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Abstract. The human brain can send a command to external devices or 
communicate with the outside environment by the means of a brain computer 
interface (BCI) system. The effectiveness depends on how precisely specific 
brain activities can be identified from EEG. Noise is usually mixed into the 
EEG signal, and cannot be separated or filtered out in some cases. In a practical 
BCI system, the whole segment of EEG is discarded when a portion of that 
segment is contaminated by extreme noise or artifacts. This leads to the 
weakness that the BCI system cannot output decoding results during the period 
of that discarded segment. In order to solve this problem, we employed a Lomb-
Scargle periodogram to estimate the spectral power based on an unevenly 
spaced segment, a portion of which has been removed due to noise 
contamination. According to the classification results of motor imagery data, 
the accuracy is not dramatically decreased along with increased proportion of 
data removal.  
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1 Introduction 

Brain computer interface (BCI) has attracted increasing attention of researchers 
coming from diverse research fields, and is one of interdisciplinary research hotspots. 
With a BCI system, healthy people can obtain fantastic manipulation experience 
contrary to their familiar perception [1], and disabled people can restore their abilities 
of communication [2] and degenerated motor function [3-4]. In the practical 
application of a BCI system, the intention of the user needs to be translated into a 
control command continuously in order to give the user an experience of smooth 
manipulation. This requires all EEG segments to be included for decoding. If some of 
EEG segments are discarded due to noise contamination, there is no output of 
commands during the periods of those discarded segments. Hence, it would be good 
to utilize the remaining portion of EEG segment after removing the portion of noise 
contamination. The power features are commonly used to distinguish different motor 
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imageries (e.g., left-hand and right-hand motor imageries) [5-7], because power 
features are robust in represent of information underlying motor imagery. For the 
complete EEG segment, Fourier transform can be used to transform temporal data 
points into spectral domain, but it is impossible to process unevenly spaced data like 
the EEG segment after removing a portion of noise contamination. In order to utilize 
the segments with unevenly spaced data points to let user feel smooth manipulation, 
we employed Lomb-Scargle periodogram to estimate the spectral power [8-9] and 
support vector machine (SVM) [10-11] to predict the class of motor imagery. Two 
categories of data are used to prove the feasibility of the method. One is the simulated 
data and the other is two-class motor imagery data. We used simulated data to 
illustrate that spectral power can be correctly estimated when data come to be 
unevenly spaced after removing some data points of them. And, we used real motor 
imagery data to demonstrate that classification accuracy does not dramatically 
decreased when different proportional portions of segments have been removed. 
Hence, the method of combination of Lomb-Scargle periodogram and SVM is 
suitable for using in the BCI system when a portion of segment has be removed. 

2 Data Acquisition 

The simulated data were generated by mixing two sinusoidal signals, which are 3Hz 
and 6Hz, respectively. The maximal amplitude of 3Hz sinusoid signal was 1.5 times 
of that of the 6Hz sinusoid signal. The motor imagery data came from three subjects. 
Fourteen electrodes were used to record the EEG signal on the sensorimotor cortex 
while the subject was conducting motor imagery at sampling rate of 250 Hz. Those 
electrodes were referenced at the mastoids behind ears and grounded at AFz. Each 
subject participated in four sessions. Each session consists of 15 trials, each of which 
was four-second length. Subject conducted either left hand motor imagery or right 
hand motor imagery according to the cue shown on the computer monitor.  

3 Method  

We first divided a four-second trial into 25 segments of one-second length with an 
overlap of 87.5%. A segment is denoted by X , which is N  by T  matrix. Where 
N  is the number of channels, and T  is the number of sampling points. Spectral 
power of each channel time series y(ti )  is estimated by the Lomb-Scargle 

periodogram [8-9]. The estimated spectral power at frequency Ω f  can be obtained 

through minimizing the following sum of difference squares: 

 
a>0

φ∈[0, 2π ]

min (y(ti ) − α cos(Ω f ti +φ))2

i=1

T

 .                  (1) 
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Let 
 a = α cosφ                                 (2) 

and 

 b = −α sinφ ,                               (3) 

we can rewrite equation (1) as: 

 
a, b

min (y(ti ) − acos(Ω f ti ) − bsin(Ω f ti ))
2

i=1

T

 .            (4) 

The optimal parameters 
^

a,
^

b  can be obtained through minimizing equation (4) 
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and 
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The power of specific frequency Ω f  is then estimated with respect to optimal 

parameters 
^

a,
^

b  as follows: 
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Similarly, the minimization of squares mentioned above is used to estimate spectral 
powers at all frequencies. After that, spectral estimation for one channel is finished. 
Those steps are repeated for all channels and all segments to get the spectral powers. 
Because the frequency range of 8-30 Hz is mostly related to motor imagery task [7], 
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we divided that band into four subbands with a bandwidth of 5 Hz (i.e., 8-12 Hz, 13-
17 Hz, 18-22 Hz, and 23-27 Hz). Subband powers were obtained by averaging 
spectral powers within the corresponding frequency band range for each channel. 
Then, subband powers (four features for each channel) for all channels are 
concatenated into a feature vector: 

