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Abstract. Multiple kernel learning (MKL) is a widely used kernel learn-
ing method, but how to select kernel is lack of theoretical guidance. The
performance of MKL is depend on the users’ experience, which is diffi-
cult to choose the proper kernels in practical applications. In this paper,
we propose a MKL method based on minimal redundant maximal rele-
vance criterion and kernel alignment. The main feature of this method
compared to others in the literature is that the selection of kernels is
considered as a feature selection issue in the Hilbert space, and can ob-
tain a set of base kernels with the highest relevance to the target task
and the minimal redundancies among themselves. Experimental results
on several benchmark classification data sets show that our proposed
method can enhance the performance of MKL.

Keywords: minimal redundant maximal relevance, kernel alignment,
kernel selection, multiple kernel learning.

1 Introduction

Multiple kernel learning (MKL) is an important kernel method, in which the
most attractive character is so called ‘

¯
kernel trick”. MKL has been a hot research

spot due to its success in lots of fields, such as bioinformatics [1], computer vision
[2] and natural language processing [3]. MKL can be effortlessly derived from the
canonical kernel method, i.e., support vector machine (SVM) [4]. Compared to
SVM, MKL has a higher performance because of using a linear or nonlinear com-
bination of several base kernels instead of only one specific kernel. Consequently,
MKL aims at learning the combination coefficient of base kernels and some other
parameters which are also learned by SVM. Lanckriet et al. [5] formulated it as
a semi-definite programming problem. Bach et al. [6] reformulated it a quadrati-
cally constrained quadratic programming problem. Sonnenburg et al. [1] treated
it as a second order cone programming problem that can be efficiently solved
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using interior point methods and Rakotomanon et al. [7] addressed it through
a weighted 2-norm regularization formulation with an additional constraint on
the weights that encourage sparse kernel combination. Recently, localized MKL
proposed by Gonen et al. [8], and the two-stage techniques for learning kernels
based on a notion of alignment for MKL reported in [9] are two representatives
methods.

Almost exclusively, methods aforementioned leave the task of selecting base
kernels to users. It would be difficult in practice to choose a set of appropriate
base kernels without prior knowledge, which maybe degrade the performance
of MKL. To alleviate the negative effects, one can produce as many as possi-
ble candidate kernels, e.g., a family of polynomial kernels of arbitrary degree
or a family of Gaussian kernels with different variances restricted in a specific
range, and use all of them directly as base kernels. However, base kernels se-
lected like that contain much redundant information and will give rise to high
computation cost. Alternatively, one can only choose partial kernels with the
highest relevance to the target task. Actually, to select a set of base kernels from
a prescribed set of candidate kernels can be treat as a feature selection prob-
lem within the Hilbert feature space. Feature selection methods allow obtain-
ing shorter training time and enhanced generalization by reducing over-fitting
when constructing predictive models [10]. One state-of-the-art feature selection
method, i.e., minimal redundancy maximal relevance (MRMR) [11], can be used
as a filter in order to obtain a minimal subset of candidate kernels by reducing
the redundancies among the selected kernels to a minimum. In this paper, we
propose a MKL method based on the combination of MRMR, which is used as
a filter, and kernel alignment, which is used to measure the mutual dependence
between candidate kernels and target kernel, to select base kernels to enhance
the performance of MKL. Note that, kernel alignment has been used for leaning a
combination kernel from a prescribed candidate kernels, see in [9] [12]. Contrast
to the previous work, in this study we take kernel alignment to select a set of
base kernels instead of a combination kernel, which leads us to be more flexible
in choosing the final combination form (linear, nonlinear or data-dependent) of
base kernels.

The remainder of this paper is organized as follows: Section 2 reviews MRMR
and kernel alignment. In Section 3, we describe the proposed method in detail.
Experimental results on several benchmark classification data sets are reported
and analyzed in Section 4, and our conclusions and further work are presented
in the last section.

2 Minimal Redundancy Maximal Relevance and Kernel
Alignment

2.1 Minimal Redundancy Maximal Relevance

MRMR is a well-known feature selection method based on the maximal sta-
tistical dependence of the target class on the data distribution. The mutual
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information is a quantity that measures the mutual dependence of two random
variables. Given variables x and y, the mutual information between them can
be calculated as follows

I(x;y) =
∑

x∈x

∑

y∈y
log

p(x; y)

p(x)p(y)
, (1)

where p(x; y), p(x) and p(y) denote the joint probability distribution function of x
and y, the marginal probability distribution function of x and the marginal proba-
bility distribution function of y, respectively. The higher value of I(x;y) indicates
the more mutual information they share, i.e., x is more correlated to y.

