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Abstract. In this paper, hidden Markov models (HMM) is studied for
spike sorting. We notice that HMM state sequences have capability to
represent spikes precisely and concisely. We build a HMM for spikes,
where HMM states respect spike significant shape variations. Four shape
variations are introduced: silence, going up, going down and peak. They
constitute every spike with an underlying probabilistic dependence that
is modelled by HMM. Based on this representation, spikes sorting be-
comes a classification problem of compact HMM state sequences. In ad-
dition, we enhance the method by defining HMM on extracted Cepstrum
features, which improves the accuracy of spike sorting. Simulation results
demonstrate the effectiveness of the proposed method as well as the ef-
ficiency.
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1 Introduction

It is observed that complex brain processes are reflected by activities of millions
of neurons. To study brains, research on understanding neuron actions is crucial.
Electrodes are implanted in brains to record actions of surrounding neurons
through firing potentials. The action potentials are also referred as “spikes” in
neuroscience, as they appear sharp spikes in the signal waveforms. Each neuron
produces spikes with a particular shape. Spike sorting is to cluster these recorded
spikes into groups. In each group, spikes have similar shapes. The ultimate goal
of spike sorting is to find the correspondence between spikes and neurons. Based
on this research, the possibilities of new investigations on brains will be increased
dramatically.

The assumptions for spike sorting are that the shapes of spikes from a specific
neuron are similar and they are unique for each neuron [5]. Many spike-sorting
techniques have been developed [1,2]. The challenges of spike sorting lie in that
(i) the number of neurons is unknown; (ii) the spike recording is associated with
physical and biological noise [4]; (iii) spikes in the local area are not easy to be
distinguished [2]. Traditional spike sorting methods [10,11] usually rely on shape
measurement such as comparing height, width, and peak-to-peak amplitude of
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Fig. 1. The illustration of our method. (a)Raw data recorded from electrodes; (b)spike
detection using a threshold-based method; (c) clustering the detected spikes into three
groups automatically using HMM.

spikes. However, these approaches often produce inaccurate clustering because
of the sensitivities to noise.

Statistics tools are widely used for spike sorting. In [6], Principal Compo-
nent Analysis (PCA) is introduced to group spikes through analyzing spikes to
get several principal components and projecting spikes into each component.
Takahashi et al. apply Independent Component Analysis (ICA) [7,8] to separate
spikes. As both PCA- and ICA-based methods require strong spike correlation
and variances, they will not work well in case of low signal to noise ratio (SNR).
In [12], Pouzat et al introduce a Markovian approach with a Monte Carlo simu-
lation to solve spike sorting. However, high accuracy is achieved at the expense
of a great computational complexity.

In this paper, we propose an effective and efficient method for spike sorting
shown in Fig.1. The methods consists of two major procedures: spike detection
and representation [3] and HMM based spike clustering. The main contribution
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Fig. 2. Significant shape variations in spikes, which are assigned to HMM states

is the use of HMM to cluster the shapes of different spikes. For each spike, we
observe that it contains four significant shape variations: silence, going up, peak
and going down. We partition each spike into several segments and define obser-
vations of HMM as these spike segments. The states of HMM are corresponding
to the four shape variations. The expectation maximization(EM) algorithm is
used to compute the HMM parameters. The Viterbi algorithm is then used to
find the most likely state sequence that correspond to each spike shape. After
that, the sorting of spikes becomes to classify the obtained state sequences. Ex-
periments demonstrate the effectiveness and efficiency of the proposed method.

The rest of the paper is organised as follows: Section 2 discusses the use of
HMM for spike sorting. Section 3 shows the experimental results.

2 HMM-Based Spike Sorting Method

HMM is a statistical tool to model sequences and describe the probability dis-
tribution over a set of observations, which has been successfully used for speech
recognition. There are five basic elements in a HMM: 1) the number of states
N ; 2) the number of observations M ; 3) the state transition probability matrix
A; 4) the observation probability matrix B and 5) the initial state distribution
Π . The triplet λ = (A,B,Π) is often used to denote a HMM.

