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Abstract. This paper proposes a novel automatic model selection al-
gorithm for learning Gaussian mixtures. Unlike EM, we shall further
increase the negative entropy of the posterior of latent variables to exert
an indirect effect on model selection. The increase of negative entropy can
be interpreted as a competition, which corresponds to an annihilation of
those components with insufficient data to support. More importantly,
this competition only depends on the data itself. Additionally, we seam-
lessly integrate parameter estimation and model selection into a single
algorithm, which can be applied to any kind of parametric mixture model
solved by an EM algorithm. Experiments involving Gaussian mixtures
show the efficiency of our approach on model selection.

Keywords: Harmonious competition learning, Gaussian mixture model,
Model selection, Expectation maximization.

1 Introduction

Gaussian mixtures as a flexible probabilistic modeling tool play an important
role in many fields, such as machine learning, pattern recognition, bioinformatics,
computer vision, signal and image analysis. Typically, Gaussian mixtures consists
of K components. Supposed that each observation has been produced by exactly
one of K components, to identify Gaussian mixtures, three levels of inference
need to be solved, inferring which component produce each observation, i.e.,
inferring the parameters of each one of K components, and inferring the number
of components, i.e., the value of K. The former two lead to a clustering of the set
of observations, the last one is an important issue, also known as model selection
or model comparison, which assigns a preference to a set of alternative statistical
models with differing complexities. However, until now, there is little agreement
on what on earth the best approach of model selection is.

Technically, the underlying mixture model is often not the one that fits the
data best due to over-fitting. When the number of components K is fixed, max-
imum likelihood (ML) has proven to be an effective method of parameter es-
timation [1]. Nevertheless, if the value of K itself also needs to be estimated,
maximum likelihood tends to be greedy and results in those over-parameterized
models.

In this several decades, a great number of model selection methods have been
proposed to avoid over-fitting, these methods can be broadly divided into four
categories.
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First, some methods attempt to indirectly compensate for the loss of the
upper relation Mk → θ by the addition of a penalty term P (Mk) to the best-
fit loglikelihood log p(X|θML), such as cross-validation (CV) based criteria and
the Akaike information criterion (AIC) [2]. Second, a constraint on the relation
Mk → θ is directly introduced by choosing a reasonable prior p(θ |Mk), the
goal is to maximize log p(X|θ) p(θ |Mk), which is called maximum a posteriori
(MAP) estimation in Bayesian approach. Similarly, in devising two-part cod-
ing schemes, both minimum description length (MDL) and minimum message
length (MML) employ different approaches of parameter truncation to such a
Bayesian situation. Third, the primary aim is to maximize the log marginal like-
lihood log p(X|Mk) = log

∫
p(X|θ) p(θ |Mk) dθ by integrating out nuisance

parameters. Unfortunately, in many cases, this Bayesian integral is generally
difficult to compute, therefore, we have to resort to approximation schemes,
such as Laplace’s method used in Bayesian information criterion (BIC) [3], and
variational approximation employed in variational Bayes (VB) [4]. Last, the com-
petitive learning methods [5,6] have attracted more and more attentions for the
ability of simultaneously dealing with both the parameter estimation and model
selection. A important feature is that it can automatically perform component
annihilation [7] , that is to say, the too weak component unsupported by data is
simply annihilated by an explicit or heuristic competitive learning rule. However,
there are still some problems and limitations for above methods.

In this paper, a novel automatic model selection algorithm is proposed to learn
Gaussian mixtures. Unlike EM, we shall further increase the negative entropy
of the posterior of latent variables to exert an indirect effect on model selection.
The increase of negative entropy is virtually a transition from disorder to order,
and also be interpreted as a competition. More importantly, this competition
only depends on the data itself.

The rest of paper is organized as follows: in Section 2, we derive the harmo-
nious competition learning on the basis of EM. In Section 3, we give a more
detailed solution of harmonious competition function as a constrained optimiza-
tion problem as well as its important properties. Section 4 reports experimental
results on model selection for Gaussian mixtures and Section 5 ends the paper
by presenting some concluding remarks.

