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Abstract. The main challenge of robust visual tracking comes from
the difficulty in designing an adaptive appearance model to account for
appearance variations. Existing tracking algorithms often build an repre-
sentation for the tracked object, and perform self-updating of the object
representation with examples from recently tracking results. Slight inac-
curacies in the tracker can degrade the appearance models. In this paper,
we propose a robust tracking method with an online-learning structural
appearance model based on local sparse coding and online metric learn-
ing. Our appearance model employs structural feature pooling over the
local sparse codes of an object region to obtain a robust object represen-
tation. Tracking is then formulated as seeking for the most similar can-
didate within a Bayesian inference framework where the distance metric
used for similarity measurement is learned in an online manner to match
the varying object appearances. Both qualitative and quantitative eval-
uations on various challenging image sequences demonstrate that the
proposed algorithm outperforms the state-of-the-art methods.

Keywords: Visual tracking, appearance modeling, sparse coding, online
metric learning.

1 Introduction

Appearancemodeling is a critical prerequisite for successful visual tracking.An ap-
pearancemodel generally consists of twomodules: object representationwhich cap-
tures the visual characteristics of an object and appearance matching scheme that
measures the similarity between observed samples and the model. Due to appear-
ance variations caused by background clutters, object deformation, illumination
changes and occlusions etc, designing a robust appearance model is a challenging
task.

Recently, sparse representation based appearance modeling has received con-
siderable attention in the visual tracking community [12,10,15,4,19]. The pioneer
work introduced by Mei and Ling [12] models the object appearance as a sparse
linear combination of object and trivial templates via �1 minimization. Wang et
al. [15] employed subspace learning method to construct and update the object
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Fig. 1. Motivation of our work. The tracked object is represented by using a structural
representation strategy, and the varying object appearances caused by occlusions and
pose variations etc. can be successfully matched via online metric learning.

templates used for sparse representation. However, only the holistic information
of the object is used in these methods, which makes it difficult to handle drastic
view or pose variations. Zhong et al. [19] presented a sparsity-based collabora-
tive appearance model which exploits the advantages of both holistic and local
information. Jia et al. [4] introduced an alignment-pooling method across the
sparse codes of local patches to improve the accuracy of location estimation.
Motivated by the success of sparse representation for object tracking, one aspect
we focus on is to design an effective object representation containing local and
spatial information using sparse coding.

Most of appearance models based on sparse representation measure the simi-
larity between the candidates and the model by reconstruction errors [12,15,19].
However, when the object undergoes significant appearance variations, the true
candidate of the object might have large reconstruction errors, leading to ambi-
guity of the tracker. In fact, the magnitude of the reconstruction errors depend
largely on the dictionary which should be updated in an online manner to ac-
count for the varying appearances. Nevertheless, straightforward updating of
the dictionary with newly obtained results is prone to potential drift because of
the accumulated errors. To keep the flexibility, our another emphasis is placed
on seeking for a suitable feature space via online metric learning to match the
varying appearances rather than updating the dictionary to ensure the corre-
spondence between minimal reconstruction error and true object location.

Metric learning has been introduced to object tracking by several methods
[5,17,9]. Jiang et al. [5] integrated neighborhood component analysis (NCA) into
kernel-based tracking framework to improve the tracking performance. Wang et
al. [17] formulated appearance modeling and motion estimation into a unified
framework based on metric learning. However, methods proposed in [5,17] only
use simple representation strategies, e.g., color histogram, to represent the object
appearance, thus are sensitive to significant appearance variations. Furthermore,
these methods learn the distance metric in an off-line manner, which often leads
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to expensive computation. Li et al. [9] presented a non-sparse linear represen-
tation with the learned Mahalanobis distance metric for visual tracking. This
method only utilizes the holistic information and ignores the trivial template,
resulting in failure of tackling occlusions.

Considering the two objectives mentioned above, we develop an online-learning
structural appearance model for robust visual tracking. More specifically, we
sample several image patches inside an object region using overlapped sliding
windows, and employ a structural feature pooling process to concatenate the
sparse codes of these patches into a structural representation of the object re-
gion. This structural representation captures local and spatial information of the
image patches, followed by a very sparse random projection to generate a low-
dimensional compact representation. An online metric learning algorithm is then
advocated to get a discriminative and adaptive metric for appearance matching.
The learned metric makes the different appearances of the object close to each
other, and separates the object from the background simultaneously. The main
components of our tracking method are depicted in Fig. 1. Numerous exper-
iments and evaluations on challenging video sequences demonstrate that our
method outperforms several state-of-the-art trackers.

