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Abstract. One of the key issues in Gaussian SLAM is to calculate nonlinear 
transition density of Gaussian prior, i.e. to calculate Gaussian Weight Integral 
(GWI) whose integrand is with the form nonlinear function× Gaussian prior 
density. Up to now, some GWI solutions have been applied in SLAM (e.g. li-
nearization, unscented transform and cubature rule), and different SLAM algo-
rithms were derived based on theirs GWI solutions. While, how to select suitable 
GWI solution for SLAM is still lack of theoretical analysis. In this paper, we 
proposed an optimal proposal FastSLAM algorithm with suitable GWI solutions. 
The main contributions of this work lies that: (1) an unified FastSLAM frame-
work with optimal proposal distribution is summarized; (2) a SLAM dimensio-
nality based GWI solution selection criterion is designed; (3) we propose a new 
SLAM algorithm. The performance of the proposed SLAM is investigated and 
compared with the FastSLAM2.0 and UFastSLAM using simulations and our 
opinion is confirmed by the results. 
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1 Introduction 

The Rao-Blackwellized particle filter (RBPF) [1] based SLAM algorithm was intro-
duced by Montemerlo in 2003. Now it has became popular in SLAM due to its low 
computational cost and robustness for incorrect data association. The algorithm has two 
editions: FastSLAM1.0 [2] and FastSLAM2.0 [3]. The former utilizes common particle 
filter to track robot path, and each particle independently keeps a feature landmark map 
based on a set of EKFs. To overcome particle set degeneracy in FastSLAM1.0, the 
FastSLAM2.0 utilizes EKF to design better proposal distribution. Based on the similar 
idea, Gristti proposed an adaptive grid map FastSLAM [4]. The technique combines 
laser scan-matching with mobile robot odometry to optimize the proposal distribution 
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of particle filter. Sim proposed a stereo vision FastSLAM, and the particle proposal 
distribution was designed by using visual odometery prior [5]. Kim proposed Un-
scented FastSLAM [6], which utilizes scaled unscented transformation [7][8] to esti-
mate the nonlinear transition density of Gaussian prior. In [9], a non-static environment 
FastSLAM was proposed by sampling new generation particles from multiple ancestor 
priors. Moreno designed a new approach to fuse the grid-map and feature-map for 
FastSLAM [10]. In our previous work, a Cubature FastSLAM [11] was derived by 
utilizing cubature rule [12] as the Gaussian weighted integral solutions.  

One of the key issues in Gaussian SLAM is to calculate nonlinear transition density 
of Gaussian prior, i.e., to calculate Gaussian Weight Integral (GWI). Up to now, some 
GWI solutions have been applied in SLAM filter. While, how to choose a suitable GWI 
solution for SLAM is still lack of theoretical analysis. In this paper, the GWI solution 
selection problem is discussed and a new SLAM with better GWI solution is derived. 
The rest paper is organized as follows: Section 2 gives a brief review of FastSLAM and 
a unified optimal proposal FastSLAM is summarized. A GWI solution selection crite-
rion is discussed in Section 3. In Section 4 we proposed a SLAM algorithm with 
suitable GWI solutions. Section 5 presents simulations, followed by the conclusions. 

2 Unified FastSLAM with Optimal Proposal 

2.1 Brief Review of FastSLAM  

The key idea of FastSLAM is to estimate the joint posterior 1( , , )k k kp −s z uΘ about the 
map 1 M= Θ θ θ  and the mobile robot path 1

k
k= s s s  based on a set of observations 

1
k

k= z z z and control inputs 1
0 1

k
k

−
−= u u u . Based on conditional independence 

property of the full SLAM problem, the joint posterior 1( , , )k k kp −s z uΘ  is factored as 
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In FastSLAM, the path posterior 1( , )k k kp −s z u  is estimated with a particle filter and 
the map 1( , , )−k k kp Θ s z u  is analytically estimated utilizing M separate Kalman filters. 
Each particle for the FastSLAM is assembled by the robot path and the landmarks: 

 ( ) ( )[ ] ,[ ] [ ][1] [ ][1] [ ][ ] [ ][ ], , ,i k i i i i M i M
k k k k k=< >S s μ Σ μ Σ  (2) 

where, [i] and [m] are indicate index of the particle and the landmark; [ ]k is  is robot path 
hypothesis; [ ][ ] [ ][ ]( , )i m i m

k kμ Σ  is the Gaussian representation of the mth feature landmark. 