2 Derivation of Harmonious Competition Learning Based
on EM

In this section, we derive the harmonious competition learning on the basis of
EM [8]. The EM algorithm [9] is an elegant and powerful technique to find max-
imum likelihood solutions for probabilistic models with latent nuisance variables
Z, it is an iterative optimization method to estimate some unknown parameters
θ, in the light of the observed variables X. The goal is to maximize the poste-
rior probability of the parameters θ∗ = argmaxθ

∑
Z p(θ,Z|X). Equivalently,

we can maximize the logarithm of the joint distribution which is proportional to
the posterior:
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θ∗ = argmaxθ log
∑

Z

p(X,Z, θ) (1)

However, maximizing Eq. (1) inevitably involves the logarithm of a sum, which is
difficult to deal with. Fortunately, by the Jensen’s inequality, we can construct

a tractable lower bound B(θ; θold) �
∑

Z q(Z) log p(X,Z,θ)
q(Z) in order to simply

transform the log of a sum into a sum of logs B(θ; θold) ≤ log
∑

Z q(Z) p(X,Z,θ)
q(Z)

where q(Z) is an arbitrary probability distribution over the space of latent vari-
ables Z.

In E-step, the optimal bound at a guess θold can be obtained by maximizing
B(θold; θold) with respect to the distribution q(Z). Meanwhile, introducing a
Lagrange multiplier λ to enforce the constraint

∑
Z q(Z) = 1, so we obtain

q(Z) =
p(X,Z, θold)

∑
Z p(X,Z, θold)

= p(Z|X, θold) (2)

Subsequently, in M-step, we require to maximize B(θ; θold) with respect to θ,
and rewrite it as

B(θ; θold) � Eq

[
log p(X,Z, θ)

]
+Hq

= Eq

[
log p(X,Z|θ) ] + log p(θ) + Hq

(3)

where Eq [·] denotes the expectation with respect to the distribution of q(Z),
p(θ) is the prior of the parameters θ, and Hq is the entropy of the distribution
of q(Z).

Generally, after the E-step, EM algorithm would fix q(Z) at the value of
p(Z|X, θold) as Eq. (2), thereby the entropy Hq does not depend on θ. Maxi-

mizing the bound B(θ; θold) with respect to θ is up to the first two terms only:

θnew = argmaxθ{Q(q, θ) + log p(θ) } (4)

In particular, we must pay more attention to the first term Eq

[
log p(X,Z|θ) ]

in Eq. (3) rewritten as Q(q, θ) by us, instead of Q(θ) as the convention of
EM. Note that Q(q, θ) is not only a function of the parameters θ, but also a
functional of the distribution q(Z), which means that we can further tune the
q(Z) on the basis of the fixed value p(Z|X, θold) in order to increase Q(q, θ)
before the change of the parameters θ in M-step.

Therefore, a plug-in step, called harmonious competition step or C-step, is
able to be inserted between E-step and M-step. In this step, the parameters θ is
still kept at the fixed value θold, then we have

Q
(
q, θold

)
= Eq

[
log p(X,Z|θold)

]
+ log p(θold)

= Eq

[
log p(Z|X, θold)

]
+ log p(X, θold)

(5)

IncreasingQ(q, θold) with respect to q(Z) only depends on the first term in Eq. (5),
this is equivalent to further increase the negative entropyof p(Z|X, θold). It leads to
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a new distribution q̂(Z) = C (p(Z|X, θold)) to ensure thatQ(q̂ , θold) ≥ Q(q, θold),
that is to say,

Eq̂

[
log p(Z|X, θold)

] ≥ Eq

[
log p(Z|X, θold)

]
(6)

where C(·) denotes harmonious competition function which is considered as a
constrained optimization detailed in Section 3.3.

Last but not least, after C-step, q̂ as a new responsibility has taken the place
of the old one p(Z|X, θold) in M-step, then update and get new parameters θnew.
Note that the mixture weight as a subset of θnew has been updated by using
q̂ instead of p(Z|X, θold), in other words, the result of harmonious competition
has produced an effect on the mixture weight. More importantly, the increase of
negative entropy is able to force the mixture weight of some components to tend
to 0. Subsequently, we require another step called component annihilation. In
this step, annihilate one or more components whose mixture weight is less than
the predefined threshold ε, then remove the corresponding parameters from the
set of parameters and normalize the mixture weights once more, at the same
time, update K to be the number of the survived components. i.e, automatic
model selection.

3 Harmonious Competition Learning

3.1 The Relation of Negative Entropy and Competition

Negative entropy is viewed as a mathematical synonym for order in an entropic
sense, this term comes from Nobel laureate Erwin Schrödinger’s famous booklet
What is life?.

