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Preface

This volume is part of the three-volume proceedings of the 20th International
Conference on Neural Information Processing (ICONIP 2013), which was held in
Daegu, Korea, during November 3–7, 2013. ICONIP is the annual conference of
the Asia Pacific Neural Network Assembly (APNNA). This series of conferences
has been held annually since ICONIP 1994 in Seoul and has become one of the
premier international conferences in the areas of neural networks.

Over the past few decades, the neural information processing community has
witnessed tremendous efforts and developments from all aspects of neural infor-
mation processing research. These include theoretical foundations, architectures
and network organizations, modeling and simulation, empirical study, as well
as a wide range of applications across different domains. Recent developments
in science and technology, including neuroscience, computer science, cognitive
science, nano-technologies, and engineering design, among others, have provided
significant new understandings and technological solutions to move neural in-
formation processing research toward the development of complex, large-scale,
and networked brain-like intelligent systems. This long-term goal can only be
achieved with continuous efforts from the community to seriously investigate
different issues of the neural information processing and related fields. To this
end, ICONIP 2013 provided a powerful platform for the community to share their
latest research results, to discuss critical future research directions, to stimulate
innovative research ideas, as well as to facilitate multidisciplinary collaborations
worldwide.

ICONIP 2013 received tremendous submissions authored by scholars coming
from 30 countries and regions across six continents. Based on a rigorous peer
review process, where each submission was evaluated by at least two qualified
reviewers, about 270 high-quality papers were selected for publication in the
prestigious series of Lecture Notes in Computer Science. These papers cover all
major topics of theoretical research, empirical study, and applications of neural
information processing research.

In addition to the contributed papers, the ICONIP 2013 technical program
included a keynote speech by Shun-Ichi Amari (RIKEN Brain Science Institute,
Japan), 5 plenary speeches by Yoshua Bengio (University of Montreal, Canada),
Kunihiko Fukushima (Fuzzy Logic Systems Institute, Fukuoka, Japan), Soo-
Young Lee (Brain Science Research Center, KAIST, Korea), Naftali Tishby (The
Hebrew University, Jerusalem, Israel) and Zongben Xu (Xi’an Jiatong University,
China). This conference also featured invited presentations, regular sessions with
oral and poster presentations, and special sessions and tutorials on topics of
current interest.

Our conference would not have been successful without the generous patron-
age of our sponsors. We are most grateful to our sponsors Korean Brain Research
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Institute, Qualcomm Korea. We would also like to express our sincere thanks to
the International Neural Network Society, European Neural Network Society,
Japanese Neural Network Society, Brain Engineering Society of Korea, and The
Korean Society for Cognitive Science for technical sponsorship.

We would also like to sincerely thank honorary chair Shun-ichi Amari, Soo-
Young Lee, the members of the Advisory Committee, the APNNA Governing
Board and past presidents for their guidance, the organizing chair Hyeyoung
Park, the members of the Organizing Committee, special sessions chairs, Pub-
lication Committee and publicity chairs, for all their great efforts and time in
organizing such an event. We would also like to take this opportunity to express
our deepest gratitude to the members of the Program Committee and all review-
ers for their professional review of the papers. Their expertise guaranteed the
high quality of the technical program of the ICONIP 2013!

Furthermore, we would also like to thank Springer for publishing the pro-
ceedings in the prestigious series of Lecture Notes in Computer Science. We
would, moreover, like to express our heartfelt appreciation to the keynote, ple-
nary, panel, and invited speakers for their vision and discussions on the latest.

Finally, we would like to thank all the speakers, authors, and participants for
their great contribution and support that made ICONIP 2013 a huge success.

This work was supported by the National Research Foundation of Korea
Grant funded by the Korean Government.

November 2013 Minho Lee
Akira Hirose

Rhee Man Kil
Zeng-Guang Hou
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Andrew P. Papliński and William M. Mount

Keyword Extraction from Dialogue Sentences Using Semantic and
Topical Relatedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Yunseok Noh, Jeong-Woo Son, and Seong-Bae Park

Exogenous and Endogenous Based Spatial Attention Analysis for
Human Implicit Intention Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Young-Min Jang, Rammohan Mallipeddi, and Minho Lee

Electroencephalogram Dynamics during Social Communication among
Multiple Persons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Naoyuki Sato, Taiki Sato, Takeya Okazaki, and Mitsuru Takami

Amygdala Activation Is Associated with Sense of Presence During
Viewing 3D-surround Cinematography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Akitoshi Ogawa, Cecile Bordier, and Emiliano Macaluso

Correlated Inhibitory Firing and Spike-timing-dependent Plasticity . . . . . 161
Ichiro Sakurai, Shigeru Kubota, and Michio Niwano

Spectral Power Estimation for Unevenly Spaced Motor Imagery Data . . . 168
Junhua Li, Zbigniew Struzik, Liqing Zhang, and Andrzej Cichocki

Fuzzy Logic-Based Automatic Alertness State Classification Using
Multi-channel EEG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Ahmed Al-Ani, Mostefa Mesbah, Bram Van Dun, and Harvey Dillon

Neuronal Mechanism of Speech Hearing: An fMRI Study . . . . . . . . . . . . . . 184
Hojung Kang and Jong-Hwan Lee

Neuronal Synfire Chain via Moment Neuronal Network Approach . . . . . . 191
Xiangnan He, Wenlian Lu, and Jianfeng Feng



Table of Contents – Part I XIII

Biomarker Development on Alcohol Addiction Using EEG . . . . . . . . . . . . . 199
Pham Lam Vuong, Likun Xia, Aamir Saeed Malik, and
Rusdi Bin Abd Rashid

Constructing Brain Connectivity Graph by Modified Sparse
Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Jing Ren and Haixian Wang

Computational Intelligence Methods Based Design of Closed-Loop
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Juri Belikov, Eduard Petlenkov, Kristina Vassiljeva, and Sven Nõmm
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Investigation of the Predictability of Steel Manufacturer Stock Price
Movements Using Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . . . . . 673

Pascal Khoury and Denise Gorse

SVM Analysis of Haemophilia A by Using Protein Structure . . . . . . . . . . . 681
Kenji Aoki, Kunihito Yamamori, Makoto Sakamoto, and
Hiroshi Furutani

An Innovative Fingerprint Feature Representation Method to Facilitate
Authentication Using Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Mark Abernethy and Shri M. Rai

Application of the Dynamic Binary Neural Network to Switching
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Yuta Nakayama, Ryota Kouzuki, and Toshimichi Saito

Stock Price Prediction Based on a Network with Gaussian Kernel
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Dong Kyu Kim and Rhee Man Kil

Enhanced GPU Accelerated K-Means Algorithm for Gene Clustering
Based on a Merging Thread Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Yau-King Lam, Peter W.M. Tsang, and Chi-Sing Leung

Multimodal Feature Learning for Gait Biometric Based Human Identity
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Emdad Hossain and Girija Chetty

Embedded System for Human Augmented Cognition Based on Face
Selective Attention Using Eye Gaze Tracking . . . . . . . . . . . . . . . . . . . . . . . . 729

Bumhwi Kim, Rammohan Mallipeddi, and Minho Lee

Feature Selection for Stock Market Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 737
Yuqinq He, Kamaladdin Fataliyev, and Lipo Wang

Hierarchical Classification of Vehicle Images Using NN with Conditional
Adaptive Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
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Holistic Processing Is Not Always a Property of Right 
Hemisphere Processing- Evidence from Computational 

Modeling of Face Recognition 

Bruno Galmar and Janet Hui-wen Hsiao 

Department of Psychology, University of Hong Kong 
Pokfulam Road, Hong Kong SAR 
{brunogal,jhsiao}@hku.hk 

Abstract. The hemispheric asymmetry literature traditionally posits that holistic 
processing (HP) is a property of right hemisphere (RH) processing. Neverthe-
less, a counterexample was recently found: for Chinese character recognition 
expertise, studies showed reduced HP (as measured in the composite task)  
and increased RH lateralization, revealing that these two effects may be sepa-
rate processes. With a computational model of face recognition, in which we 
implement a theory of hemispheric asymmetry in perception that posits a low 
spatial frequency bias in the RH and a high spatial frequency bias in the left 
hemisphere (i.e., the Double Filtering by Frequency Theory of Ivry and Robert-
son), here we show that when the face recognition task relies purely on featural 
information, there is a negative correlation between HP and RH lateralization: 
HP increases whereas RH lateralization decreases with increasing stimulus dis-
similarity. In contrast, when the face recognition task relies purely on configural 
information, there is a strong positive correlation between HP and RH laterali-
zation: both HP and RH lateralization increase with increasing stimulus dissimi-
larity. These results suggest that HP and RH lateralization are separate 
processes that can be influenced differentially by task requirements. 

Keywords: Holistic processing, hemispheric lateralization, face processing, 
connectionist modeling. 

1 Introduction 

Holistic processing (HP) of faces refers to the phenomenon of viewing faces as a 
whole instead of a set of parts. This HP effect is thought be a marker of human exper-
tise in face processing [1]. In addition to the HP effect, face processing has been 
shown to involve right hemisphere (RH) lateralization, as indicated by the left side 
bias (LSB) effect: a chimeric face made from two left half faces from the viewer's 
perspective is usually judged more similar to the original face than one made from 
two right half faces [2,3]. In addition, fMRI studies show that an area inside the fusi-
form gyrus (fusiform face area) responds selectively to faces with larger activation in 
the RH than the left hemisphere (LH) [4]; ERP data also show that faces elicit larger 
N170 than other types of objects, especially in the RH [5].  
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The HP effect has been shown to be linked to brain activation in face selective areas 
especially in the RH [6,7]. It has also been shown that the increase in HP after artificial 
object recognition training is correlated with right fusiform area activity [8]. These 
results are consistent with the hemispheric asymmetry literature that posits a holis-
tic/analytic dichotomy between RH and LH processing [9], and suggest that HP and 
RH lateralization would go together. Nevertheless, a counterexample was recently 
found: Chinese character recognition experts have reduced HP and increased RH late-
ralization in processing Chinese characters compared with novices [10]. This effect 
suggests that holistic processing and RH lateralization may be separate processes that 
do not always go together. 

Faces and Chinese characters differ in both featural and configural dimensions. In 
the featural dimension, faces consist of common features (i.e., the eyes, nose, and 
mouth) and the features of different faces usually look similar to each other; in con-
trast, Chinese character recognition involves discriminating different combinations of 
more than two hundred basic stroke patterns [11], which usually look dissimilar to 
each other. In the configural dimension, second-order spatial relations (i.e., distances) 
between face components have been shown to be more important in face recognition 
than in the recognition of other visual object classes [12], whereas this configural 
information is not important in Chinese character recognition, since changes in dis-
tance among character components do not change the character identity [13]. The 
difference between face and Chinese character recognition in their reliance on confi-
gural and featural information may explain the different relationships between HP and 
RH lateralization that were found between them. We hypothesize that HP and RH 
lateralization do not always go together, and it depends on the task requirements in 
either the featural or the configural dimension. We test this hypothesis by using faces 
that differ purely in configuration or purely in features in a face recognition task. We 
adopt a computational modeling approach. We introduce our model below. 

2 Modeling 

2.1 Hemispheric Processing Model 

The model (Figure 1) is an instance of the intermediate convergence model of face 
recognition [14]. This model uses Gabor responses over the input images to simulate 
neural responses of cells in the early visual area, and Principal Component Analysis 
(PCA) to simulate possible information extraction processes beyond the early visual 
area. This PCA representation is then fed as the input to a two-layer feed-forward 
neural network. In addition, the model implements a theory of hemispheric asymme-
try in perception, Double Filtering by Frequency theory (DFF) [15]. The theory posits 
that visual information coming into the brain goes through two frequency-filtering 
stages. The first stage involves attentional selection of a task-relevant frequency 
range. At the second stage, the LH amplifies high spatial frequency (HSF) informa-
tion, while the RH amplifies low spatial frequency (LSF) information. For the second 
stage, we implemented two conditions. In the DFF condition (see Fig.1), the differen-
tial frequency bias in the two hemispheres is implemented by using two sigmoid func-
tions assigning different weights to the Gabor responses in the two hemispheres. In 
the baseline condition, we set all weights to the Gabor responses to 1 so that there is 
no differential frequency bias between the two hemispheres.  
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Fig. 1. Model of face recognition implementing a theory of hemispheric asymmetry in percep-
tion, the Double Filtering by Frequency (DFF) theory 

 

Fig. 2. Configural datasets. (a) baseline spacing of facial features, (b) increased spacing of 
facial features. 

 

Fig. 3. Featural datasets. (a) baseline aspect of features, (b) aspect of features with increased 
magnitudes of changes compared to the baseline. 

2.2 Configural vs. Featural Recognition Tasks  

In a configural recognition task, all faces have the same eyes, nose, and mouth, but 
their configurations differ. In contrast, in a featural recognition task, all faces have the 
same configuration but the features differ in their aspects.  
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In order to investigate the relationship between HP and RH lateralization when the 
recognition tasks depend on either configural or featural information, we created both 
configural and featural face datasets in a controlled manner comparably to [16]. Face 
images of photorealistic human characters were created with the MakeHuman soft-
ware [17]. We customized a default Asian face model to produce all the faces. While 
keeping all facial features (i.e., eyes, nose, and mouth) identical, we changed the size 
of the spacing between eyes and moved up or down eyes and mouth to create the 27 
faces of the two configural sets (Figure 2). Figure 2a and 2b respectively shows the 
baseline configural set and the increased spacing (IS) dataset. Namely, faces in Figure 
2b were made of bigger spacing between features than the faces in Figure 2a. Hence, 
faces in the IS dataset are more dissimilar to one another than faces in the baseline set. 
Having two datasets allowed us to examine the effect of stimulus similarity on HP 
and RH lateralization. In contrast, by changing the aspects of the mouth, the nose, and 
the eyes but without changing the locations of these features, we created the 27 faces 
of the featural sets (Figure 3). Figure 3a shows the baseline featural set. Faces in Fig-
ure 3b were obtained through bigger magnitudes in the changes of the aspects of the 
features. Consequently, faces in Figure 3b dataset are more dissimilar to one another 
than faces in the baseline set. 

For each dataset in Figures 2 and 3, we created 10 new training datasets by ran-
domly sampling without replacement 20 faces out of the total of 27 faces. The 10 
corresponding testing datasets were derived by rendering each image slightly darker 
by multiplication by a scaling factor of 0.9. We used these datasets to examine how 
different recognition task requirements (configural vs. featural) modulate the relation-
ship between the HP and RH lateralization effects. In both tasks, the model in Figure 
1 was trained to recognize the stimuli in the corresponding dataset. 

2.3 Modeling of the Composite Task and Measure of Holistic Processing 

In human studies, HP is usually assessed through the composite paradigm [18]. We 
implemented the complete variant of the composite paradigm because of its robust-
ness [18]. In this paradigm, two stimuli are presented briefly for example simulta-
neously. Participants attend to either the top or bottom halves of the stimuli and judge 
whether they are the same or different (see Figure 4). In congruent trials, the attended 
and irrelevant halves lead to the same response, whereas in incongruent trials, they 
lead to different responses. HP is indicated by interference from the irrelevant halves 
in matching the attended halves; it can be assessed by the performance difference 
between the congruent and the incongruent trials. 

In face processing, the HP has been accounted for by computational models 
[19,20]. To assess HP in our model, we applied the method used by [21] which was 
inspired by [20]. Namely, after training we attenuated the Gabor responses of either 
the top or bottom half of the images in the test set by multiplying a factor of 0.125 to 
simulate directing the models' attention to the bottom or top half of the images respec-
tively. We created 4 types of stimulus pairs corresponding to the 4 conditions in Fig-
ure 4 (see an example in Figure 5a). For each simulation, a different set of twenty 
pairs of images in each condition was randomly drawn to form the materials (80 pairs 



 Holistic Processing Is Not Always a Property of Right Hemisphere Processing 5 

 

in total). We calculated the correlation of the hidden layer representations in each pair 
as the similarity measure between them. A threshold was set to be the midpoint be-
tween the mean correlation of the “same” stimulus pairs and that of the “different” 
stimulus pairs. We assumed that the model responded “same” when the correlation of 
a pair was higher than the threshold, and responded “different” when the correlation 
was lower than the threshold. The HP effect was indicated by the discrimination per-
formance difference between the congruent and incongruent trials measured by d'. 

 

Fig. 4. Design of the composite task, with top halves attended 

 

Fig. 5. (a) Illustrative example of a Congruent Same pair for the composite task where bottom 
half is attenuated. (b) Example of a left-lateralized stimulus for measuring lateralization effects. 

2.4 Measuring Hemispheric Lateralization Effect 

The left side (RH) bias was assessed by the accuracy difference between recognizing 
a left-lateralized stimulus (carrying RH/LSF information; see Figure 5b) as the origi-
nal stimulus and recognizing a right-lateralized stimulus (carrying LH/HSF informa-
tion) as the original one. We defined RH lateralization (RH/LSF preference, [14]) as 
the left side bias measured in the biased condition minus that measured in the baseline 
condition. 

2.5 Modeling Details 

In the present implementation, the face input (100 x 134 pixels) was first filtered with 
a grid (6 x 6) of overlapping 2D Gabor filters in quadrature pairs at five scales and 
eight orientations. The five scales corresponded to 2 to 32 cycles per face. The result-
ing Gabor vector representation of the face was split into left and right halves. The 
perceptual representation of each half was compressed into a 15-element representa-
tion using PCA. After PCA, each principal component was z-scored to equalize the 
contribution of each component in the model. The PCA representation was then fed to 
a feed-forward network with one hidden layer of 20 nodes. The number of nodes was 
determined empirically to allow efficient training of the network. The output layer of 
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the neural network had one output for each of the 20 faces of the testing set.  The 
neural network was trained with gradient descent with adaptive learning rate backpro-
pagation from the MATLAB® Neural Network Toolbox (Version 7.0.3). The network 
was trained for both 400 epochs and 150 epochs. 400 epochs was enough for all the 
models to reach almost perfect recognition rates on both training and testing sets (ac-
curacy ~ 99%). However, we found a strong ceiling effect for the configural task on 
the baseline datasets: recognition rates for both left-lateralized stimuli and right-
lateralized stimuli were very high (~ 98%) and so close that the size of RH lateraliza-
tion effect was on average less than 1%. Training with only 150 epochs put an end to 
the ceiling effects while maintaining high recognition rates (accuracy ~ 90% for both 
training and testing sets). We thereafter reported results for simulations with a training 
of 150 epochs.  

For each of the featural and configural task, we trained the model with the 20 dif-
ferent datasets. Hence, we collected for each task 20 data points of RH lateralization 
to plot against 20 data points of holistic Δd’ (Congruent d’ – Incongruent d’). We then 
tested for any correlation between RH lateralization and HP.   

3 Results 

 

Fig. 6. Holistic Δd’ plotted against RH lateralization for configural (a) and featural data (b) 

3.1 Configural Processing 

When the face recognition task relies purely on configural information, the main re-
sult is a strong and statistically significant positive correlation between HP and RH 
lateralization (r = 0.73, p < 0.001). In this case, HP and RH go together. HP and RH 
lateralization increase from baseline datasets to datasets with bigger spacing, i.e., with 
increasing stimulus dissimilarity (t(9) = 7.32 , p < 0.001 ; t(9) = 7.1 , p < 0.001). 
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3.2 Featural Processing 

When face recognition task relies purely on featural information, the main result is a 
statistically significant negative correlation between HP and RH lateralization (r = -
0.496, p < 0.05). In this case, HP and RH do not go together. HP increases whereas 
RH lateralization decreases from baseline datasets to datasets with bigger featural 
changes, i.e., with increasing stimulus dissimilarity (t(9) = 2.93 , p < 0.05 ; t(9) = -
4.04 , p < 0.05). 

4 Discussion and Conclusion 

Here we investigated the relationship between HP and RH lateralization in configural 
and featural face recognition tasks through computational modeling. Our model im-
plements a theory of hemispheric asymmetry in perception, the DFF theory, which 
posits a LSF bias in the RH and a HSF bias in the LH; this model and some variants 
have been shown to be able to account for both RH lateralization and HP in face rec-
ognition [14,19,20]. This study is the first computational work to show that for face 
stimuli, RH lateralization and holistic processing can be positively or negatively cor-
related depending upon the nature of the task: respectively configural or featural. A 
previous work [21] using letters arranged in a deformable triangular configuration as 
stimuli found also a negative correlation between HP and RH lateralization in a fea-
tural task and a weak positive correlation for a configural task.  

Our finding of a positive correlation between HP and RH lateralization for the con-
figural face recognition task is reminiscent of the fMRI findings [6,7] linking the HP 
effect to brain activation in face selective areas especially in the RH. Thus, our results 
suggest that face processing in real life may rely more on configural than featural 
information; this is consistent with the finding that configural/second-order spatial 
relation information is more important in face recognition than in the recognition of 
other visual object classes [12]. Besides, the finding of reduced HP and increased RH 
lateralization in expert Chinese character recognition [10] matches well with our find-
ing of a negative correlation between HP and RH lateralization when the recognition 
task relies mainly on featural information, since expert Chinese character processing 
essentially involves featural processing and is invariant to configural changes [10].  

To conclude, the present work using realistic face stimuli constituted new evidence 
to call in question the validity of the common assumption of holistic processing being 
a property of right hemisphere. Our results suggest that HP and RH lateralization are 
separate processes that can be influenced differentially by task requirements. 
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Abstract. The main objective of this study was to examine the changes in auto-
nomic nervous system (ANS) and scalp potential during intelligence test (IQ). 
Electroencephalogram (EEG) and Electrocardiogram (ECG) signals were rec-
orded simultaneously from eight healthy participants during IQ and resting 
states (eyes–closed and eyes-open). Heart rate (HR) and heart rate variability 
(HRV) were derived from ECG signal. EEG mean power was computed for five 
frequency bands (delta, theta, alpha, beta, and gamma) and analyzed in 12 re-
gions across the scalp. The EEG frequency bands showed significant (p<0.025) 
changes between IQ test and rest states. Delta and theta at frontal (PF, AF, F) 
and temporal regions (FT, T, TP) and alpha activity at parietal (P), parieto-
occipital (PO) and occipital (O) regions were significant. In beta and gamma 
bands, highly reduced mean power was found at P, PO, and O regions as com-
pared to PF, AF, and F regions in IQ test. HR and low frequency in normalized 
unit (LFnu) were increased significantly (p<0.05 and p<0.025, respectively) in 
IQ test. Further, high frequency in normalized unit (HFnu) was decreased 
(p<0.11). Results showed parallel changes in scalp potential and automatic 
nervous activity during IQ test compared to rest conditions.     

Keywords: EEG frequency bands, asymmetry, intelligence test, autonomic 
nervous system.  

1 Introduction 

In neurophysiological research, brain imaging techniques such as magnetic resonance 
imaging (MRI) [1] and electroencephalography (EEG) [2] allow researchers to view 
human brain activities non-invasively. EEG power analysis in different frequency 
bands indicates the number of neurons that activate or de-activate simultaneously 
during certain mental states [3]. EEG power is a measure that reflects the cortical 
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activity or cortical information processing. EEG power was positively correlated with 
performance in intelligence test [4]. Mostly, alpha and theta activities were associated 
with intelligence related tasks in previous studies. Positive connection was reported 
between intelligence and alpha power [5]. Alpha activity desynchronization and theta 
activity synchronization were explored in intelligence and complex cognitive tasks 
[6]. Increased sample entropy value was reported in intelligence test as compared to 
eye-closed condition [7].  

Brain cortical activity is inversely related to alpha power, i.e., higher alpha power 
represents lower cortical activity and vice versa [8]. Inter-hemispheric EEG cortical 
activities during different mental and stress environment are investigated using alpha 
asymmetry index [4]. It is stable and widely accepted measure which inversely asso-
ciates cortical hemispheric activity, i.e., positive alpha asymmetry value reflects 
greater relative left than right activity, and negative alpha asymmetry value indicates 
greater relative right than left activity [8].  

Autonomic nervous system (ANS) consists of sympathetic nervous system (SNS) 
and parasympathetic nervous system (PSNS). These are responsible for heart-brain 
relationship [9, 10]. Heart behaves excitation and inhibition under SNS and PSNS 
influence, respectively. Heart rate variability (HRV) is a measure of heart SNS/PSNS 
innervation. The associated components of HRV power spectrum includes very low 
frequency (VLF: 0.04Hz), low frequency (LF: 0.04 to 0.15Hz), and high frequency 
(HF: 0.15 to 0.4Hz) [10]. HF component is influenced by parasympathetic activity, 
while LF follows both sympathetic and parasympathetic involvements. Further, the 
LF and HF can be expressed in normalized unit (nu), where nu is equal to LF or HF 
divided by total power minus VLF value. LF in normalized unit (LFnu) is attributed 
to sympathetic and the ratio of LF and HF is representation of sympathetic to para-
sympathetic distribution [9]. Recent ECG and EEG studies reported changes in ANS 
activity with mental arithmetic task [11].           

Individuals who are strong in analytical and cognitive abilities are conventionally 
viewed as smart and intelligent [12]. Raven’s Advance Progressive Matrices (APM) 
test is a psychological standardized cognitive ability test, which is used to measure an 
individual’s higher order mental reasoning ability, logical thinking, and general intel-
ligence. It is designed to discriminate among individuals of “superior intellectual 
ability”. It is routinely used as a selection methodology for high stakes situations such 
as defense training, research, and medical education [13].  

The purpose of this work is to study the behavior of EEG and ECG signal simulta-
neously in university students while performing intelligence test (IQ). Two research 
questions were investigated: 1) are there any changes in ANS during complex mental 
reasoning process? 2) Which brain regions show discrimination in EEG frequency 
bands between IQ test and rest states?  

The paper is organized as follows: the material and method is described in  
section 2. Section 3 presents the EEG and ECG results and discussion, while conclu-
sion and future work is given in Section 4.  
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2 Material and Method 

2.1 Participants 

This study was approved by the Research Committee of Universiti Teknologi 
PETRONAS (UTP) and Human Research Ethics Committee of Universiti Sains  
Malaysia (USM). Eight healthy university students participated in the experiment. All 
participants had normal/corrected to normal vision and were free from any hearing 
impairments. They were right handed males between the age of 24 to 32 years 
(mean=28.6 ±4.20). They signed an informed consent document prior to the start of 
experiment. Participants were free from any medication, neurological disorder, or 
other head injury that may affect the experiment results. They did not experience 
Raven’s Advance Progressive Matric (Raven’s APM) test before.  

2.2 Intelligence Test (IQ)  

For this study, Raven’s APM test was used to measure IQ. The detail procedure of 
Raven’s APM test was adopted from [7] with 46 minutes (10 minutes for set-I and 36 
minutes for set-II) administration time to complete it. 

2.3 Procedure 

Participants were seated in a partially sound-attenuated EEG experiment room and 
were briefed about the test. EEG and ECG data were collected simultaneously using 
128-channel HydroCel Geodesic Net (see Fig. 2) and Polygraph Input Box (PIB). The 
impedance of all EEG electrodes was below 50 kΩ. The EEG recordings were record-
ed at 250 samples per seconds with reference to Cz. Data conditions were: (a)  
baseline rest states of eye-closed (EC) and eye open (EO) for 5 minutes each, (b) 
performing intelligence test “Raven’s APM”.  
 

 

Fig. 1. Raven’s Advance Progressive Matric Fig. 2. Hydro Cel Geodesic 128-channel Net 
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2.4 Data Analysis 

The EEG at each electrode site i was recorded as a time series  per trial k. Thus, 
the whole data can be denoted as, , , … ,      ∈      (1) 

Where, Ne=128 is the number of electrode sites, and Ns=250 represents sampling 
frequency.  

Preprocessing. Raw EEG data were filtered by 1-48Hz band pass filter and artifacts 
were detected using waveform tools in net station software (EGI Inc.). Regression 
based model [14] was applied to remove the detected artifacts using EOG channels 
(EOG channel more than 140μV).  

Mean Power. The time series data was transformed using Fast Fourier Transform 
(FFT) and spectral power density was computed using Welch method and Hanning 
window with NFFT=1024, 50% overlapping, and 2 seconds window segment (500 
samples). Power was computed for each electrode of all the subjects and separated 
into frequency bands. The computed Power was averaged over regions for each sub-
ject and then grand mean was taken to find out frequency bands mean power over 
regions of all subjects. 

The scalp regions were defined as: Prefrontal (PF): (9, 22, 5), Anterior Frontal 
(AF): (23, 3, 12, 26, 2 and 16), Frontal (F): (19, 4, 24, 124, 27, 123, 33, 122, and 11), 
Central (C): (30, 105, 36, 104, 41, 103), Parietal (P): (60, 85, 52, 92, 51, 97, 64, and 
95), Temporal (T): (45, 108, 44, 114, 45, 108, 34, 116, 38, 121), Occipital (O): (70, 
83, and 75), Fronto-Central (FC): (13, 112, 29, 111, 28, 117, 6), Centro-Parietal (CP): 
(37, 87, 42, 93, 47, 98, 55), Tempo-Parietal (TP): (58, 96, 46, 102), Fronto-Temporal 
(FT): (34, 116, 38, 121), and Parieto-Occipital (PO): (67, 77, 65, 90).  

Alpha Asymmetry. Asymmetry indices were calculated for the eight pairs of elec-
trodes by subtracting the natural logarithm of right site from the natural logarithm of 
left corresponding site [6]. A mean asymmetry index was calculated by averaging the 
corresponding pair of electrodes across subjects. EEG alpha asymmetry was com-
puted for IQ data at prefrontal (FP1, FP2), mid-frontal (F3, F4), lateral frontal (F7, 
F8), central (C3, C4), anterior-temporal (T3, T4), posterior temporal (T5, T6), mid-
Parietal (P3, P4) and occipital (O1, O2) pairs of electrodes. Where FP1=22, FP2=9, 
F3=24, F4=124, F7=33, F8=122, C3=36, C4=104, T3=45, T4=108, T5=58, T6=96, 
P3=52, P4=92, O1=70, O2=83. 

ECG Analysis. For ECG measurements, EC, EO and IQ test data were analyzed for 
HR and HRV, low frequency in normalized unit (LFnu), high frequency in norma-
lized unit (HFnu), and low and high frequency ratio (LF/HF) using bio-signal free 
matlab toolbox [15]. 
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Statistical Analysis. Freidman non-parametric test was applied to determine the sig-
nificant difference among the three conditions (Eyes closed, Eyes open, and IQ test). 
Further, most significant condition was determined by using Wilcoxon signed ranked 
test as post-hoc analysis.  

3 Results and Discussion 

3.1 HR and HRV 

The HR and HRV were compared between rest states (EC, EO) and Intelligence test 
(IQ). There were statistically significant differences in HR (χ2 (2) = 6.33, and p=0.04) 
and LFnu (χ2 (2) = 9.0, and p=0.01) between rest condition and IQ test. Friedman test 
and post-hoc analysis has shown that in both HR and Lfnu, the IQ test has statistically 
significant difference from condition EC. 

From Table 1, the HR (82.66 ± 13.45 beats per min) was significantly increased in 
IQ test compared with rest condition EC (74.97 ± 8.30 beats per min). LF/HF ratio 
was increased (χ2 (2) = 5.33 and p=0.06) and Hfnu was decreased (χ2 (2) = 4.33 and 
p=0.10). This result is consistent with the finding of [9] in mental arithmetic task and 
with [7] in playing video game.  

The results showed that IQ test increased SNS and decreased PSNS activities, as 
reflected by significant rise in HR, LFnu and LF/HF and lower HFnu in IQ test as 
compared to rest conditions (see Table 1).  Previously, LFnu, HFnu have been re-
ported to relate with sympathetic and parasympathetic activities and LF/HF had been 
suggested as an index of sympathovagal balance [7, 9].  

Table 1. HR and HRV in Rest states vs. Intelligence test (IQ) 

Tasks  HR (beats/min) HFnu LFnu LF/HF 

EC 74.97 (08.30) 0.42 (0.07) 0.31 (0.06) 0.75 (0.23) 

EO 78.79 (11.44) 0.35 (0.03) 0.35 (0.10) 1.07 (0.35) 

IQ 82.66 (13.45) 0.34 (0.01) 0.38 (0.09) 1.15 (0.30) 

Data arranged as: mean (standard deviation). EC (Eye Close), EO (Eye Open), IQ (Intelligent Quotient), 
HRV (heart rate variability), HR (heart rate), LF (low frequency), HF (High frequency), HFnu (high 
frequency in normalized unit), LFnu (low frequency in normalized unit).  

3.2 EEG Dynamics 

The values of region wise EEG mean power in delta, theta, alpha, beta, and gamma 
frequencies for three conditions (IQ, EC, and EO) are presented in Fig. 3 to Fig. 7. 
The results presented significant (p<0.025) positive mean difference in values of delta 
and theta at frontal and temporal regions (PF, AF, F; and FT, T, TP) and significant 
(p<0.025) negative mean power difference in values of alpha at parietal, parieto-
occipital, and occipital regions between IQ and rest conditions. In beta and gamma, 
the mean power values reduced at PO and O regions in IQ test, while in rest condi-
tions the values were slightly increased at the same regions. 
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and FT), but reduced at (CP, P, and PO). In alpha (8-13Hz) the EEG mean power was 
reduced (see Fig. 5) at P, PO, and O regions in IQ test as compared to rest conditions. 
Further, in beta (14-30Hz), high EEG mean power was found at (FT, FC, T, C, and 
TP) regions in IQ, but reduced mean power value was observed at regions P, PO and 
O than rest conditions (see Fig. 6). In gamma (31-48Hz), mean power was high in all 
regions in IQ test as compared to rest conditions.     

Overall, we found increase in mean power of delta, theta, beta and gamma in IQ 
test than rest states in frontal and temporal regions except P, PO and O where it de-
creased or similar to rest conditions.  

The alpha asymmetry values (Fig. 8) presented high alpha activity at frontal and 
central regions and reduced alpha activity at temporal, parietal and occipital regions. 
These changes reflected high involvement of left hemispheric prefrontal, mid-frontal, 
lateral-frontal, and central regions while solving the problem in IQ test. Further, right 
anterior temporal (T3/T4), and all right posterior (C3/C4, P3/P4, and O1/O2) regions 
were found active in IQ test. 

4 Conclusion 

High delta and theta activity at frontal regions and reduced alpha and beta activity at 
parietal, parieto-occipital and occipital regions distinguished the IQ test from rest 
conditions. Simultaneously, increase in HR, LFnu, and LF/HF and decrease in HFnu 
values indicated sympathetic activation during IQ test. From asymmetry results, it can 
be concluded that during the IQ test the left frontal regions were active due to logical 
thinking and mental reasoning. In addition, the right temporal and parietal regions 
were active due to involvement of perception and working memory in the IQ test. 
Future work can be implemented with large number of subjects using other standard 
intelligence assessment test.    
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Abstract. In the predictive brain hypotheses, the functional mechanism of the 
brain is suggested to infer the cause of current states within the predictions by 
brains. Recently, there have been several approaches to explain the action gen-
eration within the predictive brain hypotheses: the brain predicts the animal’s 
own action, which the animal realizes to fulfill the prediction. In this study,  
we suggest a predictive brain models to produce the goal directed behaviors. 
We introduced the Planning as Inference (PAI) framework to a hierarchical 
predictive memory model. PAI is a computational framework for goal-directed 
behavior generation. PAI explains the decision of an action for a state in the 
probabilistic distribution. The distribution is inferred from the evidences of  
current state and the perspective evidence of goal achievement. We used a hie-
rarchical predictive memory system to predict the agent’s self-action states.  
Following to the PAI, the predictions were inferred from the evidence of the 
ongoing state and the evidence from assumption of the goal achievement. The 
agents realizes the predicted actions to minimize prediction errors. We imple-
mented our method in embodied robotics system and our model could generate 
structured spontaneous behavior and goal directed behaviors. Our result opens 
understanding for the goal-directed behavior in predictive brain hypotheses.  

Keywords: Planning as Inference, Hierarchical Predictive Memory, Hierar-
chical Temporal Memory, Predictive Coding. 

1 Introduction  

Brains are suggested to be probabilistic inference machines[1–3]. In the Bayesian 
brain hypotheses, the brain has a probabilistic model of the world which is optimized 
by the experiences. Brain generates predictions, against which the sensory inputs are 
tested to update the beliefs of the brains about their causes. Hierarchical predictive 
processing suggests the inference machinery in brains[4–7]. The system uses internal 
hierarchical generative models, which produces top-down prediction and the fed for-
ward input signal is captured within the prediction. The predictive processing is  
in hierarchical manner that, higher region internal state is for more abstract  
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spatio-temporal patterns in the signal and lower level for more abstract and concrete. 
The belief for causes of an ongoing state is inferred in different temporal and spatial 
abstraction level in the multiple levels in hierarchical predictive processing frame-
works.  

The predictive brain hypotheses were originally introduced in the sensory percep-
tion domain but which was expanded for the action generations. For example, active 
inference [8–10] explains action generation as producing the predicted behavior from 
current states to minimize the prediction error. We wanted to explain the generation 
of goal directed behavior in the hierarchical predictive brain models. We adapted 
planning as inference (PAI) framework to a predictive brain model. The planning as 
inference framework (PAI)[11, 12] explains goal directed behavior as an inference 
problem. In the PAI, the decisions of each states follows a probabilistic distribution. 
The probabilistic distribution is inferred the evidence of current state and perspective 
evidence of the achievement of a goal state.  

In this research, we demonstrated the generation of action sequences in an embo-
died system, using a hierarchical predictive memory within PAI framework. A hierar-
chical temporal memory (HTM)[13, 14] was used as a hierarchical memory model. 
The hierarchical memory system was trained to memorize the statistical structures of 
sensory-motor states from the primitive behavior of the robot system. The memory 
was used to generate the spontaneous behaviors by predict the probabilistic distribu-
tion of next behavior from current states. When perspective evidence of assuming the 
achievement of various goal states were given to the memory system, the robot could 
move its body to the goal state.  

2 General Materials and Method 

2.1 Robot and Training Task 

We used a robotic hand with three digits (Fig.1A; homemade, Dynamixel Rx-28 mo-
tors, by Robotis ltd, Seoul, Korea). The positional state of each digit was a real num-
ber between 0.0 (fully folded) and 1.0 (fully open). Each digit could be in one of three 
action conditions: fold, hold and open, which had real number state of 0.0, 0.5 and 1.0 
each. The state of the robot hand could be represented by a vector of six real values 
which is concatenation of the state of actions and positions. The robot action and posi-
tions were sampled every 0.2 second. The actions signal were delivered to robot con-
trol system in the middle of samplings. One state sample is action at the time and the 
position in the middle of the action step.  

Basic action sequences were generated to train a hierarchical memory system. The 
basic action sequence represent the inherited and physical action constraint for the 
developmental systems. The memory for basic action sequence will be used as a seed 
for further action development. Random actions were selected for each digits used for 
actions. Each action was continued for the next step in probability of 1/3. By this 
method, we could produce action sequence with only limited structures. 
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Fig. 1. A. The robot hand. Each color code represents one of three digits. B. The action and 
position states in the first 500 steps of training task. The state of each digits are shown. The 
bold line is action and the thin line is position. C. The structure of one region of hierarchical 
temporal memory. The spatial pooler (SP) detects spatial patterns and the temporal pooler (TP) 
detects temporal patterns of spatial patterns inside which, the spatial patterns have high tempor-
al coincidences. D. Bayesian inference of the belief of cause for current robot state by trained 
HTM system. The likelihood of temporal patterns (TP) are computed from the markovian tran-
sition from previous belief (MC), the evidence for spatial patterns (SP) from bottom-up input. 
The current belief is computed with evidence from higher region.  E. Overall architecture of 
our memory system used.  

2.2 State Inference by Hierarchical Temporal Memory 

Hierarchical temporal memory (HTM) was used for predictive hierarchical memory 
systems (Fig.2 CDE). A HTM is a hierarchical memory of spatio-temporal patterns. 
Higher regions store more abstract and longer sptaio-temporal patterns. Each region 
of HTM has two modules: a spatial pooler and temporal pooler. A spatial pooler 
stores unique ‘spatial patterns’ of the feed-forward states from children and a tempor-
al pooler stores the ‘temporal patterns’ among the spatial patterns. The temporal pat-
terns are set of spatial patterns, among which the transition probability are larger than 
some threshold. Each region of our model behaved in three phases: wait, learning and 
inference. One region is in wait phase until all its children nodes finish their learning 
phases. After learning phase of fixed number of steps, the inference phase follows. 

The input to each region is vectors of probabilities of the temporal patterns of its 
children nodes. The spatial pooler memorizes unique spatial coincidences of the input 
patterns during learning. The temporal pattern finds temporal patterns between the 
coincidence patterns on its final step of learning. If a spatial pattern is followed by 
another spatial pattern more than some probability threshold, the two spatial patterns 
are grouped together in one temporal pattern. The learning propagates from the bot-
tom region to the root region of HTM system.  
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After learning, HTMs infer the belief for cause of current input signals in Bayesian 
manner. The likelihood of states for each region is updated from feed forward signal, 
feed-back signal and internal markovian transition (Fig. 1D). The likelihood of cur-
rent state is computed from the likelihood of previous states and markovian transition 
probabilities among the states determines. The likelihood is updated with the proba-
bility of feed forward input patterns (MC in Fig.1D). The feed forward probability of 
states are determined from the similarity between feed forward input pattern and spa-
tial patterns (SP in Fig. 1D).  The likelihood for temporal patterns are computed from 
the current likelihood and fed forward (left TP in Fig. 1D.). When the probabilities for 
temporal states are fed back (right TP in Fig 1D), the likelihood of spatial patterns 
updated with probability of spatial patterns from the top-down patterns (Belief in Fig 
1D.). The belief for each spatial patterns are computed and fed down.  

In experiments, we used three level HTM systems (Fig 1E). The spatial pooler of 
first level was composed of self-organizing map. The spatial pooler of other region 
behaved as George [13]. The temporal grouping threshold were 0.25, 0.2, 0.15 from 
bottom to top. HTM system was trained by the basic behavior to discover the spatio-
temporal patterns in them.  

3 Generation of Spontaneous Behavior by Inference in the 
Predictive Memory 

3.1 Method 

After the belief for the cause of current state is determined (grey part in Fig 2A), the 
hierarchical predictive memory was used to produce the prediction for next action. 
For each region, Markovian transition probability was used to determine the probabil-
ity of next state from the belief of current states (MC in Fig 2A). The likelihoods were 
multiplied with the top-down prediction signal from the higher region, (TD prediction 
for next step in Fig2A). The prediction signal is feed down to its lower region. In the 
lowest region of HTM system, one of the spatial pattern is selected as a prediction 
signal by the probabilistic distribution. The motor realizes the predicted action.  

3.2 Result and Discussion 

The hierarchical predictive memory and non-hierarchical memory could produce 
some spontaneous behaviors. The behavior was more structured within the hierarchic-
al memory model. It maintained same action state longer and showed staying in some 
positions more than non-hierarchical system (Fig 2BC). The spatio temporal pattern 
discovered by the hierarchical memory system might shape the motor behavior more 
regular structure. We believe that, the extraction of regular structure in the behavioral 
sequence might be able to build more regular structure for the behavior generated 
from the memory system. Our action generation reduces prediction error signal, 
which is suggested as the main function of brains in the predictive coding theories.  
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Fig. 2. Spontaneous behavior generation by prediction. A. The behavior generation by realizing 
prediction. The mechanism of one region is shown. The inference step for current belief of 
cause of input sequences are shown as grey (left side of box). Prediction of probabilisitic distri-
bution of next step is built by markov transition probability (MC) from current Belief. The 
prediction is multiplied with the top-down prediction signal. The spontaneous behavior of hie-
rarchical memory (B) and non-hierarchical system (C) is shown.  

4 Generation of Goal Directed Behavior by Inference in 
Predictive Memory 

4.1 Method 

In the Planning as Inference framework, the motor actions are determined from prob-
abilistic distribution of the next actions is inferred according to the evidence of as-
sumed goal achievement and current state. As a result, the path to the goal state is 
inference within the memory system. We used PAI in our hierarchical predictive 
memory system. One of five goal states was selected in random order for 100 steps 
then replaced to other. When a goal state is selected, the goal state was assumed 
achieved and the belief for the cause of the goal state was inference in the HTM sys-
tem (Fig. 3A, right side). The belief for the cause of the goal state is a likelihood 
which shares same domain to the belief for the current state. The two beliefs were 
merged together in the prediction condition (Fig 3A. center). As the chapter 3, the 
bottom level implemented predicted action.  
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Fig. 3. The action of goal directed behavior. A. The behavior of a region. The left part of grey 
‘prediction’ is same to the previous steps and omitted in this figure. The goal state is assumed 
achieved and the beliefs for the cause of the goal state is inference within the HTM (right part 
of the region.) The belief for goal biases the prediction for the next step to the goal. The beha-
vior of the robot hand during goal directed behavior is shown. The bold transparent lines show 
the goals state and thin lines are the positions of digits. The robot hands achieved the goal states 
more in hierarchical predictive memory (B) than non hierarchical system(C).  

4.2 Result and Discussion 

The hierarchical predictive memory could achieve the goal state more than non-
hierarchical memory system (Fig 3B,C Table 1, the probability of achieving target 
state is much higher when the goal is same to target in hierarchical memory system, 
but not in without hierarch). The prediction for next step was biased to the cause of 
goal state by reinforcing the common cause for the goal and current state was rein-
forced. In the neural systems, the common state will be the common representation 
that both state and goal state. Our result predicts that, the common cause state will be 
found in higher level of hierarchical memory system if the goal requires larger beha-
vioral steps to achieve. More concrete and closer-to-achieve goals does not require 
procedure in higher memory system and it might be the sense of the problem hierarch 
and abstraction in human mind.  
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Table 1. Goal state achievement 

Target With hierarch Without Hierarch 
P(target|goal=target) P(target|goal!=target) P(target|goal=target) P(target|goal!=target) 

0 0.08 (700) 0.015 (2300) 0.035 (400) 0.02 (2437) 

1 0.51(470) 0.07 (2530) 0.09 (600) 0.03 (2401) 

2 0.38 (800) 0.13 (2200) 0.04 (436) 0.027 (2401) 

3 0.014 (500) 8.0-e4 (2200) 0.017 (700) 0.014 (2137) 

4 0.07 (500) 2.4e-4 (2500) 0.014 (701) 0.027(2136) 

 
How the goal states are selected? One possibility is that inference system outside 

the motor hierarch might exist to activate the goal state. One region can have several 
different higher-level regions as parents. When some inference result of a sensory 
signal for a parental state outside the motor system is highly associated with the goal 
state in motor system, the sensory signal will produce the goal directed behavior. We 
expect some of autonomous stimulus-response type behavior can be produced in this 
kind of mechanisms. The other possibility is by the reward. A reward signal which is 
required in current condition might select the goal state that can achieve the request 
(if you are hungry, the goal states related to eating are inference). Those are required 
to be tested for further researches in computational and behavioral studies.  

5 Overall Discussion 

In this research, we suggested how the hierarchical predictive memory system can be 
used to embody the sensory-motor states of its own body and use the memory infer 
the belief for the cause of current state and predicting the state of next step. Our 
memory selects action based on the inferred probabilistic distribution of next actions 
to fulfill the prediction. 
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Abstract. Using two inductive reasoning tasks with high and low levels of 
complexity, this electroencephalogram (EEG) study examined the relationship 
between gamma-band response (GBR) of human brain and neural efficiency in 
math-gifted and average-level adolescents. The event-related synchroniza-
tion/desynchronization (ERS/ERD) maps of math-gifted subjects and average-
level subjects were analyzed in the first place. Furthermore, by means of feature 
selection based on a sequential forward floating search (SFFS) algorithm, this 
study investigated the important EEG scalp locations for discriminating cortical 
areas between groups of subjects and between task conditions. The experimen-
tal results show that math-gifted adolescents can more efficiently recruit fronto-
parietal cortices while performing both levels of inductive reasoning tasks. 
Right frontal and bilateral parietal cortices are suggested to be highly involved 
in neural efficiency related to mathematical giftedness.  

Keywords: Neural efficiency, EEG analysis, gamma-band response,  
fronto-parietal cortices, mathematical giftedness. 

1 Introduction 

Neural efficiency hypothesis of intelligence suggests that individual difference in 
cognitive ability can be reflected by efficient recruitment of neural resource of the 
brain, which derives from the disuse of many brain areas irrelevant to good task per-
formance and more extensive use of specific task-relevant areas [1]. Additionally, 
long-term training or skilled expertise resulting in reduced working memory load also 
affects individual’s neural efficiency, which is manifested as a decrease of brain acti-
vation [2, 3]. Frontal lobe of the brain has typical working memory and cognitive 
control functions, the activation of which is correlated with monitoring requirement, 
memory load, or effort of tasks [4]. Therefore, improved working memory perfor-
mance can result in reduced activation in frontal lobe. In addition, fronto-parietal 
network, some parts of parietal lobe, precuneus, thalamus, temporal and frontal gyrus 
have also been suggested to be involved in neural efficiency [1, 5].  

                                                           
* Corresponding author. 



26 L. Zhang et al. 

 

Mathematically gifted adolescents have been found having enhanced functions in 
prefrontal, frontal, parietal and temporal cortices, and highly adaptive cognitive sys-
tem for problem solving [5, 6]. However, the accurate brain regions are not explicitly 
located, where neural resource is “tuned” by individuals with mathematical intelli-
gence or expertise [7]. It has been found that cognitive tasks induce widespread gam-
ma-band response (GBR) in cortical EEG [8]. The increase of GBR (40 Hz) is closely 
related to attention, decision, high-order cognition, and shows close spatial corres-
pondence with fMRI blood oxygenation level dependent (BOLD) variations in acti-
vated brain regions [9]. Meanwhile, the augmented gamma activity is discovered to 
be modulated by the complexity of cognitive tasks and correlated with working mem-
ory load of human brain [10, 11]. Based on the spatial distribution of EEG GBR fea-
tures, this study aims to determine the cortical localization of neural efficiency on 
scalp electrodes through a feature (or channel) selection method and two mathemati-
cal reasoning tasks, which can maximally represent the discriminating cortical regions 
of efficient neural activation between math-gifted and average-level adolescents. 

2 Materials and Methods 

2.1 Subjects 

In this study, the math-gifted group included 8 adolescents (5 males and 3 females 
with mean age 16.5) from the Science and Engineering Experimental Class at South-
east University (Nanjing, China), who had been awarded prizes in nationwide or pro-
vincial mathematical competitions. Therefore, they were viewed as proficient in ma-
thematical and logical thinking. The control group was composed of 7 students (5 
males and 2 females with mean age 16.3) from the Nanjing Fourth High School, who 
achieved average-level performance in mathematical tests of the school. Exclusion 
criteria included left handedness, neurological illness, and history of brain injury. All 
subjects were given informed consent and the study was approved by the Academic 
Committee of the Research Center for Learning Science, Southeast University, China. 

2.2 Experimental Paradigm 

The experiment in this study adopted two numerical inductive reasoning tasks with 
low to high complexity, similar to those used in [12]. The experimental protocol is 
shown in Figure 1. In Figure 1a, three numbers in the triangle were associated with a 
certain calculation rule, such as ‘A+B=C’ or ‘A+C=B’, and four numbers in the 
square were related to a calculation rule with increased complexity, such as 
‘A+B=C+D’ or ‘B=A+C+D’. Each trial of a task was constituted by three trian-
gles/squares, which involved two basic processes, i.e., rule induction and rule applica-
tion, as shown in Figure 1b. The rule induction process at the left of the arrow aimed 
to find the calculation rule from the first two triangles/squares, and the validity of this 
calculation rule was verified by the third triangle/square at the right of the arrow, i.e., 
rule application. The calculation rule only involved ‘+’ and ‘-’.  
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Each task session was composed of a valid block and an invalid block. The valid 
block included 30 trials with congruent calculation rule between rule induction and 
rule application processes. The invalid block included 30 trials in which the rule in the 
application process was not congruent with that in the induction process.  

The timeline of stimuli presentation is shown in Figure 1c and 1d. The trials in all 
the blocks of the two tasks were randomly presented. The onset of the stimulus started 
after presenting a fixation point for 1000ms and a blank screen for 500ms, and the 
triangles/squares were presented sequentially along the timeline with an interval of 
2000ms, as shown in Figure 1c and 1d. Therefore, the rule induction process lasted 
for 4000ms and the rule application process had no time limit but was controlled by 
subjects. When the last triangle/square was presented, subjects were asked to judge 
whether the rules of the two processes were consistent or not as fast and as accurately 
as possible by pressing “K” for “valid” and “D” for “invalid” on the keyboard. 

 

Fig. 1. Experiment protocol: (a) A triangle with three numbers and a square with four numbers; 
(b) Samples of numerical inductive reasoning tasks with two levels of complexity; (c) Timeline 
of stimuli presentation of low-complexity task; (d) Timeline of stimuli presentation of high-
complexity task 

2.3 EEG Recording and Preprocessing 

The EEG data were recorded by a 60-channel Neuroscan international 10-20 system 
with sampling rate 1000 Hz. Reference electrodes were located at the bilateral masto-
ids of subjects, and electro-oculographic (EOG) signals were simultaneously recorded 
by four surface electrodes to monitor ocular movements and eye blinks. 

The EEG signals were band-pass filtered between 1 Hz and 60 Hz. EEG trials were 
extracted using a time window of 4500ms, which covers 500ms pre-stimulus period 
and 4000ms post-stimulus period. After baseline-correction and artifacts rejection, 26 
to 43 effective task trials were retained for each subject in each task session.  
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2.4 Extraction of Gamma Band Power Changes as Features 

In the 4000ms period of the rule induction process, feature extraction was conducted 
from GBR (35-45Hz) in each EEG channel by calculating event-related synchroniza-
tion/desynchronization (ERS/ERD), which was expressed as the percentage of power 
increase/decrease in relation to the baseline resting state:  

%100)](/)](),([),(/ ×−Δ=Δ fRfRtfAtfERDERS  (1)

where tΔ  is a time window of 500 ms, ),( tfA Δ  is power spectrum density at 

frequency f of an EEG signal in time range tΔ , and )( fR  is power spectrum 

density at the same frequency in pre-stimulus interval of the signal. Positive value of 
Eq. (1) represents ERS and negative value is ERD. 

By using a sliding window with a step of 25ms, gamma ERS/ERD was calculated 
for each time window (500ms) at a sample point within a trial. Therefore, each win-
dow overlapped the previous one by 475 sample points. The feature extraction of 
gamma ERS/ERD was conducted for all channels and 60 features in total were thus 
produced at each sample point within a trial.  

2.5 Feature Selection by Sequential Forward Floating Search Algorithm 

Inductive reasoning is mediated by the coordination of multiple brain areas, including 
prefrontal, frontal, parietal, and some subcortical regions, etc. [12, 13]. As an impor-
tant moderating variable of neural efficiency, different brain areas show different 
activation dependency on learning, memory, effort, ability, etc. [1]. While confronting 
with tasks of (subjectively) low to high difficulty, individual cognitive level affects 
the investment of cortical resource, resulting in differential mental states. For localiz-
ing the common cortical regions of subjects that were maximally modulated by rea-
soning task complexity and logical thinking ability, a sequential forward floating 
search (SFFS) algorithm was used to conduct electrode-based cortical region detec-
tion. SFFS algorithm can obtain optimum combinations of “gamma ERS/ERD”  
features (and thus channels) by promoting classification accuracy through pairwise 
discrimination between mental states [14].  

Let Y be the feature space composed of D features: 

{ }DjyY j ,...,1==
 

(2)

and kX  are the features selected from Y , which consists of k  features with the 

best discrimination accuracy in the feature space 

 { } DkYxkjxX jjk ,...,1,0,,,...,1 =∈==  (3) 

kX  is firstly initialized as an empty set with 0  feature selected, i.e., φ=0X , 

)0( =k . The feature selection procedure is conducted in “growing” and “pruning” 
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phases alternatively. During the growing phase, the best feature +x  is added to the 
selected feature subset as follows, 

 +
+ += xXX kk 1 , 1+= kk  (4) 

which makes the feature subset 1+kX
 

have the highest discrimination, i.e., 

 )(maxarg xXJx k
XYx k

+=
−∈

+
 (5) 

Function J  is mean classification accuracy achieved by linear discriminant analysis 

(LDA) with cross-validation. When 2>k , the selection procedure enters into prun-

ing phase after growing in each iteration. During this phase, some features in kX  

will be removed in turn. If the removal of −x in kX  results in better discrimination, 

i.e., 

 { } )()( kk XJxXJ >− −  (6) 

 )(maxarg xXJx k
Xx k

−=
∈

−
 (7) 

then this feature will be deleted from kX , i.e., 

 −
− −= xXX kk 1 , 1−= kk      (8) 

While k  is up to the preset maximum number of selected features (channels), the 
selection procedure will end. In this study, the maximum number of accepted chan-
nels was set to 15. The feature selection based on binary-classification was conducted 
between subject groups in each task condition, and also conducted between tasks in 
each group respectively. In all the selected feature combinations, we could find the 
optimum scalp channel locations with the highest accuracy in discriminating mental 
operations and subject groups respectively.  

3 Results and Discussions 

3.1 Augmented Gamma Band Response in Fronto-Parietal Cortices 

The increase of gamma power was found to be modulated by task complexity and 
task performer (math-gifted/average-level). As shown in Figure 2, the high-
complexity task induces more gamma ERS in the two groups than the low-complexity 
task. Meanwhile, the math-gifted group shows different gamma ERS distribution 
compared with the control group in the two tasks, that is, the math-gifted adolescents 
recruited more resource in fronto-parietal cortices for complex task but less for simple  
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task. Fronto-parietal cortices are involved in event-related activation of logical rea-
soning, which are mainly manifested as gamma ERS distributed in frontal, sensorimo-
tor, and parietal cortical regions. Other parts of the brain, such as prefrontal, temporal, 
occipital cortices also show increased gamma power.  

 

Fig. 2. EEG topological maps of group-averaged gamma ERS/ERD, with positive value 
representing ERS and negative value ERD: (a) Math-gifted group in low-complexity task; (b) 
Control group in low-complexity task; (c) Math-gifted group in high-complexity task; (d) Con-
trol group in high-complexity task. 

3.2 Optimum Channel Combinations for Distinguishing Mental States 

In Figure 3a, the math-gifted group shows the highest accuracy of 0.7302 in discrimi-
nating high-complexity and low-complexity tasks. Their brain regions that were  
maximally modulated by task complexity were located at frontal (F1 and F3), pariet-
al-occipital (P2 and PO4) and sensorimotor (C1, C3, C4 and C6) cortices. Left-lateral 
frontal regions are responsive to implicit relation synthesis of numbers, right-lateral 
parietal regions are related to internal manipulation of numerical quantity, and occi-
pital cortex reflects visual working memory and visual attention. It is notable that 
most selected electrodes are in sensorimotor regions, which could be attributed to 
efficient utilization of fronto-parietal network by math-gifted subjects. Gamma syn-
chronized network plays the role of functional binding between posterior parietal 
cortex and frontal regions to complete numerical information processing. The in-
creased gamma synchronization can be reflected by increased gamma power [8]. 

In the control group, only 5 electrodes were selected with the highest accuracy of 
0.6707 in discriminating two tasks, which are FP1, POZ, PO6, PO8 and OZ, as shown 
in Figure 3b. These sites of scalp electrodes indicate that left-lateral prefrontal cortex 
and parieto-occipital cortices are the most significant brain regions affected by task 
complexity in average-level subjects. As prefrontal activity reflects attention and  
cognitive control and parieto-occipital cortices are related to visual response, task 
complexity change does not significantly affect gamma activity change within fronto-
parietal cortical area in average-level subjects. 

During the high-complexity task, except for electrodes PO7, OZ and O2 related to 
visual response, the channel combination with the highest accuracy of 0.6699 in dis-
criminating the two groups focuses on right frontal-centroparietal regions (F2, FCZ, 
FC4, CZ and CP1), as shown in Figure 3c. Notably, math-gifted subjects show exten-
sive gamma ERS in frontal cortex, especially enhanced right-lateral frontal cortex, as 
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shown in Figure 2. During numerical inductive reasoning, the right frontal regions 
conduct spatial information processing involved in arithmetic rules and are adequately 
utilized by math-gifted subjects. 

By comparison, a higher accuracy of 0.7106 in discriminating the two groups was 
found in the low-complexity reasoning task. The topological map of channel combi-
nation sketches a characteristic of fronto-parietal distribution, as shown in Figure 3d, 
involving right frontal, right sensorimotor, and bilateral parietal regions (F6, FC2, C6, 
CP1, CP4, P3 and P4), which indicates that a coherent fronto-parietal cortical network 
might be involved in efficient operation by math-gifted subjects.  

 

Fig. 3. Topological maps of optimal channel combinations based on SFFS: (a) Channel combi-
nation of math-gifted group between tasks; (b) Channel combination of control group between 
tasks; (c) Channel combination of high-complexity task between groups; (d) Channel combina-
tion of low-complexity task between groups.  

4 Conclusions 

This study shows that between math-gifted and control subjects, right-lateral frontal 
and bilateral parietal cortices represent the highly discriminating cortical areas where 
neural resource is effectively recruited by math-gifted adolescents to adapt to different 
internal requirement for cognitive processing. Specially, right frontal lobe was se-
lected in both of the tasks through high utilization in the complex task and economical 
usage in the simple task by math-gifted subjects. The activation of right frontal lobe 
can be viewed as an optimum indicator of neural efficiency. The selected scalp loca-
tions coincide well with the important neural mechanism of math-gifted adolescents, 
i.e., highly developed right frontal lobe and bilateral fronto-parietal network [6, 15].  

The results from this study are meaningful for mathematical learning of children 
and adolescents. Their neurodevelopment has adjustable characteristics based on neu-
roplasticity, especially for children and early adolescents whose frontal lobe still lies 
in a developing stage, e.g., laterality of frontal cortical activity can be modulated by 
on-line neurofeedback to improve individual’s neural response. 
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Abstract. Many existing models of object recognition have a hierarchi-
cal architecture. They are based on the theory of hierarchy in brain of
primate and cognitive process of human. The feature is simple in low
layer while complex in high layer. However, the simple feature are local
without global clues in these computational models. In this paper, we
propose a novel method to code orientation feature which is local fea-
ture derived from receptive field of simple cells. The integrative coding in
each simple feature, utilizing the global context information such as angle
between orientations, is different from other methods of coding batch-
based. This coding is scale-invariance since we overlook the distance be-
tween orientations. In addition, it is a method of feature learning since
the size of context can be adjusted automatically according to special
recognition task. Experimental results on ETH-80 data set demonstrate
the effectiveness of our model.

Keywords: hierarchical architecture, feature learning, sparse coding,
receptive field(RF).

1 Introduction

Object recognition, which is to find given object from unseen image, plays an
important role in computer vision. The investigative results in neurobiology in-
dicate the hierarchical architecture exists in brain of primate. These results pro-
mote the development of deep architecture model in compute vision. Nowadays,
many computational models with a deep hierarchical architecture simulate hu-
man vision to finish the task of object recognition[1,2,3,4].

Models inspired by biology are built mainly through simulating visual cortex.
The Hubel-Wiesel model [5] is a classical model and becomes the basis of many
modern models simulating visual cortex. Their work validates a hypothesis of
orientation stimulation in Receptive Field(RF) of simple cells (RF is the region
to which visual neurons response). The orientation feature, which resembles line
segment with fixed length, can be combined to form higher semantic feature.
Therefore, Many extensions of Hubel-Wiesel model are inspired by this type of
orientation feature[4,6]. The prominent one is HMAX model[4]. It has a hierar-
chical architecture consists of four layer feature to represent object. Notice that
the first layer is precisely orientation feature obtained by Gabor filter.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 33–41, 2013.
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Since the model aforementioned is biologically motivated, hierarchical archi-
tecture is the key characterization. The feature becomes more complex and ab-
stract from low layer to high layer. Recently, deep learning become a hot ten-
dency due to the intractable problem of deep training is efficiently solved by
Hinton et al[1]. The key goal of deep learning is feature learning automatically
beyond artificial feature according to special occasion. There have been some suc-
cessful application of deep learning in computer vision[3] and natural language
processing[7].

In this paper, we present a novel method using integrative coding to build a
deep hierarchical architecture. The method adopts global information to code
orientation feature since the context can be adjusted automatically in object
recognition. So this is actually a method of feature learning, and it’s suitable
for generic object recognition. This type of coding overcome the limitation of
traditional global coding which is susceptible to variety of object. In addition, it
is different from some local coding, which only contain a descriptor in fixed range,
i.e. shape context[8], SIFT[9], and HOG[10]. The local coding need some later
concrete combination to represent object. We call this novel coding Integrative
Coding with Adjustable Context(ICAC).

Note that ICAC is also a type of sparse coding. We overlook the distance
between orientations and only keep the angle, so the feature vector of orientation
is determined by angles relative to other orientations. The dictionary of basis
is the lattices dividing the feature space to parts. Only few of the lattices is
activated when coding each orientation.

The rest of this paper is organized as follows: Sec. 2 introduces the biological
foundation and a novel orientation detection method. Our model is presented in
Sec. 3, and Sec. 4 introduces the concrete algorithm of object recognition basing
on our coding, Sec. 5 presents the experimental results. Finally, we conclude in
Sec. 6.

2 Biological Foundation and Orientation Detection

2.1 Hierarchical Architecture in Biology

The object recognition of human vision is a hierarchical process. Fig. 1 shows the
ventral stream of primate visual cortex. The hierarchical processing of the ventral
stream is to achieve an optimal tradeoff between selectivity and invariance[11].
From eyes to visual cortex, the vision feature become more complex and ab-
straction. The layer is higher, the area of RF becomes larger. In Hubel-Wiesel
model, as Fig. 2(a), every simple cell in V1 is sensitive to specified orientation
stimulation by the response derived from RF of lateral geniculate nucleus(LGNs)
or retinal ganglion cells(GCs). The simple cell is selective to produce orienta-
tion feature, then complex cell in V1 adopts pooling operation of orientation
located in fixed area to achieve position- and scale-invariance. In HMAX model,
this pooling operation is max. Therefore, through multiple feedforward feature
transformation in hierarchical architecture, the abstract representation of object
is produced for higher vision task such as object recognition.
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Fig. 1. ventral stream of primate visual cortex: a hierarchical architecture of human
vision. The RF becomes larger and feature become more complex from low layer to
high layer.

2.2 Orientation Detection

There are many approaches of orientation detection. In HMAX model, Gabor
filter is used to acquire orientation feature map, but different coefficients are
need to tuned to produce multiple feature maps. We adopt the newest work
of orientation detection(OD)[6,12], which is a computational model inspired by
Hubel-Wiesel model. Fig. 2 show the relation between them.

Fig. 2. Orientation detection model: (a) is the Hubel-Wiesel model, a biological model,
(b) is the OD model, a computational model. In OD model, the center of RF isn’t
limited in line and the sizes are different. The red orientation stimulation located in
the RF of LGNs or GCs activates the simple cell in V1.

In OD model, the center of RF of LGNs or GCs isn’t limited one line and
the size of each RF can be different. Only one orientation stimulation is located
in the range of RF, the simple cell will be activated by the stimulation. After
synthesizing the response of each simple cell, we get the orientation map of raw
image.
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3 Our Model

We push on the work of orientation detection by combine them to complex
feature with context information. Instead of the simple max operation in HMAX
model, we adopt integrative coding. For the sake of simplicity, we call simple cell
as S and complex cell is C respectively, which is corresponding to HMAX model.
The overall procedures of our model are showed as Fig. 3. Our main work is
focus on the ICAC in C to represent orientation derived from S, then take ICAC
as the input of classifier.

Fig. 3. Our model for object recognition. Firstly, utilize the result of OD model to
produce the orientation map, then simulate the operation of complex cell to generate
ICAC. Finally, we predict the object using classifier which takes ICAC as input.

3.1 Integrative Coding in C Layer

We utilize the global context information of angle between orientations since the
angle is insensitive to variety of position and scale. To develop the robustness of
model, we add some extra angle information by link the the midpoint of each
orientation, as Fig. 4 (a). So for each pair of orientation, there are two types
of angles to delineate their context information, the angle θoo between orien-
tation and orientation, the angle θol between orientation and link seg-
ment. Like the shape context[8], SIFT[9], and HOG[10], we adopt histogram
based representation, as Fig. 4(b). For a map O = {o1, o2, . . . , on} consists of
n orientation features, we compute oi’s histogram feature using all global con-
text information of angle related to other orientations. We divide the space of
angle into parts, and count in every bins in which the orientation’s angle located.
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After coding each type of angle, we synthesize the two styles of histogram to one
histogram to represent ICAC, as Fig. 4(c). Write formulation as follows,

Hθoo
i (k) = �{o �= oi : A(o, oi) ∈ bin(k)} (1)

Hθol
i (k) = �{l : A(l, oi) ∈ bin(k)} (2)

Hi = Hθoo
i ⊗Hθol

i (3)

where “�” indicates the amount of elements of set, A(a, oi), a ∈ {o, l} is the angle
between a and oi, and bin(k) is the k-th bin containing fixed size of angle, i.e.
0 ∼ 30◦, ⊗ is Cartesian product.

Fig. 4. Computing ICAC of black orientation, (a) represents the orientation map and
the angles, (b) shows two style of histogram θoo, θol for orientation oi, (c) is final ICAC
coding represented by histogram. Note that it is sparse.

3.2 Implementation of Object Recognition

To adjust context of ICAC automatically and represent object in different occa-
sion, we adopt histogram intersection as the measure of similarity of two ACICs,
as follows,

Sim(Hi, Hj) = Inter(Hi, Hj) =

n bins∑
k=1

min{Hi(k), Hj(k)} (4)

The matrix of intersection is the similarity matrix and can be regarded as
kernel function in SVM classifier. This kernel is similar to Pyramid Match Ker-
nel( PMK )[13]. When deformation happen to object, the value of intersection
decreases and the non-zero parts is located in small range of context. Therefore,
the context of ICAC is adjusted by histogram intersection, and it is unsensitive
to deformation. The method of object recognition is presented in Algorithm 1.
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Algorithm 1. Object recognition using ICAC

Input : train objects set T and test object O.
Output: label of test object O.

1 Get MT and MO , the orientation map of T and O respectively using OD []

2 M ←MT
⋃

MO

3 foreach Mi ∈M do
4 compute histogram Hi, the ICAC of Mi according to Equ. (3);
5 end

6 HT ← {Hi : Mi ∈MT }
7 HO ← {Hi : Mi ∈MO}
8 foreach HT

i ∈ HT do
9 foreach HO

j ∈ HT do

10 Sim(HT
i ,HO

j )← (
∑n bins

k=1 min{HT
i (k),HO

j (k)})
11 end

12 end

13 model = svm train(HT , Sim);

14 label = svm predict(HO,model);

Advantage. The angle between orientations remain unchanged under the vari-
ety of scale of object. To compute ICAC of each orientation, we adopt relative
angle between them, and take current orientation as reference. Therefore, like
shape context or SIFT, it’s inherently invariance to transform, rotation and scale.
There are two points mainly different from other descriptors, 1) it utilize global
information without ignoring any other orientation. Either shape context or
SIFT is batch-based feature without global information. 2) the distance between
orientations changes according to the scale of object, so ICAC abandons the dis-
tance information between orientations greatly improving the scale-invariance,
and still represents image completely.

4 Experimental Results

We experiment on the ETHZ-80 data set[14] using ICAC. The data set contain
8 categories with 80 different objects. There are 41 images with different views
for each object. So there are total 3280 images in the set. Orientation map is got
by OD model [6,12], Fig. 5 shows some orientation maps of ETH-80.

We use the LIBSVMpackage[15] as classifier for ourmodel, and adopt one-to-all
strategy to train classifier. To compute recognition rate, we take the ICAC vectors
to train SVMclassifier. Each training set contains nearly 1000 ICACs. In test stage,
we calculate the rate of correct predicting ICACs in one test object. We run pro-
gram in 10 times randomly, then calculate the average of right predicting rate.We
set 144(12× 12) bins for ICAC space. Table. 1 shows our results with other 4 ap-
proaches basing on color, texture, global shape and local shape presented in[14].
Our model get highest recognition rate in apple, cow, dog and horse. Notice that
ICAC outperforms other 4 approaches in total recognition rate.
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Fig. 5. Orientation feature: top row is the original images from ETH-80, containing 10
categories object, bottom row is the corresponding orientation feature map

Table 1. Recognition rate: we compare our results(ICAC ) to 4 approaches, Color
based, Mag-Lap basing on texture, PCA Gray basing on global shape and the shape
context [14]

Color Mag-Lap PCA Gray Cont. DynProg our model

apple 57.56% 80.24% 88.29% 76.34% 90.33%
car 62.93% 77.56% 97.07% 100.0% 93.89%
cow 86.59% 94.39% 62.44% 86.34% 95.45%
cup 79.36% 77.80% 96.10% 99.02% 82.54%
dog 34.63% 74.39% 66.34% 82.93% 92.20%
horse 32.68% 58.78% 77.32% 84.63% 100%
pear 66.10% 85.27% 99.76% 91.71% 90.07%

tomato 98.54% 97.07% 76.59% 70.24% 73.03%

total 64.85% 82.23% 82.99% 86.40% 89.69%

We describe the deviation of recognition rate in detail by 10 runs to show
robustness of our model. As Fig. 6, most of the test objects, except for car and
cup, are recognized stably with low deviation. Because the most boundaries of
car and cup are line-like, the amount of orientation feature of them is relsatively
less than other objects, and affects their recognition rate. The model, in which
the recognition rate of most test objects are more than 80%, is robust to variety
of object.

To measure the similarity between each pair of objects, we then adopt one-
to-one method to train classifier. In this way, we get 64(8× 8) classifiers. Fig. 7
show the recognition rate with different pairs of training objects. The class of test
object is same to training object. When objects are similar to each other, such
as apple and tomato, the ICACs are similar and will produce weak classifier. So
recognition rate is low when the positive object and negative object is similar.
The results, as Fig. 7, demonstrate our hypothesis.
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Fig. 6. Deviation of recognition in 10 runs. Most of objects are stable except for car
and cup, in which the deviation of recognition is more than 5%. The lowest rate is
76%, and most objects are over 80%.

Fig. 7. Shape similarity measure using one-to-one classifier. The class of test is same
to positive object. The horizontal ordinate is the negative objects in training. The
positive and negative objects are more similar, the recognition rate is lower. Note that
it’s insignificant when positive and negative objects are the same class.

5 Conclusion

In all experiments aforementioned, we find that the non-zero coefficients set in
ICAC feature vector is relatively small. This characteristic resembles sparse cod-
ing and could be used to simulate sparseness of activated neurons. Integrative
Coding with Adjustable Context(ICAC ) is novel global coding which surpass the
limitation of fixed size. The context can be adjusted automatically to achieve
feature learning in special recognition application. The model is biologically mo-
tivated and owns deep hierarchical architecture which is similar to human vision.
Therefore, ICAC simulates the process of hierarchical vision effectively.
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Abstract. Due to the better performances with large number of train-
ing samples, algorithms based on sparse representation have received
more and more attentions in single-trial event-related potentials classifi-
cation. Considered the burden from repeating psychological experiments,
the classification with less training samples is still a challenge in both
cognitive science and pattern recognition. In this paper, a discrimina-
tive dictionary learning based scheme is utilized to single-trial ERPs
classification, in order to enhance the performance when the training
sample size is small. After preprocessing, wavelet is employed to remove
the strong background noise at first, and then a sparse representation
recognition method based on discriminative dictionary learning, called
D-KSVD, is applied to perform the classification on each testing trial.
Experiments on ERPs epochs from risk decision test have demonstrated
that proposed approach outperforms than existing sparse representation
classifier when the training samples decrease dramatically.

Keywords: single-trial ERPs classification, sparse representation, less
training samples, dictionary learning.

1 Introduction

Event-related potentials (ERPs), which is an important physical signals recorded
from scalp, are electroencephalogram (EEG) in response to external stimuli in
designed experiments [1]. ERPs analysis is mostly limited by its low signal-noise-
ratio (SNR) due to strong ongoing EEG background and other noises [2]. Tra-
ditional ERPs denoising is averaging across several trials, in which trial-to-trial
variability is missing. Single-trial ERPs classification is one of the important
ways in neuroscience and cognitive science, since the brain dynamics on the
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single-trial level reveals much richer information than conventionally averaged
ERPs [3-4]. Most reports on single-trial classification select the features of the
ERPs waveform at first, such as temporal features, spatial features, and spatio-
temporal features; and then a classifier, e.g. support vector machine(SVM), k-
nearest neighbor(KNN), logistic regression, linear discriminative analysis(LDA)
are applied to perform the recognition[5-6]. Although fully studied, feature selec-
tion should still be carefully considered in this classification and may vary across
different experiments paradigms. In additional, these methods are also sensitive
to the training sample size.

Sparse representation (SR) has beenwidely used in signal and image processing,
especially in addressing inverse problems, such as signal/image reconstruction, de-
noising, and pattern recognition. Sparse representation classifier (SRC) is one of
the most popular classifiers, which is based on the assumption that each testing
sample can only be linear represented by training samples in the same category,
thus can be sparse linear represented by all the training samples. This significant
model was first proposed for robust face recognition against occlusions and cor-
ruptions, and impressive results were reported [7-8]. More important, it is able to
perform high classification accuracy without explicit feature extraction. This ad-
vantage makes it suitable for single-trial ERPs classification, where the appropri-
ate feature extraction is still a challenge so far. Shin.et al proposed a SRC based
scheme to classify the EEG signals in Brain-computer interfaces systems, in which
common spatial pattern (CSP) is employed to filtered the original low SNR EEG
signals to maximum the inter-class distances at first, and then SRC is applied to
do the binary classification. After sparse decomposition and reconstruction with
the coefficients, the testing sample is assigned to the category with smaller recon-
struction error. The performances have demonstrated that this SRC based scheme
is better than LDA classifier in EEG data classification [9].

Though satisfied performances were reported, SRC still has some limitations,
one of that is it only has high classification accuracy with sufficient training
samples. However, large training samples size requires repeating psychological
experiments to acquire more ERPs epoches, which may make the subjects feel
very tired at last and provide inaccurate responses. Dictionary design is one of
the critical problems in sparse representation. In SRC model, the dictionary is
simply formed with all the vectorized training samples, which only emphasize
the representative power. The discriminative power of the dictionary can only
be guaranteed when the training samples are sufficient. Therefore, its perfor-
mances will decrease if the training samples size gets smaller. K-SVD is a widely
used dictionary learning method in sparse representation and its application,
e.g. compress sensing, reconstruction and denoising. The model seeks for the
dictionary that yields sparse representations for the training signals. However,
it is also emphasizing the representation rather than discrimination.

D-KSVD, another sparse representation classification method with discrim-
inative dictionary, has been firstly reported for face recognition [10]. For D-
KSVD, both training label prior and the idea of linear classifier are introduced
to the K-SVD, in order to enforce its capability at having discriminative and
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representative power simultaneously. D-KSVD has been proven to be robust in
various training sample size [10].

In this paper, a discriminative dictionary learning based scheme is proposed
for single-trial ERPs classification to enhance the classification accuracy, espe-
cially with less training samples. After preprocessing, popular wavelet is em-
ployed to remove the strong background noise, and then D-KSVD is applied to
the testing trials recognition. The proposed scheme is validated with the real
ERPs data from risk decision making test.

2 Experiments and Dataset

The ERPs data are generated from a risk decision-making experiment at Beijing
Normal University. 20 students from Beijing Normal University are recruited as
paid volunteers. The electroencephalogram (EEG) was recorded from 61 scalp
sites using tin electrodes mounted in an elastic cap (NeuroScan Inc., Herndon,
VA, USA), with an online reference to the right mastoid and off-line algebraic
re-reference to the average of the left and right mastoids.

The experimental data could be interpreted as binary classifications of single-
trial ERPs at a predefined psychological perspective: Label 9 and 99 are de-
fined as low-risk option (small potential win or loss) and high-risk option (large
potential win or loss) respectively. The binary classification demonstrated the
predictive power of individuals risk-avoidant preference embedded in ERP trials.
Detail descriptions are available in the original publications [11-12].

3 Methodology

Proposed discriminative dictionary learning scheme is summarized in Figure.1.
Detail descriptions are presented step by step in the following.

Fig. 1. summarization of the discriminative dictionary learning scheme

3.1 Preprocessing

EEG and electrooculogram (EOG) signals were amplified with a 0.05C100 Hz
band-pass filter and continuously sampled at 1000 Hz. During the off-line
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analysis, ocular artifacts were removed from the EEG signal using a regression
procedure implemented in the Neuroscan software. Then, the EEG data were
down-sampled to 250Hz and filtered with a 0.05-30 Hz finite impulse response
filter with zero phase distortion. Filtered data were segmented beginning the
onset of outcome and lasting for 1000 ms. All epochs are baseline-corrected with
respect to the mean voltage over the 200ms preceding the onset of outcome.

3.2 Wavelet Denoising

Analysis of single-trial ERPs is most limited by the strong ongoing EEG back-
ground. Wavelet transform, a very popular approach in signal processing, has
the capability of providing time-frequency decomposition. Compared with other
algorithms for ERPs denoising, it has been proven to be more suitable for ERPs
analysis, due to its optimal resolution both in time and in frequency domain.
This denoising procedure contains wavelet decomposition, thresholding, and re-
construction, as detailed described in [13].

3.3 Classification

After denoising by wavelet, D-KSVD, which can be treated as an improved SRC
model, is applied to classify each testing trial to predefined categories. The model
formulate the problem of dictionary learning as [10]:

< D̂, Ŵ , α̂ > = argmin
D,W,α

||Y −Dα||2+γ||H−Wα||2+β||W ||2s.t.||α||0 < T (1)

where Y is the testing sample, which contains all the testing trials; D is the
dictionary learnt from all the training trials, α is the coefficient matrix, H is the
label of training trials, W is the classifier parameters, γ and β is the scalars.
Compared with the model of KSVD[14], it can be observed that (1) has two
additional terms: ‖H −Wα‖2 and ‖W‖2. These are introduced from the linear
classifier H=W+b, and b is set to 0 for simplicity.

Considered the convergence of the solution in the optimization problem, (1)
can be rewritten into:

< D,W,α > = argmin
D,W,α

||
(

Y√
γ ∗H

)
−
(

D√
γ ∗W

)
∗ α||2 s.t. ||α||0 < T (2)

where the matrix

(
D√

γ ∗W
)

is column-wise normalized, as defined in the orig-

inal K-SVD. So it is possible to drop the regularization term ‖W‖2.
Algorithm for single-trial denoised ERPs classification based on D-KSVD is

summarized as:
1) dictionary orientation: All the trials, including training trials and testing

trials are vectorized, for example, in our experiments, there are 61 channels, each
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channel has 250 time points, a vector of 15,250 is employed to denote a trial.
The dictionary orientation is defined as:

a) Training trials of each class are employed to learn a individual dictionary;
b) Dictionaries from different classes are combined to a new dictionary.

2) solve D and α in (2):

< d̂k, α̂k >= argmin
dk,αk

||Ek − dkαk||F (3)

where Ek = Y −∑
i�=k diαi,and Y are the training trials, ‖‖F is Frobenius norm.

This problem can be addressed by singular value decomposition (SVD), exactly
the same as in KSVD[14].

3) valid final dictionary D1 and corresponding classifier parametersW1 in (1):

D1 =
{

d1

||d1||2 ,
d2

||d2||2 ,
d3

||d3||2 , · · · , dk

||dk||2

}
W1 =

{
w1

||w1||2 ,
w2

||w2||2 ,
w3

||w3||2 , · · · , wk

||wk||2

} (4)

where di and wi are the ith column of D and W in (2) respectively.
4) Calculate the sparse coefficient in (1):

< α̂ >= argmin
α

||y −D1α||2 + ||α||1 (5)

This typical l1-norm optimization problem can be solved by orthogonal matching
pursuit (OMP), which is effect and efficient.

5) Identify the label of testing sample:

label = W1α (6)

where is a vector, the label of the testing trial can be finally identified by the
index of the largest value in vector.

4 Results and Analysis

All the experiments are implemented with Matlab 2010 with Intel Core CPU at
2.0G and 2G memory. As described before, proposed ERPs data are categorized
into two classes, so our method is applied to binary classifications. Since each
trial contained 250 points from 61 channels, a vector of 15,250 dimensions (250×
61 = 15, 250 ) was used to denote a single trial in the classification. For each
subject, training trials and testing trials are randomly selected to calculate the
classification accuracy. To demonstrate the robustness of the proposed scheme,
the experiments are implemented with four different training sample size: 100,
80, 60 and 40, which means the training data contains 100, 80, 60, and 40 trials.
It should be mentioned that in each classification round, trials number for each
category in training data is the same, as well as in the testing samples. For
example, if training sample size is 100, 50 trials come from class 1 and 50 trials
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are from class 2. For comparison, SRC is also employed to the same ERPs epochs
after the same denoising procedure.

Average classification accuracy over all the subjects is presented with the
four different training sizes from SRC and proposed method in Figure. 2(a). For
more detail, two subject are randomly selected, and corresponding classification
accuracy plots are also shown with different training sizes from two methods
(Figure.2(b)(c)). It can be observed that the results from proposed discriminative
dictionary learning scheme look similar as that of SRC based scheme if the
training sample size is large, like 100 and 80. However, when the number of
training trials decrease dramatically, like 60 and 40, proposed scheme is definitely

(a)

(b)

Fig. 2. (a)average classification accuracy over all the subjects between SRC-based
scheme and proposed scheme at different training sizes; (b) classification accuracy over
all the subjects between SRC-based scheme and proposed scheme at different training
sizes for Subject 19;(c) classification accuracy over all the subjects between SRC-based
scheme and proposed scheme at different training sizes for Subject 40
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(c)

Fig. 2. (Continued.)

robust than SRC scheme, since the accuracy in both training sample size 60 and
40 from proposed scheme are higher than that of the SRC model.When the
training sample size is less than 20, the accuracy of both SRC and D-KSVD
dramatically decrease to less than 50%.

5 Conclusions

Due to the requirement from psychological experiments, a discriminative dic-
tionary learning scheme is utilized for single-trial ERPs classification with less
training samples. Each trial is denoised with wavelet transform at first, and
then a sparse representation based classification with discriminative dictionary
learning, D-KSVD, is applied for single-trial classification. Experiments on the
psychological ERPs data have demonstrated the satisfied performances of the
present approach.
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Abstract. In this study, we investigated the neural correlates of collaboration 
and the relationship between collaboration and the reasoning level (low; zeroth-
order or high; first-order) of other person. Fourteen volunteers played a  
collaborative matrix game with a computerized agent and predicted the agent’s 
behavior in the functional magnetic resonance imaging (fMRI) scan session. 
From the results, the collaboration game evoked neuronal activations within 
both the left and right insula. Also, in the collaboration game, insula activation 
was greater in the higher-order reasoning condition than the low-level reasoning 
condition of the agent. The insula area is known to be related with sense of 
agency, autonomic arousal, and motivation. The collaborative game may cause 
participants to be motivated and deeply involved in the emotional experience, 
such as achieving a common goal with other person. In this context, the  
increased activation within insula seemed to be associated with participants’ 
motivational and emotional states while collaborating with other person. 

Keywords: Functional magnetic resonance imaging, theory of mind, collabora-
tion, reasoning order, insula, matrix game. 

1 Introduction 

Theory of mind (ToM) has been defined as the ability to understand desires, inten-
tions, or beliefs of others [1] and its underlying neural mechanism have been studied 
for decades. Regions including medial prefrontal gyrus, posterior cingulate cortex, 
temporoparietal junction, and amygdala have been mainly reported as the ToM net-
work [2, 3]. 

In particular, researchers have been focused on neural basis of cooperative beha-
vior [4, 5, 6]. For example, Decety and colleagues (2004) investigated brain regions 
underlying collaboration and found medial frontal activation in collaboration condi-
tion. Also, brain regions related to reward processing were also found in collaborative 
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setting. For instance, Krill and Platek (2012) reported the activation in caudate and 
putamen, suggesting rewarding nature of collaboration.  

On the other hand, some researchers have developed hierarchical model of ToM to 
explain depth of thoughts, or reasoning order [7, 8]. Reasoning order tells how a per-
son can recursively predict the other person’s behavior. Within this hierarchical mod-
el, a zeroth-order reasoner only considers his desires and beliefs to make a decision, 
without considering other person’s desires or beliefs. A reasoner, who uses high level 
of reasoning, can infer other person’s thoughts and make a decision based on the infe-
rence in a social context. Previous neuroimaging literatures have found that higher 
level of reasoning positively correlated with medial prefrontal or dorsal prefrontal 
cortex activation [9, 10], and these regions reflected successful mentalizing of other’s 
behavior.  

To our knowledge, however, there was no study investigating the relationship be-
tween collaboration and the reasoning order. This functional magnetic resonance im-
aging (fMRI) study aimed at investigation of the neural correlates of collaboration 
with a counterpart who had low or high level of reasoning. 

2 Methods 

2.1 Participants  

Fourteen healthy right-handed students volunteered to participate in this study (8 
males, age=23.6±3.7 year). They had no history of neurological and mental disorders 
such as depression, anxiety disorder, or borderline disorder. Once participants fully 
understood the experimental procedure, they gave written informed consent. Prior to 
fMRI experiment, all participants visited the laboratory and were trained to be famili-
ar with the matrix game. The study procedure was approved by the Institutional Re-
view Board of Korea University.  

2.2 Experimental Paradigm 

Each participant performed a 2 × 2 collaborative matrix game (modified from [7]) 
with either a myopic (zeroth-order) or a predictive (first-order) computer agent as an 
opponent. As shown in Fig. 1, the game matrix consisted of 4 cells labeled as A, B, C, 
and D, and each cell contained respective payoffs (between $1 and $4) for the partici-
pant (left) and the computer agent (right). The two players took turn and made a 
‘move’ or a ‘stay’ decision by pressing buttons. The participant always started first at 
cell A. The game could be ended anywhere (A, B, C, or D) according to decisions 
made by the players. For example, if the participant decided to stay at cell A, the 
game ended at cell A and the computer agent was deprived of its chance to move at B. 
On the other hand, when the participant moved to cell B and the opponent moved to 
cell C, the game would be ended at cell C or cell D. The movement from C to D was 
determined based on the participant’s advantage. The game was ended at cell D only 
when the participant’s outcome was greater in cell D than cell C. 

In a game, the participant was asked to win the payoffs as much as possible accord-
ing to one of two instructions: 1) control condition: maximize own payoff regardless 
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of the opponent’s payoff; 2) collaboration condition: maximize the summed payoff of 
the self and the opponent. The participants were required to predict the opponent’s 
move, which was either of a ‘move’ or a ‘stay’ decision at cell B. The participants 
were told that they were going to play with a myopic (zeroth-order) or a predictive 
(first-order) opponent. A zeroth-order opponent makes a decision only based on his 
own payoffs at cell B and C. Meanwhile, a first-order opponent decides to move or 
stay with regards to his payoffs and the other player (the participant)’s payoffs at cell 
B, C, and D. The opponent’s reasoning order was consistent during an fMRI scan, and 
the participants played games with zeroth-order opponent in one fMRI scan and first-
order opponent in the other fMRI run. They were told that an order of opponent strat-
egy would be randomly mixed across fMRI scans. To motivate participants to actively 
collaborate with the opponent, the participants were told that they would be playing 
with the human player which would be one of our study members. In fact, a compute-
rized agent implemented with the zeroth- and first order reasoning was deployed dur-
ing the game with pseudo-randomly generated response time.  

In each of two fMRI scan runs, the participants performed 20 trials consisted of 10 
pairs of matrix games. In each pair of matrix game, a single matrix game was used for 
both control condition and collaboration condition. During the fMRI experiment, 
participants went through a training run (about 4-6 min) and two task runs (about 12-
15 min as shown in Fig. 1). Again, an opponent’s reasoning order was counterba-
lanced across the participants to prevent a potential confounding effect.  

 

Fig. 1. Experimental protocol. Player 1: participant; Player 2: computerized opponent  

2.3 fMRI Data Acquisition 

The participant’s response time (RT) and accuracy were recorded during fMRI scan-
ning. After the fMRI scan runs, participants were asked how strong they believed that 
they were collaborating with a human opponent (perceived feeling of interaction; 1: 
least, 5: most), and how difficult the game was (1: easiest, 5: most difficult). 

The fMRI experiment was conducted in a 3-T MR scanner with 12-channel head coil 
(Tim Trio, Siemens, Erlangen, Germany). The gradient-echo T2* weighted echo planar 
imaging (EPI) was applied to measure neuronal activity based on blood-oxygenation 
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level-dependent (BOLD) mechanism (TR/TE=2000/30 ms, 35 slices parallel to the 
participant’s bi-commissural plane, slice thickness=4 mm, in-plane voxel size=3×3 
mm2, matrix size=64×64, flip angle=90°, field of view=240 mm).  

2.4 Data Analysis 

Preprocessing. SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK) was 
used for preprocessing of the obtained EPI data. In detail, a slice timing excluding the 
first 5 dummy volumes and head motions were corrected. The corrected EPI volumes 
were spatially normalized to the standard Montreal Neurological Institute (MNI) 
space and resampled with a 3 mm isotropic voxel size. Then, an 8 mm isotropic full-
width at half-maximum Gaussian kernel was applied for spatial smoothing.  
 
Statistical Analysis. The preprocessed data of each participant were analyzed using a 
general linear model in an individual level. Four different regressors were designed 
following the onset timing and durations for each of the prediction of the zeroth-/first-
order opponent’s move in control condition, prediction of the zeroth- /first-order op-
ponent’s move in collaboration condition. Then, a group-level analysis was conducted 
using the contrast of neuronal activations across individuals/participants via one sam-
ple t-test to compare game types (i.e., collaboration vs. control), or opponent’s reason-
ing orders (i.e., first-order vs. zeroth-order). 

3 Results 

3.1 Behavioral Response 

All participants performed the tasks successfully (accuracy=94.6±6.1%) and most of 
them reported that the task difficulty was moderate (overall difficulty=2.9±0.7). Also, 
participants reported that they felt active collaboration with the opponent (perceived 
feeling of interaction=3.9±1.0). In terms of response time, participants responded 
faster in zeroth-order condition (295.3±169.4 ms) than first-order condition 
(363.8±201.9 ms), and the effect was marginal (p=0.055).  

3.2 Estimated Spatial Patterns Using fMRI Data 

Fig. 2 shows the neural correlates of collaboration compared to control condition 
during the game. In zeroth-order condition, the left anterior insula was shown greater 
activations during the collaboration condition than the control condition. There was 
no brain region that showed greater neuronal activations from the control condition 
than the collaboration condition with the zeroth-order opponent. Table 1 shows the 
detailed information.  

The left insula activation was also found while participants were collaborating with 
first-order opponent, whereas the middle temporal gyrus was shown greater activa-
tions in the control condition while playing with the first order opponent.   
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Fig. 2. Activated regions when collaborating with an opponent  

Table 1. Activated regions in a collaboration (CB) and control (CN) condition 

Condition Region L/R MNI (mm) t score Cluster 
size 

Zeroth-order      
CB > CN Insula L -39, -1, 13 6.32 33 
First-order      
CB > CN Insula L -39, -1, 7 5.55 25 
 Middle occipital gyrus R 27, -94, 1 4.98 12 
 Fusiform gyrus R 45, -55, -26 4.37 11 
CN > CB Middle temporal gyrus R 45, -61, 25 4.49 10 

 
Fig. 3 shows the interaction between collaboration and opponent’s reasoning order. 

A collaboration with first-order than zeroth-order opponent resulted in a greater acti-
vation in bilateral insula, and right precentral gyrus. However, the opposite contrast 
(i.e., zeroth-order > first-order) did not reach a statistical significance. Table 2 shows 
the detailed information. 

 

 

Fig. 3. Activated regions when collaborating with the opponent 
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Table 2. Activated brain regions depending on a reasoning order of opponent 

Condition Region L/R MNI (mm) t score Cluster 
size 

Collaboration      
First > Zeroth Insula L -42, -13, 1 4.41 30 
 Precentral gyrus R 57, -7, 46 4.13 138 
 Insula R 45, -10, 10 4.11 44 
Control      
Zeroth > First  Lingual gyrus R 30, -67, -8 4.66 19 
First > Zeroth Middle temporal gyrus R 45, 14, -38 4.08 11 

4 Discussion 

In this study, we reported the neural basis of collaboration and its interaction with 
reasoning order. When participants were collaborating with a counterpart, the brain 
activations were found in the insula areas with much greater statistical significance in 
the high reasoning order (first-order) condition.  

Prior studies have suggested that insula played an important role in social interac-
tions [4, 11] and motivational process [12]. When an individual attributes the result of 
an action to the self, the activation within insula is increased and this activation may 
represent high level of sense of agency. This high-level of sense of agency strongly 
correlates with high motivational states and self-determined decision [12]. Thus, we 
may suppose that the activation within the insula reflects participant’s engagement in 
the game that requires a social interaction. The positive effect of social interaction 
such as collaboration and competition on motivation has been widely known [13]. 
Based on the fact that participants reported increased level of engagement during the 
collaboration game than the control game, the collaborative game might require more 
motivational demand compared to the control game.  

An anterior part of insula has known to be related to autonomic arousal, which is 
closely tied with emotional experience [14]. Indeed, the collaborative game with a 
counterpart was more likely to evoke participants’ arousal, compared to control con-
dition. This is because participants were asked to carefully consider the opponent’s 
reasoning order in a collaboration condition. Furthermore, in order to collaborate with 
an opponent in a higher reasoning level (i.e., first-order), participants had to be more 
attentive to the task to complete the task successfully. In this context, greater anterior 
insula activation may imply that participants were more attentive during the task to 
successfully reach the goal together. 

In future study, we would try to remove non-neuronal artifacts including motion 
related as well as physiological artifacts to refine the neuronal components in the 
measured BOLD signals. We would also employ data-driven analytic methods such 
as principal component analysis and independent component analysis techniques fol-
lowed by a connectivity analysis between brain regions. It would also be very inter-
esting future study in the context of the ToM how the neuronal mechanism related to 
other types of social interaction such as competition are interpreted in relation to the 
collaboration.  
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5 Conclusion 

In this study, we tried to figure out the neuronal mechanism underlying collaboration 
with other individual and found neuronal activations within bilateral insula areas. The 
level of insula activations was increased when deploying higher order reasoning col-
laborating with the opponent. This may suggest that collaborating with other people 
may recruit a great extent of motivational process in the insula area and future inves-
tigations to collect further evidences and utilities are warranted. 
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Abstract. Context-Aware Recommender Systems can naturally be
modelled as an exploration/exploitation trade-off (exr/exp) problem,
where the system has to choose between maximizing its expected re-
wards dealing with its current knowledge (exploitation) and learning
more about the unknown user’s preferences to improve its knowledge
(exploration). This problem has been addressed by the reinforcement
learning community but they do not consider the risk level of the cur-
rent user’s situation, where it may be dangerous to recommend items
the user may not desire in her current situation if the risk level is high.
We introduce in this paper an algorithm named R-UCB that considers
the risk level of the user’s situation to adaptively balance between exr
and exp. The detailed analysis of the experimental results reveals several
important discoveries in the exr/exp behaviour.

1 Introduction

User feedback (e.g., ratings and clicks) and situation (e.g., location, time) have
become a crucial source of data when optimizing a Context-Aware Recommender
System (CARS). Knowledge about the environment must be accurately learned
to avoid making undesired recommendations which may disturb the user in cer-
tain situations considered as critical or risky. For this reason, the CARS has to
decide, for each new situation, whether so far learned knowledge should be ex-
ploited by selecting documents that appear more frequently in the corresponding
user feedback, or if never seen documents should be selected in order to explore
their impact on the user situation, increasing the knowledge about the environ-
ment. On one hand exploration prevents from maximizing the short-term reward
since it may yield to negative reward. On the other hand, exploitation based
on an uncertain environment prevents from maximizing the long-term reward
because document rating values may not be accurate. This challenge is formu-
lated as an exploration/exploitation (exr/exp) dilemma. One smart solution for
exr/exp using the ”multi-armed bandit problem” is the hybrid approach done by
[7]. This approach combines the Upper Confident Bound (UCB) algorithm with
the ε-greedy algorithm. By introducing randomness into UCB, authors reduce
the trouble in estimating confidence intervals. This algorithm estimates both the
mean reward of each document and the corresponding confidence interval. With
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the probability 1-ε, this algorithm selects the document that achieves a highest
upper confidence bound and, with the probability ε, it uniformly chooses any
other document. The ε parameter essentially controls exr/exp. The problem is
that it is difficult to decide in advance the optimal value of ε. We introduce in
this paper an algorithm, named R-UCB, that computes the optimal value of ε
by adaptively balancing exr/exp according to the risk of the user situation. We
consider as risky or critical, a situation where it is dangerous to recommend un-
interesting information for the user; this means that it is not desired, can yield to
a trouble, or causes a waste of time for the user when reading a document which
is not interesting for him in the current situation. In this case, the exploration-
oriented learning should be avoided. R-UCB extends the UCB strategy with an
update of exr/exp by selecting suitable user’s situations for either exr or exp.
We have tested R-UCB in an off-line evaluation with real data. The remaining
of the paper is organized as follows. Section 2 reviews related works. Section 3
describes the algorithms involved in the proposed approach. The experimental
evaluation is illustrated in Section 4. The last section concludes the paper and
points out possible directions for future work.

2 Related Work

We refer, in the following, recent works that address the exr/exp trade-off (bandit
algorithm) and the Risk-Aware Decision problem. Existing CARS systems are
not considered in this paper, refer to [1] and [2] for further information.

Multi-armed Bandit Problem. Very frequently used in reinforcement learn-
ing to study exr/exp, the multi-documented bandit problem was originally de-
scribed by [9]. Few research works are dedicated to study the contextual bandit
problem in recommender systems, considering the user’s behaviour as the con-
text. In [7], authors extend UCB by dynamically updating outperforming both
beginning and decreasing strategies. In [6], assuming the expected reward of a
document is linear, they perform recommendation based on contextual informa-
tion about the users’ documents. To maximize the total number of user’s clicks,
this work proposes the LINUCB algorithm which is computationally efficient.
[7, 6] describe a smart way to balance exr/exp, but do not consider the user’s
situation and its associated risk during the recommendation.

The Risk-Aware Decision. To the best of our knowledge, the risk-aware de-
cision is not yet studied in recommender systems. However, it has been studied
for a long time in reinforcement learning, where the risk is defined as the reward
criteria that takes into account not only the expected reward, but also some
additional statistics of the total reward, such as its variance or standard devia-
tion [3]. The risk is measured with two types of uncertainties. The first, named
parametric uncertainty, is related to the imperfect knowledge of the problem pa-
rameters. For instance, in the context of Markov decision processes, [5] proposes
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to use the percentile performance criterion to control the risk sensitivity. The
second type, termed inherent uncertainty, is related to the stochastic nature of
the system, like [4], which consider models where some states are error states
representing a catastrophic result. More recently, [10] developed a policy gradi-
ent algorithm for criteria that involves both the expected cost and the variance
of the cost, and demonstrated the applicability of the algorithm in a portfolio
planning problem. However, this work does not consider the risk of the situa-
tions in the exr/exp problem. A recent work, [11], treated the risk and proposed
the VDBE algorithm to extend ε-greedy by introducing a state-dependent ex-
ploration probability, instead of hand-tuning. The system makes exploration in
situations when the knowledge about the environment is uncertain, which is in-
dicated by fluctuating action values during learning. In contrast, the amount of
exploration is reduced as far as the system’s knowledge becomes certain, which
is indicated by very small or no value differences.

Our Contributions. As shown above, none of the mentioned works tackles
the exr/exp problem considering the semantic risk level of the situation. This
is precisely what we intend to do by exploiting the following new features: (1)
Handling semantic concepts to express situations and their associated risk level.
The risk level is associated to a whole situation and/or the concepts composing
the situation; (2) Considering the risk level of the situation when managing
exr/exp, which helps CARS to adapt them selves to environment dynamically.
High exploration (resp. high exploitation) is achieved when the current user
situation is ”not risky” (resp. ”risky”); (3) Assuming that exploring data in
non-risky situations is useful for making a safety exploration in risky situations.
Our algorithm performs exploration in risky situations by selecting the most
interesting documents in non risky situations.

We improve the extension of UCB with ε-greedy (called here ε-UCB) because
it gives the best results in an off-line evaluation done by [7]; however, our ame-
lioration can be applied to any bandit algorithm.

3 The Proposed CARS Model

This section focuses on the proposed model, starting by introducing the key
notions used in this paper.

Situation : A situation is an external semantic interpretation of low-level
context data, enabling a higher-level specification of human behaviour. More
formally, a situation S is a n-dimensional vector, S = (Oδ1 .c1, Oδ2 .c2, ..., Oδn .cn)
where each ci is a concept of an ontology Oδi representing a context data dimen-
sion. According to our need, we consider a situation as a 3-dimensional vector
S = (OLocation.ci, OTime.cj , OSocial.ck) where ci, cj , ck are concepts of Location,
Time and Social ontologies.

User preferences: User preferences UP are deduced during the user navi-
gation activities. UP ⊆ D×A× V where D is a set of documents, A is a set of
preference attributes and V a set of values. We focus on the following preference
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attributes: click, time and recom which respectively correspond to the number
of clicks for a document, the time spent reading it and the number of times it
was recommended.

The user model : The user model is structured as a case base composed of
a set of situations with their corresponding UP , denoted UM = {(Si;UP i)},
where Si ∈ S is the user situation and UP i ∈ UP its corresponding user prefer-
ences.

We propose CARS to be modelled as a contextual bandit problem including
user’s situation information. Formally, a bandit algorithm proceeds in discrete
trials t = 1...T . For each trial t, the algorithm performs the following tasks:

Task 1. Let St be the current user’s situation, and PS the set of past situations.
The system compares St with the situations in PS in order to choose the most
similar one, Sp:

Sp = argmaxSi∈PSsim(St, Si) (1)

The semantic similarity metric is computed by:

sim(St, Si) =
1

|Δ|
∑
δ∈Δ

simδ(c
t
δ, c

i
δ) (2)

In Eq. 2, simδ is the similarity metric related to dimension δ between two con-
cepts ctδ and ciδ, and Δ is the set of dimensions (in our case Location, Time and
Social). The similarity between two concepts of a dimension δ depends on how
closely ctδ and ciδ are related in the corresponding ontology. To compute simδ,
we use the same similarity measure as [8]:

simδ(c
t
δ, c

i
δ) = 2 ∗ deph(LCS)

deph(ctδ) + deph(ciδ)
(3)

In Eq. 3, LCS is the Least Common Subsumer of ctδ and ciδ, and deph is the
number of nodes in the path from the current node to the ontology root.

Task 2. Let Dp be the set of documents recommended in situation Sp. After
retrieving Sp, the system observes rewards in previous trials for each document
d ∈ Dp in order to choose for recommendation the one with the greatest reward,
which is the Click Through Rate (CTR) of a document. In Eq. 4, the reward of
document d, r(d), is the ratio between the number of clicks (vi) on d and the
number of times d is recommended (vj).
∀d ∈ Dp, UP i=(d, click, vi) ∈ UP and UP j=(d, recom, vj) ∈ UP we have:

r(d) =
vi
vj

(4)

Task 3. The algorithm improves its document selection strategy with the new
observation: in situation St, document d obtains a reward r(d). Depending on
the similarity between the current situation St and its most similar situation Sp,
two scenarios are possible: (1) If sim(St, Sp) �= 1: the current situation does not
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exist in the case base; the system adds this new case composed of the current
situation St and the current user preferences UP t; (2) If sim(St, Sp) = 1: the
situation exists in the case base; the system updates the case having premise the
situation Sp with the current user preferences UP t.

The ε-UCB Algorithm. For a given situation, the algorithm recommends a
predefined number of documents, specified by parameter N using Eq. 5. Specif-
ically, in trial t, this algorithm computes an index b(d) = r(d) + c(d) for each
document d, where: r(d) (Eq. 4) is the mean reward obtained by d and c(d) is

the corresponding confidence interval, so that c(d) =
√

2×log(t)
vj

and vj is the

number of times d was recommended. With the probability 1-ε, ε-UCB selects
the document with the highest upper confidence bound dt = argmaxd∈Dpb(d);
and with the probability ε, it uniformly chooses any other document.

dt =

{
argmaxd∈(Dp−RD)b(d) if q > ε

Random(Dp −RD) otherwise
(5)

In Eq. 5, Dp is the set of documents included in the user’s preferences UP p

corresponding the most similar situation (Sp) to the current one (St); RD is
the set of documents to recommend; Random() is the function returning a ran-
dom element from a given set; q is a random value uniformly distributed over
[0, 1] which controls exr/exp; ε is the probability of recommending a random
exploratory document.

Semantic Risk Level Computing. In real world, the exr/exp trade-off should
be directly related to the risk level of the situation, this is why computing the
risk level is indeed indispensable. To consider the semantic risk level of the
situation in exr/exp, we add a risk level to each concept in a situation: S =
(Oδ1 .c1[cv1], Oδ2 .c2[cv2], ..., Oδn .cn[cvn]), where CV = {cv1, cv2, ..., cvn} is the
set of risk levels assigned to concepts ci (i = 1..n) and cvi ∈ [0, 1]. R(S) is
the risk level of situation S. R(S) ∈ [0, 1] and situations having R(S) > thR

are considered as risky or critical situations (CS). The risk threshold thR is de-
scribed in Subsection 3. The risk of a concept varies from a domain to another
and it is predefined by a domain expert. We conducted a study with profes-
sional mobile users, described in detail in Sec 4, where the domain expert is
a commercial manager, and we considered, for example, the following set of
critical situations: CS = {CS1, CS2, CS3}, CS1 = (−, afternoon,manager),
CS2 = (company,morning,−), CS3 = (−,−, client).

The risk level R(St) of situation St is computed as follows:

R(St) =

⎧⎨⎩
Rc(S

t) if CS = ∅, CV �= ∅
Rm(St) if CS �= ∅, CV = ∅

1
2 × (ηRc(S

t) + ζRm(St)) if CS �= ∅, CV �= ∅
(6)

If only CV is known, Eq. 6 returns the risk Rc(S
t) (Eq. 7) inferred from the

situation concepts. If only CS is known, Eq. 6 returns the the risk Rm(St) (Eq. 9)
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extracted from the degree of similarity between the current situation St and the
centroid critical situation Sm (Eq. 10). If CV and CS are both known, Eq. 6
returns the weighted mean between Rc(S

t) and Rm(St); η and ζ are respectively
the weights associated to Rc(S

t) and Rm(St), where η+ζ = 2. These weights are
related to the application domain: if the domain is itself risky (e.g. healthcare
and safety), the system considers that Rc is more important than Rm (during
the experimental phase, η and ζ have both a value of 1). Rc(S

t) gives a weighted
mean of the risk level of the concepts:

Rc(S
t) =

1

|Δ| (
∑
δ∈Δ

μδcv
t
δ) (7)

In Eq. 7, cvtδ is the risk level of the dimension δ in St and μδ is the weight
associated to dimension δ. μδ is set out by using an arithmetic mean as follows:

μδ =
1

|CS| (
∑

Si∈CS

cviδ) (8)

The idea in Eq. 8 is to get a measure of how risky are, in average, concepts
of dimension δ in CS, computing the mean of all the risk levels associated to δ
in CS. Being B the similarity threshold (this metric is fixed on the off-line eval-
uation) and Sm the critical situation centroid, Rm(St) is computed as follows:

Rm(St) =

{
1−B + sim(St, Sm) if sim(St, Sm) < B

1 otherwise
(9)

In Eq. 9, the situation risk level Rm(St) increases when the similarity between
St and Sm increases. The critical situation centroid is selected as follows:

Sm = argmaxSf∈CS

1

|CS|
∑

Se∈CS

sim(Sf , Se) (10)

The R-UCB Algorithm. To improve the adaptation of the ε-UCB algorithm
to the risk level of the situations, the R-UCB algorithm (Alg. 1) computes the
probability of exploration ε (line 2), by using the situation risk level R(St) as
indicated in Eq. 11. In Eq. 11. εmin is the minimum exploration allowed in CS
and εmax is the maximum exploration allowed in non-CS (these two metrics
are computed off-line using exponentiated gradient, which gives εmin = 0.1 and
εmax = 0.5).

ε = εmax −R(St)× (1− εmin) (11)

Depending on the risk level of the current situation St, two scenarios are possible:
(1) If R(St) < thR, S

t is not critical(Alg. 1, line 3); the ε-UCB algorithm is used
with ε > εmin (Eq. 11). (2) If R(St) ≥ thR, S

t is critical (Alg. 1, line 4); the ε-
UCB algorithm is used with ε = εmin, performing a high exploitation (Alg. 1, line
6, instruction 1). Based on our supposition that data in non critical situations
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can be useful to infer optimal exploration in CS, the algorithm makes a safety
exploration in CS by selecting the documents with the highest CTR in Dy

(Alg. 1, line 6, instruction 2), where Dy is the set of documents recommended in
the most similar situation Sy to St, Sy /∈ CS and computed using Eq. 1. We still
consider random exploration (Alg. 1, line 6, instruction 3) which is indispensable
to avoid documents selection in CS becoming less optimal. To summarize, the
system makes a low and safety exploration when the current user’s situation
is critical (Alg. 1, line 6); otherwise (Alg. 1, line 3), the system performs high
exploration. In this case, the degree of exploration decreases when the risk level
of the situation increases (Eq. 11. To verify if St is critical, the risk threshold
thR is computed as indicated in Eq. 12. At the initialization phase, the domain
expert may indicate risk levels for a set of concepts and/or situations. If risk
levels on concepts are indicated, the expert defines the θ threshold; if risk levels
on situations are indicated, the expert defines the B threshold.

thR =

⎧⎨⎩ θ if CS = ∅, CV �= ∅
B if CS �= ∅, CV = ∅

1
2 × (ηθ + ζB) if CS �= ∅, CV �= ∅

(12)

Algorithm 1. The R-UCB algorithm

1: Input: St, Dp, Dy , RD = ∅, B,N, εmin,εmax Output: RD
2: ε = εmax −R(St)× (1− εmin) //R(St) is computed as described in Eq.6
3: if R(St) < thR then RD = ε-UCB(ε,Dp, RD,N) else
4: for i = 1 to N do
5: q = Random(0, 1); k = Random(0, 1)

6: di =

⎧⎨
⎩

argmaxd∈(Dp−RD)b(d) if q > εmin

argmaxd∈(Dy−RD)b(d) if q ≤ k ≤ εmin

Random(Dp) otherwise
7: RD = RD ∪ di
8: end for

4 Experimental Evaluation

We conducted a diary study with the collaboration of a software company. This
company provides a history application, which records time, current location,
social and navigation information of its users during their application use. The
diary study took 2 months and generated 356 738 diary situation entries. From
the diary study, we have obtained a total of 5 518 566 entries concerning the
user’s navigation (number of clicks and time spent), expressed with an average
of 15.47 entries per situation.

Off-line Evaluation. To test the proposed R-UCB algorithm, in our experi-
ments, we have firstly collected the 100 000 cases from the situations case base.
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We then evaluate the existing algorithms by confronting them, at each iteration,
to a case randomly selected and removed. We calculate the average CTR every
1000 iterations. The number N of documents returned by the CARS for each
situation is 10 and we run the simulation during 10000 iterations, where all the
tested algorithms have converged. In the first experiment, in addition to a pure
exploitation baseline, we compare our algorithm to the ones described in the
related work (Sec. 2): VDBE, EG-UCB, ε-UCB, beginning-UCB (ε-UCB with
beginning strategy) and decreasing-UCB (ε-UCB with decreasing strategy). In
Fig. 1, the horizontal axis represents the number of iterations and the vertical
axis is the performance metric.

Fig. 1. Average CTR for exr/exp algorithms

R-UCB and VDBE effectively have the best convergence rates; VDBE in-
creases the average CTR by a factor of 1.5 over the baseline and R-UCB, by
a factor of 2. The improvement comes from a dynamic exr/exp, controlled by
the risk level estimation. These algorithms take full advantage of exploration
when the situations are not critic, giving opportunities to establish good re-
sults when the situations are critical. Finally, as expected, R-UCB outperforms
VDBE, which is explained by the good estimation of the risk.

5 Conclusion

In this paper, we study the problem of exr/exp in CARS and propose a new
approach that adaptively balances exr/exp regarding the risk level of the situa-
tion. We have validated our work with off-line studies which offered promising
results. This study yields to the conclusion that considering the risk level of the
situation on the exr/exp strategy significantly increases the performance of the
recommender system. In considering these results, we plan to investigate public
benchmarks.
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Abstract. There are different types of educational timetabling prob-
lems which are computationally difficult to solve. In this study, we deal
with the High School Timetabling Problem which requires assignment of
events, such as courses, and resources, such as classrooms, to time-slots
under a set of different types of constraints. We describe an approach
that hybridises an Evolutionary Algorithm variant and Simulated An-
nealing methods to solve this problem. This approach is tested over a set
of real world instances obtained across different countries. The empirical
results demonstrate the viability of the hybrid approach when compared
to the previously proposed techniques.

1 Introduction

High school timetabling problem (HSTP) is a real-world hard combinatorial
optimisation problem [7]. It seeks a search for the best event schedule and the
best allocation of resources including the scheduling of classes, teachers, courses
and students in a time slots in a high school institution subject to a set of
constraints. These constraints are classified as hard and soft constraints. The
hard constraints must be satisfied to ensure the feasibility of the solution whereas
the soft constraints characterise preferences. The violation of the soft constraint
does not destroy the feasibility but rather affecting the quality of the solution.

Due to the NP nature of high school timetabling problems, meta-heuristics
are preferred in most of the previous studies. Approaches used in HSTP include
simulated annealing [8], evolutionary algorithms [6], tabu search [15], adaptive
large neighborhood search [20], hyper-heuristic [11], particle swarm optimisation
[21], bee algorithms [14], integer programming [5], tiling algorithms [13], walk
down jump up algorithm [24] and constraint programming approach [22]. [16]
provided a recent survey on HSTP. In this study, we introduce a high school
timetabling problem and combining Harmony Search Algorithm as an Evolu-
tion Strategy with Simulated Annealing approach (HSA-SA) as a solver to the
problem. To the best knowledge of authors, this is the first work that employs
HSA-SA for HSTP.
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Harmony search algorithm (HSA) is an Evolutionary Algorithm variant. It
is a population-based metaheuristic named by Geem et al. (2001) [9]. Although
it was introduced as new, soon after, HSA was classified as a special case of
Evolution Strategies in [23]. In this study, we will adapt the terminology as used
in [9] while discussing the algorithmic components. The terminology used in HSA
is inspired from the process of musical improvisation where a group of musicians
play the pitches of their musical instruments together seeking for a pleasing
harmony as determined by aesthetic standards. Based on harmony memory size
(HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR)
and the number of improvisations (NI), a new harmony vector X=x1,x2,.,xn is
generated. In optimisation process, musician (decision variable) plays (generates)
a possible note (value of decision variable) for finding the best harmony (optimal
solution). At each iteration, a candidate solution (harmony) is evaluated by
objective function. The move acceptance criteria considers whether to keep or
replace the new solution with the respect to the worst solution in the harmony
memory. This cycle continues until the termination criteria (maximum NI or
condition) is satisfied. HSA has been successfully applied to a range of real
world optimisation problems, including job shop scheduling [25], task assignment
problem [26], optimising energy consumption [10], nurse rostering problem [4]
and university course timetabling [2]. More on HSA can be found in [3].

Simulated Annealing [1] is a probabilistic metaheuristic method in which at
each iteration a new solution is generated. The new solution is accepted if it
improved the previous solution. The non-improving solutions are accepted with
a probability of pt = e−

Δ
T , where Δ is the quality change, and T is the method

parameter, called temperature which regulates the probability to accept solutions
with higher objective value (cost) [1].

Section 2 provides an overview of the high school timetabling problem dealt
with in this work. Section 3 describes the proposed solver components that are
tested for solving the high school timetabling problem. Section 4 provides the
empirical results. Finally, Section 5 presents the conclusion.

2 International Timetabling Competition 2011 Datasets

Recently, the challenge has become increasingly highlighted when a group of
researchers run the Third International Timetabling Competition (ITC2011)
in 2011-2012 [17], with the goal of raising the profile of automated high school
timetabling. The ITC2011 was run by the Centre for Telematics and Information
Technology at the University of Twente in the Netherlands, aiming to drive a
new era of research of automated high school timetabling. The participants of
ITC2011 tackled 35 instances of the high school timetabling problem, taken from
schools in 10 countries. The instances are defined by a standard data format
based on XML schema called XHSTT (XML High School Timetabling) [18, 19].
Out of 17 registered participants to the competition, only 5 teams submitted
solutions. The reason is unknown, but could be due to the large number of
imposed constraints which makes the problem hard to handle in practice [19].
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Briefly, the ITC2011 problem instances [19] contain four components includ-
ing times, resources, events/meetings and constrains. Time represents indivisible
interval of time during which event run. Resource represents the entity that
attend event. For example: ”T1” resource in ”BrazilInstance3 XHSTT2013” in-
stance refers to a teacher while resource ”S1” in the same instance refers to a
class. Event is a meeting between resources. Some events might be pre-assigned
with time or resource; For example, the event ”RE-3A” predefined the time to
”Mon 1” in ”ItalyInstance1 XHSTT2012A” instance. Also an event can be split
into sub-events. Constraint represents the condition that a solution should sat-
isfy, if possible. The ITC2011 problem instances contain 15 types of constraints.
All constraints could be hard and soft according to a given instance. For more
description, see [17–19].

2.1 Characteristics of the Problem Instances

In this work, twelve ITC2011 high school timetabling problem instances are
used to study the effectiveness of the proposed HSA. The instances are small
and medium in size taken from three countries: Brazil, Finland and Italy. Table
1 summarises the main characteristics of these instances. The datasets can be
downloaded from the ITC2011 website [17].

Table 1. Datasets characteristics (T imes total number of times. Teachers, Rooms
and Classes are the total number of resources of resource type ”Teacher”, ”Room”
and ”Class”, respectively. Events total number of events.)

Country Instance Name Times Teachers Rooms Classes Events

Brazil Instance1 25 8 3 21
Brazil Instance2 25 14 6 63
Brazil Instance3 25 16 8 69
Brazil Instance4 25 23 12 127
Brazil Instance5 25 31 13 119
Brazil Instance6 25 30 14 140
Brazil Instance7 25 33 20 205
Finland ElementarySchool 35 22 21 60 291
Finland SecondarySchool 35 25 25 14 280
Finland SecondarySchool2 40 22 21 36 469
Italy Instance1 36 13 3 42
Italy Instance4 36 61 38 748

3 Harmony Search Algorithm and Simulated Annealing

HSA is a population-based meta-heuristic approach inspired by the musical im-
provisation process [9]. It iteratively improves the solutions stored in the har-
mony memory. It randomly perturbs a solution (vector of decision variables) via
a number of improvisations and the harmony memory is updated during the
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improvisations. At each improvisation, stored values of decision variables in the
harmony memory are adapted according to Harmony Memory Consideration
Rate (HMCR); and the variable values in the solution are adjusted according to
a Pitch Adjustment Rate (PAR). This cycle continues until the stop criteria is
met. The steps of the HSA are as follows [9].

Step 1. Initialise the Parameters: The HSTP variables are extracted from
the HSTP instances. The variables vary from instance to instance such as ex-
istence of certain resource type(s), number of events (meetings) and number of
hard and soft constraints. The parameters of HSA including: (i) Harmony Mem-
ory Consideration Rate (HMCR), the rate of selecting a value from Harmony
Memory HM (memory consideration) or taking into account a random consider-
ation; (ii) Harmony Memory Size (HMS), the number of solution vectors in the
HM; (iii) Pitch Adjustment Rate (PAR), the rate of adjusting the values; and
(iv) Number of Improvisations (NI), the number of iterations.
Step 2. Initialise the Harmony Memory: The HMS initial solutions are
generated using the general solver of KHE implemented by Kingston [12]. The
hard constraints of the initial solutions are, likely, violated and the following
steps need to fix the violation of hard constraints. Each row in HM represents
one solution of HSTP and f (x ) is the objective function value (Equation 1).
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x1
1 x1

2 ... x1
N
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1 x2
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N

...
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. . .
...
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⎤⎥⎥⎥⎦ =
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...

f(xHMS)

⎤⎥⎥⎥⎦ (1)

Step 3. Improvise a New Harmony: The essential step in HSA is to impro-
vise a new harmony vector x́=(x́1,x́2,...,x́N ) based on three operators: memory
consideration, pitch adjustment and random consideration. In memory consid-
eration, the values of the new harmony vector are randomly selected from the
current values stored in HM x

′
i with a probability of HMCR where HMCR ∈ [0,

1]. In random consideration, decision variables are randomly assigned according
to their possible range with a probability of (1-HMCR). Furthermore, if mem-
ory consideration failed to maintain the feasibility of the new solution, then the
random consideration will be called. In pitch adjustment, the decision variable
xi of a new harmony vector is pitch adjusted with a probability of PAR, where
PAR ∈ [0,1]. In HSTP, pitch adjustment is a neighbourhood move. In this work,
we have implemented three neighbourhood moves:

– Move Meeting (MM) moves the time slot t1 of meeting m to time slot t2.
– Swap Meeting (SM) swaps two meetings m1 and m2.
– Do Nothing (DN); each of which is selected with equal probability as shown

in Equation 2.
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Adjust x́ =

⎧⎪⎨⎪⎩
MM if 0 ≤ rand < (PAR/3),

SM if (PAR/3) ≤ rand < (2.PAR/3), s.t rand ∈ [0, 1]

DN if (2.PAR/3) ≤ rand < (PAR).

(2)
Step 4. Update the Harmony Memory: If the new generated harmony
solution vector x́=(x́1,x́2,.,x́N ) has better quality than the worst harmony vector
stored in HM in terms of the objective function (cost) value, then the worst
harmony in HM will be replaced by the new harmony.
Step 5. Check the Stopping Criteria: Steps 3 and 4 are repeated until the
maximum number of improvisations (NI) is reached.

After applying an iteration of the HSA, the Simulated Annealing method will
be employed as a polishing procedure with the goal of improving the current
best solution obtained. At each iteration one of 5 neighbourhoods is randomly
selected and applied to the candidate solution. The neighbourhood moves are:
Move Meeting; Swap Meeting; Swap Three Meetings (swaps meetings m1 and
m2 then m2 and m3); Swap Block of Meetings (swaps time slot of meetings m1

and m2, but if the meetings have different duration,m1 is moved to the following
the last time slot occupied by m2); and Task Split (split task into two). The first
two moves are explained in step 3 of HSA. The temperature of the SA method
is a function of the number of meetings.

4 Results

The parameter values of the HSA are chosen as HMS=5, HMCR=0.99,
PAR=0.66 and NI=50. These values are decided after a set of exhaustive ex-
periments using different combinations of values which is not reported in this
paper due to space requirements. The proposed hybrid approach is implemented
in C, under CenTos 6.4 operating system. The experiments are performed on an
Intel(R) Xeon(R) CPU X7560 @2.27GHz with a memory of 4.00G.

The HSA-SA is tested on ITC2011 instances described in table 1. Solutions
are evaluated in terms of feasibility (sum of weighted hard constraints violations)
and preferences (sum of weighted soft constraints violations); and the goal is to
minimise it. A solution with a cost value of 42.0013 indicates an infeasibility
value of 42 and objective value of 13. Five competitors were submitted solutions
to the ITC2011. HySST [11] applies a multi-stage hyper-heuristic on a set of
mutational heuristics and hill climbers, GOAL [8] combines the iterated local
search with simulated annealing, HFT [6] uses the evolutionary algorithms as a
meta-heuristic to solve the problem, Lectio [20] applies an algorithm based on
adaptive large neighbourhood search, and VAGOS [17].

Table 2 presents the performance comparison of the HSA-SA to the five com-
peting approaches and the best publicly known (BPK) solutions before the five
approaches found better solutions. The table shows the cost of the solutions
obtained by the different approaches. The column KHE in the table shows the
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average of five solutions produced by the general solver of KHE implemented
by Kingston [12]. From the table, HSA-SA was able to produce feasible solu-
tions to all the tested instances and enhance the initial solutions generated by
the general solver of KHE. The proposed HSA-SA improved upon BPK in six
out of seven instances. The HSA-SA performs the best on ElementarySchool
and SecondarySchool2 instances. The HSA-SA produces a solution satisfying all
the hard and soft constraints on SecondarySchool2 instance. The HSA-SA out-
performs the HFT approach in all the instances. In BrazilInstance4, HSA-SA
generates better solution than HySST. Note that in the table, ”-” are shown to
indicate that the solver did not submit solution for the instance. Most of the
tested instances are taken from instances used during Round-1 of the ITC2011
competition, and the competitors were expected to submit solutions if it im-
proved on the best solution previously known to the organisers of the competi-
tion. No restrictions were placed on the time limit or how the solutions could be
obtained. For more details about the competition, see [19].

Table 2. The cost values obtained by KHE, HSA-SA, the best publicly known solution
before the start of the ITC2011 (BPK), and the competitors solvers

Instance Name KHE HSA-SA BPK GOAL HySST Lectio HFT VAGOS

BrazilInstance1 0.0081 0.0020 0.0024 - - - - 0.0011
Instance2 3.9999 0.0048 - - 0.0044 0.0005 0.0082 0.0026
Instance3 3.9999 0.0154 - - 0.0084 0.0048 0.0212 0.0047
BrazilInstance4 39.9999 0.0162 0.0112 - 0.0176 0.0090 0.0205 0.0078
Instance5 12.9999 0.0148 0.0225 - - - - 0.0043
Instance6 11.9999 0.0186 0.0209 - 0.0150 0.0060 0.0347 0.0074
Instance7 22.9999 0.0234 0.0330 - - - - 0.0122
ElementarySchool 10.0306 0.0003 - 0.0003 0.0003 0.0003 0.0003 -
SecondarySchool 43.9999 0.0090 0.0106 - - 0.0088 - -
SecondarySchool2 2.9999 0.0000 - 0.0000 0.0000 0.0000 0.0576 -
ItalyInstance1 0.3022 0.0020 0.0028 - - - - 0.0012
ItalyInstance4 38.9999 0.0082 - 0.0061 0.0052 0.0078 0.8623 -

5 Conclusion and Future Directions

A unified high school timetabling problem which was a topic of a recent com-
petition, referred to as ITC2011, is described in this study. ITC2011 provided
a collection of high school timetabling problem instances collected from differ-
ent countries across the world. The goal of the competition was to promote
researchers and practitioners to deal with the real world complexities of the
problem. We have combined an Evolution Algorithm variant and Simulated An-
nealing methods (HSA-SA) and tested on twelve ITC2011 benchmark instances
as an initial study. The results show that the approach is sufficiently powerful
producing high quality solutions. The proposed approach was able to generate
solutions to the problem matching the quality of the best known solutions in two
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occasions and near to the best known solutions for the other instances. As future
work, we would like to analyse the influence of choice of parameter values of the
approach and extend our experiments to all ITC2011 benchmark instances. Al-
though the performance of the HSA-SA is evaluated on high school timetabling,
it is also our intention to investigate its performance on the other educational
timetabling problems, such as university course timetabling. Finally, we aim to
improve the performance of the approach further by incorporating new move
operators including particularly local search.
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Abstract. Time is crucially involved in most of the activities of humans
and animals. However, the cognitive mechanisms that support experienc-
ing and processing time remain largely unknown. In the present work we
follow a self-organized connectionist modeling approach to study how
time may be encoded in a neural network based cognitive system in or-
der to provide suggestions for possible time processing mechanisms in the
brain. A particularly interesting feature of our study regards the imple-
mentation of a single computational model to accomplish two different
robotic behavioral tasks which assume diverse manipulation of time in-
tervals. Examination of the implemented cognitive systems revealed that
it is possible to integrate the main theoretical models of time representa-
tion existing today into a new and particularly effective theory that can
sufficiently explain a series of neuroscientific observations.

1 Introduction

Over the last few decades, an increasing number of studies have demonstrated the
accuracy with which animals and humans are able to estimate time. However,
the exact cognitive mechanisms that enable the measurement of time remain
largely unknown. Broadly speaking, there are two main theories explaining how
our brain represents time [1,5]. The first is dedicated models (also known as
extrinsic, or centralized) that assume clock-like mechanisms and thus yield an
explicit metric of time. This is the oldest and most influential explanation on
interval timing. The models included in this category employ mechanisms that
are designed specifically to represent duration. Traditionally such models have
followed an information processing perspective in which pulses that are emitted
regularly by a pacemaker are temporally stored in an accumulator [4,3]. This
has inspired the subsequent pacemaker approach that uses oscillations to rep-
resent clock ticks [13]. The Striatal Beat Frequency (SBF) model is the most
famous example of this category, assuming that timing is based on the coin-
cidental activation of basal ganglia neurons by cortical neural oscillators [12].
Other dedicated models assume monotonous increasing or decreasing processes
to encode elapsed time [16,15]. The second category includes intrinsic models
(also known as distributed) that describe time as a general and inherent prop-
erty of neural dynamics [7,2]. According to this approach, time is intrinsically
encoded in the activity of general purpose networks of neurons. Thus, rather
than using a time-dedicated neural circuit, time coexists with the representation
and processing of other external stimuli.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 74–81, 2013.
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Besides the human devised representations of time that have been discussed
above, our brain may actually use a different approach to encode and pro-
cess time. Self-organized computational modeling can serve as a complementary
means to explore representational schemes [14], and thus facilitate convergence
in the time representation debate. This is the aim of the present study which
employs a robotic experimental setup to investigate alternative schemes of time
representation. Interestingly, the perception and processing of time remains par-
ticularly unexplored in the field of robotic systems [9]. Given the essential role
of time in nearly all our daily activities, research in the emerging branch of
robotic time perception is expected to significantly contribute in the seamless
integration of artificial agents into the heavily time-structured human societies.

In the present study, we consider two different time processing tasks namely
Duration Comparison and Past Characterization, which are accomplished by the
very same robotic cognitive system. This is in contrast to the time representation
schemes mentioned above, which have been discussed in a theoretical basis with-
out being associated to the accomplishment of specific tasks. More specifically, a
Continuous Time Recurrent Neural Network (CTRNN) [10] is used to develop an
“artificial brain” for the robotic agent. We use an evolutionary design procedure
based on Genetic Algorithms to search possible configurations of the artificial
brain that can accomplish the afore mentioned tasks. Subsequently, we study
the mechanisms self-organized in the CTRNN to extract the characteristics of
effective time perception mechanisms that may be also valid for interval process-
ing in our brain. The obtained results showed that very effective neural schemes
can be used for generating, representing, and processing time, by combining the
key characteristics of the “dedicated and intrinsic theories of time”.

In the following sections, we describe the experimental setup followed in the
present study, the obtained CTRNN results, and how the latter compare to the
time processing data of the brain.

2 Experimental Setup

The current study is an extension of our previous works [10,11,9], investigat-
ing time perception and processing mechanisms by artificial agents. While these
works have focused on single tasks, the present study simultaneously addresses
two different tasks with temporal characteristics in order to emphasize the gen-
eralization of the self-organized time processing mechanisms.

Due to space limitations, in the following we will mainly concentrate on the
presentation of the tasks, describing very briefly the robotic agent and its con-
nectivity to the Continuous Time Recurrent Neural Network that have been
already presented in detail in [10,11].

The Robotic Agent. We simulate a two wheeled mobile robot equipped with
8 uniformly distributed distance, light and sound sensors. The distance sensors
are mainly used during navigation to avoid robot bumping on the walls. The
light sensor is used to receive a task-indicator informing the robot which one
of the tasks is considered at a given experimental session. The sound sensor is
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Goal 1 Goal 2

Sound

(a)

Task Spec. Duration A

Move

Duration B

Initialization
(10 steps)

Preparation
(10 steps)

Rest
(10 steps)

Wait
(20 steps)

(5 steps)
Task id=1

Go Signal

Duration B

(b) Long time ago

(c) Short time ago

Fig. 1. Part (a) shows the experimental environment used in our study. Part (b) sum-
marizes the experimental procedure followed in the Duration Comparison experiment.
Part (c) summarizes the experimental procedure followed in the Past Characterization
experiment.

used for the perception of temporal durations (i.e. the robot must perceive the
duration of emitted sounds). The robotic cognitive system is implemented by a
Continuous Time Recurrent Neural Network (CTRNN) similar to [10,11].

