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Abstract. In this paper, we propose a novel derivative augmented Lagrangian 
method for fast total variation (TV) based image restoration (TVIR). By intro-
ducing a novel variable splitting method, TVIR is approximately reformulated 
in the derivative space, resulting in a constrained convex optimization problem 
which is simple to solve. Then, we propose a derivative alternating direction 
method of multipliers (D-ADMM) to solve the derivative space image restora-
tion problem. Furthermore, we provide a Fourier domain updating algorithm 
which can save two fast Fourier transform (FFT) operations per iteration. Expe-
rimental results show that, compared with the state-of-the-art algorithms,  
D-ADMM is more efficient and can achieve satisfactory restoration quality. 

Keywords: total variation, image restoration, augmented Lagrangian method, 
alternating direction method of multipliers, fast Fourier transform. 

1 Introduction 

Image restoration is known as a classic linear inverse problem [1], in which the latent 
image x should be recovered from its degraded observation y, modeled by 

= +y Ax e ,                                  (1) 

where A is a linear degradation operator and e is additive noise. Since the degradation 
operator A usually is ill-conditioned, several regularizers, e.g., total variation (TV) 
[2], wavelet-based sparsity [3] and non-local model [4], have been proposed for image 
restoration. Because of its simplicity and robustness, TV regularizer has been widely 
applied into various image restoration applications, e.g., image denoising [5], blind 
deconvolution [6], and compressed sensing (CS) [7], and a number of methods have 
been proposed for TVIR.  

On one hand, Augmented Lagrangian Method (ALM) is one class of the most 
efficient algorithms among various TVIR methods. Because of its non-smoothness, 
ALM-based methods for TVIR usually need incorporate some variable splitting 
strategies. In [8], by introducing a variable splitting strategy, Wang proposed several 
state-of-the-art fast TV deconvolution (FTVd) methods, including an alternating 
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minimization method in [8] and an alternating direction method of multipliers 
(ADMM) in [9]. In [10], Afonso et al. adopted another variable splitting strategy and 
developed a split augmented Lagrangian shrinkage algorithm (SALSA). 

On the other hand, recently derivative space based formulation had also received 
considerable research interests in compressed sensing [11, 12], image restoration [13] 
and blind deconvolution [14]. In compressed sensing, Patel et al. showed that 
derivative space based approach can obtain higher success rate [11]. In image 
restoration, derivative space based method can work directly in the TV functional 
[13]. Besides, in image deconvolution, recent studies indicate that, the derivative 
space significantly outperforms the image space for the estimation of the blur kernel 
[3, 15]. 

In this paper, we unify these two directions by proposing a derivative space based 
ALM method for TVIR. First, we propose a novel approximate formulation of TVIR 
in the derivative space, providing an explanation of the derivative space based me-
thods [11-13] from the viewpoint of variable splitting strategy. We then develop a D-
ADMM algorithm to solve it, and provide a Fourier domain updating algorithm which 
can save two fast Fourier transform (FFT) operations per iteration. Compared with the 
state-of-the-art FTVd and SALSA algorithms, D-ADMM can achieve satisfactory 
restoration quality and is more efficient in terms of restoration speed. 

The remainder of this paper is organized as: Section 2 introduces some prelimi-
naries. Section 3 presents the proposed methods. Section 4 provides the experimental 
results. Finally, Section 5 ends this paper with some concluding remarks. 

2 Prerequisites 

In this section, we present some prerequisites used in latter context. Here a bold letter 
stands for a matrix or a vector, and if we arrange a matrix e.g., image x, row by row 
into a vector, the same symbol x will be used for saving notations.  

2.1 TV-Based Image Restoration  

Analogous to [13], we assume both the latent image x and the degraded image y lie in 
subspace   with zero mean value, i.e., ( ){ }| 0×= ∈ =x xm n mean . The TVIR 
problem is formulated as, 

( )21
min TV

2
τ− +

x
Ax y x ,                      (2) 

where τ is a positive regularization parameter. There are usually two types TV regula-
rizers, i.e., anisotropic and isotropic TV, defined as Eq. (3) and Eq. (4), respectively, 

( ) ( ) ( )( )1 1

, ,
0 0

TV
− −

= =

= +x x x
m n

a h vk l k l
k l

D D  ,                  (3) 

( ) ( ) ( )( )1 1
2 2

, ,
0 0

TV
m n

i h vk l k l
k l

− −

= =

= +x x xD D ,                   (4) 

where the gradient operator D = {Dh, Dv}, also notated as ∇ , is defined as 
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where k = 0, 1, 2,…, m - 1 and l = 0, 1, 2,…, n - 1. Corresponding to these operators, 
there are matrices Dh, and Dv such that Dhx = Dhx, and Dvx = Dvx. Accordingly, the 
adjoint operators *

hD  and *
vD  are associated with matrices DT

h  and DT
v , respectively.  

