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Abstract. We apply slow feature analysis (SFA) to the problem of self-
localization with a mobile robot. A similar unsupervised hierarchical
model has earlier been shown to extract a virtual rat’s position as slowly
varying features by directly processing the raw, high dimensional views
captured during a training run. The learned representations encode the
robot’s position, are orientation invariant and similar to cells in a ro-
dent’s hippocampus.

Here, we apply the model to virtual reality data and, for the first time,
to data captured by a mobile outdoor robot. We extend the model by
using an omnidirectional mirror, which allows to change the perceived
image statistics for improved orientation invariance. The resulting rep-
resentations are used for the notoriously difficult task of outdoor local-
ization with mean absolute localization errors below 6%.

Keywords: Self-Localization, SFA, Mobile Robot, Biomorphic System,
Omnidirectional Vision, Outdoor Environment.

1 Introduction

Self-localization is a crucial ability for animals. In rats, hippocampal place cells
fire when the animal is in a certain location and these cells are strongly driven
by visual input [13]. How does the brain extract position information from the
raw visual data it receives from the retina? While the sensory signals of single
receptors may change very rapidly, e.g., even by slight eye movement, the brain’s
high level representations of the environment (where am I, what objects do I
see?) typically change on a much lower timescale. This observation has lead to
the concept of slowness learning ([1–4]).

It has been shown earlier that slowly varying features extracted from the vi-
sual input of a virtual rat can model place cells and head-direction cells [5, 10].
Recordings from rats’ place cells in open field experiments typically show that
cells encode the animal’s own position, invariant to head direction. Theoretical
analysis of the biomorphic model in [10] has shown that in slowness learning,
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the resulting representation strongly depends on the movement statistics of the
animal. To achieve position encoding with invariance to head direction, for ex-
ample, a relatively large amount of head rotation around the yaw axis compared
to translational movement is required during mapping of the environment.

In this pilot study, we extend the results from [10] by applying the model
to a mobile robot in an outdoor environment for the first time. Furthermore,
we extend the system by using an uncalibrated omnidirectional mirror1, which
allows to easily add simulated rotation of the camera system. Thus the system
finds orientation-invariant representations of its own position without having to
rotate the camera or the robot much2. In the next section, we briefly describe
the model as introduced in [10], and explain our extensions to the model.

2 Model for Learning Self-Localization

Slow Feature Analysis. SFA solves the following objective [3]: given a multi-
dimensional input signal x(t), find instantaneous scalar input-output functions
gj(x) such that the output signals yj(t) := gj(x(t)) minimize Δ(yj) := 〈ẏ2j 〉t
under the constraints 〈yj〉t = 0 (zero mean), 〈y2j 〉t = 1 (unit variance), ∀i <
j : 〈yiyj〉t = 0 (decorrelation and order) with 〈·〉t and ẏ indicating temporal
averaging and the derivative of y, respectively.

The Δ-value is a measure of the temporal slowness of the signal yj(t). It
is given by the mean square of the signal’s temporal derivative, so small Δ-
values indicate slowly varying signals. The constraints avoid the trivial constant
solution and ensure that different functions g code for different aspects of the
input. We use the MDP [8] implementation of SFA, which is based on solving a
generalized eigenvalue problem.

Orientation Invariance. The goal for our self-localizing robot is to extract
the robot’s position on the x- and z-axis as slowly varying features and become
invariant to orientation. As stated above, learned slow features strongly depend
on the movement pattern of the mobile robot during training. In order to achieve
orientation invariance, the orientation of the robot has to change on a faster
timescale than its position during training. A constantly rotating robot with
a fixed camera is inconvenient to drive, and a robot with a rotating camera is
undesirable for mechanical stability and simplicity. As an alternative, we simulate
additional robot rotation, which is illustrated in Fig. 1.

