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Abstract. In this paper, we propose a recurrent neural network that
can flexibly make inferences to satisfy given Boolean constraints. In our
proposed network, each Boolean variable is represented in dual repre-
sentation by a pair of neurons, which can handle four states of true,
false, unknown, and contradiction. We successfully import Blake’s classi-
cal Boolean reasoning algorithm to recurrent neural network with hidden
neurons of Boolean product terms. For symmetric Boolean functions, we
designed an extended model of Boolean reasoning which can drastically
reduce the hardware cost. Since our network has only excitatory con-
nections, it does not suffer from oscillation and we can freely combine
multiple Boolean constraints.
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1 Introduction

Everyday we do logical thinking; we interpret given conditions, reason based
on them, and draw a conclusion. We are also able to fill in missing variables
given the rest, which is called “ problem solving . ” These complex yet flexible
human reasoning shows properties that are quite different from ordinary com-
putation processes in machines. Then how can we mimic these flexible reasoning
processes?

There are a number of studies on how humans actually conduct reasoning pro-
cesses. In [1], the authors carefully observe how humans interpret given condition-
als and understand causal relations when reasoning tasks are given. In [6], the
authors designed several different types of thinking processes based on decision
theory by neural networks with adequate weights according to given conditions.

Logical reasoning can take place on different level of cognitive task, from eval-
uation of Boolean functions to natural language processing. This paper focuses
on biological computation model of Boolean reasoning. Majority of biological
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reasoning models are based on artificial neural networks (ANN). Initial rea-
soning models are restricted to compute logical functions in feed-forward net-
work structure [8, 14, 15]. Advanced models use recurrent neural networks in
Boolean reasoning so that it can cover both backward and forward boolean in-
ference [11, 16]. For example, these networks not only compute AND operation
of two binary input, but they also infer that given true output, all input must
be true accordingly. The boolean reasoning systems tries to find a set of un-
known binary variables that satisfy a number of given Boolean formula. This is
a well-known satisfiability (SAT) problem [7] in computer science.

Many reasoning models adopt three-state logic to deal with unknown variables
[4,11,13,16]. The three states are commonly encoded as positive (true), negative
(false), and zero (unknown) activation of a single neuron. If we assign proper
excitatory and inhibitory connectivity between neurons, it is possible to infer
unknown values other neurons.

However, conventional recurrent neural networks are problematic in combin-
ing multiple boolean constraints into the unified system. The accumulation of
synaptic weights from different constraints might cause wrong inference or oscil-
lation of network. Therefore, most successful ANN-based inference models [11,16]
are implemented to support only limited type of boolean operations such as
AND, OR, and negation. And networks can not be fully parallelized due to
undesirable interferences.

In this paper, we propose a flexible Boolean reasoning network that can in-
clude any kind of boolean constraints without restriction. Our network is able
to handle four states(true, false, unknown, and contradiction) by dual represen-
tation of Boolean variables. The encoding of a boolean variable using a pair of
neurons is not a new idea [12,14,15]. However, to our best knowledge, this paper
presents the first boolean network model that can reason on all possible ways
using dual representation. Since the network has only excitatory synapses, it is
free from interference problem and oscillation.

The organization of paper is as follows. In Section 2, we explain our design of
dual representation of variables. The structure of network for general Boolean
constraints based on full extraction of prime implicants, or Blake Canonical
Form (BCF) [3] is explained in Section 3. In Section 4, we introduce a simplified
implementation of the network for symmetric Boolean constraints. We close our
paper in Section 5.

2 Dual Representation

Our network adopts dual representation, where a Boolean variable is encoded by
two neurons, each standing for ’true’ and ’false,’ respectively. A pair of neurons
represent four possible states. If one of two neurons is active, it means that the
variable is either true or false; If both of true and false neurons are active, it
means given conditionals are in contradicting situation that we cannot satisfy
the constraint; If both of the neurons are silent, it means not enough information
is given and we cannot draw a conclusion from it. The description of four possible
state representations are shown in Fig. 1.
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Fig. 1. Dual representation of a Boolean variable in four possible states

In [11] and [16], boolean reasoning is performed on the basis of delicately-
designed excitatory and inhibitory connections. When a neuron is involved in
multiple constraints, the interference between neural interactions might lead to
wrong conclusion. Dual representation has an important advantage over conven-
tional single-neuron representation in that matter; we do not need to inhibit any
neuron to inactivate. Instead, its counterpart is excited. Since our network has
excitatory connections only, it does not suffer from interference problem. Also,
it always converges fast without oscillation.

3 Reasoning Network for General Boolean Constraints

The neural connectivity is described as ’A conjunction of neurons → A neuron.’
For example, consider a function C = A AND B. Regardless of directions that
distinguish inputs from outputs, we can derive multi-directional inference rules
such as:

• If C = 1, A = 1 ( C → A )
• If A = 1 and B = 1, C = 1. ( AB → C ) · · ·

Our goal is to make inferences based on the set of variables that satisfies a
Boolean constraint

f(x1, x2, ..., xN ) = 0 (1)

and then to make inferences based on the true configuration information.
In the example, its Boolean constraint is re-formulated as

f(A,B,C) = (A AND B) XOR C = 0. (2)

Any kind of Boolean function can be transformed into Boolean constraint. We
can make a table of configuration of variables and the constraint formula f :

A B C f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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The optimal structure of the the network is derived from Blake’s canonical
expressions [2], that uses prime implicants to represent the Boolean formula f
in abstract form. An implicant of a Boolean formula f is a product term Pi such
that Pi ≤ f . A prime implicant of f is an implicant that cannot be included by a
more general implicant. In (2), term ĀBC is an implicant of f(A,B,C) but not
a prime implicant since it is covered by another implicant ĀC. Blake’s canonical
form (BCF), or complete sum of f is the sum of all prime implicants Fi in f .