2.2 Moreau Proximal Mappings  

TV-based image restoration usually involves the solution to some subproblems with 
the general form like, 

( )21
min

2
− +

x
x w xgε ,                      (6) 

where g is a (nonsmooth) convex function. 
When g is l1 norm, i.e., g(x) = ||x||1, the solution is  

T (w) = sgn(w)max(|w| − ε, 0)                  (7) 

where Tε(w) = sgn(w)max(|w| - ε, 0) is the soft-thresholding operator. 

When g is l2,1 norm, i.e., ( ) 1

2,1 20

−

=
= =x x x

N

ll
g , then l-th column of solution is  

( )2
2

= w
x w

w
l

l l
l

εT .                     (8) 

In our work, the derivative vector ( ),=x x x
TT T

h v  is required to lie in the subspace 
  of curl-free vector fields [13], and thus the image can be estimated from its gra-
dient. Accordingly, the vector w has two components wh and wv. Then we define a 
function 

{0,      if ( ) ,  elsewise
∈= +∞

xxι
 .                        (9) 

When g = ι , the solution to (6) can be obtained by defining the projection ∇U  

[13], 

( ) ( )( )( )1−= ∇ = ∇x w w WFFT FFT div iU ,           (10) 

where   denotes entry-wise multiplication, the divergence is defined as 

( ) ( )= − +w D w D wT T
h h v vdiv ,              (11) 

and the matrix Wi with Wi(0,0) = 0 and  

( ) ( ) ( ),
2cos 2 2cos 2 4= + −W

k l
i k m l nπ π ,          (12) 

where k = 0, 1, 2,…, m - 1 and l = 0, 1, 2,…, n - 1. Furthermore, we can also define 
the operator U  to estimate an image from its derivative vector,  

( ) ( )( )( )1−= ⋅x x WFFT FFT div iU .             (13) 
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3 The Derivative Augmented Lagrangian Method 

In this section, we first present the formulation of the proposed derivative method, 
and then we solve it using ADMM.  

3.1 Reformulation of TVIR  

According to [16], if ( , )u μ Σ N  where N  is Gaussian distribution, given the 
matrix A, ( , )Au Aμ AΣA TN . By assuming the unknown noise e  is with Guassian 
distribution, we have 2(0, )e I σN .  

Given the derivative operator h

v

 =  
 

DD D  with  =  
 
eDe e

h

v
, we can obtain 

2(0, )  
 
e DDe  Th

v
σN . Based on the definition of covariance matrix, we have, 

2
2 2 2 2

2
( ) and ( ) 4Th

v
E mn E tr mnσ σ σ

  =       = =     

ee DDe .                (14) 

So we assume that 2 2
4− = −ADx Dy Ax y  holds. Let d = Dx with dh = Dhx and 

dv = Dvx. The constraint Dx = d requires that d should lie in the subspace  . Thus 
we approximately reformulate anisotropic TVIR as, 

2

1

1
arg min

2∈
= − +

d
d Ad a dμ


,                      (15) 

where 4=μ τ  and a = Dy with ah = Dhy and av = Dvy. Numerical results show that, 
2 2− −Ad a Ax y 4(4.00,1.62 10 )− × N , and thus it is reasonable to set 4μ τ= .  

3.2 D-ADMM for Anisotropic TVIR 

To solve the problem Eq. (15), we hereby propose a novel variable splitting strategy,  
introducing two auxiliary variables f = d and g = d, and then Eq. (15) can be rewritten 
as, 

2

1, ,

1
arg min ( ) s.t. ,

2
μ ι= − + + =  =

d f g
d Ad a f g d f d g ,             (16) 

which can be solved efficiently via ALM. The augmented Lagrangian function of Eq. 
(16) is first defined as, 

2 2 21 2
1

1
( )

2 2 2

δ δμ ι= + + − + − + + − +f g Ad a d f p d g qL .        (17) 

where the parameters p and q are associated to the Lagrangian multipliers. Then we 
can obtain the solutions to the subproblems with respect to d, f and g within ADMM. 