Network Architecture and Training. As input image dimensionality is too
high to learn slow features in a single step, we employ a hierarchical converging
network. The network consists of several convergent layers, each consisting of
multiple identical nodes arranged on a regular grid. The numbers of nodes and
layers are depicted in Fig. 2. Each node performs a sequence of steps: linear
SFA for dimensionality reduction, quadratic expansion of the reduced signals,
and another SFA step for slow feature extraction. The nodes in the lowest layer

1 The omnidirectional mirror we used is actually a chrome-colored plastic egg warmer.
2 Note that also for 360◦ field of view, orientation invariance is nontrivial.
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Fig. 1. Simulated rotation for (a) simulator and (b) real world experiments. The
circular image of the surrounding is transformed to a panoramic view with periodic
boundaries. Rotation is simulated for every view from one location by sliding a window
over the panoramic image with increments of 5 pixels. Thus the variable ϕ denotes the
relative orientation w.r.t. the robot’s global orientation. Arrows indicate a relative
orientation of 0◦, 90◦, 180◦ and 270◦.

process patches of 10x10 RGB image pixels and are positioned every five pixels.
In the lower layers the number of nodes and their dimensionality depends on
the concrete setting, but dimensionality is chosen to be a maximum of 300 for
numerical stability. The highest layer contains a single node, whose first (i.e.,
slowest) 8 outputs yj(t) we use for all experiments and which we call SFA-output
units. The layers are trained subsequently with all training images. Instead of
training each node individually, a single node per layer is trained with stimuli
from all node locations in its layer and replicated throughout the layer after
training. This technique is similar to weight sharing in Neural Networks3.

Analysis of Learned Representations. How well does a learned output en-
code position, how much orientation dependency does it have? According to
[10], the sensitivity of a SFA-output function fj , j = 1...8 to the spatial po-
sition r = (x, z) is characterized by its mean positional variance ηr over all
orientations ϕ: ηr = 〈varr(f(r, ϕ))〉ϕ. Similarly, the sensitivity to the orienta-
tion ϕ is characterized by its mean orientation variance ηϕ over all positions r:
ηϕ = 〈varϕ(f(r, ϕ))〉r . In the ideal case ηr = 1 and ηϕ = 0, if a function only
codes for the robot’s position on the x- and z-axis and is completely orientation
invariant. The spatial information encoded by an output will be visualized by
two dimensional spatial firing maps (see Fig. 2c, 3a, 5a). They illustrate the
unit’s output value color-coded for every position r = (x, z) for a fixed orienta-
tion, which is indicated by an arrow. A unit which codes for the position on a
certain axis produces a map that shows a color gradient along this axis. If the
SFA-units are perfectly orientation invariant these maps should look the same
regardless of the specific orientation.

3 Note that this design is chosen only for its computational efficiency and that network
performance increases for individually learned nodes.
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Fig. 2. Model architecture. (a) The robot’s view associated with a certain position
r = (x, z) is steadily captured and transformed to a panoramic view. (b) The view is
processed by the four layer network. Numbers of nodes in each layer are given for the
simulator (gray) and real world (black) experiments, respectively. Each node performs
linear SFA for dimensionality reduction followed by SFA on the expanded outputs for
slow feature extraction. (c) Eight slowest SFA-outputs f1...8 over all positions r. The
color coded outputs, so-called spatial firing maps, ideally show characteristic gradients
along the coordinate axes and look the same independent of the specific orientation.
Thus SFA outputs f1...8 at position r are the orientation invariant encoding of location.

3 Experiments

The procedure is to record the views and corresponding metric coordinates of
the robot from every position during training- and test-runs. After the training
step, we need to quantify and visualize the encoded spatial information of the
SFA-outputs in a metric way. Therefore we compute a regression function from
the SFA-outputs to the metric ground truth positions and subsequently apply it
to SFA-outputs.

3.1 Simulated Environment

The model was first applied in a virtual reality simulator to validate the ex-
tended model under fully controllable settings. The virtual robot was placed on
discrete positions forming a regular 30x30 grid. We recorded 624 omnidirectional
RGB images for the training set and 196 for test set and transformed them to
panoramic views with a resolution of 350x40 pixel (Fig. 1a).

