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Abstract. Context-Aware Recommender Systems can naturally be
modelled as an exploration/exploitation trade-off (exr/exp) problem,
where the system has to choose between maximizing its expected re-
wards dealing with its current knowledge (exploitation) and learning
more about the unknown user’s preferences to improve its knowledge
(exploration). This problem has been addressed by the reinforcement
learning community but they do not consider the risk level of the cur-
rent user’s situation, where it may be dangerous to recommend items
the user may not desire in her current situation if the risk level is high.
We introduce in this paper an algorithm named R-UCB that considers
the risk level of the user’s situation to adaptively balance between exr
and exp. The detailed analysis of the experimental results reveals several
important discoveries in the exr/exp behaviour.

1 Introduction

User feedback (e.g., ratings and clicks) and situation (e.g., location, time) have
become a crucial source of data when optimizing a Context-Aware Recommender
System (CARS). Knowledge about the environment must be accurately learned
to avoid making undesired recommendations which may disturb the user in cer-
tain situations considered as critical or risky. For this reason, the CARS has to
decide, for each new situation, whether so far learned knowledge should be ex-
ploited by selecting documents that appear more frequently in the corresponding
user feedback, or if never seen documents should be selected in order to explore
their impact on the user situation, increasing the knowledge about the environ-
ment. On one hand exploration prevents from maximizing the short-term reward
since it may yield to negative reward. On the other hand, exploitation based
on an uncertain environment prevents from maximizing the long-term reward
because document rating values may not be accurate. This challenge is formu-
lated as an exploration/exploitation (exr/exp) dilemma. One smart solution for
exr/exp using the ”multi-armed bandit problem” is the hybrid approach done by
[7]. This approach combines the Upper Confident Bound (UCB) algorithm with
the ε-greedy algorithm. By introducing randomness into UCB, authors reduce
the trouble in estimating confidence intervals. This algorithm estimates both the
mean reward of each document and the corresponding confidence interval. With
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the probability 1-ε, this algorithm selects the document that achieves a highest
upper confidence bound and, with the probability ε, it uniformly chooses any
other document. The ε parameter essentially controls exr/exp. The problem is
that it is difficult to decide in advance the optimal value of ε. We introduce in
this paper an algorithm, named R-UCB, that computes the optimal value of ε
by adaptively balancing exr/exp according to the risk of the user situation. We
consider as risky or critical, a situation where it is dangerous to recommend un-
interesting information for the user; this means that it is not desired, can yield to
a trouble, or causes a waste of time for the user when reading a document which
is not interesting for him in the current situation. In this case, the exploration-
oriented learning should be avoided. R-UCB extends the UCB strategy with an
update of exr/exp by selecting suitable user’s situations for either exr or exp.
We have tested R-UCB in an off-line evaluation with real data. The remaining
of the paper is organized as follows. Section 2 reviews related works. Section 3
describes the algorithms involved in the proposed approach. The experimental
evaluation is illustrated in Section 4. The last section concludes the paper and
points out possible directions for future work.

2 Related Work

We refer, in the following, recent works that address the exr/exp trade-off (bandit
algorithm) and the Risk-Aware Decision problem. Existing CARS systems are
not considered in this paper, refer to [1] and [2] for further information.

Multi-armed Bandit Problem. Very frequently used in reinforcement learn-
ing to study exr/exp, the multi-documented bandit problem was originally de-
scribed by [9]. Few research works are dedicated to study the contextual bandit
problem in recommender systems, considering the user’s behaviour as the con-
text. In [7], authors extend UCB by dynamically updating outperforming both
beginning and decreasing strategies. In [6], assuming the expected reward of a
document is linear, they perform recommendation based on contextual informa-
tion about the users’ documents. To maximize the total number of user’s clicks,
this work proposes the LINUCB algorithm which is computationally efficient.
[7, 6] describe a smart way to balance exr/exp, but do not consider the user’s
situation and its associated risk during the recommendation.

The Risk-Aware Decision. To the best of our knowledge, the risk-aware de-
cision is not yet studied in recommender systems. However, it has been studied
for a long time in reinforcement learning, where the risk is defined as the reward
criteria that takes into account not only the expected reward, but also some
additional statistics of the total reward, such as its variance or standard devia-
tion [3]. The risk is measured with two types of uncertainties. The first, named
parametric uncertainty, is related to the imperfect knowledge of the problem pa-
rameters. For instance, in the context of Markov decision processes, [5] proposes
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to use the percentile performance criterion to control the risk sensitivity. The
second type, termed inherent uncertainty, is related to the stochastic nature of
the system, like [4], which consider models where some states are error states
representing a catastrophic result. More recently, [10] developed a policy gradi-
ent algorithm for criteria that involves both the expected cost and the variance
of the cost, and demonstrated the applicability of the algorithm in a portfolio
planning problem. However, this work does not consider the risk of the situa-
tions in the exr/exp problem. A recent work, [11], treated the risk and proposed
the VDBE algorithm to extend ε-greedy by introducing a state-dependent ex-
ploration probability, instead of hand-tuning. The system makes exploration in
situations when the knowledge about the environment is uncertain, which is in-
dicated by fluctuating action values during learning. In contrast, the amount of
exploration is reduced as far as the system’s knowledge becomes certain, which
is indicated by very small or no value differences.

