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Abstract. So far, we have shown that, using difference signals of a plant to be
controlled, a single CAN2 (competitive associative net) is capable of leaning
piecewise Jacobian matrices of nonlinear dynamics of the plant. Here, the CAN2
is an artificial neural net for learning efficient piecewise linear approximation of
nonlinear function. Furthermore, a multiobjective robust controller is obtained by
means of combining the GPC (generalized predictive controller) and a switching
scheme of multiple CAN2s to cope with plant parameter change and control ob-
jective change. This paper focuses on an improvement of control performance
by means of replacing single CAN2 by bagging CAN2. We analyze to show the
effectiveness of the present method via numerical experiments of a crane system.

Keywords: Multiobjective robust control, Switching of multiple bagging CAN2s,
Difference signals, Generalized predictive control, Jacobian matrix of Nonlinear
plant.

1 Introduction

So far, we have constructed a robust controller which uses multiple CAN2s (compet-
itive associative nets) and difference signals of the plant to be controlled [1, 2]. Here,
the CAN2 is an artificial neural net introduced for learning efficient piecewise linear
approximation of nonlinear function by means of competitive and associative schemes
[4–6]. Thus, a CAN2 is capable of leaning piecewise Jacobian matrices of nonlinear
dynamics of a plant by means of using difference signals of the plant for the input to
the CAN2, In [1], we have constructed a robust controller using multiple CAN2s which
have learned the differential dynamics of the plant for several parameter values. In [2],
we have focused on a multiobjective robust control, where we consider two conflicting
control specifications for a crane system: one is to reduce settling time with allowable
overshoot and the other is to reduce overshoot with allowable settling time. Our method
provides a controller to flexibly cope with those specifications by means of switch-
ing two sets of CAN2s obtained through several control and learning iterations. From
the point of view of multiobjective control, there are a number of research studies [8].
However, the control of the crane itself is neither so easy nor clarified so much for such
methods to be applied.
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In this paper, we try to improve the control performance by means of using bagging
CAN2s. Here, the bagging (bootstrap aggregation) scheme is expected to reduce the
variance and the overfitting of the prediction by a single learning machine [9]. Thus,
we expect that bagging CAN2s provide more stable control performance than single
CAN2s in the present application. In the next section, we show a formulation of the
present method. In Sect. 3, we examine the effectiveness of the method through numer-
ical experiments applied to a nonlinear crane system involving changeable parameter
values, such as rope length and load weight.

2 Multiobjective Robust Controller Using Difference Signals and
Bagging CAN2s

We formulate the controller using difference signals and multiple bagging CAN2s to
cope with parameter change.

2.1 Plant Model Using Difference Signals

Suppose a plant to be controlled at a discrete time j = 1, 2, · · · has the input u[p]
j and

the output y[p]
j . Here, the superscript “[p]” indicates the variable related to the plant for

distinguishing the position of the load, (x, y), shown below. Furthermore, we suppose
the dynamics of the plant is given by

y[p]
j = f(x[p]

j ) + d[p]
j , (1)

where f(·) is a nonlinear function which may change slowly in time and d[p]
j represents

zero-mean noise with the variance σ2
d . The input vector x[p]

j consists of the input and

output sequences of the plant as x[p]
j �

(
y[p]
j−1, · · · , y[p]

j−ky
, u[p]

j−1, · · · , u[p]
j−ku

)T

, where

ky and ku are the numbers of the elements, and the dimension of x[p]
j is given by k =

ky +ku. Then, for the difference signals Δy[p]
j � y[p]

j − y[p]
j−1, Δu[p]

j � u[p]
j −u[p]

j−1, and

Δx[p]
j � x[p]

j − x[p]
j−1, we have the relationship Δy[p]

j � fxΔx[p]
j for small ‖Δx[p]

j ‖,
where fx = ∂f(x)/∂x

∣∣
x=x

[p]
j−1

indicates the Jacobian matrix (row vector). If fx does

not change for a while after the time j, then we can predict Δy
[p]
j+l by

Δ̂y
[p]

j+l = fxΔ̃x
[p]

j+l (2)

