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Abstract. This paper represents an attempt to automatically classify
alertness state using information extracted from multi-channel EEG. To
reduce the amount of data and improve the performance, a channel se-
lection method based on support vector machine (SVM) classifier has
been performed. The features used for the EEG channel selection pro-
cess and subsequently for alertness classification represent the energy
values of the five EEG rhythms; namely δ, θ, α, β and γ. In order to
identify the feature/channel combination that leads to the best alertness
state classification performance, we used a fuzzy rule-based classification
system (FRBCS) that utilizes differential evolution in constructing the
rules. The results obtained using the FRBCS were found to be compa-
rable to those of SVM but with the added advantage of revealing the
rhythm/channel combination associated with each alertness state.
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1 Introduction

The detection of alertness state has recently attracted much attention due to its
link to the human ability to process information. The traditional approach to
identification of alertness state through monitoring the subject’s face was found
to be unreliable due to a number subject-dependent factors such as age and
shape of eyes. This situation is further compounded by the the inter-rater dis-
agreement. In addition to this, visual identification is tedious task that requires
full attention from the assessor. The existing automatic alertness state detection
methods can be broadly divided into signal-based and video-based. Methods that
fall into the first category use physiological signals such as the electroencephalo-
gram (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocar-
diogram (ECG) for alertness identification. Among these signals, EEG and more
specifically the five EEG rhythms; namely δ (up to 4 Hz), θ (4 - 8 Hz), α (8
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- 13 Hz), β (13 - 30 Hz), and γ (30 - 100 Hz) has been the most widely used.
Some authors attempted to identify patterns characteristic of different alertness
states. For example, the authors in [1] associated reduction in vigilance with a
decrease in the amplitude, quantity and frequency of the posterior α rhythm
and increase in slow wave components. Nakamura et. al. [2] characterized the
reduction in vigilance level by (i) decrease in the amplitude, quantity and fre-
quency of the posterior dominant rhythm (or the waves with an approximately
constant period usually in the α band) and with the maximum amplitude at the
occipital or parieto-occipital region of the head and (ii) increase in slow wave
components. Most of the authors, however, adopted the discrete vector feature
approach to classification. Features were extracted from one or more of the main
four physiological signals, namely EEG, EOG, EMG, and ECG [3,4], using dif-
ferent time-domain, frequency-domain and time-frequency domain based tech-
niques. These features were then fed to different classifiers, such as ANN [3] and
SVM [4] to be assigned to either two states (alert/drowsy) [4] or three states
of alertness (alert/drowsy/asleep) [3]. A number of video-based methods have
been proposed in the literature, such as [5]. However, one needs to deal with
a number of issues when using video-based methods, such as occlusions, target
displacement and the large variability in eye shapes and facial expressions. In
this work we opted for the first option. More specifically we used electrical po-
tentials recorded from the brain following an audio stimulus. These signals are
known as cortical auditory evoked potential (CAEP) responses.

In our initial work [6], we showed that high frequency rhythms perform, in
general, better than the low frequency ones and that a single channel would not
be sufficient for achieving good discrimination between the different alertness
states. This paper presents an extension of our initial work, where we propose a
two-stage process to 1) identify the cortical regions more suitable for discrimi-
nating between alertness states and 2) construct a set of ”if-then” rules involving
combination of EEG rhythm and channel spatial location instead of the widely
used black box classifier. A fuzzy rule-based classification system (FRBCS) is
used to assign the classifier input information to one of the four predefined alert-
ness states. A differential evolution (DE) optimization based searching technique
is introduced to construct the fuzzy-based rules used by the classifier.

The paper is organized as follows: the fuzzy rule-based classification system is
described in section 2. Section 3 presents the the DE-based method for construct-
ing the fuzzy rules. Experimental results and conclusions are given in sections 4
and 5 respectively.

2 Fuzzy Rule Based Classification System for Alertness
Detection

The fuzzy rule-based classification system (FRBCS) has been used in many
classification problems [7,8,9] due to its transparent model built on linguistic
variables. This property makes it more attractive for problems that require
transparent mapping from the input variables to the output categories, such
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Fig. 1. Alertness membership functions

as medical diagnosis; a property not available in many of the widely used classi-
fication algorithms. For the particular problem of alertness state detection, there
is another advantage for using FRBCS, namely the reduction of the effect of in-
consistency in labeling data by the participating subjects or the human experts.
This is achieved by allowing a certain degree of overlap between adjacent states,
as shown in Fig. 1.