Our Contributions. As shown above, none of the mentioned works tackles
the exr/exp problem considering the semantic risk level of the situation. This
is precisely what we intend to do by exploiting the following new features: (1)
Handling semantic concepts to express situations and their associated risk level.
The risk level is associated to a whole situation and/or the concepts composing
the situation; (2) Considering the risk level of the situation when managing
exr/exp, which helps CARS to adapt them selves to environment dynamically.
High exploration (resp. high exploitation) is achieved when the current user
situation is ”not risky” (resp. ”risky”); (3) Assuming that exploring data in
non-risky situations is useful for making a safety exploration in risky situations.
Our algorithm performs exploration in risky situations by selecting the most
interesting documents in non risky situations.

We improve the extension of UCB with ε-greedy (called here ε-UCB) because
it gives the best results in an off-line evaluation done by [7]; however, our ame-
lioration can be applied to any bandit algorithm.

3 The Proposed CARS Model

This section focuses on the proposed model, starting by introducing the key
notions used in this paper.

Situation : A situation is an external semantic interpretation of low-level
context data, enabling a higher-level specification of human behaviour. More
formally, a situation S is a n-dimensional vector, S = (Oδ1 .c1, Oδ2 .c2, ..., Oδn .cn)
where each ci is a concept of an ontology Oδi representing a context data dimen-
sion. According to our need, we consider a situation as a 3-dimensional vector
S = (OLocation.ci, OTime.cj , OSocial.ck) where ci, cj , ck are concepts of Location,
Time and Social ontologies.

User preferences: User preferences UP are deduced during the user navi-
gation activities. UP ⊆ D×A× V where D is a set of documents, A is a set of
preference attributes and V a set of values. We focus on the following preference
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attributes: click, time and recom which respectively correspond to the number
of clicks for a document, the time spent reading it and the number of times it
was recommended.

The user model : The user model is structured as a case base composed of
a set of situations with their corresponding UP , denoted UM = {(Si;UP i)},
where Si ∈ S is the user situation and UP i ∈ UP its corresponding user prefer-
ences.

We propose CARS to be modelled as a contextual bandit problem including
user’s situation information. Formally, a bandit algorithm proceeds in discrete
trials t = 1...T . For each trial t, the algorithm performs the following tasks:

Task 1. Let St be the current user’s situation, and PS the set of past situations.
The system compares St with the situations in PS in order to choose the most
similar one, Sp:

Sp = argmaxSi∈PSsim(St, Si) (1)

The semantic similarity metric is computed by:

sim(St, Si) =
1

|Δ|
∑

δ∈Δ

simδ(c
t
δ, c

i
δ) (2)

In Eq. 2, simδ is the similarity metric related to dimension δ between two con-
cepts ctδ and ciδ, and Δ is the set of dimensions (in our case Location, Time and
Social). The similarity between two concepts of a dimension δ depends on how
closely ctδ and ciδ are related in the corresponding ontology. To compute simδ,
we use the same similarity measure as [8]:

simδ(c
t
δ, c

i
δ) = 2 ∗ deph(LCS)

deph(ctδ) + deph(ciδ)
(3)

In Eq. 3, LCS is the Least Common Subsumer of ctδ and ciδ, and deph is the
number of nodes in the path from the current node to the ontology root.

Task 2. Let Dp be the set of documents recommended in situation Sp. After
retrieving Sp, the system observes rewards in previous trials for each document
d ∈ Dp in order to choose for recommendation the one with the greatest reward,
which is the Click Through Rate (CTR) of a document. In Eq. 4, the reward of
document d, r(d), is the ratio between the number of clicks (vi) on d and the
number of times d is recommended (vj).

∀d ∈ Dp, UP i=(d, click, vi) ∈ UP and UP j=(d, recom, vj) ∈ UP we have:

r(d) =
vi
vj

(4)

Task 3. The algorithm improves its document selection strategy with the new
observation: in situation St, document d obtains a reward r(d). Depending on
the similarity between the current situation St and its most similar situation Sp,
two scenarios are possible: (1) If sim(St, Sp) �= 1: the current situation does not
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exist in the case base; the system adds this new case composed of the current
situation St and the current user preferences UP t; (2) If sim(St, Sp) = 1: the
situation exists in the case base; the system updates the case having premise the
situation Sp with the current user preferences UP t.

