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Abstract. In this paper, a new estimation model based on least squares support 
vector machine (LS-SVM) is proposed to build up the relationship between 
Surface electromyogram (sEMG) signal and joint angle of the lower limb. The 
input of the model is 2 channels of preprocessed sEMG signal. The outputs of 
the model are joint angles of the hip and the knee. sEMG signal is acquired  
from 7 motion muscles in treadmill exercise. And two channels of them are 
selected for dynamic angle estimation for their strong correlation with angle 
data. Angle estimation model is constructed by 2 independent LS-SVM based 
regression model with radial basis function (RBF). It is trained using part of the 
sample sets acquired in 10s exercise duration and test by all data. Experimental 
result shows proposed method has good performance on joint angles estimation 
based sEMG. Root mean square error (RMSE) of prediction knee and hip joint 

angles is o3.02 and o2.09 respectively. It provide new human-machine interface 
for active rehabilitation training of SCI, stroke or neurological injury patients. 

Keywords: sEMG, LS-SVM, Angle estimation, Rehabilitation. 

1 Introduction 

SEMG is the weak electrical potential recorded by electrodes from the skin. It reflects 
muscle activity and function accurately and objectively. sEMG has been widely used 
in clinical rehabilitation and sport science fields for neuromuscular disorders 
diagnosis and fatigue analysis. Especially in clinical rehabilitation fields, for its strong 
relationship with human autonomous motions, sEMG is taken as a non-invasive 
control means for human-machine interface devices such as prosthesis, rehabilitation 
robot, power assist exoskeleton. Its application greatly enhances the convenience and 
efficiency of these rehabilitation systems and helps reconstruct neuromuscular 
function for people affected by stroke and spinal cord injury (SCI).  
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Clinical rehabilitation system is divided into three types: mechanical assistant 
devices, power feedback system and biofeedback system. Traditional mechanical 
rehabilitation assistance devices provide passive exercises for patients without 
feedback such as continuous passive motion machine. In some newly developed 
systems, human motion and force information are introduced as control signal. They 
are called power feedback system such as Lokomat [1], MIT-manus [2], MIME [3]. 
The last one take bio-information especially sEMG as control signal in order to excite 
patients’ autonomous motions and promote nerve repair and regeneration. For the 
better effects of reconstruct motion function for patients, it arouses many researchers’ 
interests.    

In the biofeedback system, the key issue that researchers focus on is how to capture 
human active motion intention from sEMG signals. At present, human motion 
researches based on sEMG signal are divided into qualitative and quantitative 
analysis. The typical application of the former is motion recognition [4] [5].  Many 
researchers have been engaged in higher accuracy and fewer channels for qualitative 
motion recognition based on sEMG signal and gained remarkable achievements.  

With further application research of human-machine interface (HMI) based on 
sEMG signal, quantitative sEMG analysis is expected to supply continuous real-time 
control. Javad Hashemi et al. proposed a calibration method for the amplitude of the 
sEMG signals collected from biceps brachii at different joint angles [6]. In Jimson’s 
study, the parameters of muscle activation model considered electromechanical delay 
was taken as the input of neural network to predict finger joint angles. Results showed 
correlation as high as 0.92 between the actual and predicted metacarpophalangeal 
joint angles for periodic finger flexion movements and 0.85 for non-periodic 
movements [7]. In order to suppress pathological tremor effectively by exoskeleton 
system, Shengxin Wang et al. extracted the linear profile-curve of sEMG, and 
explored the relationship between sEMG signals and angle with the radial basis 
function neural network [8]. In many other researches, various feature extraction and 
classification methods are applied to quantitative analysis for sEMG signal. The 
essence of these researches is to capture human active motion intention from sEMG 
signal, and then supply continuous and real-time motion control information for assist 
devices.  

