-based 3D face recognition method is proposed which
operates in the presence of both expression variations and occlusions. The approach
is based on the use of Average Region Models (ARMs) for registration: The facial
area is manually divided into several meaningful components such as eye, mouth,
cheek and chin regions, and registration of faces is carried out by separate dense
alignment of the regions with respect to the corresponding ARMs. The dissimilari-
ties between gallery and probe faces obtained for individual regions are then com-
bined to determine the final dissimilarity score. Under variations, like those caused
by occlusions, the method can determine noisy regions and discard them. The per-
formance of this approach is tested on the Bosphorus 3D face database [55] that
includes facial expressions, pose differences and occlusions. However, a strong lim-
itation of this solution is the use of manually annotated landmarks that are required
for both face alignment and region segmentation. Instead of extended regions, a
collection of radial curves originating from the nose tip is used in [25] to describe
the facial surface. Face comparison is obtained by elastic matching of the curves. A
quality control permits the exclusion of corrupted radial curves from the match, thus
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enabling the recognition also in the case of missing data. Results of partial matching
are given for the 61 left and 61 right side scans of the Gavab database [43].

Point-Based Methods

The methods above use regions to perform face recognition. But regions are diffi-
cult to detect in that just some facial landmarks can be accurately identified when
the pose significantly deviates from the frontal one. In addition, since parts of the
regions can be missing or occluded, the extraction of effective region descriptors is
hindered, so that regions comparison is often performed using rigid (ICP) or elastic
registration (deformable models). Methods that use keypoints of the face promise to
solve some of these limitations. Rather than relying on the detection of specific re-
gions of the face – that can be error prone in the presence of occlusions and missing
parts – they assume that detection of keypoints on the face surface and description
of these keypoints yield robust yet accurate representation of facial traits, also in
the presence of occlusions and missing parts, provided that the number of keypoints
is sufficiently high. In this perspective, the use of keypoints instead of facial land-
marks is advantageous. In fact, just few facial landmarks can be accurately detected
in an automatic way – from three to ten are at most reported [29] – and detection
of a larger number of landmarks is difficult even through partial manual assistance.
In the case of partial face scans, up to half of these points are typically not de-
tectable, so that description of such points and of their relationships is of limited
effectiveness for face recognition. Differently, a much larger number of keypoints
are typically detected – from tens to hundreds of keypoints can be easily derived
– and their distribution is rather sparse, not being constrained to specific locations
of the face. This makes keypoints more robust than landmarks to missing parts and
also permits the extraction of a large number of local descriptors of the face.

A first result in the direction of using keypoints has been reported in [42], where
a 3D keypoints detector and descriptor inspired by SIFT [38] has been designed.
This detector/descriptor has been used to perform 3D face recognition through a
hybrid 2D+3D approach that also uses the SIFT detector/descriptor to index 2D tex-
ture face images. However, results do not account for scans with pose variations
and missing parts. Use of keypoints for partial face matching has been recently re-
ported in [30, 31]. In this approach, Multi-Scale Local Binary Patterns (MS-LBP)
and Shape Index (SI) are applied to face depth images, and the scalar values obtained
at each pixel are used to create an MS-LBP map and an SI map. On both these maps,
the SIFT detector and descriptor are used to represent local variations of the features
extracted from the face. Finally, the matching scheme accounts for local and global
face features by combining local matches between SIFT features, with global con-
straints originated by facial components. Partial face matching results are presented
for the FRGC v2.0 scans where parts of the face are masked to simulate missing
parts. However, as pointed out by the authors, the approach can deal automatically
just with nearly frontal face data as those included in the FRGC v2.0 dataset. In the
case of missing parts of the face due to large pose variations the approach is likely
to fail. Methods in [37] and [21] use keypoints detection for the purpose of partial



About 3D Faces 215

face matching, resulting the best performing approaches in the track on 3D Face
Models Retrieval of the SHREC’11 competition [59]. In particular, in [37] an ex-
tension of SIFT and index map based SIFT matching [31] is proposed. First, feature
points are detected on each 3D face scan using meshSIFT [40]; then, the quasi-
daisy local shape descriptor [57] of each feature point is obtained using multiple
order histograms of differential quantities extracted from the surface; Finally, these
local descriptors are matched by computing their orientation angles (similarly to the
SIFT-matching model). The number of matched points is used as similarity between
two face scans. In [21], first a PCA based shape model is learned by registering a
set of training scans to a reference template model (using 12 manually annotated
landmarks) and subsequently warping the template on the training scans using a
non-rigid registration based on variational implicit functions. The first 37 principal
components are used for the analysis of the dense points correspondence of aligned
scans. The learned model is then fitted to probe and gallery scans to generate model-
based descriptions used to evaluate scans similarity. In this approach, meshSIFT is
used to detect keypoints whose correspondences in different scans permit to initial-
ize the pose of probe and gallery scans with respect to the model (anyway, a manual
initialization is required for about 2.5% of the scans). After pose initialization, the
model is fitted following a Bayesian strategy with outliers detection and estimation.
The result is an EM alike optimization, where the model updates are alternated with
outlier updates, iteratively.

4.3 Very Large Pose Variations

Few studies investigated 3D facial recognition in the case large parts of the face are
missing as a consequence of face acquisition with pose variations (i.e., yaw rotations
from 45 up to 90 degrees) [25, 30, 46]. One recent approach that tackles this problem
is that proposed in [12]. The approach starts from the observation that describing the
face with local geometric information extracted at the neighbors of interest points
easily permits partial face matching in that no particular assumption about the num-
ber or locations of the keypoints is necessary to perform sparse keypoints matching.
However, in doing so, the size of the support used to compute the local descriptor
at interest point locations becomes crucial: Small supports reduce the effectiveness
of the descriptor and large supports are more sensible to missing parts that can al-
ter the support itself. In addition, discriminant facial features are not only related
to local characteristics of the face surface in the proximity of a set of keypoints,
but also to mutual spatial relationships among the position of the keypoints on the
face. Based on these premises, the approach relies on the detection of keypoints on
the 3D face surface and the description of the surface in correspondence to these
keypoints as well as along facial curves connecting pairs of keypoints. In contrast
to solutions where keypoints correspond to meaningful face landmarks, such as the
eyebrows, eyes, nose, cheek and mouth [29], this solution does not exploit any par-
ticular assumption about the position of the keypoints on the face surface. Rather, it
is expected the position of keypoints to be influenced by the specific morphological
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traits of the face of each subject. In particular, the assumption of within subject key-
points repeatability is exploited: The position of the most stable keypoints – detected
at the coarsest scales – do not change substantially across facial scans of the same
subject. To further reduce the effect of surface noise and enhance the robustness of
the position of keypoints, a spatial clustering approach is adopted so as to replace
aggregated keypoints with their cluster centers. According to this, the combination
of SIFT detection and spatial clustering is used to identify relevant and stable key-
points on the depth image of the face. Furthermore, facial curves are used to model
the depth of face scans along the surface lines connecting pairs of keypoints. In do-
ing so, distinguishing traits of a face scan are captured by the SIFT descriptors of
detected keypoints, by the spatial arrangement of keypoints and by the set of facial
curves identified by each pair of keypoints. Facial curves of gallery scans are also
associated with a measure of saliency so as to distinguish those curves that model
characterizing traits of some subjects from those curves that are frequently observed
in the faces of different subjects. In the comparison of two faces, SIFT descriptors
are matched to measure the similarity between pairs of keypoints identified on two
depth images. Spatial constraints are imposed to avoid outliers matches. Then, the
distance between the two faces is derived by composing the individual distances
between facial curves (weighted by their saliency) that connect pairs of matching
keypoints. In so doing, it is relevant to note that keypoints extraction and clus-
tering are performed on depth images of the face. The derivation of these images
requires pose normalization of 3D face scans to a common frontal position. This
pre-processing still uses a few landmarks for raw registration and as initialization
for the iterative rigid alignment procedure [13]. Differently, all the other processing
steps do not rely on landmarks. The solution could be made totally independent of
landmarks by the adoption of a different face alignment procedure. Recognition ex-
periments from partial and full facial scans have been performed on the combined
UND/FRGC v2.0 datasets and on the Gavab database. Experiments show that this
approach can achieve state of the art results for face recognition from partial scans
being also robust to facial expressions.

5 Discussion

In this Chapter, an overview of the ongoing research on 3D face analysis has been
given. Among the many aspects involved in this topic, we first focussed on some
issues that are common to any 3D face analysis solution, that is, face acquisition
and preprocessing (see Sect. 2). For acquisition, laser and structured light scanners
are now available that are capable to acquire together 3D static data and texture im-
ages at high-resolution. On this matter, the main challenges and expected outcomes
are for high-resolution dynamic scanners capable to acquire sequences of highly de-
tailed 3D scans at high frame rate and also with a sufficiently broad operative range.
Techniques for 3D data preprocessing are becoming quite consolidated, includ-
ing operations like noise removal, holes filling and surface smoothing. Detection
of facial landmarks, face cropping and pose normalization are also preprocessing
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operations that are still required by many face analysis solutions, though some meth-
ods start to perform fairly good also renouncing to these operations. The advance-
ments in both these two steps, acquisition and preprocessing, opened the way to the
development of many of the existing 3D face analysis techniques.

The 3D face analysis research has been also pushed by the availability of large
and challenging 3D face datasets with large variations in the subjects (number, gen-
der, age, ethnicity), acquisition conditions (non-frontal pose and non-neutral expres-
sion) and in the characteristics of the acquired scans in terms of clutter and occlu-
sions (scarves, eyeglasses, cap). Some of these datasets have also scans classified
according to their facial expression, thus enabling the development and testing of
methods for 3D facial expression classification. Moreover, manual annotations of
facial landmarks are provided in some cases. The use of standard performance in-
dicators on these common datasets has also facilitated the comparative evaluation
of the proposed approaches. Since on many of the existing 3D face datasets several
face recognition solutions achieved very high accuracy, it is a common feeling that
the collections of more challenging datasets, that should include real world acquisi-
tions rather than using laboratory settings, could further stimulate the development
of more sophisticated solutions for 3D face recognition (see Sect. 3 for details on
this topic).

Among the possible applications that use 3D face scans, in the last part of the
Chapter we focussed on the 3D face recognition topic (see Sect. 4). In the last
decade, many approaches have been developed addressing face recognition from
static 3D face scans. The approaches that were first proposed tried to solve the ba-
sic problem of matching frontal neutral scans. Then, solutions accounted also for
the facial expressions, thus resulting in methods capable to solve the recognition
problem also in the case of moderate or large expression changes. However, these
efforts were mainly devoted to cooperative scenarios where the subjects are aware
and collaborate to the acquisition thus contributing to satisfy acquisition constraints.
More recent solutions posed an increasing interest on methods capable to operate
also in semi-cooperative or non-cooperative scenarios, where missing parts due to
pose variations and occlusions can affect the acquired scans. Current and future re-
search directions aim to solve the face recognition problem with the support of 3D
data also in the case of completely non-cooperative scenarios, including outdoor en-
vironments, where dynamic acquisition of temporal sequences of 3D scans is also
concerned. Promising solutions in this contexts are those trying to exploit and com-
bine both 2D and 3D data.
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Socially-Driven Computer Vision for Group
Behavior Analysis

Marco Cristani and Vittorio Murino

Abstract. The analysis of human activities is one of the most intriguing and important
open issues in the video analytics field. Since few years ago, it has been handled fol-
lowing primarily Computer Vision and Pattern Recognition methodologies,where an
activity corresponded usually to a temporal sequence of explicit actions (run, stop, sit,
walk, etc.). More recently, video analytics has been faced considering a new perspec-
tive, that brings in notions and principles from the social, affective, and psychological
literature, and that is called Social Signal Processing (SSP). SSP employs primarily
nonverbal cues, most of them are outside of conscious awareness, like face expres-
sions and gazing, body posture and gestures, vocal characteristics, relative distances
in the space and the like. This paper will discuss recent advancements in video an-
alytics, most of them related to the modelling of group activities. By adopting SSP
principles, an age-old problem -what is a group of people?- is effectively faced, and
the characterization of human activities in different respects is improved.

Introduction

Detecting human interactions represents one of the most intriguing frontiers of the
automated surveillance since more than a decade. Recently, sociologic and psycho-
logical findings have been considered into video surveillance algorithms, especially
thanks to the advent of Social Signal Processing work, a recent multi-disciplinary
area where computer vision and social sciences converge. This chapter follows this
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Fig. 1 F-formations: a-d) The component spaces of an F-formation: vis-a-vis, L, side-by-
side, and circular F-formations, respectively. O-spaces are drawn in orange. e) Cocktail-party
scene where some o-spaces are superimposed in orange.

direction and proposes a detailed overview on our recent activity on the analysis
of group activities. In particular, we will present three scenarios where a group of
interacting people is first detected, using positional and orientation features [15];
subsequently, the group is characterized by inferring the social relations between
the participants exploiting proxemics cues [18]; finally, voice activity is detected by
employing solely visual cues [16].

1 Analysis of Social Interactions Using F-formations

The first contribution is devoted to detect social interactions using statistical analysis
of spatial-orientation arrangements that have a sociological relevance ([15]). As so-
cial interactions we intend the acts, actions, or practices of two or more people mu-
tually oriented towards each other; more in general, any dynamic sequence of social
actions between individuals (or groups) that modify their actions and reactions by
their interaction partner(s). We analyze quasi-stationary people in an unconstrained
scenario identifying those subjects engaged in a face-to-face interaction, i.e., a scene
monitored by a single camera where a variable amount of people (10-20) is present.
We import into the analysis the sociological notion of F-formation as defined by
Adam Kendon in the late 70s ([39]).

Simply speaking, F-formations are spatial patterns maintained during social in-
teractions by two or more people. Quoting Kendon, “an F-formation arises when-
ever two or more people sustain a spatial and orientational relationship in which
the space between them is one to which they have equal, direct, and exclusive ac-
cess.”. In practice, an F-formation is the proper organization of three social spaces:
o-space, p-space and r-space (see Fig. 1a-d).

The o-space is a convex empty space surrounded by the people involved in a so-
cial interaction, where every participant looks inward into it, and no external people
is allowed in this region. This is the most important part of an F-formation. The
p-space is a narrow stripe that surrounds the o-space, and that contains the bodies of
the talking people, while the r-space is the area beyond the p-space.