Duration Comparison. The scenario of this task assumes that the robot per-
ceives two time intervals A and B, compares their duration and drives to the end
of the corridor turning either to the left side in the case that A was shorter than B,
or, to the right side in the case that A was longer than B (see Fig 1 (a)). The exper-
iment starts with the simulated agent located at the bottom of the corridor envi-
ronment. The robot remains at the initial position for a short initialization phase
of 10 simulation steps, where it experiences a light cue indicating that the exper-
imental procedure for the Duration Comparison task will follow (see Fig 1 (b)).
Subsequently, after a short preparation phase, the agent experiences two sounds
having temporal durations A and B, both of them randomly specified in the range
[10, 100]. The two sounds are separated by a predefined rest period of 10 simulation
steps. Just after sound B, the agent is provided 20 simulation steps to compare A
and B, decide which one was longer and prepare its motion strategy. At the end of
this period the robot is provided a “go” signal and it starts navigating across the
corridor. In order to successfully complete the task, the agent has to navigate to
the end of the corridor and turn right in the case that A interval was longer than
B, or, turn left in the case that A interval was shorter than B.

Past Characterization. In this task, it is assumed that the robot experiences
a sound and at a future time it judges whether this particular experience was
at a short or long time ago. Similar to the previous task, the robot responds by
driving along the corridor and turning either to the left side in the case that the
sound event happened a long time ago, or, to the right side in the case that the
event sound happened a short time ago (see Fig 1 (a)).

The experiment starts with the simulated mobile robot located at the begin-
ning of the corridor. After a short initialization period, the agent experiences a



Self-organized Representation of Time 77

light cue indicating that the experimental procedure that will follow, concerns
the Past Characterization task (see Fig 1 (b)). Subsequently, after a preparation
interval with duration TD ∈ [15, 25] for the case that the sound event was long
time ago in the past, or TD ∈ [65, 75] in the opposite case, the agent experiences
a sound for a period of 10 steps. Then a wait period follows that is dynamically
specified as W = 100−TD (i.e. the pair of TD and W , determines whether the
sound experience of the agent has been in the short or long past). At the end
of the wait period the agent is provided a “go” signal and it starts navigating
towards the end of the corridor. If the sound experience was in the long past the
agent must turn left, while if the sound experience was in the short past, the
agent must turn right.

Performance Evaluation. To evaluate the response of the artificial agent in
both the Duration Comparison and the Past Characterization task, we mark two
different positions in the environment which are used as goal positions for the
robot, as shown in Fig 1 (a). Depending on whether Goal1 or Goal2 is considered
correct in a given experimental session, we measure the minimum distance D,
between the agent’s path and that goal position. Additionally, during navigation,
we consider the number Bumps of robot bumps on the walls. Thus, the success
of the robotic agent to a given experimental session i ∈ {A > B,A < B, } and
j ∈ {LongPast, ShortPast} is estimated by:

Si = Sj =
100

D · (Bumps+ 1)
(1)

By maximizing SA>B, SA<B and SLongPast, SShortPast we aim at minimizing
the distance from the goals therefore produce responses at the correct side of the
corridor, as well as avoid bumping on the walls. The total capacity of the robot
to accomplish the Duration Comparison and the Past Characterization task is
estimated by considering robot’s perfornace in all four possible cases as:

FIT = SA>B · SA<B · SLongPast · SShortPast (2)

Evolutionary Procedure. We use a Genetic Algorithm (GA) to explore pos-
sible time perception and processing mechanisms in CTRNN-based cognitive
systems. In short, we use a population of artificial chromosomes encoding pos-
sible CTRNN configurations (their synaptic weights and neural biases). Each
candidate solution encoding a complete CTRNN is tested on both the Duration
Comparison and the Past Characterization task, evaluated according to equation
(2). The scores accomplished by the controllers are used to sort and evolve the
population of chromosomes, therefore producing the next generation of candi-
date solutions. During reproduction, the best 30 individuals of a given generation
mate with randomly selected individuals using single point crossover, to produce
the next generation of CTRNNs. Mutation corresponds to the addition of up to
25% noise, in the parameters encoded to the chromosome, with each parameter
having a probability of 4% to be mutated. This iterative evolutionary procedure
is repeated for a predefined number of 500 generations.



78 M. Maniadakis and P. Trahanias

400 500 600 700 800
300

350

400

450

500

550

600

650

700

750
A=45, B=60

400 500 600 700 800
300

350

400

450

500

550

600

650

700

750
A=60, B=45

(a)

0 50 100 150 200 250 300 350
0

0.5

1

(b) A=45, B=60

0 50 100 150 200 250 300 350
0

0.5

1

(c) A=60, B=45

Fig. 2. Part (a) shows the performance of the agent when comparing two time intervals
with lengths A=45, B=60 and A=60, B=45. Part (b) shows the activity of two CTRNN
neurons that are actively participating in the measurement and comparison of A=45,
B=60. Part (c) shows the activity of the same neurons for the case of A=60, B=45. In
both plots the first two black vertical solid lines indicate the A period, and the next
pair of black vertical dotted lines indicate the B period. The yellow line corresponds
to the time that the ”go” signal is given to the robot.

3 Results

We have evolved multiple CTRNNs running ten different GA processes. Five of
the evolutionary procedures converged successfully configuring CTRNNs capa-
ble of processing time. Interestingly, the results obtained from the statistically
independent evolutionary procedures exhibit common internal dynamics, which
are discussed below using as a working example one representative solution.

Duration Comparison. The agent can successfully perceive and compare
pairs of random temporal durations. The performance of the robot for two time
intervals A and B with interchangeable durations 45 and 60 simulation steps is
demonstrated in Fig 2(a).

We have examined the activity of CTRNN neurons to reveal the time process-
ing mechanisms self-organized in the network. We observed that all CTRNN neu-
rons are governed by oscillatory dynamics. This is in agreement to the dedicated-
time models that assume oscillatory activity to implement a clock-like tick mech-
anism [3] that facilitates duration perception. However, besides the fact that the
task is clearly separated into two distinct phases of (i) perception and (ii) action,
some neurons remain active in the whole duration of the task which implies that
time perception is mixed with the ordinary cognitive activity (i.e. neurons are
not “dedicated” to time).

Additionally, neurons are not passively oscillating but seem to encompass
crucial temporal information. In particular, Fig 2(b) show the activity of two
neurons for the case of A < B in Fig 2(a), and Fig 2(c) shows the activity of
the same neurons for the case o A > B in Fig 2(a). In both plots the amplitude
of the oscillation increases as long as the agent experiences either interval A or
B and thus, the difference between the two neurons is constantly decreasing in
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relation to the length of the experienced duration. In other words, the amplitude
of the oscillation can be actively used for counting the elapsed time. This obser-
vation extends the ideas behind the oscillatory models of time, suggesting that
oscillations may not serve as passive ticks, but they might be actively involved in
measuring time. Our results agree to both the oscillatory [12,13] and ramp [15]
models, suggesting that the two mechanisms can be effectively integrated into
the very same cognitive system and should not be considered as contradictory.

Another interesting observation regards duration resetting when turning from
the A interval to the B interval. Typically, dedicated models assume a full reset
of perceived duration, while intrinsic models assume no-reset [8]. According to
our results, a reset-counting mechanism is activated by the end of A, because
the amplitude of the oscillation of the two neurons at the end of A, is higher
than the amplitude of the oscillation at the beginning of B. This is in agreement
to the dedicated approach. However, in both Fig 2(b) and (c), time perception
neurodynamics at the begging of A is different than that at the beginning of
B. This suggests that the activity of neurons prior to the observation of a given
duration affects the way that the network experiences the flow of time. In other
words, the length of A affects the way that B is experienced, which is in agree-
ment with the intrinsic representation of time [7]. This observation suggests a
new type of duration resetting, which stands in the middle of the full reset and
no reset. According to our results, it is possible for cognitive systems to use a
dynamic resetting mechanism where the length of A determines the initial state
during the perception of B. For example, when A is long the amplitude of the
oscillation during perception of B starts from relatively low values (see Fig 2(b)),
but when A is short the amplitude of the oscillation during perception of B starts
from relatively high values (see Fig 2(c)).

The last observation additionally suggests that the amplitude of the oscilla-
tion is correlated with the likelihood that the currently observed duration will be
judged as the longest in the experimental session. In other words, after experienc-
ing a long A interval, in the early steps of B observation it is unlikely that B will
be judged longer and the amplitude of the oscillation is low. As time progresses
and the length of B increases, the probability that B will be considered longer
is rising and thus the amplitude of the oscillation is also increasing. This mech-
anism explains how the robot decides whether A or B has been actually longer.
It is noted that a similar observation with probabilistic information integrated
into time-relevant neural activity has been also observed in macaque’s brain [6]
significantly enhancing the biological reliability of the mechanism revealed from
our results.

Past Characterization. In this task, the robot characterizes the temporal
distance of a given sound cue, as being either a short or long time ago. The
behavior of the robot is shown in Fig 3 (a). In the first case, the robot experiences
a sound 73 steps prior to the “go” signal while in the second case the robot
experiences a sound 25 steps prior to the “go” signal. The agent successfully
characterizes the two signals, driving to the end of the corridor and then turning
left in the case of long time ago, but right in the case of short time ago.
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Fig. 3. Part (a) shows the performance of the robot when experiencing a sound cue
“long time ago” and “short time ago”. Parts (b) and (c) show the activity of the
CTRNN neurons depicted also in Fig 2 for each one of the two cases in part (a). In
both plots, the time of sound experiencing is indicated with a black vertical line. The
yellow line corresponds to the time that the ”go” signal is given to the robot.

Examining the internal activity of the CTRNN in Fig 3 (b) and (c), we observe
that every time the sound is experienced, both neurons are temporally activated
and subsequently, the one remains silent, but the other continues to oscillate with
a constantly decreasing amplitude. Since amplitude effectively measures time
duration, it is evident that a counting-down mechanism has been implemented
in the CTRNN. While in the Duration Comparison task the amplitude of the
oscillation was increasing as long as the sound cue was present, reverse counting
does not require any sensory input and this mechanism is used for measuring
the distance to a past sensory cue. In other words, when the amplitude is small
then it has been a long time ago since the last experience of sound, but when
the amplitude is large then it has been a short time since the last presentation
of sound (i.e. there has been not enough time for the amplitude to decrease).
Clearly, the observed neurodynamics suggest again that oscillatory activity may
be not only used as a passive ticking mechanism but it is likely that they actively
participate in the accomplishment of the task.

4 Discussion and Conclusions

To the best of our knowledge, none of the existing approaches for time represen-
tation can provide mechanisms that simultaneously explain the accomplishment
of the two tasks discussed in the present study. The self-organized CTRNN
dynamics considered in our work have revealed multiple points for bridging the
currently contradictory theories into a new enhanced scheme with more explana-
tory power. More specifically, our results suggest that:

– Interval timing can be encoded in the activity of neurons supporting ordinary
cognitive tasks.
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– Oscillations can effectively facilitate the estimation of the elapsed time and
the amplitude of the oscillatory activity may be used for accumulating du-
ration (i.e. we may not need separate subsystems for ticking and counting).

– Active rather than passive oscillatory activity may underpin the implemen-
tation of time processing mechanisms in a range of different tasks.

In conclusion, the present work adopts a computational approach to inves-
tigate time representation in cognitive systems, suggesting the integration of
time-representation approaches existing today. At the same time, the current
work brings to the surface the issue of temporal cognition that remains largely
unexplored in the field of autonomous artificial systems. In the future we intend
to explore how time processing may facilitate robotic agents to accomplish tasks
in the highly time-structured human environments.
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Abstract. The causal mental model representation has been used exten-
sively in decision support. Due to limited information requirements of this
representation, that is concepts and relationships, the users are required
to articulate only the mental models, without invoking the correspond-
ing experiential knowledge stored in associative memory. The elicitation
of mental models without being endorsed by experiential knowledge may
lead to inaccurate, invalidated or biased mental models, and espoused the-
ories, being stored for decision making. We introduce SDA articulation/
elicitation cycle, which invokes a user’s associative memory during the ar-
ticulation/elicitation process to validate mentalmodels. It is argued in this
paper that by engaging associative memory during the mental model ar-
ticulation/elicitation process, the accuracy and validity of mental models
can be improved, the biases can be reduced, and the theories-in-use can
be elicited rather than the espoused theories. A case study is presented
to demonstrate the working and contributions of the SDA articulation/
elicitation cycle.

Keywords: Mental model representation, mental model articulation/
elicitation, cognitive biases, cognitive decision support.

1 Introduction

The mental models have been used in decision system to understand, predict
and solve problems in uncertain and vague situations [1, 2]. They are formed
through experience, observation and ongoing learning processes in the human
mind, and are the basis for the beliefs and subjective opinions of a person [3].
They provide the knowledge required to do the situation assessment, problem
understanding and formulation, problem space identification and problem space
segmentation [4,5]. Generally, the mental models used in decision making are rep-
resented as causal maps, containing concepts and causal relationships [2,6].There
are inherent limitations, however, to this representation of mental models. In this
paper, we will discuss two limitations of the current mental model representa-
tion; a) its limited capacity to facilitate elicitation of valid mental models from
individuals with accuracy, and inability to store meaningful and contextual in-
formation about the mental models [7]; and b) its inability to filter cognitive
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biases during the mental model elicitation [8]. We will explore how these short-
comings can be mitigated to some extent by the semantic de-biased associations
(SDA) model, which was proposed by Memon et al [9].

The paper is organised as follows. Section 2 gives the overview of the problems
at hand and their background from the literature. In Section 3, the SDA model
and its basic components are discussed briefly, followed introduction of SDA-
based articulation/elicitation cycle for mental models, and mitigation of biases.
Section 4 presents examples demonstrating the innovation of this cycle. Finally
conclusion and future work are presented.

2 Literature Review

Mental models can be a powerful tool in solving complex and vague decision
situations [10, 11]. However, there are various issues in the articulation, elicita-
tion, and representation of mental models, which if not addressed, may lead to
poor decisions. This paper addresses two issues; a) limited capability of current
mental model representation used in DSS, to help articulate, elicit and store
knowledge; and b) its limitation to facilitate de-biasing the mental models.

Due to the complex and intuitive nature of mental models, it is difficult to ar-
ticulate them accurately [6,8]. The articulation of mental models, to some extent,
depends upon the intended representation, such as a causal map. A person may
describe their mental models through various techniques, such as a set of rules,
a mind map, or statements [6]. Based on the intended representation, required
entities (in the case of causal maps, concepts and relationships) are then elicited
from these descriptions [12]. Several elicitation techniques have been proposed
to get such as such as 3CM [13], fuzzy cognitive mapping [14] and diagrammatic
interview method by Dray et al [15]. These techniques assume the mental models
to be a network of concepts and relationships ; thus, all that is extracted from
the descriptions is the concepts and relationships. However, mental models are
much complex structures than merely causal maps [16]. They work in conjunc-
tion with, and are supported by, our visuals and associative memory [8]. Every
mental model is formed through an experience, having a historical background
in the associative memory, which contains the reasons for its existence [17]. Thus
its not sufficient to elicit and store the mental models in the form of concepts
and relationships. It is essential to help an individual to remember the histori-
cal background (from associative memory) as well, and elicit it along with the
mental model itself [18]. Engaging associative memory allows to avoid the phe-
nomena where people articulate the ”espoused theories”, rather than the actual
”theories-in-use”, due to the poor insight into their own mental models [19]. In-
voking associative memory will help to recall the situations in which the mental
models were created, the reasons behind their creation, and their performance
in terms of solving a problem. This in turn will give the person a clearer picture
of what actually worked and why. Therefore, it is argued in this paper that by
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incorporating associative memory into the current causal map representation for
mental models, the following advantages can be achieved:

• Help individuals to articulate their mental models in a better and efficient
way, by providing them with a template of what is required to be elicited,

• Improve the accuracy of the mental models by asking critical questions (see
Section 3.1 for the details of the questions),

• Mitigate the biases during the elicitation process, as well as the at the time
using these mental models, through the contextual and objective information
(performance measuring parameters) extracted from the associative memory.

3 Basic Components of SDA Mental Model
Representation

The mental model representation proposed in SDA model is comprised of
concepts, semantic relationships, cases and performance measuring parameters
weight and success factor [9]. Each link, consisting of two adjacent concepts with
a semantic relationship between them, is named as association. Thus, the men-
tal models in SDA are a network of associations, where each association has
contextual information attached to it in the form of past cases, extracted from
the associative memory during the articuation/elicitation cycle (see Section 3.1
for SDA articulation/elicitation cycle).

Fig. 1. Fundamental components of SDA-
mental model representation

As can be seen from Fig. 1, associa-
tion Y is formed through two concepts
concept 1 and concept 2 connected with
a semantic relationship r. The associa-
tion Y has past cases (1,2, ..., n) at-
tached to it. These cases contain the
information about the past experiences,
which led to the creation of the men-
tal model represented by association Y.
The information in each case includes:

1. What: The details of the problem/situation;
2. When: Date;
3. Where: Organization;
4. How:

– The way this mental model (association) helped to solve the problem;
– The extent to which this mental model (association) was effective in

solving the problem (weight);
5. Who: The decision maker (his credibility);
6. Which: (The kind of situations, in which this mental model (association) can

be used successfully.

Fig. 2 shows the information contained in a case in SDA-based mental model
representation [9]. The table contains case ID, Association ID, Case Details
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(the what question), Case Year (when), Case Organisation (where), Future Use
(which) and Weight (how). Another important measuring parameter in SDA-
based representation is the success rate. The success rate is used to measure the
usefulness of an association). The success rate of an association is the average of
all the success factors of that association for the corresponding cases (see [9]).

Fig. 2. Implementation of Case in SDA-based system

3.1 Articulation Elicitation Cycle in SDA

Mental models can be elicited through direct or indirect elicitation methods [12].
The direct elicitation allows users to describe main concepts of a domain in the
form of words, symbols or pictures, and connect these together according to their
understanding. While the indirect elicitation allows to derive mental models from
text or the verbal communication with an individual.

Fig. 3. Conventional articula-
tion/elicitation process

Being direct elicitation approach, SDA
model allows participants to view the
illustration of their mental models
immediately; thus verifying them instantly
[12]. Most of the direct elicitation ap-
proaches focus on extracting concepts and
relationships, and overlook the contents of
associative memory, which contain the ex-

periential knowledge behind these concepts/relationships [8]. As a result, the
articulated mental models may be ”espoused” or unproven theories, or inaccu-
rate representations [19].

The SDA cycle improves the articulation/elicitation process by asking critical
questions about a mental model, thus forcing the user to make a conscious effort
to invoke and engage associative memory. The questions include:

– why does the user think what they think?
– which decision problem was this mental model used for?
– how helpful their mental model was in that situation?
– how did it solve the problem?
– what were the circumstances surrounding the decision problem?
– when and where did it occur?
– who was responsible for the decision making?
– what was the credibility of the decision maker(s)?
– where can this mental model be applied in the future?
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During this process, the users may discover whether their mental models are
an espoused theory, inaccurate, unproven or biased [20]; consequently, adjusting
their mental models accordingly before the final elicitation. Asking appropriate
question can help reduce the cognitive biases as well [8]. Fig 3 and 4 show
the difference between the conventional mental model articulation/elicitation
process and the SDA-based articulation/elicitation cycle, respectively.

3.2 Role of Associative Memory in Bias Reduction

The SDA model deals with four cognitive biases, availability, contextual, framing
and group biases. However, here we will discuss only the ones affected by the
contents of associative memory. These are, contextual and framing. Contextual
bias is generated from the circumstances surrounding an experience. Same kind
of problem, with different contextual information, may need different solutions
[17]. In SDA, the contextual information extracted from the associative memory
helps a decision maker distinguish between the current decision situation and
the past decision cases stored, and determine the suitability of the corresponding
mental model for the current decision situation.

Fig. 4. The proposed technique: SDA-based ar-
ticulation/elicitation cycle

Framing defines the inclina-
tions, developed by the way a de-
cision situation is presented [21].
In SDA, the framing bias is han-
dled through various past cases,
which are attached to certain men-
tal model. These cases come from
the associative memories of var-
ious users. Each case contains
a weight showing the impor-
tance/effectiveness of the corre-

sponding association for the case. The weight, being the factual data, can assist
the user in avoiding framing bias, even if the presentation of decision situation
is biased in the case details (Case Details in Fig. 2).

4 Demonstration of SDA Articulation/Elicitation Cycle

This section walks through the SDA articulation/elicitation cycle, demonstrating
its effectiveness to facilitate mental model articulation and to improve their accu-
racy. The specific decision problem is: How can we increase our sales/clientele?
The participants of this case study were required to articulate possible alterna-
tives/solutions to this decision situation. Following are three selected decision
alternatives, articulated by participants from various fields, which demonstrate
how the SDA articulation/elicitation cycle deals with different scenarios.

Mental Model 1: Offer Incentives. The participant (from fashion industry)
came up with the an alternative: ”Sales/clientele can be increased by offering in-
centives”. Since SDA model represents mental models in a human-centric manner
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by incorporating semantics, the conversion of mental model described in natural
language into SDA representation was effortless, which is:

Incentives increase Sales

Since the SDA model requires the contextual knowledge behind a mental model,
the participant was required to recall the previous experience, to store as sup-
porting case. The recalled experience (case 123 Fig. 5) helped them to validate
success of the mental model in the domain. This mental model was extracted
from a personal experience and was validated by the positive outcome (0.75
weight) of the decision alternative (association 012 ).

Fig. 5. The Cases elicited through the SDA articulation/elicitation cycle

Mental Model 2: Entering New Markets. The participant (from telecom
industry) came up with the mental model ”Sales/clientele can be increased by
entering new markets”, converted to SDA-based representation as:

Entering New Markets increase Sales

This mental model was based on the participant’s observation. They observed
a company entering the rural market rather than focusing on urban market,
giving that company a big boost in sales. This mental model was validated by
the positive results it brought for that company (Case 022 in Fig 5).

Mental Model 3: Chasing Good Prospects Continuously. The partici-
pant (from tobacco industry) came up with the mental model ”Sales/clientele
can be increased by chasing good prospects (potential customers) continuously”,
converted into SDA-based representation as:

Pursuing good prospects continuously increase Sales

Initially, the participant was confident about pursuing good prospects contin-
uously. But during the questioning process of SDA articulation/elicitation cycle
to invoke associative memory, the participant was unable to recall a huge profit
gained from long-chased prospects in the past few years. Rather, they realized
that their company has gained more sales from pursuing new prospects, after
freeing the resources from the long-held ones. As a result of this process, the
participant corrected their mental model as: ” Sales/clientele can be increased
by freeing the resources from long-chased yet unfruitful Prospects”. That is:

Sidelining long-chased prospects increase Sales
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Fig. 6. The three mental models elicited for
the domain Increase in Sales

Fig. 5 shows the final mental model
in case 091. The initial mental model
in this example was a deep-seated
but inaccurate assumption, which was
recognized by engaging associative
memory, as the mental model could
not be sufficiently validated by the
past experiences of the participant.
Rather, the participant developed a
new and validated mental model by
recalling past experiences. This ex-
ample shows the effectiveness of SDA
articulation/elicitation cycle in dis-

carding inaccurate mental models. Fig. 6 shows the three mental models pre-
sented in this Section.

5 Conclusion and Future Work

This paper discussed the contributions of SDA-based mental model representa-
tion towards better articulation, elicitation and accuracy of mental models, in
addition to the mitigation of biases. The SDA articulation/elicitation cycle for
mental models was introduced in this paper. Compared to the conventional men-
tal model elicitation techniques, the SDA articulation/elicitation cycle provides
an improved way to elicit and validate mental models by engaging associative
memory, and ensures their accuracy/validity by asking critical questions during
the elicitation process. Furthermore, the SDA-based mental model representa-
tion allows the mitigation of contextual and framing biases.
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Abstract. Human attention plays an important role in human visual system.  
We assume that the Gestalt law is one of important factors to guide human se-
lective attention. In this paper, we present a series of studies in which we hy-
pothesized that regions of image that get more attention in an object recognition 
task, confirm to one or more gestalt principles and subconsciously attract hu-
man attention which eventually help in object recognition. In our study, we col-
lected attention parts of images by analyzing eye movement of participants. 
Then we compared Gestalt scores of high attention parts with those of non-
attended random parts. Our results suggest that continuity and symmetry of fea-
tures attract human attention. We argue that an approach to analyze parts with 
high Gestalt scores can yield better than analyzing random parts of image in  
object recognition.  

Keywords: Gestalt principle, selective attention, perception, symmetry,  
continuity, regularity. 

1 Introduction 

Attention plays an important role in human cognition. It allows selective processing of 
useful information while ignoring less important ones [1]. Attention can operate in 
multiple modalities but the most important among them is visual attention. Various 
theories and models have been proposed to describe the process of attention and its 
role in visual perception [2]. For example, James proposed, “spotlight model” [3]. The 
model suggests that attention works with “focus”, “fringe”, and “margin”. The “focus” 
extracts high-resolution information from visual scene, “Fringe”, surrounding focus, 
extracts crude information and the edge of this fringe is called the “margin”. Eriksen 
proposed a model called the “zoom-lens model” which is similar to James’ model [4]. 
This model postulates that deployment of attention can vary from a sharp focus to a 
broad window. While discussing attention, a distinction between bottom-up and top-
down processes are also mentioned. According to James, bottom-up process is driven 
by the properties of the object [5] that can attract human attention subconsciously.  

In AI, especially in computer vision, several attempts have been made to imitate 
human visual system using attention models. For example, Park et al. [6] used  
                                                           
* Corresponding author. 
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independent component analysis (ICA) and entropy as a filter to select significant 
regions in an image. Similarly, Jeong et al. developed a model to generate saliency 
map based on the bottom-up and top-down processes [7].  

In the bigger schema of our research, we are interested in developing an alternative 
cognitive model for object recognition using Gestalt principles. Gestalt theory [8] 
attempts to describe how people organize visual elements into group or unified 
wholes by applying various principles such as similarity, continuity, regularity, sym-
metry, etc. Moreover, we assume that principles of Gestalt guide human attention. In 
other words, features having properties for Gestalt grouping attract human attention 
and plays significant role in recognizing objects.  

Rationale of our assumption is based on perception-action cycle [9]. According to 
perception-action cycle, top-down and bottom-up processes work in tandem and mu-
tually contributes to the success of each other. Bottom-up information collects low-
level perceptual features from environment and organizes it using various integration 
mechanisms (including gestalt principles) for partial perception (an estimate). In re-
turn, this partial perception, based on top-down process, guides attention for more 
specific features search to confirm and complete the perception process. Therefore it 
is reasonable to assume that features having similar patterns for possible grouping are 
attended in the case of perception. We try to confirm this assumption in our research.  

In this paper, three studies are presented. We hypothesized that part of an image 
that gets maximum human attention in an object recognition task, confirms to some or 
at least one principle of Gestalt more significantly than non-attended random parts of 
the image. To test our hypothesis, we compared Gestalt scores (calculated using pre-
viously developed algorithms) of attention regions and non-attended random regions 
of an image. We call them “attention patches” and “random patches”, respectively.  

The rest of the paper is organized as follows: In section 2, we describe the Gestalt 
principle in general and principle of (1) continuity, (2) regularity and (3) symmetry in 
particular. In section 3, we present three studies In section 4, we discuss the implica-
tion and limitations of our study and at the end in section 5, we present our conclu-
sions and possible future direction of this research.  

2 Gestalt Principle  

2.1 Principle of Regularity, Continuity and Symmetry 

In general, Gestalt psychology attempts to describe how people organize visual ele-
ments into groups or unified wholes by applying various principles [10], such as simi-
larity, proximity, continuity, regularity, symmetry, etc. We explored three of them 
namely principle of (1) continuity, (2) regularity and (3) symmetry in attended regions 
of an image. “Principle of continuity” suggests that humans tend to organize conti-
nuous parts of objects as a whole. For example in Fig. 1 (a), a cross is more promi-
nently perceived than two right angle shapes. “Principle of regularity” postulates that 
elements of objects are perceptually grouped together if they form a pattern that is 
regular, simple, and in order. For example in Fig. 1 (b), two squares constructed using 
lines are arrayed so orderly and enhanced by irregular lines that these two squares can 
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be perceived easily in the complex background. “Principle of symmetry” suggests that 
humans perceive objects by considering parts that are symmetrical. For example, in 
Fig.1 (c), three pairs of symmetrical brackets are perceived rather than six individual 
brackets.  
 

                
     (a)                   (b)                     (c) 

Fig. 1. (a) Cross, (b) Collinear pattern, (c) Law of symmetry 

3 The Experiment 

As mentioned above, we hypothesized that part of an image that gets maximum hu-
man attention in an object recognition task, confirms to some or at least one principle 
of Gestalt more significantly than non-attended random parts of the image. We con-
ducted three related studies to test it. In first study, we collected regions of attention in 
an image by analyzing fixation count and fixation time (by analyzing eye-movement 
data) of participants while they did an object recognition task. In second study, we 
calculated Gestalt scores of regularity, continuity and symmetry in attention regions 
and non-attended random regions and then compared them. Gestalt scores were calcu-
lated using previously developed algorithms. High score for a particular principle in a 
particular patch meant that the patch is more likely to be grouped under that principle. 
In third study, we verified our assumption by only highlighting (1) attention areas 
with high Gestalt score (attention patches) and (2) non-attended random areas (ran-
dom patches) and by presenting them to participants for an object recognition task 

3.1 Study 1:Identifying Attention Regions Using Eye-Movement  

In the first study, we collected images of 60 objects with complex background in three 
following categories: (1) Animals in natural scenes, (2) Objects of daily use in normal 
environment and (3) Vehicles in urban and rural environment. The objective of this 
study was to identify regions of an image that attracts attention of participants while 
they do object recognition task.  

 
Participants and Procedure. 12 graduate students (3 females and 9 males) (mean 
age=21) from Kyungpook National University, Korea, participated in the study. Par-
ticipants were shown 60 images, from three above-mentioned categories (20 each) 
randomly, on a 21 inch computer screen (1280x780). They were asked to look at the 
image and recognize the target object. There was no time limit and they were asked to 
press space bar once they had recognized the object. While participants performed the 
task, their eye-movement was recorded using Tobii eye tracker from a distance of  
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60-70 centimeters [11]. Although, the viewing was binocular, we only recorded the 
movement of left eye because of certain hardware constraints.   
 
Output of the Study. Output of this study included eye movement samples of 12 par-
ticipants for 60 images in complex background in three categories. We calculated mean 
(1) fixation count and (2) fixation time to acquire the most attended regions for each 
image. Fig. 2 shows an example of (b) gaze plot and (c) heat map of mean fixation. 
Based on this analysis, most attended regions were marked as areas of interest (AOI) 
and were collected as “attention patches”. Same numbers of non-attended and random 
patches were also collected as “random patches” (having same size as attention patch) 
from all images. Both attention and random patches were used in the next study. 
 

  
           (a)                     (b)                    (c)  

Fig. 2. Sample images with gaze plot; (a) original image, (b) gaze plot of one participant, (c) 
average heat map 

3.2 Study 2: Analysis and Comparison of Gestalt Scores 

In this study, we compared Gestalt scores of “attention patches” and “random 
patches” for all images. To acquire the score for three Gestalt principles namely: (1) 
Regularity, (2) Continuity and (3) Symmetry, we used previously developed algo-
rithms. , Our method of calculating scores for these three principles of Gestalt is as 
follows:  
 
Principle of Continuity. Principle of continuity is defined as the longest contour line 
in a patch. We followed Dou and Kong’s [12] method for contour detection. Canny 
operator was used to get the edge information. We try to generate a smooth line as 
long as possible. To do this, we randomly take a start point A and set eight directions 
around it. If we find a neighbor edge point B, near by the start point, the direction of AB is seen as the initial direction of this line. In order to generate a smooth line, we 
search the edge point C nearby B where BC AB. If there is no C, then we search the 

edge point C’ nearby C where  BC′ AB 45°. The process of searching edge is 
repeated until no points are left.  

 
Principle of Regularity. The regularity of point A is defined as the “surrounding 
edge pixels expanding acceleration”. We use Canny operator to obtain edge informa-
tion of the image. Then we check A’s surrounding area (5x5 box, A is located in the 
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center of this box) and count number of edge pixels. We expand the box radius by 2 
pixels (5x5, 7x7 …) each time and record number of added pixels. We believe that in 
the regular area the edge pixel increasing speed should approach a constant, which 
means the edge pixels expanding acceleration should be small and approach zero. 

Suppose i is the current expanding time, Pi means count of edge pixels inside the 
current box. The acceleration of surrounding edge pixels are defined as: 

   | |        (1) 

Smaller  means higher regularity. In order to measure the regularity of an im-
age, we investigate the regularity of each edge point and calculate the average value. 

 ∑ ∈            (2) 

Where N is the number of edge pixels in the image.  
 
Principle of Symmetry. To test the symmetry of image, we consider the bottom-up 
saliency map (SM) with symmetry information method [7]. To generate a symmetry 
feature map, we take K-directional orientation features as input, and then compare the 
orientation features located on opposite sides. Take these information to generate 
Gaussian blurred pyramid orientation features with various scales, at finally symmetry 
axis S f, n, k  at the -th pyramid orientation feature is calculated using Eq. (3), 
where n is the location within an image, F is the total number of pyramids, M is the 
level of blurred images and  is the orientation direction,  is (m+f) th 
orientation Gaussian pyramid, m represents a level of blurred image. and are 
weight parameters and φ(x)=max(x,0). is the opposite of the  direction, = ,where  is the total number of directions being considered. For a location 

n=(x,y), the locations =( ,  ) and =( ,  ) are obtained by Eq. (4): 

S f, n, k · , ,
, , , 

                    0,1 , 0,1 1  (3)

   cos , sin  cos , sin  , 2
 

 2 , (4) 
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is the m-th distance between two opposite side locations. At finally using cen-
ter surround difference and normalization (CSD&N) of symmetry axes in different 
scale to obtain feature map. We take average pixel of feature map to represent how 
symmetry the image is. 

 
Results. By applying above-mentioned algorithms, we obtained the Gestalt scores for 
three Gestalt principles for all attention patches and random patches. We calculated 
the average score of all patches (attention and random) in all three categories namely 
(1) animals in natural scenes, (2) objects of daily life, and (3) vehicles in urban and 
rural backgrounds. As shown in Fig. 3, results suggest that scores of ‘principle of 
regularity’, ‘principle of symmetry’ and ‘principle of continuity’ were significantly 
high in attention patches than random patches. This difference was statistically signif-
icant, F=(2,118)=5.32, p<0.01. 

 

Fig. 3. Mean scores of principles of Gestalt in random and attention patches 

3.3 Study 3: Recognition from Attention Areas 

In this study, we wanted to test the ease and success of recognition of objects if they 
are presented with highlighted attention areas with high Gestalt score or randomly 
highlighted areas.  
 

   
  (a)                                 (b) 

Fig. 4. Sample image; (a) highlighted attention regions, (b) original image 

Procedure. Seven graduate students (all males) (mean age=21) from Kyungpook 
National University, Korea, participated in this study. In this experiment 32 images 
were selected. In each of 16 images, high scoring attention areas (with high gestalt 
scores) were highlighted and rest of the image was darkened. Similarly, in each of 
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another 16 images, non-attended random areas were highlighted and rest of the image 
was darkened. Fig. 4 shows an example. Participants were asked to look at the image 
and identify the object. Once they had identified the object, they were asked to press 
the space bar. For analysis, we measured the response time and success.  

 
Results. We found that it was easy for participants to recognize objects from those 
images that had attention areas (with high Gestalt score) highlighted. An average of 
51.2% images was correctly identified with attention patches compared to 32.6% 
correctly identified images with random patches. Interestingly we also found that 
mean response time to recognize the object was significantly low in images that had 
attention areas highlighted (mean response time=2.8 seconds). Average response time 
to correctly recognize the object in those images that had random parts highlighted 
was 4.72 seconds. Difference between them was statistically significant. 
t(1,30)=15.62, p<0.001. Table 1 summarizes the results. 

Table 1. Success and mean response time in object recognition task in study 3 

No. of participants Number of Pictures Success Mean response time 
7 16 (attention patches) 51.2% 2.38 Seconds 
7 16 (random patches) 32.6% 4.72 Seconds 

4 Discussion and Conclusion 

We had hypothesized that region of an image that gets maximum human attention in 
an object recognition task, confirms to some or at least one principle of Gestalt more 
significantly than non-attended random regions. Results of our study three support 
this hypothesis. We found that attention patches got high scores on principle of regu-
larity, principle of continuity and principle of symmetry than random patches. This 
result indicates that regular, continuous and symmetrical features of objects are more 
likely to attract human attention. Moreover, the study also shows that participants 
could easily recognize objects from those images that had attention areas highlighted.  

Overall, the results support the assumptions of perception-action cycle and also 
support the view that attention is partly guided by Gestalt principles. These results 
also suggest an approach for artificial object recognition. We argue that analyzing 
areas with high gestalt principles may yield better object recognition results than ex-
isting methods of randomly analyzing parts of image[13], [14].  

In our future work, we would like to analyze more principles of Gestalt.  
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Abstract. Word sense disambiguation (WSD) is essential for natural
language understanding applications such as machine translation, ques-
tion & answering, and natural language interface, since the performance
of such applications depends on the senses of lexicons. Thus, it is natu-
ral to consider lexicons as the most crucial features in WSD. However,
due to the extensiveness of lexical space, WSD methods based on ma-
chine learning techniques with lexical features suffer from the sparse data
problem. To tackle this problem, this paper proposes a hybrid approach
which separately copes with an error-prone data due to sparsity. A data
is regarded as error-prone if its nearest neighbors are relatively distant
and their senses are uniformly distributed. Then, our hybrid approach
focuses on such an error-prone data without tuning of a base method.
In the experiments, the k-nearest neighbor method is used as a base
method. If a data is determined as an error-prone case, it is processed
by a prototype based method. The prototype based method takes an
advantage from overall training examples rather than depends on only
several neighbors. The experimental results on Senseval-3 nouns show
that an error-prone data is effectively detected by the proposed method
and our hybrid approach outperforms the ordinary k-nearest neighbor
method and the prototype based method.

Keywords: Word Sense Disambiguation, Error-prone case, Data
Sparseness.

1 Introduction

Word sense disambiguation (WSD) is an intermediate task, which is not an end in
itself, but rather is necessary at one level or another to accomplish most natural
language processing task. It is obviously essential for language understanding
applications, such as machine translation, question & answering, and natural
language interface, since the performance of such applications depends on the
senses of lexicons.

Many current WSD studies rely on linguistic knowledge acquired from tagged
text via machine learning methods. Statistical or alternative models are learned,
and then applied to classify a word into a sense. The main problem faced by the
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studies is the sparse data problem due to a representation of extensive feature
space for the small amount of training examples. For example, the word arm
occurs 266 times in a training dataset of Senseval-3 task, and its feature space
easily exceeds the number of occurrences by representing the feature space with
lexicons. In addition, most occurrences fall into a single sense and some of the
senses are represented by only 3 or 6 occurrences.

There have been mainly two strategies to solve the sparse data problem in
WSD. One is to use unlabeled data and appropriate learning techniques that
can take advantage of them. The other one is to deal with sparsity by finding
correlations among features. Dimension reduction technique such as SVD has
been used for the latter strategy. The state-of-the-art method couples both of
the strategies together.

As a solution of the sparse data problem, this paper proposes a novel, hybrid
approach which separately copes with an error-prone data due to sparsity. Ba-
sically, the existing approaches deal with all examples equally. However, sparse-
ness of data can be different due to the difference of amount of data according
to senses. Note the previous example for the word arm which frequently occurs
for one sense, but rarely occurs for some other senses.

In this paper, a data is regarded as error-prone if k-nearest neighbors are
relatively distant and their senses are uniformly distributed. Then, our hybrid
approach focuses on such an error-prone data without tuning of a base method.

In the experiments, the k-nearest neighbor method is used as a base method. If
a data is determined as an error-prone case, it is processed by a prototype based
method. The prototype base method takes an advantage from overall training
examples rather than depends on only several neighbors. The experimental re-
sults on Senseval-3 nouns show that an error-prone data is effectively detected
by the proposed method and the hybrid approach which separately copes with
detected error-prone data outperforms the ordinary k-nearest neighbor method
and the prototype based method.

2 Experimental Setting and Baseline Methods

We first describe the target wsd task and the evaluation methodology. Then, we
will present the features used to represent the context and the ml algorithms
applied.

2.1 Corpus and Evaluation

The experiments have been performed using nouns of the Senseval-3 English
Lexical-Sample (S3LS) data [1]. We focus on the disambiguation of nouns for
two reasons. Nouns constitute the largest portion of content words (48% of the
content words in the Brown corpus [2] are nouns). For many tasks and applica-
tions nouns are the most frequently encountered and important part of speech.

The usual precision and recall were computed for each method. In all the cases
reported here coverage was 100% and precision equaled recall, so we use recall
in all tables.
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2.2 Features

We refer features introduced in [3] which reports the state-of-the-art results. The
feature types can be grouped in three main sets:
Local collocations: bigrams and trigrams formed with the words around the
target. These features are constituted by stems or POS tags.
Syntactic dependencies: syntactic dependencies were extracted using heuris-
tic patterns, and regular expressions defined with the POS tags around the target
Bag-of-words features: we extract the stems of the content words in the whole
context.

Stems are extracted by using Porter stemmer and POS are analyzed by using
LingPipe POS tagger (http://alias-i.com/ lingpipe) employing the Brown tagset.
We don’t use any external tool except them. Thus the last two feature sets are
simple compared with [3].

2.3 ML Algorithms

For the experiments, two ml algorithms are used as baseline methods and applied
to our hybrid approach. One algorithm is the k-nearest neighbor classification
and the other one is the prototype based classification. Given an occurrence of
a word, both of them return the most confident sense si, where si ∈ S, and S is
a set of senses for the given word.

For both of the baseline methods, each occurrence context (instance) is rep-
resented as a vector, where each feature will have a 1 or 0 value to indicate the
occurrence/absence of the feature.

The k-nearest neighbor (k-nn) is a memory based learning method, where
the neighbors are the k most similar contexts, represented by feature vectors ni

, of the test vector x. The similarity among instances is measured as proximity
of their vectors. In this paper, the proximity is defined as cosine similarity like
the following:

proximity(x,ni) =
〈x,ni〉
‖x‖‖ni‖ (1)

The test instance is labeled with the sense obtaining the maximum sum of
proximities of the k most similar contexts. The k-nn is formally defined like the
following:

s∗i = argmax
si∈S

k∑
j=1

{
proximity(x,nj) if cj = si
0 otherwise

(2)

, where x is a test instance vector, and nj is a nearest neighbor ranked below or
equal to k, and S is a set of senses for x.

In the prototype based classification, one prototype is obtained from a set
of training instances corresponding to one sense. The prototype for the sense is
also represented as a vector of which features are appeared at least one time in the
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set. A prototype for a sense si can be represented as a feature frequency vector
psi = 〈f1, f2, ..., fn〉, where fj is the frequency of the ith feature in the prototype
vector. A widely used refinement to this prototype is to weight each feature
based on inverse frequency in the training dataset. The motivation behind this
weighting is that features appearing frequently in many instances have limited
discrimination power, and for this reason they need to be de-emphasized. This
is commonly done by multiplying the frequency of each feature by log(N/sfi),
where N is the total number of instances in the training dataset, and sfi is
the number of instances that contain the ith feature. Then, the prototype based
classification is formally defined like the following:

s∗i = argmax
si∈S

proximity(x,psi), (3)

where x is a test instance vector, and psi is a prototype vector for sense si, and
S is a set of senses for x.

3 Detection of Error-Prone Cases

This section presents a heuristic method to detect error-prone cases due to data
sparsity. A basic assumption underlying the heuristic method is that data spar-
sity is partially observed among all the training instances. Actually, there exists
a major sense which frequently occurs rather than others and several senses are
rarely occurred compared with the major sense. Intuitively, the rarely occurred
senses can suffer from the sparse data problem than a major sense. In order to
detect error-prone cases, the sparsity is investigated in vector space, since an
occurrence of a sense is model in a form of a vector.

The proposed method is based on two heuristic measurements, outlierness of
an instance and uniformness of senses corresponding neighbors of an instance.
Outlierness is the degree to which an instance is outlier and it is related to
sparseness of an instance. An outlier is an observation that is numerically distant
from the rest of the data [4]. A few features of a sparse instance can be matched
with features of its neighbors due to sparsity. This results in the sparse instance
to be distance from its neighbors. Many studies on outlier detection are based
on nearest neighbor method. In this paper, outlierness is measured by using an
average proximity of k-nearest neighbors. Given an instance vector x, outlierness
is formally defined like the following:

outlierness(x) = 1−
∑k

j=1 proximity(x,nj)

k
, (4)

where nj is a nearest neighbor ranked below or equal to k.
Even though outlierness of an instance is high, the classification result by

k-nn can be confident if all the neighbors fall into one sense. In this case, it is
difficult to say that the instance is error-prone due to the high outlierness. In
order to complement this case, uniformness of senses corresponding to neighbors
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are measured for an test instance. Uniformness is the degree to which senses
of neighbors scatters. If each neighbor of an instance fall into a different sense,
ordinary k-nn can not decide a sense of the instance. This results in an error for
the classification of the instance. In this paper, uniformness is measured by an
entropy measurement. Uniformness is formally defined like the following:

uniformness(x) =
∑
si∈S

count(si) + 1

k + 1
log

count(si) + 1

k + 1
, (5)

where S is a set of senses and cout(si) return the number of the sense si observed
in k nearest neighbors.

In order to avoid log(0), 1 is added to the sense count and the denominator,
respectively.

In this paper, a test instance is regarded as an an error-prone case if both
of the outlierness and the uniformness are higher than certain thresholds. Let
T = {to, tu} be a set of thresholds for outlierness and uniformness, respectively.
Given test instance vector x, an error-prone case is formally determined like the
following:

ep(x,T) =

{
1 if outlierness(x) > to and uniformness(x) > tu
0 otherwise

(6)

In this paper, the thresholds are determined by using a training dataset. Thus
an error-prone case can be verified whether actually it is incorrectly classified by
k-nn or not. For example, when both of the thresholds are set to 0, all training
instances become error-prone cases. In this case, all the incorrectly classified
instances are detected as error-prone cases. However, this is the worst case,
since many error-prone cases are correctly classified.

In order to avoid correctly classified instances to be error-prone cases, the
thresholds should be increased. However, it can cause to fail capturing error-
prone cases which actually incorrectly classified. Thus there exist two risks: (1)
a number of correctly classified instances become error-prone cases; (2) a number
of incorrectly classified instances are not captured as error-prone cases. The first
risk can be measured as the ratio of error-prone cases among correctly classified
instances. Let D be a training dataset. Let sx and ŝx be the true sense of instance
x and the classified sense by k-nn, respectively. Then, the risk for correctly
classified instances is formally defined like the following:

riskcor(T) =

∑
x∈D ep(x,T)I(sx = ŝx)∑

x∈D I(sx = ŝx)
, (7)

where I(·) is an indicator function which returns 1 if a given condition is true,
otherwise returns 0.

The second risk can be measured as the ratio of non-error-prone cases among
incorrectly classified instances. It is formally defined like the following:

riskinc(T) =

∑
x∈D(1 − ep(x,T))I(sx �= ŝx)∑

x∈D I(sx �= ŝx)
(8)



Detection of Error-Prone Cases for WSD 103

Then, the pair of thresholds T is determined as the one which minimize both
of the risks. That is,

T∗ = argmin
ti∈T,
0<ti<1

riskcor(T) riskinc(T)

riskcor(T) + riskinc(T)
, (9)

where riskcor(T) ≤ δ.
In equation 9, δ is a user parameter which prevents to decide majority correct

results as error-prone cases. An appropriate T is found in a brute-force manner.
That is, each threshold hold is increased step-by-step with a small increment
and the risk is measured in each step. Finally, T is determined as the minimum
risk case.

4 A Hybrid Approach for WSD

This section presents a hybrid approach to solve the sparse data problem for
word sense disambiguation. A basic idea is to separately cope with error-prone
cases due to data sparsity. In our hybrid approach, a base method is set to k-nn
introduced in section 2.3. When a test instance determined as an error-prone
case, it is classified by the prototype based method introduced in section 2.3.

A prototype vector can be regarded as as a summarization of training instance
corresponding to one sense. It takes an advantage from this summarization. Even
though a small number training instances are available for a sense, the prototype
vector for the sense has more features matchable with a given test instance
rather than its neighbors. Therefore the prototype based method can be robust
for sparse test instances rather than the k-nn.

5 Results

In order to determine thresholds for outlerness and uniformness, δ is set to 0.2.
After finding certain thresholds, risks by the thresholds show how they effectively
separate error-prone cases from training datasets. Table 2 presents risks by using
found thresholds. The risk riskcor for each noun is less than or equal to 0.2, since
delta is set to 0.2. Most risks riskinc are shown less than 0.3 and half of the risks
is shown less than or equal to 0.2. Thus it is possible to separate error-prone
cases from a training dataset with sacrifice by slight risks.

The found thresholds were used to separately cope with error-prone cases in
the proposed hybrid approach. Table 2 shows our baseline and hybrid methods,
as well as the best method in the Senseval 3 competition [5] and the state-
of-the-art method [3]. Though the-state-of-the-art method showed higher recall
than S3Ls-best on overall words [3], S3LS-best shows the highest performance
on nouns as shown in Table 2. The hybrid method outperforms the k-nn and
shows comparable results with S3LS-best.
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Table 1. Risks of detecting error-prone cases on training datasets (δ = 0.2)

Nouns riskcor riskinc Nouns riskcor riskinc Nouns riskcor riskinc

Degree 0.19 0.29 Organization 0.16 0.2 Interest 0.19 0.25
Atmosphere 0.19 0.23 Image 0.19 0.34 Shelter 0.2 0.38
Bank 0.16 0.07 Party 0.2 0.06 Performance 0.2 0.23
Disc 0.19 0.39 Source 0.15 0.08 Paper 0.19 0.36
Arm 0.18 0.10 Audience 0.19 0.16 Plan 0.19 0.17
Difference 0.19 0.27 Judgment 0.19 0.16 Difficulty 0.16 0.2
Argument 0.10 0.41 Sort 0.05 0.19

Table 2. Risks of detecting error-prone cases on training datasets (δ = 0.2)

Methods k-nn (Agirre 2005) k-nn (Ours) Prototype Hybrid S3LS-best

recall 70.6 67.0 70.7 71.2 72.9

6 Discussion and Related Work

The results show that the data sparsity becomes partially obstructed problems
and can be detected as error-prone cases. The proposed hybrid method is very
simple compared with the state-of-the-art methods [3,5]. However, the results by
the proposed method are comparable with those by the existing methods. This
is promising for the development of any other hybrid methods and applications
based on the detection of error-prone cases.

Outlierness has been studied intensively in terms of the outlier detection prob-
lem [6,7]. The outlier detection has been used in a wide variety of application
domains such as credit card, insurance, tax fraud detection, and so on. In these
domains, an outlier is regarded as significant information by itself. In our context,
an outlier is investigated as an error-prone case. To the best of our knowledge,
this is the first approach to detect outliers as error-prone cases.

7 Conclusion

In this paper, we have explored error-prone case detection, trying to tackle sparse
data partially observed in the training dataset. An error-prone case is investi-
gated in a vector space and two measurements are proposed to detect error-prone
cases. One measurement is outlierness which verifies average distance from a
given instance to its neighbors. The other is uniformness which is measured as
entropy of senses corresponding to neighbors. In the experiments, we show that
error-prone cases are effectively separated from a training dataset with sacrifice
by slight risks.
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Also, we have proposed and evaluated a hybrid approach which separately
copes with error-prone cases. The hybrid approach is based on two simple clas-
sifiers, the k-nn and the prototype based method. It improves the results for
both of the classifiers and shows comparable results with the state-of-the-art
results. These results are promising for applications based on the detection of
error-prone cases and opens new hybrid methods possibilities.
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nology Development Program (10035348, Development of a Cognitive Planning
and Learning Model for Mobile Platforms) funded by the Ministry of Knowledge
Economy(MKE, Korea).
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Abstract. In this paper, we propose a recurrent neural network that
can flexibly make inferences to satisfy given Boolean constraints. In our
proposed network, each Boolean variable is represented in dual repre-
sentation by a pair of neurons, which can handle four states of true,
false, unknown, and contradiction. We successfully import Blake’s classi-
cal Boolean reasoning algorithm to recurrent neural network with hidden
neurons of Boolean product terms. For symmetric Boolean functions, we
designed an extended model of Boolean reasoning which can drastically
reduce the hardware cost. Since our network has only excitatory con-
nections, it does not suffer from oscillation and we can freely combine
multiple Boolean constraints.

Keywords: Boolean constraint, Boolean reasoning, symmetric Boolean
function, recurrent neural network.

1 Introduction

Everyday we do logical thinking; we interpret given conditions, reason based
on them, and draw a conclusion. We are also able to fill in missing variables
given the rest, which is called “ problem solving . ” These complex yet flexible
human reasoning shows properties that are quite different from ordinary com-
putation processes in machines. Then how can we mimic these flexible reasoning
processes?

There are a number of studies on how humans actually conduct reasoning pro-
cesses. In [1], the authors carefully observe how humans interpret given condition-
als and understand causal relations when reasoning tasks are given. In [6], the
authors designed several different types of thinking processes based on decision
theory by neural networks with adequate weights according to given conditions.

Logical reasoning can take place on different level of cognitive task, from eval-
uation of Boolean functions to natural language processing. This paper focuses
on biological computation model of Boolean reasoning. Majority of biological
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reasoning models are based on artificial neural networks (ANN). Initial rea-
soning models are restricted to compute logical functions in feed-forward net-
work structure [8, 14, 15]. Advanced models use recurrent neural networks in
Boolean reasoning so that it can cover both backward and forward boolean in-
ference [11, 16]. For example, these networks not only compute AND operation
of two binary input, but they also infer that given true output, all input must
be true accordingly. The boolean reasoning systems tries to find a set of un-
known binary variables that satisfy a number of given Boolean formula. This is
a well-known satisfiability (SAT) problem [7] in computer science.

Many reasoning models adopt three-state logic to deal with unknown variables
[4,11,13,16]. The three states are commonly encoded as positive (true), negative
(false), and zero (unknown) activation of a single neuron. If we assign proper
excitatory and inhibitory connectivity between neurons, it is possible to infer
unknown values other neurons.

However, conventional recurrent neural networks are problematic in combin-
ing multiple boolean constraints into the unified system. The accumulation of
synaptic weights from different constraints might cause wrong inference or oscil-
lation of network. Therefore, most successful ANN-based inference models [11,16]
are implemented to support only limited type of boolean operations such as
AND, OR, and negation. And networks can not be fully parallelized due to
undesirable interferences.

In this paper, we propose a flexible Boolean reasoning network that can in-
clude any kind of boolean constraints without restriction. Our network is able
to handle four states(true, false, unknown, and contradiction) by dual represen-
tation of Boolean variables. The encoding of a boolean variable using a pair of
neurons is not a new idea [12,14,15]. However, to our best knowledge, this paper
presents the first boolean network model that can reason on all possible ways
using dual representation. Since the network has only excitatory synapses, it is
free from interference problem and oscillation.

The organization of paper is as follows. In Section 2, we explain our design of
dual representation of variables. The structure of network for general Boolean
constraints based on full extraction of prime implicants, or Blake Canonical
Form (BCF) [3] is explained in Section 3. In Section 4, we introduce a simplified
implementation of the network for symmetric Boolean constraints. We close our
paper in Section 5.

2 Dual Representation

Our network adopts dual representation, where a Boolean variable is encoded by
two neurons, each standing for ’true’ and ’false,’ respectively. A pair of neurons
represent four possible states. If one of two neurons is active, it means that the
variable is either true or false; If both of true and false neurons are active, it
means given conditionals are in contradicting situation that we cannot satisfy
the constraint; If both of the neurons are silent, it means not enough information
is given and we cannot draw a conclusion from it. The description of four possible
state representations are shown in Fig. 1.



108 W. Chang, H. Ah Song, and S.-Y. Lee

Fig. 1. Dual representation of a Boolean variable in four possible states

In [11] and [16], boolean reasoning is performed on the basis of delicately-
designed excitatory and inhibitory connections. When a neuron is involved in
multiple constraints, the interference between neural interactions might lead to
wrong conclusion. Dual representation has an important advantage over conven-
tional single-neuron representation in that matter; we do not need to inhibit any
neuron to inactivate. Instead, its counterpart is excited. Since our network has
excitatory connections only, it does not suffer from interference problem. Also,
it always converges fast without oscillation.

3 Reasoning Network for General Boolean Constraints

The neural connectivity is described as ’A conjunction of neurons→ A neuron.’
For example, consider a function C = A AND B. Regardless of directions that
distinguish inputs from outputs, we can derive multi-directional inference rules
such as:

• If C = 1, A = 1 ( C → A )
• If A = 1 and B = 1, C = 1. ( AB → C ) · · ·

Our goal is to make inferences based on the set of variables that satisfies a
Boolean constraint

f(x1, x2, ..., xN ) = 0 (1)

and then to make inferences based on the true configuration information.
In the example, its Boolean constraint is re-formulated as

f(A,B,C) = (A AND B) XOR C = 0. (2)

Any kind of Boolean function can be transformed into Boolean constraint. We
can make a table of configuration of variables and the constraint formula f :

A B C f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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The optimal structure of the the network is derived from Blake’s canonical
expressions [2], that uses prime implicants to represent the Boolean formula f
in abstract form. An implicant of a Boolean formula f is a product term Pi such
that Pi ≤ f . A prime implicant of f is an implicant that cannot be included by a
more general implicant. In (2), term ĀBC is an implicant of f(A,B,C) but not
a prime implicant since it is covered by another implicant ĀC. Blake’s canonical
form (BCF), or complete sum of f is the sum of all prime implicants Fi in f .

BCF (f) =
∑
i

Fi = 0 (3)

Variable configuration set that satisfies f can be simply solved by checking
BCF. If Boolean variables in the given conditions satisfy the Boolean formula
f = 0, then Fi = 0 for all i. We can connect activation synapes to a varible xi

from other variables by
Fi/xi → x̄i, (4)

where Fi/xi is a quotient of Fi with respect to xi. (For example, ĀB/B = Ā. )
An example of the whole reasoning network for AND operation is shown in Fig.
2.

Fig. 2. Structure of network connection of AND operation

The product of boolean variables (x1, x2, . . . , xN ) is implemented by a single
perceptron

h = ϕ

(
N∑
i=1

wixi − θ

)
(5)

with uniform pre-synaptic weight wi = 1 for all i, threshold θ = N , and the
activation function

ϕ(α) =

{
1 if α ≥ 0

0 otherwise.
(6)



110 W. Chang, H. Ah Song, and S.-Y. Lee

For Boolean equations with four variables or less, we can easily find prime
implicants using Karnaugh-Map [5]. Extraction of prime implicants in general
cases has been extensively studied for digital circuit optimization after the foun-
dational work of Quinn and McCluskey [9]. However, it is known that the time
complexity of full search for arbitrary boolean function is exponential with re-
spect to the number of input variable [17]. And the number of prime implicants
for a boolean function with N inputs is upper-bounded by O(2N ) [10].

4 Optimized Reasoning Network for Symmetric Boolean
Function

Symmetric Boolean function is a boolean function f(x1, x2, . . . , xN ) that satisfies

f(x1, x2, . . . , xN ) = f (π(x1, x2, . . . , xN )) (7)

for an arbitrary permutation π.
Symmetric boolean functions are expressed as functions in terms of total sum

of input variables:

f(x1, x2, . . . , xN ) = g

(∑
i

xi

)
. (8)

Note that
∑

i xi is the arithmetic sum (not Boolean sum) in this equation. And
g is an arbitrary function.

By using summation of the variables as the unit to check truth table for a
function, the time complexity of network design is reduced to polynomial order.
We construct and search truth table of summation of variables, not value of
variables themselves.

For example, take example of OR operation with three input y1 =
OR(x1, x2, x3). The truth table based on the summation of variables can be
constructed as shown below.

∑
i xi

∑
i yi 0 1

0 T F
1 F T
2 F T
3 F T

We can reformulate the original symmetric Boolean function in terms of al-
ternative type of prime implicants (a ≤ ∑

i xi ≤ b) · (c ≤∑
i yi ≤ d), which we

call “inequality prime implicants.”
According to the truth table, f(x1, x2, x3, y1) = g (

∑
i xi,

∑
i yi) = (0 ≤∑

i xi ≤ 0) · (1 ≤∑
i yi ≤ 1) + (1 ≤∑

i xi ≤ 3) · (0 ≤∑
i yi ≤ 0) = 0.
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Like (4), we can search for the connection between variables. Generalized rules
is defined as follows:

If (a ≤∑
i xi ≤ b) · (c ≤∑

i yi ≤ d) is given,

(
∑

i yi ≥ c)·
(
∑

i yi ≤ d)·
(
∑

j �=i xj ≥ a− 1)·
(
∑

j �=i x̄j ≥ N − b)

⎫⎪⎪⎬⎪⎪⎭→ x̄i

(
∑

i yi ≥ c)·
(
∑

i yi ≤ d)·
(
∑

j �=i xj ≥ a)·
(
∑

j �=i x̄j ≥ N − b− 1)

⎫⎪⎪⎬⎪⎪⎭→ xi

(
∑

i xi ≥ a)·
(
∑

i xi ≤ b)·
(
∑

j �=i yj ≥ c− 1)·
(
∑

j �=i ȳj ≥ N − d)

⎫⎪⎪⎬⎪⎪⎭→ ȳi

(
∑

i xi ≥ a)·
(
∑

i xi ≤ b)·
(
∑

j �=i yj ≥ c)·
(
∑

j �=i ȳj ≥ N − d− 1)

⎫⎪⎪⎬⎪⎪⎭→ yi. (9)

Inequality terms and their products in (9) are implemented in the same way
as in (5). The number of inequality prime implicants for N -input symmetric
Boolean functions is upper-bounded by O(N). Compared to the previous model
in section 3, the computational cost is significantly reduced.

5 Concluding Remarks

Weproposed a flexible neural network that successfully handles Boolean constraint
problems in multi-directions. Dual representation enables simple implementation
of delicate reasoning rules. We described the learning process of the network using
conventional Blake’s reasoning algorithm. We also proposed an alternative type
of prime implicant for abstract representation of symmetric Boolean constraints,
which significantly reduced computational cost. Since the network use only excita-
tory synaptic connections, we guarantee stability of the process even for complex
functions consisting of heavy constraints. We expect that our proposed network
to be applied to solve complex and multi-directional Boolean constraint problems
free of computational burden in more flexible manner.
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Abstract. Multiple kernel learning (MKL) is a widely used kernel learn-
ing method, but how to select kernel is lack of theoretical guidance. The
performance of MKL is depend on the users’ experience, which is diffi-
cult to choose the proper kernels in practical applications. In this paper,
we propose a MKL method based on minimal redundant maximal rele-
vance criterion and kernel alignment. The main feature of this method
compared to others in the literature is that the selection of kernels is
considered as a feature selection issue in the Hilbert space, and can ob-
tain a set of base kernels with the highest relevance to the target task
and the minimal redundancies among themselves. Experimental results
on several benchmark classification data sets show that our proposed
method can enhance the performance of MKL.

Keywords: minimal redundant maximal relevance, kernel alignment,
kernel selection, multiple kernel learning.

1 Introduction

Multiple kernel learning (MKL) is an important kernel method, in which the
most attractive character is so called ‘

¯
kernel trick”. MKL has been a hot research

spot due to its success in lots of fields, such as bioinformatics [1], computer vision
[2] and natural language processing [3]. MKL can be effortlessly derived from the
canonical kernel method, i.e., support vector machine (SVM) [4]. Compared to
SVM, MKL has a higher performance because of using a linear or nonlinear com-
bination of several base kernels instead of only one specific kernel. Consequently,
MKL aims at learning the combination coefficient of base kernels and some other
parameters which are also learned by SVM. Lanckriet et al. [5] formulated it as
a semi-definite programming problem. Bach et al. [6] reformulated it a quadrati-
cally constrained quadratic programming problem. Sonnenburg et al. [1] treated
it as a second order cone programming problem that can be efficiently solved

� Corresponding author.
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using interior point methods and Rakotomanon et al. [7] addressed it through
a weighted 2-norm regularization formulation with an additional constraint on
the weights that encourage sparse kernel combination. Recently, localized MKL
proposed by Gonen et al. [8], and the two-stage techniques for learning kernels
based on a notion of alignment for MKL reported in [9] are two representatives
methods.

Almost exclusively, methods aforementioned leave the task of selecting base
kernels to users. It would be difficult in practice to choose a set of appropriate
base kernels without prior knowledge, which maybe degrade the performance
of MKL. To alleviate the negative effects, one can produce as many as possi-
ble candidate kernels, e.g., a family of polynomial kernels of arbitrary degree
or a family of Gaussian kernels with different variances restricted in a specific
range, and use all of them directly as base kernels. However, base kernels se-
lected like that contain much redundant information and will give rise to high
computation cost. Alternatively, one can only choose partial kernels with the
highest relevance to the target task. Actually, to select a set of base kernels from
a prescribed set of candidate kernels can be treat as a feature selection prob-
lem within the Hilbert feature space. Feature selection methods allow obtain-
ing shorter training time and enhanced generalization by reducing over-fitting
when constructing predictive models [10]. One state-of-the-art feature selection
method, i.e., minimal redundancy maximal relevance (MRMR) [11], can be used
as a filter in order to obtain a minimal subset of candidate kernels by reducing
the redundancies among the selected kernels to a minimum. In this paper, we
propose a MKL method based on the combination of MRMR, which is used as
a filter, and kernel alignment, which is used to measure the mutual dependence
between candidate kernels and target kernel, to select base kernels to enhance
the performance of MKL. Note that, kernel alignment has been used for leaning a
combination kernel from a prescribed candidate kernels, see in [9] [12]. Contrast
to the previous work, in this study we take kernel alignment to select a set of
base kernels instead of a combination kernel, which leads us to be more flexible
in choosing the final combination form (linear, nonlinear or data-dependent) of
base kernels.

The remainder of this paper is organized as follows: Section 2 reviews MRMR
and kernel alignment. In Section 3, we describe the proposed method in detail.
Experimental results on several benchmark classification data sets are reported
and analyzed in Section 4, and our conclusions and further work are presented
in the last section.

2 Minimal Redundancy Maximal Relevance and Kernel
Alignment

2.1 Minimal Redundancy Maximal Relevance

MRMR is a well-known feature selection method based on the maximal sta-
tistical dependence of the target class on the data distribution. The mutual
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information is a quantity that measures the mutual dependence of two random
variables. Given variables x and y, the mutual information between them can
be calculated as follows

I(x;y) =
∑
x∈x

∑
y∈y

log
p(x; y)

p(x)p(y)
, (1)

where p(x; y), p(x) and p(y) denote the joint probability distribution function of x
and y, the marginal probability distribution function of x and the marginal proba-
bility distribution function of y, respectively. The higher value of I(x;y) indicates
the more mutual information they share, i.e., x is more correlated to y.

Let X = {x1,x2, ...,xi} be the whole feature set of a given data set, and Sm,
consisting of m features, be a selected subset of X. Given c, which represents
the target class label, and xi, which represents a feature, we can obtain Sm

by selecting the top m features in the descent order of I(xi; c), but it is not
a good scheme because of its failure in reducing the redundancy between the
selected features. MRMR can select features that have the highest relevance
to c and are also minimally redundant. In the algorithm of MRMR, first, all
mutual information between candidate features and target class are calculated,
and next, the mean mutual information between candidate features and the
selected feature in subset Sm−1, which hasm−1 selected features, are calculated,
and then to select themth feature from set {X−Sm−1} according to the condition
shown as follows:

max
xj∈X−Sm−1

[I(xj ; c)− 1

m− 1

∑
xi∈Sm−1

I(xj ;xi)], (2)

2.2 Kernel Alignment

In this paper, we use MRMR as a filter to select a set of base kernels from
candidate kernels. The mutual information between two kernels can be calcu-
lated using kernel alignment which proposed by Cristianini et al. in [13]. Ker-
nel alignment is a method to measure the similarity of two kernel matrices.
Given a binary-class data set S = {(xi, yi)}Ni=1, where yi is the class label and
yi ∈ {−1, 1}, and N is the total number of samples, then the similarity between
two kernel matrix on data set S is calculate by

A(S,K1,K2) =
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

, (3)

where 〈K1,K1〉F is the inner product between kernel matrices, and the form is
as follow

〈K1,K2〉F =
N∑

i,j=1

K1(xi, xj)K2(xi, xj). (4)
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If we consider K2 = yyT , where y is the class vector of all samples, then we
get

A(S,K1,yy
T ) =

〈
K1,yy

T
〉
F√〈K1,K1〉F 〈yyT ,yyT 〉F

. (5)

In the next section, we will describe the proposed method in details.

3 The Proposed Method

The proposed method reported in this paper is based on a hybrid approach
combining MRMR and alignment kernel (MRMRKA). The general algorithm of
MRMRKA includes three steps: 1) some candidate kernels, or called candidate
matrices, are generated based on the given data set, and 2) a set of base kernels
is automatically selected by utilizing MRMRKA, and 3) the selected base kernels
are fed into the process of MKL. The detailed steps are described as follows.

First, we obtain a set of candidate kernels. Kernel matrices are generated
by the mapping of kernel functions. It is necessary to try to make use of sev-
eral different kernel functions for getting some valid candidate kernels. Using
linear kernel function, we generate the first kernel matrix, and the others can
be generated by utilizing a family of polynomial kernel functions with different
settings of the degree and a family of Gaussian kernel functions with variances
in a prescribed interval.

Second, we select base kernels using MRMRKA. Given that the number of
base kernels to be selected is m, the mutual information between candidate
kernel matrices and target kernel matrix are calculated using (4), then select the
candidate kernel with the maximal value of mutual information as the element
of set S1. Then, use (2) or (3) to select the rest set Si(2 ≤ i ≤ m). Note that,
I(xi; c) and I(xi;xj) in (2) are substituted by (4) and (6), respectively.

Third, we execute MKL with the selected base kernels. Several MKL schemes
can be chosen in this stage such as MKL based on semi-definite, MKL based on
quadratically constrained quadratic programming, simpleMKL, localized MKL
and so on.

4 Experiments

In this section, several experiments are done to test the proposed method on a
number of classification data sets, and the experimental results of three different
schemes to select base kernels in MKL are reported.

4.1 Data Sets and Preprocessing

Ten classification data sets which are available on the UCI machine learning
archive [14] are adopted in the experiments, the detail informations about those
data sets are shown in Table 1.



MKL Method Using MRMR Criterion and Kernel Alignment 117

Table 1. Data sets information

Dataset #Classes #Attributes #Instances

Blood 2 5 748

Breast 2 32 569

Control 6 60 600

Ecoil 5 8 336

Glass 7 10 214

Iris 3 5 150

Parkinsons 2 23 197

Seeds 3 7 210

Sonar 2 60 208

Wine 3 13 178

All raw data were preprocessed to have zero mean-value and unit variance.
Each data set was divided randomly to three subsets with preserved class ratios.
One of the three subsets was reserved as the testing set, and one of the remaining
two was used as the training set and the other was used as the validation set.
The validation sets of all data sets were used to optimize the parameter C,
i.e., the trade-off parameter between model simplicity and classification error,
by trying values {0.01, 0.1, 1, 10, 100}. The best C, i.e., leading to the highest
classification accuracy on the validation set, was used to train the final classifier
on the training set and its performance was measured over the testing set. The
MKL scheme used in this study is LMKL due to its outstanding performance
and we modified it to fit for multi-class classification tasks1. We repeated the
experiment three times on each data set and reported the average classification
accuracy as well as standard deviation.

4.2 Experimental Results and Comparison

For comparison, we adopt three schemes to select base kernels after producing
candidate kernels: using all candidate kernels as base kernels (Method 1), se-
lecting the top m kernels in the descent order of A(S,K,yyT ) (Method 2), and
selecting base kernels using MRMRKA. We produced forty candidate kernels on
each data set, which consist of one linear kernel, four polynomial kernels with
different degree values {2, 3, 4, 5}, and thirty-five Gaussian kernels with different
variances whose values are limited in [0.01, 1000].

We compared the performance of three schemes in terms of both computa-
tional time cost and classification accuracy, based on experiments on a quad-core
2.67G Xeon CPU running Windows 7 with the Matlab implementation. Table 2
shows the final results on all data sets. Note that, the number of selected base
kernels, i.e., m, ranges from 2 to 16 in our experiments, so the results of Method
1 and Method 2 reported in Table 2 are the best classification accuracy. As we

1 The original codes are available on http://user.ics.aalto.fi/gonen/icml08.php

http://user.ics.aalto.fi/gonen/icml08.php
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Table 2. Classification results on all data sets

Dataset Method 1 Method 2 MRMRKA

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

Blood 0.7590±0.0678 56±6.0 0.7711±0.0229 6±2.0 0.8005±0.0126 25±1.0
Breast 0.7964±0.2506 134±9.0 0.9613±0.0053 7±2.0 0.9754±0.0011 38±1.0
Control 0.9663±0.0816 1304±58 0.9680±0.0103 28±2.0 0.9731±0.0064 86±1.0
Ecoil 0.8142±0.0196 164±19 0.8443±0.0243 8±0.10 0.8682±0.0054 8±0.50
Glass 0.5728±0.0518 141±18 0.6122±0.0641 17±2.0 0.6352±0.0093 36±2.0
Iris 0.9804±0.0227 8±0.10 0.9804±0.0227 0.3±0.10 0.9804±0.0123 8±0.20
Parkinsons 0.8513±0.0335 21±8.0 0.8872±0.0506 6±2.0 0.9128±0.0196 7±2.0
Seeds 0.9275±0.0421 22±3.0 0.9372±0.0391 0.5±0.10 0.9420±0.0229 3±0.10
Sonar 0.5894±0.1034 108±29 0.5990±0.0549 0.6±0.10 0.6135±0.0474 6±0.50
Wine 0.9498±0.0269 48±3.0 0.9722±0.0170 2±0.40 0.9722±0.0092 13±0.20
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(b) Breast data set
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(c) Control data set
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(d) Ecoil data set
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(f) Iris data set
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(g) Parkinsons data set
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Fig. 1. Comparison of base kernels selected by MRMRKA and Method 2

can see from Table 2, MRMRKA obtains the best classification accuracy on all
data sets. Both Method 2 and MRMRKA outperform Method 1 on all data sets.
In addition, the time cost of Method 1 is higher than those of Method 2 and
MRMRKA, because Method 1 does not take into count the redundancies among
the selected base kernels and whether they are related to the target kernel, which
undoubtedly has a negative effect on the efficiency and effectiveness of MKL. In
the case of Method 2, the part of candidate kernels that are barely related to the
target kernel is filtered in the selecting stage, but it does not take any measures
to reduce the redundancies. Compared to Method 1 and Method 2, MRMRKA
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selects the candidate kernels with the highest relevance to the target kernel and
minimizes the redundancies among them, which makes it outperform the others.
The time cost of MRMRKA is higher than that of Method 2 due to its a little
bit more expensive, but the difference is acceptable. In general, Table 2 indicates
MRMRKA gets a trade-off of the high accuracy and time cost.

We also examine that the number of selected kernels how to influence the
performance of Method 2 and MRMRKA, and the results are shown in Fig. 1.
The results demonstrate that the classification accuracy of MRMRKA fluctuates
slightly with the change of m, in other words, when the number of selected base
kernels is limited in a specific range, e.g., [2, 16], the performance of MRMRKA
are more stable than Method 2 in general. An important inspiration that can be
drawn from the phenomenon is we can use cross-validation to select an optimal
m by trying several finite values in practice. On the other hand, the fluctuation
indicates that MRMRKA cannot entirely avoid the redundancies among the
selected base kernels. To solve this kind problem, cross-validation can still be
considered.

5 Conclusion and the Future Work

In this paper, in order to solve the problem of selecting base kernels in MKL, we
propose a method which combine with MRMR and kernel alignment. The current
results show that the proposed method can obtain a set of base kernels which
can enhance the performance of MKL. There are two issues worth of further
consideration. The first one is that only some medium-sized data sets are chosen
in this study due to the computational time and space such kernels take when
facing with large number of data samples, and the large scale data sets should
be considered in the future work. The second one is that some other similarity
measurements, such as Euclidean distance or Kullback-Leibler divergence can
be utilized to measure the mutual dependence between kernels.
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grants from the National Natural Science Foundation of China (Project No.
90820010, 61375045).
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Abstract. We present a recurrent learning system that can incremen-
tally integrate stimuli in two modalities, visual and auditory. The system
consists of five self-organizing modules, each mapping input stimuli into
respective latent spaces. Two sensory modules convert the input stim-
uli into an internal 3-D “neuronal code”. The central module integrates
the bimodal information, and through modulatory top-down feedback
influences the organization of data in two unimodal association units.
Two feedback gains control the strength of the feedback connection. As
an example we selected a set of Chinese characters and related spoken
words. It is shown that the learning system can build a stable neuronal
structure for incrementally applied visual and auditory stimuli.

Keywords: Multimodal Learning, Visual and Auditory stimuli, Recur-
rent networks, Self-organization, Chinese characters.

1 Introduction

It is well acknowledged that human languages are inherently cross-modal, re-
quiring both written and spoken components to realize their full potential. In-
teresting accounts of the origins of human written and spoken language can be
found in [7] and many others.

Due to the redundancy between the visual-signing (gestural, drawing or writ-
ing) and auditory-speech systems, spoken cross-modal references to symbolic
names, as well as written representations of spoken signals, allowed for an in-
creasingly rich repertoire of utterances, words and characters. These could be
combined to describe the physical and mental world in more abstract terms and
the argument goes that as languages became more sophisticated, they became
increasingly embedded in the complex culture within which they co-evolved [3].

Some important differences in the way the human brain processes pictographic
languages in general and Chinese in particular is described in [2]. As processing
of the radicals and oriented brush strokes comprising the 50,000 or so known Chi-
nese characters is very different from that of phonetically based languages such

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 121–128, 2013.
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as English, a different set of phonological and orthographic skills are required in
Chinese language acquisition [16].

Language processing is fundamental to human cognitive ability and involves
multiple cortical networks and pathways across visual, auditory and other modal-
ities. Large brain networks used in reading are discussed in [5]. See also [14] and
[15] for some of our own efforts to develop simplified models of such networks.

While language comprehension and production requires the function of mul-
tiple cortical areas acting in concert, a region on the left hemisphere, the left
superior temporal sulcus (STS) has been advanced as the main site for integra-
tion of visual and auditory speech information [3]. Recent fMRI studies support
the key role of this region in the fusion of letters and speech sounds in the human
brain[1].

Previous results of applying our models to the problem of integration of
phonemes and letters in Chinese and Swedish are reported in [4] and [8] re-
spectively. A related modelling framework is used in this case, however later
enhancements for sequential feed-forward and recurrent learning [15] and incre-
mental learning [11] provides an opportunity to revisit the problem of learning
Chinese characters and associated sounds.

By incrementally building up sensory, unimodal associative and fused bimodal
representations within our simplified five module network, a consistent way in
which a human child or a computational agent may learn essential features of
Chinese or any other spoken and written language is suggested.

2 The Structure of the Learning System

The structure of our bimodal incremental learning system is presented in Fig. 1.
The function of the system is to receive sensory information across two modali-
ties, visual and auditory, and integrate these representations. As an example, we
use Chinese characters and their utterances as inputs to our system. We have
experimented previously with Chinese characters in [4] and more recently [13].

The main part of the learning systems consists of five interconnected self-
organizing modules. Two sensory level modules, Vis and Aud, process visual
and auditory stimuli, respectively, converting coded sensory information, xV and
xA into the standard internal representation of signals yV and yA. In the next
hierarchical level, two unimodal association modules, UV and UA, combine
the signals from the sensory level, yV and yA, with the modulating top-down
feedback signals, yV A, produced by the top level bimodal association mod-
ule, V+A. The strength of the top-down modulatory feedback is controlled by
two gain parameters, gUV and gUA, at the input to the respective unimodal
association modules.

The bimodal association module is presented here as a central part of the
learning system. We can hypothesize that this module may also be activated by
endogenous thoughts and can be used to drive modal effector systems, one for
writing and one for articulation.

Following our previous works [14,15,8], the building block of our system is a
self-organizing module (map) with the following characteristics (see Fig. 2):
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Fig. 1. The structure of the incremental learning system. The main part of the system
consists of five self-organizing modules: Vis, UV, Aud, UA and V+A.

– The neuronal units (shown as yellow dots in Figures 2 and 4) are randomly
distributed inside a unit circle, rather than on a uniformed rectangular grid.

– A constant number (stochastically) of neuronal units per stimulus, ε, is main-
tained to simulate the redundancy observed in biological systems.

– All stimuli vectors are projected on a unity hypersphere. Therefore, a sim-
plified “dot-product” version of the Kohonen learning law [9] may be used.
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Central to our processing architecture are the outputs from self-organizing
modules, for example, yV in Fig. 1. Note that dimensionality of all output vectors
is 3. Such an output vector is a concatenation of the 2-D position vector of the
winning neuron and its postsynaptic activity, namely,

y = [vw dw] = K(d), d = W · x (1)

where W is an M × D matrix of parameters, the weight matrix, M being the
number of nodes (neurons), and K is the Winner-Takes-All function identifying
the position of the neuronal node vw for which the post-synaptic activity d =
W · x attains the maximum.

These output signals implement a ubiquitous “neuronal code”, providing a
unified way for information labels to be exchanged between modules of the net-
work. It should be emphasized that the positions of neurons are considered in a
latent space, not the physical one. This implies that during incremental learning
the physical position of participating neurons is not affected.

3 The Incremental Learning Process

Our incremental learning process for a single iSOM has been introduced in [11].
We refer to this paper for detailed comparisons with other structures that may
appear similar, in particular, a variety of growing SOMs. One fundamental dif-
ference is that during the learning process, we maintain a stochastically constant
ratio between the number of neuronal units and the number of current stimuli.

In our case this expected ratio is always greater than one, implying that more
than one neuron is used to represent a percept. This can be contrasted with other
applications of SOMs where the number of of neurons is typically less than the
number of data points. A study into the increased persistence and stability of
percepts provided by such neural representations is presented in [6].

The incremental learning process starts with a small number, say n = 3, of
initial stimuli and consists of two main steps:

Feedforward learning: We start with setting two feedback gains gUV and gUA to
zero, thus opening the feedback loops and

– generate the number of neuronal units proportional to the number of stimuli,
m = nε, say 3× 16 = 48

– generate initial weights to be located around the north pole of the unity
hypersphere

– perform the “dot-product” learning law for all maps, for all initial stimuli,
for a set number of epochs, say 100.

Recurrent learning: We set the feedback gains to required values, e.g., gUV =
gUA = 0.5 and repeat the learning process with one basic modification: after
completing learning for each stimulus, we re-evaluate outputs from all 3 inter-
connected modules, namely, yUV , yUA and yV A, until the values of the outputs
settle. This typically happens after just two steps (see [14,15] for more details)
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Adding more stimuli: Now we add new stimuli, one at a time, and repeat the
two learning steps above with the following modification:

– generate the additional number of neuronal units proportional to the incre-
ment in the number of stimuli, mi = niε, say 1× 16 = 16

– initialize weights of the new mi units to be equal to the weights of the closest
neighbours.

– continue learning in the open and closed loop as above.

Sensory Visual Map, adding: qing1

cou4 zhun3

liang2leng3

feng2

mo1

da2

qing1

Sensory Auditory Map, adding: qing1

ba1 mo2 da3 ti4 chong1 feng2 jue2 min3
ba2 mo3 da4 ke1 cou4 gan4 leng3 ning3
ba3 mo4 ti1 ke2 cui1 gu4 liang2 qi1
ba4 da1 ti2 ke3 diao1 jian3 lie4 qing1
mo1 da2 ti3 ke4 dong4 jing4 ling2 zhun3

Fig. 2. The sensory maps after 8 stimuli. The set of characters and their pinyin names
are included.

This incremental process elegantly solves the problem of initialization of weights.
Less effective random initialization is performed only for a small number of initial
neurons. The result of learning after application of 8 stimuli is shown in Fig. 2.

Topological ordering of the stimuli needs to be considered in the context of
the feature vectors used. For the visual channel we used an angular integral of
Radon Transform (aniRT) discussed in [13] for the 20,000 Chinese characters
and in [12,10] for other types of visual objects.

In the table of Fig. 2, the first 20 characters are grouped according to simi-
larities in pronunciation, while the second set of 20 have a similar structure in
terms of the aniRT coefficients. Each rendered character, is converted into a 91
component vector (91 being the size of the diagonal of the image). As described
in [13] very few components are required to differentiate between characters,
although some more are needed to capture details of the visual object.

For the auditory channel, we follow our previous work [14,8,4] where melcep-
stral coefficients are used to represent frequency of the speech sounds. We use



126 A.P. Papliński and W.M. Mount

12 coefficients per frame, with 3 frames overlapping by 50%. We also add the
duration of the utterance, so that we have 38-D feature vectors after projecting
up on the unity hypersphere. An example of such coding is given in Fig. 3.

0 2000 4000 6000 8000
−1

0

1

8996

5 10 15 20 25 30 35
−5

0

5 ba1

ba1 p. 1

1

Fig. 3. Representing the ‘ba1’ sound in the melcepstral domain: 8996 speech samples
are coded by 36 melcepstral coefficients. Normalized number of samples is also included
as the first coefficient in the right-hand side plot.

If we continue the process of learning adding incrementally more and more
stimuli, after 40 stimuli we obtain five maps as presented in Fig. 4. Again, at
the sensory level it is easy to spot the topological ordering in both modalities.
At the unimodal association level the topological arrangement of the stimuli
is influenced by the top down feedback. Finally, the bimodal map presents the
fusion of information from two modalities. In this paper we concentrate on the
issue of the incremental learning which is performed for the congruent stimuli
presented on the visual and auditory channels. The reader is referred to our
previous works for considerations related to noisy and incongruent stimuli.

4 Discussion

While the sensory maps develop independently in a feedforward learning mode,
the influence of top-down feedback during the recurrent learning phase ensures
that cross-modal relationships are encoded in the unimodal and bimodal maps.
Significantly, even though crossmodal information is not explicitly contained in
either the visual or auditory information presented alone, the BiSON model en-
sures that the inherently bimodal structure of the words or characters comprising
the natural language (in this case Chinese) is effectively encoded and learned.

A further enhancement would be to explore interactive learning and com-
munication through the addition of character articulation and writing effector
modules. This could introduce a third sensori-motor modality to our multimodal
language framework. Finally, by extending this architecture to include simpli-
fied modules for central perceptual, evaluative and task-orientation functions,
we hope to develop a sophisticated multilayered learning model where the sym-
bolic elements or tokens of a spoken and written language represent meaningful
mental objects and concepts within an interactive setting.

5 Conclusion

We present a recurrent learning system vaguely mimicking some basic cortical
areas related to integration of visual and auditory information. In the example,
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Fig. 4. The five interconnected maps developed after incremental application of 40
stimuli

the system ’reads’ Chinese characters and simultaneously ’listens’ to their pro-
nunciation. At each stage, we add one more visual-auditory stimulus and the
learning system incorporates it into its 5-map structure. Despite the recurrent
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nature of the system, it converges to a fixed point after a only small number of
recurrent iterations. The bimodal module plays the central part of the system for
fusion of the bimodal percepts and from which effectors for writing and speaking
can be driven.

The software used in this paper is written in MATLAB and is available upon
request.
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14. Papliński, A.P., Gustafsson, L., Mount, W.M.: A model of binding concepts to
spoken names. Aust. Journal of Intelligent Information Processing Systems 11(2),
1–5 (2010)
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Abstract. Dialogue reflects interests of the participants at that mo-
ment. Thus, it is desirable to extract keywords from each dialogue sen-
tence as soon as they are spoken, because the keywords from dialogue
can be used for various fields importantly such as personal assistant ser-
vices, advertisement, and so on. This paper proposes a novel method of
keyword extraction from dialogue sentences. The proposed method de-
termines a word as a keyword by using semantic information of words in
a dialogue sentence. That is, the proposed method extracts the keywords
that are more semantically important within their sentences and more
topically related to the dialogue. In the experiments on the ICSI meeting
corpus, the proposed method achieves the state-of-the-art performance.

Keywords: Keyword extraction, Dialogue sentences, Semantic related-
ness.

1 Introduction

Variety of sensory data can be used to help humans in many situations using its
plentiful information. Smart phones which now are regarded as micro-computers
have already shown many such cases like iPhone’s Siri or some augmented reality
services using their camera. Because language includes semantics on its own and
dialogue among humans reflects their interest at that moment, the information
extracted from such audio sensory data can be used for various fields impor-
tantly. For instance, a dialogue sentence can be used as features to inference the
intention and the situation of the dialogue participants.

In order to exploit dialogue sentences as informative data, keywords should
be extracted first, because, in a dialogue, there are many redundant words that
provide no information such as habitual words like ‘sort of ’ or ‘um’. A dialogue
has a number of topics and each dialogue sentence may deal with some topics
in the dialogue. Thus, informative sentences are much related with those of the
topics, while non-informative ones may consist of habitual words. Therefore, ex-
tracting keywords from dialogue sentences should consider whether the sentence
is semantically related to the entire dialogue topics and how much related to
the topics. With this semantic information, the words that are more important
semantically should be chosen as keywords.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 129–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



130 Y. Noh, J.-W. Son, and S.-B. Park

There have been some studies that focus on the spoken genres. Liu et al. pro-
posed a number of keyword extraction methods [5] for the meeting transcripts.
They conducted the keyword extraction through TFIDF-based and TextRank-
based methods with some NLP techniques. However, these methods use whole
meeting scripts not for each sentence to extract keywords, because they focus on
only the characteristics of texts from spoken language such as unstructured and
ill-formed sentences. Song et al. [7] proposed a method which extracts keywords
from each utterance in a meeting. They constructed a history graph which con-
tains all of keywords from all of previous meetings. Then, they expand the graph
of current utterance using the history graph to make up for the deficient infor-
mation of the current utterance. Since the history graph is accumulated without
distinction of topics, the graph includes some irrelevant keywords. Therefore,
even though the theme of the expanded graph is similar with that of current
utterance, it can contain different topics from the topics of current utterance.

This paper proposes an unsupervised keyword extraction from dialogue sen-
tences. The proposed method uses semantic information derived from a global
knowledge base, specifically Wikipedia, to represent the topics of dialogue and
compute semantic relatedness betweenwords and sentences.The proposedmethod
deals with semantic importance ofwordswith two aspects. First, the local word im-
portance finds semantic importance of words in a sentence. To do this, a semantic
graph of the sentence is generated, where the nodes are words in the sentence and
the edges areweighted by semantic relatedness between nodes. Then, TextRank al-
gorithm [6] is applied to reveal words which are semantically centered. Second, the
proposed method uses global word importance. The global importance of a word
is defined as how strongly a word corresponds to the topics of the dialogue. The
global importance is determined by semantic relatedness between the word and
dialogue. These local and global word importances are linearly summed. After the
importance of a word is measured with both aspects, a weight of the sentence is
applied to them. The weight of the sentence denotes the similarity between topics
in the sentence and those in the dialogue. Thus, this weight can prevent to extract
keywords from sentences without any information for the dialogue.

The evaluation of the proposed method is done with the ICSI meeting corpus
[3]. In the experiments, the proposed method outperforms all existing methods
including both methods of Liu et al. [4,5] and the history graph-based model [7].
This result proves the effectiveness of the proposed method in keyword extraction
from dialogue sentences.

2 Keyword Extraction for Dialogue Sentences

Let Dt be a set of dialogue sentences at time t. Thus, Dt is defined as Dt =
{d1, d2, , dt}, where di denotes the sentence generated at time i. Then, the task
of keyword extraction is to extract keywords from dt by using Dt. That is, the
proposed method extracts keywords from dt immediately based on Dt−1 and dt
itself. To extract keywords, a score function f(wt

i) is first defined as

f(wt
i) = Li(wt

i) +Gi(wt
i), (1)



Keyword Extraction from Dialogue Sentences Using Semantic 131

where wt
i is the i-th word in dt and both Li(wt

i) and Gi(wt
i) are function to

measure the local and global word importance respectively. The local word im-
portance denotes the topical importance of wt

i in dt, while the global word im-
portance means the topical importance of wt

i in Dt. When it is assumed that
both importance measures are prepared, the task can be easily achieved just by
choosing words whose scores are over a threshold θ.

2.1 Local Word Importance

Local word importance Li(wt
i) is determined by using the semantic graph of the

dialogue sentence in this paper. To make a semantic graph Gt for the sentence
dt, the proposed method employs Explicit Semantic Analysis (ESA) [2] which is
a typical semantic relatedness measure using Wikipedia. When a sentence dt is
spoken, ESA maps each word onto a vector space which is explicitly defined by
Wikipedia concepts. Let T be a set of Wikipedia concepts, then a word wt

i in a
sentence is expressed as a concept vector cti

cti =
〈
Φ1(w

t
i), Φ2(w

t
i), , Φ(|T |)(wt

i)
〉
.

Here Φk(w
t
i) is the weight of the k-th concept for wt

i and is given as

Φk(w
t
i) = tf(wt

i , aj) · idf(wt
i , T ),

where aj is an article of the j-th Wikipedia concept in T.
To build Gt, we first generate concept vectors c

t
i for all words w

t
i ∈Wt, where

Wt is a set of words in dt. Then, it is excluded words whose concept vectors
contain only zeros. After the filtering out, the remained m unique words in dt
are used as the vertices of the semantic graph Gt, since these words can represent
some topics. That is, the semantic graph Gt is defined as an undirected graph
(Vt × Et), where Vt is the set of remained words, and Et is a set of edges and
each edge represents how much two vertices are semantically tied by its weight
score. This semantic relatedness for each etij ∈ Et that links between vertices vti
and vtj is defined as

ewt
ij = sim(cti, c

t
j) =

cti · ctj
‖ cti ‖‖ ctj ‖

, (2)

In the case of ewt
ij = 0, which means no semantic relatedness between vti and

vtj , the edge etij is discarded.
After the semantic graph Gt is built, the local semantic importance of words

can be obtained by graph-based ranking algorithms. In the proposed method
TextRank algorithm [6] is adopted. TextRank was introduced to extract keyword
and sentence from natural language texts and it is designed based on PageRank.
The local semantic importance of each vti ∈ Vt is finally computed by following
TextRank algorithm:

WS(vti) = (1− d) + d ∗
∑

vt
j∈adj(vt

i)

ewt
ji∑

vt
k∈adj(vt

j)
ewt

jk

WS(vtj), (3)
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where 0 ≤ d ≤ 1 is a damping factor and adj(vti) denotes the vertex vti ’s
neighbors.

2.2 Global Word Importance

The global word importance Gi(wt
i) of a word wt

i treats a semantic relation-
ship between the word and the dialogue Dt−1. Since the local word importance
considers the semantic relationships only within a sentence dt, the global word
importance can reflect a different aspect of word in the score.

ESA can be also used for the global word importance. However, unlike the
local word importance, a modification of ESA is needed to handle the dialogue
sentences. Each dialogue sentence usually has short length and it can be mixed
some semantically important words and less important one together. When a
sentence dt is given, its concept vector is obtained with sum of concept vectors
for words in the sentence. Thus, the vector can be easily misled by some valueless
words.

To solve this problem, ESA is modified as TextRank-ESA that uses weighted
sum of words to generate an concept vector of a sentence. The weights for words
are obtained by TextRank algorithm on the semantic graph of the sentence.
That is, in TextRank-ESA, each word is weighted by its local word importance
in Equation (3). As a result, the concept vector of the sentence dt is defined as

trCt =
n∑

i=1

WS(vti) · cti (4)

where n is the number of words in a sentence.
Table 1 shows a difference between the ordinary ESA and TextRank-ESA. The

left part of Table 1 shows an ESA concept vector representation of a dialogue
sentence ‘you can speak into it and ask for movie information’. In this sentence
‘movie’ and ‘information’ should be regarded as important words. However, the
concepts in the ESA vector are confused by the concepts from ‘speak’. On the
other hand, the right part of Table 1 shows the concept vector from the same
sentence by TextRank-ESA. Comparing with ordinary concept vector, concept
vector of TextRank-ESA represents the sentence semantically well about ‘movie’
and ‘information’.

The global word importance is measured with semantic relatedness between
a word wt

i in the sentence dt and the dialogue Dt−1. Thus, the concept vector
for Dt−1 is required. Similar with Equation (4), the concept vector for Dt−1 is
also determined by the sum of weighted concept vectors of all words in Dt−1.
That is,

trCDt−1 =
∑

dk∈Dt−1

∑
wk

i ∈dk

WS(v
Dt−1

i ) · cki ,

where WS(v
Dt−1

i ) is from the semantic graph GDt−1 of Dt−1. This graph is
constructed by simply combining semantic graphs of all sentences in Dt−1. Then,
for the global word importance for wt

i , Equation (2) is used to compare cti (the
concept vector of wt

i) and trCDt−1 (the concept vector of Dt−1).
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Table 1. Semantic representations of ESA and TextRank-ESA for a dialogue sentence

# Input text: “you can speak into it and ask for movie information”

ESA TextRank-ESA

1 Internet Movie Database Internet Movie Database
2 Yahoo! Movies Yahoo! Movies
3 Relatively Speaking (play) Geographic Names Information System
4 Universally Speaking Hong Kong Movie DataBase
5 Motivational speaking Jane’s Information Group

2.3 Keyword Extraction from Dialogue Sentence

The proposed method is performed with two semantic factors of words mentioned
above. The word occupies semantically important status in a sentence should be
much considered as a keyword. At the same time, the word which is more related
to the topics of the dialogue is also taken into account more importantly.

Considering these two semantic factors as same weight, the word importance
of each word in a sentence dt is computed as follows.

WI(wt
i) =

1

Z
WS(vti) + sim(cti, trC

Dt−1 ), (5)

where z denotes the normalization factor to bound the value ofWS(vti) from 0 to
1. When Equation (5) is used as a score function in Equation (1), keywords are
always extracted even for the sentences only with noise. Thus, in the proposed
method, a sentence importance is applied to penalize sentences without informa-
tion. This importance reflects how the topics of a sentence are consistent in the
topics of the dialogue. If a sentence has small score in this factor, it results in ex-
tracting no keywords from the sentence. The sentence importance is also simply
measured by computing semantic relatedness between two concept vectors of the
sentence and the dialogue. Thus, it is defined as SI(dt) = sim(trCt, trCDt−1 ).

When the sentence level semantic factor is applied to Equation (5), it gives
rise to a problem that keywords are not extracted in the early stage of a dialogue.
This is because the first sentence always has 0 value of SI(dt). Thus, this is a
critical obstacle to extract keywords from sentences at the beginning of dialogue.
To prevent them, we rescale SI(dt) between 0.5 and 1. Consequently, the score

function in Equation (1) is conducted as KS(wt
i) =

1+SI(dt)
2 WI(wt

i).

3 Experiments

3.1 Data Set

The proposed method is evaluated with the ICSI meeting corpus [3]. Table 2
shows simple statistics of the ICSI meeting corpus data. There exist total 201
of topic segments in the 26 meetings. That means that each meeting has about
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Table 2. Simple statistics of the ICSI meeting corpus

Information Value

The number of meetings 26
The number of segments 201

The number of topic segments used actually 140

8 topics on average. Among 201 topic segments, 61 segments have no keywords.
In experiments, such segments are discarded, and remaining 140 segments are
actually used. We performed experiments by regarding these 140 topic segment
as dialogues.

There are two parameters for the proposed method. A damping factor is
adjusted as 0.85 and a threshold performing a border line for keywords is set to
0.2. Unfortunately, the keywords of the ICSI meeting corpus are not provided
for each sentence in a dialogue. The corpus only provides keywords just on topic
segment level. To measure the proposed method with the data set, we borrow
the idea of [7]. First, keywords are extracted from each dialogue sentence by the
proposed method and then all of them are accumulated with their score. Unlike
[7] who conducted post-computation to fit their method to the data, keywords
are selected by just the accumulated scores which are normalized. Keywords that
have the score higher than threshold 0.03 and ranked within top-10 are chosen
for each topic segment.

To generate concept vectors, a Wikipedia snapshot as of May 2, 2012 is used.
We followed all settings to refine Wikipedia articles for constructing an inverted
index by [2].

3.2 Experimental Result

The evaluation is carried out with F-measure and the weighted relative score
(WRS). WRS is defined by that a higher score is given to an extracted keyword
when more annotators agree the extracted one as a keyword. The proposed
method uses total three semantic factors for a dialogue sentence, so the effect of
each factor was explored. Table 3 shows the performances of the partial methods
with each semantic factor of the proposed method. As shown in this table, all
factors have its own room. In every time adding a factor, both F-measure and
WRS had been improved. This experimental result shows that each semantic
factor provide a different point of view to reveal semantically more significant
keywords.

The proposed method is also compared with four previous studies. The first
and second methods are proposed by Liu et al. [5] which are TFIDF- and
TextRank-based methods with some NLP techniques. The third method is the
maximum entropy model which is a supervised learning model [4]. The forth
method is a graph-based method which uses the history graph and it reported
the state-of-the art performance in unsupervised keyword extraction [7]. History
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Table 3. The performance of partial factor of the proposed method

Method f-measure WRS

Local word importance 0.318 0.473
Local + global word importance 0.336 0.488

Proposed method 0.380 0.612

Table 4. The performances of various methods on the ICSI corpus

Method f-measure WRS

TFIDF-Liu 0.290 0.404
TextRank-Liu 0.277 0.380
ME model 0.312 0.401

History graph-based 0.334 0.533
Proposed method 0.380 0.612

graph-based method is also designed to extract keywords from each dialogue
sentence, so it is compared to our method directly.

Table 4 shows the result. As shown in this table, the proposed method out-
performs all others with respect to both measures, F-measure and WRS. The
proposed method achieves the best performance with 0.380 in F-measure. Even
in the history graph based method [7], it shows 4.6% and 7.9% worse F-measure
and WRS than those of the proposed method. These experimental results prove
that the proposed method efficiently reflects the characteristics of dialogue sen-
tences by using semantic information. Therefore, it can be concluded that the
consideration of semantic relations among words within a sentence and the topics
of the whole dialogue are crucial in keyword extraction from dialogue sentences.

4 Conclusion

In this paper, we proposed a novel method for extracting keywords from dia-
logue sentences. As soon as a sentence is spoken, the proposed method gener-
ates keywords from the sentence that best describe the sentence. By considering
the semantic information in the sentence itself and the dialogue, the proposed
method extracts keywords that reflect the topics organizing the main stems of
the dialogue. Local and global word importance reflects the semantic importance
of a word for both a sentence and a dialogue respectively. On the other hand,
the topics on the sentence itself are also considered by using the sentence im-
portance. The proposed method was evaluated with the ICSI meeting corpus.
According to the results of our experiments on the corpus, the proposed method
showed the best performance of extracting keywords from dialogue sentences.
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Abstract. In this paper, we develop a novel human implicit intention 
understanding model by mimicking the human-like visual attention and brain 
information processing mechanisms. In other words, the proposed model 
considers a hybrid cognitive neural system, which comprises of spatial attention 
model obtained based on exogenous and endogenous attention models. 
Generally, information can be selected via top-down or endogenous 
mechanisms depending on the goals of the observers while salient objects or 
events attract spatial attention via bottom-up or exogenous mechanisms 
allowing a rapid and efficient reaction to unexpected but important events. 
Given a visual stimulus, the spatial analysis module identifies the objects of 
interest by correlating the salient areas obtained from the exogenous module 
and the eye gaze information obtained from the endogenous module. Then, 
corresponding to an intent, each of the identified objects are classified in to one 
of the two classes – intent object or non-intent object, by analyzing the features 
such as fixation length (FL), fixation count (FC) and pupil size (PS) 
corresponding to each object. In the proposed model, support vector machine 
(SVM) is trained for classifying the different objects. Experimental results show 
that the proposed model generates plausible performance based on hybrid 
cognitive neural system. 

Keywords: human implicit intent, spatial attention, endogenous, exogenous, 
human computer interface & interaction, eye tracking. 

1 Introduction 

The process of concentrating on a particular aspect of the environment selectively, 
while ignoring other things is referred to as ‘attention’. Attention is a central feature 
of human cognition, which can be driven by internal goals or by external stimulation. 
The time course of attention also varies depending on the cognitive task at hand. In 
general, goal-driven attention is referred to as top-down or endogenous attention, 
whereas stimulus-driven attention or attention driven by the external events in an 
environment is referred to as bottom-up or exogenous attention [1]. In the present 
work, we develop a hybrid system comprising of both endogenous and exogenous 
                                                           
* Corresponding author. 
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attention models to understand human implicit intention. The proposed model 
classifies human implicit intention in real-world indoor environment based on spatial 
attention. The spatial attention can be obtained by analyzing a correlation between the 
endogenous attention and the exogenous attention. The endogenous attention can be 
obtained by using human eye gaze information and the exogenous attention can be 
obtained by using the selective attention model. The classification of human implicit 
intention based on eye movement analysis has been studied in [2]. In [3], the authors 
introduced a brain-like model to generate a selective attention model based on 
bottom-up saliency map (SM) to determine reason of interest (ROI) in a visual 
stimulus image. In this paper, we propose a model considering both psychological and 
cognitive aspects to classify various identified objects into intent and non-intent 
objects while visualizing a natural scene.  An intent object refers to an object, which 
is  related to a particular intention while a non-intent object refers to an object that 
does not possess any relationship corresponding to an intention. For example, objects 
such as ‘knife’ and ‘bread’ are related with the intention “Eat Bread” and are referred 
to as intent objects. In contrast, objects such as ‘noodle’, which do not bear any 
relationship to the given intent are referred to as non-intent objects. 

The paper is organized as follows: Section 2 presents an outline of the proposed 
human implicit intention understanding model based on hybrid cognitive neural 
system such as endogenous and exogenous spatial attention. Section 3 presents 
experimental results of the proposed model in natural scenes. Section 4 concludes the 
paper with some suggestions towards future research.  

2 Proposed System  

As shown in Figure 1, the architecture of the proposed human implicit intention 
understanding system consists of 1) human eye-movement analyzer in the 
endogenous attention module, 2) bottom-up saliency map to understand natural-
scenes in the exogenous attention module, 3) spatial attention module to correlate the 
outputs of endogenous and exogenous modules and 4) a SVM classifier to classify the 
objects into intent and non-intent objects using FL, FC and PS. 

 

Fig. 1. Human implicit intent understanding system based on cognitive neural system 
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Given a visual stimulus image, the exogenous module, comprising of biological 
selective attention model, identifies objects as per human subject’s preference. At the 
same time, the exogenous module containing the eye-tracker analyses the human eye 
gaze corresponding to different objects of interest in the visual stimulus. To analyze 
human eye movements, the endogenous module contains the Tobii 1750 eye tracking 
system software development kit (SDK) [4]. Based on the correlation between 
endogenous and exogenous modules the spatial attention module identifies objects of 
interest. The objects corresponding to a particular intent, among various other objects, 
can be identified based on some features such as FL, FC and PS. In other words, , 
objects can be classified as an intent object or a non-intent object by analyzing the eye 
movement features of each object.  

2.1 Endogenous and Exogenous Mechanisms for Human Implicit Intent 
Understanding 

Researchers in psychology have described two different aspects related to how human 
minds attend interesting objects present in an environment. The first aspect is called 
bottom-up processing, also known as stimulus-driven attention or exogenous attention. 
In other words, exogenous attention is driven by the properties of objects. For 
instance, some processes, such as motion or a sudden loud noise, can attract human 
attention subconsciously. [5]. The second aspect is called top-down processing. It is 
also known as goal-driven, endogenous attention or executive attention. Endogenous 
attention is under the control of a human subject attending to a particular scene or task 
[5]. In this work, we develop a novel approach for a human implicit intention 
understanding system based on selective attention model and human eye-movement 
in natural scenes. 

2.2 Human Eye Movement Analysis in Endogenous Attention Model 

In human cognitive processes, eye movements are known to be correlated with 
endogenous attention. [1, 2]. Therefore, is assumed that humans may generate specific 
eye movement patterns according to different implicit intentions during visual search. 
Accordingly, eye movement patterns can be considered as possible factor for 
recognizing the human implicit intention. In this paper, we analyze the characteristics 
of eye movement patterns, measured using the Tobii 1750 eye track system SDK, to 
verify it’s correlation with implicit intent. We found that the FL, FC and PS variation 
are most significant features to distinguish between intent and non-intent objects. 
Also, we employ the baseline model proposed in [6] to minimize the effect of 
pupillary light reflex, which is a result of the illumination variation in a visual stimuli. 

2.3 Natural Scene Understanding Based on Exogenous Attention Analysis 

Figure 2 shows the exogenous attention based on bottom-up SM model [3]. The 
bottom-up SM is employed for scene understanding based on salient area detection in 
natural scene[3]. To implement a human-like efficient exogenous attention system,  
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we consider the bottom-up SM model, which reflects the functions of the retina cells, 
the lateral geniculate nucleus (LGN) and the visual cortex. We use edge, intensity, 
and color information based on brain information processing mechanism during an 
input stimulus. In the selective attention model, the on-center and off-surround 
operation is implemented by using the Gaussian pyramid images with different scales 
from 0 to n, where each level is further sub-sampled into 2n. Then, the center-
surround mechanism is implemented as the difference operation between the fine and 
coarse scales of the Gaussian pyramid images. The four feature maps (, , , and ) 
are obtained by the center-surround difference and normalization (CSD&N) algorithm 
[3]. The constructed feature maps ( , , , and ) are then integrated by an 
independent component analysis (ICA) algorithm, which is based on entropy 
maximization [3, 7]. The states that human visual cortical feature detectors might be 
the end result of a redundancy reduction process. The authors in [7] argued that ICA 
is the best way to reduce redundancy. After the convolution between the channel of 
the feature maps and the filters obtained by ICA learning, SM is computed by 
integrating all feature maps for each location. 

 

Fig. 2. Exogenous attention for object detection based on bottom-up saliency map 

2.4 Hybrid Spatial Attention Area Based on Endogenous and Exogenous 
Attention Models 

Figure 3 shows the hybrid spatial attention. Given a visual stimulus, the bottom-up 
saliency map, present in the exogenous attention module, identifies the attention areas 
corresponding to the objects of interest.  

 

Fig. 3. Hybrid spatial attention 
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Fig. 3 (a) shows a result of the exogenous attention module based on saliency map. 
For the same given visual stimulus, the eye tracking system in the exogenous 
attention module analyses the human gaze information corresponding to the different 
objects present. Fig. 3(b) shows a result of the eye gaze analyzer present in the 
endogenous attention module. Finally, the spatial attention module identifies the 
objects of interest based on the correlation between exogenous and endogenous 
modules. Fig. 3(c) shows the results of hybrid spatial attention module. 

3 Experimental Results 

3.1 Human Eye Movement Pattern Analysis 

To verify that the features such as FL, FC and PS variation are significant to 
classify the objects into intent and non-intent objects, we instructed participants to 
search for a particular interesting object in the visual stimuli. Figure 4 shows the 
experimental image and distribution of the parameters corresponding to the 
different objects. Fig.4 (a) shows the stimulus image, Fig. 4(b) shows the result of 
raw data analysis using FC, Fig. 4 (c) shows the result using FL, and Fig. 4 (d) 
shows the result of PS variation. 

 

Fig. 4. Human eye movement 

Notice that the results in fig. 4 clearly indicate that the FL, FC and PS variation 
are significant features to classify various objects into intent and non-intent objects in 
a given visual scene.  

3.2 Salient Object Determination by Selective Attention Model 

In the proposed system, the exogenous model is based on the bottom-up selective 
attention model. Recently, the authors in [3] proposed a SM model ( ) 
including a symmetry feature map and an ICA filter to integrate the feature 
information[3]. Figure 5 shows the bottom-up SM processing. Results suggest that 

 SM model generates more robust object preferable attention.  

+ + + +I C O S ICA

+ + + +I C O S ICA
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Fig. 5. Bottom-up SM processing 

3.3 Human Implicit Intent Understanding Based on Hybrid Spatial Attention 

In this paper, we proposed human implicit intent understanding based on hybrid 
spatial attention mechanism in brain processing. The hybrid spatial attention model 
based on endogenous and exogenous attention is used to identify the objects of 
interest which are further classified as intent and non-intent objects based on the eye 
movement analysis. Figure 6 shows the results of hybrid spatial attention for 
identifying the objects of interest. Then, the eye movement features such as FL, FC 
and PS variation corresponding to each of the selected object are measured. Based on 
the measured features, the trained SVM can classify objects into intent and non-intent 
objects. Fig. 6 shows the process of identifying the objects of interest using spatial 
attention model. Fig. 6 (a) shows the result of the exogenous model while Fig. 6 (b) 
shows the result of the eye gaze analysis. Fig. 6 (c) shows the result of the hybrid 
spatial attention model based on intersection area of exogenous attention area 
endogenous attention areas. 

 

Fig. 6. Hybrid spatial attention to determine objects of interest 

For the experiment, data from 29 participants were collected. 10 randomly selected 
samples were used for training the SVM, while the remaining 19 samples were used 
for testing. The experimental visual stimulus included 12 different objects. During the 
data collection,  participants were given the visual stimulus and they were asked to 
search for objects related to each of the following 4 intent conditions: 1) I1: Cook 
Noodle, 2) I2: Make Coffee, 3) I3: Have Bread and Wine and 4) I4: Eat Watermelon. 
Table 1 shows the features (FL, FC and PS) corresponding to all 12 objects during 4 
different intent conditions. Notice that for I1 objects such as ‘noodle’, ‘pot’, ‘gas 
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range’ and ‘water’ have significant difference in feature values (highlighted) 
compared to other objects in the visual stimulus. Similar kind of observations were 
made in the case of I2, I3 and I4. Therefore, based on the features the trained SVM can 
easily classify the objects into intent and non-intent objects according to different 
intent conditions. The training and testing performance of the SVM is presented in 
Table 1. Based on the results, it can be observed that the proposed system is robust in 
identifying the transition in different human implicit intents during a visual stimulus 
search. 

Table 1. Variation in the features corresponding to different intent conditions and classification 

 Noodle Coffee Knife Kettle Pot Gas range 

I1 
FC(num) 47.7±4.9 4.6±1.4 2.2±1.2 5.8±2.1 75.9±4.8 76.5±6.8 
FL(msec) 600±67.9 97.0±27.7 50.2±25.9 96.4±31.4 613±55.3 607±51.7 

PS(%) 98.8±5.8 36.7±9.7 15.0±7.2 34.2±10.6 107.8±3.0 108.5±3.1 

I2 
FC(num) 2.1±1.0 63.3±6.4 2.9±1.2 67.0±6.2 12.7±3.3 5.9±1.8 
FL(msec) 35.4±17.8 703±64.2 50.5±21.2 646.3±72 154.1±31.7 92.6±22.5 

PS(%) 14.6±6.9 97.5±5.6 17.6±7.3 96.1±6.8 58.4±11.0 49.1±11.3 

I3 
FC(num) 0.5±0.5 0.6±0.6 0.8±0.5 0.3±0.3 1.9±0.9 1.7±0.9 
FL(msec) 9.6±9.6 11.7±11.7 17.2±11.9 6.2±6.2 31.0±15.3 36.8±21.1 

PS (%) 3.6±3.6 3.5±3.5 7.1±4.9 3.4±3.4 14.8±7.0 14.5±6.9 

I4 
FC(num) 0.4±0.4 1.2±0.6 86.9±9.6 0.4±0.4 3.1±1.1 3.7±1.6 
FL(msec) 9.6±9.6 24.1±11.7 730±94.2 8.2±8.2 56.6±18.3 64.3±23.1 

PS (%) 3.2±3.2 13.8±6.5 91.9±6.3 3.4±3.4 28.9±8.9 25.3±8.6 

SVM 
Training (%) 95.5±0.7 93.8±0.9 92.0±0.8 89.8±0.9 96.0±0.7 94.0±0.7 

Test(%) 90.9±0.7 89.7±0.9 88.4±0.7 87.4±0.8 88.4±0.7 90.4±0.9 
 

 Watermelon Water Dish Bread Cup Wine 

I1 
FC(num) 1.8±0.8 46.2±4.8 3.0±1.1 1.7±0.6 1.0±0.7 0.8±0.8 
FL(msec) 36.4±15.4 543.0±51.8 60.7±21.9 43.2±16.8 19.9±13.8 9.2±9.2 

PS(%) 20.5±8.6 110.4±3.0 29.7±10.2 25.9±9.8 7.0±4.9 4.6±4.6 

I2 
FC(num) 2.1±0.9 40.6±5.2 2.8±1.1 8.8±1.9 54.9±6.4 3.1±1.4 
FL(msec) 46.0±20.0 438.2±42.4 51.3±20.0 126.6±22 773±10.1 56.8±22.2 

PS(%) 20.3±8.6 106.9±4.8 25.4±9.6 63.7±11.3 103.9±6.2 23.8±9.0 

I3 
FC(num) 3.7±1.4 1.6±0.8 2.9±1.5 93.5±6.5 71.8±6.8 71.4±7.1 
FL(msec) 74.9±27.2 28.2±13.8 39.7±16.7 681.5±47 626±95.4 571±40.6 

PS(%) 26.7±9.2 17.0±8.2 21.0±8.9 110.0±3.3 111.3±3.4 110.4±3.5 

I4 
FC(num) 75.3±5.4 0.9±0.5 77.7±6.6 4.5±1.7 0.3±0.3 0.9±0.7 
FL(msec) 695.0±70.6 22.7±12.9 710±68.8 71.9±23.2 8.9±8.9 12.3±8.8 

PS(%) 106.1±2.8 11.6±6.6 108.8±2.9 30.8±9.6 3.5±3.5 8.1±5.7 

SVM 
Training (%) 98.8±0.4 95.8±0.7 97.5±0.6 98.8±0.4 97.0±0.6 98.3±0.5 

Test(%) 94.4±0.7 93.8±0.8 94.1±0.7 97.5±0.6 96.3±0.2 96.6±0.5 

4 Conclusion and Future Works 

In this paper, we presented a novel approach for understanding human implicit intent 
based on hybrid cognitive neural system. The model included endogenous and 
exogenous attention modules. In a given visual stimulus, the spatial attention model 
identifies the objects of interest based on the correlation between the salient objects 
provided by the exogenous model and the gaze information provided by the 
endogenous model. Each of the identified objects obtained from the spatial attention 
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model are then classified into intent and non-intent objects based on features such as 
FL, FC and PS, SVM classifier was used to classify the objects. Experimental results 
confirmed plausible performance by the proposed system. To verify and enhance the 
performance of the proposed system, a more thorough investigation based on the 
experiments using complex natural scenes reflecting various situations are needed. In 
addition, as a future work, we would like to implement a prototype for human 
intention monitoring system.  
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Abstract. The brain dynamics of social behavior are important for un-
derstanding the group intelligence that occurs in humans. Coordinated
behavior between two subjects has been used as an experimental model
of social behavior, but the creativity occurring in a group of multiple
persons has not yet been discussed. In this study, a rhythmic commu-
nication task was proposed as a model of social communication, and
simultaneous electroencephalogram (EEG) of three subjects were evalu-
ated. Results showed that the decrease of theta-band power in the EEG
was correlated with the rhythm delay in the ensemble pattern, and the
decreases of upper and lower alpha-band power were associated with
the rhythm tempo and the rareness of ensemble pattern. This suggests
that the theta- and alpha-band powers in the EEG associate with so-
cial communication and cross-frequency EEG dynamics is essential for
understanding the creativity in the social behavior.

Keywords: brain oscillations, electroencephalogram, creativity, social
coordination, music, synchronization.

1 Introduction

The brain dynamics of social behavior are important for understanding the group
intelligence that emerges between multiple persons; as the saying goes, ”two (or
more) heads are better than one”. Social behavior is thought to include various
sub-processes, such as perception, action, emotion etc. [1]; thus, its experimental
model is important for the investigation. One model is a coordinated behavior
between two subjects. Tognoli et al. (2007) [2] evaluated electroencephalogram
(EEG) during an alternative tapping task of two subjects and showed the as-
sociation between sub-components of EEG alpha power and the social behav-
ior. Moreover, inter-brain synchronization was also shown to increase during
coordinated behavior [3]. These studies produced the important clues for un-
derstanding the intelligence in social behavior; however, the creativity that can
occur in groups of multiple persons has not yet been discussed. Since the neural
mechanisms of creativity have been discussed in terms of divergent thinking,
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artistic performance, and insight [4], some experimental model of creativity in
social communication is thought to be important for the understanding of social
behavior.

In this study, a rhythmic communication task among multiple persons was
proposed and simultaneous EEG signals of three subjects were evaluated. Dur-
ing the task, the subjects used a tapping button to sound a note and they were
asked to tap voluntary with listening rhythms of others. Although they were
not explicitly asked to produce synchronous or asynchronous tapping, the tap
timings of subjects is expected to be intermittently entrained to the group en-
semble (see, a review by Repp [5]).Then, the rareness of the ensemble pattern
was used to measure the creativity in the rhythmic communication. Moreover,
music emotion was shown to be correlated with EEG signals [6,7] and other
physiological indices [8]. Multiple regression analysis of EEG signals with these
indices was expected to be able to decompose sub-process of creativity in the
social behavior.

2 Methods

Twelve subjects with mean age of 21.0 years (ranging from 20 to 22 years; 8
males, 10 right-handed) to part in the experiment after giving informed con-
sent. All of them had no specific experience for musical instruments. The Ethics
Committee in Future University approved the experiment.

A rhythmic communication task was performed by a set of three subjects
with their eyes closed. Each subject used a keyboard with a single button to
sound a note of different tone (528 Hz (C), 660 Hz (E) and 792 Hz (G) with a
100 ms duration). The subjects were asked to tap the button with their right
finger voluntary while listening to the rhythms produced by others. Every subject
participated in a session of 20 min.

During the task, EEG signals were acquired using two Neuroscan amplifiers
(SymAmpI, Neuroscan, Texas, USA) with Ag/AgCl electrodes and a TEAC
amplifier (Polymate AP-216, TEAC, Japan) with active electrodes. Electrodes
provided 9 EEG channels (F3, Fz, F4, C3, Cz, C4, P3, Pz and P4), an electro-
oculography (EOG) channel and an electrocardiography (ECG) channel on left
wrist. EEG data (0.3-100Hz band pass, 500Hz sampling rate) were referenced
to a Fz electrode during measurement and re-referenced to linked-earlobes for
analysis.

The following five regressors were considered in the multiple regression analy-
sis of EEG signals. First was the tap interval (TI) of each subject. Second was the
smallest shift of tap with others (TS). Preceding and following taps were given
by positive and negative values, respectively. Third was the tap pattern informa-
tion (PI) that was calculated by probability map of tap shifts with two others.
This value was thought to associate with creativity in the rhythmic communica-
tion. Fourth was the heart beat interval (R-R interval, RRI) that was shown to
correlate with the music perception [8]. Last was an index of parasympathetic
nervous activity given by heart rate variability (HRV), log(LF/HF) where LF
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and HF denotes 0.04-0.15 Hz and 0.15-0.3 Hz component of R-R interval, re-
spectively. This value was shown to correlate with emotion during performance
and perception of music [9].

Tapping-related instantaneous frequency-energy characteristics for EEG were
calculated with the Morlet wavelet transformation (width=6) from 4 to 20 Hz
in 0.5 Hz step. Multiple regression analysis of the logarithmic EEG power at
frequency f and time t from the k-th tap timing was performed by using the
following equation [10]:

E(f, t, k) = β0 + βi(f, t)
5∑

i=1

Ri(t, k) (1)

where Ri denotes value of the low-pass filtered(<1Hz) i-th regressor at time t
with the k-th tap timing and βi is regression slope for the i-th regressor that will
be statistically evaluated. Taps with an interval less than 0.5 sec were discarded
from the analysis. The comparison was made separately for each electrode, each
frequency, and then averaged across all participants. Statistical value was given
by p < 0.001 with spatial extent of 300 pixels in the frequency-energy map (time
bin: 2 ms, spectral bin: 0.5 Hz) without any correction for multiple comparison.

3 Results

Fig.1a shows tap timing of three subjects. Distribution of the tap interval is
shown in Fig.1b where average tap interval across all subjects was 0.64 ± 0.20
sec (ranged 0.27-0.91 sec). Tap intervals of three subjects in the same session
appeared similarly distributed. Fig.1c shows a cross-correlation of tap sequences
between two subjects in the same session, where the tap sequences in two sessions
were found significantly synchronous at zero shift but those in the remaining two
session were not (p<0.05). Fig. 1d-f show three repressors, the tap interval, the
tap shift and the tap information. Tap intervals between subjects in the same
session was found to be significantly correlated (with 0.5 Hz-sampling, r=0.08
(ranging from -0.04 to 0.16), t-value: 6.42, p<0.001).

Fig. 2 shows ECG signals of three subjects in the same session and their R-
R interval and heart rate variability. Both of R-R interval and the heart rate
variability were found to show significant inter-subject correlation (with 0.5 Hz-
sampling, RRI: r=0.11 (ranging from -0.08 to 0.34), t-value:9.32, p<0.001; HRV:
r=-0.07 (ranging from -0.18 to 0.23), t-value: 5.58, p<0.001).

Before applying these regressors to EEG regression analysis, collinearity of
these regressors should be evaluated. Variance inflation factor among five regres-
sors were found less than 1.3 indicating that the collinearly was not a problem in
the regression analysis. However, correlation between R-R interval and the heart
rate variability was found to be ranged widely in comparison to others (Fig. 3).
Thus, four regressors except for the heart rate variability were applied to the
following regression analysis.

Fig.4 shows EEG signals at a Cz electrode of three subjects in the same
session. Fig. 4b shows a time-frequency plot of EEG wavelet power of a subject,
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Fig. 1. Result of tap sequences. (a) Tap sequences of three subjects in a session. (b)
Distributions of tap interval of each subject. Different map indicates different session.
Tap frequency is shown by gray scale. (c) Cross-correlation of tap sequences between
two subjects in the same session. Black represents significant correlation defined by the
permutation test (p<0.05). (d, e, f) Temporal evolution of three kinds of repressors,
tap interval (d), tap shift (e), and tap pattern information (f). Vertical lines indicate
tap timing of each subject.
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Fig. 2. Result of ECG signals. (a) Temporal evolution of ECG signals of three subjects.
(b, c) Temporal evolution of two regressors, R-R interval (b) and heart rate variability (c).
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where the continuously increase of alpha-band power in EEG and no obvious
tap-related change were shown. When the induced EEG power with a baseline
of the averaged power from -300 to -200 ms before tapping was calculated, a
significant increase of beta-band power was found at the tap timing dominantly
in the left hemisphere. Since all tapping were performed with the right index
finger, this effect is thought to be a motion-related activity.

Fig. 5 shows result of multiple regression analysis. Tap interval was found to
correlate with EEG 12 Hz power where topographic pattern of the statistical
value was shown dominantly in the frontal region. Tap shift showed a significant
correlation to the EEG 6 Hz power after 250 ms of tap timing. Tap pattern
information was found to correlate with EEG 10 Hz power before the tapping. R-
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Fig. 4. Result of EEG measurement. (a) Temporal evolution of EEG at a Cz electrode.
(b) Time-frequency plot of EEG wavelet power of Subject 1. (c) Induced EEG power of
tapping where baseline was given by averaged EEG power from -300 to -200 ms of the
tap timing. Black and white indicate significant increase and decrease of EEG power,
respectively. Figure in right column shows a topographical map of the statistical value
for the induced EEG power.

R interval was shown to significantly correlate with EEG 10 Hz power dominantly
in the occipital region. These results indicated that the different aspect of the
rhythmic interaction can be associated with different components in the EEG
ranging over spectral band and locations in the topographical map.

4 Discussion

Three spectral band powers in the EEGwere found to be significantly correlated to
regressors that were expected to associate with rhythmic communication (Fig. 6).
First, the decreases of lower alpha-band power in the occipital region were shown
to associate with the rareness of ensemble pattern. This effect may be thought to
associate with creativity during rhythmic communication. However, the desyn-
chronization of occipital alpha is also known to associate with the attention during
oddball tasks (see a review by Klimesch (1999) [11]) and social coordination [2].
Second, the decrease of upper alpha-band power in the frontal region was found to
associate with the slower tempo of the tapping. Although the desynchronization of
upper alpha is thought to be associatedwith semanticmemory [11], the interpreta-
tion of the current result is unclear. Third, the decrease of theta-band EEG power
in the frontal regionwas found to correlate with the preceding tap in the ensemble.
In the previous reports, the decrease of frontalmidline thetawas shown to associate
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Fig. 5. Result of multiple regression analysis. Upper topographic map shows the sta-
tistical values for regression slopes of each regressor, of which time and frequency were
chosen by a point in the time-frequency plots of the statistical values showing the
largest statistical value over all electrodes. Circle indicates location of each electrode.
Black and white indicate positive and negative correlations, respectively. Lower plot
shows time-frequency map of the statistical value at an electrode having the largest
statistical value.

Faster 
heart beatSlower tempo

Preceding tap

Rare pattern
(creativity) 

Fig. 6. Summary of the results. Decrease in the upper and lower alpha-band powers
and the theta-band power in the EEG over distributed region were found to associate
with the rhythmic communication.

with unpleasant music [6], episodic memory encoding [11] and smaller mental ef-
fort. The current resultmaybe interpreted as that the preceding tap needed a lower
mental effort in comparison to the following tapping.

The current task of rhythmic communication was shown to be useful as a tool
for decomposing multiple brain dynamics during the communication. However,
there are some concerns that should be improved. First, it may be a problem
that the ensemble appeared monotonic and noteless and its tempo was mostly
constant (see, Fig. 2b). To induce a more rich and musical ensemble, some explicit
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instructions on the individual role in the ensemble may be necessary. Second,
the set of regressors was not unique and the regressor associated with creativity
should be further explored. In the current study, the tap pattern information
was used to measure the rareness of the ensemble pattern, but in the future it
should be improved to detect ‘creative’ ensemble pattern.

In summary, the current results suggest that the multiple aspects of social
communication associated with different spectral components in the EEG and
the cross-frequency dynamics of the EEG over cortical areas are essential for
understanding the creativity during social behavior. As a future study, inter-
subject EEG dynamics may be also important for understanding their more
detailed roles in social communication.
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Abstract. Cinematographic stimuli have been previously used to probe func-
tional mapping of naturalistic stimuli, leaving whether such stimuli are also  
associated with a subjective increase of the sense of presence (SoP). In this 
functional magnetic resonance imaging, we investigated whether the SoP eval-
uation of 3D-surround cinematographic stimuli was associated with any change 
of activity within emotion-related areas, in particular the amygdala. The sub-
jects evaluated several scenes of a commercial 3D movie presented in four  
different conditions: 3D vision with surround sounds (3D-Surround), 2D-
Surround, 3D-Mono, and 2D-Mono. The behavioral results showed that the  
stereoscopic viewing, but not surround sound, increased SoP scores. The whole-
brain imaging results showed that the middle occipital gyrus was involved in 
evaluating the SoP. The planned anatomical ROI analysis showed that also ac-
tivity in the right amygdala increased with increasing SoP scores. The results 
suggest that 3D vision enhances the SoP and this is associated with activation of 
both visual cortex and emotion-related brain region. 

Keywords: stereoscopy, surround sounds, sense of presence, functional MRI. 

1 Introduction 

Previous human brain imaging studies used cinematography to track dynamic changes 
of specific visual and auditory features (e.g. motion, loudness) [1-3]. Functional imag-
ing using such naturalistic stimuli can help us to corroborate the findings of traditional 
laboratory paradigms that employ well-controlled but simple and stereotyped stimuli. 
Studies with naturalistic stimuli can help extending the results of standardized para-
digms to ecologically-valid situations more similar to real life [4].  

Stereoscopic vision contributes to representing the spatial layout of elements in 
complex visual scenes. Related to this, surround sounds can provide us with rich, 
multi-sources auditory scenes and enhance spatial perception. The spatial coherence 
between visual and auditory signals can further enhance the awareness of three-
dimensional space and of being in a scene (e.g. sense of presence (SoP) [5]). In addi-
tion, previous studies showed that higher-level signals (e.g. emotional content) can 
also influence the SoP [6, 7], suggesting a possible association between SoP and brain 
activity within emotion-related regions (e.g. amygdala, see [8, 9]). 
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In this functional magnetic resonance imaging (fMRI) study, we investigated the 
neural correlates of the SoP appraisal associated with audio-visual 3D-surround sti-
muli. Participants viewed short clips extracted from a commercial 3D movie. In dif-
ferent trials, the stimuli were shown with stereoscopic 3D or standard 2D vision, and 
with surround or monaural audition. After each clip, participants were asked to give 
score about their subjective SoP on that trial (Fig. 1A). We asked whether complex 
(3D- and/or surround-) stimuli would affect the SoP appraisal, and whether this would 
correlate with activity of emotion-related areas; e.g. the amygdala [8, 9] that previous 
studies associated with SoP [6, 7]. We performed a planned anatomical ROI analysis 
on the amygdale, as well as the whole-brain analysis. 

2 Materials and Methods 

2.1 Subjects  

Sixteen Italian subjects (aged 21 − 39, mean = 27.3 years, 12 females and 4 males) 
with no history of neurological or psychiatric illness participated in this study. They 
had normal or corrected-to-normal visual acuity and reported no difficulty of hearing. 
They gave written informed consents prior to the experiment. The ethical committee 
of Santa Lucia Foundation has approved this study.  

2.2 Stimuli and Task 

The participants were presented with short movie segments, extracted from the 3D 
Italian version of The Three Musketeers (Constantin Film, Frankfurt, Germany). The 
clips were presented in qHD resolution with the frame rate of 24 Hz. We used three 
different movie segments / clips, each with a duration of 10.4 s. Each of the segments 
was presented in four different conditions, including: 3D-Surround, 3D-Mono, 2D-
Surround, and 2D-Mono. The order of conditions was counterbalanced across the 
subjects using a balanced Latin square. On each trial, subjects were asked to 
watch/listen to the clip and to score the SoP on a 5-points Likert scale, within 8.32 s 
after the end of the clip (Fig. 1A).  

Stimulus presentation was controlled using the psychophysics toolbox [10] running 
on Matlab (Mathworks, Inc.). The video-clips were presented using an LCD projector 
(NEC Corp., NP216G) operating at 120 Hz and synchronized with a linear polarizer 
(DepthQ®, Lightspeed Design Inc.). The subjects wore a MR-compatible passive 3D 
eyewear that allowed them to perceive stereoscopic vision in the 3D conditions. The 
sounds were delivered using a multi-speakers system constructed ad-hoc for surround 
presentation in the MR scanner, together with the mono sound delivered via standard 
MR-compatible headphones. 

2.3 Image Acquisition 

A Siemens Allegra (Siemens Medical Systems, Erlangen, Germany) 3T scanner 
equipped for echo-planar imaging (EPI) was used to acquire functional magnetic 
resonance images. A head-sized quadrature volume coil was used for radio frequency 
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transmission and reception. Mild cushioning minimized head movement. Thirty-two 
slices of functional images were acquired using blood oxygenation level dependent 
imaging (192 mm × 192 mm × 120 mm, in-plane resolution = 64 × 64, pixel size = 3 
mm × 3 mm, thickness = 2.5 mm, 50% distance factor, TR = 2.08 s, TE = 30 ms), 
covering the entire cerebrum. We acquired 116 scans in this task. The first four scans 
were discarded to ensure magnetization equilibrium. 

2.4 fMRI Analyses 

We used SPM8 (Wellcome Department of Cognitive Neurology, University College 
London) on Matlab to process the acquired images. In preprocessing, we performed 
slice-timing collection, realignment, normalization to the EPI template of SPM8 and 
spatial smoothing (FWHM = 8 mm). High-pass filters of 128 s were used to remove 
low frequency noise. 

