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Abstract. Despite the ongoing progress to chart the differences between
the healthy controls and patients at the group level, the pattern classifi-
cation of functional brain networks across individuals is still a challenging
task. The difficulties include the very high dimensional feature space and
very small sample size, as well as the probably high noise level. In this
paper, we apply the stable sparse regression to pick the very few most
discriminant features (edges) for the following classification. We consid-
ered different noise to signal ratios and sparsity controlling parameters
and numerical experiments based on simulated data demonstrate the
much better classification performance via the feature selection based on
the sparse regression.

Keywords: sparse regression, feature selection, stability selection,
classification.

1 Introduction

The human brain is among the most complex network systems in the world, con-
sidering that it comprises about one hundred billion neurons, with thousands of
trillions of connections between them. The anatomical and physiological studies
in past few decades provided a significant body of evidence for the important
role of structural connectivity in shaping physiological responses. Meanwhile,
functional connections that describe statistical dependencies are derived from
observations of neural time series, reflecting functional segregation and local-
ization of function in neuroscience. That is to say, the human brain can be
considering as a large-scale network, with nodes being distinct brain regions and
edges representing functional or structural connectivity among them [1, 2].
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In this paper, we are focusing on pattern recognition and classification based
on the brain network. Most existing research on brain networks simply focuses
on describing group differences between subject classes (knowing the label of
each subject) and cannot classify or predict the brain behavior across individu-
als, due to the relatively small number of subjects, very high dimensional feature
space (consisting of the network edges) and probably high level noise, leading
to the over-fitting training data and curse of dimensionality problem. Therefore,
in this paper, we are focusing on selecting a small number of most discrimi-
native features, to significantly reduce the dimension of the feature space and
correspondingly enhance the classification performance. It is quite reasonable to
perform feature (edge) selection, because usually only a small proportion of the
pathways in the brain might be responsible for the dysfunction or certain task
of the brain network.

Recently, sparse modeling, as a rapidly developing area at the intersection
of statistics, machine-learning and signal processing [3, 4], can find out a small
number of the most relevant variables in a high-dimensional feature space and
therefore is most appealing for practical feature selection. It has been applied to
many problems, including the voxel selection to localize brain activation patterns
corresponding to different stimulus classes or brain states [5–7].

In this paper, we study the application of sparse regression to the feature
(edge) selection in brain network with an aim to identify a small proportion
of the discriminative functional pathways and brain regions. While there have
existed some related work [8, 9], the deep study of sparse regression for feature
selection on the brain network is still very limited. For example, the effects of
the different signal and noise ratios and the discussion of the different sparsity
levels have not been considered. In this study, we will deepen the existing study
in the above two aspects. Notice that while our study is not limited to a specific
type of network, we are mainly focusing on the network based on the functional
MRI, and will mainly use the simulated data, since our main goal is to evaluate
the methodology of the stable sparse regression.

2 Methods

2.1 Subjects

In total, the fMRI data of 100 subjects is generated and equally divided into 2
groups, i.e. Group 1 and Group 2, respectively. Group 1 and Group 2 differs with
each other mainly in terms of the strength of functional connectivity between
certain regions and we will explain it in more details later. As we know, the
simulation data is usually designed to facilitate the deep understanding and
testing of a variety of analytic or computational methods before they can applied
to the real data.

We adopt a data generation model that is consistent with the spatiotempo-
ral separability assumptions of independent component analysis (ICA), that is,
data can be expressed as the product of time courses (TCs) and spatial maps
(SMs). For each subject, the spatial map is the same, because we are considering
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the connectivity between same brain regions. Here we are considered 256 brain
regions, and the 256 regions are further divided into two categories, i.e. 87 active
regions and 169 non-active regions. They differ in terms of the definition of the
corresponding time courses. For each region, we define its average time course
with T time points in length. Its construction is under the assumptions that
component activations result from underlying neural events as well as noise. In
this simulation, each time course has T = 160 time points. For the active re-
gions, the time course is divided into several blocks. The signal value of each
task block is set to be a positive value between 0.9 to 1, while the signal value
for the resting blocks is set to be 0. As the non-active regions, the time course
is defined using random time series,defined by normal distribution with mean
being 1 and the standard deviation being 1. In order to test the robustness of
the classifiers, we add different levels of Gaussian noise.

The functional connectivity is established by calculating the covariances of the
time courses between different regions. We have 256 regions and correspondingly
the generated network of each subjects has 256×255/2 = 32640 edges. Groups 1
differs with Groups 2 in terms of the functional connectivity strength of 6 edges.

