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Preface

It is our great pleasure to present the proceedings of Asiacrypt 2013 in two
volumes of Lecture Notes in Computer Science published by Springer. This was
the 19th edition of the International Conference on Theory and Application of
Cryptology and Information Security held annually in Asia by the International
Association for Cryptologic Research (IACR). The conference was organized by
IACR in cooperation with the Cryptology Research Society of India and was
held in the city of Bengaluru in India during December 1–5, 2013.

About one year prior to the conference, an international Program Committee
(PC) of 46 scientists assumed the responsibility of determining the scientific
content of the conference. The conference evoked an enthusiastic response from
researchers and scientists. A total of 269 papers were submitted for possible
presentations approximately six months before the conference. Authors of the
submitted papers are spread all over the world. PC members were allowed to
submit papers, but each PC member could submit at most two co-authored
papers or at most one single-authored paper. The PC co-chairs did not submit
any paper. All the submissions were screened by the PC and 54 papers were
finally selected for presentations at the conference. These proceedings contain
the revised versions of the papers that were selected. The revisions were not
checked and the responsibility of the papers rests with the authors and not the
PC members.

Selection of papers for presentation was made through a double-blind re-
view process. Each paper was assigned three reviewers and submissions by PC
members were assigned six reviewers. Apart from the PC members, 291 external
reviewers were involved. The total number of reviews for all the papers was more
than 900. In addition to the reviews, the selection process involved an extensive
discussion phase. This phase allowed PC members to express opinion on all the
submissions. The final selection of 54 papers was the result of this extensive and
rigorous selection procedure. One of the final papers resulted from the merging
of two submissions.

The best paper award was conferred upon the paper“Shorter Quasi-Adaptive
NIZK Proofs for Linear Subspaces”authored by Charanjit Jutla and Arnab Roy.
The decision was based on a vote among the PC members. In addition to the
best paper, the authors of two other papers, namely, “Families of Fast Elliptic
Curves from Q-Curves”authored by Benjamin Smith and“Key Recovery Attacks
on 3-Round Even-Mansour, 8-Step LED-128, and Full AES2” authored by Itai
Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, were recommended by
the Editor-in-Chief of the Journal of Cryptology to submit expanded versions to
the journal.

A highlight of the conference was the invited talks. An extensive multi-round
discussion was carried out by the PC to decide on the invited speakers. This
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resulted in very interesting talks on two different aspects of the subject. Lars
Ramkilde Knudsen spoke on “Block Ciphers — Past and Present” a topic of
classical and continuing importance, while George Danezis spoke on“Engineering
Privacy-Friendly Computations,” which is an important and a more modern
theme.

Apart from the regular presentations and the invited talks, a rump session
was organized on one of the evenings. This consisted of very short presentations
on upcoming research results, announcements of future events, and other topics
of interest to the audience.

We would like to thank the authors of all papers for submitting their research
works to the conference. Such interest over the years has ensured that the Asi-
acrypt conference series remains a cherished venue of publication by scientists.
Thanks are due to the PC members for their enthusiastic and continued partic-
ipation for over a year in different aspects of selecting the technical program.
External reviewers contributed by providing timely reviews and thanks are due
to them. A list of external reviewers is provided in these proceedings. We have
tried to ensure that the list is complete. Any omission is inadvertent and if there
is an omission, we apologize to the person concerned.

Special thanks are due to Satyanarayana V. Lokam, the general chair of
the conference. His message to the PC was to select the best possible scientific
program without any other considerations. Further, he ensured that the PC co-
chairs were insulated from the organizational work. This work was done by the
Organizing Committee and they deserve thanks from all the participants for
the wonderful experience. We thank Daniel J. Bernstein and Tanja Lange for
expertly organizing and conducting the rump session.

The reviews and discussions were entirely carried out online using a software
developed by Shai Halevi. At several times, we had to ask Shai for his help with
some feature or the other of the software. Every time, we received immediate
and helpful responses. We thank him for his support and also for developing the
software. We also thank Josh Benaloh, who was our IACR liaison, for guidance
on several issues. Springer published the volumes and made these available before
the conference. We thank Alfred Hofmann and Anna Kramer and their team for
their professional and efficient handling of the production process.

Last, but, not the least, we thank Microsoft Research; Google; Indian Statis-
tical Institute, Kolkata; and National Mathematics Initiative, Indian Institute of
Science, Bengaluru; for being generous sponsors of the conference.

December 2013 Kazue Sako
Palash Sarkar
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and École Normale Supérieure, France
Hongjun Wu Nanyang Technological University, Singapore

External Reviewers

Carlos Aguilar-Melchor
Masayuki Abe
Gergely Acs
Shashank Agrawal
Ahmad Ahmadi
Hadi Ahmadi
Mohsen Alimomeni
Joel Alwen
Prabhanjan Ananth
Gilad Asharov
Tomer Ashur
Giuseppe Ateniese
Man Ho Au
Jean-Philippe Aumasson
Pablo Azar

Foteini Baldimtsi
Subhadeep Banik
Paulo Barreto
Rishiraj Batacharrya
Lejla Batina
Anja Becker
Mihir Bellare
Fabrice Benhamouda
Debajyoti Bera
Daniel J. Bernstein
Rishiraj Bhattacharyya
Gaetan Bisson
Olivier Blazy
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André Chailloux
Melissa Chase
Anupam Chattopadhyay
Chi Chen
Jie Chen
Jing Chen
Yu Chen
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Block Ciphers – Past and Present

Lars Ramkilde Knudsen

DTU Compute, Denmark

lrkn@dtu.dk

Abstract. In the 1980s researchers were trying to understand the de-
sign of the DES, and breaking it seemed impossible. Other block ciphers
were proposed, and cryptanalysis of block ciphers got interesting. The
area took off in the 1990s where it exploded with the appearance of dif-
ferential and linear cryptanalysis and the many variants thereof which
appeared in the time after. In the 2000s AES became a standard and
it was constructed specifically to resist the general attacks and the area
of (traditional) block cipher cryptanalysis seemed saturated.... Much of
the progress in cryptanalysis of the AES since then has come from side-
channel attacks and related-key attacks.

Still today, for most block cipher applications the AES is a good
and popular choice. However, the AES is perhaps not particularly well
suited for extremely constrained environments such as RFID tags. There-
fore, one trend in block cipher design has been to come up with ultra-
lightweight block ciphers with good security and hardware efficiency. I
was involved in the design of the ciphers Present (from CHES 2007),
PrintCipher (presented at CHES 2010) and PRINCE (from Asiacrypt
2012). Another trend in block cipher design has been try to increase the
efficiency by making certain components part of the secret key, e.g., to
be able to reduce the number of rounds of a cipher.

In this talk, I will review these results.



Engineering Privacy-Friendly Computations

George Danezis 1,2

1 University College London
2 Microsoft Research, Cambridge

Abstract. In the past few years tremendous cryptographic progress has
been made in relation to primitives for privacy friendly-computations.
These include celebrated results around fully homomorphic encryption,
faster somehow homomorphic encryption, and ways to leverage them to
support more efficient secret-sharing based secure multi-party compu-
tations. Similar break-through in verifiable computation, and succinct
arguments of knowledge, make it practical to verify complex computa-
tions, as part of privacy-preserving client side program execution. Besides
computations themselves, notions like differential privacy attempt to cap-
ture the essence of what it means for computations to leak little personal
information, and have been mapped to existing data query languages.

So, is the problem of computation on private data solved, or just about
to be solved? In this talk, I argue that the models of generic computation
supported by cryptographic primitives are complete, but rather removed
from what a typical engineer or data analyst expects. Furthermore, the
use of these cryptographic technologies impose constrains that require
fundamental changes in the engineering of computing systems. While
those challenges are not obviously cryptographic in nature, they are nev-
ertheless hard to overcome, have serious performance implications, and
errors open avenues for attack.

Throughout the talk I use examples from our own work relating to
privacy-friendly computations within smart grid and smart metering de-
ployments for private billing, privacy-friendly aggregation, statistics and
fraud detection. These experiences have guided the design of ZQL, a
cryptographic language and compiler for zero-knowledge proofs, as well
as more recent tools that compile using secret-sharing based primitives.
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Abstract. In this paper we study the security of hash-based MAC al-
gorithms (such as HMAC and NMAC) above the birthday bound. Up to the
birthday bound, HMAC and NMAC are proven to be secure under reason-
able assumptions on the hash function. On the other hand, if an n-bit
MAC is built from a hash function with a l-bit state (l ≥ n), there is a
well-known existential forgery attack with complexity 2l/2. However, the
remaining security after 2l/2 computations is not well understood. In par-
ticular it is widely assumed that if the underlying hash function is sound,
then a generic universal forgery attack should require 2n computations
and some distinguishing (e.g. distinguishing-H but not distinguishing-R)
and state-recovery attacks should also require 2l computations (or 2k if
k < l).

In this work, we show that above the birthday bound, hash-based
MACs offer significantly less security than previously believed. Our main
result is a generic distinguishing-H and state-recovery attack against
hash-based MACs with a complexity of only Õ(2l/2). In addition, we
show a key-recovery attack with complexity Õ(23l/4) against HMAC used
with a hash functions with an internal checksum, such as GOST. This sur-
prising result shows that the use of a checksum might actually weaken
a hash function when used in a MAC. We stress that our attacks are
generic, and they are in fact more efficient than some previous attacks
proposed on MACs instanciated with concrete hash functions.

We use techniques similar to the cycle-detection technique proposed
by Peyrin et al. at Asiacrypt 2012 to attack HMAC in the related-key
model. However, our attacks works in the single-key model for both HMAC

and NMAC, and without restriction on the key size.

Keywords: NMAC, HMAC, hash function, distinguishing-H, key recovery,
GOST.

1 Introduction

Message Authentication Codes (MACs) are crucial components in many security
systems. A MAC is a function that takes a k-bit secret key K and an arbitrarily
long message M as inputs, and outputs a fixed-length tag of size n bits. The
tag is used to authenticate the message, and will be verified by the receiving
party using the same key K. Common MAC algorithms are built from block
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ciphers (e.g. CBC-MAC), from hash functions (e.g. HMAC), or from universal
hash functions (e.g. UMAC). In this paper we study MAC algorithms based on
hash functions.

As a cryptographic primitive, a MAC algorithm should meet some security re-
quirements. It should be impossible to recover the secret key except by exhaustive
search, and it should be computationally impossible to forge a valid MAC with-
out knowing the secret key, the message being chosen by the attacker (existential
forgery) or given as a challenge (universal forgery). In addition, cryptanalysts
have also studied security notions based on distinguishing games. Informally,
the distinguishing-R game is to distinguish a MAC construction from a random
function, while the distinguishing-H game is to distinguish a known MAC con-
struction (e.g. HMAC) instantiated with a known component (e.g. SHA-1) under a
random key from the same construction instantiated with a random component
(e.g. HMAC with a fixed input length random function).

One of the best known MAC algorithm is HMAC [2], designed by Bellare et al.
in 1996. HMAC is now widely standardized (by ANSI, IETF, ISO and NIST), and
widely deployed, in particular for banking processes or Internet protocols (e.g.
SSL, TLS, SSH, IPSec). It is a single-key version of the NMAC construction, the
latter being built upon a keyed iterative hash function HK , while HMAC uses an
unkeyed iterative hash function H :

NMAC(Kout,Kin,M) = HKout(HKin(M))

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖ M))

where opad and ipad are predetermined constants, and where Kin denotes the
inner key and Kout the outer one.

More generally, a MAC algorithm based on a hash function uses the key at
the beginning and/or at the end of the computation, and updates an l-bit state
with a compression function. The security of MAC algorithms is an important
topic, and both positive and negative results are known. On the one hand, there
is a generic attack with complexity 2l/2 based on internal collisions and length
extension [17]. This gives an existential forgery attack, and a distinguishing-H
attack. One the other hand, we have security proofs for several MAC algorithms
such as HMAC and sandwich-MAC [2,1,26]. Roughly speaking, the proofs show
that some MAC algorithms are secure up to the birthday bound (2l/2) under
various assumptions on the compression function and hash function.

Thanks to those results, one may consider that the security of hash-basedMAC
algorithms is well understood. However, there is still a strong interest in the se-
curity above the birthday bound. In particular, it is very common to expect se-
curity 2k for key recovery attacks if the hash function is sound; the Encyclope-
dia of Cryptography and Security article on HMAC states explicitly [16] “A generic
key recovery attack requires 2n/2 known text-MAC pairs and 2n+1 time” (assum-
ing n = l = k). Indeed, key recovery attacks against HMAC with a concrete hash
function with complexity between 2l/2 and 2l have been considered as important
results [9,24,27]. Similarly, the best known dinstinguishing-H and state-recovery
attacks have a complexity of 2l (or 2k if k < l), and distinguishing-H attacks on
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Table 1. Comparison of our generic attacks on HMAC, and some previous attacks on
concrete hash function. We measure the complexity as the number of calls to the
compression function (i.e. number of messages times message length).

Function Attack Complexity M. len Notes Ref

HMAC-MD5 dist-H, state rec. 297 2 [25]
HMAC-SHA-0 dist-H 2100 2 [12]
HMAC-HAVAL (3-pass) dist-H 2228 2 [12]
HMAC-SHA-1 (43 first steps) dist-H 2154 2 [12]
HMAC-SHA-1 (58 first steps) dist-H 2158 2 [18]
HMAC-SHA-1 (61 mid. steps) dist-H 2100 2 [18]
HMAC-SHA-1 (62 mid. steps) dist-H 2157 2 [18]

Generic attacks:

hash-based MAC (e.g. HMAC) dist-H O(2l/2) 2l/2 Sec. 4

state rec. Õ(2l/2) 2l/2 Sec. 5
dist-H, state rec. O(2l−s) 2s s ≤ l/4 full version

HMAC with a checksum key rec. O(l · 23l/4) 2l/2 Sec. 7

O(l · 23l/4) 2l/4 full version

HMAC-MD5� dist-H, state rec. 267, 278 264 Sec. 4, 5
O(296) 232 full version

HMAC-HAVAL† (any) dist-H, state rec. O(2202) 254 full version
HMAC-SHA-1† dist-H, state rec. O(2120) 240 full version
HMAC-GOST� key rec. 2200 2128 Sec. 7

2200 264 full version

� The MD5 and GOST specifications allow arbitrary-length messages
† The SHA-1 and HAVAL specifications limits the message length to 264 bits (and 264

bits is 254 blocks)

HMACwith a concrete hash function with complexity between 2l/2 and 2l have been
considered as important results [12,18,25].

Our Contributions. In this paper we revisit the security of hash-based MAC
above the birthday bound. We describe a generic distinguishing-H attack in the
single key model and with complexity of only O(2l/2) computations, thus putting
an end to the long time belief of the cryptography community that the best
generic distinguishing-H on NMAC and HMAC requires Ω(2l) operations. Instead,
we show that a distinguishing-H attack is not harder than a distinguishing-R at-
tack. Our results actually invalidate some of the recently published cryptanalysis
works on HMAC when instantiated with real hash functions [12,18,25]

Our method is based on a cycle length detection, like the work of Peyrin et.
al [14], but our utilization is quite different and much less restrictive: instead of
iterating many times HMAC with small messages and a special related-key, we will
use only a few iterations with very long messages composed of almost the same
message blocks to observe the cycle and deduct information from it. Overall,
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unlike in [14], our technique works in the single-key model, for both HMAC and
NMAC, and can be applied for any key size. In addition, leveraging our new ideas,
we provide a single-key internal state recovery for any hash-based MAC with
only O(l · log(l) · 2l/2) computations.

We also introduce a different approach to reduce the length of the queried
messages for distinguishing-H and internal-state-recovery attacks. Due to the
limited space, we only give a quick overview of these shorter-message attacks,
and refer the reader to the full version of this paper for more details.

Finally, this internal state recovery can be transformed into a single-key key
recovery attack on HMAC with complexity O(l · 23l/4) when instantiated with a
hash function using a checksum, such as the GOST hash function [6]. A surprising
corollary to our results is that incorporating a checksum to a hash function seems
to actually reduce the security of the overall HMAC design.

We give an overview of our results, and a comparison with some previous
analysis in Table 1.

The description of HMAC/NMAC algorithms and their security are given in
Section 2 and we recall in Section 3 the cycle-detection ideas from [14]. Then, we
provide in Section 4 the generic distinguishing-H attack. We give in Sections 5
an internal state recovery method, and finally describe our results when the hash
function incorporates a checksum in Section 7.

2 Hash-Based MAC Algorithms

In this paper, we study a category of MAC algorithms based on hash functions,
where the key is used at the beginning and at the end of the computation, as
described in Figure 1. More precisely, we consider algorithms where: the message
processing is done by updating an internal state x using a compression function
h; the state is initialized with a key dependent value Ik; and the tag is computed
from the last state xp and the key K by an output function g.

x0 = IK xi+1 = h(xi,mi) MACK(M) = g(K,xp, |M |)

In particular, this description covers NMAC/HMAC [2], envelope-MAC [21], and
sandwich-MAC [26]. The results described in Sections 4 and 5 can be applied
to any hash-based MAC, but we focus on HMAC for our explanations because
it is the most widely used hash-based MAC, and its security has been widely
analyzed already. On the other hand the result of Section 7 is specific to MAC
algorithms that process the key as part of the message, such as HMAC.

2.1 Description of NMAC and HMAC

A Hash Function. H is a function that takes an arbitrary length input message
M and outputs a fixed hash value of size n bits.

Virtually every hash function in use today follows an iterated structure like
the classical Merkle-Damg̊ard construction [13,4]. Iterative hash functions are
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hl
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hl
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x1

hl

m2
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MACK(M)
l n

|M |

IK
gK

Fig. 1. Hash-based MAC. Only the initial value and the final transformation are keyed.

built upon successive applications of a so-called compression function h, that
takes a b-bit message block and a l-bit chaining value as inputs and outputs a
l-bit value (where l ≥ n). An output function can be included to derive the n-bit
hash output from the last chaining variable and from the message length. When
l > n (resp. when l = n) we say that the hash function is wide pipe (resp. narrow
pipe).

The message M is first padded and then divided into blocks mi of b bits
each. Then, the message blocks are successively used to update the l-bit internal
state xi with the compression function h. Once all the message blocks have been
processed, the output function g is applied to the last internal state value xp.

x0 = IV xi+1 = h(xi,mi) hash = g(xp, |M |)

The MAC algorithm NMAC [2] uses two l-bit keysKout andKin. NMAC replaces
the public IV of a hash function H by a secret key K to produce a keyed hash
function HK(M). NMAC is then defined as:

NMAC(Kout,Kin,M) = HKout(HKin(M)).

The MAC algorithm HMAC [2] is a single-key version of NMAC, with Kout =
h(IV,K ⊕ opad) and Kin = h(IV,K ⊕ ipad), where opad and ipad are b-bit
constants. However, a very interesting property of HMAC for practical utilization
is that it can use any key size and can be instantiated with an unkeyed hash
function (like MD5, SHA-1, etc. which have a fixed IV ):

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖ M)).

where ‖ denotes the concatenation operation. For simplicity of the description
and without loss of generality concerning our attacks, in the rest of this article
we assume that the key can fit in one compression function message block, i.e.
k ≤ b (note that K is actually padded to b bits if k < b).

2.2 Security of NMAC and HMAC

In [1], Bellare proved that the NMAC construction is a pseudo-random function
(PRF) under the sole assumption that the internal compression function h (keyed
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by the chaining variable input) is a PRF. The result can be transposed to HMAC

as well under the extra assumption that h is also a PRF when keyed by the
message input.

Concerning key recovery attacks, an adversary should not be able to recover
the key in less than 2k computations for both HMAC and NMAC. In the case of
NMAC one can attack the two keys Kout and Kin independently by first finding
an internal collision and then using this colliding pair information to brute force
the first key Kin, and finally the second one Kout.

Universal or existential forgery attacks should cost 2n computations for a
perfectly secure n-bit MAC. However, the iterated nature of the hash functions
used inside NMAC or HMAC allows a simple existential forgery attack requiring only
2l/2 computations [17]. Indeed, with 2l/2 queries, an adversary can first find an
internal collision between two messages (M,M ′) of the same length during the
first hash call. Then, any extra block m added to both of these two messages will
lead again to an internal collision. Thus, the attacker can simply forge a valid
MAC by only querying for M ‖m and deducing that M ′ ‖m will have the same
MAC value.

Concerning distinguishers on HMAC or NMAC, two types have been discussed in
the literature: Distinguishing-R and Distinguishing-H attacks, defined below:

Distinguishing-R. Let Fn be the set of n-bit output functions. We denote FK

the oracle on which the adversary A can make queries. The oracle is instanti-
ated either with FK = HMACK (with K being a randomly chosen k-bit key) or
with a randomly chosen function RK from Fn. The goal of the adversary is to
distinguish between the two cases and its advantage is given by

Adv(A) = |Pr[A(HMACK) = 1]− Pr[A(RK) = 1]| .

Obviously the collision-based forgery attack detailed above gives directly a
distinguishing-R attack on NMAC and HMAC. Thus, the expected security of HMAC
and NMAC against distinguishing-R attacks is 2l/2 computations.

Distinguishing-H. The attacker is given access to an oracle HMACK and the
compression function of the HMAC oracle is instantiated either with a known
dedicated compression function h or with a random chosen function r from Fb+l

l

(the set of (b + l)-bit to l-bit functions), which we denote HMAChK and HMACrK
respectively. The goal of the adversary is to distinguish between the two cases
and its advantage is given by

Adv(A) =
∣∣Pr[A(HMAChK) = 1]− Pr[A(HMACrK) = 1]

∣∣ .
The distinguishing-H notion was introduced by Kim et al. [12] for situations

where the attacker wants to check which cryptographic hash function is embed-
ded in HMAC. To the best of our knowledge, the best known generic distinguishing-
H attack requires 2l computations.
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Related-Key Attacks. At Asiacrypt 2012 [14], a new type of generic dis-
tinguishing (distinguishing-R or distinguishing-H) and forgery attacks for HMAC
was proposed. These attacks are in the related-key model and can apply even
to wide-pipe proposals, but they only work for HMAC, and only when a special
restrictive criterion is verified: the attacker must be able to force a specific dif-
ference between the inner and the outer keys (with the predefined values of opad
and ipad in HMAC, this criterion is verified when k = b). The idea is to compare
the cycle length when iterating the HMAC construction on small messages with a
key K, and the cycle length when iterating with a key K ′ = K ⊕ opad⊕ ipad.

Attacks on Instantiations with Concrete Hash Functions. Because of its
widespread use in many security applications, HMAC has also been carefully scru-
tinized when instantiated with a concrete hash function, exploiting weaknesses
of some existing hash function. In parallel to the recent impressive advances on
hash function cryptanalysis, the community analyzed the possible impact on the
security of HMAC when instantiated with standards such as MD4 [19], MD5 [20],
SHA-1 [22] or HAVAL. In particular, key-recovery attacks have been found on
HMAC-MD4 [9,24] and HMAC-HAVAL [27]. Concerning the distinguishing-H notion,
one can cite for example the works from Kim et al. [12], Rechberger et al. [18]
and Wang et al. [25].

However, to put these attacks in perspective, it is important to know the
complexity of generic attacks, that work even with a good hash function.

3 Cycle Detection for HMAC

Our new attacks are based on some well-known properties of random functions.

3.1 Random Mapping Properties on a Finite Set

Let us consider a random function f mapping n bits to n bits and we denote
N = 2n. We would like to know the structure of the functional graph defined
by the successive iteration of this function, for example the expected number of
components, cycles, etc. First, it is easy to see that each component will contain
a single cycle with several trees linked to it. This has already been studied for a
long time, and in particular we recall two theorems from Flajolet and Odlyzko [7].

Theorem 1 ([7, Th. 2]). The expectations of the number of components, num-
ber of cyclic points, number of terminal points, number of image points, and
number of k-th iterate image points in a random mapping of size N have the
asymptotic forms, as N →∞:

(i) # Components: 1
2 logN

(ii) # Cyclic nodes:
√
πN/2

(iii) # Terminal nodes: e−1N

(iv) # Image points: (1 − e−1)N
(v) # k-th iterate images: (1 − τk)N ,

with τ0 = 0, τk+1 = e−1+τk .
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In particular, a random mapping has only a logarithmic number of distinct
components, and the number of cyclic points follows the square root of N .

By choosing a random starting point P and iterating the function f , one
will follow a path in the functional graph starting from P , that will eventually
connect to the cycle of the component in which P belongs, and we call tail
length the number of points in this path. Similarly, we call cycle length the
number of nodes in the cycle. Finally, the number of points in the non-repeating
trajectory from P is called the rho length, and we call α-node of the path the
node that connects the tail and the cycle.

Theorem 2 ([7, Th. 3]). Seen from a random point in a random mapping
of size N , the expectations of the tail length, cycle length, rho length, tree size,
component size, and predecessors size have the following asymptotic forms:

(i) Tail length (λ):
√
πN/8

(ii) Cycle length (μ):
√
πN/8

(iii) Rho length (ρ = λ+ μ):
√
πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√
πN/8

One can see that, surprisingly, in a random mapping most of the points tend
to be grouped together in a single giant component, and there is a giant tree
with a significant proportion of the points. The asymptotic expectation of the
maximal features is given by Flajolet and Sedgewick [8].

Theorem 3 ([8, VII.14]). In a random mapping of size N , the largest tree
has an expected size of δ1N with δ1 ≈ 0.48 and the largest component has an
expected size of δ2N with δ2 ≈ 0.7582.

These statistical properties will be useful to understand the advantage of our
attacks. We show the functional graph of a simple random-looking function in
Figure 4 in the Appendix.

3.2 Using Cycle-Detection to Obtain Some Secret Information

In this article and as in [14], we will study the functional graph structure of
a function to derive a distinguisher or obtain some secret information. More
precisely, in [14] Peyrin et al. observed that the functional graph structure of
HMAC was the same when instantiated with a key K or with a related key K ′ =
K⊕ ipad⊕ opad (note that in order to be able to query this related-key K ′, the
key K has to be of size b or b− 1, which is quite restrictive). This is a property
that should not exist for a randomly chosen function and they were able to detect
this cycle structure by measuring the cycle length in both cases K and K ′, and
therefore obtaining a distinguishing-R attack for HMAC in the related-key model.
In practice, the attacker can build and observe the functional graph of HMAC by
simply successively querying the previous n-bit output as new message input.

In this work, instead of studying the structure of the functional graph of HMAC
directly, we will instead study the functional graph of the internal compression



New Generic Attacks against Hash-Based MACs 9

function h with a fixed message block: we denote hM (X) = h(X,M). We aim
to obtain some information on hM that we can propagate outside the HMAC

structure. This is therefore perfectly suited for a distinguishing-H attack, which
requires the attacker to exhibit a property of h when embedded inside the HMAC
construction. We can traverse the functional graph of hM by querying the HMAC
oracle with a long message composed of many repetitions of the fixed message
block M . The issue is now to detect some properties of the functional graph of
hM inside HMAC and without knowing the secret key. We explain how to do that
in the next section.

4 Distinguishing-H Attack for Hash-Based MACs

In the rest of the article, we use the notation [x]k to represent the successive
concatenation of k message blocks x, with [x] = [x]1.

4.1 General Description

In order to derive a distinguishing-H attack, we need to do some offline com-
putations with the target compression function h and use this information to
compare online with the function embedded in the MAC oracle. We use the
structure of the functional graph of h[0] to derive our attack (of course we can
choose any fixed message block). We can travel in the graph by querying the
oracle using consecutive [0] message blocks. However, since the key is unknown,
we do not know where we start or where we stop in this graph. We have seen in
the previous section that the functional graph of a random function is likely to
have a giant component containing most of the nodes. We found that the cycle
size of the giant component of h[0] is a property that can be efficiently tested.

More precisely, we first compute the cycle size of the giant component of
h[0] offline; we denote it as L. Then, we measure the cycle size of the giant
component of the unknown function by querying the MAC oracle with long
messages composed of many consecutive [0] message blocks. If no length padding

is used in the hash function, this is quite simple: we just compare MAC([0]2
l/2

)

and MAC([0]2
l/2+L). With a good probability, the sequence of 2l/2 zero block is

sufficiently long to enter the cycle, and if the cycle has length L, the two MAC
outputs will collide.

Unfortunately, this method does not work because the lengths of the messages
are different, and thus the last message block with the length padding will be
different and prevent the cycle collision to propagate to the MAC output. We
will use a trick to overcome this issue, even though the basic method remains
the same. The idea is to build a message M going twice inside the cycle of the
giant component, so that we can add L [0] message blocks in the first cycle to
obtain a messageM1 and L [0] message blocks in the second cycle to obtain M2.
This is depicted in Figure 2: M1 will cycle L [0] message blocks in the first cycle
(red dotted arrows), while M2 will cycle L [0] message blocks in the second cycle
(blue dashed arrows), and thus they will both have the same length overall.
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To perform the distinguishing-H attack, the adversary simply randomly selects

an initial message block m and query M1 = m ‖ [0]2
l/2 ‖ [1] ‖ [0]2

l/2+L and

M2 = m ‖ [0]2l/2+L ‖ [1] ‖ [0]2l/2 to the MAC oracle, and deduce that the target
function is used to instantiate the oracle if the two MAC values are colliding.
The [1] message block is used to quit the cycle and randomize the entry point to
return again in the giant component. We give below a detailed attack procedure
and complexity analysis.

Fig. 2. Distinguishing-H attack

This attack is very interesting as the first generic distinguishing-H attack
on HMAC and NMAC with a complexity lower than 2l. However, we note that
the very long message length might be a limitation. In theory this is of no
importance and our attack is indeed valid, but in practice some hash functions
forbid message inputs longer than a certain length. To address this issue we
provide an alternative attack in the full version of this paper, using shorter
messages, at the cost of a higher complexity.

4.2 Detailed Attack Process

1. (offline) Search for a cycle in the functional graph of h[0] and denote L its
length.

2. (online) Choose a random message block m and query the HMAC value of the

two messagesM1 = m‖[0]2l/2‖[1]‖[0]2l/2+L andM2 = m‖[0]2l/2+L‖[1]‖[0]2l/2 .
3. If the HMAC values of M1 and M2 collide then output 1, otherwise output 0.

4.3 Complexity and Success Probability Analysis

We would like to evaluate the complexity of the attack. The first step will require
about 2l/2 offline computations to find the cycle for the target compression
function h. It is important to note that we can run this first step several times
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in order to ensure that we are using the cycle from the largest component of
the functional graph of h[0]. The second step makes two queries of about 2l/2 +

2l/2 + L 	 3 · 2l/2 message blocks each. Therefore, the overall complexity of the
attack is about 2l/2+3 compression function computations.

Next, we evaluate the advantage of the adversary in winning the distingui-
shing-H game defined in Section 2.2. We start with the case where the oracle
is instantiated with the real compression function h. The adversary will output
1 if a collision happens between the HMAC computations of M1 and M2. Such a
collision can happen when the following conditions are satisfied:

• The processing of the random block m sets us in the same component (of
the functional graph of h[0]) as in the offline computation. Since we ensured
that the largest component was found during the offline computation, and
since it has an average size of 0.7582 · 2l elements according to Theorem 2,
this event will happen with probability 0.7582.

• The 2l/2 [0] message blocks concatenated after m are enough to reach the
cycle of the component, i.e. the tail length when reaching the first cycle is
smaller than 2l/2. Since the average tail length is less than 2l/2 elements,
this will happen with probability more than 1/2.

• The processing of the block [1] sets us in the same component (of the func-
tional graph of h[0]) as in the offline computation; again the probability is
0.7582.

• The 2l/2 [0] message blocks concatenated after [1] are enough to reach the
cycle of the component; again this happens with probability 1/2.

The collision probability is then (0.7582)2 × 1/4 	 0.14 and thus we have that
Pr[A(HMAChK) = 1] ≥ 0.14. In the case where the oracle is instantiated with
a random function r, the adversary will output 1 if and only if a random HMAC

collision happens between messagesM1 andM2. Such a collision can be obtained

if the processing of any of the last [0]2
l/2

blocks of the two messages leads to an
internal collision, therefore with negligible probability 2l/2 ·2−l = 2−l/2. Overall,
the adversary advantage is equal to Adv(A) =

∣∣0.14− 2−l/2
∣∣ 	 0.14.

5 Internal State Recovery for NMAC and HMAC

This section extends the distinguishing-H attack in order to build an internal
state recovery attack.

5.1 General Description

In order to extent the distinguishing-H attack to a state recovery attack, we
observe that there is a high probability that the α-node reached in the online
phase is the root of the giant tree of the functional graph of h[0]. More precisely,
we can locate the largest tree and the corresponding α-node in the offline phase,
by repeating the cycle search a few times. We note that δ1 + δ2 > 1, therefore
the largest tree is in the largest component with asymptotic probability one
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(see Theorem 3). Thus, assuming that the online phase succeeds, the α-node
reached in the online phase is the root of the largest tree with asymptotic proba-
bility δ1/δ2 ≈ 0.63. If we can locate the α-node of the online phase (i.e. we deduce
its block index inside the queried message), we immediately get its corresponding
internal state value from the offline computations.

Since the average rho length is
√
π2l/2 we can not use a brute-force search to

locate the α-node, but we can use a binary search instead. We denote the length
of the cycle of the giant component as L, and the follow the distinguishing-H
attack to reach the cycle. We choose a random message blockm and we query the

two messagesM1 = m‖ [0]2l/2 ‖ [1]‖ [0]2l/2+L andM2 = m‖ [0]2l/2+L ‖ [1]‖ [0]2l/2 .
If the MAC collide, we know that the state reached after processing m ‖ [0]2l/2

is located inside the main cycle. We use a binary search to find the smallest X
so that the state reached after m ‖ [0]X is in the cycle.

The first step of the binary search should decide whether the node reached

after m ‖ [0]2
l/2−1

is also inside the first online cycle or not. More precisely,

we check if the two messages M ′
1 = m ‖ [0]2

l/2−1 ‖ [1] ‖ [0]2
l/2+L and M ′

2 =

m ‖ [0]2l/2−1+L ‖ [1] ‖ [0]2l/2 also give a colliding tag. If it is the case, then the
node after processing m ‖ 2l/2−1 is surely inside the cycle, which implies that
the α-node is necessarily located in the first 2l/2−1 zero blocks. On the other
hand, if the tags are not colliding, we cannot directly conclude that the α-node
is located in the second half since there is a non-negligible probability that the
α-node is in the first half but the [1] block is directing the paths in M ′

1 and M ′
2

to distinct components in the functional graph of h[0] (in which case the tag are
very likely to differ). Therefore, we have to test for collisions with several couples

Mu
1 = m‖ [0]2l/2−1 ‖ [u]‖ [0]2l/2+L, Mu

2 = m‖ [0]2l/2−1+L ‖ [u]‖ [0]2l/2, and if none
of them collide we can safely deduce that the α-node is located in the second
2l/2−1 zero blocks. Overall, one such step reduces the number of the candidate
nodes by a half and we simply continue this binary search in order to eventually
obtain the position of the α-node with log2(2

l/2) = l/2 iterations.

5.2 Detailed Attack Process

1. (offline) Search for a cycle in the functional graph of h[0] and denote L its
length.

2. (online) Find a message block m such that querying the two messagesM1 =

m ‖ [0]2l/2 ‖ [1] ‖ [0]2l/2+L and M2 = m ‖ [0]2l/2+L ‖ [1] ‖ [0]2l/2 leads to the
same HMAC output. Let X1 and X2 be two integer variables, initialized to the
values 0 and 2l/2 respectively.

3. (online) Let X ′ = (X1 +X2)/2. Select β log(l) distinct message blocks [u],
and for each of them query the HMAC output for messages Mu

1 = m ‖ [0]X′ ‖
[u] ‖ [0]2l/2+L and Mu

2 = m ‖ [0]X′+L ‖ [u] ‖ [0]2l/2 . If at least one of the (Mu
1 ,

Mu
2 ) pairs leads to a colliding HMAC output, then set X2 = X ′. Otherwise,

set X1 = X ′. We use β = 4.5 as explained later.
4. (online) If X1 + 1 = X2 holds, output X2 as the block index of the α-node.

Otherwise, go back to the previous step.
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5.3 Complexity and Success Probability Analysis

Complexity. We would like to evaluate the complexity of the attack. The first
step will require about 2l/2 offline computations to find the cycle. Again, it is
important to note that we can run this first step several times in order to ensure
that we are using the cycle from the biggest component of the functional graph
of h[0]. The second step repeats the execution of the distinguishing-H attack

from Section 4, which requires 6 · 2l/2 computations for a success probability of
0.14, until it finds a succeeding message block m. Therefore, after trying a few
m values, we have probability very close to 1 to find a valid one. The third and
fourth steps will be executed about l/2 times (for the binary search), and each
iteration of the third step performs 2 · β log(l) queries of about 2l/2 +2l/2 +L 	
3 · 2l/2 message blocks each. Therefore, the overall complexity of the attack is
about 3β · l · log(l) · 2l/2 compression function computations.

Success Probability. Next we evaluate the success probability that the at-
tacker recovers the internal state and this depends on the success probability of
the binary search steps. We start with the case where the node after m ‖ [0]X′

is inside the first online cycle. The third step will succeed as long as at least
one of the (Mu

1 , M
u
2 ) pairs collide on the output (we can omit the false positive

collisions which happen with negligible probability). One pair (Mu
1 , M

u
2 ) will

indeed collide if:

• The random block [u] sends both messages to the main component of the
functional graph of h[0]. Since it has an expected size of δ2·2l (see Theorem 3),
this is the case with probability δ22 .

• The 2l/2 [0] message blocks concatenated after [u] are enough to reach the
cycle, i.e. the tail length when reaching the second cycle is smaller than 2l/2.
Since the average tail length is smaller than 2l/2 elements, this will happen
with probability 1/2 for each message.

After trying β log(l) pairs, the probability that at least one pair collides is 1 −
(1− δ22/4)

β log(l). If we use β = −1/ log(1− δ22/4) ≈ 4.5, this gives a probability
of 1− 1/l. On the other hand, if the node after m ‖ [0]X′

is not inside the cycle,
the third step will succeed when no random collision occurs among the β log(l)
tries, and such collisions happen with negligible probability. Overall, since there
are l/2 steps in the binary search, the average success probability of the binary
search is (1 − 1/l)l/2 ≥ e−1/2 ≈ 0.6.

Finally, the attack succeeds if the α-node is actually the root of the giant tree,
as computed in the offline phase. This is the case with probability δ1/δ2, and
the success probability of the full state recovery attack is δ1/δ2 · e−1/2 ≈ 0.38.

6 Internal State Recovery with Shorter Messages

In the full version of the paper, we give a an alternative internal-state recovery
attack using shorter messages, that can also be used as a distinguishing-H attack
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with shorter messages. The attacks of Sections 4 and 5 have a complexity of
O(2l/2) using a small number of messages of length 2l/2; on the other hand the
alternative attack has a complexity O(23l/4) using 2l/2 messages of length 2l/4.
More generally, if the message size is limited to 2s blocks (s ≤ l/4), then the
attack requires 2l−2s messages. Due to space constraints, we only give a brief
description of this attack here.

6.1 Entropy Loss in Collisions Finding

While the previous attacks are based on detecting cycles in the graph of a random
function, this alternative attack is based on the fact that finding collisions by
iterating a random function does not give a random collision: some particular
collisions are much more likely to be found than others. This fact is well known
in the context of collision search; for instance van Oorschot and Wiener [23]
recommend to randomize the function regularly when looking for a large number
of collisions. In this attack, we exploit this property to our advantage: first we
use a collision finding algorithm to locate collisions in hM with a fixed M; then
we query the MAC oracle with messages with long repetitions of the block M
and we detect collisions in the internal state; since the collisions found in this
way are not randomly distributed, there is a good probability that we will reach
one the collisions that was previously detected in the offline phase.

Actually, the attacks of Sections 4 and 5 can also be seen as following this
stategy: we use a collision finding algorithm based on cycle detection (following
Pollard’s rho algorithm), and we know that with a good probability, the collision
found will be the root of the giant tree. For the alternative attack, we use a
collision finding algorithm similar to [23], but using using fixed length chains. In
the full version of the paper, we study the entropy of the distribution of collisions
found in this way, and we show that when using chains of length 2s, we need
about 2l/2−s collisions in order to have a match between the online and offline
steps. This translates to an attack complexity of 2l−s, with s ≤ l/4.

7 Key Recovery for HMAC Based on a Hash Function with
an Internal Checksum

In this section we study HMAC used with a hash function with an internal check-
sum, such as GOST. We first show that the checksum does not prevent the
distinguishing-H and state recovery attack, but more surprisingly the checksum
actually allows to mount a full key-recovery attack significantly more efficient
than exhaustive search.

A hash function with an internal checksum computes the sum of all message
blocks, and uses this sum as an extra input to the finalization function. The sum
can be computed for any group operation, but it will usually be an XOR sum
or a modular addition. We use the XOR sum Sum⊕ to present our attack, but it
is applicable with any group operation.
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The checksum technique has been used to enhance the security of a hash func-
tion, assuming that controlling the checksum would be an additional challenge
for an adversary. While previous work argued its effectiveness [10], our result re-
veals a surprising fact that incorporating a checksum into a hash function could
even weaken its security in some applications such as HMAC.

A notable example of a hash function with a checksum is the GOST hash
function, which has been standardized by the Russian Government [6] and by
IETF [5]. HMAC-GOST has also been standardized by IETF [15] and is implemented
in OpenSSL. GOST uses parameters n = l = b, and uses a separate call to process
the message length, as follows:

x0 = IV xi+1 = h(xi,mi) x∗ = h(xp, |M |)
σ0 = 0 σi+1 = σi ⊕mi hash = g(x∗, σp)

If this section we describe the attack on GOST-like functions following this struc-
ture; Figure 3 shows an HMAC computation with a GOST-like hash function. We
give more general attacks when the output is computed as g(xp, |M |, σp) in the
full version of this paper.

IV

K ⊕ ipad

hl

M0

x0

hl

M1

x1

hl

M2

x2

σ3

x3 x∗

l

|M |

h h l g

H(K ⊕ ipad ‖ )·

Fig. 3. HMAC based on a hash function with a checksum (dashed lines) and a length-
padding block. We only detail the first hash function call.

7.1 General Description

In HMAC, K ⊕ ipad is prepended to a message M , and (K ⊕ ipad) ‖M is hashed
by the underlying hash function H . Therefore, the final checksum value is σp =
Sum⊕((K ⊕ ipad) ‖M) = K ⊕ ipad⊕ Sum⊕(M). In this attack, we use the state
recovery attack to recover the internal state x∗ before the checksum is used and
we take advantage of the fact that the value σp actually contains the key, but
can still be controlled by changing the message. We use this to inject a known
difference in the checksum, and to perform a kind of related key attack on the
finalization function g, even though we have access to a single HMAC key.

More precisely, we use Joux’s multicollision attack [11] to generate a large
set of messages with the same value x̄ for x∗, but with different values of the
checksum. We detect MAC-collisions among those messages, and we assume
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that the collisions happens when processing the checksum of the internal hash
function. For each such collision, we have g(x̄,K⊕ipad⊕Sum⊕(M)) = g(x̄,K⊕
ipad ⊕ Sum⊕(M ′)), and we compute the input difference ΔM = Sum⊕(M) ⊕
Sum⊕(M ′).

Finally, we compute g(x̄,m) offline for a large set of random values m, and
we collect collisions. Again, we compute the input difference Δm = m⊕m′ for
each collision, and we match Δm to the previously stored ΔM . When a match
is found between the differences we look for the corresponding values and we
have K ⊕ ipad ⊕ Sum⊕(M) = m (or m′) with high probability. This gives the
value of the key K.

State Recovery with a Checksum. First, we note that the checksum σ
does not prevent the state recovery attacks of Section 5; the complexity only
depend on the size l of the state x. Indeed, the attack of Section 5 is based on

detecting collisions between pairs of messagesM1 = m‖ [0]2l/2 ‖ [k]‖ [0]2l/2+L and

M2 = m ‖ [0]2l/2+L ‖ [k] ‖ [0]2l/2 . Since the messages have the same checksum, a
collision in the state will be preserved. More generally, the attacks can easily be
adapted to use only message with a fixed sum. For instance, we can use random
messages with two identical blocks in the attack of Section 5, and messages of

the form m ‖m ‖ [0]2l/2 ‖ [k] ‖ [k] ‖ [0]2l/2+L have a checksum of zero.

Recovering the State of a Short Message. Unfortunately, the state we
recover will correspond to a rather long message (e.g. 2l/2 blocks), and all the
queries based on this message will be expensive. In order to overcome this issue,
we use the known state xM after a long message M to recover the state after a
short one. More precisely, we generate a set of 2l/4 long messages by appending a
random message blocks m twice to M . Note that Sum⊕(M ‖m ‖m) = Sum⊕(M).
Meanwhile, we generate a set of 23l/4 two-block messagesm1‖m2, withm1⊕m2 =
Sum⊕(M). We query these two sets to the HMAC oracle and collect collisions
between a long and a short message. We expect that one collision correspond
to a collision in the value x∗ before the finalization function g. We can compute
the value x∗ for the long message from the known state xM after processing
M . This will correspond to the state after processing the message m1 ‖m2 and
its padding block, or equivalently, after processing the message m1 ‖ m2 ‖ [2]
(because the length block is processed with the same compression function).
We can verify that the state is correctly recovered by generating a collision
m‖m,m′‖m′ offline from the state x∗, and comparing HMAC(m1‖m2‖ [2]‖m‖m)
and HMAC(m1 ‖m2 ‖ [2] ‖m′ ‖m′).

7.2 Detailed Attack Process

For simplicity of the description, we omit the padding block in the following
description, and we refer to the previous paragraphs for the details of how to
deal with the padding.
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1. Recover an internal state value xr after processing a message Mr through
HMAC. Refer to Section 5 for the detailed process.

2. (online) Choose 2l/4 one-block random messages m, query Mr ‖ m ‖ m to
HMAC and store m and the corresponding tag.

3. (online) Choose 23l/4 one-block random messages m, query (Sum⊕(Mr) ⊕
m) ‖m to HMAC and look for a match between the tag value and one of the
stored tag values in Step 2.
For a colliding pair (Sum⊕(Mr)⊕m)‖m andMr‖m′‖m′, denote Sum⊕(Mr)⊕
m‖m asM1 and h(h(xr,m

′),m′) as x1. Generate a collision h(h(x1, u), u) =
h(h(x1, u

′), u′). Query M1 ‖ u ‖ u and M1 ‖ u′ ‖ u′ and compare the tags. If
they are equal, the internal state after processing M1 (before the checksum
block) is x1.

4. (offline) Generate 23l/4 messages that all collide on the internal state be-
fore the checksum block by Joux’s multicollision. More precisely, choose 2l/2

random message m and compute h(x1,m) to find a collision h(x1,m1) =
h(x1,m

′
1) = x2. Then iterate this procedure to find a collision h(xi,mi) =

h(xi,m
′
i) = xi+1 for i ≤ 3l/4. Denote the value of x3l/4+1 by x̄.