There can be different F-formations as visible in Fig. 1a-d. In the case of two
participants, typical F-formation arrangements are vis-a-vis, L-shape, and side-by-
side. When there are more than three participants, a circular formation is typically
formed [44].
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Our approach aims at detecting the o-space, taking as input a calibrated scenario,
in which the position of the people and their head’s orientations have been estimated.
In particular, we design an F-formation recognizer which is the main contribution of
the work. This algorithm is based on a Hough-voting strategy, which lies between an
implicit shape model [47], where weighted local features vote for a location in the
image plane, and a mere generalized Hough procedure where the local features have
not to be in a fixed number as in the implicit shape model. This approach provides
the estimation of the o-spaces, so as of the identity of the people that form them, thus
individuating people which are socially interacting. In such regard, our approach is
the first to use F-formations detection in order to discover social interactions solely
from visual cues.

Our approach has been tested on about a hundred of simulated scenarios, and two
real annotated datasets, one of which is novel. In these last two cases tens of individ-
uals were captured while they were enjoying coffee breaks, in indoor and outdoor
environment, giving rise to heterogeneous real crowded scenarios. Our approach ob-
tains convincing results, that are reported in a comparative way, quoting the unique
(to the best of our knowledge) previous work dealing with the same topic.

The rest of the Section is organized as follows. In Sec.1.1, a review of the litera-
ture concerning the interaction modelling in surveillance settings is given. The pro-
posed approach is detailed in Sec. 1.2, and the experiments are reported in Sec. 1.3.
Finally, Sec. 1.6 concludes the paper with remarks and a discussion on the several
possible future developments.

1.1 Group Interaction Discovery: State of the Art

A dated but interesting review on methods that consider human interactions is pre-
sented in [2], that focuses especially on motion cues. Pioneering studies on inter-
actions focus on two-agent behaviors, employing statistical learning [56], a mix
between syntactical and statistical pattern recognition paradigms [36], or Action-
Reaction Learning [37]. Interactions among a larger number of people are usually
modeled in meeting scenarios or smart rooms, exploiting a large number of hetero-
geneous sensors, thus solving many problems of occlusions and low image quality.
In this case, many subtle social interactions can be observed and modeled, mostly
by encoding turn-taking mechanisms. The interested reader may refer to [24] for a
comprehensive review. Moving to unconstrained scenarios, as those typical of the
videosurveillance field, the spectra of the activities modeled becomes narrower. In
[34] a Semi Markov framework captures simple events (as running, approaching,
etc.), where interaction is modeled by logic operators that assembly together sim-
ple events (performed by a single person) into multi-thread events. More recently,
in [55, 12], group activities are encoded with three types of localized causalities,
namely self-causality, pair-causality, and group-causality, which characterize the lo-
cal interaction/reasoning relations within, between, and among motion trajectories
of different humans, respectively. In [48], group interactions with a varying num-
ber of subjects are investigated, employing an asynchronous hidden Markov model
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as a hierarchical activity model. They distinguish symmetric (like i talks with j)
and asymmetric dynamics activities (like i follows j). A discriminative approach
is proposed in [45], in which two kinds of interactions are introduced. The first,
group-person interaction, helps in individuating the action of a person by suggest-
ing a context; the second, person-person interaction, identifies a group activity.

These approaches suffer from lack of generalization: they focus on a restricted
set of actions, which are specific for a particular scenario. In this sense, a versatile
generative model is presented in [72], where interacting events in crowded scene are
modelled in an unsupervised way, and interactions are modeled as co-occurrences
of atomic events. No tracking is performed due to the high people density, and local
motions are considered as low-level features instead.

Approaches where sociological aspects are taken into account are [59, 65, 58,
45, 62, 6]. The keystone model that explains and simulates the human dynamics
in crowd as a gas-kinetic phenomenon is the social force model (SFM) [32]. Here,
interacting means being close each other during a walk or a run, and is explained as
a balance between repulsive and attractive terms. The social force model has been
modified in [59], where SFM is embedded as model for the dynamics in a track-
ing framework. Independently, a variational learning strategy is proposed in [65],
where a dynamic model is trained for predicting the position of moving subjects,
employing the SFM. In [58], a versatile synergistic framework for the analysis of
multi-person interactions and activities in heterogeneous situations is presented. An
adaptive context switching mechanism is designed to mediate between two stages,
one where the body of an individual can be segmented into parts, and the other
facing the case where people are assumed as rigid bodies. The concept of spatio-
temporal personal space is also introduced to explain the grouping behavior of peo-
ple. They extend the notion of personal space [3] to that of spatio-temporal personal
space. Personal space is the region surrounding each person, that is considered per-
sonal domain or territory. Spatio-temporal personal space takes into account the
motion of each person, modifying the geometry of the personal space into a sort of
cone. This multi-person interaction approach share some similarities with our pro-
posal, however, the sequences presented in the paper show very few people (max 3),
and simpler situations. A quite novel perspective for detecting interactions in video
surveillance scenarios come from the estimation of the human gaze (i.e., the head
direction) in low resolution images [61]: in [6] the head direction serves to infer
a 3D visual frustum as approximation of the focus of attention (FOA) of a person.
Given the FOA and proximity information, interactions are estimated: the idea is that
close-by people whose view frustum is intersecting are in some way interacting. In
the experiments, we compared with this approach, abbreviated as IRPM. The same
idea has been explored, independently, in [62]. Our approach improves this intu-
ition, studying more in detail how people are usually located w.r.t each other during
the interaction.
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Fig. 2 Scheme exemplifying the proposed approach. (a-c) Two subjects exactly facing each
other at a fixed distance vote for the same center of the circumference representing the o-
space. (d) The 2 subjects do not face each other exactly in real cases. (e-f) Several positions
and head orientations are drawn from Gaussian distributions associated to the subjects so as
to deal with the uncertainty of real scenarios, making the proposed approach more robust.

1.2 A Socially-driven Method for Detecting Group Interactions

An F-formation can be specified by the related o-space and the oriented positions of
the participants. Suppose we know the oriented positions of the subjects in the scene
on the ground plane. Our algorithm jointly estimates the o-space(s) and the subjects
involved in the related F-formation(s). The main idea is sketched through the toy
example of Fig. 2a-c. Let us focus on K = 2 subjects, i and j, located at positions
(xi,yi) and (x j,y j) with head orientation αi and α j , respectively. They are exactly
facing each other, as depicted by the dashed line connecting their heads (Fig. 2a).
Let us also suppose they are at a distance where social interaction can take place,
i.e., d = 1.5 meters 1. Given these (hard) constraints, each k-th subject votes for a
candidate center C(k) of the o-space, which has coordinates xC(k),yC(k):

C(k) =
[
xC(k),yC(k)

]
= [xk + r · cos(αk),yk + r · sin(αk)] , k = 1, . . . ,K (1)

where the radius r = d/2 = 0.75. Each vote is accumulated in an intensity accu-
mulation space AI , at entry x̃C(k), ỹC(k), where the tilde refers to the closest integer
approximation (opportunely rounding the real value resulting from Eq. (1)) deter-
mined by the discretisation of the space AI . At the same time, the ID labels i and
j are stored at the same entry of a label accumulation space AL, having the same
size of AI . In the toy example of Fig. 2a, both people vote for a coincident location
(Fig. 2b), which becomes the center of a candidate o-space (Fig. 2c).

To recover the subjects related to this candidate o-space, it is sufficient to access
the labels in AL associated to the votes in that location. We now know that the
center of the candidate o-space has been voted by subjects i and j. At this point,
the important condition of “no-intrusion” should be checked for the sociological
consistence of the candidate o-space. The no-intrusion condition states: a candidate
o-space for the subjects i and j does not have to contain other subjects different
from i and j. If the no-intrusion condition is fulfilled the candidate o-space becomes
a valid o-space.

1 We will discuss this assumption later in the experiments.
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One could object that the scenario depicted in Fig. 2a-c would be very rare.
In fact, our experiments on real data suggest that people engaged in a discussion
are rarely positioned on an exact circumference and facing its center. Moreover,
computer vision methods are still not capable of estimating head orientation with
high precision, and only a coarse quantization of this angle is typically considered
in the current state of the art [10]. These two facts make the above deterministic,
hard scheme ineffective. For example, no candidate o-space would be detected for
the case in Fig. 2d where the subjects do not lie on the same diameter.

In order to deal with this problem, we inject uncertainty in the voting procedure,
proposing an algorithm which is sketched in Fig. 2e-f. The proposed procedure is
structured in three distinct stages and in the following we present an explanation for
each step2.
Sampling. We assume the positions and the (head) orientation of the different sub-
jects as uncertain to some extent and modeled as random Gaussian variables, i.e.,

[xk,yk,αk]
T ∼ N (μk,Σk) (2)

where μk = [xk,yk,αk]
T and Σk = Σ = diag(σ2

x ,σ2
y ,σ2

α). We transfer this uncertainty
in the voting approach by drawing N − 1 (being μk the N-th sample) i.i.d samples
from every k-th distribution3, as depicted in Fig. 2e. Each n-th sample of the k-th
subject sn,k = [xn,k,yn,k,αn,k]

T has associated a weight wn,k, which is the likelihood
of being extracted from its generating distribution, i.e., wn,k = N (sn,k|μk,Σ) and a
label ln,k = k, that links it to the related k-th individual.
Voting. Each sample votes for a candidate position in the same way of Eq. 1. The
vote in the accumulation space AI given by the n-th sample with weight wn,k adds
wn,k in the accumulator, thus modeling the uncertainty associated to that sample.
In this way, the accumulation space grows in number of votes, which are sparsely
distributed. The accumulation of identity labels in AL is done similarly for each
sample as explained for the toy example in Fig. 2. Once the accumulation process is
finished, the matrix AI is revised with ˜AI:

˜AI(x,y) = card(x,y) ·AI(x,y) for each x,y ∈ AI(x,y) (3)

where card(x,y) counts the different subjects that voted in AI(x,y). Such informa-
tion is easily extracted from AL(x,y). In this way, a high vote is given in those
positions that have been voted with strong weights by many subjects. After that, the
o-space may be found by looking for the maximum values of ˜AI , and the associated
subjects can be identified by checking AL.
O-space validation. The evaluation of the no-intrusion condition is performed by
analyzing how strong is the presence in the o-space of an external subject. Following

2 Additional material at http://profs.sci.univr.it/˜cristanm/
publications.htmlincludes a pdf with a summary of the algorithm as a scheme.

3 In this paper, we fix Σ and the number of samples for all the people observed. However,
interesting policies can be adopted in dependence on the certainty we have in the k-th
subject (for example due to the tracker providing the subject position, or to the classifier
estimating the head orientation).

http://profs.sci.univr.it/~{}cristanm/publications.html
http://profs.sci.univr.it/~{}cristanm/publications.html
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a probabilistic approach, we compute the maximum weight w∗
n,h of a sample of an

external subject h which falls in the candidate o-space. A high w∗
n,h in an o-space of

center (xc,yc) mirrors a high probability that h is invading that o-space. A threshold
τINT R is used to detect the invading external subject. If this happens, the o-space is
invalid, and the intensity accumulator is updated imposing ˜AI(xc,yc) = 0, and the
search for the maximum value on the updated AI is repeated.

This algorithm extends naturally to F-formations composed by more than two
subjects and to more F-formations in the same scene thanks to the characteristics
of the Hough voting scheme. Actually, in a crowded situation, there could easily
be more than one F-formation. Thus, we need to check all the possible o-spaces
efficiently, and this is done in the following way. Consider the case of two subjects i
and j with their o-space detected as described in the O-space validation stage. The
accumulators AI and AL are then updated by pruning away the votes given by {wn,i}
and {wn, j} in AI , respectively, and removing the labels i and j from AL. Then, ˜AI

is re-computed. The max search process on ˜AI and the no-intrusion check are thus
repeated, and this is iterated until no more o-spaces are found. This strategy has also
the beneficial effect of providing the F-formations in decreasing order of likelihood,
assuming the likelihood of an F-formation proportional to the accumulation of votes
(which can be assimilated to probabilities) in the center of the related o-space stored
in AI .

1.3 Experiments

Our algorithm has been tested on synthetic and real data. The former proves the ef-
fectiveness of our algorithm in detecting groups disregarding a-priori errors due to
bad tracking or wrong head orientation estimations. The latter considers two differ-
ent real scenarios, one indoor and one outdoor, where errors may occur.

As accuracy measures, we estimate that a group has been correctly estimated if
at least �(2/3 · |G|)� of their components are found, where |G| is the cardinality of
group G. This rule has an exception that holds in the case |G|= 2. In that case, all the
components must be detected. Given this, for each situation analyzed we estimate
the precision and recall of finding groups, averaged over time.

In addition, to further promote the versatility of our framework, we build for each
sequence a relation matrix P2 that represents how many times two people stand
in the same group for a certain period of time. Actually, during a party, people
may change groups, standing alone for a while, re-joining a conversation, etc.. P2

analyzes the strength of pairwise relations and, for example, is capable to indicate,
given a person, who is the subject with which she/he is interacting most. This matrix
has been employed in other social signalling techniques [22], and we can compare it
with the analogous matrix built employing the ground-truth data. A measure of the
similarity between the two matrices has been performed employing the Mantel Test
[50], which is commonly used in cluster analysis to test the correlation between
two distance matrices. It operates by evaluating correlations scores from repeated
randomizations of the entries of the matrices. If randomizations frequently produce
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a correlation stronger or as strong as the original data, there is little evidence that
the correlation between the two matrices differs from zero. In rough terms, it is
a measure of similarity between matrices which actively takes into account their
structure.

The proposed method is compared with the Inter-Relation Pattern Matrix
method4 (IRPM) proposed in [6], whose description is reported in Sec. 1.1.

