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Abstract. Deep learning methods aims at learning features automatically at 
multiple levels that allow the system to learn complex functions mapping the 
input to the output directly from data. This ability to automatically learn power-
ful features will become increasingly important as the amount of data and range 
of applications to machine learning methods continues to grow. In this context 
we propose a deep architecture model using Support Vector Machine (SVM) 
which has inherent ability to select data points important for classification with 
good generalization capabilities. Since SVM can effectively discriminate 
features, we used support vectors with kernel as non-linear discriminant 
features for classification. By stacking SVMs in to multiple layers, we can 
obtain deep features without extra feature engineering steps and get robust 
recognition accuracy. Experimental results show that the proposed method 
improves generalization performance on Wisconsin Breast Cancer dataset.  
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1 Introduction 

Classification results of learning algorithms are inherently limited in performance by 
the features extracted [1]. Deep learning is required to learn complicated function that 
can represent higher level extractions. Deep learning architectures consist of multiple 
intermediate layers rather than a single hidden layer, and adequate learning algorithm 
to train those layers. For the deep learning, multiple layers are expected to replace 
manual domain-specific feature engineering [2]. Also, recent neuroscience researches 
have provided backgrounds to deep feature extraction [1]. Besides the early attentions 
to the importance of deep architecture [3,4], deep learning was not prevalent since 
there was no effective learning method applicable for existing learning machines ex-
cept few models [5,6]. Restricted Boltzmann Machine (RBM) is a generative stochas-
tic neural network that can learn a probability distribution over its set of inputs and 
initially, was invented by Smolensky in 1986 [7]. But as G. Hinton et al. proposed the 
RBM network with contrastive divergence [8], deep architectures using RBM  
network become popular for many pattern recognition and machine learning applica-
tion and start to win prizes at several pattern recognition competitions without  
complex manual feature engineering. Although well-trained RBM networks show 
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Support vectors of SVM indicate the closest training data points to the hyper-plane. 
Binary classification problem using linear models can be represented as:  

,                            (1) 

where w denotes the weight vector, x is input vector and b is a bias parameter of the 
linear decision function. SVM weights represent the importance of the corresponding 
input or feature for the classification. 

The training data set which consists of N input patterns is represented as x1, …, xN, 
and corresponding target can be expressed as t1, …, tN where ti�{-1, 1}, i=1, …, N. 
The target label of new data point x is predicted with the sign of y(x). Then if the 
training data set is linearly separable and the model is trained to classify training data 
correctly, tiy(xi)>0 for all training data. The training of the parameters of SVM is con-
strained optimization problem which minimizes:  , , ∑ T 1 ,              (2) 

where a=(a1,…,aN)T and ai are Lagrange multiplier [10]. To get the optimum of above 
problem, we can set the derivatives with respect to w and b equal to zero. Then we get ∑ ,                                  (3) 0 ∑ .                                   (4) 

And the dual representation of the above problem in Eq. (2) can be derived as the 
maximization problem:  ∑  ∑ ∑ , ,                 (5) 

with respect to a subject to the constraints 0, 1, … , ,                               (6) ∑ 0.                                (7) 

where ai are obtained by training the SVM and ,  is the linear inner product of 
x and x’. Support vectors are the training samples whose corresponding ai values are 
nonzero. In this representation, weights disappear and the problem only depends on 
the set of ai, ti and xi. Since this is convex optimization problem, any local optimum is 
global optimum. Once we get a set of ai, w and b are calculated using (3) and (4), 
respectively. With these parameters, a new data can be tested using equation (1). By 
substituting w in Eq. (1) using Eq. (3), the equation for classification of new data x 
become  ∑ , .                            (8) 

Because the optimization of Eq. (5) satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions, ai=0 or tiy(xi)=1 for every data point. Then only points which have ai>0 affects 
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Fig. 3. Feature extraction between layers 