5. (online) Query the set of messages in Step 4 to HMAC in order to collect tag
collisions. For each collision M and M ′, compute the checksum difference
ΔM = Sum⊕(M)⊕ Sum⊕(M ′), and store (Sum⊕(M), ΔM).

6. (offline) Choose a set of 23l/4 one-block random messagem, compute g(x̄,m)
and collect collisions. For each collision m and m′, compute the difference
Δm = m ⊕ m′ and match Δm to the stored ΔM at Step 5. If a match
is found, mark Sum⊕(M) ⊕ ipad ⊕ m and Sum⊕(M) ⊕ ipad ⊕ m ⊕ Δm as
potential key candidates.

7. (offline) filter the correct key from the potential candidates by verifying a
valid message/tag pair.

7.3 Complexity and Success Probability Analysis

We need to evaluate the complexity of our key recovery attack.

Step 1: O(l · log(l) · 2l/2) Step 2: 23l/4 Step 3: 2 · 23l/4

Step 4: 3l/4 · 2l/2 Step 5: 3l/4 · 23l/4 Step 6: 23l/4

Step 7: O(1)

Overall, the fifth step dominates the complexity, and the total complexity is
about 3l/4 · 23l/4 compression function computations.

Next we evaluate the success probability of our method. The first step succeeds
with a probability almost 1 after several trials. Steps 2 and 3 need to guarantee
a collision between a long and a short message. Since there are 2l pairs, one

such collision occurs with a probability of 1− (1− 2−l)2
l ≈ 1− 1/e ≈ 0.63. The

success probability of producing no less than 2l/2 collisions at each of steps 5 and
6 is 0.5 since the expected number of collisions is 2l/2. Thus the overall success
probability is no less than 0.16.
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8 Conclusion

Our results show that the security of HMAC and hash-based MAC above the
birthday bound is significantly weaker than previously expected. First, we show
that distinguishing-H and state-recovery attacks are not much harder than a
distinguishing-R attack, contrary to previous beliefs. Second, we show that the
use of a checksum can allow a key-recovery attack against HMAC with complexity
only Õ(23l/4). In particular, this attack is applicable to HMAC-GOST, a standard-
ized construction.

We give a comparison of our attacks and previous attack against concrete in-
stances of HMAC in Table 1, showing that some attacks against concrete instances
are in fact less efficient than our generic attacks.

As future works, it would be interesting to find other applications of the internal
state recovery for HMAC. Moreover, we expect further applications of the analysis of
the functional graph, as it might be possible to use other distinguishing properties,
such as the tail length, the distance of a node from the cycle, etc.
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A Additional Figures

Fig. 4. Functional graph of Keccak (SHA-3) with 8-bit input and 8-bit output
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Abstract. In this paper, we present universal forgery and key recovery
attacks on the most popular hash-based MAC constructions, e.g., HMAC
and NMAC, instantiated with an AES-like hash function Whirlpool. These
attacks work with Whirlpool reduced to 6 out of 10 rounds in single-key
setting. To the best of our knowledge, this is the first result on “original”
key recovery for HMAC (previous works only succeeded in recovering the
equivalent keys). Interestingly, the number of attacked rounds is com-
parable with that for collision and preimage attacks on Whirlpool hash
function itself. Lastly, we present a distinguishing-H attack against the
full HMAC- and NMAC-Whirlpool.

Keywords: HMAC, NMAC, Whirlpool, key recovery, universal forgery.

1 Introduction

AES (Advanced Encryption Standard) [6] is the probably most used block cipher
nowadays, and it also inspires many designs for other fundamental primitives of
modern cryptography, e.g., hash function. As cryptographic algorithms for secu-
rity applications, AES and AES-like primitives should receive continuous security
analysis under various protocol settings. This paper discusses the security evalu-
ation of these primitives in one notable setting; the MAC (Message Authentication
Code) setting.

A MAC is a symmetric-key construction to provide integrity and authenticity
for data. There are two popular approaches to build a MAC. The first approach
is based on a block cipher or a permutation, e.g., the well-known CBC (Cipher
Block Chaining) MAC [1]. Such designs with an AES-like block cipher (or permuta-
tion) include CMAC-AES [28], PC-MAC-AES [19], ALPHA-MAC [7] and PELICAN-MAC [8].
A series of analysis results have been published on these AES-like block ciphers
(or unkeyed permutations) under the CBC MAC setting. Refer to [12,13,32,4,9].
From a high-level view, cryptanalysts have managed to extend several analysis
techniques devised on block cipher itself to also work in the CBC MAC setting,
e.g., [32,9] use the impossible differential attack. The second approach is based
on a hash function. Such designs with an AES-like hash function include HMAC-
Whirlpool and HMAC-Grøstl. Surprisingly, there is NO algorithmic analysis re-
sult yet on these AES-like hash functions in the MAC setting to our best knowledge,
though a side-channel attack was published on HMAC-Whirlpool [33].

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 21–40, 2013.
c© International Association for Cryptologic Research 2013
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Fig. 1. Comparison of attack models

We briefly discuss the difficulty of applying the analysis techniques, which are
devised to analyze public AES-like hash functions or to analyze AES-like block
ciphers in the CBC MAC setting, to evaluate AES-like hash functions under the
hash-based MAC setting. More precisely, we make a comparison of their model
from an attacker’s view by focusing on the underlying iterated small primitives;
compression function of a hash function and block cipher of CBC MAC, which is
also explained in Figure 1. A few new notations are introduced here: x is an
internal state after processing previous message blocks, m is a current message
block, y is an updated internal state, k is a secret key of block cipher, F is a
compression function, and E is a block cipher.

For a hash function in public setting and in MAC setting, the main difference
from an attacker’s view is that x and y are public in the former setting, but are
secret in the latter setting. Note that the effective analysis techniques rebound
attack [18] and splice-and-cut preimage attack [25] on AES-like hash functions
in public setting use a start-from-the-middle approach, which requires to know
and to control the internal values of the compression function, and thus requires
that x is public to the attacker. Therefore these techniques cannot be applied
trivially in MAC setting.

For CBC MAC and hash-based MAC, the main difference is how a message block
is injected to an internal state. CBC MAC uses a simple XOR sum x ⊕m, while
hash-based MAC usually compresses x and m in a complicated process, e.g., the
Miyaguchi-Preneel (MP) scheme Ex(m) ⊕ m ⊕ x. It affects the applicability
of differential cryptanalysis. The attacker is able to derive the internal state
difference Δx in the CBC MAC setting (i.e., randomize message block m to find
a pair m and m′ that leads to a collision on the input to E detectable from
the colliding MAC outputs, and derive Δx = m ⊕ m′). On the other hand, the
internal state difference cannot be derived in the hash-based MAC setting except
the collision case Δx = 0, which sets a constraint on the differentials of the
underlying block cipher that can be exploited by an attacker.

This paper gives the first step on the algorithmic security evaluation of AES-
like hash functions in the hash-based MAC setting. The main attack target is the
Whirlpool hash function in the HMAC setting, which is motivated by the fact
that both schemes are internationally standardized.

Whirlpool [24] was proposed by Barreto and Rijmen in 2000. Its compression
function is built from an AES-like block cipher following Miyaguchi-Preneel mode.
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Whirlpool has been standardized by ISO/IEC, and has been implemented in
many cryptographic software libraries such as FreeOTFE and TrueCrypt. Its se-
curity has been evaluated and approved by NESSIE [20]. The first cryptanalysis
result was published by Mendel et al. in 2009 [18], which presented a collision
attack on 4-round Whirlpool hash function (full version: 10 rounds). Later Lam-
berger et al. extended the collision attack to 5 rounds [16]. After that, Sasaki
published a (second) preimage attack on 5-round Whirlpool hash function in
2011 [25], and the complexity of his attack was improved byWu et al. in 2012 [31].
Later Sasaki et al. extended the preimage attack to 6 rounds [27]. In addition to
hash function attacks, several cryptanalysis results on the compression function
of Whirlpool have also been published [16,27], and particularly a distinguisher
on the full compression function was found [16].

HMAC [2] was proposed by Bellare et al. in 1996. It has been standardized by
ANSI, IETF, ISO and NIST, and widely deployed in SSL, TLS and IPsec. HMAC
based on a hash function H takes a secret key K and a messageM as input and
is computed by

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖M)),

where ipad and opad are two different public constants. HMAC is always viewed
as a single-key variant of NMAC [2]. NMAC based on a hash function H takes two
keys; the inner key Kin and the outer key Kout, and a message M as input, and
is computed by

NMAC(Kout,Kin,M) = HKout(HKin(M)),

where the function HKin(·) stands for the hash funtion H with its initial value
replaced by Kin, and similarly for HKout(·). The internal states F (IV,K⊕opad)
and F (IV,K ⊕ ipad) of HMAC is equivalent to the Kout and the Kin of NMAC
respectively, where F is the compression function and IV is the public initial
value of H . This paper refers F (IV,K ⊕ opad) and F (IV,K ⊕ ipad) to as the
equivalent outer key and the equivalent inner key respectively. Note that if these
two equivalent keys are recovered, the attacker will be able to forge any message,
resulting in a universal forgery attack on HMAC.

Our Contribution. We present universal forgery (i.e., recover the two equiva-
lent keys) and key recovery attacks on HMAC based on round-reduced Whirlpool,
and a distinguishing-H attack on HMAC based on full Whirlpool. These attacks
are also applicable to NMAC based on Whirlpool. All the results are summarized
in Table 1. Interestingly, our attacks on the Whirlpool hash function in HMAC

and NMAC setting reach attacked round numbers comparable to that in the public
setting (even with respect to classical security notions; forgery and key recovery
in MAC setting and collision and preimage attacks in public setting).

For HMAC and NMAC based on 5-round Whirlpool, we generate a structured
collision on the first message block of the first call of hash function, which can
be detected from the MAC output collisions and verified by the length extension
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property. For the structured collision, we know the differential path inside the
block cipher EKin . Based on it, we apply a meet-in-the-middle attack to recover
the value of Kin. After that, we apply two attacks. One is to recover the value of
Kout, which results in a universal forgery attack on HMAC and a full-key recovery
attack on NMAC. The attack of recovering Kout is similar with that of recovering
Kin, except the procedure of finding target pairs. Instead of generating colli-
sions as for recovering Kin, we will first recover the values of an intermediate
chaining variable of the outer hash function, and then find a near collision on
this intermediate chaining variable. The other attack is to recover the key of
HMAC. Recall that Kin = F (IV,K ⊕ ipad), recovering K from Kin is similar to
inverting F (IV, ·) to find a preimage of Kin. Thus we apply an attack similar
with the splice-and-cut preimage attack to recover K from Kin. To our best
knowledge, this is the first result of recovering the (original) key of HMAC, while
previous results [11,22,23,29] only succeeded in recovering the equivalent keys.

We investigate the extension by one more round, namely 6-round Whirlpool,
and find an interesting observation. More precisely, Kout can be recovered if a
value of an intermediate chaining variable in the first call of hash function is re-
covered or leaked. Differently from the above attacks on 5 rounds, the procedure
is based on generating a multi-near-collision on an intermediate chaining variable
of the outer hash function. After Kout is recovered, we apply two attacks. One is
to recoverKin, which results in a universal forgery attack on HMAC and a full-key
recovery attack on NMAC. The other attack is to recover the key of HMAC. From a
high-level overview, our observation reduces the problem of breaking the classi-
cal security notions (with significant impacts) universal forgery and key recovery
to the problem of breaking a weak security notion (usually with rather limited
impacts) internal-state recovery for HMAC and NMAC based on 6-round Whirlpool.
We stress that such a reduction is not trivial. As an example, an internal-state
recovery attack was published on HMAC/NMAC-MD5 in the single-key setting back
to 2009 [30], but no universal forgery or key recovery attack is published on
HMAC/NMAC-MD5 in the single-key setting yet to our best knowledge. Moreover,
very recently Leurent et al. find a generic single-key internal-state recovery at-
tack on HMAC and NMAC [17]. Combing their attack with our observation, we get
universal forgery and key recovery attacks on HMAC and NMAC based on 6-round
Whirlpool.

We would like to point out that the above universal forgery and key recovery
attacks on round-reduced Whirlpool are also applicable in other hash-based
MAC setting. More precisely, we can attack LPMAC and secret-suffix MAC with
6-round Whirlpool and Envelop MAC with 5-round Whirlpool, all in the single-
key setting.

Lastly, we find a distinguishing-H attack on HMAC and NMAC with full
Whirlpool, which in fact has wide applications besides Whirlpool. Recall HMAC
and NMAC make two calls of hash function, and the outer hash function takes
the inner hash outputs as input messages. Thus the outer hash function always
processes n bits long messages, where n is the bit size of hash digests. Note that
usually the length and the value of the padding bits are solely determined by
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Table 1. Summarization of our results. These results are based on the minimization
of max{data, time, memory}. More tradeoffs towards minimizing each parameter of
data, time and memory are provided in the paper.

Our Result Summarization

Attack Target #Rounds Attack mode
Complexity

Reference
Time Memory Data

HMAC-Whirlpool 5 universal forgery 2402 2384 2384 Section 3
5 key recovery 2448 2377 2321 Section 3
6 universal forgery 2451 2448 2384 Section 4
6 key recovery 2496 2448 2384 Section 4

10 (full) distinguishing-H 2256 2256 2256 Section 5
10 (full) distinguishing-H 2384 2256 2384 [17]

NMAC-Whirlpool 5 key recovery 2402 2384 2384 Section 3
6 key recovery 2451 2448 2384 Section 4

10 (full) distinguishing-H 2256 2256 2256 Section 5
10 (full) distinguishing-H 2384 2256 2384 [17]

Previous best results on Whirlpool hash function

Whirlpool 5 collision attack 2120 264 − [16]
6 preimage attack 2481 2256 − [27]

the bit size of an input message. Therefore it is possible that the last block of
the outer hash function of HMAC and NMAC contains fully padding bits and thus is
with a constant value, and indeed this is the case for HMAC- and NMAC-Whirlpool.
Our distinguishing-H attack can be applied with a complexity 2n/2 (n is 512 for
Whirlpool). Our distinguisher has two advantages compared with Leurent et
al.’s generic attack [17]. One is that our queried messages have practical length.
The other one is that the complexity of our attack is significantly lower as long
as the specification of the n-bit hash function restricts the input message with
a block length shorter than 2n/2. Our distinguishing-H attack on HMAC- and
NMAC- Whirlpool has a complexity of 2256, while Leurent et al.’s attack has a
complexity of at least 2384.

Note that we focus on HMAC-Whirlpool using a 512-bit key and producing 512-
bit MAC outputs in this paper. One may doubt the large size of the key and the
tag. We would like to point out that besides pure theoretical research interests,
evaluating such an instance of HMAC-Whirlpool also has practical impacts. This
is due to the fact that ever since HMAC was designed and standardized, it has been
widely implemented beyond the mere MAC applications. For example, the above
instance of HMAC-Whirlpool will be used in HMAC-based Extract-and-Expand
Key Derivation Function (HKDF) [15] if one instantiates this protocol with
Whirlpool hash function, providing that Whirlpool is a long-stand secure hash
function and has been implemented in many cryptographic software library.
Based on these facts, HMAC-Whirlpoolmay have more applications in industry in
the future, and thus deserves a careful security evaluation from the cryptography
community in advance.
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In the rest of the paper, Section 2 gives the specifications. Section 3 presents
our attacks on HMAC and NMAC with 5-round Whirlpool. Section 4 describes our
results on one more round. Section 5 provides a distinguishing-H attack on HMAC

and NMAC with full Whirlpool. Finally we give conclusion and open discussions
in Section 6.

2 Specifications

2.1 Whirlpool Hash Function [24]

The Whirlpool hash function follows the Merkle-Damg̊ard structure and pro-
duces 512-bit digests. The input message M is padded by a ‘1’, a least number
of ‘0’s, and 256-bit representation of the original message length, such that the
padded message becomes a multiple of 512 bits.

The padded message is divided into 512-bit blocks and used in the itera-
tion of compression functions. The compression function F is constructed based
on a block-cipher E in Miyaguchi-Preneel mode (MP mode), i.e., F (C,M) =
EC(M) ⊕ C ⊕M . Starting from a constant initial value C0 = IV , the chain-
ing value is updated for each of the message block Ci+1 = F (Ci,Mi). After all
message blocks are processed, the final chaining value is used as the hash value.

The underlying block cipher uses an AES-like structure with an 8 × 8 byte
matrix. The round function of the key schedule consists of four operations, i.e.,

Ki+1 = AC ◦ MR ◦ SC ◦ SB(Ki), for i ∈ {0, 1, . . . , 9}.

• SubBytes(SB): apply an Sbox to each byte.
• ShiftColumns(SC): cyclically rotate the j-th column downwards by j bytes.
• MixRows(MR): multiply the state by an 8× 8 MDS matrix.
• AddRoundConstant(AC): XOR a 512-bit round constant to the key state.

We denote the key state after SB, after SC and after MR in the (i + 1)-th round
of the key schedule by KSB

i , KSC
i , KMR

i respectively.
The round function of the encryption is almost the same as the key schedule,

except for the AddRoundKey(AK) operation, which XORs the key state to the
data state, i.e., the initial state is the XOR sum of the whitening key and the
plaintext S0 = K0 ⊕M and

Si+1 = AK ◦ MR ◦ SC ◦ SB(Si), for i ∈ {0, 1, . . . , 9}.

The final state S10 is used as the ciphertext. We denote the state after SB, after
SC and after MR in the (i+1)-th round of the round encryption function by SSB

i ,
SSC
i and SMR

i respectively.

2.2 HMAC and NMAC [2]

NMAC replaces the initial vector (IV ) of a hash function H by a secret key K to
produce a keyed hash function HK . NMAC uses two secret key Kin and Kout and
is defined by

NMACKout,Kin(M) = HKout(HKin(M)).
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Kin and Kout are usually referred to as the inner and the outer keys. Corre-
spondingly HKin and HKout are referred to as the inner and the outer hash
functions. HMAC is a single-key variant of NMAC. Denote the compression function
by F .

HMACK(M) = NMACF (IV,K⊕ipad),F (IV,K⊕opad)(M).

3 Attacks of HMAC and NMAC Based on 5-Round Whirlpool

In this section, we use one block long messages M to present our attack. Fig. 2
shows how HMAC/NMAC-Whirlpool processes M . Note that both M and T ′′ are
one full block long, and thus an extra padding block P is appended in both the
two calls of the hash function.

The attack starts with recovering value of (equivalent) Kin. We generate a
structured collision on the internal state T ′. Then for the collision, we get the
differential path inside EKin , and recover some internal value of EKin by a
meet-in-the-middle (MitM) attack approach. Finally Kin is derived by a simple
backward computations. Once Kin is recovered, we have two directions: 1) re-
cover the value of (equivalent) Kout to amount a universal forgery for HMAC or
to amount a full-key recovery for NMAC, and 2) recover the key of HMAC.

For the Kout recovery, note that T ′′ is public to the attacker now since Kin

is recovered. We firstly derive the values of T ′′′ with a technique similar to [26],
and then obtain the values of EKout ⊕ Kout: T

′′ ⊕ T ′′′. Given that Kout has
no difference, we search for a pair of messages that satisfies a pre-determined
difference constraint on the outputs of EKout , and get the inside differential path.
Finally we recover an internal value of EKout , and backwards compute the value
of Kout.

For the key recovery of K, from Kin = F (IV,K ⊕ ipad), we observe that
K ⊕ ipad is a preimage of Kin regarding the Whirlpool compression function
with a fixed chaining value F (IV, ·). Note that the problem of inverting the
compression function of Whirlpool has already been solved in [31] and [27] with
splice-and-cut MitM approach. We use a similar approach to recover the value
of K ⊕ ipad and then derive the value of K.

Moreover, we provide time-memory-data tradeoffs for recovering Kin and
Kout.

3.1 How to Recover (Equivalent) Kin

In this section, we demonstrate the Kin recovery attack with optimizing its
complexity for the key recovery of HMAC, and introduce the time-memory-data
tradeoff in the next section.

Our attack is based on a 5-round differential path of the compression function,
which is shown in Fig. 3. Each cell in this figure stands for a byte of the key or the
state. Blank cells are non-active and cells with a dot inside are active. If the value
of a byte is unknown, the cell is in white color. Red bytes are initially known
from the message, tag or the recovered chaining value. Blue and green bytes
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Fig. 3. Differential path for recovering Kin for HMAC and NMAC with 5-round Whirlpool

are the guessed bytes in the forward and backward directions of the MitM step.
Moreover, some round functions are illustrated in equivalent expressions in this
figure. The new operation AC′ XORs the constant MR−1(RCi) to the key state,
where RCi is used in the original AC operation, and it implies AC ◦ MR = MR ◦ AC′.

Produce a Structured Collision on T ′. We use a structure of chosen mes-
sages in which any two messages satisfy a constraint of the differential form in
Fig. 3. First we choose a set of 2192 values {M1,M2, . . . ,M2192} such that the
value of three specific rows of the messages take all possible 2192 values and all
other bytes are chosen as constants. The positions of the three active rows are
the top three rows in Fig. 3. Then, update the set by Mi ← MR ◦ SC(Mi) for
i = 1, 2, . . . , 2192. This requires about 2192 computations. Note that for any two
distinct indexes i1 and i2, SC

−1 ◦ MR−1(Mi1 ⊕Mi2) has three active rows in the
pre-specified positions. Query the messages and obtain the corresponding tags
Ti = MAC(K,Mi), for i = 1, 2, . . . , 2192. Check if there is a collision of the tags. If
a collision is found, we need to verify if it collides on T ′ by the length extension
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attack (i.e., append a random message blockM to each of the colliding messages
Mi1 and Mi2 , and query Mi1‖M and Mi2‖M to see whether their tags collide).
For a collision on T ′, it is ensured that the output difference of EKin converted
by SC−1 ◦ MR−1 has three active rows.

For a structure of 2192 messages generated by applying MR ◦ SC for each, we
query them to MAC, store the corresponding tags and search for a collision. So
it requires 2192 queries, 2192 computations, and 2192 memory. For one structure,

we can make
(
2192

2

)
= 2383 pairs. After repeating the process for 2129 structures

with different chosen constants, one collision is expected. The total number of
queries is 2192+129 = 2321, the computational complexity is 2321 and the required
memory is 2192.

Recover Kin. Recall T ′ = F (Kin,M) = EKin(M) ⊕M ⊕ Kin. For an inner
collision on T ′, we know T ′ = 0. In the single-key attacks, the difference of
Kin is also zero: Kin = 0. Thus the difference of the output of the block
cipher can be computed as EKin(M) = T ′⊕M ⊕Kin = M . So we get
S5 = M , and thus SC−1 ◦ MR−1(S5) has three active rows. It ensures that
the number of differences at each row of SMR

2 is at most 224. Now we describe
the attack step by step.

Step A. Guessing in the forward direction
Guess the values of m diagonals of Kin (264m values) which are marked in
blue, as in Fig. 3. Then we can determine the value of corresponding m
diagonals in S′SC

1 . Now there are m known diagonals on the left side of the
matching point - the MR operation in the second round. All the candidates
are stored in a lookup table T1.

Step B. Guessing in the backward direction
Guess the values and differences of n rows of SMR

2 (2(64+24)n candidates)
which are marked in green, as in Fig. 3. Then we can determine the value of
corresponding n (reverse) diagonals in S2. Now there are n known diagonals
on the right side of the matching point. All the candidates are stored in
another lookup table T2.

Step C. MitM matching across the MR operation
The technique of matching across an MDS transformation is already pro-
posed and well-discussed in [25,31,27]. Here we directly give the result. For a
64-byte state, the bit size of the matching point is calculated as 64(m+n−8),
where m and n are the number of known diagonals in both sides. Because
we can match both of the value and difference on a 64-byte state, the bit size
of the matching point is 128(m+ n− 8). Therefore, the number of expected
matches between T1 and T2 is 264m+(64+24)n−128(m+n−8) = 2−64m−40n+1024.
Note that the matching candidate is a pair of (S′SC

1 , S2) where all bytes are

fully determined. Then, the corresponding K ′AC
1 is also fully determined.

We use a pre-computation of complexity 265 to build a table of size 265,
which is used for (S′SC

1 , S2) to determine the remaining two diagonals of the
corresponding Kin by just a table lookup. More precisely, for all values of
each unguessed diagonal of Kin, compute the corresponding diagonal values
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in S′SC
1 , and store them in a lookup table. The number of remaining candi-

dates is also the number of suggested keys. The correctness of each suggested
keys can be verified by the differential path from S3 to S5.

The total complexity of the attack is

264m + 2(64+24)n + 2−64m−40n+1024.

When m = 6 and n = 5, we get the complexity of about 2384 + 2440 + 2440 ≈
2441 computations. The sizes of T1 and T2 are 2384 and 2440 respectively. Since
we only need to store one of them and leave the calculations of other direction
“on the fly”, the memory requirement is 2384. Taking into account the phase
to find the inner collision, the total time complexity for recovering Kin is 2441

time and 2384 memory, along with 2321 chosen queries. Recall that we chose the
attack parameters by considering that the original key recovery attack on HMAC

will require 2448 computations as we later show in Section 3.4. We balanced the
time complexity and then reduced the memory and queries as much as possible.

3.2 Time-Memory-Data Tradeoff for Kin Recovery

For the differential path in Fig. 3, the number of active rows does not have to be
three. Indeed, this derives a tradeoff between data (the number of queries) and
time-memory. Intuitively, the more data we use, the more restricted differential
path we can satisfy and thus time and memory can be smaller. On the other
hand, data can be minimized by spending more time and memory. Let r be the

number of active rows in Fig. 3. For a single structure,
(
264r

2

)
= 2128r−1 pairs

can be constructed with 264rqueries. In the end, a collision can be found with
2513−64r queries.

Then, the MitM phase is performed. The time complexity for the forward com-
putation does not change, which is 264m, while the complexity for the backward
computation is dependent on r, which is 2(64+8r)n. We can further introduce the
tradeoff between time and memory, where their product takes a constant value.
For simplicity, let us assume that 264m < 2(64+8r)n. The simple method com-
putes the forward candidates with 264m computations and stores them. Then, the
backward candidates are computed with 2(64+8r)n. Hence, the time is 2(64+8r)n

and the memory is 264m. Here, we divide the free bits for the forward computa-
tion into two parts; 64m− t and t. An attacker firstly guesses the value of t bits,
and for each guess, computes the 264m−t forward candidates and stores them in a
table with 264m−t entries. The backward computation does not change. Finally,
the attack is iterated for 2t guesses. In the end, the memory complexity becomes
264m−t while the time complexity becomes 2(64+8r)n+t computations.

Let us demonstrate the impact of the time-memory-data tradeoff. In section
4.1, we aimed to achieve the time complexity of 2448, and chose the parameter
(r,m, n, t) = (3, 6, 5, 0) which resulted in (data, time, memory) = (2321, 2441,
2384). By choosing parameters (r,m, n, t) = (3, 6, 5, 7), memory can be saved
by 7 bits, i.e., (data, time, memory)= (2321, 2448, 2377). Then let us consider
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the optimization from different aspects. First, we minimize the value max{data,
time,memory}. We should choose (r,m, n, t) = (2, 6, 5, 0), which results in (data,
time, memory)= (2384, 2400, 2384). Next, we try to minimize each of time, data,
and memory complexities. If we minimize the time complexity, we should choose
(r,m, n, t) = (1, 6, 5, 0), which results in (data, time, memory)= (2448, 2384, 2360).
If we minimize the data complexity, we should choose (r,m, n, t) = (4, 7, 5, t)
which results in (data, time, memory)= (2257, 2480+t, 2448−t). If we minimize the
memory complexity, we should choose (r,m, n, t) = (1, 6, 5, 144) which results in
(data, time, memory)= (2449, 2504, 2240).

3.3 How to Recover Kout

With the knowledge of Kin, we can calculate the value of T ′′ for anyM at offline
(refer to Fig. 2). Moreover, we can recover the value of T ′′′ using a technique
similar to [26]. Thus we are able to get the output value of EKout ⊕Kout: T

′′ ⊕
T ′′′. For a pair of outputs of EKout ⊕ Kout that has a difference satisfying the
constraint on the output difference of EKin in Fig. 3, more precisely SC−1 ◦
MR−1(Δ(T ′′ ⊕ T ′′′)) has r active rows, the exactly same procedure of recovering
Kin described in Section 3.1 can be applied to recoverKout in a straight-forward
way. This section mainly describes the procedure of finding such a pair. Moreover,
we provide a time-memory-data tradeoff for recovering Kout.

It is interesting to point out the difference for finding a target pair of recovering
Kin and that of recovering Kout. For recovering Kin, we can freely choose the
input M , but cannot derive the output differences of EKin unless a collision
occurs on the compression function. For recovering Kout, we cannot control the
input T ′′, but can compute the output differences of EKout easily since we know
the values of both T ′′ and T ′′′.

Produce (8−r)-row Near Collision on SC−1◦MR−1(T ′′⊕T ′′′). We need to
recover the value of T ′′′, which is as follows. Firstly, choose 2x different random
values Xi, calculate Yi = F (Xi, P ) and store (Xi, Yi) in a lookup table T1 at
offline. Secondly, choose 2y different random values of Mi, query them to MAC,
obtain Zi = MAC(K,Mi) and store (Mi, Zi) in another lookup table T2. Finally
we match Yi in T1 and Zj in T2, and get 2x+y−511 matches on average. For each
match, the internal state T ′′′ of Mj is equal to Xi with a probability 1/2. We
stress that in fact we need to store only one of T1 and T2, and generate the other
on the fly.

Next, we continue to search for a target pair. For each match of Yi and Zj ,
we compute the value of T ′′ of Mj, then compute W = SC−1 ◦ MR−1(T ′′ ⊕Xi),
and store them in a lookup Table T3 to find (8 − r)-row near collisions on W .
Recall the recovered value of T ′′′ of a message is correct with a probability of
1/2. Thus we need to generate 4 near collisions to ensure that one is a target
pair. It implies 22(x+y−511)−1 = 4× 264(8−r), and thus 2x+ 2y + 64r = 1537.

In total, the data complexity is 2y queries, the time complexity is 2x +
2x+y−511, and the memory requirement is min{2x, 2y}.
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Time-memory-data Tradeoff. The attack contains two tradeoffs. The first
one is for finding a target pair, which is described above. The second one is for
MitM phase, which is described in Section 3.2. Note that the MitM has to be
applied to all the 4 near collisions, and so the time complexity of the tradeoff
for MitM phase is increased by 4 times. Both tradeoffs depend on the parame-
ter r, and thus we first determine the value of r, and analyze the two tradeoffs
together. We provide the parameters that minimize the time complexity, the
data complexity, or the memory complexity. Note that recovering Kout needs
to recover Kin first, and so we should also take the tradeoff results on recov-
ering Kin into account. Let us minimize the value max{data, time,memory}.
Considering that the same MitM procedure of recovering Kin is used for re-
covering Kout, we just need to minimize that of recovering Kin, and obtain
that (data, time,memory) = (2384, 2402, 2384). If we minimize the time com-
plexity, we should choose parameters (r,m, n, t) = (1, 6, 5, 0) for recovering
Kin and (x, y, r,m, n, t) = (360, 397, 1, 6, 5, 0) for recovering Kout, which results
in (data, time,memory) = (2448, 2386, 2360). If we minimize the data complex-
ity, we should choose parameters (r,m, n, t) = (4, 7, 5, t) for recovering Kin

and (x, y, r,m, n, t) = (448, 225, 3, 6, 5, 0) for recovering Kout, which results in
(data, time,memory) = (2257, 2480+t, 2448−t). If we minimize the memory com-
plexity, then the time and data are dominated by the Kin recovery, and thus
(data, time,memory) = (2449, 2504, 2240) by choosing the parameters given in
Section 3.2.

3.4 Key Recovery for HMAC

As previously mentioned, we will recover the key of HMAC based on the splice-and-
cut preimage attacks on the compression function with a fixed input chaining
variable F (IV, ·).

The attack model for the preimage attack on hash functions and the one for
the key recovery attack on HMAC are slightly different. For a given hash value,
there are two possibilities: 1) there exists one or more preimages; 2) no preim-
age exists. For the first case, the aim of the attacker is to find any one of the
preimages, instead of all of them. The second case may occur when the size
of input is restricted. In our sub-problem, i.e., for a compression function with
fixed chaining value, the sizes of the input message and the hash digest are the
same. Thus for a random output, the probability that no preimage exists is not
negligible: about e−1.

For a key recovery attack, the solution (the secret key) always exists. However,
the attacker has to go over all possible preimages to ensure that the correct key
is covered. In the process of the MitM attack, sometimes there is some entropy
loss in the initial structure, i.e., the attacker only looks for the preimage in a
subspace. When the size of the input space is bigger than the output space, a
preimage attack is still possible with entropy loss. If such a preimage attack is
used for key recovery, the real key could be missed.

In the preimage attacks of [31] and [27], no entropy is lost and all the possi-
ble values of the state can be covered. Thus the key recovery attack based on
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this preimage attack can always succeed. The complexity is 2448 time and 264

memory.
Recall the discussion in Section 3.1, where Kin is recovered with (data, time,

memory) = (2321, 2448, 2377). Together with the preimage attack on the compres-
sion function, the original key for HMAC with 5-round Whirlpool is recovered
with (data, time,memory) = (2321, 2448, 2377).

3.5 Summary

In short, we have solved three sub-problems: (1) Recover Kin with 2384 chosen
queries, 2400 time and 2384 memory. Then with the knowledge of Kin, we can
solve another two sub-problems:(2) Recover Kout with 2303 known message-tag
pairs, 2402 time and 2384 memory; and (3) Recover the key of HMAC from Kin

with 2448 time and 264 memory. The time-memory-data tradeoff exists in (1),
and we can optimize its complexity depending on the final goal; (2) or (3).

Combining (1) and (2) with optimized trade-off, we have a key recovery attack
on NMAC and a universal forgery attack on HMAC with 2384 chosen queries, 2402

time, and 2384 memory. Combining (1) and (3) with optimized trade-off, we
have a key recovery attack on HMAC with 2321 chosen queries, 2448 time, and 2377

memory.

4 Analysis of HMAC and NMAC Based on 6-Round Whirlpool

This section presents how to extend an attack of recovering an intermediate
chaining variable of the inner hash function to universal forgery and key recovery
attacks for HMAC and NMAC with 6-round Whirlpool. Note that a generic single-
key attack of recovering such an intermediate chaining variable for HMAC and NMAC

has been published by Leurent et al. [17]. It takes around a complexity of 2384

blocks for all queries to recover an internal state value of a short message, e.g.
one block long. Thus combining their results with our analysis, we get universal
forgery and key recovery attacks on HMAC with 6-round Whirlpool.

In the rest of this section, we denote by M1 the message whose intermediate
chaining value is recovered by the attacker. We start with recoveringKout, which
is depicted in Fig. 4.

Produce a 3-near-collision on MR−1(T ′′ ⊕ T ′′′). We append random mes-
sages M ′ to M1, and query them to MAC. Note that we are able to compute
their values of T ′′ at offline. We recover the values of T ′′′ for those messages
in the same way as we did for 5-round Whirlpool. After that, we compute
W = MR−1(T ′′ ⊕ T ′′′), and search three messages that all collide on specific 56
bytes of W as shown in Fig. 4. We call such three messages 3-near-collision.

With 2x online queries and 2y offline computations, 2x+y−511 values of T ′′′

are recovered, and the same number of W are collected. Note that around 3
√
3! ·

2
2
3 448 ≈ 2300 values of W are necessary to find a target 3-near-collision [10].

Moreover, we need to generate 8 such 3-near-collisions to ensure one is indeed
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Fig. 4. How to recover Kout for HMAC and NMAC with 6-round Whirlpool

our target, since each value of recovered T ′′′ is correct with a probability 1/2.
So we get 2x+y−511 = 2303, which implies that x+ y = 814.

Recover Kout. A pair of messages from a 3-near-collision follows the differential
path in Fig. 4 such that only one (reversed) diagonal of S4 is active. Thus the
number of possible differences in SSB

3 is 264. Denote three messages of a 3-near-

collision as m1,m2 and m3. Denote the values of the states S′SC
1 and S2 as Li

and Ri for mi. We will apply the meet-in-the-middle attack two times, one for
the pair (m1,m2) and the other for the pair (m2,m3).

Step A. Guessing in the forward direction
Guess the values of m diagonals of K0 as shown in Fig. 4 (264m values,
marked in blue) and determine the value of corresponding m diagonals in

K ′SC
1 and S′SC

1 .
Step B. Guessing in the backward direction

Guess the values and differences of n diagonals of S2 (2
128n values) which are

marked in green. Then we can determine the value of corresponding n rows
in SMR

2 . After the injection of K3, we only know the difference in S3. Since
the number of possible differences of SSB

3 is only 264. According to rebound
attack, we expect 264 solutions for each guess of S2. XOR 264 values of S3

and the guessed value of SMR
2 , and obtain 264 values for the top n rows of

K3 and n diagonals of K2. In total, the number of candidates on the right
side of the MitM part is 2128n+64.

Step C. MitM matching across MR on both the key and the state
For the differential path between m1 and m2, the value and difference of
S2 are in fact R1 and R1 ⊕ R2. Once we have matched the value and dif-
ference of the state, i.e., MR(L1) = R1 and MR(L1 ⊕ L2) = R1 ⊕ R2, it is
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equivalent to match both the values MR(L1) = R1 and MR(L2) = R2. For
the second differential path between m2 and m3, we only need to match
another state MR(L3) = R3, since MR(L2) = R2 is already fulfilled. We come
to an observation that the size of the matching point (filter size) is actu-
ally (1 + 3) × 64 × (m + n − 8) bits, i.e., one from the key, three from
the 3-near-collision. The expected number of matches (suggested keys) is
264m+128n+64−256(m+n−8) = 22112−192m−128n.

The overall complexity to recover Kout is

264m + 2128n+64 + 22112−192m−128n.

When m = 7 and n = 3, the complexity is 2448 time and memory.
Note that the above procedure will be applied by 8 times. Thus the time

complexity is 2451. By setting y = 451, we get x = 363, and thus the data
complexity is dominated by the recovery of an intermediate chaining variable of
the inner hash function [17], namely 2384.

Universal Forgery and Key Recovery. After Kout is recovered, almost the
same procedure can be applied to recover Kin. So we get universal forgery on
HMAC and full-key recovery on NMAC. Note that for recovering Kin, it is easy to
verify whether a obtained 3-near-collision is our target. Thus the total complexity
is dominated by recovering Kout, and we get (data, time, memory)=(2384, 2451,
2448). Moreover, we apply the splice-and-cut preimage attack to recover K from
Kout according to [27], which takes a time complexity of 2496 and a memory
requirement of 264. Thus the total complexity of recovering K is (data, time,
memory)=(2384, 2496, 2448).

5 Distinguishing-H Attack on Full HMAC/NMAC-Whirlpool

In this section, we present a distinguishing-H attack on HMAC-Whirlpool, which
is also applicable to NMAC-Whirlpool in a straightforward way. First, recall the
definition of distinguishing-H [14]. A distinguisher D is to identify an oracle being
either HMAC-Whirlpool or another primitive built by replacing the compression
function F of HMAC-Whirlpool to a random function R with the same domain
and range. For a hash function with n-bit digests, it is believed that a generic
distinguishing-H attack requires 2n complexity if the hash function is ideal.

We observe that during the computation of the outer Whirlpool in HMAC-
Whirlpool, the last message block is always a constant denoted as P , more
precisely P = 105001010 where 0l means l consecutive 0s. This is because of the
equal size of message block and hash digest and the padding rule of Whirlpool.
The input messages to the outer Whirlpool consist of one block of K ⊕ opad

and one block of the inner Whirlpool digest, and thus are always two full blocks
long (namely 1024 bits), which are padded with one more block. Note that the
padded block P , which is the last message block of the outer Whirlpool, is
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Fig. 5. Distinguishing-H attack on HMAC-Whirlpool

solely determined by the bit length of the input messages, and thus is always a
constant. Based on the observation, we launch a distinguishing-H attack.

We first explain the overview of the attack. In the online phase, query random
messages M to the oracle, and receive tag values T . In the offline phase, choose
random values X (this simulates the value of T ′′′), and compute Y = F (X,P ).
As depicted in Fig. 5, if the compression function of the oracle is F , two events
lead to the occurrence of Y = T : one is X = T ′′′; and the other is F (X,P ) =
F (T ′′′, P ) under X �= T ′′′. If the compression function of the oracle is R, only
one event leads to the occurrence of Y = T : F (X,P ) = R(T ′′′, P ). Therefore, the
probability of the event Y = T in the former case is (roughly) twice higher than
that in the latter case. Thus, by counting the number of occurrence of Y = T ,
the compression function being either F or R can be distinguished. A detailed
attack procedure is described below.

Online Phase. Send 2256 different messages M , which are one block long after
padding, to the oracle. Receive the responses T and store them.

Offline Phase. Choose a random value as X , and compute Y = F (X,P ).
Match Y to the set of T s stored in the online phase. If a match is found, terminate
the procedure, and output 1. Otherwise, choose another random value of X
and repeat the procedure. After 2256 trials, if no match is found, terminate the
procedure and output 0.

The complexity is 2256 online queries and 2256 offline computations. The mem-
ory cost is 2256 tag values. Next we evaluate the advantage of the distinguisher.
Denote by DF the case D interacts with HMAC-Whirlpool, and by DR the other
case. The advantage of the distinguisher AdvInd−H

D is defined as

AdvInd−H

D := |Pr[DF = 1]− Pr[DR = 1]|.

In the case of DF , the probability ofX = T ′′′ is 1−(1−2−512)2
512 ≈ 1−1/e ≈ 0.63

since there are 2512 pairs of (X,T ′′′). The probability of Y = T and X �= T ′′′

is (1 − 1/e)× 1/e ≈ 0.23. Therefore, Pr[DF = 1] is 0.86 (= 0.63 + 0.23). In the
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other case, Pr[DR = 1] is 0.63 by a similar evaluation. Overall, the advantage of
the distinguisher is 0.23 (= 0.86− 0.63).

Note that a trivial Data-Time tradeoff exists with the same advantage, Data×
Time = 2512.

Remarks on Applications. We emphasize that the above distinguishing-H at-
tack has wide applications besides Whirlpool. For example, there are 11 out of 12
collision resistance PGV modes [21] including well-known Matyas-Meyer-Oseas
mode and Miyaguchi-Preneel mode such that the chaining variable and the mes-
sage block have equal bit size due to either the feed-forward or the feed-backward
operations. If a hash function HF is built by iterating one of those PGV compres-
sion function schemes in the popular (strengthened) Merkle-Damg̊ard domain
extension scheme, the last message block of the input messages to the outer HF in
HMAC or NMAC setting is always a constant, and thus the above distinguishing-H
attack is applicable.

6 Conclusion and Open Discussions

In conclusion, we presented the first forgery and key recovery attacks against
HMAC and NMAC based on the Whirlpool hash function reduced to 5 out of
10 rounds in single key setting, and 6 rounds in related-key setting. In ad-
dition to HMAC and NMAC, our attacks apply to other MACs based on reduced
Whirlpool, such as LPMAC, secret-suffix MAC and Envelop MAC. We also gave
a distinguishing-H attack against the full HMAC- and NMAC-Whirlpool.

As open discussion, it is interesting to see if the techniques presented in this
paper are useful to analysis of other AES-like hash functions in hash-based MAC

setting. First let us have a closer look at our analysis of the underlying AES-like
block cipher in a hash function. One main and crucial strategy is restricting
the differences to appear only in the encryption process and thus keep the key
schedule process identical between the pair messages. For example, Whirlpool
uses Miyaguchi-Preneel scheme EC(M)⊕M ⊕ C (notations follows Section 2),
and the differences is introduced only by M . Recall through our analysis, C
is kept the same during finding target message pairs. The main reason of this
strategy is that a difference introduced from the keys propagates in both the
key schedule and the encryption process, which usually makes it harder to an-
alyze. For example, in our analysis on HMAC-Whirlpool, we need to derive the
differential path in the encryption process, which becomes much harder when
differences also propagate in the key schedule. Moreover, as briefly explained in
Section 1, differently from that in CBC MAC setting, one cannot derive a difference
on intermediate hash variable ΔC except ΔC = 0. Thus the difference has to be
introduced from M . After an investigation on proven secure PGV schemes [21],
we find that our analysis approach is applicable to other three schemes besides
Miyaguchi-Preneel scheme: EC(M) ⊕ M (well known as Matyas-Meyer-Oseas
scheme), EC(C ⊕M)⊕M and EC(C ⊕M)⊕ C ⊕M .
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It is also interesting to see if the strategies proposed to analyze MD4-like hash
functions (designed in a framework differently from AES) can be applied to AES-
like hash functions from a high-spirit level, in hash-based MAC setting. There are
two strategies to analyze MD4-family hash function in hash-based MAC setting
to the best of our knowledge. The first one was proposed by Contini and Yin [5].
Their strategy heavily relies on one design character of MD4-like hash function:
a message block is splitted into words, and these words are injected into the
hash process sequentially. More precisely, an attacker can fix the beginning mes-
sage words that have been ensured to satisfy the first steps of differential path,
and randomize the other message words. Unfortunately, this strategy seems not
promising to be applied to AES-like hash functions, because the latter injects
the whole message block into the hash process at the same time, and moreover
a byte difference propagates to the whole state very quickly due to the wide
trail design of AES. The other strategy was proposed by Wang et al. [30]. Their
strategy uses two message blocks and each block have differences. Firstly they
generate a high-probability differential path on the second compression function
(ΔC,ΔM)→ ΔC′ = 0, where C′ is the output of the second compression func-
tion. Secondly they randomize the first message block to generate pairs of the
compression function outputs that can satisfy ΔC, and each such pair can be
obtained by a birthday bound complexity. Finally these pairs will be filtered out
using the high-probability differential path on the second compression function,
and exploited to amount further attacks. Interestingly, this strategy seems appli-
cable to AES-like hash functions in MAC setting. One may build a high-probability
related-key differential path on an AES-like compression function, e.g., using the
local collisions between the key schedule and the encryption process functions
which has been found on AES [3] and on Whirlpool [27]. If it is achieved, then
Wang et al.’s strategy seems to be applicable. Note that previous constraint
ΔC = 0 is now removed, and thus this strategy has a potentiality to be applied
to more PGV schemes such as EM (C)⊕C (well known as Davies-Meyer scheme).

As our result is the first step in this research topic, we expect that future works
will provide deeper understanding of the security of AES-like hash functions in
MAC setting.
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Abstract. Group signatures are cryptographic primitives where users
can anonymously sign messages in the name of a population they belong
to. Gordon et al. (Asiacrypt 2010) suggested the first realization of group
signatures based on lattice assumptions in the random oracle model. A
significant drawback of their scheme is its linear signature size in the
cardinality N of the group. A recent extension proposed by Camenisch
et al. (SCN 2012) suffers from the same overhead. In this paper, we de-
scribe the first lattice-based group signature schemes where the signature
and public key sizes are essentially logarithmic in N (for any fixed se-
curity level). Our basic construction only satisfies a relaxed definition of
anonymity (just like the Gordon et al. system) but readily extends into a
fully anonymous group signature (i.e., that resists adversaries equipped
with a signature opening oracle). We prove the security of our schemes
in the random oracle model under the SIS and LWE assumptions.

