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Abstract. The cerebellar system is implicated in motor learning for
movement coordination. In this paper, we suggest a simplified cerebellar
model with priority-based delayed eligibility trace learning rule (S-CDE)
that enables a mobile agent to randomly navigate in an environment.
The depth information from a simulated laser sensor is encoded as neu-
ronal region activity for velocity and turn rate control. A priority-based
delayed eligibility trace learning rule is proposed to maximize the usage
of input signals for learning in synapses on Purkinje cell and cells in
the deep cerebellar nuclei. Asymmetric weighted sum and velocity signal
conversion algorithms are designed to facilitate training in an environ-
ment containing turns of varying curvatures. S-CDE is developed as a
brain-based device and tested on a simulated mobile agent which had to
randomly navigate maps of Singapore and Hong Kong expressways.

Keywords: Brain-based devices, cerebellum, priority-based delayed
eligibility trace learning rule, error signals, motor control.

1 Introduction

The study of the cerebellum in neuroscience, physiology, and neuroimaging has
resulted in several consistent findings that implicates the cerebellar system in
motor learning [1,2,3]. Error signal, the difference between reference and actual
movement coordinations, has been proposed to regulate learning in the cerebellar
system through synaptic eligibility traces [4]. The error signals are transmitted
from the inferior olive (IO) to cerebellar regions via climbing fibers [5,6].

Inspired by the above findings, McKinstry et al. [7] proposed a cerebellar-
based computational model with delayed eligibility trace learning rule (CDE)
that learns to predict corrective motor control actions based on the experiences
of reflex responses. CDE is developed as a brain-based device (BBD) [8], which is
a famous platform to construct a computational model of neuroscience by incor-
porating features of neuroanatomy and neurophysiology of vertebrates. Visual
input from a color camera is preprocessed in the middle temporal visual area
(MT). Important visual features are extracted and used to trigger associations
between visual cues and proper motor controls. They also suggested a delayed
eligibility trace rule to govern the plasticity of synapses onto Purkinje cell (PC)
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and deep cerebellar nuclei (DCN). This training rule is used to learn proper
motor responses, given certain visual cues, such that error signals are avoided.
The error signals are generated using input from infrared sensors, to govern the
learning in PC and DCN. A laser range finder is used to detect collisions and ini-
tiate collision avoidance behavior. The results demonstrated a smooth traversal
of curved paths, with each path comprised of nearly identical turn curvatures.

However, CDE suffers from several limitations. First, the complexity of CDE,
which consists of 28 neural areas, 27,688 neurons, about 1.6 million synaptic con-
nections, and three input modalities may limit its practicality in real machines.
Second, CDE is inept at effective motor learning in environments with varied
turn curvatures due to its limited utilization of synaptic inputs for learning.
Consequently, this leads to a predicted third limitation, that is the dependence
on error signals to support learned predictive motor control signals even after
training for decent traversal of environments with varied turn curvatures. Lastly,
there is a limit to the volatility of input stimuli, beyond which learning becomes
impaired. This limitation is caused by an insufficient eligibility trace decay rate
in the learning rule implemented in CDE.

With regard to the aforementioned limitations, we propose a simplified cere-
bellar model with priority-based delayed eligibility trace learning rule (S-CDE).
First, we utilize a simulated laser sensor to generate environmental depth infor-
mation. This is the only input modality, which dramatically reduces complexity
of the model since visual processing in CDE imposes extravagant complexity on
the system compared to its cerebellar portion. Second, a priority-based delayed
eligibility trace learning rule is suggested to maximize the usage of input signals
for synaptic learning on plastic connections to PC and DCN areas. This is done
by introducing a mechanism to prematurely re-trigger eligibility traces upon
encountering more salient synaptic inputs. Third, an increased eligibility trace
decay rate is used to allow for increased input volatility. The proposed model is
developed as a brain-based device and tested in a simulated mobile agent which
had to randomly and smoothly navigate maps of the Singapore(SG Map) and
Hong Kong(HK Map) expressways.