2.1 Spike HMM

In this paper, we utilize a HMM to model spikes in order to understand its
underlying states over a sequence of observations. For a spike, the significant
shape states are silence (flat), going up, peak and going down, shown in Fig. 2.
Each of them is assigned to a state (from s1 to s4) of the HMM (i.e. N =
4). The state structure of the spike HMM and the state transitions with non-
zero probability are shown in Fig. 3. It is noticed that for a general spike, the
transitions between s2 (up) and s3 (down) or between s1 (silence) and s4 (peak)
have zero possibilities. Moreover, most spikes start from the silence state and
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Fig. 3. HMM with 4 states (labeled s1 to s4) and 12 state transitions. The transition
probabilities between s2 and s3 or between s1 and s4 are zero.

end in the silence state. Based on the basic knowledge about spike, the following
transition probability matrix and the initial state distribution are given for the
initialization of the HMM.

A =

⎛
⎜⎜⎝
0.4 0.3 0.3 0.0
0.3 0.4 0.0 0.3
0.3 0.0 0.4 0.3
0.0 0.4 0.4 0.2

⎞
⎟⎟⎠

Π =
(
0.6 0.2 0.2 0.0

)

2.2 Spike Detection and Feature Extraction

Given a sequence of neuron signals for spike sorting, the first step is the detection
of the spikes. We adopt the amplitude thresholding method [3], which can quickly
locate spikes. A bandpass filtering (bf) is firstly applied to the input signals S
and then the standard deviation σ of the background noise is estimated using

median{|Sbf |/0.6745}. (1)

The threshold is set to be 4σ.
After spike detection, L samples are saved for each spike. A typical value of

L is set to 64. We divide a spike into overlapping segments of length of l. The
amount of overlap between consecutive segments is o. The number of segments is
actually the number M of HMM observations, which can be calculated by using
M = (L − o)/(l − o). The choice of parameters l and o significantly affects the
spike clustering accuracy. With an amount of overlap between consecutive spike
segments, more spike features can be captured to improve the performance. It
is very delicate to choose the parameter l. If l is too small, there is no sufficient
discriminant information in the observation. If l is too large, the probability of
cutting across the distinct spike features are increased. Based on the knowledge
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of spikes, the number of samples that cover a whole peak (i.e. s2-s4-s3 or s3-s4-
s2) of a spike is about 20. l set to the half value (i.e. 10) is a reasonable choice,
which has been proved in our experiments. Refer to Fig. 4 for illustration.

Based on the partition of a spike, we obtain M observations for the HMM. For
each observation vector, it has l samples of the raw waveform data. The use of raw
data as HMM observation vectors has a disadvantage of being sensitive to noise.
To reduce the effect of noise, Cepstrum coefficients are extracted from each spike
segment. We employ Cepstrum features because they have a property to capture
both the amplitude property of spikes and the phase of the initial spectrum. This
property makes Cepstrum features be able to separate the meaningful features
from noisy signals. Cepstrum coefficients are calculated as the Inverse Fourier
Transform (IFT) of the logarithm of the Fourier Transform of a spike segment,
as

c = F−1log|F (s)|, (2)

where s is the spike segment and c is the Cepstrum feature vector.

Fig. 4. Spike parameterization and partition. There are L samples for a spike. The
spike is partitioned into M segments with each length of l and overlap of o between
neighboring segments.

2.3 HMM Training and Clustering

Aset of 300 detected spikes are used to train aHMMλ = (A,B,Π),where there are
300×M observationvectorswith lCepstrum coefficients for each. In theHMM, the
number of statesN is 4, the numberM of observation vectors is defined in Section
2.2, the transition probability matrix A and the initial state distribution Π are
given in Section 2.1. The only unknown parameter is the observation probability
matrixB. We adopt the mixture of Gaussians with the number of 3 to initializeB.
In order to optimize the HMM tomaximize the probability of themodel generating
the observations, we adjust the parameters A, B, and Π using the EM procedure
[14].