2.2 Sparse Logistic Regression

In this paper, we are considering the functional connectivity of each subject and
correspondingly the feature vector consists of all the edges. The number of edges
is typically very big in practice and it is 32640 in our simulated data. That is
to say, each subject is defined in a 32640-dimensional feature space. The high
dimension of the feature space often bring difficulty for the following classifiers
no matter in terms of computational cost or classification accuracy. Therefore we
want to perform dimensional reduction by selecting the small number of most
discriminative edges, which are used to form a much lower dimensional new
feature space.

We use sparse Sparse Logistic Regression based supervised learning to perform
the feature selection. The basic formulation of the sparse logistic regression is

min
x

‖Ax− y‖22 + λ‖x‖1, (1)

whereA is the training data matrix, where each row is a 32640 dimensional vector
representing one subject, and each column represents a feature; x is the unknown
regression coefficients; y is the known label vector for the training data, with 1
representing the subject in Groups 1 and −1 for the Groups 2. The �1 norm
‖x‖1 is the sparsity regularization term, and λ is the regularization parameter
that controls the degree of sparsity. A larger λ leads to x with more zeros, i.e. a
more sparse coefficient vector. There have existed many different solvers for the
above sparse logistic regression model and in the paper we use the solver ”SLEP:
A Sparse Learning Package ” developed by the Arizona State University [10].
By solving the sparse regression problem, we obtain the regression coefficients
x whose absolute value indicates the contribution of the corresponding edges to
discriminating these two groups.
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Randomization for Stability Selection. Due to the presence of the correla-
tion in the training data matrix A, we adopt the randomized sparse regression
called stability selection [13] to improve the performance of the sparse feature
selection method. The randomized sparse regression is to repeat solving many
similar sparse regression problems as (1). Each problem is generated by ran-
domly perturbing the data matrix A via taking only a fraction of the training
samples and randomly scaling each feature, in our case each edge. By counting
how often each edge is selected across the repetitions, each edge can be assigned
a score. Higher scores denote variables likely to belong to the set of the true
discriminative edges.

2.3 Support Vector Machine

There have existed many classifiers and in this paper we take the widely used
Support Vector Machine (SVM) as an example to demonstrate that our feature
selection can help improve the classification accuracy of SVM [11].

Support Vector Machine (SVM) is a specific type of supervised machine learn-
ing method that aims to classify data points by maximising the margin between
classes in a high-dimensional space and it adopts the �2-norm regularization to
avoid over-fitting. This optimization problem belongs to quadratic programming
and can be efficiently solved by many specific solvers such as sequential mini-
mal optimization. Like most of classification methods, SVM involves the training
stage and the testing stage. The goal of SVM is to produce a model based on the
training data to predicts the target values of the testing data. The traditional
SVM performs linear classification, but non-linear classification can also be per-
formed by incorporating the so called the kernel trick, which implicitly maps
the inputs into high-dimensional feature spaces. Due to its outstanding practical
performance and solid theory guarantee based on the statistical learning, SVM
becomes one of the most popular classifiers and therefore in this paper we use it
to demonstrate the performance of our feature selection scheme based on sparse
optimization.

Consider a training data set D = {(xi, yi), i = 1, . . . , n} where xi ∈ Rd

are data points and yi are labels. The problem of learning a linear classifier,
y = sign(ωTx + b), where y = {1,−1} or a linear function y = wT + b where
y is a scalar can be understood as estimating {ω, b} from D. Over the years
Support Vector Machines(SVMs) have emerged as powerful tools for estimating
such functions.

To develop notation we briefly discuss the problem of training linear classifiers.
The SVM formulation for linearly separable datasets is given by

3 Numerical Results

In this paper, the classification accuracy is measured by the commonly used
quantities, such as generalization rate (GR), sensitivity (SS) and specificity (SC).
Here The proportion of all subjects that were correctly predicted is evaluated by
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the GR; SS is defined as the proportion of correctly predicted Group 1 subjects,
while SC represents the proportion of correctly predicted Group 2 subjects. Their
formulations are shown below:

GR = (TP+ TN)/(TP+ FN+ TN+ FP)

SS = TP/(TP+ FN)

SC = TN/(TN+ FP),

where TP is the number of the Group 1 subjects correctly predicted; FN is the
number of the Group 1 subjects classified as in Group 2; TN is the number
of the Group 2 correctly predicted; FP is the number of the Group 2 subjects
classified as in Group 1 [12]. In this paper, we are using the leave-one-out cross-
validation, which use a single subject as the test data and all the remaining as
the training data. Each of the 100 subjects is chosen as the test data in turn
without missing or repetition, and finally we calculate the value of TP, FN TN,
FP, where TP+ FN+ TN+ FP = 100.