2.2 Unified FastSLAM Framework with Optimal Proposal 

The noisy robot motion model and environment observation motion model are  
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where, sn
k ∈s  is the robot pose; zn

k ∈z  is the observation; f and h are the nonlinear 
robot motion and observation model, respectively; 1

un
k − ∈u  is the control input in the 
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time interval [ 1, )k k− , 1
un

k − ∈δu  is control noise with covariance Q ; 1
zn

k − ∈δz  is 
observation noise with covariance R ; [ ]

1
nm

k
μ

− ∈μ   is the [m]-th landmark state. 
To predict new robot state [ ]i

ks , the previous robot state [ ]
1

i
k −s requires to be aug-

mented with the control input, given by 
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Where, s un n+∈a  and ( ) ( )s u s un n n n
a

+ × +∈P   are the augmented robot state and its cova-

riance, respectively. [ ]
1

sni
k − ∈s   and [ ]

1
s sn ni

k
×

− ∈P   are the previous mean and cova-

riance of the robot state.  The augmented state a  satisfies Gaussian ( )a,a a P . 

Consequently, the predicted robot state and its covariance are calculated by  
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When a landmark with index [m] is revisited by the robot, the robot state and its 
covariance can be updated. To do this, [ ]

1
i

k k -s  and [ ]
1

i
k k -P are augmented by integrating 

the robot state and the revisited landmark state into one Gaussian, that is 
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where, sn nμ+∈b  and ( ) ( )s sn n n n
b

μ μ+ × +∈P   are the augmented prediction state and its 

covariance, respectively. The density of b  is Gaussian distribution ( )b,b P . 

Based on ( )b,b P , the predicted measurement [ ][ ]
1

i m
k,k -z , the measurement innovation 

covariance [ ][ ]i m
zzP  and the cross covariance [ ][ ]i m

szP  are calculated as 
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The state update is performed based on standard Kalman filtering algorithm 
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where, [ ]m
kz is the true sensor measurement for [m]-th revisited landmark. 

For the multiple observations case, Eq.6- Eq.8 are repeated for each landmark, and 
[ ]i
ks  and [ ]i

kP  are updated based on their previously updated one. When the update  
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routine is accomplished, the new robot state [ ]i
ks is sampled from the Gaussian 

( )[ ] [ ],i i
k ks P , and its importance factor [ ]i

kω  is calculated as 
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where, [ ][ ] [ ]
1 -i m m

kk k-z z and [ ][ ]i m
zzP are the measurement innovation and the innovation cova-

riance matrix for the [m]-th landmark. 

For each revisited landmark with index [m], the landmark state equation and ob-
servation equation are modeled as 
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where, [ ]i
ks  is the “known” robot state; [ ][ ]

1
i m

k −μ  and [ ][ ]
1

i m
k −Σ  are the mean and the co-

variance of the [m]-th revisited landmark, respectively. 
The predicted measurement and its covariance with the known robot state are  
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The state update of the [m]-th revisited landmark is accomplished by a Kalman filter 
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For the [n]-th new visited landmark, the measurement [ ]n
kz  and its covariance R are 

used to initialize the landmark’s Gaussian representation, given by 
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3 Solutions for Gaussian Weighted Integral 

Without loss generality, an unify form of the nonlinear functions in SLAM can be 
defined as ( )g=y x  with xn∈x   satisfies Gaussian ( )x,x P , then the following 
two GWIs are used to calculate the nonlinear transition density ( )y,y P  
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3.1  GWI Solutions Utilized in SLAM 

1) Linearization. The linearization solution are utilized in FastSLAM1.0 and 
FastSLAM2.0, in which the GWI is calculated based on the first-order lineariza-
tion of the nonlinear function g , denote as ( ) ( ) ( )( )-g g g′≈ +x x x x x . And the 
transition density ( )y,y P  is easily obtained by ( )g≈y x  and 

( ) ( )T
y xg g′ ′≈P x P x .  