Keywords: Lattice-based cryptography, group signatures, anonymity.

1 Introduction

Group signatures are a core cryptographic primitive that paradoxically combines
the properties of authenticity and anonymity. They are useful in many real-
life applications including trusted computing platforms, auction protocols or
privacy-protecting mechanisms for users in public transportation.

Parties involved in such a system are a special entity, called the group man-
ager, and group members. The manager holds a master secret key, generates a
system-wide public key, and administers the group members, by providing to
each of them an individual secret key that will allow them to anonymously sign
on behalf of the group. In case of dispute, the manager (or a separate author-
ity) is able to determine the identity of a signer via an opening operation. This
fundamental primitive has been extensively studied, from both theoretical and
practical perspectives: It has been enriched with many useful properties, and
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it has been implemented in the contexts of trusted computing (using privacy-
preserving attestation [12]) and of traffic management (e.g., the Vehicle Safety
Communications project of the U.S. Dept. of Transportation [29]).

Group signatures were originally proposed by Chaum and van Heyst [18] and
made scalable by Ateniese et al. in [3]. Proper security models were introduced
in [5] and [6,30] (for dynamic groups), whereasmore intricate and redundant prop-
erties were considered hitherto. The model of Bellare et al. [5] requires two main
security properties called full anonymity and full traceability. The former notion
means that signatures do not leak the identities of their originators, whereas the
latter implies that no collusion of malicious users can produce a valid signature
that cannot be traced to one of them. Bellare et al. [5] proved that trapdoor per-
mutations suffice to design group signatures, but their theoretical construction
was mostly a proof of concept. Nevertheless, their methodology has been adapted
in practical constructions: Essentially, a group member signs a message by verifi-
ably encrypting a valid membership certificate delivered by the authority, while
hiding its identity. While numerous schemes (e.g., [3,13,15,7]) rely on the ran-
dom oracle model (ROM), others are proved secure in the standard model (e.g.,
[5,6,9,10,25]). Except theoretical constructions [5,6], all of these rely on the Groth-
Sahai methodology to design non-interactive proof systems for specific languages
involving elements in bilinear groups [27]. This powerful tool led to the design of
elegant compact group signatures [10,25] whose security relies on pairing-related
assumptions. The resulting signatures typically consist in a constant number of
elements of a group admitting a secure and efficient bilinear map.

Lattices and Group Signatures. Lattices are emerging as a promising al-
ternative to traditional number-theoretic tools like bilinear maps. They lead to
asymptotically faster solutions, thanks to the algorithmic simplicity of the in-
volved operations and to the high cost of the best known attacks. Moreover,
lattice-based schemes often enjoy strong security guarantees, thanks to worst-
case/average-case connections between lattice problems, and to the conjectured
resistance to quantum computers.

While numerous works have been (successfully) harnessing the power of lat-
tices for constructing digital signatures (see [36,23,17,33,8,34] and references
therein), only two works addressed the problem of efficiently realizing lattice-
based group signatures. The main difficulty to overcome is arguably the scarcity
of efficient and expressive non-interactive proof systems for statements involving
lattices, in particular for statements on the witnesses of the hard average-case
lattice problems. This state of affairs contrasts with the situation in bilinear
groups, where powerful non-interactive proof systems are available [26,27].

In 2010, Gordon et al. [24] described the first group signature based on lat-
tice assumptions using the Gentry et al. signature scheme [23] as membership
certificate, an adaptation of Regev’s encryption scheme [43] to encrypt it, and a
zero-knowledge proof technique due to Micciancio and Vadhan [39]. While ele-
gant in its design principle, their scheme suffers from signatures and public keys
of sizes linear in the number of group members, making it utterly inefficient in
comparison with constructions based on bilinear maps [7] or the strong RSA
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assumption [3]. Quite recently, Camenisch et al. [16] proposed anonymous at-
tribute token systems, which can be seen as generalizations of group signatures.
One of their schemes improves upon [24] in that the group public key has con-
stant size1 and the anonymity property is achieved in a stronger model where
the adversary is granted access to a signature opening oracle. Unfortunately,
all the constructions of [16] inherit the linear signature size of the Gordon et
al. construction. Thus far, it remained an open problem to break the linear-size
barrier. This is an important challenge considering that, as advocated by Bellare
et al. [5], one should expect practical group signatures not to entail more than
poly-logarithmic complexities in the group sizes.

Our Contributions. We describe the first lattice-based group signatures fea-
turing sub-linear signature sizes. If t and N denote the security parameter and
the maximal group size, the public keys and signatures are Õ(t2 · logN) bit
long. Notice that no group signature scheme can provide signatures containing
o(logN) bits (such signatures would be impossible to open), so that the main im-

provement potential lies in the Õ(t2) factor. These first asymptotically efficient
(in t and logN) lattice-based group signatures are a first step towards a practi-
cal alternative to the pairing-based counterparts. The security proofs hold in the
ROM (as for [24,16]), under the Learning With Error (LWE) and Short Integer
Solution (SIS) assumptions. While our basic system only provides anonymity
in a relaxed model (like [24]) where the adversary has no signature opening
oracle, we show how to upgrade it into a fully anonymous group signature, in
the anonymity model of Bellare et al. [5]. This is achieved at a minimal cost
in that the signature length is only increased by a constant factor. In contrast,
Camenisch et al. [16, Se. 5.2] achieve full anonymity at the expense of inflating
their basic signatures by a factor proportional to the security parameter.

Construction Overview. Our construction is inspired by the general
paradigm from [5] consisting in encrypting a membership certificate under the
authority’s public key while providing a non-interactive proof that the ciphertext
encrypts a valid certificate belonging to some group member. Nevertheless, our
scheme differs from this paradigm in the sense that it is not the certificate itself
which is encrypted. Instead, a temporary certificate, produced at each signature
generation, is derived from the initial one and encrypted, with a proof of its
validity.

We also depart from the approach of [24] at the very core of the design, i.e.,
when it comes to provide evidence that the encrypted certificate corresponds to
a legitimate group member. Specifically, Gordon et al. [24] hide their certificate,
which is a GPV signature [23, Se. 6], within a set of N − 1 (encrypted) GPV
pseudo-signatures that satisfy the same verification equation without being short
vectors. Here, to avoid the O(N) factor in the signature size, we take a different
approach which is reminiscent of the Boyen-Waters group signature [9]. Each
group member is assigned a unique �-bit identifier id = id[1] . . . id[�] ∈ {0, 1}�,
1 This can also be achieved with [24] by replacing the public key by a hash thereof,
and appending the key to the signature.
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where � = �log2N�. Its certificate is an extension of a Boyen signature [8] consist-
ing in a full short basis of a certain lattice (instead of a single vector), which al-
lows the signer to generate temporary certificates composed of a pair x1,x2 ∈ Zm

of discrete Gaussian vectors such that

xT
1 ·A+ xT

2 · (A0 +
∑

1≤i≤�

id[i] ·Ai) = 0 mod q. (1)

Here, q is a small bit length integer and A,A0, . . . ,A� ∈ Zm×n
q are part of the

group public key. Our choice of Boyen’s signature [8] as membership certificate
is justified by it being one of the most efficient known lattice-based signatures
proven secure in the standard model, and enjoying a simple verification procedure
corresponding to a relation for which we can design a proof of knowledge. A sig-
nature proven secure in the standard model allows us to obtain an easy-to-prove
relation that does not involve a random oracle. As noted for example in [3,14,15],
signature schemes outside the ROM make it easier to prove knowledge of a valid
message-signature pair in the design of privacy-preserving protocols.

We encrypt x2 ∈ Zm as in [24], using a variant of the dual-Regev encryption
scheme [23, Se. 7]: the resulting ciphertext is c0 = B0 ·s+x2, whereB0 ∈ Zm×n

q is
a public matrix and s is uniform in Zn

q . Then, for each i ∈ [1, �], we also compute
a proper dual-Regev encryption ci of id[i] ·x2 and generate a non-interactive OR
proof that ci encrypts either the same vector as c0 or the 0 vector.

It remains to prove that the encrypted vectors x2 are part of a signature sat-
isfying (1) without giving away the id[i]’s. To this end, we choose the signing
matrices Ai orthogonally to the encrypting matrices Bi, as suggested in [24].
Contrarily to the case of [24], the latter technique does not by itself suffice to
guarantee the well-formedness of the ci’s. Indeed, we also need to prove proper-
ties about the noise vectors used in the dual-Regev ciphertexts {ci}1≤i≤�. This is
achieved using a modification of Lyubashevsky’s protocol [32,34] to prove knowl-
edge of a solution to the Inhomogeneous Short Integer Solution problem (ISIS).
This modification leads to a Σ-protocol which is zero-knowledge when the tran-
script is conditioned on the protocol not aborting. As the challenge space of this
Σ-protocol is binary, we lowered the abort probability so that we can efficiently
apply the Fiat-Shamir heuristic to a parallel repetition of the basic protocol. In
the traceability proof, the existence of a witness extractor will guarantee that
a successful forger will either yield a forgery for Boyen’s signature or a short
non-zero vector in the kernel of one of the matrices {Ai}1≤i≤�. In either case,
the forger allows the simulator to solve a SIS instance.

In the fully anonymous variant of our scheme, the difficulty is to find a way
to open adversarially-chosen signatures. This is achieved by implicitly using a
“chosen-ciphertext-secure” variant of the signature encryption technique of Gor-
don et al. [24]. While Camenisch et al. [16] proceed in a similar way using Peik-
ert’s technique [40], we use a much more economical method borrowed from the
Agrawal et al. [1] identity-based cryptosystem. In our basic system, each ci is of
the form Bi · s+p ·ei+id[i] ·x2, where p is an upper bound on x2’s coordinates,
and can be decrypted using a short basis Si such that Si · Bi = 0 mod q. Our
fully anonymous system replaces each Bi by a matrix Bi,VK that depends on the
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verification key VK of a one-time signature. In the proof of full anonymity, the
reduction will be able to compute a trapdoor for all matrices Bi,VK, except for
one specific verification key VK� that will be used in the challenge phase. This
will provide the reduction with a backdoor allowing it to open all adversarially-
generated signatures.

Open problems. The schemes we proposed should be viewed as proofs of con-
cept, since instantiating them with practical parameters would most likely lead
to large keys and signature sizes. It is an interesting task to replace the SIS and
LWE problems by their ring variants [35,41,37], to attempt to save linear factors
in the security parameter t. The main hurdle in that direction seems to be the
design of appropriate zero-knowledge proofs of knowledge for the LWE and ISIS
relations (see Section 2.2).

As opposed to many pairing-based constructions, the security of our scheme is
only proven in the random oracle model: We rely on the Fiat-Shamir heuristic to
remove the interaction in the interactive proof systems. This is because very few
lattice problems are known to belong to NIZK. The problems considered in the sole
work on this topic [42] seem ill-fitted to devise group signatures. As a consequence,
the security proofs of all known lattice-based group signatures are conducted in
the random oracle model. Recently suggested multi-linear maps [22] seem like a
possible direction towards solving this problem. However, currently known instan-
tiations [22,19] rely on assumptions that seem stronger than LWE or SIS.

2 Background and Definitions

We first recall standard notations. All vectors will be denoted in bold lower-case
letters, whereas bold upper-case letters will be used for matrices. If b and c are
two vectors of compatible dimensions and base rings, then their inner product
will be denoted by 〈b, c〉. Further, if b ∈ Rn, its euclidean norm will be denoted
by ‖b‖. This notation is extended to any matrixB ∈ Rm×n with columns (bi)i≤n

by ‖B‖ = maxi≤n ‖bi‖. If B is full column-rank, we let B̃ denote the Gram-
Schmidt orthogonalisation of B.

If D1 and D2 are two distributions over the same countable support S, then
their statistical distance is defined as Δ(D1, D2) = 1

2

∑
x∈S |D1(x) − D2(x)|.

A function f(n) is said negligible if f(n) = n−ω(1). Finally, the acronym PPT
stands for probabilistic polynomial-time.

2.1 Lattices

A (full-rank) lattice L is the set of all integer linear combinations of some linearly
independent basis vectors (bi)i≤n belonging to some Rn. For a lattice L and a
real σ > 0, we define the Gaussian distribution of support L and parameter σ
by DL,σ[b] ∼ exp(−π‖b‖2/σ2), for all b in L. We will extensively use the fact
that samples from DL,σ are short with overwhelming probability.

Lemma 1 ([4, Le. 1.5]). For any lattice L ⊆ Rn and σ > 0, we have
Prb←↩DL,σ [‖b‖ ≤

√
nσ] ≥ 1− 2−Ω(n).
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As shown by Gentry et al. [23], Gaussian distributions with lattice support
can be sampled from efficiently, given a sufficiently short basis of the lattice.

Lemma 2 ([11, Le. 2.3]). There exists a PPT algorithm GPVSample that takes

as inputs a basis B of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(
√
logn), and

outputs vectors b ∈ L with distribution DL,σ.

Cash et al. [17] showed how to use GPVSample to randomize the basis of a
given lattice. The following statement is obtained by using [11, Le. 2.3] in the
proof of [17].

Lemma 3 (Adapted from [17, Le. 3.3]). There exists a PPT algorithm
RandBasis that takes as inputs a basis B of a lattice L ⊆ Zn and a ratio-
nal σ ≥ ‖B̃‖ · Ω(

√
logn), and outputs a basis C of L satisfying ‖C̃‖ ≤

√
nσ

with probability ≥ 1 − 2−Ω(n). Further, the distribution of C is independent of
the input basis B.

Let m ≥ n ≥ 1 and q ≥ 2. For a matrix A ∈ Zm×n
q , we define the lat-

tice Λ⊥
q (A) = {x ∈ Zm : xT · A = 0 mod q}. We will use an algorithm that

jointly samples a uniform A and a short basis of Λ⊥
q (A).

Lemma 4 ([2, Th. 3.2]). There exists a PPT algorithm TrapGen that takes
as inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a
matrix A ∈ Zm×n

q and a basis TA of Λ⊥
q (A) such that A is within statistical

distance 2−Ω(n) to U(Zm×n
q ), and ‖T̃A‖ ≤ O(

√
n log q).

Lemma 4 is often combined with the sampler from Lemma 2. Micciancio and
Peikert [38] recently proposed a more efficient approach for this combined task,
which should be preferred in practice but, for the sake of simplicity, we present
our schemes using TrapGen. Lemma 4 was later extended by Gordon et al. [24]
so that the columns of A lie within a prescribed linear vector subspace of Zn

q

(for q prime). For the security proof of our fully anonymous scheme, we will use
an extension where the columns of the sampled A lie within a prescribed affine
subspace of Zn

q . A proof is given in [31, Appendix C].

Lemma 5. There exists a PPT algorithm SuperSamp that takes as inputs inte-
gers m ≥ n ≥ 1 and q ≥ 2 prime such that m ≥ Ω(n log q), as well as matrices
B ∈ Zm×n

q and C ∈ Zn×n
q such that the rows of B span Zn

q . It outputs A ∈ Zm×n
q

and a basis TA of Λ⊥
q (A) such that A is within statistical distance 2−Ω(n)

to U(Zm×n
q ) conditioned on BT ·A = C, and ‖T̃A‖ ≤ O(

√
mn log q logm).

Finally, we also make use of an algorithm that extends a trapdoor for A ∈
Zm×n
q to a trapdoor of any B ∈ Zm′×n

q whose top m× n submatrix is A.

Lemma 6 ([17, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes
as inputs a matrix B ∈ Zm′×n

q whose first m rows span Zn
q , and a basis TA

of Λ⊥
q (A) where A is the top m × n submatrix of B, and outputs a basis TB

of Λ⊥
q (B) with ‖T̃B‖ ≤ ‖T̃A‖.
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For the sake of simplicity, we will assume that when the parameter conditions
are satisfied, the distributions of the outputs of TrapGen and SuperSamp are
exactly those they are meant to approximate, and the probabilistic norm bounds
of Lemmas 1 and 3 always hold.

2.2 Computational Problems

The security of our schemes provably relies (in the ROM) on the assumption that
both algorithmic problems below are hard, i.e., cannot be solved in polynomial
time with non-negligible probability and non-negligible advantage, respectively.

Definition 1. Let m, q, β be functions of a parameter n. The Short Integer So-
lution problem SISm,q,β is as follows: Given A ←↩ U(Zm×n

q ), find x ∈ Λ⊥
q (A)

with 0 < ‖x‖ ≤ β.

Definition 2. Let q, α be functions of a parameter n. For s ∈ Zn
q , the distri-

bution Aq,α,s over Zn
q × Zq is obtained by sampling a ←↩ U(Zn

q ) and (a noise)
e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e). The Learning With Errors problem
LWEq,α is as follows: For s ←↩ U(Zn

q ), distinguish between arbitrarily many in-
dependent samples from U(Zn

q×Zq) and the same number of independent samples
from Aq,α,s.

If q ≥
√
nβ and m,β ≤ poly(n), then standard worst-case lattice problems

with approximation factors γ = Õ(β
√
n) reduce to SISm,q,β (see, e.g., [23, Se. 9]).

Similarly, if αq = Ω(
√
n), then standard worst-case lattice problems with ap-

proximation factors γ = O(α/n) quantumly reduce to LWEq,α (see [43], and
also [40,11] for partial dequantizations). Note that we use the discrete noise
variant of LWE from [24].

We will make use of a non-interactive zero-knowledge proof of knowledge
(NIZPoK) protocol, which can be rather directly derived from [32,34], for the
following relation corresponding to an inhomogenous variant of the SIS relation:

RISIS =
{
(A,y, β;x) ∈ Zm×n

q × Zn
q ×Q× Zm : xT ·A = yT ∧ ‖x‖ ≤ β

}
.

The protocol, detailed in Section 2.3, is derived from the parallel repetition of
a Σ-protocol with binary challenges. We call ProveISIS and VerifyISIS the PPT
algorithms run by the Prover and the Verifier when the scheme is rendered non-
interactive using the Fiat-Shamir heuristic (i.e., the challenge is implemented us-
ing the random oracleH(·)). Algorithm ProveISIS takes (A,y, β;x) as inputs, and
generates a transcript (Comm,Chall,Resp). Algorithm VerifyISIS takes (A,y, β)
and such a transcript as inputs, and returns 0 or 1. The scheme has complete-
ness error 2−Ω(n): if ProveISIS is given as input an element of RISIS, then given as
input the output of ProveISIS, VerifyISIS replies 1 with probability ≥ 1 − 2−Ω(m)

(over the randomness of Prove). Also, there exists a PPT algorithm SimulateISIS
that, by reprogramming the random oracle H(·), takes (A,y, β) as input and
generates a transcript (Comm,Chall,Resp) whose distribution is within statis-
tical distance 2−Ω(m) of the genuine transcript distribution. Finally, there also
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exists a PPT algorithm ExtractISIS that given access to a time T algorithm A
that generates transcripts accepted by VerifyISIS with probability ε, produces, in
time Poly(T, 1/ε) a vector x′ such that (A,y,O(β ·m2);x′) ∈ RISIS.

We will also need a NIZKPoK protocol for the following language:

RLWE =
{
(A,b, α; s) ∈ Zm×n

q × Zm
q ×Q× Zn

q : ‖b−A · s‖ ≤ αq
√
m
}
.

As noted in [34], we may multiply b by a parity check matrix G ∈ Z
(m−n)×m
q

of A and prove the existence of small e ∈ Zm such that eT · GT = bT ·GT .
This may be done with the above NIZKPoK protocol for RISIS. We call ProveLWE,
VerifyLWE, SimulateLWE and ExtractLWE the obtained PPT algorithms.

2.3 Proof of Knowledge of an ISIS Solution

In [32], Lyubashevsky described an identification scheme whose security relies
on the hardness of the SIS problem. Given a public vector y ∈ Zn

q and a ma-
trix A ∈ Zm×n

q , the prover holds a short secret x and generates an interactive

witness indistinguishable proof of knowledge of a short vector x′T ∈ Zm such
that x′T · A = yT mod q. A variant was later proposed in [34], which enjoys
the property of being zero-knowledge (when the distribution of the transcript
is conditioned on the prover not aborting). We present an adaptation of [34,
Fig. 1] (still enjoying the same zero-knowledgedness property): the secret is a
single vector, the challenges are binary (which we use for the extraction vec-
tor), and we increase the standard deviation of the commited vector to lower
the rejection probability (we use a parallel repetition of the basic scheme, and
want the probability that there is a reject among all the parallel iterations to be
sufficiently away from 1).

Assume the prover P wishes to prove knowledge of an x such that yT =
xT ·A mod q and ‖x‖ ≤ β, where y and A are public. The protocol takes place
between the prover P and the verifier V and proceeds by the parallel repetition
of a basic Σ-protocol with binary challenges. We set σ = Θ(βm3/2) and ML

as specified by [34, Th. 4.6]. Thanks to our larger value of σ, we obtain (by
adapting [34, Le. 4.5]) that ML is now 1−Ω(1/m).

1. The prover P generates a commitment Comm = (wi)i≤t where, for each
i ≤ t, wi ∈ Zn

q is obtained by sampling yi ←↩ DZm,σ and computing wT
i =

yT
i ·A mod q. The message Comm is sent to V .

2. The verifier V sends a challenge Chall←↩ {0, 1}t to P .
3. For i ≤ t, the prover P does the following.

a. Compute zi = yi+Chall[i] ·x, where Chall[i] denotes the ith bit of Chall.

b. Set zi to ⊥ with probability min(1, exp(−π‖z‖2/σ2)
ML·exp(−π‖Chall[i]·x−z‖2/σ2) ).

Then P sends the response Resp = (zi)i≤t to V .

4. The verifier V checks the transcript (Comm,Chall,Resp) as follows:
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a. For i ≤ t, set di = 1 if ‖zi‖ ≤ 2σ
√
m and zTi ·A = wT

i + Chall[i] · yT .
Otherwise, set di = 0.

b. Return 1 (and accept the transcript) if and only if
∑

i≤t di ≥ 0.65t.

The protocol has completeness error 2−Ω(t). Further, by [34, Th. 4.6], the
distribution of the transcript conditioned on zi �= ⊥ can be simulated efficiently.
Note that if we implement the challenge phase with a random oracle, we can
compute the zi’s for increasing value of i, and repeat the whole procedure if zi =
⊥ for some i. Thanks to our choice of σ, for any t ≤ O(m), the probability
that zi = ⊥ for some i is ≤ c, for some constant c < 1. Thanks to this random
oracle enabled rejection, the simulator produces a distribution that is within
statistical distance 2−Ω(m) to the transcript distribution.

Finally, the modified protocol provides special soundness in that there is a
simple extractor that takes as input two valid transcripts (Comm,Chall,Resp),
(Comm,Chall′,Resp′) with distinct challenges Chall �= Chall′ and obtains a wit-
ness x′ such that x′T ·A = yT mod q and ‖x′‖ ≤ O(σ

√
m) ≤ O(βm2).

2.4 Group Signatures

This section recalls the model of Bellare, Micciancio and Warinschi [5], which
assumes static groups. A group signature scheme GS consists of a tuple of four
PPT algorithms (Keygen, Sign,Verify,Open) with the following specifications:

– Keygen takes 1n and 1N as inputs, where n ∈ N is the security parameter,
and N ∈ N is the maximum number of group members. It returns a tuple
(gpk, gmsk,gsk) where gpk is the group public key, gmsk is the group manager
secret key, and gsk is an N -vector of secret keys: gsk[j] is the signing key of
the j-th user, for j ∈ {0, . . . , N − 1}.

– Sign takes the group public key gpk, a signing key gsk[j] and a message
M ∈ {0, 1}∗ as inputs. Its output is a signature Σ ∈ {0, 1}∗ on M .

– Verify is deterministic and takes the group public key gpk, a messageM and
a putative signature Σ of M as inputs. It outputs either 0 or 1.

– Open is deterministic and takes as inputs the group public key gpk, the group
manager secret key gmsk, a message M and a valid group signature Σ w.r.t.
gpk. It returns an index j ∈ {0, . . . , N − 1} or a special symbol ⊥ in case of
opening failure.

The group signature scheme must be correct, i.e., for all integers n and N ,
all (gpk, gmsk,gsk) obtained from Keygen with (1n, 1N) as input, all indexes
j ∈ {0, . . . , N − 1} and M ∈ {0, 1}∗: Verify(gpk,M, Sign(gpk, gsk[j],M)) = 1 and
Open(gpk, gmsk,M, Sign(gpk, gsk[j],M)) = j, with probability negligibly close
to 1 over the internal randomness of Keygen and Sign.

Bellare et al. [5] gave a unified security model for group signatures in static
groups. The two main security requirements are traceability and anonymity. The
former asks that no coalition of group members be able to create a signature
that cannot be traced to one of them. The latter implies that, even if all group
members’ private keys are given to the adversary, signatures generated by two
distinct members should be computationally indistinguishable.
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Expanon-b
GS,A(n,N)

(gpk, gmsk, gsk) ← Keygen(1n, 1N )
(st, j0, j1,M) ← A(choose, gpk,gsk)
Σ� ← Sign(gpk, gsk[jb],M)
b′ ← A(guess,st, Σ�)
Return b′

Exptrace
GS,A(n,N)

(gpk, gmsk,gsk) ← Keygen(1n, 1N )
st ← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont ← true

while (Cont = true) do
(Cont, st, j) ← AGS.Sign(gsk[·],·)(choose, st,K)
if Cont = true then C ← C ∪ {j};
K ← gsk[j]

end if
end while;
(M�, Σ�) ← AGS.Sign(gsk[·],·)(guess,st)
if Verify(gpk,M�, Σ�) = 0 then Return 0
if Open(gmsk,M�, Σ�) =⊥ then Return 1
if ∃j� ∈ {0, . . . , N − 1} such that

(Open(gmsk,M�, Σ�) = j�) ∧ (j� /∈ C)
∧ ((j�,M�) not queried by A)

then Return 1 else Return 0

Fig. 1. Random experiments for anonymity and full traceability

Anonymity. Anonymity requires that, without the group manager’s secret key,
an adversary cannot recognize the identity of a user given its signature. More
formally, the attacker, modeled as a two-stage adversary (choose and guess), is
engaged in the first random experiment depicted in Figure 1. The advantage of
such an adversary A against a group signature GS with N members is defined
as Advanon

GS,A(n,N) =
∣∣Pr[Expanon-1

GS,A (n,N) = 1]− Pr[Expanon-0
GS,A (n,N) = 1]

∣∣ .
In our first scheme, we consider a weak anonymity scenario in which the ad-

versary is not allowed to query an opening oracle. This relaxed model is precisely
the one considered in [24], and was firstly introduced in [7]. Nonetheless, we pro-
vide in Section 5 a variant of our scheme enjoying chosen-ciphertext security.
The adversary is then granted an access to an opening oracle that can be called
on any string except the challenge signature Σ�.

Definition 3 (Weak and full anonymity, [5,7]). A group signature scheme
GS is said to be weakly anonymous (resp. fully anonymous) if for all polynomial
N(·) and all PPT adversaries A (resp. PPT adversaries A with access to an open-
ing oracle which cannot be queried for the challenge signature), AdvanonGS,A(n,N)
is a negligible function in the security parameter n.

Full traceability. Full traceability ensures that all signatures, even those cre-
ated by a coalition of users and the group manager, pooling their secret keys
together, can be traced to a member of the forging coalition. Once again, the
attacker is modeled as a two-stage adversary who is run within the second ex-
periment described in Figure 1. Its success probability against GS is defined as
SucctraceGS,A(n,N) = Pr[Exptrace

GS,A(n,N) = 1].
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Definition 4 (Full traceability, [5]). A group signature scheme GS is said
to be fully traceable if for all polynomial N(·) and all PPT adversaries A, its
success probability SucctraceGS,A(n,N) is negligible in the security parameter n.

3 An Asymptotically Shorter Lattice-Based Group
Signature

At a high level, our key generation is based on the variant of Boyen’s lattice
signatures [8] described in [38, Se. 6.2]: Boyen’s secret and verification keys
respectively become our secret and public keys, whereas Boyen’s message space is
mapped to the users’ identity space. There are however several additional twists
in Keygen. First, each groupmember is given a full short basis of the public lattice
associated to its identity, instead of a single short lattice vector. The reason is
that, for anonymity and unlinkability purposes, the user has to generate each
group signature using a fresh short lattice vector. Second, we sample our public
key matrices (Ai)i≤� orthogonally to publicly known matrices Bi, similarly to
the group signature scheme from [24]. These Bi’s will be used to publicly verify
the validity of the signatures. They are sampled along with short trapdoor bases,
using algorithm SuperSamp, which become part of the group signature secret key.
These trapdoor bases will be used by the group authority to open signatures.

To anonymously sign M , the user samples a Boyen signature (x1,x2) with its
identity as message, which is a temporary certificate of its group membership.
It does so using its full trapdoor matrix for the corresponding lattice. The user
then encrypts x2, in a fashion that resembles [24], using Regev’s dual encryption
scheme from [23, Se. 7.1] with the Bi’s as encryption public keys. Note that in
all cases but one (c0 at Step 2), the signature is not embedded in the encryption
noise as in [24], but as proper plaintext. The rest of the signing procedure con-
sists in proving in zero-knowledge that these are valid ciphertexts and that the
underlying plaintexts indeed encode a Boyen signature under the group public
key. These ZKPoKs are all based on the interactive proof systems recalled in Sec-
tions 2.2 and 2.3. These were made non-interactive via the Fiat-Shamir heuristic
with random oracleH(·) taking values in {0, 1}t. The messageM is embedded in
the application of the Fiat-Shamir transform at Step 6 of the signing algorithm.

The verification algorithm merely consists in verifying all proofs of knowledge
concerning the Boyen signature embedded in the plaintexts of the ciphertexts.

Finally, the group manager can open any signature by decrypting the cipher-
texts (using the group manager secret key) and then recovering the underlying
Boyen signature within the plaintexts: this reveals which public key matrices Ai

have been considered by the signer, and therefore its identity.
The scheme depends on several functions m, q, p, α and σ of the security

parameter n and the group size N(=2�). They are set so that all algorithms can
be implemented in polynomial time and are correct (Theorem 1), and so that
the security properties (Theorems 2 and 3) hold, in the ROM, under the SIS
and LWE hardness assumptions for parameters for which these problems enjoy
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reductions from standard worst-case lattice problems with polynomial approxi-
mation factors. More precisely, we require that:

• parameter m is Ω(n log q),
• parameter σ is Ω(m3/2

√
�n log q logm) and ≤ nO(1),

• parameter p is Ω((αq + σ)m5/2),
• parameter α is set so that α−1 ≥ Ω(pm3 logm) and ≤ nO(1),
• parameter q is prime and Ω(� + α−1

√
n�) and ≤ nO(1).

For example, we may set m = Õ(n), σ = Õ(n2
√
�), p = Õ(n9/2

√
�) as well as

α−1 = Õ(n15/2
√
�) and q = Õ(� + n8

√
�).

Keygen(1n, 1N): Given a security parameter n > 0 and the desired number of
group members N = 2� ∈ poly(n), choose parameters q, m, p, α and σ as
specified above and make them public. Choose a hash function H : {0, 1}∗ →
{0, 1}t for some t ∈ [Ω(n), nO(1)], which will be modeled as a random oracle.
Then, proceed as follows.

1. Run TrapGen(1n, 1m, q) to getA ∈ Zm×n
q and a short basisTA of Λ⊥

q (A).
2. For i = 0 to �, sample Ai ←↩ U(Zm×n

q ) and compute
(Bi,S

′
i) ← SuperSamp(1n, 1m, q,Ai,0). Then, randomize S′

i as Si ←
RandBasis(S′

i, Ω(
√
mn log q logm)).2

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [�] ∈ {0, 1}� be the binary

representation of idj and define: Aidj
=

[
A

A0 +
∑�

i=1 idj [i]Ai

]
∈ Z2m×n

q .

Then, run T′
idj

← ExtBasis(Aidj
,TA) to get a short delegated basis T′

idj

of Λ⊥
q (Aidj ). Finally, runTidj

← RandBasis(T′
idj
, Ω(m

√
�n log q logm)).2

The j-th member’s private key is gsk[j] := Tidj
.

4. The groupmanager’s private key is gmsk := {Si}�i=0 and the group public
key is defined to be gpk :=

(
A, {Ai,Bi}�i=0

)
. The algorithm outputs(

gpk, gmsk, {gsk[j]}N−1
j=0

)
.

Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key
gsk[j] = Tidj

, proceed as follows.

1. Run GPVSample(Tidj , σ) to get (xT
1 |xT

2 )
T ∈ Λ⊥

q (Aidj ) of norm ≤ σ
√
2m.

2. Sample s0 ←↩ U(Zn
q ) and encrypt x2 ∈ Zm

q as c0 = B0 · s0 + x2 ∈ Zm
q .

3. Sample s ←↩ U(Zn
q ). For i = 1 to �, sample ei ←↩ DZm,αq and com-

pute ci = Bi · s+ p · ei + idj [i] · x2, which encrypts x2 ∈ Zm
q (resp. 0) if

idj [i] = 1 (resp. idj [i] = 0).
4. Generate a NIZKPoK π0 of s0 so that (B0, c0,

√
2σ/q; s0) ∈ RLWE (see

Section 2.2).
5. For i = 1 to �, generate a NIZKPoK πOR,i of s and s0 so that either:

(i) ((Bi|B0), p
−1(ci − c0),

√
2α; (sT | − sT0 )

T ) ∈ RLWE (the vectors ci
and c0 encrypt the same x2, so that p−1(ci − c0) is close to the
Zq-span of (Bi|B0));

2 These randomisation steps are not needed for the correctness of the scheme but are
important in the traceability proof.
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(ii) or (Bi, p
−1ci, α; s) ∈ RLWE (the vector ci encrypts 0, so that p−1ci

is close to the Zq-span of Bi).

This can be achieved by OR-ing two proofs for RLWE, and making the
resulting protocol non-interactive with the Fiat-Shamir heuristic.3

6. For i = 1 to �, set yi = idj [i]x2 ∈ Zm and generate a NIZKPoK πK
of (ei)1≤i≤�, (yi)1≤i≤�,x1 such that, for i ∈ [1, �]

xT
1 A+

�∑
i=0

cTi Ai =

�∑
i=1

eTi
(
pAi

)
and eTi

(
pAi

)
+ yT

i Ai = cTi Ai (2)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ max(σ, αq)
√
m for all i. This is achieved us-

ing ProveISIS in order to produce a triple (CommK ,ChallK ,RespK), where
ChallK = H(M,CommK , (ci)0≤i≤�, π0, (πOR,i)1≤i≤�).

The signature consists of

Σ =
(
(ci)0≤i≤�, π0, (πOR,i)1≤i≤�, πK

)
. (3)

Verify(gpk,M,Σ): ParseΣ as in (3). Then, return 1 if π0, (πOR,i)1≤i≤�, πK prop-
erly verify. Else, return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}�i=0 and Σ as in (3). Compute x2

by decrypting c0 using S0. For i = 1 to �, use Si to determine which one
of the vectors p−1ci and p−1(ci − x2) is close to the Zq-span of Bi. Set
id[i] = 0 in the former case and id[i] = 1 in the latter. Eventually, output
id = id[1] . . . id[�].

All steps of the scheme above can be implemented in polynomial-time as
a function of the security parameter n, assuming that q ≥ 2 is prime, m ≥
Ω(n log q), σ ≥ Ω(m3/2

√
�n log q logm) (using Lemmas 2 and 3), and αq ≥ Ω(1)

(using Lemma 2). Under some mild conditions on the parameters, the scheme
above is correct, i.e., the verifier accepts honestly generated signatures, and the
group manager successfully opens honestly generated signatures. In particular,
multiplying the ciphertexts by the Si modulo q should reveal p · ei + idj [i] · x2

over the integers, and ‖idj [i] · x2‖∞ should be smaller than p.

Theorem 1. Let us assume that q ≥ 2 is prime and that we havem ≥ Ω(n log q),
σ ≥ Ω(m3/2

√
�n log q logm), α−1 ≥ Ω(pm5/2 logm

√
n log q) as well as q ≥

Ω(α−1 + σm5/2 logm
√
n log q). Then, the group signature scheme above can be

implemented in time polynomial in n, is correct, and the bit-size of the generated
signatures in O(�tm log q).

4 Security

We now focus on the security of the scheme of Section 3.

3 The disjunction of two relations that can be proved by Σ-protocols can also be
proved by a Σ-protocol [20,21].
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Anonymity. Like in [24,7], we use a relaxation of the anonymity definition,
called weak anonymity and recalled in Definition 3. Analogously to the notion of
IND-CPA security for public-key encryption, the adversary does not have access
to a signature opening oracle. We show that the two versions (for b = 0, 1) of the
anonymity security experiment recalled in Figure 1 are indistinguishable under
the LWE assumption. We use several intermediate hybrid experiments called

G
(i)
b , and show that each of these experiments is indistinguishable from the next

one. At each step, we only change one element of the game (highlighted by an
arrow in Figure 2), to finally reach the experiment G(4) where the signature
scheme does not depend on the identity of the user anymore.

Theorem 2. In the random oracle model, the scheme provides weak anonymity
in the sense of Definition 3 under the LWEq,α assumption. Namely, for any PPT
adversary A with advantage ε, there exists an algorithm B solving the LWEq,α

problem with the same advantage.

Proof. We define by G0 the experiment of Definition 3 with b = 0 and by G1 the
same experiment with b = 1. To show the anonymity of the scheme, we prove
that G0 and G1 are indistinguishable. We use several hybrid experiments named

G
(1)
b , G

(2)
b , G

(3)
b and G(4) (described in Figure 2), where b is either 0 or 1.

Lemma 7. For each b ∈ {0, 1}, Gb and G
(1)
b are statistically indistinguishable.

We only change the way we generate (xT
1 |xT

2 )
T , by using the fact that one

way to generate it is to first sample x2 from DZm,σ and then generate x1 from
DZm,σ such that (xT

1 |xT
2 ) · Aidjb

= 0 mod q (by using the trapdoor TA). This

change is purely conceptual and the vector (xT
1 |xT

2 )
T has the same distribution

anyway. The two experiments are thus identical from A’s view and x2 is chosen
independently of the signer’s identity in the challenge phase.

Lemma 8. For each b ∈ {0, 1}, G(1)
b and G

(2)
b are statistically indistinguishable.

The differences are simply: Instead of generating the proofs {πOR,i}�i=1 and πK
using the witnesses, we simulate them (see Section 2.2).

Lemma 9. For each b ∈ {0, 1}, if the LWEq,α problem is hard, then the experi-

ments G
(2)
b and G

(3)
b are computationally indistinguishable.

Proof. This proof uses the same principle as the proof of [24, Claim 1]: We use
the adversary A to construct a PPT algorithm B for the LWEq,α problem. We

consider an LWE instance (B′, z) ∈ Z
m�×(n+1)
q such that B′ = (B′

1, . . . ,B
′
�)

and z = (z1, . . . , z�) with B′
i ∈ Zm×n

q and zi ∈ Zm
q . The component z is either

uniform in Zm�
q , or of the form z = B′ · s+ e where e is sampled from DZm�,αq.

We construct a modified Keygen algorithm using this LWE instance: It gen-
erates the matrix A with a basis TA of Λ⊥

q (A). Instead of generating the Bi’s
genuinely, we pick B0 uniformly in Zm×n and set Bi = B′

i for 1 ≤ i ≤ �. For
0 ≤ i ≤ �, we compute (Ai,Ti) ← SuperSamp(1n, 1m, q,Bi,0). Then, for each
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Experiment Gb

• Run Keygen; give gpk = (A, {Ai,Bi}i) and
gsk = {Tidj

}j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as fol-

lows:
1. (xT

1 |xT
2 )T ←↩ GPVSample(Tidjb

, σ);

we have (xT
1 |xT

2 ) · Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Zn
q ), compute c0 =

B0 · s0 + x2 ∈ Z
m
q .

3. Choose s ←↩ U(Zn
q ), and for i = 1 to

�, choose ei ←↩ DZm,αq and compute
ci = Bi · s + p · ei + idjb

[i] · x2.
4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G
(2)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and
gsk = {Tidj

}j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as fol-

lows:
1. Sample x2 ←↩ DZm,σ ; sample x1 ←↩

DZm,σ , conditioned on

(xT
1 |xT

2 ) · Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Zn
q ) and compute c0 =

B0 · s0 + x2 ∈ Z
m
q ,

3. Choose s ←↩ U(Zn
q ), and for i = 1 to

�, choose ei ←↩ DZm,αq and compute
ci = Bi · s + p · ei + idjb

[i] · x2.
4. Generate π0.
→ 5. Simulate {πOR,i}i.
→ 6. Simulate πK .

Experiment G
(1)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and
gsk = {Tidj

}j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as fol-

lows:
→ 1. Sample x2 ←↩ DZm,σ and, using TA,

sample x1 ←↩ DZm,σ conditioned on

(xT
1 |xT

2 ) · Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Zn
q ), compute c0 =

B0 · s0 + x2 ∈ Z
m
q ,

3. Choose s ←↩ U(Zn
q ), and for i = 1 to

�, choose ei ←↩ DZm,αq and compute
ci = Bi · s+ p · ei + idjb

[i] · x2.
4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G
(3)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and
gsk = {Tidj

}j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as fol-

lows:
1. Sample x2 ←↩ DZm,σ Sample x1 ←↩

DZm,σ conditioned on

(xT
1 |xT

2 ) · Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Zn
q ) and compute c0 =

B0 · s0 + x2 ∈ Z
m
q ,

→ 3. For i = 1 to �, choose zi ←↩ U(Zm
q )

and compute ci = zi + idjb
[i] · x2.

4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Experiment G(4)

• Run Keygen; give gpk = (A, {Ai,Bi}i) and
gsk = {Tidj

}j to A.

• A outputs j0, j1 and a message M .

• The signature of user jb is computed as fol-
lows:

→ 1. Sample x2 ←↩ DZm,σ.

2. Choose s0 ←↩ U(Zn
q ) and compute c0 =

B0 · s0 + x2 ∈ Z
m
q ,

→ 3. For i = 1 to �, choose zi ←↩ U(Zm
q ) and

set ci = zi.
4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Fig. 2. Experiments Gb, G
(1)
b , G

(2)
b , G

(3)
b and G(4)

j ∈ [0, N − 1], we define Aidj
as in the original Keygen algorithm, and com-

pute a trapdoor Tidj using TA. The adversary A is given gpk and {gskj}j . In
the challenge phase, it outputs j0, j1 and a message M . By [24], this Keygen
algorithm and the one in all the experiments are statistically indistinguishable.
Then, the signature is created on behalf of the group member jb. Namely, B first
chooses x2 ← DZm,σ and finds x1 such that (xT

1 |xT
2 )

T ·Aidjb
= 0 mod q. Then

it chooses s0 ←↩ U(Zn
q ) and computes c0 = B0 ·s0+x2 ∈ Zm

q . Third, it computes
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ci = p · zi + idjb [i] · x2 (with the zi of the LWE instance). Then it generates π0
and simulates the πOR,i’s and πK proofs.

We let DLWE denote this experiment when z = s · B′T + e: This experiment

is statistically close to G
(2)
b . Then, we let Drand denote this experiment when

z is uniform: It is statistically close to G
(3)
b . As a consequence, if the adversary

A can distinguish between the experiments G
(2)
b and G

(3)
b with non-negligible

advantage, then we can solve the LWEq,α problem with the same advantage.

Lemma 10. For each b ∈ {0, 1}, G(3)
b and G(4) are indistinguishable.

Between these two experiments, we change the first and third steps. In the
former, we no longer generate x1 and, in the latter, ci is uniformly sampled in Zm

q .

These changes are purely conceptual. Indeed, in experiment G
(3)
b , x1 is not used

beyond Step 1. In the same experiment, we also have ci = zi + idjb [i]. Since the
zi’s are uniformly sampled in Zm

q , the ci’s are also uniformly distributed in Zm
q .

As a consequence, the ci’s of G
(3)
b and the ci’s of G

(4) have the same distribution.

In G
(4)
b , we conclude that A’s view is exactly the same as in experiments G

(3)
b .

Since the experimentG(4) no longer depends on the bit b ∈ {0, 1} that determines
the signer’s identity, the announced result follows. ��

Traceability. The proof of traceability relies on the technique of [1,8] and a
refinement from [28,38], which is used in order to allow for a smaller modulus q.

A difference with the proof of [24] is that we need to rely on the knowledge
extractor of a proof of knowledge πK . Depending on whether the extracted wit-
nesses {ei,yi}�i=1 of relation (2) satisfy yi = idj [i]x2 for all i or not, we need
to distinguish two cases. The strategy of the reduction and the way it uses its
given SISq,β instance will depend on which case is expected to occur. The proof
is provided is the long version of this article [31, Section 4.2].

Theorem 3. Assume that q > logN , p ≥ Ω((αq + σ)m5/2) and
β ≥ Ω(σm7/2

√
logN + pαqm5/2). Then for any PPT traceability adversary A

with success probability ε, there exists a PPT algorithm B solving SISm,q,β with

probability ε′′ ≥ ε′
2N · ( ε′

qH
− 2−t) + ε′

2 logN , where ε′ = ε − 2−t − 2−Ω(n) and qH
is the number of queries to the random oracle H : {0, 1}∗ → {0, 1}t.

5 A Variant with Full (CCA-)Anonymity

We modify our basic group signature scheme to reach the strongest anonymity
level (Definition 3), in which the attacker is authorized to query an opening
oracle. This implies the simulation of an oracle which opens adversarially-chosen
signatures in the proof of anonymity. To this end, we replace each Bi from our
previous scheme by a matrix Bi,VK that depends on the verification key VK of a
strongly unforgeable one-time signature. The reduction will be able to compute
a trapdoor for all these matrices, except for one specific verification key VK�
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that will be used in the challenge phase. This will provide the reduction with a
backdoor allowing it to open all adversarially-generated signatures.

It is assumed that the one-time verification keys VK belong to Zn
q (note that

this condition can always be enforced by hashing VK). Following Agrawal et
al. [1], we rely on a full-rank difference function Hvk : Zn

q → Zn×n
q such that, for

any two distinct u,v ∈ Zn
q , the difference Hvk(u)−Hvk(v) is a full rank matrix.

Keygen(1n, 1N): Given a security parameter n > 0 and the desired number of
members N = 2� ∈ poly(n), choose parameters as in Section 3 and make
them public. Choose a hash function H : {0, 1}∗ → {0, 1}t, that will be seen
as a random oracle, and a one-time signature Πots = (G,S,V).
1. Run TrapGen(1n, 1m, q) to getA ∈ Zm×n

q and a short basisTA of Λ⊥
q (A).