First, we performed a 2×2 within-subject ANOVA with 4 conditions given by the 
crossing of “vision” (3D/2D) and “audition” (Surround/Mono). Non-sphericity cor-
rection was used to account for any unequal variance between conditions and corre-
lated repeated-measures [11]. Within this model we assessed the main effects of 3D 
vision and surround audition, plus any interaction between the two. The whole-brain 
threshold was set to p-FWE-corr. = 0.05 at the cluster-level, after applying a voxel-
level threshold of p-unc. = 0.001 to find activated clusters.  

In a separate analysis, we used a regression approach to further investigate brain 
activity that correlated with the SoP evaluation scores. For this, the subject-specific 
“1-st level analyses” included a single condition-regressor, which was modulated 
according to the individual SoP evaluation scores measured on each and every trial. 
At the group level, we assessed the modulatory effect using a one-sample t-test. We 
performed a whole-brain analysis, as well as a more targeted analysis that considered 
specifically the amygdale (cf. [5, 12-13]). For this, the parameter estimates associated 
with the SoP scores were extracted and averaged over voxels, using the MarsBaR 
toolbox [14]. P-values were corrected for the number of ROIs (i.e. 2, left and right 
amygdale) using with Bonferroni correction. 

 
Fig. 1. A. Schematic illustration of one trial. The subject watched a 10.4 s movie-clip and eva-
luated the SoP on the 5-point Likert scale. For the evaluation, the subject pushed two buttons to 
left/right move the visual indicator. B. The behavioral data of the SoP evaluation. The graph 
shows the average SoP scores (± s.e.m.). The subjects scored higher for 3D than for 2D. Error 
bars are standard error. ***p < 0.001. 
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Fig. 2. A. The activation of SOG in the contrast of “3D > 2D” is shown on coronal and axial 
sections. Parameter estimates for the SOG cluster are shown on each side, with activity plotted 
separately in the four conditions. Error bars are standard errors. B. The activation of STG for 
the contrast “Surround > Mono” sounds is shown on an axial section. The signal plots show the 
parameter estimates in the four conditions. Error bars are standard errors. 

3 Results 

3.1 Behavioral Result 

The subjects were asked to evaluate the SoP of short video-clips using a 5-points 
Likert scale (Fig. 1A). Each of the clip was presented four times, with different view-
ing/listening conditions. The results of the repeated-measures ANOVA with the fac-
tors of “vision” (3D/2D) × “audition” (Surround/Mono) showed that the 3D viewing, 
but not  surround sound, significantly augmented the SoP (F(1, 15) = 30.2, p < 
0.001, Fig. 1B), without any interaction between the two modalities. 

Table 1. Summary of brain activation in the whole brain analysis 

Contrast/Regions 

MNI coordinates of peak 
z-score 
(peak) 

p-value 
(clus-
ter) 

Number 
of vox-

els 
X y z 

3D > 2D       
 Left SOG –24 –96 20 4.22 0.007 158 
 Right SOG 33 –87 23 5.25 < 0.001 394 
 Left PCG –42 –33 68 4.93 < 0.001 371 
 Right Cerebel-

lum 
24 –54 –28 4.05 0.023 117 

Surr > Mono       
 Left STG –48 –24 2 4.22 0.001 209 
 Right STG 48 –15 –1 4.67 0.002 231 
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3.2 Imaging Results 

The contrast comparing “3D > 2D” stimuli showed activation of the superior occipital 
gyrus (SOG, Fig. 2A), consistent with previous studies of stereoscopy [15-17]. In 
addition, we observed the activation in the post-central gyrus (PCG) and the cerebel-
lum (Table 1). The surround sounds activated the superior temporal gyrus (STG) 
including the Heschl's gyri and planum temporale (PT, see Fig. 2B). The anatomical 
classification of the surround-effect confirmed that the functional activation com-
prised TE sub-regions on the posterior part of auditory cortex (Table 2). 

We used trial-by-trial parametric analyses to further assess the relationship be-
tween stimulus processing and SoP. At the whole-brain level, this showed that activi-
ty in the middle occipital gyrus increased linearly with increasing SoP scores (see Fig. 
3), consistent with the results of the ANOVA showing an effect of 3D in dorso-lateral 
occipital cortex, cf. Table 1 and Fig. 2A.   

 

Fig. 3. The activation of the left MOG observed in the parametric analysis using SoP scores. 
The peak in MNI coordinates was (x = −39, y = −90, z = 14) with z-score = 4.37. The cluster 
size was 140. The cluster level p-FWE-corr. = 0.007. 

Table 2. The classification of auditory activation using SPM anatomy toolbox [18] 

Left Right 

Surr > Mono 
TE1.0 TE1.1 TE1.2 TE1.0 TE1.1 TE1.2 
26.0% 60.2% 3.9% 39.9% 24.1% 3.7% 

Next we performed the ROI analysis considering specifically the BOLD responses 
in the amygdalae. The results showed that the activity of the right amygdala was  
significantly associated with the SoP score (t(15) = 2.31, p-corr. < 0.05, Fig. 4), while 
no such effect was detected in the left amygdala (t(15) = 1.16, p-corr. > 0.1). 
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Fig. 4. The effect of SoP scores in the right amygdala. The panel on the left shows the anatomi-
cal-defined ROIs on the coronal section (y = 0). The right panel shows the parameter estimates 
associated with the SoP, extracted and averaged separately for the two ROIs. A significant 
effect (*) was observed in the right amygdala, but not in the left amygdala. Error bars are  
standard errors. 

4 Discussion 

We investigated the neural correlates of subjective SoP using complex audiovisual 
stimuli. Behavioral data showed that stereoscopic 3D based on binocular disparity 
was psychologically effective in increasing the SoP of the scene. Consistent with the 
previous studies, we confirmed that stereoscopic images activated dorso-lateral occi-
pital visual areas, probably including area V3A [17, 19]. A regression analysis using 
trial-specific SoP scores revealed that activity in the middle occipital gyrus co-varied 
with subjective SoP. In addition, a more targeted analysis of activity in the amygdale 
revealed an effect of SoP in the right hemisphere only (Fig. 4). By contrast, surround 
sounds did not affect the SoP judgment. At the neutral level, the processing of sur-
round sounds was associated with activation of the superior temporal gyrus, including 
the primary auditory cortex and the planum temporale. 

Although we did not measure any autonomic response (e.g. skin conductance), the 
effect of SoP in right amygdala suggests an impact of stereoscopic viewing on the 
emotional response to the complex visual stimuli. Previous studies showed that mov-
ies evoking the emotion of fear (e.g. cliff, roller coaster) enhanced the SoP [6]. Here, 
the behavioral data measured during scanning highlighted that stereoscopic 3D view-
ing enhanced the SoP. Taken together behavioral and imaging data suggest that 3D 
viewing enhances the SoP through the evoking of emotional experience in right 
amygdala. 

The presentation of 3D images lead to an increase of the SoP scores in this study, 
while previous studies reported controversial results [13, 20]. This may be due to the 
many factors that contribute to spatial perception in complex visual scenes. For  
example, together with binocular disparity, the in-depth spatial layout of objects  
can be obtained because of motion parallax. Further, 3D structure-from-motion also 
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constitutes a possible source of complex visuo-spatial signals, also traditionally asso-
ciated with activation of the occipital-parietal cortex [21-23]. Indeed, the simultane-
ous presentation with both binocular disparity and visual motion evokes the stronger 
and more accurate 3D perception than either depth cues presented alone [24]. All 
these static and dynamic factors are likely to contribute to the elevated SoP scores and 
the increased activation in dorso-lateral occipital cortex that we found here in the 3D 
viewing conditions. 

The surround sounds provided our subjects with spatially rich (multi-sources) audi-
tory input. The imaging data showed that this was associated with activation of the 
posterior auditory cortex and the planum temporale, consistent with the role of these 
regions in auditory spatial processing [25]. Unexpectedly, this auditory manipulation 
did not influence the SoP evaluation scores. Thus, the auditory spatial information 
presented in this study was psychologically less influential to the SoP evaluation than 
3D vision. This may indicate some segregation of visual and auditory spatial 
processing in the current context, as also evidenced by the lack of any significant 
interaction between the two modalities. Nonetheless, future studies we seek using 
audio-visual stimuli entailing a more explicit spatial correspondence / relationship 
between the two modalities, which may reveal stronger interactions between the two 
senses and/or some influence of sounds-spatiality on SoP.  

In conclusion, our findings showed that the occipital cortex - putatively including 
V3A/B - was involved in the SoP evaluation, in parallel with the behavioral results 
that the stereoscopic viewing lead to an augmented SoP. Moreover, the right amygda-
la was also associated with SoP. We suggest that stereoscopic viewing increased the 
subjective SoP, via enhanced scene processing in emotion-related brain areas. 
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Abstract. Cortical inhibition by γ-aminobutyric acid (GABA) has been widely 
suggested to be required to trigger ocular dominance (OD) plasticity in the 
visual cortex. However, there is also evidence that only the circuits mediated by 
specific GABAA receptors can induce OD plasticity, which implies the 
importance of localized GABA circuits in this process. In this study, to 
investigate the role of local inhibition in visual plasticity, we simulated the 
synaptic dynamics regulated by lateral and backward inhibition. The lateral 
inhibition facilitated competitive interactions between different groups of 
excitatory correlated inputs, which were required to elicit experience-dependent 
synaptic modifications. Conversely, the backward inhibition suppressed such 
competitive interactions, which prevented synapses from reflecting past sensory 
experience. Our results suggest that the interactions between lateral and 
backward inhibition may regulate the timing and level of cortical plasticity by 
modulating the activity-dependent competitive function.  

Keywords: STDP, GABA inhibition, Firing correlation, Synaptic competition, 
Visual cortex. 

1 Introduction 

The closure of one eye during a postnatal critical period shifts the response properties 
of visual cortical cells to favor the inputs from the open eye [1]. Experimental 
evidence has suggested that this ocular dominance (OD) plasticity may be induced by 
cortical inhibition mediated by GABA [2-7]. When the development of GABA 
function is suppressed by the selective deletion of an isoform of the GABA synthetic 
enzyme, the onset of OD plasticity is delayed until inhibition is pharmacologically 
restored [2]. Similarly, OD plasticity can be prematurely triggered by the 
pharmacological enhancement of GABAergic function [3]. These observations 
suggest that there is a threshold inhibition level required for the induction of OD 
plasticity.  

                                                           
* Corresponding author. 
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However, there is also evidence that not all GABA functions are involved in 
controlling OD plasticity [7]. By employing a knockin mutation to α subunits that 
render GABAA receptors (GABAARs) insensitive to benzodiazepines, it has been 
demonstrated that GABA circuits mediated by only α1-containing receptors can elicit 
visual plasticity [6]. Considering that GABAARs containing the α1 subunits are 
mainly located at somatic synapses that receive inputs from parvalbumin (PV)-
positive cells [7, 8], the local inhibitory pathways mediated by PV cells might be 
highly involved in plasticity.  

To study the role of localized inhibition in cortical plasticity, we simulated a 
neuron receiving two groups of correlated inputs, as in a visual cortical cell receiving 
inputs from both eyes, and compared the effects of lateral vs. backward inhibition on 
the synaptic dynamics with spike-timing-dependent plasticity (STDP) [9, 10].  

2 Methods 

We construct a simplified model of a visual cortical cell to compare the effects of 
local inhibition on synaptic dynamics, as shown in Fig. 1. A postsynaptic cell is 
described by using an integrate-and-fire neuron. The neuron receives random inputs 
from 1000 excitatory and 200 inhibitory synapses. To simulate sensory inputs from 
two eyes to a visual cortical cell, the excitatory synapses are assumed to consist of 
two equally sized groups [11].  

 

Fig. 1. Simulation model network 

2.1 Neural Model 

Excitatory and inhibitory synaptic currents are described as a conductance-based 
model [12]. The conductances of the excitatory and inhibitory synapses obey gexc(t) = 
gmax

exc wexc
i(t) exp(-t /τexc), g

inh(t) = gmax
inh (e/τinh) t exp(-t /τinh), respectively. gmax

exc 
and gmax

inh are maximum conductance. τexc and τinh are time constant of synaptic 
current. wexc

i(t) is the weight of each excitatory synapse and temporally modified by 
STDP (see below). 
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2.2 Poisson Input Model 

We assume that each group of excitatory synapses receives correlated inputs resulting 
from the activities of the retinal ganglion cells in each eye. Furthermore, we introduce 
the lateral and backward connections to activate the inhibitory synapses, as shown in 
Fig. 1. There is evidence that, under sufficiently strong noisy conditions, as in the in 
vivo state, the postsynaptic firing probability is approximately proportional to the 
summation of the postsynaptic potentials (PSPs) [13]. Therefore, we assume that the 
activation times of all of the presynaptic inputs are described by simple non-stationary 
Poisson processes, the rate of which depends on the PSPs [14]. 

With this assumption, the instantaneous firing rate of the two groups of excitatory 
synapses (rexc

1(t) and rexc
2(t)) and that of inhibitory synapses (rinh(t)) are described as 

  (1) 

  (2) 

Here, ε(t) is a function that describes the time course of PSPs, and ε(t) = (t/τ e
2)e-t/τ e 

for t > 0 and ε(t) = 0 otherwise. In Eq. (1), t f
I denotes the arrival time of the fth spike 

to the ith group of excitatory synapses from retinal ganglion cells, and t f
I is 

determined with a homogeneous Poisson process with a frequency of rinp ( = 5 Hz). 
The spike arrival times for the two groups are independent, and therefore, the 
activities of the different groups are uncorrelated to each other. The parameter ccorr is 
to decide the strength of the input correlation for each group, and rexc

uncorr is a 
component of the activation rate corresponding to the uncorrelated firing. In Eq. (2), t 
f
exc, i and t f

post represent the fth firing time of the ith excitatory synapse and the 
postsynaptic cell, respectively. Thus, cL and cB determine the strength of the lateral 
and backward inhibition, respectively (Fig. 1). nexc is the number of excitatory 
synapses, and rinh

uncorr represents the activation rate of the uncorrelated firing of the 
inhibitory synapses.  

2.3 Synaptic Inputs and Modification 

STDP is assumed to act on all the excitatory synapses that converge on a postsynaptic 
cell (Fig. 1). With the time lag Δt between the pre- and postsynaptic spikes, the 
change in the synaptic efficacy Δw by STDP is described as 
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Here, A+ and A- denote the size of long-term potentiation (LTP) and long-term 
depression (LTD), respectively. τ+ and τ+ determines the temporal width of the STDP 
curve. We simply assume that the amounts of STDP by all of the spike pairs are 
linearly summed and that the upper bounds wmax and lower bounds wmin limit the 
magnitude of the synaptic weights [11, 12]. 

2.4 Estimation of Competition 

To estimate synaptic competition intensities, we obtained averaged excitatory 
synaptic weights of all 1000 synapses and each excitatory synapse group, 

  (4) 

Then we redefined <w1> and <w2> as their magnitude, 

  (5) 

In the present work we particularly focused on the ratio between <wL> and <wS>. 
When the ratio <wL>/<wS> is larger than 2, we regard that competition is strong.  

3 Results 

In order to explore the role of local inhibitory pathways, we first simulated synaptic 
modification dynamics during an experiment with monocular deprivation (MD), 
which was followed by reverse suture of the other eye (Fig. 2) [15]. The OD shift 
caused by MD has been shown to rely on the difference in the temporal correlations 
of retinal afferent activities rather than on the difference in the input activity levels 
between the two eyes [16, 17]. Therefore, we incorporated the effects of MD by 
decreasing the strength of the correlation (ccorr) for the input group that corresponded 
to the deprived eye. 

Figure 2A (left column) shows the time course of the average weights of the two 
groups <w1> and <w2> with neither lateral nor backward inhibition. Here, the 
excitatory synapses of both groups were initially activated by the same input 
correlation (ccorr = 0.6). For the first period of MD (200 ks < t < 400 ks; black arrow), 
the input correlation of <wL> group at 200 ks was removed by decreasing ccorr to 0. 
The input correlation of this group was recovered after the termination of the first MD 
at 400 ks. In contrast, the correlation of the other group was eliminated for 600 ks < t 
< 800 ks (black arrow), which corresponded to the reverse suture (second MD). Both 
groups maintained input correlation after t > 800 ks. The figure shows that, during 
MD, the group whose input correlation had been removed was strongly weakened so 
that the non-deprived group became dominant, as has been shown in many 
experiments (e.g., [1]). However, following the termination of MD, both of the groups 
rapidly converged to a state where the average weights fluctuated irregularly with 
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nearly the same levels as each other. Furthermore, the temporal average of the weight 
distributions of the two groups did not significantly differ after each period of MD, 
which means that the synaptic pattern cannot reflect which group has received MD.  

However, when lateral inhibition was incorporated (Fig. 2B), either group became 
dominant, even in the absence of MD, suggesting the involvement of competitive 
interactions between the different groups [18]. Following the first period of MD, the 
group that had received deprivation was maintained weak, while the group that had 
not received deprivation was maintained strong. Furthermore, the switching between 
the dominant and recessive groups occurred by the second MD, and the result of 
switching was maintained even after the termination of this period of MD. Thus, the 
weight distributions after each period of MD (Fig. 2B, right two figures) clearly 
reflected which input group had received deprivation during a recent period of MD. 
The comparison between Figs. 2A and 2B shows that past sensory experience can be 
embedded into synaptic patterns only in the presence of the competitive interactions 
by the lateral inhibition. Importantly, such experience-dependent synaptic 
modifications disappeared again when a weak level of backward inhibition was 
additionally introduced (Fig. 2C). In Fig. 2C, as in the case of neither lateral nor 
backward inhibition (Fig. 2A), the weight distributions of the two groups converged 
to be nearly the same after the end of MD (Fig. 2C, right two figures), and, therefore, 
the synaptic weights could not retain the information about the past input experience. 

 

Fig. 2. Synaptic modification dynamics in response to MD and reverse suture 

c   = 0,    c  = 0L B

(B)

(A)

(C)

1.0

0.5

0.0<w
  >

 a
nd

 <
w

  >
L

S

Time (ks)
   1,000   800  600   400   2000

0 1

c   = 1,    c  = 0L B

c   = 1,    c  = 0.1L B

maxw / w

t  = 450 ~ 550 ks t  = 900 ~ 1,000 ks

W
ei

gh
t d

en
si

ty

MD (c     = 0)corr

c     = 0.6corr

<w  >L

<w  >S

0 1maxw / w

0 1maxw / w 0 1maxw / w

0 1maxw / w 0 1maxw / w

W
ei

gh
t d

en
si

ty
W

ei
gh

t d
en

si
ty

t  = 450 ~ 550 ks t  = 900 ~ 1,000 ks

t  = 450 ~ 550 ks t  = 900 ~ 1,000 ks

1.0

0.5

0.0<w
  >

 a
nd

 <
w

  >
L

S

1.0

0.5

0.0<w
  >

 a
nd

 <
w

  >
L

S

Time (ks)
   1,000   800  600   400   2000

Time (ks)
   1,000   800  600   400   2000

MD (c     = 0)corr

MD (c     = 0)corr MD (c     = 0)corr

MD (c     = 0)corr MD (c     = 0)corr

c     = 0.6corr

c     = 0.6corr c     = 0.6corr

c     = 0.6corr c     = 0.6corr

c     = 0.6corr c     = 0.6corr



166 I. Sakurai, S. Kubota, and M. Niwano 

The results in Fig. 2 suggested the importance of activity-dependent competition, 
through which information about past sensory experience is stabilized in synaptic 
pattern [18]. In order to elucidate how the competitive function is regulated by local 
inhibition, we plotted the average weights of the two groups at the equilibrium state of 
STDP by changing the level of input correlation (ccorr) for three different values of cL 
and cB (Fig. 3). With neither lateral nor backward inhibition (Fig. 3A), the induction 
of competition was restricted in a small range of ccorr (0.3 < ccorr < 0.6). However, by 
introducing lateral inhibition (Fig. 3B), the competitive range of ccorr was widely 
prolonged (0.2 < ccorr < 0.8), showing that lateral inhibition promoted the emergence 
of competition. In contrast, a low level of backward inhibition was sufficient to 
prevent the induction of competition for all values of ccorr (Fig. 3C). These results 
indicate that lateral inhibition can promote the competitive interaction, whereas 
backward inhibition strongly suppresses it.  

 

Fig. 3. The average weights of the two groups at the equilibrium of STDP 
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We showed that a high level of lateral inhibition facilitated the ability of STDP to 
introduce the between-group competition (Fig. 3B). In contrast, backward inhibition 
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fact that such rapid feedback can weaken the input-output correlation in cases where 
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sensory experience, thus providing a basis of experience-dependent plasticity (Fig. 
2B). This synaptic function that reflects the past experience of inputs disappeared 
when backward inhibition prevented competitive interaction (Fig. 2C). When two 
groups of synapses are segregated by competition, there exist two stable synaptic 
patterns, such that one group and the other group is dominant. However, in the 
absence of competition, the weight distributions of both the groups are identical so 
that the system is monostable (as in Figs. 2A and 2C).  
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Our results suggest that the local inhibitory transmission by the lateral and 
backward inhibition may strengthen and weaken the ability of neurons to induce 
experience-dependent OD plasticity, respectively. This may explain an involvement 
of localized inhibitory circuits, as suggested by physiological experiments [3, 4]. 
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Abstract. The human brain can send a command to external devices or 
communicate with the outside environment by the means of a brain computer 
interface (BCI) system. The effectiveness depends on how precisely specific 
brain activities can be identified from EEG. Noise is usually mixed into the 
EEG signal, and cannot be separated or filtered out in some cases. In a practical 
BCI system, the whole segment of EEG is discarded when a portion of that 
segment is contaminated by extreme noise or artifacts. This leads to the 
weakness that the BCI system cannot output decoding results during the period 
of that discarded segment. In order to solve this problem, we employed a Lomb-
Scargle periodogram to estimate the spectral power based on an unevenly 
spaced segment, a portion of which has been removed due to noise 
contamination. According to the classification results of motor imagery data, 
the accuracy is not dramatically decreased along with increased proportion of 
data removal.  

Keywords: Spectral Power Estimation, Brain Computer Interface, Motor  
Imagery, Unevenly Spaced Data, Classification. 

1 Introduction 

Brain computer interface (BCI) has attracted increasing attention of researchers 
coming from diverse research fields, and is one of interdisciplinary research hotspots. 
With a BCI system, healthy people can obtain fantastic manipulation experience 
contrary to their familiar perception [1], and disabled people can restore their abilities 
of communication [2] and degenerated motor function [3-4]. In the practical 
application of a BCI system, the intention of the user needs to be translated into a 
control command continuously in order to give the user an experience of smooth 
manipulation. This requires all EEG segments to be included for decoding. If some of 
EEG segments are discarded due to noise contamination, there is no output of 
commands during the periods of those discarded segments. Hence, it would be good 
to utilize the remaining portion of EEG segment after removing the portion of noise 
contamination. The power features are commonly used to distinguish different motor 
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imageries (e.g., left-hand and right-hand motor imageries) [5-7], because power 
features are robust in represent of information underlying motor imagery. For the 
complete EEG segment, Fourier transform can be used to transform temporal data 
points into spectral domain, but it is impossible to process unevenly spaced data like 
the EEG segment after removing a portion of noise contamination. In order to utilize 
the segments with unevenly spaced data points to let user feel smooth manipulation, 
we employed Lomb-Scargle periodogram to estimate the spectral power [8-9] and 
support vector machine (SVM) [10-11] to predict the class of motor imagery. Two 
categories of data are used to prove the feasibility of the method. One is the simulated 
data and the other is two-class motor imagery data. We used simulated data to 
illustrate that spectral power can be correctly estimated when data come to be 
unevenly spaced after removing some data points of them. And, we used real motor 
imagery data to demonstrate that classification accuracy does not dramatically 
decreased when different proportional portions of segments have been removed. 
Hence, the method of combination of Lomb-Scargle periodogram and SVM is 
suitable for using in the BCI system when a portion of segment has be removed. 

2 Data Acquisition 

The simulated data were generated by mixing two sinusoidal signals, which are 3Hz 
and 6Hz, respectively. The maximal amplitude of 3Hz sinusoid signal was 1.5 times 
of that of the 6Hz sinusoid signal. The motor imagery data came from three subjects. 
Fourteen electrodes were used to record the EEG signal on the sensorimotor cortex 
while the subject was conducting motor imagery at sampling rate of 250 Hz. Those 
electrodes were referenced at the mastoids behind ears and grounded at AFz. Each 
subject participated in four sessions. Each session consists of 15 trials, each of which 
was four-second length. Subject conducted either left hand motor imagery or right 
hand motor imagery according to the cue shown on the computer monitor.  

3 Method  

We first divided a four-second trial into 25 segments of one-second length with an 
overlap of 87.5%. A segment is denoted by X , which is N  by T  matrix. Where 
N  is the number of channels, and T  is the number of sampling points. Spectral 
power of each channel time series y(ti )  is estimated by the Lomb-Scargle 

periodogram [8-9]. The estimated spectral power at frequency Ω f  can be obtained 

through minimizing the following sum of difference squares: 

 
a>0

φ∈[0, 2π ]

min (y(ti ) − α cos(Ω f ti +φ))2

i=1

T

 .                  (1) 
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Let 
 a = α cosφ                                 (2) 

and 

 b = −α sinφ ,                               (3) 

we can rewrite equation (1) as: 

 
a, b

min (y(ti ) − acos(Ω f ti ) − bsin(Ω f ti ))
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 .            (4) 

The optimal parameters 
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b  can be obtained through minimizing equation (4) 
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The power of specific frequency Ω f  is then estimated with respect to optimal 

parameters 
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b  as follows: 
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Similarly, the minimization of squares mentioned above is used to estimate spectral 
powers at all frequencies. After that, spectral estimation for one channel is finished. 
Those steps are repeated for all channels and all segments to get the spectral powers. 
Because the frequency range of 8-30 Hz is mostly related to motor imagery task [7], 
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we divided that band into four subbands with a bandwidth of 5 Hz (i.e., 8-12 Hz, 13-
17 Hz, 18-22 Hz, and 23-27 Hz). Subband powers were obtained by averaging 
spectral powers within the corresponding frequency band range for each channel. 
Then, subband powers (four features for each channel) for all channels are 
concatenated into a feature vector: 

 F = [ f11, f12 , f13, f14 , f21, f22, f23, f24 ,, fN1, fN 2, fN 3, fN 4 ]Τ ,      (9) 

where N is the number of channels. Subsequently, features are normalized as: 

 fqp = log
fqp

fij
j=1

4


i=1

N





















.                        (10) 

The normalized features were fed into a linear SVM classifier to distinguish which 
class it belongs to. 

4 Results 

4.1 Simulated Data 

Figure 1 shows the spectral power estimation from a mixed signal, which mingles two 
sinusoidal signals with 3 Hz and 6 Hz respectively. From top left to bottom right, 
spectral power estimations for the complete signal, proportional data point removals 
from 10% to 80% are shown, respectively. The data points removed are chosen 
randomly. The powers shown in figure 1 were normalized by dividing by a 
proportional factor (1-p, p is the removed percentage) in order to keep the same scale 
between cases of different proportional data removal. For example, the estimated 
power is divided by the proportional factor of 0.7 when 30% of data points are 
removed from the signal. From figure 1, we can see the components at 3 Hz and 6 Hz 
can be better estimated even up to 80% of data point removal. 

 

Fig. 1. Spectral power estimations for the complete signal and signals after data point removal 
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4.2 Real Motor Imagery Data 

In this section, we showed results tested on real motor imagery data. The proposed 
method can solve the problem that the whole segment has to be discarded due to 
partial noise contamination on that segment, if the classification accuracy for 
segments with data removal can remain the same or slightly decrease. Here, we used 
two ways to randomly remove data points. One is that data points are randomly 
removed (see figure 2 for an example). The other is data blocks are randomly 
removed (see figure 3 for an example). The width of removed blocks is generated 
according to a normal distribution with a mean of 20 and standard deviation of 10. 

 

Fig. 2. An example of data point removal. The data points shown with gray background are 
removed while data points shown with white background are retained.   

 

Fig. 3. An example of block point removal. The data points shown with gray background are 
removed while data points shown with white background are retained.   
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The data from the preceding session were used for training and the data from the 
following session were used for testing. Sliding time window accuracies were 
calculated through the number of correct classification segments divided by the 
number of all segments. A trial was classified to the class that most of sliding time 
windows within that trial belonged to. Then, trial accuracies were obtained by the 
ratio of correct classification trials. Figure 4 and figure 5 show testing accuracies for 
the conditions of data point removal and data block removal, respectively. In general, 
the accuracies for all sessions of all subjects are not dramatically decreased. Trial 
accuracies varied more than that of sliding time window across different proportional 
portions of data removal. The reason is that trial was counted as correct classification 
trial even if the number of correct classification sliding time windows is one more 
than that of wrong classification sliding time windows, and vice versa. Therefore, in 
some cases, trial accuracy changed greatly while sliding time widow accuracy did not 
change too much. A comparable classification accuracy can be achieved even when 
80% of data were removed. The high accuracies can be kept no matter how many data 
points were removed from 10% to 80% for subject 1, especially for session 2 and 
session 3. The accuracies for 80% data removal are largely worse than that for 70% 
data removal for subject 1 in the condition of block data removal. It seems that our 
method is relatively sensitive to the form of block data removal.   

 

Fig. 4. Classification accuracies for the form of data point removal. The thin red lines represent 
trial accuracies, and the bold blue lines represent sliding time window accuracies. 
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Fig. 5. Classification accuracies for the form of block point removal. The thin red lines 
represent trial accuracies, and the bold blue lines represent sliding time window accuracies. 

5 Conclusion 

We proposed the combination of Lomb-Scargle periodogram and SVM classifier to 
distinguish the EEG segment with a portion of data removal due to noise 
contamination. The results indicated that classification accuracy was not dramatically 
decreased when different percentages of data were removed. Therefore, the 
classification performance using the proposed method for segments with data removal 
is acceptable for a BCI application system. This means that the segment with noise 
contamination can still be utilized to output commands after only removing the noisy 
portion, rather than discarding the whole segment, which is conventionally taken by 
the BCI system. In brief, the proposed method can achieve comparable classification 
performance even when most of data points of a segment have been removed. It 
avoids the problem that there is no output of commands when a segment is discarded, 
because Fourier transform cannot be used to estimate spectral power after a portion of 
data has been removed due to noise contamination.  
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Abstract. This paper represents an attempt to automatically classify
alertness state using information extracted from multi-channel EEG. To
reduce the amount of data and improve the performance, a channel se-
lection method based on support vector machine (SVM) classifier has
been performed. The features used for the EEG channel selection pro-
cess and subsequently for alertness classification represent the energy
values of the five EEG rhythms; namely δ, θ, α, β and γ. In order to
identify the feature/channel combination that leads to the best alertness
state classification performance, we used a fuzzy rule-based classification
system (FRBCS) that utilizes differential evolution in constructing the
rules. The results obtained using the FRBCS were found to be compa-
rable to those of SVM but with the added advantage of revealing the
rhythm/channel combination associated with each alertness state.

Keywords: Alertness classification, EEG, fuzzy rule-based system.

1 Introduction

The detection of alertness state has recently attracted much attention due to its
link to the human ability to process information. The traditional approach to
identification of alertness state through monitoring the subject’s face was found
to be unreliable due to a number subject-dependent factors such as age and
shape of eyes. This situation is further compounded by the the inter-rater dis-
agreement. In addition to this, visual identification is tedious task that requires
full attention from the assessor. The existing automatic alertness state detection
methods can be broadly divided into signal-based and video-based. Methods that
fall into the first category use physiological signals such as the electroencephalo-
gram (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocar-
diogram (ECG) for alertness identification. Among these signals, EEG and more
specifically the five EEG rhythms; namely δ (up to 4 Hz), θ (4 - 8 Hz), α (8
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- 13 Hz), β (13 - 30 Hz), and γ (30 - 100 Hz) has been the most widely used.
Some authors attempted to identify patterns characteristic of different alertness
states. For example, the authors in [1] associated reduction in vigilance with a
decrease in the amplitude, quantity and frequency of the posterior α rhythm
and increase in slow wave components. Nakamura et. al. [2] characterized the
reduction in vigilance level by (i) decrease in the amplitude, quantity and fre-
quency of the posterior dominant rhythm (or the waves with an approximately
constant period usually in the α band) and with the maximum amplitude at the
occipital or parieto-occipital region of the head and (ii) increase in slow wave
components. Most of the authors, however, adopted the discrete vector feature
approach to classification. Features were extracted from one or more of the main
four physiological signals, namely EEG, EOG, EMG, and ECG [3,4], using dif-
ferent time-domain, frequency-domain and time-frequency domain based tech-
niques. These features were then fed to different classifiers, such as ANN [3] and
SVM [4] to be assigned to either two states (alert/drowsy) [4] or three states
of alertness (alert/drowsy/asleep) [3]. A number of video-based methods have
been proposed in the literature, such as [5]. However, one needs to deal with
a number of issues when using video-based methods, such as occlusions, target
displacement and the large variability in eye shapes and facial expressions. In
this work we opted for the first option. More specifically we used electrical po-
tentials recorded from the brain following an audio stimulus. These signals are
known as cortical auditory evoked potential (CAEP) responses.

In our initial work [6], we showed that high frequency rhythms perform, in
general, better than the low frequency ones and that a single channel would not
be sufficient for achieving good discrimination between the different alertness
states. This paper presents an extension of our initial work, where we propose a
two-stage process to 1) identify the cortical regions more suitable for discrimi-
nating between alertness states and 2) construct a set of ”if-then” rules involving
combination of EEG rhythm and channel spatial location instead of the widely
used black box classifier. A fuzzy rule-based classification system (FRBCS) is
used to assign the classifier input information to one of the four predefined alert-
ness states. A differential evolution (DE) optimization based searching technique
is introduced to construct the fuzzy-based rules used by the classifier.

The paper is organized as follows: the fuzzy rule-based classification system is
described in section 2. Section 3 presents the the DE-based method for construct-
ing the fuzzy rules. Experimental results and conclusions are given in sections 4
and 5 respectively.

2 Fuzzy Rule Based Classification System for Alertness
Detection

The fuzzy rule-based classification system (FRBCS) has been used in many
classification problems [7,8,9] due to its transparent model built on linguistic
variables. This property makes it more attractive for problems that require
transparent mapping from the input variables to the output categories, such
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Fig. 1. Alertness membership functions

as medical diagnosis; a property not available in many of the widely used classi-
fication algorithms. For the particular problem of alertness state detection, there
is another advantage for using FRBCS, namely the reduction of the effect of in-
consistency in labeling data by the participating subjects or the human experts.
This is achieved by allowing a certain degree of overlap between adjacent states,
as shown in Fig. 1.

FRBCS computes the values of an output vector for a given input vector using
fuzzy memberships and a pre-defined set of ”if-then” rules. The FRBCS design
involves 1) defining the membership functions, 2) estimating their parameters
and 3) construction of the fuzzy rules. This paper focuses on the construction
of rules, as our aim is to identify a limited number of rules that each has a
small number of antecedent variables. Some of the widely used methods for
constructing the rules are based on artificial neural networks [10] and genetic
algorithms [11]. Although these methods have achieved good results in certain
applications, we decided to build our own FRBCS for the following reasons.
Firstly, we want to control the construction of the rules by starting with a
number of rules equal to NC (number of alertness classes), then keep adding
another set of NC rules until there is no improvement. The reason behind this
approach is to identify the important rule for each of the NC classes, then the
second best set of rules that complement the existing ones and so on. Secondly,
we want to control the rule complexity, where we aim at constructing ”simple”
rules that are easy to interpret. Hence, we want no more than K variables in the
antecedent part of the rule, where K is a user defined variable. This will help
to reveal the relationships between the EEG rhythm/channel combinations and
each of the alertness states. Thirdly, differential evolution was shown to possess
good exploration capability of the search space [12,13], and hence, we decided
to use it here to search for the best variable combination for each rule.

Each feature support is partitioned into three regions, namely ”low”, ”medium”
and ”high”. The Features are first normalized between 0 and 1 before being fuzzi-
fied using a pi-shaped membership function. This membership function requires
four parameters, which represents the transition points from 0 to 1 and then from
1 to 0. The fuzzification process is performed according to the following steps:

– sort the data samples of each feature and identify the 6%, 47%, 53%, and
94% smaller data samples and assign those values to pp, which is a vector
that has four elements

– the parameters of the ”low” are: [−pp(2),−pp(1), pp(1), pp(2)]
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Fig. 2. Membership functions of two different features

– the parameters of the ”medium” are: [pp(1), pp(2), pp(3), pp(4)]
– the parameters of the ”high” are: [pp(3), pp(4), 2− pp(4), 2− pp(3)]

Although based on this procedure, the generated shape of the membership
functions associated with different features may not be similar, each of the three
membership regions of a given feature will approximately have the same number
of samples with their counterparts of another feature. The reason behind this is
that we don’t want the ”low” region to represent a small portion of samples for
feature Fi and large portion of samples for feature Fj . The same is true for the
”medium” and ”large” regions. Fig. 2 shows the membership functions of two
different features.

Rules will have the following format:
Rule n : If Fn1 is MFn1 and . . . and Fnk is MFnk then Class is Cn

where MFn1 is the membership function associated with feature Fn1 in rule
n, and Cn is one of the alertness state.

We decided not to assign weights to the rules, as we wanted to find the best
rule for each class. Rules would then be added to the ones that have already
been identified. The next section describes the rule construction process.

3 Construction of Fuzzy Rules Using Differential
Evolution

The construction of rules with limited number of antecedent variables (no more
than k) is implemented using differential evolution (DE). We modified the code1

of our previously developed DE-based feature selection algorithm (DEFS) [13]
to suit this particular problem. In the DEFS algorithm, the original NF features
are distributed among M wheels and one feature is selected from each wheel,
i.e, M represents the desired number of features to be selected. The selection of

1 Available online at: http://services.eng.uts.edu.au/~ahmed/

http://services.eng.uts.edu.au/~ ahmed/
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features is optimized using the differential combination and uniform crossover
operators of the DE algorithm.

For rule construction, each feature in the antecedent part is represented by
one of the four possibilities {low, medium, high, none}, while the consequent part
is represented by one of the four possibilities {engaged, calm, drowsy, sleeping}.
The number of wheels is set to NF ×NC, where NF and NC are the number of
features and classes respectively. Each wheel represents one of the features for a
given class, and one rule is constructed for each class. The objective is to search
for the best membership for each features in the antecedent part of each of the
four rules. For each member of the population, the algorithm starts by allowing
only k features per rule that are randomly chosen to be assigned a membership
function other than ”none”. Based on the population size, it is unlikely that all
members of the population to start with ”none” for any of the features. During
the optimization process, the DE operators may produce more than k features
with a value other than ”none”. In such case, some of those (randomly chosen)
will be reset to ”none”. The population size is set to 100, all other parameters
are kept unchanged.

The output values are obtained for each member of the population by eval-
uating the fuzzy system (defuzzification). The output values are then used to
calculate the class-wise classification accuracy of the training set, which in turn
used as the ”fitness function”. It is important to mention that this approach
is computationally expensive, and hence, it is not recommended to substitute
existing classification methods. However, as mentioned earlier, the main aim of
this work is to search for the ”best” rhythm/channel combination for each of the
alertness states.

4 Experiments and Analysis of Results

Ten normal hearing adult subjects, with an age range of 24 to 53 years, par-
ticipated in the experiment. A 21 ms /g/ speech sound stimulus was presented
every 1175 ms at 55 dB sound pressure level as part of a cortical auditory evoked
potential study. Data was recorded using a Neuroscan system that has 64 EEG
channels, with the reference channel close to Cz (vertex). Subjects were asked to
press one of three buttons every 30 seconds to indicate their level of alertness,
i.e, engaged, calm but not drowsy, and drowsy. Each recording session lasted one
hour, divided into 6 divisions of 10 minutes each. If the subject did not provide
an input in any of the divisions, he/she was considered to have fallen asleep.

The recorded signal was divided into windows of 5 seconds with overlap of
3 seconds. For each window five features corresponding to the energy in the
five EEG frequency bands were extracted. Each 10 consecutive windows were
grouped to form a segment, and for each subject 75% of the segments were used
for training and the remaining 25% for testing. Training windows from all 10
subjects were used to train a multi-class linear support vector machine (SVM)
classifier.

For the sake of channel selection, we started by evaluating the performance
of each of the 64 channels and its neighbours, where each channel is represented
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Fig. 3. Ranked channel performance based on (a) a single channel and its surroundings,
and (b) a single channel and its surroundings with {P1, CP1, P3, PZ, PO3}

using the five EEG rhythms, where based on our initial study we found that a
single channel would not be sufficient to discriminate between the four alertness
states. The ranked results of the 64 channels shown in Fig. 3(a) indicate that
channel P1 and its surroundings {CP1, P3, PZ, PO3} achieved best performance
with an average class-wise accuracy of 60.39%. We have then fixed those five
channels and added each of the remaining channels, one at a time, along with
its neighbours. We found that channel C4 and its surroundings {FC4, C2, C6,
CP4} is the best set that complements the existing five channels with an average
combined class-wise accuracy of 69.83%, as shown in Fig 3(b).

The obtained performance using 10 channels is lower than that obtained in
our initial study [13] because in that study the classifier was trained on the
data of each subject individually, while here data from all 10 subjects was used
to train the classifier. Note that inconsistency in labeling between the different
subjects make the classification task harder.

In order to reveal relationships between the rhythm/channel combination and
each alertness state, the construction of fuzzy rules process described in the previ-
ous section has been applied to the 10 ”best” channels selected by the SVM clas-
sifier. The number of elements to be optimized for each rule is 50 (5 rhythms × 10
channels). We have run the algorithm 5 times, where in each run 4 rules are added
to the already identified ones. The sixth run has hardly made any improvement,
and hence we decided not to consider it. The obtained rules are:

1. If (γC6 is low) and (θCP1 is high) and (γP3 is med) and (θPO3 is high) then sleeping
2. If (βC4 is high) and (βP1 is med) and (θPO3 is med) and (βPO3 is med) then drowsy
3. If (γFC4 is low) and (αCP1 is high) and (αPZ is high) and (γPZ is med) then calm
4. If (αC4 is med) and (δFC4 is high) and (βP1 is med) and (δPZ is med) then engaged

5. If (γFC4 is high) and (θPZ is high) and (βPZ is high) and (δPO3 is med) then sleeping
6. If (δFC4 is low) and (γC2 is high) and (γP1 is med) and (γPZ is high) then drowsy
7. If (γC4 is low) and (γC2 is high) and (γP3 is low) and (βPZ is low) then calm
8. If (βC4 is low) and (θP3 is low) and (γPO3 is med) then engaged

9. If (γP1 is low) and (γCP1 is high) and (γCP4 is high) then sleeping
10. If (θP3 is low) and (θP1 is high) and (αP1 is high) and (γPZ is high) then drowsy
11. If (δFC4 is low) and (αP1 is high) and (θPZ is low) then calm
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12. If (γP3 is high) and (βPO3 is low) then engaged

13. If (βC2 is low) and (θCP1 is high) and (βPZ is high) and (θPO3 is low) then sleeping
14. If (θC4 is low) and (γFC4 is low) and (βP3 is low) and (γPO3 is low) then drowsy
15. If (γC6 is high) and (δCP4 is high) and (βPZ is high) and (δPO3 is med) then calm
16. If (αC4 is med) and (αC6 is high) and (αP1 is med) and (αCP1 is low) then engaged

17. If (θC4 is low) and (θC2 is high) and (βPZ is high) and (αPO3 is high) then sleeping
18. If (βP1 is high) and (γP1 is high) and (δP3 is low) and (γPZ is high) then drowsy
19. If (γC6 is low) and (θPZ is high) and (γPZ is low) and (θPO3 is high) then calm
20. If (θP3 is low) and (γPO3 is high) then engaged

The first four rules produced an accuracy of 58.27%, while using all 20 rules
enhanced the accuracy to 67.16%, which is not too different from the results
obtained using the SVM classifier. These rules indicate that all five rhythms
influence the alertness state classification, especially the higher frequency ones.
Note that although the proposed rule construction mechanism does not prevent
conflicts between rules, the obtained rules perform well when considered to-
gether. These rules indicate that the four alertness states are mainly associated
with:

– Sleeping: high β and θ rhythms in the P1 region
– Drowsy: med/high γ, med/high β, med/low θ and low δ
– Calm: med/low γ, high α and med/high θ
– Engaged: med/high γ and low θ in the P1 region. Med/low β and med α

Asmentioned in the introduction, existing methods associate drowsiness with a
reduction in the α rhythm and increase in slowwave components. The constructed
FRBCS rules on the other hand utilized all five EEG rhythms. Hence, in order to
verify the importance of the middle three rhythms (θ, α and β), we conducted an-
other experiment using the same set of 10 channels, where we trained the SVM
classifier using (i) θ only, (ii)α only, (iii) β only, (iv) θ and β, and (v) θ, α and β.We
got the following respective average class-wise accuracies: 45.97%, 36.88%, 39.73%,
56.38%, and 57.80%. These results indicate that utilizing all five rhythms can lead
to noticeably better performance than the middle three ones only, which support
the constructed antecedent terms of the FRBCS rules.

The confusionmatrix obtained using the FRBCS, shown in 1, indicates that the
classifier tends to achieve lowermisclassification rates with the increase of distance
from the true class. For example, when the true class is engaged (column 5), mis-
classification with sleeping is close to zero, a slightly higher misclassification with
the drowsy class, while the highestmisclassificationwas achievedwith calm, which
is the closest class to engaged. Further improvements are expected to be achieved
when optimizing the membership function parameters for each features.

Table 1. Confusion matrix of the FRBCS (T: True, P: Predicted)

P \ T Sleeping Drowsy Calm Engaged

Sleeping 0.93 0.04 0.07 0.02

Drowsy 0.06 0.65 0.24 0.19

Calm 0.01 0.25 0.55 0.24

Engaged 0.00 0.06 0.14 0.55
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5 Conclusion

We presented in this paper a fuzzy rule-based classification system (FRBCS) that
utilized differential evolution in constructing the rules. We have shown that the
FRBCS is capable of achieving comparable results to that of the well-established
SVM classifier. The main advantage of FRBCS is that it transparently maps the
input features to the target categories. The obtained rules reveal that importance
of combined frequency rhythms of the considered channels in differentiating be-
tween the different alertness states.
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Abstract. It is well known that bilateral superior temporal gyrus (STG) 
specialize in speech perception. However, there is no study to explicitly 
represent the interaction between the bilateral STG depending on hearing 
condition (i.e. binaural or monaural hearing) based on neuroimaging findings. 
To this end, speech sentences containing numerical sound(s) were provided in 
binaural, monaural left and monaural right hearing condition. Participants were 
asked to correctly identify the presented numerical sound and speech hearing 
performance was calculated based on the number of correctly identified sounds. 
From the results, neuronal activations of the right STG were shown 
significantly different levels of neuronal activations across the three hearing 
conditions. In addition, the neuronal networks that are functionally connected 
with this right STG and associated with the speech hearing were iteratively 
identified in the bilateral STG. The reported findings support the importance of 
the right STG toward the enhancement of the speech hearing performance.  

Keywords: Speech perception, superior temporal gyrus, hearing performance, 
binaural hearing, monaural hearing, functional magnetic resonance imaging, 
functional connectivity. 

1 Introduction 

Recent functional magnetic resonance imaging (fMRI) studies have reported that the 
neuronal activations in the right superior temporal gyrus (STG) as well as the left 
STG are crucial in speech perception including speech hearing [1, 2, 3, 4]. It has also 
been found that functional (correlated activations between brain regions) and effective 
(causal activations between distinct brain regions) connectivity patterns between 
bilateral STG associated with speech perception [5, 6, 7]. However, there have been 
limited studies that explicitly examined the neuronal responses in the STG and 
interactions between the bilateral STG, which are associated with speech perception 
performance depending on each type of hearing conditions (i.e. binaural or monaural 
hearing). We hypothesized that there would be distinct (1) neuronal activations in the 
STG depending on hearing conditions in association with speech hearing and (2) 
functional connectivity (FC) patterns between bilateral STG that are tightly associated 
with speech hearing performance.  
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2 Methods 

2.1 Study Participants and Experimental Design 

Healthy right-handed male native Korean volunteers (n=12; age=25.3±1.7; 
Edinburg’s handedness score=89.8±10.7 [8]) participated in this study. The English 
ability of the participants to perform task paradigm was evaluated using Wide Range 
Achievement Test (Blue version; score=60.4±5.2; [9]). In the experiment, the 
participants performed a task run which lasted 486 seconds. As shown in Fig. 1, the 
task run was consisted of 18 trials. Each trial was divided into speech hearing block 
and response block. In speech hearing block, auditory stimuli were pseudo-randomly 
presented either in binaural hearing (BH), monaural hearing in the left ear (MHL), or 
right ear (MHR) condition for 6 times in each condition via a MR-compatible auditory 
headset (NordicNeuroLab; www.nordicneurolab.com). The auditory stimuli consisted 
of eighteen English sentences containing numerical words (i.e., “Two dollars and fifty 
cents.”). In the response block, the participants were instructed to select a target 
numerical word accurately (i.e., '15' vs. '50'), which was presented in the speech 
hearing block, using by a button response box (Current Design; www.curdes.com). A 
speech hearing (SH) score was defined as the correctly identified number of trials. 
Thus, the maximum SH score in each hearing condition is 6.  

 

Fig. 1. Experimental design of speech hearing of numerical target sound 

2.2 fMRI Data Acquisition and Preprocessing  

The blood-oxygen-level-dependent (BOLD) fMRI data were acquired via a 3-T 
scanner (Tim Trio, Siemens, Erlangen, Germany). A gradient-echo echo-planar-
imaging (EPI) pulse sequence was used to measure the neuronal activations based on 
BOLD mechanism (248 volumes; TE/TR=30/2000 ms; FA=90°; FOV=24×24 cm2; 
in-plane voxel=64×64; number of slices=36 without a gap between slices). Five 
volumes at the beginning were excluded and the remaining EPI volumes were 
preprocessed using SPM8 software toolbox (www.fil.ion.ucl.ac.uk/spm) using default 
parameters with an order of slice timing correction, head motion correction, 
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normalization to the Montreal Neurological Institute (MNI) coordinates with a 3 mm 
isotropic voxel size, and spatial smoothing using an 8 mm isotropic full-width at half-
maximum Gaussian kernel.  

2.3 Definition of Regions-of-Interest (ROIs) 

A general linear model (GLM) method was applied to estimate the degree of neuronal 
activation using the preprocessed BOLD signal [12]. Each of the three hearing 
conditions with 6 hearing blocks was modeled as separate regressor in a design matrix 
using onset timings and durations of the each of the blocks. The coefficients (β-
values) of the three regressors for each of the three hearing conditions were estimated 
from the GLM approach based on least-squares algorithm [12]. The neuronal 
activation was estimated using averaged β-values within 19 voxels around foci with 
maximum β-value from spatial patterns for each hearing condition. To define the 
regions of interest (ROIs) that showed a main effect of hearing condition on neuronal 
activation, one-way repeated measures analysis of variance (ANOVA: uncorrected 
p<0.001 with minimum of 20 connected voxels) was administered. Then, the ROIs 
that are tightly linked with the speech hearing were identified using a regression 
analysis with neuronal activation of ROIs and average speech hearing scores in each 
of the three hearing conditions.  

2.4 Identification of Neuronal Networks Associated with Speech Hearing 

To estimate the FC patterns associated with each hearing condition (i.e., BH, MHL 
and MHR), the preprocessed BOLD time-series (TS) was voxel-wisely separated into 
each trial. Subsequently, the separated BOLD TS were temporally concatenated as a 
single BOLD TS for each of the three hearing conditions. The partial FC analysis was 
applied to remove potential confounding artifacts included in the BOLD signals due 
to non-neuronal origins such as head movements and physiological artifacts. In detail, 
three principal components (PCs) of the BOLD signals in each of the white matter 
and cerebrospinal fluid were extracted via principal component analysis. Then, the 6 
PCs, global mean BOLD signal, and 6 head motion parameters were regressed out 
from the BOLD signal in voxel wise across a whole brain area. The ROIs tightly 
linked with the speech hearing score were used as seed regions of the FC analysis. 
More specifically, the average BOLD signal in proximity of the ROI (i.e. 19 
neighboring voxels) was obtained and subsequently used as a reference BOLD signal 
for the FC analysis. The FC level in each voxel was calculated from Pearson’s 
correlation coefficient (CC) between averaged BOLD signal of the seed ROI and the 
BOLD signal of the corresponding voxel. The resulting CC values were converted 
into normally distributed z-scores using Fisher’s r-to-z transform to normalize the FC 
levels across a whole brain for each participant and to proceed group-level analysis.  

In the group-level, One-way ANOVA test was conducted using the FC patterns 
with z-scores and the speech hearing scores across subjects as covariate. This 
procedure was carried out to identify the brain regions whose the FC level from the 
seed ROI was tightly linked with speech hearing score (uncorrected p<0.005 with 
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minimum of 20 connected voxels). If identified brain regions were not in proximity 
with seed regions of the FC analysis (i.e. > 8mm in distance), these regions were 
considered as a new seed ROI. Then, the newly identified seed ROI was used for the 
subsequent FC analysis. This repeated FC analysis with speech hearing scores as 
covariate in the one-way ANOVA framework was continued until there is no seed 
region was identified. 

3 Results 

3.1 Behavioral Results 

In the statistical analysis of speech hearing score across three conditions (i.e., BH, 
MHL, or MHR), the main effect of hearing condition was estimated from one-way 
repeated measures ANOVA (p=1.6×10-3). In addition, a paired t-test was conducted to 
compare hearing scores between binaural and monaural hearing condition. In detail, 
speech hearing score in BH condition (5.75±0.13) was significantly greater compared 
to MHL (4.75±0.18) and MHR (4.3±0.40) conditions with statistical significance 
values of p=1.29×10-4 and p=7.60×10-3, respectively. 

3.2 Language-Related Regions  

Fig. 2 shows the main effect across the speech hearing conditions. The neuronal 
activations were found in right STG (peak t-score=13.75; 40 voxels; [45, -22, 1] mm), 
right superior frontal gyrus (SFG; peak t-score=17.75; 114 voxels; [24, 20, 49] mm), 
right angular gyrus (peak t-score=13.07; 25 voxels; [42, -73, 46] mm), left SFG (peak 
t-score=34.54; 87 voxels; [-24, 11, 64] mm), and left middle frontal gyrus (peak t-
score=19.57; 26 voxels; [-36, 41, 37] mm). As shown in Fig. 3, the levels of neuronal 
activations in each of these brain regions were significantly greater from the BH 
condition compared to MHL and MHR conditions. From the regression analysis, the 
neuronal activations in the right STG showed significant correlation with speech 
hearing score (R2=0.21, p=0.003), whereas the neuronal activations of the remaining 
regions were not significantly correlated with speech hearing score (Fig. 3). 

 

Fig. 2. Identified regions of interest (ROIs) that showed main effect of hearing conditions on 
neuronal activation 
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Fig. 3. Neuronal activation levels of ROIs and association with speech hearing accuracy 

3.3 Language-Related Network 

From the repeated FC analysis, language-related network was identified in the areas 
including left middle temporal gyrus (MTG; [-54, -40, -2] mm) which is in 
Wernicke’s area. As shown in Fig. 4, the left MTG was functionally connected with 
right STG ([45, -22, 1] mm), right MTG ([63, -10, -17] mm), left MTG ([-66, -16, -2] 
mm), left STG ([-45, -19, 7] mm) and left STG ([-66, -40, 13] mm). The FC level 
between the brain regions of language-related network was significantly correlated 
with the speech hearing score (R2>0.2, p<0.005). From a paired t-test between a pair 
of the hearing conditions, it was identified that the FC level was shown a marginal 
level of significance (p<0.05) from the BH condition than the MHR condition except 
the FC level between left MTG ([-54, -40, -2] mm) and left STG ([-45, -19, 7] mm). 
The corresponding FC levels across all three hearing conditions were tightly 
correlated with the speech hearing scores (p<0.005).  

 

Fig. 4. Neuronal networks whose FC levels were significantly correlated with speech hearing 
score (uncorrected p<0.005 with minimum of 20 connected voxels) 
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Fig. 5. Functional connectivity (FC) levels of the speech hearing related ROIs and a link 
between the FC levels across the ROIs and speech hearing scores 

4 Discussion 

In this study, we reported that there are distinct neuronal networks tightly linked with 
the speech hearing performance. More specifically, the neuronal activation level in 
the right STG was significantly correlated with the speech hearing score with greater 
level of from the BH and MHL conditions than the MHR condition. The language 
performance is known to be dominant in the left STG for the right-handed. Thus, this 
result may suggest that the right STG is crucial in speech hearing, whereas previous 
studies reported that contralateral STG was activated according to sound direction 
[10, 11].  

From FC analysis, it was identified that FC level between right STG and left MTG 
was significantly correlated with speech hearing score. This result may indicate that 
the interaction between left STG and right MTG, reportedly the Wernicke’s area, 
enhanced the speech hearing performance.  

5 Conclusion 

In this study, we present that the right STG is crucial in enhancement of the speech 
hearing performance. Moreover, it appears that the FC patterns from the right STG 
are tightly correlated with the speech hearing performance with much greater 
statistical significance compared to the correlation between the neuronal activity 
levels and speech hearing performance. Further investigation would be warranted to 
justify the reported findings via test-retest evaluation (1) applying supplementing 
analytical methods including various preprocessing algorithms to further reduce 
artifactual noises and (2) employing systematic experimental settings.  
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Abstract. In this letter, we use a novel method to analyse the stability synchro-
nisation propagation in neuronal networks via the moment neuronal network ap-
proach developed recently. Here, the stability of synfire chain is twofold, including
the stability of both the synchronisation in the cluster and the asynchronisation out
of the cluster. Under the framework of the moment neuronal network, we model
the dynamics of the Pearson correlation coefficients via evolution field equations.
Thus, we study the stability of synfire chain via looking into the attractors of the
model. Based on analytic and numerical approaches, In particular, we point out
that the variance of the neuronal spike rate should be updated with the synfire
propagation. Also, we find out that the balance between the excitation and inhi-
bition PSPs and a suitable size of the cluster can enhance the stability of synfire
chain.

1 Introduction

Synchronisation phenomenon in neuronal networks has been widely studied in both ex-
periment [1–3] and theoretical model [4, 5]. It is well-known that in a spiking neuronal
network, spikes of different neurons could easily synchronize and propagate their ac-
tivity through layers. Refs. [6, 7] established a model called synfire chain to depict the
synchronisation propagation by the complete transmission line architecture first pro-
posed in [8]. A feed-forward network is used to model the synchronisation propagation
in volleys through sparsely cortical neuronal network, which forms a chain-like dynam-
ics. In this scenario, the computational methods can be utilised to realize and analyse
the stability of a synfire chain by setting circuit model on node, for example, the leaky
integrate-and-fire (LIF) model and Hodgkin-Huxley model model [9–13].

Refs. [9] proposed an approach of pulse-packets to study the stability synfire chains.
With two variables, the width of the neuron cluster and the variance of the timing of
evoking spikes in the cluster, the synfire chain can be regarded as behaviours of the
attractors of dynamical systems with respect to the two variables. By this manner, a lot
of characteristics of synfire chain have been found. The size of the neuron cluster is
essential for a stable synfire chain, which should be larger than a threshold value [9, 10]
but has a risk to explode if the size is too large [11]. The balance between the size of
the IPSP and EPSP is suggested as a good choice to be embed synfire chains a sparsely
locally connected random network [10, 12, 13]. Also, as shown in [14], increasing firing
rates can enhance synchronisation.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 191–198, 2013.
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In comparison to most of the literature where synfire chain is discussed via the tim-
ing variance of the pulse-packets, in this letter, we use Pearson correlation coefficients
(CCs) of the firing rates of an assemble of neurons to define synchronisation [14]. For
a pair of neurons (a, b), the shift-correlation between them in a sliding window with
length T is defined as ρT = limL→∞ cov(na, nb)/

√
V ar(na)V ar(nb), where ni(t)

is the number of spikes in a time interval [t, t + T ] subtracting the mean firing rate in
a T -length time interval, i = a, b. Thus, the correlation coefficient of spike strains are
defined as its limit ρ = limT→∞ ρT , which equals to the cross-correlation [14]. One
can see that ρ = 1 implies complete synchronisation between two processes.

2 Preliminary

2.1 A Multilayered Architecture

We consider a feed-forward multilayered network as shown in Fig. 1 with random cou-
plings structure. At each layer, there are exactly N nodes (an even integer), which is
denoted as the set N t, where t is the index of the layer. Among them, NE = 4N/5
nodes are E-neurons (the set Et) and the other NI = N/5 are I-neurons (the set It).
At the t-th layer, each node has KE = λNE exciting synaptic input couplings from the
E-neurons at the t− 1-th layer and KI = λNI inhibiting synaptic input couplings from
the I-neurons at the t−1-th layer. Here λ ∈ (0, 1) is the density of the random network.
Let Wt ⊂ Et be the cluster of neurons at each layer, where synfire chain occurs pos-
sibly with the size #Wt = W . We couple the neurons at the neighbour layers by the
following way: each neuron inWt receives couplings from all neurons inWt−1; except
that, all couplings are randomly picked with equal probability to fit the in-degrees as
mentioned above. We assume the relative strength of inhibitory synapses g = 4 and de-
note the size proportion between IPSP and EPSP as r: Let wij = w0 if j ∈ E and there
is a synaptic coupling from j to i and wij = −rgw0 if j ∈ I and there is a synaptic
coupling from j to i; otherwise wij = 0, where w0 > 0 is a constant.

2.2 Moment Map

The framework of the moment neuronal network (MNN) approach developed recently
[15, 16] enables us to describe the dynamics of CCs by evolution field equations. Thus,
the stability of synnfire chain can be regarded as dynamics of the CC evolution equa-
tions. To minimally brief this approach, we start with a LIF neuronal network with N
neurons which depicts the potential activity of the i-th neuron as follows:

τmdVi(t) = −Vi(t)dt+ Iext,i + Isyn,i, i = 1, · · · , N, (1)

where τm is the capacitance constant, Iext,i is the external current stimulus, and Isyn,i
is the synaptic stimulus from the neighbourhood to the neuron i:

Isyn,i =
∑
j

wE
ijdN

i,E
j (t) +

∑
k

wI
ikdN

i,I
k (t),
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(t−1)−th Layer t−th Layer (t+1)−th Layer 

Nt−1 

Wt−1 

Nt 

Wt 

Fig. 1. Feed-forward network architecture. Neurons are represented as circles and couplings as
arrows. The solid blue box represents the cluster at each layer where synchrony propagates and
the dash black box represents the whole network at each layer.
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where wE
ij and wI

ik are the EPSP and IPSP sizes from the j-th and l-th pre-synaptic

neuron respectively and N i,E
j (t) and N i,I

l (t) are spike pulses from the exciting j-
th and inhibiting l-th pre-synaptic neurons respectively, which are described as ran-
dom point processes. The main idea of the moment neuronal network is to represent
(approximate) the spike activity of a neuron (a point process) as Gaussian processes:
dN i,v

j (t) ∼ μi,v
j dt +

√
τmσi,v

j dBi,v
j , where Bi,v

j , j = 1, · · · , N are correlated Brow-
nian motions. Thus, we use correlated Ornstein-Uhlenbeck (OU) processes to approxi-
mate the dynamics of the membrane potentials:

τmdVi(t) = −Vi(t)dt+ μ̂idt+
√
τmσ̂idBi(t), i = 1, · · · , N, (2)

where μ̂i =
∑

j,v

∑
v=I,E wv

ijμ
i
j , σ̂i =

√∑
j,k

∑
v,u=I,E wv

ijσ
i,v
j ρi,v,ujk wikσ

i,u
k . Here,

ρi,v,ujk is the correlation coefficient between the j-th and k-th synaptic inputs j and k to
the neuron i, u, v = I, E, respectively. We still approximate the output spike trains as
Gaussian processes, which enables us to establish a map from the first and second-order
moments of the input spiking trains to those of spiking trains in the term of Siegert’s
expression [? ]

Γ : (μin, σin, Σin)→ (μout, σout, Σout)

μout = S1(μ̂, σ̂) (3)

σout = S2(μ̂, σ̂)
√
S1(μ̂, σ̂) (4)

ρout,i,j = Φ(ρin,i,j), i, j = 1, · · · , N. (5)

By this way, we can describe the spike trains (rates) of neurons in the network as a
Gaussian random field. The moment neuronal network approach aims to describe the
spike activities of neuronal network by a the Gaussian random field via the evolution
equations of these moments. For the details, we refer readers to [16].

With the moment map above, we derive evolution equations over CCs if we consider
feed-forward or recurrent networks. In a multi-layered feed-forward LIF neuronal net-
work as illustrated in Fig. 1, we rewrite Eq. (5) to yield the following maps from the
CCs of the neuronal network’s t-th layer to those of the t+ 1-th layer:

ρt+1
ij = Φt

ij

( ∑
k,l W

t
ikW

t
jlρ

t
kl√∑

k,l W
t
ikW

t
ilρ

t
kl

√∑
k,l W

t
jkW

t
jlρ

t
kl

)
, i, j = 1, · · · , N. (6)

Here, W t
ik = wikσk(t), where σk(t) is the variance of the spike rate of neuron k at the

t-th layer, ρtkl is the CC between the spike trains of the neuron pair (k, l) at t-th layer,
and Φt

ij(·) is the CC map. Therefore, a synfire chain is described as an attractor of the
system (6) satisfying that the CC of intra-group is near 1 but the other CCs are near
zero. In mathematical terms, for certain small ε > 0 and δ > 0, the system (6) has an
attractor

Λε,δ =

{
[ρi,j ]i�=j : ρij > 1− ε, for (i, j) ∈ W ×W ; |ρij | < δ, otherwise

}
.

So, the stability of a synfire chain is twofold. On the one hand, the CC between the
neuron in the cluster of synchrony are large and near 1; on the other hand, the other CC,
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between the pairs of neurons, which are not both in the cluster, are low, near 0. Thus,
under the framework of the moment neuronal network, the stability of synfire chain
can be measured as the locations of the attractors of (6). To the best of our knowledge,
all the related references up to now focused on the case with constant variance, i.e.,
σk(t) does not change with layer t. However, in this letter, we consider constant wij ,

identical map Φ
(·)
ij but adaptive variance σk(t), which means the variance is updated by

the moment map [16] in synchronization propagation.
We have proved in [16] under the assumption that all neurons are excited or inhib-

ited and Φ = id, if the network has spanning trees, then the network can synchronize
quickly. However, in fact, in a real-world neuronal network, the CCs of the whole net-
work with the spontaneous activities are kept at a low values from 0.1 to 0.2 but nonzero.
Also, by considering the composite of the numerator of (6), one can see that all excited
or inhibited network is not good to keep CCs in low values [13]. Therefore, we has
reason to believe that to realize a stable synfire chain, an optimal environment is that in
the group, the neurons are all with the same types of cells, intra-group graph topology
is compact, and the others have proportional EPSPs and IPSPs.

Following the MNN framework, we study the stability of synfire chain by investi-
gating the distribution of the attractors of the CCs in the feed-forward multi-layered
network. We consider two classes of CCs. One is composed of the CCs between pairs
of neurons both belonging to the cluster Wt: {ρti,j}(i,j)∈Wt×Wt,i�=j ; the other is com-
posed of the other CCs, i.e, between the pairs of neurons of which at least one do not
belong toWt: {ρti,j}(i,j)/∈W t×Wt,i�=j . We exclude the self-correlation in both classes.

3 Methods

The mean field method allows us to analytically study the the dynamics of moment map
(3)-(5), especially the map for CCs (5)(or equivalently (6)). We use μt

± to represent the
mean firing rates of the neuronal spike rate in(+) or out of(−) the cluster (i, j) ∈
Wt×Wt at the layer t. Also, σ± and ρt± denote the corresponding mean variances and
mean CCs respectively. Let Φ± be the mean-field CC map corresponding to ρt±. Here,
we focus on the CCs amongWt ×Wt and those amongN t ×N t −Wt ×Wt.

By the mean field method, we can transform (6) as follows:

ρt+1
± ≈ Φ±(ρt±) = Φ±

(
At

±
Bt±

)
, (7)

where At
± represent the correlation between the synaptic inputs of two neurons in Wt

and at least one of them in N t − Wt respectively and Bt± represent their variance
accordingly, in the mean field sense.

Via directly algebra, it can be seen that the highest terms with respect to K in domi-
nator and numerator are both (r− 1)2K2

E(σ
t−)2ρt− as the network size N →∞, which

leads that ρt− will go near 1. So, in a network of a large size, to guarantee that the CCs
except among the group are small, the balanced network (r = 1) is optimal. This could
also be verified by numerical simulation.
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In a balanced network, {At
±, B

t
±} can be simplified as

A
t
+ = W

{
2KEσ

t
−(σ

t
+ − σ

t
−)ρ

t
− + (σ

t
+)

2
(1 − ρ

t
+) − λ(σ

t
−)

2
(1 − ρ

t
−)

}
+ 5λKE(σ

t
−)

2
(1 − ρ

t
−)

+ W 2

{
(σt

+)2(ρt
+ − ρt

−) + (σt
+ − σt

−)2ρt
−

}
,

Bt
+ = W

{
2KEσt

−(σt
+ − σt

−)ρt
− + (σt

+)2(1 − ρt
+) − (σt

−)2(1 − ρt
−)

}
+ 5KE(σt

−)2(1 − ρt
−)

+ W
2

{
(σ

t
+)

2
(ρ

t
+ − ρ

t
−) + (σ

t
+ − σ

t
−)

2
ρ
t
−

}
,

At
− =W

{
2λKEσt

−(σt
+ − σt

−)ρt
−+λ2(σt

+)2(1 − ρt
+) − λ2(σt

−)2(1 − ρt
−)

}
+5λKE(σt

−)2(1 − ρt
−)

+ W 2

{
λ2(σt

+)2(ρt
+ − ρt

−) + λ2(σt
+ − σt

−)2ρt
−

}
,

B
t
− = W

{
2λKEσ

t
−(σ

t
+ − σ

t
−)ρ

t
− + λ(σ

t
+)

2
(1 − ρ

t
+) − λ(σ

t
−)

2
(1 − ρ

t
−)

}
+ 5KE(σ

t
−)

2
(1 − ρ

t
−)

+ W 2

{
λ2(σt

+)2(ρt
+ − ρt

−) + λ2(σt
+ − σt

−)2ρt
−

}
. (8)

Eq.(8) implies that the evolution of CCs (or equivalently ρt±) in a balanced network
is triggered by both cluster size W and the variances σt

±. To better mimic the dynamics
of synfire chain, we update the variance of the neuronal spike rate with the propagation.
Also, we consider the limit state. That is to say, ρt± and σt

± have already reached the
invariant state and thus were denoted by ρ± and σ± respectively. In fact, under the MNN
framework, the firing rates, variances and CCs will all arrive the invariant state soon. By
regarding A±/B± as a function of W , it is obvious that both A+/B+ and A−/B− are
monotonous and bounded, thus there exists a W0 such that A+/B+ −A−/B− reaches
maximum. In this way, we could define W = W0 as the optimal size of cluster to
maintain the synfire propagation.

Although it is hard to obtain a precise expression of the optimal cluster size W0, the
derivation below gives a easy way to find a suboptimal cluster size W1 which is enable
to maintain the synfire chain.

Theorem 1. In a balanced network, there exist at least one suitable cluster size W1

to realize the synfire, i.e., ρ+ ≥ 1 − ε and ρ− ≤ δ, if we choose ε and δ satisfying
ε ≥ λ1−δ

δ .

Proof. Let P = 5KEσ
2
−(1 − ρ1), Q = [σ2

+(ρ+ − ρ−) + (σ+ − σ−)2ρ−] and R =
2KEσ−(σ+ − σ−)ρ− + (σ+)

2(1 − ρ+)− (σ−)2(1− ρ−) in (8), we derive{
ρ+ = A+/B+ ≥ λP+QW 2+RW

P+QW 2+RW ≥ λP+λQW 2+RW
P+λQW 2+RW

ρ− = A−/B− ≤ λP+λ2QW 2+λRW
P+λ2QW 2+λRW

from Eq. (8) via simple algebra. By choosing W1 such that aλP = λ2QW 2
1 + λRW1,

the synfire condition ρ+ ≥ 1− ε and ρ− ≤ δ could be transformed to{
λ+a
1+a ≥ 1− ε⇐⇒ a ≥ 1−λ

ε − 1
(1+a)λ
1+aλ ≤ δ ⇐⇒ a ≤ δ−λ

λ(1−δ)

.
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(A). The correlation coefficient curves under MNN framework
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(B). The correlation coefficients by LIF model
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Fig. 2. The correlation coefficient curves under MNN framework (LIF model). The solid line
represents ρ+ and the dash line records ρ− in both figures. CC curves with different inhibitory and
excitatory strength ratio r are denoted by different colors. The vertical black dash line W = 38
(W = 39) is the critical point at which synfire chain maintains in each case. When the cluster
size W < 20, the firing rate is almost vanished via neuronal propagation, therefore both (A) and
(B) has a blank area (W < 20) in the figure.

To guarantee the existence of a, we combine the above two inequality to get 1−λ
ε − 1 ≤

a ≤ δ−λ
λ(1−δ) , which leads to our requirement ε ≥ λ1−δ

δ . Also, for any positive number a,

by solving the quadratic equation aλP = λ2QW 2
1 +λRW1, we obtain an estimation for

suboptimal cluster size W1 =
−λR+

√
λ2R2+4aλ3QP

2λ2Q = 2a(
√
(R/P )2 + 4aλQ/P +

R/P )−1, which depends on the variance σ± but not the size of the neuron network N .
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4 General Results

Fig. 2A shows the iteration results of system (6) in terms of CCs as a function of cluster
size W for different r. Meanwhile, Fig. 2B simulates a LIF network (1) on the multi-
layered feed-forward network to verify the results obtained by the system (6). Both
figures show that the CCs curves shifts up with the decrease of the strength between
inhibitory and excitatory input r. Also for fixed r, the whole CCs (both in and out) in-
creased as the increase of the size of the cluster W . In addition, for a balanced network,
we could divide the whole horizontal axis into three segments according to the behavior
of the neuronal network:

– W = 20 or less: the synchronized phenomenon will disappear both in and out
because the firing rate μ is decreasing via propagation;

– W = 40 or so: the synchronized phenomenon only maintained in the strongly
connected group, that is, the synfire chain appears;

– W = 100 or bigger: the whole network get synchronized.
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Abstract. Alcohol addiction is harmful to society, economy and personal 
health. Alcohol addiction treatments intend to help addicted individuals reduce 
and stop compulsive alcohol use. Using biomarker, the clinicians could 
determine if drugs are having a desirable effect much earlier and given in 
correct dose for treatment. This paper will provide an up-to-date review of the 
state of the art in biomarker development for alcohol addiction treatment using 
electroencephalography (EEG) including EEG methodologies and their 
applications. 

Keywords: Biomarker, alcohol addiction, EEG, predict. 

1 Introduction 

Alcohol addiction is characterized by an increased tolerance and physical 
dependence on alcohol that affect individual's ability to control alcohol consumption 
safely and cause withdraw symptoms once stop drinking. The harmful use of alcohol 
results in approximately 2.5 million deaths each year [1]. Alcohol damages almost 
every organ in the body, including the brain. 

The harmful effects of alcohol addiction may be reduced through treatment 
policies. Biomarkers could help increase treatment efficiency by 1) combining with 
other screening tools (CAGE, MINI, …) to identify individuals with alcohol-related 
problems or who are at risk, 2) identifying the subset of abstainers at highest risk for 
relapse [2-3] and 3) evaluating new medications or behavioral interventions by giving 
outcome measures in earlier stage. Electroencephalography (EEG) is a non-invasive 
technique that detects electrical impulses in the brain due to neuronal activity using 
electrodes placed on the patient’s scalp. EEG and related methodologies offer the 
promise of new biomarker for alcohol addiction treatment. 

2 EEG Methodology and Alcoholism 

Over the last decade, there has been a rapid development of EEG study on the 
harmful effect of alcohol addiction to brain. EEG may be recorded with the 
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continuous electroencephalogram (EEG) or with the event-related brain potential 
(ERP) during cognitive and sensory tasks. The study of ERPs with new method of 
time frequency domain analysis, have revealed the phenomenon of event-related 
oscillation (ERO) which provide greater utility in understanding brain function than 
the traditional ERP. 

2.1 Electroencephalogram (EEG) 

Resting EEG is frequency-dependent, spontaneous and continuous neural activity 
during a restful or specific mental state. EEG signal can be decomposed into bands 
with different frequencies reflecting various types of brain activities, most commonly: 
delta (0-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), beta (13-28.5 Hz) and gamma (> 
29 Hz). In several studies, fast bands like alpha, beta, and gamma could be divided 
into sub-bands [2-4].  

Many studies have shown higher tonic theta power in alcoholics than respective 
matched controls, and also in heavy drinkers compared to light drinkers and non-
alcohol subjects. The elevated theta reflects a deficiency in the information-
processing capacity of the central nervous system (CNS). By comparing 307 alcohol-
dependent (AD) subjects with 307 alcohol control (AC) subjects in eyes closed state, 
Rangaswamy [5] found the result of  an increase theta at all scalp loci, prominent at 
the central and parietal in male, and at the parietal in female. Moreover by using 
mental rehearsal tasks for testing frontal activities, Bruin et al [6] stated that heavy 
drinkers had more synchronization in the theta band than light drinkers during an 
eyes-closed condition. On the contrary, there are other studies reporting decreased 
slow bands activity (delta, theta) in their alcoholic patients [2], [4], [7]. Evaluating 
EEG relative power, Bauer [3] showed a slight increase in theta power in relapse-
prone and no different found in abstinent-prone compared with non-alcohol control 
subjects after 6 months monitoring. Some other studies also showed a significant 
decrease in theta power over frontal regions associated with cortical atrophy when 
compared detoxified patients with controls [4], [7] . These results and conclusions 
were not consistent with each other’s about the changes in theta power. However, the 
methodology and participant recruited criteria (alcoholics vs. detoxified patients) used 
by these studies are different. So it may be an indicator of the recovery of alcoholics. 
The relationship between theta power and the developing of alcoholism and, state-
related condition need more investigation. Anyway, changing in resting theta did not 
seem to be present in the offspring of alcoholics, which may indicate a state-
dependent condition.  

Alpha rhythm was also found different between abstainers (the ones who keep 
stopping alcohol consumption after receiving treatment) and relapsers (abstainers who 
fall into addicted in alcohol again). The alpha rhythm is the predominant EEG rhythm 
in the relaxed alert state. Decrease in alpha activity in alcoholics is indicative of a 
deficiency in retrieving information from memory, and in attention. It is obtained both 
with eyes-open and eyes-closed, especially in the eyes-closed condition over the 
occipital regions. Ehlers and Phillips [8-9] suggested that alcohol dependence was 
associated with lower spectral power in the alpha frequency range. However, in their 
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studies, low voltage alpha was recorded to be exited in both alcoholics and controls, 
and there was no significant different between controls and alcoholics. Winterer [2] 
and Bauer [3] also showed especially less frontocentral alpha activity in relapsers 
compared with abstainers. 

One of the robust and consistent resting EEG findings in alcoholism is the 
increased beta band activity in alcoholics and their high-risk offspring. Increased beta 
power in the EEG of alcoholics, particularly the increased fast beta (>20Hz) in the 
relapsers, has been well documented [2-4], [7], [10]. The increased beta power in the 
resting EEG may be an electrophysiological index of the imbalance in the excitation–
inhibition homeostasis in the cortex. The quantitative EEG (QEEG) and relapse 
classification studies of detoxified alcohol-dependent patients as compared with 
normal controls [2] showed good predict ability of beta band power with correct 
classification rates of 83-85% using multilayer perception neuronal network (NN) 
with one layer 2-20 neurons [2] and 74,3% using logistic regression [3]. However, 
Winterer’s study showed poor specificity with just 60-73% correct abstainers’ 
classification. In contrast, Bauer’s study showed improved specificity (85%) but poor 
sensitivity and (61%). Beta band predictive needs more studies and replications with 
different methods to improve its predictive rate, especially in medication treatment. 
The resting EEG beta power [11] also proved that it was more heritable and closer to 
gene action than clinical diagnosis (e.g. alcohol dependence). 

These findings indicate that resting EEG is very promising state biomarker for 
future studies that can help in alcohol addiction treatment by predicting relapse 
patients. 

2.2 Event-Related Potential (ERP) 

ERPs are time-locked voltage fluctuations in the brain in response to a sensory, 
motor, or cognitive event. They are extracted from a set of EEG trial epochs by means 
of filtering and signal averaging. Early components with latency less than 100ms 
reflect sensory processes and contain small amplitude, while later components with 
larger amplitude reflect higher cognitive computations.  

Most ERP studies in investigating the electrophysiological deficits in alcoholics 
and individuals at risk focused on the large positive P300 or P3 component that 
occurs between 300ms and 700ms after a ‘significant’ stimulus and is not related to 
its physical features. The lower amplitude of P3 components are related with the 
inefficient allocation of resources during neural processing and underlying CNS hyper 
excitability in alcoholics and individuals at risk. Many studies [12-16] showed that 
waveform of P3 to task-relevant target stimuli (P3b) are of significantly lower voltage 
and more delayed latency in abstinent alcoholics than in non-alcoholics, particularly 
over parietal regions. P3 deficit occurs in both visual and auditory tasks, but more 
consistent for visual tasks. Suresh [16] indicated that lower P3 amplitude presented 
under effect of alcohol in both genders for auditory oddball task, but more significant 
in male patients. Kamarajan [15] showed that alcoholics manifested low amplitude 
P3b components to not only target (Go) stimuli, but also to rare non-target (NoGo) 
stimuli, and there is less different between these two conditions in alcoholics. 
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Porjesz’s studies suggested that low P3 voltages might not be reversible, but precede 
alcoholism, or recover more slowly after long abstinent periods [17]. Porjesz and 
colleagues also noted that alcoholics who were members of Alcoholics Anonymous 
still manifest low P3 amplitudes after extremely prolonged abstinent (3-10 years). 
However, 63.9% of the participants were correctly classified by Li Wan et al. [18] 
using P3 as the first predictor in the discrimination function. The result indicated that 
there was different in P3b between relapsers and abstainers. Thus, the P3 amplitude 
can be taken as a marker of risk and provides excellent endophenotype for genetic 
studies.  

The P300 response can be divided into two subcomponents based on differing in 
task and subject-state correlates, latency, topography on the scalp and generating 
structure: P3a and P3b. P3a is recorded in response to novel non-target stimuli and 
has more frontal-central distribution with latency from 220-280ms. It is thought to 
reflect the initial signal evaluation. Posteriorly distributed P3b has a longer latency 
300-700ms and is evoked by the rare target stimuli. Marinkovic et al. [13] reported 
about the decrease of P3a following a low dose of alcohol. The study also indicated 
that alcohol had a greater reducing effect on P3a amplitude to unattended rare stimuli 
than to P3b with attended rare stimuli. The result suggested P3a as a potential 
screening tool for alcohol dependent. Anderson [19] examined P3a amplitude as a 
direct predictor of treatment success for substance dependence. By using discriminant 
function analysis, he confirmed that P3a amplitude was a robust predictor of treatment 
completion, and more sensitive than other measures including substance abuse 
severity. 

Stimulus processing is not a simple cognitive process of P300 but is composed of 
different stages with electrophysiological correlates; for example, perception level 
with P100 and N170, attention level with N200, and decision level with P300. The 
P300 is functionally linked to decisional processes and cognitive processing before 
activating the motor response, which is deficient in alcoholics. There are other ERP 
measures that can differentiate alcohol addictions from controls such as Mismatch 
negativity (MMN) and Brain-stem auditory-evoked potential (BAEP). Marco [20] 
reported about the deficit in P50 auditory sensory gating in abstinent chronic 
alcoholics. Curtin [21] indicated the relationship between alcohol and cognitive 
function from the reduced N450 and a more tonic, negative slow wave (NSW) 
associate with behavioral impairment resulted from failure in cognitive control 
function in alcohol consumption. More investigating about the early impairments in 
ERP signal may help to reveal the reason of deficit observed in cognitive processing 
of alcoholic patients. 

2.3 Event-Related Oscillation (ERO) 

For the classical approach to the study of ERP, ongoing EEG is treated as ‘noise’, in 
which the ERP signal is embedded. The ongoing oscillation is canceled out when 
extracting ERP by performing average, which results in the loss of critical 
information about variability upon single trials in neural activity. 
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New studies in time-frequency domain suggested that ERP represent the 
composition of electrical neural activities that evoked from multiple sources in the 
brain, and consist of superimposed event-related oscillation (ERO) of different 
spectral EEG bands that are related to sensory and cognitive processing. ERO can be 
divided into the same bands as spontaneous resting EEG, but with different reflection 
of brain function. Fast frequencies correspond to synchronization of groups of 
neurons in local areas, whereas slow frequencies are involved in larger distances 
synchronization.  

Several studies have demonstrated that P3 responses are primarily the outcome of 
theta and delta oscillations elicited during cognitive processing of stimuli [22-27]. 
Jones et al. [27] indicated that frontally focused theta band activity (4–5 Hz) and a 
posterior distributed delta band activity constitute the P300 ERP waveform. The theta 
component formed the N200 and the early part of the P300 wave, and the delta 
component formed the main part of the P300 wave. These delta and theta EROs were 
derived from several cognitive paradigms, including the oddball task, Go/NoGo task, 
and a gambling task, to study alcoholism and related clinical conditions. Evoked delta 
and theta power were found to be significantly decreased among alcoholics compared 
with control subjects when processing the target stimuli in a visual oddball [26], [28] 
and Go/NoGo paradigm [23-24]. Fein et al. [25] found that the long-term abstinent 
alcoholics (LTAAs) showed a significantly larger theta ERS to the target stimulus 
compared with the non-alcoholic controls (NACs). Fein et al. [28] continued showing 
that theta ERS was larger in both short-term abstinent alcoholics (STAA) and LTAA 
compared to controls. The magnitude of the enhancement in STAA was greater than 
in LTAA. The significant different between long term and short term abstinence may 
be the indicator of brain function recovery from alcohol consumption. Significantly 
lower evoked delta ERO power, total delta and theta ERO power in LTAA provide an 
alternative and comparable representation of the reduced P3b amplitude for assessing 
recovery progress or relapse prediction. About the inherited risk of abusing alcohol, 
Rangaswamy [29] founded the decrease of total theta power and total evoked delta 
power for visual targets in high risk alcoholism’s offspring. 

Rangaswamy [29] and Ajayan [30] highlighted the evoked gamma. The responding 
suppression of gamma band activity to target stimuli observed in the frontal region of 
alcoholics may be associated with cognitive processes [30]. Based on the early phase-
locked gamma oscillation during visual perception and the difference in gamma band 
energies,  Ramaswamy [31-32] proposed evoked gamma as a screening tool and 
confirmed with accuracy of 91.12% using multilayer perceptron NN. 

3 Discussion 

In clinical practice using EEG, there are few reports about early relapse detecting 
method for alcoholic addiction treatment. Resting EEGs and ERPs components have 
been studied for predicting patients with high risk of relapse but the accuracy is still 
not accurate enough for clinical practice. The new EEG phenomenon (evoked theta, 
evoked delta, induced theta ERS, gamma oscillation) of EROs may be candidate for 
assessing treatment progress.  
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Following the review, there is still no study about the association between a deficit 
in gamma band and the duration of abstinent and its ability for discriminating between 
relapsers and abstainers. 

Regarding the induce theta ERS, its differences between alcoholic and control 
groups have not been well defined [28]. Induced theta activity tends to increase with 
increased memory load and/or allocation of attention to task demands [33][30].  

From these problems we can hypothesize:  

1. The new sensitive and specific EEG biomarker will help increase treatment 
efficiency and to determine if drugs have a desirable effect much earlier. 
2. Induce theta promises a “state marker” by showing different between abstain-
prone and relapse-prone. 
3. Delineating induced theta ERS effects in alcoholics appears to be the nature and 
modality of the discrimination task. 
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Abstract. In the field of neuroimaging, fMRI is an important tool for brain 
connectivity analysis. However, the architecture of functional connectivity 
within the human brain connectome cannot be exactly interpreted at the voxel 
level by using the traditional correlation analysis. To address this problem, we 
propose a modified sparse representation (MSR) method to construct the 
connectivity graph in an automatical and efficient way. The MSR approach uses 
the sparse representation instead of the correlation coefficient to relate brain 
regions or voxels. Degree centrality (DC), closeness centrality (CC), 
betweenness centrality (BC), and eigenvector centrality (EC) are employed to 
extract the features of fMRI connective patterns. With the extracted features, we 
then experimentally compare affirmative and negative sentences processing on 
the Star/Plus database, which shows significant difference via MSR method. 
Compared with the traditional correlation method, MSR shows higher 
significance between the two cognitive processing tasks.  

Keywords: modified sparse representation, degree centrality, closeness 
centrality, betweenness centrality, eigenvector centrality.  

1 Introduction 

Functional magnetic resonance imaging (fMRI) is one of the fundamental tools for us 
to investage brain activity[1]. Through fMRI neuroimaging, numerous neuroscientific 
studies were carried out on the connectivity analysis[2]. Among the methods of 
identifying the functional networks of cognitive states from fMRI data, an informative 
graph makes sense for us to understand brain patterns. The nodes in a graph are set as 
the brain regions and voxels while the edges are represented by correlations. 
Functional connectivity between brain regions or voxels is classically represented by 
a “connectivity matrix” [3-5]. The elements of the matrix are generally obtained by 
computing correlations between different brain regions or voxels at different time 
courses. Then we need to set a correlation threshold to yield a weighted matrix which 
enabling the computation of properties. Since the purpose of the constructed 
connectivity matrix is to find patterns of different cognitive states, the following 
characters are desired[6]. 
                                                           
* Corresponding author. 
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Robustness to data noise. The traditional connectivity matrix is founded on pair-
wise correlation, which is very sensitive to data noise. Graph structure is easy to 
change when unfavorable noise comes in. 

Sparsity. Traditional method means around 10% of possible connections between 
nodes to construct a sparse network. Because of utility of average measure, it  
misses the specificity of individuals. Modified sparse representation (MSR) can 
automatically construct a sparse matrix by solving l1 norm problem[7, 8].  

Best preserved data structure. The structure of fMRI data may vary greatly at 
different regions of brain. Traditional connectivity matrix, however, uses a fixed 
value to determine the threshold of whole data. Unfortunately, not all regions make 
the same contribution to every cognitive task. 

In this paper, we propose an optimized method to evaluate the functional 
connectivity. We firstly constructed a “connectivity matrix” of the data set based on 
MSR framework which computes a directed graph with weighted edge. Secondly, 
several centrality parameters - in particular “degree centrality”, “betweenness 
centrality”, “closeness centrality” and “eigenvector centrality” are computed to best 
preserve brain map[9].  

The outline of this paper is as follows. Section 2 defines sparse connectivity matrix 
in detail and shows the definition of four centrality measures. We introduce the 
method from a brief introduction of sparse representation and then show its 
advantages. In section 3, we apply this measure on Star/Plus database which is a 
cognitive task fMRI database. For complementary, a comparison is made between 
correlation method and sparse connectivity matrix. At last, we give a conclusion and 
discussion in section 4. 

2 Methods 

2.1 Motivation  

The sparse connectivity matrix is motivated by the limitations of classical graph 
construction methods[10]. Because fMRI data contains far more noise than useful 
signal, most of voxels may have tiny correlations with others. In that case, some 
voxels should be ignored. Note that a graph construction process includes both graph 
edge weight setting and threshold of neighborhood selection, which significantly 
influence the performance of connectivity matrix. Some researchers have shown that 
most of the existing correlations between voxels can be constructed from the linear 
representation view [11] and unified under a graph framework. Sparse represent is an 
important way to design the connectivity matrix which reflects the linear correlation 
between voxels. Here we present a modified method to design weight matrix 
straightforwardly based on sparse representation theory [12], through which the 
sparsity can be optimally and naturally derived.  

2.2 Sparse Adjacency Matrix 

MSR framework constructs a weight matrix which can explicitly characterize 

connectivity. Given a set of samples n
iiy 1}{ = , where m

i Ry ∈ , denotes each voxel’s 
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time sequence, let be the data matrix, each column of 

which is a time course. We first seek a sparse reconstructive weight vector 
 

for 

each through the following modified  minimization problem: 

 min || || ∑    s. t.   0, 1, … ,  (1) 

where is an n-dimensional nonnegative 

vector in which the -th element is equal to zero because  has removed from , 

and the elements  denote the contribution of each to reconstruct . 

After computing the weight vector  for each , we can define 

the sparse connectivity matrix as follows: 

 W , , … ,  (2) 

where  denotes the optimal solution of equation. The element  in W is not 

only coefficient measure between samples and , but also a consideration of 

whole . In this sense  is essentially different from the adjacency weigh matrix 

in connectivity.  

2.3 Four Centrality Parameters 

Within the scope of graph theory and network analysis, there are various measures of 
the centrality that determine the relative importance of a node. Here we introduce four 
measures of centrality that are widely used in network analysis. 

Degree Centrality. For a weighted graph, degree centrality (DC) is defined as the 
sum of weights from edges connecting to a node which can be computed as in 
equation: 

 DC i ∑  (3) 

Eigenvector Centrality. Eigenvector centrality (EC)[13], is simply the first 
eigenvector of the adjacency matrix, which corresponds to the largest eigenvalue λ : 

 Ax λx    or equivalently x , ∑  (4) 

with proportionality factor  so that  is proportional to the sum of 

similarity scores of all nodes connected to it.  

Betweenness Centrality. Node betweenness centrality (BC) measures how many of 
the shortest paths between all other node pairs in the network pass through the node, 

nm
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which can assess the communication role of a node within the functional network and 
is defined as follows[14]: 

 ∑ , ,  (5) 

where  is the number of shortest geodesic paths from j to k, and  is the 

number of shortest geodesic paths from  to  that pass through node .  

Closeness Centrality. Closeness centrality (CC) emphasizes the distance of a node to 
all others in the network by focusing on the average of the shortest distance of a node 

to others. The closeness centrality  of some node  is defined as: 

 ∑  (6) 

where  is the number of links in the shortest path from node  to node . 

3 Experiment Data  

We obtained data Star/Plus fMRI from Carnegie Mello database, which has already 
been preprocessed and selected some Regions of Interest (ROI). The experiment data 
was schemed to generate three distinctive states of the brain, which could respectively 
be called “being rest”, “during affirmative sentences” and “during negative 
sentences”. Each subject have 54 trials, 4 nonsense trials, 20 affirmative trials, 20 
negative trials and 10 rest-state trials. Each trial contains 55 time points. We explored 
two questions in this paper. First, whether there is any difference when subject make 
an affirmative or a negative judgment[15]. The experiment also find whether these 
strategies have dissimilar brain patterns.  

4 Results 

In order to reduce the calculation, a t-test should be set to find most active voxels 
among affirmative data, negative data and rest-state data first. Then we depict the 
sparse connectivity matrix for two cognitive states via MSR.  

To fully understand the change in neuro-circuitry, we compared negative 
sentences and affirmative sentences via centrality characteristics. As shown in  
Fig. 1, voxels in Right-pars triangularis (RTRIA) exhibited high centrality and high 
similarity across centrality measures during negative state. Retrosplenial cortex 
(RSPL) shows high similarity in affirmative state. Besides, RSPL, Left temporal 
(LT) demonstrate high centrality in both states when computing EC. In BC, 
negative states have more voxels with high value than affirmative, i.e., it needs 
more hubs to connect active regions. However, affirmative state has high EC than 
negative state. For completion, we do the same processing with the traditional 
connectivity matrix and compare two algorithms. 

jkσ )(ijkσ
j k i

ix i

ijd i j
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Fig. 2 compares the Eigenvector centrality and Betweenness centrality using both 
two algorithms. We set the threshold of the correlation connectivity as top 15 percent 
[16]. Using MSR to reconstruct the connectivity matrix can select the voxels which 
make most contribution and play the most important role in information transfer.  
We carry on a t test between affirmative and negative states in both two algorithms. 
CC shows significant differences in both MSR and correlation algorithms. However, 
only by calculating via MSR, DC, BC and EC shows significant differences. In 
addition, even though both algorithms perform difference on affirmative and negative 
states, the significant level of MSR is higher than correlation method. In order to 
avoid type I errors, false positive rate has been made to the result calculated by MSR. 
In this dataset, the value of false positive rate is less than 5 % ( α 0.01).  

 

Fig. 1. Betweenness centrality and eigenvector centrality in affirmative and negative states 

MacLeod, Hunt, and Mathews (1978) have shown that some subjects use spatial or 
pictorial image representations to compare the meaning of sentences and pictures. 
Most subjects show the pattern of Time of Affirmative (TA) < Time of Negative (TN) 
while a few subjects looks like TA=TN instead. In other words, which kind the 
sentence is will not is a factor affecting their verification times. 

Table 1. T-test of affirmative and negative states. ( * H=0 indicates that the null hypothesis 
("means are equal") cannot be rejected at the 5% significance level.  H=1 indicates that the 
null hypothesis can be rejected at the 5% level. * P value is the probability of observing the 
given result. Small values of P cast doubt on the validity of the null hypothesis.) 

 MSR correlation 
 H P H P 

DC 1 1.20e-17 0 1 
EC 1 7.71e-68 0 0.9269 
CC 1 7.55e-60 1 1.19e-05 
BC 1 4.33e-07 0 0.9167 
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In traditional method, we need to set a threshold in order to avoid the interference 
of small correlation values. Recently however, [17]point out that a threshold makes it 
sensitive to the construction of connectivity matrix. On contrast to this, our algorithm 
is optimized, since it does not involve any hyper-parameters. In addition, coefficient 
connectivity focuses on pairwise comparison while l1 norm can be regarded as the 
correlation among whole data. In this way, sparse connectivity is a generalized 
expression of correlation method.  

However, the solution of MSR is an iteration process that different voxel sequence 
may need different iteration times. So the time complexity need to be further 
improved. 
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1 Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618, Tallinn, Estonia

{jbelikov,sven}@cc.ioc.ee
2 Department of Computer Control, Tallinn University of Technology,

Ehitajate tee 5, 19986, Tallinn, Estonia
{eduard.petlenkov,kristina.vassiljeva}@ttu.ee

Abstract. The paper describes a unified algorithm for both paramet-
ric and structural identification. The approach combines three typical
techniques such as neural networks, statistics and genetic algorithm. A
specific structure of the neural network is used that allows to design a
controller directly from parameters of the identified model. The control
strategy based on reference model is discussed. Finally, the proposed
solution is illustrated by numerical example.

Keywords: Computational intelligence, nonlinear systems.

1 Introduction

Mathematical model usually becomes the basis for describing behavior of the
real-life processes. It can be derived in several ways either by understanding the
nature of the process and using physical laws to describe it, or by identification
procedure based on constructing approximate equations from the measured data.
The second approach is inherently more simple. Identification can be used as a
starting point for the further analysis of the system and design of a control
algorithm. Based on the requirements, restrictions and nature of the model, it
can be represented via nonlinear differential or difference equations.

In most practical applications, when employing identification techniques one
relies on a priori structural assumptions made for the process model. This as-
sumption implies that the structure of the overall system is known before the
identification procedure. Thus, it remains to find suitable parameters of the
model. A lot of efficient techniques for parameter estimation are available once
the model structure has been chosen. However, this choice is not trivial [9]. Usu-
ally, there is no any knowledge about what system dynamics can be significant
and how accurate identified model has to be. Therefore, structural identification
represents a more challenging problem, especially when one deals with complex
system involving large number of parameters.

Structural identification methods can be formally divided into two groups,
i.e. classical and non-classical methods. Classical methods have rigorous math-
ematical principles, see [4], [14]. The typical examples include the least square
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estimation [2], [6] and H∞ filtering [5]. On the contrary, non-classical methods
rely on heuristic mathematical methods. The most popular are artificial neu-
ral networks and genetic algorithms. Compared to classical methods, one of the
main strengths of non-classical methods in structural identification is generally
better robustness in achieving global optimum, see [14]. The structural identifi-
cation is associated with many problems, especially if the model is derived not
only for analysis, but also for control purposes. The typical problems are natu-
ral requirements such as simplicity of the identified model, including order and
functions to be used, relevant dependencies between different variables, accuracy
of the obtained model, etc [9]. Based on the mentioned requirements the main
task is to maintain a balance between simplicity and accuracy.

Usually, non-classical methods are used separately. However, the authors of
this paper do believe that using benefits of various techniques from different
areas can lead to synergy and as a result to development of a new and more
reliable algorithm. Therefore, in this paper we mainly employ the mathematical
tools based on neural networks, genetic algorithm and statistics to develop a
novel approach to both parametric and structural identification of the system
with a primary focus on control application. This paper has to be understood as
an intermediate step towards creating the complete procedure which allows to
design the appropriate compensator, including various requirements to be met
by the control system, for the plant starting from the available input-output (i/o)
data. Note that the proposed solution is implemented in MATLAB environment.
The choice of the software is motivated by the fact that it allows to create a
complete solution involving all the necessary steps such as collecting i/o data
from the process, identification, simulation, designing controller and creating
interface for communication with plants via special toolboxes like Real-Time
Windows Target.

The preliminary results of this paper were partly presented in [16]. Unlike [16],
this paper presents a more detailed analysis and differs in several ways. First, in
order to obtain practical results, we performed a significant code refactoring and
implemented additional parts of code that made the computational process faster
and more robust. Application of genetic algorithm has allowed to reduce number
of connections in corresponding neural network which resulted in lower number
of weights to be identified and in turn reduced computational complexity of
the entire process. Second, the reference model is incorporated into the control
loop. It expands the class of problems that can be solved via the proposed
approach. Reference control can be used in various situations. For example, one
can predefine the desired dynamics of behavior for the transient process via
selecting the appropriate zeros and poles for the closed-loop system. Third, the
designed controller is based on the i/o feedback linearization technique, whereas
previously the state feedback linearization approach was utilized. Finally, the
mathematical model of the process is excluded from the analysis and the i/o
data is assumed to be available from measurements.
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2 Preliminaries

Hereinafter, we use the notation ξ for a variable ξ(t), ξ[k] for the kth-step forward
time shift ξ(t + k) and ξ[−l] for the lth-step backward time shift ξ(t − l) with
k, l ∈ Z+. Moreover, to simplify the exposition of the material, in this paper we
restrict our attention to the case of single-input single-output systems (SISO).

The nonlinear control systems are typically represented either by the higher
order input-output difference equation

y[n] = ϕ(y, y[1], . . . , y[n−1], u, u[1], . . . , u[s]), (1)

or by the state equations

x[1] = f(x, u)

y = h(x)
(2)

where x(t) : Z → X ⊂ Rn is the state variable, u(t) : Z → U ⊂ R is the input,
y(t) : Z → Y ⊂ R is the output, ϕ : Yn × Us+1 → R, f : X × U → X and
h : X → Y are the real analytic functions. Moreover, we assume that s < n are
non-negative integers.

The system represented by equation (1) is called a discrete-time Nonlinear
AutoRegressive eXogenous (NARX) model. On the one hand, such structure is
capable to identify a wide class of complex processes with a high degree of ac-
curacy, see [8]. On the other hand, from the control point of view, it has several
drawbacks. The most important for our studies is linearizability by output feed-
back. Namely, this property is not always possible to guarantee [13]. Thus, to
overcome available obstacles, the so-called Additive NARX (ANARX) structure
was proposed, which is a modification of the NARX model with separated time
instances [7]

y[n] =

n∑
i=1

fi(y
[n−i], u[n−i]). (3)

Note that (3) can always be linearized by the dynamic output feedback, see
[13]. The main idea of feedback linearization technique consists in modifying the
system structure by appropriate feedback, so that the i/o equation of the closed-
loop system becomes linear. After that it is possible to apply all the standard
control methods for linear systems to meet the required goals.

3 Modeling and Validation

In this section we explain the basic steps and mathematical tools, used in the
developed algorithm, to identify the model from the i/o data, verify it and de-
sign the controller. Roughly speaking, procedure consists of three main parts:
(a) modeling using neural networks (NN); (b) validation procedure based on
cross correlation test; (c) modification of the obtained NN-based model.
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Step A: Neural Networks

In order to perform analysis and design of the appropriate controller for the
process, one is usually interested in mathematical equations. Note that to main-
tain a sufficient level of accuracy it is necessary to use nonlinear equations. In
fact, one can derive the model from the first principles, e.g. modeling a physical
process relying on the Newton equations. However, most likely in many cases
such approach will result in a quite complex model. Therefore, it is more com-
mon to start from the measured i/o data of a system and try to determine a
mathematical relation between variables without going into the details of what
is actually happening inside the process. The most popular candidates are so-
called NARX type structures. The model from this class can be easily identified
using approach based on neural networks. Note that (3) is a subclass of (1), and
can be identified by NNs as

y[n] =

n∑
i=1

Ci · φi(Wi · [y[n−i], u[n−i]]T), (4)

where for each ith sublayer there are separate set of activation function and
corresponding matrices of synaptic weights.

Remark 1. In this paper, we use NARX structure to identify the model, because
in most cases it can more accurately describe the unknown process. However,
due to the limitations listed above we use ANARX model for control purposes
to identify the model and derive the corresponding controller.

Remark 2. Moreover, we assume that both NN-NARX and ANARX models per-
fectly describe the process meaning that ŷ = y (where ŷ is the output of the
neural network), in order to avoid additional notation.

Example 1. Consider the discrete-time model of the controlled van der Pol os-
cillator, derived in [1]

y[2] = θ1y
[1] − θ2y + θ3y

2y[1] + θ4y
3 + θ5u, (5)

where θi ∈ R for i = 1, . . . , 5. In order to identify this system by ANARX model,
a neural network of the following structure should be chosen

y = C1 · φ1(W1[y
[−1], u[−1]]T) + C2 · φ2(W2 · [y[−2], u[−2]]T), (6)

and parameters of matrices C1,W1, C2,W2 have to be estimated.

Step B: Correlation-test-based Validation Procedure

Next, we briefly summarize the basic facts about model validation procedure
and refer the interested reader to [10] and the references therein. Model valida-
tion constitute an important step in answering the question whether the derived
model is adequate enough to represent the underlying process or not. While
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there is large variety of model validation techniques, in many practical cases
model quality is described by mean square error (MSE) or some similar criteria,
whereas question of model validity is ignored. Lower levels of MSE do not nec-
essary imply model validity. Failure to pass validity test may lead to inadequate
performance of the model which in turn would affect the quality of any controller
built on the basis of such model. Unlike the case of linear systems, validation of
nonlinear models is more complicated [3]. In [19] development of the so-called
Omni-Directional Cross-Correlation Functions (ODCCF) based procedure for
nonlinear model validation was proposed. Later in [18] it was adopted for neu-
ral networks based nonlinear models. While validation test gives an answer if
model is valid or not it does not provide any quantitative measure of validity.
In [10] ODCCF based procedure was adopted to compare quality of identified
neural networks based models, quantitative parameter q summarizing the values
of ODCCFs was derived. This parameter may be seen as an average of all the
values of cross correlations functions. Therefore, lower values of the parameter
indicate better model model quality with respect to validity. The advantage of
the recalled approach can be seen in application to the analysis of the quality of
both NN-NARX and NN-ANARX type models, see [10].

Step C: Genetic Algorithm

Compared to NN-NARX the structure of (4) is simpler, due to the reduced
number of interconnections. However, even this model can be further modified
without loss of related advantages. The latter means that it is possible to modify
the structure of resulting neural network to make it more similar to that one of
the original model. Such a flexibility allows in some sense to make a step towards
the structural and parametric identification. Thus, to deal with parametric iden-
tification we decided to employ the tools of neural networks described in Step
A. However, to perform structural identification we use approach based on the
canonical genetic algorithm (GA), see [17].

Any genetic algorithm consists of two typical components: (i) encode the
neural network model and (ii) construct evaluation function. Further, we briefly
describe the basic moments of each component and the overall algorithm.

Encoding can be understood as a conversion of the mathematical description
of a neural network into terms of genetic algorithm. First, we need to determine
the length of the gene as l = 2N , where N is the possible1 maximal order of
identified system. Note that we deal with destructive algorithm. It is initialized
with the neural network of the form (4) and starts to eliminate unnecessary
sublayers, nodes and connections. Next, in order to describe the structure, we
use binary notation g := {gj}lj=1 with gj ∈ {0, 1}, where the presence and
absence of connections between input is indicated by 1 and 0, respectively. The

1 In this paper we assume the grey box model case meaning that at least some knowl-
edge of the identified process is available, and it is possible to estimate a good (that
is slightly higher than the real order) upper bound. This can be done, for example,
by preliminary regression analysis.
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basic idea of filling the gene can be illustrated as follows: for each pair of the
output and input y[n−i] and u[n−i] the corresponding connection with sublayer
has to be checked. In case of affirmative answer 1 is placed into the sequence,
otherwise 0 is appended. This procedure stops after n steps.

Example 2. Consider the model from Example 1. Since the term u[1] is not
presented in equation (5), we can drop it from the NN-based version (6) to
make the structure more similar to the one of the original model as y = C1 ·
φ1(W1y

[−1])+C2 ·φ2(W2 · [y[−2], u[−2]]T). Thus, it can be encoded via 4-element
gene as g = {1, 0, 1, 1}.
The next problem is to choose certain criteria to evaluate the validity of the iden-
tified model. The choice is not unique. One of the possibilities is to use the statis-
tical approach described in Step B. However, alone it does not cover the complete
picture of what requirements can be made to the model. Nevertheless, the quality
indicators, proposed in [16], are reasonable candidates. In that case a problem of
multi-objective function optimization should be solved. We rely on the following
three criteria:

1. e = e−k·MSE − 1 is the error of the closed-loop control, where k is a propor-
tional coefficient;

2. ô is the normalized order of the identified model;
3. q is the statistics based quality parameter described on Step B.

Summarizing the above information, evaluation function can be defined by using
weighted sum method as

f := k1e+ k2ô+ k3q, (7)

where k1, k2, k3 are weighted coefficients showing the effect of each criterion on
the final quality of the model. Note that the restriction k1 + k2 + k3 = 1 has to
be imposed, because e, ô, q are normalized in the range [0, . . . , 1].

Next, the population consisting of Nm different candidate models is con-
structed. After that, for each individual of the population the fitness function
is calculated on the basis of evaluation function. In case of proportionate-based
selection individuals are picked out to create offspring based on the ranking
of the individual within a given population, i.e. according to fi/f̄ , where fi,
for i = 1, . . . , Nm, is the evaluation associated with particular gene and f̄ is
the average evaluation of all genes in the population. Thus, the fitness function
is always defined with respect to other individuals of the current population.
Roulette selection technique and single point crossover are used to perform the
reproduction process. In order to avoid premature convergence of the algorithm,
mutation is applied. Elitism (selection of the first best parents) is used to improve
the performance of GA, see [15], [17].

4 Control Strategy

The procedure, described in Section 3, allows to obtain an accurate model of the
process. Since the specific structure of the controller is used, control technique
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based on the reference model can be easily applied. The latter can be useful in
various applications like trajectory tracking and path planning to avoid signifi-
cant overshootings or high control signals. Next, we briefly recall the approach
from [12]. The closed-loop system can be represented as follows

y[n] + a1y
[n−1] + · · ·+ any = b1v

[n−1] + · · ·+ bnv, (8)

where ai, bi ∈ R for i = 1, . . . , n are parameters of the reference model defining
the dynamics of the closed-loop control system. Thus, the desired zeros and poles
can be predefined at the stage of designing the control system. Moreover, the
parameters can be chosen thereby to guarantee the input-output stability of the
closed-loop system. Equation (8) can be incorporated into the control loop as
follows

η1 = a1y − b1v + C1 · φ1(W1 · [y, u]T)
η
[1]
1 = η2 + b2v − a2y − C2 · φ2(W2 · [y, u]T)

...

η
[1]
n−2 = ηn−1 + bn−1v − an−1y − Cn−1 · φn−1(Wn−1 · [y, u]T)
η
[1]
n−1 = bnv − any − Cn · φn(Wn · [y, u]T)

(9)

Here v(t) : Z → V ⊂ R is a reference signal. Next, in order to simplify the
calculation of the control signal, we assume φ1(·) to be linear activation function
[11] u = T−1

2 (η1 − (a1 + T1)y + b1v), where T = C1 ·W1 and T =
[
T1 T2

]
and

T2 is a nonsingular square matrix. The overall structure of the corresponding
control system is represented in Fig. 1.

Feedback
linearization
algorithm

NN-NARX
model of

the process

NN-ANARX
model

parameters

reference model

v u y

Fig. 1. Control system design procedure

Once the algorithm from Section 3 was terminated and the corresponding
controller (9) was designed, NN-NARX model has to be replaced by the process.
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5 Illustrative Example

The model of a liquid level system of interconnected tanks [3] is represented by
the input-output equation

y[3] = 0.43y[2] + 0.681y[1] − 0.149y + 0.396u[2] + 0.014u[1] − 0.071u

− 0.351y[2]u[2] − 0.03(y[1])2 − 0.135y[1]u[1] − 0.027(y[1])3

− 0.108(y[1])2u[1] − 0.099(u[1])3.

(10)

Though model (10) belongs to ANARX model class (3), it can still be treated
as unknown plant. In fact, this can be seen as advantage, since it allows to
see whether the algorithm is capable to find a model with correct structure or
not. To obtain the i/o data, system (10) was simulated. Initial population of 50
randomly created models was generated. Levenberg-Marquardt (LM) algorithm
was used to perform the training for neural networks in the population. The
maximum order for some of models was found to be 6. Next, the algorithm
described in Section 3 was performed. Orders of the models in the last generation
were either 3 or 4 and mean square errors were within acceptable limits. The
fact that the final models were of the third and fourth order indicates that that
the proposed technique converges to the original system order. After that the
control algorithm from Section 4 was used to test capabilities of the obtained
model. The following linear discrete-time reference models of the third-order was

chosen G(z) = k z2

z3+0.15z2−0.59z−0.221 with poles p1 = 0.85, p2 = −0.5 + 0.1j,
p3 = −0.5 − 0.1j, zeros n1 = 0, n2 = 0, and k = 0.0678 being the scalar gain,
calculated to obtain the steady-state. This model was chisen to guarantee smooth
transient process. According to (9), equations of controller can be derived as
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Fig. 2. Closed-loop simulation
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u = T−1
2 (η1 − (a1 + T1)y + b1v)

η
[1]
1 = η2 + b2v − a2y − C2 · φ2(W2 · [y, u]T)
η
[1]
2 = b3v − a3y − C3 · φ3(W3 · [y, u]T)

where T = C1 ·W1, T =
[
T1 T2

]
and φ2, φ3 being hyperbolic tangent sigmoid

transfer function. The closed-loop system was simulated with the step function
v, and the quality of tracking algorithm is depicted in Fig. 2.

The small deviation between the reference model and output of the system
can be explained by the fact that the model used to design the controller is only
approximation of the original process and contains a certain error. To conclude,
one can see that the proposed technique provides acceptable tracking results.

6 Discussion and Conclusions

The paper describes a unified algorithm for both parametric and structural
identification. The approach combines three common techniques: (i) neural net-
work with specific structure is used to perform the parametric identification;
(ii) correlation-test-based procedure is used to validate the obtained model in ad-
dition to the common measuring tools; (iii) genetic algorithm is used to provide
the structural identification within a predefined class of models. Such approach
allows to combine the mentioned methods to design the closed-loop control sys-
tem from the unified point of view. Moreover, the control strategy relies on the
reference model that can be important in a number of various applications.

Several intermediate subproblems are solved that assist to create the full-
fledged application. The further steps will include automatic code and driver
generation to design control for an arbitrary (stable) process, starting from the
measured i/o data. There are a number of additional subtasks to be solved like
implementation of alternative optimization techniques that can possibly result
in a more robust models and reduce the computational time. Another problem
which still far from complete solution is a calculation of the control signal in
case of MIMO systems. Finally, the approximated model of the process results
in the presence of the steady state error. The latter has to be incorporated to the
control algorithm to increase its performance. The mentioned items will make
the primary subjects for the future research.
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7. Kotta, Ü., Zinober, A.S.I., Liu, P.: Transfer equivalence and realization of nonlinear
higherorder input-outputdifferenceequations.Automatica37(11),1771–1778(2001)

8. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear
systems Part I: deterministic non-linear systems. International Journal of Con-
trol 41(2), 303–328 (1985)

9. Leva, A., Piroddi, L.: A neural network-based technique for structural identification
of SISO systems 1, 135–138 (1994)
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13. Pothin, R., Kotta, Ü., Moog, C.H.: Output feedback linearization of nonlinear
discrete time systems. In: The IFAC Conference on Control Systems Design,
Bratislava, Slovak Republic, pp. 181–186 (2000)

14. Shinozuka, M., Yun, C.B., Imai, H.: Identification of linear structural dynamic
systems. Journal of the Engineering Mechanics Division 108(6), 1371–1390 (1982)

15. Sivanandam, S.N., Deepa, S.: Introduction to Genetic Algorithms. Springer, Berlin
(2008)

16. Vassiljeva, K., Petlenkov, E., Nomm, S.: Evolutionary design of the closed loop
control on the basis of NN-ANARX model using genetic algorithm. In: Huang, T.,
Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I. LNCS, vol. 7663, pp.
592–599. Springer, Heidelberg (2012)

17. Whitley, D.: Genetic algorithms and neural networks. In: Genetic Algorithms in
Engineering and Computer Science, pp. 191–201. John Wiley & Sons Ltd. (1995)

18. Zhang, L.F., Zhu, Q.M., Longden, A.: A correlation-test-based validation procedure
for identified neural networks. IEEE Transactions on Neural Networks 20(1), 1–13
(2009)

19. Zhu, Q.M., Zhang, L.F., Longden, A.: Development of omni-directional correlation
functions for nonlinear model validation. Automatica 43, 1519–1531 (2007)



Integral Policy Iteration for Zero-Sum Games

with Completely Unknown Nonlinear Dynamics

Hongliang Li, Derong Liu�, and Ding Wang

The State Key Laboratory of Management and Control for Complex Systems
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

{hongliang.li,derong.liu,ding.wang}@ia.ac.cn

Abstract. In this paper, we develop a model-free integral policy iter-
ation algorithm to learn online the Nash equilibrium solution of two-
player zero-sum differential games with completely unknown nonlinear
continuous-time dynamics. The developed algorithm updates value func-
tion, control and disturbance policies simultaneously. To implement this
algorithm, three neural networks are used to approximate the game value
function, the control policy and the disturbance policy. The least squares
method is used to estimate the unknown parameters of the neural net-
works. The effectiveness of the developed scheme is demonstrated by a
simulation example.

Keywords: Adaptive dynamic programming, Policy iteration, Neural
networks, Zero-sum games.

1 Introduction

Adaptive dynamic programming [1] method has received significantly increased
attention owing to its learning and optimal capacities. A synchronous policy
iteration (PI) algorithm [2] was derived to learn online the continuous-time op-
timal control with known dynamics, and it was extended to the optimal control
problem for unknown nonlinear systems [3][4]. An integral reinforcement learn-
ing (RL) algorithm [5][6] was derived to obtain direct adaptive optimal control
for partially unknown linear and nonlinear systems. In [7], a continuous-time
Q-learning method was proposed for completely unknown systems. An integral
Q-learning [8][9] was presented for continuous-time systems without the exact
knowledge of the system dynamics. A computational adaptive optimal control
algorithm [10] was presented for continuous-time linear systems with completely
unknown system dynamics.

Game theory [11] provides an ideal environment to study multi-player op-
timal decision and control problems. The Nash equilibrium solution is usually
obtained by means of offline iterative computation, and the exact knowledge of
the system dynamics is required. An offline PI algorithm [12] was derived for
zero-sum games with constrained input nonlinear continuous-time systems. In
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M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 225–232, 2013.
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[13], four action networks and two critic networks were used to obtain the saddle
point solution of nonlinear zero-sum games. An online synchronous PI [14] was
presented to solve the continuous-time zero-sum game for nonlinear systems with
known dynamics. In [15], an actor-critic-identifier structure was used to develop
an approximate online solution for zero-sum games subject to continuous-time
nonlinear uncertain dynamics. An online integral RL [16] was proposed for zero-
sum differential games without any knowledge on the internal system dynamics.
In [17], an online simultaneous policy update algorithm was proposed for zero-
sum games with partial unknown systems while updating policies of both control
player and disturbance player simultaneously.

However, it is difficult for us to obtain the exact system dynamics for many
practical systems. In this paper, an online model-free integral PI algorithm is de-
veloped to learn the Nash equilibrium solution of a two-player zero-sum differen-
tial game with completely unknown nonlinear systems. The developed algorithm
updates value function, control and disturbance policies simultaneously. To im-
plement this algorithm, one critic neural network (NN) and two action NNs are
used to approximate the game value function, the control policy and the distur-
bance policy respectively, and the least squares method is used to estimate the
unknown parameters.

2 Problem Formulation

Consider a class of nonlinear continuous-time dynamical systems described by

ẋ = f(x) + g(x)u + k(x)d (1)

where x ∈ Rn is the system state with initial state x0, u ∈ Rm is the control
input, and d ∈ Rq is the external disturbance input. Assume that f(x) ∈ Rn,
g(x) ∈ Rn×m and k(x) ∈ Rn×q are unknown, and that x = 0 is an equilibrium
point of the system (1).

Define the infinite horizon performance index

J(x0, u, d) =

∫ ∞

0

(xTQx+ uTRu− γ2dTd)dτ (2)

�
∫ ∞

0

r(x, u, d)dτ

with Q = QT ≥ 0, R = RT > 0, a prescribed constant γ ≥ γ∗ ≥ 0, where γ∗

denotes the smallest γ for which the system (1) is stabilized. For the feedback
policy u(x) and the disturbance policy d(x), we define the game value function
as

V (xt, u, d) =

∫ ∞

t

(xTQx+ uTRu− γ2dTd)dτ. (3)

Then, we define the two-player zero-sum differential game as

V ∗(x0) = min
u

max
d

V (x0, u, d) (4)

= min
u

max
d

∫ ∞

0

(xTQx+ uTRu− γ2dTd)dτ
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where the control policy player u(x) seeks to minimize the game value function
while the disturbance policy player d(x) desires to maximize it. The goal is to
find the saddle point (u∗, d∗) which satisfies the following inequalities

J(x0, u, d
∗) ≥ J(x0, u

∗, d∗) ≥ J(x0, u
∗, d) (5)

for any state feedback control policy u and disturbance policy d. The saddle point
can be obtained by solving the following continuous-time Hamilton-Jacobi-Isaacs
(HJI) equation [11]

0 =xTQx+∇V T(x)f(x) +
1

4γ2
∇V T(x)k(x)kT(x)∇V (x) (6)

− 1

4
∇V T(x)g(x)R−1gT(x)∇V (x)

where ∇V T(x) = (∂V (x)/∂x)T. V ∗(x) is the positive definite solution of (6),
and the Nash equilibrium solution of the zero-sum game is

u∗ = −1

2
R−1gT(x)∇V ∗(x) (7)

d∗ =
1

2γ2
kT(x)∇V ∗(x). (8)

3 Model-Free Integral PI for Zero-Sum Games

First, we present a PI algorithm for zero-sum games with known dynamics.

Algorithm 1. (PI for Zero-sum Games)
Step 1: Give an initial stabilizing control policy u1 and disturbance d1. Set i = 1.
Step 2 (Policy Evaluation): For the system (1) with policies ui and di, solve the
following Lyapunov equation for Vi

0 = r(x, ui, di) +∇V T
i (x)

(
f(x) + g(x)ui(x) + k(x)di(x)

)
. (9)

Step 3 (Policy Improvement): Update the control and disturbance policies by

ui+1(x) = −1

2
R−1gT(x)∇Vi(x) (10)

di+1(x) =
1

2γ2
kT(x)∇Vi(x). (11)

Step 4: If ‖Vi − Vi−1‖ ≤ ζ (ζ is a prescribed small positive real number), stop
and output Vi; else, set i = i + 1 and go to Step 2.

It can be shown that Algorithm 1 is equivalent to Newton’s method [17]. The
sequences of Vi, ui, and di obtained in Algorithm 1 converge to the optimal value
function of HJI, the saddle point u∗ and d∗ respectively, as i→∞.

Next, we will develop an online model-free integral PI algorithm for zero-sum
games with completely unknown systems. To relax the assumptions of exact
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knowledge on f(x), g(x) and k(x), we denote e1 and e2 to be the exploration
signals added to the control policy ui and disturbance policy di respectively. The
exploration signals are assumed to be any non-zero measurable signal which is
exactly known a priori and bounded by eM > 0, i.e., ‖e1‖ ≤ eM , ‖e2‖ ≤ eM .
Then, the original system (1) becomes

ẋ = f(x) + g(x)(ui + e1) + k(x)(di + e2). (12)

The derivative of the value function with respect to time is calculated as

V̇i(x) = ∇V T(x)
(
f(x) + g(x)(ui + e1) + k(x)(di + e2)

)
. (13)

Integrating (13) from t and t+ T with any time interval T > 0 and considering
(9)–(11), we have

Vi(xt+T )− Vi(xt) =−
∫ t+T

t

r(x, ui, di)dτ − 2

∫ t+T

t

uT
i+1Re1dτ (14)

+ 2γ2

∫ t+T

t

dTi+1e2dτ

where the values of the state at time t and t+ T are denoted with xt and xt+T .
Equation (14) plays an important role in relaxing the assumption of the knowl-

edge of system dynamics, since f(x), g(x) and k(x) do not appear in (14). Thus
we obtain the online model-free integral PI algorithm for zero-sum games.

Algorithm 2. (Online Model-free Integral PI for Zero-sum Games)
Step 1: Give an initial stabilizing control policy u1 and disturbance d1. Set i = 1.
Step 2 (Policy Evaluation and Improvement):
For the system (12) with policies ui and di, and exploration signals e1 and e2,
solve the following equation for Vi, ui+1 and di+1

Vi(xt) =Vi(xt+T ) +

∫ t+T

t

r(x, ui, di)dτ (15)

+ 2

∫ t+T

t

uT
i+1Re1dτ − 2γ2

∫ t+T

t

dTi+1e2dτ.

Step 3: If ‖Vi − Vi−1‖ ≤ ξ (ξ is a prescribed small positive real number), stop
and output Vi; else, set i = i + 1 and go to Step 2.

Remark 1. This algorithm updates the value function, control policy and dis-
turbance policy at the same time. Furthermore, it will not be affected by the
errors between the identification model and the real system, and it can respond
fast to the change of the system dynamics. To guarantee the persistence of ex-
citation condition, the state may need to be reset during the iterative process
[17], but it results in technical problems for stability analysis of the closed-loop
system. An alternative way is to add exploration noises [14] which may make
the solution different from the exact one determined by the HJI. Compared with
these methods, the solution obtained by our method is exactly the same as the
one determined by solving HJI by considering the effects of exploration noises.
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4 Online Implementation Using Neural Networks

To implement Algorithm 2, one critic NN and two action NNs are used to ap-
proximate the value function, control and disturbance policies respectively. For
simplicity, we let m = q = 1. Note that the algorithm presented above can be
applied to multi-input systems. For (15), Vi(x), ui+1(x), and di+1(x) can be
represented on a compact set Ω by single-layer NNs as

Vi(x) = (W 1
i )

Tφ1(x) + ε1i (x) (16)

ui+1(x) = (W 2
i+1)

Tφ2(x) + ε2i+1(x) (17)

di+1(x) = (W 3
i+1)

Tφ3(x) + ε3i+1(x) (18)

where W 1
i ∈ RN1 , W 2

i ∈ RN2 and W 3
i ∈ RN3 are the unknown bounded ideal

weights, φ1(x) ∈ RN1 , φ2(x) ∈ RN2 and φ3(x) ∈ RN3 are the activation functions,
and ε1i (x) ∈ R, ε2i+1(x) ∈ R and ε3i+1(x) ∈ R are the bounded NN approxima-
tion errors. As the number of neurons in the hidden layer goes to infinity, the
approximation errors go to zero uniformly. Since the ideal weights are unknown,
the outputs of critic NN and action NNs are

V̂i(x) = (Ŵ 1
i )

Tφ1(x) (19)

ûi+1(x) = (Ŵ 2
i+1)

Tφ2(x) (20)

d̂i+1(x) = (Ŵ 3
i+1)

Tφ3(x) (21)

where Ŵ 1
i , Ŵ

2
i+1 and Ŵ 3

i+1 are the current estimated weights.
Using above expressions (19)–(21), (15) can be rewritten to be a general com-

pact form

ψT
k

⎡⎣ Ŵ 1
i

Ŵ 2
i+1

Ŵ 3
i+1

⎤⎦ = θk (22)

with

θk =

∫ t+kT

t+(k−1)T

r(x, ui, di)dτ (23)

ψk=

[(
φ1(xt+(k−1)T )−φ1(xt+kT )

)T
,−2

∫ t+kT

t+(k−1)T

Re1φ
T
2 (x)dτ, (24)

2γ2

∫ t+kT

t+(k−1)T

e2φ
T
3 (x)dτ

]T
where the measurement time is from t+ (k − 1)T to t + kT . Since (22) is only
a 1-dimensional equation, we cannot guarantee the uniqueness of the solution.
Similar to [8], we use the least squares sense method to solve the parameter vector
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over a compact set Ω. For any positive integer K, we denote Φi = [ψ1, . . . , ψK ]
and Θi = [θ1, . . . , θK ]T. Then, we have the following K-dimensional equation

ΦT
i

⎡⎣ Ŵ 1
i

Ŵ 2
i+1

Ŵ 3
i+1

⎤⎦ = Θi. (25)

If ΦT
i has full column rank, the parameters can solved by⎡⎣ Ŵ 1

i

Ŵ 2
i+1

Ŵ 3
i+1

⎤⎦ = (ΦiΦ
T
i )

−1ΦiΘi. (26)

Therefore, we need to have the number of collected points K at least Kmin =
rank(Φi) = N1 + N2 + N3, which will make (ΦiΦ

T
i )

−1 exist. The least squares
problem in (26) can be solved in real time by collecting enough data points
generated from the system (9).

5 Simulation Study

To demonstrate the effectiveness of the online model-free integral PI algorithm,
we consider the following nonlinear system

ẋ =

[ −0.25x1

0.5x3
2 − 0.5γ−2x2

1x2 − 0.5x2

]
+

[
0
x2

]
u+

[
0
x1

]
d. (27)

We assume that the exact knowledge of the dynamics (27) is fully unknown. In
the value function, the matrices Q and R are identity matrices of appropriate
dimensions, and γ = 2. The optimal value function of the zero-sum game is
V ∗(x) = 2x2

1 + x2
2.
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Fig. 1. Convergence of the game value function Vi
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Set the initial state x0 = [−0.4 0.4]T and the stop criterion ξ = 10−5. The
NN activation functions are chosen as φ1(x) = φ2(x) = φ3(x) = [x2

1 x1x2 x2
2]

T.
The parameters of the critic NN and action NNs are all initialized to zero.
The simulation is conducted using data obtained along the system trajectory at
every T = 0.01s. The least squares problem is solved after 20 data samples are
acquired, and thus the parameters of the NNs are updated every 0.2s. Using the
developed algorithm, Fig. 1 presents the evolution of the weights Ŵ i

1 during the
learning process. It is clear that the critic NN weights approximately converge to
the true weights [2 0 1]T. Thus the approximate value function can be obtained
at t = 2s, i.e., V10 = [1.9972 − 0.0053 0.9973]φ1(x).

6 Conclusion

In this paper, we develop an integral PI algorithm to solve online the Nash
equilibrium solution for two-player zero-sum differential games with completely
unknown nonlinear continuous-time dynamics. This ends up to a fully model-free
method solving the HJI forward in time for the first time. We demonstrate the
effectiveness of the developed scheme by a simulation example.
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Abstract. The muscle force control of musculoskeletal humanoid sys-
tem has been considered for years in motor control, biomechanics and
robotics disciplines. In this paper, we consider the muscle force control as
a problem of muscle coordination. We give a general muscle coordination
method for mechanical systems driven by agonist and antagonist muscles.
Specifically, the muscle force is computed by two steps. First, the initial
muscle force is computed by pseudo-inverse. Here, the pseudo-inverse
solution naturally satisfies the minimum total muscle force in the least
squares sense. Second, the initial optimized muscle force is optimized by
taking the optimization criteria of distributing muscle force in the mid-
dle of its output force range. The two steps provide an even-distributed
muscle force. The proposed method is validated by a movement tracking
of a bionic arm which has 5 degrees of freedom and 22 muscles. The force
distribution property, tracking accuracy and efficiency are also tested.

Keywords: Muscle Force Computation, Arm Movement Control, Re-
dundancy Solution.

1 Introduction

Several research works in different disciplines have been distributed in order to
understand the muscle control of the musculoskeletal humanoid systems. The
initial scientific works in human motor control consider the muscle control as
coordination of sensor input and motor output. The sensor-motor coordination
is explained by modeled central nervous system [1]. Later, the muscle control is
dealt with in biomechanics. Here, the basic idea is building an accurate muscle
model, setting all the constraints in muscle space and joint space (such as force
limit, motion boundary, time delay etc.) and using global optimization to solve
the problem as a whole [2][3]. As the global optimization is computationally very
exhaustive task, parallel computation is introduced to reduce the computational
time [4]. There have been two successful commercial software packages to simu-
late human movement: AnyBody Modeling System by AnyBody Technology and
SIMM by MusculoGraphics. Recently, with the development of artificial muscle
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technology, many muscle-like actuators are available, such as cable-driven ac-
tuator, pneumatic actuator, and so on. By using these new actuators, robotic
researchers built a number of musculoskeletal humanoid robots, such as ECCE
from University of Zurich, Kenshiro from University of Tokyo, Lucy from Vrije
Universiteit Brussel, etc. These robots provide physical platforms to emulate
muscle force control of musculoskeletal systems. However, the control of these
musculoskeletal humanoid system is still under development. Regarding the co-
incidence with electromyogram (EMG) measurement, there has been one paper
written by Anderson and Pandy, stating that the muscle force curve computed
by the global optimization looks similar with the real EMG measurement when
doing extreme movement of high jumping [4].

Actually, the muscle force control can be considered as muscle coordination.
As there exists redundancy in joint space, muscle space and impedance space, the
solution of the muscle coordination is not unique [5]. Based on different criteria,
the muscle coordination solutions are different. For example, Pandy considered
the criterion of the minimum of the overall energy-consuming of muscles[3]. Dong
et al. chose the criterion to be “anti-fatigue”, i.e., the load was distributed evenly
among muscles [6]. If we only focus on the control performance without consid-
ering energy-consuming or force distribution, the problem is easier. In Tahara
et al.’s research, the muscle force is distributed from computed joint torque. PD
control is then used for each muscle’s control [7]. Actually, from the neuroscience
research, the muscle force control is also influenced by the body movement pat-
terns. The dynamics of the musculoskeletal system has order parameter which
can determine the phase transition of movements. These scenarios are found in
finger movement and limb movement patterns [8].

In this paper, we give a general muscle coordination method for mechanical
systems driven by agonist and antagonist muscles. Specifically, the muscle force
is computed by two steps. First, the initial muscle force is computed by pseudo-
inverse. Here, the pseudo-inverse solution naturally satisfies the minimum total
muscle force in the least squares sense. Second, the initial optimized muscle force
is optimized by taking the optimization criteria of distributing muscle force in
the middle of its output force range. The two steps provide an even-distributed
muscle force. The proposed method is validated by a movement tracking of a
bionic arm which has 5 degrees of freedom and 22 muscles. The force distribution
property, tracking accuracy and efficiency are also tested.

2 Muscle Coordination

2.1 Pseudo-inverse in Initial Muscle Force Computation

In this subsection, we use pseudo-inverse to compute the initial muscle force.
The input is the desired joint trajectory and muscle force boundary. The output
is the minimum muscle force under the sense of least-squares. The basic idea
is firstly creating a linear equation based on the description of the acceleration
contribution in joint space and muscle space, respectively. Then the muscle acti-
vation level is calculated by solving the above linear equation. Finally, the muscle
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force is computed by scaling the muscle activation level with its corresponding
maximum muscle force.