2 A Simplified Cerebellar Model for Motor Control

A simplified cerebellar model with priority-based delayed eligibility trace rule
(S-CDE) is proposed. Compared to CDE, three major modifications, including
a simplified system architecture, introduction of an eligibility trace re-triggering
mechanism, and an increased eligibility trace decay rate, have been made.

2.1 System Architecture

The system architecture of S-CDE is presented in Fig. 1. A single vector of input
from a laser sensor is the only sensory perception the S-CDE has of its environ-
ment. The laser streams are preprocessed, such that the sensory input is split
into four different streams, each in an appropriate semantic format for the sub-
region it is being fed into. This modification eliminates the need for extensive
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Fig. 1. System architecture of S-CDE which comprises of a sensory input layer, a pre-
processing layer, a cerebellar layer, and a motor output layer. Closed arrowheads denote
excitatory connections and circular endpoints denote inhibitory connections. Solid lines
denote non-plastic connections while dotted lines denote plastic connections. The initial
synaptic weights (c) are uniformly generated in between the maximum and minimum
values as indicated near to the projections. Other settings, including learning rate (h),
persistence (ω), and firing threshold (σ), are identical to the settings used in CDE [7].

processing of visual cues from a camera, thus, reducing the computational com-
plexity. In total, the S-CDE has eight neuronal regions, 800 neuronal units, and
40,600 synaptic connections. The derivation of error signals from the laser input
also eliminates the need for other input modalities. S-CDE can be divided into
a sensory input layer, a pre-processing layer, a cerebellar layer, and an output
motor layer. The cerebellar layer can be further divided into symmetrical Turn
and Velo regions for handling turn rate and velocity computations respectively.

Sensory input is preprocessed and fed to the PN-Turn and PN-Velo areas.
Error signals are derived from a subset of the sensory input and are subject to
similar pre-processing before being fed to IO (IO-Turn and IO-Velo). In the cere-
bellar layer, PN areas(PN-Turn and PN-Velo) are linked to PC (PC-Turn and
PC-Velo) and DCN (DCN-Turn and DCN-Velo) areas via plastic connections.
PC controls DCN via disinhibition through its inhibitory connections, which in
turn provide predictive control signals for turn rate and velocity to motor areas
(Motor-Turn and Motor-Velo). Error signals from IO govern motor learning in
the cerebellar regions (IO→PC and IO→DCN) and initially drive motor output
in early stages of training (IO→Motor-Turn and IO→Motor-Velo).

2.2 Neuronal Responses

Standard neuronal dynamics that are implemented in BBDs are employed in
S-CDE [8]. Synaptic connections can be either plastic or non-plastic and voltage-
dependent or voltage-independent. In S-CDE, only voltage independent connec-
tions are used as suggested in CDE [7]. Defining j as a parent node and i as a
child node, the voltage-independent connection from j to i is formulated as:

V Iij(t) = wijsj(t) (1)
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where wij is the synaptic weight between unit i and j, and sj is the activation
state of unit j. The activity of the neuronal areas are updated as:

si(t+ 1) = φ

⎛
⎝tanh

⎛
⎝

N∑
j=1

(V Iij(t)) + ωsi(t)

⎞
⎠
⎞
⎠ , φ(x) =

{
0; if x < σi

x; otherwise
(2)

where N is the number of synapses onto unit i, ω is the persistence of unit
activity, and σi is the firing threshold of unit i.

2.3 Priority-Based Delayed Eligibility Trace Learning Rule

The synaptic strengths of the plastic connections are subject to change as follows:

Δwij(t+ 1) = αsi(t)× Pj(t)× si(t)× (IO(t) − 0.02) (3)

where α is a fixed learning rate, Pj(t) is the priority eligibility trace, si(t) is the
activity of unit i and IO(t) is the IO unit activity. The formulation of Pj(t) is

Pj(t+ 1) =

⎧⎨
⎩

0 if t < delay
sj(t− delay) if sj(t− delay) ≥ ε
0.6× Pj(t) otherwise

(4)

where sj is the activity of unit j, ε is an activity threshold and delay is the
number of cycles offset from the current simulation cycle.