FRBCS computes the values of an output vector for a given input vector using
fuzzy memberships and a pre-defined set of ”if-then” rules. The FRBCS design
involves 1) defining the membership functions, 2) estimating their parameters
and 3) construction of the fuzzy rules. This paper focuses on the construction
of rules, as our aim is to identify a limited number of rules that each has a
small number of antecedent variables. Some of the widely used methods for
constructing the rules are based on artificial neural networks [10] and genetic
algorithms [11]. Although these methods have achieved good results in certain
applications, we decided to build our own FRBCS for the following reasons.
Firstly, we want to control the construction of the rules by starting with a
number of rules equal to NC (number of alertness classes), then keep adding
another set of NC rules until there is no improvement. The reason behind this
approach is to identify the important rule for each of the NC classes, then the
second best set of rules that complement the existing ones and so on. Secondly,
we want to control the rule complexity, where we aim at constructing ”simple”
rules that are easy to interpret. Hence, we want no more than K variables in the
antecedent part of the rule, where K is a user defined variable. This will help
to reveal the relationships between the EEG rhythm/channel combinations and
each of the alertness states. Thirdly, differential evolution was shown to possess
good exploration capability of the search space [12,13], and hence, we decided
to use it here to search for the best variable combination for each rule.

Each feature support is partitioned into three regions, namely ”low”, ”medium”
and ”high”. The Features are first normalized between 0 and 1 before being fuzzi-
fied using a pi-shaped membership function. This membership function requires
four parameters, which represents the transition points from 0 to 1 and then from
1 to 0. The fuzzification process is performed according to the following steps:

– sort the data samples of each feature and identify the 6%, 47%, 53%, and
94% smaller data samples and assign those values to pp, which is a vector
that has four elements

– the parameters of the ”low” are: [−pp(2),−pp(1), pp(1), pp(2)]
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Fig. 2. Membership functions of two different features

– the parameters of the ”medium” are: [pp(1), pp(2), pp(3), pp(4)]
– the parameters of the ”high” are: [pp(3), pp(4), 2− pp(4), 2− pp(3)]

Although based on this procedure, the generated shape of the membership
functions associated with different features may not be similar, each of the three
membership regions of a given feature will approximately have the same number
of samples with their counterparts of another feature. The reason behind this is
that we don’t want the ”low” region to represent a small portion of samples for
feature Fi and large portion of samples for feature Fj . The same is true for the
”medium” and ”large” regions. Fig. 2 shows the membership functions of two
different features.

Rules will have the following format:
Rule n : If Fn1 is MFn1 and . . . and Fnk is MFnk then Class is Cn

where MFn1 is the membership function associated with feature Fn1 in rule
n, and Cn is one of the alertness state.

We decided not to assign weights to the rules, as we wanted to find the best
rule for each class. Rules would then be added to the ones that have already
been identified. The next section describes the rule construction process.

3 Construction of Fuzzy Rules Using Differential
Evolution

The construction of rules with limited number of antecedent variables (no more
than k) is implemented using differential evolution (DE). We modified the code1

of our previously developed DE-based feature selection algorithm (DEFS) [13]
to suit this particular problem. In the DEFS algorithm, the original NF features
are distributed among M wheels and one feature is selected from each wheel,
i.e, M represents the desired number of features to be selected. The selection of

1 Available online at: http://services.eng.uts.edu.au/~ahmed/

http://services.eng.uts.edu.au/~ ahmed/


180 A. Al-Ani et al.

features is optimized using the differential combination and uniform crossover
operators of the DE algorithm.