 F = [ f11, f12 , f13, f14 , f21, f22, f23, f24 ,, fN1, fN 2, fN 3, fN 4 ]Τ ,      (9) 

where N is the number of channels. Subsequently, features are normalized as: 

 fqp = log
fqp

fij
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The normalized features were fed into a linear SVM classifier to distinguish which 
class it belongs to. 

4 Results 

4.1 Simulated Data 

Figure 1 shows the spectral power estimation from a mixed signal, which mingles two 
sinusoidal signals with 3 Hz and 6 Hz respectively. From top left to bottom right, 
spectral power estimations for the complete signal, proportional data point removals 
from 10% to 80% are shown, respectively. The data points removed are chosen 
randomly. The powers shown in figure 1 were normalized by dividing by a 
proportional factor (1-p, p is the removed percentage) in order to keep the same scale 
between cases of different proportional data removal. For example, the estimated 
power is divided by the proportional factor of 0.7 when 30% of data points are 
removed from the signal. From figure 1, we can see the components at 3 Hz and 6 Hz 
can be better estimated even up to 80% of data point removal. 

 

Fig. 1. Spectral power estimations for the complete signal and signals after data point removal 
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4.2 Real Motor Imagery Data 

In this section, we showed results tested on real motor imagery data. The proposed 
method can solve the problem that the whole segment has to be discarded due to 
partial noise contamination on that segment, if the classification accuracy for 
segments with data removal can remain the same or slightly decrease. Here, we used 
two ways to randomly remove data points. One is that data points are randomly 
removed (see figure 2 for an example). The other is data blocks are randomly 
removed (see figure 3 for an example). The width of removed blocks is generated 
according to a normal distribution with a mean of 20 and standard deviation of 10. 

 

Fig. 2. An example of data point removal. The data points shown with gray background are 
removed while data points shown with white background are retained.   

 

Fig. 3. An example of block point removal. The data points shown with gray background are 
removed while data points shown with white background are retained.   
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The data from the preceding session were used for training and the data from the 
following session were used for testing. Sliding time window accuracies were 
calculated through the number of correct classification segments divided by the 
number of all segments. A trial was classified to the class that most of sliding time 
windows within that trial belonged to. Then, trial accuracies were obtained by the 
ratio of correct classification trials. Figure 4 and figure 5 show testing accuracies for 
the conditions of data point removal and data block removal, respectively. In general, 
the accuracies for all sessions of all subjects are not dramatically decreased. Trial 
accuracies varied more than that of sliding time window across different proportional 
portions of data removal. The reason is that trial was counted as correct classification 
trial even if the number of correct classification sliding time windows is one more 
than that of wrong classification sliding time windows, and vice versa. Therefore, in 
some cases, trial accuracy changed greatly while sliding time widow accuracy did not 
change too much. A comparable classification accuracy can be achieved even when 
80% of data were removed. The high accuracies can be kept no matter how many data 
points were removed from 10% to 80% for subject 1, especially for session 2 and 
session 3. The accuracies for 80% data removal are largely worse than that for 70% 
data removal for subject 1 in the condition of block data removal. It seems that our 
method is relatively sensitive to the form of block data removal.   

 

Fig. 4. Classification accuracies for the form of data point removal. The thin red lines represent 
trial accuracies, and the bold blue lines represent sliding time window accuracies. 
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Fig. 5. Classification accuracies for the form of block point removal. The thin red lines 
represent trial accuracies, and the bold blue lines represent sliding time window accuracies. 

5 Conclusion 

We proposed the combination of Lomb-Scargle periodogram and SVM classifier to 
distinguish the EEG segment with a portion of data removal due to noise 
contamination. The results indicated that classification accuracy was not dramatically 
decreased when different percentages of data were removed. Therefore, the 
classification performance using the proposed method for segments with data removal 
is acceptable for a BCI application system. This means that the segment with noise 
contamination can still be utilized to output commands after only removing the noisy 
portion, rather than discarding the whole segment, which is conventionally taken by 
the BCI system. In brief, the proposed method can achieve comparable classification 
performance even when most of data points of a segment have been removed. It 
avoids the problem that there is no output of commands when a segment is discarded, 
because Fourier transform cannot be used to estimate spectral power after a portion of 
data has been removed due to noise contamination.  
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