Results. All resulting SFA-units have a high spatial structure and are almost
completely orientation invariant as their outputs for the training views have a
mean positional variance ηr ≈ 1 and the mean orientation variance ηϕ ranges
from 0.00 (f1) to 0.17 (f8). This is also reflected by the spatial firing maps in
Fig. 3a which show an obvious encoding for the position on the coordinate axes
and look nearly identical under different orientations.

Since the views of the training- and test-run are identical for the same location
we only use the test data for the regression analysis. Random 50/50 splits are
used to train the regression and evaluate the coordinate prediction. Repeating
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Fig. 3. Simulated Environment. (a) Spatial firing maps of the four slowest SFA-
outputs f1...4 for relative orientations 0◦, 90◦, 180◦ and 270◦. Obviously the first and
second outputs are spatially orthogonal, coding for z- and x-position, respectively.
Output values are monotonically increasing from north to south and east to west.
The third unit is a mixture of the first two units and unit four is a higher oscillating
representation of the first unit. (b) Ground truth and estimated coordinates computed
by the regression. Estimations are averaged over the windows of the simulated rotation
for one location.

it 100 times results in an overall mean absolute error (MAE) for the x- and
z-coordinate estimation of 1.83% and 1.68%, relative to the coordinate range
of the test run (Fig. 3b). Thus the experiment has shown the capability of our
extended model to replicate results from [10].

3.2 Real World Environment

The experiment was transferred to an outdoor scenario to examine how the
model copes with real-world conditions like a non-static environment, changing
light conditions and noisy sensor readings. We used a suitable mobile robot
(Pioneer 3AT ) equipped on top with an omnidirectional vision system (Fig. 4a).
Outdoor experiments were done within an area of approximately 5x7 meters on
asphalted ground. Test data was recorded directly after the training data. The
training and test sets consist of 5900 and 2800 RGB panoramic images with a
resolution of 600x60 pixel. During training and test phase the robot was moved
with a wireless joystick at a maximum velocity of 40 cm/s in a grid like trajectory
so that the translations along the x- and z-axis were fairly equal distributed with
respect to the traveled distance (Fig. 4b).

Unlike in the simulator framework the true position of the robot has to be
acquired independently through an external monitoring system. For indoor ap-
plications several approaches based on sensors mounted on the room ceiling have
been proposed (e.g. [12]), but said approaches turned out to be unfeasible for
outdoor applications. To keep ground truth acquisition flexible and robust we
mounted a 30cm cube on the robot with optical, binary markers attached to its
facets (Fig. 4a). A stationary camera was installed to capture images of the whole
area throughout the training- and test-runs. 3d-pose was computed, based on
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Fig. 4. (a) Pioneer 3AT equipped with omnidirectional vision system and marker-box.
(b) Captured trajectories of the training- and test-run on an area of approximatly 5x7
meters. The arrow indicates a region in the south-west which has been passed during
the test-run but was not part of the training trajectory.

the features of the detected markers, by solving the Perspective-n-Point problem.
Implementation is based on the OpenCV -library [11]. In an experimental setup
with a HD-webcam the method provided a detection up to a distance of nine
meters with a MAE of about 3cm (0.3%), as verified by laser distance meter.

Results. All SFA-units of the network have a mean positional variance ηr ≈ 1
and their mean orientation variance ηϕ ranges from 0.00 (f1) to 0.05 (f8) and thus
are almost only coding for spatial position while being orientation invariant. Note
that the lower magnitude of ηϕ, compared to the simulation results, is caused
by the faster changing orientation due to the robot’s additional real rotation.

As expected the spatial firing maps in Fig. 5a do not encode position as clearly
as in the simulation due to the non-static environment and the inhomogeneous
distribution of position and velocity. Spatial firing maps of the first unit encode
the position on the z-axis, while x-position is less obvious encoded in the maps
of units three and four.