2 Structural Object Representation

Given a normalized object region P , we first sample N local patches inside the
region using overlapped sliding windows. Each patch representing one fixed part
of an object is then converted to a d-dimensional vector pj ∈ R

d×1. Therefore,
the complete structure of the object can be represented by concatenating all these
patches together, i.e., P = [p1,p2, · · · ,pN ] ∈ R

d×N . Let D be a dictionary (or
codebook) with n entries, D = [d1,d2, · · · ,dn] ∈ R

d×n, then each patch pj can
be converted into a n-dimensional code using sparse coding.

2.1 Locality-Constrained Linear Coding

In visual tracking applications, similarity is more essential than sparsity [10].
The regularization term of �1 norm in traditional sparse coding scheme is not
smooth, which leads to the loss of correlations between codes even though for
similar patches. Hence, we employ locality-constrained linear coding (LLC) [16]
to preserve the similarity between image patches. Specifically, the LLC code
xj ∈ R

n×1 corresponding to pj ∈ R
d×1 is computed by

min
xj

‖pj −Dxj‖22 + λ‖ej � xj‖2,
s.t. 1�xj = 1

(1)

where � denotes element-wise multiplication, and ej is the Euclidean distance
vector between pj and all basis vectors in D. Note that the LLC code in Eqn. 1
is not �0 norm sparse, but is sparse in the sense that the solution only has few
significant values. LLC actually selects a set of local basis vectors for pj to form
a local coordinate system. In this work, we use a fast approximation of LLC [16]
to efficiently obtain the sparse codes of image patches.
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Fig. 2. Illustration of our structural feature pooling process. We show three spatial
scales and take 2× 2 as an example. In order to illustrate the pooling process clearly,
we use 8×8 non-overlapped sliding window to obtain 4×4 = 16 images patches within
the region (the object region is normalized into 32×32). Each of the four spatial blocks
(i.e., Block 1, · · · , Block 4) contains p = 4 images patches. The higher cylinders in the
figure represent the larger values of LLC codes.

2.2 Feature Pooling

Denote the LLC codes of an object as X = [x1,x2, · · · ,xN ] ∈ R
n×N , the feature

pooling function on LLC codes is defined as α = ξ(X), where α ∈ R
n×1 and

ξ(·) is defined on each row of X. We use the max pooling process to acquire a
middle level representation, which is well established with biophysical evidence
in visual cortex and has been shown to be effective for image representation [18].
Therefore, the i-th element of α is given by

αi = max
{|xi,1|, |xi,2|, · · · , |xi,N |}, (2)

where xi,j is the element at i-th row and j-th column of X. In this case, α is a
global pooled feature, since the pooling function is measured on the whole image
patches, discarding the spatial information of the local patches.

In order to capture local and spatial information, we construct a spatial pyra-
mid for the object region and do max pooling on multiple spatial scale. Suppose
the object region P is partitioned into σ × σ non-overlapped spatial blocks
{Δb}σ2

b=1 on the spatial scale σ, the LLC codes X are accordingly divided into

σ × σ subsets {XΔb
}σ2

b=1. The corresponding pooled features are denoted as

{αb = ξ(XΔb
)}σ2

b=1. Concatenating the pooled features created from each subset
of the LLC codes on various spatial scales, we can acquire a structural represen-
tation Z∗ of the object region,

Z∗ =
[
α�

1 ,α
�
2 , · · · ,α�

ν

]�
, (3)
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where Z∗ ∈ R
m, m = n × ν and ν is the total number of spatial blocks on all

spatial scales. Fig. 2 illustrates our structural feature pooling process, in which
we show three spatial scales and take 2 × 2 as an example to demonstrate the
feature pooling on a specific spatial scale.