Let X = {x1,x2, ...,xi} be the whole feature set of a given data set, and Sm,
consisting of m features, be a selected subset of X. Given c, which represents
the target class label, and xi, which represents a feature, we can obtain Sm

by selecting the top m features in the descent order of I(xi; c), but it is not
a good scheme because of its failure in reducing the redundancy between the
selected features. MRMR can select features that have the highest relevance
to c and are also minimally redundant. In the algorithm of MRMR, first, all
mutual information between candidate features and target class are calculated,
and next, the mean mutual information between candidate features and the
selected feature in subset Sm−1, which hasm−1 selected features, are calculated,
and then to select themth feature from set {X−Sm−1} according to the condition
shown as follows:

max
xj∈X−Sm−1

[I(xj ; c)− 1

m− 1

∑

xi∈Sm−1

I(xj ;xi)], (2)

2.2 Kernel Alignment

In this paper, we use MRMR as a filter to select a set of base kernels from
candidate kernels. The mutual information between two kernels can be calcu-
lated using kernel alignment which proposed by Cristianini et al. in [13]. Ker-
nel alignment is a method to measure the similarity of two kernel matrices.
Given a binary-class data set S = {(xi, yi)}Ni=1, where yi is the class label and
yi ∈ {−1, 1}, and N is the total number of samples, then the similarity between
two kernel matrix on data set S is calculate by

A(S,K1,K2) =
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

, (3)

where 〈K1,K1〉F is the inner product between kernel matrices, and the form is
as follow

〈K1,K2〉F =
N∑

i,j=1

K1(xi, xj)K2(xi, xj). (4)
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If we consider K2 = yyT , where y is the class vector of all samples, then we
get

A(S,K1,yy
T ) =

〈
K1,yy

T
〉
F√〈K1,K1〉F 〈yyT ,yyT 〉F

. (5)

In the next section, we will describe the proposed method in details.

3 The Proposed Method

The proposed method reported in this paper is based on a hybrid approach
combining MRMR and alignment kernel (MRMRKA). The general algorithm of
MRMRKA includes three steps: 1) some candidate kernels, or called candidate
matrices, are generated based on the given data set, and 2) a set of base kernels
is automatically selected by utilizing MRMRKA, and 3) the selected base kernels
are fed into the process of MKL. The detailed steps are described as follows.

First, we obtain a set of candidate kernels. Kernel matrices are generated
by the mapping of kernel functions. It is necessary to try to make use of sev-
eral different kernel functions for getting some valid candidate kernels. Using
linear kernel function, we generate the first kernel matrix, and the others can
be generated by utilizing a family of polynomial kernel functions with different
settings of the degree and a family of Gaussian kernel functions with variances
in a prescribed interval.

Second, we select base kernels using MRMRKA. Given that the number of
base kernels to be selected is m, the mutual information between candidate
kernel matrices and target kernel matrix are calculated using (4), then select the
candidate kernel with the maximal value of mutual information as the element
of set S1. Then, use (2) or (3) to select the rest set Si(2 ≤ i ≤ m). Note that,
I(xi; c) and I(xi;xj) in (2) are substituted by (4) and (6), respectively.

Third, we execute MKL with the selected base kernels. Several MKL schemes
can be chosen in this stage such as MKL based on semi-definite, MKL based on
quadratically constrained quadratic programming, simpleMKL, localized MKL
and so on.

4 Experiments

In this section, several experiments are done to test the proposed method on a
number of classification data sets, and the experimental results of three different
schemes to select base kernels in MKL are reported.

4.1 Data Sets and Preprocessing

Ten classification data sets which are available on the UCI machine learning
archive [14] are adopted in the experiments, the detail informations about those
data sets are shown in Table 1.
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Table 1. Data sets information

Dataset #Classes #Attributes #Instances

Blood 2 5 748

Breast 2 32 569

Control 6 60 600

Ecoil 5 8 336

Glass 7 10 214

Iris 3 5 150

Parkinsons 2 23 197

Seeds 3 7 210

Sonar 2 60 208

Wine 3 13 178

All raw data were preprocessed to have zero mean-value and unit variance.
Each data set was divided randomly to three subsets with preserved class ratios.
One of the three subsets was reserved as the testing set, and one of the remaining
two was used as the training set and the other was used as the validation set.
The validation sets of all data sets were used to optimize the parameter C,
i.e., the trade-off parameter between model simplicity and classification error,
by trying values {0.01, 0.1, 1, 10, 100}. The best C, i.e., leading to the highest
classification accuracy on the validation set, was used to train the final classifier
on the training set and its performance was measured over the testing set. The
MKL scheme used in this study is LMKL due to its outstanding performance
and we modified it to fit for multi-class classification tasks1. We repeated the
experiment three times on each data set and reported the average classification
accuracy as well as standard deviation.