Given f, g, p, and q, with the help of FFT, the closed-form solution to d can be 
obtained by 
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( ) ( )( )( )1
1 2 FT_−= + − + − ∅d A a f p g q BTFFT FFT δ δ ,          (18) 

where FT_B = FFT(ATA) + δ1I + δ2I and ∅  is entry-wise division. Given d, g, p, and 
q, the solution to f can be obtained by, 

( )
1

= +f p dμ δT .                             (19) 

Given d, f, p, and q, g can be obtained by, 

( )= ∇ +g d qU .                             (20) 

Finally, the parameters p and q can be updated as follows 

1 1 1 1 1 1and+ + + + + += + − = + −p p d f q q d gk k k k k k k k .            (21) 

The penalty parameters 1δ  and 2δ  are fixed in conventional ADMM, leading to slow 

convergence rate. We hereby adopt the updating strategy in [19] to speed up 
convergence,  

( ) ( ) ( ) ( )max 1 max 21 1 1 2 1 2min( , ) and min( , )+ += =k k k kδ δ ρ δ δ δ ρ δ ,          (22) 

where maxδ  is upper bound of 1δ  and 2δ , and 1ρ  and 2ρ  is defined as, 

( ) ( )1 1 1 1 1 2 1 1 20 2 0
1 2

, ,
and

1, 1,
+ + + +  − <   − <=  =            

d d f d d gk k k k k kif if
otherwise otherwise

ρ δ ε ρ δ ερ ρ ,   (23) 

where ( )1 0 1>ρ  and ( )2 0 1>ρ  are constants. 

3.3 Fast D-ADMM in Fourier Domain 

In D-ADMM, six FFT operations are required per iteration. Actually, d, g, p, and q 
can be updated in Fourier domain. By this way, only four FFT operations are required 
per iteration, resulting in a D-ADMM(F) algorithm. 

First, let FT_b be the Fourier transform of ATa, FT_f be the Fourier transform of f, 
FT_g be the Fourier transform of g, FT_p be the Fourier transform of p, FT_q be the 
Fourier transform of q. Then, the updating of d can be performed in Fourier domain, 

 (24) 

Then, we introduce the notation F∇U  in Fourier domain. Let FT_Dh and FT_Dv 
be the Fourier transform of Dh and Dv, respectively. Let (FT_Dh)

* and (FT_Dv)
* be the 

Fourier transform of the adjoint operators of Dh and Dv, respectively. The operator 

FU  can be defined as 

( ) 1 * *
F FT _ (((FT_ ) FT_ (FT_ ) FT_ ) )−= − +d D d D d W  h h v vFFT iU ,     (25) 

and the projection F∇U  is defined as 

)1 2FT _ (FT _ (FT _ FT _ ) (FT _ FT _ ) FT _= + − + − ∅d b f p g q Bδ δ
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( )
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By using F∇U , FT_g can be updated by 

( )FFT_ FT_ FT_= ∇ +g d qU .                   (27) 

With FT_d and FT_p, FT_f can be updated by 

( )( )( )1

1FT_ FT_ FT_−= +f p dFFT FFTμ δT .           (28) 

Finally, we summarize D-ADMM in Fourier domain, i.e., D-ADMM(F), in Algorithm 1. 

Algorithm 1: D-ADMM(F)
1. Preprocess ( )mean=y y  
2. Initialize 0FT_ ,p 0FT_ ,q 0FT_ ,d 0FT_ ,f 0FT_ ,g k = 0 
3. Precompute  FT_b = FFT(ATDy), 

  FT_B = FFT(ATA) + δ1I + δ2I 
4. while not converged 
5. FT_d

k+1 = (FT_b + δ1(FT_f
k+1  − FT_p

k+1) + δ2(FT_g
k+1       

        − FT_q
k+1)) ∅ FT_B 

6. 
1( )

1
1 1FT_ ( ( (FT_ FT_ )))−

+ += +f p d
kk k kFFT FFTμ δT  

7. ( )1 F 1FT_ FT_ FT_+ += ∇ +g d qk k kU  

8. 1 1 1FT_ FT_ FT_ FT_+ + += + −p p d fk k k k  

9. 1 1 1FT_ FT_ FT_ FT_+ + += + −q q d gk k k k  

10. ( ) ( )1 1 2 1Update  and  using Eq. (22)+ +k kδ δ  

11. k = k + 1 
12. end while 
13. ( )F FT_=x dkU  

14. = +x x y  

Furthermore, D-ADMM and D-ADMM(F) can be easily extended to isotropic TV 
by modifying the shrinkage operator [17]. 