For rule construction, each feature in the antecedent part is represented by
one of the four possibilities {low, medium, high, none}, while the consequent part
is represented by one of the four possibilities {engaged, calm, drowsy, sleeping}.
The number of wheels is set to NF ×NC, where NF and NC are the number of
features and classes respectively. Each wheel represents one of the features for a
given class, and one rule is constructed for each class. The objective is to search
for the best membership for each features in the antecedent part of each of the
four rules. For each member of the population, the algorithm starts by allowing
only k features per rule that are randomly chosen to be assigned a membership
function other than ”none”. Based on the population size, it is unlikely that all
members of the population to start with ”none” for any of the features. During
the optimization process, the DE operators may produce more than k features
with a value other than ”none”. In such case, some of those (randomly chosen)
will be reset to ”none”. The population size is set to 100, all other parameters
are kept unchanged.

The output values are obtained for each member of the population by eval-
uating the fuzzy system (defuzzification). The output values are then used to
calculate the class-wise classification accuracy of the training set, which in turn
used as the ”fitness function”. It is important to mention that this approach
is computationally expensive, and hence, it is not recommended to substitute
existing classification methods. However, as mentioned earlier, the main aim of
this work is to search for the ”best” rhythm/channel combination for each of the
alertness states.

4 Experiments and Analysis of Results

Ten normal hearing adult subjects, with an age range of 24 to 53 years, par-
ticipated in the experiment. A 21 ms /g/ speech sound stimulus was presented
every 1175 ms at 55 dB sound pressure level as part of a cortical auditory evoked
potential study. Data was recorded using a Neuroscan system that has 64 EEG
channels, with the reference channel close to Cz (vertex). Subjects were asked to
press one of three buttons every 30 seconds to indicate their level of alertness,
i.e, engaged, calm but not drowsy, and drowsy. Each recording session lasted one
hour, divided into 6 divisions of 10 minutes each. If the subject did not provide
an input in any of the divisions, he/she was considered to have fallen asleep.

The recorded signal was divided into windows of 5 seconds with overlap of
3 seconds. For each window five features corresponding to the energy in the
five EEG frequency bands were extracted. Each 10 consecutive windows were
grouped to form a segment, and for each subject 75% of the segments were used
for training and the remaining 25% for testing. Training windows from all 10
subjects were used to train a multi-class linear support vector machine (SVM)
classifier.

For the sake of channel selection, we started by evaluating the performance
of each of the 64 channels and its neighbours, where each channel is represented
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Fig. 3. Ranked channel performance based on (a) a single channel and its surroundings,
and (b) a single channel and its surroundings with {P1, CP1, P3, PZ, PO3}

using the five EEG rhythms, where based on our initial study we found that a
single channel would not be sufficient to discriminate between the four alertness
states. The ranked results of the 64 channels shown in Fig. 3(a) indicate that
channel P1 and its surroundings {CP1, P3, PZ, PO3} achieved best performance
with an average class-wise accuracy of 60.39%. We have then fixed those five
channels and added each of the remaining channels, one at a time, along with
its neighbours. We found that channel C4 and its surroundings {FC4, C2, C6,
CP4} is the best set that complements the existing five channels with an average
combined class-wise accuracy of 69.83%, as shown in Fig 3(b).

The obtained performance using 10 channels is lower than that obtained in
our initial study [13] because in that study the classifier was trained on the
data of each subject individually, while here data from all 10 subjects was used
to train the classifier. Note that inconsistency in labeling between the different
subjects make the classification task harder.

In order to reveal relationships between the rhythm/channel combination and
each alertness state, the construction of fuzzy rules process described in the previ-
ous section has been applied to the 10 ”best” channels selected by the SVM clas-
sifier. The number of elements to be optimized for each rule is 50 (5 rhythms × 10
channels). We have run the algorithm 5 times, where in each run 4 rules are added
to the already identified ones. The sixth run has hardly made any improvement,
and hence we decided not to consider it. The obtained rules are:

1. If (γC6 is low) and (θCP1 is high) and (γP3 is med) and (θPO3 is high) then sleeping
2. If (βC4 is high) and (βP1 is med) and (θPO3 is med) and (βPO3 is med) then drowsy
3. If (γFC4 is low) and (αCP1 is high) and (αPZ is high) and (γPZ is med) then calm
4. If (αC4 is med) and (δFC4 is high) and (βP1 is med) and (δPZ is med) then engaged