4.2 Experimental Results and Comparison

For comparison, we adopt three schemes to select base kernels after producing
candidate kernels: using all candidate kernels as base kernels (Method 1), se-
lecting the top m kernels in the descent order of A(S,K,yyT ) (Method 2), and
selecting base kernels using MRMRKA. We produced forty candidate kernels on
each data set, which consist of one linear kernel, four polynomial kernels with
different degree values {2, 3, 4, 5}, and thirty-five Gaussian kernels with different
variances whose values are limited in [0.01, 1000].

We compared the performance of three schemes in terms of both computa-
tional time cost and classification accuracy, based on experiments on a quad-core
2.67G Xeon CPU running Windows 7 with the Matlab implementation. Table 2
shows the final results on all data sets. Note that, the number of selected base
kernels, i.e., m, ranges from 2 to 16 in our experiments, so the results of Method
1 and Method 2 reported in Table 2 are the best classification accuracy. As we

1 The original codes are available on http://user.ics.aalto.fi/gonen/icml08.php

http://user.ics.aalto.fi/gonen/icml08.php
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Table 2. Classification results on all data sets

Dataset Method 1 Method 2 MRMRKA

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

Blood 0.7590±0.0678 56±6.0 0.7711±0.0229 6±2.0 0.8005±0.0126 25±1.0

Breast 0.7964±0.2506 134±9.0 0.9613±0.0053 7±2.0 0.9754±0.0011 38±1.0

Control 0.9663±0.0816 1304±58 0.9680±0.0103 28±2.0 0.9731±0.0064 86±1.0

Ecoil 0.8142±0.0196 164±19 0.8443±0.0243 8±0.10 0.8682±0.0054 8±0.50

Glass 0.5728±0.0518 141±18 0.6122±0.0641 17±2.0 0.6352±0.0093 36±2.0

Iris 0.9804±0.0227 8±0.10 0.9804±0.0227 0.3±0.10 0.9804±0.0123 8±0.20

Parkinsons 0.8513±0.0335 21±8.0 0.8872±0.0506 6±2.0 0.9128±0.0196 7±2.0

Seeds 0.9275±0.0421 22±3.0 0.9372±0.0391 0.5±0.10 0.9420±0.0229 3±0.10

Sonar 0.5894±0.1034 108±29 0.5990±0.0549 0.6±0.10 0.6135±0.0474 6±0.50

Wine 0.9498±0.0269 48±3.0 0.9722±0.0170 2±0.40 0.9722±0.0092 13±0.20
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(a) Blood data set
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(b) Breast data set
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(c) Control data set
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(d) Ecoil data set
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(e) Glass data   set
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(f) Iris data set
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(g) Parkinsons data set
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(h) Seeds data set
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(i) Sonar data set
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Fig. 1. Comparison of base kernels selected by MRMRKA and Method 2

can see from Table 2, MRMRKA obtains the best classification accuracy on all
data sets. Both Method 2 and MRMRKA outperform Method 1 on all data sets.
In addition, the time cost of Method 1 is higher than those of Method 2 and
MRMRKA, because Method 1 does not take into count the redundancies among
the selected base kernels and whether they are related to the target kernel, which
undoubtedly has a negative effect on the efficiency and effectiveness of MKL. In
the case of Method 2, the part of candidate kernels that are barely related to the
target kernel is filtered in the selecting stage, but it does not take any measures
to reduce the redundancies. Compared to Method 1 and Method 2, MRMRKA
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selects the candidate kernels with the highest relevance to the target kernel and
minimizes the redundancies among them, which makes it outperform the others.
The time cost of MRMRKA is higher than that of Method 2 due to its a little
bit more expensive, but the difference is acceptable. In general, Table 2 indicates
MRMRKA gets a trade-off of the high accuracy and time cost.

We also examine that the number of selected kernels how to influence the
performance of Method 2 and MRMRKA, and the results are shown in Fig. 1.
The results demonstrate that the classification accuracy of MRMRKA fluctuates
slightly with the change of m, in other words, when the number of selected base
kernels is limited in a specific range, e.g., [2, 16], the performance of MRMRKA
are more stable than Method 2 in general. An important inspiration that can be
drawn from the phenomenon is we can use cross-validation to select an optimal
m by trying several finite values in practice. On the other hand, the fluctuation
indicates that MRMRKA cannot entirely avoid the redundancies among the
selected base kernels. To solve this kind problem, cross-validation can still be
considered.

5 Conclusion and the Future Work

In this paper, in order to solve the problem of selecting base kernels in MKL, we
propose a method which combine with MRMR and kernel alignment. The current
results show that the proposed method can obtain a set of base kernels which
can enhance the performance of MKL. There are two issues worth of further
consideration. The first one is that only some medium-sized data sets are chosen
in this study due to the computational time and space such kernels take when
facing with large number of data samples, and the large scale data sets should
be considered in the future work. The second one is that some other similarity
measurements, such as Euclidean distance or Kullback-Leibler divergence can
be utilized to measure the mutual dependence between kernels.

Acknowledgment. The research work in this paper was supported by the
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90820010, 61375045).
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