With successful application of quantitative analysis for sEMG, there are still some 
disadvantages. Estimation accuracy of continuous variable is the key problem for 
motion control of assistant devices, and it is very important for natural motion of 
subjects. In this research, sEMG signals acquired from normal lower limb are used to 
estimate continuously hip and knee joint angle, which will be taken as control 
instruction for rehabilitation robot for the affected lower limb. Because in clinic, almost 
all persons affected by stroke or SCI have clinical manifestation of hemiplegia in 
varying degrees.  That means unilateral limb injury for the patient. Therefore, 
rehabilitation training of the affected limb controlled by the normal limb is feasible and 
effective.  It has been verified by many related researches. Continuous estimation of 
lower limb joint angle with high accuracy is the core of this rehabilitation strategy and 
also what we interested in. It contains two main key technologies, that is feature 
extraction meof sEMG signals for data compression and estimation algorithm for joint 
angles. In the following content, sEMG data acquisition and preprocess, estimation 
model design and experimental results will be explained in detail. 
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2 Methods 

2.1 Data Acquisition  

Treadmill exercise is a common training movement for SCI and stroke patients in 
clinical rehabilitation. Considering the character of unilateral injury, data were 
acquired from a normal volunteer in a gymnasium. As shown in Fig 1, during the 
treadmill exercise, sEMG signals of 7 lower limb muscles including vastus rectus 
muscle (VR), vastus lateralis muscle (VL), semitendinosus muscle (SM), biceps 
muscle of thigh (BM), tibialis anterior muscle (TA), extensor pollicis longus (EP), 
and gastrocnemius muscle (GM) were sampled with frequency of 2000Hz by 
Flexcomp, which is the production of Thought Technology Ltd., Canada. 7 pairs of 
Ag/Agcl electrode with glue solution were sticked on muscle belly with a distance of 
2cm, where the signal amplitude is up to the maximum. sEMG is easily disturbed by 
environmental noise, some preparations including shaving and cleaning the skin 
surface should be done before experiment. The raw sEMG signal contains noise and a 
large amount of data. Before applying for angle estimation it must be preprocessed 
with the following procedure.   

 

Fig. 1. sEMG and joint angle signal acquirement in treadmill exercise 

2.2 Signal Processing 

sEMG signal is very weak, non-stationary and random. It is easy to be disturbed by 
industrial frequency and the other environmental noise. It must de-noise and 
preprocess for further application.  The power spectrum of electromyography mainly 
concentrates between 20Hz to 500Hz. Conseuquently, a notch filter with 50Hz 
(industrial frequency of 50Hz in China), a band-pass filter with low cut-off frequency 
of 20Hz and the high of 500Hz and DC component elimination are applied to the raw 
sEMG. sEMG after primary de-noising is sent to following two process steps: 

(1) Integral absolute value (IAV)   sEMG is taken as zero mean Gaussian 
distribution in time domain. Its amplitude is random and vibrates frequently 
across zero.  IAV method describes the envelop characters of sEMG as 
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As mentioned above, the sampling frequency of 2000Hz is higher than that of joint 
angle 100Hz. The integral window width is set to 20 in experiment to synchronize the 
frequency of sEMG and joint angle.      

(2) The envelop of the sEMG signals get from last step still vibrates very much.  
Actually amplitude of sEMG reflects the contract level of corresponding muscle. And 
joint angle variation is the result of muscle contraction. So a two order low-pass 
Butterworth filter with cut-off frequency of 5Hz is used for data smoothing. Fig.2 
shows comparison figure of raw and preprocessed sEMG signal of each muscle. The 
output data is applied directly for subsequent multi-joint angles estimation of lower 
limb.  