The general dynamic equation of the musculoskeletal systems can be written
in the general form

H (q, t) q̈ + C (q, t) q̇ +G (t) = f (Fm) (1)

where f (Fm) maps muscle force Fm to joint torque. Here, we transform it into
the following form

q̈ = H (q, t)
−1

f (Fm)︸ ︷︷ ︸
q̈Γ

+
(
−H (q, t)

−1
(C (q, t) +G (t))

)
︸ ︷︷ ︸

q̈ΛΞ

(2)

The above equations indicate that in the joint space, the acceleration contri-
bution comes from 1): joint torque Γ , 2): centripetal, coriolis and gravity torque
Λ + Ξ. Hence, we can compute the acceleration contribution from joint torque
q̈Γ by Eq.2. Whereas, from another viewpoint, in the muscle space, each muscle
has its acceleration contribution. Here, we assume the total muscle number is
nmuscle. For the j-th (1 ≤ j ≤ nmuscle) muscle, its maximum acceleration con-
tribution can be written as

q̈m,j,max = H (q, t)−1 Γj,max (1 ≤ j ≤ nmuscle) (3)

where

Γ1,max = JT
m

[
Fm,1,max 0 0 · · · 0 0

]T
Γ2,max = JT

m

[
0 Fm,2,max 0 · · · 0 0

]T
· · ·
Γnmuscle,max = JT

m

[
0 0 0 · · · 0 Fm,nmuscle,max

]T
By combining the above two computational ways of acceleration contribution

in joint space and muscle space, we can build a linear equation

[
q̈m,1,max q̈m,2,max · · · q̈m,nmuscle,max

] [
σ1 σ2 · · · σnmuscle

]T
= q̈Γ (4)

where
[
σ1 σ2 · · · σnmuscle

]T
is a vector of muscle activation levels. The muscle

activation level is a scalar in the interval [0, 1], representing the percentage of
maximum contraction force of muscle. It is noted that q̈m,j,max (1 ≤ j ≤ nmuscle)
and q̈Γ are vectors. The dimensions of q̈m,j,max and q̈Γ are the same equaling to
the joint number. Supposing the total joint number is njoint, q̈m,j,max and q̈Γ
can be written in the form

q̈m,j,max =

⎡⎢⎢⎢⎣
q̈m,j,1

q̈m,j,2

...
q̈m,j,njoint

⎤⎥⎥⎥⎦
njoint×1

, q̈Γ =

⎡⎢⎢⎢⎣
q̈Γ,1
q̈Γ,2
...

q̈Γ,njoint

⎤⎥⎥⎥⎦
njoint×1

(5)
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Considering Eq.4, we can use pseudo-inverse to compute muscle activation level

[
σ1 σ2 · · · σnmuscle

]T
=
([

q̈m,1,max q̈m,2,max · · · q̈m,nmuscle,max

])+
q̈Γ (6)

where (·)+ is the pseudo-inverse of (·). Therefore, the muscle force can be calcu-
lated as a product of maximum contraction force and activation level

Fm,ini =
[
Fm,1,max · σ1 · · · Fm,nmuscle,max · σnmuscle

]T
(7)

2.2 Gradient Descent in Muscle Force Optimization

The computed initial muscle force Fm,ini dose not consider the physical con-
straints of muscles, which are: 1) the maximum output force of muscle is limited;
2) muscle can only contract. Here, we use gradient descent to make muscle force
satisfy the above constraints. The basic idea is to find a gradient direction in the
null space of the pseudo-inverse solution obtained in Step 1 to relocate the initial
muscle force Fm,ini to an optimized state, which satisfies muscle constraints 1)
and 2).

We assume each muscle force is limited in the interval from Fm,j,min to
Fm,j,max for 1 ≤ j ≤ nmuscle . Our objective is to find a gradient direction
to make each muscle force Fm,j equal or greater than Fm,j,min, and equal or
less than Fm,j,max. Considering the muscle force boundary constraints, one pos-
sible way is to make the output force of each muscle be closest to the middle
point between Fm,j,min and Fm,j,max. The physical meaning of this method is
to distribute overall load to all the muscles evenly where each muscle works
around its proper working load. Based on this load distribution principle, the
muscles can continually work for a long time. According to the above muscle
force distribution principle, we choose a function h as

h (Fm) =

nmuscle∑
j=1

(
Fm,j − Fm,j,mid

Fm,j,mid − Fm,j,max

)2

(8)

where

0 ≤ Fm,j,min ≤ Fm,j ≤ Fm,j,max, Fm,j,mid =
Fm,j,min + Fm,j,max

2
j = 1, 2, · · · , nmuscle

We define Fin as a vector representing the internal force of muscles generated
by redundant muscles which has the same dimension with Fm. We calculate Fin

as the gradient of the function h, i.e.,

Fin = Kin ∇h|Fm,ini
= Kin

⎡⎢⎢⎢⎢⎢⎣
2

Fm,ini,1−Fm,1,mid

Fm,1,mid−Fm,1,max

2
Fm,ini,2−Fm,2,mid

Fm,2,mid−Fm,2,max

...

2
Fm,ini,nmuscle

−Fm,nmuscle,mid

Fm,nmuscle,mid−Fm,nmuscle,max

⎤⎥⎥⎥⎥⎥⎦ (9)



A Novel Muscle Coordination Method and Its Application 237

where Kin is a scalar matrix controlling the optimization speed. It is easy to
prove that the direction of Fin points to Fm,i,mid. We map the internal force Fin

into Fm space (i.e., pseudo-inverse solution’s null space) as

g (Fin) =
(
I − (

JT
m

)+
JT
m

)
Fin (10)

where I is an identity matrix having the same dimension with muscle space.
According to Moore-Penrose pseudo-inverse, g (Fin) is orthogonal with the space
of Fm,ini. Finally, the optimized muscle force is calculated as

Fm = Fm,ini + g (Fin) (11)

3 Evaluation

3.1 Bionic Arm Modeling

First of all, we define symbols for the convenience of derivation. Rot(θ, x),
Rot(θ, y) and Rot(θ, z) are rotation matrices between different frames x, y, and z
axis where θ is the rotation angle. Trans(dx, dy, dz) is transition matrix within a
frame where dx, dy, and dz are the transition distances in x, y, and z directions,

respectively. T j
i is the transfer matrix from frame i to frame j. In this simulation,

we defined the frame 1 to 5 as shown in Fig.1 (a). Joint angles [θ1, θ2, θ3, θ4, θ5]
T

are the rotational angles corresponding to Frame 1 to Frame 5, respectively. The
range of shoulder angle is set as from -20 to 100 degrees, and the range of the
elbow is set as from 0 to 170 degrees. Here, we use Muscular Skeletal Modeling
Software (MSMS) [9] to create the virtual bionic arm, based on which, we make
animation to evaluate the movement computed by the proposed method (Fig.1
(b)).

In the simulation, the bionic arm is composed of two parts: shoulder and el-
bow. In total, the model is composed of five rotational degrees of freedom (DOF)
where three of them are in the shoulder joint (shoulder abduction-adduction,
shoulder flexion-extension and shoulder external-internal rotation), and two are
in the elbow joint (elbow flexion-extension and forearm pronation-supination).
The parameters setting of the bionic arm is based on the real data of a human
upper limb. The setting of length, mass, mass center position and inertia coeffi-
cients are from [10]. There are 22 muscles configured in the model. The specific
configuration of the muscles, i.e., coordinate setting of the origins and insertions
in the Gleno-Humeral joint coordinate system (XGH , YGH , ZGH), are from [11].

3.2 Performance

We used the above bionic arm model to test the proposed method. Without loss
of generality, the desired trajectory of the five rotational joints is sine signal:
amplitude: -1/3π; frequency: 1; phase: 0; bias: 1/3π. The maximum muscle force
Fm,i,max (1 ≤ i ≤ 22) is set as 100N. The total simulation time is set as 10s.
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(a) (b)

Fig. 1. Bionic arm. (a) Frame setting of the bionic arm. (b) Snapshot of the arm
movement in Muscular Skeletal Modeling Software (MSMS).

“Anti-fatigue” Force Distribution. As there are 22 muscles configured in
this model, the result can provide an insight on the muscle force distribution.
Fig.2 (a-b) show the computed muscle force in the initial pseudo-inverse step
(Subsection 2.1) and in the optimized gradient descent step (Subsection 2.2),
respectively. In each subfigure, the upper part is the muscle force distribution
statistics. The horizontal axis is the muscle index and the vertical axis is the av-
erage percentage ratio of the specific muscle force amplitude to its corresponding
maximum muscle force Fm,max. The lower part is the muscle force curves where
the horizontal axis is, similarly, the muscle index and vertical axis is the simu-
lation time. By comparing (a) and (b), we can see that the initial muscle force
optimization provides large variance (σ

.
= 0.04) in muscle force. In contrast, the

optimized muscle force gives smaller variance (σ
.
= 0.02) in muscle force.

Tracking Accuracy. We recorded the tracking error of the five joint angles. The
tracking performance is shown in Fig.2 (c). The horizontal axis is the simulation
time, from 0 to 10s. The vertical axis is the joint index, from q1 to q5 in rad. It
shows that the tracking error for the five joints is within the range of 10−3 rad,
indicating that the proposed method has a good tracking property.

Efficiency. The simulation environment is MacBook Air laptop. The basic con-
figuration of the computer is listed below: processor: 1.7GHz Intel Core i5; mem-
ory: 4GB1333MHzDDR3; startup disk:MacintoshHD 200GB; operation system:
MacOSXLion 10.7.4 (11E53).The computational time is shown inFig.2 (d)where
the horizontal axis is the time index representing simulation time (from 0 to 10s).
Vertical axis is the accumulative computational time in s. It shows that the com-
putational time is nearly linear which means the proposed method approximately
consumes equal time to compute muscle force for different arm postures.
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Fig. 2. Performance evaluation in force distribution, tracking accuracy and efficiency.
(a)Initial muscle force distribution. (b) Optimized muscle force distribution. (c) Track-
ing error of the joints. (d) Accumulative computational time.

4 Conclusion

This paper gives a general solution for muscle force control of the musculoskeletal
humanoid systems. The two steps of muscle force coordination compute the
muscle force satisfying the muscle force constraints. The proposed method is
tested by a bionic arm with 5 degrees of freedom and 22 muscles. The results
show that the proposed method provides an evenly-distributed muscle forces
efficiently.
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Abstract. We have to choose muscle activation pairs of agonist and antagonist 
muscles from a variety of combinations to achieve a movement. Even though 
there is a redundancy problem, we could immediately solve the problem and 
generate movements with a characteristic muscle activation pattern that the 
muscle pairs burst alternatively as the biphasic or triphasic shape. In this paper, 
in order to investigate requirements that derive the muscle activation pattern, 
we carried out numerical simulations of arm movement using a musculoskeletal 
arm model and an approximately optimal feedback control law with changing 
the cost structure. As a result, the muscle activation pattern could be reproduced 
by the simulation with a cost form composed by four terms, i.e., position, 
velocity, force and energy consumption. Thus, the muscle activations may 
correspond to cost terms. Furthermore, we suggest that the brain also regulate 
the force as well as the spatial accuracy and efficiency in the absence of any 
force interaction. 

Keywords: Motor control, Reaching, Cost function, Muscle, Monkey. 

1 Introduction 

A biological motor system consists of many joints and muscles, forming a redundant 
system with multiple dimensions of freedom. The central nervous system (CNS) has 
to solve some redundancy problems, e.g., determining a movement trajectory and a 
pattern of muscle activity consisting of pairs of agonist and antagonist muscles. 
Besides, it was reported that the muscle activation pattern is equivalent to other 
movements loaded by an external force when the movements are kinematically same 
and the dynamics is well learned even if the amount of muscle activations is increased 
[1]. The typical pattern has been found that the agonist and antagonist muscles burst 
alternatively as the biphasic or triphasic pattern of muscle activation in single-joint 
reaching movements [2]. In addition, we also observed the muscle activation pattern 
in multi-joint movements in a monkey [3]. However, it has been suggested that most 
of motor control and planning models (i.e., the minimum jerk model and other 
criterions) could not predict a specific muscle action, e.g., a muscle co-contraction 
depending on tasks [4-6].  
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Fig. 1. Simulation model. (a) Setup of the center-out reaching task. The start position is 23-cm 
forward away from the round axis of the shoulder. (b) Reaching targets of the task. The targets 
are aligned as an 8-cm radial circle around the start position. (c) 2-link 6-muscle arm model. (d) 
Muscle activation dynamics. (e) Block diagram of the ILQG optimal control law.   

Recently, optimal feedback control (OFC) theory has been proposed [7], and it is a 
plausible control model that could solve the redundancy problem. In addition, the 
theory could predict variability of movement phenomena [4, 5, 8]. In neural studies, it 
also has been suggested that primary motor cortex provides a neural substrate for 
integrating shoulder and elbow motion information into joint torque for fast feedback 
control [9].  

In this study, we applied the iterative linear-quadratic-Gaussian (ILQG) method 
[10], which is an approximately OFC, to the biological arm dynamics and examined a 
role of cost structure formed by kinetic terms in order to investigate a source of the 
muscle activation pattern. As a result, the OFC could selectively coordinate muscles 
according to the movement direction, and an interlaced cost of the terminal position, 
velocity, force, and the entire energy consumption could induce similar activation 
patterns reported in previous studies [2, 3]. Consequently, we suggest that the brain 
may control the body according to an OFC mechanism adapting a cost function 
composed at least the four terms.  

2 Methods 

We simulated arm movements for a center-out reaching task using the iterative linear-
quadratic-Gaussian (ILQG) method [10] and a 2-joint 6-muscle arm model (Fig.1a-c). 
The ILQG method constructs an affine feedback control law by minimizing a 
quadratic approximation to optimize a cost function, and could predict dynamic 
stiffness during arm movement [8]. 
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2.1 The Two-Joint Six-Muscle Arm Model 

We considered the monkey’s arm to be a two-joint arm that was composed of the 
shoulder and elbow joints (Fig.1a). The joint variables were calculated in accordance 
with the kinematics of the monkey, and the joint angles were defined as a vector, θ = 
[θsh, θel]

T. The subscripts ‘sh’ and ‘el’ represent the shoulder and elbow variables, 
respectively. Thus, the dynamics of the monkey’s arm in horizontal space is denoted 
by  

 ( ) ( , )M θ θ C θ θ τ( )( , ) τ , 
,                        (1) 

where τ∈R2 corresponds to the joint torque vector. M(θ)∈R2×2, C(θ,θ
．

)∈R2 are the 

inertia matrix, the coriolis vector, respectively, and are represented by the link 
parameters, i.e., mass mi, length li , distance from the joint center of the mass lgi, and 
moment of inertia Ii (i = 1: upper arm, i = 2: forearm).  

Although there are a large number of muscles that act on the arm in the horizontal 
plane, we have modeled only two degrees of freedom actuated by six muscle groups: 
elbow flexors (EF), elbow extensors (EX), shoulder flexors (SF), shoulder extensors 
(SX), biarticulate flexors (BF), and biarticulate extensors (BX) (Fig.1c). The joint 

torque is a function of its moment arms A∈R2×6 and the muscle tension T∈R6, and it is 

given by τ = A·T. The moment arm is defined as the perpendicular distance from the 
muscle’s line of action to the joint’s center of rotation, given by 

26252423
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Here, we used the Kelvin-Voigt model, consisting of an elastic element for static 
isometric contraction. The jth muscle tension Tj (j = 1, 2, …, 6) is determined from 
the muscle activation aj and muscle length Lj (θ), and muscle-contraction velocity 

( ) ( )j jV dL dt= −θ θ , according to the formula; 
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where K j (a j), B j (a j), and )( j
rest
j aL  are the muscle elasticity, viscosity, and resting 

length, respectively. cmd
jT  is the active contraction force that must be generated as a 

positive value, similar to actual muscles, to generate the commanded torque with the 
moment arms. The values of muscle parameter in equation (2) are determined from 
the muscle activation as 

0 1( )j j jK a k k a= + , 0 1( )j j jB a b b a= + ,  0 1( )rest rest rest
j j j jL a L L a= − , (3) 
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where 0k , 0b  and 0rest
jL  are the intrinsic elasticity, viscosity, and resting length of 

the jth muscle, respectively, and 1k , 1b  and 1restL  represent the variation in elasticity, 

viscosity, and resting length depending on the muscle activation, respectively. 0rest
jL  

was set to the muscle length at an optimal joint angle that allowed the muscle to 
generate maximal force. Note that, since constant components of the muscle length do 

not affect the arm dynamics, the muscle length vector L(θ)∈R6 could be denoted in a 

simplistic form by L(θ) ≈ –AT θ.  
The muscle activation aj is not equal to the instantaneous neural input uj, but is 

generated by passing uj thorough a filter that describes the calcium dynamics modeled 
with a first-order non-linear filter (Fig.1d) as 
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The input-dependent activation dynamics are faster than the constant deactivation 
dynamics. Thus, they were set as tact = 40 [ms], tdeacct = 50 [ms].  

The parameters required for the model are provided in Table 1-3. 

2.2 Approximately Optimal Feedback Control 

We transformed the 2-joint 6-muscle model into a state-space model. The control 

object was denoted by the state variable T T T T T
cmd

 =  x θ θ τ a , where a∈R6 is the 

muscle activations, and τcmd∈R2 is commanded torques which are removed the muscle 

viscosity component from the actual torques [11]. Using non-linear functions F(x) 
and G(x), the dynamics of the 2-joint 6-muscle arm model at time step t could be 
written into a state-space equation described as xt+1 = F(xt) + G(xt)·(I +σuεt)ut. Note 
that the non-linear functions F(x) and G(x) are defined just for a descriptive purpose 
to represent the dynamics in an affine form. In practice, they were given as locally 
linearized forms around each state at time t to obtain an approximately OFC law. 
Neural input ut is disturbed by a signal-dependent, multiplicative noise that exists in 
the neural system [12]. The signal-dependent noise is given by εt, a zero-mean 

Gaussian white noise with unity covariance (εt∈R2 is a vector). The magnitude of the 

signal-dependent noise was set by the scaling parameter σu (σu = 0.2 in this study). 

Table 1. Link parameters 

  li
 

[m] lgi [m] mi [kg] Ii [kg m2] 
Upper arm   ( i = 1 ) 0.15 0.075 0.5 3.8×10−3 
Forearm   ( i = 2 ) 0.21 0.12 0.5 9.1×10−3 
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Table 2. Moment arms and optimal joint angles 

Muscle 
Moment arm αij [cm] Optimal joint angle [deg] 

i = 1 i = 2 i = 1 i = 2 
j = 1 2.6 - 45 - 
j = 2 1.3 - 15 - 
j = 3 - 1.2 - 90 
j = 4 - 1.7 - 110 
j = 5 0.7 1.6 45 100 
j = 6 2.5 1.1 15 100 

Table 3. Muscle parameters 

Lrest1 [m] k0 [N m−1] k1 [N m−1] b0 [(N·s) m−1] b1 [(N·s) m−1] 

0.02 50 30,000 2.5 300 

 
The approximately OFC law for ILQG is given by )( ttttt xxLuu −+= , where 

tu  

is an open-loop control component, Lt is the feedback control gain, and 
tx  is a 

nominal trajectory (Fig.1e). The parameters
tu , Lt, and 

tx were computed iteratively 

using the Levenberg-Marquardt algorithm to optimize the following cost function; 
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,  (4) 

where p(θ(Tf)), Fcmd(θ(Tf), τcmd(Tf)) are the end-point position and commanded force 
which corresponds to the commanded torque, in Cartesian space at a terminal time 
Tf  = 400 [ms]. They are given by the forward kinematics. Additionally, p* is a target 
position in Cartesian space, and wp, wv, wf are cost weights of the position, velocity, 
and force accuracies at the terminal state, respectively. On the right-hand side of 
equation (4), the first, second and third terms evaluate the end-point accuracy; the 
fourth term, which is the sum of the squares of the neural inputs during the 
movement, evaluates the effort cost. 

2.3 Center-Out Reaching Movement 

We examined a center-out reaching movement task in this study. The position of the 
movement start was set to a position 23 cm in front of the shoulder (Fig.1a), and 16 
targets were aligned as an 8-cm radial circle around the start position (Fig.1b).  

The simulations were carried out to make three cases of requirement of the 
movement manipulating the terminal cost weights (Table 4). In Case 1, the terminal 
cost weights were zero except the positional cost. This task corresponded a shooting  
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Table 4. Cost weight values 

Cost weight Case 1 Case 2 Case 3 Case 4 

wp (Position) 1.0×103 1.0×103 1.0×103 1.0×104 

wv (Velocity) 0 1.0×102 0 5.0×102 

wf (Force) 0 0 5.0 1.0×10 

 
task has the end-point passed the target. In Case 2, the terminal cost weight of the 
end-point force was zero. It required movements under kinematic constraints. In Case 
3 required achieving a movement under kinetic constraints. The task ordered to 
regulate the end-point force to zero at the movement end. In other words, it was 
required to maintain the final position after the task.  

An initial state of muscle activation levels was set to maintain the initial posture, 
(i.e., [x, y] = [0, 0]), as the joint torque was equal to zero. The simulations used 
simple Euler integration with 10 ms time step. 

3 Results 

The hand trajectories were varied slightly curved or nearly straight lines in 
accordance with the direction excepting Case 3 in which there were some trajectories 
changed the movement directions suddenly (Fig. 2c). In Case 1, the tangential 
velocities did not converge to zero at the movement end, and the joint torques were 
weakly generated at the movement onset. In Case 2, the velocities were to be zero. 
However, they were sometimes shaped trapezoidal form, and the torques were 
generated the opposite direction of the movements in order to break the speed. In 
Case 3, the velocities sometimes burst at the movement end, and the torques were 
drastically increased and converged to zero at the movement end. In Case 4, the 
velocities were closed to zero in gradual curves, and showed clear bell-shaped 
profiles. In addition, the negative and positive torques were changed alternatively, and 
converged to zero at the movement end. 

Moreover, the muscle activities were also varied according to the cases. In Case 1, 
agonist muscles were activated once just after the movement start. In Case 2, agonist 
and antagonist muscles were activated alternatively at just after the movement start 
and the movement end, respectively. In Case 3, the muscles were activated once, 
however, the timing was divided into two patterns, i.e., after the movement onset or 
before the movement end. In Case 4, the muscles were activated once or twice. 
Especially to the SF and BX muscles, when they took a role as an agonist muscle, 
they were activated twice at the movement start and end. On the other hand, there 
were single activations at the middle time of the movement when they would be an 
antagonist muscle.  
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Fig. 2. Simulation results. Each row respectively shows hand pathways, velocity profiles, joint 
torque profiles, and motor command patterns from the left to right. In the rightmost row, the 
motor command patterns plotted as a function of time and target direction. Light color indicates 
high value and dark color indicates low value. The values are normalized by the highest 
activation level in each muscle across all cases. (a)-(d) respectively represent the Case 1–4.  

4 Conclusion 

We carried out numerical simulations of biological arm movement using an 
approximately OFC approach. Additionally, we adapted four types of cost structures 
in order to examine influences to motor behavior, i.e., kinematic trajectory and 
muscle activity. As a result, the positional cost made first agonist muscle activation 
to induce the movement. The velocity cost corresponded to the antagonist muscle 
activation to stop the movement. There were single-peaked pattern of motor 
command in the case of the cost function without the force term, and joint torques at 
terminal time was not converged to zero (Fig. 2). In contrast, a cost function with the 
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position and force terms was not sufficient to make a bell-shaped velocity curve. 
However, a cost structure including the position, velocity and force terms could 
generate diphasic motor command patterns, and the velocity and torque converged to 
zero at the terminal state similar to experimental measurements [2]. In this cost form, 
the force term induced the second agonist muscle activation to suppress an opposite 
torque generated by the antagonist muscle which was activated to reduce the 
movement speed. Furthermore, the muscles were activated selectively in accordance 
with the movement directions similar to previous studies. This result indicates that 
the OFC could coordinate muscles adequately according to the movement direction. 

In conclusion, we suggest that the CNS may control the body according to an 
optimal control mechanism adapting a cost function regulating the force as well as the 
spatial accuracy and efficiency in the absence of any force interaction.  
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Abstract. We apply slow feature analysis (SFA) to the problem of self-
localization with a mobile robot. A similar unsupervised hierarchical
model has earlier been shown to extract a virtual rat’s position as slowly
varying features by directly processing the raw, high dimensional views
captured during a training run. The learned representations encode the
robot’s position, are orientation invariant and similar to cells in a ro-
dent’s hippocampus.

Here, we apply the model to virtual reality data and, for the first time,
to data captured by a mobile outdoor robot. We extend the model by
using an omnidirectional mirror, which allows to change the perceived
image statistics for improved orientation invariance. The resulting rep-
resentations are used for the notoriously difficult task of outdoor local-
ization with mean absolute localization errors below 6%.

Keywords: Self-Localization, SFA, Mobile Robot, Biomorphic System,
Omnidirectional Vision, Outdoor Environment.

1 Introduction

Self-localization is a crucial ability for animals. In rats, hippocampal place cells
fire when the animal is in a certain location and these cells are strongly driven
by visual input [13]. How does the brain extract position information from the
raw visual data it receives from the retina? While the sensory signals of single
receptors may change very rapidly, e.g., even by slight eye movement, the brain’s
high level representations of the environment (where am I, what objects do I
see?) typically change on a much lower timescale. This observation has lead to
the concept of slowness learning ([1–4]).

It has been shown earlier that slowly varying features extracted from the vi-
sual input of a virtual rat can model place cells and head-direction cells [5, 10].
Recordings from rats’ place cells in open field experiments typically show that
cells encode the animal’s own position, invariant to head direction. Theoretical
analysis of the biomorphic model in [10] has shown that in slowness learning,

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 249–256, 2013.
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the resulting representation strongly depends on the movement statistics of the
animal. To achieve position encoding with invariance to head direction, for ex-
ample, a relatively large amount of head rotation around the yaw axis compared
to translational movement is required during mapping of the environment.

In this pilot study, we extend the results from [10] by applying the model
to a mobile robot in an outdoor environment for the first time. Furthermore,
we extend the system by using an uncalibrated omnidirectional mirror1, which
allows to easily add simulated rotation of the camera system. Thus the system
finds orientation-invariant representations of its own position without having to
rotate the camera or the robot much2. In the next section, we briefly describe
the model as introduced in [10], and explain our extensions to the model.

2 Model for Learning Self-Localization

Slow Feature Analysis. SFA solves the following objective [3]: given a multi-
dimensional input signal x(t), find instantaneous scalar input-output functions
gj(x) such that the output signals yj(t) := gj(x(t)) minimize Δ(yj) := 〈ẏ2j 〉t
under the constraints 〈yj〉t = 0 (zero mean), 〈y2j 〉t = 1 (unit variance), ∀i <
j : 〈yiyj〉t = 0 (decorrelation and order) with 〈·〉t and ẏ indicating temporal
averaging and the derivative of y, respectively.

The Δ-value is a measure of the temporal slowness of the signal yj(t). It
is given by the mean square of the signal’s temporal derivative, so small Δ-
values indicate slowly varying signals. The constraints avoid the trivial constant
solution and ensure that different functions g code for different aspects of the
input. We use the MDP [8] implementation of SFA, which is based on solving a
generalized eigenvalue problem.

Orientation Invariance. The goal for our self-localizing robot is to extract
the robot’s position on the x- and z-axis as slowly varying features and become
invariant to orientation. As stated above, learned slow features strongly depend
on the movement pattern of the mobile robot during training. In order to achieve
orientation invariance, the orientation of the robot has to change on a faster
timescale than its position during training. A constantly rotating robot with
a fixed camera is inconvenient to drive, and a robot with a rotating camera is
undesirable for mechanical stability and simplicity. As an alternative, we simulate
additional robot rotation, which is illustrated in Fig. 1.

Network Architecture and Training. As input image dimensionality is too
high to learn slow features in a single step, we employ a hierarchical converging
network. The network consists of several convergent layers, each consisting of
multiple identical nodes arranged on a regular grid. The numbers of nodes and
layers are depicted in Fig. 2. Each node performs a sequence of steps: linear
SFA for dimensionality reduction, quadratic expansion of the reduced signals,
and another SFA step for slow feature extraction. The nodes in the lowest layer

1 The omnidirectional mirror we used is actually a chrome-colored plastic egg warmer.
2 Note that also for 360◦ field of view, orientation invariance is nontrivial.
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Fig. 1. Simulated rotation for (a) simulator and (b) real world experiments. The
circular image of the surrounding is transformed to a panoramic view with periodic
boundaries. Rotation is simulated for every view from one location by sliding a window
over the panoramic image with increments of 5 pixels. Thus the variable ϕ denotes the
relative orientation w.r.t. the robot’s global orientation. Arrows indicate a relative
orientation of 0◦, 90◦, 180◦ and 270◦.

process patches of 10x10 RGB image pixels and are positioned every five pixels.
In the lower layers the number of nodes and their dimensionality depends on
the concrete setting, but dimensionality is chosen to be a maximum of 300 for
numerical stability. The highest layer contains a single node, whose first (i.e.,
slowest) 8 outputs yj(t) we use for all experiments and which we call SFA-output
units. The layers are trained subsequently with all training images. Instead of
training each node individually, a single node per layer is trained with stimuli
from all node locations in its layer and replicated throughout the layer after
training. This technique is similar to weight sharing in Neural Networks3.

Analysis of Learned Representations. How well does a learned output en-
code position, how much orientation dependency does it have? According to
[10], the sensitivity of a SFA-output function fj , j = 1...8 to the spatial po-
sition r = (x, z) is characterized by its mean positional variance ηr over all
orientations ϕ: ηr = 〈varr(f(r, ϕ))〉ϕ. Similarly, the sensitivity to the orienta-
tion ϕ is characterized by its mean orientation variance ηϕ over all positions r:
ηϕ = 〈varϕ(f(r, ϕ))〉r . In the ideal case ηr = 1 and ηϕ = 0, if a function only
codes for the robot’s position on the x- and z-axis and is completely orientation
invariant. The spatial information encoded by an output will be visualized by
two dimensional spatial firing maps (see Fig. 2c, 3a, 5a). They illustrate the
unit’s output value color-coded for every position r = (x, z) for a fixed orienta-
tion, which is indicated by an arrow. A unit which codes for the position on a
certain axis produces a map that shows a color gradient along this axis. If the
SFA-units are perfectly orientation invariant these maps should look the same
regardless of the specific orientation.

3 Note that this design is chosen only for its computational efficiency and that network
performance increases for individually learned nodes.
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Fig. 2. Model architecture. (a) The robot’s view associated with a certain position
r = (x, z) is steadily captured and transformed to a panoramic view. (b) The view is
processed by the four layer network. Numbers of nodes in each layer are given for the
simulator (gray) and real world (black) experiments, respectively. Each node performs
linear SFA for dimensionality reduction followed by SFA on the expanded outputs for
slow feature extraction. (c) Eight slowest SFA-outputs f1...8 over all positions r. The
color coded outputs, so-called spatial firing maps, ideally show characteristic gradients
along the coordinate axes and look the same independent of the specific orientation.
Thus SFA outputs f1...8 at position r are the orientation invariant encoding of location.

3 Experiments

The procedure is to record the views and corresponding metric coordinates of
the robot from every position during training- and test-runs. After the training
step, we need to quantify and visualize the encoded spatial information of the
SFA-outputs in a metric way. Therefore we compute a regression function from
the SFA-outputs to the metric ground truth positions and subsequently apply it
to SFA-outputs.

3.1 Simulated Environment

The model was first applied in a virtual reality simulator to validate the ex-
tended model under fully controllable settings. The virtual robot was placed on
discrete positions forming a regular 30x30 grid. We recorded 624 omnidirectional
RGB images for the training set and 196 for test set and transformed them to
panoramic views with a resolution of 350x40 pixel (Fig. 1a).

Results. All resulting SFA-units have a high spatial structure and are almost
completely orientation invariant as their outputs for the training views have a
mean positional variance ηr ≈ 1 and the mean orientation variance ηϕ ranges
from 0.00 (f1) to 0.17 (f8). This is also reflected by the spatial firing maps in
Fig. 3a which show an obvious encoding for the position on the coordinate axes
and look nearly identical under different orientations.

Since the views of the training- and test-run are identical for the same location
we only use the test data for the regression analysis. Random 50/50 splits are
used to train the regression and evaluate the coordinate prediction. Repeating
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Fig. 3. Simulated Environment. (a) Spatial firing maps of the four slowest SFA-
outputs f1...4 for relative orientations 0◦, 90◦, 180◦ and 270◦. Obviously the first and
second outputs are spatially orthogonal, coding for z- and x-position, respectively.
Output values are monotonically increasing from north to south and east to west.
The third unit is a mixture of the first two units and unit four is a higher oscillating
representation of the first unit. (b) Ground truth and estimated coordinates computed
by the regression. Estimations are averaged over the windows of the simulated rotation
for one location.

it 100 times results in an overall mean absolute error (MAE) for the x- and
z-coordinate estimation of 1.83% and 1.68%, relative to the coordinate range
of the test run (Fig. 3b). Thus the experiment has shown the capability of our
extended model to replicate results from [10].

3.2 Real World Environment

The experiment was transferred to an outdoor scenario to examine how the
model copes with real-world conditions like a non-static environment, changing
light conditions and noisy sensor readings. We used a suitable mobile robot
(Pioneer 3AT ) equipped on top with an omnidirectional vision system (Fig. 4a).
Outdoor experiments were done within an area of approximately 5x7 meters on
asphalted ground. Test data was recorded directly after the training data. The
training and test sets consist of 5900 and 2800 RGB panoramic images with a
resolution of 600x60 pixel. During training and test phase the robot was moved
with a wireless joystick at a maximum velocity of 40 cm/s in a grid like trajectory
so that the translations along the x- and z-axis were fairly equal distributed with
respect to the traveled distance (Fig. 4b).

Unlike in the simulator framework the true position of the robot has to be
acquired independently through an external monitoring system. For indoor ap-
plications several approaches based on sensors mounted on the room ceiling have
been proposed (e.g. [12]), but said approaches turned out to be unfeasible for
outdoor applications. To keep ground truth acquisition flexible and robust we
mounted a 30cm cube on the robot with optical, binary markers attached to its
facets (Fig. 4a). A stationary camera was installed to capture images of the whole
area throughout the training- and test-runs. 3d-pose was computed, based on
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Fig. 4. (a) Pioneer 3AT equipped with omnidirectional vision system and marker-box.
(b) Captured trajectories of the training- and test-run on an area of approximatly 5x7
meters. The arrow indicates a region in the south-west which has been passed during
the test-run but was not part of the training trajectory.

the features of the detected markers, by solving the Perspective-n-Point problem.
Implementation is based on the OpenCV -library [11]. In an experimental setup
with a HD-webcam the method provided a detection up to a distance of nine
meters with a MAE of about 3cm (0.3%), as verified by laser distance meter.

Results. All SFA-units of the network have a mean positional variance ηr ≈ 1
and their mean orientation variance ηϕ ranges from 0.00 (f1) to 0.05 (f8) and thus
are almost only coding for spatial position while being orientation invariant. Note
that the lower magnitude of ηϕ, compared to the simulation results, is caused
by the faster changing orientation due to the robot’s additional real rotation.

As expected the spatial firing maps in Fig. 5a do not encode position as clearly
as in the simulation due to the non-static environment and the inhomogeneous
distribution of position and velocity. Spatial firing maps of the first unit encode
the position on the z-axis, while x-position is less obvious encoded in the maps
of units three and four.

In contrast to the simulation we compute the regression from the SFA-outputs
to the metric ground truth positions for the training data and apply it to SFA
outputs on the test set. The resulting MAE is 0.23m (5.3%) for the x-coordinate
and 0.175m (3.7%) for the z-coordinate and the standard deviation amounts to
0.20 and 0.13. Higher errors can be noticed in a small area in the west that was
not passed in the training-run (see Fig. 4b) and an area in the south west, which
could also be noticed in the spatial firing map with the highest SFA-outputs.
Another prominent area with higher errors is located in the north west, where
the maps of units two and three show discontinuities. Minor deviations can be
observed at turning points in the trajectory, where vibrations of the vision system
caused distortions in the unwarped panoramic images. Even though the coding
for the x-position is less obvious compared to the simulation, it is apparently
sufficient for self-localization.
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Fig. 5. Real world environment. (a) Spatial firing maps of the four slowest SFA-
outputs f1...4 for relative orientations 0◦, 90◦, 180◦ and 270◦. First SFA-output encodes
the position on the z-axis with low values in the north and high values in the south. No-
tice the area in the south-west with highest values. This region has been passed multiple
times, so that environmental changes led to variations. Second unit is a higher oscillat-
ing representation of the first one, which indicates that other varying components of
the configuration space changed at least twice as fast as the z-position. Units three and
four suggest weak encoding of the x- and z-position. (b) Ground truth and estimated
position for the test run. Estimations are averaged over the simulated rotation for one
location.

4 Summary and Conclusion

We systematically transferred the biologically motivated concept of SFA step by
step into a self-localization task of a mobile robot and successfully showed its
application in an outdoor environment. Despite its simplicity the system demon-
strates reasonable performance. Explorations in the simulated environment have
shown that SFA combined with simulated rotation of an omnidirectional view
allows self-localization with errors of under 2% relative to the coordinate range.
Experiments in the outdoor environment showed an average self-localization
accuracy of 0.23m (5.3%) for the x-coordinate and 0.175m (3.7%) for the z-
coordinate, which is significantly smaller than the robot’s own size (approx.
50x50cm).

The problem of visual self-localization in unknown environments has been in-
vestigated in great detail as an inherent part of the Simultaneous Localization and
Mapping (SLAM) algorithms (e.g., [9]). Visual SLAMapproaches typically require
highly calibrated optics and extract local image descriptors, like SIFT or SURF, at
regular time intervals to characterize a scene. Typical errors given in the SLAM lit-
erature are about 1% to 5% with respect to travelled route. Although localization
accuracies are hard to compare in this context, relative errors of our approach are
within the same order of magnitude. Our core system, as described in Section 2,
however, focuses on simplicity and biological plausibility as it is derived from a
model of rat navigation. It repeats the same unsupervised learning in a converg-
ing hierarchy which yields location-specific and orientation-invariant slow feature
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representations by itself and is based on cheap uncalibrated hardware (but note
[7]). It is important to emphasize that unlike in SLAM approaches our aim is not
to simultaneously map and locate. Instead the approach, presented here, learns a
map of orientation invariant slow feature representations. These are projected to
metric space using a supervised regression step. Please note that an autonomous
robot does not necessarily need metric coordinates to navigate, but instead it can
follow gradients directly in slow feature space.

We have proven the concept of SFA self-localization in real world environ-
ments, but nevertheless the experimental results suggest issues that need fur-
ther investigation: (i) Achieving the orientation invariant representation based
on smaller window sizes of the simulated rotation is desirable since it speeds
up computation and extends the capabilities of the model to identify objects
that were not present during the training phase. (ii) The apparently weak rep-
resentation of the x-position in the outdoor environment may be due to global
changes in the environment, which vary on an equal time-scale as the robot’s
translation or are not decorrelated (orthonormal) to it. In this respect, choosing
another feature representations than the raw pixel values could help to exclude
known, changing variables from the configuration space and furthermore im-
prove model performance, if applied to data sets captured at different daytimes
or even seasons for the same training area.
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Abstract. In this paper, we address a knee joint orthosis control for re-
habilitation purposes. Only the structure of the system’s dynamic model
is supposed to be known. Inertia of the knee-shank-orthosis system is
identified on-line using an adaptive term. In order to approximate all of
the other dynamics (viscous and solid frictions, gravity related torque,
etc.), we use an RBF Neural Network (RBFNN) with no off-line prior
training. Adaptation laws of the neural parameters and the inertia adap-
tive term are derived from the closed loop system’s overall stability study
using Lyapunov’s theory. The study considers three cases: wearer being
completely inactive or applying either a resistive or an assistive torque.
Simulation results and conducted analysis show the effectiveness of the
proposed approach.

Keywords: RBFNN, neuro-adaptive control, rehabilitation, knee joint
orthosis, Lyapunov theory.

1 Introduction

Exoskeletons can be used to assist, restore or enhance the wearer’s motor skills.
For the exoskeleton to completely meet the wearer’s needs, it has to be correctly
controlled. When it comes to lower limb exoskeleton control, several works can
be found and summarized as follows. In [9], a powered leg orthosis for gait
rehabilitation is described. The authors propose controllers which can apply
suitable forces on the leg so that it moves on a desired trajectory. In [10], the
application of EMG signals for motion control is addressed. In [11], an active
ankle-foot orthosis is presented where the impedance of the orthotic joint is
modulated throughout the walking cycle to treat drop-foot gait. In [7], a portable
active knee rehabilitation orthotic device is designed to train stroke patients to
correct knee hyperextension during stance and stiff-legged gait. In [8], the Hybrid
Assistive Limb-5 is a bipedal locomotion system that has been developed to be
worn by the elderly and the disabled, in order to assist them in their daily tasks.

Generally, it is not possible to establish an accurate dynamic model that
takes account of dynamic changes related to the wearer’s desired movements.
Indeed, the wearer can be completely inactive or apply either an assistive or

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 257–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a resistive torque. In order to take account of these different situations, it is
advisable to design adaptive control schemes [4]. Training techniques are widely
used to construct adaptive control laws and neural networks are some of the
tools that belong to those techniques [1,5,13]. They can have fixed or adaptive
parameters. As to fixed parameters neural networks [14], a robustness term is
often considered in order to take account of dynamic changes [12]. Whereas
in adaptive parameters neural networks, we use adaptation laws that can, for
instance, be derived from the system’s overall stability study. The advantage of
neural networks is the possibility of incorporating some prior knowledge about
the system to be controlled. Indeed, the dynamic model structure of robotic
systems is generally known [15], which allows us to associate to neural networks,
adaptive control approaches that have proven efficient.

RBFNN are universal approximators for unknown dynamics and they have
already been used to control non linear systems. Compared to MLPNN that learn
globally, RBFNN can have a very faster convergence because they learn locally.
Moreover, they are better suited for approximating systems with relatively fewer
inputs [2]. Every RBF neuron contains an activation function centered around
a point from the input space. For a given input, the hidden neuron output
is the height of the activation function at that point. The activation function
allows the neuron to react only to a narrow region of the input space: the region
around which it is centered. RBFNN can be either static with fixed parameters
or dynamic with time varying adaptive parameters [6].

The paper is organized as follows: Section 2 presents the knee-shank-orthosis
system modeling, its structure and the dynamics to be approximated by the
RBFNN. Section 3 explains the neural approximation principle, the activation
functions and the method we have used to determine the centers of the gaussian
activation functions. In Sect. 4, we detail the proposed RBFNN controller and
the closed loop system’s overall stability study. Simulation results with case
study are presented in Sect. 5. Finally we conclude with some perspectives.

2 System Modeling

We consider the knee-shank-orthosis system having one degree of freedom (DoF)
given in [1]. The dynamic model of the considered system is given by the following
differential equation [15]:

τ + τk = Jq̈ + τg cos(q)− A sign(q̇)−Bq̇ (1)

This equation (1) can be re-written as follows:

τ = Jq̈ + γ(q, q̇)− τk (2)

γ(q, q̇) = τg cos(q) +A sign(q̇) +Bq̇

Where:
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– τ : control input (orthosis torque);
– τk : knee torque (bounded);
– J = Jor + Jk : inertia of the system (orthosis (or) + knee (k));
– τg cos(q) = (τgor + τgk ) cos(q) : gravitational force;
– A sign(q̇) = (Aor +Ak) sign(q̇) : solid friction torque;
– Bq̇ = (Bor +Bk)q̇ : viscous friction torque;
– q : actual position of the knee
– qd : desired position of the knee;
– q̇ : actual velocity of the knee;
– q̇d : desired velocity of the knee;
– q̈ : actual acceleration of the knee;
– q̈d : desired acceleration of the knee;

Synthesis of the proposed neuro-adaptive control law considers that only the
structure of the dynamic model is known. This means that J and γ are assumed
to be unknown. With this formulation, it is possible to take account of other
unmodeled dynamics.

3 Neural Approximation

We suppose there exists an optimal neural representation of the function γ(q, q̇)
based on RBFNN having a linear output. There exists then an optimal vector θ
containing the weights between the hidden layer and the neural network’s output
[3]. Therefore, we can write:

γ(q, q̇) = θTφ(q, q̇) + ε(q, q̇) (3)

ε(q, q̇) representing the bounded neural approximation error [3]. As there is no
method allowing us to exactly determine the vector θ, we use its approximation
that we note θ̂. With this, we obtain:

γ̂(q, q̇) = θ̂Tφ(q, q̇) (4)

As we are using gaussian functions in the hidden layer, the function φ(q, q̇) can
be written as:

φ(q, q̇) =
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Where n is the number of neurons in the hidden layer. In order to obtain a linear
parametrization, parameters σq, σq̇, ci

q and ci
q̇ (i = 1, ..., n) have to be set to

given values. In our case, the centers are arranged in a grid covering the input
space.
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Each two successive centers related to the position q are separated by a dis-
tance Δq, and each two successive centers related to the velocity q̇ are separated
by a distance Δq̇. Standard deviations σ are determined by the following equa-
tions [16]:

σq =
2

Δq

√
log(2)

π
σq̇ =

2

Δq̇

√
log(2)

π

4 RBFNN Adaptive Controller and Stability Study

The proposed control law is given as follows :

τ = Ĵv + γ̂(q, q̇)−Ks (6)

Consider the following variables:

v = q̈d − λė e = q − qd ė = q̇ − q̇d (K > 0 λ > 0)

s = ė+ λe

J̃ = Ĵ − J

γ̃(q, q̇) = γ̂(q, q̇)− γ(q, q̇)

= θ̂Tφ(q, q̇)− θTφ(q, q̇)− ε(q, q̇)

= θ̃Tφ(q, q̇)− ε(q, q̇)

Using equations (2) and (6), we obtain the following closed loop dynamics:

Ĵv + γ(q, q̇)−Ks = Jq̈ + γ(q, q̇)− τk

Ĵv − Jq̈ + γ̂(q, q̇)− γ(q, q̇) + τk −Ks = 0

Jv − Jq̈ + J̃v + γ̃(q, q̇) + τh −Ks = 0

−Jṡ+ J̃v + γ̃(q, q̇) + τk −Ks = 0

Jṡ = J̃v + γ̃(q, q̇) + τk −Ks

= J̃v + θ̃Tφ(q, q̇)− ε(q, q̇) + τk −Ks

Let’s consider the Lyapunov positive definite function:

V =
1

2
Js2 +

1

2

1

α
J̃2 +

1

2μ
θ̃T θ̃ (7)
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Taking its time derivative yields:

V̇ = sJṡ+
1

α
J̃ ˙̃J +

1

μ
θ̃T

˙̃
θ

V̇ = s(J̃v + θ̃Tφ(q, q̇)− ε(q, q̇) + τk −Ks) +
1

α
J̃ ˙̃J +

1

μ
θ̃T ˙̃θ

= V1 + V2 + V2

V1 = −Ks2 − sε(q, q̇) + sτk

V2 = sJ̃v +
1

α
J̃ ˙̃J

V3 = sθ̃Tφ(q, q̇) +
1

μ
θ̃T

˙̃
θ

We choose the following adaptation laws:

˙̃J =
˙̂
J = −α s v (8)

˙̂
θ = −μ s φ(q, q̇) (9)

We obtain:

V2 = V3 = 0

V̇ = V1 = −Ks2 − sε(q, q̇) + sτk

In order to carry on stability analysis, we consider the following two cases:

Case 1. Neural approximation errors and muscular effort are equal to zero

V̇ = V1 = −Ks2 ≤ 0

Invoking Barbalat’s Lemma [19], we can say that s goes to zero because V̇ is
checked definite negative. Hence considering (8) and (9), θ̃ and J̃ are bounded.
The controller (6) ensures the free moving orthosis is asymptotically stable (q →
qd and q → q̇d).

Case 2. Neural approximation errors and muscular effort are different from zero

V̇ = V1 = −Ks2 − sε(q, q̇) + sτk

Using Young’s inequalities, we can write:

V̇ ≤ −Ks2 + |s| (|ε(q, q̇)|+ |τk|)

≤ −Ks2 +
(|ε(q, q̇)|+ |τk|)2

2K
+

Ks2

2

≤ −K

2
s2 +

(|ε(q, q̇)|+ |τk|)2
2K
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For V̇ to be negative or zero:

K

2
s2 ≥ (|ε(q, q̇)|+ |τk|)2

2K

|s| ≥ |ε(q, q̇)|+ |τk|
K

In this case, overall stability and convergence is ensured towards a bounded

region of radius |ε(q,q̇)|+|τk|
K because ε(q, q̇) and τk are bounded. Every time s

tries to get out of this region, V̇ becomes negative and the controller draws it
immediately back in. Consequently and under the hypothesis that q, q̇, qd, q̇d are
bounded, the errors e and ė are bounded and converge to zero when K is large
enough.

5 Simulation Results

Our simulations are realized using data identified experimentally in a previous
work [1]. The orthosis is worn by a healthy subject of 90kg weight and 1.87m
height. The parameters of both the orthosis and the subject have been iden-
tified using the weighted least square method [17], the regression equations of
Zatsiorsky [20] and the passive pendulum test [18]. The knee-orthosis system’s
identified parameters are given in Table 1. The RBFNN contains seven hidden
neurons and doesn’t need to be trained off-line. Moreover, the output weights
don’t need to be initialized.
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Fig. 1. Trajectory tracking when the wearer applies a resistive effort

The chosen control parameters λ = 2, K = 20 and the adaptation laws param-
eters α = 10, μ = 10 ensure good perfomance as it will be shown in the following
tests. Desired position and velocity trajectories should be determined by a reha-
bilitation expert. The tests are realized using sinusoidal trajectories. For position
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Table 1. Knee-shank-orthosis system parameters

Parameter Symbol Value

Inertia J 0.4Kg ·m2

Solid friction coefficient A 0.6N ·m
Viscous friction coefficient B 1N ·ms · rad−1

Gravity torque τg 5N ·m

and velocity space inputs of respectively [−1.2, 0] rad and [−0.6, 0.6] rad/s, we
put Δq = 0.2 rad and Δq̇ = 0.2 rad/s in order to have seven gaussian centers
for both desired inputs (qd) and (q̇d).

In a first test, the wearer applies a resistive torque between instants 10sec
and 30sec as it’s depicted in Fig. 2. We can see on the same figure that the
torque calculated by the proposed controller reacts consequently, becoming larger
to compensate the resistive human torque. The global applied torque remains
unchanged after two insignificant transient phases at instants 10sec and 30sec.

Trajectory tracking purposes are achieved as it can be seen on Fig. 1. Any
neural network needs an adaptation time in order to learn the overall dynamics of
the system. In our case, using RBFNN allows for a relatively small training time
(less than 2sec). We can see at instants 10sec and 30sec, slight perturbations due
to the resistive human torque. They are soon corrected thanks to the calculated
torque.
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Fig. 2. Applied, calculated and human resistive torques

The second test is similar, the only difference is that this time the wearer
applies an assistive torque: a torque that goes along with the calculated one.
Figure 4 shows that the moment the human assistive torque is applied, the
RBFNN calculated torque becomes smaller for the global applied torque to re-
main unchanged. This means that we will have the same performances as if there
were no human torque applied but with less energy consumption.
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Figure 3 shows good trajectory tracking performance with no obvious per-
turbations. This means that changes of the human torque are well and quickly
taken care of, with always a small training period.
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Fig. 3. Trajectory tracking when the wearer applies an assistive effort
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Fig. 4. Applied, calculated and human assistive torques

6 Conclusion

In this paper, we have proposed a control law based on adaptive RBFNN for
a knee joint rehabilitation orthosis. No particular prior knowledge has been re-
quired except some of what is valid for any robotic system. Lyapunov’s approach
has been used to analyze the closed loop system’s overall stability, and to estab-
lish the adaptation laws of the RBFNN weights and the inertia adaptive term.
The objective of such an approximation scheme is to guarantee a good trajectory
tracking with minimum prior knowledge of the system. Indeed, it is not about
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identifying every unknown parameter, but it is about identifying the overall
dynamics, which allows achieving trajectory tracking. Different situations have
been studied (passive wearer, active wearer). For further works, we are studying
an experimental validation protocol on a disabled subject.
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Abstract. Image processing in digital computer systems usually considers 
visual information as a sequence of frames. These frames are from cameras that 
capture reality for a short period of time. They are renewed and transmitted at a 
rate of 25-30 fps (typical real-time scenario). Digital video processing has to 
process each frame in order to detect a feature on the input. In stereo vision, 
existing algorithms use frames from two digital cameras and process them pixel 
by pixel until it finds a pattern match in a section of both stereo frames. To 
process stereo vision information, an image matching process is essential, but it 
needs very high computational cost. Moreover, as more information is 
processed, the more time spent by the matching algorithm, the more inefficient 
it is. Spike-based processing is a relatively new approach that implements 
processing by manipulating spikes one by one at the time they are transmitted, 
like a human brain. The mammal nervous system is able to solve much more 
complex problems, such as visual recognition by manipulating neuron’s spikes. 
The spike-based philosophy for visual information processing based on the 
neuro-inspired Address-Event- Representation (AER) is achieving nowadays 
very high performances. The aim of this work is to study the viability of a 
matching mechanism in a stereo-vision system, using AER codification. This 
kind of mechanism has not been done before to an AER system. To do that, 
epipolar geometry basis applied to AER system are studied, and several tests 
are run, using recorded data and a computer.  The results and an average error 
are shown (error less than 2 pixels per point); and the viability is proved. 

Keywords: Address-Event-Representation, spike, neuromorphic engineering, 
stereo, epipolar geometry, vision, dynamic vision sensors, retina. 

1 Introduction 

In recent years there have been numerous advances in the field of vision and image 
processing, because these matters can be applied for scientific and commercial 
purposes to numerous fields such as medicine, industry or entertainment. As it can be 
deduced, the images are two dimensional while the daily scene is three dimensional. 
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This means that, between the passage from the scene (reality) and the image, there is a 
loss of what we call the third dimension. Nowadays, society has experienced a great 
advance in these aspects: 2D vision has given way to 3D viewing. Industry and 
research teams have started to study this field in depth, obtaining some mechanisms 
for 3D representation using more than one camera. Trying to resemble the vision of 
human beings, researchers have experimented with two-camera-based systems 
inspired by human vision. Following this, a new branch of research has been 
developed, focused on stereoscopic vision [1]. In this branch, researchers try to obtain 
three-dimensional scenes using two digital cameras. Thus, we try to get some 
information that could not be obtained with a single camera, i.e. distance estimation. 

By using digital cameras, researchers have made a breakthrough in this field, going 
up to create systems able to achieve the above. However, digital systems have some 
problems that, even today, have not been solved completely. In any process of 
stereoscopic vision, image matching is the main problem that has consumed a large 
percentage of research resources in this field, and it is still completely open to 
research. Matching is the process performed in every stereo system to find the pixel 
within a camera matrix which corresponds to a particular one of the opposite camera. 
This process is critical, because it allows obtaining high-level results like distance 
calculation [2-3] or shape description. The main problem related to image matching is 
the computational cost needed to obtain appropriate results. There are lots of high-
level algorithms used in digital stereo vision that can solve this problem, but they 
involve a high computational cost. Nowadays, mathematicians are trying to use 
several techniques in order to reduce the number of possible matches in the second 
camera. Calibration mechanisms and Epipolar Geometry are applied to pre-configure 
these systems and to obtain better and more optimal results. 

In parallel to all these computational vision evolution, Neuromorphic Engineering 
arises, whose operation principles are based on the biological models themselves. 
Brains perform powerful and fast vision processing using millions of small and slow 
cells working in parallel in a totally different way. Primate brains are structured in 
layers of neurons, where the neurons of a layer connect to a very large number (~104) 
of neurons in the following one [4]. Connectivity mostly includes paths between non-
consecutive layers, and even feedback connections are present. 

Vision sensing and object recognition in brains are not processed frame by frame; 
they are processed in a continuous way, spike by spike, in the brain-cortex. The visual 
cortex is composed of a set of layers [4], starting from the retina. The processing 
starts when the retina captures the information. In recent years significant progress 
has been made in the study of the processing by the visual cortex. Many artificial 
systems that implement bio-inspired software models use biological-like processing 
that outperform more conventionally engineered machines [5-7]. However, these 
systems generally run at extremely low speeds because the models are implemented 
as software programs. For real-time solutions direct hardware implementations are 
required. A growing number of research groups around the world are implementing 
these principles onto real-time spiking hardware through the development and 
exploitation of the so-called AER (Address Event Representation) technology. 
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AER was proposed by the Mead lab in 1991 [8] for communicating between 
neuromorphic chips with spikes. Every time a cell on a sender device generates a 
spike, it transmits a digital word representing a code or address for that pixel, using an 
external inter-chip digital bus (the AER bus, as shown in Fig. 1). In the receiver the 
spikes are directed to the pixels whose code or address was on the bus. Thus, cells 
with the same address in the emitter and receiver chips are virtually connected by 
streams of spikes. Arbitration circuits ensure that cells do not access the bus 
simultaneously. Usually, AER circuits are built with self-timed asynchronous logic. 

Several works are already present in the literature regarding spike-based visual 
processing filters. Serrano et al. presented a chip-processor able to implement image 
convolution filters based on spikes that work at very high performance parameters 
(~3GOPS for 32x32 kernel size) compared to traditional digital frame-based 
convolution processors [9-10]. There is a community of AER protocol users for bio-
inspired applications in vision and audition systems. One of the goals of this 
community is to build large multi-chip and multi-layer hierarchically structured 
systems capable of performing complicated array data processing in real time. The 
power of these systems can be used in computer based systems under co-processing. 

 

Fig. 1. Rate-coded AER inter-chip communication scheme 

The optical sensor used by these research groups is the DVS128 AER retina [11]. 
This sensor works in such a way that each pixel only detects the derivate in time of 
the luminosity. That means that this retina only perceives luminosity variations or, as 
it is very common, objects in movement. This fact simplifies the amount of 
information transmitted, and it helps the researcher to focus on the important 
information of the scene. First, the epipolar geometry principles used in stereo vision 
image matching algorithms will be described. After that, these principles will be 
applied to a stereo vision AER system with the information obtained by the DVS-
retina. Finally, the results and error measurements will be shown. 

2 Epipolar Geometry 

Epipolar geometry [12] is the intrinsic projective geometry between two views. It is 
independent of scene structure, and it only depends on the cameras' internal 
parameters and relative pose. The epipolar geometry between two views is essentially 
the geometry of the intersection of the image planes with the pencil of planes having 
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the baseline as axis (the baseline is the line joining the camera centers). This geometry 
is motivated by considering the search for corresponding points in stereo matching. 

Suppose a point X in space is imaged in two views (one from each camera), at x in 
the first, and x’ in the second. In this case, the relation between the corresponding 
image points x and x’, the spatial point X and the camera centers is that all of them are 
coplanar (located in the same plane, π). Clearly, the rays back-projected from x and x’ 
intersect at X, and the rays are coplanar, lying in π. This latter property is the most 
significant in searching for a correspondence (see Fig. 2). 

Supposing now that we know only x, we may ask how the corresponding point x’ is 
constrained. The plane π is determined by the baseline and the ray defined by x. From 
above we know that the ray corresponding to the point x’ lies in π, hence the point x’ 
lies on the line of intersection l’ of π with the second image plane. This line l’ is the 
image in the second view of the ray back-projected from x. In terms of a stereo 
correspondence algorithm the benefit is that the search for the point corresponding to 
x does not need to cover the entire image plane but it can be restricted to the line l’. 
The importance of this fact is that, if a transformation mechanism between x and line 
l’ can be obtained using a pre-calibration step, a simple AER spiking system 
implemented on programmable hardware (FPGA, etc.) will be able to discriminate the 
possible matches calculating the opposite epipolar line. To do that, the spikes building 
blocks can be used to operate with simple elements between spikes [13]. This 
mechanism needs the Fundamental Matrix to do that transformation. 

 

Fig. 2. Epipolar geometry explanation 

Next, a quick introduction to the calibration mechanism will be shown, as well as 
the projection matrixes calculation. 

3 Pre-calibration Summary 

Camera calibration is, mainly, finding the internal quantities of the camera that affect 
the imaging process, like the position of the image center, the focal length, the lens 
distortion, etc. These parameters are joined to obtain the ‘camera matrix’. This is an 
important process for rebuilding a world model. Several calibration mechanisms exist 
in classical computer vision. Some of them use a two-step process to obtain the  
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camera matrix: first approach and optimization. Pin-Hole is the most used camera 
model (the way in which the camera system interacts with the world). This fact, 
determines the mechanism used to calibrate the system. 

In this work, a Pin-Hole model [14] and a Tsai calibration mechanism [15] have 
been used to calibrate the system. Also, as Tsai used in his experiments, a calibration 
grid was built to allow the retina to see the calibration points. In this case, the way in 
which the retina works (section 1) obstructs the calibration process because, in order 
to obtain good calibration results, the objects used in the calibration process cannot be 
in movement (remember that the retina only perceives the variation of the 
luminosity). Hence, the calibration grid built is different from the one used before. It 
is composed of a matrix of 8 by 8 LED lights and has been connected to a 
microcontroller that switches on and off each one of the LEDs. The calibration system 
is shown in Fig.3. 

By capturing the information from the LED grid and processing it in a computer, 
the 64 projection points are obtained on each retina (after the application of some 
image filters). Using the Tsai mechanism [15], both camera matrixes (one for each 
retina) are calculated (first step). These matrixes are used to determine the 2D 
points in each retina, related to the 3D points in the space. Also, they have the 
internal information about each retina (internal parameters), so they describe the 
physical and the environmental properties of the cameras. Next step is testing and 
error measurement: using several space points and testing the conversion from 3D 
to 2D points, the final result is an average error of less than 1%. Also, these 
matrixes are optimized (second step) using the Faugeras mechanism [16]. After 
testing, new matrixes work with an error even smaller than the one obtained before 
(around 0.8%). 

 

 

 

Fig. 3. Calibration system description 
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The main question is: having the 2D point of one retina, how can it be determined 
which point in the other retina corresponds to the same 3D point? This is necessary in 
order to obtain the coordinates of the 3D point and this process is known as  
the ‘matching’ step. To do that, in this work, epipolar geometry is applied to obtain 
the epipolar lines related to these points. Next, the mechanism used to calculate the 
epipolar lines from both projection matrixes will be shown. 

4 Epipolar Lines Applied to a Calibrated AER Stereo-Vision 
System 

The aim of this work, given a 2D point coordinates from one retina, is to discriminate 
the possible matches on the second retina. To do this, the epipolar line within the 
matching point will be calculated. Summarizing the classical machine vision 
principles, given a camera matrix P and a 3D point coordinates (X, Y, Z); the 2D 
point represented on the retina (U, V) is obtained using equation 1. 

 

(1) 

To obtain the epipolar line, the inverse process will be done: given a 2D point from 
one of the retinae, the corresponding 3D point should be determined and, with its 
information and using the camera matrix of the second retina, the 2D coordinates of 
the second one will be obtained. However, a transformation from 3D to 2D entails a 
loss of information, so the distance information (coordinate Z) is impossible to obtain 
given only one 2D point (inverse process). So, how can the matching point (2D point 
in the other retina) be obtained? As said before, the final result will give the line 
within which the matching point is, not the exact point itself. The triangulation 
process is necessary to find the intersection of the rays projected from both retinae. 
Using the Pin-Hole model and both camera matrixes, the equation system can be 
modified to obtain the fundamental matrix (combining both retinae cameras), 
resulting on equation 2. 

 

,
 

(2) 

 

where M is the spatial point, (ui, vi) are the coordinates of the 2D points projected 
on the left retina, (u’i, v’i)  are the coordinates of the 2D point projected on the right 
retina, PL is the left camera matrix, PR is the right camera matrix and F is the 
fundamental matrix (to obtain a 3D point given both 2D points). This system is solved 
using Singular-Value Decomposition (SVD), obtaining the resulting points in the last 
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column of the V matrix: (V1,4  V2,4  V3,4  V4,4)
t. Finally, dividing by the scale factor: 

(V1,4/V4,4   V2,4/V4,4   V3,4/V4,4   V4,4/V4,4)
t ;which is: (Xi   Yi   Zi   1)t. The system F, can 

be obtained step by step, starting on the projection matrixes. Demonstration: 
 

 
(3) 

 
Using t: 

   
(4) 

Grouping the coefficients of the 3D coordinates: 

 
(5) 

Changing the name of the previous expressions for a1, b1, c1, d1, a2, b2, c2 and d2: 

 

(6) 

With the given values of one vision sensor, two equations with three unknown 
terms can be obtained. Summarizing, given the 2D point of one retina, the line in 
space, where the 3D point is, can be calculated (line l). Using two 3D random 
points situated on l and calculating its projections on the second retina, two 2D 
points are obtained. The line obtained by linking these 2D points is known as the 
‘epipolar line’ (placed on the second retina): the matching point has to be situated 
over it. Using two random Z coordinates (i.e. -10 and 10), two 3D points are 
calculated. With these points, their projections over the second retina are calculated 
using its camera matrix. After that, the projected line on the second retina can be 
shown using the inclination calculated between both 2D points. If there is no error, 
the matching point must be situated on this line. Next, results and error 
measurements will be shown. 

5 Matching Results and Error Measurement 

With the results, epipolar lines between both retinas have been calculated. To see all 
the data, Fig.4 shows the epipolar lines obtained from the opposite retina and the 
‘target’ points of this retina. In one case, it shows the epipolar lines calculated from 
the right retina with the points projected on the left retina. The other case is the 
opposite. To appreciate them better, examples have been run with 64 and 8 points. 
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Fig. 4. Epipolar lines VS 2D projected points 

It is easier to understand the results by watching the 8-point tests. For example: in 
the bottom-left image (left retina), the first point is the one in the left. A red asterisk 
can be seen, which is the point captured by the left retina, and a blue line passing next 
to the point, which is the epipolar line obtained by the right retina and projected on 
the left retina. As it can be seen, the point is situated over the line (almost no error). 

To calculate the error, the distance between each epipolar line to the point itself has 
been calculated. Average error for the 64-point test is 2.2299 pixels per point for the 
left retina and 1.3957 for the right one. For the 8–point test the average error is 1.4240 
for the left retina and 1.2239 for the right one. The obtained error is tolerable. 

6 Conclusions 

In this work, a matching algorithm based on epipolar geometry and a calibrating step 
has been tested under a neuromorphic AER-DVS stereo vision system. Mathematical 
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principles have been shown and demonstrated. The implemented system has been 
detailed, tested using sixty-four 3D points coordinates and its error has been 
measured. All the results, errors, graphs and formulas have been presented. 

The proposed system obtains a tolerable error (less than 2 pixels per point) to work 
under a spiking system with two DVS128 retinae [11]. It has been proved that this 
mechanism works with spiking data and under the restrictions of an AER system. 

As further research, the next step is to implement the full mechanism into 
programmable hardware, like FPGAs, in order to obtain an autonomous system 
without the computer intervention. 
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Abstract. This paper presents an implementation of a neuro-inspired algorithm 
called VITE (Vector Integration To End Point) in FPGA in the spikes domain. 
VITE aims to generate a non-planned trajectory for reaching tasks in robots. 
The algorithm has been adapted to work completely in the spike domain under 
Simulink simulations. The FPGA implementation consists in 4 VITE in parallel 
for controlling a 4-degree-of-freedom stereo-vision robot. This work represents 
the main layer of a complex spike-based architecture for robot neuro-inspired 
reaching tasks in FPGAs. It has been implemented in two Xilinx FPGA 
families: Virtex-5 and Spartan-6. Resources consumption comparative between 
both devices is presented. Results obtained for Spartan device could allow 
controlling complex robotic structures with up to 96 degrees of freedom per 
FPGA, providing, in parallel, high speed connectivity with other neuromorphic 
systems sending movement references. An exponential and gamma distribution 
test over the inter spike interval has been performed to proof the approach to the 
neural code proposed.  

Keywords: Spike systems, Motor control, VITE, Address Event Representation, 
Neuro-inspired, Poisson, Neuromorphic engineering, Anthropomorphic robots. 

1 Introduction 

The implementation presented belongs to the Neuromorphic engineer field. The main 
goal of this discipline is to develop artificial systems which emulate the biological 
systems. The biological systems, such as: vision and audio systems, speech recognition 
and control of complex movements, carry out with their tasks with a large efficiency 
still unknown in the artificial systems. The neuromorphic engineer community use as 
many features as possible of the human nerve system to reach their goal. Inside this 
group, engineers try to build up a complete net of neurons in any device.  
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One problem to face with is the way of designing and implementing those 
neuromorphic systems. If we look through the literature, we can find sensors like 
retinas and cochleas based on VLSI chips [1] and [2] and spike-based control 
architectures based on FPGA [3], [4] and [5] and also on chips [6]. These neural 
controllers are based on the third generation of artificial neural networks (ANN): the 
spiking neural networks (SNN). The main advantages of the FPGA implementations 
are the reconfigurability and the low cost. In this work we use a FPGA for our 
purpose and architecture based on blocks which mimic the neural behavior by using 
spikes to carry out the spatial-temporal information. 

Other important issue is about the neural code [7]. From past experiments it is known 
that neurons do not have the same response to identical stimulus at any time [7]. Thus, 
they follow a distribution and the most popular one is the Poisson [8], although there are 
others, like Rate-coded [9], more typical in VLSI or renewal process [8]. The system 
presented has a deterministic spike source (Rate-coded) which is in front of the neuronal 
principles. But, due to the way of the translation performed it is achievable a gamma 
distribution for the inter spike interval at the output of the system. This point has been 
checked by a comparative with theoretical expected.  

Nevertheless, since neurons communicate in a point-to-point manner and it is possible 
to integrate several thousands of artificial neurons into the same electronic device (VLSI 
chip or FPGA), new communication strategies has been taken, as the Address-Event- 
Representation (AER) protocol [10]. AER map each neuron with a fixed address which 
is transmitted through the interconnected neuron system. By using AER protocol, all 
neurons are continuously sending information about their excitation level to the central 
system and it could be processed in real time by a higher layer. 

AER is based on the concept which mimics the structure and information coding of 
the brain. Thus AER let us process the information in real time. That’s one of the 
reasons of using it: the provided speed. Other one is the scalability that allows it by 
parallel connections. 

The entire architecture consists of an AER retina [1], two layers: processing and 
actuation one (FPGA implemented) and finally a robotic platform. This paper is 
focused on the processing layer where is implemented the VITE (Vector Integration 
To Endpoint) algorithm [11]. The translation into spikes paradigm takes a step 
forward a complete spike-based processing architecture: from the retina to the robot. 

In the next section, the algorithm and its translation are described. Also, details of 
the blocks are presented. Then in section three we describe both families from Xilinx 
used; the advantages and disadvantages are enumerated. In section four the results are 
presented: a comparative between both FPGA models in terms of hardware resources 
consumption with a brief description of the robotic platform and the test to check the 
neural code. Finally, to sum up, a discussion about the results achieved is presented. 

2 VITE Algorithm 

This neuro-inspired algorithm [11] is used for calculating a non-planned trajectory. It 
computes the difference between the target and the present position. It models 
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planned human arm movements. In contrast to approaches which require the 
stipulation of the desired individual joint positions, this trajectory generator operates 
with desired coordinates of the end vector and generates the individual joint driving 
functions in real-time employing geometric constraints which characterize the 
manipulator. 

In Fig. 1 the block diagram of the algorithm and the translation into spikes domain 
are shown.  

The target position will be supplied by the AER retina [1] to the processing layer 
(the first one of the architecture). With a mapping function, this layer will generate 
the spikes according to the reaching target. As was previously noted, this source is 
deterministic at its firing rate. 

Then, the difference between present position and the received from the retina at 
each time is calculated. The output of the algorithm will be supplied to the second 
layer of the architecture: the actuation layer. Thus, the FPGA design should include 
an input and output port in order to carry out with the communication protocol. 

Taking a closer look at the translated blocks:  

• The Spike Hold & Fire block performed the subtraction between the present 
position and the target position; both signals are spike streams. The block has two 
decreasing counters to storage the number of spikes at the input and a 
combinational circuit to manage these counters and the output.    

• The Spikes Integrate & Generate block allows us to integrate the DV (Difference 
Vector) signal (again a spike stream). This block is composed by a spike counter 
and a spike generator. The latter uses a parameter called IG_FD (Integrate & 
Generate_FrequencyDivider) to divide the clock signal and generate the output 
stream according to this division. 

• The Low Pass Filter consists of a Hold & Fire block and an Integrate & Generate 
block. The output of this second block feed the second input of the hold & fire. The 
other input comes from previous block in the diagram.    

Fig. 1. Top: block diagram of the VITE algorithm. Bottom: block diagram generated from 
existing spikes processing blocks in [12][13]. 
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• The GO block will be present at the Integrate & Generate block input to put on 
speed the DV signal. This block copies the task of the multiplier present in the 
classic algorithm. But if we look through the neuromorphic’s engineer point of 
view, a multiplication is not present in the human nerve system. So, it 
accomplishes the task injecting spikes according with the desired speed at each 
time. To do so, it has a counter to generate the number of spikes that should be 
injected. This block is the key to achieve a Poisson distribution.   

These blocks are described in depth in [12] and [13]. 
At the final design, for each algorithm synthetized in the FPGA a FIFO memory is 

included to prevent spike loosing problems. The memory receives the spikes 
produced by the algorithm and delivers to the output interface. So it is very important 
the total capacity in the device selection. 

3 Implementation 

Two different FPGA has been used to implement the system using a commercial 
Xilinx PCB (Virtex5 platform) and the AER-node board (Spartan-6), that has been 
developed by authors’ lab under the Spainsh Research Project VULCANO. 

The Virtex-5 device used is the XC5VFX30T which was designed to hold high 
performance embedded systems. It has two slices per CLB, reaching a total of 5,120 
slices and 20,480 flip-flops available. The RAM capacity for this device is up to 2,448 
Kb within blocks of 18 Kb. The prototyping board used is AES-V5FXT-EVL30-G 
from Avnet and it is based on the device described. To achieve the requirements of 
input/output ports a daughter card was used. 

The Spartan-6 device used is the XC6SLX150T which was designed to hold high 
volume applications at a low cost device. Also it provides high speed serial 
connectivity. It has two slices per CLB too, reaching a total of 23,038 slices and 
184,304 flip-flops available. The RAM capacity for this device is up to 4,824 Kb 
within blocks of 18 Kb.   

The AER Node platform used can be connected in a mesh (using high-speed serial 
LVDS links) allowing any 2D neuromorphic architecture.    

The board has four 2.5Gbps serial ports (SATA connectors) in order to 
communicate with other neuromorphic chips. These ports take advantage of the eight 
GTP transceiver ports available in the device.  

Furthermore, the board includes two parallel ports of 30-bit to use the standard 
parallel spike-based AER protocol, both directly and through specialized daughter 
boards that increase the functionality.  

In order to deliver to the FPGA the data necessary for the algorithm execution, a 
daughter board (plug-in) is connected. It consists of a microcontroller connected to 
the FPGA through SPI (Serial Peripheral Interface) protocol. The data delivered are 
configuration parameters for each block. Also the target used as input is delivered. 

Figure 2 shows both hardware platforms. 



280 F. Perez-Peña et al. 

 

4 Results  

We have made two comparisons. On the one hand hardware resources consumption 
comparative and on the other hand a power consumption comparative between both 
devices.  

4.1 Hardware Resources Consumption  

In general, to measure the hardware consumption in a FPGA, two points should be 
considered: the dedicated resources included to build up complex devices such as 
multipliers and the configurable logic blocks (CLBs) for general purpose. 

The algorithm does not use any complex structure. It just needs counters and 
hardware to carry out simple arithmetic operations. Therefore the measurements are 
focused into the available slices at the FPGA. 

We have synthesized the algorithm, including the spikes generator and other 
options like the spikes monitor and the interface with other neuromorphic chips. Table 
one and two present the data for both devices with the reports obtained. 

In these tables, the first column describes implemented elements for each case. The 
next column shows the amount of slices needed to synthetized the units for each 
FPGA. The following column represents the maximum number of units that could be 
allocated for each FPGA. The final column shows device total capacity for all the 
synthesis performed. 

Results evidenced that with additional elements to the algorithm, the amount of 
slices needed to synthetize is higher. It is remarkable that the interface with other 
neuromorphic chips does not provoke an increment in the hardware resources 
consumption. Consequently the final implementation for a complete architecture will 
consist of the algorithm and the interface. However, the design and test phases need a 
monitor in order to check the right behavior of the algorithm.  

All the results presented in this section, avoid using the FIFO memory because it 
uses special architecture presents in both devices.   

Table 1. Hardware resources consumption details by Virtex5 and Spartan 6 devices 

 
Number of Slices 

Max. blocks in 
the device 

Use  by one 
block (%) 

 Virtex Spartan Virtex Spartan Virtex Spartan 

Algorithm  208 238 24 96 4.062 1.033 
Algorithm 

plus monitor  
478 533 10 43 9.33  2.31  

Algorithm 
plus interface 

215 242 23 95 4.2  1.05  

Algorithm 
plus monitor 
and interface 

478 533 10 43 9.33  2.31  
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4.2 Robotic Platform  

The algorithm presented has been applied to a fixed robotic platform to check it. Fig.2 
shows the hardware implementation and the result of the position reached when the 
target is fixed at (123,110) in the frame of reference of the retina. 

The robotic platform is a stereo-vision robot with four degrees of freedom powered 
by DC motors. The power supply requirement of the motors is 24 Vdc. The 
manufacturer of the motors is Harmonic Drive and the model is RH-8D6006. The 
structure of the robotic platform is made so that the motors of the y axis are crossed to 
their axis and have a transmission belt to move the arm.  

We propose to use PFM (Pulse Frequency Modulation) to run the motors to take 
advantage of the spikes produced by the algorithm. Also, PFM is the closest one to 
the neural system within motor-neurons.  

Four units of VITE were replicated in order to control each motor with an 
independent way. It allows developing synchronized movements by adjusting GO 
signal in each algorithm.  

The main limitation was due to the motor driver and the opto-coupler present in the 
power stage. These units have a low switching frequency, just 40 Khz and our 
algorithm generates higher spike rates. Thus, we have modified the spikes generator 
in the algorithm to generate 40 Kevents per second as it maximum firing rate.  

 

Fig. 2. Left: Virtex 5 at the top and Spartan 6 at the bottom. In both pics appear the pro-
gramming tool and a special board to monitor the spikes (input and output) [14]. Right: Angle 
Vs. time reached for both axis with (123,110) input. The retina has 128x128 pixels.   

4.3 Inter-Spikes-Intervals Distribution Analysis 

In this section, we analyze the InterSpike-Interval(ISI) achieved at the output of the 
system. As was previously noted, the spike source is deterministic, i.e. it has a one to 
one mapping between stimulus and response. We are going to compare the inter spike 
interval with the expected one from a Poisson-like source [15]. The expected ISI of a 
Poisson process follows an exponential distribution. Also a gamma approach is 
included in the comparative; it means a renewal process (where the firing probability 
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depends on both: the instantaneous firing rate and the time since the most recent 
previous spike) [8].  

To measure how well the observed distribution of ISIs follows the theoretical 
exponential or gamma distribution, a comparative between the histogram of ISI read 
for the speed profile at the input of the integrator superimposed with the theoretical 
ISI density has been done. As long as the firing rate has dependence with time in our 
GO block (spikes are injected increasingly within time) and with previous spike in the 
Hold and Fire block, the ISI follows a gamma distribution. 

 

Fig. 3. Comparative between the empiric histogram for ISI and the theoretical defined by 
exponential and gamma distribution 

5 Discussion and Conclusions 

We have presented an implementation and a proof of a neuroinspired algorithm in two 
different devices. The results exhibit a huge advantage using the Spartan 6 device and 
a well adjust to a Poisson distribution. A total of 96 algorithms can be fitted at the 
board. The memory requirements are achieved for both devices because we need to 
storage at maximum 2,048 bytes and both of them have higher capacity. Otherwise, 
the power consumption is 789 mW for the Virtex-5 device and is 112 mW for the 
Spartan6 (estimated values with the XPE tool by Xilinx). These values show a big 
difference between both devices due to the resources used for each one as it has been 
presented in previous section. 

Moreover, the achieved results take into account the slices used by the component 
in charge of the (Serial Peripheral Interface bus) SPI communication. So, it is possible 
to avoid that communication and improve the hardware resources consumption.    

However, the Virtex device used for the comparison was not the top of the family 
in contrast with the Spartan 6. With the top Virtex, more algorithms can be fitted but 
it not allows high speed communication in front of Spartan 6 device.  
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Also, the proof included to check the neuroinspired features of the algorithm 
implemented within a digital system shows a good approach to a stochastic gamma 
distribution for ISI. It reveals a renewal process for the spike train signal even using a 
deterministic spikes source.  

To sum up, the Spartan 6 device can provide a large number of replicated systems 
in order to control a high number of muscles (mimic by motors) carrying out intended 
movements in a neuroinspired way. It also allows serial and parallel communication 
with other neuromorphic chips. 
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Abstract. A neurodynamic optimization approach to robust pole assignment for
synthesizing linear control systems is presented in this paper. The problem is re-
formulated from a quasi-convex optimization problem into a convex feasibility
problem with the spectral condition number as the robustness measure. Two cou-
pled globally convergent recurrent neural networks are applied for solving the re-
formulated problem in real time. Robust parametric configuration and exact pole
assignment of feedback control systems can be achieved. Simulation results of the
proposed neurodynamic approach are reported to demonstrate its effectiveness.

Keywords: Robust pole assignment, recurrent neural networks, state feedback
control, global convergence.

1 Introduction

As it is known that the performance of a control system is mainly determined by its
poles, pole assignment is a basic approach for linear control system design. Various
specifications for control systems can be achieved via proper pole assignment. Since
practical control systems can hardly be precisely modeled or they are often subject to
parameter uncertainties, the robustness properties should to be optimized to improve
the control system performance. The robust pole assignment problem is then first for-
mulated by Kautsky et al. [9] through minimizing the spectral condition number of
the eigenvector matrix. Frobenius norm was considered to replace spectral norm in the
condition number and its additive substitutes by [1] and [11]. Some other robustness
measures and various optimization approaches to robust pole assignment problem were
widely investigated in [2,3,5,8,12,13,17,18,20]. However, because of the nonconvex-
ity of the condition numbers and their variants as robust measures, the existing methods
cannot guaranteed to achieve the global optimality.

Neurodynamic optimization has been widely developed for more than three decades.
Different from feedforward neural networks, recurrent neural networks are dynamic
systems per se and suitable for modeling and optimizing dynamical systems. Optimiza-
tion based on recurrent neural networks have several advantages such as guaranteed op-
timality, expended applicability, improved convergence properties, and reduced model
complexity; e.g., [4,6,7,10,14,15,21–24]. In this paper, a novel optimization approach
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based on recurrent neural networks to robust pole assignment is proposed via convex
reformulation. As spectral condition number is quasi-convex, this problem is reformu-
lated into a convex feasibility problem with some adjustable parameter. The method is
capable of optimizing the spectral condition number of the eigensystem while making
exact pole assignment. Simulation results substantiate the effectiveness and illustrate
the characteristics of the proposed neural network.

2 Preliminaries and Problem Formulation

Consider a linear time-invariant control system as follows:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1)

where x ∈ �n is the state vector, u ∈ �m is the control vector, A ∈ �n×n, and
B ∈ �n×m are known coefficient matrices associated with x(t) and u(t), respectively.
Assuming the control system (1) is completely controllable and observable, the state
feedback control law:

u(t) = r(t) +Kx(t) (2)

can be applied to control the state of the system. Closed-loop control system is as fol-
lows:

ẋ(t) = (A+BK)x(t) +Br(t), x(0) = x0, (3)

where r ∈ �m is a reference input vector, and K ∈ �m×n is a feedback gain ma-
trix. Based on the controllability assumption of pair (A,B), there exists at least one
feedback matrix K . Feedback gain matrix K may be chosen by using different design
strategies, such as optimal control or pole assignment methods, depending on the design
requirements. In this paper, the robustness performance of a system is considered as a
main issue.

For a particular choice of almost any set of real and self-conjugate complex desired
poles λ1, λ2, ..., λn of the closed loop system, robust pole assignment for state feed-
back is to find such a K to improve the robustness performance. The existence and
construction of such a feedback gain may be characterized as follows.

A matrix is said to be real pseudo-diagonal if it is a real block-diagonal matrix con-
taining diagonal elements for real eigenvalues and (2× 2)-blocks of the form:

[
σi ωi

−ωi σi

]

for complex conjugate eigenvalue pairs σi ± ωij, where j =
√−1. Denote spec(M ) as

the set of eigenvalues of the matrix M . Given a real pseudo-diagonal matrix Λ ∈ �n×n

with spec(Λ) = (λ1, λ2, ..., λn), find real matrixK and nonsingular matrixZ satisfying

(A+BK)Z = ZΛ. (4)
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It is shown in [9] that, given Λ and Z nonsingular, then there exists K as a solution to
eqn. (4) if and only if

QT
2 (AZ − ZΛ) = 0, where B = [Q1 Q2]

[
R
0

]
(5)

The factorization of matrix B can be obtained via QR factorization of B with Q =
[Q1 Q2] being orthogonal and R being nonsingular [9], where Q1 ∈ �n×m, Q2 ∈
�n×(n−m), and R ∈ �m×m. Furthermore, K then is given by

K = R−1QT
1 (ZΛZ−1 −A). (6)

By using Kronecker product and vectorization techniques, constraints equation (5) can
be written as

Mz = 0, (7)

where z = vec(Z), M ∈ �mn×n2

, and

M = [In ⊗QT
2 A− ΛT ⊗QT

2 ]. (8)

As the existence of multiple solutions on K based on eqns. (5) and (6), additional
robustness property can be to optimized to improve the systems’ performance. If the
system matrix A is offset by a perturbation or uncertainty term Δ, it can be rewritten as

AZ +ΔZ +BKZ = Z(Λ+ Z−1ΔZ). (9)

The perturbed system is stable if (Λ + Z−1ΔZ) is stable. It is known in [9] that the
robust stability can be guaranteed if

‖Δ‖2 < min1≤j≤n|Re(λj)|
κ2(Z)

, (10)

where λj (j = 1, 2, ...n) are the eigenvalues of Λ, Re(·) is its real part, and κ2(Z) =√
λmax(ZTZ)/λmin(ZTZ) is the spectral condition number of the eigensystem. λmax

and λmin are the largest and smallest eigenvalues. From eqn. (10) we can see that a
smaller κ2(Z) will lead to a bigger bound of Δ. Hence, minimizing the conditioning
κ2 becomes a focal point.

As the optimal solutions of κ2 and κ2
2 is the same, κ2

2 may be minimized instead of κ2.
κ2
2 = λmax(Z

TZ)/λmin(Z
TZ) is quasiconvex with λmax(Z

TZ) convex, λmin(Z
TZ)

concave, and λmax(Z
TZ) ≥ 0, λmin(Z

TZ) ≥ 0. Take

φμ(z) = λmax(Z
TZ)− μλmin(Z

TZ). (11)

For fixed μ, φμ is convex in Z . In addition, φμ ≤ 0 is equivalent to λmax(Z
TZ)

/λmin(Z
TZ) ≤ μ. Consider the convex feasibility problems as follows:

φμ(z) ≤ 0,Mz = 0. (12)

The optimal solution of κ2
2 can be found according to the following steps. First, given

μ0 = 1, then solve the convex feasibility problem (12). Second, if (12) is feasible, then
increase μ. Otherwise, decrease μ. Finally μ will be convergent to the optimal κ2

2.
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3 Neurodynamic Approaches

Neurodynamic optimization approaches are suitable for convex problems; e.g., [7, 14,
15, 21–24]. In particular, [15] proposed a one-layer recurrent neural network, which is
capable for convex optimization with both linear equity constraints and inequity con-
straints. The neurodynamic equation is presented as follows:

ε1
dz

dt
= −MT g[−1,1](Mz)−σ(t)(I−MT (MMT )−1M)∇φμ(z)g[0,1](φμ(z)), (13)

where ε1 is a positive scaling constant, σ(t) is a positive gain function of time t,∇φμ(z)
is the gradient of the inequity constraint function φμ(z), g[l,h](y) is a vector valued
discontinuous activation function with its components are defined as

g[l,h](y) =

⎧⎨
⎩

h, y > 0
[l, h], y = 0
l, y < 0

(14)

Let tS = ε1‖Mz0‖1/λmin(MMT ), where λmin is the minimum eigenvalue of the
matrix, and z0 is the initial state of neural network. Function σ(t) is a monotone non-
decreasing function:

σ(t) =

{
0, if t < tS
1, if t ≥ tS

(15)

It is proved in [15] that the state vector z of the recurrent neural network in eqn. (13)
is globally convergent to the feasible region S = {z|Mz = 0} in finite time and stays
there thereafter. Globally convergence for convex problem can be guaranteed.∇φμ(Z)
can be derived as follows:

∇φμ(Z) = 2Z(vmaxv
T
max − μvminv

T
min), (16)

where λmax and λmin are the largest and smallest eigenvalues of ZTZ , vmax and vmin

are corresponding nominal eigenvectors.The parameter μ can be adjusted according to
the following rules:

ε2
dμ

dt
=

⎧⎨
⎩

1, φμ(z) > 0
0, φμ(z) = 0
−1, φμ(z) < 0

(17)

Based on eqns. (13), (16), and (17), robustness performance can be optimized.
In (16), ∇φμ(Z) contains the eigenvalues and eigenvectors of ZTZ , which cannot

be calculated directly. [19] offers a simple and concise model for computing the largest
eigenvalue λmax and corresponding eigenvector vmax, and the smallest eigenvalue λmin

and corresponding eigenvector vmin on symmetric and positive semi-definite matrices
ZTZ . Similar results can also be seen in [16,19]. The dynamic equations are presented
as follows:
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ε3
dumax

dt
= ZTZumax − uT

maxZ
TZumaxumax, (18)

ε3
dumin

dt
= (−ZTZ + λmaxI)umin − uT

min(−ZTZ + λmaxI)uminumin, (19)

λmax = ūT
maxZ

TZūmax, vmax = ūmax, (20)

λmin = ūT
minZ

TZūmin, vmin = ūmin, (21)

where ε3 is a positive scaling constant and umax, umin ∈ �n. Denote equilibrium vec-
tor of umax as ūmax and umin as ūmin. Then the largest eigenvalue λmax, smallest
eigenvalue λmin and the corresponding eigenvectors vmax and vmin can be computed.
According to [19], the convergence of the recurrent neural network can be guaranteed
with nonzero umax(0) and umin(0).

The robust pole assignment processes for synthesizing state feedback control sys-
tems is delineated in Fig. 1, where one recurrent neural network (RNN1) described in
eqns. (13), (16), and (17) is responsible for conditioning optimization and another re-
current neural network (RNN2) described in eqns. (18) and (19) is used for computing
the largest and smallest eigenvalues and corresponding eigenvectors.

+ A, B

K

RNN1

(z, µ)

u x

RNN2

(vmax,vmin)

r

Fig. 1. Block diagram of the neurodynamic-based state feedback control system via robust pole
assignment

4 Simulation Results

Example as follows will be discussed in detail to demonstrate the effectiveness and
characteristics of the proposed method. Consider a chemical reactor model in [1] :

A =

⎡⎢⎢⎣
1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0.0000 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 0

5.679 0
1.1360 −3.1460
1.1360 0

⎤⎥⎥⎦ .
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Fig. 2. Transient behaviors of feedback gain
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Fig. 3. Transient behaviors of state variables
umax and umin in RNN2

Let close-loop poles λ = [−0.2,−0.5,−5.0566,−8.6659]. Take ε1 = ε2 = 10−6,
and ε3 = 10−12, exact pole assignment and global convergence of the condition number
can be achieved. Fig. 2 depicts the transient behaviors of feedback gain matrix K of
RNN1. Fig. 3 demonstrate the transient behaviors of state variables umax and umin in
RNN2. The steady values of K are computed as follows:

K =

[
0.181 −0.125 0.257 −0.232
1.069 −0.216 0.659 −0.129

]
,
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Fig. 4. Transient behaviors of the condition numbers and error norm ‖QT
2 (AZ − ZΛ)‖2 of the

state feedback control system within first three microseconds in Example 2.

Fig. 4 depicts the transient behaviors of the spectral condition number κ2 and the
norm of constraints ‖QT

2 (AZ − ZΛ)‖2 from different initial states, which substanti-
ated the exact pole assignment and the global convergence properties of the neurody-
namic approach. To test the robustness further, let a perturbation be Δ1 = 0.0048A and
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Fig. 5. Transient behaviors of the unperturbed and perturbed eigensystems with optimal K and
feasible K′ in Example 2

Δ2 = 0.0048AT , which both satisfied with eqn. (12). In Fig. 5, the solid lines illus-
trate the state variables corresponding to A without any perturbation, the dashed lines
to A−Δ1, and the dotted lines to A+Δ2 with the perturbation, controlled with optimal
K , where the initial value of x0 is zero and the reference input is a step vector. From
Fig. 5. a, we can see that the state variables are stable within 60s. In contrast, for state
feedback control with exactly the same closed-loop poles and same perturbations Δ1 or
Δ2 using the following feedback gain matrix without optimal conditioningK ′, the state
variables of the perturbed eigensystem with A−Δ1 or A+Δ2 are no longer stable as
shown in Fig. 5. b.

K ′ =
[−49.0855 −4.2600 −37.8612 35.7530
−9.2461 −1.0275 −7.5757 7.5744

]
,

5 Conclusions

In this paper, a novel neurodynamic approach is proposed for the synthesis of linear
state feedback control systems via robust pole assignment. By the reformulation from
a quasi-convex measure; i.e., the spectral condition number, into a convex feasibility
problem, the proposed approach is capable of robustness optimization. The performance
and characteristics of the neurodynamic approach are substantiated by using a bench-
mark problem. Neurodynamics-based robust pole assignment also shows great potential
to extend into linear descriptor systems and linear parameter-varying systems.
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Abstract. In this paper, a new estimation model based on least squares support 
vector machine (LS-SVM) is proposed to build up the relationship between 
Surface electromyogram (sEMG) signal and joint angle of the lower limb. The 
input of the model is 2 channels of preprocessed sEMG signal. The outputs of 
the model are joint angles of the hip and the knee. sEMG signal is acquired  
from 7 motion muscles in treadmill exercise. And two channels of them are 
selected for dynamic angle estimation for their strong correlation with angle 
data. Angle estimation model is constructed by 2 independent LS-SVM based 
regression model with radial basis function (RBF). It is trained using part of the 
sample sets acquired in 10s exercise duration and test by all data. Experimental 
result shows proposed method has good performance on joint angles estimation 
based sEMG. Root mean square error (RMSE) of prediction knee and hip joint 

angles is o3.02 and o2.09 respectively. It provide new human-machine interface 
for active rehabilitation training of SCI, stroke or neurological injury patients. 

Keywords: sEMG, LS-SVM, Angle estimation, Rehabilitation. 

1 Introduction 

SEMG is the weak electrical potential recorded by electrodes from the skin. It reflects 
muscle activity and function accurately and objectively. sEMG has been widely used 
in clinical rehabilitation and sport science fields for neuromuscular disorders 
diagnosis and fatigue analysis. Especially in clinical rehabilitation fields, for its strong 
relationship with human autonomous motions, sEMG is taken as a non-invasive 
control means for human-machine interface devices such as prosthesis, rehabilitation 
robot, power assist exoskeleton. Its application greatly enhances the convenience and 
efficiency of these rehabilitation systems and helps reconstruct neuromuscular 
function for people affected by stroke and spinal cord injury (SCI).  



 sEMG Based Joint Angle Estimation of Lower Limbs Using LS-SVM 293 

 

Clinical rehabilitation system is divided into three types: mechanical assistant 
devices, power feedback system and biofeedback system. Traditional mechanical 
rehabilitation assistance devices provide passive exercises for patients without 
feedback such as continuous passive motion machine. In some newly developed 
systems, human motion and force information are introduced as control signal. They 
are called power feedback system such as Lokomat [1], MIT-manus [2], MIME [3]. 
The last one take bio-information especially sEMG as control signal in order to excite 
patients’ autonomous motions and promote nerve repair and regeneration. For the 
better effects of reconstruct motion function for patients, it arouses many researchers’ 
interests.    

In the biofeedback system, the key issue that researchers focus on is how to capture 
human active motion intention from sEMG signals. At present, human motion 
researches based on sEMG signal are divided into qualitative and quantitative 
analysis. The typical application of the former is motion recognition [4] [5].  Many 
researchers have been engaged in higher accuracy and fewer channels for qualitative 
motion recognition based on sEMG signal and gained remarkable achievements.  

With further application research of human-machine interface (HMI) based on 
sEMG signal, quantitative sEMG analysis is expected to supply continuous real-time 
control. Javad Hashemi et al. proposed a calibration method for the amplitude of the 
sEMG signals collected from biceps brachii at different joint angles [6]. In Jimson’s 
study, the parameters of muscle activation model considered electromechanical delay 
was taken as the input of neural network to predict finger joint angles. Results showed 
correlation as high as 0.92 between the actual and predicted metacarpophalangeal 
joint angles for periodic finger flexion movements and 0.85 for non-periodic 
movements [7]. In order to suppress pathological tremor effectively by exoskeleton 
system, Shengxin Wang et al. extracted the linear profile-curve of sEMG, and 
explored the relationship between sEMG signals and angle with the radial basis 
function neural network [8]. In many other researches, various feature extraction and 
classification methods are applied to quantitative analysis for sEMG signal. The 
essence of these researches is to capture human active motion intention from sEMG 
signal, and then supply continuous and real-time motion control information for assist 
devices.  

With successful application of quantitative analysis for sEMG, there are still some 
disadvantages. Estimation accuracy of continuous variable is the key problem for 
motion control of assistant devices, and it is very important for natural motion of 
subjects. In this research, sEMG signals acquired from normal lower limb are used to 
estimate continuously hip and knee joint angle, which will be taken as control 
instruction for rehabilitation robot for the affected lower limb. Because in clinic, almost 
all persons affected by stroke or SCI have clinical manifestation of hemiplegia in 
varying degrees.  That means unilateral limb injury for the patient. Therefore, 
rehabilitation training of the affected limb controlled by the normal limb is feasible and 
effective.  It has been verified by many related researches. Continuous estimation of 
lower limb joint angle with high accuracy is the core of this rehabilitation strategy and 
also what we interested in. It contains two main key technologies, that is feature 
extraction meof sEMG signals for data compression and estimation algorithm for joint 
angles. In the following content, sEMG data acquisition and preprocess, estimation 
model design and experimental results will be explained in detail. 
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2 Methods 

2.1 Data Acquisition  

Treadmill exercise is a common training movement for SCI and stroke patients in 
clinical rehabilitation. Considering the character of unilateral injury, data were 
acquired from a normal volunteer in a gymnasium. As shown in Fig 1, during the 
treadmill exercise, sEMG signals of 7 lower limb muscles including vastus rectus 
muscle (VR), vastus lateralis muscle (VL), semitendinosus muscle (SM), biceps 
muscle of thigh (BM), tibialis anterior muscle (TA), extensor pollicis longus (EP), 
and gastrocnemius muscle (GM) were sampled with frequency of 2000Hz by 
Flexcomp, which is the production of Thought Technology Ltd., Canada. 7 pairs of 
Ag/Agcl electrode with glue solution were sticked on muscle belly with a distance of 
2cm, where the signal amplitude is up to the maximum. sEMG is easily disturbed by 
environmental noise, some preparations including shaving and cleaning the skin 
surface should be done before experiment. The raw sEMG signal contains noise and a 
large amount of data. Before applying for angle estimation it must be preprocessed 
with the following procedure.   

 

Fig. 1. sEMG and joint angle signal acquirement in treadmill exercise 

2.2 Signal Processing 

sEMG signal is very weak, non-stationary and random. It is easy to be disturbed by 
industrial frequency and the other environmental noise. It must de-noise and 
preprocess for further application.  The power spectrum of electromyography mainly 
concentrates between 20Hz to 500Hz. Conseuquently, a notch filter with 50Hz 
(industrial frequency of 50Hz in China), a band-pass filter with low cut-off frequency 
of 20Hz and the high of 500Hz and DC component elimination are applied to the raw 
sEMG. sEMG after primary de-noising is sent to following two process steps: 

(1) Integral absolute value (IAV)   sEMG is taken as zero mean Gaussian 
distribution in time domain. Its amplitude is random and vibrates frequently 
across zero.  IAV method describes the envelop characters of sEMG as 

sEMG
electrodes

angle
sensors
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nsEMG  is IAV of de-noised sEMG on the interval [ ]( 1) 1,W n W ni ⋅ − + ⋅∈ . 
As mentioned above, the sampling frequency of 2000Hz is higher than that of joint 
angle 100Hz. The integral window width is set to 20 in experiment to synchronize the 
frequency of sEMG and joint angle.      

(2) The envelop of the sEMG signals get from last step still vibrates very much.  
Actually amplitude of sEMG reflects the contract level of corresponding muscle. And 
joint angle variation is the result of muscle contraction. So a two order low-pass 
Butterworth filter with cut-off frequency of 5Hz is used for data smoothing. Fig.2 
shows comparison figure of raw and preprocessed sEMG signal of each muscle. The 
output data is applied directly for subsequent multi-joint angles estimation of lower 
limb.  

 

  
(a) sEMG of VR                           (b) sEMG of VL 

  
(c) sEMG of SM                           (d) sEMG of BM 

  
(e) sEMG of TA                           (f) sEMG of EP 

 
(g) sEMG of GM                                           

Fig. 2. Raw and envelop sEMG signal of 7 channels muscles in treadmill exercises 

2.3 Joint Angles Estimation 

2.3.1 Least Squares Support Vector Machines (LS-SVM) 
Support vector machine (SVM), the most young and practical machine learning 
algorithm was proposed by Vapnik and his co-workers. It has been paid wide 
attention in recent years for merits of small classification and approximation error, 
simple mathematical forms and excellent generalization performance. So it is widely 
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used for pattern recognition and function regression.LS-SVM is an improvement 
model of SVM. In the model, the inequality constraint conditions are replaced by 
equality constraints. Consequently, quadratic programming problem was simplified as 
the problem of solving linear equation groups. It simplifies the complexity of 
calculation and accelerates solving process. 

In this research, joint angle estimation based on sEMG can be regarded as a 
function regression problem or function fitting. That means obtaining an optimal 
function as follow for mapping relationship between x and y for given training set  
(x1，y1)…(xl，yl): 

( ) T ( )f x w x bϕ= +                        (2) 

where ( )ϕ x : n mR R→  is the nonlinear mapping from input space to high-

dimension feature space. It can translate nonlinear regression to the linear.  LS-SVM 
regression algorithm can be described solving following constraint optimization 
problem: 

Minimize ( ) T 2

1

1 1
,

2 2

L

ii
J w e w w eγ

=
= +                (3) 

with constraint condition 
T ( ) 1,

i i
y w x b e i Lϕ= + + = ， , , where w  is the weight 

variable, e is the error variable, b is the offset and γ  is penalty factor. Lagrange 

function is defined as 
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where iα is the Lagrange multiplier. According to KKT conditions, Derivatives of 

( , , , )L w b e α with respect to , , ,w b e α  respectively is set to be 0 to get 

1

1

T

0 ( )

0 0
, 1, ,

0 ,

0 ( ) 0

L

i ii

N

ii

i i

i i i

L
w x

w
L

b i L
L

e
e
L

w x b e y

α ϕ

α

α γ

α
ϕ

=

=

∂ = → = ∂
∂ = → = ∂    = ∂ = → =

 ∂
 ∂ = → + + − =
∂




         (5) 

Let kernel function ( , ) ( ) ( )i j i jK x x x xϕ ϕ= , the optimal problem mentioned above is 

replaced by solving linear equations 
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Lagrange multiplier iα  and the offset b is solved from equation (6) and taken into

1
( )

L

i ii
w xα ϕ

=
=  to get fitting function of training set as  
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2.3.2   Design of Regression Model  
Processing result of 7 channels sEMG signal by IAV and Butterworth smoothing is 
shown in Fig. 2. Angle data of the hip and knee joint in Fig. 3 has a periodic change 
for treadmill motion.  By comparing the waveform changes, it is obvious that sEMG 
signal of each muscle has different performance of correlation with joint angle data 
for treadmill motion. sEMG of VR and VL is strong correlation with angle data. 
sEMG of EP has some correlation with angle variation and sEMG of SM, BM, TA 
and GM has low correlation with angle. Accordingly, sEMG of VR and VL is utilized 
as the input of SVM and joint angle of the hip and knee as the output y.  

 

 
(a)  Angle of the knee joint                  (b) Angle of the hip joint 

Fig. 3. Measured joint angle of the lower limb in treadmill exercises 

In order to make full use of dynamic information of sEMG amplitude, a m-order 
model is proposed to describe the relationship of sEMG and joint angles of lower 
limb. That means joint angle ky in a moment is thought be determined by sEMG 

signal from the present to the next follow m-k moment 1{ , , , }k k k mx x x− − . The 

nonlinear relationship between sEMG and joint angles is described as  

( )1, ,,k k k k mx x xy f − −=                        (8) 

In experiments, two channels sEMG data strong correlated with joint angle are 
used to construct the input of SVM and m is set to 10. As a result, the input dimension 
of regression is 20, which is expressed as  

T

1 10 1 10

20 1, , , , ,VR VR VR VL VL VL

k k k k k k ksEMG sEMG sEMG sEMG sEMG sEMGx R− − − −
×= ∈        (9) 

The output of LS-SVM is two channels joint angle, which is 
T 2 1,Knee Hip

k k k Ry θ θ ×   ∈=                      (10) 

LS-SVM based regression model consists of two independent LS-SVMs. As Fig. 4, 
where LSSVM(1) maps nonlinear relationship between sEMG and the knee joint 
angle,  and LSSVM(2) maps the relationship between sEMG and the hip joint angle.  
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Fig. 4. The structure of LS-SVM based regression model  

2.3.3 Joint Angle Estimation 

Sampling frequency of sEMG after IAV preprocessing mentioned in section 2.2 is 
changed to 100Hz. As a result, preprocessed sEMG has the same frequency as joint 
angle. The sampling process lasts 10 seconds. Acquired 1000 sets of sEMG-joint 
angle data are sent to 10-order model (eq.9) for final 991 couples data, from which 
198 couples are extracted every 5 data as training sample. All 991 sets are used to test 
performance of proposed LS-SVM regression model.  

In this paper, Coarse-fine search with cross validation is used to determine two 
unknown parameters in LS-SVM, σ and γ. Search range of the kernel parameter σ2 
and penalty factor γ is set to [0.08，12] and [0.05，200] respectively. The 
logarithmic scale is employed for the parameter space (Fig.5). Each is linearly divided 
into 10 parts. 100 intersections of corresponding grid lines are set to the test point of 
parameters. On each point, cross validation method is applied to test the performance 
of LS-SVM. The specific steps are: All samples are randomly divided into 10 parts. 9 
of them are for training and the rest is for regression performance testing. After 10 
times of training and testing sets transforming for each couple kernel parameters, 
regression performance is evaluated by mean squared error of 10 times of test result 
called cross validate rate. As shown in Fig.5, grid points of coarse search for kernel 
parameters are highlighted with black “·”. Error contour of cross validation rate 
describes different parameter performance and determines the scope of optimum 
parameters. Based on the result, the search range is reset for fine search. Grid point is 
highlighted with “×” in Fig. 5. Its number is still 100 and the search process is the 
same as cross validation method. The result of optimum parameters are listed in table 
1. Then, all 198 samples are used to calculate their Lagrange multiplier  α  and 
unknown parameter b .  

      

(a)Parameter optimization of LS-SVM(1),      (b)Parameter optimization of LS-SVM(2) 
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Fig. 5. Parameter optimization process of two independent LS-SVM 

Table 1. Parameters of LS-SVM based regression model 

Parameter LS-SVM(1) LS-SVM(2) 

kernel parameter σ2 6.197982 1.45296 
penalty factor γ 187.2391 25.8838 

In order to test performance of the trained LS-SVM regression model, two 
channels of sEMG data are sent into the model to estimate joint angle of the hip and 
the knee. Fig.6 shows good contact ratio between prediction and measured angle data. 
Root mean square error (RMSE) is calculated to quantitatively analyze performance:  

( )2

1

1
1

N

k k
k

RMSE
N

θ θ
=

= −
−                   (11) 

where kθ and kθ is estimated  and measured joint angle, N is test samples number . 
 

 
       (a)The knee joint angle estimation           (b)The hip joint angle estimation 

Fig. 6. sEMG based continuous joint angle estimation in treadmill exercise using LS-SVM 

The outputs of estimation model based on LS-SVM are the hip joint angle and the 
knee joint angle. In experiment, the RMSE of prediction knee joint angle with the 
proposed model is o3.02 , and that of estimation hip joint angle is o2.09 . 

3 Conclusions and Discussions 

sEMG signal directly reflects human active motion intention, it is the best human-
machine interface for active rehabilitation training of SCI, stroke or neurological 
injury patients. In this paper, we use LS-SVM to predict dynamic joint angle of the 
lower limb from sEMG signals. The input of the model derives from 7 Channels 
sEMG of lower limb muscles in treadmill exercise. Considering the data dimension of 
the input and correlation between sEMG and joint angle, sEMG of VR and VL after 
preprocess of de-noising, envelop calculation and filtering is selected for joint angle 
estimation. Finalized input of estimation model is a 20 dimensions processed sEMG 
and the output is two joint angles of the hip and the knee. Estimation model is 
constructed by 2 independent LS-SVM based regression model. Parameters of the 
established LS-SVM model are determined after the coarse and fine search. Statistics 
result of angle estimation using proposed method is represented with RMSE of 
prediction angle. That of the knee and the hip joint angle is o3.02 and o2.09

   

Estimation angle Measured angle 
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respectively. This model based LS-SVM can successfully judge human motion 
intention and accurately estimate joint angle of the limb by using sEMG. It can 
provide new control strategy for rehabilitation robot or other motion assist devices. 
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Abstract. One of the key issues in Gaussian SLAM is to calculate nonlinear 
transition density of Gaussian prior, i.e. to calculate Gaussian Weight Integral 
(GWI) whose integrand is with the form nonlinear function× Gaussian prior 
density. Up to now, some GWI solutions have been applied in SLAM (e.g. li-
nearization, unscented transform and cubature rule), and different SLAM algo-
rithms were derived based on theirs GWI solutions. While, how to select suitable 
GWI solution for SLAM is still lack of theoretical analysis. In this paper, we 
proposed an optimal proposal FastSLAM algorithm with suitable GWI solutions. 
The main contributions of this work lies that: (1) an unified FastSLAM frame-
work with optimal proposal distribution is summarized; (2) a SLAM dimensio-
nality based GWI solution selection criterion is designed; (3) we propose a new 
SLAM algorithm. The performance of the proposed SLAM is investigated and 
compared with the FastSLAM2.0 and UFastSLAM using simulations and our 
opinion is confirmed by the results. 

Keywords: Mobile Robot, SLAM, Unscented Transform, Cubature Rule. 

1 Introduction 

The Rao-Blackwellized particle filter (RBPF) [1] based SLAM algorithm was intro-
duced by Montemerlo in 2003. Now it has became popular in SLAM due to its low 
computational cost and robustness for incorrect data association. The algorithm has two 
editions: FastSLAM1.0 [2] and FastSLAM2.0 [3]. The former utilizes common particle 
filter to track robot path, and each particle independently keeps a feature landmark map 
based on a set of EKFs. To overcome particle set degeneracy in FastSLAM1.0, the 
FastSLAM2.0 utilizes EKF to design better proposal distribution. Based on the similar 
idea, Gristti proposed an adaptive grid map FastSLAM [4]. The technique combines 
laser scan-matching with mobile robot odometry to optimize the proposal distribution 
                                                           
* Corresponding author. 
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of particle filter. Sim proposed a stereo vision FastSLAM, and the particle proposal 
distribution was designed by using visual odometery prior [5]. Kim proposed Un-
scented FastSLAM [6], which utilizes scaled unscented transformation [7][8] to esti-
mate the nonlinear transition density of Gaussian prior. In [9], a non-static environment 
FastSLAM was proposed by sampling new generation particles from multiple ancestor 
priors. Moreno designed a new approach to fuse the grid-map and feature-map for 
FastSLAM [10]. In our previous work, a Cubature FastSLAM [11] was derived by 
utilizing cubature rule [12] as the Gaussian weighted integral solutions.  

One of the key issues in Gaussian SLAM is to calculate nonlinear transition density 
of Gaussian prior, i.e., to calculate Gaussian Weight Integral (GWI). Up to now, some 
GWI solutions have been applied in SLAM filter. While, how to choose a suitable GWI 
solution for SLAM is still lack of theoretical analysis. In this paper, the GWI solution 
selection problem is discussed and a new SLAM with better GWI solution is derived. 
The rest paper is organized as follows: Section 2 gives a brief review of FastSLAM and 
a unified optimal proposal FastSLAM is summarized. A GWI solution selection crite-
rion is discussed in Section 3. In Section 4 we proposed a SLAM algorithm with 
suitable GWI solutions. Section 5 presents simulations, followed by the conclusions. 

2 Unified FastSLAM with Optimal Proposal 

2.1 Brief Review of FastSLAM  

The key idea of FastSLAM is to estimate the joint posterior 1( , , )k k kp −s z uΘ about the 
map 1 M= Θ θ θ  and the mobile robot path 1

k
k= s s s  based on a set of observations 

1
k

k= z z z and control inputs 1
0 1

k
k

−
−= u u u . Based on conditional independence 

property of the full SLAM problem, the joint posterior 1( , , )k k kp −s z uΘ  is factored as 

 1 1 1

1

( , , ) ( , ) ( , , )
M

k k k k k k k k k
m

m

p p p− − −

=

= ⋅∏s z u s z u s z uΘ θ  (1) 

In FastSLAM, the path posterior 1( , )k k kp −s z u  is estimated with a particle filter and 
the map 1( , , )−k k kp Θ s z u  is analytically estimated utilizing M separate Kalman filters. 
Each particle for the FastSLAM is assembled by the robot path and the landmarks: 

 ( ) ( )[ ] ,[ ] [ ][1] [ ][1] [ ][ ] [ ][ ], , ,i k i i i i M i M
k k k k k=< >S s μ Σ μ Σ  (2) 

where, [i] and [m] are indicate index of the particle and the landmark; [ ]k is  is robot path 
hypothesis; [ ][ ] [ ][ ]( , )i m i m

k kμ Σ  is the Gaussian representation of the mth feature landmark. 

2.2 Unified FastSLAM Framework with Optimal Proposal 

The noisy robot motion model and environment observation motion model are  

 
( )
( )

1 1 1

[ ]
1

,

, k

k k k k

m
k k k

f

h

− − −

−

= +


= +

s s u δu

z s δzμ
 (3) 

where, sn
k ∈s  is the robot pose; zn

k ∈z  is the observation; f and h are the nonlinear 
robot motion and observation model, respectively; 1

un
k − ∈u  is the control input in the 
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time interval [ 1, )k k− , 1
un

k − ∈δu  is control noise with covariance Q ; 1
zn

k − ∈δz  is 
observation noise with covariance R ; [ ]

1
nm

k
μ

− ∈μ   is the [m]-th landmark state. 
To predict new robot state [ ]i

ks , the previous robot state [ ]
1

i
k −s requires to be aug-

mented with the control input, given by 

 
[ ] [ ]

1 1

1

,
i i

k k
a

k

− −

−

= =
   
       

0

0

s P
a P

u Q
 (4) 

Where, s un n+∈a  and ( ) ( )s u s un n n n
a

+ × +∈P   are the augmented robot state and its cova-

riance, respectively. [ ]
1

sni
k − ∈s   and [ ]

1
s sn ni

k
×

− ∈P   are the previous mean and cova-

riance of the robot state.  The augmented state a  satisfies Gaussian ( )a,a a P . 

Consequently, the predicted robot state and its covariance are calculated by  

 
( ) ( )

( ) ( ) ( )

[ ]
1

T[ ] [ ] [ ]
1 1 1

=
i *

k,k- a

i * i * i
k,k- k,k- k,k- a

f , d

f f , d=    − −   




as a P a

P a s a s a P a




 (5) 

When a landmark with index [m] is revisited by the robot, the robot state and its 
covariance can be updated. To do this, [ ]

1
i

k k -s  and [ ]
1

i
k k -P are augmented by integrating 

the robot state and the revisited landmark state into one Gaussian, that is 

 
[ ] [ ]

, 1 , 1
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1 1
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k k k k
bi m i m
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= =      
   

0

0

s P
b P

μ Σ
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where, sn nμ+∈b  and ( ) ( )s sn n n n
b

μ μ+ × +∈P   are the augmented prediction state and its 

covariance, respectively. The density of b  is Gaussian distribution ( )b,b P . 

Based on ( )b,b P , the predicted measurement [ ][ ]
1

i m
k,k -z , the measurement innovation 

covariance [ ][ ]i m
zzP  and the cross covariance [ ][ ]i m

szP  are calculated as 
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 (7) 

The state update is performed based on standard Kalman filtering algorithm 

 ( ) ( )
( )

[ ] [ ] [ ] [ ][ ]
1 1 1[ ][ ] [ ][ ]

T[ ] [ ] [ ][ ]
1

i i m i m
k k,k - s k k,k -i m i m
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where, [ ]m
kz is the true sensor measurement for [m]-th revisited landmark. 

For the multiple observations case, Eq.6- Eq.8 are repeated for each landmark, and 
[ ]i
ks  and [ ]i

kP  are updated based on their previously updated one. When the update  
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routine is accomplished, the new robot state [ ]i
ks is sampled from the Gaussian 

( )[ ] [ ],i i
k ks P , and its importance factor [ ]i

kω  is calculated as 

 
( ) ( )T[ ][ ] [ ] [ ][ ] [ ]

1 1[ ]
[ ][ ][ ][ ]

- -1
exp -

22

i m m i m m
k,k - k k,k - ki

k i mi m
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ω
π

  
  =       

∏
zzzz

z z z z

PP
 (9) 

where, [ ][ ] [ ]
1 -i m m

kk k-z z and [ ][ ]i m
zzP are the measurement innovation and the innovation cova-

riance matrix for the [m]-th landmark. 

For each revisited landmark with index [m], the landmark state equation and ob-
servation equation are modeled as 
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where, [ ]i
ks  is the “known” robot state; [ ][ ]

1
i m

k −μ  and [ ][ ]
1

i m
k −Σ  are the mean and the co-

variance of the [m]-th revisited landmark, respectively. 
The predicted measurement and its covariance with the known robot state are  
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The state update of the [m]-th revisited landmark is accomplished by a Kalman filter 
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For the [n]-th new visited landmark, the measurement [ ]n
kz  and its covariance R are 

used to initialize the landmark’s Gaussian representation, given by 
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3 Solutions for Gaussian Weighted Integral 

Without loss generality, an unify form of the nonlinear functions in SLAM can be 
defined as ( )g=y x  with xn∈x   satisfies Gaussian ( )x,x P , then the following 
two GWIs are used to calculate the nonlinear transition density ( )y,y P  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )TT

x x

y x x

g , d g , d

g g , d

= =

= −

 


0 I

0 I

y x x P x P t + x t

P P t + x P t + x t y y

 


 (14) 
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3.1  GWI Solutions Utilized in SLAM 

1) Linearization. The linearization solution are utilized in FastSLAM1.0 and 
FastSLAM2.0, in which the GWI is calculated based on the first-order lineariza-
tion of the nonlinear function g , denote as ( ) ( ) ( )( )-g g g′≈ +x x x x x . And the 
transition density ( )y,y P  is easily obtained by ( )g≈y x  and 

( ) ( )T
y xg g′ ′≈P x P x .  

2) Unscented Transform. In UT, 2 1xn +  sigma-points { } = { ( ( + ) ) }i x x in κ±x P are 
utilized to capture some low-order moments of the prior Gaussian ( )x,x P . And 
the transformed sigma-point set{ }i is computed by passing the { }i through the 
nonlinear function g , as { ( )}i i= g  . So, ( )y,y P  are obtained by weighted 
linear regression of { }i, given by c iω≈ y   and T[ ][ ]y g i iω≈ − −P y y  .  

3) Cubature Rule. The GWI are calculated by using 2 xn  cubature-points, given 
by 2

1 ( ) 2xn
j x j xg n=≈y P + xξ  and 2 T T

1 ( ) ( ) 2 -xn
y j x j x j xg g n=≈P P +x P + x yyξ ξ .where, the 

cubature-point set is calculated as { } {[1] }j x jn=ξ , and {[1] } xn
j ∈ are the 2 xn  in-

tersection points of the xn dimension coordinate axes with the unit hypersphere.  

Table 1 and Table 2 show the moment characteristics and numerical characteristics 
for the three GWI solutions, respectively.  

Table 1. Moment Characteristics for Different GWI Solutions  

GWI Solutions 
One-dimensional Gaussian 

case (n=1) 

Multiple-dimensional 

Gaussian case (n>1) 
Linearization up to the 1-th order  up to the 1-th order 

Unscented Transform up to the 5-th order up to the 3-th order 

Cubature Rule up to the 3-th order up to the 3-th order 

Table 2. Numerical Calculation Characteristics 

 Numerical stbility factor Is the 
y

P  non-negative definite? 

 3n ≤  3n >  3n ≤  3n >  

Unscented Transform 1 3 -12n  yes unsure 

Cubature Rule 1 1 yes yes 

3.2 Criterion for Select Suitable GWI Solution  

The UT is a dimensionality sensitive GWI solution. For the low dimensional cases 
( 3n ≤ ), the moments of sigma-point set can hit some the 4-th order moments, and the 
transformed covariance is nonnegative definiteness, also the stability factor is as good 
as cubature rule. While, for high dimensional Gaussian cases (n>3), the transformed 
covariance may be negative definiteness, and the stability factor ( )UTS = 2 3 1n −  is 

increased with n. Compared with UT, the cubature rule is a dimensionality insensitive 
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GWI solution both from moment characteristic and numerical characteristic. For any 
Gaussian dimensionality n, the cubature rule based GWI solution is correctly calculated 
up to the 3-order nonlinearity, and the non-negative definiteness of the transformed 
covariance can be guaranteed, also the stability factor always equal to 1.  Based on 
above analysis, we design a dimensionality based GWI solution selection criterion: (i) 
for the case of dimensionality n<3, the UT is better than cubature rule because of partial 
of the fourth order moments of piror Gaussian are preserved by sigma-point set; (ii) for 
n=3, the cubature rule is equivalent to the UT; (iii) for n>3, cubature rule is a good 
choice because the transformed covariance by UT may be negative definiteness and as 
well the numerical stability factor is increased linearly with n for UT.  

3.3 Proposed FastSLAM with Suitable GWI Solutions  

From Section 2, four main parts are included in SLAM: (1) particle state prediction, (2) 
particle state updating, (3) revisited landmarks updating and (4) new landmarks initiali-
zation. Because each part of the algorithm has its own Gaussian dimensionality n, hence 
the suitable GWI solution for each part can be selected for SLAM implementation. 

1) For the particle state prediction, the dimensionality of augmented robot state a is 
beyond three (i.e. 3s un n+ > , see Eq.4). Therefore, the cubature rule is a better GWI 
solution. For example, in 3D.O.F SLAM, the vehicle state is ( )T

, ,x y θ=s and the 
control input is comprised by velocity and steering angle. So, the dimensionality of the 
augmented state a is 5. For the case, the predict covariance [ ]

1
i

k,k -P (in Eq.5) may be 
negative definite with UT because the weight of center sigma-point is negative 

2 3 00ω = − < . Also, the numerical stability factor of the UT is bad due to UTS = 2.33 1> ; 
2) For the particle state update part, the dimensionality of augmented robot state b   

is also larger than 3 (i.e. 3sn nμ+ > , see Eq.6). So, the cubature rule is selected as GWI 
solution with the same reasons for the first part. 

3) For the revisited landmarks updating step and the new landmarks initialization 
step, the dimensionalities of Gaussians are determined by the landmark state μ  and 
the measurement z , respectively. For the two steps, the UT is selected as GWI solution. 
There are two reasons for the utilization of UT: on one hand, the SLAM covariance 
matrixes are all nonnegative definiteness with UT, and the numerical stability factor is 
as good as cubature rule. On the other hand, the errors for the fourth order moments of 
the sigma-point set are smaller than that of cubature point set.  

4 Simulation Results 

The performance of the proposed SLAM is compared with FastSLAM2.0 and 
UFastSLAM. The simulation scenario is a100m 100m× size rectangular shaped map 
with 41 landmarks. For each simulation run, the robot starts with its initial 
state T

0 [0,0,0]s = , and then travels along six global planning points until closes the loop. 

Fig.1 is the result of the proposed SLAM (The measurement noise is set to be 0.1 m in 

range, 6° in bearing, and the control noise is set to be 0.5 m/s in velocity, o2 in steering 
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angle). As can be seen, the robot path tracking is converged and landmarks are accu-
rately positioned.  

Two noise levels are used in simulations. With each noise level, ten independence 
SLAM simulation runs were carried out for each SLAM. For the first noise level, the 
measurement noise is set to be 0.1 m in range, 1° in bearing, and the robot control noise 
is set to be 0.3 m/s in velocity, o1 in steering angle. As it can be seen from Fig.2, the 
vehicle path error of the proposed SLAM is lower than that of other two algorithms, and 
the landmarks are more accurately mapped by proposed SLAM. For the second noise 
level, the noise parameters are increased: the measurement noise is set to be 0.1 m in 
range, 6° in bearing, and the control noise is set to be 0.5 m/s in velocity, o2 in steering 
angle. We can see from Fig.3, the SLAM errors for the three algorithms are increased 
with the noise level. And among the three algorithms, the proposed SLAM has the 
lowest SLAM errors both for vehicle localization and for environmental mapping.   

 

Fig. 1. Performance of the proposed SLAM  

   

  (a) Average error norm for vehicle path      (b) Average error norm for 41 feature landmarks  

Fig. 2. Performance evaluation for SLAM algorithms with the measurement noise is 0.1 m in 
range, 1° in bearing, and the control noise is 0.3 m/s in velocity, 1° in steering angle 
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(a) Average error norm for vehicle path     (b) Average error norm for 41 feature landmarks  

Fig. 3. Performance evaluation for SLAM algorithms with the measurement noise is 0.1 m in 
range, 6° in bearing, and the control noise is 0.5 m/s in velocity, 2° in steering angle 

5 Conclusion 

In this paper, we proposed a new FastSLAM by choosing the suitable GWI solutions 
for different parts of the SLAM implementations. In proposed SLAM, the cubature rule 
is utilized to construct the particle filter proposal distribution and the unscented 
transform is used to initialize the Gaussian representations of the environment feature 
landmarks and to estimate the posteriors of revisited feature landmarks. The effec-
tiveness of the proposed SLAM is verified by SLAM simulations. Results show that the 
proposed SLAM outperforms FastSLAM2.0 and UFastSLAM.   
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Abstract. In this paper we demonstrate the coupling of an autonomous
planning and control framework for whole-body humanoid motion, with
a brain-computer interface (BCI) system in order to achieve online real-
time biasing and correction of the offline planned motion. Using the
contact-before-motion planning paradigm, the humanoid autonomously
plans, in a first stage, its motion to reach a desired goal configuration
or contact location. In the second stage of the approach, the humanoid
executes the planned motion and the user can exert online some control
on the motion being executed through an EEG decoding interface. The
method is applied and demonstrated in a dynamics simulator with full
collision-detection on a model of the humanoid robot HRP2.

Keywords: Humanoid Whole-Body Control, Motor Imagery BMI,
Motion Planning.

1 Introduction

Within humanoid robotics research, one natural question that immediately pops
up in mind is the possibility of using the human brain motor functions to control
the motion of a humanoid robot, the same way the human does to control the
movements of their own body. This is basically the brain-machine interfacing
(BMI) problem, with the “machine” here being instantiated as a humanoid robot,
an intuitively natural hardware for implementing human brain motor control.

On the applicative side, brain-computer interface (BCI) systems provide
promising perspectives for assistive applications directed towards motion-
impaired users, enabling control of robotic prostheses or robotic assistants in
daily-life tasks, among which humanoid-designed ones are of particular inter-
est, since the non-expert user can easily be familiar with what to expect from
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a humanoid robot in terms of motion capabilities and general dexterity. More-
over, using legged humanoids allows to integrate them directly in a daily-life
environment that is designed for human activities and that accounts for human
motion capabilities, without requiring to adapt the existing environment to the
particular kinematics of the robot assistant.

These perspectives motivate our study. We propose to couple two components
that appear necessary to reach these goals, namely a motion planning and control
(MPC) framework for humanoid, with a non-invasive brain-signal measuring and
decoding system. We base our study on state-of-the-art works that had been
independently done on both ends, adapting them to allow their assembly as the
two building blocks of the proposed integrated framework (Fig. 1).

This coupling of humanoid controller with BCI system has been achieved
in previous works [1][2][3]. These works consider the problem from the follow-
ing angle: the humanoid with its black-box walking controller (walking pattern
generator) is seen as a mobile robot that can be commanded to walk forward,
backward, or to turn right and left in a 2D plan (it can even be an actual mobile
robot, ie. equipped with wheels rather than legs, in some of these works [4]), and
the BCI command is generally generated through visual stimulation techniques
(SSVEP [4][3][2] or P300 [1]).

We however chose to investigate alternative approaches from both ends. From
the humanoid MPC end, we do not target cyclic walking motion, but general
acyclic whole-body behaviours of which walking would be a particular instance.
By doing so, we are able to take full profit of the dexterous capabilities of the hu-
manoid design that initially motivate its use, for instance in climbing arbitrary-
height stairs or using obstacles as contact support to reach the goal. We achieve
this by exploiting our previously proposed multi-contact MPC paradigm for hu-
manoids [5]. From the BCI end, we generate the command signal with motor
imagery (MI) techniques rather than visual stimulation, which constitute the
state of the art in non-invasive BCI. In the present work, the MI decoding tech-
nique that we adapted from previous application on the control of one-DOF robot
and of standing-up/sitting-down motion of exoskeleton [6] allows to generate a
three-valued discrete command for a one-dimensional feature of the whole-body
motion, in this case the motion along a generalized notion of “vertical axis” of
the moving end-limb, such as the foot of the swing leg in a biped motion for
instance. However we believe, from recent and ongoing studies, that the MI ap-
proach can in the near future enable the control of a two-dimensional continuous
feature of the motion [7][8].

humanoid walking controller

motor-imagery-based BCI
visual-stimulation-based BCI

visual-stimulation-based BCI

humanoid manipulation/grasp
controller from high-level task

humanoid whole-body planner
and controller /
low-level whole-body motion

existing approaches for the present paper proposed approach for

selection in menu control

BCI couplingMPC BCI MPC coupling

Fig. 1. Overview of the two-component coupling framework
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The rest of this paper is organized as follows. The two components of the
framework, the MPC scheme for the humanoid, and the MI BCI decoding
scheme, are respectively recalled in sections 2 and 3, section 4 presents the strat-
egy we retained for coupled exploitation of these components in our applicative
perspective, and section 5 comments an illustrative experiment. Finally section 6
concludes the paper.

2 Humanoid Whole-Body Motion Planning and Control

We recall our work on humanoid MPC [5]. The aim here is to autonomously
generate a whole-body motion of the humanoid that realises a desired task, thus
sparing the user the tedious task of designing the high-DOF motion and allowing
high-level (task-level) control, in line with state-of-the-art BCI capabilities.

Note that we do not make a priori assumption on the nature of the mo-
tion, e.g. cyclic walking, and thus the planning does not occur at path planning
level for a walking robot, nor at footstep planning level for an a priori biped
motion [9][10][11] but rather at the high-dimensional configuration space level
of whole-body humanoid motion, including the free-floating component. Classic
approaches operating at this level for humanoids adapted randomized planning
techniques considering the humanoid with fixed foot locations as the fixed root
of its kinematic tree [12][13][14][15]. Our approach merges these two planning
levels (footstep planning for cyclic walking, whole-body motion on fixed foot lo-
cations) and is classified within the contact-before-motion planning category [16].
The motion generation is done in two stages.

First, planning offline the sequence of changes in contact state with the en-
vironment, each of which is associated with an inverse-kinematics realizing con-
figuration [17]. By running a greedy best-first search algorithm on all possible
pairings (contacts) between a robot link surface and an environment surface to
be added or removed to the contact state being explored, we obtain our sequence.
See details in [18][5].

In the second stage, an online controller tracks successively each of these in-
termediate postures (called a step), removing or adding a contact at each step. It
is formulated as a Quadratic Program (QP) optimization problem with weighted
tasks that are defined according to a finite-state machine (FSM) consisting of
two states: “Move CoM” state when removing a contact from the current stance,
and“Move Contact Link” state when adding a contact to the current stance.
See [19] for the detailed formulation of the QP and FSM states.

3 BCI Decoding

As non-invasive brain signal acquisition device we used an EEG system (64
channels and sampling rate of 2048 Hz). The brain signals are decoded and
classified using the method applied and presented in the previous work [6], based
on the spectral regularization matrix classifier [20][21], that we recall here.
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The EEG signals, of covariance matrices C considered as input, are classified
into two classes, labelled with the variable k, with respective output probabil-
ities (at sampled time t): P (kt = +1|Ct) =

1
1+exp(−at)

, and P (kt = −1|Ct) =
exp(−at)

1+exp(−at)
, with at = tr[W�Ct] + b , and where W is the parameter matrix to

be learned (b is a constant-valued bias).
To learnW the minimization problem min

∑n
t=1 ln(1+exp(−ktat))+λ‖W‖1 ,

is solved, λ being the regularization variable (λ = 14 in the application below)
and ‖W‖1 =

∑r
i=1 σi[W] being the spectral l1-norm of W (r is the rank of W

and σi[W] its i-th singular value).
Once the classifier learned, the 7-30 Hz band-pass-filtered measured EEG

signals are decoded online, by down-sampling them from 2048 Hz to 128 Hz, and
applying Lapace filtering and common average substraction to remove voltage
bias. Their covariance matrix, initialized at Ct = x�

t xt for the first time step
t = 1, where xt ∈ R1×64 denotes the filtered EEG signals, are updated at
every time step following Ct =

1
N x�

t xt +
N−1
N Ct−1 , and used to compute the

classification probabilities above.
Finally, the three-valued discrete command ct that is sent to the robot is

selected from these probabilities through the following hysteresis (Pthresh = 0.6)

ct =

⎧⎪⎨⎪⎩
+1 if P (kt = +1|Ct) > Pthresh and ct−1 �= +1 ,

−1 if P (kt = −1|Ct) > Pthresh and ct−1 �= −1 ,
0 otherwise .

(1)

4 Coupling the Two Components

The command ct devised in Eq. (1) is sent to the online humanoid whole-body
controller via UDP protocol at 128 Hz frequency and used to modify the planned
and autonomously executed motion of the humanoid robot as described below.

When the robot is executing a step that requires moving a link to a planned
contact location (state“Move Contact Link” of the FSM), then instead of track-
ing directly the goal contact location, we decompose the motion of the the contact
link into two phases: a lift-off phase in which the link first tracks an intermedi-
ate position located at a designated way-point, followed by a touch-down phase
in which the link tracks its final goal location in the contact sequence. This
two-phase decomposition allows the link to avoid unnecessary friction with the
environment contact surface and to avoid colliding with environment features
such as stairs. Each of these two phases correspond to a sub-state of the meta-
state “Move Contact Link” of the FSM, namely “Go to Way-point” and “Go to
Goal” states. Finally, in order to avoid stopping the motion of the contact link at
the way-point and to ensure a smooth motion throughout the step, the transition
between the two sub-states is triggered when the contact link crosses a threshold
plan before reaching the tracked way-point. For clarity of the presentation we
will not go into this detail.