The ε-UCB Algorithm. For a given situation, the algorithm recommends a
predefined number of documents, specified by parameter N using Eq. 5. Specif-
ically, in trial t, this algorithm computes an index b(d) = r(d) + c(d) for each
document d, where: r(d) (Eq. 4) is the mean reward obtained by d and c(d) is

the corresponding confidence interval, so that c(d) =
√

2×log(t)
vj

and vj is the

number of times d was recommended. With the probability 1-ε, ε-UCB selects
the document with the highest upper confidence bound dt = argmaxd∈Dpb(d);
and with the probability ε, it uniformly chooses any other document.

dt =

{
argmaxd∈(Dp−RD)b(d) if q > ε

Random(Dp −RD) otherwise
(5)

In Eq. 5, Dp is the set of documents included in the user’s preferences UP p

corresponding the most similar situation (Sp) to the current one (St); RD is
the set of documents to recommend; Random() is the function returning a ran-
dom element from a given set; q is a random value uniformly distributed over
[0, 1] which controls exr/exp; ε is the probability of recommending a random
exploratory document.

Semantic Risk Level Computing. In real world, the exr/exp trade-off should
be directly related to the risk level of the situation, this is why computing the
risk level is indeed indispensable. To consider the semantic risk level of the
situation in exr/exp, we add a risk level to each concept in a situation: S =
(Oδ1 .c1[cv1], Oδ2 .c2[cv2], ..., Oδn .cn[cvn]), where CV = {cv1, cv2, ..., cvn} is the
set of risk levels assigned to concepts ci (i = 1..n) and cvi ∈ [0, 1]. R(S) is
the risk level of situation S. R(S) ∈ [0, 1] and situations having R(S) > thR

are considered as risky or critical situations (CS). The risk threshold thR is de-
scribed in Subsection 3. The risk of a concept varies from a domain to another
and it is predefined by a domain expert. We conducted a study with profes-
sional mobile users, described in detail in Sec 4, where the domain expert is
a commercial manager, and we considered, for example, the following set of
critical situations: CS = {CS1, CS2, CS3}, CS1 = (−, afternoon,manager),
CS2 = (company,morning,−), CS3 = (−,−, client).

The risk level R(St) of situation St is computed as follows:

R(St) =

⎧
⎨

⎩

Rc(S
t) if CS = ∅, CV �= ∅

Rm(St) if CS �= ∅, CV = ∅
1
2 × (ηRc(S

t) + ζRm(St)) if CS �= ∅, CV �= ∅
(6)

If only CV is known, Eq. 6 returns the risk Rc(S
t) (Eq. 7) inferred from the

situation concepts. If only CS is known, Eq. 6 returns the the risk Rm(St) (Eq. 9)
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extracted from the degree of similarity between the current situation St and the
centroid critical situation Sm (Eq. 10). If CV and CS are both known, Eq. 6
returns the weighted mean between Rc(S

t) and Rm(St); η and ζ are respectively
the weights associated to Rc(S

t) and Rm(St), where η+ζ = 2. These weights are
related to the application domain: if the domain is itself risky (e.g. healthcare
and safety), the system considers that Rc is more important than Rm (during
the experimental phase, η and ζ have both a value of 1). Rc(S

t) gives a weighted
mean of the risk level of the concepts:

Rc(S
t) =

1

|Δ| (
∑

δ∈Δ

μδcv
t
δ) (7)

In Eq. 7, cvtδ is the risk level of the dimension δ in St and μδ is the weight
associated to dimension δ. μδ is set out by using an arithmetic mean as follows:

μδ =
1

|CS| (
∑

Si∈CS

cviδ) (8)

The idea in Eq. 8 is to get a measure of how risky are, in average, concepts
of dimension δ in CS, computing the mean of all the risk levels associated to δ
in CS. Being B the similarity threshold (this metric is fixed on the off-line eval-
uation) and Sm the critical situation centroid, Rm(St) is computed as follows:

Rm(St) =

{
1−B + sim(St, Sm) if sim(St, Sm) < B

1 otherwise
(9)

In Eq. 9, the situation risk level Rm(St) increases when the similarity between
St and Sm increases. The critical situation centroid is selected as follows:

Sm = argmaxSf∈CS

1

|CS|
∑

Se∈CS

sim(Sf , Se) (10)

The R-UCB Algorithm. To improve the adaptation of the ε-UCB algorithm
to the risk level of the situations, the R-UCB algorithm (Alg. 1) computes the
probability of exploration ε (line 2), by using the situation risk level R(St) as
indicated in Eq. 11. In Eq. 11. εmin is the minimum exploration allowed in CS
and εmax is the maximum exploration allowed in non-CS (these two metrics
are computed off-line using exponentiated gradient, which gives εmin = 0.1 and
εmax = 0.5).

