
Pushing Stochastic Gradient towards Second-Order
Methods – Backpropagation Learning
with Transformations in Nonlinearities

Tommi Vatanen1, Tapani Raiko1, Harri Valpola1, and Yann LeCun2

1 Department of Information and Computer Science
Aalto University School of Science

P.O. Box 15400, FI-00076, Aalto, Espoo, Finland
first.last@aalto.fi

2 New York University
715 Broadway, New York, NY 10003, USA

firstname@cs.nyu.edu

Abstract. Recently, we proposed to transform the outputs of each hidden neu-
ron in a multi-layer perceptron network to have zero output and zero slope on
average, and use separate shortcut connections to model the linear dependencies
instead. We continue the work by firstly introducing a third transformation to
normalize the scale of the outputs of each hidden neuron, and secondly by ana-
lyzing the connections to second order optimization methods. We show that the
transformations make a simple stochastic gradient behave closer to second-order
optimization methods and thus speed up learning. This is shown both in theory
and with experiments. The experiments on the third transformation show that
while it further increases the speed of learning, it can also hurt performance by
converging to a worse local optimum, where both the inputs and outputs of many
hidden neurons are close to zero.

Keywords: Multi-layer perceptron network, deep learning, stochastic gradient.

1 Introduction

Learning deep neural networks has become a popular topic since the invention of unsu-
pervised pretraining [3]. Some later works have returned to traditional back-propagation
learning in deep models and noticed that it can also provide impressive results [5] given
either a sophisticated learning algorithm [8] or simply enough computational power
[2]. In this work we study back-propagation learning in deep networks with up to five
hidden layers, continuing on our earlier results in [9].

In learning multi-layer perceptron (MLP) networks by back-propagation, there are
known transformations that speed up learning [7, 10, 11]. For instance, inputs are rec-
ommended to be centered to zero mean (or even whitened), and nonlinear functions are
proposed to have a range from -1 to 1 rather than 0 to 1 [7]. Schraudolph [11, 10] pro-
posed centering all factors in the gradient to have zero mean, and further adding linear
shortcut connections that bypass the nonlinear layer. Gradient factor centering changes
the gradient as if the nonlinear activation functions had zero mean and zero slope on

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 442–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Pushing Stochastic Gradient towards Second-Order Methods 443

average. As such, it does not change the model itself. It is assumed that the discrepancy
between the model and the gradient is not an issue, since the errors will be easily com-
pensated by the linear shortcut connections in the proceeding updates. Gradient factor
centering leads to a significant speed-up in learning.

In this paper, we transform the nonlinear activation functions in the hidden neurons
such that they have on average 1) zero mean, 2) zero slope, and 3) unit variance. Our
earlier results in [9] included the first two transformations and here we introduce the
third one. We explain the usefulness of these transformations by studying the Fisher
information matrix and the Hessian, e.g. by measuring the angle between the traditional
gradient and a second order update direction with and without the transformations.

It is well known that second-order optimization methods such as the natural gradient
[1] or Newton’s method decrease the number of required iterations compared to the ba-
sic gradient descent, but they cannot be easily used with high-dimensional models due
to heavy computations with large matrices. In practice, it is possible to use a diagonal
or block-diagonal approximation [6] of the Fisher information matrix or the Hessian.
Gradient descent can be seen as an approximation of the second-order methods, where
the matrix is approximated by a scalar constant times a unit matrix. Our transformations
aim at making the Fisher information matrix as close to such matrix as possible, thus
diminishing the difference between first and second order methods. Extended version
of this paper with the experimental details can be found in arXiv [12] and Matlab code
for replicating the experiments is available at

https://github.com/tvatanen/ltmlp-neuralnet

2 Proposed Transformations

Let us study a MLP-network with a single hidden layer and shortcut mapping, that is,
the output column vectors yt for each sample t are modeled as a function of the input
column vectors xt with

yt = Af (Bxt) +Cxt + εt, (1)

where f is a nonlinearity (such as tanh) applied to each component of the argument
vector separately, A, B, and C are the weight matrices, and εt is the noise which is
assumed to be zero mean and Gaussian, that is, p(εit) = N (

εit; 0, σ
2
i

)
. In order to

avoid separate bias vectors that complicate formulas, the input vectors are assumed to
have been supplemented with an additional component that is always one.