3.4 Implementation Issues 

Rather than stopping the program in a fixed number of iterations, we adopt the 
stopping criteria by checking the difference in the variable dk and dk+1 is whether be-
low a sufficient small positive value ε, 

1+ − ≤d d dk k k ε .                           (29) 

Both p0 and q0 are initialized to be zero. For fast convergence, we empirically give the 
following recommendation on the initialization of δ1(0), δ2(0), δmax, ρ1(0), ρ2(0), ε1, and ε2: 
δ1(0) = δ2(0) = 10-4, δmax = 100max (δ1(0), δ2(0)), ρ1(0) = 2.5, ρ2(0) = 1.9, and ε1 = ε2 = 10-3. 
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4 Experimental Results 

In this section, we use five 256 × 256 images, i.e., Lena, Cameraman, Barbara,  
Baboon and Couple, to evaluate the efficiency and effectiveness of the proposed  
algorithm for isotropic TVIR. We compare D-ADMM with two state-of-the-art  
ALM-based TVIR methods, i.e., SALSA [10] and FTVd [9].  

In the experiments, each image is blurred by 9 × 9 Gaussian kernel with the standard 
deviation (std.) of 4, and noised by normally distributed noise with mean of zero and std. 
of 10-3. As to parameter setting, we choose the value ε = 10-4, the regularization parame-
ters as μ = 5 × 10-5 and τ = μ / 4. For performance evaluation, we adopt peak signal-to-
noise ratio (PSNR) and complex wavelet structural similarity (SSIM) [18] to assess the 
restoration quality, and the CPU run time to evaluate the restoration speed. 

Table 1. Results of comparative experiments: t stands for CPU time (s), p stands for PSNR, and 
s stands for SSIM 

method 
Lena 
t/p/s 

Cameraman 
t/p/s 

Barbara 
t/p/s 

Baboon 
t/p/s 

Couple 
t/p/s 

SALSA [10] 9.73/31.81/0.90 9.92/31.27/0.92 7.86/31.00/0.87 5.27/26.34/0.77 8.14/32.07/0.91 
FTVd [9] 0.90/31.81/0.90 1.09/31.30/0.92 1.01/30.96/0.87 0.75/26.35/0.77 1.01/31.95/0.91 
D-ADMM 0.83/31.35/0.90 1.03/30.73/0.90 1.05/30.96/0.86 0.91/26.12/0.75 1.13/31.65/0.91 

D-ADMM(F) 0.70/31.46/0.90 0.59/30.85/0.91 0.55/31.06/0.87 0.51/26.33/0.76 0.59/31.75/0.91  

To save space, we only shows the restoration result of Barbara using D-ADMM(F) 
in Figure 1. Table 1 lists the run time (t), PSNR (p), and SSIM (s) obtained using 
SALSA [10], FTVd [9], D-ADMM, and D-ADMM(F). From Table 1, D-ADMM  
and D-ADMM(F) are comparable with SALSA and FTVd in terms of both PSNR and 
SSIM. In terms of CPU run time, D-ADMM(F) is more efficient than SALSA and 
FTVd. Meanwhile, D-ADMM(F) with lower complexity per iteration is faster than  
D-ADMM and FTVd. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Restoration result of Barbara by D-ADMM(F). a) original image, b) degraded image, 
and c) restoration result. 

5 Conclusion 

In this paper, we present a novel viewpoint on the reformulation of TVIR in derivative 
space and a novel ALM-based algorithm, i.e., D-ADMM. Based on probabilistic analy-
sis, we approximately reformulate TVIR into the derivative space, resulting in a simpler 
constrained convex optimization problem. To solve this problem, we develop a novel  
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D-ADMM algorithm, and further propose a D-ADMM(F) algorithm to directy update in 
Fourier domain. Finally, experimental results indicate that, compared with SALSA and 
FTVd, D-ADMM(F) is more efficient and can achieve comparable restoration quality. 
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