The training of the first weight set is extracted from original training data. Let m-
dimensional N input patterns of training data are x1, …, xN. From the training data we 
get m-dimensional p support vectors s1, …, sp and corresponding Lagrange multipliers 
a1, …, ap and target labels t1, …, tpas described in previous subsection 2.1. The activa-
tion values of the next layer are calculated as:  , ,                                (10) 

where h1(i) is the i-th element of the first hidden layer. Here b is not used except at 
the final layer since b is a just bias for the classification and it does not affect the in-
trinsic distribution of the data. The dimensionality of h1 is p, the number of support 
vectors of the input layer. The training of the weight connecting the input layer with 
the first hidden layer is completed, and weights of the next layers are trained layer by 
layer in the same manner. However, the training data for the next layers is the feature 
data transformed by previous layers rather the original data points. By feature extrac-
tion between the first layer and the next layer, original data x�Rm is transformed to 
h1 �Rp. For example, to train the second hidden layer, we can obtain the p-
dimensional N training data h1

1, …, h1
N by projecting original data x1, …, xN on the 

transformed feature space whereas target values t1, …, tN are not changed. With these 
h1

1, …, h1
N and t1, …, tN, the next layer also could be trained. Training procedures can 

be represented in algorithm 1. 

Algorithm 1. Training of the Deep SVM 
INPUT: 
X1 :={x1, …, xN} is training data 
t :={t1, …, tN} is the set of corresponding target labels 
K() := the RBF kernel function 
n_layers := the number of layers 
 
PROCEDURE: 
FOR i=1:n_layers  

{Si, ai, bi} <= SVM(Xi,t) 
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t_si := target labels corresponding Si 
p := the number of support vectors Si 
 
FOR j=1:N 

Xi+1

j <= {t_s
i

1*a
i

1*K(S
i

1,X
i

j),…, t_sp*a
i

p*K(S
i

p,X
i

j)} 
END 

END 
 
OUTPUT:  
S, a, t_s, b 

To test the new data point, the input vector is given to the first layer and which is 
mapped to the next layer using Eq. (10). At the highest layer, final classification is 
decided by using the sign of function ∑ , ö ,                        (11) 

where si is i-th support vector, l is the number of support vectors of the final layer, and ö  represents transformed feature of test data x by hidden layers.  

3 Experimental Results  

The recognition performance of the proposed model is tested on Wisconsin Breast 
Cancer Database [12]. This breast cancer databases was obtained from the University 
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. The data samples 
contain 9 attributes of Clump Thickness, Uniformity of Cell Size, Uniformity of Cell 
Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chroma-
tin, Normal Nucleoli and Mitoses. Each attribute has the integer value from 1 to 10. 
Each sample has the class of benign or malignant. The dimensionality of data patterns 
is 9 and the number of data samples is 367. Among 367 data samples, 200 samples 
are benign and 157 are malignant. In our experiment, the training set consists of ran-
domly selected 100 and 84 samples and the test set is remaining 100 and 83 samples 
for benign and malignant cancer respectively. Sigma of the RBF kernel parameter of 
SVM is set to 5 and the number of layers is 3. Table 1 shows the number of support 
vectors and classification accuracies.  

Table 1. Recognition performance  

 1st layer 2nd layer 3rd layer 

Dimensionality 34 25 31 

Training accuracy  100 % 100 % 100 % 

Test accuracy  91.2 % 92.3 % 95.6 % 
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Table 1 shows the perfect accuracy on training data. There are some errors on the 
test set. But, test accuracy is increased as layers are stacked. This demonstrates the 
superior generalization performance of the proposed model to shallow network.  

Table 2. Performance comparison with other models 

 SVM Deep SVM Denoising auto-encoder 

Training accuracy  100 % 100 % 100 % 

Test accuracy  91.2 % 95.6 % 91.9 % 

 
Table 2 shows the comparison of classification accuracies with several models. To 

test the accuracy of denoising auto-encoder [13], 3 hidden layers are used and each 
layer from bottom to top hidden layer has 34, 25 and 31 nodes respectively. For the 
training of denoising auto-encoder, mini-batch algorithm is used to make the learning 
efficient and 200 epochs are done to train the network. The result shows the superior 
generalization performance of the proposed model.  

4 Conclusion  

In this paper, we proposed the deep network to achieve discriminative power of high-
order feature space by stacking SVMs as layers. Hidden layers use support vector and 
its corresponding multiplier to extract features of the input vector. Experimental re-
sults tested on Wisconsin Breast Cancer Database demonstrate that although the test 
performance on training set is perfect on every layer, higher layer’s SVMs show bet-
ter generalization performance, i.e., they have better classification accuracies on test 
data than lower layers. In future works, we would test the system on high-dimensional 
data and try to implement the incremental learning of the architecture. Error-based 
fine-tuning of weights also can be considered.  
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