The free parameters of the method are the radius r, the variances σ2
x ,σ2

y ,σ2
α , the

number of samples per-person N, and the threshold τINT R of the no-intrusion con-
dition. Choosing such values is very intuitive, and it can be driven by sociological
and empirical considerations. As an example, the setting of the radius r is a mat-
ter of pure sociological aspects: Hall [29] defines 4 relational ranges of distances
that witness the type of relation a subject has with the others, and are (expressed
in meters): [0,0.45] for intimate relations, (0.45,1.2] for casual/personal relations,
(1.2,3.5] for social/consultive relations, and > 3.5 for no-relation. Now, suppose
that two people are involved in a vis-a-vis interaction. They may make a circular
o-space whose diameter is 2r. In all the other F-formations, the distance among two
people is < 2r. Therefore, r represents half of the maximal distance two people may
lie in the space and being judged as connected in an F-formation. If we set r = 60cm,
we are interested in a upper bound that becomes the casual/personal range, because
2r = 120cm

The parameters σ2
x and σ2

y allow to project the position of the people in different
positions, covering a range of 3σx(y). In other words, these values allow to be flexible
about the classes of relations taken into account by the r parameter. We fix σ =σ2

x =
σ2

y = 400cm, considering thus a range of maximal distances for the F-formations of
2[r − 3σ ,r + 3σ ] = [0,240]cm. The value of σ2

α depends on the quantization of
the head orientation. We employ 4 head orientations, so σ2

α = 0.005 is a reasonable
value. The parameter N can be instead chosen by considering computational aspects.
In the current, non-optimized MATLAB version it takes averagely 15 second per
frame using N = 800.

Finally, the last parameter τINT R checks the weights (i.e. likelihood probabilities)
of the intruder samples. Therefore, its setting mirrors how tolerant we want to be
in considering a sample as a genuine representative of an intruder, depending on its
weight. We fix τINT R = 0.7. Once the parameters are set, they are kept fixed for all
the experiments.

1.4 Synthetic Data

A psychologist provided 100 different situations, where some subjects take part in
an F-formation and other do not (examples in Fig. 3d). The input of the tested algo-
rithms is the actual position and head orientation of each subject. The data has been
annotated to obtain ground truth of the F-formations. We apply our algorithm and
IRPM to all the situations, averaging the precision and the recall scores of all the

4 The code is available at
http://www.lorisbazzani.info/code-datasets/irpm/

http://www.lorisbazzani.info/code-datasets/irpm/
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Fig. 3 Experiments with synthetical data (see text). The figure is better viewed in color.
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Fig. 4 Experiments with real data (see text). In the tables, p, r, M stand for (mean) precision,
recall, and Mantel score, respectively.

situations. Fig. 3a shows an examplar situation from the synthetic dataset. Fig. 3b
depicts how the sampling process propagates instances of a subject in gray, the votes
of the intensity accumulator in green, and the resulting o-spaces in blue. A quali-
tative analysis has been reported in Fig. 3b. The ground truth is depicted in dotted
green, whereas the results of our approach and IRPM are in blue and in red, respec-
tively. Our approach is able to model interactions where IRPM fails. In case (iii),
our approach fails in estimating the two vis-a-vis interaction, being them very close.
In general, looking at the global results in Fig. 3c, one can note that our proposal
gets higher rates for both precision and especially for the recall.

1.5 Real Scenarios

The outdoor situation is represented by a novel dataset, dubbed CoffeBreak and
downloadable at http://profs.sci.univr.it/˜cristanm/datasets
.html. It represents a coffee-break scenario of a social event that lasted 4 days, cap-
tured by two cameras. The dataset is part of a social signaling project whose aim is
to monitor how social relations evolve over time. Nowadays, only 2 sequences of a
single day of a single camera have been annotated, each one covering a period of av-
eragely 1 minute. A psychologist annotated the videos indicating the groups present
in the scenes, for a total of 45 frames for Seq1 (a frame in Fig. 4a-b) and 75 frames

http://profs.sci.univr.it/~{}cristanm/datasets.html
http://profs.sci.univr.it/~{}cristanm/datasets.html
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for Seq2 (see Fig. 4c). The annotations have been done by analyzing each frame and
a set of questionnaires that the subjects filled in. The dataset is still challenging from
the tracking and head pose estimation point of view, due to multiple occlusions. This
enables us to test our technique in a very noisy situation.

Since CoffeBreak is a crowded scenario, occlusions make extremely hard full hu-
man bodies detection. Thus, the subjects’ heads are the only cues to perform track-
ing in a robust way. To extract the head locations of all the subjects in the scene
we adopted a system based on class-specific Hough forests [23] trained on human
heads in all possible orientations. This allowed us to reliably detect all the possible
head candidates in the scene, independently from their orientation with respect to
the ground plane. After performing head detection in all the frames, such detections
needed to be filtered and linked in order to generate plausible ground plane trajecto-
ries of all the subjects. To this end, the ground plane homography and an estimation
of the average height of the subjects were used to compute the ground plane location
corresponding to each head detection. Consecutive detections corresponding to the
same subject were linked by matching appearance descriptors. Finally, head orien-
tation detection has been performed on 4 classes employing the covariance based
approach of [69] (see Fig. 4a). Once the oriented positions of the head are given,
we estimate the ground plane homography given a set of measurements obtained
on site.

The mean precision, recall score and the Mantel correlation reported in Fig. 3d
show that our approach outperforms IRPM. In Fig. 3a-b some qualitative results are
depicted: in Fig. 3a we have the head detection results together with the orientation.
In Fig. 3b, the blue segments indicate the groups found by our approach (the ground
truth is (6,7),(11,12,5),(3,10)). IRPM did not find any groups in that frame.

The indoor data come from a publicly available dataset for group detection, called
GDet 2010 and downloadable at http://www.lorisbazzani.info/code
-datasets/multi-camera-dataset/. The dataset is made by 12 subse-
quences of about 2 minutes each, with the availability of the full camera calibration
parameters. GDet 2010 videos consider a vending machines area where people take
coffee and other drinks, and chat in the spare time. The videos have been acquired
with two monocular cameras, located on opposite angles of a room close to the
floor. People involved in the experiments were not aware of the aim of the trials
and behaved naturally. The ground truth has been made by a psychologist like in
the CoffeeBreak scenario. Afterwards, some of them were asked to fill in a form
inquiring if they talked to someone in the room and to whom. The videos have been
analyzed by a psychologist, that noted the social exchanges occurred and produced
the ground truth of social interactions. In this case, people tracking has been per-
formed using Hybrid Joint-Separable (HJS) filter proposed in [46], for its capability
of dealing with occlusions by means of the estimation of the occlusion maps ex-
ploiting the camera calibration. Given the bounding boxes of the tracked people, the
head is approximately located within a bounding box. Then, head pose estimation
is performed like in the CoffeeBreak scenario.

A quantitative analysis of the results on a subset of sequences is reported in
Fig. 4e. Even in this case, our approach outperforms IRPM. Note the values of the

http://www.lorisbazzani.info/code-datasets/multi-camera-dataset/
http://www.lorisbazzani.info/code-datasets/multi-camera-dataset/
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Mantel tests: in general, our approach draws a social situation in terms of pairwise
relations which is close to the ground truth.

1.6 Remarks

This section presents a sociologically principled method for the detection and anal-
ysis of human interactions exploiting F-formations. An F-Formation is a plausible
ensemble of possible spatial and orientational organisation people assume during
the course of an interaction. Our approach aims at automatically detecting the main
social space identified by the sociological findings, the so called o-space, which is
a space internal to the interacting people in which no other people are allowed to
lie. The net result is a brand new robust interaction detection algorithm based on a
well-established sociological theory able to deal with simple to moderately crowded
scenes.
The approach has been tested on synthetic data and real scenarios proving its ro-
bustness and accuracy in the disparate situations addressed. This is appreciable per
se (as compared to ground truth) and also ameliorates the current state of the art
results of the IRPM-based method. These results are obtained dealing with complex
scenario in which the people detection, the orientation of their heads, and tracking
are difficult, likely producing inaccurate input data. Still, our algorithm performs
quite well in detecting interactive groups thanks to the statistical voting process.
So far in the literature, this is the first approach that discovers social interactions
based on the automatic detection of F-formations solely from visual cues. Many
improvements can be certainly envisaged for the future work. From the algorith-
mic point of view, clear and obvious improvements may derive from the use of the
temporal information provided by the tracking, so as from the adoption of more
reliable and efficient people detection and head orientation classification methods.
From the application perspective, additional features extracted from the detected F-
formations may support the comprehension of the interactions, possibly predicting
the likely outcome, which can be useful in evaluating situations of social interest.

2 Inferring Social Relations from Interpersonal Distances

The second contribution is about the characterization of the group interaction aimed
at the recognition of the relations among the interlocutors by using proxemic cues
[18]. Proxemics can be defined as the “[...] the study of man’s transactions as he
perceives and uses intimate, personal, social and public space in various settings
[...]”, quoting Hall [30, 31], the anthropologist who first introduced this term in
1966. In other words, proxemics investigates how people use and organize the space
they share with others to communicate, typically outside conscious awareness, so-
cially relevant information such as personality traits (e.g., dominant people tend to
use more space than others in shared environments [49]), attitudes (e.g., people that
discuss tend to seat in front of the other, whereas people that collaborate tend to seat
side-by-side [63]), etc..
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This section focuses on one of the most important aspects of proxemics, namely
the relationship between physical and social distance. In particular, the section
shows that interpersonal distance (measured automatically using computer vision
techniques) provides physical evidence of the social distance between two individ-
uals, i.e. of whether they are simply acquainted, friends, or involved in a romantic
relationship. The proposed approach consists of two main stages: the first is the au-
tomatic measurement of interpersonal distances, the second is the automatic analysis
of interpersonal distances in terms of proxemics and social relations (see Section 2.3
for details).

The choice of distance as a social relation cue relies on one of the most basic
and fundamental findings of proxemics: People tend to unconsciously organize the
space around them in concentric zones corresponding to different degrees of inti-
macy [30, 31]. The size of the zones changes with a number of factors (culture,
gender, physical constraints, etc.), but the resulting effect remains the same: the
more two people are intimate, the closer they get. Furthermore, intimacy appears
to correlate with distance more than with other important proxemic cues like, e.g.,
mutual orientation [26]. Hence, it is reasonable to expect that the distance accounts
for the social relation between two people.

One of the main contributions of the paper is that the experiments consider an
ecological scenario (standing conversations) where more than two people are in-
volved. This represents a problem because in this case distances are not only de-
termined by the degree of intimacy, but also by the need of ensuring that every
person can participate in the interaction. This leads to the emergence of stable spa-
tial arrangements, called F-formations (see Section 2.1 for more details) [39], that
impose a constraint on interpersonal distances and need to be detected automati-
cally. Furthermore, not all distances can be used because, in some cases, they are
no longer determined by the degree of intimacy, but rather by geometric constraints.
The approach proposed in this work is to consider only the distances between people
adjacent in the F-formation (see Section 2.4 for more details) [39].

The other important contribution is that, in contrast with other works in the litera-
ture, the radii of the concentric zones corresponding to different degrees of intimacy
are not imposed a-priori, but rather learned from the data using an unsupervised ap-
proach. This makes the technique robust with respect to the factors affecting prox-
emic behavior, like culture, gender, etc., as well as environmental boundaries. In
particular, the experiments show how the organization into zones changes when de-
creasing the space at disposition of the subjects and how the unsupervised approach
is robust to such an effect.

Standing conversations are an ideal scenario not only because they offer excellent
examples of proxemic behavior, but also because they allow one to work at the
crossroad between surveillance technologies, often applied to monitor the behavior
of people in public spaces, and domains like Social Signal Processing that focus on
automatic understanding of social behavior. This is expected to lead, on the long-
term, to socially intelligent surveillance and monitoring technologies [17].

The rest of this section is organized as follows. Section 2.1 introduces the main
concepts of proxemics, and Section 2.2 provides a brief survey of the state-of-the-
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art in computational proxemics. Section 2.3 presents the approach, and Section 2.4
reports the experiments and results. Finally, Section 2.5 draws some conclusions.

2.1 Fundamentals of Proxemics

The wide spectrum of nonverbal behavioral cues displayed during social interactions
(facial expressions, vocalizations, gestures, postures, etc.) is well known to convey
information about social and affective aspects of human-human interaction (atti-
tudes, personality, emotions, etc.) [60]. Proxemics has shown that the way people
use, organize and share space during gatherings and encounters is a nonverbal cue
and it conveys, like all other cues, social and affective meaning [42]. This section
provides a short description of the main findings of the discipline, with particular
attention to phenomena that can be observed in standing conversations, the scenario
investigated in the experiments of this work.

From a social point of view, two aspects of proxemic behavior appear to be par-
ticularly important, namely interpersonal distances and spatial arrangement of inter-
actants.

The rest of this section focuses on both aspects, including the most important
factors that influence them.

2.1.1 Interpersonal Distances

Interpersonal distances have been the subject of the earliest investigations on prox-
emics and one of the main and seminal findings is that people tend to organize the
space around them in terms of four concentric zones associated to different degrees
of intimacy:

• Intimate Zone: distances for unmistakable involvement with another body (lover
or close friend). This zone is typically forbidden to other non-intimate persons,
except in those situations where intrusion cannot be avoided (e.g. in elevators).

• Casual-Personal Zone: distances established when interacting with familiar peo-
ple, such as colleagues or friends. This zone is suitable for having personal con-
versations without feeling hassled. It also reflects mutual sympathy.

• Socio-Consultive Zone: distances for formal and impersonal relationships. In this
zone, body contact is not possible anymore. It is typical for business conversa-
tions, consultation with professionals (lawyers, doctors, officers, etc.) or seller-
customer interactions.

• Public zone: distances for non-personal interaction with others. It is a zone typi-
cal for teachers, speakers in front of a large audience, theater actors or interper-
sonal interactions in presence of some physical barrier.

In the case of Northern Americans, the four zones above correspond to the follow-
ing ranges: less than 45 cm (intimate), between 45 and 120 cm (casual-personal),
between 120 and 200 cm (socio-consultive), and beyond 200 cm (public). While the
actual distances characterizing the zones depend on a large number of factors (e.g.,
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culture, gender, physical constraints, etc.), the partition of the space into concentric
areas seems to be common to all situations.

2.1.2 Spatial Arrangement: The F-Formations

The spatial arrangement during social interactions addresses two main needs: The
first is to give all persons involved the possibility of participating, the second is to
separate the group of interactants from other individuals (if any). The result are the
F-formations, stable patterns that people tend to form during social interactions (in-
cluding in particular standing conversations): “an F-formation arises whenever two
or more people sustain a spatial and orientational relationship in which the space
between them is one to which they have equal, direct, and exclusive access” [39].