For a probability distribution, with the increase of negative entropy, it will
transition gradually from disorder or chaos to order. Geometrically, it can be
interpreted as a collapse from a high-dimensional space to a lower dimensional
subspace. For example, suppose that a change of a probability distribution with
3 elements likes that (13 ,

1
3 ,

1
3 ) → (12 ,

1
2 , 0) → (1, 0, 0), the corresponding change

of negative entropy is −log 3 < −log 2 < 0. Once the value of some element is
equal to 0, in geometry, it means that the corresponding spatial dimension plays
no role in describing the current probability distribution. Consequently, it forms
a collapse into a subspace.

3.2 The Probability Simplex

Simplex is an important family of polyhedra. Specifically, a (n− 1)-dimensional
simplex is the convex hull of its n vertices, e.g., a 0-dimensional simplex is a
single point, a 1-dimensional simplex is a line segment, a 2-dimensional simplex
is a triangle, and a 3-dimensional simplex is a tetrahedron.
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3.3 Harmonious Competition Function

The negative entropy of a discrete probability distribution is defined by �(x) =∑n
i=1 xi log xi, where x ∈ S

n . To increase negative entropy �(x), the gradient
based method is available to get g as following

gi = xi + η∇xi� = xi + η (1 + log xi) (7)

where η > 0, η is a learning rate and also called a competition intensity. Note
that the vector g may be not in the probability simplex any more, i.e., g /∈ S

n .
Therefore, to turn it into a probability distribution, we just need to project
it onto the probability simplex and find its corresponding projection y ∈ S

n .
This is equivalent to solve a convex optimization problem, we consider it in the
standard form.

minimize f0(y) =
1

2

n∑

i=1

(yi − gi)
2

subject to y � 0, 1Ty = 1

(8)

Introducing Lagrange multipliers λ∗ ∈ R
n for the inequality constraints y∗ � 0

and a multiplier ν∗ ∈ R for the equality constraint 1Ty = 1, We define the
Lagrangian L associated with the problem as

L(y,λ∗, ν∗) =
1

2

n∑

i=1

(yi − gi)
2
+

n∑

i=1

λ∗
i (−y∗i )−

n∑

i=1

ν∗ y∗i (9)

These above equations satisfy the KKT conditions and can be solved directly to
find y∗, λ∗, and ν∗. Thus we have

y∗i =

{
ν∗ + gi ν∗ > −gi

0 ν∗ ≤ −gi
(10)

or, put more simply, y∗i = max {0, ν∗ + gi}. Substituting it into the second
condition 1Ty∗ = 1, we obtain

n∑

i=1

max {0, ν∗ + gi} = 1 (11)

This solution method is called water-filling. The left-hand side is a piecewise-
linear increasing function of ν∗, with breakpoints at −gi. Therefore, it is solvable
and has a unique solution.

For convenience, we shall give a definition of the above method and call it
harmonious competition function.

Definition 1 (Harmonious competition function). Let x and y be two n-
dimensional vectors in the probability simplex, i.e., x,y ∈ S

n , the harmonious
competition function C : x �→ y is defined by

yi = C(xi) = max {0, xi +	i + v}, i ∈ {1, . . . , n} (12)
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(a) η = 0 (b) η = 0.1 (c) η = 0.5 (d) η = 100

Fig. 1. The change of negative entropy before and after the harmonious competition
function. The value of negative entropy ranges from −log 3 to 0, correspondingly, it is
described by the jet colormap which ranges from blue to red, and passes through the
colors cyan, yellow, and orange.

where �def
= f(x), f is a monotonically increasing function and � ∈ R

n. v is a
single variable and chosen such that

∑n
i=1 max {0, xi +	i + v} = 1.

Subsequently, we shall give a quantitative analysis of how to increase negative
entropy with the different value of competition intensity, as illustrated in Fig. 1.
Suppose that x ∈ S

3 , then calculate �(x), as shown in Fig. 1(a), where η = 0
such that �(y) = �(x) by Eq. (7). Let y = C(x) for every x, and redraw �(y)
onto the same probability simplex with different η, as illustrated in Fig. 1(b)-(d).
Here, η governs the intensity of the competition. For example, in Fig. 1(d), for
almost all vectors in the domain, the value of negative entropy is approximately
equal to 0, it means that an competition is so intense to make the probability of
one element equal to 1 and the probability of the other two elements equal to 0.
In other words, the competition reassigns the probability of each element. When
η tends to infinity, harmonious competition will degenerate to a winner-take-all
manner of K-means.