for l = 1, 2, · · · , recursively. Here, Δ̃x
[p]

j+l = (Δ̃y
[p]

j+l−1, · · · , Δ̃y
[p]

j+l−ky
, Δ̃u

[p]

j+l−1,

· · · , Δ̃u
[p]

j+l−ku
)T , and the elements are given by

Δ̃y
[p]

j+m =

{
Δy[p]

j+m for m < 1

Δ̂y
[p]

j+m for m ≥ 1
and Δ̃u

[p]

j+m =

{
Δu[p]

j+m for m < 0

Δ̂u
[p]

j+m for m ≥ 0.
(3)
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Fig. 1. Schematic diagram of (a) CAN2 and (b) overhead traveling crane system

Here, Δ̂u
[p]

j+m (m ≥ 0) is the predictive input (see Sect. 2.3). Then, we have the predic-
tion of the plant output from the predictive difference signals as

ŷ[p]
j+l = y[p]

j +
l∑

m=1

Δ̂y
[p]

j+m. (4)

2.2 Single and Bagging CAN2 for Learning and Identifying Nonlinear Plants

A single CAN2 has N units. The ith unit has a weight vector wi � (wi1, · · · , wik)
T ∈

IRk×1 and an associative matrix (row vector) M i � (Mi1, · · · ,Mik) ∈ IR1×k for
i ∈ I = {1, 2, · · · , N} (see Fig. 1(a)). For a given dataset D[n] = {(Δx[p]

j , Δy[p]
j ) |

j = 1, 2, · · · , n} obtained from the plant to be controlled, we train a CAN2 by feeding
the input and output of the CAN2 as (x[can2], y[can2]) = (Δx[p]

j , Δy[p]
j ). We employ an

efficient batch learning method shown in [7]. Then, for an input vectorΔx[p], the CAN2
after the learning predicts the output Δy[p] = fxΔx[p] by

Δ̂y
[p]

= M cΔx[p], (5)

where c denotes the index of the unit selected by

c = argmin
i∈I

‖Δx[p]
j −wi‖2. (6)

For a bagging CAN2, we generate a number of bags D[nα
�,,l] for l = 1, 2, · · · , b

by means of resampling with replacement from D[n], where b is the number of bags,
nα denotes the number of elements in each bag and α is a constant which we call
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bagsize ratio. Let CAN2[l] be a single CAN2 for learning the lth bag D[nα
�,,l]. After

the learning for all bags, we execute the bagging prediction of Δy[p] = fxΔx[p] by

Δ̂y
[p]

=
1

b

b∑
l=1

Δ̂y
[p][l]

= M [bag]Δx[p]. (7)

Here, Δ̂y
[p][l]

= M [l]
c Δx[p] and M [bag]

c = (1/b)
∑b

l=1 M
[l]
c , where M [l]

c denotes M c

in (5) selected by (6) for CAN2[l].
As we have explained in [2], the Jacobian matrix fx is not the function of Δx, but

a Jacobian matrix fz = ∂f/∂z for an enlarged differential vector Δz[p]
j = (Δy[p]

j−1,

· · · , Δy[p]
j−k′

y
, Δu[p]

j−1, · · · , Δu[p]
j−k′ ) for k′y = k + ky and k′u = k + ku is considered

to be a function of Δz when the plant parameter does not change for a while. This
indicates that we can estimate Jacobian matrix if we observe the input and output for
a certain duration of time of the plant. This conjecture is supposed to be applicable to
many nonlinear plants. Thus, with Δx

[p]
j in (6) replaced by an enlarged Δz

[p]
j , we can

select an appropriate unit corresponding to the Jacobian matrix.