2. For i = 0 to �, repeat the following steps.

a. Choose uniformly random matrices Ai,1,Bi,0,Bi,1 ∈ Zm×n
q .

b. Compute (Ai,2,Ti,2) ← SuperSamp(1n, 1m, q,Bi,1, 0
n×n) such that

BT
i,1 · Ai,2 = 0 mod q and discard Ti,2, which will not be needed.

Define Ai =

[
Ai,1

Ai,2

]
∈ Z2m×n

q .

c. Run (Bi,−1,S
′
i)← SuperSamp(1n, 1m, q,Ai,1,−AT

i,2 ·Bi,0) to obtain

Bi,−1 ∈ Zm×n
q such that BT

i,−1 ·Ai,1 +BT
i,0 ·Ai,2 = 0 mod q.

d. Compute a re-randomized trapdoor Si ← RandBasis(S′
i) for Bi,−1.

For any string VK, if the matrix Hvk(VK) is used to define Bi,VK =[
Bi,−1

Bi,0 +Bi,1Hvk(VK)

]
∈ Z2m×n

q , we have BT
i,VK ·Ai = 0 mod q for all i.

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [�] ∈ {0, 1}� be the binary

representation of idj and define: Aidj =

[
A

A0 +
∑�

i=1 idj [i]Ai

]
∈ Z3m×n

q .

Then run Tidj ← ExtBasis(TA,Aidj ) to get a short delegated basis
Tidj

∈ Z3m×3m of Λ⊥
q (Aidj

) and define gsk[j] := Tidj
.

4. Finally, define gpk :=
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}�i=0, H, Πots

)
and

gmsk := {Si}�i=0. The algorithm outputs
(
gpk, gmsk, {gsk[j]}N−1

j=0

)
.

Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key
gsk[j] = Tidj

, generate a one-time signature key pair (VK, SK) ← G(1n)
for Πots and proceed as follows.

1. Run GPVSample(Tidj
, σ) to get (xT

1 |xT
2 )

T ∈ Λ⊥
q (Aidj

) of norm ≤ σ
√
3m.

2. Sample s0 ←↩ U(Zn
q ) and encrypt x2 ∈ Z2m

q as c0 = B0,VK ·s0+x2 ∈ Z2m
q .

3. Sample s ←↩ U(Zn
q ). For i = 1 to �, sample ei ← DZm,αq and a random

matrix Ri ∈ Zm×m whose columns are sampled from DZm,σ. Then,
compute ci = Bi,VK · s + p ·

[
ei ei ·Ri

]
+ idj [i] · x2, which encrypts

x2 ∈ Z2m
q (resp. 02m) if idj [i] = 1 (resp. idj [i] = 0).

4. Generate a NIZKPoK π0 of s0 so that (B0, c0,
√
2σ/q; s0) ∈ RLWE.

5. For i = 1 to �, generate a NIZKPoK πOR,i of s and s0 so that either:
(i) ((Bi,VK|B0,VK), p

−1(ci−c0),
√
2α; (sT |−sT0 )

T ) ∈ RLWE (the vectors ci
and c0 encrypt the same x2, so that the vector p−1(ci − c0) is close
to the Zq-span of (Bi,VK|B0,VK));
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(ii) or (BT
i,VK, p

−1ci, α; s) ∈ RLWE ( p−1ci is close to the Zq-span ofBT
i,VK).

6. For i = 1 to �, set yi = idj [i]x2 ∈ Z2m and generate a NIZKPoK πK of

(ei)1≤i≤�, (yi)1≤i≤� , x1 such that: xT
1 A+

∑�
i=0 c

T
i Ai =

∑�
i=1 e

T
i

(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yT

i Ai = cTi Aiwith ||x1|| ≤ σ
√
m and ||yi|| ≤ σ

√
2m

for each i ∈ {1, . . . , �}.
This is achieved using ProveISIS, giving a triple (CommK ,ChallK ,RespK),
where ChallK = H(M,CommK , (ci)0≤i≤�, π0, (πOR,i)1≤i≤�).

7. Compute sig = S(SK, (ci)0≤i≤�, π0, (πOR,i)1≤i≤�, πK)).

The signature consists of

Σ =
(
VK, c0, c1, . . . , c�, π0, πOR,1, . . . , πOR,�, πK , sig

)
. (4)

Verify(gpk,M,Σ): Parse the signature Σ as in (4). Then, return 0 in the event
that V(VK, sig, (ci)0≤i≤�, π0, (πOR,i)1≤i≤�, πK)) = 0. Then, return 1 if all
proofs π0, (πOR,i)1≤i≤�, πK properly verify. Otherwise, return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}�i=0 and Σ as in (4). For i = 0 to �,
compute a trapdoor Si,VK ← ExtBasis(Si,Bi,VK) for Bi,VK. Using the dele-
gated basis S0,VK ∈ Z2m×2m (for which we have S0,VK · B0,VK = 0 mod q),
compute x2 by decrypting c0. Then, using Si,VK ∈ Z2m×2m, determine which
vector among p−1ci mod q and p−1(ci − x2) mod q is close to the Zq-span
of Bi,VK. Set id[i] = 0 in the former case and id[i] = 1 in the latter case.
Eventually, output id = id[1] . . . id[�].

In [31, Appendix D], we prove the following theorems.

Theorem 4. The scheme provides full anonymity in the ROM if the LWEq,α

assumption holds and if the one-time signature is strongly unforgeable.

Theorem 5. Assuming that q > logN , the scheme is fully traceable in the
ROM under the SISq,β assumption. More precisely, for any PPT traceability ad-
versary A with success probability ε, there exists an algorithm B solving the SISq,β

problem with probability at least 1
2N ·

(
ε − 1

2t

)
·
(

ε−1/2t

qH
− 1

2t

)
, where qH is the

number of queries to H : {0, 1}∗ → {0, 1}t.
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tures with logarithmic signature size. Cryptology ePrint Archive, Report 2013/308
(2013), http://eprint.iacr.org/2013/308

32. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

33. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (2009)

34. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

35. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

36. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

37. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

http://www.daimi.au.dk/~ivan/Sigma.pdf
http://eprint.iacr.org/2013/308


Lattice-Based Group Signatures with Logarithmic Signature Size 61

38. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

39. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

40. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proc. of STOC, pp. 333–342. ACM (2009)

41. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

42. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 536–553. Springer, Heidelberg (2008)

43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6) (2009)



The Fiat–Shamir Transformation

in a Quantum World
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Abstract. The Fiat-Shamir transformation is a famous technique to turn
identification schemes into signature schemes. The derived scheme is provably
secure in the random-oracle model against classical adversaries. Still, the tech-
nique has also been suggested to be used in connection with quantum-immune
identification schemes, in order to get quantum-immune signature schemes.
However, a recent paper by Boneh et al. (Asiacrypt 2011) has raised the issue
that results in the random-oracle model may not be immediately applicable
to quantum adversaries, because such adversaries should be allowed to query
the random oracle in superposition. It has been unclear if the Fiat-Shamir
technique is still secure in this quantum oracle model (QROM).

Here, we discuss that giving proofs for the Fiat-Shamir transformation in

the QROM is presumably hard. We show that there cannot be black-box ex-

tractors, as long as the underlying quantum-immune identification scheme is

secure against active adversaries and the first message of the prover is inde-

pendent of its witness. Most schemes are of this type. We then discuss that

for some schemes one may be able to resurrect the Fiat-Shamir result in the

QROM by modifying the underlying protocol first. We discuss in particular a

version of the Lyubashevsky scheme which is provably secure in the QROM.

1 Introduction

The Fiat-Shamir transformation [19] is a well-known method to remove inter-
action in three-move identification schemes between a prover and verifier, by
letting the verifier’s challenge ch be determined via a hash function H applied
to the prover’s first message com. Currently, the only generic, provably secure
instantiation is by modeling the hash function H as a random oracle [5,33]. In
general, finding secure instantiations based on standard hash functions is hard
for some schemes, as shown in [22,7]. However, these negative results usually
rely on peculiar identification schemes, such that for specific schemes, especially
more practical ones, such instantiations may still be possible.

The Quantum Random-Oracle model. Recently, the Fiat-Shamir transfor-
mation has also been applied to schemes which are advertised as being based

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 62–81, 2013.
c© International Association for Cryptologic Research 2013
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on quantum-immune primitives, e.g., [28,3,23,12,13,35,30,34,25,1,11,2,17]. Inter-
estingly, the proofs for such schemes still investigate classical adversaries only.
It seems unclear if (and how) one can transfer the proofs to the quantum case.
Besides the problem that the classical Fiat-Shamir proof [33] relies on rewinding
the adversary, which is often considered to be critical for quantum adversaries
(albeit not impossible [39,38]), a bigger discomfort seems to lie in the usage of
the random-oracle model in presence of quantum adversaries.

As pointed out by Boneh et al. [8] the minimal requirement for random ora-
cles in the quantum world should be quantum access. Since the random oracle is
eventually replaced by a standard hash function, a quantum adversary could eval-
uate this hash function in superposition, while still ignoring any advanced attacks
exploiting the structure of the actual hash function. To reflect this in the random-
oraclemodel, [8] argue that the quantum adversary should be also allowed to query
the random oracle in superposition. That is, the adversary should be able to query
the oracle on a state |ϕ〉 =

∑
x αx |x〉 |0〉 and in returnwould get

∑
x αx |x〉 |H(x)〉.

This model is called the quantum random-oracle model (QROM).
Boneh et al. [8] discuss some classical constructions for encryption and sig-

natures which remain secure in the QROM. They do not cover Fiat-Shamir sig-
natures, though. Subsequently, Boneh and Zhandry [41,40,9] investigate further
primitives with quantum access, such as pseudorandom functions and MACs.
Still, the question about the security of the Fiat-Shamir transform in the QROM
raised in [8] remained open.

Fiat-Shamir Transform in the QROM. Here, we give evidence that con-
ducting security proofs for Fiat-Shamir transformed schemes and black-box ad-
versaries is hard, thus yielding a negative result about the provable security of
such schemes. More specifically, we use the meta-reduction technique to rule out
the existence of quantum extractors with black-box access to a quantum ad-
versary against the converted (classical) scheme. If such extractors would exist
then the meta-reduction, together with the extractor, yields a quantum algo-
rithm which breaks the active security of the identification scheme. Our result
covers any identification scheme, as long as the prover’s initial commitment in
the scheme is independent of the witness, and if the scheme itself is secure against
active quantum attacks where a malicious verifier may first interact with the gen-
uine prover before trying to impersonate or, as we only demand here, to com-
pute a witness afterwards. Albeit not quantum-immune, the classical schemes
of Schnorr [36], Guillou and Quisquater [24], and Feige, Fiat and Shamir [18]
are conceivably of this type (see also [4]). Quantum-immune candidates are, for
instance, [31,27,26,30,35,2].

Our negative result does not primarily rely on the rewinding problem for
quantum adversaries; our extractor may rewind the adversary (in a black-box
way). Instead, our result is rather based on the adversary’s possibility to hide
actual queries to the quantum random oracle in a “superposition cloud”, such
that the extractor or simulator cannot elicit or implant necessary information
for such queries. In fact, our result reveals a technical subtlety in the QROM
which previous works [8,40,41,9] have not addressed at all, or at most implicitly.
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It refers to the question how a simulator or extractor can answer superposition
queries

∑
x αx |x〉 |0〉.

A possible option is to allow the simulator to reply with an arbitrary quantum
state |ψ〉 =

∑
x βx |x〉 |yx〉, e.g., by swapping the state from its local registers to

the ancilla bits for the answer in order to make this step unitary. This seems
to somehow generalize the classical situation where the simulator on input x
returns an arbitrary string y for H(x). Yet, the main difference is that returning
an arbitrary state |ψ〉 could also be used to eliminate some of the input values
x, i.e., by setting βx = 0. This is more than what the simulator is able to do in
the classical setting, where the adversary can uniquely identify the preimage x
to the answer. In the extreme the simulator in the quantum case, upon receiving
a (quantum version of) a classical state |x〉 |0〉, could simply reply with an (arbi-
trary) quantum state |ψ〉. Since quantum states are in general indistinguishable,
in contrast to the classical case the adversary here would potentially continue
its execution for inputs which it has not queried for.

In previous works [8,41,40,9] the simulator specifies a classical (possibly prob-
abilistic) function h which maps the adversary query

∑
x αx |x〉 |0〉 to the reply∑

x αx |x〉 |h(x)〉. Note that the function h is not given explicitly to the adversary,
and that it can thus implement keyed functions like a pseudorandom function
(as in [8]). This basically allows the simulator to freely assign values h(x) to
each string x, without being able to change the input values. It also corresponds
to the idea that, if the random oracle is eventually replaced by an actual hash
function, the quantum adversary can check that the hash function is classical,
even if the adversary does not aim to exploit any structural weaknesses (such
that we still hide h from the adversary).

We thus adopt the approach of letting the simulator determine the quantum
answer via a classical probabilistic function h. In fact, our impossibility hinges on
this property but which we believe to be rather “natural” for the aforementioned
reasons. From a mere technical point of view it at least clearly identifies possible
venues to bypass our hardness result. In our case we allow the simulator to specify
the (efficient) function h adaptively for each query, still covering techniques like
programmability in the classical setting. Albeit this is sometimes considered
to be a doubtful property [20] this strengthens our impossibility result in this
regard.

Positive Results. We conclude with some positive result. It remains open if
one can “rescue” plain Fiat-Shamir for schemes which are not actively secure, or
to prove that alternative but still reasonably efficient approaches work. However,
we can show that the Fiat-Shamir technique in general does provide a secure
signature scheme in the QROM if the protocol allows for oblivious commitments.
Roughly, this means that the honest verifier generates the prover’s first message
com obliviously by sampling a random string and sends com to the prover. In
the random oracle transformed scheme the commitment is thus computed via
the random oracle, together with the challenge. Such schemes are usually not
actively secure against malicious verifiers. Nonetheless, we stress that in order to
derive a secure signature scheme via the Fiat-Shamir transform, the underlying
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identification scheme merely needs to provide passive security and honest-verifier
zero-knowledge.

To make the above transformationwork, we need that the prover is able to com-
pute the response for commitments chosen obliviously to the prover. For some
schemes this is indeed possible if the prover holds some trapdoor information.
Albeit not quantum-immune, it is instructive to look at the Guillou-Quisquater
RSA-based proof of knowledge [24] where the prover shows knowledge of w ∈ Z∗

N

with we = y mod N for x = (e,N, y). For an oblivious commitment the prover
would need to compute an e-th root for a given commitment R ∈ Z∗

N . If the wit-
ness would contain the prime factorization of N , instead of the e-th root of y,
this would indeed be possible. As a concrete allegedly quantum-immune example
we discuss that we can still devise a provably secure signature version of Lyuba-
shevsky’s identification scheme [29] via our method. Before, Lyubashevsky only
showed security in the classical random-oracle model, despite using an allegedly
quantum-immune primitive.

Related Work. Since the introduction of the quantum-accessible random-
oracle model [8], several works propose cryptographic primitives or revisit their
security against quantum algorithms in this stronger model [40,41,9]. In [15],
Damg̊ard et al. look at the security of cryptographic protocols where the under-
lying primitives or even parties can be queried by an adversary in a superposition.
We here investigate the scenario in which the quantum adversary can only inter-
act classically with the classical honest parties, except for the locally evaluable
random oracle.

In a concurrent and independent work, Boneh and Zhandry [10] analyze
the security of signature schemes under quantum chosen-message attacks, i.e.,
the adversary in the unforgeability notion of the signature scheme may query the
signing oracle in superposition and, eventually, in the quantum random oracle
model. Our negative result carries over to the quantum chosen-message attack
model as well, since our impossibility holds even allowing only classical queries
to the signing oracle. Moreover, while the authors of [10] show how to obtain
signature schemes secure in the quantum-accessible signing oracle model, start-
ing with schemes secure in the classical sense, we focus on signature schemes
and proofs of knowledge derived from identification schemes via the Fiat-Shamir
paradigm.

2 Preliminaries

We first describe (to the level we require it) quantum computations and then
recall the quantum random-oracle model of Boneh et al. [8]. We also introduce
the notion of Σ-protocols to which the Fiat-Shamir transformation applies. In
the full version of this paper [14], we recall the definition of signature schemes
and its security.
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2.1 Quantum Computations in the QROM

We first briefly recall facts about quantum computations and set some notation;
for more details, we refer to [32]. Our description follows [8] closely.

Quantum Systems. A quantum system A is associated to a complex Hilbert
space HA of finite dimension and with an inner product 〈·|·〉. The state of the
system is given by a (class of) normalized vector |ϕ〉 ∈ HA with Euclidean norm
‖ |ϕ〉 ‖ =

√
〈ϕ|ϕ〉 = 1. The joint or composite quantum state of two quantum

systems A and B over spaces HA and HB, respectively, is given through the
tensor product HA ⊗ HB. The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is
denoted by |ϕA〉 ⊗ |ϕB〉. We sometimes simply write |ϕA〉 |ϕB〉 or |ϕA, ϕB〉. An
n-qubit system is associated in the joint quantum system of n two-dimensional
Hilbert spaces. The standard orthonormal computational basis |x〉 for such a
system is given by |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 for x = x1 . . . xn ∈ {0, 1}n. We
often assume that any (classical) bit string x is encoded into a quantum state
as |x〉, and vice versa we sometimes view such a state simply as a classical
state. Any pure n-qubit state |ϕ〉 can be expressed as a superposition in the
computational basis as |ϕ〉 =

∑
x∈{0,1}n αx |x〉 where αx are complex amplitudes

obeying
∑

x∈{0,1}n |αx|2 = 1.

Quantum Computations. Evolutions of quantum systems are described by
unitary transformations with IA being the identity transformation on register
A. For a composite quantum system over HA ⊗ HB and a transformation UA

acting only on HA, it is understood that UA |ϕA〉 |ϕB〉 is a simplification of
(UA ⊗ IB) |ϕA〉 |ϕB〉. Note that any unitary operation and, thus, any quantum
operation, is invertible.

Information can be extracted from a quantum state |ϕ〉 by performing a
positive-operator valued measurement (POVM) M = {Mi}i with positive semi-
definite measurement operators Mi that sum to the identity

∑
iMi = I. Out-

come i is obtained with probability pi = 〈ϕ|Mi |ϕ〉. A special case are projective
measurements such as the measurement in the computational basis of the state
|ϕ〉 =

∑
x αx |x〉 which yields outcome x with probability |αx|2. Measurements

can refer to a subset of quantum registers and are in general not invertible.
We model a quantum algorithm AQ with access to oracles O1, O2, . . . by a

sequence of unitary transformations U1, O1, U2, . . . , OT−1, UT over m = poly(n)
qubits. Here, oracle function Oi : {0, 1}a → {0, 1}b maps the final a + b qubits
from basis state |x〉 |y〉 to |x〉 |y ⊕Oi(x)〉 for x ∈ {0, 1}a and y ∈ {0, 1}b. This
mapping is inverse to itself. We can let the oracles share (secret) state by reserv-
ing some qubits for the Oi’s only, on which the Uj ’s cannot operate. Note that
the algorithm AQ may also receive some (quantum) input |ψ〉. The adversary

may also perform measurements. We sometimes write A|O1(·)〉,|O2(·)〉,...
Q (|ψ〉) for

the output.
To introduce asymptotics we assume that AQ is actually a sequence of such

transformation sequences, indexed by parameter n, and that each transformation
sequence is composed out of quantum systems for input, output, oracle calls, and
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work space (of sufficiently many qubits). To measure polynomial running time,
we assume that each Ui is approximated (to sufficient precision) by members of
a set of universal gates (say, Hadamard, phase, CNOT and π/8; for sake of con-
creteness [32]), where at most polynomially many gates are used. Furthermore,
T = T (n) is assumed to be polynomial, too.

Quantum Random Oracles. We can now define the quantum random-oracle
model by picking a random function H for a given domain and range, and letting
(a subset of) the oracles Oi evaluate H on the input in superposition, namely
those Oi’s which correspond to hash oracle queries. In this case the quantum
adversary can evaluate the hash function in parallel for many inputs by querying
the oracle about

∑
x αx |x〉 and obtaining

∑
x αx |H(x)〉, appropriately encoded

as described above. Note that the output distribution A|O1(·)〉,|O2(·)〉,...
Q (|ψ〉) now

refers to the AQ’s measurements and the choice of H (and the random choices
for the other oracles, if existing).

2.2 Classical Interactive Proofs of Knowledge

Here, we review the basic definition of Σ-protocols and show the classical Fiat-
Shamir transformation which converts the interactive Σ-protocols into non-
interactive proof of knowledge (PoK) protocols (in the random-oracle model).
Let L ∈ NP be a language with a (polynomially computable) relation R, i.e.,
x ∈ L if and only if there exists some w ∈ {0, 1}∗ such that R(x,w) = 1 and
|w| = poly(|x|) for any x. As usual, w is called a witness for x ∈ L (and x is
sometimes called a “theorem” or statement). We sometimes use the notation Rλ

to denote the set of pairs (x,w) in R of some complexity related to the security
parameter, e.g., if |x| = λ.

Σ-Protocols. The well-known class of Σ-protocols between a prover P and a
verifier V allows P to convince V that it knows a witness w for a public theorem
x ∈ L, without giving V non-trivially computable information beyond this fact.
Informally, a Σ-protocol consists of three messages (com, ch, rsp) where the first
message com is sent by P and the challenge ch is sampled uniformly from a
challenge space by the verifier. We write (com, ch, rsp)← 〈P(x,w),V(x)〉 for the
randomized output of an interaction between P and V . We denote individual
messages of the (stateful) prover in such an execution by com ← P(x,w) and
rsp ← P(x,w, com, ch), respectively. Analogously, we denote the verifier’s steps
by ch← V(x, com) and d← V(x, com, ch, rsp) for the challenge step and the final
decision.

Definition 1 (Σ-Protocol). A Σ-protocol (P ,V) for an NP-relation R satis-
fies the following properties:

Completeness. For any security parameter λ, any (x,w) ∈ Rλ, any
(com, ch, rsp)← 〈P(x,w),V(x)〉 it holds V(x, com, ch, rsp) = 1.
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Public-Coin. For any security parameter λ, any (x,w) ∈ Rλ, and any com←
P(x,w), the challenge ch ← V(x, com) is uniform on {0, 1}�(λ) where � is
some polynomial function.

Special Soundness. Given (com, ch, rsp) and (com, ch′, rsp′) for x ∈ L (with
ch �= ch′) where V(x, com, ch, rsp) = V(x, com, ch′, rsp′) = 1, there exists a
PPT algorithm Ext (the extractor) which for any such input outputs a witness
w ← Ext(x, com, ch, rsp, ch′, rsp′) for x satisfying R(x,w) = 1.

Honest-Verifier Zero-Knowledge (HVZK). There exists a PPT algor-
ithm Sim (the zero-knowledge simulator) which, on input x ∈ L, outputs
a transcript (com, ch, rsp) that is computationally indistinguishable from a
valid transcript derived in a P-V interaction. That is, for any polynomial-
time quantum algorithm D = (D0,D1) the following distributions are indis-
tinguishable:
– Let (x,w, state)← D0(1

λ). If R(x,w) = 1, then
(com, ch, rsp)← 〈P(x,w),V(x)〉; else, (com, ch, rsp)← ⊥.
Output D1(com, ch, rsp, state).

– Let (x,w, state)← D0(1
λ). If R(x,w) = 1, then

(com, ch, rsp)← Sim(x); else, (com, ch, rsp)← ⊥.
Output D1(com, ch, rsp, state).

Here, state can be a quantum state.

Fiat-Shamir (FS) Transformation. The Fiat-Shamir transformation of a
Σ-protocol (P ,V) is the same protocol but where the computation of ch is done
as ch ← H(x, com) instead of ← V(x, com). Here, H is a public hash function
which is usually modeled as a random oracle, in which case we speak of the
Fiat-Shamir transformation of (P ,V) in the random-oracle model. Note that
we include x in the hash computation, but all of our results remain valid if x is
omitted from the input. If applying the FS transformation to a (passively-secure)
identification protocol one obtains a signature scheme, if the hash computation
also includes the message m to be signed.

2.3 Quantum Extractors and the FS Transform

Quantum Extractors in the QROM. Next, we describe a black-box quan-
tum extractor. Roughly, this extractor should be able to output a witness w for a
statement x given black-box access to the adversarial prover. There are different
possibilities to define this notion, e.g., see the discussion in [38]. Here, we take
a simple approach which is geared towards the application of the FS transform
to build secure signature schemes. Namely, we assume that, if a quantum adver-
sary AQ on input x and with access to a quantum-accessible random oracle has
a non-negligible probability of outputting a valid proof (com, ch, rsp), then there
is an extractor KQ which on input x and with black-box access to AQ outputs
a valid witness with non-negligible probability, too.

We need to specify how the extractor simulates the quantum-accessible ran-
dom oracle. This time we view the extractor KQ as a sequence of unitary trans-
formations U1, U2, U3, . . . , interleaved with interactions with the adversary AQ,
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now represented as the sequence of (stateful) oracles O1, O2, . . . to which KQ

has access to. Here each Oi corresponds to the local computations of the adver-
sary until the “next interaction with the outside world”. In our case this will
be basically the hash queries |ϕ〉 to the quantum-accessible random oracle. We
stipulate KQ to write the (circuit description of a) classical function h with the
expected input/output length, and which we assume for the moment to be de-
terministic, in some register before making the next call to an oracle. Before this
call is then actually made, the hash function h is first applied to the quantum
state |ϕ〉 =

∑
x αx |x〉 |0〉 of the previous oracle in the sense that the next oracle

is called with
∑

x αx |x〉 |h(x)〉. Note that we can enforce this behavior formally
by restricting KQ’s steps U1, U2, . . . to be of this described form above.

At some point the adversary will return some classical proof (com, ch, rsp) for
x. To allow the extractor to rewind the adversary we assume that the extractor
can invoke another run with the adversary (for the same randomness, or possibly
fresh randomness, appropriately encoded in the behavior of oracles). If the re-
duction asks to keep the same randomness then since the adversary only receives
classical input x, this corresponds to a reset to the initial state. Since we do not
consider adversaries with auxiliary quantum input, but only with classical input,
such resets are admissible.

For our negative result we assume that the adversary does not perform any
measurements before eventually creating the final output, whereas our positive
result also works if the adversary measures in between. This is not a restriction,
since in the meta-reduction technique we are allowed to choose a specific ad-
versary, without having to consider more general cases. Note that the intrinsic
“quantum randomness” of the adversary is fresh for each rewound run but, for
our negative result, since measurements of the adversary are postponed till the
end, the extractor can re-create the same quantum state as before at every in-
teraction point. Also note that the extractor can measure any quantum query
of the adversary to the random oracle but then cannot continue the simulation
of this instance (unless the adversary chose a classical query in the first place).
The latter reflects the fact that the extractor cannot change the quantum input
state for answering the adversary’s queries to the random oracle.

In summary, the black-box extractor can: (a) run several instances of the
adversary from the start for the same or fresh classical randomness, possibly
reaching the same quantum state as in previous executions when the adversary
interacts with external oracles, (b) for each query to the QRO either measure and
abort this execution, or provide a hash function h, and (c) observe the adversary’s
final output. The black-box extractor cannot, for instance, interfere with the
adversary’s program and postpone or perform additional measurements, nor
rewind the adversary between interactions with the outside world, nor tamper
with the internal state of the adversary. As a consequence, the extractor cannot
observe the adversary’s queries, but we still allow the extractor to access queries
if these are classical. In particular, the extractor may choose h adaptively but not
based on quantum queries (only on classical queries). We motivate this model
with the observation that, in meaningful scenarios, the extractor should only be
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able to give a classical description of h, which is then “quantum-implemented” by
the adversaryAQ through a “quantum programmable oracle gate”; the gate itself
will be part of the adversary’s circuit, and hence will be outside the extractor’s
influence. Purification of the adversary is also not allowed, since this would
discard those adversaries which perform measurements, and would hence hinder
the notion of black-box access.

For an interesting security notion computing a witness from x only should be
infeasible, even for a quantum adversary. To this end we assume that there is
an efficient instance generator Inst which on input 1λ outputs a pair (x,w) ∈ R
such that any polynomial-time quantum algorithm on (classical) input x returns
some classical string w′ with (x,w′) ∈ R, is negligible (over the random choices
of Inst and the quantum algorithm). We say Inst is a hard instance generator for
relation R.

Definition 2 (Black-Box Extractor for Σ-Protocol in the QROM). Let
(P ,V) be a Σ-protocol for an NP-relation R with hard instance generator Inst.
Then a black-box extractor KQ is a polynomial-time quantum algorithm (as
above) such that for any quantum adversary AQ with quantum access to ora-
cle H, it holds that, if

Prob
[
VH(x, com, ch, rsp) = 1 for (x,w) ← Inst(1λ); (com, ch, rsp) ← A|H〉

Q (x)
]
≈ 0

is not negligible, then

Prob
[
(x,w′) ∈ R for (x,w) ← Inst(1λ);w′ ← KAQ

Q (x)
]
�≈ 0

is also not negligible.

For our negative (and our positive) results we look at special cases of black-
box extractors, denoted input-respecting extractors. This means that the extrac-
tor only runs the adversary on the given input x. All known extractors are of
this kind, and in general it is unclear how to take advantage of executions for
different x′.

On Probabilistic Hash Functions. We note that we could also allow the
extractor to output a description of a probabilistic hash function h to answer
each random oracle call. This means that, when evaluated for some string x, the
reply is y = h(x; r) for some randomness r (which is outside of the extractor’s
control). In this sense a query |ϕ〉 =

∑
x αx |x〉 |0〉 in superposition returns |ϕ〉 =∑

x αx |x〉 |h(x; rx)〉 for independently chosen rx for each x.
We can reduce the case of probabilistic functions h to deterministic ones, if we

assume quantum-accessible pseudorandom functions [8]. These functions are in-
distinguishable from random functions for quantum adversaries, even if queried
in superposition. In our setting, in the deterministic case the extractor incorpo-
rates the description of the pseudorandom function for a randomly chosen key κ
into the description of the deterministic hash function, h′(x) = h(x;PRFκ(x)).
Since the hash function description is not presented to the adversary, using such
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derandomized hash functions cannot decrease the extractor’s success probability
significantly. This argument can be carried out formally by a reduction to the
quantum-accessible pseudorandom function, i.e., by forwarding each query |ϕ〉
of the QROM adversary to the random or pseudorandom function oracle, and
evaluating h as before on x and the oracle’s reply. Using a general technique in
[41] we can even replace the assumption about the pseudorandom function and
use a q-wise independent function instead.

3 Impossibility Result for Quantum-Fiat-Shamir

We use meta-reductions techniques to show that, if the Fiat-Shamir transforma-
tion applied to the identification protocol would support a knowledge extractor,
then we would obtain a contradiction to the active security. That is, we first build
an all-powerful quantum adversary AQ successfully generating accepted proofs.
Coming up with such an adversary is necessary to ensure that a black-box ex-
tractor KQ exists in the first place; Definition 2 only requires KQ to succeed if
there is some successful adversary AQ. The adversary AQ uses its unbounded
power to find a witness w to its input x, and then uses the quantum access
to the random oracle model to “hide” its actual query in a superposition. The
former ensures that that our adversary is trivially able to construct a valid proof
by emulating the prover for w, the latter prevents the extractor to apply the
rewinding techniques of Pointcheval and Stern [33] in the classical setting. Once
we have designed our adversary AQ and ensured the existence of KQ, we wrap
KQ into a reduction MQ which takes the role of AQ and breaks active security.
The (quantum) meta-reduction now plays against the honest prover of the iden-
tification scheme “on the outside”, using the extractor “on the inside”. In this
inner interaction MQ needs to emulate our all-powerful adversary AQ towards
the extractor, but this needs to be done efficiently in order to make sure that
the meta-reduction (with its inner interactions) is efficient.

In the argument below we assume that the extractor is input-respecting (i.e.,
forwards x faithfully to the adversary). In this case we can easily derandomize
the adversary (with respect to classical randomness) by “hardwiring” a key of
a random function into it, which it initially applies to its input x to recover the
same classical randomness for each run. Since the extractor has to work for all
adversaries, it in particular needs to succeed for those where we pick the function
randomly but fix it from thereon.

3.1 Assessment

Before we dive into the technical details of our result let us re-assess the strength
and weaknesses of our impossibility result:

1. The extractor has to choose a classical hash function h for answering QRO
queries. While this may be considered a restriction in general interactive
quantum proofs, it seems to be inevitable in the QROM; it is rather a conse-
quence of the approach where a quantum adversary mounts attacks in a clas-
sical setting. After all, both the honest parties as well as the adversary expect
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a classical hash function. The adversary is able to check this property easily,
even if it treats the hash function otherwise as a black box (and may thus
not be able to spot that the hash function uses (pseudo)randomness). We re-
mark again that this approach also complies with previous efforts [8,41,40,9]
and our positive result here to answer such hash queries.

2. The extractor can rewind the quantum adversary to any point before the
final measurement. Recall that for our impossibility result we assume, to the
advantage of the extractor, that the adversary does not perform any mea-
surement until the very end. Since the extractor can re-run the adversary
from scratch for the same classical randomness, and the “no-cloning restric-
tion” does not apply to our adversary with classical input, the extractor
can therefore easily put the adversary in the same (quantum) state as in a
previous execution, up to the final measurement. However, because we con-
sider black-box extractors, the extractor can only influence the adversary’s
behavior via the answers it provides to AQ’s external communication. In
this sense, the extractor may always rewind the adversary to such commu-
nication points. We also allow the extractor to measure and abort at such
communication points.

3. The extraction strategy by Pointcheval and Stern [33] in the purely classical
case can be cast in our black-box extractor framework. For this the extractor
would run the adversary for the same classical randomness twice, providing
a lazy-sampling based hash function description, with different replies in
the i-th answers in the two runs. The extractor then extracts the witness
from two valid signatures. This shows that a different approach than in the
classical setting is necessary for extractors in the QROM.

3.2 Prerequisites

Witness-Independent Commitments. We first identify a special subclass of
Σ-protocols which our result relies upon:

Definition 3 (Σ-protocols with witness-independent commitment). A
Σ-protocol has witness-independent commitments if the prover’s commitment
com does not depend on the witness w. That is, we assume that there is a PPT
algorithm Com which, on input x and some randomness r, produces the same
distribution as the prover’s first message for input (x,w).

Examples of such Σ-protocols are the well known graph-isomorphism proof [21],
the Schnorr proof of knowledge [37], or the recent protocol for lattices used in an
anonymous credential system [11]. A typical example of non-witness-independent
commitment Σ-protocol is the graph 3-coloring ZKPoK scheme [21] where the
prover commits to a random permutation of the coloring.

We note that perfectly hiding commitments do not suffice for our negative
result. We need to be able to generate (the superposition of) all commitments
without knowledge of the witness.
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Fig. 1. The canonical adversary

Weak Security Against Active Quantum Adversaries. We next de-
scribe the underlying security of (non-transformed) Σ-protocols against a weak
form of active attacks where the adversary may use quantum power but needs

to eventually compute a witness. That is, we let AP(x,w)
Q (x) be a quantum ad-

versary which can interact classically with several prover instances. The prover
instances can be invoked in sequential order, each time the prover starts by
computing a fresh commitment com← P(x,w), and upon receiving a challenge
ch ∈ {0, 1}� it computes the response rsp. Only if it has returned this response
P can be invoked on a new session again. We say that the adversary succeeds in
an active attack if it eventually returns some w′ such that (x,w′) ∈ R.

For an interesting security notion computing a witness from x only should be
infeasible, even for a quantum adversary. To this end we assume that there is
an efficient instance generator Inst which on input 1λ outputs a pair (x,w) ∈ R
such that any polynomial-time quantum algorithm on (classical) input x returns
some classical string w′ with (x,w′) ∈ R, is negligible (over the random choices
of Inst and the quantum algorithm). We say Inst is a hard instance generator for
relation R.

Definition 4 (Weakly Secure Σ-Protocol Against Active Quantum Ad-
versaries). A Σ-protocol (P ,V) for an NP-relation R with hard instance
generator Inst is weakly secure against active quantum adversaries if for any

polynomial-time quantum adversaries AQ the probability that AP(x,w)
Q (x) suc-

ceeds in an active attack for (x,w) ← Inst(1λ) is negligible (as a function
of λ).

We call this property weak security because it demands the adversary to compute
a witness w′, instead of passing only an impersonation attempt. If the adversary
finds such a witness, then completeness of the scheme implies that it can suc-
cessfully impersonate. In this sense we put more restrictions on the adversary
and, thus, weaken the security guarantees.
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Fig. 2. An overview of our meta-reduction

3.3 The Adversary and the Meta-reduction

Adversary. Our (unbounded) adversary works roughly as follows (see Fig-
ure 1). It receives as input a value x and first uses its unbounded computational
power to compute a random witness w (according to uniform distributions of coin
tosses ω subject to Inst(1n;ω) = (x,w), but where ω is a random function of x).
Then it prepares all possible random strings r ∈ {0, 1}N (where N = poly(n))
for the prover’s algorithm in superposition. It then evaluates (a unitary ver-
sion of) the classical function Com() for computing the prover’s commitment
on this superposition (and on x) to get a superposition of all |r〉 |comx,r〉. It
evaluates the random oracle H on the com-part, i.e., to be precise, the hash
values are stored in ancilla bits such that the result is a superposition of states
|r〉 |comx,r〉 |H(x, comx,r)〉. The adversary computes, in superposition, responses
for all values and finally measures in the computational basis, yielding a sample
(r, comx,r, ch, rspx,w,r) for ch = H(x, comx,r) where r is uniform over all random
strings; it outputs the transcript (com, ch, rsp).

The Meta-Reduction. We illustrate the meta-reduction in Figure 2. Assume
that there exists a (quantum) black-box extractor KQ which on input x, sampled
according to Inst, and which is also given to AQ, is able to extract a witness w to
x by running several resetting executions of AQ, each time answeringAQ’s (only)
random oracle query |ϕ〉 by supplying a classical, possibly probabilistic function
h. We then build a (quantum) meta-reductionMQ which breaks the weak secu-
rity of the identification scheme in an active attack when communicating with
the classical prover.

The quantum meta-reduction MQ receives as input the public statement x.
It forwards it to KQ and waits until KQ invokes AQ(x), which is now simulated
by MQ. For each (reset) execution the meta-reduction skips the step where the
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adversary would compute the witness, and instead immediately computes the
same superposition query |r〉 |comx,r〉 as AQ and outputs it to KQ. When KQ

creates (a description of) the possibly probabilistic function h we letMQ initiate
an interaction with the prover to receive a classical sample comx,r, on which it
evaluates h to get a challenge ch. Note that MQ in principle does not need a
description of h for this, but only a possibility to compute h once. The meta-
reduction forwards the challenge to the prover to get a response rsp. It outputs
(com, ch, rsp) to the reduction. If the reduction eventually outputs a potential
witness w′ then MQ uses this value w′ to break the weak security.

3.4 Analysis

For the analysis note that the extractor’s perspective in each execution is iden-
tical in both cases, when interacting with the actual adversary AQ, or when
interacting with the meta-reduction MQ. The reason is that the commitments
are witness-independent such that the adversary (using its computational power
to first compute a witness) and the meta-reduction computing the commitments
without knowledge of a witness, create the same distribution on the query to the
random oracle. Since up to this point the extractor’s view is identical in both
runs, its distribution on h is also the same in both cases. But then the quantum
adversary internally computes, in superposition over all possible random strings
r, the challenge ch ← h(x, comx,r) and the response rspx,w,r for x,w, and ch.
It then measures r in the computational basis, such that the state collapses to
a classical tuple (comx,r, ch, rspx,w,r) over uniformly distributed r. Analogously,
the meta-reduction, upon receiving h (with the same distribution as in AQ’s at-
tack), receives from the prover a commitment comx,r for a uniformly distributed
r. It then computes ch ← h(x, comx,r) and obtains rspx,w,r from the prover,
which is determined by x,w, r and ch. It returns (comx,r, ch, rspx,w,r) for such a
uniform r.

In other words,MQ considers only a single classical execution (with r sampled
at the outset), whereas AQ basically first runs everything in superposition and
only samples r at the very end. Since all the other computations in between
are classical, the final results are identically distributed. Furthermore, since the
extractor is input-respecting, the meta-reduction can indeed answer all runs for
the very same x with the help of the external prover (which only works for x).
Analogously, the fact that the adversary always chooses, and uses, the same
witness w in all runs, implies that the meta-reduction can again rely on the
external prover with the single witness w.

Since the all-powerful adversary succeeds with probability 1 in the original
experiment, to output a valid proof given x and access to a quantum random
oracle only, the extractor must also succeed with non-negligible probability in
extracting a witness. Hence,MQ, too, succeeds with non-negligible probability in
an active attack against weak security. Furthermore, since KQ runs in polynomial
time,MQ invokes at most a polynomial number of interactions with the external
prover. Altogether, we thus obtain the following theorem:
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Theorem 1 (Impossibility Result). For any Σ-protocol (P ,V) with witness-
independent commitments, and which is weakly secure against active quantum
adversaries, there does not exist an input-preserving black-box quantum knowl-
edge extractor for (P ,V).

We note that our impossibility result is cast in terms of proofs of knowledge,
but can be easily adapted for the case of signatures. In fact, the adversary AQ

would be able to compute a valid proof (i.e., a signature) for any given message
m which it receives as additional input to x.

Our Meta-Reduction and Classical Queries to the Random Ora-

cle. One might ask why the meta-reduction does not apply to the Fiat-Shamir
transform when adversaries have only classical access to the random oracle. The
reason is the following: if the adversary made a classical query about a sin-
gle commitment (and so would the meta-reduction), then one could apply the
rewinding technique of Pointcheval and Stern [33] changing the random oracle
answers, and extract the underlying witness via special soundness of the identifi-
cation scheme. The quantum adversary here, however, queries the random oracle
in a superposition. In this scenario, as we explained above, the extractor is not
allowed to “read” the query of the adversary unless it makes the adversary stop.
In other words, the extractor cannot measure the query and then keep running
the adversary until a valid witness is output. This intrinsic property of black-box
quantum extractors, hence, makes “quantum” rewinding impossible. Note that
rewinding in the classical sense —as described by Pointcheval and Stern [33]—
is still possible, as this essentially means to start the adversary with the same
random coins. One may argue that it might be possible to measure the query
state without disturbing AQ’s behavior significantly, but as we already pointed
out, this would lead to a non-black-box approach —vastly more powerful than
the classical read-only access.

On the Necessity of Active Security. If we drop the requirement on active
security we can indeed devise a solution based on quantum-immune primitives.
Namely, we use the (classical) non-interactive zero-knowledge proofs of knowl-
edge of De Santis and Persiano [16] to build the following three-move scheme:
The first message is irrelevant, e.g., we let the prover simply send the constant 0
(potentially padded with redundant randomness), making the commitment also
witness-independent. In the second message the verifier sends a random string
which the prover interprets as a public key pk of a dense encryption scheme and
a common random string crs for the NIZK. The prover encrypts the witness
under pk and gives a NIZK that the encrypted value forms a valid witness for
the public value x. The verifier only checks the NIZK proof.

The protocol is clearly not secure against active (classical) adversaries because
such an adversary can create a public key pk via the key generation algorithm,
thus, knowing the secret key and allowing the adversary to recover the witness
from a proof by the prover. It is, however, honest-verifier zero-knowledge, even
against quantum distinguishers if the primitives are quantum-secure, because



The Fiat–Shamir Transformation in a Quantum World 77

then the IND-CPA security and the simulatability of the NIZK hide the witness
and allow for a simulation. We omit a more formal argument here, as it will be
covered as a special case from our general result in the next section.

4 Positive Results for Quantum-Fiat-Shamir

In Section 3.4 we have sketched a generic construction of a Σ-protocol based
on NIZKPoKs [16] which can be converted to a secure NIZK-PoK against quan-
tum adversaries in the QROM via the Fiat-Shamir (FS) paradigm. While the
construction is rather inefficient and relies on additional primitives and assump-
tions, it shows the path to a rather efficient solution: drop the requirement on
active security and let the (honest) verifier choose the commitment obliviously,
i.e., such that it does not know the pre-image, together with the challenge. If the
prover is able to use a trapdoor to compute the commitment’s pre-image then
it can complete the protocol as before.

4.1 Σ-Protocols with Oblivious Commitments

The following definition captures the notion of Σ-protocols with oblivious com-
mitments formally.

Definition 5 (Σ-protocols with Oblivious Commitments). A Σ-protocol
(P ,V) has oblivious commitments if there are PPT algorithms Com and
SmplRnd such that for any (x,w) ∈ R the following distributions are statis-
tically close:

– Let com = Com(x; ρ) for ρ ← {0, 1}λ, ch ← V(x, com), and
rsp← P(x,w, com, ch). Output (x,w, ρ, com, ch, rsp).

– Let (x,w, ρ, com, ch, rsp) be a transcript of a protocol run between P(x,w)
and V(x), where ρ← SmplRnd(x, com).

Note that the prover is able to compute a response from the given commitment
com without knowing the randomness used to compute the commitment. This is
usually achieved by placing some extra trapdoor into the witness w. For example,
for the Guillou-Quisquater RSA based proof of knowledge [24] where the prover
shows knowledge of w ∈ Z∗

N with we = y mod N for x = (e,N, y), the prover
would need to compute an e-th root for a given commitment R ∈ Z∗

N . If the
witness would contain the prime factorization of N , instead of the e-th root of
y, this would indeed be possible.
Σ-protocols with oblivious commitments allow to move the generation of the

commitment from the prover to the honest verifier. For most schemes this in-
fringes with active security, because a malicious verifier could generate the com-
mitment “non-obliviously”. However, the scheme remains honest-verifier zero-
knowledge, and this suffices for deriving secure signature schemes. In particular,
using random oracles one can hash into commitments by computing the random
output of the hash function and running Com(x; ρ) on this random string ρ to
sample a commitment obliviously.
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In the sequel we therefore often identify ρ with Com(x; ρ) in the sense that
we assume that the hash function maps to Com(x; ρ) directly. The existence of
SmplRnd guarantees that we could “bend” this value back to the actual pre-
image ρ. In fact, for our positive result it would suffice that the distributions are
computationally indistinguishable for random (x,w) ← Inst(1n) against quan-
tum distinguishers.

4.2 FS Transformation for Σ-Protocols with Oblivious
Commitments

We explain the FS transformation for schemes with oblivious commitments for
signatures only; the case of (simulation-sound) NIZK-PoKs is similar, the dif-
ference is that for signatures the message is included in the hash computation
for signature schemes. For sake of concreteness let us give the full description
of the transformed signature scheme. We note that for the transformation we
also include a random string r in the hash computation (chosen by the signer).
Jumping ahead, we note that this source of entropy ensures simulatability of
signatures; for classical Σ-protocols this is usually given by the entropy of the
initial commitment but which has been moved to the verifier here. Recall from
the previous section that we simply assume that we can hash into commitments
directly, instead of going through the mapping via Com and SmplRnd.