The delayed eligibility trace learning rule is used to determine the eligibility
of a synapse for plasticity and if so, the amount of synaptic weight change re-
quired. The original delayed eligibility trace learning rule employed by the CDE
suffers from three limitations. First, it is inept at effective motor learning in en-
vironments with varied turn curvatures. This is because once an eligibility trace
over a synapse is triggered, subsequent input over that synapse is ignored for
some time. Any important inputs arriving during this window is neglected, thus
impairing the learning process. Second, due to the impaired learning process,
the effectiveness of learned predictive motor control is limited. This would pre-
dictably create a dependence on error signals to supplement predictive motor
control signals for decent traversal of such environments. Third, there is a limit
to the volatility of input stimuli, beyond which learning becomes impaired. This
volatility is inversely proportional to the distance between turns in a path. The
input volatility limit is determined by the onset of consecutive eligibility traces
during traversal of a rapid series of turns.

To overcome these limitations, a prioritized-learning concept is integrated into
the learning rule. Instead of ignoring all inputs, an eligibility trace can be re-
triggered if subsequent synaptic input is greater than that which triggered the
initial eligibility trace. By doing so, salient inputs always have the priority for
learning. Additionally, the eligibility trace decay rate has been increased from
0.9 to 0.6 to allow for a higher input volatility limit. The combined effect of the
re-triggering mechanism and a higher eligibility trace decay rate is more effec-
tive predictive motor control and a higher input volatility limit, which increases
learning accuracy and effectiveness when traversing relatively difficult paths.
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2.4 Motor Output

Turn Rate Computation. Turn rate(◦/cycle) is updated every cycle as a func-
tion of activity in the Motor-Turn area. Activity in the area is interpreted using
population vector decoding. Each neuronal unit in Motor-Turn has a preferred
turn-rate magnitude and direction. For explanatory purposes, neuronal units in
Motor-Turn are indexed as t1 to t100. Units t1 to t50 have a rightward preference
of direction, and the preferred turn-rate magnitude of each unit grows linearly
with its index. Units t51 to t100 have a leftward preference of direction, and the
preferred turn-rate magnitude of each unit shrinks linearly as its index increases.
To convert the activity in Motor-Turn to a specific turn rate, a combination of
symmetric difference and population vector decoding techniques are used, ex-
pressed in equation 5(left). The resulting vector is the nett asymmetric activity
in Motor-Turn, indexed as a1 to a50, where preferred turn-rate magnitude grows
with the index, negative values indicate a leftward contribution, and positive
values indicate a rightward contribution. The turn rate is calculated as shown
in equation 5(right), where n is the size of ã and γ is a constant defining the
maximum turn rate.

ã =

⎡
⎢⎣
a1
...

a50

⎤
⎥⎦ =

⎡
⎢⎣
t1
...
t50

⎤
⎥⎦ −

⎡
⎢⎣
t100
...
t51

⎤
⎥⎦ ; TurnRate =

n∑
i=1

{
i× γ

100
(ai)

}
(5)

Velocity Computation. Velocity(pixels/cycle) is updated every cycle as a
function of activity in the Motor-Velo area. Activity in the area is interpreted
using population vector decoding. For explanatory purposes, neuronal units in
Motor-Velo are indexed as v1 to v100, and each has a preferred amount of braking,
the magnitude of which grows linearly with its index. The conversion of activity
in Motor-Velo to a specific velocity value is expressed in the equations below.

V elocity =

⎧⎪⎨
⎪⎩

Vmax if

n∑
i=1

vi = 0

‖Vmax − β(Vmax − 1)‖ otherwise

; β =

n∑
i=1

(i × vi)

100

n∑
j=1

vj

(6)

where β is a braking coefficient, a parameter that controls the amount of braking
used by the agent ranging from 0 to 1, n is the size ofMotor-Velo, vi is the i

th unit
of Motor-Velo, and Vmax is a constant defining the maximum velocity. Through
this formulation, a minimum velocity of 1 pixel/cycle is imposed.