In practice, an F-formation is the proper organization of three social spaces (see
Figure 1 ): O-space, P-space and R-space. The O-space (the most important compo-
nent of an F-formation) is a convex empty space surrounded by the people involved
in a social interaction, every participant looks inward into it, and no external people
are allowed in this region. The P-space is a narrow stripe that surrounds the O-space
and that contains the bodies of the interactants, the R-space is the area beyond the
P-space. There can be different F-formations:

• Vis-à-vis: An F-formation in which the absolute value of the angle between par-
ticipants is approximately 180o, and both participants share an O-space.

• L-shape: An F-formation in which the absolute value of the angle between par-
ticipants is approximately 90o, and both participants share an O-space.

• Side-by-side: An F-formation in which the absolute value of the angle between
participants is approximately 0o, and both participants share an O-space.

• Circle: An F-formation where people is organized in a circle, so that the config-
uration between adjacent participants can be considered as a hybrid between a
L-shape and a Side-by-side F-formation.

The same contextual factors that influence the concentric zones described above,
affect F-formations as well.

2.1.3 Context Effects on Proxemics

Proxemic behavior is affected by a large number of factors and culture seems to be
one of the most important ones, especially when it comes to the size of the four
concentric zones described above. In particular, cultures seem to distribute along a
continuum ranging from “contact” (when the size of the areas is smaller) to “non-
contact” (when the size of the areas is larger) [31]. Further evidence in this sense
is proposed in [73], where people from “contact” cultures are shown to approach
one another more than the others, and in [66], where the culture effect has been
shown to depend on whether one considers shape of territory, size, central tenden-
cies of encroachment, or encroachment variances (the observations were conducted
on beaches). In the same vein, interpersonal distances seem to be affected by ethnic-
ity: e.g., black Americans and Mexicans living in the States appear to have different
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”contact” tendencies [31, 5]. The effect of culture seems to change when interaction
participants have seats at disposition. In this case, people from supposedly “non-
contact” cultures tend to seat closer than the others [33]. Furthermore, the seating
arrangement seems not to depend on culture [51].

Seating is just one of the many environmental characteristics that can influence
the requirements on interpersonal distance and personal space. The literature has
investigated the effect of many other characteristics as well, including lighting [1],
indoor/outdoor [13], crowding [27] and room size [75, 64, 14]. The work in [1]
investigates the effect of lighting with stop-distance techniques: Experimenters get
closer and closer to a subject that remains still and says “stop” when she starts feel-
ing uncomfortable. Subjects in bright conditions (600 lx) allow the experimenters
to come significantly closer than the subjects in dim conditions (1.5 lx). A similar
effect has been observed for the size of the place where people interact: people al-
low others to come closer in larger rooms [75], when the ceiling is higher [64][14],
and in outdoor spaces [13]. The effects of crowding have been studied as well [27]:
Social density was increased in a constant size environment for a limited period of
time and participants of larger groups reported greater degrees of discomfort and
manifested other forms of stress.

2.2 Computational Proxemics: State-of-the-Art

To the best of our knowledge, only a few works have tried to apply proxemics in
computing. One probable reason is that current works on analysis of human behavior
have focused on scenarios where proxemics do not play a major role or have relied
on laboratory settings that impose too many constraints for spontaneous proxemic
behavior to emerge (e.g., small groups in smart meeting rooms) [25, 70].

Most of the computing works that can be said to deal with proxemics concern the
dynamics of people moving through public spaces. These works typically model
repulsive/attractive phenomena by adopting the Social Force Model (SFM) [32]. In
particular, the work in [59, 65] improves the perfomance of a tracking approach by
taking into account the distance between a subject being tracked and the other sub-
jects appearing in a scene. An attempt to interpret the movement of people in social
terms has been presented in [28], where nine subjects (asked to speak among them
about specific themes) were left free to move in a 3m× 3m area for 30 minutes. An
analysis of mutual distances in terms of the zones described in Section 2.1 allowed
to discriminate between people who did interact and people who did not. In a similar
way, mutual distances have been used to infer personality traits of people left free
to move in a room [76]. The results show that it is possible to predict Extraversion
and Neuroticism ratings based on velocity and number of intimate/personal/social
contacts (in the sense of Hall) between pairs of individuals looking at one other.

Another frequent application area is social robotics. Early approaches in the do-
main simply aimed at making robots to respect the personal space of users [54],
but more recent works deal with the initiation, maintenance, and termination of so-
cial interactions by modulating reciprocal distances, showing that people use similar
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proxemic rules when interacting with robots and when interacting with other people
[68]. In [9] a generative model has been developed for selecting a set of reactive
behaviors that depend on the distance, speed, and sound of interactants. Distance
cues are used by the Roboceptionist [53] for recognizing “Present”, “Attending”,
“Engaged”, and “Interacting” people at the entrance of the Robotics Institute at
Carnegie Mellon University. In [57], a model for human-robot interaction in a hall-
way is proposed. The idea is to exploit proxemic cues for letting the robot to react
properly at the passage of an individual in a narrow corridor. In [43], a user study
focuses on the interaction between a human and a robot in a domestic environ-
ment. Interactions were analyzed exploiting the four zones and the F-formations
introduced in Section 2.1. The researchers found the Personal zone to be the most
commonly occupied one and the “vis-à-vis” F-formation to be the most frequent
spatial arrangement.

2.3 Detecting a Flexible Set of Socially Meaningful Distances

The proposed approach includes two main stages: the first is the detection of F-
formations, and the second is the inference of social relations from interpersonal
distances.

2.3.1 Detection of F-Formations

The goal of this stage is to detect F-formations in videos portraying people involved
in standing conversations. The first step is to track the people with a fish-eye camera
pointing at interactants in a bird-eye view setting (see Figure 5 for an example).
This corresponds to a realistic surveillance scenario and allows one to track people
with satisfactory precision (tracking has been performed by exploiting a particle
filter on each person [4], employing a standard background subtraction algorithm
for highlighting the moving objects [67]. The results of our approach that have been
obtained with this tracking strategy have been compared with those obtained via
manual tracking, showing very similar results). The detection of the F-formations is
performed over the output of the tracking step using the approach described in [15].
The output of the F-formations detection algorithm has been validated by hand and
it did not produce any error.

F-formations lasting for less than 5 seconds (50 frames in our implementation)
have not been taken into consideration in the experiments of this work. The reason is
that the next stage of the processing requires the application of a clustering algorithm
and 50 frames is a reasonable amount of data needed to avoid the so-called “curse
of dimensionality” [20].

2.3.2 Inference of Social Relations

The output of the first stage is a list of pairs where each element includes two
subjects that are adjacent in a detected F-formation. Furthermore, the first stage
provides the 2D position of each subject on the surface of the room. Such data
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is accumulated during a time interval (called the “stable period” hereafter) that
does not include creation, break or modifications of an F-formation (e.g., no people
change their position in the P-region). This ensures that during the time interval un-
der analysis all causes that might change the current F-formation are absent. Such
causes can be novel people being involved, people leaving, a change in the envi-
ronmental conditions like rain (people look for a repair), an intruder (e.g., a vehicle
passing by and disrupting the F-formation), etc.. The satisfaction of the conditions
above is automatically verified by checking that the relative distances between sub-
jects in a F-formation do not change abruptly (i.e., the changes do not exceed a
threshold learned automatically from the data).

During the stable period, the approach collects and pools together all pairwise
distances between individuals (for a sketch, see Figure 1 (f)). Distances are col-
lected between the centers of mass of the tracked blobs, where each blob corre-
sponds to a separate person. These are shown to distribute according to different
modes (see Section 2.4) that should correspond to the concentric zones described
in Section 2.1. The modes have been separated via Gaussian clustering by employ-
ing the Expectation-Maximization (EM) [19] learning method. The EM employed
here is a variation of the original formulation [21]; it is performed by means of a
model selection strategy that is injected in the learning stage and that shows several
properties that fit well with the situation at hand. First, it allows one to automati-
cally select in an unsupervised way the right number of Gaussian components (in
an Information Theory sense). This is a very important aspect, that permits to let the
natural separation of the data emerge without human intervention. Second, it deals
satisfactorily with the initialization issue, i.e., the Gaussian parameters fit the data
realizing a nearly-global optimal fit, minimizing the probability of overfitting (i.e.,
a Gaussian component that fit only a few data). In addition, the Gaussian clustering
takes into account in a principled way the noise due to possibly unprecise tracking,
incorporating it as a variance of the measures.

2.4 Testing the Flexible Distances

This section presents experiments and results obtained in this work.

2.4.1 Experimental Setup

The goal of the experiments is to investigate spontaneous standing conversations
in a public space, hence the tests have been performed in an outdoor area of size
3m×7m (see Fig. 5, row (i), column (a)). The area is empty (no physical constraints
or obstacles) and two groups of subjects have been invited, in two separate sessions,
to move and behave normally through it. The subjects were told that the experiments
were aimed at testing a tracking approach and were unaware of the real motivations
behind the experiments. During the sessions, the subjects were left alone and no
researcher involved in this work was present.

The experiment took place on February 2011, on a sunny day. The area was mon-
itored with a Unibrain Fire-i Digital Camera, on which fisheye optics was mounted.
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The camera was located 7 meters above the floor, and it was held to an architectural
element of the infrastructure. Therefore, the impact of the capture device onto the
ecology of the environment was minimal. The acquisition frame rate was 10 frames
per second. After the data acquisition, video data were rectified for correcting the
spherical distortion. The two sessions were 15 minutes long for a total of around
20000 frames. One quarter of hour is a duration long enough to collect evidence
of pre-existing social relations and short enough to avoid the emergence of new
relations. The first session was recorded at 11 AM and the second at 2 PM.

Each session was split into three 5 minutes long segments corresponding to three
different experimental conditions:

• Condition 1: the subjects are free to move through the entire area
• Condition 2: the movements of the subjects are restricted to an area of size 3m×

3.5m
• Condition 3: the movements of the subjects are restricted to an area of size

1.5m× 2.0m

The physical restrictions were represented by lines and marker on the floor. The goal
was to measure the effect of the amount of available space on proxemic behavior.

2.4.2 Results of Session 1

The first session involved six subjects (see Fig. 5): two undergraduate students (a
and b), an assistant professor (c), and three PhD students working in the same labo-
ratory (d, e, f ), two of them working on the same topic (e and d). The PhD students
and the assistant professor were acquainted before the experiment. The undergrad-
uate students are friends, but they never met before the other subjects. In Fig. 5
row (i) we show the results obtained in the longest stable period (subjects free to
move in the entire area, see Section 2.3.2), that in this case lasted 108 frames. The
image in column (a)-(b) is the last of the period5. In that interval, the group was
split into three dyads. The histogram in Figure 5-row (i) shows the distribution of
the interpersonal distances between members of the same dyad. The application of
a clustering approach shows the existence of two modes centered on 48 and 64 cm,
respectively. The tables in the figure report the fraction of time distances between
each pair of adjacent individuals belong to a given mode for each condition, with
the value in bold red indicating the highest (most frequent cluster membership) frac-
tion. The two modes seem to account for two of the zones identified by Hall and,
not surprisingly, the dyad involving the assistant professor is the only one where
the distance belongs with higher probability to the second mode most of the times.
This confirms that the higher social distance between the assistant professor and the
PhD student results into a physical distance that is higher (on average) than the one
between subjects a and b (who are friends and both undergraduate students), as well
as the one between subjects d and e (who are both PhD students).

5 The same applies for all the other pictures in the column (a)-(b), i.e., they are the last
frames of the corresponding stable period.
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In Condition 2 (3× 3.5 meters), the longest stable interval (122 frames) corre-
sponds to a circle F-formation, including all subjects (see Fig. 5-row (ii), pictures
at left). The clustering of the interpersonal distances of adjacent subjects reveals
this time a three-mode distribution with modes at 44, 69 and 99 cm, respectively.
The first mode accounts for the distance between a and b (the two undergraduate
friends). The second mode accounts for the distances between c, d, e and f (the three
PhD students and the assistant professor belonging to the same research group). The
third mode accounts mainly for the distances between a and e and between b and c
(the only pairs where the members were unacquainted before the experiments). In
this condition too, the physical distances comply with the social information, even
though the distance between the assistant professor and the PhD students does not
reflect the difference of status.

In Condition 3 (1.5× 2 meters), the longest stable period lasted for 914 frames.
People form a circular F-formation, giving now rise to four distinct modes in the
space of the pairwise distances (see Fig. 5-row (iii)). Once again, two close friends
a and b stand at the closest distances, separated from the rest of the subjects. In
particular, subjects b and c stand at a very high distance if compared to the other
measurements. This highlights the separation that holds between subjects that have
different status, i.e., the student and the assistant professor.

The variations across the different conditions suggest the following considera-
tions:

• The histograms show that the modes correspond to shorter distances as the space
gets smaller. However, different social relations still result into different modes.

• The fraction of distances that fall in the first mode is 67% in Condition 1, 34% in
Condition 2, and 22% in Condition 3.

In other words, the results confirm the findings about the effect of the space at
disposition of interpersonal distances and, in particular, the effects of [75] stating
that subjects prefer to keep higher distances when the environment gets smaller.

The results shown here analyzed the longest stable period in each session. Any-
way, in all the other stable periods, the results were qualitatively similar.

2.4.3 Results of Session 2

The second session involved 7 subjects (see Fig. 6): five undergraduate students
acquainted with one another (subjects a, b, c, d and g), two PhD students that are
close friends (subjects e and f ), and the representative of the students in the School
of Computer Science (subject c).
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Fig. 5 The pictures of column (a) show the physical space in which people were free to move.
The pictures in column (b) are zoomed versions of those in (a), showing the F-formations
detected in each of the three stages. The color of the links corresponds to the color of the
most frequent mode to which the distances between the linked individuals belongs to. Rows
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Fig. 6 The pictures of column (a) show the physical space in which people were free to move.
The pictures in column (b) are zoomed versions of those in (a), showing the F-formations
detected in each of the three stages. The color of the links corresponds to the color of the
most frequent mode to which the distances between the linked individuals belongs to. Rows
(i)-(ii)-(iii) refer to Condition 1-2-3, respectively (see text). Histograms in column (c) show
the distributions of the distances and the related clustering. The tables in column (d) report
the fraction of time distances between each pair of adjacent individuals belong to a given
mode. Each mode is identified by the mean, and by the range (in centimeters) of distances it
covers (written in squared parentheses). The figure is best viewed in colors.
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In Condition 1 (see Fig. 6-row (i)), the group has split into F-formations includ-
ing 2− 3 people each. Fig. 6 shows the picture of the configuration that has lasted
for the longest time (152 frames). The interpersonal distances cluster according to
three modes. In the F-formation including three people, the two PhD students (who
are close friends) appear to be closer (on average) than the third component (an
undergraduate student they are not acquainted with them).