 

  
(a) sEMG of VR                           (b) sEMG of VL 

  
(c) sEMG of SM                           (d) sEMG of BM 

  
(e) sEMG of TA                           (f) sEMG of EP 

 
(g) sEMG of GM                                           

Fig. 2. Raw and envelop sEMG signal of 7 channels muscles in treadmill exercises 

2.3 Joint Angles Estimation 

2.3.1 Least Squares Support Vector Machines (LS-SVM) 
Support vector machine (SVM), the most young and practical machine learning 
algorithm was proposed by Vapnik and his co-workers. It has been paid wide 
attention in recent years for merits of small classification and approximation error, 
simple mathematical forms and excellent generalization performance. So it is widely 
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used for pattern recognition and function regression.LS-SVM is an improvement 
model of SVM. In the model, the inequality constraint conditions are replaced by 
equality constraints. Consequently, quadratic programming problem was simplified as 
the problem of solving linear equation groups. It simplifies the complexity of 
calculation and accelerates solving process. 

In this research, joint angle estimation based on sEMG can be regarded as a 
function regression problem or function fitting. That means obtaining an optimal 
function as follow for mapping relationship between x and y for given training set  
(x1，y1)…(xl，yl): 

( ) T ( )f x w x bϕ= +                        (2) 

where ( )ϕ x : n mR R→  is the nonlinear mapping from input space to high-

dimension feature space. It can translate nonlinear regression to the linear.  LS-SVM 
regression algorithm can be described solving following constraint optimization 
problem: 
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where iα is the Lagrange multiplier. According to KKT conditions, Derivatives of 
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Let kernel function ( , ) ( ) ( )i j i jK x x x xϕ ϕ= , the optimal problem mentioned above is 

replaced by solving linear equations 
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Lagrange multiplier iα  and the offset b is solved from equation (6) and taken into

1
( )

L

i ii
w xα ϕ

=
=  to get fitting function of training set as  
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2.3.2   Design of Regression Model  
Processing result of 7 channels sEMG signal by IAV and Butterworth smoothing is 
shown in Fig. 2. Angle data of the hip and knee joint in Fig. 3 has a periodic change 
for treadmill motion.  By comparing the waveform changes, it is obvious that sEMG 
signal of each muscle has different performance of correlation with joint angle data 
for treadmill motion. sEMG of VR and VL is strong correlation with angle data. 
sEMG of EP has some correlation with angle variation and sEMG of SM, BM, TA 
and GM has low correlation with angle. Accordingly, sEMG of VR and VL is utilized 
as the input of SVM and joint angle of the hip and knee as the output y.  

 

 
(a)  Angle of the knee joint                  (b) Angle of the hip joint 

Fig. 3. Measured joint angle of the lower limb in treadmill exercises 

In order to make full use of dynamic information of sEMG amplitude, a m-order 
model is proposed to describe the relationship of sEMG and joint angles of lower 
limb. That means joint angle ky in a moment is thought be determined by sEMG 

signal from the present to the next follow m-k moment 1{ , , , }k k k mx x x− − . The 

nonlinear relationship between sEMG and joint angles is described as  

( )1, ,,k k k k mx x xy f − −=                        (8) 

In experiments, two channels sEMG data strong correlated with joint angle are 
used to construct the input of SVM and m is set to 10. As a result, the input dimension 
of regression is 20, which is expressed as  

T

1 10 1 10

20 1, , , , ,VR VR VR VL VL VL

k k k k k k ksEMG sEMG sEMG sEMG sEMG sEMGx R− − − −
×= ∈        (9) 

The output of LS-SVM is two channels joint angle, which is 
T 2 1,Knee Hip

k k k Ry θ θ ×   ∈=                      (10) 

LS-SVM based regression model consists of two independent LS-SVMs. As Fig. 4, 
where LSSVM(1) maps nonlinear relationship between sEMG and the knee joint 
angle,  and LSSVM(2) maps the relationship between sEMG and the hip joint angle.  
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Fig. 4. The structure of LS-SVM based regression model  

2.3.3 Joint Angle Estimation 

Sampling frequency of sEMG after IAV preprocessing mentioned in section 2.2 is 
changed to 100Hz. As a result, preprocessed sEMG has the same frequency as joint 
angle. The sampling process lasts 10 seconds. Acquired 1000 sets of sEMG-joint 
angle data are sent to 10-order model (eq.9) for final 991 couples data, from which 
198 couples are extracted every 5 data as training sample. All 991 sets are used to test 
performance of proposed LS-SVM regression model.  