2.3 Dimensionality Reduction

The feature vector Z∗ described in Sect. 2.2 is usually high dimensional. We use
the random projection to embed the Z∗ ∈ R

m into a low-dimensional subspace
Z = RZ∗, where R ∈ R

m×k is a random projection matrix and Z ∈ R
k. A very

sparse random projection [8] is introduced to help find effective subspace for the
original data. The entries of the random projection matrix R are defined as

rij =
√
q ×

⎧
⎪⎨

⎪⎩

+1 with probability 1/2q

0 with probability 1− 1/q ,

−1 with probability 1/2q

(4)

where q =
√
m. Compared with the traditional dimensionality reduction meth-

ods, e.g., PCA, the random projection matrix defined by Eq. 4 is independent
with the original data, and hence is suitable for our framework.

3 Online Metric Learning

Given an object template ZT ∈ R
k created from the first frame and a candidate

ZC ∈ R
k in the current frame, the Mahalanobis distance between ZT and ZC

is defined as

DM (ZT ,ZC) = (ZT −ZC)
�M(ZT −ZC), (5)

where M ∈ R
k×k is required to be a symmetric positive semi-definite matrix.

In this work, the matrix M is adaptively obtained by an online metric learning
method, and the object template remains fixed during tracking.

We first describe the training examples collection mechanism in our algo-
rithm. Once the object is located, we sample a set of image regions from a small
neighborhood around the object location, and label the feature vectors of these
regions as positive examples. Similarly, the negative examples are composed of
the feature vectors of the image regions far away from the object location.

Following the method in [14], we encode a tuple used for online metric learn-
ing as (u, v, l), where (u, v) is a example pair and l is the label which equals
+1 if u and v are considered similar and −1 otherwise. Given a tuple set, a
margin constraint is that the distances between all pairs of dissimilar examples
are greater than the distances between all pairs of similar examples at least γ.
Alternatively, there exists a threshold δ which is subject to the rule:

{DM (u, v) ≤ δ − γ/2 ∀(u, v, l) : l = +1,
DM (u, v) ≥ δ + γ/2 ∀(u, v, l) : l = −1.

(6)
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We set γ to be 2, and rewrite the constraint as

l · (δ −DM (u, v)
) ≥ 1. (7)

During online learning, at each time step τ , we get a tuple (uτ , vτ , lτ ) and
calculate the distance DMτ (uτ , vτ ) between the two examples according to the

current metric Mτ . After getting the prediction label l̂τ = sign
(DMτ (uτ , vτ ) <

δτ
)
, we can compute a loss if there is a discrepancy between l̂τ and lτ . The loss

function is given by

φτ (M , δ)
.
= max

{
0, lτ

(DMτ (uτ , vτ )− δτ
)
+ 1

}
. (8)

The goal of the online algorithm is to minimize the cumulative loss in Eq. (8).
According to [14], this can be done by updating the matrixMτ and the threshold
δτ using two successive projections

(Mτ̂ , δτ̂ ) = PCτ (Mτ , δτ ),

(Mτ+1, δτ+1) = PCa(Mτ̂ , δτ̂ ),
(9)

where PC(v) indicates the orthogonal projection from vector v to a closed convex
set C, Cτ = {(M , δ) : φτ (M , δ) = 0} is the set of all (Mτ , δτ ) pairs which attain
zero loss on the example (uτ , vτ , lτ

)
, and Ca = {(M , δ) : M 	 0, δ ≥ 1} is the

set of all admissible (Mτ , δτ ) pairs.

4 Proposed Tracking Algorithm

Object tracking can be considered as a Bayesian inference task in a Markovmodel
with hidden state variables. Given the observed image set O1:t = {o1, · · · ,ot} up
to time t, the optimal state st of the tracked object can be estimated by Bayesian
theorem

p
(
st
∣
∣O1:t

) ∝ p(ot|st)
∫

p
(
st|st−1

)
p
(
st−1

∣
∣O1:t−1

)
dst−1. (10)

This inference is governed by the dynamic model p(st|st−1) and the observa-
tion model p(ot|st). A particle filter [3] is used to approximate the posterior
p
(
st
∣
∣O1:t

)
by a finite set ofNs samples {sit}Ns

i=1 with importance weights {ωi
t}Ns

i=1.
We apply an affine image warp to model the object motion between two consec-
utive frames. The dynamic model p(st|st−1) is modeled by Brownian motion,
i.e., p(st|st−1) = N (st; st−1,Σ), where Σ is a diagonal covariance matrix.