In Condition 2 (see Fig. 6-row (ii)), the most stable configuration is a circle that
holds for 629 frames. In this case, the modes are five, but only the first three are
used to a significant extent (see the tables of column (d) with the fractions of time
distances belong to a given Gaussian component). The two PhD students (e and f )
and two undergraduate students (g and d) appear to be closer to one another than
the other participants. In the former case, this reflects the fact that they were close
friends before the experiment, whereas in the latter, it corresponds to the fact that
the two students have a romantic relationship, as it emerged from the questionnaires
collected after the experiments. The situation for the other participants is less clear,
but this probably happens because all participants are students and their social dis-
tances are thus similar. The only factors that seem to make some students closer (see
above) are then personal.

In Condition 3 (see Fig. 6-row (iii)), a circular F-formation holds for 592 frames
and corresponds to the longest stable interval. There are three modes visibile in
the histogram. The PhD students are clearly separated from the rest of the circle
(distances belonging to the third mode), while they are very close to one other. The
couple (d and g) is tighter than the other dyads as well. In this case again, closer
personal relations result into smaller distances.

It is worth to note that the effect of the amount of space at disposition leads to the
same conclusions as in session 1 (see end of Section 2.4.2).

2.5 Remarks

This section has presented a study and preliminary experiments on the inference
of social relations from interpersonal distances measured automatically via a com-
puter vision approach. The results show that, in accordance with the findings of
proxemics, people involved in casual standing interactions tend to get closer when
their social relation is more intimate. The experiments have been performed on a
limited number of individuals (13 in total), but the setting is fully unconstrained and
spontaneous and the results appear to be consistent with the expectations.

An unsupervised analysis of interpersonal distances reveals that the four zones
predicted by Hall in his seminal work emerge independently of the space at dispo-
sition of the interactants. The radii of the concentric zones are smaller than those
measured in [30, 31] for Northern-Americans, but this should not be surprising as
the subjects are from Italy, a culture likely to be more “contact” than the American
one. Furthermore, the space available to the subjects has been progressively reduced
and this has further contributed to reduce the size of the zones. The effects expected
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from the reduction of the space have been actually observed, especially when it
comes to the tendency to increase interpersonal distances.

The detection of the F-formations appears to be crucial to perform a correct anal-
ysis of the interpersonal distances. In fact, previous works in the literature did not
consider the geometric constraints imposed by the F-formations and the results have
been inconsistent. In contrast, by limiting the analysis only to the distances of negh-
boring (adjacent) people, our experiments obtain results where social and physical
distances match one another.

The next steps to be performed include not only experiments including a larger
number of subjects, but also an attempt to use the statistical distributions learned
from the data to predict automatically the degree of intimacy between individuals.
This would represent a major step towards the development of socially intelligent
surveillance technologies.

3 Voice Activity Detection Using Visual Cues in Groups

Following the analysis of non-verbal cues for the detection of social signals, our last
contribution is related to the characterization of the group interactions by proposing
a Voice Activity Detection approach only based on the automatic measurement of
the persons’ gesturing activities [16]. This work takes inspiration from the observa-
tion that people accompany speech with gestures, the range of visible bodily actions
that are, more or less, generally regarded as part of a person‘s willing expression
([40]). Far from being independent phenomena, speech and gestures are so tightly
intertwined that every important investigation of language has taken gestures into
account, from De Oratore by Cicero (1st Century B.C.) to the latest studies in cog-
nitive sciences ([52, 38]) showing that the two modalities are components of a single
overall plan ([40]).

This work presents a method for estimating the level of gesturing as a means to
perform Voice Activity Detection (VAD), i.e. to automatically recognize whether
a person is speaking or not. The main rationale is that audio, the most natural and
reliable channel when it comes to VAD, might be unavailable for technical, legal,
privacy related issues or simply for a noisy scenario. A condition that applies in
particular to surveillance scenarios where people are monitored in public spaces
and are not necessarily aware of being recorded.

Previous works take advantage of restrictive experimental setups in a smart meet-
ing room [35], deploying a system ”in the wild” designing a more credible setup
for a video surveillance system. We use solely visual cues obtained from only one
camera positioned 7 meters above the scene. In particular, the experiments focus
on people involved in standing conversations, with an automatic person tracking
system that follows each individual. Our VAD method is based on a local optical
flow-based descriptor extracted for each individual body, that encodes its energy
and complexity using an entropy-like measure. This allows one to discriminate be-
tween body oscillations or noise introduced by the tracker, where the optical flow



246 M. Cristani and V. Murino

is low and homogeneous, and genuine gestures, where the movement of head, arms
and trunk produces a local flow field which is diverse in both intensity and direction.

The descriptor extracted for each participant produces a signal that can be used
for VAD. The proposed approach is interesting for three main aspects. First, the
relationship between speech and gestures has been widely documented and studied,
but relatively few quantitative investigations of this phenomenon have been made.
Second, approaches similar to ours might help to infer information about privacy
protected data (speech in this case) from publicly accessible data (gestures in this
case): this is also important for establishing whether the simple absence of a certain
channel is sufficient to protect the privacy of people and how much. Finally, inferring
missing data from available ones can make techniques dealing with challenging
scenarios more effective and reliable.

As in the previous section, we suppose to have tracked each individual and addi-
tionally to have detected the F-formation. Thus, a square Region of Interest (ROI) is
defined around each person. The size of the ROI is set automatically to include all
gestures of the individual. Areas where multiple ROIs overlap have been ignored to
avoid possible confusions between neighboring people.

The measurement technique is applied to each ROI individually and it is expected
to accomplish two goals: the first is to discriminate between gestures and postural
oscillations typically observed when people stand. The second is to normalize the
tracking errors that cause abrupt and spurious shifts of the ROI. The body parts most
commonly involved in gesturing are hands, arms, head, and trunk. Their individual
movements tend to be very different during gesturing and the measurement values
associated to a given ROI try to capture such an aspect:

v(t) = maxint({ f (t)})× Sint({ f (t)})× Sori({ f (t)}) (4)

where { f (t)} is the set of motion flow vectors associated to each pixel of the ROI at
time t, Sint({ f (t)}) is the entropy of the motion flow intensities, and Sori({ f (t)}) is
the entropy of the orientation values, both calculated over { f (t)}6. The maximum
over the flow intensities values maxint({ f (t)}) encodes the “energy” associated to
the movement, while the two entropic terms serve to highlight those motion flow
values which exhibit higher variability in intensity and orientation. In this way, pos-
tural oscillations and shifts due to unprecise tracking receive a low score because
they cause a global, homogeneous set of intensities and orientations, correspond-
ing to low entropy values. Alternative expressions of v(t) have been considered that
use mean and median rather than maximum, or do not include one of the entropy
terms. In all cases, the resulting performance is lower than the one obtained with the
expression above. A graphical idea of the measurement is given in Figure 7 where
colours shift towards red when gesturing activity is higher.

6 The optical flow has been obtained with the package available at the following URL:
http://server.cs.ucf.edu/˜vision/source.html.

http://server.cs.ucf.edu/~vision/source.html
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Fig. 7 Qualitative analysis of our descriptor: in the sequence above, an high tonality of red
means great gesture activity.

Seq. 2Seq. 1 Seq. 3 Seq. 4

Fig. 8 Some frames of the video sequences used

3.1 Experiments on the Visual VAD

The goal of the experiments is twofold: first, to provide a quantitative measure of the
correlation between gestures and speech; second, to measure the effectiveness of the
function v(t) (see Section 3.1.2) in a VAD task. Both tasks have been accomplished
over TalkingHeads, a new dataset publicly available upon request7 (see some frames
in Figure 8).

The dataset contains four conversations lasting, on average, 6 minutes. The data
was recorded in a 3.5× 2.5 meters wide outdoor area, during a cloudy day in sum-
mer. The total number of subjects is 15 (1 female and 14 males), with 4 different
participants per conversation (only one subject participated in two conversations).
The subjects include 4 academics, 5 undergraduate students, 2 MSc students, 3 post-
doctoral researchers, and 1 PhD student. The ages range between 20 and 40 years
and the subjects were unaware of the actual goals of the experiments.

7 http://profs.sci.univr.it/˜cristanm/datasets/TalkingHeads/

http://profs.sci.univr.it/~cristanm/datasets/TalkingHeads/
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Fig. 9 Examples of signals employed in the analysis. (a) Audio input signal. (b) Video sig-
nal produced by our descriptor of a subject involved in the Seq.1. (c) The video signal was
smoothed for evaluating the crossmodal correlation (Sec. 3.1.1). (d) The video signal was
thresholded for the audio classification (Sec. 3.1.2).

Data were captured at 25 frames per second with a camera positioned 7 meters
above the floor and facing downward. The subjects were asked to wear differently
colored shirts, in order to make the tracking/localization easier. Tracking has been
performed by simple template association. The motion flow has been computed by
considering one frame every 4, reducing the video sampling period to 160 ms. The
audio was recorded at 44100 Hz with 4 wireless headset microphones, each trans-
mitting to its own receiver.

Each audio recording has been segmented into speech and non-speech segments
using a robust VAD algorithm based on pitch [41]. This latter was extracted at reg-
ular time steps of 10 ms with Praat [8], a package including the pitch extraction
technique described in [7]. The motivation behind this choice is not only that si-
lence segments are characterized by frequencies way higher than those observed
in speech, but also that the pitch tends to be correlated with the “beat” gesture
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Fig. 10 Visual analysis of the audio and video smoothed data: each plot depicts the smoothed
audio (solid blue) and the smoothed video (dashed red) signals for each participant to the
dialog. The thumbnails give the feeling of the gesturing activity carried out in a particular
instant.

typically accompanying syllables where the intonation is stressed [11, 74]. Then,
in order to synchronize audio and video data, audio was resampled according to the
video frame rate, averaging the pitch values occurring in each time period. The av-
eraged pitch values constituted the samples of the audio signal that will be analyzed
in the following.

3.1.1 Pitch-Gesturing Correlation Analysis

This section shows how the correlation between the pitch (as extracted with Praat),
and the gesturing activity (as measured with the approach proposed above) has been
measured.

After the application of the techniques described in the previous sections, each
sequences results into two signals per person, showing the value of pitch and v(t)
at regular time steps of 160 ms. Plots (a) and (b) of Figure 9 provide an example
of such signals. The simple visual inspection shows that the two signals tend to
change according to one another. However, v(t) appears to be more noisy of the
pitch because of the sensibility of the optical flow. Hence, both signals have been
smoothed with an average filter applied to 8 s long windows. Figure 9 (c) shows the
smoothed version of v(t), while the smoothed audio and video signals of a complete
conversation, normalized with respect to their maximum value, are compared in
Fig. 10.

Table 1 reports the Pearson correlation coefficients between v(t) and pitch. Off-
diagonal values account for correlations between signals extracted from different
individuals. In this way, it is possible to better assess how strong is the correlation
between speech and gestures for a given individual.
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Table 1 Quantitative measures: correlation coefficients matrix for Seq. 1 . The matrix rows
and columns corresponds respectively to the four subsampled video signals (Vsub) and the
four subsampled audio signals (Asub) (the non-significant coefficients (p-value≥ 0.05) are
underlined in red.

A sub.1 A sub.2 A sub.3 A sub.4
V sub.1 0.7310 0.1338 0.2490 0.0670
V sub.2 0.1900 0.6454 0.4460 0.0254
V sub.3 0.1867 0.1966 0.4838 -0.0356
V sub.4 -0.2592 0.0472 0.0389 0.4204

We performed a similar analysis on the other conversations, with the same param-
eters, obtaining in total four correlation matrices. Mediating over all the entries in
the main diagonal (they were all statistically significant), we obtained a mean cor-
relation score of 0.53, while considering the statistically significant off-diagonals
entries we get 0.19. This suggests that v(t) might be a reliable indicator of voice
activity. Hence, in the following section, we show how the video signal can be em-
ployed to perform VAD.

3.1.2 Voice Activity Detection

The VAD task proposed in this section consists of labeling each frame as speech
or non− speech. As an approximation, each person is treated independently of the
others even though the exchange of turns (the opportunity of speaking) tends to
follow regularities that might be helpful in improving the performance. The original
pitch signal, which has non-zero entries only when the subjects talk, is used as
groundtruth.

As a video signal to be used to infer speech, we considered the smoothed signal
described above for the correlation analysis. In this way, high frequency components
of the original signal have been filtered. The discrimination between speech and
non-speech samples has been performed with a thresholding technique. Essentially,
as suggested by Fig. 9 and Fig. 10, the video signal has a continuous component
caused by small values of optical flow that are always present in the analysis. For this
reason, we subtracted the mean to the signal, and we keep the intensities above zero,
setting them at 1’s. Smoothing and subtraction of the mean represent a thresholding
operation that does not need the tuning of any parameter.

At this point, we can compare the two signals, and the detailed analysis of Seq. 1
is shown in Fig. 11.

For the sake of clarity, we report in the figure the (normalized) continuous signals,
and not their binary versions which were actually used. As visible, many of the
speech samples are correctly captured by the video signal. The figure also reports the
precision, recall and accuracy values. In this sequence, the classifier tends to have
low recall and high precision (assuming the speech as positive values). Considering
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Fig. 11 Audio classification by video analysis. Each plot portrays the audio (solid blue) and
the video (dashed red) signals for each participant to the dialog. For the sake of clarity, we
report the (normalized) continuous signals, and not their binary versions (that we used). Pre-
cision, recall and accuracy scores related to each individual are also indicated.

all the subjects employed, we reach an average accuracy of 71%, average precision
of 67%, and average recall of 40%.