Let us supplement the tanh nonlinearity with auxiliary scalar variables αi, βi, and
γi for each nonlinearity fi. They are updated before each gradient evaluation in order
to help learning of the other parameters A, B , and C. We define

fi(bixt) = γi [tanh(bixt) + αibixt + βi] , (2)

https://github.com/tvatanen/ltmlp-neuralnet


444 T. Vatanen et al.

where bi is the ith row vector of matrix B. We will ensure that

T∑

t=1

fi(bixt) = 0,

T∑

t=1

f ′
i(bixt) = 0, and (3)

[
T∑

t=1

fi(bixt)
2

T

][
T∑

t=1

f ′
i(bixt)

2

T

]

= 1 (4)

by setting αi, βi, and γi to

αi = − 1

T

T∑

t=1

tanh′(bixt) (5)

βi = − 1

T

T∑

t=1

[tanh(bixt) + αibixt] (6)

γi =
{ 1

T

T∑

t=1

[tanh(bixt) + αibixt + βi]
2
}1/4{ 1

T

T∑

t=1

[
tanh′(bixt) + αi

]2 }1/4

.

(7)

One way to motivate the first two transformations in Equations (3a) and (3b), is to
study the expected output yt and its dependency of the input xt:

1

T

∑

t

yt = A
1

T

∑

t

f(Bxt) +C
1

T

∑

t

xt (8)

1

T

∑

t

∂yt

∂xt
= A

[
1

T

∑

t

f ′(Bxt)

]

BT +C. (9)

We note that by making nonlinear activations f(·) zero mean in Eq. (3a), we disallow
the nonlinear mappingAf (B·) to affect the expected output yt, that is, to compete with
the bias term. Similarly, by making the nonlinear activations f(·) zero slope in Eq. (3b),
we disallow the nonlinear mapping Af (B·) to affect the expected dependency of the
input, that is, to compete with the linear mapping C. In traditional neural networks, the
linear dependencies (expected ∂yt/∂xt) are modeled by many competing paths from
an input to an output (e.g. via each hidden unit), whereas our architecture gathers the
linear dependencies to be modeled only by C. We argue that less competition between
parts of the model will speed up learning.

Transformations can also be motivated by observing that they make the non-diagonal
parts of the Fisher information matrix closer to zero [9] and keep the diagonal of the
Fisher information matrix similar in scale [12].

The goal of Equation (4) is to normalize both the output signals (similarly as data
is often normalized as a preprocessing step – see,e.g., [7]) and the slopes of the output
signals of each hidden unit at the same time. This is motivated by observing that the
diagonal of the Fisher information matrix contains elements with both the signals and
their slopes. By these normalizations, we aim pushing these diagonal elements more



Pushing Stochastic Gradient towards Second-Order Methods 445

similar to each other. As we cannot normalize both the signals and the slopes to unity
at the same time, we normalize their geometric mean to unity.

The effect of the first two transformations can be compensated exactly by updating
the shortcut mapping C by

Cnew = Cold −A(αnew −αold)B

−A(βnew − βold) [0 0 . . . 1] , (10)

where α is a matrix with elements αi on the diagonal and one empty row below for the
bias term, and β is a column vector with components βi and one zero below for the bias
term. The third transformation can be compensated by

Anew = Aoldγoldγ
−1
new, (11)

where γ is a diagonal matrix with γi as the diagonal elements.
Schraudolph [11, 10] proposed centering the factors of the gradient to zero mean. It

was argued that deviations from the gradient fall into the linear subspace that the short-
cut connections operate in, so they do not harm the overall performance. Transforming
the nonlinearities as proposed in this paper has a similar effect on the gradient. Equation
(3a) corresponds to Schraudolph’s activity centering and Equation (3b) corresponds to
slope centering.

3 Empirical Comparison to a Second-Order Method

Here we investigate how linear transformations affect the gradient by comparing it to a
second-order method, namely Newton’s algorithm with a simple regularization to make
the Hessian invertible.

We compute an approximation of the Hessian matrix using finite difference method,
in which case k-th row vector hk of the Hessian matrix H is given by

hk =
∂(∇E(θ))

∂θk
≈ ∇E(θ + δφk)−∇E(θ − δφk)

2δ
, (12)

where φk = (0, 0, . . . , 1, . . . , 0) is a vector of zeros and 1 at the k-th position, and
the error function E(θ) = −∑

t log p(yt | xt, θ). The resulting Hessian might still
contain some very small or even negative eigenvalues which cause its inversion to blow
up. Therefore we do not use the Hessian directly, but include a regularization term
similarly as in the Levenberg-Marquardt algorithm, resulting in a second-order update
direction

Δθ = (H+ μI)−1∇E(θ), (13)

where I denotes the unit matrix. Basically, Equation (13) combines the steepest descent
and the second-order update rule in such a way, that when μ gets small, the update
direction approaches the Newton’s method and vice versa.