ε = εmax −R(St)× (1− εmin) (11)

Depending on the risk level of the current situation St, two scenarios are possible:
(1) If R(St) < thR, S

t is not critical(Alg. 1, line 3); the ε-UCB algorithm is used
with ε > εmin (Eq. 11). (2) If R(St) ≥ thR, S

t is critical (Alg. 1, line 4); the ε-
UCB algorithm is used with ε = εmin, performing a high exploitation (Alg. 1, line
6, instruction 1). Based on our supposition that data in non critical situations
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can be useful to infer optimal exploration in CS, the algorithm makes a safety
exploration in CS by selecting the documents with the highest CTR in Dy

(Alg. 1, line 6, instruction 2), where Dy is the set of documents recommended in
the most similar situation Sy to St, Sy /∈ CS and computed using Eq. 1. We still
consider random exploration (Alg. 1, line 6, instruction 3) which is indispensable
to avoid documents selection in CS becoming less optimal. To summarize, the
system makes a low and safety exploration when the current user’s situation
is critical (Alg. 1, line 6); otherwise (Alg. 1, line 3), the system performs high
exploration. In this case, the degree of exploration decreases when the risk level
of the situation increases (Eq. 11. To verify if St is critical, the risk threshold
thR is computed as indicated in Eq. 12. At the initialization phase, the domain
expert may indicate risk levels for a set of concepts and/or situations. If risk
levels on concepts are indicated, the expert defines the θ threshold; if risk levels
on situations are indicated, the expert defines the B threshold.

thR =

⎧
⎨

⎩

θ if CS = ∅, CV �= ∅
B if CS �= ∅, CV = ∅

1
2 × (ηθ + ζB) if CS �= ∅, CV �= ∅

(12)

Algorithm 1. The R-UCB algorithm

1: Input: St, Dp, Dy , RD = ∅, B,N, εmin,εmax Output: RD
2: ε = εmax −R(St)× (1− εmin) //R(St) is computed as described in Eq.6
3: if R(St) < thR then RD = ε-UCB(ε,Dp, RD,N) else
4: for i = 1 to N do
5: q = Random(0, 1); k = Random(0, 1)

6: di =

⎧
⎨

⎩

argmaxd∈(Dp−RD)b(d) if q > εmin

argmaxd∈(Dy−RD)b(d) if q ≤ k ≤ εmin

Random(Dp) otherwise
7: RD = RD ∪ di
8: end for

4 Experimental Evaluation

We conducted a diary study with the collaboration of a software company. This
company provides a history application, which records time, current location,
social and navigation information of its users during their application use. The
diary study took 2 months and generated 356 738 diary situation entries. From
the diary study, we have obtained a total of 5 518 566 entries concerning the
user’s navigation (number of clicks and time spent), expressed with an average
of 15.47 entries per situation.

Off-line Evaluation. To test the proposed R-UCB algorithm, in our experi-
ments, we have firstly collected the 100 000 cases from the situations case base.
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We then evaluate the existing algorithms by confronting them, at each iteration,
to a case randomly selected and removed. We calculate the average CTR every
1000 iterations. The number N of documents returned by the CARS for each
situation is 10 and we run the simulation during 10000 iterations, where all the
tested algorithms have converged. In the first experiment, in addition to a pure
exploitation baseline, we compare our algorithm to the ones described in the
related work (Sec. 2): VDBE, EG-UCB, ε-UCB, beginning-UCB (ε-UCB with
beginning strategy) and decreasing-UCB (ε-UCB with decreasing strategy). In
Fig. 1, the horizontal axis represents the number of iterations and the vertical
axis is the performance metric.

Fig. 1. Average CTR for exr/exp algorithms

R-UCB and VDBE effectively have the best convergence rates; VDBE in-
creases the average CTR by a factor of 1.5 over the baseline and R-UCB, by
a factor of 2. The improvement comes from a dynamic exr/exp, controlled by
the risk level estimation. These algorithms take full advantage of exploration
when the situations are not critic, giving opportunities to establish good re-
sults when the situations are critical. Finally, as expected, R-UCB outperforms
VDBE, which is explained by the good estimation of the risk.

5 Conclusion

In this paper, we study the problem of exr/exp in CARS and propose a new
approach that adaptively balances exr/exp regarding the risk level of the situa-
tion. We have validated our work with off-line studies which offered promising
results. This study yields to the conclusion that considering the risk level of the
situation on the exr/exp strategy significantly increases the performance of the
recommender system. In considering these results, we plan to investigate public
benchmarks.
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