In this paper, Coarse-fine search with cross validation is used to determine two 
unknown parameters in LS-SVM, σ and γ. Search range of the kernel parameter σ2 
and penalty factor γ is set to [0.08，12] and [0.05，200] respectively. The 
logarithmic scale is employed for the parameter space (Fig.5). Each is linearly divided 
into 10 parts. 100 intersections of corresponding grid lines are set to the test point of 
parameters. On each point, cross validation method is applied to test the performance 
of LS-SVM. The specific steps are: All samples are randomly divided into 10 parts. 9 
of them are for training and the rest is for regression performance testing. After 10 
times of training and testing sets transforming for each couple kernel parameters, 
regression performance is evaluated by mean squared error of 10 times of test result 
called cross validate rate. As shown in Fig.5, grid points of coarse search for kernel 
parameters are highlighted with black “·”. Error contour of cross validation rate 
describes different parameter performance and determines the scope of optimum 
parameters. Based on the result, the search range is reset for fine search. Grid point is 
highlighted with “×” in Fig. 5. Its number is still 100 and the search process is the 
same as cross validation method. The result of optimum parameters are listed in table 
1. Then, all 198 samples are used to calculate their Lagrange multiplier  α  and 
unknown parameter b .  

      

(a)Parameter optimization of LS-SVM(1),      (b)Parameter optimization of LS-SVM(2) 
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Fig. 5. Parameter optimization process of two independent LS-SVM 

Table 1. Parameters of LS-SVM based regression model 

Parameter LS-SVM(1) LS-SVM(2) 

kernel parameter σ2 6.197982 1.45296 
penalty factor γ 187.2391 25.8838 

In order to test performance of the trained LS-SVM regression model, two 
channels of sEMG data are sent into the model to estimate joint angle of the hip and 
the knee. Fig.6 shows good contact ratio between prediction and measured angle data. 
Root mean square error (RMSE) is calculated to quantitatively analyze performance:  

( )2

1

1
1

N

k k
k

RMSE
N

θ θ
=

= −
−                   (11) 

where kθ and kθ is estimated  and measured joint angle, N is test samples number . 
 

 
       (a)The knee joint angle estimation           (b)The hip joint angle estimation 

Fig. 6. sEMG based continuous joint angle estimation in treadmill exercise using LS-SVM 

The outputs of estimation model based on LS-SVM are the hip joint angle and the 
knee joint angle. In experiment, the RMSE of prediction knee joint angle with the 
proposed model is o3.02 , and that of estimation hip joint angle is o2.09 . 

3 Conclusions and Discussions 

sEMG signal directly reflects human active motion intention, it is the best human-
machine interface for active rehabilitation training of SCI, stroke or neurological 
injury patients. In this paper, we use LS-SVM to predict dynamic joint angle of the 
lower limb from sEMG signals. The input of the model derives from 7 Channels 
sEMG of lower limb muscles in treadmill exercise. Considering the data dimension of 
the input and correlation between sEMG and joint angle, sEMG of VR and VL after 
preprocess of de-noising, envelop calculation and filtering is selected for joint angle 
estimation. Finalized input of estimation model is a 20 dimensions processed sEMG 
and the output is two joint angles of the hip and the knee. Estimation model is 
constructed by 2 independent LS-SVM based regression model. Parameters of the 
established LS-SVM model are determined after the coarse and fine search. Statistics 
result of angle estimation using proposed method is represented with RMSE of 
prediction angle. That of the knee and the hip joint angle is o3.02 and o2.09

   

Estimation angle Measured angle 
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respectively. This model based LS-SVM can successfully judge human motion 
intention and accurately estimate joint angle of the limb by using sEMG. It can 
provide new control strategy for rehabilitation robot or other motion assist devices. 
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