Construction 2. Let (P ,V) be a Σ-protocol for relation R with oblivious com-
mitments and instance generator Inst. Then construct the following signature
scheme S = (SKGen, Sig, SVf) in the (quantum) random-oracle model:

Key Generation. SKGen(1λ) runs (x,w) ← Inst(1λ) and returns sk = (x,w)
and pk = x.

Signing. For message m ∈ {0, 1}∗ the signing algorithm SigH on input sk, picks

random r
$←− Rnd from some superpolynomial space, computes (com, ch) =

H(pk,m, r), and obtains rsp← P(pk, sk, com, ch). The output is the signature
σ = (r, com, ch, rsp).

Verification. On input pk,m, and σ = (r, com, ch, rsp) the verification algo-
rithm VfH outputs 1 iff V(pk, com, ch, rsp) = 1 and (com, ch) = H(pk,m, r);
else, it returns 0.

Note that one can shorten the signature size by simply outputting σ = (r, rsp).
The remaining components (com, ch) are obtained by hashing the tuple (pk,m, r).
Next, we give the main result of this section saying that the Fiat-Shamir trans-
form on Σ-protocols with oblivious commitments yield a quantum-secure signa-
ture scheme.

Theorem 3. If Inst is a hard instance generator for the relation R and the Σ-
protocol (P ,V) has oblivious commitments, then the signature scheme in Con-
struction 2 is existentially unforgeable under chosen message attacks against
quantum adversaries in the quantum-accessible random-oracle model.
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The idea is roughly as follows. Assume for the moment that we are only interested
in key-only attacks and would like to extract the secret key from an adversaryAQ

against the signature scheme. For given x we first run the honest-verifier zero-
knowledge simulator of the Σ-protocol to create a transcript (com�, ch�, rsp�).
We choose another random challenge ch′ ← {0, 1}�. Then, we run the adversary,
injecting (com�, ch′) into the hash replies. This appropriate insertion will be
based on techniques developed by Zhandry [41] to make sure that superposition
queries to the random oracle are harmless. With sufficiently large probability the
adversary will then output a proof (com�, ch′, rsp′) from which we can, together
with (com�, ch�, rsp�) extract a witness due to the special-soundness property.
Note that, if this extraction fails because the transcript (com�, ch�, rsp�) is only
simulated, we could distinguish simulated signatures from genuine ones. We can
extend this argument to chosen-message attacks by simulating signatures as in
the classical case. This is the step where we take advantage of the extra random
string r in order to make sure that the previous adversary’s quantum hash queries
have a negligible amplitude in this value (x,m, r). Using techniques from [6] we
can show that changing the oracle in this case does not change the adversary’s
success probability significantly.

The full proof with preliminary results appears in the full version [14].
Moreover, we also discuss a concrete instantiation based on Lyubashevsky’s

lattice-based scheme [29] in the full version [14] to show that one can use our
technique in principle, and how it could be used for other schemes.
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Gagliardoni are supported by the German Federal Ministry of Education and
Research (BMBF) within EC-SPRIDE. This work was also supported by CASED
(www.cased.de).

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012)
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Abstract. Blind signatures have proved an essential building block for
applications that protect privacy while ensuring unforgeability, i.e., elec-
tronic cash and electronic voting. One of the oldest, and most efficient
blind signature schemes is the one due to Schnorr that is based on his fa-
mous identification scheme. Although it was proposed over twenty years
ago, its unforgeability remains an open problem, even in the random-
oracle model. In this paper, we show that current techniques for proving
security in the random oracle model do not work for the Schnorr blind
signature by providing a meta-reduction which we call “personal neme-
sis adversary”. Our meta-reduction is the first one that does not need
to reset the adversary and can also rule out reductions to interactive
assumptions. Our results generalize to other important blind signatures,
such as the one due to Brands. Brands’ blind signature is at the heart of
Microsoft’s newly implemented UProve system, which makes this work
relevant to cryptographic practice as well.

Keywords: Blind signatures, meta-reduction technique, unforgeability,
random oracle model.

1 Introduction

In a blind signature scheme, first introduced by Chaum in 1982 [16], a user can
have a document signed without revealing its contents to the signer, and in such
a way that the signer will not be able to recognize it later, when he sees the
signature. Blind signatures have proven to be a very useful building block in
applications requiring both anonymity and unforgeability, such as e-cash and
anonymous credentials [12–15, 27].

Transactions that ensure unforgeability without violating privacy are of grow-
ing interest to cryptographic practice. The European Union E-Privacy Direc-
tive [31] limits the scope of the data that organizations are allowed to collect;
so, to make sure that it is not in violation of this directive, an online bank or
vendor interacting with a user has an incentive to learn as little as possible
about this user. Therefore, industry leaders such as Microsoft and IBM [30, 36]
have been developing, implementing and promoting cryptographic software tools
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that promise the best of both worlds: unforgeability for banks and vendors, and
privacy for users.

As a result, research on blind signatures has flourished, and provably secure
solutions have been proposed based on well-established theoretical complexity
assumptions in the standard model [14, 3, 22, 24] while some of these have been
adapted for practical use by IBM [14]. However, schemes in the standard model
either require exponentiation in the RSA group or bilinear pairings, which are
typically considerably slower than, say, elliptic curve operations.

Thus, more efficient solutions that are provably secure in the random-oracle
(RO) model [8] remain of practical importance [2, 9, 6]. Some of the earliest pro-
posed schemes [12, 35, 23] do not have proofs of security even in the RO model;
in fact, the security properties of the Schnorr blind signature is an important
open problem. Moreover, Microsoft’s UProve proposal [29, 30] is based on one
of the unproven blind signatures, namely the one due to Brands [12]. UProve is
currently part of a pilot project by NSTIC (National Strategy for Trusted Iden-
tities in the Cyberspace) that will be used quite extensively in a situation that
will potentially affect millions of people [1]. Therefore, the security properties of
these unproven but important blind signatures is a natural topic to look at.

In a nutshell, a blind signature scheme is secure if it satisfies two key prop-
erties: one-more unforgeability, which means that an adversary cannot produce
more signatures than have been issued; and blindness, which means that an ad-
versary cannot link a particular signature to a particular signing instance [33, 34].

The Schnorr blind signature scheme is the most efficient of all the blind signa-
ture schemes proposed in the literature given that it can be implemented using
elliptic curves without pairings. It is constructed from the corresponding iden-
tification protocol via the Fiat-Shamir heuristic and some blinding operations.
However, the security of this important scheme is an open problem. If the Schnorr
identification scheme is not secure (i.e., after some number of interactions with
the prover, the adversary can impersonate him), then the blind Schnorr signa-
ture is not one-more unforgeable. It is known that the Schnorr identification
scheme cannot be proven secure under the discrete-logarithm assumption using
black-box reductions in the standard model [32], so at the very least, it seems
that Schnorr blind signatures require that we assume the security of Schnorr
identification (also studied by Bellare and Palacio [7]). Perhaps an even stronger
assumption may be reasonable. Can we prove it secure under this or a stronger
assumption?

To make this question more interesting, let us make it more general. Let us
consider not just the Schnorr blind signature, but in general the blind variants
of all Fiat-Shamir based signature schemes constructed along the lines described
above: the signer acts as the prover in an identification protocol. And let us see
if they can be proven secure under any reasonable assumption (by reasonable,
we mean an assumption that is not obviously false), not just specific ones.

PS Reduction. Pointcheval and Stern showed that we can prove the security
of blind signature schemes in the RO model when the underlying identification
scheme is a witness-indistinguishable proof protocol for proving knowledge of
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a secret key, such that many secret keys are associated with the same public
key [33, 34]. Their result does not apply to the original Schnorr blind signature,
in which there is a single secret key corresponding to the public key. Other
important blind signatures to which it does not apply are the ones due to Brands’
(which are at the heart of Microsoft’s UProve), and the ones based on the GQ
signature [12, 23].

The idea of the Pointcheval-Stern reduction (also called “an oracle replay
reduction”) is to replay the attack polynomially many times with different ran-
dom oracles in order to make the attacker successfully forge signatures. More
precisely, we first run the attack with random keys, tapes and oracle f . Then,
we randomly choose an index j and we replay with same keys and random tapes
but with a new, different oracle f ′ such that the first j − 1 answers are the
same as before. We expect that, with non-negligible probability we will obtain
two different signatures, σ, σ′ of the same message m and we will be able to use
them to solve a hard algorithmic problem (usually the one underlying the blind
signature scheme) in polynomial time. This proof technique works for standard
(i.e. not blind) versions of the Schnorr, Brands and GQ signatures. They also
showed that it works for a modification of Schnorr blind signature which is less
efficient than the original Schnorr’s. A very natural question is: can it work for
the original Schnorr blind signature and its generalizations, such as the Brands
or GQ blind signatures?

Our Results. Let us take a closer look at oracle replay reductions, as used by
Pointcheval and Stern. Their reduction can be modeled as a Turing machine that
has a special tape that is used specifically for answering random oracle queries;
it always uses the next unused value when answering, afresh, the next random
oracle query. We call this type of reductions: Naive RO replay reductions and as
we will discuss in Section 3.1 it can be used to model every known reduction for
proving the security of digital signature schemes. Our result is that, in fact, naive
RO replay reductions cannot be used to prove security of generalized Schnorr
blind signatures, no matter how strong an assumption we make. Our result also
holds for interactive assumptions or even if we assume the security of the blind
signature scheme itself! Put another way, any such reduction can be used in
order to break the underlying assumption.

Meta-reductions. In our proof we make use of the “meta-reduction” method
[10]: a separation technique commonly used to show impossibility results in cryp-
tography. Let A be an adversary who breaks the unforgeability of generalized
Schnorr blind signatures with non-negligible probability. We will use a meta-
reduction (which we call “personal nemesis adversary”) to show that there cannot
exist a naive RO replay reduction, B, which turns A into a successful adversary
for any hard assumption that may be considered. We do that by transform-
ing B through the meta-reduction into an algorithm that breaks the underlying
assumption, without relying on the existence of a successful adversary.

What makes our technique particularly interesting is that for the first time we
introduce a meta-reduction (our personal nemesis adversary) that does not need
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to reset the reduction B, as it is usually done when using the meta-reduction
paradigm [19]. For example, our personal nemesis adversary could reset the re-
duction B, get an additional signature and return this signature back to B as
his forgery. However, this resetting makes things more complicated since the
two executions are correlated. Our technique, instead, is much simpler: the per-
sonal nemesis adversary, pA, will simply interact with the reduction B the way
an actual adversary would (but taking advantage of powers not available to an
adversarial algorithm, such as remembering its prior state if and when the reduc-
tion resets it, and having access to the reduction’s random oracle tape), without
resetting it at any time. When B halts, if it succeeded in breaking the assumption
(as it should with non-negligible probability, or it wouldn’t be a valid security
reduction), pA has succeeded too — but without assuming the existence of an
actual adversary that breaks the security of the underlying signature scheme.

What are the implications of our results on the security of Schnorr blind
signatures and generalizations? We must stress that our results do not in fact
constitute an attack, and so for all we know, these schemes might very well be
secure. However, we have essentially ruled out all known approaches to proving
their security. So in order to give any security guarantee on these signature
schemes, the cryptographic community would have to come up with radically
new techniques.

Related Work. Schnorr and Jakobsson [18] proved security of the Schnorr blind
signature in the combined random oracle and generic group model which is very
restricted. Fischlin and Schröder [22] show that proving security of a broad class
of blind signature schemes (which, in particular, includes what we refer to as
generalized Schnorr blind signatures) via black-box reductions in the standard
model is as hard as solving the underlying hard problem. Their technique uses
the meta-reduction paradigm to show that black-box reductions for this type of
blind signatures can be turned into solvers for hard non-interactive assumptions.
However, their result does not rule out reductions in the RO model, and is
technically very different from ours for that reason.

Rafael Pass studied the assumptions needed for proving security of various
cryptographic schemes [32]. In particular, relevant to our work, he considers the
Schnorr identification scheme and variants, and a category of blind signatures
called “unique blind signatures.” Pass considers whether so-called r-bounded-
round assumptions are strong enough to prove, in a black-box fashion in the
standard model, the security of certain schemes when repeated more than r
times. His results apply to Schnorr blind signatures (and their generalizations)
in the following way: he shows that no so-called bounded-round assumption can
imply secure composition of the Schnorr identification scheme using black-box
reductions (and therefore the Schnorr blind signature).

Here is how our work goes beyond what was shown by Pass [32] for “unique
blind signatures.” First of all, we do not limit our consideration to r-bounded-
round assumptions but we show that our result applies for every possible in-
tractability assumption. Thus, we rule out the existence of a very special type
of reduction, the naive RO replay one, that models all the known reductions for
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proving security of digital signatures, irrespective of assumption. As an example,
consider the One More Discrete Logarithm assumption (OMDL) [6] which has
been used to prove security of the Schnorr identification scheme against active
attacks [7]. Our result directly implies that Schnorr blind signature cannot be
proven secure under the OMDL assumption in the RO model. Finally, our result
applies even after just one signature was issued whereas Pass’ result questions
the security of schemes when repeated more than r times.

The meta-reduction technique has been used to analyze security of Schnorr
signatures. Paillier and Vergnaud [28] showed that the security of Schnorr sig-
natures cannot be based on the difficulty of the one more discrete logarithm
problem in the standard model. Fischlin and Fleischhacker [20] extended their
result by showing that the security of Schnorr signatures cannot be based to the
discrete logarithm problem without programming the random oracle. Their work
is also relevant to ours since the meta-reduction they define also doesn’t need to
reset the reduction1. However, their result holds only for reductions to the dis-
crete logarithm problem and applies to non-programming reductions while our
naive RO replay reductions fall somewhere in between the programmable and
non-programmable setting (see Section 3.1 for a discussion about programmabil-
ity). Finally, their result only holds for a very limited class of reductions: those
that run a single copy of the adversary which makes our work much broader.

2 Generalized Blind Schnorr Signature

First we explicitly define the class of blind signatures that our result applies to.
For a complete presentation of all the necessary building blocks please refer to
our full version [5].

In the signature scheme described by Schnorr [35] the signer’s secret key is an
exponent x, while his public key is h = gx. A signature on a message m is ob-
tained, via the Fiat-Shamir heuristic, from the Schnorr identification protocol, i.e.
the three-round proof of knowledge of x. Thus, a signature on a message m is of
the form σ = (a, r) such that gr = ahH(m,a), where H is a hash function that
is modeled as a random oracle in the security proof. A blind issuing protocol was
proposed for this signature back in the 1980s [18], and, on a high level, it works by
having the user “blind” the value a he receives from the signer into some unrelated
a′, then the user obtains c′ = H(m, a′) and, again, “blinds” it into some unrelated
c which he sends to the signer. The signer responds with r which the user, again,
“blinds” into r′ such that (a′, r′) are a valid signature on m.

Signer(q, g, h = gx) User(q, g, h,m)
y ← Zq, a = gy a−−−→

c←−−− α, β ← Zq , a
′ = agαhβ , c′ = H(m, a′), c = c′ + β

r = y + cx mod q r−−−→ gr ?
= ahc, r′ = r + α, output r′, c′

1 This is a result that Fischlin and Fleischhacker [20] obtained after the first version
of our manuscript appeared on eprint [5]; our result is in fact the first in which a
meta-reduction works without resetting the reduction B.



On the Security of One-Witness Blind Signature Schemes 87

The signature is: σ(m) = (a′, c′, r′) and the verification checks whether gr
′
=

a′hc
′
.

Ever since this protocol was proposed, its security properties were an open
problem. Okamoto proposed a modification [26]; Pointcheval and Stern proved
security of this modification [33, 34]. Our work studies this blind signature and
its generalizations, defined as follows:

Definition 1 (Generalized Blind Schnorr Signature). A blind signature
scheme (Gen, S, U,Verify) is called Generalized Blind Schnorr Signature if:

1. (pk, sk) ∈ RL is a unique witness relation for a language L ∈ NP.
2. There exists a Σ-protocol (P, V ) for RL such that for every (pk, sk) ∈ RL

the prover’s algorithm, P (pk, sk), is identical to the signer’s blind signing
algorithm S(pk, sk).

3. Let Sign(pk, sk,m) be the signing algorithm implicitly defined by (S,U).
Then, there exists a Σ-protocol P (pk, sk), V (pk) such that, in the random
oracle (RO) model, a signature σ = (a, c, r), where c = H(m, a) is distributed
identically to a transcript of the Σ-protocol.

4. There exists an efficient algorithm that on input (pk, sk) a “valid tuple” (a, c, r)
and a value c′, computes r′ s.t. (a, c′, r′) is a valid tuple. (By “valid tuple” we
mean a signature for which the verification equation holds.) Note that no ad-
ditional information about a is required, such as, e.g. its discrete logarithm.

Let us now see why Schnorr’s blind signature falls under the generalized blind
Schnorr signature category. (1) The secret/public key pair is an instance of the
DL problem which is a unique witness relation; (2) the signer’s side is identical
to the prover’s side of the Schnorr identification scheme, which is known to be
a Σ-protocol; (3) the signature σ(m) = (a′, c′, r′) is distributed identically to
the transcript of the Schnorr identification protocol since a′ comes uniformly at
random from G; c′ is truly random in the RO model, and r′ is determined by α
(4) finally, for a tuple (a, c, r) and a value c′ one can compute r′ = r − cx+ c′x
so that (a, c′, r′) is still a valid tuple.

The definition also captures other well-known blind signature schemes, such
as the blind GQ [23] and Brands [12] (for Brands also see Section 4).

3 Security of Generalized Blind Schnorr Signatures

We first define a general class of RO reductions and then prove that generalized
blind Schnorr signature schemes cannot be proven unforgeable, and thus secure,
using these reductions.

3.1 Naive RO Replay Reductions

We first explicitly describe the type of reductions that we rule out.

Definition 2 (Naive RO replay reduction). Let B be a reduction in the
random-oracle model that can run an adversary A, and may also reset A to a
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previous state, causing A to forget B′s answers to its most recent RO queries.
We assume, without loss of generality, that if A has already queried the RO on
some input x, and hasn’t been reset to a state that is prior to this query, then A
does not make a repeat query for x.
We say that B is a naive RO replay reduction if: B has a special random tape
for answering the RO queries as follows: when A queries the RO, B retrieves the
next value v from its RO tape, and replies with c = f(b, v) where b is the input
to the reduction, and f is some efficiently computable function.

Discussion. Let us now take a closer look at known reductions for proving secu-
rity of signatures in the RO model and see whether they fall under the naive RO
replay reduction category. We first look at the reduction given by Pointcheval
and Stern [33] for proving security of blind signatures. Their reduction could be
easily modeled as a naive RO replay reduction with f being the identity func-
tion on its second input. PS reductions are perfect since they always create a
signature. The same holds for the reduction given by Abe and Okamoto [4]. To
convince the reader that our way of modeling reductions in the RO model is a
very natural one, let us also look at the reduction given by Coron [17] proving
the security of full domain hash (FDH) RSA signature. Coron’s reduction works
as follows: the reduction, B, gets as input (N, e, y) where (N, e) is the public
key and y is a random element from Z∗

N and tries to find x = yd mod n. B runs
an adversary A, who can break the signature, with input the public key. As
usual, A makes RO and signing queries which B answers. Whenever A makes
an RO query, B picks a random r ∈ Z∗

n and either returns h = re mod N with
probability p or returns h = yre mod N with probability 1 − p. So, it is pretty
straightforward that we could model Coron’s reduction as a naive RO replay
reduction by interpreting the contents of an RO tape as r and the output of a
p-biased coin flip (return either re or yre). Other well-known reductions used
in the literature to prove security of digital signatures in the RO model can be
modeled as naive RO replay reductions as well [9, 6, 8].

Programmability. Let us compare naive RO replay reductions with other pre-
viously defined types. Non-programmable random-oracle reductions [25] do not
give the reduction the power to set the answers to the RO queries; instead
these answers are determined by some truly random function. Naive RO replay
reductions can be more powerful than that: they can, in fact, answer the ad-
versary’s queries in some way they find convenient, by applying the function
f to the next value of their RO tape. However, they are not as powerful as
the general programmable RO reductions: naive RO replay reductions are not
allowed, for example, to compute an answer to an RO query as a function of
the contents of the query itself. Fischlin et al. [21] also consider an intermediate
notion of programmability, called “random re-programming reductions”, which
are incomparable to ours.
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3.2 Theorem for Perfect Naive RO Replay Reduction

Our first result is on a simpler class of reductions called “perfect”. We will extend
it to non-perfect reductions in Section 3.3.

Definition 3 (Perfect-Naive RO replay reduction). A naive RO replay
reduction B is called perfect naive RO replay reduction if B always gives valid
responses to A, i.e. its behavior is identical to that of the honest signer.

We show that perfect naive RO replay reductions cannot be used to prove secu-
rity of generalized blind Schnorr signature schemes.

Theorem 1. Let (Gen, S ,U ,Verify) be a generalized blind Schnorr signature
scheme. Assume that there exists a polynomial-time perfect naive RO replay
reduction B such that BA breaks an interactive intractability assumption C for
every A that breaks the unforgeability of the blind signature (S,U). Then, C can
be broken in polynomial time.

Proof of Theorem for Perfect Naive RO Replay Reduction. We start
by introducing some terminology. Note that the reduction B is given black-box
access to A and is allowed to run A as many times as it wishes, and instead
of running A afresh every time, it may reset A to some previous state. At the
same time, B is interacting with its own challenger C; we do not restrict C in
any way.

Consider how B runs A. B must give to A some public key pk for the signature
scheme as input. Next, B runs the blind signing protocol with A; recall that a
generalized blind Schnorr signing protocol always begins with a message a from
the signer to the user. When B runs A again, it can choose to give it the same
(pk , a) or different ones. It is helpful for the description of the adversary we give,
as well as for the analysis of the interaction, to somehow organize various calls
that B makes to A.

Every time that B runs A, it either runs it “anew”, providing a new public
key pk and first message a, or it “resets” it to a previous state, in which some pk
and a have already been given to A. In the latter case, we say that A has been
“reincarnated”, and so, an incarnation of A is defined by (pk , a). Note that B
may reincarnate A with the same (pk , a) several times. In this case, we say that
this incarnation is repeated. Thus, if this is the ith time that A has been reset to
a previous state for this specific (pk , a), then we say that this is the ith repeat
of the (pk , a) incarnation. Without loss of generality, B never runs A anew with
(pk , a) that it has used (i.e., if B has already created an incarnation for (pk , a),
it does not create another one).

Let us consider what happens once A receives (pk , a). The signing protocol,
in which A is acting as the user, expects A to send to B the challenge c. Addi-
tionally, A is free to make any random oracle queries it chooses. Once B receives
c, the signing protocol expects it to send to A the response r. After that, the
security game allows A to either request another signature, or to output a one-
more signature forgery, i.e., a set of signatures (one more than it was issued);
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also, again, A can make RO queries. The adversaries that we consider in the
sequel will not request any additional signatures, but will, at this point, output
two signatures (or will fail).

Note that, if B is a perfect naive RO replay reduction, then it will always
provide to A a valid response r to the challenge c; while if it is not perfect, then
it may, instead, provide an invalid response, or stop running A at this point
altogether. Thus, a particular run can be:

– Uncompleted: no valid response, r, was given by B at the end of the protocol
(cannot happen if B is perfect).

– Completed but unsuccessful: a valid r was given butA was not able to output
a forgery.

– Completed and successful: a valid r was given and A did output a forgery.

The technique we follow to prove our theorem is the following. We first define a
special adversary which we call the super adversary, sA, who exists if it is easy
to compute the signing key for this signature scheme from the corresponding
verification key. We do not show how to construct such an adversary (because
we do not know how to infer the signing key for generalized blind Schnorr, and
in fact we generally assume that it is impossible to do so in polynomial time);
instead, we construct another adversary, the personal nemesis adversary, pA,
whose behavior, as far as the reduction B can tell, will be identical to sA.

Note that, generally, an adversary is modeled as a deterministic circuit, or a
deterministic non-uniform Turing machine: this is because, inside a reduction,
its randomness can be fixed. Thus, we need sA to be deterministic. Yet, we need
to make certain randomized decisions. Fortunately, we can use a pseudorandom
function for that. Thus, sA is parametrized by s, a seed to a pseudorandom
function2 Fs : {0, 1}∗ → {0, 1}k. Additionally, it is parametrized by two messages
m1,m2: signatures on these messages will be output in the end.

Consider sAs,m1,m2 that interacts with a signer as follows:

Definition 4 (Perfect super adversary sAs,m1,m2). On input the system
parameters:

1. Begin signature issue with the signer and receive (pk, a).
2. Find sk .

3. Use sk to compute the signatures: pick a1, a2 and make two RO queries
(m1, a1) and (m2, a2). Produce two forged signatures for m1,m2, denote them
as σ1 and σ2 (remember that sA is deterministic so if reincarnated he makes
the same RO queries).

4. Resume the signature protocol with the signer: send to the signer the value
c = Fs(trans) where trans is the current transcript between sAs,m1,m2 , the
RO and the signer, and receive from the signer the value r in response (which
will always be valid for the perfect naive RO reduction B).

5. Output the two message-signature pairs, (m1, σ1) and (m2, σ2).

2 We know that if B exists then secure signatures exist which imply one way functions
existence and PRFs existence, so this is not an extra assumption.
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Note that when sA executes the signature issue protocol with the signer it
computes c as a pseudorandom function of its current transcript with the RO
and the signer. Thus, there is only a very small probability (of about 2−k) for
sA to send the same c in another run.

The next lemma follows directly from the definition of a reduction B:

Lemma 1. If a perfect naive RO replay reduction B exists, then BsA(·) (pk,
system params) solves the assumption C.

Lemma 1 works even if the assumption C is an interactive one. That is why, sA
and pA are defined in such a way that they do not reset the reduction B.

Next, we define the personal nemesis adversary, pA. Similarly to sA, it is
parametrized by (s,m1,m2); and so we denote it pAs,m1,m2 . To the reduction
B, pAs,m1,m2 will look exactly the same as sAs,m1,m2 , even though pAs,m1,m2

cannot compute sk . Instead, pAs,m1,m2 looks inside the reduction B itself; this
is why we call pAs,m1,m2 “B’s personal nemesis”:

Definition 5 (Perfect B’s personal nemesis adversary pAs,m1,m2). On
input the system parameters, pAs,m1,m2 performs a “one-more” forgery attack,
using the following special powers: (1) pAs,m1,m2 has full access to B’s random
oracle tape; (2) in case pAs,m1,m2 is rewound, he remembers his previous state.
pAs,m1,m2 performs the one-more forgery for � = 1. Thus, he runs one sig-

nature issuing session with the signer and then outputs two valid signatures.
Specifically, in his ith incarnation, pA does the following:
1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing (pA cannot find sk).
3. – If (pk , a) is the same as in some previous incarnation j then make the

same RO queries as the last time this incarnation was run (sA remem-
bers the previous RO queries; obviously it will receive different c1, c2 than
before).

– If (pk , a) is a new tuple, then this is a new incarnation; do the following:
• If pA has already computed the sk for this pk, then use this power
to forge two signatures on (m1, m2); call the resulting signatures σ1
and σ2,

• else (if sk not already known), pA computes two signatures using
its special access to B by looking in advance what the next c1, c2 are
going to be, then picking random 3 r1, r2 and solving for a1, a2 using
the third property of generalized blind Schnorr signatures and the
simulator from the underlying Σ-protocol. pA makes two RO queries
of the form (m1, a1), (m2, a2) and gets c1, c2 in response. Call the
resulting signatures σ1 and σ2.

4. Resume the signature issue protocol with the signer: send to the signer the
value c = Fs(trans) where trans is the current transcript between pA, the
RO and the signer, and receive from the signer the value r in response (which
will be valid for the perfect naive RO reduction B).

3 Recall that pA uses a PRF that takes as input its current state in order to make
each random choice.
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5. – If this is the first time for this incarnation, then output the two message-
signature pairs, (m1, σ1) and (m2, σ2) (completed and successful run).

– If this is a repeat of some incarnation j, and the value c = Fs(trans)
�= cj, where cj is the corresponding value from incarnation j, then using
r and rj , property 3 of generalized blind Schnorr signatures and the ex-
tractability of the Σ-protocol, compute sk (if you don’t already know it for
this pk). Next, compute σ1 and σ2 consistent with the RO queries from
incarnation j, using property 4 of generalized blind Schnorr signatures
(completed and successful run).

– If i is a repeat of j, and the value c = Fs(trans) = cj, then fail (completed
and unsuccessful run).

Given the definition above it becomes clear why our naive RO reductions are
not allowed to compute answers to the RO queries as a function of the query
itself. It is important that the personal nemesis adversary has full access to the
reduction’s special RO tape and he should able to see what the next answer
would be before forming his query. In particular, on the second case of Step 3
in Definition 5, pA first looks into B’s RO tape to see what is the next c1, c2
and then formulates his RO query which depends on c1, c2. In this case, our
analysis would break if the answer to the query was computed as a function of
the content of the query itself.

Lemma 2. If B is a perfect naive RO replay reduction, then B’s view in inter-
acting with pAs,m1,m2 is indistinguishable from its view when interacting with
sAs,m1,m2 .

Proof. In order to prove this, we will analyze the behavior of sA and pA step
by step, as they were defined, and we will show that B receives indistinguishable
views when interacting with sAs or pAs with all but negligible probability (to
simplify notation we will omit writing the messages m1,m2 to the parameters
given to the adversaries). We begin by defining sARand and pARand who behave
exactly as sAs and pAs do but using a truly random source instead of the
pseudorandom function Fs. We will use the following hybrid argument: sAs ≈
sARand ≈ pARand ≈ pAs.

Let us first argue that sAs ≈ sARand. This follows by a straightforward
reduction that contradicts the pseudorandomness of Fs. Similarly, it holds that
pARand ≈ pAs. We prove that sARand ≈ pARand by examining step by step the
behavior of sARand and pARand.

1. In the first step, both sARand and pARand begin the signature issuing with
the Signer and wait for him to respond with (pk, a). For B there is no differ-
ence whether talking to sARand or pARand.

2. In the second step there is no interaction with B.
3. Here we have two different cases on pARand’s behavior depending on whether

the current incarnation is repeated or not. In both cases the interaction
between pARand and B consists of pARand making two RO queries where
pARand either makes two RO queries on fresh values that it computed on
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the current step or makes the same RO queries as in the repeated incarnation
(so, there is no difference for B). Thus, in Step 3, no matter who B is talking
to, B receives two RO queries distributed identically.

4. Step 4 is identical for both sARand and pARand. Just send c = R(trans),
where R is a random function and receive the value r in response.

5. Since r will always be a valid response (recall that B is perfect), sARand will
always output two message-signature pairs, (m1, σ1) and (m2, σ2). pARand

will also output (m1, σ1) and (m2, σ2), which are distributed identically to
the ones output by sARand unless it is the case that the incarnation is a
repeat of j and c = R(trans) = cj . In that case pARand fails. The probability
that c = R(trans) = cj is only 2−Θ(k). Thus, with probability 1− 2−Θ(k) B’s
view is identical no matter whether he is talking to sARand or pARand.

So, by the hybrid argument we defined at the beginning of the proof, it holds
that sAs ≈ pAs. ��

Remark: we don’t explicitly exploit blindness and in fact our result would go
through even if a signature could be linkable to an issuing instance. For example,
including the first message of the signer into the RO query would produce a
contrived scheme in which the resulting signatures are linkable to the issuing
instance; yet it would not affect our negative result.

3.3 Theorem for Non-perfect Naive RO Replay Reductions

Let us apply our result to a broader class of reductions by removing the require-
ment that our reduction be perfect, i.e. always outputs valid responses. Instead,
we will require an upper bound L on the number of times that the reduction can
invoke the adversary which is independent of A’s success probability. Note that,
of course, B’s success probability needs to depend on A’s success probability.
However, the number of times it invokes A need not; in fact known reductions
(such as Coron or Pointcheval and Stern) as a rule only invoke the adversary a
constant number of times.

Definition 6 (L-Naive RO replay reduction). A naive RO replay reduction
B is called L-naive RO replay reduction if there is a polynomial upper bound L
on how many time B resets A; this upper bound is a function of the number of
RO queries that A makes, but otherwise is independent of A, in particular, of
A’s success probability.

Our previous analysis wouldn’t work for the L-naive RO replay reduction. Think
of the scenario where pA receives a message a from B for the first time but is not
given a valid r at the end. Then in the repeat of this incarnation, pA will have
to make the same two RO queries he did before and output forgeries if given a
valid r at the end. But, given the definitions of B and pA we gave before, pA
will now get different c1 and c2 for his RO queries and thus he will not be able
to output the same forgeries he had prepared before.
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What changes in our new analysis is that: (a) pA is also given write access to
B’s RO tape, and (b) both pA and sA will be successful in producing a forgery
with probability only 1/(

(
L
2

)
+ L).

Theorem 2. Let (Gen, S ,U ,Verify) be a generalized blind Schnorr signature
scheme. Suppose that there exists a polynomial-time L-naive RO replay reduction
B such that BA breaks an intractability assumption C for every A that breaks the
unforgeability of the blind signature (S,U). Then, C can be broken in polynomial
time.

This theorem rules out a broader class of security reductions. If we look back to
our running example of Schnorr blind signatures, this theorem shows that under
any assumption (DL, security of Schnorr identification, etc.) we cannot find an
L-naive RO replay reduction to prove its security.

Proof of Theorem for L-naive RO Replay Reduction. Similar to what
we did before, we first define the super adversary sAs,m1,m2,L who knows L and
works as follows:

Definition 7. [Super adversary sAs,m1,m2,L] On input the system parameters:

1. Begin signature issue with the signer and receive (pk, a). Decide whether this
is going to be a successful incarnation: choose “successful” with probability
1/(

(
L
2

)
+ L) and “unsuccessful” with probability 1− 1/(

(
L
2

)
+ L).

2. Find sk.
3. Use sk to compute the signatures: pick a1, a2 and make two RO queries

(m1, a1) and (m2, a2). Produce two forged signatures for m1,m2, denote them
as σ1 and σ2.

4. Resume the signature protocol with the signer: send to the signer the value
c = Fs((trans)) where trans is the current transcript between sA, the RO
and the signer, and receive from the signer the value r in response.

5. – If r is not valid, then this was an uncompleted run, then fail.
– If r valid (completed run) and in Step 1 it was decided that this is a

successful incarnation, output the two message-signature pairs, (m1, σ1)
and (m2, σ2). Otherwise fail.

The next lemma (similar to Lemma 1) follows from the definition of B:

Lemma 3. If an L-naive RO replay reduction B exists, then BsA(·)

(pk, system params) solves the assumption C.

Now we are going to define the personal nemesis adversary, pAs,m1,m2,L.

Definition 8 (B’s personal nemesis adversary pAs,m1,m2,L). On input the
system parameters, pAs,m1,m2,L performs a “one-more” forgery attack, using the
following special powers: (1) pAs,m1,m2,L has full read and write access to B’s
random oracle tape; (2) in case pAs,m1,m2,L is rewound, it does remember his
previous state.
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pAs,m1,m2,L performs the one-more forgery for � = 1. Thus, it runs one sig-
nature issuing session with the signer and then outputs two valid signatures with
probability 1/(

(
L
2

)
+L). Specifically, in his ith incarnation, pAs,m1,m2,L does the

following:

1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing.
3. – If (pk, a) is received for the first time, then this is a new incarnation; do

the following:
• If pA has already found sk for this pk, then use this power to forge
two signatures on (m1,m2) (still required to make two RO queries);
call these signatures σ1 and σ2,

• else, pA guesses (i1, i2) where i1(≤ i2) denotes the repeat where c1
will be given in response to pA’s next RO query; and i2 is pA’s guess
for the first completed repeat of this incarnation. Then, pA randomly
picks v1, v2, computes c1 = f(v1), c2 = f(v2), picks r1, r2, solves for
a1, a2 using the third property of generalized blind Schnorr signatures
and the simulator from the underlying Σ-protocol and computes two
signatures σ1, σ2.

– pA makes two RO queries of the form (m1, a1), (m2, a2) (the two RO
queries are always the same for a specific incarnation).

– If this is the repeat incarnation i1, and B wants a fresh answer to the
query (m1, a1) then write v1 on B’s RO tape; else (if this isn’t repeat i1)
write a random v′1.

– If this is the repeat incarnation i2 then write v2 on B’s RO tape; else (if
this isn’t repeat i2) write a random v′2.

4. Resume the signature issue protocol with the signer: send to the signer the
value c = Fs(trans) where Fs is a PRF and trans is the current transcript
between pA, the RO and the signer, and wait to receive the value r as a
response from the signer.

5. – If r is valid (completed run):
• If already know the secret key, sk, then output (m1, σ1) and (m2, σ2)
with probability 1/(

(
L
2

)
+ 2) or else fail.

• If this is the first time for this incarnation, then output the two
message-signature pairs, (m1, σ1) and (m2, σ2).

• If this is the second successful repeat for this incarnation and the
value c = Fs(trans) �= cj, where cj is the corresponding value from
the jth run of this incarnation, then using r and rj solve for sk using
property 4 of generalized Schnorr signatures. Next, compute σ1 and
σ2 consistent with the RO queries from this incarnation.

• If this is the second successful repeat for this incarnation but c =
Fs(trans) = cj, then fail (unsuccessful run).

• If the guess (i1, i2) was correct (that is, this is repeat i2 of this incar-
nation, it was successful, and B’s answer to (m1, a1) was the same as
in incarnation i1; and in incarnation i1, B wanted a fresh answer to
the (m1, a1) RO query) then output the two message-signature pairs,
(m1, σ1) and (m2, σ2).
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• If the guess (i1, i2) was wrong then fail (unsuccessful run).
– If r is not valid or r was not received then fail.

Lemma 4. If B is an L-naive RO replay reduction, then B’s view in inter-
acting with pAs,m1,m2 is indistinguishable from its view when interacting with
sAs,m1,m2 .

The proof is similar to the one of Lemma 2 and can be found in the full version
of the paper [5].

4 Brands’ Blind Signature Scheme

Here we show that our results apply to the blind signature scheme given by
Brands [11]. Let us first describe his construction. G is a group of order q, where
q a k-bit prime, and g is a generator of the group. The signer holds a secret key
x← Zq and the corresponding public key h = gx, while the user knows signer’s
public key h as well as g, q.H is a collision resistant hash function. The signature
issuing protocol works as follows:

Signer (g, h, x) User(g, h)
α←−−−−−− m = gα

w ∈R Zq , z ← mx, a ← gw , b ← mw z, a, b
−−−−−−−→

s, t ∈R Zq , m
′ ← msgt, z′ ← zsht

u, v ∈R Zq , a
′ ← augv , b′ ← autbus(m′)v

c←−−−−−− c′ ← H(m′, z′, a′, b′), c ← c′/u mod q

r ← w + cx mod q r−−−−−−→ hca
?
= gr , zcb

?
= mr , r′ ← ur + v mod q

A signature on m′ is σ(m′) = (z′, a′, b′, c′, r′). Anyone can verify a signature by
first computing c′ = H(m′, z′, a′, b′) and then checking whether the following

equations hold: hc
′
a′

?
= gr

′
, (z′)c

′
b′

?
= (m′)r

′
.

4.1 Security of Brands’ Blind Signatures

Corollary 1. If there exists a perfect or an L-naive RO replay reduction B that
solves any intractability assumption C using an adversary A that breaks the un-
forgeability of Brands’ signature, then assumption C can be solved in polynomial
time with non-negligible probability.

In order for this corollary to hold we need to show that Brands’ blind signature is
a generalized blind Schnorr signature. We can show this by inspecting one by one
the needed requirements: (1) Brands public/secret key pair is (h = gx, x), which
is a unique witness relation for L = {h : gx = h} ∈ NP , (2) the signer’s side of
Brands blind signature is the same as the prover’s side in Schnorr’s identification
scheme, which is known to be a Σ-protocol, (3) Brands blind signature is of the
form σ(m′) = ((z′, a′, b′), c′, r′) which has identical distribution to a transcript
of a Σ-protocol, as we will explain below (4) given the secret key x and a valid
transcript of Brands scheme: (â, c′1, r

′
1), where â = (z′, a′, b′), then ∀ c′2 we can
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compute r′2 as: r′2 = r′1 − c′1x + c′2x so that (â, c′2, r
′
2) is still a valid transcript.

Brands blind signature is indeed a Σ-protocol: (a) it is a three-round protocol,
(b) for any h and any pair of accepting conversations (â, c′1, r

′
1) and (â, c′2, r

′
2)

where c′1 �= c′2 one can efficiently compute x such that h = gx and (c) there exists
a simulator S who on input h and a random c′ picks r′, m and z, solves for a′, b′,
so he can output an accepting conversation of the form ((z′, a′, b′), c′, r′).

Thus, by applying Theorems 1 and 2, we rule out perfect and L-naive RO
replay reductions for Brands’ blind signatures.

Pointcheval and Stern [33] suggest that for their proof approach to work, the
public key of the scheme should have more than one secret key associated with
it. One could modify Brands’ scheme similarly to how the original Schnorr blind
signature was modified to obtain the variant that Pointcheval and Stern proved
secure. In the full version [5] we propose such a modification; the public key
of the signer will be of the form H = Gw1

1 Gw2
2 where (H,G1, G2) are public

and (w1, w2) are the secret key. As a blind signature, the resulting signature
scheme is inferior, in efficiency, to the provably secure variant of the Schnorr
blind signature. As far as its use in an electronic cash protocol is concerned, it is
still an open problem whether provable guarantees against double-spending can
be given for our modification of Brands.
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Abstract. We present a constant-round unconditional black-box com-
piler that transforms any ideal (i.e., statistically-hiding and statistically-
binding) straight-line extractable commitment scheme, into an
extractable and equivocal commitment scheme, therefore yielding to UC-
security [9]. We exemplify the usefulness of our compiler by providing two
(constant-round) instantiations of ideal straight-line extractable commit-
ment based on (malicious) PUFs [36] and stateless tamper-proof hard-
ware tokens [26], therefore achieving the first unconditionally UC-secure
commitment with malicious PUFs and stateless tokens, respectively. Our
constructions are secure for adversaries creating arbitrarily malicious
stateful PUFs/tokens.

Previous results with malicious PUFs used either computational as-
sumptions to achieve UC-secure commitments or were unconditionally
secure but only in the indistinguishability sense [36]. Similarly, with
stateless tokens, UC-secure commitments are known only under compu-
tational assumptions [13,24,15], while the (not UC) unconditional com-
mitment scheme of [23] is secure only in a weaker model in which the
adversary is not allowed to create stateful tokens.

Besides allowing us to prove feasibility of unconditional UC-security
with (malicious) PUFs and stateless tokens, our compiler can be instan-
tiated with any ideal straight-line extractable commitment scheme, thus
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application or the technology available.
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1 Introduction

Unconditional security guarantees that a protocol is secure even when the ad-
versary is unbounded. While it is known how to achieve unconditional secu-
rity for multi-party functionalities in the plain model assuming honest majority
[4,14], obtaining unconditionally secure two-party computation is impossible in
the plain model. In fact, for all non-trivial two-party functionalities, achieving
unconditional security requires some sort of (physical) setup assumption.

Universally composable (UC) security [9] guarantees that a protocol is secure
even when executed concurrently with many other instances of any arbitrary
protocol. This strong notion captures the real world scenarios, where typically
many applications are run concurrently over the internet, and is therefore very
desirable to achieve. Unfortunately, achieving UC-security in the plain model is
impossible [11].

Hence, constructing 2-party protocols which are unconditionally secure or
universally composable requires the employment of some setup. One natural
research direction is to explore which setup assumptions suffice to achieve (un-
conditional) UC-security, as well as to determine whether (or to what extent)
we can reduce the amount of trust in a third party. Towards this goal, several
setup assumptions have been explored by the community.

In [12] Canetti et. al show that, under computational assumptions, any func-
tionality can be UC-realized assuming the existence of a trusted Common Refer-
ence String (CRS). Here, the security crucially relies on the CRS being honestly
sampled. Hence, security in practice would typically rely on a third party sam-
pling the CRS honestly and security breaks down if the third party is not honest.
Similar arguments apply to various assumptions like “public-key registration”
services [3,10].

Another line of research explores “physical” setup assumptions. Based on var-
ious types of noisy channels, unconditionally secure Bit Commitment (BC) and
Oblivious Transfer (OT) can be achieved [16,17] for two parties, but UC security
has not been shown for these protocols and in fact seems non-trivial to get for
the case of [17].

In [26] Katz introduces the assumption of the existence of tamper-proof hard-
ware tokens. The assumption is supported by the possibility of implementing
tamper-proof hardware using current available technology (e.g., smart cards). A
token is defined as a physical device (a wrapper), on which a player can upload
the code of any functionality, and the assumption is that any adversary cannot
tamper with the token. Namely, the adversary has only black-box access to the
token, i.e., it cannot do more then observing the input/output characteristic of
the token. The main motivation behind this new setup assumption is that it
allows for a reduction of trust. Indeed in Katz’s model tokens are not assumed
to be trusted (i.e., produced by a trusted party) and the adversary is allowed
to create a token that implements an arbitrary malicious function instead of
the function dictated by the protocol. (However, it is assumed that once the
token is sent away to the honest party, it cannot communicate with its creator.
This assumption is necessary, as otherwise we are back to the plain model).
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A consequence of this model is that the security of a player now depends only
on its own token being good and holds even if tokens used by other players are
not genuine! This new setup assumptions has gained a lot of interest and several
works after [26] have shown that unconditional UC-security is possible [31,24],
even using a single stateful token [21,22]. Note that a stateful token, in contrast
with a stateless token, requires an updatable memory that can be subject to
reset attacks. Thus, ensuring tamper-proofness for a stateful token seems to be
more demanding than for a stateless token, and hence having protocols working
with stateless tokens is preferable.

However, the only constructions known for stateless tokens require computa-
tional assumptions [13,29,24,15] and a non-constant number of rounds (if based
on one-way functions only). In fact, intuitively it seems challenging to achieve
unconditional security with stateless tokens: A stateless token runs always on
the same state, thus an unbounded adversary might be able to extract the secret
state after having observed only a polynomial number of the token’s outputs.
This intuition is confirmed by [23] where it is proved that unconditional OT is im-
possible using stateless tokens. On the positive side, [23] shows an unconditional
commitment scheme (not UC) based on stateless tokens, but the security of the
scheme holds only if the adversary is not allowed to create malicious stateful to-
kens. This is in contrast with the standard tamper-proof hardware model, where
the adversary is allowed to construct any arbitrary malicious (hence possibly
stateful) token. Indeed, it seems difficult in practice to detect whether an adver-
sary sends a stateless or a stateful token. Therefore, the question of achieving
unconditional commitments (UC-secure or not) in the standard stateless token
model (where an adversary possibly plays with stateful tokens) is still open.

In this work we provide a positive answer showing the first UC-secure uncon-
ditional commitment scheme with stateless tokens.