2) Unscented Transform. In UT, 2 1xn +  sigma-points { } = { ( ( + ) ) }i x x in κ±x P are 
utilized to capture some low-order moments of the prior Gaussian ( )x,x P . And 
the transformed sigma-point set{ }i is computed by passing the { }i through the 
nonlinear function g , as { ( )}i i= g  . So, ( )y,y P  are obtained by weighted 
linear regression of { }i, given by c iω≈ y   and T[ ][ ]y g i iω≈ − −P y y  .  

3) Cubature Rule. The GWI are calculated by using 2 xn  cubature-points, given 
by 2

1 ( ) 2xn
j x j xg n=≈y P + xξ  and 2 T T

1 ( ) ( ) 2 -xn
y j x j x j xg g n=≈P P +x P + x yyξ ξ .where, the 

cubature-point set is calculated as { } {[1] }j x jn=ξ , and {[1] } xn
j ∈ are the 2 xn  in-

tersection points of the xn dimension coordinate axes with the unit hypersphere.  

Table 1 and Table 2 show the moment characteristics and numerical characteristics 
for the three GWI solutions, respectively.  

Table 1. Moment Characteristics for Different GWI Solutions  

GWI Solutions 
One-dimensional Gaussian 

case (n=1) 

Multiple-dimensional 

Gaussian case (n>1) 
Linearization up to the 1-th order  up to the 1-th order 

Unscented Transform up to the 5-th order up to the 3-th order 

Cubature Rule up to the 3-th order up to the 3-th order 

Table 2. Numerical Calculation Characteristics 

 Numerical stbility factor Is the 
y

P  non-negative definite? 

 3n ≤  3n >  3n ≤  3n >  

Unscented Transform 1 3 -12n  yes unsure 

Cubature Rule 1 1 yes yes 

3.2 Criterion for Select Suitable GWI Solution  

The UT is a dimensionality sensitive GWI solution. For the low dimensional cases 
( 3n ≤ ), the moments of sigma-point set can hit some the 4-th order moments, and the 
transformed covariance is nonnegative definiteness, also the stability factor is as good 
as cubature rule. While, for high dimensional Gaussian cases (n>3), the transformed 
covariance may be negative definiteness, and the stability factor ( )UTS = 2 3 1n −  is 

increased with n. Compared with UT, the cubature rule is a dimensionality insensitive 
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GWI solution both from moment characteristic and numerical characteristic. For any 
Gaussian dimensionality n, the cubature rule based GWI solution is correctly calculated 
up to the 3-order nonlinearity, and the non-negative definiteness of the transformed 
covariance can be guaranteed, also the stability factor always equal to 1.  Based on 
above analysis, we design a dimensionality based GWI solution selection criterion: (i) 
for the case of dimensionality n<3, the UT is better than cubature rule because of partial 
of the fourth order moments of piror Gaussian are preserved by sigma-point set; (ii) for 
n=3, the cubature rule is equivalent to the UT; (iii) for n>3, cubature rule is a good 
choice because the transformed covariance by UT may be negative definiteness and as 
well the numerical stability factor is increased linearly with n for UT.  

3.3 Proposed FastSLAM with Suitable GWI Solutions  

From Section 2, four main parts are included in SLAM: (1) particle state prediction, (2) 
particle state updating, (3) revisited landmarks updating and (4) new landmarks initiali-
zation. Because each part of the algorithm has its own Gaussian dimensionality n, hence 
the suitable GWI solution for each part can be selected for SLAM implementation. 