Agent Behavior. The simulated mobile agent is given an innate behavior
to move forward at a maximum speed of 6 pixels/cycle. If a collision occurs,
the agent rotates in place until it is able to continue moving from its collision
coordinate.
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3 Results

S-CDE is developed as a brain-based model and tested in a simulated mobile
agent which has to randomly and smoothly navigate SGMap and HKMap shown
in Fig. 2 (a-b). Note that this simulation does not take into account physical laws
such as inertia. The simulated agent is equipped with a single laser sensor and
its motor capabilities are defined in terms of turn rate (◦/cycle) and velocity
(pixels/cycle). The simulation was executed in MATLAB on a MacBook Pro
computer with a 2.66 GHz processor. One simulation cycle takes ∼25 ms.

First, experiments were conducted using SG Map to calibrate the length of the
delay used in the S-CDE agent. The delays tested were 0, 3, 5 and 8 cycles. The
delay resulting in the lowest motor error after 7000 simulation cycles of traversing
SG Map is the calibrated delay value. Motor error for each cycle is quantified by
taking the ratio of the strength of the error signal generated in the preprocessing
layer to the maximum possible strength of the error signal. As a control for
the experiments, a simulated agent using a reflexive motor controller was also
included, which was purely driven by error signals from IO and had no predictive
capabilities. This was achieved by lesioning its DCN → Motor connections. The
experiments were repeated to calibrate the delay for the CDE agent, using delay
values of 2, 3 and 5. The calibration of S-CDE and CDE also served as the
training phase. Fig. 2 (c-d) shows a sample of S-CDE region activity during
training. Following that, training effectiveness was ascertained by lesioning all
connections originating from IO (IO → PC, IO → DCN, IO → Motor) in
both agents. Again, a reflexive agent was used as a control. Both SG Map and
HK Map were used to evaluate training effectiveness in familiar and unfamiliar
environments respectively.

Motor error output during delay calibration for both S-CDE and CDE are
shown in Fig. 3 (a-b). Calibrated delays for S-CDE and CDE were determined
to be 5 and 2 cycles respectively. S-CDE achieved a lower motor error rate
than CDE. CDE ignores subsequent input for some time once input surpasses a
threshold. If a long delay is used, CDE would only learn based on the initiation
of a turn and block input arising from traversing the rest of the turn. A short

(a)

 

(b) (c) (d)

Fig. 2. (a) SG Map has a narrow average path width of 40 pixels. (b) HK map is
about three times larger, and has wide average path width of 60 pixels. (c) Activity
in turn-related regions during training. (d) Activity in velocity-related regions during
training.
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Fig. 3. Motor error during delay calibration of (a) S-CDE and (b) CDE. Motor error
during training effectiveness assessment of S-CDE and CDE in (c) familiar (SG Map)
and (d) unfamiliar (HK Map) environments.

enough delay would enable CDE to learn based on input from several points
during the turn. However, using such a short delay severely limits the predictive
capability of CDE, making it prone to higher motor error rates. S-CDE is able
to base its learning on input received throughout a turn due to its re-triggering
mechanism, thus resulting in lower motor error rates.

As shown in Fig. 3 (c-d), during training effectiveness evaluation, S-CDE suc-
cessfully demonstrated effective predictive motor control while traversing both
SGMap and HKMap despite only having prior exposure to one. CDE fails to tra-
verse either environment satisfactorily. Due to the limited predictive capability
previously mentioned, predictive motor control signals for sharp turns were gen-
erated too late to avoid impending collisions. The change in motor error rates for
CDE between delay calibration and training effectiveness evaluation corroborate
with the initial prediction of CDE’s dependence on error signals after training
for traversal of environments with varied turn curvatures. The performance of
S-CDE in both maps during training effectiveness evaluation was comparable to
that achieved at the end of delay calibration, which strongly suggests effective
retention of learned predictive responses, and demonstrates its robustness in an
unfamiliar environment.

4 Conclusion

In this paper, a simplified cerebellar model for predictive motor control has been
presented. It has a simplified neural architecture due to the reduction of input
modalities. It has demonstrated effective motor learning in environments with
varied turn curvatures because of the introduction of the priority-based delayed
eligibility trace learning rule. It is also robust while traversing new environments.
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