Following the approach of [26], Brzuska et al. in [7] propose a new setup
assumption for achieving UC security, which is the existence of Physically Un-
cloneable Functions (PUFs). PUFs have been introduced by Pappu in [38,37], and
since then have gained a lot of interest for cryptographic applications [2,42,1,40].
A PUF is a physical noisy source of randomness. In other words a PUF is a device
implementing a function whose behavior is unpredictable even to the manufac-
turer. The reason is that even knowing the exact manufacturing process there
are parameters that cannot be controlled, therefore it is assumed infeasible to
construct two PUFs with the same challenge-response behavior. A PUF is noisy
in the sense that, when queried twice with the same challenge, it can output
two different, although close, responses. Fuzzy extractors are applied to PUF’s
responses in order to reproduce a unique response for the same challenge. The
“PUF assumption” consists in assuming that PUFs satisfy two properties: 1) un-
predictability: the distribution implemented by a PUF is unpredictable. That is,
even after a polynomial number of challenge/response pairs have been observed,
the response on any new challenge (sufficiently far from the ones observed so
far) is unpredictable; this property is unconditional; 2) uncloneability: as a PUF
is the output of a physical uncontrollable manufacturing process, it is assumed
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that creating two identical PUFs is hard even for the manufacturer. This prop-
erty is called hardware uncloneability. Software uncloneability corresponds to
the hardness of modeling the function implemented by the PUF and is enforced
by unpredictability (given that the challenge/response space of the PUF is ade-
quately large). Determining whether (or to what extent) current PUF candidates
actually satisfy the PUF assumption is an active area of research (e.g., [27,5])
but is out of the scope of this work. For a survey on PUF’s candidates the reader
can refer to [30], while a security analysis of silicon PUFs is provided in [27].

Designing PUF-based protocols is fundamentally different than for other hard-
ware tokens. This is due to the fact that the functional behavior of a PUF is un-
predictable even for its creator. Brzuska et al. modeled PUFs in the UC-setting
by formalizing the ideal PUF functionality. They then provided constructions
for Unconditional UC Oblivious Transfer and Bit Commitment. However, their
UC-definition of PUFs assumes that all PUFs are trusted. Namely, they assume
that even a malicious player creates PUFs honestly, following the prescribed gen-
eration procedure. This assumption seems too optimistic as it implies that an
adversary must not be capable of constructing hardware that “looks like” a PUF
but that instead computes some arbitrary function. The consequence of assum-
ing that all PUFs are trusted is that the security of a player depends on the
PUFs created by other players. (Indeed, in the OT protocol of [7], if the receiver
replaces the PUF with hardware implementing some predictable function, the
security of the sender is violated).

In [36] Ostrovsky et al. extend the ideal PUF functionality of [7] in order
to model the adversarial behavior of creating and using “malicious PUFs”. A
malicious PUF is a physical device for which the security properties of a PUF
are not guaranteed. As such, it can be a device implementing any function
chosen by the adversary, so that the adversary might have full control on the
answers computed by its own “PUF”. Similarly to the hardware-token model, a
malicious PUF cannot communicate with the creator once is sent away. A ma-
licious PUF can, of course, be stateful. The major advantage of the malicious
PUF model is that the security of a player depends only on the goodness of
its own PUFs. Obviously, the price to pay is that protocols secure in presence
of malicious PUFs are more complex than protocols designed to deal only with
honest PUFs. Nevertheless, [36] shows that even with malicious PUFs it is pos-
sible to achieve UC-secure computations relying on computational assumptions.
They also show an unconditional commitment scheme which is secure only in
the indistinguishability sense. Achieving unconditional UC-secure commitments
(and general secure computations) is left as an open problem in [36].

In this paper, we give a (partial) positive answer to this open problem by
providing the first construction of unconditional UC-secure Bit Commitment
in the malicious PUFs model. Whether unconditional OT (and thus general
secure computation) is possible with malicious PUFs is still an interesting open
question. Intuitively, since PUFs are stateless devices, one would think to apply
the arguments used for the impossibility of unconditional OT with stateless
tokens [23]. However, due to the unpredictability property of PUFs which holds
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unconditionally, such arguments do not carry through. Indeed, as long as there
is at least one honest PUF in the system, there is enough entropy, and this seems
to defeat the arguments used in [23]. On the other hand, since a PUF is in spirit
just a “random function”, it is not clear how to implement the OT functionality
when only one of the players uses honest PUFs.

Van Dijk and Rührmair in [19] also consider adversaries who create malicious
PUFs, that they call “bad PUFs” and they consider only the stand-alone setting.
They show that unconditional OT is impossible in the bad PUF model but this
impossibility proof works assuming that also honest parties play with bad PUFs.
Thus, such impossibility proof has no connection to the question of achieving
unconditional OT in the malicious PUF model (where honest parties play with
honest PUFs).

Our Contribution. In this work we provide a tool for constructing UC-secure
commitments given any straight-line extractable commitment. This tool allows
us to show feasibility results for unconditional UC-secure protocols in the state-
less token model and in the malicious PUF model. More precisely, we provide
an unconditional black-box compiler that transforms any ideal (i.e., statistically
hiding and binding) straight-line extractable commitment into a UC-secure com-
mitment. The key advantage of such compiler is that one can implement the ideal
extractable commitment with the setup assumption that is more suitable to the
application and the technology available.

We then provide an implementation of the ideal extractable commitment
scheme in the malicious PUFs model of [36]. Our construction builds upon the
(stand-alone) unconditional BC scheme shown in [36] 1 which is not extractable.
By plugging our extractable commitment scheme in our compiler we obtain the
first unconditional UC-secure commitment with malicious PUFs.

We then construct ideal extractable commitments using stateless tokens. We
use some of the ideas employed for the PUF construction, but implement them
with different techniques. Indeed, while PUFs are intrinsically unpredictable and
even having oracle access to a PUF an unbounded adversary cannot predict the
output on a new query, with stateless tokens we do not have such guarantee.
Our protocol is secure in the standard token model, where the adversary has no
restriction and can send malicious stateful tokens. By plugging such protocol in
our compiler, we achieve the first unconditional UC-secure commitment scheme
with stateless tokens. Given that unconditional OT is impossible with stateless
tokens, this result completes the picture concerning feasibility of unconditional
UC-security in this model.

Related Work. Our compiler can be seen as a generalization of the black-box
trapdoor commitment given by Pass and Wee [39] which is secure only in the
1 For completeness, we would like to mention that [41] claims an “attack” on such

construction. Such “attack" however arises only due to misunderstanding of conven-
tions used to write protocol specifications and does not bear any security threat. The
reader can refer to the discussion of [35] (full version of [36]) at Pag. 7, paragraph
"On [RvD13]", line 20–40 for more details.
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computational stand-alone setting. Looking ahead to our constructions of ex-
tractable commitment, the idea of querying the hardware token with the open-
ing of the commitment was first used by Müller-Quade and Unruh in [32,33],
and later by Chandran et al. in [13]. The construction of [13] builds UC-secure
multiple commitments on top of extractable commitments. Their compiler re-
quires computational assumptions, logarithmic number of rounds and crucially
uses cryptographic primitives in a non-black box manner.

Remark 1. In the rest of the paper it is assumed that even an unbounded ad-
versary can query the PUF/token only a polynomial number of times. We stress
that this is not a restriction of our work but it is a necessary assumption in all
previous works achieving unconditional security with PUFs and stateless tokens
(see pag.15 of [8] for PUFs, and pag. 5 of [23] for stateless tokens). Indeed, if we
allowed the adversary to query the PUF/token on all possible challenges, then
she can derive the truth table implemented by the physical device.

2 Definitions

Notation. We denote the security parameter by n, and the property of a proba-
bilistic algorithm whose number of steps is polynomial in its security parameter,
by PPT. We denote by (vA, vB)← 〈A(a), B(b)〉(x) the local outputs of A and B
of the random process obtained by having A and B activated with independent
random tapes, interacting on common input x and on (private) auxiliary inputs
a to A and b to B. When the common input x is the security parameter, we
omit it. If A is a probabilistic algorithm we use v $← A(x) to denote the output
of A on input x assigned to v. We denote by viewA(A(a), B(b))(x) the view of A
of the interaction with player B, i.e., its values is the transcript (γ1, γ2, ..., γt; r),
where the γi’s are all the messages exchanged and r is A’s coin tosses. We use
notation [n] to denote the set {1, . . . , n}. Let P1 and P2 be two parties running
protocol (A,B) as sub-routine. When we say that party “P1 runs 〈A(·), B(·)〉(·)
with P2” we always mean that P1 executes the procedure of party A and P2

executes the procedure of party B. In the following definitions we assume that
the adversary has auxiliary information, and assume that parties are stateful.

2.1 Ideal Extractable Commitment Scheme

We denote by Faux an auxiliary set-up functionality accessed by the real world
parties (and by the extractor).

Definition 1 (Ideal Commitment Scheme in the Faux-hybrid model).
A commitment scheme is a tuple of PPT algorithms Com = (C,R) having ac-
cess to an ideal set-up functionality Faux, implementing the following two-phase
functionality. Given to C an input b ∈ {0, 1}, in the first phase called com-
mitment phase, C interacts with R to commit to the bit b. We denote this in-
teraction by ((c, d), c) ← 〈C(com, b), R(recv)〉 where c is the transcript of the
(possibly interactive) commitment phase and d is the decommitment data. In the
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second phase, called decommitment phase, C sends (b, d) and R finally outputs
“accept” or “reject” according to (c, d, b). In both phases parties could access to
Faux. Com = (C,R) is an ideal commitment scheme if it satisfies the following
properties.

Completeness. For any b ∈ {0, 1}, if C and R follow their prescribed strategy
then R accepts the commitment c and the decommitment (b, d) with proba-
bility 1.

Statistically Hiding. For any malicious receiver R∗ the ensembles {viewR∗

(C(com, 0), R∗) (1n)}n∈N and {viewR∗(C(com, 1), R∗) (1n)}n∈N are statisti-
cally indistinguishable, where viewR∗ (C(com, b), R∗) denotes the view of R∗

restricted to the commitment phase.
Statistically Binding. For any malicious committer C∗, there exists a negligi-

ble function ε, such that C∗ succeeds in the following game with probability at
most ε(n): On security parameter 1n, C∗ interacts with R in the commitment
phase obtaining the transcript c . Then C∗ outputs pairs (0, d0) and (1, d1),
and succeeds if in the decommitment phase, R(c, d0, 0) = R(c, d1, 1) = accept.

In this paper the term ideal is used to refer to a commitment which is
statistically-hiding and statistically-binding.

Definition 2 (Interface Access to an Ideal Functionality Faux). Let Π =
(P1, P2) be a two-party protocol in the Faux-hybrid model. That is, parties P1 and
P2 need to query the ideal functionality Faux in order to carry out the protocol.
An algorithm M has interface access to the ideal functionality Faux w.r.t. protocol
Π if all queries made by either party P1 or P2 to Faux during the protocol exe-
cution are observed (but not answered) by M , and M has oracle access to Faux.
Consequently, Faux can be a non programmable and non PPT functionality.

Definition 3 (Ideal Extractable Commitment Scheme in the Faux

model). IdealExtCom = (Cext,Rext) is an ideal extractable commitment scheme
in the Faux model if (Cext,Rext) is an ideal commitment and there exists a straight-
line strict polynomial-time extractor E having interface access to Faux, that runs
the commitment phase only and outputs a value b� ∈ {0, 1,⊥} such that, for all
malicious committers C∗, the following properties are satisfied.

Simulation: the view generated by the interaction between E and C∗ is iden-
tical to the view generated when C∗ interacts with the honest receiver Rext:
viewFaux

C∗ (C∗(com, ·),Rext(recv)) ≡ viewFaux

C∗ (C∗(com, ·), E)

Extraction: let c be a valid transcript of the commitment phase run between
C∗ and E. If E outputs ⊥ then probability that C∗ will provide an accepting
decommitment is negligible.

Binding: if b� �= ⊥, then probability that C∗ decommits to a bit b �= b� is
negligible.
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2.2 Physically Uncloneable Functions

Here we recall the definition of PUFs taken from [7]. A Physically Uncloneable
Function (PUF) is a noisy physical source of randomness. A PUF is evaluated
with a physical stimulus, called the challenge, and its physical output, called
the response, is measured. Because the processes involved are physical, the func-
tion implemented by a PUF can not necessarily be modeled as a mathematical
function, neither can be considered computable in PPT. Moreover, the output
of a PUF is noisy, namely, querying a PUF twice with the same challenge, could
yield to different outputs.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample
and Eval. Algorithm Sample abstracts the PUF fabrication process and works as
follows. Given the security parameter in input, it outputs a PUF-index id from
the PUF-family satisfying the security property (that we define soon) according
to the security parameter. Algorithm Eval abstracts the PUF-evaluation process.
On input a challenge s, it evaluates the PUF on s and outputs the response σ.
A PUF-family is parametrized by two parameters: the bound on the noisy of
the answers dnoise, and the size of the range rg. A PUF is assumed to satisfy
the bounded noise condition, that is, when running Eval(1n, id, s) twice, the
Hamming distance of any two responses σ1, σ2 is smaller than dnoise(n). We
assume that the challenge space of a PUF is the set of strings of a certain
length.

Security Properties. We assume that PUFs enjoy the properties of uncloneability
and unpredictability. Unpredictability is modeled in [7] via an entropy condition
on the PUF distribution. Namely, given that a PUF has been measured on
a polynomial number of challenges, the response of the PUF evaluated on a
new challenge has still a significant amount of entropy. The following definition
automatically implies uncloneability (see [8] pag. 39 for details).

Definition 4 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,
Eval) for security parameter n is (dmin(n),m(n))-unpredictable if for any s ∈
{0, 1}n and challenge list Q = (s1, . . . , spoly(n)), one has that, if for all 1 ≤ k ≤
poly(n) the Hamming distance satisfies disham(s, sk) ≥ dmin(n), then the average
min-entropy satisfies H̃∞(PUF(s)|PUF(Q)) ≥ m(n), where PUF(Q) denotes a
sequence of random variables PUF(s1), . . . ,PUF(spoly(n)) each one corresponding
to an evaluation of the PUF on challenge sk. Such a PUF-family is called a
(rg, dnoise, dmin,m)- PUF family.

Fuzzy Extractors. The output of a PUF is noisy. That is, querying the PUF
twice with the same challenge, one might obtain two distinct responses σ, σ′,
that are at most dnoise apart in hamming distance. Fuzzy extractors of Dodis et
al. [20] are applied to the outputs of the PUF, to convert such noisy, high-entropy
measurements into reproducible randomness. Very roughly, a fuzzy extractor is
a pair of efficient randomized algorithms (FuzGen,FuzRep), and it is applied to
PUFs ’responses as follows. FuzGen takes as input an �-bit string, that is the
PUF’s response σ, and outputs a pair (p, st), where st is a uniformly distributed
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string, and p is a public helper data string. FuzRep takes as input the PUF’s
noisy response σ′ and the helper data p and generates the very same string st
obtained with the original measurement σ.

The security property of fuzzy extractors guarantees that, if the min-entropy
of the PUF’s responses are greater than a certain parameter m, knowledge of the
public data p only, without the measurement σ, does not give any information
on the secret value st. The correctness property, guarantees that all pairs of
responses σ, σ′ that are close enough, i.e., their hamming distance is less then a
certain parameter t, will be recovered by FuzRep to the same value st generated
by FuzGen. In order to apply fuzzy extractors to PUF’s responses it is sufficient
to pick an extractor whose parameters match with the parameter of the PUF
being used. For formal definitions of fuzzy extractors and PUFs the reader is
referred to the full version [18].

Ideal Functionalities for Malicious PUFs and Stateless Tokens. We follow the
malicious PUF model introduced in [36]. In this model, the adversary is allowed
to create arbitrarily malicious PUFs. Very informally, a malicious PUF is any
physical device that “looks like” a PUF but it implements an arbitrary malicious,
possibly stateful, function. Such adversarial behaviour has been modeled in [36]
by extending the ideal functionality proposed in [7]. We denote by FPUF the
ideal functionality for malicious PUF. A stateless token is a wrapper that can be
programmed with any arbitrary stateless function. Tokens are modeled by [26,13]
as the ideal functionality Fwrap. For lack of space, the formal definitions of the
functionalities FPUF and Fwrap together with the UC-definition are provided in
the full version [18].

3 The Compiler

In this section we show how to transform any ideal extractable commitment
scheme into a protocol that UC-realizes the Fcom functionality, unconditionally.
Such transformation is based on the following building blocks.

Extractable Blobs. “Blob” was used in [6] to denote a commitment. In this paper
a blob is a pair of bit commitments such that the actual bit committed in the
blob is the xor of the pair. The representation of a bit as its exclusive-or allows
to prove equality of the bits committed in two blobs using commitments as black
boxes. Let IdealExtCom be any ideal extractable commitment scheme satisfying
Def. 3. If the commitment phase of IdealExtCom is interactive then the blob is
the pair of transcripts obtained from the interaction. Procedures to create a blob
of a bit b, and to reveal the bit committed in the blob, are the following.

Blob(b): Committer picks bits b0, b1 uniformly at random such that b = b0 ⊕
b1. It commits to b0, b1 (in parallel) running IdealExtCom as sub-routine
and obtains commitment transcripts c0, c1, and decommitments d0, d1. Let
B = (c0, c1) be the blob of b.
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OpenBlob(B): Committer sends (b0, d0), (b1, d1) to Receiver. Receiver accepts
iff d0, d1 are valid decommitments of b0, b1 w.r.t. transcripts (c0, c1) and
computes b = b0 ⊕ b1.

A blob inherits the properties of the commitment scheme used as sub-protocol.
In particular, since IdealExtCom is used as sub-routine, each blob is statistically
hiding/binding and straight-line extractable.

Equality of Blobs. Given the representation of a bit commitment as a blob, a
protocol due to Kilian [28] allows to prove that two committed bits (two blobs)
are equal, without revealing their values. We build upon this protocol to con-
struct a “simulatable” version, meaning that (given some trapdoor) a simulator
can prove equality of two blobs that are not equal. Let Bi,Bj be two blobs. Let
bi = (b0i ⊕b1i ) be the bit committed in Bi, and bj = (b0j⊕b1j) be the bit committed
in Bj . Let P denote the prover and V the verifier. In the following protocol P
proves to V that Bi and Bj are the commitment of the same bit (i.e., bi = bj).

BobEquality(Bi,Bj)
1. V uniformly chooses e ∈ {0, 1} and commits to e using IdealExtCom.
2. P sends y = b0i ⊕ b0j to V .
3. V reveals e to P .
4. P reveals bei and bej (i.e., P sends decommitments dei , dej to V ). V accepts

iff y = bei ⊕ bej .

Protocol BobEquality satisfies the following properties. Soundness: if bi �= bj ,
any malicious prover P ∗ convinces V with probability negligibly close to 1/2,
that is the probability of guessing the challenge e. Here we are using the statis-
tically hiding property of the ideal commitment IdealExtCom used to commit e.
Privacy: If bi = bj then after executing the protocol, the view of any verifier V ∗,
is independent of the actual value of bi, bj (given that Bi,Bj were secure at the
beginning of the protocol). Simulation: there exists a straight-line strictly PPT
simulator SimFalse such that, for any (Bi,Bj) that are not equal (i.e., bi �= bj),
for any malicious verifier V ∗, produces a view that is statistically close to the
case in which (Bi,Bj) are equal (i.e., bi = bj) and V ∗ interacts with the honest
P . The above properties are formally proved in the full version [18]. Note that
the protocol uses blobs in a black-box way. Note also, that a blob can be involved
in a single proof only.

3.1 Unconditional UC-secure Commitments from Ideal Extractable
Commitments

We construct unconditional UC-secure commitments using extractable blobs and
protocol BobEquality as building blocks. We want to implement the following
idea. The committer sends two blobs of the same bit and proves that they are
equal running protocol BobEquality. In the decommitment phase, it opens only
one blob (a similar technique is used in [25], where instead the commitment
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scheme is crucially used in a non black-box way). The simulator extracts the bit
of the committer by exploiting the extractability property of blobs. It equivocates
by committing to the pair 0, 1 and cheating in the protocol BobEquality. In the
opening phase, it then opens the blob corresponding to the correct bit. Because
soundness of BobEquality is only 1/2 we amplify it via parallel repetition.

Specifically, the committer will compute n pairs of (extractable) blobs. Then
it proves equality of each pair of blobs by running protocol BobEquality with the
receiver. The commitment phase is successful if all equality proofs are accepting.
In the decommitment phase, the committer opens one blob for each pair. The
receiver accepts if the committer opens one blob for each consecutive pair and
all revealed blobs open to the same bit. The construction is formally described
in Fig. 1.

Protocol UCComCompiler

Committer’s input: b ∈ {0, 1}.
Commitment Phase

1. Committer: run Blob(b) 2n times. Let B1, . . . ,B2n be the blobs obtained.
2. Committer ⇔ Receiver: for i = 1; i = i + 2; i ≤ 2n − 1; run

BobEquality(Bi,Bi+1).
3. Receiver: if all equality proofs are accepting, accept the commitment phase.

Decommitment Phase
1. Committer: for i = 1; i = i + 2; i ≤ 2n − 1; randomly choose � ∈ {i, i + 1}

and run OpenBlob(B�) with the Receiver.
2. Receiver: 1) check if Committer opened one blob for each consecutive pair;

2) if all n blobs open to the same bit b, output b and accept. Else output
reject.

Fig. 1. UCComCompiler: Unconditional UC Commitment from any Ideal Extractable
Commitment

Theorem 1. If IdealExtCom is an ideal extractable commitment scheme in the
Faux-hybrid model, then protocol in Fig. 1 is an unconditionally UC-secure bit
commitment scheme in the Faux-hybrid model.

Proof Sketch. To prove UC-security we have to show a straight-line simulator Sim
which correctly simulates the view of the real-world adversaryA and extracts her
input. Namely, when simulating the malicious committer in the ideal world, Sim
internally runs the real-world adversarial committer A simulating the honest
receiver to her, so to extract the bit committed to by A, and play it in the
ideal world. This property is called extractability. When simulating the malicious
receiver in the ideal world, Sim internally runs the real-world adversarial receiver
A simulating the honest committer to her, without knowing the secret bit to
commit to, but in such a way that it can be opened as any bit. This property is
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called equivocality. In the following, we briefly explain why both properties are
achieved.

Straight-line Extractability. It follows from the straight-line extractability and
binding of IdealExtCom and from the soundness of protocol BobEquality.
Roughly, Sim works as follows. It plays the commitment phase as an honest
receiver (and running the straight-line extractor of IdealExtCom having access
to Faux). If all proofs of BobEquality are successful, Sim extracts the bits of
each consecutive pair of blobs and analyses them as follows. Let b ∈ {0, 1}. If
all extracted pairs of bits are either (b, b) or (b̄, b), ( i.e. there are no pairs like
(b̄, b̄)), it follows that, the only bit that A can successfully decommit to, is b.
In this case, Sim plays the bit b in the ideal world. If there is at least a pair
(b, b) and a pair (b̄, b̄), then A cannot provide any accepting decommitment
(indeed, due to the binding of blobs, A can only open the bit b from one
pair, and the bit b̄ from another pair, thus leading the receiver to reject). In
this case Sim sends a random bit to the ideal functionality. If all the pairs
of blobs are not equal, i.e., all pairs are either (b̄, b) or (b, b̄), then A can
later decommit to any bit. In this case the simulator fails in the extraction
of the bit committed, and it aborts. Note that, this case happens only when
all the pairs are not equal. Thus A was able to cheat in all executions of
BobEquality. Due to the soundness of BobEquality, this event happens with
probability negligible close to 2−n.

Straight-line Equivocality. It follows from the simulation property of
BobEquality. Sim prepares n pairs of not equal blobs. Then it cheats in
all executions of BobEquality, by running the straight-line simulator associ-
ated to this protocol. In the decommitment phase, after having received the
bit to decommit to, for each pair, Sim reveals the blob corresponding to the
correct bit.

Note that, in both cases Sim crucially uses the extractor associated to
IdealExtCom, that in turn uses the access to Faux. The formal proof of the above
theorem can be found in the full version [18].

In Section 4 we show an implementation of IdealExtCom with malicious PUFs,
while in Section 5, we show how to implement IdealExtCom using stateless token.
By plugging such implementations in protocol UCComCompiler we obtain the
first unconditional UC-secure commitment scheme with malicious PUFs (namely,
in the FPUF-hybrid model), and stateless tokens (namely, in the Fwrap-hybrid
model).

4 Ideal Extractable Commitment from (Malicious) PUFs

In this section we show a construction of ideal extractable commitment in the
FPUF model. Our construction builds upon the ideal commitment scheme pre-
sented in [36]. For simplicity, in the informal description of the protocol we omit
mentioning the use of fuzzy extractors.



112 I. Damgård and A. Scafuro

Ideal Commitment Scheme in the FPUF Model (from [36]). The idea behind
the protocol of [36], that we denote by CPuf = (CCPuf ,RCPuf), is to turn Naor’s
commitment scheme [34] which is statistically binding but only computationally
hiding, into statistically hiding and binding, by replacing the PRG with a (pos-
sibly malicious) PUF. Roughly, protocol CPuf goes as follows. At the beginning
of the protocol, the committer creates a PUF, that we denote by PS . It prelim-
inary queries PS with a random string s (of n bits) to obtain the response σS
(of rg(3n) bits, where rg is the PUF’s range) and finally sends the PUF PS to
the receiver. After receiving the PUF, the receiver sends a random string r (i.e.,
the first round of Naor’s commitment) to the committer. To commit to a bit
b, the committer sends c =σS ⊕ (r ∧ b|r|) to the receiver. In the decommitment
phase, the committer sends (b, s) to the receiver, who checks the commitment
by querying PS with s. For the formal description of CPuf the reader can refer
to [36] or to the full version of this work [18].

Our Ideal Extractable Commitment Scheme in the FPUF Model. We transform
CPuf into a straight-line extractable commitment using the following technique.
We introduce a new PUF PR, sent by the receiver to the committer at the
beginning of the protocol. Then we force the committer to query the PUF PR

with the opening of the commitment computed running CPuf. An opening of
protocol CPuf is the value σS2. This allows the extractor, who has access to the
interface of FPUF, to extract the opening. The idea is that, from the transcript
of the commitment (i.e., the value c = σS⊕ (r∧ b)) and the queries made to PR,
(the value σS) the bit committed if fully determined.

To force the committer to query PR with the correct opening, we require
that it commits to the answer σR obtained by PR. Thus, in the commitment
phase, the committer runs two instances of CPuf. One instance, that we call
ComBit, is run to commit to the secret bit b. The other instance, that we call
ComResp, is run to commit to the response of PUF PR, queried with the opening
of ComBit. In the decommitment phase, the receiver gets PR back, along with
the openings of both the bit and the PUF-response. Then it queries PR with
the opening of ComBit, and checks if the response is consistent with the string
committed in ComResp. Due to the unpredictability of PUFs, the committer
cannot guess the output of PR on the string σS without querying it. Due to
the statistically binding of CPuf, the committer cannot postpone querying the
PUF in the decommitment phase. Thus, if the committer will provide a valid
decommitment, the extractor would have observed the opening already in the
commitment phase with all but negligible probability.

However, there is one caveat. The unpredictability of PUFs is guaranteed only
for queries that are sufficiently apart from each other. Which means that, given
a challenge/response pair (c, r), the response on any strings c′ that is “close”
in hamming distance to c (“close” means that disham(c, c

′) ≤ dmin), could be
predictable. Consequently, a malicious committer could query the PUF with a

2 In the actual implementation we require the committer to query PR with the output
of the fuzzy extractor stS, i.e., (stS, pS) ← FuzGen(σS).



Unconditionally Secure and UC Commitments from Physical Assumptions 113

string that is only “close” to the opening. Then, given the answer to such a query,
she could predict the answer to the actual opening, without querying the PUF.
Hence, the extraction fails.

We overcome this problem by using Error Correcting Codes, in short ECC.
The property of an ECC with distance parameter dis, is that any pair of strings
having hamming distance dis, decodes to a unique string. Therefore, we modify
the previous approach asking the committer to query PUF PR with the encoding
of the opening, i.e., Encode(σS). In this way, all queries that are “too close”
in hamming distance decode to the same opening, and the previous attack is
defeated. Informally, hiding and biding follow from hiding and binding of CPuf.
Extractability follows from the statistically biding of CPuf, the unpredictability
of PR and the properties of ECC. The protocol is formally described in Fig. 2.
In the full version [18] we discuss the parameters of the PUF and how to prevent
the replacement of a honest PUF by the adversary, and we provide the proof of
the following theorem.

Theorem 2. If CPuf is an Ideal Commitment in the FPUF-model, then ExtPuf
is an Ideal Extractable Commitment in the FPUF model.

5 Ideal Extractable Commitments from Stateless Tokens

In this section we show how to construct ideal extractable commitments from
stateless tokens. We first construct an ideal commitment scheme. Then, we use
it as building block for constructing an ideal extractable commitment.

Ideal Commitment Scheme in the Fwrap Model. Similarly to the construction
with PUFs, we implement Naor’s commitment scheme by replacing the PRG
with a stateless token.

In the construction with PUFs, the PRG was replaced with a PUF that is
inherently unpredictable. Now, we want to achieve statistically hiding using
stateless token. The problem here is that we do not have unpredictability for
free (as it happens with PUFs). Thus, we have to program the stateless token
with a function that is, somehow, unconditionally unpredictable. Clearly, we
cannot construct a token that implements a PRG. Indeed, after observing a few
pairs of input/output, an unbounded receiver can extract the seed, compute all
possible outputs, and break hiding. We use a point function following [23] . A
point function f is a function that outputs always zero, except in a particular
point x, in which it outputs a value y. Formally, f : {0, 1}n → {0, 1}m such that
f(x) = y and f(x′) = 0, for all x′ �= x.

Thus, we adapt Naor’s commitment scheme as follows. The committer picks
a n-bit string x and a 3n-bit string y and creates a stateless token that on input
x outputs y, while it outputs 0 on any other input. The stateless token is sent to
the receiver at the beginning of the protocol. After obtaining the token, receiver
sends the Naor’s first message, i.e., the random value r, to the committer. The
committer commits to the bit b by sending c = y⊕(r∧b|r|). In the decommitment
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Protocol ExtPuf
ECC = (Encode,Decode) is a (N,L, d1min) error correcting code, where L = � =
3n. Parties use PUF family: P1=(rg1, d1noise, d

1
min,m

1), with challenge size L.
(FuzGen1, FuzRep1) is a (m1, �1, t1, ε1)-fuzzy extractor of appropriate matching pa-
rameters. Protocol CPuf = (CCPuf ,RCPuf) is run as sub-routine. Committer’s Input:
b ∈ {0, 1}.

Commitment Phase
1. Receiver RExtPuf : create PUF PR and send it to CExtPuf .
2. Commitment of the Secret Bit: ComBit.

CExtPuf ⇔ RExtPuf : run 〈CCPuf(com, b),RCPuf(com)〉 so that CExtPuf commits to
bit b. Let (stS, pS) ← FuzGen(σS) be the value obtained by CExtPuf , after
applying the fuzzy extractor to the answer obtained from its own PUF PS

when running protocol ComBit.
3. Committer CExtPuf : Query PR with Encode(stS) and obtain response σR.

If σR = ⊥ (i.e., PUF PR aborts), set σR ← 0. Compute (stR, pR) ←
FuzGen1(σR).

4. Commitment of PR’s Response: ComResp.
CExtPuf ⇔ RExtPuf : run 〈CCPuf(com, stR||pR),RCPuf(com)〉 so that CExtPuf com-
mits to the string stR||pR.

Decommitment Phase
1. CExtPuf ⇔ RExtPuf : run 〈CCPuf(open, b),RCPuf(open)〉 and

〈CCPuf(open, stR||pR),RCPuf(open)〉.
2. Committer CExtPuf : send PUF PR back to RExtPuf .
3. Receiver RExtPuf : If both decommitments are successfully completed, then

RExtPuf gets the bit b′ along with the opening st′S for ComBit and string
st′R||p′R for ComResp.
Check validity of st′R: query PR with Encode(st′S) and obtain σ′

R. Compute
st′′R ← FuzRep1(σ′

R, p
′
R). If st′′R = st′R, then accept and output b. Else, reject.

Fig. 2. ExtPuf: Ideal Extractable Commitment in the FPUF model

phase, the committer sends x, y, b. The receiver queries the token with x and
obtains a string y′. If y = y′ the receiver accepts iff c = y′ ⊕ (r ∧ b).

The statistically binding property follows from the same arguments of Naor’s
scheme. The token is sent away before committer can see r. Thus, since x is only n
bits, information theoretically the committer cannot instruct a malicious token
to output y′ adaptively on x. Thus, for any malicious possibly stateful token,
binding is preserved. The statistically hiding property holds due to the fact that
x is secret. A malicious receiver can query the token with any polynomial number
of values x′. But, whp she will miss x, and thus she will obtain always 0.

The above protocol is denoted by CTok and is formally described in Fig. 3. We
stress that, this is the first construction of unconditional commitment scheme
that is secure even against malicious stateful tokens.

From Bit Commitment to String Commitment. To commit to a �-bit string using
one stateless token only is sufficient to embed � pairs (x1, y1),. . ., (x�, y�) in the
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token TC and to require that for each i, xi ∈ {0, 1}n and yi ∈ {0, 1}3�n. Namely,
TC grows linearly with the size of the string to be committed. Then, execute
protocol CTok for each bit of the string in parallel. The receiver accepts the
string iff all bit commitments are accepting.

Protocol CTok. Committer’s Input: b ∈ {0, 1}.

Commitmen Phase
1. Committer CCTok: pick x

$← {0, 1}n, y $← {0, 1}3n. Create token TC imple-
menting the point function f(x) = y; f(x′) = 0 for all x′ = x. Send TC to
RCTok.

2. Receiver RCTok: pick r
$← {0, 1}3n. Send r to CCTok.

3. Committer CCTok: Send c = y ⊕ (r ∧ b3n) to RCTok.
Decommitment Phase

1. Committer CCTok: send (b, x) to RCTok.
2. Receiver RCTok: query TC with x and obtain y. If b = 0, check that c = y.

Else, check that y = c ⊕ r. If the check passes, accept and output b, else
reject.

Fig. 3. CTok: Ideal Commitments in the Fwrap model

Ideal Extractable Commitment in the Fwrap model. Extractability is achieved
as before. The receiver sends a token TR to the committer. The committer is
required to query TR with the opening of the commitment (namely, the value
y) and then commit to the token’s response. In the decommitment phase, the
committer opens both the commitment of the bit and of the token’s response.
The receiver then checks that the latter value corresponds to the response of TR
on input the opening of the commitment of the bit. Note that here the receiver
can check the validity of the token’s response without physically possessing the
token.

We now need to specify the function computed by token TR. Such function
must be resilient against an unbounded adversary that can query the stateless
token an arbitrary polynomial number of times.

The function, parameterized by two independent MAC keys krec, ktok, takes
as input a commitment’s transcript (r, c), a MAC-tag σrec and an opening y.
The function checks that y is a valid opening of (r, c), and that σrec is a valid
MAC-tag computed on (r, c) with secret key krec (i.e., σrec = Mac(krec, r||c)). If
both checks are successful, the function outputs the MAC-tag computed on the
opening y (i.e., σtok = Mac(ktok, y)). Due to the unforgeability of the MAC, and
the statistically binding property of the commitment scheme CTok, a malicious
committer can successfully obtain the answer to exactly one query. Note that,
a malicious committer can perform the following attack. Once it receives the
string r from the receiver, it picks strings y0 and y1 such that r = y0 ⊕ y1 and
sends the commitment c = y0 to the receiver, obtaining the MAC of c. With the
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Protocol ExtTok
(Gen,Mac,Vrfy) is a one-time unconditional MAC. Protocol CTok = (CCTok,RCTok) is
run as sub-routine. Committer’s Input: b ∈ {0, 1}.

Commitment Phase
1. Receiver RExtTok: pick MAC-keys: krec, ktok. Create token TR implementing the

following functionality. On input a tuple (r||c, σrec, y): if Vrfy(krec, r||c, σrec) =
1 and (c = y OR c = y ⊕ r) then output σtok = Mac(ktok, y) else output ⊥.
Send TR to the sender CExtTok.
Commitment of the Secret Bit: ComBit.

2. CExtTok ⇔ RExtTok: run 〈CCTok(com, b),RCTok(com)〉 so that CCTok commits to
bit b. Let (r,c) be the transcript of such commitment phase. Let y be the
opening of c.

3. Receiver RExtTok: compute σrec ← Mac(krec, r||c). Send σrec to Committer
CExtTok.

4. Committer CExtTok: query TR with q= (r||c, σrec, y) and obtain σtok. If token
TR aborts, set σtok = 0n.
Commitment of TR’s Response: ComResp.
CExtTok ⇔ RExtTok: run 〈CCTok(com, σtok),RCTok(com)〉 so that CExtTok commits
to the response σtok received from TR.

Decommitment Phase
1. CExtTok ⇔ RExtTok: opening of both commitments.

Run 〈CCTok(open, b),RCTok(open)〉 and 〈CCTok(open, σrec),RCTok(open)〉.
2. Receiver RExtTok: If both decommitment are successfully completed, then

RExtTok gets the bit b′ along with the opening y′ for ComBit and string σ′
tok

for ComResp. If Vrfy(ktok, r||y′, σ′
tok) = 1 then RExtTok accept and output b′.

Else, reject.

Fig. 4. ExtTok: Ideal Extractable Commitment in the Fwrap model

commitment so computed and the tag, it can query token TR twice with each valid
opening. In this case, the committer can extract the MAC key, and at the same
time baffling the extractor that observes two valid openings. The observation
here is that, due to the binding of CTok, for a commitment c computed in such
a way, the malicious committer will not be able, in the decommitment phase, to
provide a valid opening. (The reason is that whp she cannot instruct its token
to output neither y0 or y1). Thus, although the extractor fails and outputs ⊥,
the decommitment will not be accepting. Thus extractability is not violated.

As final step, the committer commits to the token’s response σtok, using the
scheme CTok. (If the token of the receiver aborts, the committer sets σtok to the
zero string). In the decommitment phase, the receiver first checks the validity
of both commitments (commitment of the bit, commitment of the answer σtok).
Then, given the opening of the bit, it checks that σtok is a valid MAC computed
under key ktok on such opening.

Binding follows from the binding of CTok and the unforgeability of MAC.
Hiding still follows from the hiding of CTok. Indeed, the answer of TR sent by
the malicious receiver, is not forwarded to the receiver, but is committed using
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the ideal commitment CTok. Furthermore, if TR selectivly aborts, the committer
does not halt but it continues committing to the zero-string. The receiver will
get its token’s answer in clear only in the decommitment phase when the bit
has been already revealed. The formal description of the above protocol, that
we denote by ExtTok, is shown in Fig. 4.

Theorem 3. Protocol ExtTok is an ideal extractable commitment in the Fwrap

model.

The proof of Theorem 3 is provided in the full version [18].
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Abstract. Functional encryption (FE) enables fine-grained access con-
trol of encrypted data while promising simplified key management. In the
past few years substantial progress has been made on functional encryp-
tion and a weaker variant called predicate encryption. Unfortunately,
fundamental impossibility results have been demonstrated for construct-
ing FE schemes for general functions satisfying a simulation-based defi-
nition of security.

We show how to use hardware tokens to overcome these impossibil-
ity results. In our envisioned scenario, an authority gives a hardware
token and some cryptographic information to each authorized user; the
user combines these to decrypt received ciphertexts. Our schemes rely on
stateless tokens that are identical for all users. (Requiring a different to-
ken for each user trivializes the problem, and would be a barrier to prac-
tical deployment.) The tokens can implement relatively “lightweight”
computation relative to the functions supported by the scheme.

Our token-based approach can be extended to support hierarchal func-
tional encryption, function privacy, and more.

1 Introduction

In traditional public-key encryption, a sender encrypts a messageM with respect
to the public key pk of a particular receiver, and only that receiver (i.e., the
owner of the secret key associated with pk) can decrypt the resulting ciphertext
and recover the underlying message. More recently, there has been an explosion
of interest in encryption schemes that can provide greater flexibility and more
refined access to encrypted data. Such schemes allow the sender to specify a
policy at the time of encryption, and enable any user (decryptor) satisfying the
policy (within the given system) to decrypt the resulting ciphertext.
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Work in this direction was spurred by constructions of identity-based encryp-
tion (IBE) [8], fuzzy IBE [43], and attribute-based encryption [29]. Each of these
can be cast as special cases of predicate encryption [11,35], which is in turn a
special case of the more powerful notion of functional encryption (FE) recently
introduced by Boneh, Sahai, andWaters [10]. Roughly speaking, in an FE scheme
a user’s secret key SKK is associated with a policy K. Given an encryption of
some message M , a user in possession of the secret key SKK associated with K
can recover F (K,M) for some function F fixed as part of the scheme itself. (In
the most general case F might be a universal Turing machine, but weaker F are
also interesting.)

Security of functional encryption, informally, guarantees that a group of users
with secret keys SKK1 , . . . , SKK�

learn nothing from an encryption of M that
is not implied by F (K1,M), . . . , F (K�,M) (plus the length of M). As far
as formal definitions are concerned, early work on predicate encryption used
an indistinguishability-based definition of security, but Boneh et al. [10] and
O’Neill [41] independently showed that such a definitional approach is not,
in general, sufficient for analyzing functional encryption. They suggest to use
stronger, simulation-based definitions of security (similar in spirit to semantic
security) instead.

In the past few years substantial progress has been made in this area
[42,25,4,26,17,24,18,3,14,1]. Yet several open questions remain. First, it remains
an unsolved problem to construct an FE scheme for arbitrary functions F
with unbounded collusion resistance. Second, it is unknown how to realize the
strongest simulation-based notion of security for functional encryption. In fact,
Boneh et al. [10] and Agrawal et al. [1] showed fundamental limitations on achiev-
ing such definitions for FE schemes supporting arbitrary F .

Here we propose the use of (stateless) hardware tokens to solve both the
above issues. In our envisioned usage scenario, an authority gives a hardware
token along with a cryptographic key SKK to each authorized user; the user
combines these in order to decrypt received ciphertexts. We believe this would
be a feasible approach for realizing functional encryption in small- or medium-
size organizations where an authority could purchase hardware tokens, customize
them as needed, and then give them directly to users in the system.

The idea of using physical devices to bypass cryptographic impossibility re-
sults has been investigated previously. Katz [34] showed that hardware tokens
can be used for universally composable computation of arbitrary functions. His
work motivated an extensive amount of follow-up work [12,40,13,27,28,15]. In the
context of program obfuscation, several works [28,6,16] considered using hard-
ware tokens to achieve program obfuscation, which is impossible in the plain
model even for simple classes of programs [2].

A token-based approach should have the following properties:

1. The tokens used should be universal, in the sense that every user in the
system is given an identical token. Having a single token used by everyone
appears to be the only way to make a token-based approach viable.
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2. In applications where the complexity of F is high, it is desirable that tokens
be “lightweight” in the sense that the complexity of the token is smaller than
the complexity of F .

In this work, we show token-based solutions that satisfy the above requirements.
Additionally, our constructions satisfy a strong simulation-based notion of secu-
rity and have succinct ciphertexts (of size independent of F ). We provide the
intuition behind our approach in the next section.

1.1 Our Results

Let pk, sk denote the public and secret keys for a (standard) public-key en-
cryption scheme. Intuitively, a trivial construction of an FE scheme based on
(stateless) tokens is to let pk be the master public key, and to give the user asso-
ciated with key K a token which implements the functionality tokensk,K(C) =
F (K,Decsk(C)). In this scheme the tokens are not universal, as each user must
be given a token whose functionality depends on that user’s key K. Perhaps
more surprising is that this scheme is not secure: nothing prevents a user from
modifying C before feeding the ciphertext to its token; if the encryption scheme
scheme is malleable then a user might be able to use such a cheating strategy to
learn disallowed information about the underlying message M . We will address
both these issues in our solutions, described next.

Solution #1. We can address the universality issue by having the user provide
K along with C as input to the token. (The token will then implement the
functionality tokensk(K,C) = F (K,Decsk(C)).) Now we must prevent the user
from changing either K or C. Modifications of the key are handled by signing K
and hard-coding the verification key vk into the token; the token then verifies a
signature on K before decrypting as before. We show that illegal modification of
the ciphertext can be solved if the public-key encryption scheme is CCA2-secure;
we give the details in Section 4.2.

Solution #2. In the previous solution, the complexity of the token was (at least)
the complexity of computing F itself. We can use ideas from the area of veri-
fiable outsource of computation [19] in order to obtain a solution in which the
complexity of the token is independent of the complexity of F . The basic idea
here is for the token to “outsource” most of the computation of F to the user.
To do so, we now let the underlying public-key encryption scheme be fully ho-
momorphic [21]. Given a ciphertext C = Encpk(M), the user can now compute

the transformed ciphertext Ĉ = Encpk(F (K,M)) and feed this to the token for
decryption. To enforce correct behavior with lightweight tokens, we let the user
provide a succinct non-interactive argument (SNARG) [23,20,5] that the compu-
tation is done correctly.1 The immediate problem with this approach is that any

1 As a technical note, while SNARGs are constructed based on knowledge-type as-
sumptions, we here rely on SNARGs for P, which can be formulated as a falsifiable
assumption.
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fully-homomorphic encryption scheme is completely malleable! We here instead
rely on simulation-extractable non-interactive zero-knowledge proofs (NIZKs)
to deal with the malleable issue, where we let the encryptor provide an NIZK
proof that C = Encpk(M) is correctly encrypted. The computation done by the
token now involves (1) verifying the signature on K as in previous solution, and
(2) verifying the given SNARG and NIZK, (3) decrypting the given ciphertext,
all of which have complexity independent of F . We give the details in Section 4.3.

While both of our schemes are simple, we show in Section 6 that both schemes
satisfy a very strong notion of simulation-based security, where an adversary A
gets full access to the scheme (in particular, A can make an arbitrary number
of key queries and encryption queries in a fully adaptive way), yet cannot learn
any information beyond what it should have learnt through the access. At a high
level, our security proof crucially relies on the fact that in the simulation, the
simulator gets to simulate token’s answers to the queries made by the adversary,
which bypasses the information-theoretic arguments underlying the impossibility
results of Boneh et al. [10] and Agrawal et al. [1].

We remark that our constructions and the way we get around impossibility
results share some similarities to the work of Bitansky et al [6] on achieving
program obfuscation using stateless and universal hardware tokens, but the se-
curity notion of functional encryption and program obfuscation are different
and the results from both contexts does not seem to imply each other. For
example, one may think intuitively that by obfuscating the decryption circuit
Decsk,K(C) = F (K,Decsk(C)), one obtains a “trivial” construction of functional
encryption. However, such a construction cannot satisfy simulation-based secu-
rity as it does not bypass the impossibility results of [10,1].

1.2 Extensions

Our approach can be extended in several ways; we sketch two extensions here.