A default position of the intermediate way-point is automatically pre-set by
the autonomous framework using the following heuristic: Let Ps and Pg denote
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v

hv

ct = +1

ct = −1

Ps

Pg

Pw

u

g

z

Fig. 2. Way-point moving strategy. Only the swing foot is represented. In black its
initial position at the beginning of the step, in red its target final position as planned
at the end of the step, in blue its way-point position at mid-step. Left: a default position
is set for the way-point based on its final position. Middle: by sending the command ct
the user can bring up or down the position of the way point (in this case down). Right:
the resulting executed motion of the swing leg.

respectively the step start and goal positions of the contact link, g the gravity

vector, z = −g/‖g‖ the unit vector opposite to g, and u =
−−−→
PsPg/‖−−−→PsPg‖ the unit

vector from Ps to Pg. Finally let v = u× (z×u) be the unit vector normal to u
and in the plan defined by u and z. The way-point Pw is defined as (see Fig. 2)

Pw = Pg − 1
2

−−−→
PsPg + h v , where h is the hand-tuned user-defined parameter

that specifies the height of the steps. The command ct that comes from BCI
decoding system is finally used to modify in real-time this way-point position Pw

by modifying its height h. Let δh denote a desired height control resolution, then
the modified position of the way-point through the brain command ct becomes

Pw(ct) =

{
Pg − 1

2

−−−→
PsPg + (h+ ct δh)v if t = 1 ,

Pw(ct−1) + ct δh v if t > 1 .
(2)

The command ct could have been used in other ways, however two princi-
ples should stand in any BCI low-level control of humanoid motion 1) the full
detailed motion, that cannot be designed joint-wise by the BCI user, should
be autonomously planned and executed from high-level (task-level) command,
and 2) the brain command can then be used to locally correct or bias the au-
tonomously planned and executed motion. The way-point is a key-feature to be
controlled according to these two principles as it helps overcome the shortcom-
ings of the autonomous collision-avoidance constraint in the QP controller. This
collision-avoidance constraint acts as a repulsive field when the way-point of the
link acts as an attracting field of the contact link. The resultant field can display
local extrema corresponding to equilibrium situations in which the link stops
moving though without completing its tracking task. Manual user intervention,
here through the brain command, is then necessary to un-block the motion of
the link by moving the way-point. The brain command is thus used for low-level
correction of the inherent limitations of autonomous planning endeavours.
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5 Illustrative Experiment

We describe now the experiment we designed (Fig. 3, left) (and illustrative video
which can be downloaded at www.cns.atr.jp/~karim/iconip2013.wmv).

Fig. 3. Left: Experiment setup. Right: Initial and goal configurations.

An initial and goal configurations are pre-specified manually by the user
among a finite number of locations in the environment (Fig. 3, right). In this
case the initial configuration is standing in front of a stair and the goal task is
to go up on the stair. This selection is for now done manually, but it can later
be selected also through a brain command by embedding the strategy described
in this work within a hierarchical framework such as in [3][4], that will switch
between the behaviour of selecting the high-level goal task and the low-level mo-
tion control. Offline, the framework autonomously plans the transition sequence
(Fig. 4), then the online controller is executed (Fig. 5).

Fig. 4. The autonomously offline planned sequence of intermediate static configura-
tions. The second posture removes the left foot contact from the stance by shifting all
the weight on the right foot support. The third posture moves the now support-free
left foot and adds it to the stance, etc.

The user wears an EEG cap and is trained with 3 training sessions of approx-
imately 5 min each to learn the parameter of the classifier, through a MI task
consisting of imagining respectively left arm and right arm movements for going
up and down. The user has visual feed-back from the simulator on the desktop
computer screen. The decoding of the BCI command is done in real-time and

www.cns.atr.jp/~karim/iconip2013.wmv
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Fig. 5. Tracking the BCI-controlled way-point, ie. the user controlled motion: in the
extreme left figure the small black sphere in front of the swing foot indicates the way-
point position that the user can control. When the swing foot reaches the black sphere
(second figure) it keeps following it according to the user commands (go up or down)
in the subsequent figures (up then down then up).

implemented in Matlab, and the brain command is then sent via UDP protocol
to the dynamics simulator process implemented in C++.

We tested the way-point control strategy in the second step of the motion (the
first contact-adding step along the sequence). The user controlled the position
of a black sphere that represents the way-point tracked by the foot of the robot
in real-time, while autonomously keeping balance and avoiding self-collisions,
joint limits, and collision with the environment. We then externally (manually)
triggered the FSM transition to the following step and left the autonomous
controller complete the motion without brain control. See the video.

Fig. 6 illustrates the control performances of the BCI decoder. Table 1
gives computation time figures executed on a Dell Precision T7600 Worksta-
tion equipped with a Xeon processor E5-2687W (3.1GHz, 20M).

0 50 100 150 200 250 300 350
−1

0

1

0 50 100 150 200 250 300 350
0

0.5

0 50 100 150 200 250 300 350
−1

0

1

0 50 100 150 200 250 300 350
−1

0

1

Fig. 6. BCI decoding performances. On the horizontal axis is step number t. From top
to bottom and left to right: the command cue in thick blue, the decoded brain activities
(P (kt = +1|Ct)) in thin red, the probability 0.5 thresholded estimated classified label
(ie. P (kt = +1|Ct) ≥ 0.5 or < 0.5) in thick red point marker, the command ct sent to
the robot (based on the threshold Pthres = 0.6) in thick green.

From this experiment, we confirmed that the MPC framework can be coupled
with the BCI decoding system in real-time and that the robot can safely realize
the task while receiving and executing the brain command.

Table 1. Execution time figures (not including OpenGL rendering time)

Offline planning 2.7sec
Average online control command (QP) (@ 200Hz) 2.661ms

Average online simulation step (@ 1kHz) 0.389ms
BCI classifier training and learning session ∼ 30min

Average online BCI signal buffering (@ 2048Hz) 0.137ms
Avg online BCI classification (@ 128Hz) no control signal sent (ct = 0) 0.204ms
Avg BCI classification (@ 128Hz) control signal sent (ct = +1 or −1) 6.20ms
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6 Discussion and Future Work

This work demonstrated the technical possibility of real-time online low-level
control of whole-body humanoid motion using motor-imagery-based BCI.

We achieved it by coupling an existing EEG decoder and whole-body multi-
contact acyclic planning and control framework. This coupling allowed us to
control a one-dimensional feature of the high-DOF whole-body motion, designed
as the generalized height of moving link way-point, in a discrete way.

We aim now at continuous control of two-dimensional feature of this whole-
body motion, allowing not only the control of the tracked way point but also of a
corresponding threshold plan that decides when to trigger the transition between
the lift-off and touch-down phases. We believe this can be achieved based on the
previous work done for example on two-dimensional cursor control [7].

Finally, we aim at porting this framework from the simulation environment
to the real robot control.
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Abstract. So far, we have shown that, using difference signals of a plant to be
controlled, a single CAN2 (competitive associative net) is capable of leaning
piecewise Jacobian matrices of nonlinear dynamics of the plant. Here, the CAN2
is an artificial neural net for learning efficient piecewise linear approximation of
nonlinear function. Furthermore, a multiobjective robust controller is obtained by
means of combining the GPC (generalized predictive controller) and a switching
scheme of multiple CAN2s to cope with plant parameter change and control ob-
jective change. This paper focuses on an improvement of control performance
by means of replacing single CAN2 by bagging CAN2. We analyze to show the
effectiveness of the present method via numerical experiments of a crane system.

Keywords: Multiobjective robust control, Switching of multiple bagging CAN2s,
Difference signals, Generalized predictive control, Jacobian matrix of Nonlinear
plant.

1 Introduction

So far, we have constructed a robust controller which uses multiple CAN2s (compet-
itive associative nets) and difference signals of the plant to be controlled [1, 2]. Here,
the CAN2 is an artificial neural net introduced for learning efficient piecewise linear
approximation of nonlinear function by means of competitive and associative schemes
[4–6]. Thus, a CAN2 is capable of leaning piecewise Jacobian matrices of nonlinear
dynamics of a plant by means of using difference signals of the plant for the input to
the CAN2, In [1], we have constructed a robust controller using multiple CAN2s which
have learned the differential dynamics of the plant for several parameter values. In [2],
we have focused on a multiobjective robust control, where we consider two conflicting
control specifications for a crane system: one is to reduce settling time with allowable
overshoot and the other is to reduce overshoot with allowable settling time. Our method
provides a controller to flexibly cope with those specifications by means of switch-
ing two sets of CAN2s obtained through several control and learning iterations. From
the point of view of multiobjective control, there are a number of research studies [8].
However, the control of the crane itself is neither so easy nor clarified so much for such
methods to be applied.
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In this paper, we try to improve the control performance by means of using bagging
CAN2s. Here, the bagging (bootstrap aggregation) scheme is expected to reduce the
variance and the overfitting of the prediction by a single learning machine [9]. Thus,
we expect that bagging CAN2s provide more stable control performance than single
CAN2s in the present application. In the next section, we show a formulation of the
present method. In Sect. 3, we examine the effectiveness of the method through numer-
ical experiments applied to a nonlinear crane system involving changeable parameter
values, such as rope length and load weight.

2 Multiobjective Robust Controller Using Difference Signals and
Bagging CAN2s

We formulate the controller using difference signals and multiple bagging CAN2s to
cope with parameter change.

2.1 Plant Model Using Difference Signals

Suppose a plant to be controlled at a discrete time j = 1, 2, · · · has the input u[p]
j and

the output y[p]
j . Here, the superscript “[p]” indicates the variable related to the plant for

distinguishing the position of the load, (x, y), shown below. Furthermore, we suppose
the dynamics of the plant is given by

y[p]
j = f(x[p]

j ) + d[p]
j , (1)

where f(·) is a nonlinear function which may change slowly in time and d[p]
j represents

zero-mean noise with the variance σ2
d . The input vector x[p]

j consists of the input and

output sequences of the plant as x[p]
j �

(
y[p]
j−1, · · · , y[p]

j−ky
, u[p]

j−1, · · · , u[p]
j−ku

)T

, where

ky and ku are the numbers of the elements, and the dimension of x[p]
j is given by k =

ky +ku. Then, for the difference signals Δy[p]
j � y[p]

j − y[p]
j−1, Δu[p]

j � u[p]
j −u[p]

j−1, and

Δx[p]
j � x[p]

j − x[p]
j−1, we have the relationship Δy[p]

j � fxΔx[p]
j for small ‖Δx[p]

j ‖,
where fx = ∂f(x)/∂x

∣∣
x=x

[p]
j−1

indicates the Jacobian matrix (row vector). If fx does

not change for a while after the time j, then we can predict Δy
[p]
j+l by

Δ̂y
[p]

j+l = fxΔ̃x
[p]

j+l (2)

for l = 1, 2, · · · , recursively. Here, Δ̃x
[p]

j+l = (Δ̃y
[p]

j+l−1, · · · , Δ̃y
[p]

j+l−ky
, Δ̃u

[p]

j+l−1,

· · · , Δ̃u
[p]

j+l−ku
)T , and the elements are given by

Δ̃y
[p]

j+m =

{
Δy[p]

j+m for m < 1

Δ̂y
[p]

j+m for m ≥ 1
and Δ̃u

[p]

j+m =

{
Δu[p]

j+m for m < 0

Δ̂u
[p]

j+m for m ≥ 0.
(3)
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Fig. 1. Schematic diagram of (a) CAN2 and (b) overhead traveling crane system

Here, Δ̂u
[p]

j+m (m ≥ 0) is the predictive input (see Sect. 2.3). Then, we have the predic-
tion of the plant output from the predictive difference signals as

ŷ[p]
j+l = y[p]

j +
l∑

m=1

Δ̂y
[p]

j+m. (4)

2.2 Single and Bagging CAN2 for Learning and Identifying Nonlinear Plants

A single CAN2 has N units. The ith unit has a weight vector wi � (wi1, · · · , wik)
T ∈

IRk×1 and an associative matrix (row vector) M i � (Mi1, · · · ,Mik) ∈ IR1×k for
i ∈ I = {1, 2, · · · , N} (see Fig. 1(a)). For a given dataset D[n] = {(Δx[p]

j , Δy[p]
j ) |

j = 1, 2, · · · , n} obtained from the plant to be controlled, we train a CAN2 by feeding
the input and output of the CAN2 as (x[can2], y[can2]) = (Δx[p]

j , Δy[p]
j ). We employ an

efficient batch learning method shown in [7]. Then, for an input vectorΔx[p], the CAN2
after the learning predicts the output Δy[p] = fxΔx[p] by

Δ̂y
[p]

= M cΔx[p], (5)

where c denotes the index of the unit selected by

c = argmin
i∈I

‖Δx[p]
j −wi‖2. (6)

For a bagging CAN2, we generate a number of bags D[nα
�,,l] for l = 1, 2, · · · , b

by means of resampling with replacement from D[n], where b is the number of bags,
nα denotes the number of elements in each bag and α is a constant which we call
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bagsize ratio. Let CAN2[l] be a single CAN2 for learning the lth bag D[nα
�,,l]. After

the learning for all bags, we execute the bagging prediction of Δy[p] = fxΔx[p] by

Δ̂y
[p]

=
1

b

b∑
l=1

Δ̂y
[p][l]

= M [bag]Δx[p]. (7)

Here, Δ̂y
[p][l]

= M [l]
c Δx[p] and M [bag]

c = (1/b)
∑b

l=1 M
[l]
c , where M [l]

c denotes M c

in (5) selected by (6) for CAN2[l].
As we have explained in [2], the Jacobian matrix fx is not the function of Δx, but

a Jacobian matrix fz = ∂f/∂z for an enlarged differential vector Δz[p]
j = (Δy[p]

j−1,

· · · , Δy[p]
j−k′

y
, Δu[p]

j−1, · · · , Δu[p]
j−k′ ) for k′y = k + ky and k′u = k + ku is considered

to be a function of Δz when the plant parameter does not change for a while. This
indicates that we can estimate Jacobian matrix if we observe the input and output for
a certain duration of time of the plant. This conjecture is supposed to be applicable to
many nonlinear plants. Thus, with Δx

[p]
j in (6) replaced by an enlarged Δz

[p]
j , we can

select an appropriate unit corresponding to the Jacobian matrix.

2.3 GPC Using Difference Signals

The GPC (Generalized Predictive Control) is an efficient method for obtaining the pre-
dictive input û[p]

j which minimizes the following control performance index [10]:

J =

Ny∑
l=1

(
r[p]
j+l − ŷ[p]

j+l

)2

+ λu

Nu∑
l=1

(
Δ̂u

[p]

j+l−1

)2

, (8)

where r[p]
j+l and ŷ[p]

j+l are desired and predictive output, respectively. The parametersNy ,

Nu and λu are constants to be designed for the control performance. We obtain û[p]
j by

means of the GPC method as follows; the CAN2 at a discrete time j can predict Δy[p]
j+l

by (2) and then ŷ[p]
j+l by (4). Then, owing to the linearity of these equations, the above

performance index is written as

J = ‖r[p] −GΔu[p] − y[p]‖2 + λu‖Δ̂u‖2 (9)

where r[p] =
(
r

[p]
j+1, · · · , r[p]

j+Ny

)T

and Δ̂u
[p]

=
(
Δ̂u

[p]

j , · · · , Δ̂u
[p]

j+Nu−1

)T

. Fur-

thermore, y[p] =
(
y

[p]
j+1, · · · , y[p]

j+Ny

)T

and y
[p]
j+l is the natural response ŷ

[p]
j+l of the

system (1) for the null incremental input Δ̂u
[p]

j+l = 0 for l ≥ 0. Here, we actually have

y[p]
j+l = y[p]

j +
∑l

m=1 Δy
[p]
j+m from (4), where Δy

[p]
j+l denotes the natural response of

the difference system of (2) with Jf replaced by M c. The ith column and the jth row
of the matrix G is given by Gij = gi−j+N1 , where gl for l = · · · ,−2,−1, 0, 1, 2, · · · is
the unit step response y[p]

j+l of (4) for ŷ[p]
j+l = û[p]

j+l = 0 (l < 0) and û[p]
j+l = 1(l ≥ 0). It is

easy to derive that the unit response gl of (4) is obtained as the impulse response of (2).

Then, we have Δ̂u
[p]

which minimizes J by Δ̂u
[p]

= (GTG+λuI)
−1GT (r[p]−y[p]),

and then we have û[p]
j = u

[p]
j−1 + Δ̂u

[p]

j .
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2.4 Control and Training Iterations

To improve the control performance, we execute iterations of the following phases.

(i) control phase: Control the plant by a default control schedule at the first iteration,
and by the GPC using the bagging CAN2s obtained by the training phase otherwise.

(ii) training phase: Train the bagging CAN2s with the dataset D[n] =

{(Δx[p]
j , Δy[p]

j |j = 1, 2, · · · , n)} obtained in the control phase.

The control performance at an iteration depends on the bagging CAN2 obtained at the
previous iterations. So, for the actual control of the plant, we use the best bagging
CAN2 obtained through a number of iterations. We store and selectively use multiple
best bagging CAN2s for multiple objectives in multiobjective control.

2.5 Switching Multiple Bagging CAN2s for Robustness to Parameter Change

To cope with parameter change of the plant, we employ the following method to switch
bagging CAN2s. Let CAN2[bag][θs] denote the best bagging CAN2 obtained for the
plant with parameter θs (s ∈ S = {1, 2, · · · , |S|}) through the control and training
iterations as described above.

Step 1: At each discrete time j in the control phase, obtain M [bag][θs] for all s ∈ S.
where M [bag][θs] denotes M [bag] given in (7) of CAN2[bag][θs].

Step 2: Select the s∗th bagging CAN2, or CAN2[bag][θs∗ ], which provides the mini-
mum MSE (mean square prediction error) for the recent Ne outputs,

s∗ = argmin
s∈S

1

Ne

Ne−1∑
l=0

‖Δy[p]
j−l − Δ̂y

[p][s]

j−l )‖2 , (10)

where Δ̂y
[p][s]

j−l is the predictive output of CAN2[bag][θs] at time j − l.

3 Numerical Experiments of Crane System

In order to examine the effectiveness of the present method, we execute numerical ex-
periments on the following crane system shown in [2].

3.1 Overhead Traveling Crane System

We consider the overhead traveling crane system shown in Fig. 1(b). From the figure,
we have the position and motion equations as

(x, y) = (X + r sinφ, r cosφ) (11)

m(ẍ, ÿ) = (−T sinφ−mCφ̇ cosφ,mg − T cosφ−mCφ̇ sinφ) (12)

MẌ = F + T sinφ (13)
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where (x, y) and m are the position and the weight of the suspended load, (X, 0), M
and F are the position, weight and driving force of the trolley, r and φ are the length
and the angle of the rope, T is the tension of the rope, and C is the viscous damping
coefficient. From (11) and (12), we have the nonlinear second order differential equation
of φ given by rφ̈+ (C + 2ṙ)φ̇+ g sinφ+ Ẍ cosφ = 0. Thus, with (13), the transition

of the state x =
(
φ, φ̇,X, Ẋ

)T

is given by

ẋ = h(x) =

⎡⎢⎢⎢⎢⎢⎣
φ̇

−C + 2ṙ

r
φ̇− g

r
sinφ− F + T sinφ

rM
cosφ

Ẋ
F + T sinφ

M

⎤⎥⎥⎥⎥⎥⎦ , (14)

where T = m

√
(ẍ+ Cφ̇ cosφ)2 + (ÿ − g + Cφ̇ sinφ)2 is also a function of x. The

control objective is to move the horizontal position of the load, x = X + r sinφ, to a
destination position xd by means of operating F .

3.2 Parameter Settings

The control objective is to move the load position of the crane from x = 0 to the
destination position xd = 5m within the overshoot xOS less than 100mm. We obtain
discrete signals by u[p]

j = F (jTv) and y[p]
j = x(jTv) with (virtual) sampling period

Tv = 0.5s. Here, we use virtual sampling method shown in [3], where the discrete
model is obtained with Tv (virtual sampling period) while the observation and operation
are executed with shorter actual sampling period Ta = 0.01s. We use k′y = k′u = 4 for

enlarged input vector Δx[p]
j , and Ny = 20, Nu = 1 and λu = 0.01 for the GPC. We

used Ne = 8 samples for (10).
We use a model crane with trolley weight M = 100kg, damping coefficient C =

0.5m/s, maximum driving force Fmax = 10N. We denote the crane with the rope length
r and load weight m by CRANE[r,m] or CRANE[θ] for θ = (r,m). We examine the
robustness to 90 combinations of r = 2, 3, · · · , 10 [m] and m = 10, 20, · · · , 100 [kg].
Before this examination, we train CAN2s with CRANE[θs] for θs = (2, 10), (2,100),
(10,10), (10,100) for s = 1, 2, 3, 4, respectively. Let CAN2[θs]OS and CAN2

[θs]
ST denote

the best CAN2 which have achieved smallest overshoot and settling time, respectively,
for CRANE[θs] through 20 control and training iterations. Here, at each iteration, we
use the data of the current and previous iteration for the dataset to train the CAN2
because the number of obtained data becomes huge and time consuming as the number
of iterations increases and the control performance does not seem improved even if we
use all data. In order to uniquely select the CAN2, the overshoot xOS and the settling
time tST are ordered by xOS + εtS and tST + εxOS, respectively, with small ε = 10−5.
We have used the set of CAN2s, or CAN2[θS]OS = {CAN2[θs]OS |s ∈ S} and CAN2

[θS]
ST =

{CAN2[θs]ST |s ∈ S}, for the present switching controller. We similarly obtain the sets of

bagging CAN2s, i.e. CAN2[bag][θS]
OS and CAN2

[bag][θS]
ST . We use the number of bags to
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Table 1. Statistical summary of overshoot and settling time obtained in the control of the crane
for 90 combinations of rope lengths and load weights. The boldface figures indicate the best
(smallest) result in each block.

CAN2 tuned N for settling time tST [s] overshoot xOS[mm]
employed (θ1,θ2,θ3,θ4) mean min max std mean min max std

CAN2
[θS ]
ST (20,30,20,8) 21.4 19.6 24.1 0.8 22.4 0 67 13.9

CAN2
[bag][θS ]
ST (30,20,6,8) 22.0 19.1 26.0 1.2 11.4 0 57 12.3

CAN2
[θS ]
OS (30,20,10,6) 27.1 22.4 36.4 2.6 3.3 0 38 5.6

CAN2
[bag][θS ]
OS (20,30,20,8) 26.1 19.6 29.7 2.4 0.7 0 38 4.1

CAN2
[bag][θ+

S
]

OS (20,30,20,8) 25.2 21.3 30.7 1.9 0.2 0 5 0.8

be b = 10 and the bag size ratio α = 0.7. We have optimized the number of units for
each single and bagging CAN2 from N = 40, 30, 20, 10, 8, 6, 4, which indicates the
number of piecewise regions of piecewise linear approximation by the CAN2.

3.3 Results and Analysis

A statistical summary of achieved overshoot xOS and settling time tST is shown in
Table 1, and four examples of time course of the input F and the output X and x for
the best and the worst control using bagging CAN2s is shown in Fig. 2. From Fig. 2, we
can see the performance in time by the best (top) and the worst (bottom) controllers for
reducing settling time (left) and overshoot (right), respectively.

From Table 1, we can see that all controller has achieved overshoot less than the al-
lowable 100mm. The top two rows indicate the results by the controllers for reducing
settling time, and we can see that the mean, maximum (max) and standard deviation
(std) of the settling time are not improved by the bagging CAN2

[bag][θS]
ST , while other

performance is improved. The third and fourth rows indicate the results by the con-
trollers for reducing overshoot, and we can see that all values are improved (reduced)
by bagging CAN2

[bag][θS]
OS from single CAN2

[θS]
OS .

In order to examine these results precisely, we show the settling time and overshoot
for each of 90 parameter values in Fig. 3. From the figure on the left, we can see that
single CAN2

[θS ]
ST has achieved better performance than bagging CAN2

[bag][θS]
ST on av-

erage and it does not seem reasonable to improve the performance from the result of
the bagging CAN2

[bag][θS]
ST . On the other hand, the result of overshoot on the right of

Fig. 3 shows that bagging CAN2
[bag][θS]
OS has achieved no overshoot (xOS = 0) ex-

cept 8 cases, and the biggest overshoot xOS = 38mm occurs at (r,m) = (2, 80).

Thus, we train to make a new bagging CAN2
[bag][2,80]
OS and add it to CAN2

[bag][θS]
OS

as CAN2
[bag][θ+

S ]

OS = CAN2
[bag][θS]
OS ∪ CAN2

[bag][2,80]
OS . The performance achieved by

CAN2
[bag][θ+

S ]
OS is shown in the bottom row of Fig. 1 and in the right of Fig. 3. As we

can see that the mean, maximum (max) and standard deviation (std) are improved from
CAN2

[bag][θS]
OS , and the number of cases accompanied with positive overshoot are re-

duced to 5 from 8.
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Fig. 2. Examples of time course of x[m], X[m] and F [10N]. Among the control for 90 parameter
values, the results of the smallest (best) and biggest (worst) settling time by CAN2

[bag][θS ]
ST are

shown in top left and bottom left, respectively, and those of the smallest and biggest overshoot by
CAN2

[bag][θS ]
OS are shown in top right and bottom right, respectively.
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Fig. 3. Experimental result of settling time tST [s] (left) and overshoot xOS [mm] (right) in the
control of the crane for 90 combinations of rope lengths r[m] and load weights m[kg]. The hori-
zontal axis indicates the parameter values ordered as (r,m) = (2, 10), (2, 20), · · · , (10, 100).
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Here, note that we have a different result in our previous study [2], where the mean
and the maximum overshoot are 0.02 and 2, respectively, but the mean settling time are
32.0s by CAN2

[θS]
OS . The difference is owing that a constant number of units N = 20 for

all CAN2[θs]OS (s = 1, 2, 3, 4) is used in [2] which derives smaller overshoot but larger
settling time on average. By means of tuning N for each θs in the present experiments,
we have achieved smaller settling time while the overshoot is reduced by augmenting
the set of bagging CAN2s as shown above.

4 Conclusion

We have focused on an improvement of control performance by means of replacing sin-
gle CAN2s by bagging CAN2s of the robust controller using difference signals which
we are developing. Via numerical experiments of a crane system, we have shown the
effectiveness of the present method. From the point of view of multiobjective control,
two objectives to reduce settling time and overshoot have different properties. Namely,
in the present method, the settling time is reduced by tuning the number of units, N ,
of the CAN2s, while the overshoot is reduced by using bagging CAN2s replacing sin-
gle CAN2s and the augmentation of bagging CAN2(s) for reducing plant-parameter-
specific overshoot(s). We would like to analyze the present method much more in our
future research, especially the effect and the role of the enlargement of the dimension-
ality of the input vector to the CAN2.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
24500276.
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Abstract. Previous work showed that unsupervised layer-wise pre-
training can be used to overcome the difficulty of training a deep ar-
chitecture. In this paper, we address one of the limitations when using
unsupervised models like regularized autoencoders to learn features that
we hope to be useful for a subsequent supervised task, namely their blind-
ness to that specific task. We propose to change the cost function to focus
on accurate reconstruction of input features that seem more useful for
the supervised task. This is achieved by using A-norm in the minimized
reconstruction error instead of Euclidean-norm. Through the choice of an
appropriate A-matrix, the capacity of the model can be steered towards
modeling relevant information for the classification task. Comparative
experiments with the proposed denoising autoencoder variant show that
this way of proceeding yields extracted features that achieve better clas-
sification performance on several datasets.

Keywords: Neural Network, Deep Learning, Semi-Supervised Learn-
ing, Pre-training, Learning Representation, Autoencoder, Denoising Au-
toencoder, Convolutional Net.

1 Introduction

Both theoretical studies [1, 23] and many practical successes [19–21] demonstrate
the advantage of using deep architectures to model complex data distributions
and to achieve good classification performance on chal-lenging recognition tasks.
It is believed that deep multi-layered models can learn more complex functions
producing more meaningful representations [2, 3]. Similarly [4] showed empiri-
cally that deeper layers are able to learn more complex features than shallow
ones. Training deep network is a difficult optimization problem [5]. But much
progress has been made with the seminal work on Deep Belief Networks [25]
that uses layer-by-layer pre-training of Restricted Boltzmann Machine to initial-
ize each layer of the deep network. It has since been shown that various forms
of regularized autoencoders can be used instead of RBMs [6, 18]. Unlike PCA
or ICA, RBMs and autoencoders are able to produce non-linear features and
can thus be stacked to build a deep architecture [7, 18]. Finally, a deep network
is initialized with the parameters obtained during pre-training and fine-tuned

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 328–335, 2013.
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using the labeled data. This makes optimization faster by starting from a good
initialization and has also been shown to have a beneficial regularization effect
[8]. In this paper, we concentrate on improving the features extracted by au-
toencoders. Our main motivation for the present work is the observation that
the current way of pre-training, being purely unsupervised, is blind to the super-
vised task we ultimately want the deep network to solve (such as classification).
It does not exploit valuable knowledge of the label, and could thus learn fea-
tures that remove or deemphasize input information that would be useful for
predicting the labels. In the present work we instead investigate using a form of
semi-supervised learning during the pre-training phase. Our hypothesis here is
that we can exploit the large amount of unlabeled data, using an unsupervised
model, but without completely ignoring the information contained in the few
labeled data. At the end of the day, we care about the features that are relevant
for the desired supervised task. Yet training (unsupervised) in a blind way may
not give us the best explanatory features for classification. Luckily, this can be
fixed with a very simple change to the reconstruction cost function, specifically
by choosing a more appropriate metric for the reconstruction error, as we will
describe in section 3. We validated our hypothesis by applying the new cost func-
tion on different da-tasets and we showed that choosing the right metric gives
a good boost to the classifi-cation accuracy. The paper is organized as follows;
section 2 reviews briefly different types of autoencoders. Section 3 describes our
semi-supervised autoencoder approach and we provide experimental validation
of the idea in Section 4.

2 Autoencoder Variants

Basic Autoencoder (AE). Introduced back in the eighties [9], it is a special
kind of neural network which has its input as the target. At that time it was used
for dimensionality reduction. We start by encoding the input x to get a lower
dimensional representationf(x) and from that representation we try to recon-
struct the input again as g(f(x)). Training will minimize the total discrepancy
between reconstruction and original input using squared error L. Formally, the
encoding, decoding and the cost function can be expressed as:

f(x) = h = sigmoid(Wx+ b) . (1)

g(h) = o = sigmoid(WTh+ c) . (2)

L(x) =
∑

x∈D
||g(f(x))− x||2 . (3)

Denoising Autoencoder (DAE). The idea of the DAE [10] is to corrupt
input (x̆) and try to reconstruct back the uncorrupted one (x) so that we learn
more robust and useful features than with the basic AE. More formally, we will
have:

f(x̆) = h = sigmoid(Wx̆+ b) . (4)

L(x) =
∑

x∈D
||g(f(x̆))− x||2 . (5)
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Other Regularized Autoencoders. There are several other types of autoen-
coders which can be considered as regularized versions of the basic AE. Con-
tractive Autoencoder [11] was inspired from the DAE but uses an analytical
approach to induce robustness instead of using random corruptions of the input.
Alternatively, sparse autoencoders [6, 12, 13] impose a sparsity constraint on the
hidden representation. Predictive Sparse Decomposition [14] which can be seen
as a kind of AE is used as a practically successful blend of sparse coding [24]
and autoencoders.

3 Semi-Supervised Autoencoder (SSAE)

All unsupervised pre-training methods are based on the hypothesis that the
marginal probability distribution of the input p(x) contains some relevant in-
formation about the conditional probability of the label given the input p(y|x)
[15]. However, depending on the task it is unclear how helpful modeling the
marginal input distribution will be for the goal supervised task. Especially since
the unsupervised models are typically capacity limited (which is necessary for
good generalization), what aspects of the distribution will they devote their ca-
pacity to modeling? Imagine that we train an autoencoder on face images, how
much information do the resulting features learned in this purely unsupervised
way retain about the faces emotions? Are these features also helpful if we want
to know whether the person is male or female? We thus propose to steer the
autoencoder variant towards focusing its capacity for modeling aspects of the
input that are more likely relevant for the supervised task. For this purpose,
we will use simple knowledge easily extracted from p(y|x) using the few labeled
data. Let x1, x2 and x3 be visible variables and y be the target variable (e.g.
class) we want to predict later. If the information of y given x1 is significantly
larger than the information of y given x2 then the model should concentrate
more on explaining (or retaining information about) x1 rather than x2 because
the classifier may benefit from it more. On the other hand, if knowing x3 gives
us nothing about y, then there is no need to waste model capacity in modeling
x3. Since our models are capacity limited, it is worth to figure out the impor-
tant factors to concentrate on during the unsupervised phase. The pre-training
phase can thus disregard input features that are deemed mostly irrelevant to the
supervised task from an early stage. We expect that pre-training each layer in
this way, since it already acknowledges the target, will learn parameters and fea-
tures likely be closer to an optimal solution for the supervised task. We believe
that this can also help in the later supervised fine-tune phase in deep networks,
leading to fewer vanishing gradient problems during back propagation. To steer
the capacity of an autoencoder we propose a simple change to the reconstruc-
tion error that can be applied to any autoencoder type. We will use DAE, as an
example, to study the effect of the new learning criterion. We call the resulting
approach semi supervised denoising autoencoder (SSDAE). If we denote g(f(x̆))
in equation (5) as r(x̆), then the usual cost function with squared reconstruction
error for one sample can be expressed as:
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L(x) = (r(x̆)− x)2 = (r(x̆)− x)T I(r(x̆)− x) . (6)

where I is the identity matrix.
We propose to replace I by a new matrix A and thus minimize the A norm

of the reconstruction error:

L(x) = (r(x̆)− x)TA(r(x̆)− x) . (7)

where A is a matrix that was chosen to reflect the dependency between the
visible vector xand the label y. The only constraint that A must satisfy is to
be positive semi-definite in order to have a nonnegative cost. Note that if A
is not full rank, then there will be a subspace that has zero cost or zero A
norm (the null-space of A). If reconstruction is imperfect along directions from
this null-space, the cost wont penalize it. Thus model capacity can be employed
towards better modeling input information more likely to be useful for later
predicting y. The tricky question is how to choose A. We may define it based on
prior knowledge or belief regarding what the most relevant in the input for the
supervised task is. Alternatively, we can define a diagonal A based on a measure
the mutual information I[xi, y] between each input variable xi and the label:

I[xi, y] = H [y]−H [y|xi] . (8)

H [y] = −
∑

p(y) ln p(y) . (9)

H [y|xi] = −
∑

p(y, xi) ln p(y|xi) . (10)

Or we can define a diagonal A using a heuristic based on the importance given
to each input feature in the solution learned by a standard supervised learning
algorithm such as linear SVM, logistic regression, random forest, etc. . .

4 Experiments and Results

All experiments were conducted using python and theano [17]. SSDAE was tested
on several datasets: Toronto Faces Dataset (TFD) [26], MNIST and CIFAR100.
Both DAE and SSDAE with one hidden layer, rectifier activation function, and
tied weights were launched and the learned hidden representation was finally
fed to a linear SVM. For simplicity, all experiments used a diagonal matrix A
(although a more general matrix form could conceivably be used). Two different
heuristics were used to build it:

1. Hand-crafted A using a nave heuristic based on prior knowledge of the task:

(a) For MNIST we assigned each pixel a weight proportional to its proba-
bility of being active as measured on average in the training set. This
means that back-ground pixels which are always zeros on all digits will
have no effect on the cost function.
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(b) For TFD, whose examples are frontal aligned faces, we reasoned that
mouth and eyebrow regions were more important than others (like cheeks)
for figuring out the emotion. So we attributed pixels in these regions a
weight of 1, while all others were given a weight of 0.5.

2. A is chosen based on the importance given to each input feature in the
solution learned by a random forest classifier [16]. Specifically, bagging is
used to build different decision trees using m different attributes from n
where m < n. e.g. n = 48 ∗ 48 for TFD. The more often the attribute is used
in higher layers, the more im-portant it is deemed. The figure below shows
the resulting pixel importance ob-tained for MNIST and TFD.

Fig. 1. Pixels Importance for TFD and MNIST using Random Forests

Table 1 shows that SSDAE with an A matrix built based on the second cri-
terion gives the best classification result on all tested datasets. Note that SSDAE
achieves a better performance than regular DAE on both TFD and MNIST. On
the other hand, no tangible benefit is achieved on CIFAR100. This result was
expected since for TFD and MNIST information most relevant for classification
is clearly con-centrated on some pixels more than others (TFD and MNIST are
relatively well aligned) while it is not the case in CIFAR100.

Table 1. Comparision between SSDAE and DAE on different datasets.

TFD (accuracy % )

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Final
SSDAE (hand-crafted) 77.30 75.97 75.81 76.89 73.11 75.82
SSDAE(random forest) 79.57 78.80 76.89 78.08 73.11 77.29
DAE 77.30 76.56 75.93 76.17 72.38 75.67

MNIST (error rate )

SSDAE(random forest) 1.17
SSDAE (hand-crafted) 1.24
DAE 1.28

CIFAR 100 (error rate )

SSDAE(random forest) 29.98
DAE 29.52
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Fig. 2. Some MNIST filters trained using SSDAE and the reconstruction of some
images

Figure 2 shows some of the learned filters for MNIST and the reconstruction
for some images that have never been seen during training. It can be seen that
the recon-struction is noisy for the background, as could be expected.

Finally, we wanted to check if SSDAE helps when we assign its parameters to a
neural network and fine-tune it. To check this hypothesis, we trained an SSDAE
on 9*9 TFD patches centered on pixels whose position was sampled according to
pixels importance distribution (diagonal of A). We then used these parameters to
initialize a convolutional net with one convolutional layer, max-pooling, and one
fully-connected hidden-layer. The motivation for this experiment was to compare
with [22] where a different variation of CAE that disentangles the factors of the
hidden units was trained on TFD random patches, and resulting parameters
were similarly used as initialization for a convolutional net. The approach of
[22] yielded around 1% accuracy boost on the classification compared to CAE
only. In our experiment, we did not use anything to disentangle the factors of
variation. All we did was using the proposed SSDAE for pre-training. Results
are shown in table 2.

Although SSDAE pre-training did not reach 85%, the performance boost ob-
tained with the much simpler principle underlying the modification we propose
in the SSDAE is nevertheless remarkable. As we mentioned earlier, the new
criteria can be tested with any autoencoder type.

Table 2. Comparision between SSDAE and DAE on different datasets

TFD

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Final
SSDAE 85.42 84.33 85.03 85.03 82.48 84.48
(Rifai et al,2012) - - - - - 85.00
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5 Conclusion and Future Work

We have proposed a very simple way to use semi-supervised learning in the
pre-training phase of deep networks, to steer model capacity towards modeling
infor-mation more relevant for the supervised task of interest. We have seen that
simple heuristics can effectively be used to build a better suited reconstruction
metric for autoencoders, producing more useful features for classification. Result-
ing features were empirically shown to significantly improve classification perfor-
mance of SVMs. They were also shown to provide a good initialization point for
deep network fine-tuning, allowing SSDAE to reach performance gains not far
from those obtained by more sophisticated approaches. Future research direc-
tions include: training deeper models with this approach in-vestigating further
heuristics for matrix A, including non-diagonal versions as well as the possibility
to simultaneously learn metric A together with the network parameters.
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Abstract. In the context of supervised learning, the training data for
large-scale hierarchical classification consist of (i) a set of input-output
pairs, and (ii) a hierarchy structure defining parent-child relation among
class labels. It is often the case that the hierarchy structure given a-priori
is not optimal for achieving high classification accuracy. This is especially
true for web-taxonomies such as Yahoo! directory which consist of tens of
thousand of classes. Furthermore, an important goal of hierarchy design
is to render better navigability and browsing. In this work, we propose
a maximum-margin framework for automatically adapting the given hi-
erarchy by using the set of input-output pairs to yield a new hierarchy.
The proposed method is not only theoretically justified but also provides
a more principled approach for hierarchy flattening techniques proposed
earlier, which are ad-hoc and empirical in nature. The empirical results
on publicly available large-scale datasets demonstrate that classification
with new hierarchy leads to better or comparable generalization perfor-
mance than the hierarchy flattening techniques.

1 Introduction

Large-scale web taxonomies, e.g. the Open Directory Project (ODP), consist of
millions of websites, distributed among hundreds of thousand classes which are
arranged in a tree hierarchy. For example, ODP has around 5 million websites
and the hierarchy contains over 1 million classes. Due to the ever-increasing scale
of data from various sources on the web, there is a definite requirement to par-
tially or fully eliminate the manual effort involved in managing such taxonomies.
In this context, large-scale hierarchical classification systems aim to automati-
cally classify documents to target classes using also the hierarchical information.
The main challenge in large-scale hierarchical classification is to exploit the hier-
archical structure to design a scalable classification system which has acceptable
prediction accuracy as well as training and prediction speed. In order to evaluate
the current state of art in this domain, open challenges such as the Pascal Large
Scale Hierarchical Text Classification (LSHTC)1 have been organized.

1 http://lshtc.iit.demokritos.gr/

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 336–343, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://lshtc.iit.demokritos.gr/
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Most approaches exploit the hierarchy structure to design appropriate loss
functions for classification and use it to apply the divide-and-conquer paradigm
to keep the scale of the classification problem manageable. However, the taxon-
omy structure given a-priori as part of the training data may not be best suited
to yield high classification accuracy due to the following reasons:

1. Large-scale web taxonomies are designed with an intent of better user-
experience and navigability, and not for the goal of classification.

2. Taxonomy design is subject to certain degree of arbitrariness based on per-
sonal choices and preferences of the editors.

3. The large-scale nature of such taxonomies poses difficulties in manually de-
signing good taxonomies for classification.

In the recent work by [3] on relatively smaller taxonomies, the impact of arbi-
trariness on loss-function design is minimized by appropriately calibrating the
edge distance between the true and predicted class. In similar spirit of taxonomy
adaptation, approaches based on flattening the hierarchy such as [7,9], have been
proposed in LSHTC for large-scale settings which lead to improvement in clas-
sification accuracy as compared to using the original hierarchy. The motivation
for these hierarchy flattening approaches is to minimize the error propagation
due to a longer cascade from the root to leaves. Hierarchy flattening approaches
remove entire levels in the hierarchy by replacing all the parents in that level by
its children. This is illustrated in Figure 1 where the first and the third levels
of the hierarchy are removed. Such approaches based on flattening entire levels
suffer from the following drawbacks:

– These are based on ad-hoc heuristics and a-priori it is not clear which levels
in the hierarchy should be flattened. This is crucial for hierarchies such as
Yahoo! Directory which have more than 10 levels.

– Excessive flattening leads to increase in training and prediction speed, both
of these factors adversely impact applicability of the resulting hierarchical
classifiers in many scenarios of practical importance.

In order to tackle the incompatibility of the given hierarchy structure among
target classes and the set of input-output pairs in large-scale hierarchical clas-
sification, we propose a principled strategy for adapting the hierarchy to better
suit the classification problem at hand.

1.1 Our Contributions

In this work, we present a margin-based framework for choosing the most appro-
priate candidate nodes for replacement by their children nodes rather than all
the nodes in a level. The proposed approach for taxonomy adaptation is based
on well-founded theoretical results for generalization error analysis of margin-
based classifiers deployed in a tree-based top down cascade [5]. The replacement
is performed only for those classes which are more likely to be confused with
other classes at the same level in the hierarchy. We exploit the margin informa-
tion obtained at optimality while training the one-vs-rest classifiers to determine
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...

... ...

... ... ... ... ...

Fig. 1. Flattening the first and the third levels (right) of the original hierarchy (left)

the extent of confusion for each candidate class. This approach can be seen as
synchronization of the two components of training data, taxonomy information
on one hand and the set of input-output pairs on the other hand.

The proposed method is based on a more principled approach for node re-
placement as compared to ad-hoc methods based on flattening entire layers. As
a result, our method is easily applicable to taxonomy structures in which the
cascade length is arbitrarily long. Another advantage of our approach is that by
choosing the most relevant candidates for replacement, it limits the extent of
flattening and maintains the over-all hierarchical structure.

1.2 Other Related Work

Some of the earlier studies on exploiting hierarchy among target classes for the
purpose of text classification, such as [2,4], in which the number of target classes
were limited to a few hundreds. However, the work by [6] is among the pioneering
in hierarchical classification towards addressing Web-scale directories such as
Yahoo! directory consisting of over 100,000 target classes. The authors analyze
the performance with respect to accuracy and training time complexity for flat
and hierarchical classification. More recently, prevention of error propagation
by applying Refined Experts trained on a validation set was proposed in [1].
In this approach, bottom-up information propagation is performed by utilizing
the output of the lower level classifiers in order to improve classification at top
level. Deep Classification [10] proposes to first identify a much smaller subset
of target classes. Prediction of a test instance is then performed by re-training
Naive Bayes classifier on the subset of target classes identified from the first step.

2 Problem Setup

In single-label multi-class hierarchical classification, the training data can be
represented by a set of input-output pairs S = {(x(i), y(i))}Ni=1 and hierarchical
structure among target classes G. In the context of text classification, x(i) ∈ X
denotes the vector representation of document i in the input space X ⊆ Rd.
Assuming that there are K classes denoted by the set Y = {1 . . .K}, the label
y(i) ∈ Y represents the class associated with the instance x(i). The hierarchy
in the form of rooted tree is given by G = (V , E) where V ⊇ Y denotes the set
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of nodes of G, and E denotes the set of edges with parent-to-child orientation.
Let v0 ∈ V denote the root node of the hierarchy tree. In this setup, the leaves
of the tree which form the set of target classes, which is given by Y = {u ∈
V : �v ∈ V , (u, v) ∈ E}. Since the class hierarchy represents a transition from
general to specialization of a concept as one traverses from root towards leaves,
the documents which belong a particular leaf node also belong to all the nodes
on the path from the root to that lead node.

In the above setup, given a new test instance x, the goal is to predict the class
ŷ. This is done by making a sequence of predictions iteratively in a top-down
fashion starting from the root until a leaf node is reached. At each non-leaf node
v ∈ V , a score fc(x) ∈ R is computed for each child c and the child ĉ with the
maximum score is predicted i.e. ĉ = argmax

c:(v,c)∈E
fc(x).

In addition to being highly accurate for prediction, we also focus on prediction
speed, which are two seemingly contradicting design requirements for a machine
learning algorithm.

The motivation of approaches based on layer flattening such as [7,9] illustrated
in Figure 1 is that by reducing the length of the cascade, the extent of propa-
gation error can be reduced. However, these approaches lead to multiple folds
increase in training time as shown in [9]. Prediction speed also suffers by em-
ploying excessive flattening as studied in the work by [6] showing that the space
complexity of a flat classifier is much higher than a hierarchical model. More-
over, for predicting an unseen test instance in a K class problem, one needs to
evaluate O(K) classifiers in flat classification as against O(logK) classifiers in a
top-down manner. In order to achieve a better trade-off among various metrics
of interest in large-scale hierarchical classification, we next propose a technique
for hierarchy adaptation which not only provides comparable or better perfor-
mance to level flattening techniques but also maintains the overall hierarchical
structure to enjoy faster training and prediction speed.

3 Taxonomy Adaptation in Large-Scale Hierarchical
Classification

In this section, we propose a principled approach to adapt the taxonomy given
a-priori as part of the training data by using the input-output pairs to out-
put a taxonomy which leads to better accuracy. For our analysis, we focus on
L2-regularized L2-loss linear Support Vector Machine (SVM), wherein the deci-
sion function fc(x) is modeled as a linear classifier such that fc(x) = wT

c x. To
learn an SVM-based discriminative classifier for node v, we solve the following
optimization problem for each child c of v

f∗
c = min

wc

⎡⎣1

2
wc

Twc + C
∑

{i:y(i)∈Lv}
(max(0, 1− sgn(y(i) ◦ Lc)wc

Tx(i)))2

⎤⎦ (1)

where Lv denotes the set of leaves in the subtree rooted at node v and C
denotes the parameter for mis-classification penalty. We focus on one-vs-rest
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technique to tackle the multi-class nature of the classification problem of identi-
fying the most relevant child c of parent node v and hence yi and Lc are related
such that

sgn(y(i) ◦ Lc) =

{
+1 if y(i) ∈ Lc

−1 otherwise

3.1 Margin-Based Approach to Taxonomy Adaptation

We derive our intuition from the recently proposed result2 on the generalization
error of maximum-margin classifiers deployed in the tree structure which can be
stated as follows:

Theorem 1. [5] Let m random input-output pairs are correctly classified using
G containing |V| decision nodes with margins {γj, ∀j ∈ G}, then the generaliza-
tion error, with probability greater than 1− δ, is less than

130R2

m
(D′log(4em)log(4m) + |V|log(2m)− log(

2

δ
))

where D′ =
∑|V|

j
1
γ2
j

and R is the radius of the ball containing the distribution’s

support.

Though the above result is stated for the separable case, it indicates that in
order to achieve better generalizability, one needs to decrease the quantity D′.
Clearly, this quantity can be reduced if one removes those nodes from the tree
which correspond to lower margin. The decision nodes with lower margin corre-
spond to those classification problems which are relatively harder as compared
to those nodes at which higher margin can be achieved. This is illustrated in
Figure 2, in which not all nodes at a layer are replaced by their children but
only those for which the margin is among the lowest. This strategy essentially
lead to reducing the effective VC dimension or the Rademacher complexity of
the overall hierarchical classifier and leading to a reduction in the generalization
error in accordance with the Theorem 1.

Since we deal with the non-separable case, we need to remove those nodes for
which the inverse of the margin and empirical error are jointly maximum. This
quantity is captured for each decision node c ∈ {V/v0} by the optimal value
obtained from the objective function value f∗

c as given in Equation 1. For each
parent node v ∈ V , we consider the respective value of f∗

c ∀c ∈ V , (v, c) ∈ E for
each child c of v. The values f∗

c are sorted in decreasing order, which represents
the preferential ordering of the nodes to be considered for flattening. Top r-
ranked nodes are flattened for which f∗

c is among the highest, where r is chosen
based on the distribution of these values. Typically, the value f∗

c is larger for a
node which has more documents assigned to the leaves of the sub-tree rooted
at that node, node sizes are taken into account in choosing the top r candidate
nodes for replacement. Once the difference between the f∗

c values of the current

2 The theorem can be found in the supplementary material of [5].
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and next candidate child node is more than the previous difference, the flattening
procedure for the current parent node is stopped. This process is repeated for
all the parent nodes in the hierarchy irrespective of the length of the cascade.
The algorithmic depiction of the procedure is shown in Algorithm 1. Note that
the value of parameter C does not significantly affect the ordering of the nodes
pruned by the proposed algorithm.

Since the algorithm maintains the overall hierarchy structure, it benefits from
the properties of low space complexity and faster prediction, as we demonstrate
in the next section. It was also observed that the resulting hierarchy after ap-
plying the transformation as given by the algorithm leads to more balanced
classification problems at various levels.

Algorithm 1. The proposed comparative evaluation procedure.

Require: a hierarchy G, input-output set S
Train L2-regularized,L2-loss SVM in a top-down manner
gap← 0
for v ∈ V do

Sort the child nodes in decreasing order of f∗
c taking into account the class sizes

Flatten 1st and 2nd ranked child nodes, say c1 and c2
gap = f∗

c1 − f∗
c2

cprev ← c2 � Set the previous flattened node to c2
for c ∈ V − {c1, c2}, (v, c) ∈ E do

if f∗
cprev − f∗

c < gap then
Flatten c
gap← f∗

cprev − f∗
c

cprev ← c � Set the previous flattened node to c
else

break
end if

end for
end for
return G

...

... ...

... ... ...

...

...

Fig. 2. Partial flattening (right) of the original hierarchy (left) for the proposed method
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4 Experiments and Results

Table 1. Dataset Properties

Properties DMOZ-1 DMOZ-2

Tr. Set Size 93,805 36,834
Feature Set Size 347,255 155,641
Target Classes 12,294 3,672
Test Set Size 34,880 36,834

We use the publicly available DMOZ
data set(excluding the validation set)
from the LSHTC 2010 (DMOZ-
1) and a subset of DMOZ from
the LSHTC 2011 (DMOZ-2). The
datasets, after having been pre-
processed by stemming and stopword
removal, appear in the LibSVM for-
mat. Table 1 presents the numeric values corresponding to the important prop-
erties of the dataset.

We compare four strategies to evaluate their impact on classification accuracy
: (i) Fully Hierarchical (FH) technique which uses the original hierarchy, (ii)
Top Level Flattening (TLF) by removing the first layer, (iii) Multiple Level
Flattening by removing first and third levels (MLF) as proposed in [7,9] and
(iv) the proposed Margin-based strategy for Taxonomy Adaptation (MTA). We
do not compare with our previous work on adaptive classifier selection in large-
scale hierarchical classification [8], since the accuracy results using that approach
were marginally better than FH method. We use Liblinear to train the models
for L2-regularized L2-loss support vector classification. In order to maintain
consistency, the value of the penalty parameter C was fixed to 1, for all the four
methods.

As shown in Figure 3, the proposed method MTA achieves comparable or
better accuracy as compared to the entire layer flattening techniques, MLF and
TLF. The s-test [11] (p < 0.001) showed statistical differences of MTA over FH
and TLF. Table 2 presents the comparison on DMOZ-1 dataset for training
time (including re-training), model sizes and prediction speed. Clearly, since
the proposed MTA method preserves the overall hierarchical structure of the
taxonomy it achieves better values for these metrics of practical significance.
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Fig. 3. Accuracy Comparison

Table 2. Comparison of MLF and MTA
Training Time, Model size on hard-disk
and Prediction Time for the DMOZ-1
dataset

Properties MLF MTA

Tr. Time (in hours) 6.3 3.2
Tr. Model Size (in
GB)

7.8 4.2

Pred. Time (in mins) 55 17
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5 Conclusion

We presented a principled method for automatically adapting the given hierar-
chy of classes, in large scale hierarchical classification, to output a new hierarchy
which leads to better generalization. The proposed approach is backed by well-
founded theoretical insights and exploits the margin information to identify those
decision nodes in the hierarchy which correspond to relatively harder classifica-
tion problems and removing those nodes to minimize the impact of propagation
of error. Not only does it lead to comparable or better accuracy, but enjoys
favourable training and prediction speed. This approach can be viewed as an
instance of a more general paradigm of making the two parts of the input in a
supervised learning problem more compatible.
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Abstract. In this paper we propose a solution to deal with the problem
of novelty detection. Given a set of training examples believed to come
from the same class, the aim is to learn a model that will be able to dis-
tinguich examples in the future that do not belong to the same class. The
proposed approach called Selected Random Subspace Novelty Detection
Filter (SRS −NDF ) is based on the bootstrap technique, the ensemble
idea and model selection principle. The SRS − NDF method is com-
pared to novelty detection methods on publicly available datasets. The
results show that for most datasets, this approach significantly improves
performance over current techniques used for novelty detection.

1 Introduction

The task of novelty detection consists of identifing a new data that differs from
those used in the training phase of a machine learning system. Several impor-
tant works in the machine learning literature have addressed the issue of novelty
detection and broad reviews of the subjet can be found in [1] and [2]. Novelty
detection is an important learning problem, the basic idea is to build a decision
rule that distinguishes normal from novel pattern. Since we can never train a
machine learning system on all possible data that the system may deal with,
it becomes important that it is able to detect new data. In order to overcome
the limitations of individual learning algorithms and face the necesstiy of high
classification performance specially in some critical domains, many researchers
have been interested in ensemble methods. The aim of these techniques is to pro-
duce and combine multiple classifiers. Bagging [4], Boosting [5], random forest
[8] and their variants are the most popular examples of this methodology. Bag-
ging, a name derived from bootstrap aggregation, was the first effective method
of ensemble learning and is one of the simplest methods of arching.

Generally the ensemble methods [16] work on two steps. The first one is the
production of homogeneous or heterogeneous models. Models built from the same
learning algorithm are called homogeneous and others that derive from running
different learning algorithms on the same data set are called heterogeneous. The
second step is the agregation of the models. Several techniques here include vot-
ing, weighted voting, selection and stacking. The ensemble selection algorithms
was proposed to determine the good sub ensemble of classifiers. In supervised
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classification, it is known that selective classifier ensembles can always achieve
better results compared to traditional ensemble methods [16]. The ensemble se-
lection also called in the litterature ensemble prunning, ensemble overproduce
or choose paradigm, consists in choosing a subset of l classifiers from the initial
ensemble of size L (l ≤ L). The selection of classifiers is based on predefined
criteria. Generally the proposed approaches rearrange the initial ensemble and
select a subset of ensemble members from the sorted list.

In this paper we present a learning model called Selected Random Subspace
Novelty Detection Filter (SRS −NDF ). It is a new approach to novelty detec-
tion, wich involves learning from only one class of traning example. We have a
sample from one distribution normal samples, and our purpose is to differenti-
ate between these normal examples and those that do not appear to come from
the same distribution (novelty). The SRS−NDF is an extension of our novelty
detection model (RS − NDF ) proposed in [17]. SRS − NDF is based on the
bootstrap technique, the ensemble idea [16] and model selection principle [18].
The methodologies for the production and combination of multiple predective
models is a very active research area and it is commonly referred to ensemble
method. The advantages of these methods are the improvement of the models
estimation and the potential improvement of the scalability of their learning al-
gorithms. The main idea of our approach is to perform classifier selection from
an initial pool of filters [3] obtained with the (RS −NDF ) algorithm. The pro-
posed method works by evaluating the qualities of all obtained filters in terms of
pertinence. Next we use the scree test [19] to choose the part of pertinent filters
to build our final system.

The rest of the paper is organized as follow: Section 2 introduces the basic
concepts of the Selected Random Subspace Novelty Detection Filter. Section 3
describes the databases and the experimental protocol. In section 4 we show
validation results and their evaluation. Conclusion is given in section 5.

2 Selected Random Subspace Novelty Detection Filters

2.1 Principle of the Kohonen and Oja’s Novelty Filter

In 1976, Kohonen and Oja [3] introduced an orthogonalising filter which extracts
the parts of an input vector that are, new, with respect to previously learned
patterns. This is the desired functionality of a novelty filter. The novelty filter
shows the novelties in an input pattern with respect to previously learned pat-
terns. Furthermore, the novelty filter can distinguish the missing parts from the
added parts in the input pattern with respect to the previously learned patterns.
The construction of the filter is based on Greville’s theorem [15]. This theorem
gives a recursive expression to estimate the transfer function of the network as
follows:

Φk = Φk−1 − x̃kx̃
T
k

‖ x̃k ‖2 (1)

where xk = [x1, x2, ..., xd]
T is a d-dimensional vector from the reference data

matrix; x̃ = Φk−1xk represents the orthogonal projection of the vector xk in the
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subspace of novelty (Φk−1). This subspace is orthogonal to the space defined by
the first k − 1 reference data and Φ0 = I.

An interesting alternative approach was given by Kassab and al. [6], [7], that
introduces the identity matrix in the learning formula for considering separately
all training examples, and consequently all their features. During the learning
phase, features which frequently appear in the training examples become more
and more habituated as compared to the less frequent ones. This helps to more
discriminate the relevant and irrelevant examples.The new learning rule is then
defined as:

Φk = I+ Φk−1 − x̃kx̃
T
k

‖ x̃k ‖2 (2)

where x̃k = (I+ Φk−1)xk and Φ0 is zero, or null matrix. The work described in
this paper uses this new learning rule.

For the novelty detection problem, two proportions can be computed:

– Novelty proportion: this measure quantifies the novelty of an input data with
respect to data that has been previously seen during the training.

Nxi =
‖ x̃i ‖

L× ‖ xi ‖ (3)

where L is the number of examples used for the training.
– The habituation proportion: this measure calculates the similarity of an ex-

ample with the previously learned one: Hxi
= 1−Nxi

.
This proportion could be considered as the classification score of an example
xi. It indicates the probability that xi belongs to the novel class.

To determine a detection threshold for each filter, the following principle was
used:

– Scores (output’s filter) attributed to the learning data can be used as a good
indicator of the scores of data which can be positive and which are easy to
detect because they are strongly similar to the data used for the learning.
Consequently, the average of these scores can be admitted as a higher limit
for the detection threshold.

– The scores attributed to available data for learning before their use, can be
used as a good indicator of the scores of data which are positive but which
are less easy to detect. Consequently, the average of these scores can be
admitted as a lower limit for the detection threshold.

2.2 SRS-NDF Algorithm

In this section, we present an extention for the novelty detection algorithm RS−
NDF . The RS − NDF [17] approach uses multiple versions of a training set
by using a double bootstrap, i.e. sampling with replacement on examples and
sampling without replacement on features. Each of these data sets is used to train
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a different NDF model. The RS−NDF is then an ensemble of NDF , induced
from bootstrap samples of the training data, using random features and examples
selection in the model induction process. Prediction is made by aggregating
(majority vote) the predictions of the ensemble to create a single output. Our
method, called SRS−NDF , consists in selecting the ensemble members from a
set of individuals filters wich gives better results, in terms of pertinence, than the
original ensemble. SRS −NDF belongs to the model selection approaches that
reorder the original ensemble members based on pertinence criteria and select a
subset of ensemble members from the sorted list using the scree test. SRS−NDF
works by evaluating the ”index of balanced accuracy” and ”diversity” of the
filters in the RS −NDF and selecting the promising filters. The final solution
is achieved by combining all the selected filters from the original ensemble. To
study the pertinence of each filter fl we used the following function:

Pertinenceα(fl1) = α×IBAα(fli)+(1−α)×mean(Divα(fli); fli); i ∈ [1, NF ]
(4)

Where IBAα(fli) and Divα(fli) stands respectively for the index of balanced
accuracy [20] and the diversity of the filter fli. The index of balanced accuracy
is defined by the product of two terms Dominance and Gmean [20]. The first
term is a simple measure evaluating the correct predictions of each filter, the
second term is the geometric mean of accuracies measured separately on each
class. The asset of IBA measure is the ability to distinguish the contribution of
each class for overall performance. This means that different combinations of the
true positive rate and the true negative rate don’t provide the same IBA value
and gives the pertinence to the positive class. This measure computes the area
of a rectangular region in a two-dimensional space called ”Balanced Accuracy
Graph”. The diversity of two classifiers consist on assigning differents labels to
the same examples. Many measures have been proposed to quantify the diversity
between two classifiers. In our work, we propose to use the mean Frobenius
distance between the transfer matrix of fli and the other filters in RS −NDF .
The coefficient α, 0 ≤ α ≤ 1, is a control parameter that balances the accuracy
and diversity. The pertinence is then defined as a weighted combination of the
diversity and accuracy. Once the pertinence have been calculated for a given α,
we then used an established statistical method, scree test, to select the most
important filters. This statistical test was initially developed to provide a visual
technique to select eigenvalues for principal components analysis.

The basic idea is to generate a curve associated with eigenvalues, allowing
random behavior to be identified. The number of components retained is equal
to the number of values preceding this ”scree”. Often the ”scree” appears where
the slope of the graph changes radically. We therefore needed to identify the
point of maximum deceleration in the curve.
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Assuming that we have pertinence vector Perk =
(Per1k, P er2k..., P erjk, ..., wnk). Thus we have to process the steps: Scree
Test Acceleration Factor

1. Sort the pertinence in descending order Perk. The we obtain a new order
Perk = (Per1.., P er2....., P eri.., ..., P ern..); where Peri indicates the index or-
der.

2. Compute the first difference dfi = Peri.. − Peri+1
.. ;

3. Compute the second difference (acceleration) acci = dfi − dfi+1

4. Find the scree: maxi (abs(acci) + abs(acci+1))
5. Cut and consider all the filters until the scree; (use initial indices of filter

before sorting)

The SRS-NDF learning algorithm is shown below:

Algorithme 1. Selected Random Subspace Novelty Detection Filter

Repeate for all α ∈ [0, 1]

1. Construct the RS −NDF with NF filters.
2. Calculate the IBA of filters = IBAα(1), ..., IBAα(NF ).
3. Calculate the diversity of filters = Divα(1), ..., Divα(NF ).
4. Calculate the pertinence of filters = Pertinenceα(1), ..., P ertinenceα(NF ).

Pertinenceα(fl1) = α× IBAα(fl1) + (1− α)×meanDivα(fl1);
fli; i ∈ [1, NF ]

5. Select the subset of models using the ScreeTest = SelectedF iltersα
6. Calculate the IBA of the selected filters = IBASelectedFiltersα

7. α = α+ 0, 1
Until α = 1

– Select the subset with the best value of IBA
– Aggregate the predictions of the selected ensemble and save the novelty

detection results in D.

3 Experiments

3.1 Databases Description

We performed several experiments on many relevant data sets: Spectf ,
Waveform, Wine and Y east from the UCI repository [9] , and Oil [11]. These
data sets are summarized in table 1. Since all of the datasets are for binary or
multi-class classification problems, they were transformed into novelty detection
context. We chose randomly, from each data set, a class as the novelty class
and collapsed the rest of the classes into one, and use the modified datasets to
evaluate the performance of our approach.
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Table 1. Data Set summary

Dataset Dimension Size Size of Novelty class
Oil 48 937 41

Spectf 44 187 15
Waveform 21 5000 1647

Wine 13 178 59
Yeast 8 1484 244

3.2 Performance Measurement and Experimental Protocol

To evaluate the performance of our approach we used several metrics such as
true negative rate (Acc-), true positive rate (Acc+)(recall), precision, F-measure
and G-mean. These metrics have been widely used for comparaison.

For each dataset, the performance of the classifier ensemble obtained by SRS−
NDF was compared to the unpruned filter ensemble obtained from SR−NDF ,
the basic model NDF and the traditional novelty detection methods : The one
class Support Vector Machines (SVM) [14], The Principal Components Analysis
(PCA) [13], The auto-associative Multi Layers Perceptron (MLP ) [12].

We also used the Area under the ROC Curve (AUC) [10]. There are sev-
eral methods to estimate the area under the ROC curve. In the case of binary
classification, the balanced AUCb is defined as:

AUCb =
Acc−+Acc+

2
(5)

4 Results

For each database, the six approaches have been used and their results have been
evaluated in terms of the six performances metrics. The table 2 below shows the
performance of the different algorithms on all data sets.

Based on the table above, some conclusions can be drawn.
The results of wine data set shows that SRS − NDF is the superior ap-

proach to novelty detection. Our approach outperforms the results obatained by
all others methods on all metrics. For Waveform dataset, SRS −NDF shows
a great improvement over all algorithms on Acc−, Acc+, AUCb and G−mean
metrics. Except on precision and F −measure, RS−NDF gives the better re-
sults. For Spectf dataset, our algorithm outperforms the other methods on Acc+
and F −measure but gives a slightly inferior results on AUCb and G −mean.
Genarally our proposed approach SRS−NDF gives better results compared to
RS −NDF on Acc+ and F −measure metrics. The Acc+ measure represents
the models capacity to detect the novelty class. We chose this metric in purpose
to show the good capacity of SRS − NDF to detect the novelty class. As we
can see, SRS − NDF shows excelent results comparing to RS − NDF on all
datasets. Considering the F −measure, our algorithm gives favorable improve-
ment over RS−NDF on Oil, Wine and Spectf datasets. For Waveform data,
RS − NDF outperforms our proposed approach. This metric, that combines
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Table 2. Performance comparison on all data sets

Wine Acc− Acc+ Prec F− AUCb G−
(Recall) measure mean

MLP 0,78 0,68 0,83 0,81 0,73 0,73
ACP 0,60 0,69 0,80 0,68 0,65 0,64

SVM-1C 0,68 0,76 0,81 0,73 0,72 0,71
NDF 0,84 0,78 0,88 0,86 0,81 0,81

RS-NDF 0,87 0,85 0,92 0,89 0,86 0,86
SRS-NDF 0,90 0,93 0,93 0,91 0,92 0,92
Waveform

MLP 0,67 0,35 0,51 0,58 0,51 0,48
ACP 0,68 0,35 0,68 0,68 0,51 0,49

SVM-1C 0,88 0,22 0,70 0,78 0,55 0,44
NDF 0,68 0,57 0,77 0,72 0,63 0,62

RS-NDF 0,85 0,53 0,79 0,82 0,69 0,67
SRS-NDF 0,90 0,60 0,70 0,78 0,75 0,70
Spectf

MLP 0,60 0,78 0,42 0,49 0,69 0,68
ACP 0,51 0,82 0,43 0,47 0,67 0,65

1-SVM 0,73 0,74 0,43 0,54 0,74 0,74
NDF 0,76 0,75 0,45 0,56 0,76 0,76

RS-NDF 0,69 0,79 0,47 0,56 0,74 0,74
SRS-NDF 0,64 0,84 0,44 0,58 0,74 0,74
Yeast

MLP 0,77 0,23 0,84 0,80 0,50 0,39
ACP 0,68 0,66 0,91 0,78 0,67 0,67

SVM-1C 0,90 0,13 0,84 0,87 0,51 0,34
NDF 0,88 0,19 0,85 0,86 0,54 0,41

RS-NDF 0,94 0,29 0,87 0,90 0,62 0,52
SRS-NDF 0,93 0,53 0,93 0,90 0,72 0,70
Oil

MLP 0,96 0,15 0,96 0,96 0,55 0,38
ACP 0,94 0,24 0,96 0,95 0,59 0,48

SVM-1C 0,90 0,35 0,97 0,93 0,62 0,56
NDF 0,91 0,37 0,97 0,94 0,64 0,58

RS-NDF 0,94 0,22 0,96 0,95 0,58 0,46
SRS-NDF 0,98 0,46 0,95 0,97 0,72 0,69

precision and recall measures, is commonly used in the information retrieval
area as performance measure.

The G−mean results on all datasets confirmed the good performances of our
approach SRS−NDF . As we can see, our method gives better results comparing
to RS −NDF . The Gmean of accuracies, measured separatly on each class, is
associated to a point in theROC curve and the idea is to maximize the accuracies
of both classes while keeping them blanced.

5 Conclusion

This paper introduced a filter ensemble selection method to improve the Random
Subspace Novelty Detection Filter (RS−NDF ) by adaptively trading off diver-
sity and accuracy according to the data. The proposed approach SRS −NDF
is based on the orthogonal projection operators, the bootstrap method and the
ensemble selection paradigm. Several metrics are computed on publicly available
datasets and significant improvements were obtained by SRS−NDF comparing
to existing methods.
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Abstract. During surgery, the nervous system is at risk if surgeon could not lo-
calize nerve’s location. In case of tumor blocked, the surgeon can completely 
not visualize the nerve due to the tumor. Hence, nerve localization is very im-
portant during to operation. Generally, the neurophysiologic intra-operative 
monitoring (NIOM) has alarming feature, when the surgeon irritated the nerve, 
they could pre-localize the nerve. However, this alarming is quite sensitive 
since it sometime alarms even when the surgeon hints other area expected the 
nerve. This would makes the surgeon qualitative evaluates location of the nerve. 
This study proposed the new modality of nerve localization. The nature of com-
pound muscle action potential (CMAP) was used in this study. Given a  
frequency-based electrical stimulation to a targeted area, the CMAP would re-
sponse if and only if the stimulating electrode was placed directly to the nerve. 
The results from preliminary study in animal revealed that applying the stimula-
tion at 30Hz and 0.3Volt with 1.5 millimeters width of a bipolar electrode gave 
highest CMAP detection accuracy (97.5%).  

Keywords: Electrical Nerve Stimulation, Nerve Localization, EMG, CMAP. 

1 Introduction 

Nerve localization during surgery is very important. For example, in the case of vesti-
bular schwannoma, cranial nerve 7th (facial nerve) possibly be damaged by the surge-
on due to a blocked tumor. If the facial nerve is permanently damaged, the patient 
would be facial palsy. Presently, there is a commercialized product available called 
neurophysiologic intra-operative monitoring (NIOM). The NIOM has a feature that 
can alarm the surgeon when they are closing to the nerve. When a surgical tool irri-
tates directly to the nerve, there will be a spike and burst of nerve discharge appear on 
a free running electromyography (EMG). This nerve discharge is then converted to 
sound which the sound level indicates a level of irritation [1-3]. Therefore, the surge-
on can aware of damaging and pre-localize the facial nerve. However, this warning is 
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quite sensitive. Without directly irritating to the nerve i.e. during tumor removal or 
dissection, there still is a warning sound the surgeons and makes them qualitative 
evaluated location of the nerve. The surgeon sometime obsoletes this warning. There 
is another kind of nerve response called compound muscle action potential (CMAP), 
it normally uses for facial nerve function preservation [4, 5]. Given an electrical sti-
mulus to the nerve, there will be a pulse response appears at some latency after stimu-
lus. Amplitude of the CMAP response indicates a remaining nerve function. 50% 
decreasing in amplitude is considered as a safety criteria [4]. 

This study proposes a new technique of nerve localization that could help the 
surgeon quantitative localizes the nerve. We employed the nature of the CMAP re-
sponse that it surely elicits when the stimulating electrode place exactly to the nerve. 
Instead of using the alarming sound from nerve irritation, this study used stimulating 
electrodes that contained electrical stimuli. We hypothesized that if we apply an elec-
trical stimulation at some frequency, the CMAP would and would not response at the 
same frequency after applying the stimulus train to the nerve and other area (i.e. 
around the nerve and the tumor), respectively. Hence, we could identify whether a 
current position of a stimulating electrode is the nerve or not.  

This work is a preliminary investigation that was studied in animal trials. The scia-
tic nerve of a rat is used for representing the facial nerve in a human. Agarose gel is 
use for mimicking a tumor tissue. There are many parameters that need to be figured 
out for being an optimally frequency-based electrical stimulation i.e. frequency, vol-
tage, pulse duration and the width between anode and cathode.  

2 Materials and Methods 

2.1 Signal Acquisition and Electrical Nerve Stimulation 

The experiment was conducted under animal ethic approval. This study included 4 
sciatic nerves of 2 male Sprague-Dawley rats (age, 8 weeks; weight, 300 grams). Fig. 
1(a) shows an overview of the signal acquisition and the electrical nerve stimulation 
systems. Bipolar needle electrodes that placed on the Tibialis anterior, Gastrocnemius, 
Vastuslateralis and Semimembranosus muscles of the rat’s leg are used for EMG 
signals recording. These EMG signals were sampled at 1 kHz sampling frequency and 
amplified by 200 gains in the biomedical instrument named “BIOPAC MP35” 
(BIOPAC systems, Inc., USA). This study used a constant voltage stimulator called 
“BSLSTMB Stimulator” (BIOPAC systems, Inc., USA) for applying electrical nerve 
stimulation. The BSLSTMB stimulator generates a defined voltage level and frequen-
cy to the sciatic nerve via bipolar needle electrodes as shown (See Fig. 1(b)) and also 
sent the pulses feedback to the acquisition system.  

The “BIOPAC BSL 4.0 MP35”software was used for electrical nerve stimulation 
and signal recording setups, monitoring and recording all of the acquiring data (EMG, 
pulses feedback). During the experiment, sound and video were recorded via a web-
cam synchronously with the signal acquisition time.  
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Fig. 5. EMG signal during applying frequency-based electrical stimulation onto the nerve, 
around the nerve and mimic tumor tissue 

Fig. 5 shows the EMG signal during applying frequency-based electrical 
stimulation onto the nerve, around the nerve and mimic tumor tissue. The results 
revealed that there was the CMAP response elecited according to the stimulus pulse 
when the stimulating electrode was place right to the nerve. Conversely, placing the 
stimulating eletrode to other area could not activate any CMAP response. This 
information support our hypothesis and it could be used for nerve nerve localization. 
The EMG channels 1 to 4 were segmented according to the stimulus pulses (see Fig. 5 
(bottom line)). The segmented EMG data was calculated variance compared with the 
base line variance. For offline analysis, this experiment was set the threshold at 100. 
The classification result was shown in Fig. 5 (red line)) that was able to detect the 
CMAP response.  

 

Fig. 6. The averaged CMAP detection accuracy of 4 sciatic nerves (2 rats). Red and blue bars 
are averaged accuracies of CMAP detection by 1 and 1.5 millimeters width of electrode.  
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Fig. 6 shows offline CMAP detection accuracy. This accuracy was averaged by 4 
sciatic nerves. Red and blue bars are averaged accuracies of CMAP detection by 1 
and 1.5 millimeters width of bipolar needle electrode, respectively. The stimulation 
was applied in 3 frequencies (15, 30 and 45 Hz) and 4 voltage levels (0.15, 0.20, 0.25 
and 0.30 volt). The results showed that increasing in voltage level, the accuracy also 
increased in both 1 and 1.5 millimeters width electrode. 0% detection accuracy could 
be found at lowest voltage (0.15 volt). If the voltage was high enough (0.3 volt), the 
CMAP could response to entire stimulus pulse and make CMAP detection accuracy 
closed to 100%. The stimulation parameters of 30Hz and 0.30 volts showed greatest 
performance of CMAP detection accuracy. 

4 Discussion 

Burst and spike EMGs of nerve discharge were occurred when the nerve was irritated. 
However, this nerve discharge could be seen even when the surgical tool irritated 
other area for example; around the nerve and onto the tumor (See Fig. 4). This Burst 
and spike EMGs might be caused by tumor and nerve compression [1-3]. There was 
no nerve discharge after irritate the nerve by the needle. It might be caused from the 
small size of the needle electrode compared with the surgical tool.  

There was no CMAP response after applied an electrical stimulation pulse to other 
area excepted for the nerve. This would be the new modality of nerve localization that 
could make the surgeon precisely and accurately localizing the nerve. The simple 
CMAP detection algorithm by calculating variance of a small sampling window 
would make the system rapidly detect the CMAP response in on-line experiment.  

Given electrical stimulus at low voltage sometime could not activate the CMAP re-
sponse and made the CMAP detection algorithm failed to detect. This might be 
caused by the different impedance in each position of a stimulation point. This  
problem could be solved by increasing the voltage level. However, applying at high 
stimulating voltage might damage the nerve. Nevertheless, there is another type of 
electrical stimulation called constant current stimulator which can regulate a current at 
the same level even when there is difference in impedance [9]. The problem of vary-
ing impedance might be solved by this stimulator. Stimulating frequency at 30 Hz 
showed a highest CMAP detection accuracy. The wider length between anode and 
cathode (1.5 mm) of bipolar needle electrode show a better CMAP detection accura-
cy. However, the width of the bipolar needle electrode should not be wider than the 
nerve bundle diameter. Otherwise, the nerve could not be stimulated due to the gap.  

5 Conclusion 

Irritating the nerve by pure needle electrode could not elicit burst or spike EMG. 
Hence, it was unable to use for nerve localization. The traditional technique of using 
the burst and spike EMG in NIOM could be used for nerve localization. However, the 
surgeon needs to have high experience due to the burst and spike EMG were sometime 
happened when the surgical equipment irritated around the nerve and onto the mimic 
tumor. This nerve localization method is qualitatively evaluated by the surgeon. 
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Applying the frequency-based electrical stimulation directly to the nerve could  
elicit the CMAP response while it could not occur in other areas (around the nerve 
and onto the mimic tumor tissue). By using this principle, we could then localize the 
nerve by detecting the CMAP response. The proposed CMAP detection algorithm 
could be detected CMAP response. The highest CMAP detection accuracy (97.5%) 
could be found when applying the frequency-based electrical nerve stimulation at 
30Hz, 0.3Volt, 1 millisecond of pulse width and 1.5 millimeter width between  
cathode and anode. The study proposed the new modality of nerve localization.  
The present study successfully identified and localized position of the sciatic nerve in 
a rat model. We believe that the proposed method could also be used for nerve locali-
zation in the human model. The surgeon could more quantitative localize the nerve by 
using our proposed technique. 
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Abstract. This work extends the simplified fuzzy ARTMAP (SFAM) to
a complex-valued (CV-SFAM) version which is able to work with spatio-
temporal data produced in receptive fields of visual cortex. The CV-
SFAM’s ability for incremental learning distinguishes CV-SFAM from
other complex-valued neural networks, which provides the ability to pre-
serve learned data while learning new samples. We considered different
scales and orientations of Gabor wavelets to form a dictionary. This work
takes advantage of a locally competitive algorithm (LCA) which calcu-
lates more regular sparse coefficients by combining the interactions of
artificial neurons. Finally, we provide an experimental real application
for biological implementation of sparse dictionary learning to recognize
objects in both aligned and non-aligned images.

Keywords: complex-valued simplified fuzzy ARTMAP, sparse coding,
dictionary learning, genetic optimization, body expression.

1 Introduction

Complex-valued neural networks (CVNN) are a type of neural nets dealing with
complex-valued information using complex-valued variables and parameters [3].
They are variety of fields in which the CVNNs provide proper information rep-
resentations. So far most of the applicable fields are related to wave phenomena,
e.g., measurements and communications using waves such as radar image pro-
cessing, quantum computation, learning electron-wave devices, ultrasonic imag-
ing and so on. The wavelength-dependent dynamics of optical circuit leads to
adaptive optical routers in optical wavelength-division-multiplexed communica-
tions, variable optical connections, frequency-domain parallel information pro-
cessing, etc. The carrier-frequency-dependent neural behavior realizes both the
adaptability and controllability in neural networks [3].

CVNNs were first introduced by Aizenberg as phasor where amplitude was
fixed [5]. Multiple-valued associative memory is developed with memory capacity
[6]. Many works attempted to derived complex form of linear models using com-
plex linear systems, e.g. complex steepest descent [7] [8] and backpropagation

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 360–368, 2013.
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learning [9]. Complex-valued activation functions are discussed in both separate
and integrated real-imaginary forms [10] [11].

However, the previous work of CVNNs are poor in preserving learned data
after new learning arrivals which causes the stability-plasticity dilemma [12]. One
approach to face with this is using incremental learning as in fuzzy ARTMAP
[18] and fuzzy min-max [14] neural networks.

Simplified fuzzy ARTMAP (SFAM) is a modification of fuzzy ARTMAP [13]
as a two-layer neural network which has been successfully used for pattern recog-
nition [15] [16] [17]. Adjustable learning rate and incremental learning capability
makes it suitable for real-time applications. With fast learning rates its com-
putational complexity could be compared to a multi-layered perceptron [18].
Furthermore, neural structure of SFAM combined with fuzzy operators, models
a human-like behavior [2] [15]. However, using real-valued input features, SFAM
is not able to be used in most of the vision applications in which data is intrin-
sically complex. Complex fuzzy set theory has been proposed in by Ramot et al.
[19] [20]. This work applies complex fuzzy operators in order to develop a novel
complex-valued SFAM (CV-SFAM).

We applied the proposed model on patterns of different objects in images.
Patterns are extracted using a sparse dictionary learning algorithm which is in-
spired by experimental findings of functional magnetic resonance imaging (fMRI)
of mammalian brain. Learning method is tested in presence of noise; since SFAM
networks are sensitive to noise [17] learned images are also filtered during the
sparse coding. Classification results are compared to the state of the art algo-
rithms. Furthermore, we applied the algorithm to recognize emotions based on
body expression data which is inspired by the action based behavior in psychol-
ogy. Classification results are compared to those of human recognitions.

1.1 Complex Fuzzy Sets

Classical fuzzy logic applies real-valued functions to represent the membership;
in order to show the phase term another dimension is added to the membership
function [16] [19] [20] [21]. Though the fuzziness remains a real value in range
[0,1]. It should be noted that the concept of using complex input numbers into
a fuzzy inference system is different from applying fuzzy number into a system
of inference. The latter introduced as a fuzzy set with real-valued features as
input and complex-valued in the output. However, in most of the computer
vision problems input images are preprocessed with complex transforms (Fourier
and windowed Fourier families) which provides the complex data as features for
machine learning algorithms.

A complex fuzzy set allows membership functions in a set to be specified by a
complex number. Membership function μ of any element x, in a complex fuzzy
set S, is replaced by complex-valued grade of membership of the general form:

μ(x) = rs(x).e
iwμ(x) (1)

where rs(x) ∈ [0, 1]. The amplitude term retains the traditional notion of ”fuzzi-
ness”, by the representation of membership of variable x of set S, same as original
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fuzzy set theory amplitude term ranges between 0 to 1 and with a phase term
zero μ will go back to its original fuzzy definition. The phase term denotes the
assertion of multiple-valued complex fuzzy set theory and represent the lag of
time in a time frequency domain.

Given two complex fuzzy sets A and B on U with complex valued membership
function μA(x), μB(x) respectively, complex fuzzy union could be defined as [19]
[20] [21]:

μA∨B(x) = [rA(x)⊕rB(x)
].eiWA∨B(x) (2)

where ⊕ represents the t-conrom and WA∨B is defined as:

Sum : WA∨B = WA +WB (3)

Max : W = max(WA,WB) (4)

Winner Take All : WA∨B

{
WA, rA > rB

WB, rB > rA
(5)

1.2 Dictionary Learning by Gabor Wavelets

Decomposition methods extract key information from images and videos in order
to create a highly-compressed and simplified representation of the original using
only a handful of elementary functions. A set of functions is called a dictionary.
Representation is thus achieved by linear combination of elements in the dictio-
nary. To improve the quality of representation, a common approach is to use an
orthogonal subset of a large dictionary containing all possible elements.

Textons are developed as a mathematical representation of basic image ob-
jects [22]. Images are coded by a dictionary of Gabor and Laplacian of Gaussian
elements; Responses to the dictionary elements is combined by transformed com-
ponent analysis. Furthermore, sparse approximation helps to find a more general
object models in terms of scale and posture [23]. Active basis model [1] provides
a deformable template using Gabor wavelets as dictionary elements. They also
proposed a shared sketch algorithm (SSA) inspired by AdaBoost.

1.3 Sparse Coding Using Artificial Neurons

Response to a dictionary of Gabor wavelets is an overcomplete representation.
Sparse coding is the method of selecting a proper subset of responses to repre-
sent the image (signal). In addition to biological motivations, sparse coding is
necessary to avoid redundant information. Having a fixed number of features,
redundancy may cause loss of essential information which is going to be encoded
in the lower levels (Figure 1).

Optimum sparse coding minimizes the number of nonzero coefficients, which is
an NP-hard optimization problem. We applied a locally competitive algorithm
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Fig. 1. Edge detection using Gabor wavelets, A. Original image [1], B. edge detected
image with a large number of features without sparsity, C. edge detected image with
a small number of features where sparsity is enforced.

(LCA) [4] to enforce local sparsity. Unlike classical sparse coding algorithms,
LCA uses a parallel neural structure inspired by biological model. In previous
works, there is no real application that has been applied using LCA, although
some simulation results are shown. Here an empirical experiment based real
application of body expression recognition, is proposed to provide an evidence
for the practical utility of Holonomic Brain Model as dictionary learning method
by LCA.

Atkinson et al. developed a dataset for both static and dynamic body ex-
pressions. The dataset contains 10 subjects (5 female) and covers five emo-
tions (anger, disgust, fear, happiness and sadness)[24]. The bodily expressive
action stimulus test (BEAST) [25] provides a dataset for recognizing four types
of emotions (anger, fear, happiness, sadness) which is constructed using non-
professional actors (15 male, 31 female). Body expressions are validated with a
human recognition test.

1.4 Complex-Valued Simplified Fuzzy ARTMAP (CV-SFAM)

CV-SFAM is a two-layer network in which the magnitudes of raw data are scaled
to the range of 0 and 1 and further passed through a complement coder. The
complement coder normalizes the input vector and stretched to double the size
by adding its complement. For an input vector a with length d, the complement
coded vector I is [2]:

I = (μν , μν̄) = (μν1 , ..., μνd , μν̄1 , ..., μν̄d) (6)

|I| = |μν , μν̄ | = d (7)

where the norm |.| is defined as:

|a| =
d∑

i=1

ai (8)

Activation of output nodes are based on their complex fuzzy t-norm (see
appendix). Activation function of output node j in response to input node i is:

Tij =
uIi∧Wij (v)

α+ |μwij |
(9)
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where α is a small value greater than zero, and wij is the weight between nodes i
and j. Output nodes form a category according to their complex fuzzy t-conorm:

C = max
j

(Tj) (10)

Match tracking category C is based on the vigilance parameter ρ. The network
is in state of resonance if:

Match =
|μI∧W (v)|
|μI(v)| ≥ ρ (11)

where W is the weight factor for all the output nodes. Otherwise, a mismatch
reset happens and the magnitude of Tj is set to zero, and C will be updated
using the complex fuzzy t-conorm. The vigilance parameter ρ determines the
minimum match for an input to be assigned to the category node C.

Since the norm of the complete coded vector I is constant and equal to the
number of features, matching the function could be rewritten as:

Match =
|μI∧W (v)|

d
(12)

In the state of resonance, updated weights are calculated based on a linear
combination of their match and old weights, given the learning rate β:

Wnew
ij = β(Ii ∧Wij) + (1− β)Wij (13)

We applied a supervised approach to recognize two types of objects in im-
ages; First a pixel-wise approach for aligned objects which combines the learned
samples of objects in each class to form a prototype and second a feature based
approach for non-aligned objects in which Gabor wavelets are localized to rep-
resent a potential match between specific scale and orientation and edges of
objects. Both approaches are fed into a synergetic neural network to perform a
classification task.

2 Proposed Method

2.1 Pixel-Wised Approach

Images are scaled to have the exact same size. Each image is convolved with all
the elements in the dictionary. Then sparse coding is enforced to minimize the
representing elements for each pixel. Finally, remaining parts are reconstructed
to generate the sparse superposition of the image. For pixel values in the local
area LCA has the following steps:

1. Compute the response (convolution) of Ii with all the elements in the dic-
tionary.

Cj = 〈GWj , Ij〉 (14)

(Set t = 0 and uj(0) = 0, for j = 1, ..., n).
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2. Determine the active nodes by activity thresholding.
3. For each pixel, calculate the internal state of element j, uj(t).

uj =
1

τ
[Cj(t)− uj(t) −

∑
j �=k

Φj,k.aj(t)] (15)

Φj,k = 〈GWj .GWk〉 (16)

4. Compute sparse coefficients aj(t) for uj(t).

aj(t+ 1) = Tλ(uj(t)) (17)

T(α,γ,λ)(uj) =
uj − αλ

1 + e−γ(uj−λ)
(18)

5. If aj(t− 1)− aj(t) > δ, then t← t+ 1 and go to step 2, otherwise finish.

2.2 Detecting Objects with Shape Changes

Original SFAM used pixel-wised features to represent an object which is not
robust in case objects are in a variable shapes (e.g. different body emotions of
human). In this case, we construct a template model as a collection of Gabor
wavelet features included in the dictionary which represents the general charac-
teristics of all body posture classes.

Test images are convolved with the components of the template model. Spar-
sity is then enforced to catch the best fit over the specific posture. LCA thresh-
olding strategy enables us to remove redundancies effectively (producing sparse
coefficients with exactly zero values). Number of output Gabor wavelets are fixed
in order to make the comparison with trained prototype of each class. Features
are selected based on their highest response to the training images; furthermore,
each feature is allowed to perturb slightly in terms of location and orientation.
In this aspect our template construction is a modification of shared sketch algo-
rithm [1]. For each image i feature value vij corresponded to the selected Gabor
wavelet j, is determined as the following:

vij = γiCij − log(Z(γi)) (19)

where γi is derived by maximum likelihood estimation and Z is the partition
function. Therefore, boundaries of object are segmented out with before the
result is given to CV-SFAM.

3 Experimental Result

Performance of ARTMAP-based classifiers are sensitive to a number of param-
eters. To achieve optimum recognition rates, a genetic algorithm was employed
to optimize parameters such as training sequence and feature subset selection
[26] [27].
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3.1 Aligned Images

The proposed algorithm is used to classify four classes of animals . Each image
used in classification contains an animal object. Image objects are obtained from
different animals in variety of postures, and shapes. Gabor wavelets are generated
in a (20, 20) matrix and images are resized to (50, 50).

Result of classification is a tag for each image representing the correspond-
ing class. For each class 10 images are selected randomly to form the test set.
Remaining images are used for training. Using cross validation classification is
performed over all the images. This result is compared to Active Basis Model
(ABM). Learning method can effectively detect the edge patterns and represent
the main components of objects. This leads to have more distinguishable object
definitions (specifically between classes of Bear and Wolf) rather than shared
sketching used in ABM.

Table 1. Classification result of aligned images

Bear Cat Cow Wolf

CV-SFAM 62% 87% 78% 58%

ABM 87% 100% 76% 60%

# of images 60 70 60 50

3.2 Classification of Emotions Using Body Expressions (Non-aligned
Images)

We applied the BEAST data set to classify four classes of basic emotions. Gabor
wavelets are generated in a (20, 20) matrix and images are resized to have 500
pixels in row and relatively scaled pixels in column. Images are divided into train
and test sets for each class 10 images are selected randomly to form the train data
and the rest are included for test. Different scenarios are considered to train the
model. Classification accuracies of different trained SFAMs are compared with
results of human recognition.

Table 2. Classification result of non-aligned images

Anger Fear Happiness Sadness

Min 93.33 88.00 88.00 100.00

BEAST(human) 93.60 93.90 85.40 97.80

Fig. 2. Features extracted for emotion classes of fear, happiness, and sadness
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4 Conclusion

We proposed a biologically-plausible approach for recognition of aligned and
non-aligned objects. Our learning algorithm is inspired by the holonomic brain
theory. LCA is applied to enforce sparsity on a dictionary of Gabor wavelets.
Regarding the parallel structure of the learning method, implementation could
be optimized via parallel processing which is essential for real-time applications.

Furthermore, a SFAM neural network is combined with Gabor wavelet fea-
tures which make it applicable for recognition of non-aligned objects. Gabor
features also enhance the model to use images with different size. Effect of back-
ground is also removed because of recognition is based on the pattern of edges;
Though sparse coding is robust in presence of classical noise since dot noise does
not follow any meaningful shape pattern intrinsically.

Experimental results supported the real application of locally competitive
sparse coding as a learning method using a biological implementation.
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Abstract. Recently, mining knowledge from stream data such as access
logs of computer, commodity distribution data, sales data, and human
lifelog have been attracting many attentions. As one of the techniques
suitable for such an environment, active learning has been studied for a
long time. In this work, we propose a fast learning technique for neural
networks by introducing Locality Sensitive Hashing (LSH) and a local
learning algorithm with LSH in RBF networks.

Keywords: neural networks, incremental learning, stream data learn-
ing, locally sensitive hashing.

1 Introduction

The rapid growth of storage technology and computer networks has brought
the opportunity for researchers to get involved in the processing of large-scale
stream data which consists of collecting data in real time, storing, mining and
analyzing the knowledge from data. To process large-scale stream data, it is
important to choose a suitable learning algorithm that is capable to learn in real
time. Incremental learning has an ability to process large data [1] in chunk and
update the parameters after learning each chunk. Such type of learning keep and
update only the minimum information on a classifier model. Therefore, it requires
relatively small memory and short learning time. On the other hand, batch
learning is not suitable because it needs to store all training data, which consume
a large memory capacity. Due to the limited memory, it is certainly impossible
to process large-scale stream data online using the batch learning. Therefore,
the learning of large-scale stream data should be conducted incrementally.

Another criteria to be considered for learning large-scale data is to select
essential data to be learned. The selection of essential data is often conducted
based on the margin of classifier outputs. Even if a large number of data are given
as a stream, there is no guarantee that all the data are useful for learning and can
efficiently improved the accuracy of test data. Besides, in supervised learning,
a large training data correspond to a larger number of data to be labeled by a
supervisor. Hence, selecting the most useful training data can reduce not only the
amount of supervision required for effective learning [2], but also the processing
time due to the decreasing number of training data.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 369–376, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



370 A. Ali Siti Hajar , K. Fukase, and S. Ozawa

Although Nearest Neighbors (NNs) search plays an important role in various
machine learning areas, it has a limitation when a high dimensional data is given.
To overcome this problem, Locality Sensitive Hashing (LSH) provides an alterna-
tive to process high-dimensional data by approximating similarity search prob-
lem [3][4][5]. In a general hashing, every input is assigned to a different bucket
to avoid collision, while inputs of LSH are assigned to the same bucket when the
input data are close to each other. Consequently, LSH is able to search similar
data faster because LSH can find the nearest neighbors in linear time as opposed
to the quadratic pair-wise approach of the conventional nearest neighbor, which
give advantage to high dimensional data and large-scale data. However, a major
limitation of LSH is originated from its large memory consumption; that is, to
keep both high recall and high precision, a large hash table is needed.

The paper is organized as follows. In Section 2, we describe the proposed
learning model which employs an active learning algorithm of Resource Allocat-
ing Network with Long-Term Memory (RAN-LTM) where LSH is adopted to
select only useful training data from a large chunk. The performance evaluation
of the proposed method is carried out in Section 3, and Section 4 states the
conclusions of this work.

2 Proposed Method

2.1 Basic Idea

The data selection based on output margins is one of the most frequently used
approaches in active learning. The conventional RAN-LTM method requires the
calculation of output margins for every training data candidates. Hence, such a
margin-based method results in increasing the number of Radial Basis Function
(RBF) units and consequently increasing the computational time. Therefore, as
more data are given at a time, real-time learning becomes more difficult.

In the proposed method, to avoid the repetition of the output margin cal-
culation, we divide the data into buckets where adjacent data are grouped in
the same bucket. To do this, we propose a data selection method using LSH
by combining with the margin-based method, where only unknown data in a
new bucket are learned by RAN-LTM, whereas data in a not-empty bucket are
ignored during the learning phase. However, by only implementing this idea,
the learning time is not drastically reduced because the learning time strongly
depends on the number of RBF bases [6]. Therefore, instead of learning all RBF
bases, we propose a local learning algorithm in which only RBF bases with high
activations for a training data are selectively learned (see Fig. 1). The algorithm
of the proposed method is summarized in Algorithm 1.

2.2 LSH-Based Data Selection

How to Determine Hash Functions. The first step to build the LSH-based
data selection is to define hash functions such that similar data are fallen into
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RAN-LTM Proposed Method

Fig. 1. RBF bases learned in RAN-LTM and in the proposed method

the same bucket. In general, the more hash functions we define, the higher ap-
proximation accuracy for an input space we obtain. Nevertheless, it leads to the
construction of a bigger hash table that requires not only larger memory capac-
ity but also longer processing time. Therefore, it is important to choose a proper
number of hash functions.

Here, we adopt Principle Component Analysis (PCA) to generate a proper
number of hash functions by controlling the threshold of the accumulation ratio.
Since data are often distributed within a low-dimensional subspace spanned by
eigenvectors with some major components, we can approximate an input space
with several regions within such a subspace. Let k be the subspace dimensions
obtained by PCA. Then, the following linear transformation is considered to
define buckets in LSH:

v = UT
k x (1)

where x = {x1, · · · , xn}T , Uk = {u1, · · · ,uk}, and v = {v1, · · · , vk}T are an
n-dimensional input vector, the matrix of k eigenvectors, and the k-dimensional
projection vector, respectively. In the proposed method, the buckets in LSH are
defined by the regions, which are partitioned based on the k projection values
vi (i = 1, · · · , k).

The next step is to define the values of a hash function. Here, let us define a
set of hash functions H(x) as follow:

H(x) = {h1(x), h2(x), · · · , h2k−1(x), h2k(x)} (2)

where

h2i−1(x) =

⎧⎪⎪⎨⎪⎪⎩
0 (vi ≤ −θx)
1 (−θx < vi ≤ 0)
0 (0 < vi ≤ θx)
1 (vi > θx)

(3)
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Fig. 2. Calculation of hash values using an eigenvector

h2i(x) =

⎧⎪⎪⎨⎪⎪⎩
0 (vi ≤ −θx)
0 (−θx < vi ≤ 0)
1 (0 < vi ≤ θx)
1 (vi > θx)

. (4)

As seen in Eqs. (3) and (4), the projection value vi is divided into four regions
(see Fig. 2); that is, vi is encoded into a 2-bits hash value: “00”, “01”, “10” or
“11”.

Creating Hash Table. A hash table is composed of the three items: hash value,
prototype and margin flag. Initial training data are recorded as prototypes in a
hash table. The calculation of an output margin Δz is conducted by subtracting
the second largest output zc2 from the largest output zc1 as follows:

Δz = zc1 − zc2 . (5)

The margin flag is set to 1 if the output margin Δz exceeds the threshold θm
and 0 otherwise:

margin flag =

{
0 (Δz ≤ θm)
1 (Δz > θm).

(6)

Selection of RBF Bases. Each training data is encoded in a binary hash value
whose length is two times the number of hash functions. Then, this sequence is
converted into a decimal as an index. The index is used to check if an incoming
data is similar to a prototype that has already been registered in a hash table.

The next step is to check margin flags. If the flag of the matched prototype is
‘1’, it means the classifier is well trained around the prototype; therefore, there
is no need to train a given data. On the contrary, if the flag is ‘0’, it means a
given data should be trained.

The following threemodels are compared in our study: the conventionalmargin-
based data selection plus the global learning of RAN-LTM, the LSH-based data
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Algorithm 1. Learning Algorithm

Input: A set of p initial training data X0 = {(xi, di)}pi=1 ∈ Rn×p, thresholds of
accumulation ratio, output margin, and partition θ, θm, θx.

1: Perform PCA for X0 and obtain k eigenvectors Uk such that the accumulation
ratio of a subspace spanned by Uk is larger than θ.

2: for all (xi, di) do
3: Calculate a projection vector vi by Eq. (1).
4: Calculate hash value H(xi) by Eqs. (2)-(4).
5: Calculate margin flag by Eqs. (5)-(6).
6: Register H(xi), (xi, di), margin flag in hash table.
7: end for
8: loop
9: Input: A new training data (xi, di).
10: Calculate vi for xi by Eq. (1).
11: Calculate hash value H(xi) by Eqs. (2)-(4).
12: if H(xi) does not exist in hash table then
13: Learn RAN-LTM with (xi, di).
14: Calculate margin flag by Eqs. (5)-(6).
15: Register H(xi), (xi, di), margin flag in hash table.
16: else if margin flag = 0 then
17: Learn RAN-LTM with (xi, di).
18: Calculate margin flag by Eqs. (5)-(6).
19: Update hash table with margin flag.
20: end if
21: end loop

selection plus the global learning of RAN-LTM, and the LSH-based data selection
plus the local learning of RAN-LTM. For the notational convenience, let us denote
them Margin-Global, LSH-Local, LSH-Global in the following.

3 Experiments

3.1 Parameters Selection and Preparation of Data for Experiment

To evaluate the performance of the propose method, we use the 3 benchmarks
datasets (Adult, Bank and Shuttle data) from the University of California at
Irvine Machine Learning Repository [7] in Table 1. The information of these
datasets are shown in Table 1. The data are divided into two groups; training
data and test data. The performance evaluation is carried out through the 2-
fold cross-validation, where each fold is repeated 15 times with different training
sequences.

We carry out the two experiments and display the result of the mean and stan-
dard deviation of the recognition rate and the learning time. The experiments
are as follow:

1. To find out the proper setting for subregions which gives the definition of
hash functions using LSH.
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Table 1. Evaluated dataset

Dataset #Attribute #Class #Data

Adult 14 2 45222
Bank 16 2 45211
Shuttle 9 5 58000

2. To compare the performance of data selection and learning strategy between
the three models: Margin-Global, LSH-Global and LSH-Local.

There are two important parameters that should be chosen properly: the thresh-
old of output margins θm and the threshold of the accumulation ratio in PCA
θ. In this experiment, we empirically determine as θm = 0.05 and θ = 0.9. In
addition, we assume that the number of initial data is 500 and the size of data
chunk in the incremental phase is 1000. The data are normalized between -1
and +1 in order to determine easily another parameter θx in Eqs. (3), (4) in the
next section.

3.2 A Study on the Effect of Region Partitions in LSH

It is also important to determine the parameter θx in Eqs. (3), (4) which deter-
mines the partitions (buckets) of LSH in every subspace spanned by an eigen-
vector. Therefore, we examine the effects of θx on the recognition accuracy and
learning time.

Tables 2 (a) and (b) show the recognition accuracy and the learning time in
LSH-Local when θx are changed from 0.1 to 0.7. As seen in Table 2 (a), the
highest recognition accuracy is obtained for Adult and Bank at θx = 0.3 and
the same recognition accuracy is obtained for Shuttle at any θx. The shortest
learning time for Adult and Shuttle is again obtained at θx = 0.3, and for Bank
at θx = 0.7 as shown in Table 2 (b). In addition, the recognition accuracy is
significantly decreased as θx increases except for Adult, while the learning time
is significantly increased when θx is increased except for Bank.

¿From the above results, θx should be chosen between 0.2 and 0.4 to have high
recognition accuracy in proper learning time. Hence, let us choose the threshold
θx = 0.3 and fixed at this value in the following experiments.

3.3 Performance Evaluation

Table 3 shows the recognition accuracy and the learning time for the 3 different
methods: Margin-Global, LSH-Global and LSH-Local. We can see that Margin-
Global gives the highest recognition accuracy for all datasets, but it requires
longer learning time. On the other hand, LSH-Local can learn quite faster com-
pared to LSH-Global and Margin-Global for all datasets. Especially, the learning
time is significantly reduced for Adult dataset, although LSH-Local has a little
lower recognition accuracy compared to the other two models. The main reason
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Table 2. Influence of the range parameter θx on (a) recognition accuracy [%] and (b)
learning time [sec.]

(a) Recognition rate [%]
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Adult 76.9 ± 1.0 77.0 ± 0.8 77.0 ± 0.9 76.9 ± 1.0 76.6 ± 0.9 76.1 ± 1.1 75.3 ± 1.5
Bank 83.0 ± 1.5 82.8 ± 1.8 83.0 ± 1.6 82.9 ± 1.8 82.9 ± 1.3 81.2 ± 1.9 81.1 ± 2.2
Shuttle 99.6 ± 0.1 99.6 ± 0.1 99.6 ± 0.2 99.6 ± 0.1 99.6 ± 0.2 99.6 ± 0.1 99.6 ± 0.1

(b) Learning time [sec.]
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Adult 96.4 ± 13.3 99.6 ± 9.0 93.6 ± 12.1 95.5 ± 12.6 98.0 ± 14.9 101.7 ± 17.5 100.7 ± 19.1
Bank 45.9 ± 6.0 49.2 ± 5.4 47.3 ± 5.0 46.4 ± 5.2 43.5 ± 4.7 45.0 ± 5.8 39.1 ± 4.8
Shuttle 39.6 ± 26.1 33.9 ± 39.3 19.3 ± 17.1 28.4 ± 33.3 27.1 ± 33.3 27.9 ± 13.2 42.8 ± 24.6

Table 3. Performance comparison among Margin-Global, LSH-Global, and LSH-Local
with regards to (a) recognition accuracy [%] and (b) learning time [sec.]

(a) Recognition rate [%]

Margin-Global LSH-Global LSH-Local

Adult 78.3 ± 1.3 77.4 ± 1.0 77.0± 0.9
Bank 84.1 ± 1.8 83.4 ± 1.3 83.0± 1.6
Shuttle 99.8 ± 0.1 99.6 ± 0.2 99.6± 0.2

(b) Learning time [sec.]

Margin-Global LSH-Global LSH-Local

Adult 2269.2 ± 234.0 123.9 ± 19.7 93.6 ± 12.1
Bank 123.4 ± 17.9 48.0± 7.2 47.3 ± 5.0
Shuttle 42.1 ± 9.1 32.5± 28.2 19.3 ± 17.1

for the shorter learning time relies on the decrease in the number of learned RBF
bases, because the computational complexity of the weight learning in the least
squares method is O(J3), where J is the number of RBF bases.

The recognition accuracies are different between the margin-based method
and the two LSH-based methods. One of the reasons is that Margin-Global
can adapt to the temporal change in data distributions during the incremental
learning. However, in the LSH-based methods, the hash functions are generated
in the initial learning phase, and they are fixed during the incremental phase.

4 Conclusions and Future Work

In this paper, we propose an active learning model for RAN-LTM called LSH-
Local where a proper number of training data are selected based on LSH and
output margins from a large chunk of data. The experimental results for the three
UCI datasets demonstrate that although the recognition accuracy is relatively
lower than that in Margin-Global, the number of RBF bases is decreased and
the learning time is significantly shortened. The reduction in the learning time is
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shown obviously especially for the large dataset (Adult). Therefore, we conclude
that the proposed LSH-Local can achieve fast learning without scarifying the
recognition accuracy significantly and is suitable for the large-scale stream data.

There still remain several open problems in the proposed LSH-Local. Although
the learning time is reduced, the accuracy is also a little bit lower than the
conventional margin-based model. One of the reasons is that the hash functions of
LSH are only generated in the initial learning and are not adapted incrementally.
One way to solve this problem is that the proposed LSH-Local can be extended
not only by updating hash functions incrementally but also by increasing the
number of hash functions. This can be attained by introducing Incremental PCA
(IPCA) [8] into the proposed LSH-Local. However, there is one problem for
this. After updating/increasing hash functions, the hash table should also be
updated properly without unexpected forgetting of the previous knowledge. If
this problem is solved, it is expected that the idea of fast processing for large-scale
stream data using LSH would work well. As another problem, the parameter θx
should also be set properly in the LSH-based data selection. As mentioned in
3.3, θx is determined only from the initial training data and it is fixed during
the incremental learning. Since the data distributions are always changed over
time, θx should be adapted to the change in the data distributions.

The above issues are left as our future work.
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Abstract. In this paper, a playmate robot system, which can play with
a child, is proposed. Unlike many therapeutic service robots, our pro-
posed system is implemented as a functionality of the domestic service
robot with a high degree of freedom. This implies that the robot can
use its body and toys for playing high-level games with children, i.e., be-
yond therapeutic play, using its physical features. The proposed system
currently consists of ten play modules, including a chatbot, card play-
ing, and drawing. To sustain the player’s interest in the system, we also
propose an action-selection strategy based on a transition model of the
child’s mental state. The robot can estimate the child’s state and select
an appropriate action in the course of play. A portion of the proposed
algorithms was implemented on a real robot platform, and experiments
were carried out to design and evaluate the proposed system.

Keywords: Playmate robots, child’s mental modeling, and Markov
decision process.

1 Introduction

Several problems, such as, child neglect by caregiver and deterioration in the
quality of play for a child, exist in the circumstances surrounding children. We
believe that “robotic playmates” would greatly help to solve these problems. In
this study, we propose a playmate system for humanoid robot that can play with
a child using its body and toys. The robot is designed to have ten play modules
covering important play areas for development, and can play with a child by
switching among these modules.

Playmates are required to play with children for as long as possible. To ensure
that their play with a child lasts for a long duration, human playmates observe
a child well. For sustaining a child’s interest, the playmate estimates the child’s
mental state to select appropriate actions from a finite set of actions in a timely
fashion. Therefore, playmates should sustain a child’s interest in play and forge a
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good relationship with the child. We think that two factors, which we call “degree
of interest” (DOI) and “degree of familiarity” (DOF), are very important and are
improved by selecting actions according to the child’s estimated mental state.

We propose an action-selection strategy based on a transition model of the
child’s mental state, which enable the robot to sustain a child’s interest and forge
good relationship with the child. The regularity of the gaze, smile intensities, and
the motion are measured for this estimation, and the play modules are switched
with the strategy of sustaining the child’s interest in the play. Moreover, the
robot selects appropriate actions according to the child’s estimated mental state,
which is based on the Markov decision process (MDP).

Several robotic playmates have been proposed [1]–[4]. Works in [1] and [3],
were aimed at achieving robots that could engage in therapeutic play with autis-
tic children. Attempts to extract play primitives have also been made [2] and
[4]. In contrast to these works, our contributions are (1) the implementation of
actual play modules, (2) the development of the action selection model based on
the child’s estimated inner state, (3) integration of the play modules with the
action selection model, and (4) evaluation of the proposed playmate robot.

2 Overview of the Proposed Playmate Robot

The playmate system is implemented as a functionality of a domestic service
robot. The robot is designed to play with a child using the implemented play
modules, which cover several types of play to promote child development. The
robot plays interactively with the child, switching play modules according to
the child’s mental state. Moreover, the most important purpose of the proposed
system is to ensure its ability to play with a child for as long as possible. To
this end, the system switches among play modules and selects strategies such
as praise and competition according to the player’s mental state. The player’s
mental state (e.g., bored) is estimated from the player’s gaze, smile, and motion.

2.1 Robot Platform

In this work, the robot platform “DiGORO” was used. This robot has two arms
with six degrees of freedom (DOF) each, a two-DOF neck, and a one-DOF waist.
Thus, the robot can play with toys and its body. The underbody is based on om-
nidirectional wheels and has the capability to move around in an indoor environ-
ment using laser-based online simultaneous localization and mapping (SLAM). A
real-time 3D sensor, which consists of calibrated CCD and time-of-flight (TOF)
cameras [5], is mounted on its head. This sensor enables the robot to record the
appearance of persons and objects online and recognize them with high accuracy
[6]. Five onboard PCs work in parallel by coordination through TCP/IP con-
nections. All computations are carried out inside the robot, and hence, it works
properly even when no wireless network is available.
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2.2 Modules of Play

The robot is designed to play using the implemented ten play modules, which
cover all types of play to promote child development. The ten play modules that
we are currently working on are (a) chatbot, (b) card playing, (c) drawing, (d)
rock–paper–scissors, (e) picture-book reading, (f) hide and seek, (g) rhythmic
movement, (h) blocks, (i) make-believe play, and (j) learning of novel play.

3 Action Selection and Mental State Estimation

To ensure continuous play with a child for a long duration, the robot predicts
the mental state of the child and selects its next action accordingly. It is natural
for us to select an action based on the observed child’s behavior, and when the
child gets bored with the current play, we usually engage the child in another
play. Obviously, if the robot continues the same play in such a situation, the play
will soon end. To this end, we first conducted an observation to analyze the play
between a kindergarten teacher and a child. The results were used for designing
the interaction between the robot and a child based on MDP. Next, experiments
on the play between the robot and a child were conducted to test the mental
state estimation method and to estimate the parameters for the model of action
selection.

3.1 Observation of Play

We videotaped the play between a professional kindergarten teacher and a child.
Two children (one boy and one girl) participated in this experiment. The children
individually played with the teacher for thirty minutes each. The teacher selected
which games to play. After each play period, we interviewed the teacher while
watching the recorded video. The purpose of this interview was to discover the
behavioral strategy of the teacher for engaging the child in play.

3.2 Modeling a Child’s Play

We generated a child’s play model including the child’s mental state transition
and the kindergarten teacher’s action strategy from the observation (Fig. 1 (a)).
It is a state transition model of the children’s mental states, the action strategy
of the teacher, and the process of becoming bored, which is a full complex model.
“Nervous,” “Familiar,” “Enjoying,” “Bored,” and “Change of interest” represent
the child’s mental state transitions. The output from the child’s mental state is
the child’s behavior, and the input is the kindergarten teacher’s action strategy
which is taken according to child’s DOI in the play.

The model in Fig. 1 (a) is simplified to make it implementable on the robot,
and we generated an action selection model. The child’s mental state transition
model, which corresponds to the action selection model for the robot, is illus-
trated in Fig. 1 (b). The playmate robot uses this model to select an action for
sustaining the child’s interest in the current play. It can predict the next state
of the child by taking a specific action using the mental state transition model.
Therefore, it is possible for the system to select an action that can keep the child
engaged in play, i.e., by trying to confine the child’s state to S1 or S2.
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Fig. 1. Child’s mental modeling: (a) Model of child’s play including the child’s mental
state transition and the kindergarten teacher’s action strategy and (b) Child’s mental
state transition model in play

Child’s Inner State. In the figure, S0, S1, S2, and S3 represent the child’s
inner states of “habituation,” “deeply engaged,” “a little engaged,” and “getting
bored,” respectively. The “habituation” state occurs once when the child first
meets the robot. Therefore, during the play between the robot and the child, the
states shift among S1, S2, and S3.

Observation. z(t) in Fig. 1 represents observable features for estimating the
child’s mental state. The output probability of z(t) prescribes the child’s current
mental state. Details pertaining to the state estimation are described later.

Play State. In the model, c(t) represents the state of play, such as types of
play, a turn, and success or failure of the action. The play state is important
since the available actions depend on the current state. Therefore, c(t) is always
referred to by the robot to select its action. The total number of play states is
(kind)×(turn = 3)×(success = 3). kind represents types of play, which include
a card game, rock–paper–scissors game, and so on. turn has three values: child’s
turn, robot’s turn, and the other turn. success takes the values success, failure,
or nothing.

Actions. The variable a(t) indicates a set of robot actions, which is designed
with reference to the strategy of the kindergarden teacher. There are eight actions
in total at the abstract level: (1) make a willful mistake, (2) react to the child’s
action, (3) react to its own action, (4) tantalize, (5) change the tempo of the
play, (6) do nothing special (simply continue to play), (7) recommend changing
to a different type of play, and (8) recommend continuing the same type of play.

The possible actions of the robot are constrained by the play state c(t); e.g.,
the robot cannot flip over the card when it is the child’s turn. Thus, each play
state has a set of available actions a{c(t)}. The robot selects an action from the
current list of available actions accordingly. The child’s mental state transition
model in Fig. 1 (b) has transition probability p(Sk|Sn, an, c) as a parameter. The
number of values this parameter can take is 8 (number of state transitions)×
(number of play states) × 8 (number of actions). This parameter is calcu-
lated based on the experiment of observing the play between two children and
a kindergarten teacher.
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Action Selection of the Robot. The robot acts based on the strategy of the
kindergarten teacher. One important strategy is selecting an action according to
the child’s mental state. The process of the robot performing an action selection
entails the following: (1) observing the child, (2) estimating the child’s current
mental state, (3) deciding the play state and set of actions available, and (4)
selection of the action. The robot first estimates the child’s mental state Sn from
the observation z(t). The set of available actions is automatically determined
from the current play state c(t). The robot then selects an action that has a
high probability of transition to S1 or S2:

a(t) = argmax
a

p(Sn(t+ 1)|Sn(t), a{c(t)}). (1)

The robot performs this action selection with each change in the play state.

3.3 Mental State Estimation

In the proposed system, the regularity of the gaze, smile intensities, and the
motion are used for estimating the child’s mental state. These three features
appeared to be useful in our foregoing observational analysis. In [7], the authors
found that similar cues are valid for detecting child engagement with a robot.

The regularity of the gaze d(t) is defined as the frequency of the player’s gaze
on the robot or the area related to the play. Let h(t) ∈ {0, 1} represent a state
of the face direction at time t. h(t) takes the value one when the player’s face
is in the direction of the play-related region and takes zero otherwise. Then,
d(t) can be calculated as d(t) =

∑t+�−1
k=t h(k)/�, where � denotes the length of a

frame. The direction of the child’s gaze is estimated via head tracking based on
the 3D head-pose estimation [8]. The method in [9] is used for estimating smile
intensities s(t). s(t) is averaged over a frame, and it ranges from 0 to 1. The
motion cue is also useful since the motion of children becomes large as they lose
interest. The motion m(t) is measured by the distance between the current and
previous positions of the face. m(t) is normalized by the distance between the
eyes to eliminate individual variation. m(t) is also averaged over a frame, and it
takes a value between 0 to 1. The length of a frame is chosen to be 5 s.

The output probability p(z(t)|Sn) of each feature z(t) = d(t), s(t),m(t) at
the state Sn is modeled by a normal distribution using the foregoing experi-
mental data. The likelihood Ln(t) of the state Sn when the observation z(t) =
d(t), s(t),m(t) was observed is

Ln(t) = p(d(t)|Sn)× p(s(t)|Sn)× p(m(t)|Sn). (2)

The state that has the highest likelihood is determined as the estimated mental
state,

Sn(t) = argmax
Sn

Ln(t). (3)
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Fig. 2. (a) Scenes of the experiment: the playmate robot, top view of the experiment,
and children playing with the robot, are respectively depicted from left to right. (b)
Action selection model based solely on play states.

4 Experiments

4.1 Experimental Setup

The model discussed in the previous section was implemented on DiGORO. To
compare with our proposed method, we defined the state model (Fig. 2 (b)). In
the state model, the robot selects an action randomly from the available actions
at the play state c(t). This means that the robot selects an action depending only
on the current play state, and it does not care about the child’s mental state.

We conducted a verification experiment using the robot in the decorated room
as shown in Fig. 2 (a). Six children (three boys and three girls, with an average
age of 5.5 years) participated in this experiment. Each participant was asked
to sit in front of the robot and play card playing (concentration) and the game
of rock–paper–scissors with it. This was because these two kinds of play work
stably and are suited to the experiment from a safety viewpoint. The experiment
started with five minutes of icebreaking conversation soon after the child entered
the room. Then, the child played with the robot for about thirty minutes before
leaving the room.

4.2 Estimation of the Child’s Mental State

The child’s mental states were estimated by using images from a camera that
was set in front of the robot at 5-s intervals during the experiment. The proposed
model used this estimated result for selecting the robot’s next action. To compare
with the teacher’s evaluation, which will be explained later, 2 is assigned to S1,
1 is assigned to S2, and 0 is assigned to S3. We call this the estimated degree of
interest (DOI).

4.3 Evaluation and Questionnaires

We requested three professional kindergarten teachers to annotate each child’s
mental state in the range from 0 to 4, which we call annotated DOI, at 5-s
intervals, by watching a video capturing the frontal view of the child. The average
of the three teacher’s ratings was used as the baseline. All the teachers were also
asked to complete a questionnaire about the target child, which consisted of 13
items (that are listed below) concerning robots and the experiment, and 10 items
about the personality of the child.
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Table 1. Correlation coefficient between estimated DOI and annotated DOI

Child’s ID C1 C2 C3 C4 C5 C6

Correlation coefficient 0.22 0.21 0.12 0.01 0.52 0.53

Minimum value of ref. 0.59 0.91 2.00 2.00 1.41 0.67

Q1: Is the child interested in generic robots? (no / yes)
Q2: Does the child like generic robots? (yes / no)
Q3: Through this experiment, did the child get more interested in generic robots? (lost / developed

interest)
Q4: Through this experiment, did the child come to like generic robots? (come to dislike / like)
Q5: Does the child like the robot used in this experiment? (no / yes)
Q6: How does the child find the robot used in this experiment? (scary / friendly)
Q7: How does the child feel about the robot used in this experiment? (uncool / cool)
Q8: How does the child feel about the size of the robot used in this experiment? (small / large)
Q9: How does the child feel about this experiment? (boring / enjoyable)
Q10: Was the child in a good mood before playing with the robot? (in a bad / good mood)
Q11: Did the child get into a good mood after playing with the robot? (get in a bad / good mood)
Q12: Does the child want to play with the robot again? (no / yes)
Q13: Does the child think of the robot as a human? (as a machine /as a human)

4.4 Results

Four children (two with the proposed model and two with the state model) out of
the six played with the robot until the prescribed end of the experiment period.
Because the remaining two children (one with the proposed model and one with
the state model) refused to continue the play, the experiment was aborted after
about fifteen minutes. One of these two children was scared of the robot and the
height of the seat. These things were directly responsible for the child’s refusal
to continue the play. The other child tested the robot to see if she could trust it.
She frequently took actions irrelevant to the play, such as shaking the table and
showing an injury to the robot, among other actions. Since the robot could not
respond to these actions, the play between the child and the robot was disrupted.

4.5 State Estimation

We smoothed estimated DOI values for 5 points and calculated the correlation
coefficient between smoothed estimated DOI and each child’s annotated DOI
values. Table 1 shows the correlation coefficients. The estimated DOI is positively
correlated with the annotated DOI in all six children(p < 0.05, two-sided, sign
test). This result is acceptable from the viewpoint of action selection using the
model.

For the case where the minimum value of the annotated DOI is larger than 2,
the correlation coefficients are low. This implies that the estimation accuracy of
the state “the child is interested in the play” is not high. To discover the cause of
this bad performance, we examined the data, finding that S1 and S2 share similar
feature vectors in this experimental setting. This means that discriminating S1

from S2 by the feature vector used in this experiment is difficult. However,
both S1 and S2 can be said to be the interested states of children, and actions
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Fig. 3. Average scores for each questionnaire. See the text for details on Q1–Q13.

selected in both states are behaviors that encourage the children in the states
of engagement. Therefore, the inability of the system to discriminate between
S1 and S2 can be disregarded. Estimating S3, the state in which the child gets
bored, is more important during the play.

We thus measured the accuracy of estimating the child’s state with two levels,
i.e., S1 + S2 = S

′
1 and S3. In this case, the recognition accuracy increased from

∼40% to ∼70%.

4.6 Comparison between Proposed Model and State Model

The subjects can be divided into three groups. The first group consists of sub-
jects playing with the robot that selects its action using the proposed model
(model group). The second group contains subjects playing with the robot that
selects its actions using the state model (state group). The last group consists of
subjects who aborted the play in the experiment (abort group). Figure 3 shows
the average questionnaire scores for each group. The responses to Q3, Q4, Q5,
and Q7 exhibit significant differences between the model and state group ac-
cording to a t-test (p < 0.05). Q3 to Q5 are questions pertaining to whether
the experiment affects the result, such as “Does the child like the robot used
in this experiment?” In contrast, responses to other questions that pertain to
the robot in general, such as Q2 “Does the child like generic robots?,” show no
significant differences. This implies that the proposed model leads to a better
impression of the robot and the experiment than the state model. Given that the
average scores of Q9 “How does the child feel about this experiment? (boring /
enjoyable)” and Q12 “Does the child want to play with the robot again?” for
the model group are higher than those for the state group, the selecting actions
by the proposed model may affect the relationship between the robot and the
child, and the relationship influences whether the robot can play with the child
over a long duration.

To validate this questionnaire’s result, we try to evaluate a relationship between
the robot and the child in quantitative form. Figures 4(a) and (b) show the DOIs
(annotated) of two participants, one from the model group (Fig. 4(a)) and one
from the state group (Fig. 4 (b)). Figures 4(c) and (d) illustrate the frequency
of gazing at the robot and the table by the children. This plot is the 5-minute
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Fig. 4. The results of two participants: (a) plot of the baseline DOI for the model
group, (b) plot of the baseline DOI for the state group, (c) plot of the normalized
frequency of gazing at the robot and the table for the model group, and (d) plot of the
normalized frequency of gazing at the robot and the table for the state group‘.

moving average. The figures indicate that both DOIs have no tendency of causing
children to get bored. This suggests that every child enjoyed playing. However, the
frequency of the child gazing at the robot and the table greatly differed between
the two groups. Both groups often gazed at the robot at first, and the model group
gazed at the robot and the table at about the same rate over time (average: table
54%, robot 46%). In the state group, the frequency of gazing at the table gradually
reduced (average: table 62%, robot 38%). A particularly noteworthy point is that
at the end of a card game, which is at about 700 to 1300 s in Fig. 4(c) and 500
to 1050 s in Fig. 4(d), the frequency of gazing at the robot increases and exceeds
the frequency of looking at the table at 700 and 1300 s in Fig. 4(c) and at 500 s
in Fig. 4(d). This implies that the child gazed at the robot to observe the robot’s
reaction at the end of the card game. This is similar to the situation in which
the child looks at the kindergarten teacher after finishing something because the
child wants to observe the teacher’s reaction. In contrast, despite the card game
also ending at 1050 s in Fig. 4(d), the frequency of gazing at the robot did not
increase. In the state model, the child provides less attention to the robot during
the play. The same thing can be said for the remaining two children who played
until the prescribed end of the experiment period.

This result shows that selecting actions by using the mental state transition
model for the play between the child and the robot is as effective as indicated
by the questionnaire’s result. Appropriate behavior of the robot based on the
model helps to maintain a good relationship with the child.

The DOIs exhibit no difference between the model and state groups; however,
the frequencies of the child’s gaze differ. These results indicate that there are
two important factors involved for the robot to be able to play with the child for
as long as possible. One is the engagement in play, represented by the DOI. The
other factor is the relationship between the robot and the child, represented by
the regularity of the gaze. The relationship affects the child’s urge to play with
the robot again, which is indicated, for example, by the response to Q9 “How
does the child feel about this experiment? (boring / enjoyable)” and Q12 “Does
the child want to play with the robot again?” Therefore, this factor is certainly
important to sustain play for a long duration. In addition, these results indicate
that the relationship can be measured directly from the regularity of the gaze.
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5 Conclusion and Future Work

To continuously play with a child for a long duration, a robot has to sustain
the child’s interest and forge a good relationship with it. This study proposes a
playmate robot system consisting of multiple, switchable play modules that help
to sustain a player’s interest for as long as possible. We also propose a model
of the inner state of the player, which is used by the robot for action selection.
We implemented basic functions of the play modules in our service robot and
verified that they work reasonably well through experiments involving child–
robot interactive play. The result shows that the robot’s action selection using
the proposed model created a good relationship between the robot and the child.
However, many challenges remain to be addressed in a future work, for example,
the implementation of the modules and, in particular, the testing of the playmate
robot with a larger number of children.
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Concurrent Acquisition of the Meaning of Sentence-Final 
Particles and Nouns Through Human-Robot Interaction 
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Abstract. Sentence-final particles serve an important role in spoken Japanese, 
because they express the speaker's mental attitudes toward a proposition and/or 
an interlocutor. They are acquired at early ages and occur very frequently in 
everyday conversation. However, there has been little proposal for a 
computational model of the acquisition of sentence-final particles. In this paper, 
we report on a study in which a robot learns how to react to utterances that have 
a sentence-final particle and gives appropriate responses based on rewards 
given by an interlocutor, and at the same time, learns the meaning of nouns. 
Preliminary experimental result shows that the robot learns to react correctly in 
response to yo, which expresses the speaker's intention to communicate new 
information, and to ne, which denotes the speaker's desire to confirm that some 
information is shared, and also learns the correct referents of nouns. 

Keywords: language acquisition, function words, reinforcement learning. 

1 Introduction 

Sentence-final particles serve the important role of expressing the speaker's mental 
attitudes. They are acquired at early ages and occur very frequently in everyday 
conversation. Ohshima et al. proposed a robot that uses sentence-final particles in 
order to draw the hearer’s attention [4]. Research on the computational model of 
language acquisition is rapidly increasing [1]. However, to the best of our knowledge, 
there has been no proposal for a computational model of the acquisition of sentence-
final particles except for our earlier reports [3,5]. 

In the preceding reports, we dealt with the following two usages of sentence-final 
particles yo and ne, (although there are several other usages of yo and ne): 

• The informing usage of yo: informing the listener of information that seems new to 
the listener [2]. 

• The agreement requesting usage of ne: requesting an agreement on information 
that seems to be shared between the speaker and the listener [2]. 

The purpose of the study was to get a robot to learn a series of appropriate physical 
reactions to a speaker’s mental attitude expressed with a sentence-final particle. We 
used a robot, instead of a virtual agent, because the reactions to be learned included 
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the gaze direction, which is difficult for a virtual agent to express accurately. The 
robot learned appropriate reactions based on rewards given by its interlocutor. 

In general, responses from a robot include the following: 

1. physical reactions such as a nod, turning of its face in the direction of the referent 
of the utterance, etc. 

2. utterances 
3. inner information processing such as memorizing new information received, etc. 

Among the three items listed, 1 and 2 are observable by an interlocutor; however, 
item 3 cannot be directly observed, which makes it difficult for him/her to give 
appropriate rewards in accordance with the robot’s response, and inappropriate 
rewards make it difficult for the robot to learn appropriate responses. Our earlier 
study [3,5] only dealt with item 1. The robot thus only acquired outward behaviors, 
and did not learn inner information processing such as remembering the name of an 
object. While, this study deals with item 3 as well as item 1. Although it does not 
cover item 2, we believe that utterances can be learned as well as physical reactions 
because both are observable. 

The remainder of this paper is organized as follows. We describe our preceding 
computational model for the acquisition of physical reactions to sentence-final 
particles in Section 2. We explain our new model for learning the invisible inner 
processing and demonstrate the leaning capability of the model in Section 3. Finally, 
we outline future work and conclude this paper in Section 4.  

2 Acquisition of Appropriate Physical Reactions 

2.1 Computational Model 

In this study, the robot learned appropriate physical responses to the two usages of 
sentence-final particles yo and ne based on the rewards given by an interlocutor. We 
formulated the problem as a reinforcement learning (RL) process. State in RL 
consisted of the utterance of the interlocutor, the referents of the utterance, objects 
within the eyesight of the robot, and others. For simplicity, we assumed that the 
rewards are given every time without fail, and excluded delayed rewards, which 
simplified the action value update as follows: , , , , 
where ,  is an action-value function, that is, the value of taking action  in 
state ,  is the learning rate, and  is the reward. 

2.2 Experiments 

We conducted three experiments: The robot learned (1) the informing usage of yo, 
specifically, the usage that relates the name of an object (Exp. 1), (2) the agreement 
requesting usage of ne (Exp. 2), and (3) the informing usage of yo, specifically, the 
usage that relates the existence of an object (Exp. 3). 
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2.3 Results and Discussion 

The main learning results are shown in Table 1 (see [3,5] for more details). The 
results indicate that the robot learned to react more or less correctly in response to 
sentence-final particles yo and ne. Several action sequences resulted in the opposite  
action values to those that were expected by us; these are indicated by colored cells in 
the table. 

We found that there were individual differences in the evaluation of the robot’s 
actions, and the aforementioned reversed evaluations were mostly observed for 
specific participants. This means that adaptation to an individual user is worthwhile. 

Table 1. Main results of action-value learning. For each experiment, action sequences that have 
the top five action values are shown in descending order. Action sequences consisted of at most 
three elemental actions. “Face” represents the elemental action of turning the robot’s face 
toward the interlocutor’s face; “object” represents the action of turning toward the relevant 
object; and “other” signifies the action of turning toward another object. 

Exp. 1: Instructing names Exp. 2: Requesting  
agreement 

Exp. 3: Informing existence 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

nod object object nod face - face nod object 
object nod object nod other object object nod other 
nod other object nod nod nod other object nod 

other nod object face face nod face other - 
nod other other face nod nod face other nod 

3 Learning Invisible Inner Processing 

The robot described in the previous sections learned appropriate reactions such as 
turning toward an apple and nodding on hearing a sentence containing a sentence-
final particle. However, it only acquires outward behaviors, and does not learn inward 
processing such as remembering the name of an object. 

In this section, we explain our idea for learning inward processing as well as 
outward behaviors. Learning inner processing from rewards is much more difficult 
than learning visible behaviors. This is because accurate rewards are not always given 
for invisible inner processing. For example, it is probable that even though a reward 
was given when the robot nodded, it subsequently turns out that the robot does not 
actually remember the name. 

3.1 Computational Model 

In order to resolve the aforementioned issue, we employed the following policies: (1) 
the robot should learn from delayed rewards; and (2) the state space of learning, i.e., 
the number of states and actions, should be as small as possible. We employed the  
 



 Concurrent Acquisitio

 

latter policy because it is d
when the data comes only f

We thus set out a simp
important difference from 
actions between a human 
arrows and robot’s actions 
cause state transitions. Whi
in the standard RL, human
the state space. 

One of the robot’s action
a pair of a word, such as a
object in front of its eyes, 
result” is the act of nodding
the pair in memory, shaking
or no neck motion otherwis

We use the learning alg
Sarsa(λ) [6]. The modifica
the human and the robot; a
trace. 

Fig. 3. State transition diagra
depict robot’s actions that inclu

 
 

on of the Meaning of Sentence-Final Particles and Nouns 

difficult to obtain sufficient data for complicated learn
from interaction with humans. 
ple state space, shown in Fig. 3, in the first place. 
the standard reinforcement learning (RL) is the altern
and a robot. Human actions are represented by das
are expressed with solid arrows in Fig. 3, and both acti
ile the robot acts according to the learned action values

n actions are decided independently of the action value

ns in Fig. 3, “memorize and nod,” is the act of memoriz
apple, which is a segment of speech, and an image of
and nodding. “Compare and move neck according to 

g if the currently presented word-image pair is the same
g its head if the current pair disagrees with the stored p

se. 
gorithm shown in Fig. 4, which is a modified version
ation includes the following: (1) alternate actions betw
and (2) use of a replacing trace [6] instead of an eligibi

 

am. Dashed arrows represent human actions, and solid arr
ude inner processing. 

391 

ning 

An 
nate 
hed 
ions 
s as 
s in 

zing 
f an 
the 

e as 
pair, 

n of 
ween 
ility 

rows 



392 N. Oka et al. 

 

 

Fig. 4. Learning algorithm for inward processing: a modified version of Sarsa(λ) [6] 

3.2 Preliminary Experiment 

A preliminary experiment with five participants was conducted. The setting of the 
experiment was similar to that described in Section 2.2 except for the number of 
objects on the table; not two but one. In this experiment, three kinds of objects, an 
orange, an apple, and a banana, were provided. A participant selected one of the three 
objects, put it in front of the robot, and talked about it. 