4 Experiments

Although the proposed method can be applied for any kind of mixture model,
our experiments focus only on Gaussian mixtures, which are by far the most
common model. To compare our algorithm (HCL) with those traditional meth-
ods referred in Section 1, we chose AIC, BIC and VB, as the most commonly
used model selection criterion. For all experiments, we set the candidate model
of AIC and BIC range from Kmin = 1 to Kmax = 10, where K denotes the
number of mixture components. In addition, the Dirichlet distribution as the
conjugate prior of multinomial distribution is often used in VB, the value of its
hyperparameter acts as a prior knowledge and has an important effect on model
selection, therefore, let it equal to a small value, i.e., an uninformative prior.
Last, we set the initial number of mixture components Kinit be large enough,
e.g., Kinit = 15 in VB and our method.

There are two groups of experiments, for every data set, all methods run 100
times respectively, then compare the results with the true number of mixtures
components, and obtain the percentage of success of various methods.
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Table 1. Percentage of success of various methods of two real data sets

DATA SET AIC BIC VB HCL

Old faithful 0 100 93 100
Iris data 0 2 33 65

In the first example, we consider the two well-known real data sets, one is Old
Faithful, a 272 2-dimensional bimodal data set, the other is Iris data set, 150
4-dimensional points from three classes, 50 per class. The results are shown in
Table 1. For a large sample low-dimensional data set, BIC, VB and our method
have a good performance. Notwithstanding a sharp decline in the correct model
selections with the dimensional increase and the decrease of sample number, our
approach is still superior to other methods.
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Fig. 2. Percentage of success of various methods using 2-dimensional synthetic data
with different N and d respectively

Second, we use N samples from a 5-component bivariate mixture, the mix-
ture weight of each component is equal to 1/5, mean vectors at [0, 0]

T
, [0, d]

T
,

[0,−d]
T
, [d, 0]

T
, [−d, 0]

T
where d denotes the distance from the origin, and equal

covariance matrices diag{2, 0.2}. In Fig. 2(a), we fix d = 5 and draw different
number of samples from above Gaussian mixtures, N ranges from 100 to 900.
Next, we fix N = 500, then use different d to generate samples.

As illustrated in Fig. 2, the performance of those traditional methods is un-
stable, worse for most cases and better only for some special cases which seem
suitable for necessary approximation conditions, such as AIC, BIC. As for VB,
it naturally embodies many features of Bayesian inference, so it automatically
makes the trade-off between fitting the data and model complexity, but most
importantly, that which one is more comprise-inclined in practice is not clear.
In contrast, the harmonious competition only depends on data itself, instead of
some approximation techniques or heuristic rules, therefore, our method is more
robust.
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5 Conclusion

This paper proposes a novel automatic model selection algorithm for learning
Gaussian mixtures. The novelty in our approach is that harmonious competition
is able to make the mixture weight of those components with insufficient data
to support tend to zero, more importantly, it only depends on the data itself.
Furthermore, we seamlessly integrate parameter estimation and model selection
into a single algorithm, which can be applied to any kind of parametric mixture
model solved by an EM algorithm. Experiments involving Gaussian mixtures
show the efficiency of our approach on model selection.

Acknowledgments. This work was supported by the Fundamental Research
Funds for the Central Universities (Grant No. HIT.NSRIF.2014069) and Na-
tional Natural Science Foundation of China (Grant No. 61173087).

References

1. Lanterman, A.D.: Schwarz, wallace, and rissanen: Intertwining themes in theories
of model selection. International Statistical Review 69(2), 185–212 (2001)

2. Akaike, H.: A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6), 716–723 (1974)

3. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2),
461–464 (1978)

4. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to vari-
ational methods for graphical models. Machine Learning 37(2), 183–233 (1999)

5. Xu, L., Krzyzak, A., Oja, E.: Rival penalized competitive learning for clustering
analysis, RBF net, and curve detection. IEEE Transactions on Neural Networks 4(4),
636–649 (1993)

6. Xu, L.: Bayesian Ying-Yang system, best harmony learning, and five action circling.
Frontiers of Electrical and Electronic Engineering in China 5(3), 281–328 (2010)

7. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 381–396
(2002)

8. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental,
sparse, and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, 1st
edn., pp. 355–368. MIT Press, Cambridge (1998)

9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1),
1–38 (1977)


	Harmonious Competition Learning for Gaussian Mixtures
	1 Introduction
	2 Derivation of Harmonious Competition Learning Based on EM
	3 Harmonious Competition Learning
	3.1 The Relation of Negative Entropy and Competition
	3.2 The Probability Simplex
	3.3 Harmonious Competition Function

	4 Experiments
	5 Conclusion
	References