4 Remarks

This work has proposed a gesturing-based approach for performing VAD, the auto-
matic detection of people that speak. The reason for using gestures in VAD, typically
performed using speech recordings, is that the use of microphones is difficult or ille-
gal in many scenarios of potential interest, including surveillance of public spaces,
monitoring of potentially dangerous plants, etc. The core idea behind the approach
is that cognitive sciences have demonstrated that speech and gestures, far from being
independent expression modalities, are two faces of the same phenomenon. There-
fore, gestures can be considered a reliable evidence of speech taking place at the
same time.

The preliminary results presented in this paper provide a quantitative confirma-
tion of the finding above and, most importantly, show that the detection of gesturing
activity helps to predict whether a person is speaking or not with an accuracy of 71
percent (on a frame-by-frame basis). While not being conclusive about the possibil-
ity of reconstructing the actual turns and of performing diarization, the results are
certainly promising in the direction of reconstructing conversational dynamics in
absence of audio. This appears particularly important as turn-organization has been
widely shown to be fundamental in inferring socially important information such as
roles, dominance, personality, etc [71].

Besides, this work shows that it is possible to infer information about missing
data (speech in this case) from available evidence (videos in this case). In a surveil-
lance setup like the one of the experiments, this opens two conflicting perspectives:
on one hand, surveillance approaches can be significantly improved by predicting
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phenomena considered so far non-accessible with the sensors at disposition. On the
other hand, privacy protection measures applied so far (i.e., legal limitation on the
use of microphones in public spaces) might become obsolete and uneffective. In this
respect, experiments of the type presented in this work might change the notion of
privacy and of its protection.

Future work can take two major directions: the first is to move from VAD to full
diarization. This requires the application of probabilistic sequential models taking
into account temporal constraints between neighboring frames and a larger amount
of data. The second is to try automatic conversation analysis based on gestures and
to verify whether (and to what extent) it is possible to perform tasks like role recog-
nition, conflict detection, etc., typically performed using turn-organization and other
conversational cues.

5 Conclusions

The realms of automated surveillance and monitoring tend to focus solely on Com-
puter Vision and Pattern Recognition (CVPR) techniques, neglecting social, affec-
tive and emotional aspects of human behavior even if this is, in ultimate analysis,
their main subject of interest. Actually, the cross-pollination between social psy-
chology and CVPR could lead to new research questions as well as to application
domains that, so far, have not been the subject of attention in the computing com-
munity. In this chapter we show how the modeling of groups of people may be
performed by considering social and psychological theories: in particular, we ana-
lyze the detection of groups, their characterization in terms of social links among
the participants, and the inference of speech data from video cues only. Due to our
initial good results, we are deeply convinced that the cross-fertilization of human
and computer sciences for surveillance and monitoring is going to be inevitably
extended, and only in this way a new generation of surveillance systems can be
designed, making the necessary jump to go beyond the current technology, so far
advanced in incremental steps.
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zani, Alessandro Vinciarelli, Anna Pesarin, Giulia Paggetti, Diego Tosato for their remarkable
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Mobile Computational Photography with FCam

Kari Pulli and Alejandro Troccoli

Abstract. In this chapter we cover the FCam (short for Frankencamera) architecture
and API for computational cameras. We begin with the motivation, which is flexible
programming of cameras, especially of camera phones and tablets. We cover the
API and several example programs that run on the NVIDIA Tegra 3 prototype tablet
and the Nokia N900 and N9 Linux-based phones. We discuss the implementation
and porting of FCam to different platforms. We also describe how FCam has been
used at many universities to teach computational photography.

1 Frankencamera: An Experimental Platform for
Computational Photography

The Frankencamera platform creates an architecture for computational photogra-
phy. The system was originally created in a joint research project between Nokia
Research Center and Stanford University, in teams headed by Kari Pulli and Marc
Levoy, respectively. It was described at SIGGRAPH 2010 by Adams et al.[1], and
an open source implementation of the FCam API was also released in summer 2010.
In this chapter we describe the motivation for this architecture, its key components,
existing implementations, and some applications enabled by FCam.

1.1 Computational Photography

The term computational photography is today understood as a set of imaging tech-
niques that enhance or extend the capabilities of digital photography. Often the out-
put is an ordinary photograph, but one that could not have been taken by a traditional
camera. Many of the methods try to overcome the limitations of normal cameras,
often by taking several images with varying image parameters, and then combining
the images, computing to extract more information out of the images, and synthe-
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sizing an image that is in some way better than any of the input images [5, 6]. Some
approaches modify the camera itself, especially the optical path, including the lens
system and aperture through which the light travels before hitting a sensor [4].

Even though much of the computational photography predates modern mobile
devices such as camera phones, a smartphone is in some sense an ideal platform for
computational photography. A smartphone is a full computer in a convenient and
compact package, with a large touch display, and at least one digital camera. The
small form factor precludes some of the plays with novel optics, and makes it chal-
lenging to manufacture a high-quality camera system with sufficiently large lens
and sensor that can obtain good images in reasonable lighting conditions. Precisely
because of this challenge, the opportunity to collect more data from several input
images, and combine them to produce better ones, makes computational photogra-
phy an important part of mobile visual computing. However, mobile computational
photography comes with the added requirement of being able to deal with hand-held
cameras that are likely to move either during the image exposure (causing blur) or
also between capturing of the images in a burst (causing ghosting as the same ob-
jects have moved).

1.2 FCam Architecture and API

Traditional camera APIs have usually been optimized for the common simple use
cases such as taking an individual still image or capturing a video clip. If the setting
of all camera parameters is automated, and the precise parameters and intervening
image processing steps are not documented, it is difficult to properly combine the
images to create better ones. This lack of control and transparency motivated the
design of an experimental platform for computational photography. The FCam API
has so far been implemented at Stanford for a large camera that accepts Canon SLR
lenses (Frankencamera V2, or F2, see the inset in Figure 8), for two commercial
Nokia smartphones (N900 and N9) running Linux, and on an NVIDIA Tegra 3
development tablet running Android.

Figure 1 illustrates the abstract Frankencamera architecture. A key innovation
of this architecture with respect to the previous camera architectures lies in how the
camera state is represented. Most traditional camera APIs combine the image sensor
and image processor into a single conceptual camera object that has a global state:
the current set of parameter values. However, a real camera sensor is a pipeline:
while an image is being exposed, the capture parameters for the next image are being
configured, and the previous image is being read out. Also the image processor is a
pipeline: it first preprocesses the image in RAW or Bayer format, then demosaicks
the image into an RGB and YUV image, and finally tonemaps the image so it can
be displayed. If you now change the “state” of this camera system, the changed
parameters may affect non-deterministically different images. In a streaming video
application this is not so important, as the control algorithms change the values
gradually and adaptively: the knowledge of exactly which frame is affected is often
not crucial. For still imaging it is important that exactly the correct parameters affect
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Fig. 1 The Frankencamera architecture: The application processor generates Shot requests
that are sent to the Sensor. When the image sensor is exposed, any registered actions re-
lated to the Shot are executed on the Lens, Flash, or other devices. The image processor
accepts the image data, computes statistics, and performs any requested image processing
tasks. Finally, the image, the statistics plus tags from the devices are combined into a Frame.
From Eino-Ville Talvala’s dissertation [11].

deterministically only a single image. To guarantee determinism, the whole system
may have to be reinitialized and the image streaming restarted, which creates latency
especially if several images need to be captured. FCam takes a different approach
to state handling by associating the state not with the camera, but with an individual
image request called Shot. Now the state travels through the pipeline and allows
the system to proceed at a higher speed even when different images have different
parameters and state.

This innovation allows the following key capabilities to be applied at higher
speeds:

• Burst control (per-frame parameter control for a collection of images),
• Synchronization of flash, lenses, etc.,
• Specialized algorithms for auto focus, auto exposure, and auto white balance.

In the following sections we describe in more detail how these features can be used
via the FCam API, as well as some of the applications they enable.

2 Capture Control

A salient feature of the FCam API is that the camera does not have any global state.
Instead, the Sensor object receives capture requests that contain the state for the
request, and turns these requests into image data, metadata, and actions, as shown
in Figure 2. In this section we discuss the Shot, i.e. the request, and the Frame,
the data container.
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Fig. 2 The typical request generation and processing cycle. User code configures Shots,
which control the Sensor, which again fills Frames with image data and metadata, which
again are delivered back to user code. Devices can associate Actions with Shots, the Actions
are executed at a time specified with respect to the image exposure. The Devices can also tag
frames with additional metadata.

2.1 Shots and Frames

A capture request takes the form of a Shot class instance. A Shot defines the de-
sired image sensor parameters such as exposure time, frame time, and analog gain.
In addition, a Shot also has properties to configure the Image Signal Processor
(ISP) to process the image with a given color temperature for white-balance and to
configure the generation of statistics such as a sharpness map and image histogram.
Finally, a Shot also takes an Image object that defines the image resolution and
format. Figure 3 illustrates a piece of FCam API code that performs a capture re-
quest.

The call into the Sensor to capture a Shot is non-blocking, so we can keep
doing more work while the image is being captured, and even issue additional re-
quests. For each Shot that we pass down we can expect a corresponding Frame
to be returned. That Frame object contains the image data and additional informa-
tion that describes both the requested and the actual parameters that were used for
the capture, plus the statistics that we have requested. The actual parameters may
differ from the requested ones when the Shot includes a request that cannot be
completely satisfied as specified, such as too short or long an exposure time. As we
will see in Section 3, a Frame can also contain additional metadata about devices
such as the state of the flash and the position of the lens. To retrieve a Frame we
call Sensor::getFrame(), which is a blocking call that will only return once
the Frame is ready.
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FCam::Tegra::Sensor sensor;
FCam::Tegra::Shot shot;
FCam::Tegra::Frame frame;

shot.gain = 1.0f; // Unit gain
shot.exposure = 25000; // Exposure time in microseconds
shot.whiteBalance = 6500; // Color temperature
// Image size and format
shot.image = FCam::Image(2592, 1944, FCam::YUV240p);

// Enable the histogram generation and sharpness computation
shot.histogram.enabled = true;
shot.sharpness.enabled = true;

// Send the request to the Sensor
sensor.capture(shot);

// Wait for the Frame
frame = sensor.getFrame();

Fig. 3 A typical capture request.

2.2 Image Bursts

Many computational photography applications need to capture several images taken
in quick succession, and often with slightly different parameters. We call such a set
of images a burst, and represent it in the API as a vector of Shot instances. The
FCam API runtime will do its best to capture the burst with the minimum latency.

The prototypical application of image bursts is high-dynamic-range (HDR) imag-
ing. A scene we are interested in may contain a much larger dynamic range than we
can capture with a single image. That is, if we set the exposure parameters so that
details in bright areas can be seen, the dark areas remain too dark to resolve any
details, and vice versa. By combining information from images taken with different
exposure times we can generate a new image that preserves details both in the dark
and bright regions.

In Figure 4 we show sample code to generate a burst of varying exposure times
with the FCam API using a vector of Shot instances, and in Figure 5 we show the
results of a varying exposure burst which we combined into a single image using
exposure fusion [8].

3 External Devices and Synchronization

A camera subsystem consists of the imaging sensor plus other devices, such as the
flash and the lens focusing motor. It is important that the image sensor and the
devices are synchronized properly to achieve the highest throughput and correct
results. The FCam API provides a mechanism to set the behavior of these devices
per Shot, as we will describe below.
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FCam::Tegra::Sensor sensor;

std::vector<FCam::Tegra::Shot> burst(3);
std::vector<FCam::Tegra::Frame> frames(3);

// Prepare shot with color temperature 6500K,
// unity gain and 10,000 microseconds exposure
burst[0].gain = 1.0f;
burst[0].whiteBalance = 6500;
burst[0].exposure = 10000;

// Copy the shot parameters
burst[1] = burst[2] = burst[0];

// Change the exposure time for the other shots
burst[1].exposure = 20000;
burst[2].exposure = 5000;

// Reserve one storage image for each frame
burst[0].image = FCam::Image(2592, 1944, FCam::YUV420p);
burst[1].image = FCam::Image(2592, 1944, FCam::YUV420p);
burst[2].image = FCam::Image(2592, 1944, FCam::YUV420p);

// Send the request to the Sensor
sensor.capture(burst);

// Read back the Frames as they are produced
frame[0] = sensor.getFrame();
frame[1] = sensor.getFrame();
frame[2] = sensor.getFrame();

Fig. 4 Example code that produces a burst capture of 3 consecutive frames while varying
the exposure time.

3.1 Devices and Actions

For each external device that needs to be synchronized with the exposure, there is a
corresponding proxy class in the FCam implementation. We represent such devices
under a class called Device, and its behavior can be either programmed to take
effect immediately, as the exposure of a given Shot starts, or at some later time.
The behavior is controlled using another class called Action. A basic Action
has a time field that defines the execution time relative to the beginning of the Shot
exposure. When an Action is added to a Shot, the FCam runtime will take all
the necessary steps so it is ready to execute it, synchronized with the Shot expo-
sure. This synchronization is possible when the underlying camera subsystem has
predictable latencies.
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Fig. 5 A burst of five image taken with different exposures (left and bottom) are fused into
a single image that shows details both in the bright and dark areas better than in any of the
input images.

3.1.1 Flash

As a first example, we will take a look at the Flash device and its FireAction.
The Flash class represents the camera flash and has methods to query its prop-
erties, such as maximum and minimum supported duration and brightness. It also
has a method called fire() that sends the commands to the hardware device to
turn the flash on. The latency between the call to fire() and the actual flash being
fired can be queried with the method fireLatency().

In addition, to synchronize the flash with a given Shot, the Flash class pro-
vides a predefined FireAction, which specifies the starting time plus the dura-
tion and brightness for the flash. By setting the brightness and the duration of the
FireAction we can trigger the flash. Figure 6 puts these concepts together and
shows an example of flash/no-flash photography, in which two different requests are
sent to the Sensor: a Shot with a FireFlash action followed by a shot without
flash.
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FCam::Tegra::Sensor sensor;
FCam::Tegra::Flash flash;

sensor.attach(&flash);

std::vector<FCam::Tegra::Shot> shots(2);
std::vector<FCam::Tegra::Frame> frames(2);

// Prepare the shots
shots[0].gain = 1.0f;
shots[0].whiteBalance = 6500;
shots[0].exposure = 30000;
shots[1] = shots[0];

// Add flash action to fire the flash for the duration of
// the entire frame and with maximum brightness
FCam::Flash::FireAction fire(&flash);

fire.duration = shots[0].frameTime;
fire.time = 0;
fire.brightness = flash.maxBrightness();

shots[0].addAction(fire);

// Reserve one storage image for each frame
shots[0].image = FCam::Image(2592, 1944, FCam::YUV420p);
shots[1].image = FCam::Image(2592, 1944, FCam::YUV420p);

// Send the request to the Sensor
sensor.capture(burst);

// Read back the frames as they are produced
frame[0] = sensor.getFrame();
frame[1] = sensor.getFrame();

Fig. 6 Example code that produces a flash/no-flash image pair.