At first, the robot did not know the meaning of sentence-final particles yo and ne, 
nor the names of the three objects. The participant tried to teach the two sentence-
final particles and the three nouns to the robot. Learning rate  was set to 0.1, and 
probability for random action selection  was set to 0.1. In order to simplify the 
analysis of the experimental results as a first step, discount rate  was set to 0, that is, 
the robot learned only from immediate rewards, in this preliminary experiment. 

Table 2 shows a typical example of the progress of learning. In this case, the robot 
concurrently and successfully learned the two sentence-final particles, which are 
shown in the action value columns, and the three nouns, which are indicated in the 
contingency table column. The action value columns demonstrate that appropriate 
inner processings have positive values, and an inappropriate processing has a negative 
value. Another inappropriate processing has not been tried. An incorrect pair ‘object: 
apple’-‘name: orange’ is stored in the contingency table, but it is not serious because 
the correct pair ‘object: apple’-‘name: apple’ has more counts. 

Initialize ( , ) = 0; ( , ) = 0, for all ,
Initialize =
Repeat

Human’s turn:
The human takes action 
Observe , ; = 0 for human actions

Robot’s turn:
Choose from using policy derived from -greedy)
Take action 
Observe ,+ ( , ) ( , ); ( , ) = 0 for human actions( , ) 1
For all , :( , ) ( , ) + ( , )( , ) ( , )

until the end of episode

Initialize ( , ) = 0; ( , ) = 0, for all ,
Initialize =
Repeat

Human’s turn:

Robot s turn:

until the end of episode

Robot’s turn:

The human takes action 
Observe , ; = 0 for human actions

ntil the end of episode

Choose from using policy derived from -greedy)
Take action
Observe ,+ ( , ) ( , ); ( , ) = 0 for human actions( , ) 1
For all , :( , ) ( , ) + ( , )( , ) ( , )
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We, however, found that not every participant succeeded in teaching. There was a 
participant who gave punishment every time when the robot nodded after hearing 
sentence-final particle yo, and the robot failed to learn the meaning of yo. In order to 
deal with this kind of unusual but consistent rewards, we plan to revise the fixed 
relation between inward processing and outward behavior to flexible one. 

Table 2. Typical example of the progress of learning in the preliminary experiment. “A”,“O“, 
and “B” respectively stand for apple, orange, and banana. “M” and “C” represent the inward 
processing of memorizing and comparison, respectively. The first data row indicates that the 
participant put an apple in front of the robot and said “ringo da yo” (which means, “I want to 
inform you that this is an apple”), then the robot memorized the name of the object and nodded, 
and then the participant gave a reward and the robot updated the action value. The names of the 
objects in the robot’s memory are represented as a 3 3 contingency table. 

 

4 Conclusions and Future Work 

In this paper, we outlined a computational model for learning appropriate physical 
reactions to utterances that have a sentence-final particle. Our experimental  
results indicated that the robot learned to react more or less correctly in response to yo 
and ne. 
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We then proposed a learning algorithm for inward information processing as well 
as outward physical behaviors. The result of the preliminary experiment seems 
promising, and we plan to conduct thorough experiments to test whether the meaning 
of both the sentence-final particles and nouns can be learned at the same time. We 
also plan to investigate the relation between the complexity of the state space and the 
amount of interaction necessary for learning. 
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Abstract. In human-agent interactions, attention sharing plays a key role in 
understanding other’s intention without explicit verbal explanation. Deep 
learning algorithms are recently used to model these interactions in a  complex 
real world environment. In this paper we propose a deep learning based 
intention estimation and recommendation system by understanding humans 
attention based on their gestures. Action-object affordances are modeled using 
stacked auto-encoder, which represents the relationships between actions and 
objects. Intention estimation and object recommendation system according to 
human intention is implemented based on an affordance model. Experimental 
result demonstrates meaningful intention estimation and recommendation 
performance in the real-world scenarios. 

Keywords: intention estimation, recommendation system, attention sharing, 
deep learning, action-object affordance. 

1 Introduction 

One of the main roles of artificial cognitive agents such as robots is to help people to 
achieve their intended goals. In order to recognize human intention, it is important for 
a robot to understand the cognitive status of humans as well as the given environment. 
Humans pay attention to the interesting parts of information related to their intention. 
Cognitive psychologists call this phenomenon as ‘selective attention’ [1-3]. So, to 
predict others’ intention, it is essential to understand their attention. This cognitive 
ability to understand other’s attention is called attention sharing or joint attention [4, 
5]. Attention sharing is the shared focus of two individuals on an object. It is achieved 
when an individual pays his/her attention on an object by means of eye-gazing, point-
ing or other verbal and non-verbal indications. If a robot could share attention then it 
can predict human intention and provide adequate services.  

Selective attention reduces cognitive load. However, environmental distractions 
generally disturb user’s attention. In this case, cognitive robots can aim to assist the 
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intrinsically limited cognitive ability of humans. Since human intentions are usually 
related with objects in an environment, robot agents should know the affordance. 
Affordance is the concept, defined by Gibson [6], which represents the relationships 
or possibilities between actions and objects. The robot can exploit this type of know-
ledge to understand the world in terms of actions and objects to infer the user’s inten-
tion based on objects of attention in a given environment. In [7], authors proposed an 
object categorization method based on affordances between visual objects and actions 
obtained from human behavior. In [8], object affordances were modeled with Baye-
sian networks. These networks are the probabilistic representation of dependencies 
which can be used to understand human actions. This understanding can be used to 
build robots, which can imitate human behavior. Several stochastic models have been 
adopted for an intention recognition system. Hidden Markov model (HMM) was used 
as a recognition model [9] to model the causality or dependency between successive 
measurements. Dynamic Bayesian networks (DBN) were also used to model user’s 
intention [10]. It modeled connections between intentions, observed user actions and 
sensory modalities. This model obtained actions like explicit gestures but didn’t con-
sider user’s attention and objects related to actions. In [11], authors tried to recognize 
human intention by analyzing the change in distance between the observed human’s 
hand and the objects in the scene over several frames. In their model, stacked denois-
ing auto-encoder (SDA) was used which learns distance between object and humans 
and predicts an object for which the person is currently reaching. However, a limita-
tion of this system system is that it tries to understand user’s current behavior and 
fails to recommend the objects needed for a user. In [12], authors classified intentions 
given objects using naïve Bayes classifier [13] and used eye-tracking data from  
virtual environment. But this model only performed intention classification and 
couldn’t explain affordances between intentions and objects. In this model recom-
mendation of objects was just assumed to be obtained indirectly by sending a query 
containing the intention to virtual database.  

In this paper, we propose a system that can recognize human intention and recom-
mend corresponding objects based on user’s attention sharing and affordances. In 
order to model, acquire and use affordances, we obtain the selective attention areas by 
attention sharing based on human gesture understanding. 

The rest of this paper is organized as follows: In Section 2, we describe the struc-
ture and the algorithm of the proposed model. In Section 3 we present the experimen-
tal results to evaluate the performance of the proposed model. Finally, we draw our 
conclusions in Section 4. 

2 Proposed Model 

2.1 Overall Structure 

Main tasks of the proposed model are intention estimation and recommendation for 
the user. To do this, it is required to have functionalities such as attention sharing, 
affordance learning, intention estimation, and recommendation based on affordance 
model. The structure of intention estimation and recommendation system is shown  
in Fig. 1.  
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data to a relatively low-dimensional space. The decoder, the counterpart of the encod-
er, tries to recover the data with original dimension from the encoded vector.  

These two parts are used to model the bidirectional affordance between intention 
and objects. The encoder estimates intentions and the decoder reconstructs corres-
ponding objects. Each node of RBM has a probability of the activation as a result of 
the training. At the code layer, these probabilities are evaluated and compared to de-
cide most adequate intention for a given object of attention. Then, in the decoder part, 
objects related to the intention are reconstructed and objects that are reconstructed but 
not presented in user’s attention are recommended. The learning of the auto-encoder 
consists of two phases. At first, the network is pre-trained and subsequently performs 
the fine-tuning training.  

Input vectors for RBM represent the combination of objects of attention. For ex-
ample, among 5 objects, if objects 1, 2 and 3 get user’s attention, the input vector are 
set to [1 1 1 0 0]. And target code is encoded in a same way. If there are 3 different 
intentions, target vectors of intentions 1, 2 and 3 become [1 0 0], [0 1 0] and [0 0 1], 
respectively. This vector is used as the teaching signal. 

For the test, if test input is given to visible neurons of the stacked auto-encoder, us-
er’s intention is estimated and represented as the vector in code layer such as [0.1 0.8 
0.2]. Then the index of the maximum element of the code vector is decided as the 
label of the estimated intention. After that, the vector is sent to the decoder part and 
finally at uppermost layer, the combination of related objects corresponding to the 
intention vector is reconstructed. With reconstructed related objects, the objects to 
recommend are decided as \ ,                   (1) 

where objreconstructed is obtained by uppermost layer, objattention is the input objects 
which is the result of attention sharing, and set operator \ is the relative complement. 
Then objrecommend is relative complement of objreconstructed in objattention.  

3 Experimental Results  

3.1 Experimental Environment 

To show the performance of the proposed intention recognition and object recom-
mendation, an experimental environment was set up. For obtaining the user’s atten-
tion, we used Microsoft Kinect. The 12 objects related to intentions are used for the 
experiment.  Users were asked to point out intended objects. Fig. 4 shows the  
picture of an experimental environment. Objects are a ramen, a coffee bottle, tea 
bags of green tea, rice cakes, an electric kettle, a pot, a dish, bottles of water, a mug 
and forks.  
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of objects corresponding to their intentions. Due to several environmental distrac-
tions, it is common that subjects’ attention tend to miss some objects required for 
specific intention. For those cases, we tested the intention estimation with randomly 
selected missing objects. Table 2 shows the performance in the case that one object is 
missing. For this experiment, all five participants’ data were used to train and test was 
performed with randomly selected missing objects.  

Table 2. The accuracy of intention estimation with a missing object 

 Intention 1 Intention 2 Intention 3 Intention 4 

Test data with a 

missing object 
83.3 % 79.7 % 45.7 % 91 % 

 
Intention 3 and 4 are ‘drink coffee’ and ‘drink green tea’, respectively. These in-

tentions share some same objects such as bottles of water and a mug cup . Thus inten-
tion 3 is easily confused with intention 4 when there is a missing object. Conclusion  

In this paper, we proposed an intention estimation and recommendation system 
based on attention sharing using gesture understanding and affordance model. Inten-
tion estimation and recommendation are modeled in a stacked auto-encoder consisting 
of an encoder part and a decoder part.. Experimental result shows that the model has 
perfect intention estimation accuracy when there is no missing object and shows mea-
ningful generalization performance even though there is a missing object. Recom-
mendation of object was also successful.  

In our future work, we shall attach a stereo system on the robot itself to make the 
robot track the user to recognize his/her attention. We also plan to implement systems 
that can recognize multiple behaviors of users such as head position, eye-gaze and so 
on. We assume that multi-modal attention sharing will increase the performance of 
intention recognition.  
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ogy Development Program (10044009) (50%) and the R&D program (10041826) 
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Abstract. In this work, a motor imagery based 2-D cursor control
strategy was applied to spell English character in a three-layer inter-
face. Pinyin input method was integrated with English speller to input
Chinese characters. A chatting system based on the BCI speller and in-
stant messenger was designed and tested. The online experimental results
demonstrated that three subjects all achieved good performance.

Keywords: Motor Imagery, Chinese-English Speller, Pinyin input
method.

1 Introduction

Brain-computer interface (BCI) system is a new kind of human-machine in-
teraction, which creates a direct channel, different from the normal peripheral
nervous system and muscle tissue, between human brain and external word [1].
Electroencephalogram (EEG) signals are often used in BCI system to record
electric action of neuronal groups, which provide important information for the
processing of brain information.

Many people with serious neuromuscular disorders have lost their ability to
speak or write. In order to help them to communicate with others, researchers
started to build a novel speller system based on EEG signals. One kind of such
speller system was based on P300, its oddball paradigm (OP) of visual matrix
was first described by Farwell and Dochin in 1988 [2], and later researchers had
developed this paradigm. A four-choice and three presentation modes based on
the OP was implemented in a system with limited number of choices [3]. The
time-frequency instead of time domain EEG features were used to improve the
performance of the P300 speller [4]. Another widely accepted BCI speller was
based on steady-state visual evoked potentials (SSVEP). In literature [5], a high
rate online SSVEP speller was presented with 16 targets, and its frequencies
ranged from 8Hz to 15.5Hz with an interval of 0.5Hz.
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Compared with P300 and SSVEP, Motor Imagery (MI) was rarely used in
BCI speller for its limited distinguishable EEG states. In a MI speller experi-
ment [6], subjects were asked to imagine the moving of his/her left hand, right
hand, feet and tongue, and the corresponding EEG signals were translated into
4 different select commands for a spelling application. To overcome the limita-
tion of command, Hex-o-Spell speller paradigm was put forward by Berlin BCI
research group [7]. In this speller paradigm, only two states classified by the BCI
system were used, one to rotate the arrow in the center of the hexagon interface,
the other was used to stop the arrow and choose the target block.

Most of BCI spellers are designed for English, which are not suitable to input
Chinese because Chinese characters are not alphabetic writing. An input method
based on strokes, which was widely used in mobile phone in China, was combined
with a P300 speller to input Chinese characters, and the accuracy of it was up to
90% [8]. A group in University of Hong Kong presented a shape-based method
called the First-Last to input Chinese characters. They also combined the input
method with a P300 speller and realized the input of Chinese characters, with
the accuracy of 59.4% and the SPL of 77s [9]. Pinyin input method, which uses
English characters to represent the pronunciation of Chinese characters, is often
used to input Chinese characters. To combine Chinese and English input in the
same interface, we developed a Chinese-English BCI speller based on 2-D cursor
control, which inputted English characters in Oct-o-spell paradigm and spelled
Chinese characters using Pinyin input method.

In this paper, we focused on a MI based speller, and use the asynchronous
2D cursor control strategy with Oct-o-Spell paradigm. Pinyin input method was
used to input Chinese characters. Online chatting system based on the Chinese-
English BCI speller was tested and achieved good performance.

2 Materials and Methods

2.1 Asynchronous 2D Control Paradigm

In previous study [10], we presented a three-class (left hand, right hand and feet)
motor imagery based BCI for asynchronous 2D cursor control. For EEG signals
got from the subjects, we used Common Spatial Pattern to extract the features
[11-12] and Support Vector Machine (SVM) to discriminate the three-class MI
patterns. The results from the SVM classifier were three decimals ranged from
0-1 and the sum of them equaled to 1. They represented the probabilities for
doing the three MI tasks. An ONSwitch was used to get control for the 2D
cursor [13]. To switch it on, subjects can do any of the three MI tasks so that
the corresponding possibilities can exceed the threshold in a certain period of
time. After turn on the switch, subjects can control the movement of the cursor
by doing MI tasks. During the process, the probabilities, marked as P1, P2, P3,
were projected to three vectors, as shown in Fig.1. The angle between each two
vectors was 120 degree and the length of the vector was equal to the value of the
probability. To hit the target located in the area between two vectors, the user
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Fig. 1. The mapping of three predict probabilities

performed two corresponding motor imagery tasks simultaneously to generate a
speed vector, by which the cursor was drove directly to the target.

2.2 Spell Paradigm

GUI Design. In this paper, we presented a three-layer of Oct-o-spell paradigm
shown in Fig.2.

Fig. 2. The mapping of three predict probabilities

In the first layer, 26 letters, 10 figures and 5 symbols (‘Quit, ‘=’, ‘ ’, ‘,, ‘.,
‘F1) were divided into eight blocks. In the second layer, 7 different interfaces were
designed to unfold the blocks in the first layer. Only two symbols in the second
layer connected to the third layers. One was ‘F1, connected to a third layer with
6 punctuations: ‘*, ‘@, ‘?, ‘+, ‘!, ‘#. The other one was ‘Quit, connected to a
third layer with ‘YES and ‘NO blocks, which was used to quit the speller system.
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Spell Paradigm. To spell a character or to output a command, the subject
should move the cursor to choose the target block in two or three steps. A block,
which contains the target character in first layer, was chosen at step 1. Then the
interface would extend to the corresponding second layer. The target character
can be chosen in the second layer at step 2. If ‘Quit or ‘F1 in the second layer
was chosen, the interface extended to third layer. Then, the target character can
be chosen in the third layer. To choose a target block, the user should perform
the three MI tasks to move cursor to hit the circle of the target block.

To choose a target block, the user should perform the three MI tasks to move
cursor to hit the circle of the target block. If a wrong block was selected, the
‘Back’ command in every unfolded layer can be chose to back to previous layer.
If a wrong character was output, subjects can control the cursor to enter any of
the second layers to choose the ‘Delt’ command to delete it.

Intelligent Input Method. Instead of developing a new input method, we
adopted a Pinyin input method called Sougou Pinyin input method. It can work
in Chinese input mode and English input mode, and has an intelligent function
of predictive text enter.

For the speller system, the default status was English input state. Subjects
can switch it to Chinese input state by choosing switch block in the first layer
of the interface. To input a Chinese word ‘ ’(How are you?), the subject can
input 5 letters ‘nihao’ , the Pinyin of the Chinese word, and the input method
software translated the Pinyin to the corresponding Chinese words.

3 Experiments

3.1 Subject

Three healthy subjects (sub1,sub2,sub3, all males) aged from 19 to 26 (average
21±3.4) paid to participate in this study. Sub1 had previous experience of MI
and sub2, sub3 were naive. All of the subjects were in good health, and they
submitted their consent to be involved in the study.

3.2 EEG Recording and Signal Processing

Subjects sat in front of a computer and wore the electrode cap. Thirteen channels
(FC3 FCZ FC4 C5 C3 C1 CZ C2 C4 C6 CP3 CPZ CP4) in motor cortex area
were selected and placed according to the international 10-20 system. The EEG
signals were collected by a 16 channel g.USBamp system with 256Hz sampling
rate and were preprocessed by a band-pass filtered between 5-30 Hz. The ground
and reference electrodes were separately placed on Fz and the right earlobe
respectively.

3.3 Online Experiments

Three-Class MI Training. All subjects were required to attend a three class
MI training program. During the training, subjects imagined the movement of
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their left hand, right hand and feed according to the prompts in system interface.
The training program would not stop until the accuracy for every MI tasks was
higher than 85%. Then the data would be saved as a classifier model for the
following experiment.

Online English and Chinese Copy Spelling Experiment. We chose 15
English words, “women, desk, water, hand, memory, zone, baby, face, taxi, june,
quick, video, golf, hour, pencil”, and 10 Chinese words (show in Fig.3). A com-
plete trail contained all the 25 words. Before spelling each word, 3 seconds were
left for subjects to prepare. Each word should be spelled within 60 seconds, and
the system would automatically turn to next word after the word was correct
spelled or the trial running out of time.

Fig. 3. Chinese words and their means for online copy spelling

Online Chatting Experiment. By connecting MI speller with instant mes-
senger (QQ, Tencent.), subjects can chat online. The GUI is showed in Fig.4.
The left part of the interface is the Chinese-English speller, and the right part
is the instant messenger. Subjects used MI speller to spell Chinese or English
words, and these words would be caught and displayed in send windows of the
instant messenger. After entering the whole message, subjects can send it by
choosing the ‘ ’ in block 5.

Fig. 4. Interface of the online chatting system
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4 Result

The accuracy, letter per minute (LPM) and information transfer rate (ITR),
were calculated to evaluate the performance of the MI speller. ITR is calculated
as formula (1):

ITR = [log2 N + P log2 P log2
1− P

N − 1
]

60

trial length
. (1)

Where N is the number of classes (N=8), P is the accuracy, trial length is the
average time of spelling a character.

As shown in Table 1, all three subjects achieve good performance in English
copy spelling experiment. The accuracies of three subjects are all above 95% and
Sub3‘s is 99.17%. On average of all subjects, the performance reaches 96.63% of
accuracy, 10.15 LPM, 62.39bits/min ITR. In Chinese copy spelling experiment,
Sub3 performs the best with the accuracy of 98.65%, the LPM of 70.1, the ITR
of 66.41bits/min.

Table 1. Average Accuracy , LPM and ITR in English and Chinese copy spelling
experiment

English copy Chinese copy

Accuracy LPM ITR Accuracy LPM ITR
Sub1 95.18 15.62 56.86 82.82 5.41 34.76
Sub2 95.54 6.77 59.13 94.94 5.22 48.02
Sub3 99.17 8.07 72.19 98.65 7.40 66.41
Mean 96.63 10.15 62.39 92.13 6.01 49.73
SD 2.21 4.78 8.27 8.28 1.21 15.89

In online chatting experiment, we prepared 6 questions, alternating in English
and Chinese. All the questions and answers (from Sub1) are showed in Fig.5.

Fig. 5. One of the question and answer from Sub1

When answering the questions, subjects were sometime out of mind and thus
lost the control for the cursor, so the cursor would enter the wrong block. To
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correct the mistake, subjects used ‘Back‘ to return to the previous layer or ‘Delt‘
to delete the wrong output. As showed in Table 2, Sub1 has the highest accuracy
of 96.60% and Sub2 the lowest accuracy of 96.10%. On average of all subjects,
the performance reaches 5.53 LPM and 30.86bits/min ITR.

Table 2. Average Accuracy, LPM and ITR in online chatting experiment

Accuracy LPM ITR

Sub1 96.60 5.76 32.25
Sub2 96.10 5.14 28.83
Sub3 96.29 5.69 31.49
Mean 96.33 5.53 30.86
SD 0.25 0.34 1.80

5 Discussion and Conclusion

In this study, we developed a Chinese-English speller system with the Oct-o-Spell
paradigm based on 2D cursor control. Compared to the interface of Hex-o-Spell,
the Oct-o-Spell can display more symbols for its structure of octagon, which is
necessary for the input of Chinese characters using Pinyin input method. To
improve the speed of letter selection, instead of directly using the three-class
commands, we adopted a novel method in [10] to compose the three vectors,
which represented the probabilities of three-class motor imagery, to decide the
movement of cursor in any direction.

Based on the Chinese-English speller and instant messenger, we developed an
online chatting system. All the subjects achieved good performance in the online
experiment. Compared to the speller based on P300 [3-4] and SSVEP [14-15],
our results are satisfactory.
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Abstract. The subjects can learn to modulate their EEG pattern to
achieve multiple targets in brain-computer interface systems. The mod-
ulation can occur in both α and β bands of the EEG signal. To suc-
cessfully identify these modulated EEG patterns, multiple band-limited
multiple Fourier linear combiner (BMFLCs) are employed to estimate
the amplitude variations in EEG. To achieve better signal to noise ratio,
spatial filter is paired with BMFLC for classification with linear discrim-
inant analysis. Various existing spatial filters are paired with BMFLC
and the performance is compared to identify the best spatial filters for
classification of four targets in BCI Competition 2003 data set II(a). Re-
sults show that the Tikhonov regularized common spatial filter (TRCSP)
paired with BMFLC provides better accuracy in comparison with other
spatial filters.

Keywords: Brain-computer interface, BMFLC, Spatial filter, LDA.

1 Introduction

Brain-computer interface (BCI) is an alternative communicationpathway that can
translate variousbrain signals to computer command.Amongcurrent existingbrain
signal collection techniques, the Electroencephalography(EEG) has been widely
applied to BCI system due to its easy of implementation, cost efficiency and non-
invasiveness. Event-related (de)synchronization(ERD/ERS) is the amplitude de-
creasing of α band amplitude over sensorimotor cortex as the subject performs a
motor imagery or actual limb movement whereas ERS is the amplitude increasing
related to motor activity [2]. Thanks to the neuron plasticity, the subjects are able
to learn to modulate their EEG signal to achieve a multi-tasks BCI system [3]. In
BCI competition 2003 data set IIa, the subject was asked to modulate their EEG
signal in motor cortex for a 4-classes BCI experiment [4].

For a BCI system, pre-processing and feature extraction form the core part
of classification. The amplitude of EEG signal is weak as compared to the noise
source and the volume conduction of the human skull, the measured surface EEG
may not be an accurate measure of the electrical activity of underlying cortex [5].
Moreover, such patterns ERD/ERS that can be decoded from EEG are also
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localized [2]. The various spatial filters such as common average reference (CAR),
Laplacian based spatial filter and common spatial filter (CSP) are designed to
improve the signal-to-noise ratio (SNR) of the EEG signal [5].

The feature extraction is significantly affect the performance of the BCI sys-
tems. The feature extraction algorithm should be able to track both the time-
varying amplitude and frequency characteristics of the EEG signal. For the 4-
classes BCI system, the band-power in α and β bands are generally employed as
features [4]. For computation of the band-power from EEG, bandpass filter and
autoregressive (AR) model based methods are popular [4]. However, the band-
pass filter based method offers poor frequency resolution and the AR model rely
on interpolation. A method that can directly track the amplitude and frequency
changes in EEG signal is desired. The band-limited multiple Fourier linear com-
biner (BMFLC) employs a truncated Fourier series as the signal model and
estimates the Fourier coefficients with an adaptive algorithm. The suitability of
BMFLC for BCI systems was earlier demonstrated for two-class problems [6,7].

In this paper, we extended the existing BMFLC method to estimate the am-
plitude variation in α and β bands simultaneously. Before sending the signal to
BMFLC, we employed various of spatial filter to improve the SNR of the EEG
signal. Various existing spatial filters are paired with BMFLC and the perfor-
mance are compared to identify the best spatial filter that can be paired with
BMFLC for four class classification in this paper.

2 Methods

2.1 Band-Limited Multiple Fourier Linear Combiner (BMFLC)

The existing BMFLC divides a pre-defined frequency band [ω1, · · · , ωn] into
n equally distributed divisions and estimates the amplitude of each frequency
component by using least-mean-square algorithm (LMS) [6, 7]. Although the
estimation accuracy is high, the LMS algorithm cannot guarantee an accurate
estimation of amplitude variation. To improve the tracking ability of the existing
BMFLC, BMFLC with Kalman filter (BMFLC-KF) was later developed [8]. The
state-space model of BMFLC-KF can be given by

yk = xT
k wk + vk; wk+1 = wk + ηk (1)

where xk and wk are defined as

xk =

{ [
sin(ω1k) sin(ω2k) · · · sin(ωnk)

]T[
cos(ω1k) cos(ω2k) · · · cos(ωnk)

]T
}
;wk =

{ [
a1k a2k · · · ank

]T[
b1k b2k · · · bnk

]T
}

(2)

Assume that vk and ηk are independent Gaussian process with zero mean and
covariance of R and Q respectively. The Kalman filter iteration can be given as

Kk = Pkx
T
k [x

T
k Pkxk +R]−1 (3)

ŵk+1 = ŵk +Kk(yk − xT
k ŵk) (4)

Pk+1 = [I−Kkxk]Pk +Q (5)
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where ŵk = E[wk|yk−1] denotes the mathematical expectation of w at time
instant k with respect to previous observation y at k − 1, Pk is the estimated
state error covariance and Kk is the Kalman gain. The Kalman filter starts with
the initial condition ŵ0 = 0 and P0 = I. The estimated weights ŵk forms the
time-frequency mapping of a given signal.

2.2 Optimal Band Selection

As stated in our early study [6], the motor function induced ERD/ERS occurs
in a subject-specific reactive band. By incorporating this optimal band, the clas-
sification accuracy is improved compared to usage of the whole α band [7]. The
optimal band can be visualized in the time-frequency map that is obtained by
BMFLC. By averaging the weights of BMFLC over time, the optimal band is
characterized as the peak in the resultant spectrum. For details, see [6].

2.3 Spatial Filters

The irrelevant information in EEG signal mainly comes from two sources: the
non-EEG source and the EEG source. The former one is the noise that comes
from electricity activity outside the brain and the latter one is the EEG compo-
nents that does not give information to the desired EEG pattern [5]. The spatial
filter is designed to eliminate the noise effect of both sources. In this paper,
we employed common average reference (CAR) and Laplacian spatial filter to
preprocess the EEG signal [5].

In the CAR, the EEG signal is re-referenced to the average value of the
potentials that recorded from the whole EEG montage. If the electrodes are
equally spaced and the potential is generated by point sources, the CAR gives
a spatial potential distribution with mean value of zero. Moreover, the CAR
removes the wide spread noise such as EMG [5].

The Laplacian spatial filter on the other hand is mainly focused on local
information. By using the second order derivative of the instantaneous spatial
potential distribution, the Laplacian spatial filter is targeted at recovering the
electrical activity of the radial sources underneath the electrodes. The Laplacian
spatial filter can be written in the following form [5]:

V LAP
i = V ER

i −
n∑

j=1

gijV
ER
j (6)

where gij = 1/dij
1∑

n
j=1 1/dij

, n is the total number of electrodes, dij is the dis-

tance between electrodes i and j, V ER
i is the referenced potential of electrode i.

Two variant Laplacian spatial filters, namely large Laplacian (LLap) and small
Laplacian (SLap) are used in this paper. The dij is 3cm and 6cm for LLap and
SLap respectively [5].
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Fig. 1. System Structure

Common Spatial Filters. As the variance of EEG signal is directly related
to the band-power, the common spatial filter (CSP) which tries to maximize
the variance of band-pass filtered EEG in one condition while minimizing the
variance in the other condition [9] can be directly beneficial for improving the
performance of the band-power based BCIs.

The original CSP is an optimal process that tries to find the coefficients of w
that maximize the following cost function.

J(w) =
wTXT

1 X1w

wTXT
2 X2w

=
wTC1w

wTC2w
(7)

where Xi is the cascaded EEG signal from ith condition and Ci is the corre-
sponding variance estimation. The original CSP has the tendency of overfitting
and sensitive to noise, a regularization term is used to overcome those effects.
Due to the superior performance, the Tikhonov regularized CSP (TRCSP) that
was proposed in [9] is used in this paper. The cost function of TRCSP is given
as

J(w) =
wTC1w

wTC2w + αwT Iw
=

wTC1w

wT (C2 + αI)w
(8)

where the penalty term in TRCSP is αwT Iw that penalizes each channel equally.
α is selected such that the performance of a LDA classifier is maximized with a
10-fold cross validation. The optimization of equation (8) is done by solving the
following Lagrange equation

L(λ,w) = wTC1w − λ(wT (C2 + αI)w − 1) (9)

The solution of equation (9) is equivalent to the eigenvalue problem given by
(C2 +αI)−1C1w = λw. The spatial filter w that maximizes the equation (9) are
obtained with eigenvectors M = (C2 + αI)−1C1.

The signal processing flowchart is shown in Fig.1. The solid line indicates
the signal path for CAR, LLap and SLap whereas the dash line indicates the
path for TRCSP. Before applying TRCSP, the EEG signal is bandpass filtered
between 6 − 30Hz which covers the α and β band. Three BMFLCs are used
simultaneously to estimated the amplitude from 6−30Hz. The cut-off frequency
for three BMFLCs are [fl = 6Hz, fh = 14Hz], [fl = 14.5Hz, fh = 22Hz] and
[fl = 22.5Hz, fh = 30Hz] respectively. The frequency spacing is set to Δf =
0.5Hz based on earlier studies [6, 7].
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Fig. 2. The time-frequency mapping of top target and bottom target are shown in first
and second row respectively. The results of CAR, LLap, SLap and TRCSP are shown
from first column to the last column. The reactive band selection is shown in the last
row. The results are obtained from subject AA.

3 Results

3.1 Data Set

The data set used in this paper is Data set IIa in BCI competition 2003. Total
three subjects EEG data are given in this data set. The EEG signal is recorded
from 64 electrodes according to the international 10/20 system. The sampling
frequency of the signal is 160Hz. During the experiment, the subject sat on a
reclining chair in front of a computer screen. The experiment starts with 1s
blank screen. The target is given at the right edge of the screen in one of four
possible locations (e.g. Top, Middle Top, Middle Bottom and Bottom). At 2s,
a cursor appears at the center of left edge of the screen and start to travel to
the right edge at constant speed. The location of the cursor is controlled by the
α and β rhythm amplitude which were collected from 1-3 EEG channels of the
subjects. The amplitude of EEG is estimated by an AR algorithm and then feed
to a linear function to calculate the location of the cursor. Trial stops when the
cursor arrived at the right edge. For more details, please see [4].

3.2 Time-Frequency Mapping and Optimal Band Selection

As the experiment is designed to train the subject to modulate their motor cortex
activity and according to the experiment protocol, the EEG signal from electrode
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Fig. 3. Classification error for different spatial filters

C3 in international 10/20 system is used as the base signal for CAR, LLap and
SLap. For TRCSP, the most significant spatial filter which shows clearly motor
cortex localization is used.

The time-frequency mappings are obtained by averaging the estimated weights
from BMFLC of all trials of a given task. For subject AA and subject CC,
the amplitude decrease as the target move from top to the bottom whereas
the inverse pattern is observed for subject BB. For all subjects, the amplitude
achieves its maximum or minimum level at top and bottom target. The results of
top and bottom target of subject AA are shown in Fig.2(a1)-(a4) and Fig.2(b1)-
(b4) respectively. It is shown that for CAR, SLap and TRCSP, the α and β
band amplitude modulation can be identified between top and bottom target
from the time-frequency mapping. For LLap, the time-frequency mapping in β
band becomes blurry, only the α band modulation can be observed. Among all
the methods, the TRCSP shows the clearest modulation pattern in both the
bands. The contrast of the modulation pattern also outperforms the rest of the
spatial filters.

As we observed from time-frequency mapping, the frequency modulation hap-
pens in a localized frequency range. To obtain the optimal frequency band of
the subject, four frequency spectrums corresponding to top target, middle-top
(Mid-Top), middle-bottom (Mid-Bot) and bottom target are extracted from the
time-frequency mapping by averaging the time-frequency weights over time. The
extracted frequency spectrums are calculated and shown in Fig.2(c1)-(c4). For
all spatial filters, two peaks which lay in α and β band respectively can be identi-
fied. And the amplitude intensity change is clearly shown as the height difference
of the peak regarding to each target. Although, all spatial filters provide a sim-
ilar frequency range in both bands, only the spectrum obtained from TRCSP
shows a smoothed spectrum estimation.

3.3 Classification

After identifying the optimal band for all the subjects, the corresponding weights
that are estimated by BMFLC are used as features for LDA. In this paper, a
trial-wise classification scheme is adopted. For training a classifier on a complete
experiment trial, the weights of BMFLC in the optimal band for 1s window
are extracted and averaged from 2s to 4s with 500ms overlapping. The resultant



Multiple BMFLCs with Spatial Filter 417

weights are cascaded to form one feature vector for that trial. The LDA classifier
is trained and tested with a 10-fold cross-validation scheme. The error rate of
the classifier is shown in boxplot (Fig.3).

The classification error averaged over subject for CAR LLap, and SLap are
43%, 45% and 47% respectively. For TRCSP, the average error rate over subject
is 31%. Despite the successful identification of optimal band and clear pattern
in time-frequency mapping, the CAR, LLap and SLap with multiple BMFLCs
for subject AA and subject BB shows around 20% worse in classification error
compared to the TRCSP. For subject CC, although the performance of CAR,
LLap and SLap is worse, the difference in error rate is only 4% compared to
TRCSP. The average classification error of TRCSP with multiple BMFLCs are
32%, 39% and 23% for subject AA, subject BB and subject CC respectively.
In the average level, the TRCSP based classifier shows the lowest classification
error among all spatial filter based classifier. The results obtained with TRCSP
based classifier results are comparable to the winning results of BCI competition
[4]. The future work will focus on improving the performance of the identified
BMFLC-TRCSP combination.

4 Discussion

As the amplitude tracking ability of BMFLC depends on the number of frequency
components that need to be estimated, the single BMFLC cannot be used to
estimate a wide frequency range of EEG signal. To tackle this problem, the wide
frequency range is divided into small bands of interest and multiple BMFLCs
were operated.

The time-frequency mapping obtained by using the weights from the multiple
BMFLCs shows clear amplitude modulation in both α and β bands. The optimal
band identified from the time-frequent mapping is consistent with the results
obtained in [4].

Although the amplitude modulation can be observed from the signal that is
preprocessed by CAR, LLap, SLap and TRCSP, the classification error obtained
from LDA is low for CAR, LLap and SLap for two subjects out of three. We
hypothesize two reasons for this failure. First, as the electrodes that are used
during the feedback of the experiment are prefixed, the activity may not occur
at the selected electrode locations. Second, as the time-frequency mapping is
calculated by averaging all trails of a target, it can be easily affected by some
trials with large amplitude.

On the other hand, the TRCSP based classifier provides good accuracy in
classification. For three subjects, it shows low error rate that is comparable with
the wining entry of this BCI Competition data set. As the TRCSP tries to
maximize the variance with respect to two classes, it employs information from
all electrodes. Therefore, it does not require an accurate electrode localization
as compared to CAR, LLap and SLap.
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5 Conclusion

In this paper, multiple BMFLCs with different types of spatial filters are used
to generate features for a LDA classifier. The results indicate that multiple BM-
FLCs can be used to estimate a wide range of frequency for BCI system as the
amplitude estimation in both α and β bands are required. The amplitude mod-
ulation of a 4-classes BCI experiment can be identified from the time-frequency
mapping that is produced by multiple BMFLCs. The optimal band is also identi-
fied for all the subjects. The classification error result indicates that the TRCSP
is a better choice to pair with BMFLC for feature extraction.
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Abstract. BCI-FES therapy has been proved to be an effective way to help post-
stroke patients restore motor function of paralyzed limbs. In the existing BCI-FES
system, patients can only asynchronously receive feedback in the form of FES or
robot-assisted arm movements, and such a system does not provide a positive
feedback corresponding to patient’s motor imagery. In this work, we propose
a causal related BCI-FES rehabilitation training platform, consisting top-down
and bottom-up causal chains to achieve a better rehabilitation performance. We
compare our system with a popular BCI-FES system on EEG data recorded from
ten patients divided in two groups. The results show that almost all patients have
achieved improvements in the motor function recovery after our training.

1 Introduction

Brain Computer Interface (BCI) is a direct communication pathway between the brain
and external devices [1]. Through some advanced signal processing techniques, BCI
system is able to catch the brain signals diffused from brain cortex and transforms
some regular signals into control commands, making it come true that only by internal
imagination can we human control external objects.

Electroencephalography (EEG), as the most commonly used member of various bio-
signals, is the recording of electrical activity along the scalp [2]. EEG signals can be
easily recorded by non-invasive approaches. Therefore, its easy acquisition has attracted
many researcher’ attention [3,4]. Motor imagery, as a kind of EEG, is a mental process
by which an individual rehearses or simulates a given motor action by minds. Due to
the discriminative property of human’s motor imagery, recognition and classification
problem about motor imagery EEG have been generally conducted recently [5,6].

BCI and EEG researches have been widely directed at fields related with rehabilita-
tion training, that is, assisting, augmenting or repairing human cognitive and sensory-
motor functions. A typical application is to utilize BCI techniques and motor imagery
to construct a rehabilitation training system for stroke patients. Several significant re-
lated works have been conducted: Cuntai Guan and its team firstly proposed a motor
imagery-based Brain Computer Interface robotic rehabilitation for stroke in BCI-Award
2010 [7]. Soekadar proposed a more complex paradigm for improving the efficacy of
ipsilesional Brain Computer Interface training in neurorehabilitation of chronic stroke

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 419–426, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



420 H. Wang et al.

[8]. Meng and Gao brought the Function Electrical Stimulation (FES) into BCI rehabil-
itation system [9].

However, these studies focus on how to set up a rehabilitation system without consid-
ering the neurophysiological mechanism for rehabilitation, i.e. whether the system take
effects is determined not only by system constructions but also by the inner causality
relationship between BCI techniques and traditional therapies. In our study, a multi-
modal BCI-FES rehabilitation training system integrated with active learning mech-
anism is proposed for clinical treatments for post-stroke patients [5][10][11][12]. In
this system, we build up a closed rehabilitation loop consisted of two complementary
causalities: (1) Top-down chain: with an instructed hint, stroke subjects begin the inter-
nal motor imagery. Then followed FES stimulations are inserted on the corresponded
limbs(muscles), causing factual movements of paralyzed part of bodies. (2) Bottom-up
chain: after the imagery-movement process, other external stimulations, such as acous-
tic and visual prompts are provided by the system to help subjects finish the whole
imagery task and prepare for following ones. The two causality chains complement
each other and cooperate as a closed BCI-FES stimulation loop, which, to some extent,
attempts to simulates normal subjects’ natural motor imagery-action process and recon-
struct the neuroncircuit between paralysis limbs and corresponding pathological brain
areas [13]. Two months experiments have been conducted in clinical environment. Mo-
tor imagery EEG and clinical parameters have been recorded, analyzed and compared
to verify the effectiveness of our system and proposed paradigm.

The rest part of this paper is organized as follows: section 2 gives a detailed intro-
duction about our system, data collection and experiment setup. Section 3 demonstrates
the experiment results about the rehabilitation performance and comparisons with other
traditional paradigms are also given. Section 4 gives a brief conclusion about this study.

2 Method

2.1 System Overview

In order to obtain EEG data and use the data to do the experiment, our BCI-FES reha-
bilitation training system is consisted of 5 modules: real-time data acquisition module,
data storage and analysis module, visualization module, multi-modal feedback mod-
ule and human effect training module. Fig. 1 provides a brief illustration of the whole
system.

Our system aims at recovering the motor ability on patients after a unilateral cerebral
infarction. Patients try to use motor imagery to finish some tasks based on daily behav-
ior in Virtual Reality(VR) scenario, and get the chances to retrain the neuron function
of their impaired cortex by active motor imagery directed by active training tasks. In
our system, data acquisition module collects raw EEG data while subjects imagining
movement of their limbs. For each segment of data, we use feature extraction and clas-
sification algorithm in the data storage and analyze module to assign a two-class label
to it. Using the output (classification) result as a command signal, multi-modal feed-
back module gives a related feedback in different modal including visual, auditory and
tactile responses. Patients can actively adjust their mental states when receiving the
feedback responses or choose to finish their imagery tasks with the help of feedback
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Fig. 1. A brief view of BCI-FES rehabilitation training system

signals when get stuck. It’s worth mentioned that the raw EEG data will be sent to vi-
sualization module concurrently for real-time observations and further usages when the
system is running.

2.2 Data Acquisition and Processing

We select 19 electrodes that can cover primary areas of motor imagery for left and right
hands to collect raw EEG data in the data acquisition module. After removing artifacts,
we filter the EEG into the band 8-30Hz. Sliding window method is introduced to cut
raw EEG data into small time sequences for online classification. We record every one-
second time interval to cut EEG data into small pieces using a 0.125 second step length.
Sliding window method can increase the diversity of data without loss of continuity.

2.3 Feature Extraction and Classification Method

Raw EEG data collected from post-stroke patients is weak and noisy. if we use the
traditional method of feature extraction and classification, motor imagery patten will
be flooded among the noisy pattern. Independent Component Analysis(ICA), which is
widely used to separate effective data and noisy one, is involved in our system. Different
from processing processing normal subjects’ EEG, we first apply ICA on the post-
stroke EEG data and project the raw data into most independent sources. In this way,
ICA explores both high order statistics and temporal structures of source signals, and
separates true motor imagery signals and noise. We choose sources that reflect brain
activity most, and Common Spatial Pattern(CSP) [14]. as the most widely used feature
extraction method , is applied on the effective sources. After feature extraction, Support
Vector Machine (SVM) algorithm is used as classification method [15,16]. We trained
a 2-class classifier of left and right-handed motor imagery, and use classification results
to guide multi-modal feedback module.
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2.4 Multi-modal Feedback

Existing BCI-FES stroke rehabilitation therapy, with loss of timeliness, cannot construct
a causal routine between damaged cortex and nerve system.

Brain

Body movement

FES device
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BCI 
system

S�mulate 
Body

Top-down 
Causal 
Chain

Game 
evalua�on
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Fig. 2. Causal circuit in our system, including top-down and bottom-up causal chain

Fig. 3. Illustration for five different BCI motor imagery related tasks, covering 5 categories of
daily behaviors

In our system, we first ask patients to finish some imaginary tasks. While patients are
trying to finish their tasks, FES stimulation, are evolved to stimulate the disabled limbs.
Patients try to control their limbs in an alternative way: starting from motor imagery, and
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resulting in real body movement, forming a top-down causal chain of motor function.
On the same time, multi-modal feedback, including visual, auditory and tactile signal,
returns a evaluation of the motor imagery to patients’ brain, which can be treated as
a bottom-up causal chain of motor cognition. Combining the two chains, our system
constructs a causal circuit, and helps patients to train on basic motor function recovery.

In the experiment, patients are asked to finish 5 tasks that cover 5 different categories
of daily missions, as shown in Fig. 3, including training for basic physiological require-
ments, motor function recovering, quick reaction, daily behavior and compound task
cognition. Patients can relearn the life skills from the tasks, and achieve the ability that
return to normal life.

3 Result

Five stroke patients participated in our causal related rehabilitation system’s experiment.
For comparison, another five patients also participate in our traditional rehabilitation
system. Both the two groups received regular therapies such as physical therapy, exer-
cise therapy and acupuncture therapy in hospital. We evaluate the performance of our
system in two aspects of online recognition performance and motor function recovery.

3.1 Online Recognition Performance

All the patients took part in several sessions, between each session there are 2 minutes
for rest. Each session consist of 18 trials and each trial lasted for 4 seconds. For the
sake of real-time response of online systems, the sliding window strategy is applied to
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produce recognition result every 0.125s [17] with the window size 1000 ms. CSP is
employed to extract features for each trial constructed by the sliding window strategy.
Afterwards, these features are fed to a SVM classifier for parameter adjustment. Finally,
online accuracy of the next session is calculated using these parameters. Online accura-
cies of all the sessions for all the patients in the two groups are calculated and counted
in small scattered intervals. Fig. 4 gives a comparison in online accuracies of causal
related rehabilitation group and previous rehabilitation group at the end of the reha-
bilitation training. It is obvious that online accuracies of previous rehabilitation group
mainly concentrate in 60%-70% (totally 64.3%) while 60%-80% hold the largest pro-
portion for the causal related rehabilitation group (totally 73.4%). Moreover, patients in
the causal related rehabilitation group became more familiar with the mental task, and
finally the online accuracy can even reach 90%.

3.2 Motor Function Recovery

Clinical indices recorded in the whole training period show that there are significant im-
provement in motor function of upper limbs for all the patients. In order to observe the
brain’s activity in affected hemisphere after training, event-related desynchornization
(ERD) phenomenon [14] is also observed of the patient recovered best in the previous
rehabilitation group and the causal related rehabilitation group. All trials are extracted
from all the sessions and reconstructed in spatial-spectral-temporal domain. Afterwards,
we average all the trials to remove noise. Fig. 5 shows the time-frequency graphs to il-
lustrate the ERD phenomenon of the affected cortex (C4) in the two groups. Active fre-
quency band mainly concentrates in 8-12Hz (α). It is easy to find that the the duration of
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ERD phenomenon becomes longer and the desynchornization becomes more obviously
after training for the patient trained with causal related rehabilitation system, indicating
that our system promotes the motor function recovery of stroke patients. Based on the
multi-modal feedback, our system attempts to establish a closed loop between the brain
cortex and the upper limbs and help patients restore neural pathway.

4 Conclusion

In this study, we introduce a novel causal feedback based BCI-FES system. As a new
paradigm of rehabilitation training, our system can achieve a better training perfor-
mance for almost all subjects. After our training, one can observe ERD appears longer
and become desynchornization more. Moreover, clinical rehabilitation parameters of
patients in our experiment is higher than patients using old BCI-FES system, indicating
a better rehabilitation therapy.
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Abstract. This paper focuses on discriminating user’s intent to real images 
based on phase synchrony in EEG. The goal is to differentiate user's naviga-
tional intention and informational intention with real world scenario’s. In this 
paper, we first calculate Phase locking Value (PLV) between all electrode pairs 
in EEG collection montage. We identified several most significant pairs (MSP) 
to construct brain functional connectivity patterns in different bands, theta band 
(4~7Hz), alpha (8~13Hz), beta-1 (14~22Hz), beta-2 (23~30Hz). Based on the 
PLV variation in the selected MSP’s, the user intent can be classified. This pa-
per demonstrates the potential of these identified brain electrode pairs in cogni-
tive detection and task classification for future BCI applications. 

Keywords: brain-computer interface (BCI), electroencephalographic (EEG), 
phase synchrony, brain connectivity, intent recognition. 

1 Introduction  

Brain cognitive fusion technology is an emerging and most promising fusion technol-
ogy floating in modern society / future of the 21st century. Especially, according to 
FET2012 January [1], it was written that cognitive science is one of the most impor-
tant future technology. Information & Communication Technology (ICT) systems 
should serve as empathic cognitive extensions of their users, being active and instru-
mental in driving interactions with computers as well as with other humans, hereby 
learning and adapting with the user. Brain plasticity and behavior is needed in order to 
interact between human and computer for understanding the impact on Human devel-
opment [1]. According to the theory of mind [2], human beings have a natural way to 
represent, predict and interpret the intention expressed explicitly or implicitly by the 
others. For an efficient human computer interaction system it is necessary for a sys-
tem to understand the intention of a human. Intention recognition is a relatively new 
field that is being widely used in web applications [3] and internet security [4]. Many 
researchers have investigated the decision discrimination in a variety of ways. In par-
ticular, upon analyzing the brain science, EEG method is a non-invasive measurement 
of brain's electrical activity which has a good temporal resolution. Also, to understand 
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brain cognition, connectivity plays an important role. Phase synchronization (PS) 
analysis has been well demonstrated to be a very useful method to infer functional 
connectivity with multichannel neural signals, e.g., electroencephalography (EEG)[5]. 

In this paper, we propose the classification of user Navigational / informational in-
tention with phase estimation based on the EEG data. In particular, the paper's goal is 
to identify the brain connectivity related to user’s navigation/information intent thru 
visual-experiments based on static images that is closest to the practical scenarios. We 
provide a reference, difference of PLV, for determining the intent of the user (Naviga-
tional / Informational intent).  

This paper is organized as follows: Methods for PLV and Most significant pair’s 
selection are discussed in Section 2. Section 3 details on the results obtained and Sec-
tion 4 concludes the paper.  

2 Methods 

PLV synchronization measures the synchronization level of EEG at every time instant 
between any two electrode pairs in the range of (0 - 1) [5, 6]. Therefore, the aim of 
this study is to represent user’s change in intent over time as a quantitative representa-
tion of PLV. 

2.1 Phase Locked Value (PLV) 

EEG phase differences are often used to compute “directed coherence” which is a 
measure of the directional flow of information between two EEG electrode sites [7]. 
EEG phase difference is also used to estimate conduction velocity and synaptic inte-
gration time [8, 9]. Phase locking value (PLV) is a measure for studying the synchro-
nization phenomena in EEG signals. It is similar to cross spectrum but independent of 
amplitude of the two signals [5]. Making use of PLV, we can measure synchroniza-
tion between all electrode pairs in EEG collection montage. Synchronization measure 
PLV formula is as follows [5]: 

 PLV  | ∑ exp ∆Φ , | (1) 

Where N is of the total number of trials, , is the phase difference Φ , Φ ,  between pair of brain nodes, and t is the time of each period. The range of 
PLV values varies between 0 and 1.PLV = 1, means perfect coupling of electrode 
pairs and PLV = 0, means not coupled at all. 

2.2 Intention Basis for Discrimination 

PLV Difference. To identify the network map, we need to identify the PLV differ-
ence between the two events (Information intent and Navigation intent). The PLV 
difference for all electrode pairs in two events provide the measure of how each elec-
trode PLV varies between the two events [11]. 
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Fig. 1. Totally analysis process 

In Fig. 2, the experiment timing scheme is shown. Thee PLV determined during in-
formational and navigational intent periods is used to obtain the PLV difference for 
all electrode pairs. The difference PLV between navigational and informational pe-
riods is the key for classification in this paper.  

 
The Most Significant Pairs (MSP). The MSP represents the most reactive electrode 
pairs (electrode pairs/locations) of brain compared between the two events (informa-
tion intent /navigation intent and rest). This is shown in Fig.1. After determining the 
PLV of total electrode pair of each informational part and navigational part, we define 
the most significant pair (MSP), the electrode pair that has the most PLV difference 
between these two events. The formula for the MSP can be as follows. 

 MSP I  (2) 

 MSP N  (3) 

Where MSP-I and MSP-N corresponds to MSP’s identified for information intent 
and navigation intent. In Eq. (2) and (3),  e represents electrode pairs. It is possible 
to identify both the brain connectivity and the most reactive electrode pairs based on 
PLV from Eq.(2) and (3). Recently, the work in [11] identified 5 most significant 
pairs for classification of motor imagery tasks. In this work, we follow similar proce-
dure for identification of 5 MSP’s. One may also choose more number of MSP’s (say 
10 MSP’s or 20 MSP’s).  

2.3 Experimental Setup and Data Collection 

Ten healthy subjects participated in the study.  EEG data from 32 channels were 
recorded with biosemi (www.biosemi.com) amplifier. The timing scheme of the  
experiment is shown in Fig. 2.  Subjects had to perform the following tasks during 
each trial.  
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Navigational intent.: To focus on the image present on the screen. 
 
Informational intent.: To search for the specific object in the displayed image. 
 

 

Fig. 2. Procedure of the block diagram for the synchronization of Phase estimation 

One session consisted of 5 trials and in each trial, different navigation/informational 
intent images that were close to a real-life scenario were shown to the subject as shown 
in Fig. 2 [10]. 5 sessions were conducted and hence a total of 25 trials/subject. Blank 
images shown between the intent was to prevent the mixing of intents. Random images 
in each sequence were presented to avoid the induction of intent in subjects due to the 
iterative nature of the experiment.  

3 Results 

We selected 5 MSP N and 5MSP Iidentified in theta band to classify navigational 
and informational intents,  and   are identified using (2) and these 
pairs are subject-intent specific. Fig. 3 shows the results obtained with three subjects. 
Identified reactive pairs 5  and 5  are shown in the Fig. 3. The 
average PLV of 5  and 5  during both the events for three subjects 
are also illustrated. 

One can easily observe the  having higher PLV level compared to 
 during navigational intent duration and vice versa during informational 

intent duration. The difference in PLV level of navigational intent and informational 
intent is crucial for the intent classification. The difference in PLV level of identified 
MSP’s can be calculated using the following equation set:  

    (4) 

    (5) 
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Where  is the difference in PLV level of 5 electrode pairs  to 
 during navigational period and  is the difference in PLV level of 
 to  during informational intent duration,  being the mean 

operator. 

 

Fig. 3. Comparison of  and  in θ  band during navigational intent and  
informational intent 

 is positive during navigational intent, it shows that the PLV level of 
 is high compared to  and vice-versa during the informational 

intent. This relative difference change can be identified in all the subjects. The aver-
age PLV of 5  and 5  for all subjects in all the selected bands 
during navigational intent and informational intent are shown in bar plots (Fig. 4). 
Table 1 is filled by values of Fig. 4.and difference means the difference of PLV level 
in Eq. (4) and (5). The relative change can be clearly identified in all the frequency 
bands. Thus, it is clear that the proposed method can clearly differentiate between 
both the events.  
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Fig. 4. Average PLV of 5  and 5  during a) navigational intent b) informa-
tional intent 

Table 1. Average PLV-N/I of 5MSP and difference of PLV-N/I at each band 

4 Conclusions 

In this paper, we proposed a method to differentiate the user’s intent given a real  
picture based on the phase synchrony of EEG. We identified most significant  
PLV varying pairs between user’s navigational and information generating period. 
These significant pairs demonstrate the variation in functional connectivity and the 
applicability of this method for BCI applications.  

Our future research will focus on determining the user’s intent based on multi-
modal biometric data using the same proposed method. We finally plan to apply these 
methods for human-robot interaction systems.  
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Kinds 

of band 

Navigation period  Information period 

PLV-N PLV-I Difference  PLV-N PLV-I Difference θ band 0.52 0.45 0.0749 0.49 0.56 0.0667 α band 0.54 0.46 0.0719 0.50 0.55 0.0570 β1 band 0.47 0.44 0.0346 0.40 0.40 -0.0001 β2 band 0.44 0.40 0.0463 0.44 0.46 0.0195 β band 0.48 0.45 0.0284 0.48 0.50 0.0185 
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Abstract. Electroencephalogram (EEG) based brain-computer inter-
faces (BCIs) for wheelchair control have great value for those with
devastating neuromuscular disorders. Although there have been many
attempts to implement EEG-based wheelchair control systems by P300,
steady state visual evoked potential (SSVEP), and motor imagery (MI)
related event-related desynchronization/synchronization (ERD/ERS),
the number of simultaneous control commands in those BCI systems is
strictly limited, and those BCI control do not work for a non-negligible
portion of users due to the problem of BCI Illiteracy. In this paper, we
develop a multimodal BCI based wheelchair control system, the user
could employ subject-optimized mental strategies to produce multiple
commands to control the wheelchair, which include ERD/ERS, SSVEP,
and simultaneous ERD/ERS and SSVEP. It could not only help address
”BCI illiteracy”, but also provide simultaneous control commands for
complex control. Experiment results demonstrate the proposed system
is effective and flexible in practical application.

Keywords: BCI, wheelchair control, multimodal, BCI Illiteracy.

1 Introduction

Electroencephalogram (EEG) based brain-computer interfaces (BCIs) provide
a potentially powerful new communication channel for people to mentally con-
trol machines through translating brain electrical activities into machine codes
or commands[1]. EEG based BCIs for wheelchair control have great value for
those with devastating neuromuscular disorders, such as the amyotrophic lateral
sclerosis (ALS), brainstem stroke, cerebral palsy, and spinal cord injury.

There have been many attempts to implement EEG-based wheelchair control
systems relying on one of following typical EEG activity for control: steady state
visual evoked potential (SSVEP), event-related desynchronization /synchroniza-
tion (ERD/ERS) and P300 evoked potential. For examples, an asynchronous BCI
based on MI task helped the subject to control a wheelchair to go or stop by
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imagination of feet movements in virtual reality (VR)[2]. A 2-class MI based BCI
for robotic wheelchair control was shown by Tsui et al.[3], and a real wheelchair
was steered by three different kinds of MI tasks, i.e. left, right and feet motor
imageries corresponded to turn left, turn right, and go forward respectively[4].
Wheelchair was designed to run on predefined paths to the target location by
detecting P300 potentials[5,6], and also demonstrated in SSVEP-based BCI sys-
tem equipped with a safety layer and navigation software[7]. However, in gen-
erally, it is still challenging to design an effective and flexible BCI system for
real wheelchair control in practical application since the number of control com-
mands, especially for simultaneous commands, in those BCI systems is strictly
limited. Furthermore, recently, many BCI groups reported the forementioned
BCI control could not work for a non-negligible portion of users (estimated 15%
to 30%) due to the problem of ”BCI illiteracy”[8,9]. This problem exists across
different BCI approaches, although some possible solution, such as improved sig-
nal processing, training, have been explored, it is still not solved since some of
the users can not produce detectable patterns of brain activity necessary to a
particular BCI approach[10,11].

Therefore, we develop a multimodal BCI based wheelchair control system,
the user could employ subject-optimized mental strategies to produce multiple
commands to control wheelchair, which could be ERD/ERS, SSVEP, or simul-
taneous ERD and SSVEP. It can not only help address ”BCI illiteracy”, but
also provide more and simultaneous control commands for complex control. Ex-
periment results demonstrate the proposed system is effective and flexible in
practical application.

The remainder of this paper is organized as follows. The Methods, including
experiment Setup, system paradigm, subject-optimized control algorithm are
described in Section 2. Section 3 presents experiments and results, and section 4
finally concludes the paper.

2 Methods

2.1 Experiment Setup

In order to evaluate the proposed multimodal BCI, three healthy male subjects,
aged from 21 to 30, took part in the experiment. Multi-channel EEG data were
acquired by Gtec Amplifier (g.tec, Graz, Austria), sampled at 256Hz and then
band-pass filtered within 5-30 Hz. Channels located at standard positions of the
10-20 international system as FC3, FC4, C5, C3, C1, CZ, C2, C4, C6, CP3, CP4,
POZ, O1, OZ, and O2, totally 15 channels, were used in this study. The ground
and reference electrodes were respectively fixed on medial frontal cortex and the
right earlobe.

In the data collection stage, each subject was seated in front of a notebook
computer, keeping arms on the chair arms with hands relaxing. SSVEPs were
generated by the stimuli box equipped on the desktop of the wheelchair (see left
panel in Fig. 1), in which four light-emitting diodes (LEDs), separately flicking
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at the frequency of 7Hz, 8Hz, 9Hz, 11Hz, were used as the visual stimuli. EEG
signals are acquired continuously, and then transferred to the notebook computer
through an USB port. The translated control commands would be sent to the
wheelchair by a wireless communication module.

2.2 System Paradigm

Fig. 1 presents the multimodal BCI system paradigm. First, multichannel EEG
signals are collected by electrodes located in the occipital and parietal lobes;
Second, MI based ERD/ERS and SSVEP features are analysed. In details, For
the MI task, we used common spatial patterns (CSP)[12] algorithm to detect
the spectral discriminations by calculating discriminative spatial patterns that
maximized the variance of one class and at the same time minimized the variance
of the other. Here, four generalized eigenvectors from both ends of the spectrum
were selected as spatial patterns, and only channels in motor related parietal
lobe, i.e., FC3, FC4, C5, C3, C1, CZ, C2, C4, C6, CP3, CP4 were considered. The
MI features were calculated by projecting the EEG data to the CSP patterns.
The features of SSVEP were obtained by canonical correlation analysis (CCA)
algorithm simultaneously. CCA is a multivariable statistical method used when
there are two sets of data, which may have some underlying correlation[13]. Here,
multiple correlation coefficients between the the sinusoidal reference signals at
stimulating frequency, and EEG signals from multiple channels located in the
occipital lobes, i.e. POZ, O1, OZ, and O2, were calculated as SSVEP related
features. Then in order to evaluate the performance of different mental strategies,
support vector machine (SVM) classifiers with linear radial basis function (LRB)
is applied to calculate the cross accuracies for each task, considering its good
generalization ability in minimizing the vapnik-chervonenkis (VC) dimension
and achieving a minimal structural risk[14].

Fig. 1. The proposed multimodal BCI system paradigm for real wheelchair control
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Finally, base on the SVM classification results, the wheelchair can be con-
trolled by subject-optimized mental strategies to produce multiple commands,
which include ERD/ERS, SSVEP, and simultaneous ERD and SSVEP. For the
subject who is only good at the SSVEP task, then the aforementioned SSVEP
features are translated into direction control commands automatically. Similarly,
the ERS/ERS features are used to set the direction if the subject has a poor
performance at the MI task. Note that, the system translates the MI and SSVEP
classification results into simultaneous commands to control the speed and di-
rection at the same time if the subject could achieve good performances at both
of the two mental tasks.

2.3 Subject-Optimized Control Algorithm

Most of BCI systems for wheelchair control are based on only one typical EEG
activity pattern, while the proposed multimodal BCI firstly evaluates the sub-
ject’s performance in different activities, and then provides subject-optimized
mental strategies to produce multiple commands to control a wheelchair. The
control model is given in the following:

multimodal control algorithm (Output R_{l,t+1},R_{r,t+1} )

{ Assuming R_{l,t} and R_{r,t} represent the left and right

wheels’ rotation rate at the tth update respectively.

f_{MI}, denoting the classification result for MI,is +1 for

left hand movement and -1 for the right hand.

f_{SSVEP} is given by the classification result for SSVEP.

In the SSVEP mode, +1 for the LED representing "turn left"

and -1 for "turn right".

In the MI&SSVEP mode, +1 for the LED representing "speed up"

and -1 for "speed down".

TurningFactor, SpeedFactor are predefined tuning and speed

parameters.

}

Switch controlmode

Case SSVEP mode

R_{l,t+1}=R_{l,t} - f_{SSVEP} * TurningFactor + Given_speed;

R_{r,t+1}=R_{r,t} + f_{SSVEP} * TurningFactor + Given_speed;

Case MI mode

R_{l,t+1}=R_{l,t} - f_{MI} * TurningFactor + Given_speed;

R_{r,t+1}=R_{r,t} + f_{MI} * TurningFactor + Given_speed;

Case MI&SSVEP mode

R_{l,t+1}=R_{l,t} - f_{MI}*TurningFactor + f_{SSVEP}*SpeedFactor;

R_{r,t+1}=R_{r,t} + f_{MI}*TurningFactor + f_{SSVEP}*SpeedFactor;

end.

(A motorized wheelchair with differential drive has been retrofitted to receive the con-

trol commands by a bluetooth interface. By assigning different rotation rate for two

motor wheels respectively, it can be steered in specific speed and direction.)
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3 Experiments and Results

To evaluate the effectiveness of the proposed multimodal BCI system, and as-
sess the capabilities of subjects’ multimodal manipulation, a realtime control
experiment was carried out in the real-word scenarios. Subjects were required
to accomplish a complex navigation circuit in a public open space as soon as
possible. Fig. 2 shows the circuit map, the subject should leave the start point
and reach the stop point by passing the breakpoint and avoiding obstacles, and
a possible path in an ideal situation is marked with red dotted line.

Fig. 2. The circuit map in the wheelchair control experiment. The subject was required
to accomplish complex navigation circuit as soon as possible, the red dotted line stands
for a possible path in an ideal situation. The green, purple, and blue lines denote the
actual paths for Sub.1, Sub.2, Sub.3 respectively.

Before to control the real wheelchair, three subjects have been evaluated ac-
cording to the proposed paradigm. They were all required to carry out the MI
tasks and SSVEP tasks. The MI task consisted of three runs, each run had 10
trials for each class. In each trial, the subject was required to imagine the move-
ments of the left or right hand for about 2s indicated by an arrow appeared on
the computer screen. While in the SSVEP tasks, the subject was instructed to
keep his eyes focusing on one of the LEDs according to an auditory digit cue,
i.e., one of the 1, 2, 3, 4, corresponding to the serial number of LEDs, The goal
of this session was to help select the mental strategy and calculate classification
model in the following control experiment.

According to the aforementioned MI and SSVEP feature extraction and classi-
fication methods, the classification accuracies were calculated as the performance
evaluation for each mental task, and then the proposed system would selected
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Table 1. The performance in the wheelchair control experiment for each subject

SSVEP accuracy MI accuracy selected strategy time consuming

Sub.1 98.3% 99.4% SSVEP and MI 274 (s)
Sub.2 57.9% 100% MI 298 (s)
Sub.3 96.7% 58.3% SSVEP 376 (s)
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Fig. 3. The top line shows the power changes within 5-30Hz in the scalp map, and the
bottom row shows power spectral density (PSD) of the EEG signal recorded at channel
OZ for each subject when he navigated in the continuous turn-left area (marked with a
yellow oval in Fig. 2). (In this experiment, for sub.2, left hand and right hand imagery
were used to control wheelchair to turn left and right respectively; for sub.3, focusing
on the LEDs flicking at the frequency of 7 and 9 Hz corresponded to left turn and right
turn respectively. For Sub.1, left hand and right hand imagery were used to control the
wheelchair to turn left and right, and at the same time, focusing on the LEDs flicking
at the frequency of 7 and 9 Hz were used to control the wheelchair to speed up and
speed down.)

subject-optimized mental strategy to produce multiple commands. Table 1 gives
the performance and the selected strategies.

In the following wheelchair control experiment, all subjects reached the stop-
point without collision, and their actual paths were showed in Fig. 2 , which
are generally consistent with the predefined circuit. The time to accomplish the
circuit is also listed in table 1 for each subject. It can been seen, by subject-
optimized control mode, all subjects could complete the required task success-
fully even though Sub.2 and Sub.3 are almost illiterate in SSVEP or MI tasks.
Sub.1 achieved the least time consuming since he could control the speed and
direction of the wheelchair simultaneously, which would improves the control
efficiency greatly. Among all subjects, Sub.3 spent the most time. Experiment
path records show that he spent a lot of time to adjust the drive direction due
to excessive turnings (see Fig. 2), which was probably caused by the reflection
delay of SSVEP.
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Fig. 3 illustrates the power changes within 5-30Hz in the scalp map, and the
power spectral density (PSD) for each subject when he navigated in a continuous
turn-left area (marked with a yellow oval in Fig. 2). It is obvious that the subjects
applied the optimized mental activities in this multimodal BCI. Note that Sub.1
did the left hand imagery and focusing on the LEDs at 7Hz tasks to control
wheelchair to accelerate and turn left at the same time. The simultaneously
generated commands help this subject to reduce the consuming time effectively.

4 Conclusion

In this paper, a multimodal BCI based wheelchair control system is developed,
and the user could employ subject-optimized mental strategies to produce mul-
tiple commands, to control wheelchair, which include ERD/ERS, SSVEP, and
simultaneously ERD and SSVEP. It could not only help address ”BCI illiteracy”,
but also provide more even simultaneous control commands for complex control.
Experiment results demonstrate the proposed system is effective and flexible in
practical application.
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Abstract. Recently, we proposed to transform the outputs of each hidden neu-
ron in a multi-layer perceptron network to have zero output and zero slope on
average, and use separate shortcut connections to model the linear dependencies
instead. We continue the work by firstly introducing a third transformation to
normalize the scale of the outputs of each hidden neuron, and secondly by ana-
lyzing the connections to second order optimization methods. We show that the
transformations make a simple stochastic gradient behave closer to second-order
optimization methods and thus speed up learning. This is shown both in theory
and with experiments. The experiments on the third transformation show that
while it further increases the speed of learning, it can also hurt performance by
converging to a worse local optimum, where both the inputs and outputs of many
hidden neurons are close to zero.

Keywords: Multi-layer perceptron network, deep learning, stochastic gradient.

1 Introduction

Learning deep neural networks has become a popular topic since the invention of unsu-
pervised pretraining [3]. Some later works have returned to traditional back-propagation
learning in deep models and noticed that it can also provide impressive results [5] given
either a sophisticated learning algorithm [8] or simply enough computational power
[2]. In this work we study back-propagation learning in deep networks with up to five
hidden layers, continuing on our earlier results in [9].

In learning multi-layer perceptron (MLP) networks by back-propagation, there are
known transformations that speed up learning [7, 10, 11]. For instance, inputs are rec-
ommended to be centered to zero mean (or even whitened), and nonlinear functions are
proposed to have a range from -1 to 1 rather than 0 to 1 [7]. Schraudolph [11, 10] pro-
posed centering all factors in the gradient to have zero mean, and further adding linear
shortcut connections that bypass the nonlinear layer. Gradient factor centering changes
the gradient as if the nonlinear activation functions had zero mean and zero slope on
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average. As such, it does not change the model itself. It is assumed that the discrepancy
between the model and the gradient is not an issue, since the errors will be easily com-
pensated by the linear shortcut connections in the proceeding updates. Gradient factor
centering leads to a significant speed-up in learning.

In this paper, we transform the nonlinear activation functions in the hidden neurons
such that they have on average 1) zero mean, 2) zero slope, and 3) unit variance. Our
earlier results in [9] included the first two transformations and here we introduce the
third one. We explain the usefulness of these transformations by studying the Fisher
information matrix and the Hessian, e.g. by measuring the angle between the traditional
gradient and a second order update direction with and without the transformations.

It is well known that second-order optimization methods such as the natural gradient
[1] or Newton’s method decrease the number of required iterations compared to the ba-
sic gradient descent, but they cannot be easily used with high-dimensional models due
to heavy computations with large matrices. In practice, it is possible to use a diagonal
or block-diagonal approximation [6] of the Fisher information matrix or the Hessian.
Gradient descent can be seen as an approximation of the second-order methods, where
the matrix is approximated by a scalar constant times a unit matrix. Our transformations
aim at making the Fisher information matrix as close to such matrix as possible, thus
diminishing the difference between first and second order methods. Extended version
of this paper with the experimental details can be found in arXiv [12] and Matlab code
for replicating the experiments is available at

https://github.com/tvatanen/ltmlp-neuralnet

2 Proposed Transformations

Let us study a MLP-network with a single hidden layer and shortcut mapping, that is,
the output column vectors yt for each sample t are modeled as a function of the input
column vectors xt with

yt = Af (Bxt) +Cxt + εt, (1)

where f is a nonlinearity (such as tanh) applied to each component of the argument
vector separately, A, B, and C are the weight matrices, and εt is the noise which is
assumed to be zero mean and Gaussian, that is, p(εit) = N (

εit; 0, σ
2
i

)
. In order to

avoid separate bias vectors that complicate formulas, the input vectors are assumed to
have been supplemented with an additional component that is always one.

Let us supplement the tanh nonlinearity with auxiliary scalar variables αi, βi, and
γi for each nonlinearity fi. They are updated before each gradient evaluation in order
to help learning of the other parameters A, B , and C. We define

fi(bixt) = γi [tanh(bixt) + αibixt + βi] , (2)

https://github.com/tvatanen/ltmlp-neuralnet
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where bi is the ith row vector of matrix B. We will ensure that

T∑
t=1

fi(bixt) = 0,

T∑
t=1

f ′
i(bixt) = 0, and (3)[

T∑
t=1

fi(bixt)
2

T

][
T∑

t=1

f ′
i(bixt)

2

T

]
= 1 (4)

by setting αi, βi, and γi to

αi = − 1

T

T∑
t=1

tanh′(bixt) (5)

βi = − 1

T

T∑
t=1

[tanh(bixt) + αibixt] (6)

γi =
{ 1

T

T∑
t=1

[tanh(bixt) + αibixt + βi]
2
}1/4{ 1

T

T∑
t=1

[
tanh′(bixt) + αi

]2 }1/4

.

(7)

One way to motivate the first two transformations in Equations (3a) and (3b), is to
study the expected output yt and its dependency of the input xt:

1

T

∑
t

yt = A
1

T

∑
t

f(Bxt) +C
1

T

∑
t

xt (8)

1

T

∑
t

∂yt

∂xt
= A

[
1

T

∑
t

f ′(Bxt)

]
BT +C. (9)

We note that by making nonlinear activations f(·) zero mean in Eq. (3a), we disallow
the nonlinear mappingAf (B·) to affect the expected output yt, that is, to compete with
the bias term. Similarly, by making the nonlinear activations f(·) zero slope in Eq. (3b),
we disallow the nonlinear mapping Af (B·) to affect the expected dependency of the
input, that is, to compete with the linear mapping C. In traditional neural networks, the
linear dependencies (expected ∂yt/∂xt) are modeled by many competing paths from
an input to an output (e.g. via each hidden unit), whereas our architecture gathers the
linear dependencies to be modeled only by C. We argue that less competition between
parts of the model will speed up learning.

Transformations can also be motivated by observing that they make the non-diagonal
parts of the Fisher information matrix closer to zero [9] and keep the diagonal of the
Fisher information matrix similar in scale [12].

The goal of Equation (4) is to normalize both the output signals (similarly as data
is often normalized as a preprocessing step – see,e.g., [7]) and the slopes of the output
signals of each hidden unit at the same time. This is motivated by observing that the
diagonal of the Fisher information matrix contains elements with both the signals and
their slopes. By these normalizations, we aim pushing these diagonal elements more
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similar to each other. As we cannot normalize both the signals and the slopes to unity
at the same time, we normalize their geometric mean to unity.

The effect of the first two transformations can be compensated exactly by updating
the shortcut mapping C by

Cnew = Cold −A(αnew −αold)B

−A(βnew − βold) [0 0 . . . 1] , (10)

where α is a matrix with elements αi on the diagonal and one empty row below for the
bias term, and β is a column vector with components βi and one zero below for the bias
term. The third transformation can be compensated by

Anew = Aoldγoldγ
−1
new, (11)

where γ is a diagonal matrix with γi as the diagonal elements.
Schraudolph [11, 10] proposed centering the factors of the gradient to zero mean. It

was argued that deviations from the gradient fall into the linear subspace that the short-
cut connections operate in, so they do not harm the overall performance. Transforming
the nonlinearities as proposed in this paper has a similar effect on the gradient. Equation
(3a) corresponds to Schraudolph’s activity centering and Equation (3b) corresponds to
slope centering.

3 Empirical Comparison to a Second-Order Method

Here we investigate how linear transformations affect the gradient by comparing it to a
second-order method, namely Newton’s algorithm with a simple regularization to make
the Hessian invertible.

We compute an approximation of the Hessian matrix using finite difference method,
in which case k-th row vector hk of the Hessian matrix H is given by

hk =
∂(∇E(θ))

∂θk
≈ ∇E(θ + δφk)−∇E(θ − δφk)

2δ
, (12)

where φk = (0, 0, . . . , 1, . . . , 0) is a vector of zeros and 1 at the k-th position, and
the error function E(θ) = −∑

t log p(yt | xt, θ). The resulting Hessian might still
contain some very small or even negative eigenvalues which cause its inversion to blow
up. Therefore we do not use the Hessian directly, but include a regularization term
similarly as in the Levenberg-Marquardt algorithm, resulting in a second-order update
direction

Δθ = (H+ μI)−1∇E(θ), (13)

where I denotes the unit matrix. Basically, Equation (13) combines the steepest descent
and the second-order update rule in such a way, that when μ gets small, the update
direction approaches the Newton’s method and vice versa.

Computing the Hessian is computationally demanding and therefore we have to limit
the size of the network used in the experiment. We study the MNIST handwritten digit
classification problem where the dimensionality of the input data has been reduced to
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Fig. 1. Comparison of (a) distributions of the eigenvalues of Hessians (2600 × 2600 matrix) and
(b) angles compared to the second-order update directions using LTMLP and regular MLP. In (a),
the eigenvalues are distributed most evenly when using LTMLP. (b) shows that gradients of the
transformed networks point to the directions closer to the second-order update.

30 using PCA with a random rotation [9]. We use a network with two hidden layers
with architecture 30–25–20–10. The network was trained using the standard gradient
descent with weight decay regularization. Details of the training are given in [12].

In what follows, networks with all three transformations (LTMLP, linearly trans-
formed multi-layer perceptron network), with two transformations (no-gamma where
all γi are fixed to unity) and a network with no transformations (regular, where we fix
αi = 0, βi = 0, and γi = 1) were compared. The Hessian matrix was approximated ac-
cording to Equation (12) 10 times in regular intervals during the training of networks.
All figures are shown using the approximation after 4000 epochs of training, which
roughly corresponds to the midpoint of learning. However, the results were parallel to
the reported ones all along the training.

We studied the eigenvalues of the Hessian matrix (2600× 2600) and the angles be-
tween the methods compared and second-order update direction. in the same training
phase, after epoch number 4000. The distribution of eigenvalues in Figure 1a for the
networks with transformations are more even compared to the regular MLP. Further-
more, there are fewer negative eigenvalues, which are not shown in the plot, in the
transformed networks. In Figure 1b, the angles between the gradient and the second-
order update direction are compared as a function of μ in Equation (13). The plots are
cut when H + μI ceases to be positive definite as μ decreases. Curiously, the update
directions are closer to the second-order method, when γ is left out, suggesting that γs
are not necessarily useful in this respect.

Figure 2 shows histograms of the diagonal elements of the Hessian after 4000 epochs
of training. All the distributions are bimodal, but the distributions are closer to unimodal
when transformations are used (subfigures (a) and (b))1. Furthermore, the variance of
the diagonal elements in log-scale is smaller when using LTMLP, σ2

a = 0.90, compared
to the other two, σ2

b = 1.71 and σ2
c = 1.43. This suggests that when transformations are

used, the second-order update rule in Equation (13) corrects different elements of the

1 It can be also argued whether (a) is more unimodal compared to (b).
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Fig. 2. Comparison of distributions of the diagonal elements of Hessians. Coloring according
to legend in (c) shows which layers to corresponding weights connect (1 = input, 4 = output).
Diagonal elements are most concentrated in LTMLP and more spread in the networks without γ
(no-gamma, regular). Notice the logarithmic x-axis.

gradient vector more evenly compared to a regular back-propagation learning, implying
that the gradient vector is closer to the second-order update direction when using all the
transformations.

To conclude this section, there is no clear evidence in way or another whether the
addition of γ benefits the back-propagation learning with only α and β. However, there
are some differences between these two approaches. In any case, it seems clear that
transforming the nonlinearities benefits the learning compared to the standard back-
propagation learning.

4 Experiments: MNIST Classification

We use the proposed transformations for training MLP networks for MNIST classifi-
cation task. Experiments are conducted without pretraining, weight-sharing, enhance-
ments of the training set or any other known tricks to boost the performance. No weight
decay is used and as only regularization we add Gaussian noise with σ = 0.3 to the
training data. Networks with two and three hidden layers with architechtures 784–
800–800–10 (solid lines) and 784–400–400–400–10 (dashed lines) are used. Details
are given in [12].

Figure 3 shows the results as number of errors in classifying the test set of 10 000
samples. The results of the regular back-propagation without transformations, shown
in blue, are well in line with previously published result for this task. When networks
with same architecture are trained using the proposed transformations, the results are
improved significantly. However, adding γ in addition to previously proposed α and β
does not seem to affect results on this data set. The best results, 112 errors, is obtained
by the smaller architecture without γ and for the three-layer architecture with γ the
result is 114 errors. The learning seems to converge faster, especially in the three-layer
case, with γ. The results are in line what was obtained in [9] where the networks were
regularized more thoroughly. These results show that it is possible to obtain results
comparable to dropout networks (see [4]) using only minimal regularization.
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Fig. 3. The error rate on the MNIST test set for LTMLP training, LTMLP without γ and regu-
lar back-propagation. The solid lines show results for networks with two hidden layers of 800
neurons and the dashed lines for networks with three hidden layers of 400 neurons.

5 Discussion and Conclusions

We have shown that introducing linear transformation in nonlinearities significantly
improves the back-propagation learning in (deep) MLP networks. In addition to two
transformation proposed earlier in [9], we propose adding a third transformation in or-
der to push the Fisher information matrix closer to unit matrix (apart from its scale).
The hypothesis proposed in [9], that the transformations actually mimic a second-order
update rule, was confirmed by experiments comparing the networks with transforma-
tions and regular MLP network to a second-order update method. However, in order to
find out whether the third transformation, γ, we proposed in this paper, is really use-
ful, more experiments ought to be conducted. It might be useful to design experiments
where convergence is usually very slow, thus revealing possible differences between the
methods. As hyperparameter selection and regularization are usually nuisance in prac-
tical use of neural networks, it would be interesting to see whether combining dropouts
[4] and our transformations can provide a robust framework enabling training of robust
neural networks in reasonable time.

The effect of the first two transformations is very similar to gradient factor centering
[11, 10], but transforming the model instead of the gradient makes it easier to generalize
to other contexts: When learning by by Markov chain Monte Carlo, variational Bayes,
or by genetic algorithms, one would not compute the basic gradient at all. For instance,
consider using the Metropolis algorithm on the weight matrices, and expecially matrices
A andB. Without transformations, the proposed jumps would affect the expected output
yt and the expected linear dependency∂yt/∂xt in Eqs. (8)–(9), thus often leading to low
acceptance probability and poor mixing. With the proposed transformations included,
longer proposed jumps in A and B could be accepted, thus mixing the nonlinear part
of the mapping faster. For further discussion, see [9], Section 6. The implications of the
proposed transformations in these other contexts are left as future work.
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Abstract. Supervised training of multi-layer perceptrons (MLP) with only few
labeled examples is prone to overfitting. Pretraining an MLP with unlabeled sam-
ples of the input distribution may achieve better generalization. Usually, pretrain-
ing is done in a layer-wise, greedy fashion which limits the complexity of the
learnable features. To overcome this limitation, two-layer contractive encodings
have been proposed recently—which pose a more difficult optimization problem,
however. On the other hand, linear transformations of perceptrons have been pro-
posed to make optimization of deep networks easier. In this paper, we propose
to combine these two approaches. Experiments on handwritten digit recognition
show the benefits of our combined approach to semi-supervised learning.

Keywords: Multi-Layer Perceptron, Two-Layer Contractive Encoding, Linear
Transformation, Semi-Supervised Learning.

1 Introduction

Multi-layer perceptrons (MLP) are provably powerful enough to learn any nonlinear
classification or regression task [8]. While networks with a single—possibly very wide—
hidden layer suffice in principle, deep networks—having multiple hidden layers—can
be much more efficient. Without proper initialization or regularization it is, however,
difficult to achieve good generalization with deep MLPs (see, e.g., [1]).

Layer-wise pretraining, which initializes the parameters of an MLP in an unsuper-
vised manner, was proposed to overcome this problem [7,12,3]. This is motivated by
the cost of data acquisition. Frequently, only a few manually annotated training exam-
ples are available together with a vast amount of easily obtainable unlabeled samples
from the input distribution. Semi-supervised learning [5] aims to utilize not only the la-
beled examples but also the unlabeled samples to improve generalization performance
of a classifier. Unsupervised pretraining of MLPs naturally fits to this setting, as the
layer-wise learning of representations does not require any labels.

In short, deep MLPs can be initialized with pretraining using vast amounts of unla-
beled input samples and subsequently finetuned with (few) labeled examples.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 450–457, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Layer-wise pretraining has the problem that the complexity of the learnable features
is limited to a linear mapping of the inputs followed by a non-linear output transforma-
tion, such as rectification or sigmoidal squashing. To overcome this limitation, Schulz
and Behnke recently proposed two-layer contractive encodings for unsupervised learn-
ing the next layer of representation [15]. This approach requires training a regularized
autoencoder with three hidden layers—a complex non-linear optimization problem.

Here, we propose to add shortcuts to the autoencoder, which allows for learning a
combination of simple and complex features. Our training procedure utilizes the method
of linearly transforming perceptrons, recently proposed by Raiko et al. [10].

We evaluate the proposed two-layer encoding with shortcuts method on the task of
semi-supervised classification of handwritten digits and show that it achieves better
generalization than greedy pretraining methods when only a few labeled examples are
available.

2 Motivation

2.1 Unsupervised Pretraining and Supervised Finetuning of Deep MLPs

Unsupervised pretraining is a natural way to incorporate vast amounts of unlabeled
input samples into the training of MLPs (see, e.g., [7]). As the MLP parameters are
initialized in an unsupervised manner, all available samples including both labeled and
unlabeled ones may be exploited during pretraining. Training continues with supervised
finetuning of the whole model which uses only the labeled examples. One example for
such an approach is [11] which showed that pretraining helps improving generalization
performance when only a few labeled samples together with a large amount of unlabeled
samples were available.

The most prominent method for pretraining MLPs is layer-wise learning of the next
level of representation [7,3,12]. This greedy method sequentially trains—on the basis
of the so far learned representations—local autoencoders or local generative models
between consecutive layers in an unsupervised manner.

One hypothesis by Bengio et al. [1,2] on why the greedy layer-wise pretraining helps
in semi-supervised learning is that stacking of unsupervised neural networks disentan-
gles factors of variations and that the untangled representations make discriminative
learning easier. With only a linear mapping, followed by a non-linear transfer function,
the complexity of the local recodings is limited, however. Hence, greedy layer-wise
pretraining may fail to disentangle non-linear manifolds introduced by common input
variations, such as translation, rotation, or scaling of input images. One way to over-
come the limitations of greedy layer-wise pretraining is to make the local encoding
models more powerful.

2.2 Limitations of Simple Local Models

One example where simple local models, i.e. models with a single hidden layer, fail
to discover features that are inherently nonlinear has been described by Schulz and
Behnke [15]. In certain cases, it was shown that greedy layer-wise pretraining could
actually hurt the overall performance of an MLP.
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To overcome this limitation, Schulz and Behnke [15] proposed a two-layer contrac-
tive encoding as a way to pretrain an MLP with more powerful local models. The exper-
iments in [15] revealed that a better classification performance can be achieved by using
the two-layer contractive encoding as a building block than by using a neural network
with a single hidden layer.

In the two layer encoding, the autoencoder is a deep neural network itself, having
three hidden layers. Hence, it might be difficult to train with stochastic gradient methods
(SGD). To deal with this problem, Raiko et al. [10] proposed to linearly transform each
hidden neuron, while also introducing connections that skip the hidden layer. They
showed that in this way, it is possible to train a deep neural network directly with good
generalization performance. This approach effectively makes SGD similar to second-
order optimization methods [16] without sacrificing its computational advantages.

In this paper, we propose to combine the two techniques, allowing for complex lo-
cal models, but also having shortcuts that realize the simple parts of the encodings. We
provide empirical evidence that it is beneficial to use both the two-layer contractive en-
coding and the linear transformation for pretraining. In other words, we claim that a less
greedy pretraining approach requires both well-founded regularization and a powerful
learning algorithm.

3 Background

In this section, we discuss each one of those two methods combined on our approach—
the linear transformations and the two-layer contractive encoding—in more detail.

3.1 Linear Transformations in Perceptrons

Let us focus on a single hidden layer within a possibly deep MLP network. The inputs
to this layer are denoted xt and its outputs are yt, where t is the sample index. We
allow short-cut connections that by-pass one or more hidden layers, i.e. the inputs may
be distributed over several previous layers of the network. The mapping from xt to yt

is modeled as
yt = Af (Bxt) +Cxt, (1)

where f is a nonlinearity (such as tanh) applied to each component of the argument
vector separately and A, B, and C are weight matrices. In order to avoid separate
bias vectors that complicate formulas, the input vectors xt are assumed to have been
supplemented with an additional component that is always one.

Let us supplement the tanh nonlinearity with auxiliary scalar variables αi and βi for
each nonlinearity fi. They are updated during training in order to help learning of the
other parameters A, B, and C. We define

fi(bixt) = tanh(bixt) + αibixt + βi, (2)

where bi is the ith row vector of matrix B. We will ensure that

0 =

T∑
t=1

fi(bixt), 0 =

T∑
t=1

f ′
i(bixt) (3)
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by setting αi and βi to

αi = − 1

T

T∑
t=1

tanh′(bixt), βi = − 1

T

T∑
t=1

[tanh(bixt) + αibixt] .

These seemingly arbitrary update rules are motivated below.
The effect of changing the transformation parameters αi and βi are compensated

exactly by updating the shortcut mapping C by

Cnew = Cold −A(αnew −αold)B−A(βnew − βold) [0 0 . . . 1] , (4)

where α is a matrix with elements αi on the diagonal and one empty row below for the
bias term, and β is a column vector with components βi and one zero below for the bias
term. Thus, any change in αi and βi does not change the overall mapping from xt to yt

at all, but they do change the optimization problem instead.
One way to motivate the transformations in Equations (3), is to study the expected

output yt and its dependency on the input xt:

1

T

∑
t

yt = A

[
1

T

∑
t

f(Bxt)

]
+C

[
1

T

∑
t

xt

]
(5)

1

T

∑
t

∂yt

∂xt
= A

[
1

T

∑
t

f ′(Bxt)

]
BT + C (6)

We note that by making nonlinear activations f(·) zero mean in Eq. (3) (left), we disal-
low the nonlinear mapping Af (B·) to affect the expected output yt, that is, to compete
with the bias term. Similarly, by making the nonlinear activations f(·) zero slope in
Eq. (3) (right), we disallow the nonlinear mapping Af (B·) from affecting the expected
dependency on the input, that is, to compete with the linear short-cut mappingC. In tra-
ditional neural networks, the linear dependencies (expected ∂yt/∂xt) are modeled by
many competing paths from an input to an output (e.g. via each hidden unit), whereas
this architecture gathers the linear dependencies to be modeled only by C.

In [10] it was shown experimentally that less competition between parts of the model
will speed up learning. In [16], more careful connections to second-order optimization
methods were drawn.

3.2 Two-Layer Contractive Encoding

A common regularizer for MLPs is the L2 penalty on the weight matrices. This regular-
izer is well-motivated for linear methods (e.g. ridge regression or logistic regression),
where it penalizes strong dependence of y on few variables in x, and thus ensures invari-
ance of y to small changes in x. For MLPs, which contain saturating non-linearities,
this desirable property can be achieved with strongly positive or negative weights as
well. Rifai et al. [14] show that the generalization of the L2-norm penalty to the case
where non-linearities are involved in the computation of y is a penalty on the Frobenius
norm of the Jacobian ‖Jy(x)‖F (“contractive” regularization). [14,13] demonstrate that



454 H. Schulz et al.

CA

x

h

h′

B

Fig. 1. Schematic visualization of our encoder. Fea-
tures h of input x are determined both by a one-layer
encoder via C, and by a two-layer encoder via B
and A. Contractive regularization [14] and two-layer
contractive regularization [15] are used to learn sta-
ble linear/non-linear representations in h, respectively.
Linear transformations in the two-layer part are moved
to C using compensations [10] (not shown).

pretraining simple auto-encoders with the contractive penalty produces features which
identify the data manifold and can aid finetuning. However, Schulz and Behnke [15]
demonstrate that auto-encoders with one hidden layer can fail to identify stable features
in the input when their variables in x are XOR-related. They generalize the contractive
regularizer to the two-layer case,

‖Jh(x)‖2F =

N∑
n

M∑
m

(
1− h2

n

)2( K∑
k

AnkBkm(1− h′2
k)

)2

, (7)

wherex ∈ RM ,B ∈ RK×M ,A ∈ RN×K , andh = tanh(A tanh(Bx)) = tanh(Ah′).
In this paper, we argue that while two-layer encodings are harder to learn, we can

combine their ability to detect highly non-linear features with the easy-to-learn one-
layer encodings by introducing shortcuts. Shortcut weights C from the input to the
second hidden layer can be regularized as in [14], while the two-layer encoder is reg-
ularized as in [15]. We employ linear transformations and compensations (Sec. 3.1) to
ensure that simple features continue to be learned by the shortcut weights, while the
two-layer part of the encoder can focus on the difficult features. For this purpose, we
extend the two-layer contractive regularizer to account for the linear transformations
in (1) and (2),

‖Jh(x)‖2F =
∑

(1− h2)2
T
(C+A(Bα +B′))2 , (8)

where Bα
km = αkBkm, B′

km = Bkm(1−tanh2(Bk·x)). Fig. 1 illustrates the proposed
encoder structure.

4 Experiments

We evaluate the proposed approach in a semi-supervised setting using a handwritten
digit dataset (MNIST, [9]). We assume that only 1200 training samples have their labels
available, while all the other training samples are unlabeled. The task is to use an MLP
trained on the training samples to classify 10,000 test samples.

4.1 Model and Learning

Our base model is a multi-layer perceptron (MLP) with two hidden layers having tanh
hidden neurons. The output of the MLP is

y = W (tanh (A tanh (Bx))) , (9)
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Table 1. Classification accuracies depending
on training strategy on MNIST using 1200 la-
beled examples, and the size of the second
hidden layer fixed to 100. Standard deviations
are over 10 trials with different draws of the
training set.

Strategy Test Error Std. Dev.

S 13.27 1.47
U+S 8.835 0.33

C+U+S 8.989 0.25
T+U+S 9.132 0.19

2C 8.77 0.43
C+T+U+S 8.695 0.41

where W, A and B are weight matrices. We have omitted biases for simplicity of
notation. As baseline we trained this MLP both with and without pretraining. For the
pretrained MLP we consider the bottom two layers as an autoencoder with two hidden
layers and trained them using both labeled and unlabeled samples.

When the hidden neurons, or perceptrons, in the MLP were linearly transformed, we
added shortcut connections from the input to the second hidden layer to maintain the
equivalence after the transformation. In that case, the output of the MLP is

y = Wh = W tanh(Ah′ +Cx), (10)

where h′ = tanh(Bx) +Bαx+ β, and C is the weight matrix of the shortcuts.1.
As a comparison, we tried both using either one of the two-layer contractive encoding

and the linear transformation and using both of them together. In this way, we can easily
see the effectiveness of the proposed way of using both approaches together.

Specifically, we used six different training strategies:

1. S: MLP trained with labeled samples only
2. U+S: MLP pretrained with unlabeled samples and finetuned
3. 2C: MLP pretrained with stacked contractive auto-encoders
4. C+U+S: MLP pretrained and finetuned with two-layer contractive encoding
5. T+U+S: MLP with shortcuts pretrained and finetuned with linear transformation
6. C+T+U+S: MLP with shortcuts pretrained and finetuned using both the two-layer

contractive encoding and linear transformation

We estimated hyperparameters such as learning rates, weight decay constant, regu-
larization strength and the size of the first hidden layer using hyperopt [4]. The number
of training epochs is determined with early stopping. For pre-training, we minimized
reconstruction error on a 10 000 sample validation set for every training strategy. We
then determined 1200 labeled training samples randomly and employed five-fold cross
validation and hyperopt to determine learning rates for finetuning on the cross-entropy
loss function. To reduce overfitting induced by the small size of labeled samples, we
fixed the number of hidden neurons in the second hidden layer to 100 (see, e.g., [3]).
The weight matrices A and B were initialized randomly according to the normalized
scale [6], while C was initialized with zeroes.

1 When we pretrained the MLP as a two-layer contractive encoding, we tied the weights A and
B between the encoder and decoder. However, we did not share C, αl’s and βl’s.
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Once the hyperparameters were found, we evaluated each strategy by training 10
MLPs with different sets of randomly sampled 1200 labeled training samples and clas-
sifying the held-out test samples.

4.2 Result and Analysis

In Table 1, the resulting classification accuracies for all six strategies are presented. As
expected, any approach with pretraining significantly outperforms the case where only
labeled samples were used for supervised training (S). The best performing strategy
was the one which pretrained the MLP as the two-layer contractive encoding using the
linear transformation (C+T+U+S). This strategy was able to outperform the strategies
U+S, C+U+S as well as T+U+S. Our proposed method also has a slight advantage over
the stacked contractive auto-encoder (2C).

Interestingly, using either the two-layer contractive encoding or the linear transfor-
mation only turned out to be just as good as the naı̈ve pretraining strategy (U+S). This
suggests that it is not easy to train the two-layer contractive encoding well without a
good training algorithm. Only when training became easier by linearly transforming
perceptrons to have zero-mean and zero-slope on average, we were able to see the im-
provement (C+T+U+S), which confirms our claim.

5 Conclusions

In this paper, we claimed that pretraining a multi-layer perceptron (MLP) with two-layer
local models can be improved by having both good regularization based on minimizing
the Jacobian of hidden activations with respect to the input [15,14] and powerful learn-
ing algorithm based on linearly transforming hidden neurons [10,16]. We focused on
validating this claim in a semi-supervised setting where only few labeled samples and
vast amount of unlabeled samples are available.

We empirically demonstrated the validity of our claim by considering a task of clas-
sifying handwritten digits using an MLP when only 1200 training samples out of 60,000
were assumed to have annotated labels. It was clear from the experiment that pretraining
indeed helps significantly when there are only few labeled training examples. Further-
more, we were able to see that generalization performance could be improved by pre-
training an MLP with a two-layer contractive encoding using the linear transformation,
confirming the validity of our claim.

The experiments reported in the paper are, however, limited in two dimensions.
Firstly, the structure of the MLP was limited to have only two hidden layers, and a small
fixed-size second hidden layer, which makes it important for future research to evaluate
the proposed method with larger and deeper models. Secondly, it will be desirable to
evaluate the proposed method with other datasets.

Acknowledgements. This work was supported by the Academy of Finland (Finnish
Centre of Excellence in Computational Inference Research COIN, 251170).



Two-Layer Contractive Encodings with Shortcuts 457

References

1. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learn-
ing 2(1), 1–127 (2009)

2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence Special Issue on
Learning Deep Architectures (2013); early Access

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep
networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information
Processing Systems, vol. 19, pp. 153–160. MIT Press, Cambridge (2007)

4. Bergstra, J., Bardenet, R., Bengio, Y., Kgl, B.: Algorithms for hyper-parameter optimization.
In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Advances in
Neural Information Processing Systems, vol. 24, pp. 2546–2554 (2011)

5. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cam-
bridge (2006)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-
works. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (AISTATS), JMLR Workshop and Conference Proceedings, vol. 9, pp. 249–
256. JMLR W&CP (2010)

7. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-
proximators. Neural Networks 2(5), 359–366 (1989)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

10. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in
perceptrons. In: Proceedings of the Fifteenth Internation Conference on Artificial Intelli-
gence and Statistics (AISTATS), JMLR Workshop and Conference Proceedings, vol. 22,
pp. 924–932. JMLR W&CP (April 2012)

11. Ranzato, M., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning of invariant fea-
ture hierarchies with applications to object recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

12. Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations
with an energy-based model. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in
Neural Information Processing Systems 19, pp. 1137–1144. MIT Press, Cambridge (2007)

13. Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., Glorot, X.: Higher
order contractive auto-encoder. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis,
M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 645–660. Springer, Heidelberg
(2011)

14. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit
invariance during feature extraction. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the
28th International Conference on Machine Learning (ICML), pp. 833–840. ACM, New York
(2011)

15. Schulz, H., Behnke, S.: Learning two-layer contractive encodings. In: Villa, A.E.P., Duch,
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Abstract. Deep learning methods aims at learning features automatically at 
multiple levels that allow the system to learn complex functions mapping the 
input to the output directly from data. This ability to automatically learn power-
ful features will become increasingly important as the amount of data and range 
of applications to machine learning methods continues to grow. In this context 
we propose a deep architecture model using Support Vector Machine (SVM) 
which has inherent ability to select data points important for classification with 
good generalization capabilities. Since SVM can effectively discriminate 
features, we used support vectors with kernel as non-linear discriminant 
features for classification. By stacking SVMs in to multiple layers, we can 
obtain deep features without extra feature engineering steps and get robust 
recognition accuracy. Experimental results show that the proposed method 
improves generalization performance on Wisconsin Breast Cancer dataset.  

Keywords: pattern recognition, deep learning, support vector machine.  

1 Introduction 

Classification results of learning algorithms are inherently limited in performance by 
the features extracted [1]. Deep learning is required to learn complicated function that 
can represent higher level extractions. Deep learning architectures consist of multiple 
intermediate layers rather than a single hidden layer, and adequate learning algorithm 
to train those layers. For the deep learning, multiple layers are expected to replace 
manual domain-specific feature engineering [2]. Also, recent neuroscience researches 
have provided backgrounds to deep feature extraction [1]. Besides the early attentions 
to the importance of deep architecture [3,4], deep learning was not prevalent since 
there was no effective learning method applicable for existing learning machines ex-
cept few models [5,6]. Restricted Boltzmann Machine (RBM) is a generative stochas-
tic neural network that can learn a probability distribution over its set of inputs and 
initially, was invented by Smolensky in 1986 [7]. But as G. Hinton et al. proposed the 
RBM network with contrastive divergence [8], deep architectures using RBM  
network become popular for many pattern recognition and machine learning applica-
tion and start to win prizes at several pattern recognition competitions without  
complex manual feature engineering. Although well-trained RBM networks show 
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Support vectors of SVM indicate the closest training data points to the hyper-plane. 
Binary classification problem using linear models can be represented as:  

,                            (1) 

where w denotes the weight vector, x is input vector and b is a bias parameter of the 
linear decision function. SVM weights represent the importance of the corresponding 
input or feature for the classification. 

The training data set which consists of N input patterns is represented as x1, …, xN, 
and corresponding target can be expressed as t1, …, tN where ti�{-1, 1}, i=1, …, N. 
The target label of new data point x is predicted with the sign of y(x). Then if the 
training data set is linearly separable and the model is trained to classify training data 
correctly, tiy(xi)>0 for all training data. The training of the parameters of SVM is con-
strained optimization problem which minimizes:  , , ∑ T 1 ,              (2) 

where a=(a1,…,aN)T and ai are Lagrange multiplier [10]. To get the optimum of above 
problem, we can set the derivatives with respect to w and b equal to zero. Then we get ∑ ,                                  (3) 0 ∑ .                                   (4) 

And the dual representation of the above problem in Eq. (2) can be derived as the 
maximization problem:  ∑  ∑ ∑ , ,                 (5) 

with respect to a subject to the constraints 0, 1, … , ,                               (6) ∑ 0.                                (7) 

where ai are obtained by training the SVM and ,  is the linear inner product of 
x and x’. Support vectors are the training samples whose corresponding ai values are 
nonzero. In this representation, weights disappear and the problem only depends on 
the set of ai, ti and xi. Since this is convex optimization problem, any local optimum is 
global optimum. Once we get a set of ai, w and b are calculated using (3) and (4), 
respectively. With these parameters, a new data can be tested using equation (1). By 
substituting w in Eq. (1) using Eq. (3), the equation for classification of new data x 
become  ∑ , .                            (8) 

Because the optimization of Eq. (5) satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions, ai=0 or tiy(xi)=1 for every data point. Then only points which have ai>0 affects 
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Fig. 3. Feature extraction between layers 

The training of the first weight set is extracted from original training data. Let m-
dimensional N input patterns of training data are x1, …, xN. From the training data we 
get m-dimensional p support vectors s1, …, sp and corresponding Lagrange multipliers 
a1, …, ap and target labels t1, …, tpas described in previous subsection 2.1. The activa-
tion values of the next layer are calculated as:  , ,                                (10) 

where h1(i) is the i-th element of the first hidden layer. Here b is not used except at 
the final layer since b is a just bias for the classification and it does not affect the in-
trinsic distribution of the data. The dimensionality of h1 is p, the number of support 
vectors of the input layer. The training of the weight connecting the input layer with 
the first hidden layer is completed, and weights of the next layers are trained layer by 
layer in the same manner. However, the training data for the next layers is the feature 
data transformed by previous layers rather the original data points. By feature extrac-
tion between the first layer and the next layer, original data x�Rm is transformed to 
h1 �Rp. For example, to train the second hidden layer, we can obtain the p-
dimensional N training data h1

1, …, h1
N by projecting original data x1, …, xN on the 

transformed feature space whereas target values t1, …, tN are not changed. With these 
h1

1, …, h1
N and t1, …, tN, the next layer also could be trained. Training procedures can 

be represented in algorithm 1. 

Algorithm 1. Training of the Deep SVM 
INPUT: 
X1 :={x1, …, xN} is training data 
t :={t1, …, tN} is the set of corresponding target labels 
K() := the RBF kernel function 
n_layers := the number of layers 
 
PROCEDURE: 
FOR i=1:n_layers  

{Si, ai, bi} <= SVM(Xi,t) 
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t_si := target labels corresponding Si 
p := the number of support vectors Si 
 
FOR j=1:N 

Xi+1

j <= {t_s
i

1*a
i

1*K(S
i

1,X
i

j),…, t_sp*a
i

p*K(S
i

p,X
i

j)} 
END 

END 
 
OUTPUT:  
S, a, t_s, b 

To test the new data point, the input vector is given to the first layer and which is 
mapped to the next layer using Eq. (10). At the highest layer, final classification is 
decided by using the sign of function ∑ , ö ,                        (11) 

where si is i-th support vector, l is the number of support vectors of the final layer, and ö  represents transformed feature of test data x by hidden layers.  

3 Experimental Results  

The recognition performance of the proposed model is tested on Wisconsin Breast 
Cancer Database [12]. This breast cancer databases was obtained from the University 
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. The data samples 
contain 9 attributes of Clump Thickness, Uniformity of Cell Size, Uniformity of Cell 
Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chroma-
tin, Normal Nucleoli and Mitoses. Each attribute has the integer value from 1 to 10. 
Each sample has the class of benign or malignant. The dimensionality of data patterns 
is 9 and the number of data samples is 367. Among 367 data samples, 200 samples 
are benign and 157 are malignant. In our experiment, the training set consists of ran-
domly selected 100 and 84 samples and the test set is remaining 100 and 83 samples 
for benign and malignant cancer respectively. Sigma of the RBF kernel parameter of 
SVM is set to 5 and the number of layers is 3. Table 1 shows the number of support 
vectors and classification accuracies.  

Table 1. Recognition performance  

 1st layer 2nd layer 3rd layer 

Dimensionality 34 25 31 

Training accuracy  100 % 100 % 100 % 

Test accuracy  91.2 % 92.3 % 95.6 % 
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Table 1 shows the perfect accuracy on training data. There are some errors on the 
test set. But, test accuracy is increased as layers are stacked. This demonstrates the 
superior generalization performance of the proposed model to shallow network.  

Table 2. Performance comparison with other models 

 SVM Deep SVM Denoising auto-encoder 

Training accuracy  100 % 100 % 100 % 

Test accuracy  91.2 % 95.6 % 91.9 % 

 
Table 2 shows the comparison of classification accuracies with several models. To 

test the accuracy of denoising auto-encoder [13], 3 hidden layers are used and each 
layer from bottom to top hidden layer has 34, 25 and 31 nodes respectively. For the 
training of denoising auto-encoder, mini-batch algorithm is used to make the learning 
efficient and 200 epochs are done to train the network. The result shows the superior 
generalization performance of the proposed model.  

4 Conclusion  

In this paper, we proposed the deep network to achieve discriminative power of high-
order feature space by stacking SVMs as layers. Hidden layers use support vector and 
its corresponding multiplier to extract features of the input vector. Experimental re-
sults tested on Wisconsin Breast Cancer Database demonstrate that although the test 
performance on training set is perfect on every layer, higher layer’s SVMs show bet-
ter generalization performance, i.e., they have better classification accuracies on test 
data than lower layers. In future works, we would test the system on high-dimensional 
data and try to implement the incremental learning of the architecture. Error-based 
fine-tuning of weights also can be considered.  
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Abstract. In this paper, we propose a representation model that demon-
strates hierarchical feature learning using nsNMF. We stack simple unit
algorithm into several layers to take step-by-step approach in learning.
By utilizing NMF as unit algorithm, our proposed network provides in-
tuitive understanding of the feature development process. It is able to rep-
resent the underlying structure of feature hierarchies present in complex
data in intuitively understandable manner. Experiments with document
data successfully discovered feature hierarchies of concepts in data.Wealso
observed that proposed method results in much better classification and
reconstruction performance, especially for small number of features.

Keywords: Hierarchical representation, NMF, unsupervised feature
learning, multi-layer, deep learning.

1 Introduction

Humans are efficient learning machines. We can easily extract features from
complex data, and understand them. How do we do this? We take hierarchical
feature extraction strategy. By breaking a complex problem into several simple
problems, we solve one by one throughout multiple stages [2]. By integrating sim-
ple solutions throughout the layers, algorithm is able to solve complex problem
even without involving complex mathematical functions. Visual cortex supports
this hierarchical information processing mechanism well [6].

With these biological evidences, researchers have been paying attention to
hierarchical feature extracting approaches. One best known algorithm is Deep
Belief Network (DBN) introduced in 2006 [5] where Hinton showed first suc-
cess in training deep architectures of Restricted Boltzmann Machines (RBMs)
in greedy layer-wise manner. With the success of training deep architectures,
several variants of deep learning have been introduced; auto-encoders stacked
into several layers [3, 8], stacking NMF into several layers [1, 4, 10].

Although these multi-layered algorithms take hierarchical approaches in fea-
ture extraction and provide efficient solution to complex problems, they do not
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provide us intuitive relationships of features in form of hierarchies that are
learned throughout the hierarchical structure; Most of deep learning networks
allow both addition and subtraction of features in the hierarchical learning pro-
cess, and this results in intricate representation of feature development process
that is quite hard to follow intuitively.

In this paper, we propose a hierarchical data representation model, hierar-
chical multi-layer non-negative matrix factorization. (This is extended version
of [11].) We extend a variant of NMF algorithm [7], nsNMF [9] into several layers
for hierarchical learning. By stacking algorithm that restricts non-negativity, we
allow only additional operation of features in process of developing feature hier-
archies. We demonstrate intuitive feature development process along the layers,
and display hierarchies present in the data set by learning relationships between
features across the layers. We also prove that instead of one step learning, hi-
erarchical approach learns more meaningful and helpful features, which leads to
better distributed representations, and results in better performance in classifi-
cation and reconstruction for small number of features.

The organization of the paper is as follows. In Section 2, we introduce unit
algorithm of our hierarchical network, nsNMF. Then we look into the structure
of our proposed network in Section 3. We explain the intuitive understanding
of our hierarchical feature extraction process in Section 4. We demonstrate the
experimental result of our proposed network using Reuters document data set
in Section 5, and close our paper in Section 6.

2 Non-smooth Non-negative Matrix Factorization
(nsNMF)

Proposed network is constructed by stacking nsNMF [9] into several layers. Non-
smooth non-negative matrix factorization (nsNMF) is a variant of NMF that
restricts sparsity constraint. Basic NMF decomposes non-negative input data X
into non-negative W and H, which are features and corresponding coefficients
or data representation respectively. It aims to reduce error between original
data X and its reconstruction WH: C = 1

2‖X−WH‖2 = 1
2

∑m
i=1

∑n
j=1(Xij −∑f

k=1 WikHkj)
2.

To apply sparsity constraint to standard NMF, a sparsity matrix S is intro-
duced in [9]: S = (1 − θ)I(k) + θ

kones(k). k is number of features, and θ is
parameter for smoothing effect, in range of 0 to 1. I(k) is identity matrix of size
k x k, and ones(k) is a matrix of size k x k with all components of 1s. We smooth
a matrix by multiplying it with S. The closer θ is to 1, more smoothing effect is
applied. During alternative update, we smooth H matrix by multiplying S and
H during iterations as H=SH. To compensate the loss of sparsity by smoothing,
W becomes sparse.

3 Multi-layer Architecture

The proposed hierarchical multi-layer NMF structure comprise of several layers
of unit algorithm. The structure is described in Fig. 1.
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Fig. 1. Overall architecture of hierarchical multi-layer NMF network

We first train each layer separately. We process outcome of each layer H(l)

to get K(l) as K
(l)
kj = f

(
H

(l)
kj

M
(l)
kj

)
, where M

(l)
kj =

∑f

k′=1
H

(l)

k′j
f . f(·) is nonlinear

function, and the superscript of each term denotes layer index, where l denotes
index of layer, l = 1, 2, ...L. Processed data representation of K(l) is used as
input to next layer: Using nsNMF, K(l) is decomposed into W(l+1) and H(l+1):
K(l) ≈W(l+1)H(l+1). We repeat this process by extending layers for l = 1, 2, ...L.
After training of layers 1 to L separately, we use outcome of separate training
as initialization, and train the whole network jointly. The cost function for joint

training is C = 1
2

∑m
i=1

∑n
j=1(Xij −

∑f
k=1 W

(1)
ik H̃

(1)
kj )2, where H̃

(l)
kj is the recon-

struction of H
(l)
kj , which can be computed via back propagation of errors from

the last layer to the lth layer. Computation can be described in simpler form as
similar to [1] in equation (1).

W
(l)
ik ←W

(l)
ik

(
Nu(l)H̃(l)T

)
ik(

De(l)H̃(l)T

)
ik

, and H
(l)
kj ← H

(l)
kj

(
W(l)TNu(l)

)
kj(

W(l)TDe(l)
)
kj

, where (1a)

Nu(l) =

{
X if l = 1(
W(l−1)T Nu(l−1)

)
 
(
M(l−1)f−1′

(
W(l)H(l)

))
otherwise

(1b)

De(l) =

{
X̃ if l = 1(
W(l−1)TDe(l−1)

)
 
(
M(l−1)f−1′

(
W(l)H(l)

))
otherwise

(1c)

Here, X̃ = W(1)H̃(1), and can be computed as shown in (2).

H̃(l) =

⎧⎨⎩H(l) if l = L

M(l)  f−1

(
W(l+1)H̃(l+1)

)
if l = L− 1, ..., 1

(2)



Hierarchical Representation Using NMF 469

M(l) is a matrix of column-wise mean of H(l), and f−1(·) is inverse nonlinear
function.

After training until the last layer, final data representation H(L) is acquired.
This is the activation information of complex features, which is the integration
of features throughout the layers, W(1)W(2)...W(L).

4 Intuition of Hierarchical NMF Feature Learning in
Image

In this section, we provide intuitive understanding of hierarchical feature learn-
ing of our proposed network. The hierarchical feature learning displays what kind
of features develop at each layer, and how features from the lower layer are com-
bined together to form higher layer features. Other deep learning algorithms also
learn hierarchical features that are combination of lower layer features. However,
since they do not restrict the sign of the values to be positive, combination of fea-
tures involves subtraction of features as well, and this yields feature development
process hard to follow, and representation of features are not intuitively under-
stood. In contrast, hierarchical NMF provides intuitive understanding of feature
hierarchies by allowing only weighted summations among the features during
the hierarchical learning process. This can be interpreted as simply adding lego
blocks to construct a complete structure.

In order to help better understanding, we demonstrate the feature learning
process using image data, MNIST digit data1.

In Fig. 2, the construction process of data using learned features is described
in feature hierarchy structure. First layer learns very simple spot-like features
W(1) which can be seen as the basic building blocks. In the second layer W(2),
combinations of these first layer features are learned in distributed pattern. In-
tegration through two layers produces complex blocks by combining W(1) ac-
cording to W(2). We can intuitively follow the process by building up features in
weighted summation manner due to non-negativity constraint which allows sim-
ple add-ons. The combination of complex feature is again combined to represent
an original data.

As explained in above demonstration, our proposed hierarchical network learns
features as the building blocks of data, and provides intuitive hierarchical process,
discovering feature hierarchies present in the complex data.

5 Experiment with Document Data

We applied our proposed network to document database. We used ”Reuters-
21578 collection, distribution 1.0”2 as input data. We sorted top 10 categories
from ModApte split, and reduced dimension to 1000 by removing stop-words.

1 Available at: http://yann.lecun.com/exdb/mnist/
2 The Reuters-21578, Distribution 1.0 test collection is available from David D. Lewis
professional home page, currently: http://www.research.att.com/~lewis

http://yann.lecun.com/exdb/mnist/
http://www.research.att.com/~lewis
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Fig. 2. Feature hierarchy of MNIST database. Images in order of W(1) → W(1) ∗
W(2) → X̃, from bottom to top.

There are 5786 training samples and 2587 test samples. We constructed two-
layered network with number of hidden neurons as 160 (1000-160-a, where ’a’
denotes dimension of final data representation).

5.1 Feature Hierarchies

In Fig. 3, an example of top 10 words in learned high level features via integration
of two layers, W(1) ∗W(2), is displayed. Simple observation reveals which topic
each feature represents: grain, money, crude, interest, coffe, trade, earn, acq,
grain, and ship.

Fig. 3. An example of W(1) ∗W(2)

As in Fig. 2, features shown in Fig. 3 are part of hierarchy of concepts in
Reuters. An example of how concepts form hierarchies in Reuters is shown in
Fig. 4. In Fig. 4 (a), three first layer features W(1)s are weighted summed to
form second layer feature W(2). By observing words in each feature, we see that
lower layer features cover small scope of the topic, containing various words.
However, when they proceed to higher layer, they converge to represent one big
common concept of ’oil,’ with their top four words being synonyms of ’oil.’

Based on Fig. 4 (a), we can construct a concept hierarchy in Reuters as shown
in Fig. 4 (b). By hierarchical concept diagram, we can observe that big broad
topic ’oil’ (words indicated in red color) contains various other oil related words
that are colored in blue in the low level. Also, we can observe how some words
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(a) (b)

Fig. 4. Concept hierarchy in Reuters. (a) Experimental results, and (b) diagram of
result in (a).

are extracted together to comprise a feature to show their relations with each
other in first layer: words ’exploration, ecuador, pipeline, well, saudi’ form a
distinct group, same for ’texas, increase, purchase, contract, effective’, and ’mln,
stocks, fell, rose, reserves, refinery’; this grouping information can be interpreted
as sub-topics under the topic ’oil’. If we used single layered network, all we could
have observed would be those red words that indicate topic ’oil’. However, by
hierarchical representation, we can observe deeper into the data structure more
in detail by showing contents of blue words, and their groupings in low level.

5.2 Classification and Reconstruction Property

The classification and reconstruction property for various ’a’ (dimension for
H(L)) is shown in Fig. 5 (a) and (b), respectively. For classifier, we used
SVM. We calculated reconstruction error as: Mean reconstruction error =∑m

i=1

∑n
j=1 |Xij−X̃ij |
mn . The proposed hierarchical feature extraction method results

in much better classification and reconstruction, especially for small number of
features, compared to standard network that consists of only one layer. Even
at dimension of 20, our proposed network displays the maximum performance
it can reach after convergence. This supports that taking step-by-step approach
by learning features in hierarchical manner provides better chance of learning
meaningful features out of complex data; first layer pre-processes complex data
by breaking it down into small units, lessening the burden for the second layer
so that second layer just needs to learn how to combine these units.

In Fig. 6, we show two examples of reconstruction, the same word with the
same color. In the first example, the reconstruction via our proposed network
(c) returns most of significant words present in the original data (a). Also, it
successfully learned the importance of words, by displaying word sequence similar
to the original. In contrast, the standard network (b) misses key words and fails
to capture the importance of the words, showing words in mixed order compared
to the original. The second example shows similar result with the first example.
In (e), single layer feature confuses the subject of the topic by containing words
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(a) (b)

Fig. 5. (a) Reuters data classification, and (b) Reuters data reconstruction

(a) (b) (c) (d) (e) (f)

Fig. 6. Two examples of original data, and reconstruction by standard (single-layerd)
and proposed network in (a), (b), (c), and (d), (e), (f), respectively

’wheat’, ’oil’, ’corn’, and ’sugar’ altogether. However, our proposed network (f)
correctly extracted key words related to subject ’oil’.

6 Conclusion

In this paper, we proposed a hierarchical representation model of nsNMF, by
taking step-by-step approach in learning of the features in complex data. Our
proposed network discovers feature hierarchies present in complex data and
demonstrate them in intuitively understandable manner by learning feature re-
lationships among the layers in non-negative approach. By simple addition and
accumulation of features, we are able to understand the data structure and con-
struct a hierarchy based on the information learned by the network. We also
show that our proposed network provides better performance in classification
and reconstruction compared to the single-layered network for small number of
dimensions provided for final data representation. As a further work, we would
like to apply our proposed network to various types of data for discovering un-
derlying feature hierarchies in complex data.
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Abstract. In this paper, a simple, general method of adding auxiliary stochastic
neurons to a multi-layer perceptron is proposed. It is shown that the proposed
method is a generalization of recently successful methods of dropout [5], explicit
noise injection [12,3] and semantic hashing [10]. Under the proposed framework,
an extension of dropout which allows using separate dropping probabilities for
different hidden neurons, or layers, is found to be available. The use of different
dropping probabilities for hidden layers separately is empirically investigated.

Keywords: Multi-layer Perceptron, Stochastic Neuron, Dropout, Deep Learning.

1 Introduction

In this paper, we describe a simple extension to a multi-layer perceptron (MLP) that
unifies some of the recently proposed training tricks for training an MLP. For example,
the proposed extension is a generalization of using dropout for training an MLP [5].

The proposed method extends a conventional, deterministic MLP by augmenting
each hidden neuron with an auxiliary stochastic neuron of which activation needs to
be sampled. The activation of the added stochastic neurons is independent of all other
variables in the MLP, and the weight of the edge connecting from the auxiliary neuron
to the existing hidden neuron is fixed and not learned. Consequently, learning the pa-
rameters of the extended MLP does not require any special learning algorithm but can
use a standard backpropagation [9].

This paper starts by briefly describing the proposed method of adding auxiliary
stochastic neurons to an MLP. Then, it is described how dropout [5] and explicit noise
injection [12,3] as well as semantic hashing [10] are all special cases of the proposed
framework. Understanding the method of dropout under the proposed framework re-
veals that it is possible to use separate dropping probabilities for hidden neurons in a
single MLP, and empirical investigation is provided on using different dropping proba-
bilities for separate hidden layers.

2 Perceptron with Auxiliary Stochastic Neuron

For each hidden neuron h
[l]
j in the l-th hidden layer, we introduce an independent

stochastic neuron r
[l]
j connected to h

[l]
j with the edge weight u[l]

j . The edge weight

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 474–481, 2013.
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u
[l]
j is not learned but fixed to a certain constant either indefinitely or for each forward

computation1.

h
[l−1]
i−1 h

[l−1]
i h

[l−1]
i+1

h
[l]
j

r
[l]
j

W[l]

W[l−1]

u
[l]
j

Fig. 1. Illustration of adding an auxil-
iary stochastic hidden neuron (marked
by a dashed circle)

The auxiliary stochastic neuron r
[l]
j follows a

predefined probability distribution, and its value
is sampled at each evaluation of h[l]

j . Since there
is no incoming edge to the auxiliary neuron, the
neuron is independent of any other variable in the
MLP. In this case, the activation of the j-th hidden
neuron in the l-th layer is

h
[l]
j = φ

(∑
i

h
[l−1]
i w

[l−1]
ij + r

[l]
j u

[l]
j

)
,

where φ is a nonlinear function. h[l−1]
i and w

[l−1]
ij

are the i-th hidden neuron in the (l − 1)-th hid-

den layer and the edge weight between h
[l−1]
i and

h
[l]
j , respectively. A hyperbolic tangent function

tanh(α) or a rectified linear functionmax(0, α) is
a common choice. See Fig. 1 for the illustration.

2.1 Learning and Prediction

It is straightforward to learn the parameters of this MLP. Since we do not attempt to
learn u

[l]
j , a usual backpropagation [9] can be used. Only difference from the ordinary

MLP which does not have auxiliary stochastic neurons is that the activations of the
auxiliary neurons need to be sampled during the forward computation.

However, with a fixed set of parameters, either learned or predetermined by a user, it
is not trivial to make a prediction given a new sample. Due to the stochastic activation
of the auxiliary neurons, each forward computation of the output neurons will differ.
A most obvious approach is to compute the output activation several times, and take
the average or pick the most frequent one. This is however not preferred due to the
increased computational cost as well as potentially high variance.

Another, more preferred way is to compute the expected activation of the output
neurons over the distribution defined by the auxiliary stochastic neurons. This is often
difficult as well due to the use of nonlinear activation functions. However, it is possible
to linearize the computational path by approximating each nonlinear function linearly
and push down the expectation operator to each auxiliary neuron. One can, then, com-
pute and use the approximate expected activation of the output neurons as the final
prediction.

1 The author acknowledges that a similar method of a hidden neuron having an independent
noise source, called a semi-hard stochastic neuron, has been recently proposed in [1] indepen-
dently of this work.
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3 Understanding Dropout with Auxiliary Stochastic Neurons

A dropout is a regularization technique which forces the activations of a randomly se-
lected half of hidden neurons in each layer to zero when training an MLP. Just like the
proposed method of adding auxiliary stochastic neurons training an MLP with dropout
changes the forward computation only and leaves the error backpropagation as it is.

3.1 Training

Let us consider an MLP using rectified linear hidden neurons. Then, learning with
dropout is equivalent to training an MLP with auxiliary stochastic neurons of which
each follows Bernoulli distribution with mean p = 0.5. We fix the weight u[l]

j of the
edge connecting from the auxiliary stochastic neuron to a hidden neuron to negative
infinity. Then, the activation of h[l]

j is

h
[l]
j =

{
max(0, α

[l]
j ) , if r[l]j = 0

0 , if r[l]j = 1
(1)

This is equivalent to using dropout in training an MLP.
This exact procedure applies to any hidden neuron which has an activation function

that converges to zero in the limit of negative infinity. A logistic sigmoid activation
function is one such example. In cases of other types of activation functions, other
ways of fixing the connection strengths between a hidden neuron and its corresponding
auxiliary neuron are needed.

3.2 Testing

When an MLP was trained using a procedure of dropout, it was proposed in [5] that
outgoing weights be halved to compensate for the loss of approximately half of hid-
den neurons during training phase. With a mild approximation, here we show that this
procedure of halving the outgoing weights corresponds to computing the expected ac-
tivation of output neurons over the auxiliary stochastic neurons.

If we linearly approximate the expectation of the output neurons, we may push the
expectation operator all the way down to the evaluation of the activation of each hidden
neuron h

[l]
j . Because the activation is dropped to zero with probability 0.5, the expected

activation of h[l]
j becomes, for instance in the case of a rectified linear hidden neuron

in Eq. (1),

E
[
h
[l]
j

]
=

1

2
max

(
0,
∑
i

h
[l−1]
i w

[l−1]
ij

)
.

It is clear to see that this is effectively equivalent to halving the outgoing weights.
Linear approximation is unnecessary, and computing the expectation becomes ex-

act, if the output neurons are linear and there is only a single layer of hidden neurons.
This agrees well with the original formulation of dropout in [5] which formulated the
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procedure of halving the outgoing weights as taking a geometric average of exponen-
tially many neural networks that share parameters. However, this procedure, in both
perspectives, becomes approximate as the number of nonlinear hidden layers increases.

From the proposed framework, we can see that, albeit informally, this procedure
of halving the outgoing weights is well approximated if the activation function of each
hidden neuron can be approximated well linearly. There are two potential consequences
from this. Applying dropout to hidden neurons below an activation function which may
not be well approximated linearly, such as max-pooling, will not work well, which has
been noticed already by previous work (see, e.g., [14,6]). Secondly, a piece-wise linear
activation function such as the rectified linear function is well-suited for using dropout.
This agree well with recent finding that another piece-wise linear activation function
called maxout works well with dropout [4].

By this formulation, we can extend the original dropout by dropping each hidden
neuron with probability p instead of 0.5. In that case, in testing time, the outgoing
weight will be multiplied by 1−p. Furthermore, this allows us to use different dropping
probabilities for hidden neurons. If we denote the dropping probability of each hidden
neuron by p

[l]
j , this will correspond to multiplying all outgoing weights w[l]

jk of the j-th

hidden neuron in the l-th hidden layer with 1− p
[l]
j .

4 Other Special Cases

In this section, we describe two other training schemes and how they are realized as
special cases of the proposed procedure of adding auxiliary stochastic neurons. The
two training schemes we discuss here are denoising [12,3] and semantic hashing [10].

4.1 Explicit Noise Injection: Denoising Autoencoder

A denoising autoencoder (DAE) [12] is an MLP that aims to reconstruct a clean sample
given an explicitly corrupted input. The DAE is an obvious special case of the proposed
general framework. In this section, we consider adding additive white Gaussian noise
to each input component.

A DAE can be constructed from an ordinary autoencoder by adding an additional
hidden layer between the input and the first hidden layer. The additional layer has as
many hidden neurons as the number of input variables. Each hidden neuron νi is con-
nected to the i-th input component xi only with weight 1 and has an auxiliary stochastic
neuron ri which follows a standard Normal distribution.

The activation of νi is linear and defined to be

νi = xi + riui,

where ui is the connection strength between νi and ri. Each time νi is computed, the
activation of ri is sampled from a standard Normal distribution. This is equivalent to
explicitly adding additive white Gaussian noise with variance r2i .

Once training is over, we can compute the hidden activation of the original DAE
by first computing the expected activation of νi. Since E [ri] = 0, the activation of νi
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is simply a copy of the input xi. In other words, we can use the learned parameters
as if they were the parameters of an ordinary autoencoder trained without explicitly
adding noise.

By further adding more intermediate hidden layers with auxiliary stochastic neurons,
we can emulate adding multiple types of noise sequentially to input. For instance, a
common practice of adding white Gaussian noise and dropping a small portion of input
components can be achieved by adding another intermediate hidden layer that drops
some components randomly, just like dropout described in Section 3.

This method of explicitly injecting noise to input is obviously applicable to a stan-
dard MLP that performs classification [3,8]. Furthermore, under the proposed frame-
work this method naturally allows us to add noise even to hidden neurons, which may
work as a regularization similarly to using dropout. This idea of adding noise to hid-
den neurons as well as input variables has recently been applied to a deep generative
stochastic network in [2].

4.2 Semantic Hashing

Semantic hashing was proposed in [10] to extract a binary code of a document using a
deep autoencoder with a small sigmoid bottleneck layer. One of the important details
of the training procedure in [10] was to add white Gaussian noise to the input signal to
the bottleneck layer to encourage the activations of the hidden neurons in the bottleneck
layer to be as close to 0 or 1 as possible.

This procedure is exactly equivalent to adding an auxiliary stochastic neuron to each
bottleneck hidden neuron. The activation of each auxiliary stochastic neuron is sam-
pled from a standard Normal distribution and is multiplied with the connection strength
which corresponds to the variance of the added noise. Since the connection strength
is fixed and the auxiliary stochastic neuron is independent from the input or any other
neuron, an ordinary backpropagation can be used without any complication resulting
from the stochastic auxiliary neurons.

Again, once the parameters were learned, one may safely ignore the added auxiliary
stochastic neurons as their means are zero.

5 Experiments

Although this paper focuses on interpreting various recently proposed training schemes
under the proposed framework of adding auxiliary stochastic neurons. We were able
to find some potentially useful extensions of those existing schemes by understanding
them from this new perspective. One of them is to extend the usage of dropout by
using different dropping probabilities for hidden neurons, and another is to inject white
Gaussian noise to hidden neurons.

In this section, we present preliminary experiment result showing the effect of (1)
using a separate dropping probability for each hidden layer and (2) injecting white
Gaussian noise to the input of each hidden neuron.

Settings. We trained MLPs with two hidden layers having 2000 rectified linear neu-
rons each on handwritten digit dataset (MNIST, [7]) using either dropout with separate
dropping probabilities for the two hidden layers or injecting white Gaussian noise.
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Fig. 2. Contour plots of interpolated classification errors. (a) Figure obtained by the MLPs trained
using separate dropping probabilities p1 and p2 for two hidden layers. (b) Figure obtained by the
MLPs trained by injecting white Gaussian noise to the inputs to hidden neurons using separate
standard deviations s1 and s2 for two hidden layers. These figures are best viewed in color.

To see the effect of choosing separate dropping probabilities for hidden layers, we
trained 100 MLPs with a dropping probability pl with the l-th hidden layer randomly
selected from the interval [0, 1]. Similarly, 100 MLPs were trained with separate noise
variances for hidden layers, where the exponent sl of a noise variance for the l-th hidden
layer was randomly chosen from [−5, 0].

Before training each MLP, 60, 000 training samples were randomly split into training
and validation sets with ratio 3 : 1. Learning was early stopped by checking the predic-
tion error on the validation set, while the maximum number of epochs was limited to
1002. We used a recently proposed method, called ADADELTA [13], to adapt learning
rates automatically. Since we fixed the size of an MLP, this effectively means that there
were no other hyperparameters to tune.

Result and Analysis. The result for the first experiment tested using separate dropping
probabilities for hidden layers is shown in Fig. 2 (a). Interestingly, it can be observed
that any dropping probability near 0.5 resulted in relative good accuracy. However,
when any extreme dropping probability close to either 0 or 1 was used for the first
hidden layer (p1), the performance dropped significantly regardless of the dropping
probability of the second hidden layer (p2). Using too small dropping probability in
the second hidden layer also turned out to hurt the generalization performance signifi-
cantly. This suggests that the original proposal of simply dropping approximately half
of hidden neurons in each hidden layer from [5] is already a good choice.

In Fig. 2 (b), the result of the second experiment is shown. In general, it shows that
the generalization performance of an MLP is highly affected by the level of noise in-
jected at the first hidden layer, which is in accordance with the previous research show-
ing that adding noise to the input improves the classification accuracy on test samples
[8]. However, a closer look at the figure shows that adding noise to the upper hidden
layer helps achieving better generalization performance (see the upper right corner of
the figure).

2 Almost all runs were early-stopped before 100 epochs.
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One important lesson from these preliminary experiments is that it is possible to
achieve better generalization performance by carefully tuning auxiliary stochastic neu-
rons. This amounts to, for instance, choosing different dropping probabilities in the case
of dropout and injecting different levels of Gaussian noise. Further and deeper investi-
gation using various architectures and datasets is, however, required.

6 Discussion

In this paper, we have described a general method of adding auxiliary stochastic neurons
in a multi-layer perceptron (MLP). This procedure effectively makes hidden neurons in
an MLP stochastic, but does not require any change to the standard backpropagation
algorithm which is commonly used to train an MLP.

This proposed method turned out to be a generalization of a few recently introduced
training schemes. For instance, dropout [5] was found to be a special case having binary
auxiliary neurons with connection strengths dependent on the input signal. A method
of explicitly injecting noise to input neurons [3,8] used by, for instance, a denoising au-
toencoder [12] was found to be an obvious application of the proposed use of auxiliary
stochastic neurons following standard Normal distribution. Furthermore, we found that
a trick of making the activations of hidden neurons in the bottleneck layer of an autoen-
coder used for semantic hashing [10] is equivalent to simply adding a white Gaussian
auxiliary stochastic neuron to each hidden neuron in a bottleneck layer.