Hierarchical functional encryption. Consider an encrypted database in a com-
pany where the top-level manager has the access control on the database that
allows different first-level departments to access different part of the data; then
any first level department, say, research department, allows different second level
sub-department to run different analytic/learning algorithms over the encrypted
data; this naturally induces a hierarchical access structure to the data. To sup-
port this natural variant of access control, we need hierarchical functional en-
cryption, which generalizes many primitives considered in the literature, such as
hierarchical IBE [33,22,7,44,37], hierarchical PE [36].

More precisely, to enable such a hierarchical structure, the global authority
may delegate a first level user Alice (under some functionality key KAlice with
respect to functionality F1) the ability to generate a second level secret key
SKKAlice:KBob

of functionality key KBob with respect to functionality F2 for a
second level user Bob. For a message M encrypted under global master public
key, Bob should be able to decrypt F2(KBob, F1(KAlice,M)) using SKKAlice:KBob

.
Alice may further delegate Bob the ability to generate a third level secret key
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SKKAlice:KBob:KCarol
of functionality key KCarol with respect to functionality F3,

and so on.
Our solution #1 can be readily extended to the hierarchical setting using the

idea of signature chains. Roughly, to delegate Alice such power, the global au-
thority generates a key pair (skAlice, vkAlice) of a digital signature scheme and
“authorizes” it by signing (KAlice, vkAlice); skAlice is given to Alice as a “dele-
gation key” and (KAlice, vkAlice) together with its signature are published. Alice
can then generate SKKAlice:KBob

by simply signing KAlice : KBob (using skAlice).
To decrypt, Bob queries the token with the ciphertext together with the chain of
signatures—including (KAlice, vkAlice) together with its signature and KAlice :
KBob together with its signature. The token returns F2(KBob, F1(KAlice,M)) if
the chain verifies. Alice can perform further delegation in a similar fashion.

The above solution has the drawback that all functionalities in the hierarchy
need to be determined in the global setup and hard-wired in the token. We
can further allow adaptively chosen functionalities by further “authorizing” the
functionality as well, but at the price that the token needs to receive a description
of the functionality (together with its authorization info) as its input, which
results in long query length. This issue can be addressed in the framework of our
solution #2, where the token only requires a succinct authorization information
of the functionality (as such, the complexity of the token remains independent of
the functionalities). We provide further details in the full version of this paper.

Function privacy. In a general FE scheme the secret key SKK may leak K.
Preventing such leakage is given as an interesting research direction in [10].
Very recently, Boneh et al. [9] studied the notion of function privacy for IBE,
and gave several constructions. We can modify our token-based constructions to
obtain function privacy in functional encryption: in the key generation, instead
of obtaining a signature of K, the users obtain an encrypted version signature
E(σ); the decryption key sk will be stored in token; at any moment when the
users receive a ciphertext C, instead of providing (C,K, σ), the tuple (C,K, E(σ))
will be given to token; the token would first decrypt E(σ) into σ and then verify
that σ is a valid signature on K and, if so, return the result F (K,Decsk(C)) as
in basic functional encryption constructions.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,
FHE.Eval) is a public-key encryption scheme that associates with an additional
polynomial-time algorithm Eval, which takes as input a public key ek, a ci-
phertext ct = Encek(m) and a circuit C, and outputs, a new ciphertext ct′ =
Evalek(ct, C), such that Decdk(ct

′) = C(m), where dk is the secret key correspond-
ing to the public key ek. It is required that the size of ct′ = Evalek(Encek(m), C)
depends polynomially on the security parameter and the length of C(m), but is
otherwise independent of the size of the circuit C. We also require that Eval is
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deterministic, and the scheme has perfect correctness (i.e. it always holds that
Decdk(Encek(m)) = m and that Decdk(FHE.Evalek(Encek(m), C)) = C(m)). Most
known schemes satisfies these properties. For security, we simply require that
FHE is semantically secure.

Since the breakthrough of Gentry [21], several fully homomorphic encryption
schemes have been constructed with improved efficiency and based on more
standard assumptions such as LWE (Learning With Error). In general, these
constructions achieve leveled FHE, where the complexity of the schemes depend
linearly on the depth of the circuits C that are allowed as inputs to Eval. However,
under the additional assumption that these constructions are circular secure (i.e.,
remain secure even given an encryption of the secret key), the complexity of the
schemes are independent of the allowed circuits, and the schemes can evaluate
any polynomial-sized circuit.

2.2 Non-interactive Zero-Knowledge Arguments

Let R be a binary relation that is efficiently computable. Let LR be the language
defined by the relation R, that is, LR = {x : ∃w s.t.(x,w) ∈ R}. For any pair
(x,w) ∈ R, we call x the statement and w the witness.

Definition 1 (NIZK). A tuple of ppt algorithms NIZK = (NIZK.Gen,
NIZK.P,NIZK.V ), is a non-interactive zero-knowledge (NIZK) argument system
for R if it has the following properties described below:

Completeness. For any (x,w) ∈ R it holds that

Pr[crs← NIZK.Gen(1κ);π ← NIZK.P (crs, x, w) : NIZK.V (crs, x, π) = 1] = 1.

Soundness. For any non-uniform ppt A, it holds that

Pr[crs← NIZK.Gen(1κ); (x, π)← A(crs) : NIZK.V (crs, x, π) = 1] ≤ negl(κ).

Zero-knowledge. For any non-uniform ppt A, there exists a ppt S = (S1,S2)
such that it holds that |p1 − p2| ≤ negl(κ), where

p1 = Pr[crs← NIZK.Gen(1κ) : ANIZK.P (crs,·,·)(crs) = 1]

p2 = Pr[(crs, τ, ξ)← S1(1κ) : ASim(crs,τ,·,·)(crs) = 1]

where Sim(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R. Both oracles NIZK.P ()
and Sim() output ⊥ if (x,w) �∈ R.

Next we define (unbounded) simulation-extractability of NIZK [30,32]. In-
tuitively, it says that even after seeing many simulated proofs, whenever the
adversary makes a new proof we are able to extract a witness.

Definition 2 (Simulation-Extractability). Let NIZK = (NIZK.Gen,NIZK.
P,NIZK.V ) be a NIZK argument system for R. We say NIZK is simulation-
extractable if for all ppt adversaries A, there exists a ppt S = (S1,S2,S3) so
that

Pr

[
(crs, τ, ξ) ← S1(1

κ); (x, π) ← AS2(crs,τ,·)(crs);w ← S3(crs, ξ, x, π) :
NIZK.V (crs, x, π) = 1 ∧ (x, π) ∈ Q ∧ (x,w) ∈ R

]
≤ negl(κ)



126 K.-M. Chung, J. Katz, and H.-S. Zhou

where Q is the list of simulation queries and responses (xi, πi) that A makes
to S2().

2.3 SNARG

We present the definition of succinct non-interactive arguments (abbreviated
SNARGs) [23,20,5]. A SNARG for a function class F = {Fκ}κ∈N consists of a
set of ppt algorithms SNARG = SNARG.{Gen, P, V }: The generation algorithm
Gen on input security parameter 1κ and a function F : {0, 1}n(κ) → {0, 1}m(κ) ∈
Fκ (represented as a circuit), outputs a reference string rs and a (short) verifica-
tion state vrs.2 The prover P on input rs and an input string x ∈ {0, 1}n, outputs
an answer y = F (x) together with a (short) proof �. The verifier algorithm V
on input vrs, x, y, and � outputs a bit b ∈ {0, 1} represents whether V accepts
or rejects. We require the following properties for a SNARG scheme.

– Completeness: For every κ ∈ N, F ∈ Fκ, x ∈ {0, 1}n, the probability
that the verifier V rejects in the following experiment is negligible in κ: (i)
(rs, vrs)← Gen(1κ, F ), (ii) (y,�)← P (rs, x), and (iii) b← V (vrs, x, y,�).

– Soundness: For every efficient adversary P ∗, and every κ ∈ N, the proba-
bility that P ∗ makes V accept an incorrect answer in the following experi-
ment is negligible in κ: (i) P ∗ on input 1κ outputs a function F ∈ Fκ, (ii)
(rs, vrs) ← Gen(1κ, F ), (iii) P ∗ on input rs, outputs x, y,� with y �= F (x),
and (iv) b← V (vrs, x, y,�).

– Efficiency: The running time of the verifier is poly(κ, n+m, log |F |) (which
implies the succinctness of vrs and �). The running time of the generation
algorithm and the prover is poly(κ, |F |).

We say SNARG is publicly-verifiable if the verification state vrs is part of the
reference string rs.

We require a publicly-verifiable SNARG scheme SNARG for polynomial-
size circuits. Such a SNARG scheme can be obtained by using Micali’s CS
proof [39] (with random oracle instantiated by some hash function heuristically),
or provably secure based on publicly-verifiable succinct non-interactive argu-
ments (SNARGs), which in turn can be constructed based on (non-falsifiable)
q-PKE (q-power knowledge of exponent) and q-PDH (q-power Diffie-Hellman)
assumptions on bilinear groups. Such SNARGs was first constructed implicitly
in [31] and later improved by [38,20], where [20] explicitly constructs SNARGs.
In the scheme of [20], the generation algorithm and the prover run in time quasi-
linear in the size of F with rs length linear in |F |, and the verifier runs in linear
time in the input and output length.

3 Definition of Functional Encryption

Functional encryption was recently introduced by Boneh, Sahai, and Waters [10].
Let F = {Fκ}κ∈N where Fκ = {F : Kκ × Mκ → Mκ} be an ensemble of

2 We assume w.l.o.g. that rs contains a description of F .



Functional Encryption from (Small) Hardware Tokens 127

functionality class indexed by a security parameter κ. A functional encryption
scheme FE for a functionality class F consists of four ppt algorithms FE =
FE.{Setup,Key,Enc,Dec} defined as follows.

– Setup: FE.Setup(1κ, F ) is a ppt algorithm takes as input a security param-
eter 1κ and a functionality F ∈ Fκ and outputs a pair of master public and
secret keys (MPK,MSK).

– Key Generation: FE.Key(MSK,K) is a ppt algorithm that takes as input
the master secret key MSK and a functionality key K ∈ Kκ and outputs a
corresponding secret key SKK .

– Encryption: FE.Enc(MPK,M) is a ppt algorithm that takes as input the
master public key MPK and a message M ∈ Mκ and outputs a ciphertext
CT.

– Decryption: FE.Dec(SKK ,CT) is a deterministic algorithm that takes as
input the secret key SKK and a ciphertext CT = Enc(MPK,M) and outputs
F (K,M).

Definition 3 (Correctness). A functional encryption scheme FE is correct if
for every κ ∈ N, F ∈ Fκ, K ∈ Kκ, and M ∈Mκ,

Pr

[
(MPK,MSK)← FE.Setup(1κ, F );
FE.Dec(FE.Key(MSK,K),FE.Enc(MPK,M)) �= F (K,M)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Key, and FE.Enc.

We next define a stronger simulation-based notion of security for functional
encryption than the existing simulation-based security notions in the literature.
We note that, while there are negative results [10,1] showing that even signifi-
cantly weaker notions of security are impossible to achieve in the plain model,
our token-based construction in Section 4 achieves our strong security notion in
the token model.

Our definition is stronger in the sense that we allow the adversary A to take
full control over the access of the encryption scheme, where A can choose the
functionality F and request to see an arbitrary number of secret keys SKK ’s
and ciphtertexts CT’s in a fully adaptive fashion. Previous definitions either
restrict the number of ciphertext queries and/or restrict the order of secret key
and ciphertext queries (e.g., require A to ask for all challenge ciphertexts at
once). Informally, the following definition says that even with full access to the
encryption scheme, A still cannot learn any additional information than what
it should have legally learnt from the received ciphertexts (using the received
secret keys). This, as usual, is formalized by requiring that the ciphertexts can
be simulated by an efficient simulator with only the “legal” information.

Definition 4 (Fully-Adaptive Simulation Security). Let FE be a func-
tional encryption scheme for a functionality class F . For every ppt stateful ad-
versary A and ppt stateful simulator Sim, consider the following two
experiments.
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ExptrealFE,A(1
κ)

1: F ← A(1κ);
2: (MPK,MSK)← FE.Setup(1κ, F );

provide MPK to A;

3: let i := 1;
4: do

Mi ← AFE.Key(MSK,·)();
CTi ← FE.Enc(MPK,Mi);
provide CTi to A;

i := i+ 1;
until A breaks;

5: α← A();
6: output (α, {Mj}j∈[i−1]);

ExptidealFE,A,Sim(1
κ)

1: F ← A(1κ);
2: MPK← Sim(1κ, F );

provide MPK to A;

3: let i := 1;
4: do

Mi ← ASim{F(·,Mj )}j<i
();

CTi ← Sim{F (·,Mj)}j≤i(1|Mi|);
provide CTi to A;

i := i+ 1;
until A breaks;

5: α← A();
6: output (α, {Mj}j∈[i−1]);

In Step 4 of the ideal experiment, Sim needs to provide answers to Key(MSK, ·)
queries of A. During the execution of the ideal experiment, we say that Sim’s
query K to oracles {F (·,M1), . . . , F (·,Mi)} is legal if A already requested ci-
phertexts for M1, . . . ,Mi, and made oracle query K to Key(MSK, ·). We call a
simulator algorithm Sim admissible if it only makes legal queries to its oracle
throughout the execution.

The functional encryption scheme FE is said to be fully-adaptive simulation-
secure if there is an admissible ppt stateful simulator Sim such that for every
ppt stateful adversary A, the following two distributions are computationally
indistinguishable: {

ExptrealFE,A(1
κ)
}
κ

c≈
{
ExptidealFE,A,Sim(1

κ)
}
κ

4 Token Model and Constructions

4.1 Token-Based FE

Here we introduce a simple token model for encryption schemes and provide
formal definitions of token-based functional encryption schemes. In our model,
we consider stateless tokens that are initialized by the master authority in the
setup stage, and are only used by users in decryption. Furthermore, we require
token to be universal in the sense that tokens used by different users are identical.
Thus, tokens are simply deterministic oracles that are generated by the Setup
algorithm, and queried by the Dec algorithm.

Definition 5 (Token-based FE). A token-based functional encryption scheme
FE is defined identical to the definition of functional encryption scheme except
for the following modifications.

– Setup: In addition to MPK and MSK, the algorithm FE.Setup also outputs
a token T, which is simply a deterministic oracle.
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– Key Generation : In addition to the keys SKK , the algorithm FE.Key also
returns a copy of the token T to users.

– Decryption: The decryption algorithm FE.DecT can query the T in order
to decrypt.

The correctness property extends straightforwardly. For security, we generalize
fully-adaptive simulation security to the token model. As before, we allow the
adversary A to take full control over the access of the encryption scheme; in
particular, A is given the oracle access to token after setup. In the ideal world,
the simulator is required to simulate answers to all queries made by A, including
the token queries, given only the “legal” information that A can learn from the
received ciphertexts using the received secret keys.

Definition 6 (Fully-Adaptive Simulation Security for Token-Based
FE). Let FE be a token-basd functional encryption scheme for a functional-
ity class F . For every ppt stateful adversary A and ppt stateful simulator Sim,
consider the following two experiments.

ExptrealFE,A(1
κ)

1: F ← A(1κ);
2: (MPK,MSK,T)← FE.Setup(1κ, F );

provide MPK to A;

3: let i := 1;
4: do

Mi ← AFE.Key(MSK,·),T(·)();
CTi ← FE.Enc(MPK,Mi);
provide CTi to A;

i := i+ 1;
until A breaks;

5: α← A();
6: output (α, {Mj}j∈[i−1]);

ExptidealFE,A,Sim(1
κ)

1: F ← A(1κ);
2: MPK← Sim(1κ, F );

provide MPK to A;

3: let i := 1;
4: do

Mi ← ASim{F(·,Mj )}j<i
();

CTi ← Sim{F (·,Mj)}j≤i(1|Mi|);
provide CTi to A;

i := i+ 1;
until A breaks;

5: α← A();
6: output (α, {Mj}j∈[i−1]);

In Step 4 of the ideal experiment, Sim needs to provide answers to both
Key(MSK, ·) and T(·) queries of A. During the execution of the ideal experi-
ment, we say that Sim’s query K to oracles {F (·,M1), . . . , F (·,Mi)} is legal
if A already requested ciphertexts for M1, . . . ,Mi, and made oracle query K to
Key(MSK, ·). We call a simulator algorithm Sim admissible if it only makes legal
queries to its oracle throughout the execution.

The functional encryption scheme FE is said to be fully-adaptive simulation-
secure if there is an admissible ppt stateful simulator Sim such that for every
ppt stateful adversary A, the following two distributions are computationally
indistinguishable: {

ExptrealFE,A(1
κ)
}
κ

c≈
{
ExptidealFE,A,Sim(1

κ)
}
κ
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4.2 Token-Based FE Construction — Solution #1

Here we give the construction of a functional encryption scheme FE =
FE.{Setup,Key,Enc,Dec} for a functionality F based on stateless and uni-
versal tokens. Our construction is based on a CCA2-secure public key en-
cryption PKE.{Gen,Enc,Dec} and a strongly unforgeable signature scheme
SIG.{Gen, Sign,Vrfy}. In the setup stage, the authority generates a key-pair
(ek, dk) for encryption and a key-pair (vk, sk) for digital signature, and set
MPK = (ek, vk) and MSK = sk. Additionally, the authority initializes the to-
ken T with the description of F , public keys ek, vk, and secret decryption key
dk.

To encrypt a message M , one simply encrypts it using the underlying CCA2
public key ek; that is, the ciphertext is ct ← PKE.Encek(M). The secret key
SKK for a functionality key K is simply a signature of K; that is, SKK =
σK ← SIG.Signsk(K). To decrypt ct using secret key SKK , the user queries
its token T with (ct,K, σK). T verifies if σK is valid, and if so, T returns
F (K,PKE.Decdk(ct)), and returns ⊥ otherwise. A formal description of our
scheme can be found in Figure 1.

Note that our scheme has succinct ciphertext size. Indeed, our ciphertext is
simply a CCA2 encryption of the message, which is independent of the complex-
ity of F . On the other hand, our token need to evaluate F to decrypt. Thus, our
solution #1 is suitable for lower complexity functionalities (e.g., inner product
functionality).

While our scheme is very simple, it satisfies the strong fully-adaptive
simulation-security as defined in Definition 6. In fact, the security proof is rather
straightforward: The simulator simply simulates Setup and Key queries honestly,
and simulates encryption queries Mi by encryption of 0|Mi|. To answer a token
query (ct,K, σK), when σK verifies, the simulator checks if ct is one of the sim-
ulated ciphertext (for some encryption query Mi). If so, the simulator queries
its oracle and returns F (K,Mi), and if not, it simulates the token honestly.
Intuitively, the simulation works since by strong unforgeability, the simulator
can learn correct answers for simulated ciphertexts from its oracle, and CCA2-
security ensures that the simulation works for other ciphertexts.

We note that our security proof crucially relies on the fact that in the simula-
tion, the simulator gets to simulate token’s answers to the queries made by the
adversary, which bypasses the information-theoretic arguments underlying the
impossibility results of Boneh et al. [10] and Agrawal et al. [1].

Theorem 1. If SIG is a strongly unforgeable signature scheme, PKE is a
CCA2-secure public key encryption, then the above functional encryption con-
struction FE is simulation-secure (Definition 6).

Proof: We here prove that our scheme achieves the strong fully-adaptive
simulation-security as defined in Definition 6. In order to prove the security, we
need to construct a simulator Sim which interacts with an adversary A. The
ideal experiment ExptidealFE,A,Sim(1

κ) is as follows:
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– Setup: on input a security parameter 1κ, a functionality F ∈ Fκ, the setup
algorithm Setup() performs the following steps to generate MPK, MSK, and a
deterministic stateless token T.
• Execute (ek, dk) ← PKE.Gen(1κ), and (vk, sk) ← SIG.Gen(1κ).
• Initiate a token T with values (dk, ek, vk, F ).
• Output MPK = (ek, vk), and MSK = (sk).

– Key Generation: on input a master secret key MSK and a functionality key K,
the key generation algorithm Key() generates SKK as follows.
• Execute σK ← SIG.Signsk(K). Output SKK = (σK).

– Encryption: on input a master public keyMPK and a message M , the encryption
algorithm Enc() generates CT as follows.
• Execute ct ← PKE.Encek(M ; ρ), where ρ is the randomness. Return CT =

(ct).
– Decryption: on input SKK = (σK) and a ciphertext CT = (ct) of a message M ,

with access to a token T, the decryption algorithm DecT() performs the following
steps to decrypt m = F (K,M):
• Query the token m ← T(CT,K,SKK). Output m.

– Token Operations: on query (CT,K,SKK), where CT = (ct) and SKK = (σK),
the token T carries out the following operations.
• Execute SIG.Vrfyvk(K,σK).
• If the above verification accepts, then compute M ← PKE.Decdk(ct) and

return m = F (K,M). Otherwise, return ⊥.

Fig. 1. Solution #1. Here PKE.{Gen,Enc,Dec} is a public-key encryption scheme, and
SIG.{Gen,Sign,Vrfy} is a signature scheme.

– Upon obtaining functionality F from the adversary, the simulator runs
(vk, sk) ← SIG.Gen() and (ek, dk) ← PKE.Gen(), and set MPK = (ek, vk),
and give MPK to the adversary. From now on, oracle access to the token will
be simulated for the adversary.

– In the key generation, upon receiving the request on K from the adver-
sary, the simulator computes σK ← SIG.Signsk(K), and returns σK to the
adversary. Note that now the simulator records (K,σK) into history.

– At any point when the adversary provides message M , the simulator is al-
lowed to see the length |M | and it is granted an oracle F (·,M). The simulator
then computes ct← PKE.Enc(0|M|;ω) where ω is randomly chosen, and sets
ct as a pointer to the oracle F (·,M). The simulator records (|M |, ct) into
history, and returns ct to the adversary. If the same ct is recorded twice in
the history, then the simulator returns Abort.

– At any point when the adversary queries the token with tuple (ct,K, σK),
the simulator first checks if (K,σK) has been recorded in the history. If not,
then it returns ⊥. Else if the pair (K,σK) has been recorded, and ct has also
been recorded in the history, then the simulator queries the corresponding
oracle F (·,M), and learns m = F (K,M). Then the simulator returns m to
the adversary. Otherwise, if (K,σK) has been recorded but ct has not, the
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simulator computes M ← PKE.Decdk(ct) and m← F (K,M), and returns m
to the adversary.

– Let M∗
1 , . . . ,M

∗
n be the messages that the adversary queried for ciphertexts.

If the adversary finally outputs a value α, output (α, {M∗
i }i∈[n]).

From the above simulation, we can easily see that only valid users who partic-
ipate in the key generation are able to use the token to decrypt ciphertexts.
Furthermore, for a ciphertext ct = PKE.Enc(M), the adversary cannot learn any
extra information beyond {F (Ki,M)}i where {Ki}i have been registered in the
key generation.

Next, we show that the ideal experiment is computationally close to the real
experiment, by developing a sequence of hybrids between them.

Hybrid 0: This is the real experiment ExptrealFE,A(1
κ). As described in construc-

tion FE , upon obtaining functionality F , we first generate (MPK,MSK,T)←
FE.Setup(1κ, F ) where MPK = (ek, vk) and MSK = sk, and give MPK
to the adversary. At any moment when the adversary queries FE.Key()
with K, we return SKK = σK where σK ← SIG.Signsk(K). At any point
when the adversary outputs M∗

i , we return the adversary with CT∗
i = ct∗i

where ct∗i ← PKE.Encek(M
∗
i ;ω

∗
i ). At any point when the adversary queries

the token with tuple (ct,K, σK), the token will behave as follows: if the
pair (K,σK) is not verified, then return ⊥. Otherwise if the pair is ver-
ified, i.e., SIG.Vrfyvk(K,σK) = 1, then use dk to decrypt ct into M ←
PKE.Decdk(ct), and return m = F (K,M). We then return m to the adver-
sary. Let M∗

1 , . . . ,M
∗
n be the values that the adversary queried for cipher-

texts. If the adversary finally outputs a value α, we output (α, {M∗
i }i∈[n]).

Hybrid 1: This hybrid is the same as Hybrid 0 except the following: In this
hybrid, we change the token’s responses to the adversary. At any point when
the adversary queries the token with tuple (ct,K, σK), if SIG.Vrfyvk(K,σK) =
1 while the pair (K,σK) never appears in the queries to FE.Key(), then the
hybrid outputs Abort.
Hybrid 1 and Hybrid 0 are the same except that Abort occurs. Based on
the strong unforgeability of SIG, we claim the event of Abort occurs with
negligible probability. Therefore, Hybrid 1 and Hybrid 0 are computationally
indistinguishable. Towards contradiction, assume there is a distinguisher A
can distinguish Hybrid 0 from Hybrid 1. We next show an algorithm B that
breaks the strong unforgeability of SIG as follows:
– Upon receiving the encryption key vk, B internally simulates A. B works

the same as in Hybrid 0 except the following: At any point when the
adversary provides functionality F , B computes (ek, dk) ← PKE.Gen(),
and sets MPK := (ek, vk). At any moment when the adversary queries
FE.Key() with K, B queries its own signing oracle with K and receives
σK , and then B returns σK to A as the response.
At any point when the adversary queries the token with tuple (ct,K, σK),
if SIG.Vrfyvk(K,σK) = 1, but (K,σK) never appears in the queries to
FE.Key(), then the event Abort occurs, B halts and output (K,σK) to
its challenger as the forged pair.



Functional Encryption from (Small) Hardware Tokens 133

We note that the view of the above simulated A is the same as that in
Hybrid 1. We further note that as long as the event Abort does not occur,
A’s view is the same as that in Hybrid 0. Since A is able to distinguish
the two hybrids, that means the event Abort will occur with non-negligible
probability. That says, B is a successful unforgeability attacker against SIG,
which reaches a contradiction. Therefore, Hybrid 0 and Hybrid 1 are com-
putationally indistinguishable.

Hybrid 2: This hybrid is the same as Hybrid 1 except the following: Whenever
the adversary queries on M∗

i , we compute ĉt
∗
i ← PKE.Encek(M

∗
i ;ω

∗
i ), and

record (|M∗
i |, ĉt

∗
i ). Here we can easily simulate an oracle F (·,M∗

i ) based on
M∗

i , and we set the ciphertext ct∗ as the pointer to the oracle. Furthermore,
we change the token’s responses to the adversary. At any point when the
adversary queries the token with tuple (ct,K, σK) where the pair (K,σK)
has been recorded, we carry out the following: if ct has been recorded then
we based on it query the corresponding oracle F (·,M∗

i ) with K and receive
m = F (K,M∗

i ). Then we return m to the adversary.
We can easily see that the views of A are the same in Hybrid 1 and
Hybrid 2.

Hybrid 3.j, where j = 0, . . . , n : Here n is the total number of messages the
adversary has queried for ciphertexts. This hybrid is the same as Hybrid 2
except the following:
When the adversary queries on {M∗

i }i∈[n], the messages {M∗
1 , . . . ,M

∗
j } are

blocked; instead, we are allowed to see the length of the messages, i.e,
|M∗

1 |, . . . , |M∗
j |, and have oracle access to F (·,M∗

1 ), . . . , F (·,M∗
j ). Note that

we are now still allowed to see the messages {M∗
j+1, . . . ,M

∗
n}, and therefore

we can easily simulate the oracles F (·,M∗
j+1), . . . , F (·,M∗

n).
We change the response to the adversary’s query on {M∗

i }i=1,...,n. We
now return the adversary with CT∗

i = ĉt
∗
i for all i ∈ [n]. Here ĉt

∗
i ←

PKE.Encek(0
|M∗

i |;ω∗
i ) for all i ∈ [1, . . . , j], and ĉt

∗
i ← PKE.Encek(M

∗
i ;ω

∗
i )

for all i ∈ [j + 1, . . . , n].
Based on the CCA2-security of PKE , we claim Hybrid 3.j and Hybrid 3.(j+
1) are computationally indistinguishable for all j = 0, . . . , n − 1. Towards
contradiction, assume there is a distinguisher A who can distinguish Hybrid
3.j from Hybrid 3.(j + 1). We next show an algorithm B that breaks the
CCA2-security of PKE as follows:
– Upon receiving the encryption key ek, B internally simulates A. B works

the same as in Hybrid 3.j except the following:
• Upon A’s query on M∗

j+1, B queries LR-oracle LR with (M∗
j+1,

0|M
∗
j+1|); in turn it gets back a ciphertext ct∗j+1 which is PKE.Enc

(0|M
∗
j+1|) or PKE.Enc(M∗

j+1) from the LR-oracle.
• Upon receiving A’s query to the token with tuple (ct,K, σK) where
(K,σK) has been recorded, if ct has been recorded then B simulates
the corresponding oracle F (·,M∗

i ) forK and providesm = F (K,M∗
i )

to A. If ct has not been recorded, then B queries its decryption
oracle to obtain the plaintextM of the ciphertext ct, and then return
m = F (K,M) to the adversary.
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– Finally, B outputs whatever A outputs.

Let β be the hidden bit associated with the LR oracle. We note that when
β = 0, the algorithm B exactly simulates the Hybrid 3.j to A; when β = 1, B
simulates exactly the Hybrid 3.(j+1) to A. Under the assumption, since A is
able to distinguish the two hybrids in non-negligible probability, that means
the constructed B is successful CCA2 attacker against PKE , which reaches a
contradiction. Therefore Hybrid 3.j and Hybrid 3.(j+1) are computationally
indistinguishable.

Furthermore, we note that Hybrid 3.0 is the same as Hybrid 2, and Hybrid
3.n is the ideal experiment. Based on the above argument we already see the
real experiment and the ideal experiment are in distinguishable. This means
the construction FE is simulation secure as defined in Definition 6.

4.3 Token-Based FE Construction — Solution #2

In our solution #1 presented in the previous section, the token size is linear of
function F . Here we present our solution #2, a functional encryption scheme
FE = FE.{Setup,Key,Enc,Dec} in the token model where the complexity of
token is independent of the complexity of F . We use the following tools: FHE,
digital signature, publicly verifiable SNARG, and simulation-extractable NIZK.
(Please refer to Section 2 for the definitions.)

In the setup stage, the authority generates key pairs (ek, dk) and (vk, sk)
for FHE and for digital signature respectively. The authority also sets up the
reference strings crs and (rs, vrs) for NIZK and for SNARG respectively. Note that
the reference string vrs for SNARG verification is very short and it is independent
of F . The authority sets (ek, vk, crs, rs, vrs) as its master public key MPK, and sk
as the master secret key MSK. In addition, the authority initializes the token T
with the public information (ek, vk, crs, vrs), and the secret decryption key dk.

The key generation stage is the same as that in the previous solution; for
each user associated with a key K, the authority uses the MSK to generate a
signature σK on the key K; in addition the authority sends the user an identical
copy of the token. The encryption algorithm is different from that in the previous
solution: To encrypt a message M , one takes two steps: (1) encrypt it using the
FHE public key ek; that is, the ciphertext is ct← FHE.Encek(M); (2) generate an
NIZK that the ciphertext ct is honestly generated. The ciphertext for message
M is (ct, π).

The decryption algorithm is different from that in the previous solution as
well. Our goal as stated before is to obtain a solution in which the complexity
of the token is independent of the complexity of F . The idea is to let the token
to “outsource” most of the computation of F to the user. Concretely, to decrypt
a ciphertext (ct, π), the user who is associated with key K computes the trans-
formed ciphertext c̃t by homomorphically evaluating ct with F (K, ·); to be sure
that the transformation is carried out correctly, the user also provides a SNARG
�. Then the user queries the token T with an input tuple (ct, π,K, σK , c̃t, �);
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– Setup: on input a security parameter 1κ, a functionality F ∈ Fκ, the setup
algorithm Setup() performs the following steps to generate MPK, MSK, and a
deterministic stateless token T.
• Execute (ek, dk) ← FHE.Gen(1κ), (vk, sk) ← SIG.Gen(1κ), and crs ←

NIZK.Gen(1κ).
• Define F̂ (K, ct) � FHE.Evalek(ct, F (K, ·)). Execute (rs, vrs) ←

SNARG.Gen(1κ, F̂ ).
• Initiate a token T with values (dk, ek, vk, crs, vrs).
• Output MPK = (ek, vk, crs, rs, vrs), MSK = (sk).

– Key Generation: on input a master secret key MSK and a functionality key K,
Key() generates SKK as:
• Execute σK ← SIG.Signsk(K). Output SKK = (σK).

– Encryption: on input a master public keyMPK and a message M , the encryption
algorithm Enc() generates CT as follows.
• Execute ct ← FHE.Encek(M ;ω), where ω is the randomness used in the en-

cryption.
• Execute π ← NIZK.P (crs, (ek, ct), (M,ω)) with respect to the relation

RFHE = {((ek, ct), (M,ω)) : FHE.Encek(M ;ω) = ct}.

• Output CT = (ct, π)
– Decryption: on input SKK and a ciphertext CT = (ct, π) of a message M , with

access to a tokenT, the decryption algorithm DecT() performs the following steps
to decrypt m = F (K,M):
• Execute (c̃t,) ← SNARG.P (rs, (K, ct)). Here c̃t = F̂ (K, ct) =

FHE.Evalek(ct, F (K, ·)).
• Query the token m ← T(CT,K,SKK , c̃t,). Output m.

– Token Operations: on query (CT,K,SKK , c̃t,), where CT = (ct, π) and
SKK = σK , the token T carries out the following operations.
• Execute SIG.Vrfyvk(K,σK), NIZK.V (crs, (ek, ct), π), and

SNARG.V (vrs, (K, ct), c̃t,).
• Return FHE.Decdk(c̃t) if all above verifications accept, and return ⊥ other-

wise.

Fig. 2. Solution #2. Here FHE.{Gen,Enc,Eval,Dec} is a fully homomorphic encryption,
SIG.{Gen,Sign,Vrfy} is a signature scheme, SNARG.{Gen, P, V } is a SNARG scheme,
NIZK.{Gen, P, V } is a NIZK scheme.
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the token first verifies if signature, NIZK, SNARG are all valid; if so, the to-
ken decrypts the ciphertext c̃t into message m and returns m, and it returns ⊥
otherwise. A formal description of our scheme can be found in Figure 2.

Note that, similar to solution #1, our scheme here also has succinct ciphertext
size. Our ciphertext consists of an FHE ciphertext and an NIZK, both of which
are independent of the complexity of F . On the other hand, here our token
does not need to evaluate F to decrypt, and thus the complexity of the token is
independent of the complexity of F .

Our scheme here also satisfies the strong fully-adaptive simulation-security as
defined in Definition 4. The proof idea is very similar to that in the previous
section, which crucially relies on the fact that in the simulation, the simulator
gets to simulate token’s answers to the queries made by the adversary. Next, we
briefly highlight the differences between the two solutions. In both constructions,
the user can only provide authenticated inputs to the hardware token, and digital
signature is used to authenticate K. But two different approaches are used to
authenticate the ciphertext: in solution #1, the authentication is guaranteed by
the CCA2 security of the encryption, while in solution #2, the authentication
is provided by the simulation-extractability of the NIZK, and the soundness of
the SNARG.

Theorem 2. If SNARG is a publicly verifiable SNARG scheme, NIZK is
a zero-knowledge and simulation-extractable NIZK scheme, SIG is a strong
unforgeable signature scheme, FHE is a secure fully homomorphic encryption
scheme, then the above construction FE is simulation-secure functional encryp-
tion scheme.

Proof can be found in the full version.

Acknowledgments. We would like to thank the anonymous reviewers for help-
ful feedback.
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Abstract. Related key attacks (RKAs) are powerful cryptanalytic at-
tacks where an adversary can change the secret key and observe the effect
of such changes at the output. The state of the art in RKA security pro-
tects against an a-priori unbounded number of certain algebraic induced
key relations, e.g., affine functions or polynomials of bounded degree. In
this work, we show that it is possible to go beyond the algebraic bar-
rier and achieve security against arbitrary key relations, by restricting
the number of tampering queries the adversary is allowed to ask for.
The latter restriction is necessary in case of arbitrary key relations, as
otherwise a generic attack of Gennaro et al. (TCC 2004) shows how to
recover the key of almost any cryptographic primitive. We describe our
contributions in more detail below.

1. We show that standard ID and signature schemes constructed from
a large class of Σ-protocols (including the Okamoto scheme, for
instance) are secure even if the adversary can arbitrarily tamper
with the prover’s state a bounded number of times and obtain some
bounded amount of leakage. Interestingly, for the Okamoto
scheme we can allow also independent tampering with the public
parameters.

2. We show a bounded tamper and leakage resilient CCA secure public
key cryptosystem based on the DDH assumption. We first define a
weaker CPA-like security notion that we can instantiate based on
DDH, and then we give a general compiler that yields CCA-security
with tamper and leakage resilience. This requires a public tamper-
proof common reference string.

3. Finally, we explain how to boost bounded tampering and leakage re-
silience (as in 1. and 2. above) to continuous tampering and leakage
resilience, in the so-called floppy model where each user has a per-
sonal hardware token (containing leak- and tamper-free information)
which can be used to refresh the secret key.

We believe that bounded tampering is a meaningful and interesting al-
ternative to avoid known impossibility results and can provide important
insights into the security of existing standard cryptographic schemes.

Keywords: related key security, bounded tamper resilience, public key
encryption, identification schemes.
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1 Introduction

Related key attacks (RKAs) are powerful cryptanalytic attacks against a cryp-
tographic implementation that allow an adversary to change the key, and subse-
quently observe the effect of such modification on the output. In practice, such
attacks can be carried out, e.g., by heating up the device or altering the internal
power supply or clock [4,11], and may have severe consequences for the security
of a cryptographic implementation. To illustrate such key tampering, consider a
digital signature scheme Sign with public/secret key pair (pk , sk). The tampering
adversary obtains pk and can replace sk with T (sk) where T is some arbitrary
tampering function. Then, the adversary gets access to an oracle Sign(T (sk), ·),
i.e., to a signing oracle running with the tampered key T (sk). As usual the ad-
versary wins the game by outputting a valid forgery with respect to the original
public key pk . Notice that T may be the identity function, in which case we get
the standard security notion of digital signature schemes.

Bellare and Kohno [8] pioneered the formal security analysis of cryptographic
schemes in the presence of related key attacks. In their setting an adversary
tampers continuously with the key by applying functions T chosen from a set
of admissible tampering functions T . In the signature example from above, each
signing query for message m would be accompanied with a tampering function
T ∈ T and the adversary obtains Sign(T (sk),m). Clearly, a result in the RKA
setting is stronger if the class of admissible functions T is larger, and hence
several recent works have focussed on further broadening T . The current state of
the art (see discussion in Section 1.2) considers certain algebraic relations of the
key, e.g., T is the set of all affine functions or all polynomials of bounded degree.
A natural question that arises from these works is if we can further broaden the
class of tampering functions — possibly showing security for arbitrary relations.
In this work, we study this question and show that under certain assumptions
security against arbitrary key relations can be achieved.

Is arbitrary key tampering possible? Unfortunately, the answer to the above
question in its most general form is negative. As shown by Gennaro et al. [25], it
is impossible to protect any cryptographic scheme against arbitrary key relations.
In particular, there is an attack that allows to recover the secret key of most
stateless cryptographic primitives after only a few number of tampering queries.1

To prevent this attack the authors propose to use a self-destruct mechanism.
That is, before each execution of the cryptographic scheme the key is checked
for its validity. In case the key was changed the device self-destructs. In practice,
such self-destruct can for instance be implemented by overwriting the secret
key with the all-zero string, or by switching to a special mode in which the
device outputs ⊥.2 In this work, we consider an alternative setting to avoid the

1 The impossibility result of [25] leaves certain loopholes, which however seem very
hard to exploit.

2 We notice that the self-destruct has to be permanent as otherwise the attack of [25]
may still apply.
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impossibility results of [25], and assume that an adversary can only carry out a
bounded number of (say t) tampering queries. To explain our setting consider
again the example of a digital signature scheme. In our model, we give the
adversary access to t tampered signing oracles Sign(Ti(sk), ·), where Ti can be
an arbitrary adaptively chosen tampering function. Notice that of course each of
these oracles can be queried a polynomial number of times, while t is typically
linear in the security parameter.

Is security against bounded tampering useful? Besides from being a natural and
non-trivial security notion, we believe that our adversarial model of arbitrary,
bounded tampering is useful for a number of reasons:

1. It is a natural alternative to continuous restricted tampering: our security
notion of bounded, arbitrary tampering is orthogonal to the traditional set-
ting of RKA security where the adversary can tamper continuously but is
restricted to certain classes of attacks. Most previous work in the RKA set-
ting considers algebraic key relations that are tied to the scheme’s algebra
and may not reflect attacks in practice. For instance, it is not clear that
heating up the device or shooting with a laser on the memory can be de-
scribed by, e.g., an affine function — a class that is usually considered in the
literature. We also notice that physical tampering may completely destroy
the device, or may be detected by hardware countermeasures, and hence our
model of bounded but arbitrary tampering may be sufficient in such settings.

2. It allows to analyze the security of standard cryptoschemes: as outlined above
a common countermeasure to protect against arbitrary tampering is to im-
plement a key validity check and self-destruct (or output a special failure
symbol) in case such check fails. Unfortunately, most standard cryptographic
implementations do not come with such a built-in procedure to check the
validity of the key. Our notion of bounded tamper resilience allows to make
formal security guarantees of standard cryptographic schemes where neither
the construction, nor the implementation needs to be specially engineered.

3. It can be a useful as a building-block: even if the restriction of bounded
tamper resilience may be too strong in some settings, it can be useful to
achieve results in the stronger continuous tampering setting (we provide
some first preliminary results on this in the full version [17]). Notice that
this is similar to the setting of leakage resilient cryptography which also
started mainly with “bounded leakage” that later turned out to be very
useful to get results in the continuous leakage setting.

We believe that due to the above points the bounded tampering model is an in-
teresting alternative to avoid known impossibility results for arbitrary tampering
attacks.

1.1 Our Contribution

We initiate a general study of schemes resilient to both bounded tamper and
leakage attacks. We call this model the bounded leakage and tampering model
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Table 1. An overview of our results for bounded leakage and tamper resilience. All
parameters |X |, |Y| �, p and n are a function of the security parameter k. For the case
of Σ-protocol, the set X is the set of all possible witnesses and the set Y is the set of
all possible statements for the language; we can achieve a better bound depending on
the conditional average min-entropy of the witness given the statement (cf. Section 3).

Tampering Model ID Schemes IND-CCA PKE
Σ-Protocols Okamoto BHHO

Secret Key � � �
Public Parameters n.a. � n.a.
Continuous Tampering iFloppy � � �
Key Length log |X | � log p � log p
Tampering Queries �log |X |/ log |Y|� − 2 �− 2 �− 3

(BLT) model. While our general techniques use ideas from the leakage realm,
we emphasize that bounded leakage resilience does not imply bounded tamper
resilience. In fact, it is easy to find contrived schemes that are leakage resilient
but completely break for a single tampering query. At a more technical level, we
observe that a trivial strategy using leakage to simulate, e.g., faulty signatures,
has to fail as the adversary can get any polynomial number of faulty signatures
— which clearly cannot be simulated with bounded leakage only. Nevertheless,
as we show in this work, we are able to identify certain classes of cryptoschemes
for which a small amount of leakage is sufficient to simulate faulty outputs. We
discuss this in more detail below.

Our concrete schemes are proven secure under standard assumptions (DL,
factoring or DDH) and are efficient and simple. Moreover, we show that our
schemes can easily be extended to the continual setting by putting an additional
simple assumption on the hardware. We elaborate more on our main contribu-
tions in the following paragraphs (see also Table 1 for an overview of our results).
Importantly, all our results allow arbitrary key tampering and do not need any
kind of tamper detection mechanism.

Identification schemes. It is well known that the Generalized Okamoto identi-
fication scheme [34] provides security against bounded leakage from the secret
key [3,30]. In Section 3, we show that additionally it provides strong security
against tampering attacks. While in general the tampered view may contain
a polynomial number of faulty transcripts that may potentially reveal a large
amount of information about the secret key, we can show that fortunately this
is not the case for the Generalized Okamaoto scheme. More concretely, we are
able to identify a short amount of information that for each tampering query al-
lows us to simulate any number of corresponding faulty transcripts. Hence, BLT
security of the Generalized Okamoto scheme is implied by its leakage resilience.

Our results on the Okamoto identification can be further generalized to a large
class of identification schemes (and signature schemes based on the Fiat-Shamir
heuristic). More concretely, we show that Σ-protocols where the secret key is
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significantly longer than the public key are BLT secure. We can instantiate our
result with the generalized Guillou-Quisquater ID scheme [27], and its variant
based on factoring [24] yielding tamper resilient identification based on factoring.
We give more details in Section 3.

Interestingly, for Okamoto identification security still holds in a stronger
model where the adversary is allowed to tamper not only with the secret key
of the prover, but also with the description of the public parameters (i.e., the
generator g of a group G of prime order p). The only restrictions are: (i) tamper-
ing with the public parameters is independent from tampering with the secret
key and (ii) the tampering with public parameters must map to its domain. We
also show that the latter restrictions are necessary, by presenting explicit at-
tacks when the adversary can tamper jointly with the secret key and the public
parameters or he can tamper the public parameters to some particular range.

Public key encryption. We show how to construct IND-CCA secure public key
encryption (PKE) in the BLT model. To this end, we first introduce a weaker
CPA-like security notion, where an adversary is given access to a restricted
(faulty) decryption oracle. Instead of decrypting adversarial chosen ciphertexts
such an oracle accepts inputs (m, r), encrypts the messagem using randomness r
under the original public key, and returns the decryption using the faulty secret
key. This notion already provides a basic level of tamper resilience for public
key encryption schemes. Consider for instance a setting where the adversary can
tamper with the decryption key, but has no control over the ciphertexts that
are sent to the decryption oracle, e.g., the ciphertexts are sent over a secure
authenticated channel.

Our notion allows the adversary to tamper adaptively with the secret key;
intuitively this allows him to learn faulty decryptions of ciphertexts for which he
already knows the corresponding plaintext (under the original public key) and
the randomness. We show how to instantiate our basic tamper security notion
under DDH. More concretely, we prove that the BHHO cryptosystem [12] is BLT
and CPA secure. The proof uses similar ideas as in the proof of the Okamoto
identification scheme.

We then show how to transform our extended CPA-like notion to CCA security
in the BLT model. To this end, we follow the classical paradigm to transform
IND-CPA security into IND-CCA security by adding an argument of “plaintext
knowledge” π to the ciphertext. Our transformation requires a public tamper-
proof common reference string similar to earlier work [29]. Intuitively, this works
because the argument π enforces the adversary to submit to the faulty decryption
oracle only ciphertexts for which he knows the corresponding plaintext (and the
randomness used to encrypt it). The pairs (m, r) can then be extracted from
the argument π, allowing to reduce IND-CCA BLT security to our extended
IND-CPA security notion.