5. If (γFC4 is high) and (θPZ is high) and (βPZ is high) and (δPO3 is med) then sleeping
6. If (δFC4 is low) and (γC2 is high) and (γP1 is med) and (γPZ is high) then drowsy
7. If (γC4 is low) and (γC2 is high) and (γP3 is low) and (βPZ is low) then calm
8. If (βC4 is low) and (θP3 is low) and (γPO3 is med) then engaged

9. If (γP1 is low) and (γCP1 is high) and (γCP4 is high) then sleeping
10. If (θP3 is low) and (θP1 is high) and (αP1 is high) and (γPZ is high) then drowsy
11. If (δFC4 is low) and (αP1 is high) and (θPZ is low) then calm
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12. If (γP3 is high) and (βPO3 is low) then engaged

13. If (βC2 is low) and (θCP1 is high) and (βPZ is high) and (θPO3 is low) then sleeping
14. If (θC4 is low) and (γFC4 is low) and (βP3 is low) and (γPO3 is low) then drowsy
15. If (γC6 is high) and (δCP4 is high) and (βPZ is high) and (δPO3 is med) then calm
16. If (αC4 is med) and (αC6 is high) and (αP1 is med) and (αCP1 is low) then engaged

17. If (θC4 is low) and (θC2 is high) and (βPZ is high) and (αPO3 is high) then sleeping
18. If (βP1 is high) and (γP1 is high) and (δP3 is low) and (γPZ is high) then drowsy
19. If (γC6 is low) and (θPZ is high) and (γPZ is low) and (θPO3 is high) then calm
20. If (θP3 is low) and (γPO3 is high) then engaged

The first four rules produced an accuracy of 58.27%, while using all 20 rules
enhanced the accuracy to 67.16%, which is not too different from the results
obtained using the SVM classifier. These rules indicate that all five rhythms
influence the alertness state classification, especially the higher frequency ones.
Note that although the proposed rule construction mechanism does not prevent
conflicts between rules, the obtained rules perform well when considered to-
gether. These rules indicate that the four alertness states are mainly associated
with:

– Sleeping: high β and θ rhythms in the P1 region
– Drowsy: med/high γ, med/high β, med/low θ and low δ
– Calm: med/low γ, high α and med/high θ
– Engaged: med/high γ and low θ in the P1 region. Med/low β and med α

Asmentioned in the introduction, existing methods associate drowsiness with a
reduction in the α rhythm and increase in slowwave components. The constructed
FRBCS rules on the other hand utilized all five EEG rhythms. Hence, in order to
verify the importance of the middle three rhythms (θ, α and β), we conducted an-
other experiment using the same set of 10 channels, where we trained the SVM
classifier using (i) θ only, (ii)α only, (iii) β only, (iv) θ and β, and (v) θ, α and β.We
got the following respective average class-wise accuracies: 45.97%, 36.88%, 39.73%,
56.38%, and 57.80%. These results indicate that utilizing all five rhythms can lead
to noticeably better performance than the middle three ones only, which support
the constructed antecedent terms of the FRBCS rules.

The confusionmatrix obtained using the FRBCS, shown in 1, indicates that the
classifier tends to achieve lowermisclassification rates with the increase of distance
from the true class. For example, when the true class is engaged (column 5), mis-
classification with sleeping is close to zero, a slightly higher misclassification with
the drowsy class, while the highestmisclassificationwas achievedwith calm, which
is the closest class to engaged. Further improvements are expected to be achieved
when optimizing the membership function parameters for each features.

Table 1. Confusion matrix of the FRBCS (T: True, P: Predicted)

P \ T Sleeping Drowsy Calm Engaged

Sleeping 0.93 0.04 0.07 0.02

Drowsy 0.06 0.65 0.24 0.19

Calm 0.01 0.25 0.55 0.24

Engaged 0.00 0.06 0.14 0.55
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5 Conclusion

We presented in this paper a fuzzy rule-based classification system (FRBCS) that
utilized differential evolution in constructing the rules. We have shown that the
FRBCS is capable of achieving comparable results to that of the well-established
SVM classifier. The main advantage of FRBCS is that it transparently maps the
input features to the target categories. The obtained rules reveal that importance
of combined frequency rhythms of the considered channels in differentiating be-
tween the different alertness states.
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