2.3 GPC Using Difference Signals

The GPC (Generalized Predictive Control) is an efficient method for obtaining the pre-
dictive input û[p]

j which minimizes the following control performance index [10]:

J =

Ny∑
l=1

(
r[p]
j+l − ŷ[p]

j+l

)2

+ λu

Nu∑
l=1

(
Δ̂u

[p]

j+l−1

)2

, (8)

where r[p]
j+l and ŷ[p]

j+l are desired and predictive output, respectively. The parametersNy ,

Nu and λu are constants to be designed for the control performance. We obtain û[p]
j by

means of the GPC method as follows; the CAN2 at a discrete time j can predict Δy[p]
j+l

by (2) and then ŷ[p]
j+l by (4). Then, owing to the linearity of these equations, the above

performance index is written as

J = ‖r[p] −GΔu[p] − y[p]‖2 + λu‖Δ̂u‖2 (9)

where r[p] =
(
r

[p]
j+1, · · · , r[p]

j+Ny

)T

and Δ̂u
[p]

=
(
Δ̂u

[p]

j , · · · , Δ̂u
[p]

j+Nu−1

)T

. Fur-

thermore, y[p] =
(
y

[p]
j+1, · · · , y[p]

j+Ny

)T

and y
[p]
j+l is the natural response ŷ

[p]
j+l of the

system (1) for the null incremental input Δ̂u
[p]

j+l = 0 for l ≥ 0. Here, we actually have

y[p]
j+l = y[p]

j +
∑l

m=1 Δy
[p]
j+m from (4), where Δy

[p]
j+l denotes the natural response of

the difference system of (2) with Jf replaced by M c. The ith column and the jth row
of the matrix G is given by Gij = gi−j+N1 , where gl for l = · · · ,−2,−1, 0, 1, 2, · · · is
the unit step response y[p]

j+l of (4) for ŷ[p]
j+l = û[p]

j+l = 0 (l < 0) and û[p]
j+l = 1(l ≥ 0). It is

easy to derive that the unit response gl of (4) is obtained as the impulse response of (2).

Then, we have Δ̂u
[p]

which minimizes J by Δ̂u
[p]

= (GTG+λuI)
−1GT (r[p]−y[p]),

and then we have û[p]
j = u

[p]
j−1 + Δ̂u

[p]

j .
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2.4 Control and Training Iterations

To improve the control performance, we execute iterations of the following phases.

(i) control phase: Control the plant by a default control schedule at the first iteration,
and by the GPC using the bagging CAN2s obtained by the training phase otherwise.

(ii) training phase: Train the bagging CAN2s with the dataset D[n] =

{(Δx[p]
j , Δy[p]

j |j = 1, 2, · · · , n)} obtained in the control phase.

The control performance at an iteration depends on the bagging CAN2 obtained at the
previous iterations. So, for the actual control of the plant, we use the best bagging
CAN2 obtained through a number of iterations. We store and selectively use multiple
best bagging CAN2s for multiple objectives in multiobjective control.

2.5 Switching Multiple Bagging CAN2s for Robustness to Parameter Change

To cope with parameter change of the plant, we employ the following method to switch
bagging CAN2s. Let CAN2[bag][θs] denote the best bagging CAN2 obtained for the
plant with parameter θs (s ∈ S = {1, 2, · · · , |S|}) through the control and training
iterations as described above.

Step 1: At each discrete time j in the control phase, obtain M [bag][θs] for all s ∈ S.
where M [bag][θs] denotes M [bag] given in (7) of CAN2[bag][θs].

Step 2: Select the s∗th bagging CAN2, or CAN2[bag][θs∗ ], which provides the mini-
mum MSE (mean square prediction error) for the recent Ne outputs,

s∗ = argmin
s∈S

1

Ne

Ne−1∑
l=0

‖Δy[p]
j−l − Δ̂y

[p][s]

j−l )‖2 , (10)

where Δ̂y
[p][s]

j−l is the predictive output of CAN2[bag][θs] at time j − l.

3 Numerical Experiments of Crane System

In order to examine the effectiveness of the present method, we execute numerical ex-
periments on the following crane system shown in [2].