1) For the particle state prediction, the dimensionality of augmented robot state a is 
beyond three (i.e. 3s un n+ > , see Eq.4). Therefore, the cubature rule is a better GWI 
solution. For example, in 3D.O.F SLAM, the vehicle state is ( )T

, ,x y θ=s and the 
control input is comprised by velocity and steering angle. So, the dimensionality of the 
augmented state a is 5. For the case, the predict covariance [ ]

1
i

k,k -P (in Eq.5) may be 
negative definite with UT because the weight of center sigma-point is negative 

2 3 00ω = − < . Also, the numerical stability factor of the UT is bad due to UTS = 2.33 1> ; 
2) For the particle state update part, the dimensionality of augmented robot state b   

is also larger than 3 (i.e. 3sn nμ+ > , see Eq.6). So, the cubature rule is selected as GWI 
solution with the same reasons for the first part. 

3) For the revisited landmarks updating step and the new landmarks initialization 
step, the dimensionalities of Gaussians are determined by the landmark state μ  and 
the measurement z , respectively. For the two steps, the UT is selected as GWI solution. 
There are two reasons for the utilization of UT: on one hand, the SLAM covariance 
matrixes are all nonnegative definiteness with UT, and the numerical stability factor is 
as good as cubature rule. On the other hand, the errors for the fourth order moments of 
the sigma-point set are smaller than that of cubature point set.  

4 Simulation Results 

The performance of the proposed SLAM is compared with FastSLAM2.0 and 
UFastSLAM. The simulation scenario is a100m 100m× size rectangular shaped map 
with 41 landmarks. For each simulation run, the robot starts with its initial 
state T

0 [0,0,0]s = , and then travels along six global planning points until closes the loop. 

Fig.1 is the result of the proposed SLAM (The measurement noise is set to be 0.1 m in 

range, 6° in bearing, and the control noise is set to be 0.5 m/s in velocity, o2 in steering 
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angle). As can be seen, the robot path tracking is converged and landmarks are accu-
rately positioned.  

Two noise levels are used in simulations. With each noise level, ten independence 
SLAM simulation runs were carried out for each SLAM. For the first noise level, the 
measurement noise is set to be 0.1 m in range, 1° in bearing, and the robot control noise 
is set to be 0.3 m/s in velocity, o1 in steering angle. As it can be seen from Fig.2, the 
vehicle path error of the proposed SLAM is lower than that of other two algorithms, and 
the landmarks are more accurately mapped by proposed SLAM. For the second noise 
level, the noise parameters are increased: the measurement noise is set to be 0.1 m in 
range, 6° in bearing, and the control noise is set to be 0.5 m/s in velocity, o2 in steering 
angle. We can see from Fig.3, the SLAM errors for the three algorithms are increased 
with the noise level. And among the three algorithms, the proposed SLAM has the 
lowest SLAM errors both for vehicle localization and for environmental mapping.   

 

Fig. 1. Performance of the proposed SLAM  

   

  (a) Average error norm for vehicle path      (b) Average error norm for 41 feature landmarks  

Fig. 2. Performance evaluation for SLAM algorithms with the measurement noise is 0.1 m in 
range, 1° in bearing, and the control noise is 0.3 m/s in velocity, 1° in steering angle 
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(a) Average error norm for vehicle path     (b) Average error norm for 41 feature landmarks  

Fig. 3. Performance evaluation for SLAM algorithms with the measurement noise is 0.1 m in 
range, 6° in bearing, and the control noise is 0.5 m/s in velocity, 2° in steering angle 

5 Conclusion 

In this paper, we proposed a new FastSLAM by choosing the suitable GWI solutions 
for different parts of the SLAM implementations. In proposed SLAM, the cubature rule 
is utilized to construct the particle filter proposal distribution and the unscented 
transform is used to initialize the Gaussian representations of the environment feature 
landmarks and to estimate the posteriors of revisited feature landmarks. The effec-
tiveness of the proposed SLAM is verified by SLAM simulations. Results show that the 
proposed SLAM outperforms FastSLAM2.0 and UFastSLAM.   
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