Computing the Hessian is computationally demanding and therefore we have to limit
the size of the network used in the experiment. We study the MNIST handwritten digit
classification problem where the dimensionality of the input data has been reduced to



446 T. Vatanen et al.

500 1500 2500

−6

−4

−2

0

Eigenvalue order

Lo
g 10

 e
ig

en
va

lu
e

 

 
LTMLP
no−gamma
regular

(a) Eigenvalues

0.01 0.03 0.1 0.5
0

20

40

60

80

100

μ

A
ng

le
 / 

de
gr

ee
s

 

 
LTMLP
no−gamma
regular

(b) Angles

Fig. 1. Comparison of (a) distributions of the eigenvalues of Hessians (2600 × 2600 matrix) and
(b) angles compared to the second-order update directions using LTMLP and regular MLP. In (a),
the eigenvalues are distributed most evenly when using LTMLP. (b) shows that gradients of the
transformed networks point to the directions closer to the second-order update.

30 using PCA with a random rotation [9]. We use a network with two hidden layers
with architecture 30–25–20–10. The network was trained using the standard gradient
descent with weight decay regularization. Details of the training are given in [12].

In what follows, networks with all three transformations (LTMLP, linearly trans-
formed multi-layer perceptron network), with two transformations (no-gamma where
all γi are fixed to unity) and a network with no transformations (regular, where we fix
αi = 0, βi = 0, and γi = 1) were compared. The Hessian matrix was approximated ac-
cording to Equation (12) 10 times in regular intervals during the training of networks.
All figures are shown using the approximation after 4000 epochs of training, which
roughly corresponds to the midpoint of learning. However, the results were parallel to
the reported ones all along the training.

We studied the eigenvalues of the Hessian matrix (2600× 2600) and the angles be-
tween the methods compared and second-order update direction. in the same training
phase, after epoch number 4000. The distribution of eigenvalues in Figure 1a for the
networks with transformations are more even compared to the regular MLP. Further-
more, there are fewer negative eigenvalues, which are not shown in the plot, in the
transformed networks. In Figure 1b, the angles between the gradient and the second-
order update direction are compared as a function of μ in Equation (13). The plots are
cut when H + μI ceases to be positive definite as μ decreases. Curiously, the update
directions are closer to the second-order method, when γ is left out, suggesting that γs
are not necessarily useful in this respect.

Figure 2 shows histograms of the diagonal elements of the Hessian after 4000 epochs
of training. All the distributions are bimodal, but the distributions are closer to unimodal
when transformations are used (subfigures (a) and (b))1. Furthermore, the variance of
the diagonal elements in log-scale is smaller when using LTMLP, σ2

a = 0.90, compared
to the other two, σ2

b = 1.71 and σ2
c = 1.43. This suggests that when transformations are

used, the second-order update rule in Equation (13) corrects different elements of the

1 It can be also argued whether (a) is more unimodal compared to (b).



Pushing Stochastic Gradient towards Second-Order Methods 447

10
−4

10
−2

0

50

100

150

200

(a) LTMLP
10

−4
10

−2
10

0
0

50

100

150

200

(b) no-gamma
10

−4
10

−2
0

50

100

150

200

250

 

 
1−2
1−3
2−3
1−4
2−4
3−4

(c) regular

Fig. 2. Comparison of distributions of the diagonal elements of Hessians. Coloring according
to legend in (c) shows which layers to corresponding weights connect (1 = input, 4 = output).
Diagonal elements are most concentrated in LTMLP and more spread in the networks without γ
(no-gamma, regular). Notice the logarithmic x-axis.

gradient vector more evenly compared to a regular back-propagation learning, implying
that the gradient vector is closer to the second-order update direction when using all the
transformations.

To conclude this section, there is no clear evidence in way or another whether the
addition of γ benefits the back-propagation learning with only α and β. However, there
are some differences between these two approaches. In any case, it seems clear that
transforming the nonlinearities benefits the learning compared to the standard back-
propagation learning.

4 Experiments: MNIST Classification

We use the proposed transformations for training MLP networks for MNIST classifi-
cation task. Experiments are conducted without pretraining, weight-sharing, enhance-
ments of the training set or any other known tricks to boost the performance. No weight
decay is used and as only regularization we add Gaussian noise with σ = 0.3 to the
training data. Networks with two and three hidden layers with architechtures 784–
800–800–10 (solid lines) and 784–400–400–400–10 (dashed lines) are used. Details
are given in [12].

