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Abstract. In this paper, we focus on the problem of the unpacking of
packed executables in a generic way. That is, we do not assume specific
knowledge about the algorithms used to produce the packed executable
to do the unpacking (i.e. we do not extract/create a reverse algorithm).
In general, when launched, a packed executable will first reconstruct
the code of the original program, write it down someplace in memory
and then transfer the execution to that original code by assigning the
Extended Instruction Pointer (EIP) to the so-called Original Entry Point
(OEP) of the program. Accordingly, if we had a way to accurately identify
that transfer event in the execution flow and thus the OEP, we could
more easily extract the original code for analysis (cf. by inspecting the
remaining code after the OEP was reached). We then propose an effective
generic unpacking method based on the combination of two novel OEP
detection techniques, one relying on the incremental measurement of
the entropy of the information stored in the memory space assigned to
the unpacking process, and the other on the incremental searching and
counting of potential Windows API calls in that same memory space.
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1 Introduction

Malware authors often make use of packers to protect their malware programs
from code analysis. They can easily pack (compress and/or encrypt) the original
code of a malware program with the packers (e.g., UPX, ASPack, and PECom-
pact), therefore we have to extract the hidden original code from the packed
malware before code analysis. Because many types of packer exist and their
packing algorithms vary widely, manual unpacking operations which require us
to detect the packer type used and to infer the packing algorithm can induce
huge additional analyzing costs.

Many anti-malware analysts rely on automated generic unpacking techniques
to skip the manual unpacking operations. The existing methods [1–6] can be
classified into three groups according to their purposes: to obtain the original
code of a packed malware program [1], to detect the OEP in addition to obtain-
ing the original code [2–4], and to detect malware with an anti-virus software
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program even though the malware program is packed [5, 6], where OEP means
the address which indicates the beginning point on the original code loaded into
the memory. In this paper, our purpose is the second one, which is to detect the
OEP in addition to obtaining the original code.

Finding the OEP of a packed program should provide us with several benefits in
terms of code analysis. If we disassemble the original (binary) code starting from
a wrong address, we are to get a wrong assembly code because some architectures
like x86 architecture apply an instruction set with a variable bit length for the rep-
resentation of instructions. In contrast, starting from the OEP, we can transfer the
original code correctly and obtain useful information from the program, (e.g., the
names of stolen files and servers used by attackers). For instance, such information
can be used in computer forensics to track malware authors or attackers.

We focus on the elementary behavior of packed executables to perform generic
unpacking. A typical packer such as UPX and ASProtect compresses or encrypts
a program code and adds its unpacker code to the packed one. When the packed
program is run, it executes the unpacker code first, then the unpacker code
decrypts and writes the original code into the memory. After the unpacker code
completes the decryption, the extended instruction pointer (EIP) moves from
the unpacker code to an address in the original code. Note that OEP is the
address to which the EIP moves from the unpacker code. To summarize, the
elementary behavior is that the original code will be decrypted and written first
and then executed, whichever packer is used.

In this paper, we propose a novel generic unpacking method featuring two
OEP detection approaches: one is based on an entropy analysis and the other is
based on the number of API-call instructions present in the memory. The first
approach focuses on the entropy score of the decrypted original code. Generally,
the entropy score of non-random data is low, and the entropy score of a set of
instructions will be also low because it consists of often-used instructions (e.g.,
mov, push, call, cmp, and add). When caching a page fault, if the entropy score
is lower than a given threshold value, that approach decides that the address to
which the EIP points is the OEP. At the end of the decryption, the number of
instructions should become the highest in the decrypting process. The second
approach focuses on API-call instructions such as ‘call APIaddress’. The intu-
ition is that we cannot find API-call instructions contained in the packed original
code, but we can find them after the decryption is completed. If the number of
API-call instructions is higher than another given threshold value, that second
approach decides that the address of the EIP is the OEP. Our method outputs
an address as the OEP when both the first approach and the second one reach
the same conclusion at which point it outputs a memory dump of all memory
areas that the packed program loaded into the memory.

Our main contribution is to propose two OEP detection approaches which are
greatly different from existing methods. In particular, our method focuses on the
changing information of the original code, whereas almost all existing methods
focuses on the unpacker code. Distinct OEP detection techniques are strongly
needed because we can combine unpacking methods to implement a simple but
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practical solution. That is, each method independently detects the OEP from
OEP candidates and we finally determine the best candidate as the OEP which
wins most votes. The experiment shows that our method can unpack 14 of 20
files packed with distinct packers.