Given a candidate sample sit, the region of interest can be extracted from the
observed image ot by applying an affine transformation using sit as parameters.
Then the observation likelihood of the candidate sit is computed by

p(ot|sit) ∝ exp
(−DM (ZT ,Z

i
C)

)
, (11)

where ZT and Zi
C are feature vectors of the template and the candidate sit,

respectively. For the tracking at time t, the candidate with the maximum obser-
vation likelihood is chosen as the tracking result.
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5 Experimental Results

We run our tracking algorithm on twelve public challenging video sequences,
and only gray scale information is used for our experiments. The challenges
of these videos include heavy occlusion, illumination changes, pose variations,
motion blur, scale variations and complex backgrounds. Our tracker is compared
against seven state-of-the-art tracking algorithms denoted as Frag [1], IVT [13],
�1 [12], TLD [6], MIL [2], VTD [7] and SCM [19], respectively. We use the source
codes provided by the authors with the same initialization and their default
parameters. Since the trackers except Frag involve randomness, we run them 5
times and report the average result for each sequence.

5.1 Implementation Details

We resize the object image to 32×32 pixels and extract overlapped 8×8 patches
within the object region with 2 pixels as the step length. Performing k−means
clustering algorithm on the patches extracted from first frame, the number of
dictionary entries n is set to 100. The multi-scale max pooling is performed on
three spatial scales 1× 1, 2× 2 and 3× 3 blocks, resulting in a 1400-dimensional
feature vector. As discussed in [11], we set the random projection dimensionality
k = 400 ≈ 1400/3. Given the object location at the current frame, 20 positive
examples and 15 negative examples are collected for online metric learning. As a
trade-off between computational efficiency and effectiveness, the metric matrix
M is updated every 10 frames. The parameters are fixed for all sequences.

5.2 Quantitative Evaluation

We use the center location error as well as the overlap rate for quantitative
evaluations. Center location error is the per-frame distance (in pixels) between
the center of the tracking result and that of the ground truth. Overlap rate is

defined as area(RT∩RG)
area(RT∪RG) , where RT is the bounding box of tracking result and

RG denotes the ground truth. Table 1 and Table 2 summarize the average center
location errors and the average overlap rates, respectively. Note that the TLD
tracker does not give tracking result when occlusions occur and the object is need
to be re-detected. Thus, we only show the center location errors for the sequences
that the TLD can keep track all the time. Overall, the proposed tracker performs
favorably against the state-of-the-art algorithms.

To validate the effectiveness of online metric learning, we present the tracking
results using a fixed distance metric learned by using the training examples
extracted from the first frame (denoted as Ours w/o ML) in Table 1 and
Table 2. The results show that the online metric learning mechanism provides
an effective way to account for appearance variations of the object, and facilities
appearance updating and object tracking. More interestingly, Ours w/o ML
also performs well in some sequences, which demonstrate the effectiveness of the
proposed structural object representation.
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Table 1. Average center location error (in pixels). Bold fonts indicate the best per-
formance while the italic fonts indicate the second best ones.

Frag IVT �1 TLD MIL VTD SCM Ours w/o ML Ours

Bird2 25.3 102.1 125.0 — 13.2 54.8 11.9 11.0 6.7
Bolt 166.6 212.0 166.9 — 7.0 95.0 94.4 39.6 7.3
Surfer 75.1 125.7 119.3 — 85.1 53.5 35.9 15.0 11.6
Car6 49.5 53.1 5.2 — 89.8 53.4 841.0 27.0 4.8
Caviar2 5.7 8.5 54.6 7.2 70.0 6.4 2.7 2.8 2.9
Woman 119.2 246.6 154.8 — 121.2 135.6 121.2 122.7 5.6
David 69.6 6.0 57.7 6.4 28.9 27.8 5.1 8.3 5.2
Shaking 118.5 124.5 56.6 — 19.7 6.3 8.6 8.8 7.7
Singer2 37.9 88.5 63.0 — 59.4 18.1 53.7 177.8 10.5
Panda 100.0 95.6 82.6 — 42.9 78.2 3.7 2.9 3.1
Jumping 8.3 4.4 44.0 4.1 39.5 73.0 4.1 113.0 3.6
Board 85.8 179.3 197.4 150.3 65.5 78.9 20.4 27.6 15.0

Table 2. Average overlap rate (%). Bold fonts indicate the best performance while
the italic fonts indicate the second best ones.