Figure 3 shows the results as number of errors in classifying the test set of 10 000
samples. The results of the regular back-propagation without transformations, shown
in blue, are well in line with previously published result for this task. When networks
with same architecture are trained using the proposed transformations, the results are
improved significantly. However, adding γ in addition to previously proposed α and β
does not seem to affect results on this data set. The best results, 112 errors, is obtained
by the smaller architecture without γ and for the three-layer architecture with γ the
result is 114 errors. The learning seems to converge faster, especially in the three-layer
case, with γ. The results are in line what was obtained in [9] where the networks were
regularized more thoroughly. These results show that it is possible to obtain results
comparable to dropout networks (see [4]) using only minimal regularization.



448 T. Vatanen et al.

0 50 100 150
100

120

140

160

180

200

220

240

Epochs

N
um

be
r 

of
 e

rr
or

s

 

 
LTMLP
no−gamma
regular

Fig. 3. The error rate on the MNIST test set for LTMLP training, LTMLP without γ and regu-
lar back-propagation. The solid lines show results for networks with two hidden layers of 800
neurons and the dashed lines for networks with three hidden layers of 400 neurons.

5 Discussion and Conclusions

We have shown that introducing linear transformation in nonlinearities significantly
improves the back-propagation learning in (deep) MLP networks. In addition to two
transformation proposed earlier in [9], we propose adding a third transformation in or-
der to push the Fisher information matrix closer to unit matrix (apart from its scale).
The hypothesis proposed in [9], that the transformations actually mimic a second-order
update rule, was confirmed by experiments comparing the networks with transforma-
tions and regular MLP network to a second-order update method. However, in order to
find out whether the third transformation, γ, we proposed in this paper, is really use-
ful, more experiments ought to be conducted. It might be useful to design experiments
where convergence is usually very slow, thus revealing possible differences between the
methods. As hyperparameter selection and regularization are usually nuisance in prac-
tical use of neural networks, it would be interesting to see whether combining dropouts
[4] and our transformations can provide a robust framework enabling training of robust
neural networks in reasonable time.

The effect of the first two transformations is very similar to gradient factor centering
[11, 10], but transforming the model instead of the gradient makes it easier to generalize
to other contexts: When learning by by Markov chain Monte Carlo, variational Bayes,
or by genetic algorithms, one would not compute the basic gradient at all. For instance,
consider using the Metropolis algorithm on the weight matrices, and expecially matrices
A andB. Without transformations, the proposed jumps would affect the expected output
yt and the expected linear dependency∂yt/∂xt in Eqs. (8)–(9), thus often leading to low
acceptance probability and poor mixing. With the proposed transformations included,
longer proposed jumps in A and B could be accepted, thus mixing the nonlinear part
of the mapping faster. For further discussion, see [9], Section 6. The implications of the
proposed transformations in these other contexts are left as future work.



Pushing Stochastic Gradient towards Second-Order Methods 449

References

[1] Amari, S.: Natural gradient works efficiently in learning. Neural Computation 10(2),
251–276 (1998)

[2] Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple neural nets
excel on handwritten digit recognition. CoRR, abs/1003.0358 (2010)

[3] Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural net-
works. Science 313(5786), 504–507 (2006)

[4] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving
neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580
(2012)

[5] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks (2012)

[6] Le Roux, N., Manzagol, P.A., Bengio, Y.: Topmoumoute online natural gradient algorithm.
In: Advances in Neural Information Processing Systems 20, NIPS 2007 (2008)

[7] LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Orr, G.B., Müller,
K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–48. Springer, Heidelberg (1998)

[8] Martens, J.: Deep learning via Hessian-free optimization. In: Proceedings of the 27th Inter-
national Conference on Machine Learning, ICML (2010)

[9] Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations
in perceptrons. Journal of Machine Learning Research - Proceedings Track 22, 924–932
(2012)

[10] Schraudolph, N.N.: Accelerated gradient descent by factor-centering decomposition. Tech-
nical Report IDSIA-33-98, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (1998)

[11] Schraudolph, N.N.: Centering neural network gradient factors. In: Orr, G.B., Müller, K.-R.
(eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 207–548. Springer, Heidelberg (1998)

[12] Vatanen, T., Raiko, T., Valpola, H., LeCun, Y.: Pushing stochastic gradient towards second-
order methods – backpropagation learning with transformations in nonlinearities (pre-print,
2013), http://arxiv.org/abs/1301.3476

http://arxiv.org/abs/1301.3476

	Pushing Stochastic Gradient towards Second-Order Methods – Backpropagation Learning with Transformations in Nonlinearities
	1 Introduction
	2 Proposed Transformations
	3 Empirical Comparison to a Second-Order Method
	4 Experiments: MNIST Classification
	5 Discussion and Conclusions
	References