The rest of the paper is organized as follows: Section 2 introduces related
works. Section 3 presents our method. Section 4 shows an experimental evalua-
tion of our method. Finally, Section 5 concludes the paper.

2 Related Works

2.1 Commonly Used Techniques

The original code of a packed file, independently of the packer that was used,
will be decrypted and written, then the original code will be executed. Therefore
the original code will be contained inside the instructions and data that are
dynamically generated.

There exist two techniques that can detect dynamically generated instruc-
tions and data: one relies on disassembly and the other relies on page protection
settings named W ⊕ X page protection [7], where the ‘W’ and the ‘X’ stand for
write and execute, respectively. The former technique disassembles each instruc-
tion and catches write operations (e.g., ‘mov %eax, [%edi]’ and ‘push %eax’ [2]).
The technique can learn the address of the current execution from the EIP. If
a dynamically generated code such as the code written by ‘mov’ or ‘push’ are
executed, the technique memorizes the address of the written code and the code
itself as an OEP candidate and part of the original code, respectively. The latter
technique modifies the page protection settings to be executable/read-only and
read/write-only in sequence. The technique gives the settings of executable/read-
only to the whole memory or a certain memory area just after loading a packed
file on the memory. When the unpacker code writes instructions to one of the
unwritable areas, the technique can catch a page fault and modifies the area
to be read/write-only. Similarly, when the unpacker code executes instructions
of the non-executable area, the technique can catch a page fault and recognize
dynamically generated instructions.

As we mentioned above, we can recognize dynamically generated instructions,
but many page faults occur in practice. For example, Guo et al. show that 11
exceptions occur when they execute a file packed with UPX under only W ⊕ X
page protection [6].

2.2 Existing Methods

Renovo [2] monitors jump instructions such as ‘jmp’ to detect the OEP of a
packed file. If the EIP moves to a dynamically generated instruction through a
jump instruction, Renovo decides that the address of the generated instruction is
the OEP. Because Renovo monitors and disassembles each instruction, it incurs
a significant overhead. Note that we must apply single stepping and disassembly
if we have to recognize instructions such as jump instructions.
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Kawakoya et al. [4] focus on a packed file’s memory access behavior to detect
the OEP, where memory access means operations of read, write, and execute.
They define an equation that represents the memory access behavior and they
input a type of memory access, which is read, write, or execute, to the equation
in order to obtain a representing value of memory access. If values that the
equation outputs are changing rapidly, Kawakoya et al.’s method decides that
the changing point is the OEP.

OmniUnpack [5] applies W ⊕ X page protection. Every time a dynamically
generated instruction is executed and the instruction is for executing dangerous
system calls (e.g., registry/network/file-write operations and process creation),
OmniUnpack invokes anti-virus software to scan newly generated code. Indeed,
if OmniUnpack was to invoke an anti-virus software program for all exceptions,
it would incur a significant overhead. OmniUnpack aims to detect a malware
program with anti-virus software even if the malware program is packed, and
it does not aim to detect the OEP. OllyBonE [8] is a tool that is used for
implementing OmniUnpack. OllyBonE supplies W ⊕ X page protection.

Justin [6] applies W ⊕ X page protection and aims to detect packed malware
programs with anti-virus software as well as OmniUnpack. One of the differences
between Justin and OmniUnpack is that Justin finds out OEP candidates and
an anti-virus software program scans the whole memory starting from each OEP
candidate. Guo et al. propose three approaches to guess if the address on which
a page fault occurs is the OEP. The first is to check if dynamically generated
code area contains unpacker code when a page fault occurs. The second is that
several stack pointers are the same as their initial state. The third is to check if a
packed file accesses the command-line argument. Justin independently combines
each approach with W ⊕ X page protection. If the address appears to be the
OEP, an anti-virus software program scans the whole memory starting from the
address. Justin can supply OEP candidates but does not specify the OEP.

3 Proposed Method

3.1 Workflow

Our system consists of a manager program and an unpacking driver. For generic
unpacking, just after the manager runs a packed PE file, it stops the process. At
which time, a signal is sent to the driver saying that the process just ran. Having
received it, the unpacking driver memorizes the initial state of the memory that
the process uses. After the driver turns on NX bit flags on the memory, the
manager restarts the process. When the process executes an instruction whose
NX bit flag is on, a page fault occurs. After catching it, the driver stops the
process. If a memory page that process is accessing at the time is different from
the initial state, the driver registers/saves the address on which the page fault
occurs as an OEP candidate. The driver then checks if the candidate is correct
with the entropy-based approach and the approach focusing the number of API-
call instructions. If both approaches decide that the candidate is correct, the
driver outputs the OEP and obtains a memory dump; otherwise, the manager
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restarts the process. Our system repeats the unpacking work until the OEP is
determined or at most 50 times.