This paper, however, did not attempt to explain why, for instance, dropout helps
achieving better generalization performance. Training an MLP with dropout under the
proposed framework does not differ greatly from the ordinary way of training. The
only difference is that some randomness is explicitly defined and injected via auxiliary
stochastic neurons. It is left for future to investigate whether this simple injection of
randomness causes a favorable performance of an MLP trained with dropout, or there
exist more behind-the-scene explanations.

One important thing to note is that the proposed method is not equivalent to building
an MLP with stochastic activation functions. It may be possible to find an equivalent
model with auxiliary stochastic neurons, but it is not guaranteed nor expected that ev-
ery stochastic MLP can be emulated by an ordinary MLP augmented with auxiliary
stochastic neurons. However, one advantage of using the proposed method of adding
auxiliary neurons compared to a true stochastic MLP is that there is no need for mod-
ifying the standard backpropagation or designing a new learning algorithm (see, e.g.,
[1,11]).

By understanding the method of dropout under the proposed framework, another ex-
tension was found, which allows using a separate dropping probability for each hidden
layer. Similarly, we observed that it is also possible, under the proposed framework, to
inject white Gaussian noise at each hidden layer instead of injecting only at the input.
In the experiments, we provided empirical evidence showing that better generalization
performance may be achieved by using separate dropping probabilities for different hid-
den layers in the case of dropout as well as injecting white Gaussian noise to hidden
layers. As the experiments were quite limited, however, further extensive evaluation is
required in future.
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Abstract. Restricted Boltzmann machines (RBMs) and deep Boltzmann ma-
chines (DBMs) are important models in deep learning, but it is often difficult
to measure their performance in general, or measure the importance of individ-
ual hidden units in specific. We propose to use mutual information to measure
the usefulness of individual hidden units in Boltzmann machines. The measure
serves as an upper bound for the information the neuron can pass on, enabling
detection of a particular kind of poor training results. We confirm experimentally,
that the proposed measure is telling how much the performance of the model
drops when some of the units of an RBM are pruned away. Our experiments on
DBMs highlight differences among different pretraining options.

Keywords: Deep learning, restricted Boltzmann machine, deep Boltzmann ma-
chine, pruning, structural learning, mutual information.

1 Introduction

Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are
important models in deep learning, helping to achieve state-of-the-art performance in
many tasks. However, both models are also known to be difficult to train [1, 2].

If training of an RBM or DBM is not successful, it is often assumed that the hidden
neurons do not learn to detect features that are useful for the task the Boltzmann ma-
chine (BM) is expected to perform. Whether training is successful is often measured by
directly testing the performance of the trained model in this task at hand. The model is
therefore often treated as a “black box” only evaluated based on final performance.

When training RBMs or DBMs, it would be beneficial to gain deeper insights into
the details of a learned model beyond a mere final performance measure. One way to
shed light on the underlying functionality of a particular model is to collect statistics
of the individual neurons. E.g. in tasks where the visible neurons of the BM represent
pixels in pictures, it is standard practice to visualize the learned weights.

Structural learning is an additional field where measuring the importance of individ-
ual neurons is crucial. One approach in structural learning is to add or prune neurons
while training the model (see e.g. [3–5]). In general, the benefit of such an approach
includes decreasing the number of hyperparameters that need to be defined a priori [4],
better expected generalization, and faster performance [6]. However, it is unclear how
training a BM is affected by adding or pruning neurons while training.
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In this paper, we propose to use mutual information between the observation vector
and a single hidden unit for evaluating its importance.

After reviewing RBMs and DBMs in Sect. 2, we propose the mutual information
(MI) measure for studying the importance of individual hidden units of a BM in Sect. 3.
Experimenting with RBMs in Sect. 4, we demonstrate the usefulness of the measure in
pruning and adding neurons as well as visualizing the progress of learning. In Sect. 5,
we compare pretraining choices of a DBM using the proposed measure.

2 Boltzmann Machines: Background

2.1 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) [7] is a variant of a Boltzmann machine that
has a bipartite structure such that each visible neuron is connected to all hidden neurons
and each hidden neuron to all visible neurons, but there are no edges between the same
type of neurons. An RBM defines an energy of each state (x,h) by

−E(x,h | θ) = b�x+ c�h+ x�Wh, (1)

and assigns the following probability to the state via Boltzmann distribution:
p(x,h | θ) = 1

Z(θ) exp {−E (x,h | θ)} , where θ = {b, c,W} is a set of parameters
consisting of visible and hidden biases as well as weights between visible and hidden
neurons. Z(θ) is a normalization constant that makes the probabilities sum up to one.

2.2 Deep Boltzmann Machines

A deep Boltzmann machine (DBM) was proposed in [8] as a relaxed version of an
RBM. A DBM simply stacks multiple additional layers of hidden units on the layer of
hidden units of an RBM. As was the case with an RBM, consecutive layers are fully
connected, while there is no edge among the units in one layer.

The energy function is defined as

−E(x,h | θ) = b�x+c�[1]h[1]+x�Wh[1]+

L∑
l=2

(
c�[l]h[l] + h�

[l−1]U[l−1]h[l]

)
, (2)

where L is the number of hidden layers. The state and biases of the hidden units at
the l-th hidden layer and the weight matrix between the l-th and (l + 1)-th layers are

respectively defined by h[l] =
[
h
[l]
1 , . . . , h

[l]
ql

]�
, c[l] =

[
c
[l]
1 , . . . , c

[l]
ql

]�
,U[l] =

[
u
[l]
ij

]
,

where ql is the number of the units in the l-th layer and U[l] ∈ Rql×ql+1 .

2.3 Why Interested in Boltzmann Machines?

RBM is an important basic building block of deep neural networks. In [9] it was shown
that an MLP with many hidden layers can be trained well by greedily pretraining each
pair of consecutive layers as an RBM. Furthermore, deep generative models such as



484 M. Berglund, T. Raiko, and K. Cho

deep belief networks and DBMs were found to be easily trainable if the parameters
were initialized by greedy layer-wise pretraining using an RBM [10, 8]. DBM was
found to be effective at initializing the parameters of an MLP as well [8].

Furthermore, both RBM and DBM have been found to be useful on their own, as
well. RBM and DBM were used to achieve high predictive performance on collabora-
tive filtering [11], multimodal learning [12] and hierarchical feature extraction [13].

However, all these achievements by RBM and DBM require that these neural net-
works were trained well. Several recent research showed that training RBM and DBM
is difficult, and that inappropriately trained ones may neither perform well on their own
nor as a part of another model [1, 2]. Although computing log-likelihood by estimat-
ing the normalizing constant [14] has been oft-used to evaluate RBMs and DBMs, it is
computationally expensive and does not tell much about how much contribution each
hidden neuron makes. Hence, in this paper we try to explore one potential measure that
can be used to evaluate the contribution of each hidden neuron in RBM and DBM.

3 Mutual Information Measure for Hidden Units

Neural networks such as multi-layer perceptron (MLP) networks are often criticized for
being black boxes, that is, it is difficult to understand what the individual neurons are
doing. One measure that can easily be studied is the variance of the neuron activation
across samples (see e.g. [15]). The underlying rationale is that neurons with constant
activation across the samples cannot convey any discriminative information about the
samples. However, as Boltzmann machines are stochastic, measuring activation vari-
ance is clearly not appropriate, as even a neuron with constant activation probability
could have a high activation variance.

We therefore propose to measure the relevant activity (or importance) of a single
hidden neuron hj in Boltzmann machines by measuring the mutual information (MI)
I(x, hj) between the observation vector (or the set of visible neurons) x and the hidden
neuron hj . Specifically, the MI-measure of the hidden unit MIj is

MIj = I(x, hj) =
1∑

hj=0

∑
x

P (x, hj) log2

(
P (hj | x)
P (hj)

)

=

1∑
hj=0

[
−P (hj) log2 (P (hj)) +

∑
x

P (x)P (hj | x) log2 (P (hj | x))
]

≈
1∑

hj=0

[
−P (hj) log2 (P (hj)) +

T∑
t=1

1

T
P (hj | xt) log2 (P (hj | xt))

]
.

We use the logarithm with base 2 in order to get the amount of information as bits.
It is easy to show that the mutual information between the binary hidden neuron hj and
the visible neurons x ranges from 0 to 1 bit, and defines the upper bound of the average
information the hidden neuron can convey about the state of the visible neurons x.
The measure is also independent of the particular task that the model learned by the
Boltzmann machine is supposed to perform.
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Fig. 1. Classification accuracy development when pruning neurons. Left: Original RBM was
trained with 4000 hidden neurons for 1000 epochs using standard gradient. Right: Original net-
work was trained with 1000 hidden neurons using enhanced gradient for 100 epochs.

Note that the MI-measure cannot measure how well the hidden unit works together
with other hidden units. For instance, maximizing the MI-measure could not be used
as the objective of training Boltzmann machines since training using such a criterion
could lead to each hidden unit representing the same feature. However, the MI-measure
serves as a useful measure of the upper bound for how useful the hidden neuron can
be for any task the Boltzmann machine is trained for. Therefore, the hidden neurons
with almost zero MI-measure will also be almost useless in any task. This is a partic-
ularly useful measure when training Boltzmann machines, as certain common training
situations yield neurons with a very low MI-measure.

4 Experiments on Restricted Boltzmann Machines

This section studies the use of MI-measure as a measure of the usefulness of hidden
neurons in the case of RBMs by (1) pruning, (2) adding new hidden neurons during
training, and (3) visualizing the progress of training.

4.1 Pruning Neurons after Training

We tested the contribution of neurons with varying mutual information to a simple
classification task. We trained an RBM with 4000 hidden neurons on the MNIST data
set [16], and used the hidden neuron activations as inputs to a logistic classifier. We
then pruned 100 hidden neurons at a time in order of the MI-measure. We did this both
in ascending and descending order, in addition to randomly pruning 100 neurons at a
time. The remaining neuron activations were then used as features in the classifier.

The results of the tests are shown in Fig. 1 (left). As predicted, the classification
performance does not drop markedly when pruning neurons with very low MI-measure.

We also did a similar exercise for a 1000 hidden neuron RBM, where we used the
enhanced gradient [1] in training. The results clearly differ from the previous model, in
that the MI-measure is not clearly related to importance in the classification task. As
can be seen from Fig. 1 (right), this model differs from the previous in that all hidden
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Fig. 2. MI-measure of RBM where 500 hidden neurons are added in the middle of the training
(left) vs. a normal RBM with 1000 hidden neurons from the start of the training (right). Both
models were trained for 100 epochs.

neurons have a fairly high MI-measure. Therefore, no neurons have a low enough MI-
measure as to not be able to convey enough information about the observations x. This
clearly reveals that high MI-measure is not always an accurate indicator of high signifi-
cance for the classification task – only a sufficiently low MI-measure can confidentially
predict that a neuron is not useful.

4.2 Adding Neurons during Training

One potential way to learn an optimal structure of an RBM would be to add neurons to
the hidden layer. This has bee studied e.g. in [4, 3]. However, it is possible that adding
neurons to a layer of hidden units where the previous hidden units have been trained
for some time would not be beneficial, as the added neurons might not learn relevant
structures in addition to the already co-adapted hidden neurons. In order to test that
hypothesis, we trained an RBM of 500 hidden neurons for 50 epochs, after which we
added another 500 hidden neurons to the model and trained it for another 50 epochs.
The development of the MI-measure can be seen in Fig. 2.

We again used the hidden neuron activations as features for a logistic classifier and
compared the performance of the two models. The table lists the median accuracy from
three runs. The performance of the model with added features is clearly inferior to the
model trained with 1000 hidden neurons for 100 epochs.

500 hidden units 500 + 500 hidden units 1000 hidden units
Class. accuracy 95.22 % 95.45 % 96.49 %

When examining the MI-measure of the 500 neurons added after 50 epochs, it is
clear that the measure stays considerably lower than for the 500 neurons added in the
beginning. It is also worth noting that even during the 50 epochs, the mutual information
stays much lower than the level the original 500 neurons reached already after only a
few epochs of training. This would support the hypothesis that the neurons added later
are not able to find very relevant features easily. We therefore recommend caution when
considering naively adding neurons parallel to already trained neurons in an RBM.
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Fig. 3. Left: Mutual information of a hidden unit with the observation vector (MI-measure) plot-
ted against the entropy of the hidden unit at different stages of learning. Right: Variance of the ex-
pected activation (Var-E) of each hidden neuron plotted against the MI-measure after 100 epochs
of training for an RBM with 1000 hidden neurons.

4.3 Relations to Entropy and Variance

One use for the proposed measure is simply to visualize the progress of learning.
In Fig. 3 (left), we plot the entropy H(hj) = −∑1

hj=0 P (hj) log2 (P (hj)) of the
hidden units against their MI-measure in the initialization phase, after 10 epochs, and
after 100 epochs. We see that training increases their mutual information on average,
but also decreases the entropy on some hidden neurons.

It can be seen in Fig. 3 (right) that the MI-measure has a close resemblance to the
variance over samples of the expected activation Var-Ej = Vart

(
EP (hj |xt) [hj]

)
. Var-

E highlights that the stochastic variation in P (hj | xt) does not count as relevant activ-
ity, whereas variation over the data index t does. Note that we used Var-E for studying
neurons in Fig. 9 of [1].

5 Experiments on Deep Boltzmann Machines

Although Deep Boltzmann Machines [8] have been used with great success in several
applications, they are generally considered difficult to train. One method that has been
essential in alleviating that difficulty is greedy layer-wise pretraining.

In order to illustrate this difficulty, we trained two DBMs with two layers of 1000
hidden neurons for 100 epochs: the first without any pretraining, and the second one
with two-stage pretraining [2]. The hidden neuron activations of both of the models
were used as features for a logistic classifier. As can be seen from Fig. 4 the mutual
information of especially the second layer was extremely low without pretraining. The
mutual information is in fact so low, that the entire second layer only conveys on average
a maximum of 1.5× 10−10 bits of information about the observations. This illustration
strengthens the hypothesis that the difficulty in training DBMs relates to the model not
learning useful features of the data.
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Fig. 4. MI-measure of a DBM with two layers of hidden units without pretraining (left) and with
pretraining (right)

6 Discussion

We propose using mutual information between the observation vector and a single hid-
den unit (MI-measure) for evaluating the importance of individual hidden units of a
Boltzmann machine. Following the progress of this measure during training would be
useful at least for noticing situations where some of the units are not useful at all. We
demonstrated several cases where it could happen. Firstly, training a large RBM with
traditional gradient can include a lot of inactive units. Secondly, when an RBM has al-
ready learned a representation of the data, and new units are introduced in it, it is rather
difficult to make them useful. Thirdly, when training deep Boltzmann machines without
layer-wise pretraining, all the neurons in especially the upper layers might be useless.

We found that the MI-measure should only very cautiously be used as such to rank
neuron importance among the active neurons, since it rather serves as an upper bound
of importance. This might be due to at least two phenomena: Firstly, the MI-measure
ignores the interaction among hidden units, and Boltzmann machines produce very dis-
tributed representations of data since each unit can only retain at most one bit of infor-
mation. Secondly, it is well known that sparse representations perform well especially
for classification tasks [17]. Sparse features have a lower entropy, and Fig. 3 shows that
units with lower entropy tend to have a lower MI-measure, too. This would suggest
that perhaps some combination of entropy and MI-measure could be used as a more
accurate measure of usefulness in the future. Another direction in which to continue the
work is to study the mutual information of the latent representation and class labels,
assuming they are available. This has been proposed as a learning criterion by Peltonen
and Kaski [18].
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Abstract. In this paper, a tentative of prediction of Instrument Langmuir (ISL) 
installed in the DEMETER satellite is implanted. Prediction is based on the 
Multilayer Perceptron (MLP) neural network model. The MLP machine is 
composed of three layers, an input layer with four neurons, a hidden layer with 
ten neurons and an output layer with the same number of units like the input 
layer. Parameters to be predicted are electrons and ions density, electrons tem-
peratures and plasma potential. Application to the data of orbit 27447-1 record-
ed two days before the Laquila earthquake of 06 April 2009 clearly shows the 
power of the artificial neural network in the prediction of ionospheric perturba-
tions and Plasma analysis. 

Keywords: ISL Demter, MLP, Prediction. 

1 Introduction 

The artificial neural networks (ANNs) have been widely used in physics (Peterson, 
1992, Lynch et al, 2001, Ouadfeul and Aliouane, 2013).  In plasma physics the 
ANNs are used by many authors to characterize it. Teng et al (2010) have used a mul-
tilayer perceptron algorithm and radial based function algorithm in order to predict 
the plasma density in a plasma system, the effectiveness of two artificial neural net-
work models is demonstrated. Wei el al (2009) have established an artificial neural 
network (ANN) model using a back-propagation training algorithm in order to predict 
the plasma spatial distribution in an electron cyclotron resonance (ECR) — plasma-
enhanced chemical vapor deposition (PECVD) plasma system. In this paper we test 
the efficiency of the Multilayer Perecptron (MLP) for prediction of ionosphere  
parameters recorded by DEMETER Satellite Langmuir instruments. We start by de-
scribing the instrument and the data, after that we describe the neural network MLP 
machine with detailing its training parameters, the technique is applied to real data 
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recorded two days before the main shock of L’Aquila earthquake. We finalize the 
paper by results interpretation and a conclusion.  

2 Langmuir Instrument and DEMETER Satellite 

DEMETER satellite is designed to study ionospheric disturbances related to earth-
quake, volcano and human activity, and to detect the electromagnetic environment in 
global scale (Lebreton , 2012). The satellite has quasisolar-synchronous circular orbit 
with declination 98.23°, weight 130 kg and height 710 km (which decreased to 660 
km in the middle of December, 2005). Its life was supposed to be two years. Howev-
er, it is still operating now. The Langmuir probe is in principle a simple and very 
versatile space plasma diagnostic instrument for in situ measurements. A classical 
Langmuir probe uses a single sensor, which may be of different geometry (cylindrical 
or spherical). The DEMETER  Langmuir Probe (ISL: Instrument Sonde de Lang-
muir) comprises two Langmuir Probe sensors. It includes a classical cylindrical sen-
sor (5 cm long, dia 6 mm) and a 4-cm diameter spherical Segmented Langmuir Probe 
(SLP) whose surface is divided in six 1-cm disk sections (Lebreton, 2012, Zhang et al, 
2009). A set of instruments were deployed on the satellite, including ICE to detect 
electric field from DC to 3.5 MHz; IMSC to measure the magnetic field from a few 
Hz to 20 kHz; IAP to detect ion density and temperature and so on; ISL, Langmuir 
probe to measure the electron density and temperature. Two kinds of data with differ-
ent operating modes are provided: survey mode with low sampling rate and burst 
mode with high sampling rate as the satellite flies over the seismic zones. The mission 
center of DEMETER  provides the data that can be downloaded and Quicklook im-
ages (Zhang et al, 2009). Detailed data guide can be referred to the website of 
DEMETER, http://demeter .cnrs-orleans.fr. 

The Langmuir probe is in principle a simple and very versatile space plasma diag-
nostic instrument for in situ measurements. A classical Langmuir probe uses a single 
sensor, which may be of different geometry (cylindrical or spherical). The 
DEMETER  Langmuir Probe (ISL: Instrument Sonde de Langmuir) comprises two 
Langmuir Probe sensors. It includes a classical cylindrical sensor (5 cm long, dia 6 
mm) and a 4-cm diameter spherical Segmented Langmuir Probe (SLP) whose surface 
is divided in six 1-cm disk sections (Lebreton , 2012). 

3 The Multilayer Perceptron  

Multilayer feed-forward networks form an important class of neural networks. Typi-
cally the network consists of a set of sensory units or input nodes, that constitute the 
input layer, one or more hidden layers of neurons or computation nodes, and an out-
put layer. Multi-layer Perceptron (MLP) neural networks with sufficiently many non-
linear units in a single hidden unit layer have been established as universal function 
approximators. The advantages of the MLP are: Hidden unit outputs (basis functions) 
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change adaptively during training, making it unnecessary for the user to choose them 
beforehand. The number of free parameters in the MLP can be unambiguously in-
creased in small increments by simply increasing the number of hidden units.  

The basic functions are bounded making overflow errors and round-off errors un-
likely. The MLP is a feed-forward network consisting of units arranged in layers with 
only forward connections to units in subsequent layers. The connections have weights 
associated with them. Each signal traveling along a link is multiplied by its weight. 

The input layer, being the first layer, has input units that distribute the inputs to 
units in subsequent layers. In the following (hidden) layer, each unit sums its inputs 
and adds a threshold to it and nonlinearly transforms the sum (called the net function) 
to produce the unit output (called the activation). The output layer units often have 
linear activations, so that output activations equal net function values. 

The layers sandwiched between the input and the output layers are called hidden 
layers, and the units in the hidden layers are called hidden units (Ouadfeul and 
Aliouane, 2012, 2013).  

4 Application to Real Data  

To check the efficiency of the Multilayer perecptron neural network model in the 
prediction of ionospehric perturbations, data of the 04 April 2009 recorded by the ISL 
instrument two days before of Italian earthquake of L’Aquila are analyzed. Let us 
start by giving more details about this huge seismic disaster.   

4.1 L’ Aquila Earthquake  

The 2009 L'Aquila earthquake occurred in the region of Abruzzo, in central Italy (see 
Fig. 01). The main shock occurred at 03:32 CEST (01:32 UTC) on 6 April 2009, and 
was rated 5.8 or 5.9 on the Richter scale and 6.3 on the moment magnitude scale; its 
epicenter was near L'Aquila, the capital of Abruzzo, which together with surrounding 
villages suffered most damage. There have been several thousand foreshocks and 
aftershocks since December 2008, more than thirty of which had a Richter magnitude 
greater than 3.5.  

The earthquake was felt throughout central Italy; 297 people are known to have 
died, making this the deadliest earthquake to hit Italy since the 1980 Irpinia earth-
quake. In a subsequent inquiry of the handling of the disaster, seven members of the 
Italian National Commission for the Forecast and Prevention of Major Risks were 
accused of giving "inexact, incomplete and contradictory" information about the  
danger of the tremors prior to the main quake. On 22 October 2012, six scientists and 
one ex-government official were convicted of multiple manslaughter for downplaying 
the likelihood of a major earthquake six days before it took place. They were each 
sentenced to six years' imprisonment.  

 



 Prediction of Ionospheric Perturbations Using ANN 493 

 

 

 

Fig. 1. Map of Italy centered around the L'Aquila region 

4.2 Data Analysis  

Data of ISL Langmuir DEMETER satellite recorded two days before then main shock 
of L’Aquila earthquake are analyzed by the multilayer perceptron, the goal is check 
the efficiency of the MLP neural network to predict future time series. Parameters to 
be predicted are:  Electron Density, Ion Density, Electron temperature and Plasma 
potential. A neural network machine of three layers is implanted, the input layer is 
constituted of four neurons, and the hidden layer is composed of 10 neurons and an 
output layer of four neurons.  The first 640 samples recorded by the ISL instrument 
are used as input (see Fig. 2); the second 640 samples are used as a desired output of 
the MLP machine (see Fig. 3).  

In the training stage weights of connection are optimized to minimize the root 
mean square error between the desired output and the calculated output by the MLP 
machine. To check the power of the MLP machine for prediction of these parameters,   
a generalization of this implanted machine is done. At this step the second 640 sam-
ples are now used as an input of the MLP machine, the goal is to predict a future time 
series of 300 samples.  
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Fig. 2. Input of the Multilayer Perceptron neural network machine  

 

 

Fig.3. Desired output of the MLP machine 

0

5000

10000

15000

20000

25000

1 60 11
9

17
8

23
7

29
6

35
5

41
4

47
3

53
2

59
1

Electron Density

0

20000

40000

60000

80000

100000

1 60 11
9

17
8

23
7

29
6

35
5

41
4

47
3

53
2

59
1

Ion Density

0

0,5

1

1,5

2

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

Plasma Potential

0

2000

4000

6000

8000

1 55 10
9

16
3

21
7

27
1

32
5

37
9

43
3

48
7

54
1

59
5

Electron Temperature

0
5000

10000
15000
20000
25000
30000

1 66 13
1

19
6

26
1

32
6

39
1

45
6

52
1

58
6

Electron Density

0

50000

100000

150000

1 60 11
9

17
8

23
7

29
6

35
5

41
4

47
3

53
2

59
1

Ion Density

1500
1600
1700
1800
1900
2000
2100

1 66 13
1

19
6

26
1

32
6

39
1

45
6

52
1

58
6

Electron Temperature

1,35
1,4

1,45
1,5

1,55
1,6

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

Plasma Potential



 Prediction of Ionospheric Perturbations Using ANN 495 

 

5 Results, Interpretation and Conclusion 

Graphs of predicted plasma parameters are presented in black color in Fig. 4, Red 
graphs are the recorded parameters by the ISL Demeter satellite. Comparison between 
the two graphs clearly shows that the implanted neural network machine has the ca-
pacity and the memory to provide future ionosphere parameters. We can see that the 
ANN machine has a good memory for the most of each time series, however the ma-
chine start to lose slightly the memory at the end of each series.  

The implanted machine can greatly be used for prediction of ionosphereic perturba-
tions, which have a big relation with seismic activity; the artificial neural network me-
thod plays an important role in the seismic hazard prevention. We suggest testing other 
neural network models like the Radial Basis Function (RBF) to decide about which 
kind of neural network can be used for prediction of ISL Langmuir satellite data.  

 

 

Fig. 4. Predicted plasma ionospheric parameters (black color) compared to recorded parameters 
by DEMETER satellite (red color) 
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Fig. 4. (Continued.) 
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Abstract. The mail goal of the current paper is to establish a Multilayer percep-
tron (MLP) neural network machine for rock permeability prediction from well-
logs data. The MLP machine is composed of three layers, an input layer with 05 
neurons a hidden layer with five neurons, the output layer is composed with one 
neuron. Well-logs data to be used as an input are: the natural gamma ray, the 
bulk density of the rock, the Macro-resistivity, the velocity of the compression 
wave and the neutron porosity. The output of the machine is the predicted per-
meability. Well-logs data of a pilot borehole located in the Algerian Sahara are 
used for the training, where the modified hidden weight optimization (MHWO) 
algorithm is used. Generalization to a second borehole located in the neigh-
bourhood of the pilot borehole clearly shows that the implanted MLP machine 
using the MHWO can greatly improve reservoir characterization. 

Keywords: MLP, MHWO, prediction, permeability. 

1 Introduction 

The permeability is one of principal task in reservoir characterization where the main 
goal  is to establish numerical model of formation rock physical properties (porosity, 
water saturation and permeability) in order to provide input data for oil and gas reser-
voir numerical simulation. Generally speaking, permeability K is a function of the 
properties of the pore space, such as porosity Ф and several structural parameters.  

The traditional method obtaining permeabiliy is mainly through prediction based 
on well logging using either an empirical relationships (Balan et al, 1995; Ellis and 
Singer, 2007) or some forms of statistical regression. The empirical models may not 
be applicable in regions with different depositional environments without making 
adjustments to constants or exponents in the model. Also, significant uncertainty  
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exists in the determination of irreducible water saturation and cementation factor in 
these models ( Elis and Singer, 2007). In fact, the problem of well-logging interpreta-
tion is a highly non-linear mapping problem. So, the artificial neural network is an 
effective way to solve complex non-linear mapping problem (Aliouane et al, 2012; 
Tian et al, 2012, Aliouane et al 2013b). 

Artificial Neural Networks (ANN) is relatively popular numerical tool in geos-
ciences, mainly, in petrophysics, this last decade. ANN provide very useful in appli-
cations where conventional computation methods are inadequate. They have been 
used in lithofacies classification and petrophysical parameters estimation (Aminian et 
al, 2005; Aminzadeh et al, 2000; Ouadfeul and Aliouane, 2013; Aliouane et al, 
2013a).  

Most methods used in permeability prediction by ANN is Backpropagation Neural 
Network (BPNN). It seems to be the most promising one in the literature (Mohaghegh 
et al, 1995; Mohaghegh et al, 1996). BPNN is the most popular among all ANN tech-
niques in permeability prediction mainly because it is quite similar to Multiple Re-
gression. In the present work, the goal is to  use other learning algorithm for the 
Feed-Forward such as the Modified Hidden Weight Optimization algorithm (Yu et 
Manry, 2002). 

2 Modified Hidden Weight Optimization Algorithm 

The output weight optimization-hidden weight optimization (OWO-HWO) feed for-
ward network training algorithm alternately solves linear equations for output weights 
and reduces a separate hidden layer error function with respect to hidden layer 
weights. Here, a new hidden layer error function is proposed which de-emphasizes net 
function errors that correspond to saturated activation function values. In addition, an 
adaptive learning rate based on the local shape of the error surface is used in hidden 
layer training. For more details about the HWO algorithm, we invite authors to the 
paper of Yu and Manry (2002). 

3 Application to Real Data 

Triassic reservoirs are generally shaley, clay in the pore space of a reservoir may af-
fect the performance of a reservoir very adversely. The amount and kind of clay, as 
well as distribution throughout the reservoir rock, has an important bearing on liquid 
permeability, whereas a small amount has little effect on porosity. 

Recordings of petrophysical parameters of two wells situated in Algerian Sahara 
(Well-A and Well-B) have been exploited. These are: Gamma ray (GR), Bulk Density 
(RHOB), Neutron Porosity (NPHI), Sonic Travel Time (DT) and Macro-Resistivity 
(LLD). In addition, measured permeability of core rocks in the same reservoir interval 
is used. Fig.1 and Fig.2 present the composite log of the studied wells.  
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Fig. 1. Petrophysiscal parameters of well-A 

 

 
 

Fig. 2. Petrophysiscal parameters of well-B 

3.1 Permeability Prediction by HWO 

A neural network MLP machine to predict permeability in the borehole Well-B is 
implanted. The machine is composed with three layers, an input layer with five  
neurons, a hidden layer with seven neurons and an output layer with one neuron that 
corresponds to the predicted permeability. The borehole Well-B is used as a pilot 



 A MHWO Algorithm 501 

borehole for the training of the MLP machine, at this stage the measured core rock 
permeability is used as a desired output. The machine is trained in a supervised mode 
using the HWO-OWO algorithm. Fig. 3.a shows the calculated output of the MLP 
machine for the pilot borehole by propagating the set of well-logs data used as an 
input compared with the desired output. 

 
 

Fig. 3. Predicted and core Permeability: (a) Well-A; (b) Well-B. 

4 Results Interpretation and Conclusions 

Comparison between the calculated and the desired outputs of the Pilot borehole 
(Well-A) shows that the calculated permeability using the MLP machine 
(PERM_HWO) is very close to the measured core rocks permeability (CPERM). This 
proves the good training of the MLP machine in the pilot borehole Well-A.  

The measured well-logs data for the borehole Well-B are propagated through the 
implanted MLP machine and an output is calculated using the optimized weights of 
connection. At this step no desired output is needed. Fig.3.b shows the predicted per-
meability (PERM_HWO) compared to the measured core rocks permeability 
(CPERM), obtained results show that the MLP machine has given generally accepta-
ble results, expect some depth points (example 2212.5m and 2214.5m) where the 
PERM_HWO has given results not close to core rock results. This is explained by the 
no sufficiency of training data, so the neural network needs more training data to ge-
neralize better.  

We suggest application of the whole process to large data to extract a final decision 
about the training algorithm.   

(a) (b) 



502 L. Aliouane, S.-A. Ouadfeul, and A. Boudella 

References 

1. Aliouane, L., Ouadfeul, S., Djarfour, N., Boudella, A.: Lithofacies prediction from well 
logs data using different neural network models. In: Proceeding INSTICC, International 
Conference on Pattern Recognition. Applications and Methods (2013a) 

2. Aliouane, L., Ouadfeul, S., Djarfour, N., Boudella, A.: Permeability Prediction Using  
Artificial Neural Networks. A comparative study between Back Propagation and Leven-
berg-Marquardt learning algorithms. In: LNESS. Springer (in press, 2013b) 

3. Aliouane, L., Ouadfeul, S.-A., Djarfour, N., Boudella, A.: Petrophysical parameters esti-
mation from well-logs data using Multilayer Perceptron and Radial Basis Function neural 
networks. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part V. LNCS, 
vol. 7667, pp. 730–736. Springer, Heidelberg (2012) 

4. Aminian, K., Ameri, S.: Application of artificial neural networks for reservoir characteri-
zation with limited data. Journal of Petroleum Science and Engineering 49, 212–222 
(2005) 

5. Aminzadeh, F., Barhen, J., Glover, C.W., Toomarian, N.B.: Reservoir parameter estima-
tion using hybrid neural network. Computers & Geosciences 26, 869–875 (2000) 

6. Balan, B., Mohaghegh, S., Ameri, S.: State-Of-The-Art in Permeability Determination 
from Well Log Data: Part 1- A Comparative Study, Model Development. In: Eastern Re-
gional Conference & Exhibition, West Virginia, U.S.A. SPE, vol. 30978 (1995) 

7. Mohaghegh, S., Balan, B., Amri, S.: Permeability Determination from Well Log Data. Pre-
sented at SPE Eastern Regional Conference and Exhibition, held in Morgantown, West 
Virginia. SPE, vol. 30978 (1995) 

8. Mohaghegh, S., Ameri, S., Arefi, R.: Virtual Measurement of Heterogeneous Formation 
Permeability Using Geophysical Well Log Responses. The Log. Analyst, 32–39 
(March/April 1996) 

9. Ellis, D.V., Singer, J.M.: Well logging for earth scientists, 2nd edn. Springer (2007) 
10. Tian, Y., Zhang, Q., Cheng, G., Liu, X.: An Application of BF Neural Networks for Petro-

leum Reservoir Characterization. In: IEEE Third Global Congress on Intelligent Systems 
(2012), doi:10.1109/GCIS.2012.75 

11. Ouadfeul, S.-A., Aliouane, L.: Lithofacies prediction from well log data using a multilayer 
perceptron (MLP) and Kohonen’s self-organizing map (SOM) – a case study from the Al-
gerian Sahara. Pattern Recogn. Phys. 1, 59–62 (2013), doi:10.5194/prp-1-59-2013 

12. Yu, C., Manry, M.T.: A modified hidden optimization algorithm for feedforward neural 
networks. In: Conference Record of the Thirty-Sixth Asilomar Conference on Signals, 
Systems and Computers, vol. 01(2), pp. 1034–1038 (2002) 

 
 



WebVRGIS: A P2P Network Engine

for VR Data and GIS Analysis

Zhihan Lv1,2, Shafiq Ur Réhman1,2, and Ge Chen3
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Abstract. A Peer-to-peer(P2P) network engine for geographic VR data
and GIS analysis on 3D Globe is proposed, which synthesizes several lat-
est information technologies including web virtual reality(VR), 3D geo-
graphical information system(GIS), 3D visualization and P2P network.
The engine is used to organize and present massive spatial data such
as remote sensing data, meanwhile to share and online publish by P2P
based on hash. The P2P network makes a mapping of the users in real
geographic space and the user avatar in the virtual scene, as well as
the nodes in the virtual network. It also supports the integrated VRGIS
functions including 3D spatial analysis functions, 3D visualization for
spatial process and serves as a web engine for 3D globe and digital city.

Keywords: P2P network, WebVR, VRGIS, Big data, 3D Globe.

1 Introduction

With the development of VR (Virtual Reality) technology and widely applica-
tions in various areas, the requirements to VR are also increasing rapidly. Users
do not only need to obtain the landscape geospatial data dynamically but also
need to perform some analyses, calculations, managements and transfers based
on data. Virtual Reality Geographical Information System (VRGIS), a combi-
nation of geographic information system and virtual reality technology [8] has
become a hot topic. With the popularity of network, the VRGIS platform based
on the network environment also becomes a trend. The application of VRML,
X3D and other online VR technologies have achieved networking of VR systems,
because of the mass data, the network bandwidth constraints of transmission, a
large number of request and multi-user collaboration controls, the online virtual
reality technology still face numerous challenges. To improve the accuracy of
modeling, the city planning has an increasingly high demand for the realistic
display of VR system, however this will inevitably lead to the growth of the
volume of data transmission. Virtual scene from a single building to the city
scale is also resulting in the increased amount of data. The increasing num-
ber of user increase the server load and in more severe cases the server has to
deny the services. These challenges and problems directly lead the on-line VR
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technology failure to provide high-quality service to public base on the current
network frame. Currently, few companies are investing mass of money to set
up a large amount of data server nodes in order to break through the bottle-
neck of the network transmission speed. Therefore it is necessary to seek new,
more efficient and more economical mechanism to create a WebVRGIS system
on Internet. Using advanced computer technology to construct digital city has
attracted the attentions from many walks of life. By integrating the friendly
interactive interface of Virtual Reality System and spatial analysis specialty of
Geographical Information System, WebVRGIS is preferred in practical appli-
cations, especially by the geography and urban planning. Urban simulation is
becoming widely noticed nowadays, and some simulation systems have been de-
veloped in this area;e.g., ArcView3D Analyst, Imagine Virtual GIS, GeoMedia,
etc. The above mature platforms are limited to a single computer running, while
the publish methods based on network environment are proposed. WebVRGIS
engine supports steadily real time navigation in virtual scenes which are con-
structed with massive, multi-dimensional data from various sources. VR and
GIS modules are integrated seamlessly. All kinds of requirements for large-scale
landscape simulation and a data management can be satisfied. 3D urban land-
scape database with various data sources can be produced to implement spatial
analysis and 3D visualization and published in the Internet environment.

2 Background

In the early 1990s, Koller and others had an integration research about VR
and GIS, and put forward the concept of VRGIS [9]. VRGIS is based on VR
technology as a front-end interaction with users and supports GIS spatial data
storage, processing, query and analysis functions of the system from bottom.
With the development of VR technology and computer hardware technology,
massive data management and 3D visualization technologies have been greatly
improved. In VR field, massive data management and accelerated rendering tech-
nology include the following areas of study such as architecture design based on
out-of-core, accelerate the 3D rendering, network optimization. However, most
of current commercial platforms lack a timely application of these research re-
sults, which makes the combination of VR and GIS not in place and reduces the
speed of city digitization. WebVRGIS integrates various up-to-date VR tech-
nologies, which can solve the problems in 3D visualization of massive data, P2P
based massive 3D data share, realize the seamless integration of VR and GIS and
provide a strong support for the city digitization. The stand-alone environment
VRGIS [7] was developed. Based on VRGIS platform, WebVRGIS updates the
overall framework as well as part sorts of key technologies, in which can support
data publish on the network, and to support the mass data transmission and
large numbers of users online simultaneously based on P2P technology.
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3 Engine Overview

WebVRGIS engine designation uses object-oriented project database, whose
data storage and management are based on object-oriented nodes, which is di-
vided as core, middle and extended level. The core level is responsible for the
organization and management of data and P2P virtual network management
and also integrating rendering engine. The middle level supports the interface
by encapsulating the core level and exporting the accessing interface for the
extended level. The extended level implements extended function to fulfill the
demand on application layer. With design patterns such as factory, visitor and
singleton, the engine has good flexibility and extensibility.

4 Key Technology

Both VR and GIS systems need massive data, which can be provided from var-
ious sources. In the engine, DEM and DOM are used to construct the virtual
terrain, and a 3DS MAX plug-in is developed to implement the combination of
WebVRGIS and 3DS MAX. Because the virtual city needs massive data and
computes too much, WebVRGIS engine introduces several optimization and ac-
celeration technologies. Build up a P2P virtual network for multi-users and ac-
celerate the 3D data transmission speed. VR and GIS modules are integrated
seamlessly in the engine.

4.1 Support of Massive Geospatial Data

Virtual city simulation encounters the problem about massive data, which means
that the data is dozens of GB or even more, and too large to load in the memory
at one time. The WebVRGIS engine is designed to support massive data. Data
transfer methods used in WebVRGIS engine make the ability of present large-
scale scenes perform well online.

Fig. 1. Network Topology Structure of WebVRGIS
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P2P Based VR and GIS Data Sharing. WebVRGIS exploits hybrid P2P
structure. Cavagna et al has proposed a P2P model based on theory of space divi-
sion of Voronoi diagram [5], to the transfer of cites 3D (three-dimensional) scene
for online games, it supports streaming 3D scene index structure PBTree [11] for
the 2.5D data compression out of the 3D model. Varvello et al combined the KAD
network model with the mathematical model of the virtual environment [13], and
tested in Second life as a framework [12]. Hu et al. have developed a set of P2P
model Flod [14] based on the Voronoi diagram theory of the space partition. The
model has solved the problem of user neighbors distributed storage by dynamic
classification method. However, the global scope of the real geo-spatial environ-
ment is relatively stationary; there is no need of dynamic division. WebVRGIS
exploit hash value to index VR and GIS data. In order to avoid the information
silos, there are one and/or more servers to keep the hash value of all the users
logged, the level of health, distances list, etc. Each client will connect with the
server at first, request information of users which have higher health level in
the list. After receiving the user list, the client disconnects with the server, the
list received is integrated with the existing list to form a new one, and then it
tries to update and make connections with other clients. Hash value is utilized
as index of data block and user nodes, the XOR algorithm is used to calculate
the logical distance. Obtained logical distance determines the distance between
the nodes in the network and the user avatar in the 3D scene. Further more, the
relative position can be obtained. This approach makes a mapping of the user
in real geographical space and the user avatar in the virtual scene, as well as
the nodes in the virtual network. Figure 1 is the virtual P2P network topology
structure in WebVRGIS. WebVRGIS has following major components:

SERVER. The server is not necessary, but a sufficient condition for each node
to be linked in the virtual network. Server uses I/O completion port (IOCP ),
which provide an efficient threading model for processing multiple asyn-
chronous I/O requests on a multiprocessor system. After the server is ini-
tialized, the system created several threads, each thread do the I/O operation
with Internet through IOCP. The server is not only used to preserve the user
list, but also can be used as the Internet server providing the transit services
for the whole P2P network, and make the connection request penetrate the
firewalls and NAT smoothly, and improved the rate of nodes connection.

P2P Virtual Network. The client is adopted the P2P scheduling algorithm
which is belong to the Kademlia algorithm [10]. Figure 2 is the P2P Engine
hierarchy of P2P virtual network.

General P2P Service Layer. Kademlia regards each client as a node in P2P
virtual network. That store and query the object information use (key, value)
methods. The key is a 128− bit identifier. When it is used in node identifier,
value is calculation by IP address and port. When used for data identifier,
value is the content of the data block. The result of two hash value XOR op-
eration is the logical distance. Each (key, value) stored in the node which has
the shortest logic distance from the value. The routing table is constructed
by the table called K − B (K bucket). For each i(0 ≤ i ≤ 128), each node
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Fig. 2. P2P Engine hierarchy Fig. 3. File Block Search Process

have kept some node information that in the range ofm(2i < m < 2i+1),the
table structure of which is the same as that of server-side. Each K −B has
the data item that has the same ID prefix no more than k. The location
of the K − B is arranged according to the time order. In each node, using
binary tree structure organizes the K − B and neighboring node hash, and
storing them in the leaf nodes. As shown in Figure 3.

Senior P2P Service Layer. The responsibilities of this layer is to monitor the
nodes adding and withdraw behavior in real-time, and the node searching
traverse in the data structure. The data changing and traverse of the data
structure based on Hash value are referenced since Kademlia. During the
node query process, the configuration will be automatic transmitted, the
node sends and receives the massage meanwhile update their routing table.
Because each query gets information from the K−B that closer to the target
node, this mechanism ensures the effect that every recursive operation can
reduce at least 1bit, as well as half of the distance. Because of using the index
mode divide the interval, for a network containing N nodes, at most inquiry
logN step, the target node can be accurately located.

Management-Layer of Remote Sensing Data. The data searching process
which is the most important function of P2P is realized in this layer. Node
makes the published file information store in certain position of Kademlia,
If each message has a 128− bit ID, information will be stored in the corre-
sponding nodes. Each piece of information contains three parameters:
< File Hash V alue, Publisher IP Address, Publisher Port > at least.
The publisher will store the information in the node whose ID equals file
hash value. For any node, it stored the information of the publishers who
publish the same file. The object in large-scale scene is stored as a number
of model files according to different LOD level. Model file contains the hash
values of textures, not only the file names. After downloading and parsing
the model file, a texture hash list will be got, and then searching the hash
list in the virtual network. While finding the file list, dividing this file as
blocks and then searching the hash value of every block, the result is stored
in the transmission list.
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Fig. 4. VR-GIS function on web Fig. 5. The Sea Surface Temper-
ature in WebVR-GIS

4.2 Seamless Integration of VR and GIS

Data sharing and function unification are the main goals of the integration of
VR and GIS. By abstracting VR data and GIS data uniformly and inheriting
their traits, the engine provides uniform external access interface and makes
nodes have their own render and access mode, so that unification and sharing
of VR and GIS data are achieved. As to the function unification, 3DGIS anal-
ysis functions are developed based on the uniform geospatial data. Combining
the data’s 3D traits, GIS analysis algorithm is applied in the 3D virtual scene,
includes: measurement of the point, lines, faces and volumes, flooding analysis,
muter-invisibility analysis, contour analysis, shadow analysis, path analysis, etc.
The top one in Figure 4 shows the result of measure an arch door distance. The
others in Figure 4 show 3D area measuring and sunshine analysis.

4.3 Multi-dimensional Data Support

The geometry data model is designed complied with the simple feature rules
of OGCOpenGIS. Map establish optional indexing mechanism either R − tree
or quad − tree. Each geometry regarding a data record is stored into the fea-
ture dataset with unique index. It is released for com, as a server-side real-time
vector data rendering engine, meanwhile provide web service interface for the
browser-side. The engine supports almost every format of vector and raster data
by integrating the FDO [1] of OSGEO and GDAL/OGR [2]. The fused data
can be published on the surface of 3D digital earth divided following the digital
earth data blocking mechanism. We use WebVRGIS to do verification. The Fig-
ure 5 shows the outcome of the fusion of spatial patterns of identified principal
precipitation modes with the global land vector data [6].
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Fig. 6. 2008 Qingdao Olympic Sailing Fig. 7. Shenzhen Coastal

5 Implementation and Application

The oriented city region simulation WebVRGIS engine is developed based on
OpenGL and C++, which integrates VR and GIS seamlessly and supports mas-
sive data. It was released in the forms: application and Com components. Based
on WebVRGIS engine, we have developed some applications. We have tested the
engine on a PC with a i3 M330 2.13GHz CPU, 8 GB, and an GeForce GT 330M
GPU (1GB) by using data of Shenzhen city which about 8G including 62sq.km.
DEM, DOM and model files exported from 3DS Max. The experiment can run
24fps averagely. Figure 6 and Figure 7 proves the applications, and the virtual
scene of 2008 Olympic regatta in Qingdao rendered in WebVRGIS is shown in
Figure 6, and the virtual Shenzhen seashore is shown in Figure 7.

6 Conclusion and Perspectives

WebVRGIS engine is developed, in which the integration of VR and GIS is
researched. In the engine, massive data shared by the two systems (VR&GIS) is
supported by the P2P virtual network. It can meet the requirements for virtual
city construction, GIS analysis. GIS data has several characteristics, ie. large
scale, diverse predictable and real-time, which falls in the range of definition of
Big Data defined by Intel Fellow Faye Briggs [4]. In 2008, Nature published a
special issue concerned with the subject of Big Data [3], which makes people focus
on the use of existed massive data (ie. analysis, visualization). The future work
will focus on the augmented reality extended application of WebVRGIS engine
and more intelligent process with considerable urban image search algorithm.
At the same time, we have plans to play full potential of P2P, combined with
the advantage of the cloud computing, provide the cooperating VR/AR roaming
function and GIS analysis for multi-users.

Acknowledgments. The authors are thankful to the National Natural Sci-
ence Fund of China(61070147), National Natural Science Fund for the Youth of
China(41301439) and Shenzhen Scientific & Research Development
Fund(JC201105190951A).



510 Z. Lv, S.U. Réhman, and G. Chen
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Abstract. In this paper, we use the artificial neural network for prediction of 
ionospheric perturbations by the analysis of the Instrument Plasma Analyzer 
(IAP) data using the Multilayer Perceptron (MLP) neural network. Data that are 
used as an input and output for the training of the MLP machine are: the He-
lium, Electron and Ions densities, Ions temperature, Ions speed and direction. 
The MLP machine is composed with an input layer, an output layer and a hid-
den layer. Application to the Demeter satellite data of orbit 27447-1 shows that 
the MLP neural network machine can give good results for plasma disturbances 
and can be used for prediction of seismo-ionospheric perturbations.  

Keywords: IAP, Demeter, MLP, disturbances, prediction. 

1 Introduction 

The artificial intelligence has becoming a very useful tool in plasma physics (Roz-
hansky    et al, 2013; Svensson et al, 1999).  In earth plasma the artificial intelligence 
is used for analysis of data recorded by satellite missions (Taylor et al, 2007). French 
DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake 
Regions) micro-satellite mission had been especially designed to provide global scale 
observations in the topside ionosphere over seismically active regions (Bankov et al, 
2010). In this paper, we used the Multilayer perceptron neural network for prediction 
of ionosphere plasma parameters recorded by the Instrument Plasma Analyze (IAP) 
installed on board of DEMETR mission; the goal is to predict future plasma parame-
ters which are:  Number of Hydrogen particles in the plasma (NH+), number of He-
lium (NHe+) and Oxygen particles (NO+), ions temperature (NI+), ions speed (VS 
and VZ), angles of ions arrival (VOX and VOZ).   

2 Instrument Plasma Analyzer (IAP)  

The IAP (Instrument Analyseur de Plasma) experiment installed on consists of two 
analyzers: APR (Analyseur à Potentiel Retardateur, Retarding Potential Analyzer) 
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performs the energy analysis of ram direction ions and ADV (Analyseur pour Direc-
tion de Vitesse, Velocity Direction Analyzer) determines the average angles of arrival 
of the ions. APR measurements allow determining the density, temperature and bulk 
energy of the ionospheric ions. IAP has 2 Survey modes of operation a medium ener-
gy resolution mode for APR providing a complete set of plasma parameters every ~ 
360 ms and a high energy resolution mode with a lower temporal resolution providing 
a complete set of measurements every 720 ms. Density fluctuations from ADV mea-
surements are available with a time resolution of 12.8 ms. There is also one Burst 
mode of operation featuring high energy and high temporal resolution with a com-
plete set of plasma parameters every ~ 360 ms. Density fluctuations are available with 
a time resolution of 6.4 ms. The objective of the IAP experiment is to characterize the 
state of the ionospheric plasma, in order to detect perturbations that may be associated 
with seismic activity and to provide the plasma parameters that are needed to analyze 
the data from the plasma wave instruments, ICE and IMSC. As a secondary objective, 
near real time ionospheric data can be provided for space weather purposes. 

3 The Multilayer Perceptron Neural Network 

Multilayer feed-forward networks form an important class of neural networks. Typi-
cally the network consists of a set of sensory units or input nodes, that constitute the 
input layer, one or more hidden layers of neurons or computation nodes, and an out-
put layer. Multi-layer Perceptron (MLP) neural networks with sufficiently many non-
linear units in a single hidden unit layer have been established as universal function 
approximators. For more details about the MLP, we invite readers to the papers of 
Ouadfeul and Aliouane  (2012, 2013).  

4 Data Analysis, Results and Conclusion 

A multilayer neural network machine with three layers is implanted; the input layer is 
composed with eight neurons that correspond to the eight IAP plasma parameters, a 
hidden layer of seven neurons (obtained by test) and an output layer of eight neurons 
that correspond also to the IAP plasma parameters. Data of orbit 27447-1 that sweep 
L’Aquila area two days before the main chock of 09 April 2009 are used for the train-
ing of the neural network machine. The first time series of 151 (see Fig. 01) samples 
is used as an input, however the second 151 samples are used as an output (see Fig. 
02). The implanted MLP machine is trained in a supervised learning and weights of 
connection are optimized. To check the efficiency of this neural machine the second 
time series is used as an input and an output is calculated by propagating  
the input via this machine, at this stage no training is needed since the weights of 
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connection are calculated in the first stage. Obtained results are compared with the 
actual recorded plasma parameters (see Fig. 3), one can observe that the MLP ma-
chine is able to provide an acceptable model of parameters, however at the end of 
each time series the artificial neural network machine start to lose the memory, by 
consequence the MLP neural network has not long term memory, so we need always 
to update the weights of connection to give exact results. We suggest application  
of the whole process to data of other orbit to generalize its efficiency and generalize  
a rule. 

 

 

 

Fig. 1. First 151 samples of IAP instrument parameters of DEMETER satellite used for the 
MLP training 

 
 
 

0

1000

2000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

NH Plus

0

200

400

600

800

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

NHe Plus

0

500

1000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

NO Plus



514 S.-A. Ouadfeul, L. Aliouane, and V. Tourtchine 

 

 

 

 

 

 

Fig. 1. (Continued.) 
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Fig. 2. Second 151 samples of IAP instrument used as an output for the MLP training 
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Fig. 2. (Continued.) 
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Fig. 3. Predicted IAP plasma parameters using the implanted MLP machine 
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Abstract. The cerebellar system is implicated in motor learning for
movement coordination. In this paper, we suggest a simplified cerebellar
model with priority-based delayed eligibility trace learning rule (S-CDE)
that enables a mobile agent to randomly navigate in an environment.
The depth information from a simulated laser sensor is encoded as neu-
ronal region activity for velocity and turn rate control. A priority-based
delayed eligibility trace learning rule is proposed to maximize the usage
of input signals for learning in synapses on Purkinje cell and cells in
the deep cerebellar nuclei. Asymmetric weighted sum and velocity signal
conversion algorithms are designed to facilitate training in an environ-
ment containing turns of varying curvatures. S-CDE is developed as a
brain-based device and tested on a simulated mobile agent which had to
randomly navigate maps of Singapore and Hong Kong expressways.

Keywords: Brain-based devices, cerebellum, priority-based delayed
eligibility trace learning rule, error signals, motor control.

1 Introduction

The study of the cerebellum in neuroscience, physiology, and neuroimaging has
resulted in several consistent findings that implicates the cerebellar system in
motor learning [1,2,3]. Error signal, the difference between reference and actual
movement coordinations, has been proposed to regulate learning in the cerebellar
system through synaptic eligibility traces [4]. The error signals are transmitted
from the inferior olive (IO) to cerebellar regions via climbing fibers [5,6].

Inspired by the above findings, McKinstry et al. [7] proposed a cerebellar-
based computational model with delayed eligibility trace learning rule (CDE)
that learns to predict corrective motor control actions based on the experiences
of reflex responses. CDE is developed as a brain-based device (BBD) [8], which is
a famous platform to construct a computational model of neuroscience by incor-
porating features of neuroanatomy and neurophysiology of vertebrates. Visual
input from a color camera is preprocessed in the middle temporal visual area
(MT). Important visual features are extracted and used to trigger associations
between visual cues and proper motor controls. They also suggested a delayed
eligibility trace rule to govern the plasticity of synapses onto Purkinje cell (PC)

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 520–527, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and deep cerebellar nuclei (DCN). This training rule is used to learn proper
motor responses, given certain visual cues, such that error signals are avoided.
The error signals are generated using input from infrared sensors, to govern the
learning in PC and DCN. A laser range finder is used to detect collisions and ini-
tiate collision avoidance behavior. The results demonstrated a smooth traversal
of curved paths, with each path comprised of nearly identical turn curvatures.

However, CDE suffers from several limitations. First, the complexity of CDE,
which consists of 28 neural areas, 27,688 neurons, about 1.6 million synaptic con-
nections, and three input modalities may limit its practicality in real machines.
Second, CDE is inept at effective motor learning in environments with varied
turn curvatures due to its limited utilization of synaptic inputs for learning.
Consequently, this leads to a predicted third limitation, that is the dependence
on error signals to support learned predictive motor control signals even after
training for decent traversal of environments with varied turn curvatures. Lastly,
there is a limit to the volatility of input stimuli, beyond which learning becomes
impaired. This limitation is caused by an insufficient eligibility trace decay rate
in the learning rule implemented in CDE.

With regard to the aforementioned limitations, we propose a simplified cere-
bellar model with priority-based delayed eligibility trace learning rule (S-CDE).
First, we utilize a simulated laser sensor to generate environmental depth infor-
mation. This is the only input modality, which dramatically reduces complexity
of the model since visual processing in CDE imposes extravagant complexity on
the system compared to its cerebellar portion. Second, a priority-based delayed
eligibility trace learning rule is suggested to maximize the usage of input signals
for synaptic learning on plastic connections to PC and DCN areas. This is done
by introducing a mechanism to prematurely re-trigger eligibility traces upon
encountering more salient synaptic inputs. Third, an increased eligibility trace
decay rate is used to allow for increased input volatility. The proposed model is
developed as a brain-based device and tested in a simulated mobile agent which
had to randomly and smoothly navigate maps of the Singapore(SG Map) and
Hong Kong(HK Map) expressways.

2 A Simplified Cerebellar Model for Motor Control

A simplified cerebellar model with priority-based delayed eligibility trace rule
(S-CDE) is proposed. Compared to CDE, three major modifications, including
a simplified system architecture, introduction of an eligibility trace re-triggering
mechanism, and an increased eligibility trace decay rate, have been made.

2.1 System Architecture

The system architecture of S-CDE is presented in Fig. 1. A single vector of input
from a laser sensor is the only sensory perception the S-CDE has of its environ-
ment. The laser streams are preprocessed, such that the sensory input is split
into four different streams, each in an appropriate semantic format for the sub-
region it is being fed into. This modification eliminates the need for extensive
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Fig. 1. System architecture of S-CDE which comprises of a sensory input layer, a pre-
processing layer, a cerebellar layer, and a motor output layer. Closed arrowheads denote
excitatory connections and circular endpoints denote inhibitory connections. Solid lines
denote non-plastic connections while dotted lines denote plastic connections. The initial
synaptic weights (c) are uniformly generated in between the maximum and minimum
values as indicated near to the projections. Other settings, including learning rate (h),
persistence (ω), and firing threshold (σ), are identical to the settings used in CDE [7].

processing of visual cues from a camera, thus, reducing the computational com-
plexity. In total, the S-CDE has eight neuronal regions, 800 neuronal units, and
40,600 synaptic connections. The derivation of error signals from the laser input
also eliminates the need for other input modalities. S-CDE can be divided into
a sensory input layer, a pre-processing layer, a cerebellar layer, and an output
motor layer. The cerebellar layer can be further divided into symmetrical Turn
and Velo regions for handling turn rate and velocity computations respectively.

Sensory input is preprocessed and fed to the PN-Turn and PN-Velo areas.
Error signals are derived from a subset of the sensory input and are subject to
similar pre-processing before being fed to IO (IO-Turn and IO-Velo). In the cere-
bellar layer, PN areas(PN-Turn and PN-Velo) are linked to PC (PC-Turn and
PC-Velo) and DCN (DCN-Turn and DCN-Velo) areas via plastic connections.
PC controls DCN via disinhibition through its inhibitory connections, which in
turn provide predictive control signals for turn rate and velocity to motor areas
(Motor-Turn and Motor-Velo). Error signals from IO govern motor learning in
the cerebellar regions (IO→PC and IO→DCN) and initially drive motor output
in early stages of training (IO→Motor-Turn and IO→Motor-Velo).

2.2 Neuronal Responses

Standard neuronal dynamics that are implemented in BBDs are employed in
S-CDE [8]. Synaptic connections can be either plastic or non-plastic and voltage-
dependent or voltage-independent. In S-CDE, only voltage independent connec-
tions are used as suggested in CDE [7]. Defining j as a parent node and i as a
child node, the voltage-independent connection from j to i is formulated as:

V Iij(t) = wijsj(t) (1)
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where wij is the synaptic weight between unit i and j, and sj is the activation
state of unit j. The activity of the neuronal areas are updated as:

si(t+ 1) = φ

⎛⎝tanh

⎛⎝ N∑
j=1

(V Iij(t)) + ωsi(t)

⎞⎠⎞⎠ , φ(x) =

{
0; if x < σi

x; otherwise
(2)

where N is the number of synapses onto unit i, ω is the persistence of unit
activity, and σi is the firing threshold of unit i.

2.3 Priority-Based Delayed Eligibility Trace Learning Rule

The synaptic strengths of the plastic connections are subject to change as follows:

Δwij(t+ 1) = αsi(t)× Pj(t)× si(t)× (IO(t) − 0.02) (3)

where α is a fixed learning rate, Pj(t) is the priority eligibility trace, si(t) is the
activity of unit i and IO(t) is the IO unit activity. The formulation of Pj(t) is

Pj(t+ 1) =

⎧⎨⎩0 if t < delay
sj(t− delay) if sj(t− delay) ≥ ε
0.6× Pj(t) otherwise

(4)

where sj is the activity of unit j, ε is an activity threshold and delay is the
number of cycles offset from the current simulation cycle.

The delayed eligibility trace learning rule is used to determine the eligibility
of a synapse for plasticity and if so, the amount of synaptic weight change re-
quired. The original delayed eligibility trace learning rule employed by the CDE
suffers from three limitations. First, it is inept at effective motor learning in en-
vironments with varied turn curvatures. This is because once an eligibility trace
over a synapse is triggered, subsequent input over that synapse is ignored for
some time. Any important inputs arriving during this window is neglected, thus
impairing the learning process. Second, due to the impaired learning process,
the effectiveness of learned predictive motor control is limited. This would pre-
dictably create a dependence on error signals to supplement predictive motor
control signals for decent traversal of such environments. Third, there is a limit
to the volatility of input stimuli, beyond which learning becomes impaired. This
volatility is inversely proportional to the distance between turns in a path. The
input volatility limit is determined by the onset of consecutive eligibility traces
during traversal of a rapid series of turns.

To overcome these limitations, a prioritized-learning concept is integrated into
the learning rule. Instead of ignoring all inputs, an eligibility trace can be re-
triggered if subsequent synaptic input is greater than that which triggered the
initial eligibility trace. By doing so, salient inputs always have the priority for
learning. Additionally, the eligibility trace decay rate has been increased from
0.9 to 0.6 to allow for a higher input volatility limit. The combined effect of the
re-triggering mechanism and a higher eligibility trace decay rate is more effec-
tive predictive motor control and a higher input volatility limit, which increases
learning accuracy and effectiveness when traversing relatively difficult paths.
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2.4 Motor Output

Turn Rate Computation. Turn rate(◦/cycle) is updated every cycle as a func-
tion of activity in the Motor-Turn area. Activity in the area is interpreted using
population vector decoding. Each neuronal unit in Motor-Turn has a preferred
turn-rate magnitude and direction. For explanatory purposes, neuronal units in
Motor-Turn are indexed as t1 to t100. Units t1 to t50 have a rightward preference
of direction, and the preferred turn-rate magnitude of each unit grows linearly
with its index. Units t51 to t100 have a leftward preference of direction, and the
preferred turn-rate magnitude of each unit shrinks linearly as its index increases.
To convert the activity in Motor-Turn to a specific turn rate, a combination of
symmetric difference and population vector decoding techniques are used, ex-
pressed in equation 5(left). The resulting vector is the nett asymmetric activity
in Motor-Turn, indexed as a1 to a50, where preferred turn-rate magnitude grows
with the index, negative values indicate a leftward contribution, and positive
values indicate a rightward contribution. The turn rate is calculated as shown
in equation 5(right), where n is the size of ã and γ is a constant defining the
maximum turn rate.

ã =

⎡⎢⎣ a1
...

a50

⎤⎥⎦ =

⎡⎢⎣ t1
...
t50

⎤⎥⎦ −
⎡⎢⎣t100...
t51

⎤⎥⎦ ; TurnRate =

n∑
i=1

{
i× γ

100
(ai)

}
(5)

Velocity Computation. Velocity(pixels/cycle) is updated every cycle as a
function of activity in the Motor-Velo area. Activity in the area is interpreted
using population vector decoding. For explanatory purposes, neuronal units in
Motor-Velo are indexed as v1 to v100, and each has a preferred amount of braking,
the magnitude of which grows linearly with its index. The conversion of activity
in Motor-Velo to a specific velocity value is expressed in the equations below.

V elocity =

⎧⎪⎨⎪⎩Vmax if

n∑
i=1

vi = 0

‖Vmax − β(Vmax − 1)‖ otherwise

; β =

n∑
i=1

(i × vi)

100

n∑
j=1

vj

(6)

where β is a braking coefficient, a parameter that controls the amount of braking
used by the agent ranging from 0 to 1, n is the size of Motor-Velo, vi is the i

th unit
of Motor-Velo, and Vmax is a constant defining the maximum velocity. Through
this formulation, a minimum velocity of 1 pixel/cycle is imposed.

Agent Behavior. The simulated mobile agent is given an innate behavior
to move forward at a maximum speed of 6 pixels/cycle. If a collision occurs,
the agent rotates in place until it is able to continue moving from its collision
coordinate.
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3 Results

S-CDE is developed as a brain-based model and tested in a simulated mobile
agent which has to randomly and smoothly navigate SGMap and HKMap shown
in Fig. 2 (a-b). Note that this simulation does not take into account physical laws
such as inertia. The simulated agent is equipped with a single laser sensor and
its motor capabilities are defined in terms of turn rate (◦/cycle) and velocity
(pixels/cycle). The simulation was executed in MATLAB on a MacBook Pro
computer with a 2.66 GHz processor. One simulation cycle takes ∼25 ms.

First, experiments were conducted using SG Map to calibrate the length of the
delay used in the S-CDE agent. The delays tested were 0, 3, 5 and 8 cycles. The
delay resulting in the lowest motor error after 7000 simulation cycles of traversing
SG Map is the calibrated delay value. Motor error for each cycle is quantified by
taking the ratio of the strength of the error signal generated in the preprocessing
layer to the maximum possible strength of the error signal. As a control for
the experiments, a simulated agent using a reflexive motor controller was also
included, which was purely driven by error signals from IO and had no predictive
capabilities. This was achieved by lesioning its DCN →Motor connections. The
experiments were repeated to calibrate the delay for the CDE agent, using delay
values of 2, 3 and 5. The calibration of S-CDE and CDE also served as the
training phase. Fig. 2 (c-d) shows a sample of S-CDE region activity during
training. Following that, training effectiveness was ascertained by lesioning all
connections originating from IO (IO → PC, IO → DCN, IO → Motor) in
both agents. Again, a reflexive agent was used as a control. Both SG Map and
HK Map were used to evaluate training effectiveness in familiar and unfamiliar
environments respectively.

Motor error output during delay calibration for both S-CDE and CDE are
shown in Fig. 3 (a-b). Calibrated delays for S-CDE and CDE were determined
to be 5 and 2 cycles respectively. S-CDE achieved a lower motor error rate
than CDE. CDE ignores subsequent input for some time once input surpasses a
threshold. If a long delay is used, CDE would only learn based on the initiation
of a turn and block input arising from traversing the rest of the turn. A short

(a)

 

(b) (c) (d)

Fig. 2. (a) SG Map has a narrow average path width of 40 pixels. (b) HK map is
about three times larger, and has wide average path width of 60 pixels. (c) Activity
in turn-related regions during training. (d) Activity in velocity-related regions during
training.
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Fig. 3. Motor error during delay calibration of (a) S-CDE and (b) CDE. Motor error
during training effectiveness assessment of S-CDE and CDE in (c) familiar (SG Map)
and (d) unfamiliar (HK Map) environments.

enough delay would enable CDE to learn based on input from several points
during the turn. However, using such a short delay severely limits the predictive
capability of CDE, making it prone to higher motor error rates. S-CDE is able
to base its learning on input received throughout a turn due to its re-triggering
mechanism, thus resulting in lower motor error rates.

As shown in Fig. 3 (c-d), during training effectiveness evaluation, S-CDE suc-
cessfully demonstrated effective predictive motor control while traversing both
SGMap and HKMap despite only having prior exposure to one. CDE fails to tra-
verse either environment satisfactorily. Due to the limited predictive capability
previously mentioned, predictive motor control signals for sharp turns were gen-
erated too late to avoid impending collisions. The change in motor error rates for
CDE between delay calibration and training effectiveness evaluation corroborate
with the initial prediction of CDE’s dependence on error signals after training
for traversal of environments with varied turn curvatures. The performance of
S-CDE in both maps during training effectiveness evaluation was comparable to
that achieved at the end of delay calibration, which strongly suggests effective
retention of learned predictive responses, and demonstrates its robustness in an
unfamiliar environment.

4 Conclusion

In this paper, a simplified cerebellar model for predictive motor control has been
presented. It has a simplified neural architecture due to the reduction of input
modalities. It has demonstrated effective motor learning in environments with
varied turn curvatures because of the introduction of the priority-based delayed
eligibility trace learning rule. It is also robust while traversing new environments.
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Abstract. The cognition-based human intelligence, that is driven by emotion 
and feeling will definitely change the robot learning, memory, attention and 
decision making mechanism. The aim of paper is to give in depth investigation 
on how the robot learning based on emotion and feeling will give a new 
dimension to its performance. It means that self-learning is not just dependent 
upon a logical brain and proper embodiment; rather a feedback in terms of 
emotion and feeling based on experience is required for self-learning. It is the 
feedback in the form of feeling and emotion that plays a vital role in a complete 
self-learning process and this makes the robot more human. 

Keywords: emotion, intelligence, service robot, dynamical system, feeling of 
pain, mobile-robot. 

1 Introduction 

“Learning” is a beautiful word, but it's hard to implement into robots. Contextual 
decision-making is required in a dynamical environment when we are asked to take 
care of everything around the house. At home, everything is drastically changing 
including rules which family members had just shared it yesterday. The change of 
rules is sometime non-logical and may occur depending on emotional fluctuations in 
mum’s policy, or dad’s whims. Classifications of assumptions, parameters and 
variables are necessary to form a learning paradigm and provide its implementation 
method into engineering systems. In cognitive science and psychology, child’s 
cognitive development has been studied from observations of child’s behavior and 
acquisitions of various skills. Jean Piaget [1] focused on the transitions of learning 
schemes during the developmental process and noticed an organized pattern of 
thought and behavior, called “schema.” On the other hand, what factors exist in 
child’s mind subjectively, as well-established knowledge or ill-defined borders, 
remains unsolved. This is the gap between objective and subjective representations. 
Science basically needs repeatability, objectivity and quantitative assessment. 
Repeatability is the base to confirm whether it is true or not by reproduction of the 
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same phenomenon under equivalent conditions. Objectivity is a need to be observed 
by anyone. Finally we have to take into account various factors based on quantitative 
comparisons. Everyday events are not countable, but we treat it in a form of countable 
factors for implementation into robot’s intelligence. Ontology, epistemology and 
axiology are the philosophical trinity. From the ontological argument, the perfect 
circle does not exist in the real world but it exists in our minds. Similarly any object is 
never be indentified by a combination of countable attributes happens in an 
epistemological sense. For example, once you define cup as a container with handle, 
and then the cup with a broken handle is never be recognized as a cup. Interestingly 
the dictionary describes that the definition of the cup is “a small open container 
usually used for drinking,” which highlights the purpose of its use for drinking. It is 
closely related to axiology, and it is asking why the cup exists, for what the cup is 
made of and for whom the cup exists for. This sense slightly exceeds the range of 
objective and logical thinking. The robot, an external observer without any desire, is 
unable to understand what it is for. It is difficult for the robot to determine its own 
behavior if it is not arisen from its significance of existence. The cup is meaningless if 
robots never use it for themselves. Thus, recognition of cups is the same as seeing 
wayside stones. This paper discusses epistemological aspects of our everyday events 
for robots. Especially to focus on what is the ideal and abstract internal representation 
that happens in the real environment (ontology), how to effectively recognize objects 
(epistemology), plus the values and risks of what has occurred and will occur 
(axiology).  

2 Definition of Intelligence 

Intelligence can be defined as “the capacity to acquire and apply knowledge by means 
of thought and reason,” which leaves many aspects we must be considered [2]. Hubert 
Dreyfus [3] noticed a limited capacity for understanding the meaning of sentences to 
represent a situation and conversation among kids by introducing the following 
sentence from a story of Eugene Charniak, who was a student of Marvin Minsky: 

Today was Jack's birthday. Penny and Janet went to the store. They were going to get 
presents. Janet decided to get a kite. “Don’t do that,” said Penny. “Jack has a kite. 
He will make you take it back.” 
 
Dreyfus noted that “the goal is to construct a theory that explains how the reader 
understands that “it” refers to the new kite, not the one Jack already owns.” i.e. Jack 
will make Janet take back the kite if Jack already owns a similar kite. Here we get 
into details about what its difficulty for algorithmic procedures, or robot, to 
understand the exact meaning, and consider it as propositions: 1) relationship between 
sentences for capturing the whole meaning contextually (sentences that are not in 
linear combinations), 2) emotional feeling and reactions of people who play their 
roles in the story (biological sense), 3) recursive procedure that is necessary to predict 
what will happen next (prospective information). On the first proposition, we can take 
a look at the performance in the current technology from a popular online translation 
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website, and an example of the translation result to Japanese and the reversal 
translation back to English (English → Japanese → English) can be obtained as   

It was a birthday of Jack today. I went to the store and Janet penny. They were going 
to get the gift. Janet has decided to get the kite. “Please do not do it,” Penny said. 
“Jack, you have a kite. He will make you get it back.” 
 
How do we evaluate the above result? As shown in Table 1, the translated sentences 
were reproduced in a similar manner. If you calculate a ratio between numbers of 
correct (C) and semi-correct (C’) sentences and wrong sentences (W) and the 
correctness can be evaluated as a quantitative value such as approximately 86% (=6/7 
sentences). However we humans feel a sense of confusion to read the second sentence 
“I went to the store.” Who am “I”? Is it a reader as an external observer? Or, is it 
someone in the story except Penny, Janet and Jack? This false step of the translation 
may mislead the reader to understand the whole meaning of the sentences because of 
a confusion of the word “it” indicates. This result indicates that the machine 
translation does not bridge between sentences appropriately in a sense of contextual 
implication. This is the point of proposition 1, which suggests that a one-by-one 
independent translation tends to ignore contextual interpretations. Probabilistic 
language models and Bayesian probability models based on conditional probabilities 
known as P(A | B)  become increasingly precise if the condition B  includes all the 
past events and P(A | B)  is obtained from large data sets. The difficulty comes from 
the trade-off between two factors, because the more consideration of a long past 
history the more the event becomes “rare.” Therefore, some other common principle 
is necessary to be considered for concatenating fragments of sentences into 
continuous meanings.  

Table 1. Comparison between original sentences and machine translations 

# Original Machine Translation by E→J→E c/w 
1 Today was Jack’s birthday. It was a birthday of Jack today. C 
2 Penny and Janet went to the store. I went to the store and Janet penny. W 
3 They were going to get presents. They were going to get the gift. C 
4 Janet decided to get a kite. Janet has decided to get the kite. C 
5 “Don’t do that,” said Penny. “Please do not do it,” Penny said. C 
6 Jack has a kite. Jack, you have a kite. C’ 
7 He will make you take it back. He will make you get it back. C’ 

 
On the second proposition, emotional sense is the most difficult part for robots to 

implement because it is impossible to substitute for logical reasoning. Emotion is one 
aspect of intelligence, which is an expression of accumulated internal senses and 
feedbacks influenced in a particular environment attention, past memory, leaning of 
common sense and then it affects decision making in some cases (R. J. Dolan, et al. 
Science 298, 1191 (2002)). Cognition of emotion is a type of meta-cognition that 
includes the subjective knowledge of emotional state and emotional processes 
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(Markku S. Hannula, University of Turku). Going back to the Charniak’s story, the 
point is observed in the reason why “Jack will make you take it back,” and we can 
estimate the reason naturally as Jack already owns a similar kite. Why? If the kite was 
cookies and cakes, the story would be different and Jack may want them even though 
he already has. If Jack’s hobby is a collection of baseball cards, he desires cards even 
more. In this case, we can imagine that Jack will be disappointed when he sees the 
kite, he will be more happy to have a gift of another toy. Penny and Janet are excited 
to plan a birthday surprise gift for him. Disappointment, happiness and exciting are 
emotional reactions, which are never felt by robots with reality. If there is a possible 
way to interpret people’s emotional feelings and reactions, robots become more 
intelligent to extend the solvable range of various tasks [4]. However, the emotion 
involves personal and subjective experiences, social behaviors and cognitive senses 
shared against human [4]. The emotion involves motive, desire, intention, belief, 
perception and sensations [5]. How do we can implement those things into robots? 
Some approaches of emotional evaluation to implement agent-based systems have 
been explored in a hierarchical functional structure [6][7].  

Third proposition focuses on time, or prospective events. The last sentence “He 
will make you take it back” represents an estimation of future events as  

event t( ):   Janet gives Jack a present she brought in the store,  

event t +1( ): Jack recognizes the present as a kite and remembers his owns a kite, 

event t + 2( ): Jack asks Janet to go back to the shop for returning the kite.  

According to the dictionary, “take something back” means to return it to the place 
where it came from. The sentence may be interpreted with the meaning of Jack will 
return the kite back by himself if the description is “Jack will take it back,” but the 
sentence uses a causative verb, make, producing an effect, especially to indicate that 
Jack will force Janet to do something. Thus, with the above three propositions, future 
events are represented in a compressed form from this short sentence. Interestingly, 
this sentence gave additional information regarding the expectation from Jack,  

event t + 3( ): Janet returns the kite to the shop and gets another present instead of 

the kite. 
   

It offers a glimpse of Jack’s personality through a part of the sentence as “He will 
make you …” The reader guesses that Jack is a self-assured person, does not hesitate 
to express his own desire, and asks Janet to get another present.  

Indeed, automated approaches to reproduce the human ability on situation 
recognition is the hard problem because it need to deal appropriately and effectively 
with the following points. 1) by concatenating contextually fragments into a 
consistent form to provide the whole meaning (beyond linear combinations), 2) 
speculation or cognitive rehearsal of emotional feeling and reactions of persons 
participating in the story (a simulated biological sense), 3) recursive procedure to 
reconstruct future events as a prediction by focusing on a key person (prospective 
information and direction of the story), as discussed the above. The next section is 
getting into deeper into the emotional aspect of the brain and exploring a potential of 
brain-inspired design for its implementation. 
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3 Emotion, Feeling of Pain and Self-awareness 

Evaluation of an event or object with respect to “value” is substantially influenced by 
emotional judgment in a subconscious level [8][9][10]. Joseph Ledoux [11] takes into 
account an existence of animal’s emotion as well as what the human possess, which is 
in some cases exposed as conscious emotions by exceeding a threshold level of 
accumulated subconscious feelings [12]. In a review of the brain mechanism to 
maintain emotional judgment by focusing on the amygdala function, Ledoux [11] 
admits a plausibility of psychodynamics perspective by Sigmund Freud, a neurologist 
and psychoanalysist, who augured that the conscious level of our mind is similar to 
the tip of the iceberg which could be seen, while the unconscious level is hidden, or 
unaware and yet governs the conscious level. Similarly, there is a viewpoint that 
conscious emotions are close to immediate awareness and easily accessible, like a 
meta-cognition, and it continuously binds with subconscious feelings of body and 
sensations in a form of strap or winding staircase for making of consciousness [13].  

This implies that unless an artificial reproduction of chemosensory systems and 
integumentary sense organs we have, it is impossible to reconstruct the same 
consciousness into a robot. Once we focus on a functional part such as a meta-level 
cognition, a solution can be found in a flexible decision making like switching rules 
depending on the situational change [14]. Attentional control is also the key to 
consider in the engineering viewpoint. 

Assuming a practical situation for keeping safe from inattention at home 
environment, we start to consider “feeling of pain” to avoid a critical situation. 
According to a textbook for health and safety trainers [15] risk of injury gradually 
shifts with respect to characteristics of infant and child (Table 2). A possible way to 
obtain the same ability as humans is 1) to form the body as it is (organized 
biochemically like stem cells) or to acquire through 2) imitation (effective in motor 
skills), 3) observation and imagination (guess what happens based on physical laws) 
and by 4) instructions of emotional feelings via verbal communications (literature 
based; extension of imagination). It is difficult for robots to trace the child’s cognitive 
development completely (Asada) because the robot is not organized by the same 
ingredients as the child and to take time for training like twenty years.  

The above example of risks is depending on situations that the child is in now and 
the level of knowledge that the child has now. Fear and curiosity vary a great deal in 
the age. The feeling of pain and emotional reactions has a significant relationship with 
a process of prediction and decision to act (Fig.1). The person keeps on training his 
mind how to stand and walk in every attempt. It implies that a robot also needs to 
have feeling of pain neither an emotion, which can drive to memorize what happened 
and to predict what will happen. We simply consider that feelings and emotions is a 
core of the self-awareness as an alertness, which differs from reward and punishment. 
Implicit and procedural learning without conscious attentions can be done by reward 
and punishment, called reinforcement learning. Feelings are fundamentals for the 
existence of representation of ‘self’ [13] such as basis of self-protection, self-motivation, 
self-confidence, self-abhorrence, self-accusation, self-actualization, and so on. Another 
clue to consider the self-awareness as alertness is time property (Fig.2).  
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Table 2. Physical risks of injury at home according to established knowledge [14] 

Age Characteristics Risk of Injury Prevention Tips 
Birth to 
3 
months 

• Eat, sleeps, cries 
• Begins grasping and 

Rolling over 
unexpectedly 

• Needs support of head 
and neck 

• Falls from 
couches, tables, 
changing tables 
and bed 

• Burns from hot 
liquids  

• Never leave infants alone on 
beds, chairs or other high 
surfaces 

• Check water temperature in 
the bath 

• Keep small object and toys 
away 

4 to 6 
months 

• Sits with support  
• Plays with open hands 
• Put things in mouth 
• Curious about 

surroundings 
• Wants to test, touch 

and shake objects 

• Falls 
• Burns from hot 

liquids 
• Choking and 

suffocation 
 

(the same as above 3 tips) 

7 to 12 
months 

• Sits alone  
• Very curious about 

everything 
• Crawls 
• Starts to walk  
• Explores surroundings 
• Pulls things 
• Likes to go outside 
• Imitates movements of 

adults and others 

(the above 3 tips) 
+ 
• Drowning 
 

(the above 3 tips) + 
• Keep hot foods and liquids 

out of the reach of children 
• Put guards around radiators, 

hot pipes and other hot 
surfaces 

• Always carefully supervise; 
never leave alone near any 
water (tubs, toilets, buckets, 
and pool) 

 

 

Fig. 1. A situation to perceive an event to be dangerous. Firstly the person experienced something 
wrong and felt a pain. Secondly, the one concerns its repeatability because of the pain and think a 
causal relation on the event. If the one is aware that the act of walking is a cause of slipping, a 
future decision is in the naïve balance whether the one should walk or not, as a conflict. The one 
walks if the intension exceeds the level of the fear, knowledge specifies causes in more detail, 
recognition of a situational change by preparing for prevention of the event, and so on. 
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Fig. 2. Example of time courses of happening dangerous events. A sudden event (left), event 
with a risky time envelope (middle), event with alternative options whether it is risky or not 
(right). Those events have different temporal characters. 

4 Meta Level Cognition or Primordial Sense 

How do we can implement realistic feelings into robots? It should be beyond learning 
theories and paradigms, which are defined in a sense of acquisition of specific skills 
increasingly, because we were not born as a ‘tabula rasa’ [16]. Sympathy without 
action cannot be treated by behaviorism and input-output mapping systems. The 
‘emotional judgment’ is considered as unimportant rather than logical judgment in 
human cases but it is necessary to generate the sympathy and difficult to reduce a set 
of logical processes. Focusing on being biological systems, having fate of death and 
living in the unstable environment and unstable body, the concept of emotions can be 
extended into primitive self-consistent systems of information representation. We 
hypothesize that following three are included in the primitives and consider the 
possibility to describe them by a mathematical model of dynamical systems: 
 
Feeling of Pain. A sense of lose. Knowing about something that will be gone, or 
having an anticipation of lose. The simplest dynamics of internal value H p  is 

described as 

dH p

dt
= − f H p ,θ( )                            (1) 

where f  denotes a non-linear function to control the decrease rate with a limit of 
time, which is defined as the threshold θ  including external forces. 

Lack of Satisfaction. Filling actions. Filling something or someone in a hole or 
empty space. The simplest dynamics of internal value Hs  is described as 

dHs
dt

= g Hs , ′ θ ( )− ω                           (2) 

where g  denotes a control function with a threshold ′ θ  and ω  is a constant of 
abrasion. 
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Awe and Wonder. Decisions biased fear and curiosity. To inhibit the current motion 
when it detects something strange, or else, to enhance and trigger a motion when it 
finds something new and different. Those two factors are considered as exclusive 
each other. The simplest dynamics of decisions D according to a mapping of internal 
value A  is described as 

D A( )= Mapping A( ),
dA

dt
= F A,θF( )⊕ C A,θC( )                       (3) 

where F  and C  respectively denote functions on fear and curiosity with control 
parameters θF  and θC . 

5 Concluding Remarks 

In the present paper, we discussed how difficult a robot maintains home safety by 
monitoring and external observations even if verbal instructions are given, and then 
we noticed that the seriousness is staying on learning paradigms especially in input-
output mapping and statistical learning theories ignoring temporal changes. We 
suggested that a possible and effective implementation is found in modeling of 
internal and spontaneous processes according to time and values. Values are still 
difficult to treat because we go back to the same unsolved question if the designer 
embeds the values into the robot according to external observations. However the key 
is, once a value is defined according to the purpose of the robot, the temporal change 
of the value should be described as dynamical system with a limit of time, instability 
and ambivalent. Such a process is like filling water into a cup with a small hole in the 
bottom. Learning in robot is not isolated from a property of having a body, which is 
restricted kinetically and physically. In other words, the robot follows the physical 
law of time and space. Therefore, the embedded intelligence has a fate to conquer the 
dimension of space and time. This is a case study for assessments of service robots at 
home, sharing space and time with humans, particularly undeveloped children. If we 
build a robot with emotion in a form of dynamical systems [11] will perform more 
like human in terms of learning, memory, attention and decision making mechanism. 
A development of artificial mind will change the way of robots performance at places 
like home and office environment. 
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Abstract. This paper investigates a possible neurodynamic mechanism
that enables autonomous switching between two basic behavioral modes,
namely a “proactive mode” and a “reactive mode.” In the proactive
mode, actions are generated as intended, whereas in the reactive mode ac-
tions are generated in response to the sensory state. We conducted neuro-
robotics experiments to investigate how these two modes can develop and
how a robot can learn to switch autonomously between the two modes
as necessary by utilizing our recently developed dynamic neural network
model. Tasks designed for the robot included switching between proac-
tive imitation of other’s predictable movements using acquired memories
and reactive following of other’s unpredictable movements through it-
erative learning of alternating predictable and unpredictable movement
patterns. The experimental results revealed that this “meta-learning” ca-
pability can lead to self-organization of adequate contextual dynamical
structures that can perform autonomous switching between the different
behavioral modes.

Keywords: Recurrent neural network, humanoid robot, neurorobotics.

1 Introduction

Humans can behave either proactively or reactively depending on the situation
by autonomously switching between these two behavioral modes. Proactive be-
havior is generated with top-down intentions to achieve intended goals robustly
in predictable situations. Reactive behavior on the other hand is generated by
flexibly responding to sensory inputs in unpredictable situations. Although com-
petence for generating both types of behavior and for developing the ability to
switch autonomously between the two modes as necessary is believed to be es-
sential for both artificial agents and humans, the relevant mechanisms involved
in doing so have not been studied in depth [1].

Let us consider a case where a subject imitates new movements demonstrated
by a trainer in a synchronized manner. If the trainer tends to demonstrate com-
pletely unpredictable movement patterns, all the subject can do is simply follow
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the demonstrated patterns reactively. In such a situation, the subject cannot
perform prediction and there would be a delay between the movements demon-
strated by the trainer and those performed by the subject. However, if the trainer
demonstrates specific repeatable patterns mixed with unpredictable ones in a
continuously generated sequence, the subject might become able to imitate the
repeating parts proactively by acquiring the internal model of the trainer’s pre-
dictable movements and the prediction error might then be minimized during
this proactive part of imitating behavior. In fact, this observation has been con-
firmed in psychological experiments involving tracking tasks [2, 3].

In the context of proactive behavior learning for robots, Tani and colleagues
have shown that recurrent neural network (RNN)-based models can learn to
predict perceptual consequences of actions in navigation problems [4] as well as
predict perceptual sequences for sets of intended actions in object manipulation
tasks [5,6]. RNN-based models, however, can face a problem associated with the
deterministic nature of the prediction. RNNs as deterministic dynamical systems
cannot learn to extract stochastic properties hidden in non-deterministic or noisy
temporal sequences, and even if RNNs are forced to learn such sequences, the
learning processes tends to become corrupted with the accumulation of errors.

To address this problem, Namikawa and colleagues recently proposed a novel
continuous-time RNN (CTRNN) model referred to as stochastic CTRNN (S-
CTRNN) model that can learn to predict not only the mean of the next per-
ceptual state, but also the predictability of the state itself in terms of prediction
error variance [7, 8].

In the present study, the authors speculate that the S-CTRNNmodel can solve
the aforementioned essential problem concerning autonomous switching between
intention-based proactive behavior and perception-guided reactive behavior. We
conducted neurorobotics experiments to examine whether the model could be
applied to this problem. Based on an analysis of the experimental results, this
paper proposes a possible mechanism of learning both proactive and reactive
behavior as well as switching between these two different behavioral modes.

2 Neural Network Model

2.1 Forward Dynamics

The internal state of the i-th neuron at time step 1 ≤ t (ut,i) is updated in
accordance with

ut,i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
1− 1

τi

)
ut−1,i +

1

τi

⎛⎝∑
j∈II

wijxt,j +
∑
j∈IC

wijct−1,j + bi

⎞⎠ (i ∈ IC),∑
j∈IC

wijct,j + bi (i ∈ IO ∪ IV ),

(1)

where II , IC , IO, and IV are the neuron index sets, τi is the time constant of
the i-th neuron, wi,j is the weight of the connection from the j-th to the i-th
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neuron, ct,j is the activation value of the j-th context neuron at time step t, xt,j

is the j-th external input at time step t, and bi is the bias of the i-th neuron.
The respective activation values of context unit ct,i, output unit yt,i, and

variance unit vt,i are calculated as follows:

ct,i = tanh(ut,i) (i ∈ IC), (2)

yt,i = tanh(ut,i) (i ∈ IO), (3)

vt,i = exp(ut,i) (i ∈ IV ). (4)

2.2 Training Method

The network is trained through maximum likelihood estimation by utilizing the
gradient descent method [9].

Here, the learnable parameters of the network, including the weight of the
connection, the bias, and the initial internal state are denoted by θ. Let X =
(xt)

T
t=1 be an input sequence, where T is the length of the sequence. In this case,

the probability density function of training data ŷt,i is defined as

p(ŷt,i | X, θ) =
1√
2πvt,i

exp

(
− (yt,i − ŷt,i)

2

2vt,i

)
, (5)

where yt,i and vt,i are the outputs generated by the network and ŷt,i is the
training data. This equation is derived with the assumption that the observable
data sequence is embedded into additive Gaussian noise.

The likelihood function Lout parameterized by θ, is denoted by

Lout =
T∏

t=1

∏
i∈IO

p(ŷt,i | X, θ). (6)

The network generates a prediction of the prediction error in the form of
a variance vt,i. The network can avoid unstable learning sequences since the
variance functions as an inverse weighting factor for the mean square error (yt,i−
ŷt,i)

2. More specifically, the effect of the prediction error is reduced when the
variance is large (as the error is divided by the variance), whereas the effect
is increased when the variance is small. Therefore, the amount of error back-
propagation can be autonomously reduced in the case of learning unpredictable
parts of temporal sequences. This relaxes the predictive learning of sequences
consisting of predictable and unpredictable parts.

The training method involves choosing the most appropriate value for the
parameter θ by maximizing the likelihood Lout. More precisely, we used the
gradient descent method with a momentum term as the training procedure.

3 Robot Experiments

3.1 Experiment Environment

A small humanoid robot “NAO” was used in robot experiments. The robot was
seated on the floor and a display was placed in front of it. The task for the robot
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was to imitate the movement of a colored target circle shown on the display
by moving its right arm. In the experiments, the target circle was assumed to
correspond to the tip of the trainer’s hand. The display presented a continuous
spatiotemporal sequence of the moving target consisting of alternating “pre-
dictable” and “unpredictable” parts, which are presented as a state transition
graph as in Fig. 1(a).

The test in this case was designed to examine whether the robot could adapt
to both phases and to switch autonomously between proactive imitation (based
on top-down prediction for predictable patterns) and reactive following (by sim-
ply tracking unpredictable patterns) as a result of iterative learning. We com-
pared two types of situations depending on whether an explicit cue indicating
the current mode of demonstrated patterns was present or absent. Since in the
absence of the cue the network was expected to develop self-organized functions
for detecting the current mode, the task necessarily became more difficult. In the
experiments, the explicit cue indicating a transition between predictable and un-
predictable movements was a change in the color of the target circle. Specifically,
the circle was red when the movements were predictable and blue otherwise.

The joint angles of the robot’s head were controlled to fixate automatically on
the center of the target circle. Therefore, the direction of the head was treated as
“vision” in these experiments. For this reason, only the joint angles of the head
and the right arm were used during the imitation process, and the remaining
angels were fixed.

Figure 1(b) shows an overview of the constructed system. The S-CTRNN
model was used as a forward model in controlling the robot. Input to the network
was provided as actual vision ŝt, and the outputs were in the form of predicted

visuo-proprioception st+1 and pt+1 and the corresponding variances v
(s)
t+1 and

v
(p)
t+1. The predicted proprioception pt+1 was sent to the robot in the form of
target joint angles, which acted as motor commands for the robot in generating
movements. In performing the imitation task with a cue presented, the hue ĥt

was used as the explicit cue.

Robot & Environment

Target Joint Angle

Sensory Feedback

Context State

Input Cue
S-CTRNN  

(Forward Model)

Output Variance

Actual Vision Sense

(Target Direction)

Color Hue

(Used in Imitation-with-a-Cue)

Predicted

Vision Sense

Predicted

Proprioception

Predictable Unpredictable

Continue for 

50 to150 time steps.

Repeat the same 

pattern 3 times.

(b)(a)

Fig. 1. (a) Task for the robot experiments. The color of the moving target circle was
changed from red (predictable) to blue (unpredictable) in the case where the imitation
task was performed with a cue. (b) System overview.
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3.2 Obtaining Training Sequences

In order to obtain training sequences, the robot was manually controlled before
the training phase. In the same environment as that used in the action generation
test, a colored target circle shown on a display was moved in a pattern that the
robot was expected to imitate.

The angles defining the orientation of the robot’s head (yaw and pitch) were
controlled to fixate automatically on the target circle. Furthermore, the angles
of the right arm (shoulder pitch, shoulder roll, and elbow roll) were controlled to
imitate the target circle by means of inverse kinematics by utilizing the changes
in the head angles. While the robot was moving, the joint angles of its head and
right arm were recorded as vision and proprioception, respectively.

For the imitation task performed with a cue, the horizontal and vertical ele-
ments of the hue, which represent the hue angle, were used. On the other hand,
for the imitation task without a cue, we eliminated the hue elements from the
training data used in the imitation task with a cue.

4 Results

We trained the S-CTRNN for each task, where the number of context neurons
was M = 30 and the time constant was τ = 10. We trained each network for
1,000,000 training steps. We used 20 training sequences, each of which consisted
of two parts – one predictable pattern and two unpredictable parts – which
alternated with each other.

Here, we define “appropriate actions” for the imitation task as actions as-
sociated with a small prediction error. In the case of predictable patterns, by
behaving proactively (i.e, by using its internal model for predictable environ-
ments), the robot successfully minimized the prediction error to almost zero.
On the other hand, in the case of unpredictable patterns, the prediction error
was not minimized to zero since an internal model had not been acquired for
it. Nevertheless, the prediction error was reduced to some extent by reactively
following the target’s movements.

4.1 Imitation with a Cue

The robot was able to imitate or generate appropriate actions and to switch be-
tween the proactive and reactive behavior. Figure 2(a) presents the actual vision,
predicted visuo-proprioception, variance sequences, and neural states generated
by the trained network. In Fig. 2(a), we can see the correlations between the re-
gions of increase and decrease in the values of the hue and those of the predicted
variances.

4.2 Imitation without a Cue

Figure 2(b) illustrates the time series generated by the trained network. In this
experiment, training was carried out under the same conditions except that the
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hue was not included. For this reason, the robot was forced to focus its attention
on the movement pattern of the target circle.

In Fig. 2(b), we can see the increase and decrease in the variances correspond-
ing to the transitions between predictable and unpredictable parts. We can also
see that there is a time delay when the variance decreases during the transition
from an unpredictable to a predictable part. In contrast, when the transition is
from a predictable to an unpredictable part, there is no time delay.
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Fig. 2. Time series generated by the trained S-CTRNN and prediction error associated
with vision. These are examples of imitation with a cue (a) and imitation without a
cue (b).

5 Analysis

We constructed a phase plot based on a principal component analysis (PCA) en-
compassing all context neurons. Figure 3(a) illustrates the changes in context ac-
tivation for the experiment with a cue, where the dimensionality was reduced from
30 to 3. In this figure, the predictable part is represented by a red line and the un-
predictable part is represented by a blue line in accordance with the target color.
Shifts in the context activation trajectories between the two modes can be seen in
the plot. The trajectory on the left side in the phase plot converges toward a limit-
cycle attractor in the proactive mode, whereas the trajectory is perturbed on the
right side in the reactive mode as a result of receiving fluctuating visual sequence
patterns.
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Figure 3(b) illustrates the changes in context activation for the experiment
without a cue. Although there is not an explicit cue, which indicates current
mode of the demonstrated patterns, the context activation similar to the case
with a cue can be seen in the plot.
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Fig. 3. (a) Changes in context activation in the experiment with a cue. The dimension-
ality in this case was reduced from 30 to 3 by PCA. The predictable part is represented
by a red line and the unpredictable part is represented by a blue line. (b) Changes in
context activation in the experiment without a cue.

Both with and without an explicit cue indicating a transition between pre-
dictable and unpredictable parts, we confirmed that context dynamics plays a
role in switching between the proactive and reactive modes.

6 Summary and Conclusions

This paper presented neurorobotics experiments designed to investigate how
proactive and reactive behavioral modes can be developed and how they can be
switched autonomously as the situation demands.

The experimental tasks were designed to train a humanoid robot to switch
between two behavior, namely proactively imitating other’s movements by utiliz-
ing acquired memories and reactively following other’s unpredictable movements
through iterative learning of such alternating behavioral patterns. We conducted
two experiments (with/without a cue case), and the S-CTRNN model was uti-
lized in the experiments. In both experiments, the robot was able to generate
both a proactive behavior for the predictable part and a reactive behavior for
the unpredictable part, as well as to switch autonomously between the two.
Phase space analysis of the context state confirmed that the switching mech-
anism emerged from self-organization in the context dynamics through “meta-
learning” of prediction of the predictability itself.
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Abstract. In the last 25 years many works in literature about the capability to 
detect or predict the occurrence of epileptic seizures, starting from the 
electroencephalogram (EEG) signal analysis, have often hypothesized that the 
epileptogenic activity is the result of an abnormal electrical activity hyper-
synchronization of different points in an epileptic brain. We already proposed 
our method to integrate Neural Networks (NN) and the largest Lyapunov 
exponent (Lmax) for capturing brain dynamics through long stereo-EEG 
(sEEG) data recorded. In this paper we want to compare the use of a classical 
Evolving Spiking NN (ESNN) on long sEEG recordings with the integrated 
method previously proposed. Results are interesting and encourage us to 
develop, in the next future, a framework for EEG signal analysis. 

Keywords: Largest Lyapunov Exponent, Rosenstein Algorithm, Spiking 
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1 Introduction 

Epilepsy is thought as a combination of processes generated by a an abnormal 
electroencephalographic  hyper-synchronization  of different brain areas. It is well 
known nowdays, following this literature, that -ictal is the phase during seizure, post-
ictal refers to the state after the event, inter-ictal is the state between a post-ictal state 
and the next pre-ictal one [1]. Observing EEG, brain activity in the ictal state (during 
a seizure) is very different from the normal activity with respect to pattern of neuronal 
firing, thus, detection of seizures can be challenging even from a visual inspection  
of the EEG by a valued trained neurologist for a variety of reasons. Prediction of 
seizures is even more challenging because there is very little confirmed knowledge of 
the exact mechanism responsible for the seizure, nevertheless a lot of works has been 
published about in the last 25 years. Effective computational techniques for automatic 
seizure detection and prediction could be very useful as decision support systems and 
have a great impact on diagnosis and treatment of epilepsy, also with outstanding 
economic fallout. With this view a lot of literature has been published on seizure 
detection and predictability, and seizure prediction times from minutes to hours have 
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been reported with certain measures derived from the theory of dynamical systems, 
capable of extracting information from the EEG, allowing the detection of a preictal 
state. Starting from these studies, and considering the brain as a complex dynamical 
system, we can consider EEG recordings as its output, analysing it in order to find out 
something about the system itself. In this way we have already proposed [2] a 
calculation method for a well-known chaotic measurement, Lmax, over sEEG and 
talked about its suitability for seizure prediction, and we have proposed a novel 
framework based on integration of Lmax with an Evolving Spiking Neural Network 
(ESNN). Others [3] already analysed Spiking Neural Networks (SNN) models and 
proposed a new one improved on EEG data. Thus in this paper, our aim is to compare 
the use of an ESNN on EEG profiles and on their Lmax profiles. 

The paper is organized in this way: in section 2 a state of the art on Chaotic 
approach and SNN approach on EEG recordings is presented, in section 3 
methodology and data used for analysis, with theoretical explanation of chaotic and 
NN techniques used are exposed, in section 4 our new integrated methodology and 
experiments with results are reported, and finally in section 6 conclusions are inferred 
with future work scheduled.  

2 State of the Art Presented in Literature for the Two Single 
Methods 

2.1 Artificial Spiking Neural Networks for of Epileptic Seuizure Detection 

Several, but not many authors, proposed SNN architecture for analysing pattern in 
EEG recordings, in particular for capturing epileptic activity. The last work was 
proposed in [3] where a multi-spiking neural network (MuSpiNN) and a new training 
algorithm, called by authors Multi-SpikeProp, for training the network have been 
presented. In their works authors discussed about different SNN learning paradigms, 
but they tested the network and the training algorithm investigating complex different 
classification problems. Their conclusion was that SNNs demonstrate great potential 
for solving complicated time-dependent pattern recognition problems defined by time 
series thanks to their intrinsic dynamic representation. In fact previously the same 
authors presented an improved and efficient single-spiking SNN model and applied it 
for epilepsy and epileptic seizure detection, a complicated pattern recognition 
problem [4], here a SNN model for EEG classification and epilepsy and seizure 
detection using RProp as training algorithm was proposed providing a very high 
classification accuracy of 92.5%. Others authors [5] focuses, specifically, on models 
of spike-based information coding, synaptic plasticity and learning to yield survey 
real-life applications of spiking models. This work was meant to be an introduction to 
spiking neural networks for scientists from various disciplines interested in spike-
based neural processing, and Epilepsy was presented as an application, but not 
unique. On the other hand, despite the promise of improved performances, SNN 
research is still in its early stages, and a lot of research paper has been presented in 
literature about [6][7], also as new paradigms [8], but the most relevant paper on its 
suitability on the epilepsy problem remain [3]. In this sense, can be interesting 
analysing SNNs approach on EEG recordings or on their processing methodology. 
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2.2 Largest Lyapunov Exponenent - Lmax 

In this section we will provide a short state of the art about Lmax to seizure 
prediction. For an overview of the literature on seizure prediction see [1][9].With the 
advent of the physical–mathematical theory of non-linear systems in the 1980s, novel 
approaches were introduced that were aimed at a better characterization of dynamical 
systems exhibiting complex behaviour than hitherto possible with conventional linear 
approaches. Soon time series analysts became aware of seizure prediction as a 
potential field of application. In the early 1990s, Iasemidis et al. [10] estimated Lmax  
as an indicator for chaotic behaviour from the intracranial EEG (IEEG) of epileptic 
patients by means of a moving window analysis and reported a decrease in chaoticity 
in the minutes before an epileptic seizure. During the 1990s and around the turn of the 
millennium, a number of studies were highly optimistic about seizure prediction 
becoming feasible for clinical application in the near future. However, starting from  
2003, a number of studies were published (most of them carried out on extensive 
databases), questioning both the validity and reliability of these findings, showing that 
earlier optimistic results could not be reproduced. All studies on this topic have been 
reproduced with not good results and with many criticisms, between them, also the 
suitability of Lmax [10][11] for seizure prediction has been doubted by Lai et al. 
[12][13] that raised doubts about. In 2008, Iasemidis’ group member published a 
paper [14] were problems pointed out are in part acknowledged and approached, 
theoretical problems discussed by Lai remains, as previously showed, but also 
incredible results published with use of Lmax in following years [15]. 

3 Methodology 

3.1 ANN Paradigm - ESNN 

SNN represent information as trains of spikes, rather than as single scalars, thus 
allowing the use of such features as frequency, phase, incremental accumulation of 
input signals, etc. Neuronal dynamics of a spiking neuron are based on the increase in 
the inner potential of a neuron (post synaptic potential, PSP), after every input spike 
arrival. When a PSP reaches a certain threshold, the neuron emits a spike at its output. 
In this application we will use the Spike Response Model (SRM) [16]. 

ESNN evolve/develop their structure and functionality in an incremental way from 
incoming data based on the following principles [17]: (i) New spiking neurons are 
created to accommodate new data, e.g. new patterns belonging to a class or new 
output classes, (ii) Spiking neurons are merged if they represent the same concept 
(class) and have similar connection weights (defined by a threshold of similarity). In 
[16] an ESNN architecture is proposed where the change in a synaptic weight is 
achieved through a simple spike time dependent plasticity (STDP) learning rule: 

 Δ w j, i = mod order( j) (1) 

where: wj,i is the weight between neuron j and neuron i, mod ∈ (0,1) is the modulation 
factor, order(j) is the order of arrival of a spike produced by neuron j to neuron i.  
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For each training sample, it is the winner-takes-all approach used, where only the 
neuron that has the highest PSP value has its weights updated. The postsynaptic 
threshold (PSPTh) of a neuron is calculated as a proportion c ∈ [0, 1] of the maximum 
postsynaptic potential, max(PSP), generated with the propagation of the training 
sample into the updated weights, such that: 

 PSPTh = c max(PSP)  (2) 

Creating and merging neurons based on localised incoming information and on 
system’s performance are main operations of the ESNN architecture that make it 
continuously evolvable. 

3.2 Calculation of Lmax 

The exponential divergence or convergence of nearby trajectories in state space is 
conceptually the most basic indicator of deterministic chaos and can be sufficiently 
estimated using Lmax. The first proposed algorithm (used by Iasemidis’ groups) to 
compute Lmax from a time series suffers from severe drawbacks that occur 
particularly with short and noisy time series, strongly depends on parameters used for 
the state space reconstruction, and is computationally highly expensive [18]. In order 
to avoid these shortcomings we here use a combination of improved algorithms [2],  
[19] according to which the Lmax can be estimated from: 

 dj (i)  Cj 
eLmax i

 
t (3) 

where dj(i) denotes the average divergence between two trajectory segments at time ti, 
Cj with j = 1, …, M is a constant that is given by the initial separation of a reference 
vector zj in state space and its nearest neighbour. In order to improve statistics we 
follow Kantz [20] and search for all neighbours starting within a hypersphere of 
radius 3 around zj using a box-assisted algorithm[20]. Based on the relation 

 ln dj (i)  Cj
  +   Lmax · i · ∆t (4) 

Lmax is then calculated using a least-squares fit to an average line defined by  y(i) = 

(1/ t)<ln dj(i)>, where <…>denotes the average over all values of j. In order to 
reduce the unwanted influence of temporal correlations Rosenstein et al. [19] 
suggested to choose a Theiler window of a length given by the reciprocal of the mean 
frequency of the power spectrum. 

Criticism: Inability of Lmax Epileptic Seizure Prediction 
Lai et al. sustained in [12][13] that two major obstacles can fundamentally hinder the 
predictive power of Lmax computed from time series, in particular for seizure 
prediction: 1) statistical fluctuations of the Lyapunov exponents due to finite time 
computation; 2) noise from the time series. They showed that increasing the amount 
of data in a moving window will not improve the exponents' detective power for 
characteristic system changes, and that the presence of small noise can ruin 
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completely the predictive power of the exponents. In section 4 we will use a type of 
data that remove 2nd problem. However use of technique presented in section 3.2 
should make Lmax more robust to noise and to statistical fluctuations (1st problem). 
But, there is another limitation in the adaptive algorithm for selection of critical 
electrodes starting from Lmax profiles for each electrode developed by Iasemidis et 
al. Indeed this procedure implies that the spatiotemporal dynamics preceding a seizure 
do not change from seizure to seizure so that it would have been optimal for the 
seizure that has just occurred. Such a procedure is based on the implicit assumption 
that pre-ictal dynamics change to a certain degree from seizure to seizure, but the pre-
ictal dynamics of a seizure still depend on the dynamics of the previous one. This is a 
very strong constraint made on initial hypothesis of pre-ictal dynamics. This 
assumption could be a problem for individuating correct pattern in pre-ictal state, in 
particular for different patients and for different types of epilepsy. To eliminate it, 
making system of “evolving” type, could be the key for a right modelling, but, in this 
case, T-index would not be more a good indicator. 

3.3 An Evolving Dynamical Modelling Proposed 

Our idea is based on the hypothesis that the brain is an “complex evolving- 
dynamical- non linear- system”, and each dynamic that seems different from the 
previous one is a new pattern useful as a training step, generalizing the previous 
hypothesis, building a learning method continuously adaptable over time. For this aim 
we have used a suitable ESNN described above. Thus, first, we calculated, an Lmax 
profile  for each EEG channel, obtaining a multichannel profile considering this one 
as input of the ESNN for detecting a seizure (pre-ictal and ictal) pattern in the channel 
where there is an “anomalous” pattern. That channel is also considered a candidate for 
the epileptic focus individuation, but this is not the aim of this paper. In this way we 
have obtained a graph with Lmax (bit/s) as a compressed function portrayed in the 
state space, the new problem space! Now it is possible integrate this analysis with a 
NN approach for a good epileptic brain modelling, applying it not to EEG recordings 
time series (in time or frequency domain as used so far), but, for the first time in 
literature, to their portrait in the state space [2].  

4 Experimental Setup and Results 

4.1 Intracerebral Stereo-EEG Data - sEEG 

The main works about seizure prediction, present results obtained from IEEG, and 
only a few works presents results about scalp or sEEG. In this paper we have 
measured and quantified the spatio-temporal dynamics of the brains of two patients 
affected by drug resistant types of epilepsy, each monitored through intracerebral 
sEEG. These recording are different from classical IEEG for the position of the 
electrodes in the brain, indeed they are positioned inside the brain in 3 dimensions and 
not in the surface of the brain like classical IEEG. Doctors and Neurologists have 
implanted these electrodes in the brain after a preliminary analysis of long term scalp 
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EEG and clinical observations under functional Magnetic Resonance Imaging (fMRI) 
and in-depth study of the patient history, thus a surgical implantation of the electrodes 
and a magnetic resonance for analyzing a correct implantation of the electrodes are 
necessary, with this procedure it is possible to individuate the critical sides for 
recordings that can give us important information about the focus and the functioning 
of the brain analyzed. The surgeons after to have identified the cerebral area that are 
the cause of the epiletogenesis with a certain accuracy, remove these zone (the 
necessary minimum part). We will illustrate results about two patients (with 
pharmacoresistant focal epilepsy) that have solved their problems in this centre with 
this method, and we have analyzed their long term  sEEG recordings for giving  
confirmation of the focus removed and to analyze these brain activities. Patient A, has 
been recorded with sEEG for 32 hours, Patients 2 for 44 hours of continuous 
recordings. A Nihon Kohden® Software has been used only for analyzing and for 
converting the *.EEG files (a format property of Nihon Kohden®) in ASCII files. 
After we elaborated these data with a toolbox we had implemented in MATLAB®. 
Fig. 1.A and 1.B are respectively the 3D visual situation described above for electrode  
implantation in each patient. 

4.2 Framework Application 

We already presented our framework where Lmax profiles as compressed graphs of 
each channel are the input or a  suitable ESNN for capturing patterns that represents 
abnormal condition in the brain. But the principal difficulty represented from the 
brain is that it is an “evolving” system that changes over time and for each different 
person, and in a same person there are different pattern in a pre-ictal phase (in 
contrast with hypothesis discussed in 3.2). Thus, for solving these complex issue, we 
have integrated Chaotic measurements with an evolving- adaptive-  learning system 
robust also to variations of the information in the EEG pattern for different 
evaluations. Framework is presented in fig. 2. It has given very good results in our 
preliminary study tested on two very good long term sEEG recordings, moreover it 
can be seen as a solution for limitations identified by Lai et al.[12][13]. In this paper 
we want to compare our framework with a suitable ESNN like the one described in 
section 3.1. Our simulation results are interesting and give us several useful 
information and encourage us to follow this path. 

4.3 Results 

Results are presented in table 1 for Patient A and B and compared with application of 
ESNN. Patient A:  with our framework  described in 4.2, we have obtained a 
Sensitivity of 82% and a false prediction rate of 0.14/h. Instead with the ESNN 
architecture we obtained a lower sensitivity and a higher false positive rate. Patient B: 
results for patient A are confirmed and there is a higher improvement in the 
application of the ESNN on lmax profiles instead that its application on EEG profiles, 
this probably because paroxysmal events are more frequent and there is a faster 
convergence. In this way the patterns that has been originated by the electrodes 
selected and related to focuses removed from neuro-surgeons, with a consequent 
complete disease solution of  patient. 
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Fig. 1. Modelling of the brain of the two patients (a) patient A; (b) patient B, both with 
magnetic resonance and with a computerized simulation, and sEEG electrodes position.  
Fig. 2. Framework Architecture 

Table 1. Results for patients A and B compared with our framework and ESNN on EEG 
recordings 

 Our Framework  ESNN
Samples Sensitivity False positive rate Sensitivity False positive rate 
Patient A 82%  0.14h 75% 0.2
Patient B 95%   0.09h 67% 0.3

5 Conclusions and Future Developments 

In this paper, the complex problem of epileptic seizures analysis was approached, and 
a comparison between our novel integrated method and a simple ESNN approach has 
been carried out. We proposed a different method from [18] for calculating Lmax 
[19][2] for overcoming any theoretical critical state present in literature about his 
suitability as indicator of epileptic seizure. Always with this aim and for improving 
performances about its prediction capability in the epileptic brain, we thought to 
integrate this chaotic measurement with a suitable ESSN, improving identification of 
pre-ictal patterns on EEG in an adaptive and evolving way. This is one of the first 
application of  a NN approach for pattern recognition on Lmax profiles, instead of 
temporal or in frequency domain profiles as reported in literature and compared here. 
Thus, we presented these new framework testing it on two  samples of long SEEG 
recordings. These preliminary results are exciting and promising, our framework 
improves predictability of seizures. In the future more experiments on other long EEG 
recordings will be needed. Moreover a more suitable ESNN architecture, already in a 
test phase, will be considered. 

 

 

(2)(1) 
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Abstract. In this paper, hidden Markov models (HMM) is studied for
spike sorting. We notice that HMM state sequences have capability to
represent spikes precisely and concisely. We build a HMM for spikes,
where HMM states respect spike significant shape variations. Four shape
variations are introduced: silence, going up, going down and peak. They
constitute every spike with an underlying probabilistic dependence that
is modelled by HMM. Based on this representation, spikes sorting be-
comes a classification problem of compact HMM state sequences. In ad-
dition, we enhance the method by defining HMM on extracted Cepstrum
features, which improves the accuracy of spike sorting. Simulation results
demonstrate the effectiveness of the proposed method as well as the ef-
ficiency.

Keywords: Spike sorting, HMM, Cepstrum, confusion matrix.

1 Introduction

It is observed that complex brain processes are reflected by activities of millions
of neurons. To study brains, research on understanding neuron actions is crucial.
Electrodes are implanted in brains to record actions of surrounding neurons
through firing potentials. The action potentials are also referred as “spikes” in
neuroscience, as they appear sharp spikes in the signal waveforms. Each neuron
produces spikes with a particular shape. Spike sorting is to cluster these recorded
spikes into groups. In each group, spikes have similar shapes. The ultimate goal
of spike sorting is to find the correspondence between spikes and neurons. Based
on this research, the possibilities of new investigations on brains will be increased
dramatically.

The assumptions for spike sorting are that the shapes of spikes from a specific
neuron are similar and they are unique for each neuron [5]. Many spike-sorting
techniques have been developed [1,2]. The challenges of spike sorting lie in that
(i) the number of neurons is unknown; (ii) the spike recording is associated with
physical and biological noise [4]; (iii) spikes in the local area are not easy to be
distinguished [2]. Traditional spike sorting methods [10,11] usually rely on shape
measurement such as comparing height, width, and peak-to-peak amplitude of
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Fig. 1. The illustration of our method. (a)Raw data recorded from electrodes; (b)spike
detection using a threshold-based method; (c) clustering the detected spikes into three
groups automatically using HMM.

spikes. However, these approaches often produce inaccurate clustering because
of the sensitivities to noise.

Statistics tools are widely used for spike sorting. In [6], Principal Compo-
nent Analysis (PCA) is introduced to group spikes through analyzing spikes to
get several principal components and projecting spikes into each component.
Takahashi et al. apply Independent Component Analysis (ICA) [7,8] to separate
spikes. As both PCA- and ICA-based methods require strong spike correlation
and variances, they will not work well in case of low signal to noise ratio (SNR).
In [12], Pouzat et al introduce a Markovian approach with a Monte Carlo simu-
lation to solve spike sorting. However, high accuracy is achieved at the expense
of a great computational complexity.

In this paper, we propose an effective and efficient method for spike sorting
shown in Fig.1. The methods consists of two major procedures: spike detection
and representation [3] and HMM based spike clustering. The main contribution
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Fig. 2. Significant shape variations in spikes, which are assigned to HMM states

is the use of HMM to cluster the shapes of different spikes. For each spike, we
observe that it contains four significant shape variations: silence, going up, peak
and going down. We partition each spike into several segments and define obser-
vations of HMM as these spike segments. The states of HMM are corresponding
to the four shape variations. The expectation maximization(EM) algorithm is
used to compute the HMM parameters. The Viterbi algorithm is then used to
find the most likely state sequence that correspond to each spike shape. After
that, the sorting of spikes becomes to classify the obtained state sequences. Ex-
periments demonstrate the effectiveness and efficiency of the proposed method.

The rest of the paper is organised as follows: Section 2 discusses the use of
HMM for spike sorting. Section 3 shows the experimental results.

2 HMM-Based Spike Sorting Method

HMM is a statistical tool to model sequences and describe the probability dis-
tribution over a set of observations, which has been successfully used for speech
recognition. There are five basic elements in a HMM: 1) the number of states
N ; 2) the number of observations M ; 3) the state transition probability matrix
A; 4) the observation probability matrix B and 5) the initial state distribution
Π . The triplet λ = (A,B,Π) is often used to denote a HMM.

2.1 Spike HMM

In this paper, we utilize a HMM to model spikes in order to understand its
underlying states over a sequence of observations. For a spike, the significant
shape states are silence (flat), going up, peak and going down, shown in Fig. 2.
Each of them is assigned to a state (from s1 to s4) of the HMM (i.e. N =
4). The state structure of the spike HMM and the state transitions with non-
zero probability are shown in Fig. 3. It is noticed that for a general spike, the
transitions between s2 (up) and s3 (down) or between s1 (silence) and s4 (peak)
have zero possibilities. Moreover, most spikes start from the silence state and
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Fig. 3. HMM with 4 states (labeled s1 to s4) and 12 state transitions. The transition
probabilities between s2 and s3 or between s1 and s4 are zero.

end in the silence state. Based on the basic knowledge about spike, the following
transition probability matrix and the initial state distribution are given for the
initialization of the HMM.

A =

⎛⎜⎜⎝
0.4 0.3 0.3 0.0
0.3 0.4 0.0 0.3
0.3 0.0 0.4 0.3
0.0 0.4 0.4 0.2

⎞⎟⎟⎠
Π =

(
0.6 0.2 0.2 0.0

)
2.2 Spike Detection and Feature Extraction

Given a sequence of neuron signals for spike sorting, the first step is the detection
of the spikes. We adopt the amplitude thresholding method [3], which can quickly
locate spikes. A bandpass filtering (bf) is firstly applied to the input signals S
and then the standard deviation σ of the background noise is estimated using

median{|Sbf |/0.6745}. (1)

The threshold is set to be 4σ.
After spike detection, L samples are saved for each spike. A typical value of

L is set to 64. We divide a spike into overlapping segments of length of l. The
amount of overlap between consecutive segments is o. The number of segments is
actually the number M of HMM observations, which can be calculated by using
M = (L − o)/(l − o). The choice of parameters l and o significantly affects the
spike clustering accuracy. With an amount of overlap between consecutive spike
segments, more spike features can be captured to improve the performance. It
is very delicate to choose the parameter l. If l is too small, there is no sufficient
discriminant information in the observation. If l is too large, the probability of
cutting across the distinct spike features are increased. Based on the knowledge
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of spikes, the number of samples that cover a whole peak (i.e. s2-s4-s3 or s3-s4-
s2) of a spike is about 20. l set to the half value (i.e. 10) is a reasonable choice,
which has been proved in our experiments. Refer to Fig. 4 for illustration.

Based on the partition of a spike, we obtain M observations for the HMM. For
each observation vector, it has l samples of the raw waveform data. The use of raw
data as HMM observation vectors has a disadvantage of being sensitive to noise.
To reduce the effect of noise, Cepstrum coefficients are extracted from each spike
segment. We employ Cepstrum features because they have a property to capture
both the amplitude property of spikes and the phase of the initial spectrum. This
property makes Cepstrum features be able to separate the meaningful features
from noisy signals. Cepstrum coefficients are calculated as the Inverse Fourier
Transform (IFT) of the logarithm of the Fourier Transform of a spike segment,
as

c = F−1log|F (s)|, (2)

where s is the spike segment and c is the Cepstrum feature vector.

Fig. 4. Spike parameterization and partition. There are L samples for a spike. The
spike is partitioned into M segments with each length of l and overlap of o between
neighboring segments.

2.3 HMM Training and Clustering

Aset of 300 detected spikes are used to train aHMMλ = (A,B,Π),where there are
300×M observationvectorswith lCepstrum coefficients for each. In theHMM, the
number of statesN is 4, the numberM of observation vectors is defined in Section
2.2, the transition probability matrix A and the initial state distribution Π are
given in Section 2.1. The only unknown parameter is the observation probability
matrixB. We adopt the mixture of Gaussians with the number of 3 to initializeB.
In order to optimize the HMM tomaximize the probability of themodel generating
the observations, we adjust the parameters A, B, and Π using the EM procedure
[14].

In the clustering stage, the optimized HMM is used to group spikes. Every
spike is represented by M observation vectors, same as the description above.
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Table 1. Statistics of the number of spikes in each generated clusters using the pro-
posed method and the method of [3]

Methods The proposed method The method [3]

Spike sets 0.05 0.10 0.15 0.05 0.10 0.15

Cluster 1 807 837 878 810 952 962

Cluster 2 756 761 724 753 562 466

Cluster 3 756 711 629 741 477 456

Cluster 4 - 85 97 15 370 398

Cluster 5 - - 20 - 19 40

Cluster 6 - - - - 14 23

Total cluster
Num.

3 4 5 4 6 6

Dominant
cluster Num.

3 3 3 3 1 or 4 1 or 4

The Viterbi algorithm [15] is employed to find the most likely state sequence in
the model that produces the observations. The output state sequence consists
of M elements received values from 1 to 4 that are corresponding to s1 to s4
respectively. As the order of states respects primary spike geometry that is dom-
inant to distinguish different spikes, state repetitions are removed from output
state sequences by using the diff and find operations in MATLAB. Take the
spike in Fig. 4 for an instance. The output state sequence (1, 1, 2, 2, 4, 3, 3, 3, 1, 1)
is reduced to be (1, 2, 4, 3, 1). After that, spike sorting becomes the clustering
of the unique state sequences, which can be easily implemented by using the
unique operation in MATLAB.

3 Experimental Results

In this part, we show our experimental results on simulation data given in [3].
In the simulation data, it is known that there are 3 spike types. In addition, the
spikes with different noise levels are provided as well as the true classes for each
spike. In the experiment, there are 3 sets of spikes with 3 noise levels: 0.05, 0.1
and 0.15 respectively. We implement our method using MATLAB on Intel Core
i7-2600K. To sort 2319 spikes from 3 classes, the proposed classification method
siginificantly improves the computational complexity. The classification process
takes about 10 seconds to complete. We set the parameters as l = 10, o = 4
and M = 10. Other parameters are described in the Section 2. To evaluate the
performance of our proposed method, we compare our results with the method
in [3] regarding the number of generated clusters and the spikes in each cluster.
The clustering accuracies are also compared via the confusion matrix that is
introduced in [13] specifically for evaluating clustering techniques.

Table 1 summarizes the results, where the number of spikes in each cluster is
listed. It should be noted that the number of total clusters and the number of
dominant clusters, referring to Fig. 5(a) for illustration. Based on the results, it
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(a)

(b)

Fig. 5. Experimental results. (a) The illustration of the number of spikes in each
generated clusters using the proposed method (left) and the method [3] (right). (b)
The spikes are grouped into 3 major clusters (blue, green and red) using the proposed
method.

Table 2. Performance comparison using confusion matrices

Methods The proposed method The method [3]

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 235 11 17 239 29 21

Class 2 5 292 15 7 272 12

Class 3 11 18 280 5 20 279

Accuracy 91.2% 88.9%

is obvious that the number of dominant clusters using our proposed method is
more distinct than the one using [3] and our proposed method can produce 3 (the
actual number of spike classes) dominant clusters for all the data with different
SNRs. The spikes in each group are shown in Fig. 5(b), where we can see that
the shape variations of spikes in each dominant cluster are small. Moreover, the
clustering accuracy is measured using a confusion matrix given in Table 2, where
we divide the spikes into two parts - one for building prototypes of clusters and
the other for testing the accuracy using the Euclidean distance. The comparison
indicates that our method produces more accurate spike sorting.
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4 Conclusion

We presented an effective and efficient spike sorting method. A threshold-based
method is applied to quickly locate spikes. Cepstrum coefficients are calculated
to robustly represent spike segments. The main contribution is the introduction
of HMM for spike sorting, where four HMM state are defined and searched to
respect the spike geometry. Experimental results demonstrate the superiorities
of our proposed method.
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Abstract. The present study attempted to investigate the role of memory or 
cognitive load in language processing using an EEG. Twelve healthy right-
handed male adults were asked to read a story twice and their brain activities 
were recorded using an EEG: (i) focusing on meaning of the content only (M) 
and (ii) focusing on both meaning and form or grammar (M+F). The results 
demonstrated significant differences in upper alpha and upper beta bands ac-
cording to reading instructions, which indicates different degrees of cognitive 
load. The findings make a significant contribution to language acquisition in 
that they offer valuable information regarding memory and cognitive load in 
language processing. Thus, they help language researchers and educators in the 
field of second language acquisition (SLA) develop more effective ways of in-
structional design and in turn lead their students to better learning outcomes. 

Keywords: reading comprehension, grammar acquisition, cognitive load, 
memory load, EEG, attention, second language acquisition. 

1 Introduction 

The present study investigated the role of cognitive load in second language acquisi-
tion (SLA) in terms of brain activities. Cognitive Load Theory (CLT) have been con-
cerned with concocting teaching tools to help learners maintain an optimal level of 
load in various learning context [1]. SLA researchers have utilized CLT to account for 
differences in learner performance with regard to different learning tasks and reported 
that various factors, including learner’s different cognitive abilities, level of English 
proficiency, and types of tasks, can cause cognitive overload which can diminish 
instructional outcomes [2, 3].   

The majority of studies on the effects of cognitive load in language acquisition, in-
cluding vocabulary acquisition and reading comprehension, have used performance 
scores and subjective worlkload self-evaluation [4-6]. As Gevins et al. [7, 8] address, 
performance scores and subjective measurements have provided overall cognitive load but 
appeared to lack objective and temporal information regarding mental efficiency.  
Conversely, using an EEG can measure concurrent brain activities and thus contribute to 
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guiding better learning situation. Therefore, the present study attempted to compare 
relative mental efficiency in terms of cognitive load in language processing. Moreo-
ver, unlike previous studies that evaluated brain activities using sentence level texts 
[9], this study used a discourse level text (a story) and aimed to obtain more extended 
evidence regarding the shift of frequency bands in two reading conditions. Thus, this 
study can provide the evidence how brain reacts to different amount of attention or 
memory load in terms of reading comprehension and grammar learning.  

This paper is organized as follows: Section 2 briefly introduces CLT for reading 
comprehension, and the proposed method based on an EEG signal analysis will be 
followed in Section 3. Section 4 includes the experimental results, and conclusion and 
future works will be described in Section 5. 

2 Cognitive Load Theory and Reading Comprehension 

CLT is mental effort for successful completion of a task [10]. CLT has three types of 
cognitive load: intrinsic (the level of inherent difficulty), extraneous (i.e., instructional 
materials), and germane (construction and automation of schema) cognitive load. 
CLT suggests that learning happens best under conditions that are aligned with human 
cognitive architecture, consisting of working memory that is limited in capacity when 
dealing with novel information. Some researchers argue that students learn better 
when provided with an optimum learning condition where cognitive load is mini-
mized as much as possible [7, 8, 11].  

Researchers have studied the relationship between cognitive load and language ac-
quisition, For instance, Al-Shehri and Gitsaki’s study [2] findings revealed that learn-
ers’ reading comprehension (RC) performance can be enhanced by reducing the 
learners’ extraneous cognitive load induced by format of instructional materials. For 
example, the students who read a text physically integrated with RC questions outper-
formed those presented the text split with the questions on the RC tests. In a similar 
vein, Akbulut [3] argues that too much input, such as glossaries, illustration, under-
lined, colored, or bolded words, can interfere with RC due to the increase in cognitive 
load. Moreover, Gevins el al’s study findings [7, 8] also reported that task difficulty 
resulted in decreases in alpha signals but increases in amplitude of a frontal theta 
rhythm due to the increased memory load. These findings suggest that it is necessary 
for educators to eliminate redundant and distractive elements in order to maximize the 
effects of instruction or input and thus facilitate their students’ learning.  

3 Methods 

3.1 Participants and Design 

Twenty right-handed male undergraduate students whose L1 was Korean (eight par-
ticipants were excluded from data analysis due to noise) participated in the study, and 
each of them were given a $10 certificate as a token of appreciation. Most of the par-
ticipants included in the data analysis majored in English Education, except for three 
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students who majored in Electrical Engineering (ages 19-21). Handedness, and gender 
were screened in order to control confounding variables. Also, all participants were 
with no history of neurological or psychiatric disorders, and their eyesight was normal 
or corrected to normal vision.  

For this within-subject design experiment, the participants were instructed to read 
an African folktale, modified by Park, et al. [12], under two instructional conditions at 
their own pace. Specifically, the degree of attention and cognitive load were manipu-
lated by giving different reading instructions. In the first reading, the participants 
were asked to simply read the text to understand the meaning of the content (M), whe-
reas in the second reading task, they were asked to pay attention to grammatical fea-
tures as well as meaning (M+F). The text was divided into eight slides, and four slides 
contained visually enhanced grammatical features (i.e., gerund and to infinitive), 
boldfaced, colored, and underlined in order to intentionally draw their attention to 
linguistic features. For instance, for the first reading, the first half of the text was vi-
sually enhanced (VIE+), and the second reading, vice versa, as in Figure 1. 

 

Fig. 1. Text samples presented on the computer screen (a) enhanced text (b) unenhanced text 

3.2 EEG Recording and Stimuli 

During the recording, the participants comfortably seated in front of a computer moni-
tor in a laboratory and were requested to control blinking, swallowing, and other mus-
cle movements to ensure the quality of the EEG data. Each session lasted about one 
hour including subject preparation. Based on the 10/20 international system, EEG 
activities were continuously recorded from 13 scalp locations (F3, F4, Fz, FCz, C3, 
C4, Cz, CPz, P3, P4, Pz, O1, and O2) by means of Ag/AgCl electrode caps. The elec-
trode impedance was kept below 10 kΩ using a glass ohmmeter. The electrode Fz on 
the cap served as grounding, while a reference electrode was placed on the right and 
left ear lobes. The text appeared on a computer monitor, and the participants’ brain 
activities were recorded using an EEG while reading the text by focusing on meaning 
only and then both meaning and grammar.  

The hypothesis is that reading a text to understand the meaning of the content and 
to focus on grammatical features at the same time can lead to an increase in cognitive 
load and thus results in selective decreases in upper alpha and upper beta [11, 13]. On 
the other hand, an escalated cognitive load leads to a selective increase in theta and 
gamma power [14]. 
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3.3 Data Analysis 

All of the data were individually checked and excluded all contaminated with ocular, 
muscle, or other non-EEG activity. To differentiate the various frequency ranges, the 
EEG signal as a function of time is transformed into a function of frequency (spectrum) 
by Fast Fourier Transform (FFT). Broadband EEG was divided into the six frequency 
ranges: theta (4-7Hz), low alpha (8-10), upper alpha (10-13 Hz), low beta (13-18 Hz), 
upper beta (18-30.Hz), and gamma (30-70 Hz). Band powers within-subject factors 
were evaluated using separate paired t-tests on the differences in time varying amplitude 
between the degrees of cognitive load depending on reading conditions. Reading in-
structions (M/M+F) and two versions of text presentation (VIE- vs. VIE+) served as 
independent variables while band powers served as dependent variables. 

4 Results 

The paired t-test revealed that there were significant power differences between read-
ing instructions at upper alpha and upper beta bands. In general, the participants spent 
longer reading time when reading the enhanced text (M = 102.41 s) than the unen-
hanced text (M = 89.59 s). However, there were no statistically significant power 
differences induced by visually enhanced input which is supposed to require greater 
memory and cognitive load. The reading conditions resulted in selective mean differ-
ences in upper alpha, upper beta, and theta. 

4.1 Analysis of Upper Alpha Band 

Reading instructions led significant mean differences at occipital (t = 2.166, P = .041). 
Also, a marginally significant mean difference was observed at frontal (t = 1.910, P 
= .068), as in Fig. 2. Specifically, alpha power at the frontal and occipital in the M+F 
condition was smaller than that of the M condition. The amplitude of both hemispheres 
was smaller in the M+F condition than that of the M condition, but the differences were 
marginally significant (t = 1.847, P = .078; t = 1.970, P = .061, respectively). 

 

Fig. 2. Mean differences of reading instructions in upper alpha: 

*F (Frontal), C (Central), P (Parietal), O (Occipital) 
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4.2 Analysis of Upper Beta Band 

A significant mean difference was observed between the two reading conditions. That 
is, as shown in Fig. 3, reading the text in the M+F condition resulted in a significant 
decrease in the amplitude at the frontal, central, and occipital regions than the M con-
dition: F (t = 8.228, P < .001), C (t = 4.082, P < .001), O ( t = 3.566, P = .002). Also, 
hemispheric power declines in the M+F condition were significant compared to the M 
condition. Specifically, the two conditions yielded significant mean power differences 
in the right and left hemispheres: t = 7.119, P < .001; t = 3.975, P = .010, respectively. 

 

Fig. 3. Mean differences of reading instructions in upper beta: 

*F (Frontal), C (Central), P (Parietal), O (Occipital) 

4.3 Analysis of Theta Band 

Theta power in the parietal region was greater in the M+F condition than that of the 
M condition, as in Fig. 4. No statistical significances, however, were observed. Also 
there were no hemispheric mean differences between the two reading conditions.  

 
 

Fig. 4. Mean differences of reading instructions in theta: 
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4.4 Analysis of Gamma Band 

Surprisingly, no significant mean differences were found between the two reading 

instructions, as shown in Fig. 5. However, when the participants were reading the text 
to comprehend the content only, the right hemispheric power of selective regions was 
greater than that of the left. Particularly, in the M condition, the hemispheric differ-
ences were significant at frontal and central regions: t = 3.796, P = .001; t = 2.281,  
P = .032, respectively. Conversely, reading a text with focusing on both form and 
meaning resulted in significant differences in frontal and parietal areas: t = 4.808,  
P < .001; t = 2.529, P = .019, respectively. 