We use the Support Vector Machine (SVM) as the classifier, which is provided
by the toolbox of MATLAB 2012b and the default parameters are used. We
first do not perform the feature selection and use all the 32640 edges as the
input of SVM, run SVM and record the classification results. Then we first
perform edge selection by sparse regression, and then only use the information
of the very few number of selected edges as the input of SVM, run SVM, and
record the classification result. We compare these two classification methods
and demonstrate the significant role of selection of discriminative edges for the
improvement of classification performance, in cases of adding different levels
of noises.

The performance of the classifier was estimated using leave-1-out validation
test with an 100 times repetition. We carried out a simulation study to assess
(i) the classification performance under various Noise to Signal Ratio (NSR, for
short), which is the reciprocal of the Signal to Noise Ratio (SNR, for short); (ii)
the effect of different choices of the penalty parameter λ on our ability to detect
the most discriminative interaction. The classification results are summarized
in Table 1, Table 2, Table 3 and Table 4. ”W/” represent the classification
results of SVM together with the feature selection via sparse regression while the
”W/O” represent the classification results of SVM without the feature selection
via sparse regression. As for the regularization parameter λ, Table 1 and Table
2 are for λ = 1.5 while Table 3 and Table 4 are for λ = 0.015. As for the number
of selected features (edges, here), Table 1 and Table 3 are for 6 selected most
discriminative edges while Table 2 and Table 4 are for 12 selected edges. Here
we note that in practice, ones might not know the exact number of the most
discriminative edges as we did for simulation data. However, in many simulations
ones have a rough estimation based on their experiences and performing feature
(edge) selection on this number is still helpful. We will see that selecting 12 edges
instead of 6 edges still brings great improvement of classification accuracy.

From the results of Table 1, 2, 3 and 4, we have several preliminary obser-
vations. 1) The performance of feature selection in terms of classification is not
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Table 1. Classification results where
λ = 1.5 and number of selected features
is 6

NSR
GR SS SC

W/ W/O W/ W/O W/ W/O

0.2 1.00 0.89 1.00 0.99 1.00 0.80

0.4 1.00 0.87 1.00 0.94 1.00 0.80

0.6 0.99 0.82 0.99 0.84 1.00 0.80

0.8 0.96 0.73 0.98 0.82 0.94 0.64

1.0 0.95 0.76 0.92 0.84 0.98 0.68

1.2 0.88 0.67 0.90 0.72 0.86 0.62

1.6 0.75 0.53 0.72 0.52 0.78 0.54

Table 2. Classification results where
λ = 1.5 and number of selected features
is 12

NSR
GR SS SC

W/ W/O W/ W/O W/ W/O

0.2 1.00 0.89 1.00 0.99 1.00 0.80

0.4 1.00 0.87 1.00 0.94 1.00 0.80

0.6 1.00 0.82 1.00 0.84 1.00 0.80

0.8 0.96 0.73 0.98 0.82 0.94 0.64

1.0 0.92 0.76 0.88 0.84 0.96 0.68

1.2 0.78 0.67 0.74 0.72 0.82 0.62

1.6 0.69 0.53 0.72 0.52 0.66 0.54

Table 3. Classification results where
λ = 0.015 and number of selected features
is 6

NSR
GR SS SC

W/ W/O W/ W/O W/ W/O

0.2 1.00 0.89 1.00 0.99 1.00 0.80

0.4 1.00 0.87 1.00 0.94 1.00 0.80

0.6 0.99 0.82 0.98 0.84 1.00 0.80

0.8 0.97 0.73 1.00 0.82 0.94 0.64

1.0 0.89 0.76 0.90 0.84 0.88 0.68

1.2 0.88 0.67 0.90 0.72 0.86 0.62

1.6 0.81 0.53 0.82 0.52 0.80 0.54

Table 4. Classification results where
λ = 0.015 and number of selected features
is 12

NSR
GR SS SC

W/ W/O W/ W/O W/ W/O

0.2 1.00 0.89 1.00 0.99 1.00 0.80

0.4 1.00 0.87 1.00 0.94 1.00 0.80

0.6 0.96 0.82 0.96 0.84 0.96 0.80

0.8 0.97 0.73 0.96 0.82 0.98 0.64

1.0 0.94 0.76 0.94 0.84 0.94 0.68

1.2 0.83 0.67 0.82 0.72 0.84 0.62

1.6 0.76 0.53 0.80 0.52 0.72 0.54

strongly dependent on the choice of λ and therefore the sparse regression is reli-
able in practice, though the high noise level might prefer smaller λ while the low
noise level might prefer larger one. 2) As the noise-to-signal ratio increases, the
recognition performance deteriorate as expected, but the feature selection via
sparse regression always brings significant better recognition accuracy. 3) The
performance of feature selection in terms of classification is not strongly depen-
dent on the prescribed number of selected features, if the adopted number is not
far away from the true number of significantly discriminative features.
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