3.2 OEP Detection Technique Based on Entropy Analysis

We apply Lyda et al.’s file type identification method [9] as an entropy-basedOEP
detection technique. Their method can recognize which file type, text, executable,
encrypted, or packed file as follows. It divides a whole file into successive blocks
of size q bytes and calculates an entropy score for each block using the following
equation:

H(x) = −
n∑

i=1

p(i) log2 p(i) (1)

where q is a given value and q ∈ {1, 2, · · ·}, x means one of the blocks, n denotes
the number of unique one-byte values in x, and i and p(i) denote the i-th smallest
one-byte value in x and a frequency of the i-th smallest one-byte value in x,
respectively. We express, for example, x as hexadecimal numbers “12 34 AB
34 56”. In this case, q = 5, n = 4, the first smallest one-byte value – the
fourth one are 12, 34, 56, and AB, and pairs of (i, p(i)) are (1, 0.2), (2, 0.4),
(3, 0.2), and (4, 0.2), respectively. Lyda’s method then calculates the average
and the maximum of the entropy scores of all blocks. If both the average and
the maximum are smaller than given threshold values, Lyda’s method infers that
the file is neither encrypted nor packed.

As Lyda’s method is not suitable for generic unpacking, we examine entropy
of packed programs and customize the method. That is, we consider encrypted
data as packed data and do not use the maximum value of entropy. The reason
why we do not use the maximum is that a packed file definitely contains packed
data, and the maximum is always high due to the packed data, no matter how
much progress the unpacker code makes. If the average entropy score of the file
is smaller than given threshold m, our entropy-based approach decides that the
OEP candidate is correct.

3.3 OEP Detection Technique Focusing on API-call Instructions

This approach searches for API-call instructions as follows. It takes as a list API
addresses of DLLs exported in the memory and searches for the API addresses
based on two ways. The first one simply searches for each API address, which,
for example, corresponds to the right of ‘call APIaddress’, on the memory
areas whose NX bit flags are on. The other searches for each API address added
by given values to counter stolen bytes techniques. Figure 1 shows an example
of an anti-debugging technique called the stolen bytes technique. When we call
ShellExecuteW API, we just directly jump to address ‘0x73813C59’ like the
left disassembly code. If one intends to thwart code analysis with a stolen bytes
technique, it copies several instructions in an API to the main module and write a
jump instruction that points to the address just below the last copied instruction
like the right code. When a code is modified with the stolen bytes technique,
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ShellExecuteW

0x73813C59
0x73813C5B
0x73813C5C

:
:
:

mov edi, edi
push ebp
mov ebp, esp

Shell32.dll

...

0x0040F010 :
...

Main module

jmp 73813C59h

...

ShellExecuteW

0x73813C59
0x73813C5B
0x73813C5C

:
:
:

mov edi, edi
push ebp
mov ebp, esp

Shell32.dll

...

0x0040F010
0x0040F012
0x0040F013

:
:
:

...

Main module

mov edi, edi
push ebp
jmp 73813C5Ch

...

(Stolen bytes)

Fig. 1. An example: the left is usual and the right is used with a stolen byte technique

API addresses of the main module do not appear. For example, ‘jmp 73813C59’
in the left, which is ShellExecuteW address, is modified as ‘jmp 73813C5C’ in
the right. To fill a gap between an original address and a modified address for
search, our method searches for from an API address added by 1 through the
API address added by y for each API on the memory areas, where y is a given
value and y ∈ {1, 2, · · ·}.

When a page fault occurs, if our API-call-instruction based approach can find
more than z API addresses using both the first way and the second one, the
approach infers that an OEP candidate is correct, where z is a given threshold
value and z ∈ {1, 2, · · ·}.

4 Experiments

4.1 Setup

We use 20 packers described in Table 1. As sometimes a packer cannot pack
an executable file correctly, we pack three executables, calc.exe, comp.exe, and
vim.exe, in turn with each packer. The calc.exe and comp.exe are obtained from
the system folder of Windows XP and vim.exe is a variant of an editor tool vi
for Windows XP. We take the first packed file that can run for each packer. We
unpack the 20 packed files described in Table 1 with our method.