 

Fig. 5. Mean differences of reading instructions in gamma 

*F (Frontal), C (Central), P (Parietal), O (Occipital) 

5 Discussion and Conclusion 

The present study differentiated cognitive load or mental effort by manipulating read-
ing instructions. First of all, the findings show that the increased task load, reading the 
text with paying attention to both form and meaning, led to selective decreases in 
amplitude of upper alpha power at the frontal and occipital regions. The findings par-
tially support Gevins et al’s study findings [7, 8] in that reading a text by focusing on 
both form and meaning simultaneously escalated the level of attentional demands as 
well as cognitive load. In line with Bastiaansen et al’s study [15], upper beta tends to 
behave like upper alpha. Specifically, upper beta power at frontal, central, and occi-
pital regions attenuated in the M+F condition. As Bastiaansen et al. suggest, the beta 
response might be related to the sensory processing of the visual input. 

In contrast to previous studies [13, 15], theta band power changes between two 
reading conditions displayed no significant differences in frontal area, although a 
decrease of theta amplitude in the M+F condition was greater than that of the M con-
dition. Both the right and left hemispheres showed differences between the two read-
ing conditions, which suggests that both hemispheres are related to comprehending 
meaning and learning grammar through reading.   

Unlike Landau et al’s study [16] that reported an increased gamma activity  
in states of attention, no significant mean differences in gamma band were found 
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between the two reading conditions. The unexpected findings suggest that knowing 
the content of the text through the first reading might alleviate task load which could 
be induced by comprehending and focusing on grammatical elements concurrently.  

Despite the contribution to the EEG literature in language processing, the present 
study has some limitations. First, this study analysis was based on rather small num-
ber of participants, so larger scale future studies are necessary for generalization. 
Second, this study collected mental effort data during reading a text only; therefore, 
future study needs to include mental effort or mental efficiency during both reading 
and testing in order to obtain broader understanding regarding the role of cognitive 
load in grammar learning as well as reading comprehension. 

To conclude, the study revealed that cognitive load seemed to be varied according 
to the degree of memory or cognitive load manipulated by reading instructions. Spe-
cifically, EEG features in upper alpha and upper beta bands were sensitive to load 
manipulation. No significant correlation, however, between reading instructions and 
brain activities in theta and gamma bands. The results suggest that deliberate attention 
to both meaning and form might hinder meaning construction [12]. Nonetheless, cog-
nitive load will have positive effects as long as the load is imposed by relevant activi-
ties such as practice which enhances or leads to the construction or automation of 
schemas [6]. Therefore, language educators should keep in mind not to present exces-
sive load when designing instructional materials: instead, they should guide their 
students to develop both the construction and automation of schemas and thus learn-
ing to occur. 
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Abstract. This paper presents a new algebraic approach for robust meter place-
ment against false data injection (FDI) attacks on power system state estimation
with DC power flow models. One of the most promising strategies against FDI
attacks on DC state estimation is to protect measurements. It is important to se-
lect a subset of measurements to be protected so that, even if any k measurements
are compromised by attackers or are lost due to malfunction, we can detect FDI
attacks with the rest of them. Protecting a set of essential measurements to ensure
observability of the system is reportedly a necessary and sufficient condition for
detecting the FDI attacks on DC state estimation. Castillo et al. have proposed
an algebraic approach to determine the minimum required measurement set to
ensure observability even if any k meters fail. However, their problem formula-
tion is nonlinear and they showed the results only with k ≤ 2. In this paper, we
propose a new linear formulation and show the results with not only k = 2 but
also k = 3.

Keywords: Meter Placement, Power System, State Estimation, Observability.

1 Introduction

The power system is a complex system consisting of power generators and power con-
sumers connected by transmission and distribution lines. System monitoring plays an
important role to ensure the reliable operation of the power system. The measurements
may include line power flows, bus injections and voltage magnitudes. These measure-
ments are usually stored in a telemetry system known as Supervisory Control And Data
Acquisition (SCADA) system.

State estimation is used in system monitoring to estimate the state of the power sys-
tem based on the measurements. Many power system applications such as contingency
analysis rely on the output of the state estimator. Various techniques have been devel-
oped to detect and identify bad measurements and it seems that these techniques can
also defeat malicious measurements injected by attackers. However, Liu et al. demon-
strated that an attacker, armed with the knowledge of the network configurations, can
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inject false data into DC state estimation, which uses DC power flow models, without
being detected [1].

One of the most promising strategies against false data injection (FDI) attacks is to
protect measurements. However, it may not be feasible to protect all measurements due
to some reasons such as budgetary constraints. We believe that it is important to select
a subset of measurements to be protected so that, even if any k meters are compromised
by attackers or are lost due to malfunction, we can detect FDI attacks with the rest of
measurements.

Bobba et al. have showed that protecting a set of essential measurements is a neces-
sary and sufficient condition for detecting the FDI attacks on DC state estimation [2]. A
set of essential measurements is composed of the minimum number of measurements
needed to ensure observability of the power system. On the other hand, Castillo et al.
have proposed an algebraic approach to determine the minimum measurement set re-
quired to ensure observability in state estimation even if any k meters fail [3]. However,
their problem formulation is nonlinear and they showed the results only with k ≤ 2.

In this paper, we propose a new linear formulation for robust meter placement against
FDI attacks on DC state estimation. We also show the results with not only k = 2 but
also k = 3 to demonstrate the effectiveness of the proposed formulation.

2 Problem Definition

In this section, we briefly define the robust meter placement problem handled in this
paper. As commonly done in observability analysis, conventional measurements that
include line power flows, bus injections and voltage magnitudes are assumed to exist.
Furthermore, the analysis is carried out on the decoupled real power versus voltage
phase angle model:

z = Hθ + e (1)

where θ = (θ1, θ2, . . . , θn)
T is the true state of the system to be estimated and z =

(z1, z2, . . . , zm)T and e = (e1, e2, . . . , em)T represent the measurements and the ran-
dom errors in measurement, respectively. H is the m× n Jacobian matrix.

A state estimation problem can not be solved unless the system is fully observable.
One indicator of observability is the rank of the Jacobian H . Since the rank of H es-
sentially depends on the meter placement, it is sufficient to evaluate H in order to study
the effects of loss of measurements (and branch outages) on its rank [4]. In the context
of the robust meter placement, the rank of H should remain full if any k of measure-
ments are lost. If this condition is not met, then several pseudo-measurements should
be added to meet the condition. The selection of these additional measurements must
be optimal so that the overall cost of adding these measurements (e.g., the number of
additional measurements) should be a minimum. Therefore, the robust meter placement
problem, known as the general m− k robust observability problem [3], can be defined
as the problem of selecting a minimum number of measurements such that if any k of
them are lost, the system remains observable.

For an observable system, available measurements can be classified into two groups,
essential and redundant. The set of essential measurements includes ne available mea-
surements that allow expressing the remaining (redundant) nr measurements as a func-
tion of the ne essential measurements. In other words, the essential measurements are
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enough to make the system observable and the loss of redundant measurements does not
influence the observability of the system. Thus, only the loss of essential measurements
is considered in the robust meter placement problem.

3 Conventional Formulation and Its Problems

For the robust meter placement problem defined above, Castillo et al. proposed a tech-
nique to determine the minimum required measurement set to ensure observability even
if any k meters fail [3]. The technique relies on solving a nonlinear integer programming
problem. In this section, we review their mathematical formulation.

Suppose a partition of the Jacobian matrix H such as

H =

[
He

Hr

]
, (2)

where the ne×ne submatrix He corresponds to essential measurements and the nr×ne

submatrix Hr corresponds to redundant measurements. Here, ne = n and nr = m−n.
Sensitivity matrix S is obtained as

S = HrH
−1
e . (3)

If k essential measurements are lost simultaneously, they can be replaced by any k
redundant measurements such that the k × k submatrix of matrix S corresponding to
the considered columns and rows is non-singular. Thus, the general m−k observability
problem is formulated as

minimize
x	

nr∑
�=1

c�x�, (4)

subject to
∑

{i(1),...,i(k)}∈Ik

Bi(1),...,i(k);j(1),...,j(k) ×
k∏

s=1

xi(s) ≥ 1,

∀{j(1), . . . , j(k)} ∈ Jk, (5)

where c� is the installation and operation cost of meter � and x� is a binary variable to
identify redundant measurements that preserve robust observability, Ik (Jk) is the set of
all subsets of k different rows (columns) of maxtrix S, and

Bi(1),...,i(k);j(1),...,j(k) =

{
1 |Si(1),...,i(k);j(1),...,j(k)| �= 0,

0 otherwise,
(6)

where |Si(1),...,i(k);j(1),...,j(k)| is the determinant of the submatrix of S including rows
i(1), . . . , i(k) and columns j(1), . . . , j(k).

For a set of redundant measurements to replace a given set of essential measure-
ments, the corresponding submatrix in S must be non-singular. This condition must be
valid for any combination of k redundant measurements. Therefore, the constraint (5)
ensures observability even in any k measurements are lost.
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The resulting optimization problem (4) and (5) is a nonlinear programming (NLP)
problem, which should be solved with an efficient large-scale solver for NLP problems
such as CONOPT [5]. However, even if such a solver is used, it is difficult to solve
the NLP problem containing high order polynomials in general. In fact, any numerical
results for the case of k ≥ 3 are not presented in [3].

4 Proposed Formulation

In order to overcome the weakness of the conventional (nonlinear) formulation men-
tioned in the previous section, we propose a new linear formulation for the general
m− k observability problem is presented as follows:

minimize
x	

nr∑
�=1

c�x�, (7)

subject to
∑

{i(1),...,i(k)}∈Ik

Bi(1),...,i(k);j(1),...,j(k) · yi(1)···i(k) ≥ 1,

∀{j(1), . . . , j(k)} ∈ Jk, (8)

xi(1), . . . , xi(k) ≥ yi(1)···i(k) ∀{i(1), . . . , i(k)} ∈ Ik, (9)

where yi(1),...,i(k) is an auxiliary (binary or continous) variable representing
∏k

s=1 xi(s).
By introducing the auxiliary variables, the nonlinear constraints (5) are converted to
the linear ones (8) and (9). Note that the number of the auxiliary variables and the
constraints that are newly introduced are |Ik| =

(
nr

k

)
and k · |Ik|, respectively.

For example, for the case of ne = 4, nr = 3 and k = 2, the matrix representation of
the constraints (8) and (9) is illustrated below:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B12;12 B13;12 B23;12 0 0 0
B12;13 B13;13 B23;13 0 0 0
B12;14 B13;14 B23;14 0 0 0
B12;23 B13;23 B23;23 0 0 0
B12;24 B13;24 B23;24 0 0 0
B12;34 B13;34 B23;34 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
0 −1 0 1 0 0
0 −1 0 0 0 1
0 0 −1 0 1 0
0 0 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y12
y13
y23
x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎦ ≥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Alternatively, the number of constraints newly introduced can be reduced to |Ik| by
a different linear formulation

xi(1) + · · ·+ xi(k) ≥ k · yi(1)···i(k). (11)

Note that the auxiliary variables yi(1)···i(k) must be binary. Although we use the con-
straint (9) in the following experiments, we should compare the performance with (9)
and that with (11) in future work.
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Flow measurement

Injection measurement

Bus 1 Bus 4 Bus 3

Bus 6 Bus 5 Bus 2

Fig. 1. A simple 6-bus example

5 Numerical Experiments

In order to verify the performance of the proposed formulation, the results of numerical
experiments are presented here. All the following experiments were performed on a
3.6 GHz Intel Core i7-3820 processor and 16 GB of memory. Matrix B described above
was computed using MATLAB 8.0.0 [6] and all optimization problems were solved
with Gurobi Optimizer 5.5 [7].

5.1 A Simple Six-Bus Example

Firstly, the simple 6-bus example used in [3] is considered. Figure 1 depicts the con-
sidered power system and the measurement configuration. The essential measurements
are active power injections P1, P2 and P6 and active power flows P2,5 and P3,4.

For the measurement configuration in Fig.1, the sensitivity matrix S giving redun-
dant measurements is obtained using the same Jacobian matrix H provided in [3]. Ma-
trix S and the cost vector c are as follows:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P2 P2,5 P1 P3,4 P6

P3 −1 1 0 1 0
P4 −0.6 1.2 −0.8 −1.6 −0.6
P5 0.6 −2.2 −0.2 0.6 −0.4
P1,4 0.2 −0.4 0.6 0.2 0.2
P1,6 −0.2 0.4 0.4 −0.2 −0.2
P2,3 1 −1 0 0 0
P4,6 −0.4 0.8 −0.2 −0.4 −0.4
P5,6 0.6 −1.2 −0.2 0.6 −0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.2
0.4
0.4
0.5
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To select a subset of additional measurements that ensures observability, we solve the
optimization problem (7)–(9). For the cases of k = 1, 2, the same solutions shown in [3]
are obtained. The sets of additional measurements necessary to preserve observability
are {P4} for the case of k = 1 and {P4, P5} for the case of k = 2, respectively.

For the case of k = 3, we firstly calculate the coefficients Bi(1)i(2)i(3);j(1)j(2)j(3) ac-
cording to the expression (6). The number of these coefficients is 5C3 × 8C3 = 560, as
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Table 1. Computation time (s) for the case of k = 2

9-bus 14-bus 39-bus 57-bus 118-bus 300-bus
μ 0.005 0.039 0.179 3.692 26.634 402.094
σ 0.002 0.027 0.115 6.949 15.982 595.789

min. 0.003 0.011 0.071 0.670 6.387 80.348
max. 0.023 0.163 0.783 63.359 90.087 4405.732

Table 2. Number of additional measurements for the case of k = 2

9-bus 14-bus 39-bus 57-bus 118-bus 300-bus
μ 3.92 4.65 15.41 16.71 36.21 117.85

min. 3 3 12 13 31 109
max. 5 6 18 21 43 128

many as the number of 3× 3 submatrics in matrix S. The number of nonzero elements
in matrix B is 203, thus the sparsity degree of B is 36.25%. The obtained solution is
the set of three power injections {P3, P4, P5} and the objective value is 1.6. Although
there are some combinations of redundant measurements with lower cost, they can-
not ensure observability of the system. For instance, the set of redudant measurements
{P4, P5, P1,4} is the combination with the lowest cost, but the set of measurements
{P1, P2, P4, P5, P6, P1,4, P2,5, P3,4} does not ensure the observability if three essential
measurements {P2, P6, P2,5} are simultaneously lost. In fact, the determinant of the
submatrix corresponding to these measurements is

|SP4P5P1,4;P2P6P2,5 | =
∣∣∣∣∣∣
−0.6 1.2 −0.6
0.6 −2.2 −0.4
0.2 −0.4 0.2

∣∣∣∣∣∣ = 0. (12)

5.2 Case Study

For the case of k = 2, the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus and 300-bus test
systems are considered. The network topologies are from MATPOWER [8]. To evaluate
the average performance of the proposed formulation, for each test system, 100 different
sets of essential measurements are used. Here, the objective is to minimize the number
of additional measurements.

The computational results are summarized in Table 1 and 2. In the tables, μ and σ
denote the average value and the standard deviation, respectively. Table 1 shows the
computation time required to generate matrix B and to solve the linear problem. As
shown in Table 1, for the 300-bus test system, with the proposed formulation, the aver-
age time to select the subset of additional measurements from 412 candidate measure-
ments is only 402 seconds. In contrast, with the nonlinear formulation in [3], the total
computation time is about 15.3 minutes, regardless of limiting the number of candidate
measurements to 90. Table 2 shows the number of additional measurements necessary
to preserve the observability of the system. As shown in Table 2, in spite of losing
only two measurements, the number of additional measurements rapidly increases as
the scale of the system becomes large.
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Table 3. Computation time (s) for the case of k = 3

9-bus 14-bus 39-bus 57-bus∗

μ 0.037 1.206 68.932 6030.638
σ 0.020 0.683 74.618 3470.933

min. 0.012 0.218 14.064 3131.097
max. 0.147 3.646 621.668 14097.328

∗ only eight different sets of essential measurements used.

Table 4. Number of additional measurements for the case of k = 3

9-bus 14-bus 39-bus 57-bus∗

μ 5.17 6.36 20.90 24.63
min. 4 5 18 23
max. 6 8 24 27

∗ only eight different sets of essential measurements used.

For the case of k = 3, the IEEE 9-bus, 14-bus, 39-bus and 57-bus test systems
are considered. In the same way as the case of k = 2, 100 different sets of essential
measurements are used for three test systems (9-bus, 14-bus and 39-bus). For the 57-
bus test system, eight different sets of essential measurements are employed.

Table 3 shows the computation time for the case of k = 3. It is obvious that the case
of k = 3 requires significantly more computation time than the case of k = 2. As the
average time required to generate matrixB is abount 233 seconds for the 57-bus system,
the large percentage of total computation time is spent in solving the integer linear
programming problem (7)–(9). Table 4 shows the number of additional measurements
for the case of k = 3.

5.3 Discussion

The above computational results indicate that the size of the problem (7)–(9) increases
rapidly as the value of k became large. In fact, for the 57-bus system, the number of
constraints of the case of k = 3 is about 2.83×105. One approach to solve this problem
is a compact representation of matrix B. Since matrix B contains many unnecessary or
redundant constraints, it is possible to make B compact by removing them.

The influence of rounding errors is also a critical problem. In particular, the rounding
error when generating matrix B is very serious. Giving the wrong binary values to
matrix B leads to the results in which feasible solutions cannot be found or incorrect
sets of additional measurements are chosen. Since it is difficult to choose an appropriate
tolerance, it is necessary to consider a robust approach to rounding error.

6 Conclusions

In this paper, we proposed a linear formulation for the general m − k observability
problem. By using the proposed linear fomulation, we are able to achieve robust meter
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placement against false data injection attacks on power system. In particular, for the
case of k = 2, our method found the minimal subsets of additional measurements
more efficiently than the conventional one [3]. Moreover, for the case of k = 3 which
was not presented in [3], we succeeded in determing appropriate subsets of additional
measurements.

In future work, we should investigate the performance with the constraint (11) and
devise a compact representation of matrix B.
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Abstract. This paper aims to evaluate the performance of Electroencephalographic 
(EEG) emotion recognition system (EEG-ER) using source-temporal domain with 
Takagi- Sugeno-Kang (TSK) fuzzy model. Ten healthy subjects aged 5-6 years 
were participated in this study. Emotion elicitation procedure has done using the 
Radbound faces database (RafD). The selected emotions were happy, sad, and 
neutral and fear. The results were compared with wavelet coefficients (WC) as 
feature extraction method and Regularized Least Square (RLS) and Multi-Layer 
Perception (MLP) neural network classifiers from our previous work. Another 
comparison was done between affective model of Russell and RafD. The results 
show the efficiency of using source-temporal features in emotion recognition 
system hence there was a slight difference in accuracy among different classifier; 
MLP, RLS and TSK however MLP and TSK results were with high accurate and 
stable. Moreover Russell model which is based on positive-negative dimensions 
shows high accuracy than RafD model that has positive dimensions. The accuracy 
was around 97% using Russell model. 

Keywords: Emotion, EEG, Relative source temporal features, Takagi-Sugeno-
Kang fuzzy approach. 

1 Introduction  

Emotion is one of the mysterious that has no specific psychology and physiology 
definition. However, it is involved in human cognition, perception and experience. 
Consequently it is affected on human learning process and human physical and 
mental health.  Emotion can be expressed using verbal function like words “happy, 
sad …etc” or non-verbal function based on facial expression and behavior. However 
it is difficult to people with disability to express their feeling to others. Therefore 
identify others emotion is important task. Many studies have been done using bio-
signals to recognize emotion state such as speech, skin temperatures, heart rate [1-3].  
Recent studies concern on using EEG signal in emotion recognition system (ER) [4-8] 
hence EEG measures  the signal from the central nervous system (CNS) making it a 
suitable tool for studying human emotions. 
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Our previous study [9] shows the efficiency of using spatial source domain to 
present the dynamic brain activity which is consistent with the distribution theory 
where emotion is produced through interactions among brain regions rather than 
simply a function of a specific brain location [10]. The proposed model is based on 
applying Time Difference of Arrival (TDOA) approach [11]  with EEG signals to 
extract the relative spatial source domain in terms of (x, y, z) coordinates which 
named Relative Source Temporal (RST) features. The previous work shows 
significant results using MLP [12] and RLS [13] classifiers. Fuzzy system [14] has 
been used widely in many applications such as control system and pattern recognition 
problems. In this study we apply TSK fuzzy model which is knowing of its 
generalization and simplicity to model complex system as well as its generated rules 
from given input-output data set based on subtractive clustering [15, 16]. Emotion has 
been modeled based on many theories. The majority of them which is based on 
psychology perspective consider emotion as discrete values or basic emotions while 
other theories are characterized emotion as continues domain which can be presented 
by many dimensions.  One of the  most widely  model  is 2 dimension affective model 
of  Russell  [17]  that categorizes every kind of emotions in a two-dimensional model; 
valence (V) that reflect the cognitive perception and arousal (A) that reflect the 
physiological component. Russell model divided the valence and arousal to positive 
and negative. In this study we use Russell model  and we use also RafD model [18] 
which is also 2dimension affective model but with positive values hence the values of 
valence and arousal were taken based on self –assessment test with score from (1-5). 
The first goal of this study is to investigate the performance of RST features with 
TSK fuzzy classifier and compared it with our previous results. The second goal is to 
examine the affection of Russell and RafD model to predicate the values of valence 
and arousal for each emotion. 

2 Method and Materials 

2.1 EEG Data Descriptions  

EEG data was collected from ten healthy subjects aged (5-6) from the preschool 
(Malaysia International Islamic preschool) using BMCI model device. Data was 
recording from eight channels; F3, F4, C3, C4, P3, P4, T7, T8 placed according to 
international 10-20 system with Cz as references. Emotion of participant has evoked 
using eight pictures of children faces for each emotion states with different valence 
and arousal that selected from RafD [18]. Each subject asked to sit and watch 
sequence of these pictures on screen away 75 cm. The time for each session was 1 
min. sampling rate was 250 and recorder frequency from 0.5-50 Hz. The collected 
data are filter using IIR filter to alpha band (7-13) Hz for RST model and filtered to 
the range (0.5-30) Hz for wavelet model. 
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2.2 Feature Extraction Methods 

Relative Source –Temporal Features (RST): This technique is based on using TDOA 
approach with EEG signals to extract the spatial sources and temporal information. 
Theoretical of this technique was explained in our previous studies [9]. Brief 
illustration will show here.   

• Initial four site electrode location and their x, y and z coordinates is taken 
from [19]. 

• Compute the time delay among the channels using Cross-Correlation (CC) 
[20]. One second movement window are used with 125 sample movement. 
Thus the time delays are computed for each one second sample within 50 
sec. However the time delay among EEG signals are expected to be in less 
than mille-second and because of our sampling rate was 250 Hz, time delay 
in some epoch cannot be capture within 1 second interval. To solve this, we 
use regression model (polynomial function with order 3) to fit our CC data. 

• Apply TDOA principle as explained in [9], three linear equations are 
produced which can be solved using Gaussian elimination methods to get x,y 
and z variables [21]. The  linear equation for three receivers have (x1 , y1, z1 ) 
, (x2 , y2, z2 ) and  (x3 , y3, z3 )  coordinates with speed v and time delay t12  and   
t13 is given by : 

                                           (1) 

Hence                                                                                                                         

                                
  (2) 

 

  (3) 

  (4) 

  (5) 

                                                   
• Choose another 4 different electrodes site locations and repeat the previous 

procedures. 
This procedure is repeated 20 times with different electrodes sites each. At the end, 

20 features with time samples are computed for three variables x, y and z that called in 
this work the virtual sources for the alpha wave activities.   
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Wavelet Coefficients based features (WC):  For comparison reason, emotion 
recognition based wavelet transform are applied [7] .Wavelet transform decompose 
the signal to its component with different scale giving multi resolution analysis for 
EEG signal. Discreet wavelet transform with the Daubechies fourth order was applied 
to decompose the EEG signal to four frequencies band and the extracted coefficient 
(C) corresponding to alpha band (7-13) was used to compute energy (EN)and the 
entropy (ET) .  

  (6) 

       (7) 

                                                      

2.3 Fuzzy Logic Model  

Takagi, Sugeno and Kang [15, 16] , introduced fuzzy model which is known  
(TSK )fuzzy system. TSK fuzzy model based on using simple rules generates from 
the input –output data. These rules consequences with a simple linear regression 
model to predicate the output.  In TSK approach , subtractive cluster methods [16] are 
used to cluster the input data by finding the center of each cluster which is represent 
the point with highest  number of neighborhood , consequently , the second cluster 
will be the second point of highest neighborhood. After using the subtractive cluster 
to identify number of cluster and its location the rules for TSK fuzzy are extracted 
from training data. For example, the rules of j cluster can express as: 

 
IF    x1 is in Aj

1   and x2  is in Aj
2 and  x3  is in Aj

3 …… xn  is in Aj n                         

 Then:         (8) 

where x is the input variables from 1 to n, y is the output variable, Aj
n  is the 

membership function for the cluster j and  pj
n is the  regression parameters for jth  

rules.  For this study the input variables are the extracted features that explained in the 
previous section  which contain 60 features and the output is labeled to two values 
indicate valence and arousal for each emotion states that will explain in next section. 
TSK fuzzy-subtractive approach was applied to the input-output variables to cluster 
the data and model the memberships which is that associated with each variable and 
clusters.  There are all of these statistical techniques and we have tested some of these 
for the comparison and others are being implemented as part of the PhD work... 
however, the purpose here is to present a soft-computing based techniques more 
academically speaking, the data is quite noisy as well as extremely unpredictable in 
other words, Fuzzy. Therefore the fuzzy classification was utilized 
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2.4 Classification Set up 

The classification process was done to separate among four emotion or classes. In this 
study two affective models were used to extract the label of each class. Fig.1 show the 
label of each class based on Russell model while Fig.2 shows the labels extracted 
from RafD model, hence the label present the mean value of valence and arousal for 
the selected images of each emotion.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. 2DE affective model of Russell                 Fig. 2. D affective model of RafD 

3 Results and Discussion 

In this study we consider user-independent case. Features are extracted from each 
subject and normalized using z-score then feed to classifier.  The labeled for each 
emotion states are identified based on Russell model. For simplicity we used 56 
epochs from each emotion state per subject. We use 10 fold cross –validation with 
70% of data as training and 30% of data as test. Table 1 shows the results of the 
classification using TSK compared with wavelet coefficients. Clearly RST –EC has 
high accuracy than WC-ER.  Emotion recognition using TSK fuzzy model was 
compared with our previous work using MLP and RLS classifiers for both RST 
features and WC as shown in Fig.3 and Fig.4. The three classifiers combined with 
RST features have high accuracy to detect different emotion states compare with WC 
features which indicates the efficiency of spatial source domain to recognize high 
cognitive task like emotion. Adding data-driven classifier such as MLP and TSK are 
more efficiency with RST features than RLS classifier which is depends on modeling 
the features using Gaussian kernel. However RLS and TSK show high accuracy than 
MLP for WC-ER system.  So far all the results were discussed before is based on 
predication two dimensions; valence and arousal for each emotion states using Russell 
model. Another scenario has been done to predicate the same dimension by using 
RafD model that was shown in Fig.3 hence each class or emotion states is labeled by 
the center of each state. Table 2 shows the classification rate for each emotion using 
RST features combined with different classifiers. There is slight different between the 
models. RafD model shows good accuracy even though all emotions labeled are 

 



582 W.K. Shams et al. 

 

positive and their values near from each others. However, RafD model show low 
ability to discriminate different emotion using WC as illustrated in Table 3. 

Table 1. Classification   rate values in parentage of each emotion of the proposed RST features 
compare with wavelet coefficient features using TSK Fuzzy as RST-EC up and WC-EC down 

 Happy sad neutral fear 

 98.67 0 1.33 0 
happy 60.34      7.32 23.25 9.09 
 0 97.75 2.25 0 
Sad 27.24 60.65 5.77 6.34 
 1.5 1.67 96.83 0 
neutral 10.4 15.25 64.01 10.34 
 0 2.16 0.6 97.24 
Fear 15.62 5.33 18.3 60.75 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Classification rate of each emotion using RST with different classifier 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Classification rate of each emotion using WC with different classifier 
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Table 2. Classification rate of each emotion uisng RafD and Russell model with RST  

 RafD model  Russell model  
classifier happy sad neutr

al 
fear A.C happy sad neut

ral 
fear A.C 

RST-
TSK 

97.24 98.1 94.4 94.9 96.21 98.67 97.7 96.8 97.2 97.6 

RST-
RLS 

90.30 100 92.9 93.2 94.12 99.28 92.9 94.7 92.4 94.3 

RST-
MLP 

97.09 98.3
1 

96.2 97.3 97.24 96.53 96.5 97.6 95.2 96.4 

Table 3. Classification rate of each emotion uisng RafD and Russell model with WC 

 RafD model  Russell model  
classifier Happy sad neutral Fear A.C happy sad neutral fear A.C 
WC-
TSK 

57.18 58.10 50.6 60.09 56.50 60.34 60.65 64.0 60.7 61.4 

WC-RLS 28.59 73.39 57.7 26.66 46.6 67.78 60.03 65.1 60.4 63.3 
WC-
MLP 

52.90 51.83 39.2 50.91 48.7 51.78 48.01 64.4 54.8 54.7 

4 Conclusion and Future Work  

This study evaluates the performance of RST features with TSK fuzzy inference 
system to detect brain activity under different emotion states using EEG signals. The 
results were so promising and show the robust and the efficiency of RST features to 
discriminate different classes. Also, it is noticed that RST give good results using 
data-driven classifier. Moreover, this study show that 2 D affective model of Russell 
to present the valence and arousal in positive and negative dimension help to 
distinguishes among emotion states more than RafD model. Future work will consider 
on user-dependent case and more kind of emotions states. 
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An Intelligent Agent Based Land Encroachment

Detection Approach
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Abstract. Land management and planning is essential to assist the eco-
nomic growth, sustainable resource use and environmental protection of
a city. This paper describes a novel approach to automatic encroach-
ment detection to assist in land management decision making. The ap-
proach begins with training the agent to identify and understand the
land cover/use features (such as buildings, parks, trees and roads) that
are predominant in the region of interest, and carries out segmentation
on the park data using the intelligent agent developed from the training
samples. Experiments on park images from Auckland New Zealand show
the effectiveness of the proposed approach.

1 Introduction

Land encroachment is defined as the change in the perceived or actual use of land
from either (a) human caused encroachment: the use of public land for private
purposes, or (b) environmental caused encroachment: the change in the ability
of land for its original purpose from an environmental change. The use of public
land for private purposes has been considered as an encroachment problem in
the Auckland region in New Zealand [1]. This paper examines the use of digital
image analysis in automatically detecting encroachment on public parks in two
specific areas in Auckland.

When dealing with encroachment it is necessary to differentiate between land
cover change and land use change. For example if an area of grassland belonging
to a public park has been fenced off by the resident of a property that is adjacent
to the park, the land cover of the majority of the grassland has not changed but
its land use has changed from public to private. Detection of this type of change
requires the use of high resolution data as features such as fences are hard to
detect and/or difficult to distinguish from features, such as paths, that are not
indicative of encroachment.

In practice, there are 4 general types of encroachment studied:

1. Permanent land cover/use change. For example a building has been built
either wholly on the park or partially on it.

2. Permanent land use change only. For example Public Park area has been
fenced off so is no longer accessible to public but land cover has not changed
(i.e. land cover is still grass).
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3. Temporary land cover/use change. For example the park (or part of the
park) has been used as a garbage dumping site in a way such that it can no
longer be used by the public as a park.

4. Physical boundary concealed by land cover. For example a boundary fence
has been moved, or removed completely, in an area that is obscured by dense
vegetation.

A new approach is in demand because the existing methods are unsuitable
for our specific needs, and the applications examined are not reproducible in the
New Zealand context. The strengths of the proposed method is that it can detect
the types of land encroachment identified above. Additionally, it is suited to the
type of land cover (urban and rural mixed) found in Auckland, as we design,
build and test a solution for our specific purpose. Trees need to be differentiated
because they can blur the boundary of a park and can obscure encroachment.

2 Methodology

As seen in the literature, agent-based image analysis has been used in a variety of
applications such as range-image segmentation [2], and off-road vehicle guidance,
[3]. The advantage offered by such a solution includes: (1) image processing
parallelization; and (2) the flexibility to concentrate on either spatial or temporal
changes. A review of agent-based image segmentation can be found in [4].

The flowchart in Fig. 1 shows an outline of the proposed agent-based image
solution to land-encroachment detection. The aim of the approach is to detect
any changes between a pair of multi-temporal images, which we identify as source
image I0 and target image I1 in this paper. The principle of the approach is that
the more that an agent learns about I0, the more accurate any change detection
(against I0) will be.

Fig. 1. Flowchart of proposed approach
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To learn as much prior knowledge as possible, about I0, in terms of the type
of land cover, additional image data is collected for training the agent with the
knowledge of 5 land cover patterns such as Grass, Buildings, Trees, Fences and
Roads, which represent the land cover/use characteristics that are most likely
to be found in or around public parks.

The agent with the prior knowledge of basic land cover is expected to learn
the source image I0 incrementally (i.e. incremental learning). When performing
land encroachment detection, the target image I1 is processed by the agent to
detect the change against I0. If encroachment has been detected then the size of
the encroachment can be calculated. Then the risk factor of the encroachment is
examined using the size of the encroachment and the rateable value of the land
that has been encroached upon.

2.1 Land Cover Feature Extraction

The land cover of a public park is usually grassland. However, in some cases,
the types of land cover in a public park can include buildings, play grounds,
paths and roads. The automatic detection of encroachment has to be able to
take spatial co-ordinates into consideration.

For better understanding of the image characteristics, we apply first an image
processing method - Gabor filter - to enhance images characteristics, such as
texture and contour information. A general Gabor filter function is expressed as

G(x, y;λ, θ, ψ, σ) = exp

(
−x′ + y′2

2σ2

)
exp

(
x

(
2π

x′

λ
+ ψ

))
, (1)

where [
x′

y′

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
, (2)

and λ represents the sinusoid’s wavelength, θ represents the orientation, ψ is the
phase offset, and σ denotes the spread of the Gaussian window [5].

Given a set of orientations θt,where t = 1, 2, ..., T , and according to (1) and
(2), using an image I as input, we obtain T different images GI

θt , which are
the data representatives of these Gabor filtered images in T orientations. For
example, let the 2-D image I with a size of M ×N be processed by Gabor filter,
and the magnitude of complex-valued subbands is denoted as

GI
θt =

{
mI

θt(m,n)|1 ≤ m ≤M, 1 ≤ n ≤ N, and t = [1, 2, ..., T ]
}
, (3)

where GI
θt is a set of real-valued 2-D subbands signals, representing the mag-

nitude of complex-valued wavelet coefficients obtained at the direction θt. The
magnitudes of each directional subband’s coefficients are computed and collec-
tively denoted by GI0

θt and GI1
θt for the multiple temporal images I0 and I1.

2.2 Encroachment Detection by Land Cover Change Detection

In order to learn content composition of the collected data D0 for I0, we employ
a clustering algorithm to discriminate different image contents from each other
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and group similar contents together. To maximize the flexibility of our method,
the general mathematic definition of clustering is shown below.

Given D0 = {D0(r)|1 ≤ r ≤ R}, C = {ck|1 ≤ k ≤ K} denote the set of
K clusters’ core vectors, and �k represents the number of vectors assigned to
k-th cluster, initially, k = 1 and ck = D0(1). Normally, clustering is to assign
data that are more “alike” into one cluster [6]. To determine the word “alike”,
a function for measuring similarity among data can be formulated as (2.2),

Similarity(a, b) =

{
0 if two vectors a and b are similar
1 otherwise

(4)

According to (2.2), we compare the similarity between D0 and C, for each
D0(r) and ck, where r = 1, 2, . . . , R and k = 1, 2, . . . ,K.

ifSimilarity(D0(r), ck)=0, assignD0(r) to kth cluster, and let ck=
�kck+D0(r)

Rk+1 ,

otherwise Similarity(D0(r), ck) = 1 , then assignD0(r) to (k+1)th cluster, and
let ck+1 = D0(r). Hereafter, let r = 1 we can repeat this process until the last
input vector D0(R) has been assigned into one cluster. At the end of clustering,
the cluster labels Y0 = {1, 2, ...,K} and D́0 = [D0, Y0] can be obtained. In this
paper, we apply K-means clustering to this stage as the first choice.

For the purpose of storing I0 as small size knowledge instead of keeping the
same size of I0, weighted incremental linear proximal support vectormachine (wIn-
cLPSVM) is employed. It is suitable for our study because of its following prop-
erties: 1) it is an incremental learning algorithm capable of learning a huge size
input image piece by piece; 2) in contrast to the traditional incremental LPSVM,
the samples from positive and negative are processed separately in wIncLPSVM
which makes it easy to observe the effect of one step incremental learning.

The core model used in this work is a matrix component in wIncLPSVM
model namely M which condenses the knowledge of positive class. In practice,
we train a M0

Ok for each object obtained from the objects decomposition on
image I0 (D́0). For the kth object in I0, the model is calculated as

MOk
0 =

[
DOk

0 −e]T [
DOk

0 −e] , (5)

where e = [1, . . . , 1]T . After the training phase, we conduct one step incremental
learning to update MOk

0

M ’Ok
0 (r) = MOk

0 +
[
DOk

0 (r) −e]T [
DOk

0 (r) −e] , (6)

using the each sample from data D0 and use the eigenvalue of updated M ’Ok
0

to measure the influence of incoming sample. By going through all samples in
each object on corresponding model, a range of influences can be obtained for
each object. A range RangeOk

0 is a closed interval defined by the maximal and
minimal eigenvalues as

RangeOk
0 =

[
min(eig(M ’Ok

0 )),max(eig(M ’Ok
0 ))

]
. (7)

The incremental learning is conducted on learning the model MOk
0 , so the

image I0 can be learned piece by piece. For example, D́0 is separated into N
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pieces with 5 objects. There are five MOk
0 models, and each of them can be

stored in a 20 × 20 matrix. In contrast, D́0 is a 154814× 20 matrix, the stored

model
{
MOk

0 |k ∈ [1, 5]
}

includes five 20 × 20 matrices. Thus the size of stored

knowledge is 154 times smaller than original image dataset D́0.

2.3 Change Detection on the Target Image I1

One-step-more incremental learning detect changes against I0 by measuring the
effect of incremental learning on new incoming data I1. Usually, based on the
model of batch learning, incremental learning is conducted continuously step
by step from the appearance of the first sample to the completion of that all
samples being learned. However, in our method, while a new sample appears,
the incremental learning is merely conducted once (i.e., one step) on the basic
model obtained from I0. Hereafter, when the next sample comes, the incremental
learning agent starts over from the original I0 base model and repeat the incre-
mental learning detection step. In other words, while conducting image change
detection the incremental learning agent collects no new knowledge in memory.

In the proposed approach, as a result of knowledge discovery on I0, I0 now is
represented as an incremental learning model M0.

M0 = {< MOk
0 , RangeOk

0 >}, k = 1, . . . ,K (8)

The basic detection model MOk
0 is formulated by (5). The range RangeOk

0 is
given by one-step learning (6) and (7). Lets assume that each data sample from
D1 (the collected data from I1) has the same object label as its corresponding
sample from D0. The one-step more incremental learning on I1 can be conducted
on each object of I0 by (9) as,

M ’Ok
1 (r) = MOk

0 +
[
DOk

1 (r) −e]T [
DOk

1 (r) −e] . (9)

The effect of new sample DOk
1 (r) to MOk

0 can be calculated via (10).

effects(r) = eig(M ’Ok
1 (r)). (10)

Then, the change status of the r-th sample is determined by effects(r) following
the rule as,

Change(r) =

{
0, effects(r) ∈ RangeOk

0

1, effects(r) /∈ RangeOk
0 .

(11)

Consequently, a binary image (or mask)BOk
={bok(m,n)|1 ≤ m ≤M, 1 ≤ n ≤ N}

are formed for each object defined in I0.

3 Experiments and Discussions

The data used in the experiments is digital image data of New Zealand specifi-
cally the Auckland area. The data sets used for the detection of encroachment
are digital images of areas that include public parks.
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1. Aerial Photographs. The aerial photographs are captured on-line. The scale
is set manually to 7.5cm/234m at time of capture and the ratio is one pixel
to 0.5 meters. The images are in JPEG format and are collected from Google
Earth.

2. Land Boundary Data. The boundary data is used to verify that encroach-
ment has been detected and to estimate the size of encroachment. The re-
gional councils Manukau and North Shore supplied boundary data in GIS
shape file format.

To demonstrate the automatic encroachment detection technique, for this pa-
per, four parks: Wyllie Park, Teviot Reserve, Auburn Reserve, and Diana Reserve
are selected as representative examples of the four categories of encroachment
discussed above.

The experiments were carried in three phases. The first phase involves teaching
the agent prior knowledge about the land cover patterns such as grass, buildings,
trees, fences and roads, as they are most commonly found in and around public
parks in Auckland. Note that, for this purpose, we collect data only from non-
park areas for the training of the agent. After the first phase learning, the agent
now has the prior knowledge (i.e., the number of clusters k and initial mean
vector of each cluster). In the second phase, we set the equipped agent to perform
spatial incremental learning on I0 in order to obtain knowledge from the source
image.The third phase is change detection on I1. We set the I0 learned agent to
repeat the incremental learning process on I1 to detect change of I1 against I0.

Four specific experiments are carried out:

1. To detect permanent encroachment such as buildings.
2. To detect encroachment in the form of areas of a park fenced off.
3. To detect temporary encroachment such as vegetable-growing.
4. To detect possible areas of encroachment that may obscured by natural ob-

jects such as trees.

Type 1: Permanent land cover encroachment is where a building is constructed
illegally on a public park. In land management terms this is the most serious
form of encroachment. Although it is relatively simple to detect the presence of
a building on a park, one difficulty in detecting permanent encroachment is the
misclassification of legitimate constructions. Fig. 2(a) shows Wyllie Park with
the council boundary, Wyllie Park with a house encroaching near the top-left
corner and the results of the image segmentation algorithm: white pixels indicate
encroachment. In the next section we detail the performance of our method of
classification.

Type 2: We provide a permanent land use encroachment example where a
fence is built illegally on a park, see Fig.2. Fig. 2(b) shows Teviot Reserve with
the council boundary, the ground truth image with an introduced fence ele-
ment and the results of the image segmentation approach, white pixels classify
encroachment.

Type 3: Temporary Use Encroachment, for example vegetable-growing, is not
as serious as permanent encroachment as it is normally easier to resolve by the
authorities. This type of encroachment can be difficult to detect especially when



An Intelligent Agent Based Land Encroachment Detection Approach 591

(a) Wyllie park

(b) Teviot reserve

(c) Auburn reserve

(d) Diana reserve

Fig. 2. Experiment results

the colour of the vegetation is similar to the naturally occurring colours in the
park. Fig. 2(c) shows Auburn Reserve with the council boundary shown on an
overlay, the ground truth image with an introduced vegetation element and the
results of the image segmentation approach, white pixels indicate the vegetation
encroachment detection.

Type 4: Physical boundary encroachment is a difficult problem to solve, es-
pecially when the boundary encroachment is concealed under a canopy of vege-
tation. However, not all vegetation canopies will hide illegal encroachment. Fig.
2(d) shows the Diana Reserve park area, the ground truth image with an intro-
duced plant elements and the results of the image segmentation approach, white
pixels show the areas of newly introduced plant life. The elements detected on
park boundaries could indicate a possible encroachment.
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Table 1. Details of the encroachment detected on the chosen parks

Park
Name

Encroachment
Type

Park Size
(pixels)

Encroachment Size
(pixels)

Encroachment
Scale

Park Rateable
Value(NZD)

Encroachment Commercial
Value(NZD)

Wyllie Building 230, 214 7, 442 0.03 485, 000.00 14, 550.00
Teviot Area of park fenced off 2007, 890 158, 297 0.07 510, 000.00 35, 700.00
Auburn Introduced vegetation 735, 456 20, 284 0.027 2150, 000.00 59, 288.00
Diana Newly introduced plant life 1260, 279 154, 431 0.12 690, 000.00 84, 550.00

Table 1 above shows the experiment results in the terms of the size and scale
of the encroachment for each of the parks. The rateable value of each park is
obtained from the Auckland City Council [7]. The size of encroachment in pixels
is divided by the total area of the park in pixels to give the scale of encroachment.
The rateable value of the park is multiplied by the scale of encroachment to give
the commercial value of the encroachment. The impact of the encroachment
depends on the type of encroachment and the scale of encroachment.

4 Conclusions and Future Work

The results of the experiments show that the approach is successful in high-
lighting possible occurrences of encroachment. The the main disadvantage of
the approach is that cannot work as a stand-alone solution - ground survey data
collection needs to take place to confirm the occurrence of encroachment. The
advantages of the approach are that permanent encroachment (such as buildings
and fences) can be detected and temporary encroachment (such as vegetable-
growing and garbage dumping) can also be detected. Another disadvantage of the
approach is that it is not as reliable in detecting encroachment and/or changes
in areas where there is a high concentration of tree as these area have a high
variation in colors and concentration.

References

1. Dacey, S., Barbour, R.H., Fernando, A.: Participatory Land Use Management of
Public Spaces in New Zealand. In: Proceedings of the JURSE Conference on Urban
Remote Sensing and Planning, Munich, Germany, pp. 449–452 (2011)

2. Mazouzi, S., Guessoum, Z., Michel, F., Batouche, M.: An Agent-Based Approach for
Range Image Segmentation. In: Jamali, N., Scerri, P., Sugawara, T. (eds.) MMAS
2006, LSMAS 2006, and CCMMS 2007. LNCS (LNAI), vol. 5043, pp. 146–161.
Springer, Heidelberg (2008)

3. Broggi, A., Cattani, S.: An agent based evolutionary approach to path detection for
off-road vehicle guidance. Pattern Recogn. Lett. 27(11), 1164–1173 (2006)

4. Mishra, P., Srivastava, N., Shukla, K.K., Singhal, A.: Agent based Image Segmen-
tation Methods: A Review. Interational Journal Comp. Tech. Appl. 2(3), 704–708
(2011)

5. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters. Journal of the Op-
tical Society of America A Optics and Image Science 2(7), 1160–1169 (1985)

6. Huang, Z.: Extensions to the k-Means Algorithm for Clustering Large Data Sets with
Categorical Values. Data Mining and Knowledge Discovery 2(3), 283–304 (1998)

7. Auckland City Council: Auckland GIS Viewer,
http://maps.aucklandcouncil.govt.nz/aucklandcouncilviewer/

http://maps.aucklandcouncil.govt.nz/aucklandcouncilviewer/


Generic Unpacking Method

Based on Detecting Original Entry Point

Ryoichi Isawa1, Masaki Kamizono1,2, and Daisuke Inoue1

1 National Institute of Information and Communications Technology, Tokyo, Japan
2 SecureBrain Corporation, Tokyo, Japan

{isawa,masaki_kamizono,dai}@nict.go.jp

Abstract. In this paper, we focus on the problem of the unpacking of
packed executables in a generic way. That is, we do not assume specific
knowledge about the algorithms used to produce the packed executable
to do the unpacking (i.e. we do not extract/create a reverse algorithm).
In general, when launched, a packed executable will first reconstruct
the code of the original program, write it down someplace in memory
and then transfer the execution to that original code by assigning the
Extended Instruction Pointer (EIP) to the so-called Original Entry Point
(OEP) of the program. Accordingly, if we had a way to accurately identify
that transfer event in the execution flow and thus the OEP, we could
more easily extract the original code for analysis (cf. by inspecting the
remaining code after the OEP was reached). We then propose an effective
generic unpacking method based on the combination of two novel OEP
detection techniques, one relying on the incremental measurement of
the entropy of the information stored in the memory space assigned to
the unpacking process, and the other on the incremental searching and
counting of potential Windows API calls in that same memory space.

Keywords: Packer, Kernel mode, NX bit, Malware analysis.

1 Introduction

Malware authors often make use of packers to protect their malware programs
from code analysis. They can easily pack (compress and/or encrypt) the original
code of a malware program with the packers (e.g., UPX, ASPack, and PECom-
pact), therefore we have to extract the hidden original code from the packed
malware before code analysis. Because many types of packer exist and their
packing algorithms vary widely, manual unpacking operations which require us
to detect the packer type used and to infer the packing algorithm can induce
huge additional analyzing costs.

Many anti-malware analysts rely on automated generic unpacking techniques
to skip the manual unpacking operations. The existing methods [1–6] can be
classified into three groups according to their purposes: to obtain the original
code of a packed malware program [1], to detect the OEP in addition to obtain-
ing the original code [2–4], and to detect malware with an anti-virus software
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program even though the malware program is packed [5, 6], where OEP means
the address which indicates the beginning point on the original code loaded into
the memory. In this paper, our purpose is the second one, which is to detect the
OEP in addition to obtaining the original code.

Finding the OEP of a packed program should provide us with several benefits in
terms of code analysis. If we disassemble the original (binary) code starting from
a wrong address, we are to get a wrong assembly code because some architectures
like x86 architecture apply an instruction set with a variable bit length for the rep-
resentation of instructions. In contrast, starting from the OEP, we can transfer the
original code correctly and obtain useful information from the program, (e.g., the
names of stolen files and servers used by attackers). For instance, such information
can be used in computer forensics to track malware authors or attackers.

We focus on the elementary behavior of packed executables to perform generic
unpacking. A typical packer such as UPX and ASProtect compresses or encrypts
a program code and adds its unpacker code to the packed one. When the packed
program is run, it executes the unpacker code first, then the unpacker code
decrypts and writes the original code into the memory. After the unpacker code
completes the decryption, the extended instruction pointer (EIP) moves from
the unpacker code to an address in the original code. Note that OEP is the
address to which the EIP moves from the unpacker code. To summarize, the
elementary behavior is that the original code will be decrypted and written first
and then executed, whichever packer is used.

In this paper, we propose a novel generic unpacking method featuring two
OEP detection approaches: one is based on an entropy analysis and the other is
based on the number of API-call instructions present in the memory. The first
approach focuses on the entropy score of the decrypted original code. Generally,
the entropy score of non-random data is low, and the entropy score of a set of
instructions will be also low because it consists of often-used instructions (e.g.,
mov, push, call, cmp, and add). When caching a page fault, if the entropy score
is lower than a given threshold value, that approach decides that the address to
which the EIP points is the OEP. At the end of the decryption, the number of
instructions should become the highest in the decrypting process. The second
approach focuses on API-call instructions such as ‘call APIaddress’. The intu-
ition is that we cannot find API-call instructions contained in the packed original
code, but we can find them after the decryption is completed. If the number of
API-call instructions is higher than another given threshold value, that second
approach decides that the address of the EIP is the OEP. Our method outputs
an address as the OEP when both the first approach and the second one reach
the same conclusion at which point it outputs a memory dump of all memory
areas that the packed program loaded into the memory.

Our main contribution is to propose two OEP detection approaches which are
greatly different from existing methods. In particular, our method focuses on the
changing information of the original code, whereas almost all existing methods
focuses on the unpacker code. Distinct OEP detection techniques are strongly
needed because we can combine unpacking methods to implement a simple but
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practical solution. That is, each method independently detects the OEP from
OEP candidates and we finally determine the best candidate as the OEP which
wins most votes. The experiment shows that our method can unpack 14 of 20
files packed with distinct packers.

The rest of the paper is organized as follows: Section 2 introduces related
works. Section 3 presents our method. Section 4 shows an experimental evalua-
tion of our method. Finally, Section 5 concludes the paper.

2 Related Works

2.1 Commonly Used Techniques

The original code of a packed file, independently of the packer that was used,
will be decrypted and written, then the original code will be executed. Therefore
the original code will be contained inside the instructions and data that are
dynamically generated.

There exist two techniques that can detect dynamically generated instruc-
tions and data: one relies on disassembly and the other relies on page protection
settings named W ⊕ X page protection [7], where the ‘W’ and the ‘X’ stand for
write and execute, respectively. The former technique disassembles each instruc-
tion and catches write operations (e.g., ‘mov %eax, [%edi]’ and ‘push %eax’ [2]).
The technique can learn the address of the current execution from the EIP. If
a dynamically generated code such as the code written by ‘mov’ or ‘push’ are
executed, the technique memorizes the address of the written code and the code
itself as an OEP candidate and part of the original code, respectively. The latter
technique modifies the page protection settings to be executable/read-only and
read/write-only in sequence. The technique gives the settings of executable/read-
only to the whole memory or a certain memory area just after loading a packed
file on the memory. When the unpacker code writes instructions to one of the
unwritable areas, the technique can catch a page fault and modifies the area
to be read/write-only. Similarly, when the unpacker code executes instructions
of the non-executable area, the technique can catch a page fault and recognize
dynamically generated instructions.

As we mentioned above, we can recognize dynamically generated instructions,
but many page faults occur in practice. For example, Guo et al. show that 11
exceptions occur when they execute a file packed with UPX under only W ⊕ X
page protection [6].

2.2 Existing Methods

Renovo [2] monitors jump instructions such as ‘jmp’ to detect the OEP of a
packed file. If the EIP moves to a dynamically generated instruction through a
jump instruction, Renovo decides that the address of the generated instruction is
the OEP. Because Renovo monitors and disassembles each instruction, it incurs
a significant overhead. Note that we must apply single stepping and disassembly
if we have to recognize instructions such as jump instructions.
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Kawakoya et al. [4] focus on a packed file’s memory access behavior to detect
the OEP, where memory access means operations of read, write, and execute.
They define an equation that represents the memory access behavior and they
input a type of memory access, which is read, write, or execute, to the equation
in order to obtain a representing value of memory access. If values that the
equation outputs are changing rapidly, Kawakoya et al.’s method decides that
the changing point is the OEP.

OmniUnpack [5] applies W ⊕ X page protection. Every time a dynamically
generated instruction is executed and the instruction is for executing dangerous
system calls (e.g., registry/network/file-write operations and process creation),
OmniUnpack invokes anti-virus software to scan newly generated code. Indeed,
if OmniUnpack was to invoke an anti-virus software program for all exceptions,
it would incur a significant overhead. OmniUnpack aims to detect a malware
program with anti-virus software even if the malware program is packed, and
it does not aim to detect the OEP. OllyBonE [8] is a tool that is used for
implementing OmniUnpack. OllyBonE supplies W ⊕ X page protection.

Justin [6] applies W ⊕ X page protection and aims to detect packed malware
programs with anti-virus software as well as OmniUnpack. One of the differences
between Justin and OmniUnpack is that Justin finds out OEP candidates and
an anti-virus software program scans the whole memory starting from each OEP
candidate. Guo et al. propose three approaches to guess if the address on which
a page fault occurs is the OEP. The first is to check if dynamically generated
code area contains unpacker code when a page fault occurs. The second is that
several stack pointers are the same as their initial state. The third is to check if a
packed file accesses the command-line argument. Justin independently combines
each approach with W ⊕ X page protection. If the address appears to be the
OEP, an anti-virus software program scans the whole memory starting from the
address. Justin can supply OEP candidates but does not specify the OEP.

3 Proposed Method

3.1 Workflow

Our system consists of a manager program and an unpacking driver. For generic
unpacking, just after the manager runs a packed PE file, it stops the process. At
which time, a signal is sent to the driver saying that the process just ran. Having
received it, the unpacking driver memorizes the initial state of the memory that
the process uses. After the driver turns on NX bit flags on the memory, the
manager restarts the process. When the process executes an instruction whose
NX bit flag is on, a page fault occurs. After catching it, the driver stops the
process. If a memory page that process is accessing at the time is different from
the initial state, the driver registers/saves the address on which the page fault
occurs as an OEP candidate. The driver then checks if the candidate is correct
with the entropy-based approach and the approach focusing the number of API-
call instructions. If both approaches decide that the candidate is correct, the
driver outputs the OEP and obtains a memory dump; otherwise, the manager
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restarts the process. Our system repeats the unpacking work until the OEP is
determined or at most 50 times.

3.2 OEP Detection Technique Based on Entropy Analysis

We apply Lyda et al.’s file type identification method [9] as an entropy-basedOEP
detection technique. Their method can recognize which file type, text, executable,
encrypted, or packed file as follows. It divides a whole file into successive blocks
of size q bytes and calculates an entropy score for each block using the following
equation:

H(x) = −
n∑

i=1

p(i) log2 p(i) (1)

where q is a given value and q ∈ {1, 2, · · ·}, x means one of the blocks, n denotes
the number of unique one-byte values in x, and i and p(i) denote the i-th smallest
one-byte value in x and a frequency of the i-th smallest one-byte value in x,
respectively. We express, for example, x as hexadecimal numbers “12 34 AB
34 56”. In this case, q = 5, n = 4, the first smallest one-byte value – the
fourth one are 12, 34, 56, and AB, and pairs of (i, p(i)) are (1, 0.2), (2, 0.4),
(3, 0.2), and (4, 0.2), respectively. Lyda’s method then calculates the average
and the maximum of the entropy scores of all blocks. If both the average and
the maximum are smaller than given threshold values, Lyda’s method infers that
the file is neither encrypted nor packed.

As Lyda’s method is not suitable for generic unpacking, we examine entropy
of packed programs and customize the method. That is, we consider encrypted
data as packed data and do not use the maximum value of entropy. The reason
why we do not use the maximum is that a packed file definitely contains packed
data, and the maximum is always high due to the packed data, no matter how
much progress the unpacker code makes. If the average entropy score of the file
is smaller than given threshold m, our entropy-based approach decides that the
OEP candidate is correct.

3.3 OEP Detection Technique Focusing on API-call Instructions

This approach searches for API-call instructions as follows. It takes as a list API
addresses of DLLs exported in the memory and searches for the API addresses
based on two ways. The first one simply searches for each API address, which,
for example, corresponds to the right of ‘call APIaddress’, on the memory
areas whose NX bit flags are on. The other searches for each API address added
by given values to counter stolen bytes techniques. Figure 1 shows an example
of an anti-debugging technique called the stolen bytes technique. When we call
ShellExecuteW API, we just directly jump to address ‘0x73813C59’ like the
left disassembly code. If one intends to thwart code analysis with a stolen bytes
technique, it copies several instructions in an API to the main module and write a
jump instruction that points to the address just below the last copied instruction
like the right code. When a code is modified with the stolen bytes technique,
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ShellExecuteW

0x73813C59
0x73813C5B
0x73813C5C

:
:
:

mov edi, edi
push ebp
mov ebp, esp

Shell32.dll

...

0x0040F010 :
...

Main module

jmp 73813C59h

...

ShellExecuteW

0x73813C59
0x73813C5B
0x73813C5C

:
:
:

mov edi, edi
push ebp
mov ebp, esp

Shell32.dll

...

0x0040F010
0x0040F012
0x0040F013

:
:
:

...

Main module

mov edi, edi
push ebp
jmp 73813C5Ch

...

(Stolen bytes)

Fig. 1. An example: the left is usual and the right is used with a stolen byte technique

API addresses of the main module do not appear. For example, ‘jmp 73813C59’
in the left, which is ShellExecuteW address, is modified as ‘jmp 73813C5C’ in
the right. To fill a gap between an original address and a modified address for
search, our method searches for from an API address added by 1 through the
API address added by y for each API on the memory areas, where y is a given
value and y ∈ {1, 2, · · ·}.

When a page fault occurs, if our API-call-instruction based approach can find
more than z API addresses using both the first way and the second one, the
approach infers that an OEP candidate is correct, where z is a given threshold
value and z ∈ {1, 2, · · ·}.

4 Experiments

4.1 Setup

We use 20 packers described in Table 1. As sometimes a packer cannot pack
an executable file correctly, we pack three executables, calc.exe, comp.exe, and
vim.exe, in turn with each packer. The calc.exe and comp.exe are obtained from
the system folder of Windows XP and vim.exe is a variant of an editor tool vi
for Windows XP. We take the first packed file that can run for each packer. We
unpack the 20 packed files described in Table 1 with our method.

The environment for unpacking is as follows. We used a PC whose CPU and
host OS are Intel Xenon 3.10 GHz and Ubuntu 12, respectively. We installed
KVM to the host OS, and installed Windows XP Professional SP3 to KVM as
a guest OS. We implemented our method on the guest OS.

We set block size q and threshold value m of average entropy, which are
described in Section 3.2, to 256 and 5.5, respectively. We picked these values
from our experiments. We set y for API address search and threshold value z
of the number of API addresses, which are described in Section 3.3, to 15 and
5. The reason why we set z to 5, which is small, is that there exist executables
which call just a few APIs.



Generic Unpacking Method Based on Detecting Original Entry Point 599

Table 1. The unpacking results

No. Packer name exe (1) (2)

1 ACProtect 1.32 calc
√ √

2 ASPack 2.12 calc
√ √

3 Exe32Pack 1.4.2 comp
√ √

4 ExePack 1.4 vim
√ √

5 eXPressor 1.5.0.1 calc
√ √

6 FSG 2.0 calc
√ √

7 Molebox pro 2.6.4 calc
√ √

8 Npack 1.1.300 calc
√ √

9 Nspack 3.7 calc
√ √

10 PECompact 2.79 calc
√ √

(1) : To obtain all the original code
(2) : To detect the OEP

No. Packer name exe (1) (2)

11 PE-Pack 1.0 vim
√ √

12 Upack 0.39 calc
√ √

13 UPX 3.08 calc
√ √

14 WWPack32 1.20 vim
√ √

15 ASProtect 2.1 calc
√ ×

16 Mew11 1.2 calc
√ ×

17 Armadillo 4.20 calc × ×
18 Obsidium 1.4.5 calc × ×
19 Morphine 1.7 vim × ×
20 Themida 1.8.5.5 calc × ×

4.2 Unpacking Results

Table 1 shows the unpacking results for our method. ‘(1)’ in the table shows
whether or not our method is able to obtain a memory dump that contains all
the original code, where ‘

√
’ and ‘×’ denote success and failure, respectively. If a

result do not satisfy ‘(1)’, our method failed to obtain any of the original code.
‘(2)’ shows whether or not our method is able to detect the OEP. We consider
results that satisfy both ‘(1)’ and ‘(2)’ as unpacking success.

Our method is able to unpack the packed files of cases no. 1 – 14 successfully.
In cases no. 15 (ASProtect 2.1) and 16 (Mew11 1.2), our method cannot detect
the OEPs of the two packed files. To find the reasons, we manually monitored
each instruction of the packed file of case no. 15. When our method decides an
OEP candidate is correct, the EIP has not indicated the OEP. After we skip
several page faults, the EIP indicates the OEP. Threshold value m of average
entropy and z of the number of API addresses are not suitable for case no. 15.
The reason for case no. 16 is the same as that of case no. 15. The results of cases
no. 17 – 20 do not satisfy both ‘(1)’ and ‘(2)’. The failure reason for case no.
19 (Morphine 1.7) is a consequence of the implementation of our method. The
packed file of case no. 19 dynamically allocates memory for writing its original
code. Our implementation does not turn on NX bit flags of such dynamically
allocated memory areas. When our method tries to unpack the packed files of
cases no. 17 (Armadillo 4.20), no. 18 (Obsidium 1.4.5), and no. 20 (Themida
1.8.5.5), no page faults occur. We tried to uncover the reason for that, but could
not find an acceptable explanation. Armadillo, Obsidium, and Themida apply
strong anti-debugging techniques. We guess that they detect KVM and stop
their process in the experiment to thwart analysis.

We can tell from 14 success results that our method is efficient for generic
unpacking. The results of cases no. 15 and 16 are failures, but our method should
be able to unpack the two if we tuned the parameter values of our method. To
unpack files packed with Morphine, we will implement our method such that it
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can turn on NX bit flags of dynamically allocated areas. For cases no. 17, 18,
and 20, we will consider how to bypass anti-analysis techniques.

5 Conclusion

In this paper, we propose a generic unpacking method featuring two OEP detec-
tion approaches: one is an entropy-based approach and another focuses on the
number of API-call instructions. Our key ideas are greatly different from those
of the existing methods. For implementing a practical unpacking solution, we
can independently use several methods to detect the OEP and we can decide
the OEP from candidates as an election. Thus several types of OEP detection
approaches are required. The experiment shows that our method can defeat 14
of 20 packers. In our future work, we plan to apply machine learning approaches
instead of just using threshold values in order to overcome the issues we had
with trials of cases no. 15 and 16 in the experimental phase.
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Abstract. In this paper we propose a new multivariate regression ap-
proach for financial time series forecasting based on knowledge shared
from referential nearest neighbors. Our approach defines a two-tier ar-
chitecture. In the top tier, the nearest neighbors that bear referential
information for a target time series are identified by exploiting the fin-
ancial correlation from the historical data. Next, the future status of the
target financial time series is inferred from heritage of the time series by
using a multivariate k-Nearest-Neighbour (kNN) regression model ex-
ploiting the aggregated knowledge from all relevant referential nearest
neighbors. The performance of the proposed multivariate kNN approach
is assessed by empirical evaluation on the 9-year S&P 500 stock data.
The experimental results show that the proposed approach provides en-
hanced forecasting accuracy than the referred univariate kNN regression.

Keywords: Time series forecasting, correlation analysis, kNN regres-
sion, referential kNN regression, S&P 500 Indices.

1 Introduction

Time series forecasting now become a common problem in numerous areas of
research (e.g., hydrology, finance, climatology and etc.), In particular financial
time series prediction has been drawn substantial attention in both the computer
science and financial communities recently and remains a very specialized task.
Various studies have shown that financial time series is predictable by using
both linear and non-linear models [1]. Actually, recent scholars have revealed
that the nonparametric non-linear models tend to outperform linear models in
financial time series forecasting [2]. In practice, k-Nearest-Neighbour(kNN) is one
of the most commonly employed algorithm in time series forecasting due to its
simplicity and intuitiveness in alike instances recovering from large dimensional
feature spaces [3], and also the tolerance in high-dimensional and incomplete
data [4]. The kNN algorithm assumes that sequences of time series have emerged
in the past are likely to have a resemblance to the future sequences and for
generating kNN based forecasts, similar patterns of behaviour are masked in
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terms of nearest-neighbours, and their development over time is exploited to
yield the forecast [5].

Despite of the good general performance of kNN regression in financial time
series forecasting, most of the existing researches in kNN regression derived fin-
ancial time series forecasting are mainly focusing on individual historical data,
without referencing any extra associated knowledge. The motivation of this re-
search is, since the fluctuation of financial time series is changing dynamically
due to the evolutions of many relevant economic and financial activities [6], the
accuracy of the univariate forecasting model will not be optimal when insufficient
knowledge has been consulted. The historical knowledges were extracted from
stock own are obviously inadequate compare with the knowledges were collected
from group of stocks that share similar behaviours. In this study, we attempt to
develop a model to forecast the financial time series product, by conducting ref-
erencing involved multivariate kNN regression over large scaled historical time
series data. The application of referential knowledges facilitate the enhancement
of forecasting accuracy since the information used for forecasting will be less
biased due to sparse referential consultation.

The beginning of this research is to use numerical distance measurement to
extract the interrelationship between all the financial time series based on histor-
ical data, and provides a clear picture of the network which allows user to easily
identify the neighbors of each time series. Once the cognates of references have
been recognized, we will apply the kNN regression algorithm over such findings
for each financial time series.

The outline of the paper is organized as follows: In Section 2, we briefly in-
troduces the background of financial correlation analysis and kNN regression
algorithm, plus the review of related works in the financial time series fore-
casting. Then, we present the proposed referential financial time series forecast-
ing method in Section 3. Next, the experimental design regarding to proposed
method, and discussion of comparison in results have been presented in Section
4. Finally, we have drawn the conclusion in Section 5.

2 Related Work

2.1 Correlation Analysis in Financial Time Series

In fundamental stock correlation analysis, the focus is on the investigation of
stocks’ fundamental attributes [7], regardless of any numerical financial calcula-
tion. In [8], Clarke stated that economic intuition supports the idea that firms in
the same industry share high return correlations compared to firms in different
industries.

Also, as suggested in [7], stocks can be categorised into homogeneous groups
using criteria other than industry affiliation and in the literature, academic re-
searchers and investment practitioners have figured a variety of approaches to
construct homogeneous stock groups. Notable works include the heuristics ap-
proaches proposed by Farrell[9], Elton and Gruber[10], the clustering method
proposed by Brown and Goetzmann [11].
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In addition, stocks are commonly grouped on the basis of primary economic
attributes such as market capitalization or operating performance.

2.2 k-Nearest-Neighbor Regression

Because of its simplicity and intuitiveness, k-nearest-neighbour (kNN) algorithm
is widely adopted for classification and regression [12,13].

The application of kNN to time series forecasting under nonparametric loc-
ally weighted regression condition was presented independently by Yakowitz [14]
and Cleveland [15] within the community of statistics. In financial time series
forecasting field, kNN has also drawn pretty much of attention because of the
work by Meade [16], Fernando et al. [3], and its performance have been validated
through numerical studies.

The underlying intuition to apply kNN to univariate time series is that consist-
ent data-generating processes often produces observations of repeated patterns
of behavior. Therefore, if a previous pattern can be identified as similar to the
current behavior of the time series, the subsequent behavior of previous pat-
tern can provide valuable information to predict the behavior in the immediate
future. In the kNN regression algorithm introduced by Meade [16], the target
variable of a time series forecasting problem is presented as a sequence of in-
terval scaled values. Given a pattern whose future value is to be predicted, the
algorithm identifies the k most similar past patterns and combines their future
values to make the prediction on future value.

3 The Proposed Model

As aforementioned, stock prices in the market fluctuates with the evolution of
related economical and financial factors. Intuitively, stocks share the common
characteristics more or less, as proved by related economical studies. Our cor-
relation analysis among related stocks indicated that, stocks from the same in-
dustry are more close to each other in terms of correlation coefficients due to
their consensus to the same external factors. Therefore, we propose to improve
the accuracy of previous studies on kNN regression by incorporating associated
knowledge from closely related stock indices.

The proposed method is implemented in two steps. In the first step, we try to
identify a set of referential nearest neighbors (RNN) which are likely to provide
relevant information for the prediction. In the second step, pattern searching
and prediction is done by respecting all the historical information in RNN. The
details of the two steps are addressed in the following two subsections.

3.1 Search for Referential Nearest Neighbors

Let X = {xi|i = 1, ..., N} be a collection of stock indices, where xi is a set of
observations xit, each being recorded at the closing of n consecutive working
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days. To retrieve the referential nearest neighbors (RNN) of a target time series
xi, we make use of the Pearson’s correlation coefficient,

ρ(xi,xj) =

∑n
t=1(xit − x̄i)(xjt − x̄j)√∑n

t=1(xit − x̄i)2
√∑n

t=1(xjt − x̄j)2
, (1)

where x̄. is the mean of the vector. Then the following dissimilarity metric [17]
is adopted to compute the proximity between xi and xj :

D(xi,xj) = 1− ρ2(xi,xj). (2)

Based on this distance metric, we can identify a set Ki of k nearest neighbors,
namely, the RNNs, which is comprised of stock indices with strong resemblance
to characteristics of xi and therefore can provide reference for predicting future
values of xi. Note that xi is included in Ki by default because the distance
between xi and itself is always 0.

3.2 Referential Nearest Neighbor Regression

Now we move on to forecast future values of xi based on the historical knowledge
stored in Ki. The current state of xi is represented by the latest z consecutive
observation of xi at time n, i.e., pi = [xn−z+1, xn−z+2, · · · , xn], where z is the
pattern length parameter determined later. Let Ti be the set of all consecutive
patterns of length z that could be extracted from time series in Ki. Based on the
distance metric in (2), we select M most resembling patterns to form a referen-
tial pattern set Ri. Then prediction of xi(n+h), where h denotes the forecasting
horizon, is obtained by

x̂i(n+h) =
1

M

∑M

j=1
pj(n′

j+h), (3)

where n′
j is the last time index of referential pattern pj ∈ Ri.

3.3 Evaluation Metrics

There are many criteria that can be used to evaluate the performances of fore-
casting models in the numerical study [4]. In this paper, the prediction per-
formance of the proposed forecasting model is evaluated through two typical
statistical metrics: Mean Absolute Percentage Error (MAPE) and Normalised
Mean Squared Error (NMSE). The usage of MAPE and NMSE is to measure the
derivation between the predicted and actual values, the smaller values of MAPE
and NMSE means the closer between predicted value and actual value.

These metrics are determined by xi(n+1) and x̂i(n+1): the current observation
of time series xi at time n + 1, and the prediction for that observation. Then
the two evaluation metrics are defined as,

MAPE =
1

n

∑n+N

j=n+1

∣∣∣∣ x̂ij − xij

xij

∣∣∣∣ , (4)
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NMSE =
N − 1

N

∑n+N

j=n+1

(x̂ij − xij)
2

(xij − x̄i)2
, (5)

where forecast errors are evaluated over a period of N consecutive days.

4 Experiment and Discussions

The performance of proposed algorithm in forecasting stocks daily closing price
has been assessed in this experiment, with the comparison between conventional
k-NN regression, Empirical Mode Decomposition, and benchmark algorithms. In
order to avoid biases from the training samples, we use the ’unprocessed’ time
series data, daily closing price, and ’processed’ time series data, daily return on
both traditional and modified kNN regressions.

Like most typical time series forecasting studies represented, using real fin-
ancial data will draw our attention into actual problem analysis, and would be
useful to an economist studying the effect of various indicators on the market.
In this case, we form the data pool by entire S&P 500 stocks. The S&P 500
has been widely regarded as the best single gauge of the large cap U.S. equities
market since the index was first published in 1957.

4.1 Data Selection

We examine our model over 2500 observations of 121 stocks from S&P 500,
by using daily closing price between January 3, 2001 and February 29, 2011.
The entire stock data was downloaded from Yahoo Finance. Those 121 stocks
have been selected from the following 4 sectors: Energy, Consumer Discretionary,
Health Care, and Information Technology.

4.2 Parameters Modulation

On the purpose of demonstrating robust empirical results, the determination of
the most crucial parameters: length of the reference pattern z and number of
referential neighbors k has been recovered prior to the evaluation stage since
parameter settings are dominating the performance of proposed algorithm. Dur-
ing our research, one of the statistical evaluating methods, the hold-out cross-
validation has been implemented for parameters’ tuning, and the benefits of this
cross-validation technique has been sourced by Refaeilzadeh [18].

During the parameter modulation, we record score for all parameter combin-
ations, and at the end, we adopt the parameter configuration in accordance with
the best cross-validation scores. Since it impossible to go through all the possible
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Table 1. Notation of parameters and grid values

Meta-Parameters Definitions Grid Values

k Number of referential neighbors for each TS {1, 3, . . . , 27, 31}
M Number of neighbors for reference pattern among each TS {1, 3, 5, 7, 9, 11}
z Length of the referential pattern {5, 10, . . . , 25, 30}
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Fig. 1. Tuning parameter z using hold-out cross-validation

parameter combinations, we carefully selected sparse grid values for parameter
settings, in order to provides reasonable coverage of parameter settings with
optimal performance.

We have listed all the meta-parameters have been involved during the ex-
periments, and range of grid values have been examined in Table 1, and as an
instance of the parameter tuning process, Figure 1 shows how the length of
referential pattern z is determined for the latter forecasting stage.

4.3 Experiment Results and Discussions

Due to the limitation of the paragraph, we only present the results of 10 ran-
domly selected stocks across all the test data in Table 2, and the lowest error
has been highlighted in bold. Despite the occasional better performance from
the conventional kNN regression method on the table, the average result at the
bottom of the table is concluding that, the proposed referential kNN regres-
sion provides the highest forecast accuracy that outperforms conventional kNN
regression along with the benchmark algorithms by 34.69% (1.62% percentage
points) and 33.7% (1.55% percentage points) respectively in MAPE, 51.90%
(1.5% percentage points) and 55.31%(1.72% percentage points) respectively in
NMSE.
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Table 2. Random selected evaluation results among various forecasting techniques

Stock ID NN kNN EMD AR
Price(%) Return(%) Price(%) Return(%) Price(%) Return(%)

Stock 1
MAPE: 3.76 5.56 3.76 3.89 6.62 5.56
NMSE: 1.12 2.09 1.12 1.16 7.22 2.41

Stock 2
MAPE: 3.01 4.60 3.01 3.07 4.72 4.33
NMSE: 0.69 1.54 0.69 0.71 1.43 1.38

Stock 3
MAPE: 2.84 4.30 2.84 2.91 3.54 4.05
NMSE: 1.98 4.23 1.98 2.05 3.06 4.06

Stock 4
MAPE: 2.71 4.14 2.71 2.70 3.67 3.91
NMSE: 2.11 4.39 2.11 2.01 3.65 4.62

Stock 5
MAPE: 4.23 5.91 4.23 4.27 6.04 5.88
NMSE: 1.30 2.34 1.30 1.31 2.29 2.52

Stock 6
MAPE: 3.86 5.45 3.86 3.93 5.43 5.40
NMSE: 1.22 2.36 1.22 1.28 2.31 2.44

Stock 7
MAPE: 2.71 3.94 2.71 2.70 3.66 3.97
NMSE: 1.60 2.75 1.60 1.51 2.75 3.45

Stock 8
MAPE: 2.82 4.07 2.82 2.78 3.74 4.08
NMSE: 1.96 3.84 1.96 1.93 3.33 4.38

Stock 9
MAPE: 2.71 3.86 2.71 2.67 3.58 3.92
NMSE: 1.68 3.20 1.68 1.66 2.58 3.63

Stock 10
MAPE 3.37 4.83 3.37 1.60 4.31 4.89
NMSE: 1.09 2.20 1.09 0.29 1.78 2.22

Average
MAPE: 3.20 4.67 3.20 3.05 4.53 4.60
NMSE: 1.48 2.89 1.48 1.39 3.04 3.11

5 Conclusions

In this paper, we develop a newmultivariate kNN regression approach for financial
time series forecasting in regards of referential nearest neighbors.We determine the
referential knowledge of the target time series by conducting the financial correl-
ation analysis among historical time series data. Then, we apply the aggregated
knowledge that extracted from related rNNs with k-Nearest Neighbour(kNN) re-
gression model to forecast the future status of the time series. The effectiveness
of the proposed hybrid approach is assessed by a robust empirical evaluation over
9 years S&P 500 stock data. The experiment results demonstrate that the pro-
posedmultivariate kNN approach provides enhanced forecasting accuracy beyond
classical univariate kNN regression.
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Abstract. DNS sinkhole is one of the powerful techniques to mitigate
attack activities of bots, i.e., zombie PCs, by blocking the communica-
tion between C&C server and them. If a zombie PC sends a DNS query
to our DNS server for communicating with its C&C server, our DNS
server that contains domain blacklist of C&C servers returns IP address
of our sinkhole server. As a result, since the zombie PC tries to com-
municate with our sinkhole server, it is unable to communicate with its
C&C server. On the other hand, there are many cyber attacks caused by
malicious URLs included in spam emails. Therefore, if we extract mali-
cious URLs from spam emails and apply them into DNS sinkhole system,
many of spam based attacks can be blocked. In this paper, we propose
a methodology to enhance the capability of DNS sinkhole system by
analyzing spam emails. Especially, we use double bounce emails, which
do not have any valid sender and recipient addresses, as spam emails
and extract malicious URLs from them. Our preliminary experimental
results demonstrate that the existing domain blacklist of DNS sinkhole
system is not effective. Thus, we design a new method collecting the
malicious URLs from double bounce emails and show how new domain
blacklist can be generated. With DNS sinkhole system using new domain
blacklist, we will be able to early detect and block the latest malicious
behaviors on the Internet.

Keywords: Botnet, C&C server, DNS sinkhole, Spam, Double bounce
emails.

1 Introduction

As a botnet [1] is a network of computers (i.e., zombie PCs or bots) infected
by malware, this carries out various network-based attacks such as distributed-
denial-of-service (DDoS) attacks [2], spam emails [3], and identify theft [4]. Ac-
tually, recent most network-based attacks on Internet are being carried out by
the botnet. Botnet consists of zombie PCs and a command-and-control (C&C)
server. C&C server commands zombie PCs to attack and a huge number of zom-
bie PCs obey the command. Thus, zombie PCs carry out attacks intended by
C&C server.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 609–616, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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DNS sinkhole is one of the powerful techniques to mitigate attack activities of
bots, i.e., zombie PCs, by blocking the communication between C&C server and
them[5]. If a zombie PC sends a DNS query to our DNS server for communicating
with its C&C server, our DNS server that contains domain blacklist of C&C
servers returns IP address of our sinkhole server. As a result, since the zombie
PC tries to communicate with our sinkhole server, it is unable to communicate
with its C&C server.

On the other hand, there are many cyber attacks caused by malicious URLs
included in spam emails. Therefore, if we extract malicious URLs from spam
emails and apply them into DNS sinkhole system, many of spam based attacks
can be blocked. In this paper, we propose a methodology to enhance the capabil-
ity of DNS sinkhole system by analyzing spam emails. Especially, we use double
bounce emails, which do not have any valid sender and recipient addresses, as
spam emails and extract malicious URLs from them [6].

In addition, we carry out the analysis on the packets flowed in DNS sinkhole
server and then find that there are some problems in current domain blacklist of
DNS server. Our preliminary experimental results demonstrate that the existing
domain blacklist of DNS sinkhole system is not effective. Thus, we design a new
method collecting the malicious URLs from double bounce emails and show how
new domain blacklist can be generated. With DNS sinkhole system using new
domain blacklist, we will be able to early detect and block the latest malicious
behaviors on the Internet.

In this paper, we carry out the analysis on the packets flowed in DNS sinkhole
server and then find that there are some problems in current domain blacklist of
DNS server. This means that urgent investigation into malicious URLs in new
ways is needed.

The remainder of this paper is organized as follows: in Section 2 we introduce
some basic concepts such as botnet, DNS sinkhole system, and double bounce
emails. In Section 3 we propose new method to improve the performance of DNS
sinkhole system. We then show experimental results about DNS sinkhole system
and further research plan in Section 4, after which we conclude.

2 Related Works

2.1 Botnet

Botnet is a network of computers which are compromised to conduct various
network-based attacks, i.e. botnet consists of zombie PCs and C&C server. Bot-
net is ‘Cyber Army’ on the Internet. After gathering this cyber army, C&C
server can control zombie PCs from remote and command malicious behaviors
as follows:

– Conduct DDoS attacks
– Send spam emails
– Infect other computers
– Gain personal information for identify theft by phishing
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The state-of-the-art network-based attack methods, which are conducted by
zombie PCs and controlled by C&C server, are getting more malicious and more
clever. Thus, we have to early detect and block zombie PCs and C&C server.

2.2 DNS Sinkhole System

The DNS sinkhole system is aiming to break the communication between C&C
server and zombie PCs. In the case without DNS sinkhole server, if zombie
PCs send a DNS query to DNS server, then they will succeed in receiving IP
address of C&C server. This means that they are able to connect to C&C server
and malicious commands will be supplied. But, when DNS sinkhole server is
operated, DNS server will return IP address of sinkhole server, not that of C&C
server . So, because zombie PCs connect to sinkhole server, we can avoid that
malicious commands are supplied to zombie PCs.

In other words, DNS sinkhole system can early detect and block zombie PCs.
In DNS sinkhole system, if zombie PCs connect to sinkhole server, this server
writes a log file from packet information and store it in the database. After then,
we can use this log file when handling comprehensive incidents. Also, by using
this log files, we will be able to detect zombie PCs and respond emergency. Fig.
1 describes the management system of DNS sinkhole.

Fig. 1. DNS sinkhole system

2.3 Double Bounce Emails

During the previous years, many machine learning methods have been proposed
for spam detection. However, these methods cannot accurately distinguish spams
from normal emails. Further, the effective lifetime of the existing techniques
is highly short, because spammers frequently change their modus operandi to
compromise spam detection techniques. In other words, in order to maintain
the effectiveness of spam filters, constant upgrades and new developments are
essentially required.
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Double bounce emails indicate that they have no valid recipient address and
return-path address. In the case of a normal email, it contains one return-path
address at least in its header field, even if a sender mistyped the recipient address
to his/her email. In this context, double bounce emails can be regarded as pure
spam. This double bounce email is quite similar to the concept of darknet which
is an area of a routed, and allocated IP space where no active services or servers
reside, and thus the incoming packets to it can be treated as abnormal ones.
Darknet has been used for analyzing incidents in many researches [7], because
many abnormal activities can be easily observed in the darknet. Similarly, we
collect double bounce emails and use them as our analysis data.

3 Proposed Method

In the existing DNS sinkhole system, not considering URLs which are included
in double bounce emails, general PCs can access these URLs via various routes
such as spam mails, malicious replies on the Internet boards, pop-up ads, another
malicious URLs, and so on. Our purpose is to find up to date malicious URLs
from double bounce emails and add these URLs into domain blacklist of DNS
server. This work will be able to block that the PCs are changed to zombie PCs,
or infected with the computer virus. Fig. 2 describes the change of flow diagram
by the proposed system.

Fig. 2. The change of flow diagram by the proposed system
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3.1 DNS Sinkhole System Using Double Bounce Emails

As mentioned above, the main idea of our system is to add the malicious URLs,
extracted from double bounce emails, to the domain blacklist of DNS server.
Proposed system is implemented by the following steps:

1. Extraction of double bounce emails from mail server
2. Automatic extraction of normalized URLs from body of double bounce

emails
3. Checking if extracted URLs have malware or not
4. Generation of domain blacklist
5. Addition the malicious URLs to the domain blacklist of DNS server
6. Performance measurement for detection of malicious behavior based on new

domain blacklist

The first step of our method is to gather double bounce emails from various
types of spam mails. Then we extract the normalized URLs from each email
by automatic tool. This second step is conducted by three sub-steps: (1) URL
extraction from body of double bounce emails (2) normalization of various types
of URLs (3) removal of duplicate URLs. The third step checks if the extracted
URLs have malware or not. In this step, we first input the extracted URLs into
the database. Then a web crawler reads the URL and downloads the available
data by connecting to corresponding URL, one at a time. The third step is
finished by checking if the malware is included in the downloaded data. This
checking routine will be carried out by a dedicated anti-malware software in
the future. Based on URLs having malware, we can generate the new domain
blacklist in the fourth step. In the final two steps, we add new URLs found in
the fourth step to domain blacklist of DNS servers and evaluate the impact and
effectiveness of new DNS sinkhole system, while comparing with the existing
system, which uses the old domain blacklist only. Fig. 3 shows the schematic
diagram of new DNS sinkhole system.

Fig. 3. The schematic diagram of our system
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4 Preliminary Experiments

4.1 Experimental Results

We have built own DNS sinkhole system interworking with 28 DNS servers of
the research institutes that we are providing realtime security monitoring and
response service. Malicious URLs registered to the domain blacklist of 28 DNS
servers have been provided by two sources. One is Science and Technology Se-
curity Center(S&T-SEC) which is operated by ourselves. The other is Korea
Internet & Security Agency (KISA). The total number of malicious URLs was
1,854, among them 335 malicious URLs were from S&T-SEC and 1,589 malicious
URLs were from KISA; there are 70 URLs in the intersection of two sources.
We captured the packets flowed in DNS sinkhole server during one month, from
2013/06/03 to 2013/07/02. The results analyzing the packets are shown in fig 4.

(a) The number of attempts to access according to malicious URLs

(b) The number of URLs, accessed by
bots(i.e., zombie PCs), according to the
vendors generating domain blacklist

(c) The number of attempts to access ac-
cording to the vendors generating domain
blacklist

Fig. 4. Experimental results about DNS sinkhole system



Multipurpose DNS Sinkhole Analyzing Double Bounce Emails 615

The total number of attempts to access malicious domains was 233,598.
During our analysis, we observed that the number of malicious URLs ac-
cessed by bots(i.e., zombie PCs) was only 49 of the 1854. Furthermore, as
shown in fig. 4(a), most packets have been trying to access three malicious do-
mains: www.xxxxxxbounce.com (79,026), www.yyyyyyphoto.org (60,338), and
www.zzzzzhak.com (24,532). Fig. 4(b) shows the number of URLs, accessed by
bots according to the sources provided malicious URLs. Among 70 URLs in-
cluded in both sources (i.e., S&T-SEC and KISA blacklists), 32 URLs have been
tried to be accessed by bots. And the rest 17 of 49 malicious URLs are only
included in KISA blacklists. Fig. 4(c) shows the number of attempts to access
according to the sources provided malicious URLs.

4.2 Discussion

From the experimental results in the subsection 4.1, some problems could be
addressed as follows:

– Dependence on few of malicious URLs: the number of malicious URLs
accessed by bots was only 49 of the entire 1854 URLs. This means that DNS
sinkhole system heavily depends on a few malicious URLs.

– Lack of effectiveness of our own domain blacklist: while all URLs ac-
cessed by bots were included in KISA domain blacklist, no malicious URLs
were registered in only S&T-SEC blacklist, but not registered in KISA black-
list. This means that our domain blacklist was useless during one month,
capturing the packets at least.

Based on the above results, it could be concluded that the existing DNS
sinkhole system has the unpractical problem in gathering malicious domains.
Thus, we will carry out urgent investigation into malicious URLs in entirely
new manner. We will use the URLs included in double bounce emails at the
first attempt for it. After checking if these URLs are malicious, we will add the
URLs to domain blacklist of DNS servers and then carry out the performance
measurement for DNS sinkhole based on new domain blacklist. We will count
the number of detection divisively in two cases of old and new domain blacklists.
From these numbers of detection, we can evaluate the impact and effectiveness
of new DNS sinkhole system.

5 Conclusions

Based on experimental results about DNS sinkhole system, we noticed that cur-
rent system had some problems. To solve these problems, we proposed the new
method to improve the performance of DNS sinkhole system by using double
bounce emails; we extract the URLs from the body of double bounce emails
and add these URLs to domain blacklist of DNS server after checking if those
are malicious. By the new DNS sinkhole system, we will be able to collect the
latest malicious domains used in various hacking techniques. In addition, it will
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be possible to improve the quality for security control & emergency response.
Finally, we will be able to early detect and block malicious behaviors on the
Internet.
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Abstract. The visual interpretation of data is an essential step to guide
any further processing or decision making. Dimensionality reduction (or
manifold learning) tools may be used for visualization if the resulting
dimension is constrained to be 2 or 3. The field of machine learning has
developed numerous nonlinear dimensionality reduction tools in the last
decades. However, the diversity of methods reflects the diversity of qual-
ity criteria used both for optimizing the algorithms, and for assessing
their performances. In addition, these criteria are not always compati-
ble with subjective visual quality. Finally, the dimensionality reduction
methods themselves do not always possess computational properties that
are compatible with interactive data visualization. This paper presents
current and future developments to use dimensionality reduction meth-
ods for data visualization.

Keywords: visualization, dimensionality reduction, manifold learning.

1 Introduction

Data analysis has become an overwhelming discipline in many areas of our ev-
eryday life. Modern ways to acquire and to store information are responsible for
a data deluge. Extracting relevant information from huge amounts of data is a
challenge that is responsible for important and recent scientific developments
in statistics and machine learning. Applications of such new data analysis tools
range from (bio)medicine to consumer profiling, industrial and quality control,
environmental monitoring, and many others.

A specific aspect of data analysis is visualization. Visual inspection of data is
unavoidable in many practical situations. The main reason is that, despite the
power of modern data analysis tools, few of them are really blind in the sense that
they can be applied without any understanding of the data at hand: preliminary
qualitative knowledge is needed, and visualization might help in this context for
example in finding outliers, clusters, etc. Another reason, among many other
ones, to visualize data is that non-experts are often difficult to convince about
the benefits of mathematical tools, if they cannot see the results in the way they
are used to see and to analyse them.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 617–622, 2013.
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Visualization has been developed rather independently by two research
communities. One one side, the machine learning community has developed di-
mensionality reduction (DR) methods that may be used for visualization if the
resulting dimensionality is restricted to be 2 or 3. One the other side, the infor-
mation visualization (IV) community has developed graphic ways of representing
the information under the angle that is most usable by the user. Unfortunately,
only few attempts exist to combine the features and advantages of both fields.

Dimensionality reduction is a generic term including manifold learning, non-
linear projection, etc. The goal of DR is to handle data that contain a high
number of attributes (and therefore cannot be visualized easily), and to reduce
them (through the optimization of mathematical information content criteria) to
a lower-dimensional space, while preserving as much as possible the information
content in the data. If the dimension of the latter space is 2 or 3, this provides
an obvious way to visualize data. On the other hand, information visualization
focuses on user-centric graphic objectives, and largely relies on controllability
(the user decides which is the best way he needs for representing data) and in-
teraction (the controllability is achieved through a user interface that responds
almost immediately, making different views affordable in a single session).

Controllability and interaction are two concepts that are mostly absent from
dimensionality reduction. Most DR methods rely on the algorithmic optimization
of a predefined information criterion; although the results can be satisfactory on
the point of view of information content preservation, they are usually not in terms
of effective visualization. Problems such as the sensitivity to initial conditions,
possible rotations and mirroring are common. More dramatically, the criterion
to be optimized has to be predefined; adjusting the criterion to another balance
between conflicting goals (see below for details) needs to run the algorithm again,
which implies prohibitive computational load and simulation times.

2 Dimensionality Reduction: State-of-the-Art

Dimensionality reduction [1] has its roots in methods such as principal com-
ponent analysis (PCA) [3]. PCA can be used to reduce the dimensionality of
high-dimensional data; new features are generated by linear combinations of the
original features, by optimizing a maximum variance/minimum loss of informa-
tion criterion. If the resulting dimension is limited to 2, PCA provides an easy
way to represent high-dimensional data; however, PCA only aims to preserve
simple second-order statistics (directions of main variance) and can miss the
important characteristics of more complicated data distributions.

Except for a few older methods like Sammon’s mapping [4], most nonlinear
extensions to PCA were frenetically developed in the 80s and 90s. Relaxing the
linearity constraint has been found to open the way to new information preserva-
tion criteria, which tend to yield better low-dimensional data representations in
practice. Methods such as Sammon’s mapping and curvilinear component anal-
ysis (CCA) [5] result from a nonlinear view of PCA: while PCA tries to preserve
all Euclidean distances between pairs of points in a data set (while projecting it



Nonlinear Dimensionality Reduction for Visualization 619

to a lower-dimensional space), Sammon’s mapping and CCA emphasize preser-
vation of small distances, which are usually the ones that are the most important
for effective visualization. At the same time, methods such as Curvilinear dis-
tance analysis (CDA) [6] and Isomap [7] were developed, where the distances to
be preserved are based on the data distribution itself, such as geodesic or graph
distances. The graph distances allow a better representation of the important-
to-preserve similarities and distances in the data; in some sense they act against
the well-known unreliability of estimating data properties in high-dimensional
spaces, called the curse of dimensionality [8].

The diversity of the many DR methods has revealed how difficult it can be to
analyse relationships between different methods and their suitability for a partic-
ular analyst’s needs. Part of the problem is that nonlinear DR has been done by
optimizing relatively abstract criteria, and the relationships of the criteria to help-
ing analysts in a meaningful task has not been clear. Recent analysis has made it
clear that (at least) two conflicting goals exist in DR: in terms of a relaxed form of
distance preservation called neighbourhood preservation, 1) two data items that
are neighbours in the original space should remain neighbours in the projection
space, and 2) two data items should be shown as neighbours in the projection space
only if they are neighbours in the original space. Recently, both two goals have
been shown to correspond to performance in an information retrieval task, visual
retrieval of neighbours from the output display, as measured by the information
retrieval measures precision and recall respectively. The conflict between the goals
yields a natural trade-off between the precision and recall measures, and between
visualizations that are good for one goal versus the other [9] [10]. For example,
projecting a spherical surface distribution to a two-dimensional space results in
flattening the sphere surface onto a circle if only goal 2 (recall) is optimized or
cutting the surface open like an orange-peel world map if only goal 1 (precision)
is optimized. This example illustrates the conflicting requirements in DR and vi-
sualization; neither result is obviously better than the other, the choice, or the
compromise, should be guided by the users needs.

3 Visualization

Information visualization [2] has developed ways to visualize data in a user-
centric way. IV relies on the adequation between the method and the cognitive
goal of understanding data. Many information visualizations are interactive, re-
flecting the difficulty to represent data in a unique, undebatable way. Interaction
also closes the loop with the user: interaction is based on cognition, therefore
helps reflecting the users’ needs.

Information visualization methods are largely based on extensive software
that combine user goals, modern computer visualization features, and interac-
tion. The representation principles behind the methods are usually quite simple
(parallel coordinates, dendograms, trees, heatmaps, etc.), although recent infor-
mation visualization often involves dimensionality reduction methods, such as
principal component analysis and Sammon’s mapping.
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Machine-learning based dimensionality reduction and information visualiza-
tion are complementary: the DR field has developed advanced mathematical
criteria and ways to optimize them, while IV takes into account users’ needs,
cognitive aspects and computer resources. However combining the advantages
from two fields requires an in-depth study of performance criteria and compu-
tational requirements.

4 Quality Criteria and Computational Requirements

Quality criteria exist to measure the performances of nonlinear dimensionality
reduction methods [10]. Most of them yield a pair of values (trustworthiness
and continuity, mean relative rank errors, etc.), which also reflects these dual
or conflicting requirements. These measures can assess the compromise between
the requirements for a given DR result (visualization), but so far the only way to
influence the compromise is to change the criterion of the DR method. Changing
the criterion yields two difficulties: A) the DR algorithm must be rerun, and since
most algorithms take from tens of seconds to hours on standard computers,
fast interaction with the user becomes impossible; B) the link between control
parameters in the mathematical optimization goal and the behaviour of the DR
algorithm is far from straightforward, especially when several control parameters
are involved.

These limitations exist even in the most recent DR algorithms. For example,
algorithms from the stochastic neighbour embedding (SNE) family [11] [12] have
been shown to outperform distance-based methods in the last years, especially
when the original space is high-dimensional. They optimize a divergence between
distributions of distances or neighbours in both spaces, and can partially alleviate
the curse of dimensionality by adjusting priors on the distributions, but the same
basic difficulties remain: the need to rerun the algorithm when the criterion is
modified, and the difficulty of controlling in an intuitive way the compromise
between conflicting objectives.

On the other hand quality criteria when visualization is involved are far from
the information content perspective brought by such trustworthiness and con-
tinuity pairs of measures. Performances in visualization are measured in a way
that takes the cognitive process into account, thus involving the user. In this
context it is much more difficult to define in advance the exact mathematical
criterion to be optimized. Interaction is thus needed between the method and
the user: the visualization is modified by the user, who can estimate in real-time
the adequacy between the visual result and his expected goal.

Interaction necessitates speed: one cannot reasonably expect the user to wait
for more than a few seconds between the request and the response. In DR meth-
ods, the quality criteria (or a proxy) are directly optimized to give the resulting
projection. As most modern criteria are nonlinear, non-linear optimization is
involved, with a number of parameters to optimize that is proportional to the
number of data in the database. In most situations, depending on the application
and on the DR method, this results in unaffordable computation times.
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5 New Developments

In order to lead to effective and usable visualization methods, the modern tools in
the dimensionality reduction field have to be adapted from several perspectives.

First, effective visualization necessitates parameters that may be controlled
by the user, in order to take cognitive aspects into account and adapt the results
of the algorithm to the user’s needs. Most DR methods do contain parameters.
For example, often one of them implements a compromise between the trustwor-
thiness and the continuity of the projection. Another might control the influence
of outliers, . . . In theory it is thus possible to influence the visualization through
user-controlled parameters. However, nothing indicates that the choice of these
parameters, guided by algorithmic and mathematical considerations, is appro-
priate with regards to the cognitive control. There is thus a need for identifying
the role of existing parameters and, if necessary, to change them to parameters
closer to the user’s needs.

Secondly the DR methods have to be rethought in the light of visualization
needs. Most modern DR methods are shown to outperform competitors in spe-
cific settings, and according to specific quality criteria. But are these criteria the
most appropriate ones when visualization is concerned? Is it reasonable possible
to use them as a proxy of subjective, cognitive criteria? Conversely, would it
be possible to express subjective criteria in a mathematical form and optimize
them directly?

Third, the question of stability has to be investigated. DR methods result in
a representation of the data. However what concerns visual perception, several
equivalent projections could be thought of (for example rotations, scalings, . . . ).
When the parameters of the DR methods are modified, even slightly, another
optimum of the criterion to optimize can be found, leading to an almost equiva-
lent but completely different projection. Such instability is of course undesirable
in the context of visualization, and must be controlled at the algorithmic level.

Finally, the computational requirements should be seriously investigated, in
the light of the possibility for user interaction. Fast algorithms have a clear
advantage. When necessary, incremental methods could be developed: slight
changes in the parameters of a method should not result in largely different
representations. This “continuity” in the process could be exploited to reduce
the computation time after user interaction.

6 Conclusion

The field of Machine Learning has generated a large number of dimensionality re-
duction methods. These methods can be used for the visualization of data, which
is a fundamental step in exploratory data analysis. In parallel, the field of Infor-
mation Visualization develops user-centric graphic ways to visualize data based
on cognitive results. The complementarity of the approaches is a challenge for
the future developments of dimensionality-based visualization methods: how to
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incorporate user control, cognitive criteria, stability and computational require-
ments in DR methods are key questions opening new perspectives for research
on dimensionality reduction.
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Abstract. Analysis of dynamics of biologically motivated neural networks al-
lows for studying non-linear processes responsible for cognitive functions and 
thus provides adequate language to understand complex mental processes, in-
cluding psychiatric syndromes and disorders. Problems with attention shifts that 
are at the roots of Autism Spectrum Disorders (ASD) and Attention-
Deficit/Hyperactivity Disorder (ADHD), have been investigated using network 
model of Posner Visual Orienting Task (PVOT). Changing parameters that con-
trol biophysical properties of model neurons and cause network dysfunctions 
provides plausible explanations of many strange ASD and ADHD phenomena.  

Keywords: Autism Spectrum Disorders, ASD, Attention-Deficit/Hyperactivity 
Disorder, ADHD, neural networks, neurodynamics, fuzzy symbolic dynamics.  

1 Introduction 

The Consortium for Neuropsychiatric Phenomics (CNP), established in 2008, aims at 
understanding mental disorders in a comprehensive way, comparing individual phe-
notypes at many levels: genetics, signaling pathways (molecular processes), structural 
properties of neurons, brain network responses (neuroimaging), cognitive functions, 
behavioral syndromes and psychiatric disorders [1]. Different disciplines contributing 
to neuropsychiatric phenomics, or to even more general field of neurocognitive phe-
nomics [2], should have a common language that may be linked to behavioral, neural 
and molecular processes. Neurodynamics is the best candidate for such language: it 
may be investigated at the computational and pursued at the experimental level. Pa-
rameters of neural networks may be linked to the biophysical parameters of neurons 
and to the structural properties of brain networks that depend on the molecular and 
genetic processes. Collective states of networks investigated using neuroimaging 
techniques may be linked to cognitive functions and behavioral syndromes.  

Understanding mental states should be based on analysis of long-time network dy-
namics. Multiscale brain modeling is concerned with quantitative form of electroen-
cephalograms rather than with cognitive processes. Computational neuroscience has 
not yet provided general conclusions or concepts that may be of use to psychology or 
psychiatry. Connectionist models and cognitive architectures are constructed at too 
high level of abstraction to connect them with neural processes. The need for new 
concepts and language that will link mental states (psychology) with brain activity 
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(neurodynamics) has been clearly stated by Spivey [3], who advocated the use of 
symbolic dynamics for understanding of cognitive processes. Analysis of global state 
of the model network activity (global neurodynamics) using variety of techniques 
helps to uncover deeper causes of mental phenomena, providing concepts that should 
be useful for both psychology and neuroscience experts. In this paper we will show 
how relatively simple neural model of spatial attention is analyzed to provide many 
insights into the nature of such disorders as ASD and ADHD.   

2 Attractor Dynamics: Language of Mental States 

Ample theoretical and experimental evidence has proven the importance of synchro-
nization processes in the brain. Quasi-stable patterns formed for a range of similar 
initial conditions are called attractors of neurodynamics. Noise drives the network out 
of the attractor basins, making a series of transitions between attractor states. The time 
spend in a given attractor basin is called dwell time. Determination of dwell time de-
pends on the noise level in the system. The strongest source of noise is “synaptic 
bombardment” caused by signals coming from all over the brain to the huge dendritic 
trees of neurons. The landscape of attractor basins is neural network is constantly 
changing even without any learning, because some states become inaccessible (due to 
neural accommodation and other effects [4]). Emotions, sounds and other percepts 
change this landscape by phasic arousal, activation of key brain structures in the brain 
stem and limbic areas, release of major neurotransmitters.  

Neurodynamics of attractor networks allows for precise discussion of temporal dy-
namics of mental states that is of interest to psychologist [3], and of brain processes as 
seen using neuroimaging techniques. Brains have a large number of regions that are 
interconnected, and cognitive function require cooperation of many regions. Dwell 
time in attractor state in each region has to be sufficiently long to enable synchroniza-
tion processes that lead to global attractor states. Dwell time is estimated by clustering 
points of trajectory and assessing size of each cluster. Fast state transitions  in some 
neural layers (brain regions) do not leave enough time for synchronization with other 
regions to occur, and therefore have no influence on global neurodynamics. Only 
attractor states lead to conscious mental states, enabling formation of percepts, 
thoughts or actions. This is stressed in the Adaptive Resonance Theory (ART) [5]. 
Resonant top-down attentive matching leads to synchronized activity of neurons 
(ART describes it at a rather high level of abstraction), and only such resonant states 
that are point attractors are sufficiently stable to be recognized by other parts of the 
brain and interpreted as conscious. Therefore procedural, spatial and motor represen-
tations that do not generate point attractors do not have qualia that are experienced in 
a conscious way. Although ART has been very successful in explaining a lot of data 
about the brain it does not use biophysically plausible neural models, and thus it is 
rather hard to link with molecular neuroscience.   

Continuous sequences of changes responsible for recall of melodies, sentences or 
complex gestures and movements may be described as a special kind of “sliding at-
tractors” that have not been studied so far, probably because they will not arise in 
simple low-dimensional systems that are frequently studied.  

Below the effects that lead to abnormal shifts of attention are analyzed using sim-
ple model of Posner Visual Orienting Task.  
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Fig. 1. Cyclic and “sliding” attractors 
generated by the model of motor cortex 
activity during repetitive movements 
[6], shown using Fuzzy Symbolic 
Dynamics technique [7,8]. In this case 
irregular repetitive movements have 
been generated, but simple movements 
followed by other type of actions 
would generate sliding attractors in-
stead of cyclic ones. Dynamics of 
speech and music is full of sliding 
attractors.   
 

3 Posner Visual Orienting Task (PVOT) 

Many factors influence patterns of synchronized activation in neural networks: prop-
erties of neurons, their recurrent connections, competition and inhibition within the 
network that allow for multiple constraint satisfaction. The simplest models of neu-
rons that may be linked to neurobiology should take into account at least 3 types of 
processes: excitatory synaptic inputs (ion channels that transport positive sodium ions 
outside and positive potassium ions into cell body), inhibitory synaptic inputs (ion 
channels that pump negative chloride ions), and leak channels that let the potassium 
ions to flow out. Many other ions may filter through membranes, and many type of 
pores or ion channels exist. The model of spatial attention presented here has been 
implemented in the Emergent environment [4] based on point neurons, trained by 
biologically-inspired mechanisms, using average rate coding, several types of neural 
noise, and neural accommodation (neural fatigue).  

Analysis of the long-term neurodynamics cannot be reduced to statistical measures 
and asymptotic behavior. We have used recurrent plots and invented a new approach 
to visualization of high-dimensional trajectories that gives complementary informa-
tion on trajectories. This approach, called Fuzzy Symbolic Dynamics (FSD) [7,8], is 
more informative than classical Symbolic Dynamics.  

Using these tools we have investigated delays in attention shifts as a function of 
neural and network parameters. Although many brain areas are involved in attention 
control basic deficits in the ability for spontaneous attention shifts are at the core of 
ADHD and ASD. This fact is at the foundation of Grossberg’s iSTART (imbalanced 
Spectrally Timed Adaptive Resonance Theory) model of autistic behaviors. In ART 
theory vigilance parameter controls learning of new exemplars vs. relying on already 
known categories of objects. New exemplars are learned when a mismatch between 
top-down expectation between currently active recognition category and current  
exemplar is detected and adaptation is not sufficient. This is a well-known idea that 
solves the stability-plasticity dilemma and has been used by many constructive neural  
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networks that add resources where they are needed. In case of autism the iSTART 
model assumes hypervigillance, and thus hyperspecificity of memory, drawing many 
conclusions from this assumption. Such formal models give only shallow understand-
ing: they may be fitted to the data, but give no clue what physical mechanisms are 
responsible for increased vigilance, how to connect such models with neuroscience, 
how the brain will respond to drugs. Below we shall contrast some explanations of the 
iSTART with our hypothesis, linking vigilance with attractors in network dynamics.  

Posner Visual Orienting Test (PVOT) is perhaps the simplest experiment probing 
spatial attention [4]. Reaction time to brightening (or making the box lines thicker) of a 
small box on a screen are measured (participants press a button), and compared to the 
reaction time when a target box is shown in the same place (valid cue) or in a different 
place (invalid cue). In the neutral case typical reaction times are about 370 ms, in the 
valid cue case they are about 20 ms shorter and in the invalid case 20 ms longer.   

Spatial attention emerges from inhibitory competition (responsible for imposing a 
limitation on the total amount of activity within each region of neurons with recurrent 
connections), and constraint satisfaction operating throughout the network (which de-
termines the representations that will become active in a given context). This type of 
attention is thus a ubiquitous property of the cortex that may be modulated by goal-

oriented control processes, but for spontaneous focus 
of attention a simpler model is sufficient. O’Reilly 
and Munakata [4] have investigated the lesions of 
Posner model and were able to replicate slowing 
reaction times of hemispatial neglect patients for 
targets that appear in the neglected side of space, 
particularly when invalidly cued. The network struc-
ture is shown here. The dorsal visual streams respon-
sible for spatial localization represented by two  
layers in the left upper part (Spat1 and Spat2), and 
the ventral object recognition stream also by two 
layers (Obj1 and Obj2). The spatial and object layers 
are connected, with stronger influence of the location 
on object recognition. These top layers provide in-

creasingly spatially invariant representations, receiving inputs from the Cue/Target 
spatially mapped feature array that represents early visual activations (V1). The top-
down influence of spatial activation after presentation of the cue weakly inhibits other 
locations in the input and influences object recognition. Stimuli activate one of the 7 
distinct regions of the one-dimensional input array, the lower row position of the cue 
stimulus and the upper row the target. The cue appears at the input layer and is copied 
to V1, its position is recognized at the Spat2 level, and it is identified by the Obj2 layer 
in an invariant way. Each Spat and Obj unit represents 3 adjacent locations in the V1 
layer. The Output units activate when the system settles (activity of object units ex-
ceeds 0.6) and is used to measure reaction times. 

In case of autism or ADHD there are no lesions, but there may be many changes  
in the strength of connections and in neural properties. In the language of neurody-
namics spontaneous trapping of attention is due to strong attractors, patterns that are 
difficult to break. This strength of a given attractor may be studied by initializing the 
system in the attractor basin, adding different amount of noise and observing the 
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dwell time before transition is made. Changes in various network and neuron control 
model parameters may lead to similar behaviors. To avoid too many graphs and tables 
only qualitative summary is given below.  

• Relative strength of the influence of spatial attention on object recognition 
(Spat=>Obj) reduced to zero makes neutral and valid trial times identical, but 
leaves the 20 ms difference between valid and invalid cases (top-down modulation 
effect). Increase of this relative strength leads to slow increase of all reaction times 
but the 20 ms differences are fairly stable between 1-5, with tendency to increase 
the invalid/neutral difference to 30 ms and slightly decrease valid/neutral trials dif-
ference.  

• Decrease of relative strength of the influence of V1 layer on parietal spatial atten-
tion areas leads to sharp increase in the invalid case, attention remains fixed for a 
longer time on the cue. Decrease of this parameter by half (from 2 to 1) increases 
the time difference between neutral and invalid trials 3 times. This may be one of 
the contributing factors to the problems with attention shifts in autism. While local 
circuits are well developed there is some evidence that distal connections are weak 
and functional connections in autism have been linked to a variant of MET gene 
that shows high expression in the occipital cortex [9].  

• Relative strength of recurrent connections in Spat1 and Spat2 layers has no influ-
ence on valid trials, weak influence on neutral, but stronger local connections  
significantly increase reaction times of invalid trials. This mechanism may also 
contribute to long delays in shifts of attention. TSC gene can cause local over-
connectivity in the sensory cortices (visual, auditory) reducing normal neuronal 
pruning. 

• Self-regulatory dynamics of neurons depends on complex processes, changing 
conductance of the ion channels (voltage-dependent gates). Changing time con-
stants for increases in intracellular calcium that builds up slowly as function of  
activation in all neurons has big influence on all reaction times, reducing the dif-
ference between all types of trials to zero and making reactions for valid trials 
slower than for invalid and neutral. These processes depend on many types of ion 
channels and thus many genes are implicated. 

• Increase of maximal conductance for excitatory channels (mostly glutamatergic 
synaptic sodium channels) above 1 leads to sharp two-fold increase in invalid trial 
reaction times, and small decrease of the normal/valid trials reaction times; de-
crease of this parameter slows down reaction times but keeps the differences 
roughly constant.  

• Increasing maximal conductance for inhibitory channels quickly increases the 
invalid trials reaction times without much change in results for other trials; de-
crease has relatively small effect.  

• Parameter regulating maximal conductance of leak (potassium K+) channels 
changed from 0.001 to 1.3 has relatively small influence on reaction times, but 
beyond this value all reaction times become much longer and similar to each other. 
Strong leak currents decrease membrane potentials and activation of neurons takes 
longer time. The KCNK the two-pore-domain potassium leak channels are the 
main suspect in this case.  
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• Noise may be included either as the variance of the value of membrane potential, 
or variance of the synaptic input. The first type of noise makes the switch from 
invalid cue to the target position faster, decreasing sharply the time for invalid  
trials and to a smaller degree also other times. Attractors become weaker and tran-
sitions may be made faster. Synaptic noise has the opposite effect, competition  
between competing patterns becomes stronger and achieving the threshold for  
decision takes longer. High density of synapses will contribute to the “synaptic 
bombardment” type of noise.  

The network used in Posner experiments is too simple to show full range of attrac-
tor network behavior. However, these conclusions have been confirmed by more 
complex models of normal reading and dyslexia, and of simple repetitive movements 
[6,10] implemented also in the Emergent simulator. The first of these models [10] has 
6 layers, representing information about orthography (6x8 units), phonology (14x14 
units) and semantics (10x14 units), connected to each other via intermediate (hidden) 
layers of neurons. Full connectivity between each adjacent layer is assumed, with 
recurrent self-connections within each of these layers. The qualitative dependence of 
the spontaneous shifts of attention has been analyzed calculating dwell times, con-
firming results of the PVOT study described above. Because of the lack of space the 
motor cortex model is not described here [6]. 

Accommodation (neural fatigue) has strong influence on synchronization. Lack of 
accommodation with strong excitations and recurrent connections enables creation of 
persistent patterns, or forming deep basins of attraction with small variance, trapping 
neurodynamics for a long time. Attention remains focused on one concept for un-
usually long time, as it happens in autism spectrum disorders (ASD). Strong accom-
modation leads to weak synchronization, shallow basins of attractors, rapid jumps 
from one basin to another, with short dwell times. Such behavior is typical in case of 
Attention Deficit Hyperactivity Disorder (ADHD).  

4 Conclusions: Towards Neuropsychiatric Phenomics  

This short overview of some of the mechanisms that may contribute to deregulation of 
attention shows that ADHD and ASD disorders should form a continuum, with typical 
adults displaying some autistic or ADHD traits. Different types of neurons, connec-
tions, regions of the brain may be affected as a result of multiple etiologies, including 
metabolic and immune system deregulation, or prenatal and early childhood exposure 
to various drugs, chemicals, pollutants and stressful environmental factors.  

There are over 20 theories of autism spectrum disorders [11–13], including minico-
lumnopathy, mirror neuron system (MNS), underconnectivity theory, empathizing–
systemizing theory, executive dysfunction theory, function over/under-connectivity 
theories. Most of these theories mistake symptoms for real causes. Attention is at the 
foundation for development of all cognitive functions. Developmental perspective is 
needed to understand how deep basins of attraction in localized sensory cortex may 
lead to impoverished stimulation of the brain with complex percepts, the undercon-
nectivity of distal connections, poor development of the theory of mind and mirror 
system network, lack of disengagement by the default mode network. Increased num-
ber of genomic research results in huge genomic data bases, and together with other 
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phenotypes gives hope for more precise diagnosis that will cluster similar ASD cases. 
Allen Human Brain Atlas of gene expression data contains 63 candidate genes (449 
variants) that have been implicated in autism, and 292 genes that contribute to “other 
neurodegenerative disease” (as of August, 2013). Various perturbations of neural 
properties, at the synaptic, membrane and general connectivity level, may lead to very 
similar behavioral symptoms disturbing neural synchronization. Brain atlas helps to 
find links between gene mutations, regions in which expression occurs, results of 
computational simulations and likely disorders that results from such damage to the 
cell structure. Many such links have been identified in this article. Strong expression 
in occipital lobe (except occipital pole) of normal subjects is noted for MET, KCNS1, 
NRXN1, SLC6A10P, NPY1R genes. It has already been suggested that MET has 
influence on neural circuits relevant to the processing of complex visual stimuli, in-
cluding faces. KCNS gene family coding two-pore delayed-rectifier potassium vol-
tage-gated ion channels, that has strong expression in sensory areas, fits very well to 
our prediction that the leak channels may be responsible for slowing down in ASD or 
speeding up attention shifts in ADHD. Thus although these two disease have never 
been linked at least some subtypes may result from different mutations of the same 
genes that damage specific leak channels in a different way.  

Following consequences of deep attractor basins are expected: 

• deficits in attention disengagement;  
• overspecific memory for images, words, numbers, facts, movements, except for 

impaired memory for olfaction [14], because many types of neural receptors im-
portant in olfaction are dysfunctional in ASD and ADHD;  

• strong focus on single stimulus, easy absorption, possible sensory overstimulation 
by weak signals trapping the network in deep attractor, while stimuli of the same 
modality, like loud alarming sounds or visual signals, are ignored;  

• in motor cortex repetitive cyclic sequential attractors or precise sliding attractors; 
• problems with generalization and associations;  
• integration of perception from different modalities are impaired, resulting in un-

derconnectivity between distant brain areas; 
• echolalia, repeating words without understanding (no associations); 
• nouns will be acquired more readily than abstract words and verbs;  
• fast changing stimuli, including faces, may be ignored because time is needed to 

escape from current deep attractor state, gaze will tend to focus on simple stimuli;  
• play will be schematic, play with other children avoided in favor of simple toys.  

Is it possible to compensate for some ASD dysfunctions by training the network, 
will it lead to faster attention shifts? Perhaps slow broadening of attractor basins will 
be a good strategy, or using transcranial magnetic stimulation to add noise that will 
push the network out of deep attractor. In case of ADHD psychostimulants such as 
Methylphenidate are used. This may be surprising but shallow basins of attractors are 
made deeper (neural synchronization becomes stronger) as a result of higher activa-
tion, and stimulants reduce reuptake of dopamine and norepinephrine, and thus  
increase activation of excitatory receptors.  
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There is a great need for comprehensive theories that can provide common lan-
guage in the space between genetics, molecular biology and behavioral psychiatry. 
The development of computational models of attention, visual recognition, simple 
movements, and associations of concepts, models that elucidate mechanisms leading 
to symptoms of mental disorders, is at the very center of neuropsychiatric phenomics.  
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Abstract. This paper develops an observer-based direct adaptive out-
put feedback control for a class of multi-input-multi-out nonaffine nonlin-
ear discrete-time systems with unknown bounded disturbances. A neural
network (NN) observer is designed to estimate unavailable system states.
Then, under the framework of reinforcement learning, two other NNs
are used to generate the optimal control signal and estimate the cost
function, respectively. Based on Lyapunov’s direct method, the stability
of the closed-loop system is verified. Moreover, all signals involved are
guaranteed to be uniformly ultimately bounded. Finally, an example is
provided to demonstrate the effectiveness of the present approach.

Keywords: Output feedback control, Reinforcement learning, Neural
network, Nonaffine system, Multi-input-multi-output.

1 Introduction

Controller designs for nonlinear systems have drawn intensive attention for sev-
eral decades [1–3]. The objective of designing a controller is generally considered
as finding stable controllers for nonlinear systems. Nevertheless, stability is only
a bare minimum requirement in a system design. The control scheme are often
required to guarantee the stability of the closed-loop system, while keeping the
prescribed cost function as small as possible.

Reinforcement learning (RL) is a class of approaches employed in machine
learning to methodically revise the actions of an agent based on responses from
its environment [4]. It has been extensively employed to obtain optimal con-
trol for nonlinear systems [5–7]. Compared with traditional adaptive dynamic
programming approaches [8], there is no prescribed behavior or training model
proposed to RL schemes. Recently, RL-based feedback controllers for nonlinear
systems have been presented in [9–11]. Nevertheless, none of these literatures
consider adaptive control laws for unknown nonaffine nonlinear systems. The
difficulty of designing adaptive controllers for nonaffine nonlinear systems lies in
the output of this type of systems depends nonlinearly on the control signal. In
this case, feedback linearization methods cannot be implemented. To the best of
our knowledge, there are rather few literature about this field.

M. Lee et al. (Eds.): ICONIP 2013, Part I, LNCS 8226, pp. 631–638, 2013.
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In this paper, we develop an observer-based direct adaptive output feed-
back control for nonaffine nonlinear discrete-time (DT) systems with unknown
bounded disturbances. An NN observer is employed to estimate unavailable sys-
tem states. Then, two other NNs are utilized to derive the optimal control and
the cost function, respectively. Based on Lyapunov’s direct method, the stabil-
ity of the closed-loop system is verified. Furthermore, all signals involved are
guaranteed to be uniformly ultimately bounded (UUB).

The rest of the paper is organized as follows. Preliminaries are proposed in
Section 2. An observer-actor-critic architecture is developed in Section 3. Sta-
bility analysis is presented in Section 4. Simulation results are given in Section
5. Finally, several conclusions are drawn in Section 6.

2 Preliminaries

Consider the mnth-order MIMO nonaffine nonlinear DT system described by

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

...

xn(k + 1) = F
(
x(k), u(x(k))

)
+ d(k)

y(k) = x1(k) (1)

where state x(k) = [xT
1 (k), x

T
2 (k), . . . , x

T
n(k)]

T ∈ Rmn, and each xi(k) ∈ Rm, i =
1, . . . , n. The control u(x(k)) ∈ Rm is a continuous function with respect to x(k).
Denote υ(k) = u(x(k)). d(k) ∈ Rm is an unknown disturbance but bounded by
dM > 0, i.e., ‖d(k)‖ ≤ dM . F

(
x(k), υ(k)

) ∈ Rm is an unknown nonaffine function
with F (0, 0) = 0.

Assumption 1. det
{
∂F (x(k), υ(k))/∂υ(k)

} �= 0 for ∀(x(k), υ(k)) ∈ Ω × Rm

with a compact region Ω ⊂ Rmn.

Assumption 2. Let the desired system trajectory be xd(k) =
[xT

1d(k), . . . , x
T
nd(k)]

T. xid(k) is arbitrary selected and satisfies that
xid(k + 1) = x(i+1)d(k), i = 1, 2, ..., n. The desired trajectory xd(k) is
bounded by a known smooth function over Ω.

Objective of Control: The control objective is to design an observer-based direct
adaptive feedback controller such that the system output y(k) follows a given
bounded reference signal yd(k) to a small neighborhood of the origin, while
ensuring that all the signals involved in the closed-loop system are UUB.
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3 Observer-Actor-Critic Architecture

3.1 NN State Observer

Since only system output y(k) = x1(k) is measurable and the rest of system
states are unavailable for feedback, we employ a single-hidden layer NN to esti-
mate xi(k) (i = 2, . . . , n). From (1), the state observer is developed by

x̂1(k) = x̂2(k − 1)

x̂2(k) = x̂3(k − 1)

...

x̂n(k) = F̂
(
x̂(k − 1), υ(k − 1)

)
(2)

with x̂(k) = [x̂T
1 (k), x̂

T
2 (k), . . . , x̂

T
n(k)]

T, and F̂
(
x̂(k − 1), υ(k − 1)

)
= ŵT

o (k −
1)σo

(
νTo ẑ(k − 1)

)
, where νo and ŵo are NN weights for the input layer to the

hidden layer and the hidden layer to the output layer with suitable dimensions
separately, and ẑ(k−1) = [x̂T(k−1) uT(k−1)]T. Since inner weights are generally
initialized randomly and kept constant, for briefly, σ

(
νTo ẑ(k − 1)

)
is denoted by

σ
(
ẑ(k − 1)

)
. Define x̃i(k) = x̂i(k)− xi(k), i = 1, . . . , n.

Suppose that F
(
x(k − 1), υ(k − 1)

)
can accurately be represented by NNs as

F
(
x(k − 1), υ(k − 1)

)
= wT

o σo

(
z(k − 1)

)
+ ε1(k − 1) (3)

where wo is the ideal NN weight and z(k− 1) = [xT(k− 1) uT(k− 1)]T. By using
(2) and (3), we have

x̃n(k) = w̃T
o (k − 1)σo

(
ẑ(k − 1)

)
+ wT

o σo

(
z̃(k − 1)

)
− ε1(k − 1)− d(k − 1)

where w̃o(k−1) = ŵo(k−1)−wo, and σo

(
z̃(k−1)

)
= σo

(
ẑ(k−1)

)−σo

(
z(k−1)

)
.

Then, the observer NN weights update law is given by

ŵo(k + 1) = ŵo(k)− loσo(ẑ(k))
(
ŵT

o (k)σo(ẑ(k)) + μx̃1(k)
)T

(4)

where 0 < lo < 1 is the learning rate, and μ > 0 is a design parameter. The
observer error x̃1(k) is defined as x̃1(k) = x̂1(k)− y(k).

3.2 Controller Design Approach

From Assumption 2 and system (1), we can obtain x(i+1)d(k) = yd(k + i), i =
0, · · · , n− 1. Then, the tracking error can be developed by

ei(k) = yd(k + i)− y(k + i) = x(i+1)d(k)− x̂(i+1)(k) (5)

where i = 0, . . . , n− 1. From system (1), we have

y(k + n) = ηυ(k) +
[
F
(
x̂(k), υ(k)

)− ηυ(k)
]
+ d(k) (6)
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where η > 0. Let h(x̂(k), υ(k)) = F
(
x̂(k), υ(k)

)− ηυ(k), and

υ(k) =
(
υs(k)− υa(k)

)
/η (7)

where υs(k) is used to stabilize linearized error dynamics, and υa(k) is designed
to approximate the unknown nonlinear term h(x̂(k), υ(k)) via a single-hidden
layer NN. From (6) and (7), we get

y(k + n) = υs(k) +
[
h
(
x̂(k), υ(k)

)− υa(k)
]
+ d(k).

Meanwhile, υa(k) and υs(k) are proposed as{
υa(k) = ĥ

(
x̂(k), υ(k)

)
υs(k) = yd(k + n) + λ1en−1(k) + · · ·+ λne0(k)

(8)

where ĥ(x̂(k), υ(k)) approximates h(x(k), υ(k)). en−1(k), . . . , e0(k) are the de-
layed values of en(k), and λ1, . . . , λn are constant matrices selected such that
|zn + λ1z

n−1 + · · ·+ λn| is stable. Define the approximation error

h̃
(
x̂(k), υ(k)

)
= ĥ

(
x̂(k), υ(k)

)− h
(
x̂(k), υ(k)

)
.

Lemma 1. Assume that the tracking error ei(k) is defined as in (5) and υs(k)
is proposed as in (8). Then, the error dynamics is developed by

e(k + 1) = Ãe(k) + B̃
[
h̃
(
x̂(k), υ(k)

)− d(k)
]

(9)

where

e(k) =
[
eT0 (k), . . . , e

T
n−1(k)

]T
Ã = A⊗ Im B̃ = B ⊗ Im

A =

⎡⎢⎣ 0 1 · · · 0
...

...
...

−λn −λn−1 · · · −λ1

⎤⎥⎦ B =

⎡⎢⎣0...
1

⎤⎥⎦ .

Denote

G
(
x̂(k), υa(k), υs(k)

)
= h

(
x̂(k),

υs(k)− υa(k)

η

)
− υa(k) = 0. (10)

Theorem 1. Assume that the following matrix inequality holds:

ηκ1Im ≤
∂F

(
x̂(k), υ(k)

)
∂υ(k)

≤ ηκ2Im

where 0 < κ1 < κ2 ≤ 2. Then, there exist a compact set Ω′ ⊂ Ω and the unique
υa(k)

(
x̂(k), υs(k)

)
satisfies (10) for ∀ (

x̂(k), υs(k)
) ∈ Ω′ × U , where U ⊂ Rm is

a compact set.
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3.3 Critic NN and Weight Update Law

Define an utility function r(k) = [r1(k), . . . , rm(k)] ∈ Rm with

ri(k) =

{
0, if ‖ēi(k)‖ ≤ θ

1, if ‖ēi(k)‖ > θ
i = 1, . . . ,m

where ē(k) = λTe(k) ∈ Rm, and ēi(k) is the ith element of the vector ē(k). θ > 0
is a predefined threshold. The cost function J(k) ∈ Rm is given by

J(k) = αN r(k + 1) + αN−1r(k + 2) + · · ·+ αk+1r(N) (11)

with 0 < α ≤ 1 a design parameter, and N the final instant time. The prediction
error for the critic NN is described by

ec(k) = Ĵ(k)− αĴ(k − 1) + αN+1r(k)

where Ĵ(k) is an approximation of J(k). The critic NN output is given by

Ĵ(k) = ŵT
c (k)σ

(
vTc x̂(k)

)
= ŵT

c (k)σc

(
x̂(k)

)
(12)

where ŵc(k) and vc are defined similar to observe NNs. By the gradient-based
adaptation method, we can obtain the weight update rule for the critic NN as

ŵc(k + 1) = ŵc(k)− lcσc

(
x̂(k)

)(
ŵT

c (k)σc

(
x̂(k)

)
+ αN+1r(k)

− αŵT
c (k − 1)σc

(
x̂(k − 1)

))T

(13)

where lc > 0 is the learning rate for the critic NN.

3.4 Action NN and Weight Update Law

The prediction error for the action NN is defined as

ea(k) = Ĵ(k)− Jd(k) + h̃
(
x̂(k), yd(k)

)
. (14)

Since Jd(k) is generally considered to be zero, (14) can be rewritten as

ea(k) = Ĵ(k) + h̃
(
x̂(k), yd(k)

)
.

The action NN output is given by

ĥ(k) = ŵT
a (k)σa

(
vTa z̄(k)

)
= ŵT

a (k)σa

(
z̄(k)

)
(15)

where ĥ(k) stands for ĥ(x̂(k), yd(k)), ŵa(k) and va are defined similar to observe
NNs, and z̄(k) = [x̂T(k) yTd (k)]

T. Suppose h(k) = wT
aσa

(
z̄(k)

)
+ ε2(k), where

h(k) denotes h
(
x̂(k), yd(k)

)
. Define w̃a(k) = ŵa(k) − wa. Then, the function

approximation error can be developed by

h̃(k) = w̃T
a (k)σa

(
z̄(k)

)− ε2(k).
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By using the gradient-based adaptation approach and (9), we can derive the
weight update law for the action NN as

ŵa(k + 1) = ŵa(k)− laσa

(
z̄(k)

)(
ŵT

c (k)σc

(
x̂(k)

)
+ B̃T

(
e(k + 1)− Ãe(k)

)
+ d(k)

)T

.

However, d(k) is typically unavailable. Hence, the ideal case of d(k) is taken, i.e.,
d(k) = 0. Then, the weight update rule for the action NN beceomes

ŵa(k + 1) = ŵa(k)− laσa

(
z̄(k)

)(
ŵT

c (k)σc

(
x̂(k)

)
+ B̃T

(
e(k + 1)− Ãe(k)

))T

. (16)

where la > 0 is the learning rate for the action NN.

4 Stability Analysis

This section is to present our main results based on Lyapunov’s direct method.

Assumption 3. There exists a unique positive definite matrix P ∈ Rmn×mn

satisfying the Lyapunov equation

ÃTPÃ− P = −βImn (17)

where β is a positive constant.

Theorem 2. Consider the nonaffine nonlinear system described by (1). Let As-
sumptions 1–3 hold. Take the control input for system (1) as (7) with (8) and the
critic NN (12), as well as the action NN (15). Moreover, let the weight update
law for the critic NN and the action NN be (13) and (16), respectively. Then, the
tracking error e(k), the observer error x̃1(k), the NN estimated weights ξo(k),
ξa(k), and ξc(k) are all UUB, provided the following conditions hold:

(a) 0 < lo‖σo(k)‖2 < 1 (b) 0 < lc‖σc(k)‖2 < 1

(c) 0 < la‖σa(k)‖2 < 1 (d) 0 < α <
1√

1 + δ2

(e) β > 1, 0 < μ <
1

1 + δ2

where δ2 �= 0, μ, α, and β are parameters given by (4), (11), and (17), respec-
tively.
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5 Simulation Results

Consider the nonaffine nonlinear DT system described by

x11(k + 1) = x21(k) x12(k + 1) = x22(k)

x21(k + 1) = 0.4x22(k)− 0.3 cos(x21(k)) + 0.2u1(k)− 0.1 tanh(u2(k))

x22(k + 1) = 0.1x11(k) + 0.2u2(k)− 0.3 sin2(x22(k))u1(k)

y1(k) = x11(k) y2(k) = x12(k) (18)

where x1(k) = [x11(k) x12(k)]
T, x2(k) = [x21(k) x22(k)]

T, u(k) = [u1(k) u2(k)]
T,

and y(k) = [y1(k) y2(k)]
T. The objective is to control y(k) of system (18) to

track the prescribed trajectory yd(k) =
[
2.6 sin(kπ/200) 3 cos(kπ/180)

]T
. The

design parameters are as follows: λ1 = 1, λ2 = 0.25, η = 2, δ = 1, α = 0.7, β = 2,
θ = 8 × 10−3, la = 0.01, and lc = 0.001. The initial state x0 = [1 0.31 1 0.31]T.
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By (18), we know that ∂F
(
x(k), u(k)

)
/∂u(k) is positive definite, and 0.01I2 ≤

det
[
∂F (x(k), u(k))/∂u(k)

] ≤ 0.07I2. The structures of the state observer NN,
the action NN, and the critic NN are 6-30-2, 6-30-2, and 4-24-2, respectively. The
computer simulation results are presented in Figs. 1–2. From simulation results,
we find that the state observer estimates system states very well. Meanwhile, it
is also shown that the tracking errors converge to a small neighborhood of zero.
Furthermore, all signals involved are bounded.

6 Conclusion

In this paper, an observer-based direct adaptive NN output feedback control
scheme is developed for a class of unknown nonaffine nonlinear DT systems.
Based on the proposed control scheme, all signals involved are guaranteed to be
UUB, while keeping the closed-loop system stable. In addition, the computer
simulation results indicate that the derived controller can successfully track a
reference trajectory.
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Nõmm, Sven I-215
Notsu, Akira III-93

Ogawa, Akitoshi I-153
Oja, Erkki III-166, III-274
Ojha, Amitash I-90, III-41
Oka, Natsuki I-387
Okamura, Jun-ya III-193
Okazaki, Takeya I-145
Omori, Takashi I-377
Omori, Toshiaki III-108
Ono, Isao I-569
Ono, Kohei III-557
Osana, Yuko II-291
Osendorfer, Christian II-132, III-624
Oshima, Jin III-193
Ota, Kengo II-299
Ou, Weihua III-233
Ouadfeul, Sid-Ali I-490, I-498, I-511
Ozawa, Seiichi I-369
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