In contrast to the simulation we compute the regression from the SFA-outputs
to the metric ground truth positions for the training data and apply it to SFA
outputs on the test set. The resulting MAE is 0.23m (5.3%) for the x-coordinate
and 0.175m (3.7%) for the z-coordinate and the standard deviation amounts to
0.20 and 0.13. Higher errors can be noticed in a small area in the west that was
not passed in the training-run (see Fig. 4b) and an area in the south west, which
could also be noticed in the spatial firing map with the highest SFA-outputs.
Another prominent area with higher errors is located in the north west, where
the maps of units two and three show discontinuities. Minor deviations can be
observed at turning points in the trajectory, where vibrations of the vision system
caused distortions in the unwarped panoramic images. Even though the coding
for the x-position is less obvious compared to the simulation, it is apparently
sufficient for self-localization.
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Fig. 5. Real world environment. (a) Spatial firing maps of the four slowest SFA-
outputs f1...4 for relative orientations 0◦, 90◦, 180◦ and 270◦. First SFA-output encodes
the position on the z-axis with low values in the north and high values in the south. No-
tice the area in the south-west with highest values. This region has been passed multiple
times, so that environmental changes led to variations. Second unit is a higher oscillat-
ing representation of the first one, which indicates that other varying components of
the configuration space changed at least twice as fast as the z-position. Units three and
four suggest weak encoding of the x- and z-position. (b) Ground truth and estimated
position for the test run. Estimations are averaged over the simulated rotation for one
location.

4 Summary and Conclusion

We systematically transferred the biologically motivated concept of SFA step by
step into a self-localization task of a mobile robot and successfully showed its
application in an outdoor environment. Despite its simplicity the system demon-
strates reasonable performance. Explorations in the simulated environment have
shown that SFA combined with simulated rotation of an omnidirectional view
allows self-localization with errors of under 2% relative to the coordinate range.
Experiments in the outdoor environment showed an average self-localization
accuracy of 0.23m (5.3%) for the x-coordinate and 0.175m (3.7%) for the z-
coordinate, which is significantly smaller than the robot’s own size (approx.
50x50cm).

The problem of visual self-localization in unknown environments has been in-
vestigated in great detail as an inherent part of the Simultaneous Localization and
Mapping (SLAM) algorithms (e.g., [9]). Visual SLAMapproaches typically require
highly calibrated optics and extract local image descriptors, like SIFT or SURF, at
regular time intervals to characterize a scene. Typical errors given in the SLAM lit-
erature are about 1% to 5% with respect to travelled route. Although localization
accuracies are hard to compare in this context, relative errors of our approach are
within the same order of magnitude. Our core system, as described in Section 2,
however, focuses on simplicity and biological plausibility as it is derived from a
model of rat navigation. It repeats the same unsupervised learning in a converg-
ing hierarchy which yields location-specific and orientation-invariant slow feature
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representations by itself and is based on cheap uncalibrated hardware (but note
[7]). It is important to emphasize that unlike in SLAM approaches our aim is not
to simultaneously map and locate. Instead the approach, presented here, learns a
map of orientation invariant slow feature representations. These are projected to
metric space using a supervised regression step. Please note that an autonomous
robot does not necessarily need metric coordinates to navigate, but instead it can
follow gradients directly in slow feature space.

We have proven the concept of SFA self-localization in real world environ-
ments, but nevertheless the experimental results suggest issues that need fur-
ther investigation: (i) Achieving the orientation invariant representation based
on smaller window sizes of the simulated rotation is desirable since it speeds
up computation and extends the capabilities of the model to identify objects
that were not present during the training phase. (ii) The apparently weak rep-
resentation of the x-position in the outdoor environment may be due to global
changes in the environment, which vary on an equal time-scale as the robot’s
translation or are not decorrelated (orthonormal) to it. In this respect, choosing
another feature representations than the raw pixel values could help to exclude
known, changing variables from the configuration space and furthermore im-
prove model performance, if applied to data sets captured at different daytimes
or even seasons for the same training area.
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