Frag IVT �1 TLD MIL VTD SCM Ours w/o ML Ours

Bird2 47.5 10.6 8.4 17.3 67.8 15.5 69.5 71.4 79.6
Bolt 1.3 1.1 15.4 1.1 71.9 1.8 13.5 37.0 71.3
Surfer 12.8 5.3 5.0 35.4 16.6 20.3 30.1 56.1 64.2
Car6 54.0 40.3 78.7 76.8 14.8 51.5 3.2 63.8 80.2
Caviar2 53.6 45.7 33.5 68.1 23.2 61.1 80.2 81.1 81.7
Woman 16.3 16.6 5.4 10.6 15.5 14.9 15.2 16.5 71.8
David 29.9 64.8 29.6 55.6 47.7 49.3 42.5 73.7 83.9
Shaking 21.3 3.0 14.2 12.1 58.7 73.1 71.9 70.7 72.3
Singer2 50.8 23.3 23.9 9.7 24.0 67.8 33.0 8.7 72.9
Panda 32.1 9.3 1.4 58.7 45.1 37.2 63.5 62.0 64.4
Jumping 58.6 70.6 14.4 65.5 20.9 11.5 72.2 10.6 73.5
Board 58.5 12.6 10.0 16.8 46.6 38.8 76.2 67.2 73.1

5.3 Qualitative Evaluation

Several screenshots of the visual tracking results on the twelve sequences are
illustrated in Fig. 3. We give a qualitative evaluation of the tracking results in
four different ways as follows.

Pose Variation. In the Bird2, Bolt and Surfer sequences, the object appear-
ances change drastically due to significant pose variations. We can see that only
our method tracks the objects successfully in all these three sequences. Other
evaluated algorithms except the MIL and SCM methods fail when the objects
start to change their pose (e.g., Bird2 #50 and Bolt #20). In the surfer se-
quence, the MIL and SCM methods gradually drift away when there is severe
occlusion and large scale change of the object. Our method adaptively cope with
appearance variations via online metric learning, thus provide more accurate and
consistent tracking results.
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Frag IVT L1 TLD MIL VTD SCM Ours

Fig. 3. Sample tracking results of the evaluated algorithms on twelve challenging image
sequences. The figures are arranged in the same order as Table. 1.

Occlusion. We test several sequences (Car6, Caviar2 and Woman) with severe
or long-term partial occlusions. In the Car6 sequence, only the �1, TLD and the
proposed methods are able to track the object when the long-term occlusion
happens (e.g., Car6 #528). Note that the �1 tracker involves occlusion resolv-
ing scheme, and the TLD method employs a detector to reacquire the object.
The Caviar2 and Woman sequences contain scale change, partial occlusion and
interference of similar objects. Most of the trackers lock onto a wrong object af-
ter occlusion (e.g., Caviar2 #240 and Woman #130). In contrast, our method
achieves stable performance in the entire sequence.

Illumination Change. The tracked objects in the David, Shaking and Singer2
sequences undergo significant illumination changes and pose variations. The
Frag, IVT, L1, TLD and MIL methods can not handle the appearance varia-
tions caused by illumination changes together with pose variations (e.g., David
#178 and Shaking #62), whereas the VTD and SCM methods perform better. In
the Singer2 sequence, the contrast between the foreground and the background
is very low. Our method success to track the object accurately, but most trackers
drift away at the beginning of the sequence (e.g., Singer2 #64).

Other Challenges. We test three sequences where the objects suffer other
challenges including in-plane rotation (Panda), motion blur (Jumping) and back-
ground clutters (Board). Overall, the SCM and our method perform well whereas
the other trackers fail to track the objects.
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6 Conclusion

We have presented a robust appearance model for visual tracking via a structural
object representation strategy and online metric learning. Experiments on twelve
challenging sequences demonstrate the robustness of our tracker compared with
seven state-of-the-art tracking methods.
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