The environment for unpacking is as follows. We used a PC whose CPU and
host OS are Intel Xenon 3.10 GHz and Ubuntu 12, respectively. We installed
KVM to the host OS, and installed Windows XP Professional SP3 to KVM as
a guest OS. We implemented our method on the guest OS.

We set block size q and threshold value m of average entropy, which are
described in Section 3.2, to 256 and 5.5, respectively. We picked these values
from our experiments. We set y for API address search and threshold value z
of the number of API addresses, which are described in Section 3.3, to 15 and
5. The reason why we set z to 5, which is small, is that there exist executables
which call just a few APIs.
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Table 1. The unpacking results

No. Packer name exe (1) (2)

1 ACProtect 1.32 calc
√ √

2 ASPack 2.12 calc
√ √

3 Exe32Pack 1.4.2 comp
√ √

4 ExePack 1.4 vim
√ √

5 eXPressor 1.5.0.1 calc
√ √

6 FSG 2.0 calc
√ √

7 Molebox pro 2.6.4 calc
√ √

8 Npack 1.1.300 calc
√ √

9 Nspack 3.7 calc
√ √

10 PECompact 2.79 calc
√ √

(1) : To obtain all the original code
(2) : To detect the OEP

No. Packer name exe (1) (2)

11 PE-Pack 1.0 vim
√ √

12 Upack 0.39 calc
√ √

13 UPX 3.08 calc
√ √

14 WWPack32 1.20 vim
√ √

15 ASProtect 2.1 calc
√ ×

16 Mew11 1.2 calc
√ ×

17 Armadillo 4.20 calc × ×
18 Obsidium 1.4.5 calc × ×
19 Morphine 1.7 vim × ×
20 Themida 1.8.5.5 calc × ×

4.2 Unpacking Results

Table 1 shows the unpacking results for our method. ‘(1)’ in the table shows
whether or not our method is able to obtain a memory dump that contains all
the original code, where ‘

√
’ and ‘×’ denote success and failure, respectively. If a

result do not satisfy ‘(1)’, our method failed to obtain any of the original code.
‘(2)’ shows whether or not our method is able to detect the OEP. We consider
results that satisfy both ‘(1)’ and ‘(2)’ as unpacking success.

Our method is able to unpack the packed files of cases no. 1 – 14 successfully.
In cases no. 15 (ASProtect 2.1) and 16 (Mew11 1.2), our method cannot detect
the OEPs of the two packed files. To find the reasons, we manually monitored
each instruction of the packed file of case no. 15. When our method decides an
OEP candidate is correct, the EIP has not indicated the OEP. After we skip
several page faults, the EIP indicates the OEP. Threshold value m of average
entropy and z of the number of API addresses are not suitable for case no. 15.
The reason for case no. 16 is the same as that of case no. 15. The results of cases
no. 17 – 20 do not satisfy both ‘(1)’ and ‘(2)’. The failure reason for case no.
19 (Morphine 1.7) is a consequence of the implementation of our method. The
packed file of case no. 19 dynamically allocates memory for writing its original
code. Our implementation does not turn on NX bit flags of such dynamically
allocated memory areas. When our method tries to unpack the packed files of
cases no. 17 (Armadillo 4.20), no. 18 (Obsidium 1.4.5), and no. 20 (Themida
1.8.5.5), no page faults occur. We tried to uncover the reason for that, but could
not find an acceptable explanation. Armadillo, Obsidium, and Themida apply
strong anti-debugging techniques. We guess that they detect KVM and stop
their process in the experiment to thwart analysis.

We can tell from 14 success results that our method is efficient for generic
unpacking. The results of cases no. 15 and 16 are failures, but our method should
be able to unpack the two if we tuned the parameter values of our method. To
unpack files packed with Morphine, we will implement our method such that it



600 R. Isawa, M. Kamizono, and D. Inoue

can turn on NX bit flags of dynamically allocated areas. For cases no. 17, 18,
and 20, we will consider how to bypass anti-analysis techniques.

5 Conclusion

In this paper, we propose a generic unpacking method featuring two OEP detec-
tion approaches: one is an entropy-based approach and another focuses on the
number of API-call instructions. Our key ideas are greatly different from those
of the existing methods. For implementing a practical unpacking solution, we
can independently use several methods to detect the OEP and we can decide
the OEP from candidates as an election. Thus several types of OEP detection
approaches are required. The experiment shows that our method can defeat 14
of 20 packers. In our future work, we plan to apply machine learning approaches
instead of just using threshold values in order to overcome the issues we had
with trials of cases no. 15 and 16 in the experimental phase.
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