In the clustering stage, the optimized HMM is used to group spikes. Every
spike is represented by M observation vectors, same as the description above.
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Table 1. Statistics of the number of spikes in each generated clusters using the pro-
posed method and the method of [3]

Methods The proposed method The method [3]

Spike sets 0.05 0.10 0.15 0.05 0.10 0.15

Cluster 1 807 837 878 810 952 962

Cluster 2 756 761 724 753 562 466

Cluster 3 756 711 629 741 477 456

Cluster 4 - 85 97 15 370 398

Cluster 5 - - 20 - 19 40

Cluster 6 - - - - 14 23

Total cluster
Num.

3 4 5 4 6 6

Dominant
cluster Num.

3 3 3 3 1 or 4 1 or 4

The Viterbi algorithm [15] is employed to find the most likely state sequence in
the model that produces the observations. The output state sequence consists
of M elements received values from 1 to 4 that are corresponding to s1 to s4
respectively. As the order of states respects primary spike geometry that is dom-
inant to distinguish different spikes, state repetitions are removed from output
state sequences by using the diff and find operations in MATLAB. Take the
spike in Fig. 4 for an instance. The output state sequence (1, 1, 2, 2, 4, 3, 3, 3, 1, 1)
is reduced to be (1, 2, 4, 3, 1). After that, spike sorting becomes the clustering
of the unique state sequences, which can be easily implemented by using the
unique operation in MATLAB.

3 Experimental Results

In this part, we show our experimental results on simulation data given in [3].
In the simulation data, it is known that there are 3 spike types. In addition, the
spikes with different noise levels are provided as well as the true classes for each
spike. In the experiment, there are 3 sets of spikes with 3 noise levels: 0.05, 0.1
and 0.15 respectively. We implement our method using MATLAB on Intel Core
i7-2600K. To sort 2319 spikes from 3 classes, the proposed classification method
siginificantly improves the computational complexity. The classification process
takes about 10 seconds to complete. We set the parameters as l = 10, o = 4
and M = 10. Other parameters are described in the Section 2. To evaluate the
performance of our proposed method, we compare our results with the method
in [3] regarding the number of generated clusters and the spikes in each cluster.
The clustering accuracies are also compared via the confusion matrix that is
introduced in [13] specifically for evaluating clustering techniques.

Table 1 summarizes the results, where the number of spikes in each cluster is
listed. It should be noted that the number of total clusters and the number of
dominant clusters, referring to Fig. 5(a) for illustration. Based on the results, it
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(a)

(b)

Fig. 5. Experimental results. (a) The illustration of the number of spikes in each
generated clusters using the proposed method (left) and the method [3] (right). (b)
The spikes are grouped into 3 major clusters (blue, green and red) using the proposed
method.

Table 2. Performance comparison using confusion matrices

Methods The proposed method The method [3]

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 235 11 17 239 29 21

Class 2 5 292 15 7 272 12

Class 3 11 18 280 5 20 279

Accuracy 91.2% 88.9%

is obvious that the number of dominant clusters using our proposed method is
more distinct than the one using [3] and our proposed method can produce 3 (the
actual number of spike classes) dominant clusters for all the data with different
SNRs. The spikes in each group are shown in Fig. 5(b), where we can see that
the shape variations of spikes in each dominant cluster are small. Moreover, the
clustering accuracy is measured using a confusion matrix given in Table 2, where
we divide the spikes into two parts - one for building prototypes of clusters and
the other for testing the accuracy using the Euclidean distance. The comparison
indicates that our method produces more accurate spike sorting.
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4 Conclusion

We presented an effective and efficient spike sorting method. A threshold-based
method is applied to quickly locate spikes. Cepstrum coefficients are calculated
to robustly represent spike segments. The main contribution is the introduction
of HMM for spike sorting, where four HMM state are defined and searched to
respect the spike geometry. Experimental results demonstrate the superiorities
of our proposed method.
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