3.1 Overhead Traveling Crane System

We consider the overhead traveling crane system shown in Fig. 1(b). From the figure,
we have the position and motion equations as

(x, y) = (X + r sinφ, r cosφ) (11)

m(ẍ, ÿ) = (−T sinφ−mCφ̇ cosφ,mg − T cosφ−mCφ̇ sinφ) (12)

MẌ = F + T sinφ (13)
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where (x, y) and m are the position and the weight of the suspended load, (X, 0), M
and F are the position, weight and driving force of the trolley, r and φ are the length
and the angle of the rope, T is the tension of the rope, and C is the viscous damping
coefficient. From (11) and (12), we have the nonlinear second order differential equation
of φ given by rφ̈+ (C + 2ṙ)φ̇+ g sinφ+ Ẍ cosφ = 0. Thus, with (13), the transition

of the state x =
(
φ, φ̇,X, Ẋ

)T

is given by

ẋ = h(x) =

⎡
⎢⎢⎢⎢⎢⎣

φ̇

−C + 2ṙ

r
φ̇− g

r
sinφ− F + T sinφ

rM
cosφ

Ẋ
F + T sinφ

M

⎤
⎥⎥⎥⎥⎥⎦

, (14)

where T = m

√
(ẍ+ Cφ̇ cosφ)2 + (ÿ − g + Cφ̇ sinφ)2 is also a function of x. The

control objective is to move the horizontal position of the load, x = X + r sinφ, to a
destination position xd by means of operating F .

3.2 Parameter Settings

The control objective is to move the load position of the crane from x = 0 to the
destination position xd = 5m within the overshoot xOS less than 100mm. We obtain
discrete signals by u[p]

j = F (jTv) and y[p]
j = x(jTv) with (virtual) sampling period

Tv = 0.5s. Here, we use virtual sampling method shown in [3], where the discrete
model is obtained with Tv (virtual sampling period) while the observation and operation
are executed with shorter actual sampling period Ta = 0.01s. We use k′y = k′u = 4 for

enlarged input vector Δx[p]
j , and Ny = 20, Nu = 1 and λu = 0.01 for the GPC. We

used Ne = 8 samples for (10).
We use a model crane with trolley weight M = 100kg, damping coefficient C =

0.5m/s, maximum driving force Fmax = 10N. We denote the crane with the rope length
r and load weight m by CRANE[r,m] or CRANE[θ] for θ = (r,m). We examine the
robustness to 90 combinations of r = 2, 3, · · · , 10 [m] and m = 10, 20, · · · , 100 [kg].
Before this examination, we train CAN2s with CRANE[θs] for θs = (2, 10), (2,100),
(10,10), (10,100) for s = 1, 2, 3, 4, respectively. Let CAN2[θs]OS and CAN2

[θs]
ST denote

the best CAN2 which have achieved smallest overshoot and settling time, respectively,
for CRANE[θs] through 20 control and training iterations. Here, at each iteration, we
use the data of the current and previous iteration for the dataset to train the CAN2
because the number of obtained data becomes huge and time consuming as the number
of iterations increases and the control performance does not seem improved even if we
use all data. In order to uniquely select the CAN2, the overshoot xOS and the settling
time tST are ordered by xOS + εtS and tST + εxOS, respectively, with small ε = 10−5.
We have used the set of CAN2s, or CAN2[θS]OS = {CAN2[θs]OS |s ∈ S} and CAN2

[θS]
ST =

{CAN2[θs]ST |s ∈ S}, for the present switching controller. We similarly obtain the sets of

bagging CAN2s, i.e. CAN2[bag][θS]
OS and CAN2

[bag][θS]
ST . We use the number of bags to
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Table 1. Statistical summary of overshoot and settling time obtained in the control of the crane
for 90 combinations of rope lengths and load weights. The boldface figures indicate the best
(smallest) result in each block.

CAN2 tuned N for settling time tST [s] overshoot xOS[mm]
employed (θ1,θ2,θ3,θ4) mean min max std mean min max std

CAN2
[θS ]
ST (20,30,20,8) 21.4 19.6 24.1 0.8 22.4 0 67 13.9

CAN2
[bag][θS ]
ST (30,20,6,8) 22.0 19.1 26.0 1.2 11.4 0 57 12.3

CAN2
[θS ]
OS (30,20,10,6) 27.1 22.4 36.4 2.6 3.3 0 38 5.6

CAN2
[bag][θS ]
OS (20,30,20,8) 26.1 19.6 29.7 2.4 0.7 0 38 4.1

CAN2
[bag][θ+

S
]

OS (20,30,20,8) 25.2 21.3 30.7 1.9 0.2 0 5 0.8

be b = 10 and the bag size ratio α = 0.7. We have optimized the number of units for
each single and bagging CAN2 from N = 40, 30, 20, 10, 8, 6, 4, which indicates the
number of piecewise regions of piecewise linear approximation by the CAN2.