3.1.2 Lens

Another device that is readily available in FCam is the Lens. The Lens device
has query methods to retrieve the lens focal range, aperture range, and zoom range;
and state setting methods to set the lens to a particular focus position, zoom fo-
cal length, or aperture. Of course, not all lenses will support all settings and the
query functions return a single-valued range for those properties that are fixed. For
functions that affect the focus of the lens, the unit that is used is called a diopter;
lens position and lens speed are given in diopters and diopters/sec, respectively.
Diopters can be obtained from 100cm/ f , where f is the focusing distance, with zero
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corresponding to infinity, and 20 corresponding to a focusing distance of 5cm. This
unit is particularly suitable for working with lens positions because lens movement
is linear in diopters, and depth of field is a fixed number in diopters regardless of the
depth you are focused at.

The Lens device provides three different kinds of Action classes:
FocusAction, ApertureAction, and ZoomAction to control focus, aper-
ture, and focal length, respectively. In the Tegra implementation of FCam, there is
also a FocusStepping action that allows to cover a focal range in a given number
of steps and is useful for covering the focal range during auto focus.

Figure 7 contains a code snippet that shows how to move the lens to the nearest
focus position and capture a shot.

FCam::Tegra::Sensor sensor;
FCam::Tegra::Lens lens;

sensor.attach(&lens);

FCam::Tegra::Shot shot;
FCam::Tegra::Frame frame;

// Setup the shot parameters
shotgain = 1.0f;
shotwhiteBalance = 6500;
shot.exposure = 30000;
shot.image = FCam::Image(2592, 1944, FCam::YUV420p);

// Move the lens to the closest focus position
lens.setFocus(lens.nearFocus(), lens.maxFocusSpeed());
while(lens.focusChanging()){;}

// Send the request to the Sensor
sensor.capture(shot);

// Get the frame
frame = sensor.getFrame();

Fig. 7 Capture a shot at near focus.

3.2 Tags

When using the FCam API there is no need to keep track of the state for each
Device. Instead, each Frame that is returned by the Sensor is tagged with the
parameter‘s of all devices that had been attached to the Sensor. Each Device
that is in use has to be attached to the Sensor by calling Sensor::attach()
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before triggering the first capture. This allows the Sensor to know which devices
to notify that a Frame capture has been completed.

Tags are parameter values that are added to a Frame instance. Each device class
has an inner class to retrieve its corresponding tags from a Frame. Following our
Flash and Lens examples, the Flash provides Flash::Tags and the Lens
provides Lens::Tags. The Flash tags indicate the flash firing time relative to
the start of the exposure, its duration, its brightness, and its peak time. If the flash
was not fired, the tags will show a brightness of zero. Similarly, the Lens provides
tags that indicate the initial and final focus positions, the focus speed, and the av-
erage focus setting for a Frame. If the lens did not move during the exposure, the
three values for initial, final, and average focus position will all be the same. There
are also tags for aperture and zoom settings.

It is important to stress that accurate tagging and Frame parameters makes a big
difference in computational photography applications. Knowing the states of the
camera during the exposure allows plugging this information into our algorithms
or making a decision about the usefulness of the Frame we have just captured.
For example, one might decide to discard a Frame if the lens moved during the
exposure of the shot.

3.3 Application: Second-curtain Flash Synchronization

The richness of the API and its ability to synchronize the exposure with external
devices can be exemplified with second-curtain flash synchronization. Using the F2
Frankencamera and two Canon flash units, one doing low-intensity strobing, while
the other emits a second-curtain high-intensity flash at the end of the exposure, it is
possible to produce the effect shown in Figure 8. A long exposure captures the path
of the cards as they fly into the air, and the final bright flash freezes the cards to their
final positions in the image.

4 Automating Capture Parameter Setting

Early photographers had full control of every stage of photography, and they had to
make explicit selections of all the variables affecting the creation of a photo. They
had to estimate the amount of light in the scene and how that should be taken into
account in selection of the lenses, aperture setting, or exposure time. Some of the
exposure problems could be still treated during the interactive film development
and printing stages. Modern cameras make photography much easier as they have
automated most of these decisions. Before the actual image is taken, the camera
measures and tries some of the parameters. This process typically consists at least
of these three tasks: auto exposure, auto focus, and auto white balance, also known
collectively as 3A. Video is controlled continuously: the camera analyses the previ-
ous frames, and based on the analysis the exposure, focus, or white balance values
are slowly and continuously modified for the following frames.
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Fig. 8 Second-curtain flash: one flash strobes to illuminate the path of the flying card, while
the other one freezes the motion at the end of the exposure. Image by David Jacobs.

Traditional camera control APIs completely automate these tasks and do not al-
low the user to modify them. Sometimes the user can override the precise camera
control parameter values, but it is not possible to provide different metrics or algo-
rithms for determining those values automatically. The default 3A produces values
that in most cases provide a good image, but is optimized for the average situation,
not for the current application. For example, in a security application the camera
should make sure that the faces of the people remain recognizable, or the register
plates of the cars can be deciphered, but it does not matter if the sky is completely
saturated. FCam, on the other hand, allows you to implement your own parameter
setting algorithms that are suitable for your needs.

In this section we discuss the default 3A algorithms provided by FCam, together
with some advanced algorithms.

4.1 Auto Exposure

The auto exposure algorithm determines how much light should be collected to
create an image so that it is not too dark and does not saturate. There are several
parameters that affect the exposure, the most obvious one being the duration of the
exposure. Other parameters include the amount of gain applied in the conversion
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of analog sensor signal to digital, and the size of the aperture in the lens system.
Since the size of the aperture affects also other parameters such as depth of field, it
is usually kept fixed by the auto exposure routines. In dark conditions it is better to
increase the exposure time to collect more light, but on the flip side this allows both
the camera and objects in the scene to move, which causes blur. By increasing the
analog gain, also known as the ISO value, one can shorten the exposure time and
still get a sufficient large signal, but by amplifying the signal, the noise is amplified
as well, and the likelihood of saturating the light representation increases, so the
limits for modifying gain are fairly narrow. The gain and exposure time are usually
multiplied together, and this product is called exposure.

FCam provides a sample auto exposure function that allows the user to set two
numbers for an exposure target. The first number is a percentage P, and the second
number is target luminance value Y . For example, values P = 0.995,Y = 0.9 mean
that the system tries to find an exposure value so that 99.5% of the pixels have
a value that is at most 0.9 (1.0 means the pixel is saturated). These values mean
metering for highlights, so that the details in bright areas remain visible. Setting
P = 0.1,Y = 0.1 can be interpreted so that at most 10% of the pixels should have a
value 0.1 or less, metering the image so that details in the shadows remain visible.

What makes choosing the perfect exposure value difficult is the inconvenient fact
that the dynamic range of the sensor is quite narrow, so it is often impossible to
take a single image in which details both in the dark and bright areas remain visible,
as discussed earlier with HDR imaging. A typical heuristic for capturing an HDR
burst is to meter for one normal image, and then choose a fixed number of images
that are taken with increasing and decreasing exposure settings. For example, if the
auto exposure routine gives an exposure duration of 20ms, the bracketing heuristic
could choose durations of 1.25, 5, 20, 80, and 320 milliseconds for the five shots in
the burst. A better heuristic would find first the shortest exposure so that no pixel is
(or only a few pixels are) saturated, and then increase the exposure times as long as
there are pixels that remain very dark. However, neither heuristic adapts well to the
actual distribution of the light in the scene.

Gallo et al.[7] developed a metering method for HDR imaging that attempts to
take the smallest number of images while still accurately capturing the scene data.
An advantage of taking only a few shots is that the capture takes shorter amount of
time, leaving the scene objects less time to move around. Also, a burst containing
fewer images can be processed faster, and there is a smaller chance to create spurious
artifacts, especially when objects are moving.

Figure 9 illustrates the method of Gallo et al.[7]. The red curve on the left shows
the light histogram for the office scene shown in the middle. The areas marked by
red rectangles in the office scene are shown enlarged on the right. Gallo’s method
selects only three images with exposure times of 0.03, 1.3, and 20 seconds, pro-
ducing the detail HDR images on the first column on the right, while an auto-
bracketing method with five images produces more noisy result, which is illustrated
in the second column from the right. The trick is that Gallo first estimates the whole
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Fig. 9 HDR metering: luminance histogram (red) with three chosen exposures (green); office
scene; noisy HDR with 5 bracketed images; better HDR with 3 better-metered images. Image
by Orazio Gallo.

luminance histogram, and then places the images such that they capture in their most
sensitive region the parts of the histogram that are strongly represented in the scene.
The method was implemented on an NVIDIA Tegra 3 developer board using FCam
on Android.

4.2 Auto Focus

Another important parameter to choose is the focus distance. Sometimes it is desir-
able that as much of the image as possible remains sharp, but at other times only
the object at the center of attention needs to be sharp, while the unimportant back-
ground should be somewhat blurred. Most automated focus routines try to maximize
the sharpness either over the whole image or over its center.

FCam provides a sample auto focus implementation. It uses a simple sharpness
measure evaluated either over the whole image or a user-specified window. The
sharpness measure is a sum of absolute differences of the intensity of neighboring
pixels. The idea is that, if the image is blurred, the neighboring pixels have quite
similar intensity values, while textured surfaces that are in focus have pixels with
higher variance in their intensity values. The sample implementation simply sweeps
the lens and gathers sharpness statistics, estimating the single lens position that max-
imizes the sharpness within the evaluation window.

Vaquero et al.[13] implemented a method that computes an all-in-focus image.
If some of the scene objects are very close and others are far, it may be impossible
to take a single image in which everything is in focus. However, if one captures
several images focused at different depths, one can then afterwards combine them by
selecting pixels separately from different images based on their sharpness estimate,
as illustrated in Figure 10.

The benefits of auto focusing for focal stacks are similar to metering for HDR
stacks. Even though one could simply take an image focused at every depth, it is
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Fig. 10 Three images (left) were taken, focused in objects in foreground (top), middle
ground (middle), and background (bottom), and combined into a single image that is sharp
everywhere (right). Image by Daniel Vaquero.

better to only take those images that actually bring new information, yielding a
faster capture time, faster processing time, and fewer chances of creating processing
artifacts.

4.3 Auto White Balance

The human visual system quickly adapts to the color of ambient illumination and
mostly discounts it, allowing good color perception under varying lighting condi-
tions. This is much more difficult to do for a camera, and may result in images with
a strong color tint, and appear both unnatural and very different from how a hu-
mans perceive the same situation. One reason for this is that the camera has a much
smaller field of view than people and thus cannot as accurately estimate the color of
the ambient illumination. Another reason is that the mechanisms of color constancy
in human perception are still not completely understood.

The FCam sample auto white balance implementation uses a simple heuristic
called the gray world assumption. The idea is that many scenes have many objects
that do not have a color that differs from some shade of gray, including white, black,
and anything in between. FCam further simplifies the assumption so that it attempts
to balance the amount of blue and red light, as they correspond psycho-physically
to cold and warm colors, while green does not have as strong perceptual effect.
The sensor is pre-calibrated with two color correction matrices, one to correct a
scene with blueish tint and another to correct a scene with reddish tint. The relative
amounts of blue and red light in the captured image determine how these two color
correction matrices are interpolated before they are applied to correct the image
colors.
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4.4 Building your Own Camera Application

It is easy to write your own custom camera application using FCam. A basic cam-
era application streams frames continuously, and for each captured Frame the user
is provided with statistics that allow 3A to be performed, either by using the sam-
ple implementation or the user’s own, more sophisticated heuristics. The streaming
Shot parameters are updated and the Frame displayed to the user. These function-
alities could be implemented using the simple example code shown in Figure 11.

While the FCam API can take care of the camera control aspect of the camera
application implementation, the display and UI are system-dependent. On the N900
platform the Qt framework is used for the UI and display. On the Tegra 3 platform
the Android framework is used instead. An Android UI is built as a Java compo-
nent that sets up the Android views. The FCam API is a native API, and therefore
requires using the Java Native Interface (JNI) for the communication between the
Java Virtual Machine and the native library that contains the FCam code. The UI
generates events that are passed to the native camera implementation that runs on

FCam::Tegra::Sensor sensor;
FCam::Tegra::Shot shot;
FCam::Tegra::Frame frame;
FCam::Tegra::Lens lens;
FCam::Tegra::AutoFocus autoFocus(&lens);

// Viewfinder resolution
shot.image = FCam::Image(1280, 720, FCam::YUV240p);

// Enable the histogram generation and sharpness computation
shot.histogram.enabled = true;
shot.sharpness.enabled = true;

// Attach the lens device to sensor
sensor.attach(&lens);

// Send a streaming request to the sensor
sensor.stream(shot);

while(1) {
// Wait for the frame
frame = sensor.getFrame();

// Display the frame
display(frame);

// Do 3A
FCam::autoExpose(&shot, frame);
FCam::autoWhiteBalance(&shot, frame);
FCam::autoFocus(frame, &shot);

// run the shot with the updated parameters
sensor.stream(shot);

}

Fig. 11 A basic camera implementation.
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Fig. 12 FCameraPro: A custom camera application built using FCam.

FCam. We have built a sample application called FCameraPro depicted in Figure 12.
This application can be modified without much effort to try out new algorithms and
techniques.