BCF (f) =
∑

i

Fi = 0 (3)

Variable configuration set that satisfies f can be simply solved by checking
BCF. If Boolean variables in the given conditions satisfy the Boolean formula
f = 0, then Fi = 0 for all i. We can connect activation synapes to a varible xi

from other variables by
Fi/xi → x̄i, (4)

where Fi/xi is a quotient of Fi with respect to xi. (For example, ĀB/B = Ā. )
An example of the whole reasoning network for AND operation is shown in Fig.
2.

Fig. 2. Structure of network connection of AND operation

The product of boolean variables (x1, x2, . . . , xN ) is implemented by a single
perceptron

h = ϕ

(
N∑

i=1

wixi − θ

)
(5)

with uniform pre-synaptic weight wi = 1 for all i, threshold θ = N , and the
activation function

ϕ(α) =

{
1 if α ≥ 0

0 otherwise.
(6)
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For Boolean equations with four variables or less, we can easily find prime
implicants using Karnaugh-Map [5]. Extraction of prime implicants in general
cases has been extensively studied for digital circuit optimization after the foun-
dational work of Quinn and McCluskey [9]. However, it is known that the time
complexity of full search for arbitrary boolean function is exponential with re-
spect to the number of input variable [17]. And the number of prime implicants
for a boolean function with N inputs is upper-bounded by O(2N ) [10].

4 Optimized Reasoning Network for Symmetric Boolean
Function

Symmetric Boolean function is a boolean function f(x1, x2, . . . , xN ) that satisfies

f(x1, x2, . . . , xN ) = f (π(x1, x2, . . . , xN )) (7)

for an arbitrary permutation π.
Symmetric boolean functions are expressed as functions in terms of total sum

of input variables:

f(x1, x2, . . . , xN ) = g

(
∑

i

xi

)
. (8)

Note that
∑

i xi is the arithmetic sum (not Boolean sum) in this equation. And
g is an arbitrary function.

By using summation of the variables as the unit to check truth table for a
function, the time complexity of network design is reduced to polynomial order.
We construct and search truth table of summation of variables, not value of
variables themselves.

For example, take example of OR operation with three input y1 =
OR(x1, x2, x3). The truth table based on the summation of variables can be
constructed as shown below.

∑
i xi

∑
i yi 0 1

0 T F
1 F T
2 F T
3 F T

We can reformulate the original symmetric Boolean function in terms of al-
ternative type of prime implicants (a ≤ ∑i xi ≤ b) · (c ≤∑i yi ≤ d), which we
call “inequality prime implicants.”

According to the truth table, f(x1, x2, x3, y1) = g (
∑

i xi,
∑

i yi) = (0 ≤∑
i xi ≤ 0) · (1 ≤∑i yi ≤ 1) + (1 ≤∑i xi ≤ 3) · (0 ≤∑i yi ≤ 0) = 0.
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Like (4), we can search for the connection between variables. Generalized rules
is defined as follows:

If (a ≤∑i xi ≤ b) · (c ≤∑i yi ≤ d) is given,

(
∑

i yi ≥ c)·
(
∑

i yi ≤ d)·
(
∑

j �=i xj ≥ a− 1)·
(
∑

j �=i x̄j ≥ N − b)

⎫
⎪⎪⎬

⎪⎪⎭
→ x̄i

(
∑

i yi ≥ c)·
(
∑

i yi ≤ d)·
(
∑

j �=i xj ≥ a)·
(
∑

j �=i x̄j ≥ N − b− 1)

⎫
⎪⎪⎬

⎪⎪⎭
→ xi

(
∑

i xi ≥ a)·
(
∑

i xi ≤ b)·
(
∑

j �=i yj ≥ c− 1)·
(
∑

j �=i ȳj ≥ N − d)

⎫
⎪⎪⎬

⎪⎪⎭
→ ȳi

(
∑

i xi ≥ a)·
(
∑

i xi ≤ b)·
(
∑

j �=i yj ≥ c)·
(
∑

j �=i ȳj ≥ N − d− 1)

⎫
⎪⎪⎬

⎪⎪⎭
→ yi. (9)

Inequality terms and their products in (9) are implemented in the same way
as in (5). The number of inequality prime implicants for N -input symmetric
Boolean functions is upper-bounded by O(N). Compared to the previous model
in section 3, the computational cost is significantly reduced.

5 Concluding Remarks

Weproposed a flexible neural network that successfully handles Boolean constraint
problems in multi-directions. Dual representation enables simple implementation
of delicate reasoning rules. We described the learning process of the network using
conventional Blake’s reasoning algorithm. We also proposed an alternative type
of prime implicant for abstract representation of symmetric Boolean constraints,
which significantly reduced computational cost. Since the network use only excita-
tory synaptic connections, we guarantee stability of the process even for complex
functions consisting of heavy constraints. We expect that our proposed network
to be applied to solve complex and multi-directional Boolean constraint problems
free of computational burden in more flexible manner.
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