3.3 Results and Analysis

A statistical summary of achieved overshoot xOS and settling time tST is shown in
Table 1, and four examples of time course of the input F and the output X and x for
the best and the worst control using bagging CAN2s is shown in Fig. 2. From Fig. 2, we
can see the performance in time by the best (top) and the worst (bottom) controllers for
reducing settling time (left) and overshoot (right), respectively.

From Table 1, we can see that all controller has achieved overshoot less than the al-
lowable 100mm. The top two rows indicate the results by the controllers for reducing
settling time, and we can see that the mean, maximum (max) and standard deviation
(std) of the settling time are not improved by the bagging CAN2

[bag][θS]
ST , while other

performance is improved. The third and fourth rows indicate the results by the con-
trollers for reducing overshoot, and we can see that all values are improved (reduced)
by bagging CAN2

[bag][θS]
OS from single CAN2

[θS]
OS .

In order to examine these results precisely, we show the settling time and overshoot
for each of 90 parameter values in Fig. 3. From the figure on the left, we can see that
single CAN2

[θS ]
ST has achieved better performance than bagging CAN2

[bag][θS]
ST on av-

erage and it does not seem reasonable to improve the performance from the result of
the bagging CAN2

[bag][θS]
ST . On the other hand, the result of overshoot on the right of

Fig. 3 shows that bagging CAN2
[bag][θS]
OS has achieved no overshoot (xOS = 0) ex-

cept 8 cases, and the biggest overshoot xOS = 38mm occurs at (r,m) = (2, 80).

Thus, we train to make a new bagging CAN2
[bag][2,80]
OS and add it to CAN2

[bag][θS]
OS

as CAN2
[bag][θ+

S ]

OS = CAN2
[bag][θS]
OS ∪ CAN2

[bag][2,80]
OS . The performance achieved by

CAN2
[bag][θ+

S ]
OS is shown in the bottom row of Fig. 1 and in the right of Fig. 3. As we

can see that the mean, maximum (max) and standard deviation (std) are improved from
CAN2

[bag][θS]
OS , and the number of cases accompanied with positive overshoot are re-

duced to 5 from 8.
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Fig. 3. Experimental result of settling time tST [s] (left) and overshoot xOS [mm] (right) in the
control of the crane for 90 combinations of rope lengths r[m] and load weights m[kg]. The hori-
zontal axis indicates the parameter values ordered as (r,m) = (2, 10), (2, 20), · · · , (10, 100).
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Here, note that we have a different result in our previous study [2], where the mean
and the maximum overshoot are 0.02 and 2, respectively, but the mean settling time are
32.0s by CAN2

[θS]
OS . The difference is owing that a constant number of units N = 20 for

all CAN2[θs]OS (s = 1, 2, 3, 4) is used in [2] which derives smaller overshoot but larger
settling time on average. By means of tuning N for each θs in the present experiments,
we have achieved smaller settling time while the overshoot is reduced by augmenting
the set of bagging CAN2s as shown above.

4 Conclusion

We have focused on an improvement of control performance by means of replacing sin-
gle CAN2s by bagging CAN2s of the robust controller using difference signals which
we are developing. Via numerical experiments of a crane system, we have shown the
effectiveness of the present method. From the point of view of multiobjective control,
two objectives to reduce settling time and overshoot have different properties. Namely,
in the present method, the settling time is reduced by tuning the number of units, N ,
of the CAN2s, while the overshoot is reduced by using bagging CAN2s replacing sin-
gle CAN2s and the augmentation of bagging CAN2(s) for reducing plant-parameter-
specific overshoot(s). We would like to analyze the present method much more in our
future research, especially the effect and the role of the enlargement of the dimension-
ality of the input vector to the CAN2.
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