5 FCam Platforms

The Frankencamera architecture and FCam API began as a joint research project be-
tween Nokia Research Center and Stanford University Graphics Lab. Nokia was at
the time working on a family of smartphones that ran Linux (the version was earlier
called Maemo, later renamed to Meego) and that used the TI OMAP 3 processor.
Mistral had also made OMAP 3 boards available even for hobbyists, and the project
chose OMAP 3 and Linux as the common HW and SW platform. This led in par-
allel to two related implementations: the Nokia N900 used the standard hardware
that the phone shipped with and allowed much more flexible use of that hardware
than the camera stack that came with the phone, and the Stanford Frankencamera
V2 (F2) used the Mistral OMAP 3 board together with a Birger lens controller that
accepts Canon EOS lenses. The N900 allowed a relatively cheap mass-marketed
FCam solution, while F2 provided an extensible research platform that allowed ex-
perimentation with different optics and hardware choices.

The FCam in N900 was not “officially” supported by the Nokia product program,
it was a “community effort” maintained by the Nokia Research Center. However, the
follow-up product N9 now provides official support for the FCam API. Currently,
most active FCam development happens on NVIDIA’s Tegra-3-powered develop-
ment tablets running Android.
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5.1 The FCam Runtime

At the core of any of the FCam implementations is the FCam runtime. The runtime
is made of a set of components that take FCam API calls, configure the camera
subsystem for execution, and return captured frames. In Figure 13 we show the
block-diagram of the FCam implementation running on the NVIDIA Tegra 3 pro-
totype board. The runtime is made of the FCam API objects and runs a number of
threads. The first is a Setter thread that manages the incoming requests queue,
programs the hardware, and computes the absolute time at which actions should be
executed. Secondly, an Action thread manages the action queue; it wakes up for
each scheduled action and launches its execution. It is important that the work an
Action launches on execution is bounded, otherwise the thread could miss the ex-
ecution deadline for the following Action. If necessary, an Action could spawn
a new thread to achieve completion. Finally, a Handler thread receives callbacks
from the camera driver with image data and metadata, assembles these data into a
Frame instance, and delivers it to the Sensor output queue. On the left side of
Figure 13 is the camera hardware, the NVIDIA Tegra 3 SoC (system-on-chip), the
Linux kernel drivers and the NVIDIA camera driver. The NVIDIA camera driver
takes parameter requests and assembles commands to configure the ISP or calls the
corresponding kernel device driver, according to the request.

Having given the basic components of an FCam implementation, we now enu-
merate the steps necessary to convert an application request into image data:

1. The application makes a capture request into the Sensor passing a Shot.
2. The Sensor takes the Shot and places it in the request queue that it shares with

the Setter thread.
3. At the next indication that the camera subsystem is ready to be configured, the

Setter thread takes the first element of the request queue. For each Action
in the Shot it computes its execution time and schedules it in the action priority
queue. It also sends commands to the NVIDIA camera driver to configure the
image sensor and ISP with the requested parameters.

4. The Action thread wakes up and executes any Action that is synchronized
with the current Shot. Each Action will trigger a command into the NVIDIA
camera driver.

5. The NVIDIA camera driver abstracts the underlying camera hardware. It receives
commands and programs the corresponding kernel device drivers.

6. When the image data and metadata are ready, the NVIDIA camera driver delivers
them to the Handler.

7. The Handler assembles a Frame and puts it into the frame output queue.
8. When the frame output queue receives a new Frame the Sensor delivers it to

the application.

To further expand on the pipeline aspects of the FCam runtime, we now turn our
attention to the timeline of events that are needed for proper configuration of the
image sensor. An image sensor might require state changes to be precisely timed.
For example, an image sensor could have a dual set of registers, and the system
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Fig. 13 A block-diagram of the FCam implementation on the Tegra 3 Prototype. Adapted
from the original block-diagram by Eino-Ville Talvala [11].

writes into one of them the parameters that will become active at the frame reset. Or
it could be the case that the change to a particular register is applied immediately.

The image sensor in the Nokia N900 is a Toshiba ET8EK8 rolling shutter CMOS.
The sensor requires that the exposure time and frame duration be programmed one
frame ahead. The sensor emits a vertical synchronization (VSync) interrupt that is
used to synchronize the FCam runtime. At the VSync interrupt the FCam runtime
sets up the exposure time and frame duration for the following frame and the sensor
gain for the current one, as shown in Figure 14. A similar timeline is implemented
on the Tegra 3 Prototype running the Omnivision 5650 CMOS sensor.

5.2 Porting FCam

As we have seen from the implementation details, porting the FCam API to a new
platform requires deep knowledge of the underlying OS and camera stack. It is also
necessary that some of the system drivers be flexible enough to accommodate all the
parameters that the FCam runtime needs to set. Finally, it is important that consistent
latencies can be computed in order to schedule actions correctly.

The N900 implementation required the modification of the Video For Linux 2
(V4L2) kernel driver. Once the changes were done, the FCam runtime was imple-
mented calling the device drivers directly. However, not all platforms allow for user
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Fig. 14 Timeline of events for configuration of the image sensor. From Eino-Ville Talvala’s
dissertation [11].

applications to call functions running in hardware device drivers. Porting the FCam
API to the Tegra 3 platform required tweaks at different levels of the software stack
because only system processes are allowed to access the camera drivers in Android.
User applications need to connect to the Android mediaserver process to send re-
quests to the camera hardware.

As camera APIs evolve, it is expected these will become more flexible and enable
high-throughput computational photography applications.

6 Image Processing for FCam Applications

FCam is meant for camera control, not for intensive image processing. For that there
are other tools and APIs. In this section we describe three: OpenCV computer vision
library, OpenGL ES 2.0 graphics API, and NEON intrinsics (NEON is a SIMD-type
co-processor for ARM CPUs).

6.1 OpenCV

OpenCV [3] is the de-facto standard computer vision API. It originated at Intel, and
the original alpha version was released in 2000. After Intel stopped development of
OpenCV, companies such as Willow Garage, Itseez, and NVIDIA have supported its
development. It has over 500 algorithms for all types of computer vision and image
processing tasks. It is available on most operating systems, including Windows,
Linux, MacOS, and Android. Figure 15 illustrates a subset of OpenCV functionality,
and shows a sample OpenCV program running on an Android smartphone.
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Fig. 15 OpenCV supports a large array of computer vision and image processing functions.
The image on the right shows an OpenCV example running on an Android phone, doing a
real-time edge detection on the input video stream coming from the camera.

Originally OpenCV was developed and optimized for execution on Intel CPUs,
but it has now been compiled for many different hardware platforms, including the
ARM processor that powers most smartphones and tablets. A relatively recent de-
velopment is the addition of the GPU module, that leverages the processing power
of modern CUDA-capable graphics cards on desktop and laptop computers [10].
NVIDIA is also tailoring OpenCV so that it can use the hardware capabilities on its
Tegra 3 mobile processor, which includes four ARM CPU cores, each with a NEON
co-processor, and GPU supporting OpenGL ES 2.0.

OpenCV is a well-documented library that makes cross-platform vision or image
processing applications easy. You can develop and test the application first on a
desktop computer, and once the basic logic is working, easily port the application to
a mobile device for further finetuning and optimizations.

6.2 OpenGL ES 2.0

In addition to the CPU, most computers have another powerful processor, the GPU
(Graphics Processing Unit). The first generation of mobile graphics processors sup-
ported OpenGL ES 1.0 and 1.1, which had the traditional fixed-function graphics
pipeline that makes the use of the GPU for anything other than traditional computer
graphics cumbersome and inefficient. OpenGL ES 2.0 [9] increased the flexibility
considerably by introducing segments called vertex and fragment shader, where the
programmer can provide a compilable program. In particular, the fragment shader,
which is run for each pixel, is a useful tool for image processing. The typical se-
quence is to upload the input image into a texture map, map the texture into a pair
of triangles that cover as many pixels as the size of the output image, perform the
image processing in the fragment shader, and finally read back the processed image
to your own program.
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6.3 NEON Intrinsics

Most mobile devices such as smartphones and tablets use ARM CPUs, and most
high-end mobile devices have also a co-processor called NEON [2]. NEON provides
SIMD (Single Instruction, Multiple Data) architecture extension, allowing one in-
struction to operate on multiple data items in parallel. NEON extensions are partic-
ularly useful when you have to operate on several pixels in parallel, and can provide
up to 10 times speed increase on some image processing algorithms. The NEON
instructions can be accessed via C intrinsics, which provide similar functionality to
inline assembly, and some additional features such as type checking and automatic
register allocation, which make their use easier than inline assembly. The program-
mer needs to map the data to special NEON datatypes, then call the intrinsics that
actually operate on the data, and finally map the processed data back to regular C
data structures.

6.4 How Should you Choose Which Solution to Use?

Each of the cited options for performing the image processing has its own limita-
tions. If we list the choices in order of ease-of-use, OpenCV is probably the easiest to
get started with. NEON is more flexible than OpenGL ES, which has some surprises
such as limited floating point precision and limited storage precision for storing in-
termediate results. However, when one considers the speed of execution, and energy
consumption, the order becomes the reverse. Pulli et al.[10] report measurements
of several image processing algorithms implemented on ARM CPU, ARM with
NEON instructions, and OpenGL ES. Use of GPU is more efficient both in time
and energy than the other options, followed by NEON, and pure CPU remaining
the last one. To make the developers’ lives a bit easier, NVIDIA optimizes OpenCV
for its Tegra mobile SoC so that the implementation internally uses multithreading
(making use of up to four ARM cores), NEON intrinsics, and GPU via OpenGL ES,
when it makes sense. Although the result is still not quite as optimal as if the pro-
grammer would hand-tune the whole application to these execution units, the user
gets still a significant speedup compared to a naive implementation with relatively
little programming effort.

7 FCam in Teaching

One of the design goals of FCam was that it should be simple to use, and this feature
makes it also an excellent tool for projects in university courses on computational
photography and other related topics. In fact, an inspiration for FCam was a 2008
Stanford University course on Mobile Computational Photography (taught by Marc
Levoy, Andrew Adams, and Kari Pulli). The students did the course projects using
standard Symbian camera APIs, and that API was too restrictive to implement re-
ally interesting computational photography projects. Two years later, in winter 2010
FCam was ready for a new version of the same course (taught by Marc Levoy, Fredo
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Durand, and Jongmin Baek). The first homework for the students was to implement
their own auto focus routine on a Nokia N900. That is a task in which professional
engineers invest several months if not years, and would normally be too cruel a task
for just getting started on programming a camera. The fact that all the students could
finish the assignment in a week, and that some even delivered a better solution than
the one the camera phone shipped with, shows that with good tools great things can
be achieved.

After the first course, different universities have used FCam in their courses on
a couple of dozens top schools in North and South America, Europe, and Asia. We
next describe two representative projects from those courses.

7.1 A Borrowed Flash

During the first FCam-based course, at Stanford in 2010, students Michael Barrien-
tos and David Keeler decided to address the problem of red eyes due to flash. If the
flash is close to the camera, the light enters the eye, is colored by the blood vessels
feeding the retina, and is reflected back to the camera, and the eyes appear red, as
illustrated in Figure 16 left. One red eye reduction technique briefly flashes a light,
tricking the pupils to contract, which reduces the red eye phenomenon significantly.
Another way is to move the light source further away from the camera.

In a camera phone there is not much room to move the flash more than a few
centimeters away from the camera — that is, if the flash is still to remain in the
same device. This project utilized the synchronization capabilities of the FCam API
to borrow the flash from another device. When the main device is ready to take a
photo, it signals the other device that intent over the Bluetooth wireless connection.
The students were able to synchronize the two cameras accurately enough so that
the flash on the second camera went off exactly as the first camera took the image,
producing the image in Figure 16 right, where they eyes are not red. This project
was implemented on a Nokia N900.

Fig. 16 A borrowed flash. The left image shows the results when the flash is too close to
the camera: the eyes appear red. On the right image the Nokia N900 communicated with a
second N900 so that the flash of the second camera illuminated the target while the first one
took the image. Image by Michael Barrientos and David Keeler.
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7.2 Non-Photorealistic Viewfinder

During the winter of 2012 version of the Stanford course (taught by Jongmin Baek,
David Jacobs, and Kari Pulli), students Tony Hyun Kim and Irving Lin developed a
non-photorealistic camera application. The application was developed for the Tegra
3 prototype board that the students used to implement their assignments. Output
frames are post-processed using OpenGL ES before being displayed. Two shaders
were written to give the non-photorealistic feeling: a bilateral filtering shader and
an edge detection shader. The bilateral filter creates a flat, cartoonish rendition of
the viewfinder image, and the edge detector further enhances the edges between dif-
ferent regions, providing more of a hand-drawn feeling. FCam was used to control
flash to help separate foreground from background. The resulting application runs
at an interactive frame rate on the NVIDIA Tegra 3 GPU. A screenshot is shown
in Figure 17. Such an effect could be easily added to a camera application in a
commercial device.

Fig. 17 A non-photorealistic viewfinder on NVIDIA Tegra 3 tablet. An OpenGL ES 2.0
fragment shader filters the viewfinder frames in real time to give it a live video cartoon look.
Image by Tony Hyun Kim and Irving Lin.

8 Conclusions

We have presented the FCam API and its applications to mobile computational pho-
tography. As we discussed, traditional camera APIs provide little control over the
camera subsystem. By treating the camera subsystem as a pipeline in which its
state is associated with a request, the FCam API proves powerful for computational
photography applications because:

1. It provides deterministic and well defined control over image bursts,
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2. It allows for novel imaging effects by providing tight synchronization with the
flash, lens, and other devices, and

3. It enables the user to build her own auto control algorithms targeting specialized
applications.

In our discussions we highlighted each of these qualities by showing relevant ap-
plications. We showed how to use the per-frame control to program an HDR imaging
application, how to use the synchronization capabilities to implement a borrowed
flash, and how to extend the traditional metering algorithms for efficient HDR cap-
ture and all-in-focus image capture. In addition, a complete camera application can
be written using the FCam API and enhanced with the image processing capabilities
of today’s mobile phones and tablets. The API is simple enough for university stu-
dents to tackle computational photography projects. The non-photorealistic preview
application, developed by students in a Computational Photography course, high-
lights how we can integrate camera control with image processing on the GPU to
produce new stylized images.

The example applications and code snippets we have presented use a single cam-
era; however, the number of mobile devices that have two or more cameras is rapidly
increasing, opening the door for new API extensions. In [12] we have started to ad-
dress multiple camera enumeration and synchronization in FCam.
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