Updating the key in the iFloppy model. As mentioned earlier, if the key is not
updated BLT security is the best we can hope for when we consider arbitrary
tampering. To go beyond the bound of |sk | tampering queries we may regularly
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update the secret key with fresh randomness, which renders information that the
adversary has learned about earlier keys useless. The effectiveness of key updates
in the context of tampering attacks has first been used in the important work of
Kalai et al. [29]. We follow this idea but add an additional hardware assumption
that allows for much simpler and more efficient key updates. More concretely, we
propose the iFloppy model which is a variant of the floppy model proposed by
Alwen et al. [3] and recently studied in depth by Agrawal et al. [2]. In the floppy
model a user of a cryptodevice possesses a so-called floppy – a secure hardware
token – that stores an update key.3 The floppy is leakage and tamper proof
and the update key that it holds is solely used to refresh the actual secret key
kept on the cryptodevice. One may think of the floppy as a particularly secure
device that the user keeps at home, while the cryptodevice, e.g., a smart-card,
runs the actual cryptographic task and is used out in the wild prone to leakage
and tampering attacks. We consider a variant called the iFloppy model (here “i”
stands for individual). While in the floppy model of [2,3] all users can potentially
possess an identical hardware token, in the iFloppy model we require that each
user has an individual floppy storing some secret key related data. We note that
from a practical point of view the iFloppy model is incomparable to the original
floppy model. It may be more cumbersome to produce personalized hardware
tokens, but on the other hand, in practice one would not want to distribute
hardware tokens that all contain the same global update key as this constitutes
a single point of failure.

We show in the iFloppy model a simple compiler that “boosts” any ID scheme
with BLT security into a scheme with continuous leakage and tamper resilience
(CLT security). Similarly, we show how to extend IND-CCA BLT security to the
CLT setting for the BHHO cryptosystem (borrowing ideas from [2]). We empha-
size that while the iFloppy model puts additional requirements on the way users
must behave in order to guarantee security, it greatly simplifies cryptographic
schemes, and allows us to base security on standard assumptions. Our results in
the iFloppy model are mainly deferred to the full version [17].

Tampering with the computation via the BRM. Finally, we make a simple obser-
vation showing that if we instantiate the above ID compiler with an ID scheme
that is secure in the bounded retrieval model [15,20,3] we can provide security
in the iFloppy model even when the adversary can replace the original cryp-
toscheme with an arbitrary adversarial chosen functionality, i.e., we can allow
arbitrary tampering with the computation (see the full version [17]). While easy
to prove, we believe this is nevertheless noteworthy: it seems to us that results
in the BRM naturally provide some form of tamper resilience and leave it as an
open question for future research to explore this direction further.

3 Notice that “floppy” is just terminology and we use it for consistency with earlier
works.
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1.2 Previous Work

Related key security. We already discussed the relation between BLT security
and the traditional notion of RKA security above. Below we give further details
on some important results in the RKA area. Bellare and Kohno [8] initiated the
theoretical study of related-key-attacks. Their result mainly focused on symmet-
ric key primitives (e.g. PRP, PRF). They proposed various block-cipher based
constructions which are RKA-secure against certain restricted classes of tam-
pering functions. Their constructions were further improved by [32,6]. Following
these works other cryptographic primitives were constructed that are provably
secure against certain classes of related key attacks. Most of these works con-
sider rather restricted tampering functions that, e.g., can be described by a linear
or affine function [8,32,6,5,35,37,10]. A few important exceptions are described
below.

In [9] the authors show how to go beyond the linear barrier by extending
the class of allowed tampering functions to the class of polynomials of bounded
degree for a number of public-key primitives. Also, the work of Goyal, O’Neill and
Rao [26] considers polynomial relations that are induced to the inputs of a hash
function. Finally Bellare, Cash and Miller [7] develop a framework to transfer
RKA security from a pseudorandom function to other primitives (including many
public key primitives).

Tamper resilient encodings. A generic method for tamper protection has been
put forward by Gennaro et al. [25]. The authors propose a general “compiler”
that transforms any cryptographic device CS with secret state st, e.g., a block
cipher, into a “transformed” cryptoscheme CS′ running with state st′ that is
resilient to arbitrary tampering with st′. In their construction the original state
is signed and the signature is checked before each usage. While the above works
for any tampering function, it is limited to settings where CS does not change
its state as it would need access to the secret signing key to authenticate the
new state. This drawback is resolved by the concept of non-malleable codes
pioneered by Dziembowski, Pietrzak and Wichs [21]. The original construction
of [21] considers an adversary that can tamper independently with bits. This has
been extended to small size blocks in [13], and recently to so-called split-state
tampering [31,1]. While the above schemes provide surprisingly strong security
guarantees, they all require certain assumptions on the hardware (e.g., the mem-
ory has to be split into two parts that cannot tampered with jointly), and require
significant changes to the implementation for decoding, tamper detection and
self-destruct.

Continuous tamper resilience via key updates. Kalai et al. [29] provide first fea-
sibility results in the so-called continuous leakage and tampering model (CLT).
Their constructions achieve strong security requirements where the adversary
can arbitrarily tamper continuously with the state. This is achieved by up-
dating the secret key after each usage. While the tampering adversary consid-
ered in [29] is clearly stronger (continuous as opposed to bounded tampering),



Bounded Tamper Resilience: How to Go beyond the Algebraic Barrier 147

the proposed schemes are non-standard, rather inefficient and rely on non-
standard assumptions. Moreover, the approach of key updates requires a stateful
device and large amounts of randomness which is costly in practice. The main
focus of this work, are simple standard cryptosystems that neither require ran-
domness for key updates nor need to keep state.

Tampering with computation. In all the above works (including ours) it is as-
sumed that the circuitry that computes the cryptographic algorithm using the
potentially tampered key runs correctly and is not subject to tampering attacks.
An important line of works analyze to what extend we can guarantee security
when the complete circuitry is prone to tampering attacks [28,22,16]. These
works typically consider a restricted class of tampering attacks (e.g., individual
bit tampering) and assume that large parts of the circuit (and memory) remain
un-tampered.

2 Preliminaries

For space reasons, we defer some of the basic definitions to the full version [17].

Basic notation. We review the basic terminology used throughout the paper. For
n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s← S to denote that
element s is sampled uniformly from S. If A is an algorithm, y ← A(x) denotes
an execution of A with input x and output y; if A is randomized, then y is a
random variable. Vectors are denoted in bold. Given a vector x = (x1, . . . , x�)
and some integer a, we write ax for the vector (ax1 , . . . , ax�).

We denote with k the security parameter. A function δ(k) is called negligible
in k (or simply negligible) if it vanishes faster than the inverse of any polynomial
in k. A machine A is called probabilistic polynomial time (PPT) if for any input
x ∈ {0, 1}∗ the computation of A(x) terminates in at most poly(|x|) steps and A
is probabilistic (i.e., it uses randomness as part of its logic). Random variables
are usually denoted by capital letters. We sometimes abuse notation and denote
a distribution and the corresponding random variable with the same capital
letter, say X .

Languages and relations. A decision problem related to a language L ⊆ {0, 1}∗
requires to determine if a given string y is in L or not. We can associate to any
NP-language L a polynomial-time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗
defining L itself, i.e. L = {y : ∃x s.t. (y, x) ∈ R} for |x| ≤ poly(|y|). The string
x is called a witness for membership of y ∈ L.

Information theory. The min-entropy of a random variable X over a set X
is defined as H∞(X) := − logmaxx Pr [X = x], and measures how X can be
predicted by the best (unbounded) predictor. The conditional average min-
entropy [19] of X given a random variable Z (over a set Z) possibly depen-

dent on X , is defined as H̃∞(X |Z) := − logEz←Z [2
−H∞(X|Z=z)]. Following [3],
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we sometimes rephrase the notion of conditional min-entropy in terms of pre-
dictors A that are given some information Z (presumably correlated with X),

so H̃∞(X |Z) = − log(maxA Pr [A(Z) = X ]). The above notion of conditional
min-entropy can be generalized to the case of interactive predictors A, which
participate in some randomized experiment E . An experiment is modeled as
interaction between A and a challenger oracle E(·) which can be randomized,
stateful and interactive.

Definition 1 ([3]). The conditional min-entropy of a random variable X, con-

ditioned on the experiment E is H̃∞(X |E) = − log(maxA Pr
[
AE(·)() = X

]
). In

the special case that E is a non-interactive experiment which simply outputs a
random variable Z, then H̃∞(X |Z) can be written to denote H̃∞(X |E) abusing
the notion.

We will rely on the following basic properties (see [19, Lemma 2.2]).

Lemma 1. For all random variables X,Z and Λ over sets X , Z and {0, 1}λ
such that H̃∞(X |Z) ≥ α, we have

H̃∞(X |Z,Λ) ≥ H̃∞(X |Z)− λ ≥ α− λ.

3 ID Schemes with BLT Security

In an identification scheme a prover tries to convince a verifier of its identity
(corresponding to its public key pk ). Formally, an identification scheme is a
tuple of algorithms ID = (Setup,Gen,P,V) defined as follows:

pp ← Setup(1k): Algorithm Setup takes the security parameter as input and
outputs public parameters pp. The set of all public parameter is denoted by
PP.

(pk , sk) ← Gen(1k): Algorithm Gen outputs the public key and the secret key
corresponding to the prover’s identity. The set of all possible secret keys is
denoted by SK.

(P,V): We let (P(pp, sk) � V(pp))(pk ) denote the interaction between prover
P (holding sk and using public parameters pp) and verifier V on common
input pk . Such interaction outputs a result in {accept , reject}, where accept
means P’s identity is considered as valid.

Definition 2. Let λ = λ(k), t = t(k) and δ = δ(k) be parameters and let T be
some set of functions such that T ∈ T has a type T : SK×PP → SK×PP. We
say that ID is (λ, t, δ)-bounded leakage and tamper secure (in short BLT-secure)
against impersonation attacks with respect to T if the following properties are
satisfied.

(i) Correctness. For all pp ← Setup(1k) and (pk , sk) ← Gen(1k) we have that
(P(pp, sk) � V(pp))(pk ) outputs accept .

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ δ(k) in the
following game:
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1. The challenger runs pp ← Setup(1k) and (pk , sk)← Gen(1k), and gives
(pp, pk) to A.

2. The adversary is given oracle access to P(pp, sk) that outputs polynomi-
ally many proof transcripts with respect to secret key sk.

3. The adversary may adaptively ask t tampering queries. During the ith
query, A chooses a function Ti ∈ T and gets oracle access to P(p̃pi, s̃k i),

where (s̃k i, p̃pi) = Ti(sk , pp). The adversary can interact with the oracle

P(p̃pi, s̃k i) a polynomially number of times, where it uses the tampered

secret key s̃k i and the public parameter p̃pi.

4. The adversary may adaptively ask leakage queries. In the jth query, A
chooses a function Lj : {0, 1}∗ → {0, 1}λj and receives back the output
of the function applied to sk.

5. The adversary loses access to all other oracles and interacts with an
honest verifier V (holding pk). We say that A wins if (A � V(pp))(pk )
outputs accept and

∑
j λj ≤ λ.

Notice that in the above definition the leakage is from the original secret key
sk . This is without loss of generality as our tampering functions are modeled as
deterministic circuits.

In a slightly more general setting, one could allow A to leak on the original
secret key also in the last phase where it has to convince the verifier. In the
terminology of [3] this is reminiscent of so-called anytime leakage attacks. Our
results can be generalized to this setting, however we stick to Definition 2 for
simplicity.

The rest of this section is organized as follows. In Section 3.1 we prove that
a large class of Σ-protocols are secure in the BLT model, where the tampering
function is allowed to modify the secret state of the prover but not the public
parameters. In Section 3.2 we look at a concrete instantiation based on the
Okamoto ID scheme, and prove that this construction is secure in a stronger
model where the tampering function can modify both the secret state of the
prover and the public parameters (but independently). Finally, in Section 3.3 we
illustrate that the latter assumption is necessary, as otherwise the Okamoto ID
scheme can be broken by (albeit contrived) attacks.

3.1 Σ-protocols Are Tamper Resilient

We start by considering ID schemes based on Σ-protocols [14]. Σ-protocols are
a special class of interactive proof systems for membership in a language L,
where a prover P = (P0,P1) wants to convince a verifier V = (V0,V1) (both
modelled as PPT algorithms) that a shared string y belongs to L. Denote with
x the witness corresponding to y and let pp be public parameters. The protocol
proceeds as follows: (1) The prover computes a ← P0(pp) and sends it to the
verifier; (2) The verifier chooses c← V0(pp, y) uniformly at random and sends it
to the prover; (3) The prover answers with z ← P1(pp, (a, c, x)); (4) The verifier
outputs a result V1(pp, y, (a, c, z)) ∈ {accept , reject}. We call this a public-coin
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ID Scheme from Σ-Protocol

Let ((P0,P1), (V0,V1)) be a Σ-protocol for a relation R.

Setup(1k): Sample public parameters pp ← PP for the underlying relation
R.

Gen(1k): Output a pair (y, x) ∈ R, where x ∈ X and y ∈ Y and |x| is
polynomially bounded by |y|.

(P(pp, x) � V(pp))(y): The protocol works as follows.
1. The prover sends a ← P0(pp) to the verifier.
2. The verifier chooses a random challenge c ← V0(pp, y) and sends it to

the prover.
3. The prover computes the answer z ← P1(pp, (a, c, x)).
4. The verifier accepts iff V1(pp, y, (a, c, z)) outputs accept .

Fig. 1. ID scheme based on Σ-protocol for relation R

three round interactive proof system. A formal definition of Σ-protocols can be
found in the full version [17].

It is well known that Σ-protocols are a natural tool to design ID schemes.
The construction is depicted in Figure 1. Consider now the class of tampering
functions Tsk ⊂ T such that T ∈ Tsk has the following form: T = (T sk , IDpp)
where T sk : SK → SK is an arbitrary polynomial time computable function and
IDpp : PP → PP is the identity function. This models tampering with the secret
state of P without changing the public parameters (these must be hard-wired
into the prover’s code). The proof of the following theorem (which appears in
the full version [17]) uses ideas of [3], but is carefully adjusted to incorporate
tampering attacks.

Theorem 1. Let k ∈ N be the security parameter and let (P,V) be a Σ-protocol
for relation R with |Y| = O(klog k), such that the representation problem is hard
for R. Assume that conditioned on the distribution of the public input y ∈ Y, the
witness x ∈ X has high average min entropy β, i.e., H̃∞(X |Y ) ≥ β. Then, the
ID scheme of Figure 1 is (λ(k), t(k), negl (k))-BLT secure against impersonation
attacks with respect to Tsk, where

λ ≤ β − t log |Y| − k and t ≤
⌊

β

log |Y|

⌋
− 1.

3.2 Concrete Instantiation with More Tampering

We extend the power of the adversary by allowing him to tamper not only
with the witness, but also with the public parameters (used by the prover to
generate the transcripts). However the tampering has to be independent on the
two components. This is reminiscent of the so-called split-state model (considered
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Generalized Okamoto ID Scheme

Let � = �(k) be some function of the security parameter. Consider the following
identification scheme.

Setup: Choose a group G of prime order p with generator g and a vector
α ← Z�

p, and output pp = (G, g, gα) where gα = (g1, . . . , g�).

Gen(1k): Select a vector x ← Z�
p and set y = pk =

∏�
i=1 g

xi
i and sk = x.

(P(pp, sk) � V(pp))(pk): The protocol works as follows.
1. The prover chooses a random vector r ← Z�

p and sends a =
∏�

i=1 g
ri
i

to the verifier.
2. The verifier chooses a random challenge c ← Zp and sends it to the

prover.
3. The prover computes the answer z = (r1 + cx1, . . . , r� + cx�).
4. The verifier accepts if and only if

∏�
i=1 g

zi
i = a · yc.

Fig. 2. Generalized Okamoto Identification Scheme

for instance in [31]), with the key difference that in our case the secret state does
not need to be split into two parts.

We model this through the following class of tampering functions Tsplit: We
say that T ∈ Tsplit if we can write T = (T sk , T pp) where T sk : SK → SK and
T pp : PP → PP are arbitrary polynomial time computable functions. Recall
that the input/output domains of T sk , T pp are identical, hence the size of the
witness and the public parameters cannot be changed. As we show in the next
section, this restriction is necessary. Note also that Tsk ⊆ Tsplit ⊆ T .

Generalized Okamoto. Consider the generalized version of the Okamoto ID
scheme [34], depicted in Figure 2. The underlying hard relation here is the rela-
tion RDL and the representation problem for RDL is the �-representation problem
in a group G. As proven in [3], this problem is equivalent to the Discrete Log
problem in G. The proof of the following corollary appears in the full version [17].

Corollary 1. Let k ∈ N be the security parameter and assume the Discrete Log
problem is hard in G. Then, the generalized Okamoto ID scheme is (λ(k), t(k),
negl(k))-BLT secure against impersonation attacks with respect to Tsplit, where

λ ≤ (�− 1− t) log(p)− k and t ≤ �− 2.

3.3 Some Attacks

We show that for the Okamoto scheme it is hard to hope for BLT security
beyond the class of tampering functions Tsplit. We illustrate this by concrete
attacks which work in case one tries to extend the power of the adversary in two
different ways: (1) Allowing A to tamper jointly with the witness and the public
parameters; (2) Allowing A to tamper independently with the witness and with
the public parameters but increase their size.
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Tampering jointly with the public parameters. Consider the class of functions T
introduced in Definition 2.

Claim. The generalized Okamoto ID scheme is not BLT-secure against imper-
sonation attacks with respect to T .

Proof. The attack uses a single tampering query. Define the tampering function
T (x, pp) = (x̃, p̃p) to be as follows:

- The witness is unchanged, i.e., x = x̃.
- The value p̃ is some prime of size |p̃| ≈ |p| such that the Discrete Log

problem is easy in the corresponding group G̃. (This can be done efficiently
by choosing p̃− 1 to be the product of small prime (power) factors [36].)

- Let g̃ be a generator of G̃ (which exists since p̃ is a prime) and define the
new generators as g̃i = g̃xi mod p̃.

Consider now a transcript (a, c, z) produced by a run of P(p̃p,x). We have

a = g̃
∑�

i=1 xiri mod p̃ for random ri ∈ Zp̃. By computing the Discrete Log of

a in base g̃ (which is easy by our choice of G̃), we get one equation
∑�

i=1 xiri =
logg̃(a) mod p̃. Asking for polynomially many transcripts, yields � linearly inde-
pendent equations (with overwhelming probability) and thus allows to solve for
(x1, . . . , x�). (Note here that with high probability xi mod p = xi mod p̃ since
|p| ≈ |p̃|.)

Tampering by “inflating” the prime p. Consider the following class of tampering
functions Tsplit ⊆ T ∗

split: We say that T ∈ T ∗
split if T = (T sk , T pp), where T sk :

SK → {0, 1}∗ and T pp : PP → {0, 1}∗.

Claim. The generalized Okamoto ID scheme is not BLT-secure against imper-
sonation attacks with respect to T ∗

split.

Proof. The attack uses a single tampering query. Consider the following tam-
pering function T = (T sk , T pp) ∈ T ∗

split:

- Choose p̃ to be a prime of size |p̃| = Ω(�|p|), such that the Discrete Log

problem is easy in G̃. (This can be done as in the proof of Claim 3.3.)

- Choose a generator g̃ of G̃; define g̃1 = g̃ and g̃j = 1 for all j = 2, . . . , �.
- Define the witness to be x̃ such that x̃1 = x1|| . . . ||x� and x̃j = 0 for all
j = 2, . . . , �.

Given a single transcript (a, c, z) the adversary learns a = g̃r1 for some r1 ∈ Zp̃.
Since the Discrete Log is easy in this group, A can find r1. Now the knowledge
of c and z1 = r1 + cx̃1, allows to recover x̃1 = (x1, . . . , x�).

3.4 BLT-Secure Signatures

It is well known that every Σ-protocol can be turned into a signature scheme
via the Fiat-Shamir heuristic [23]. By applying the Fiat-Shamir transformation
to the protocol of Figure 1, we get efficient BLT-secure signatures in the random
oracle model.



Bounded Tamper Resilience: How to Go beyond the Algebraic Barrier 153

4 IND-CCA PKE with BLT Security

We start by defining IND-CCA public key encryption (PKE) with BLT security.
A PKE scheme is a tuple of algorithms PKE = (Setup,KGen,Enc,Dec) defined
as follows. (1) Algorithm Setup takes as input the security parameter and out-
puts the description of public parameters pp; the set of all public parameters is
denoted by PP. (2) Algorithm KGen takes as input the security parameter and
outputs a public/secret key pair (pk , sk); the set of all secret keys is denoted
by SK and the set of all public keys by PK. (3) The randomized algorithm Enc
takes as input the public key pk , a message m ∈ M and randomness r ∈ R
and outputs a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is denoted
by C. (4) The deterministic algorithm Dec takes as input the secret key sk and
a ciphertext c ∈ C and outputs m = Dec(sk , c) which is either equal to some
message m ∈M or to an error symbol ⊥.

Definition 3. Let λ = λ(k), t = t(k) and δ = δ(k) be parameters and let Tsk
be some set of functions such that T ∈ Tsk has a type T : SK → SK. We say
that PKE is IND-CCA (λ(k), t(k), δ(k))-BLT secure with respect to Tsk if the
following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk , sk) ← KGen(1k) we have that
Pr[Dec(sk ,Enc(pk ,m)) = m] = 1 (where the randomness is taken over the
internal coin tosses of algorithm Enc).

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ 1
2 + δ(k) in

the following game:

1. The challenger runs pp ← Setup(1k), (pk , sk) ← KGen(1k) and gives
(pp, pk) to A.

2. The adversary is given oracle access to Dec(sk , ·). This oracle outputs
polynomially many decryptions of ciphertexts using secret key sk.

3. The adversary may adaptively ask t tampering queries. During the ith
query, A chooses a function Ti ∈ Tsk and gets oracle access to Dec(s̃k i, ·),
where s̃k i = Ti(sk). This oracle outputs polynomially many decryptions

of ciphertexts using secret key s̃k i.
4. The adversary may adaptively ask polynomially many leakage queries. In

the jth query, A chooses a function Lj : {0, 1}∗ → {0, 1}λj and receives
back the output of the function applied to sk.

5. The adversary outputs two messages of the same length m0,m1 ∈ M
and the challenger computes cb ← Enc(pk ,mb) where b is a uniformly
random bit.

6. The adversary keeps access to Dec(sk , ·) and outputs a bit b′. We say A
wins if b = b′,

∑
j λj ≤ λ and cb has not been queried for.

In case t = 0 we get the notion of leakage resilient IND-CCA from [33] as a
special case. Notice that A is not allowed to tamper with the secret key after
seeing the challenge ciphertext. As we show in the full version [17], this restriction
is necessary because otherwise A could overwrite the secret key depending on the
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plaintext encrypted in cb, and thus gain some advantage in guessing the value
of b by asking additional decryption queries.

We build an IND-CCA BLT-secure PKE scheme in two steps. In Section 4.1
we define a weaker notion which we call IND-CPA BLT security. In Section 4.2
we show a general transformation from IND-CPA BLT security to IND-CCA
BLT security relying on tSE NIZK proofs [18] in the common reference string
(CRS) model. The CRS is supposed to be tamper-free and must be hard-wired
into the code of the encryption algorithm; however tampering and leakage can
depend adaptively on the CRS and the public parameters. Finally, in Section 4.3,
we prove that a variant of the BHHO encryption scheme [33] satisfies our notion
of IND-CPA BLT security.

4.1 IND-CPA BLT Security

The main idea of our new security notion is as follows. Instead of giving A
full access to a tampering oracle (as in Definition 3) we restrict his power by
allowing him to see the output of the (tampered) decryption oracle only for
ciphertexts c for which A already knows both the corresponding plaintext m
and the randomness r used to generate c (via the real public key). Essentially
this restricts A to submit to the tampering oracle only “well-formed” ciphertexts.

Definition 4. Let λ = λ(k), t = t(k) and δ = δ(k) be parameters and let Tsk be
some set of functions such that T ∈ Tsk has a type T : SK → SK. We say that
PKE is IND-CPA (λ(k), t(k), δ(k))-BLT secure with respect to Tsk if it satisfies
property (i) of Definition 3 and property (ii) is modified as follows:

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ 1
2 + δ(k) in

the following game:

1. The challenger runs pp ← Setup(1k), (pk , sk) ← KGen(1k) and gives
(pp, pk) to A.

2. The adversary may adaptively ask t tampering queries. During the ith
query, A chooses a function Ti ∈ Tsk and gets oracle access to
Dec∗(s̃k i, ·, ·), where s̃k i = Ti(sk ). This oracle answers polynomially
many queries of the following form: Upon input a pair (m, r) ∈M×R,

compute c← Enc(pk ,m; r) and output a plaintext m̃ = Dec(s̃k i, c) using
the current tampered key.

3. The adversary may adaptively ask leakage queries. In the jth query, A
chooses a function Lj : {0, 1}∗ → {0, 1}λj and receives back the output
of the function applied to sk.

4. The adversary outputs two messages of the same length m0,m1 ∈ M
and the challenger computes cb ← Enc(pk ,mb) where b is a uniformly
random bit.

5. The adversary loses access to all oracles and outputs a bit b′. We say
that A wins if b = b′ and

∑
j λj ≤ λ.
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From IND-CPA BLT Security to IND-CCA BLT Security

Let PKE = (Setup,KGen,Enc,Dec) be a PKE scheme and (Gen,Prove,Verify)
be a tSE NIZK argument system for the relation:

RPKE = {(pk , c), (m,r) : c = Enc(pk ,m; r)} .

Define the following PKE scheme PKE ′ = (Setup′,KGen′,Enc′,Dec′).

Setup′: Sample pp ← Setup(1k) and (ω, tk, ek) ← Gen(1k) and let pp′ =
(pp, ω).

KGen′: Run (pk , sk) ← KGen(1k) and set pk ′ = pk and sk ′ = sk .
Enc′: Sample r ← R and compute c ← Enc(pk , m; r). Output (c, π), where

π ← Proveω((pk , c), (m, r)).
Dec′: Check that Verifyω((pk , c), π) = 1. If not output ⊥; otherwise, output

m = Dec(sk , c).

Fig. 3. How to transform IND-CPA BLT-secure PKE into IND-CCA BLT-secure PKE

4.2 A General Transformation

We compile an arbitrary IND-CPA BLT-secure encryption scheme into an IND-
CCA BLT-secure one by appending to the ciphertext c an argument of “plaintext
knowledge” π computed through a tSE NIZK argument system. The same con-
struction has been already used by Dodis et al. [18] to go from IND-CPA security
to IND-CCA security in the context of memory leakage.

The intuition why the transformation works is fairly simple: The argument
π enforces the adversary to submit to the tampered decryption oracle only ci-
phertexts for which he knows the corresponding plaintext (and the randomness
used to encrypt it). In the security proof the pair (m, r) can indeed be extracted
from such argument, allowing to reduce IND-CCA BLT security to IND-CPA
BLT security.

Theorem 2. Let k ∈ N be the security parameter. Assume that PKE is an
IND-CPA (λ(k), t(k), δ(k))-BLT secure encryption scheme and that (Gen,Prove,
Verify) is a strong tSE NIZK argument system for relation RPKE. Then, the
encryption scheme PKE ′ of Figure 3 is IND-CCA (λ(k), t(k), δ′(k))-BLT secure
for δ′ ≤ δ + negl(k).

Proof. We prove the theorem by a series of games. All games are a variant of
the IND-CCA BLT game and in all games the adversary gets correctly gener-
ated public parameters (pp, ω, pk). Leakage and tampering queries are answered
using the corresponding secret key sk . The games will differ only in the way the
challenge ciphertext is computed or in the way the decryption oracles work.

Game G1. This is the IND-CCA BLT game of Definition 3 for the scheme
PKE ′. Note in particular that all decryption oracles expect to receive as
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input a ciphertext of the form (c, π) and proceed to verify the proof π
before decrypting the ciphertext (and output ⊥ if such verification fails).
The challenge ciphertext is a pair (cb, πb) such that cb = Enc(pk ,mb; r) and
πb ← Proveω((pk , cb), (mb, r)), wheremb ∈ {m0,m1} for a uniformly random
bit b. By assumption we have that

Pr [A wins in G1] ≤
1

2
+ δ′(k).

Game G2. In this game we change the way the challenge ciphertext is computed
by replacing the argument πb with a simulated argument πb ← S((pk , cb), tk).
It follows from the composable NIZK property of the argument system that
G1 and G2 are computationally close. In particular there exists a negligible
function δ1(k) such that |Pr [A wins in G1]− Pr [A wins in G2] | ≤ δ1(k).

Game G3. We change the way decryption queries are handled. Queries (c, π) to
Dec(sk , ·) (such that π accepts) are answered by running the extractor Ext
on π, yielding (m, r)← Ext((pk , c), π, ek), and returning m.

Queries (c, π) to Dec(s̃k i, ·) (such that π accepts) are answered as follows. We
first extract (m, r)← Ext((pk , c), π, ek) as above. Then, instead of returning

m, we recompute c = Enc(pk ,m; r) and return m̃ = Dec(s̃k i, c).
It follows from true simulation extractability that G2 and G3 are computa-
tionally close. The reason for this is that A gets to see only a single simulated
proof for a true statement (i.e., the pair (pk , cb)) and thus cannot produce
a pair (c, π) �= (cb, πb) such that the proof π accepts and Ext fails to ex-
tract the corresponding plaintext m. In particular there exists a negligible
function δ2(k) such that |Pr [A wins in G2]− Pr [A wins in G3] | ≤ δ2(k).

Game G4. In the last game we replace the ciphertext cb in the challenge with an
encryption of 0|mb|, whereas we still compute the proof as πb ← S((pk , cb), tk).
We claim that G3 and G4 are computationally close. This follows from IND-
CPA BLT-security of PKE . Assume there exists a distinguisher D between
G3 and G4. We build an adversary B breaking IND-CPA BLT security for
PKE . The adversary B uses D as a black-box as follows.
Reduction BD:

1. Receive (pp, pk) from the challenger, sample (ω, tk, ek) ← Gen(1k)
and give pp′ = (pp, ω) and pk ′ = pk to A.

2. Upon input a normal decryption query (c, π) from A, run the extrac-
tor to compute (m, r) ← Ext((pk , c), π, ek) and return m.

3. Upon input a tampering query Ti ∈ Tsk, forward Ti to the tam-
pering oracle for PKE . To answer a query (c, π), run the extrac-
tor to compute (m, r) ← Ext((pk , c), π, ek). Submit (m, r) to oracle

Dec∗(s̃k i, ·, ·) and receive the answer m̃. Return m̃ to A.
4. Upon input a leakage query Lj , forward Lj to the leakage oracle for
PKE .

5. When A outputs m0,m1 ∈ M, sample a random bit b′ and out-
put (mb′ , 0

|mb′ |). Let cb be the corresponding challenge ciphertext.
Compute πb ← S((pk , cb), tk) and forward (cb, πb) to A. Continue to
answer normal decryption queries (c, π) from A as above.
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6. Output whatever D does.
Notice that the reduction perfectly simulates the environment for A; in
particular cb is either the encryption of randomly chosen message among
(m0,m1) (as in G3) or an encryption of zero (as in G4). Since PKE is (λ, t, δ)-
BLT secure, it must be |Pr [A wins in G3]− Pr [A wins in G4] | ≤ δ(k).

As clearly Pr [A wins in G4] = 0, we have obtained

δ′ = |Pr [A wins in G1]− Pr [A wins in G4] |
≤ |Pr [A wins in G1]− Pr [A wins in G2] |+ |Pr [A wins in G2]

− Pr [A wins in G3] |+ |Pr [A wins in G3]− Pr [A wins in G4] |
≤ δ1(k) + δ2(k) + δ(k) = δ(k) + negl(k).

This concludes the proof.

4.3 Instantiation from BHHO

We show that the variant of the encryption scheme introduced by Boneh et
al. [12] used in [33] is IND-CPA BLT-secure. The proof relies on the observa-
tion that one can simulate polynomially many decryption queries for a given
tampered key by only leaking a bounded amount of information from the secret
key. Hence, security follows from leakage resilience. The formal description of
the scheme and the proof can be found in the full version [17].

5 Updating the Key in the iFloppy Model

We complement the results from the previous two sections by showing how to
obtain security against an unbounded number of tampering queries in the floppy
model of [3,2]. Recall that in this model we assume the existence of an external
tamper-free and leakage-free storage (the floppy), which is needed to refresh
the secret key on the tamperable device. An important difference between the
floppy model considered in this paper and the model of [2] is that in our case
the floppy can contain “user-specific” information, whereas in [2] it contains a
unique master key which in principle could be equal for all users. To stress this
difference, we refer to our model as the iFloppy model.

Clearly, the assumption of a unique master key makes production easier but
it is also a single point of failure in the system since in case the content of
the floppy is published (e.g., by a malicious user) the entire system needs to
be re-initialized.4 A solution for this is to assume that each floppy contains a
different master key as is the case in the iFloppy model, resulting in a trade-off
between security and production cost. Due to space restrictions, we defer the
formal definitions and proofs to the full version [17].

4 We note that in the schemes of [2] making the content of the floppy public does not
constitute a total breach of security; however the security proof completely breaks
down, leaving no security guarantee for the schemes at hand.
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Abstract. We initiate the investigation of gate-tampering attacks
against cryptographic circuits. Our model is motivated by the plausi-
bility of tampering directly with circuit gates and by the increasing use
of tamper resilient gates among the known constructions that are shown
to be resilient against wire-tampering adversaries. We prove that gate-
tampering is strictly stronger than wire-tampering. On the one hand,
we show that there is a gate-tampering strategy that perfectly simulates
any given wire-tampering strategy. On the other, we construct families
of circuits over which it is impossible for any wire-tampering attacker to
simulate a certain gate-tampering attack (that we explicitly construct).
We also provide a tamper resilience impossibility result that applies to
both gate and wire tampering adversaries and relates the amount of tam-
pering to the depth of the circuit. Finally, we show that defending against
gate-tampering attacks is feasible by appropriately abstracting and ana-
lyzing the circuit compiler of Ishai et al. [18] in a manner which may be
of independent interest. Specifically, we first introduce a class of compil-
ers that, assuming certain well defined tamper resilience characteristics
against a specific class of attackers, can be shown to produce tamper
resilient circuits against that same class of attackers. Then, we describe
a compiler in this class for which we prove that it possesses the necessary
tamper-resilience characteristics against gate-tampering attackers.

Keywords: tamper resilient circuits, attack modeling.

1 Introduction

Traditionally, cryptographic algorithms are designed under the assumption that
adversaries have black box access to the algorithms’ implementation and private
input. In this setting, the adversary chooses an input, supplies the algorithm
with it, receives the corresponding output, and it is not allowed to alter the
algorithm’s internals during its execution. This mode of interaction is usually
being modeled as a security game (e.g., chosen-ciphertext attack against an
encryption scheme or chosen message attack against a digital signature) and
the underlying cryptographic scheme is proven secure based on it. In reality
though, besides observing the algorithms’ input-output behaviour, an adversary
may also land physical attacks on the algorithm’s implementation. For instance,
she may learn the secret key of an encryption scheme by measuring the power
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consumed by the device during the encryption operation [23], or by measuring
the time needed for the encryption to complete [22]. Besides passive attacks,
the class of active attacks includes inducing faults to the computation [4,6,22],
exposing the device to electromagnetic radiation [14,28,29], and several others
[17,24,21,1,7,30]. Such attacks have proven to be a significant threat to the real-
world security of cryptographic implementations.

1.1 Related Work and Motivation

The work of [18] followed by [11,9] undertook the difficult task of modeling
and defending against adversaries that tamper directly with the implementation
circuit. In this setting the adversary is given access to a circuit equipped with
secret data stored in private memory; it is allowed to modify a bounded number
of circuit wires and/or memory gates in each circuit invocation. The objective is
to suitably modify the circuit operation so that tampering gives no (or -at least-
bounded) advantage to the adversary.

In [18] the adversary is allowed to tamper with a bounded number of wires or
memory gates in each computation, and for each component she may set its value
to 1, reset it to 0, or toggle its value. The tampering effect can be persistent, i.e.,
if the value of a circuit wire or memory gate is modified during one run, it re-
mains modified for all subsequent runs. Hence, the adversary can tamper with
the entire circuit by persistently tampering with a bounded number of wires in
each run. The proposed compiler, which is parameterized by t ∈ N, transforms
any boolean circuit C into C′, where C′ realizes the same functionality with C
and is secure against adversaries who tamper with up to t of its wires in each com-
putation, i.e., any adversary who tampers with up to t circuit wires of C′ in one
circuit invocation, cannot learn anything more about the circuit’s private infor-
mation than an adversary having black-box access to C. Formally, this notion is
captured by the following simulation-based security definition: for every PPT ad-
versary A tampering with C′, there exists a simulator S having black-box access
to C such that the output distribution of A and S are indistinguishable. The con-
struction is based on a randomized secret sharing scheme which shares the bit-
value of a wire in C among k wires, and then introduces redundancy by making
2kt copies of each wire, where k denotes the security parameter. The randomized
encoding guarantees that any tampering with C′ will produce an invalid encod-
ing with high probability, triggering the circuit’s self-destruction mechanism that
erases the circuit’s secret memory. Since this mechanism is also prone to tamper-
ing, the adversary could try to deactivate it so as to tamper with the rest of the
circuit while keeping the secret state intact. In order to prevent such a scenario,
C′ incorporates an error-propagationmechanism which permeates the circuit and
propagates errors induced by tampering attacks. The size of C′ is larger than C
by a factor of O(t · log3(1ε )) where ε represents the simulation error.

In [11] the authors consider a different adversarial model, in which the adver-
sary is allowed to tamper with every circuit wire, but each tampering attempt
fails with probability δ ≥ 0 (noisy tampering). Moreover, they put forward a
relaxed security definition in which the simulator does not have black-box access
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to the circuit, but requires logarithmically many bits of information about the
circuit’s secret memory. The resulting circuit is augmented by a O(δ−1 log(1ε ))
factor for the simulation to fail with probability at most ε. Furthermore, it uses
no randomness during execution and consists of subcircuits which perform com-
putations over Manchester encodings, which encode a single bit into four bits.
For each subcircuit, the compiler randomly encodes the 0,1-bits to elements in
{0, 1}4\{0000}, and employs tamper-proof gates that handle computations over
these encodings. If the inputs are invalid, the gates output 0000 and the er-
ror propagates to the self-destruction mechanism, which is similar to the one
employed in [18] but uses some additional tamper-proof gadgets. Besides error
propagation and memory erasure, the self-destruction mechanism verifies that
all subcircuits produce consistent outputs. Hence, in order to alter the compu-
tation effectively, an adversary needs to tamper with all k subcircuits in a way
such that (i) all attacks produce valid, probably different due to randomization,
encodings, and (ii) the encodings must produce the same decoded output. As it
is proved in [11], this happens with negligible probability in k.

The adversarial model considered in [9] is similar to [18]. The main difference
is that now persistent tampering is not allowed on circuit wires and, similarly,
to [11] the simulator is allowed a logarithmic amount of leakage from the com-
putation. Regarding the construction, [9] combines error-correcting codes and
probabilistically checkable proofs of proximity (PCPP) in the following way: the
circuit’s secret state s and input x are encoded into S and X, respectively. Then
the transformed circuit computes1 y = Cs(x) and a PCPP proof π for the va-
lidity of the tuple (y,S ◦ X) with respect to the error-correcting code and C.
The proof is verified by polynomially many verifiers who output 1 in case of
validity, and 0 otherwise, and their output (i) is fed to a (tamper-proof) AND
gate with unbounded fan-in and fan-out that erases the circuit’s secret state if
a verifier rejects π, and (ii) together with y they feed a (tamper-proof) AND
gate with unbounded fan-in and one output wire, which is the circuit’s output
wire. If one of the verifiers outputs 0, then the circuit outputs the zero bit. The
resulting circuit size is polynomial on the input circuit but a constant ratio of
wire tampering can be tolerated.

Besides tampering against circuits’ wires or memory gates, some works con-
sider adversaries who tamper exclusively with memory gates [15,25,10,8]. In [15]
the authors give an impossibility result on tamper resilience by showing that
without using secure hardware an adversary can extract the circuit’s private in-
formation, by sequentially setting or resetting the memory bits and observing
the tampering effects on the circuit output. Apparently, [18,11,9] circumvent the
impossibility result by erasing the private information in case of error detection.
In [25] the authors consider adversaries who tamper and probe with the circuits’
private memory and they give an impossibility result for circuits that do not have
access to a source of random bits, with respect to both tampering and probing
attacks. [10] introduces the notion of non-malleable codes. Such codes ensure
that any adversary who tampers with a codeword, with respect to some specific

1 Their construction [9] considers circuits that output one bit.
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class of tampering functions, will either lead the decoding algorithm to output
⊥, or output a codeword which is irrelevant to the original word. Moreover,
they show how to construct non-malleable codes for specific classes of tampering
functions. Finally, in [8] the authors introduce the notion of Built-in Tamper
Resilience, which defines security for cryptographic protocols where some of the
parties are implemented by hardware tokens that resist tampering attacks.

The above state of the art in tamper resilient circuits suggests a fundamental
issue that is a source of theoretical motivation for our work. While tampering
circuit wires seems to be a strong adversarial model, recent constructions do
heavily exploit tamper-proof gates (e.g., the gate with unbounded high fan-in in
[9]). This suggests that tampering gates directly might be an even stronger (and
possibly in some cases even more plausible) adversarial model; how do wire and
gate adversaries fare against each other? and is it possible to protect against
both? what are the upper bounds in terms of amount of tampering that can
be tolerated? Our work initiates the investigation of gate-tampering attacks and
takes steps towards answering all those questions as explained below.

Besides its theoretical interest, our work is also motivated by practical attacks
on circuit gates. For example, in [30] it is explained how illumination of a target
transistor can cause it to conduct. Transistors are used to implement logical
gates so such an optical probe attack will amount to gate tampering in a circuit
(effectively changing the gate for another gate). Beyond that, fault injection in
the SRAM of an FPGA also results to switching the computation of the FPGA
circuit (because the program of the FPGA is stored in memory).

1.2 Our Contributions

Impossibility Results. Informally, the main idea behind our impossibility re-
sult (section 3) is the following: we define the notion of non-triviality of a cryp-
tographic circuit which attempts to capture the essence of a meaningful crypto-
graphic implementation. According to non-triviality, for every PPT algorithm A
and circuit C with private memory s, where C implements some cryptographic
functionality, A should not be able to learn s, while having black box access to
C (observe that if A learns s then the implementation becomes obsolete as A
can simulate it). Then we prove that any circuit C that satisfies non-triviality
possesses necessarily a weakly unpredictable bit, i.e., there exists a secret state
bit that cannot be extracted with probability very close to 1, while having black
box access to C. Now, let d be the depth of C and assume it consists of gates
with fan-in at most 2. If the adversary is allowed to tamper with up to d cir-
cuit components (we prove our result for either wires or gates), there exists a
strategy that extracts the circuit’s unpredictable bit with probability equal to
1. The impossibility result follows from this, since any simulator with black-box
access to C only has no capability to predict the unpredictable bitÂă as good as
the tampering adversary. The main observation here is that for any d ∈ N, and
every compiler T that receives a circuit C and produces a circuit C′ of depth
at most d, T cannot be secure against an adversary who tampers with d circuit
gates or wires, regardless of the size of C′.
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It is worth contrasting our result to that of [15], where the authors consider
an adaptive adversary who is capable of tampering with private memory bits; by
correlating circuit outputs to tampering set/reset operations within the secret-
state they show that the whole secret state can be reconstructed. This suggests
that the only way to attain tamper resilience of the secret-state is by employ-
ing internal integrity detection mechanisms and have the circuit self-destruct
in any case of fault detection. With our impossibility result however we show
that simulation will inevitably fail even in the presence of error-detection and
self-destruction mechanisms in case we allow tampering with up to d circuit
components (wires or gates), where d is the circuit’s depth. This underlines the
strength of tampering with circuit components vs. tampering the secret state.

Gate Adversaries Are Strictly Stronger than Wire Adversaries. We pro-
ceed to explore the relationship between gate and wire adversaries. In section 4
we first prove that any tampering attack on up to t circuit wires can be simulated
by an adversary who tampers with up to t circuit gates, i.e., for every circuit Cs

and any PPT adversary A who tampers with up to t wires of Cs, there exists a
PPT adversary A′ who tampers with up to t circuit gates, such that the output
of A and A′ are exactly the same. Then we proceed to prove the other direction
which is the most technically involved. Note that in the presence of unbounded
fan-out (or fan-in) gates in a circuit it is clear that a gate adversary has an ad-
vantage since a wire adversary may be incapable of controlling sufficiently many
wires to modify the behavior of the gate. However we demonstrate that even
w.r.t. to bounded fan-in/fan-out circuits, gate adversary are strictly stronger.
Specifically, we show that there exist a family of circuits C̃s̃ parameterized by
n, t and a PPT adversary A who tampers with up to n circuit gates, such that
for all PPT adversaries A′ who tamper with up to t circuit wires (where t can
be arbitrarily larger than n), A′ fails to simulate A. Intuitively, the idea behind
our proof is the following. We construct a circuit that has a “critical area” com-
prised of n AND-gates. The input to the critical area is provided by a sub-circuit
(referred to as C1) that implements a PRF, a digital signature and a counter.
The output of the critical area is fed to a second sub-circuit (referred to as C2)
that calculates a digital signature and a second counter. The key point is that a
gate-adversary can transform all AND-gates of the critical area into XOR-gates.
This enables the gate-attacker to produce a circuit output with a certain specific
distribution that is verifiable in polynomial-time. The main technical difficulty is
assembling the circuits C1, C2 suitably so that we can show that no matter what
the wire-attacker does, it is incapable of simulating the distribution produced by
the gate-attacker. Note that the wire-attacker is fully capable of controlling the
input to the C2 sub-circuit (by tampering with all the output wires of the critical
area). Hence by running the circuit several times, the wire-attacker can attempt
to learn the proper output distribution of the critical region and feed it to C2.
In our explicit construction, by appropriately assembling the main ingredients of
each sub-circuit (PRF, digital signatures and counters) we show that there exists
no efficient wire-tampering strategy that simulates the gate-tampering strategy
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assuming the security of the PRF and the digital signature. The circuit family
we construct is executable an unbounded number of times (by either attacker).
If one restricts the number of times the implementation can be executed by the
tampering attackers (by having the implementation always self-destruct by de-
sign after one invocation) then the circuit family can be simplified (due to lack
of space we provide this construction in the full version of the paper).

Tamper Resilience against Gate Adversaries. Given our separation result,
the question that remains is whether it is possible to defend cryptographic im-
plementations against gate adversaries. Towards that direction, we show (section
5) that gate attackers compromise the security of [18] by effectively eliminating
the circuit’s randomness, when it is produced by randomness gates, and then
we prove that if we substitute those gates with pseudo-random generators, then
[18] can be shown to be secure against gate adversaries. Based on [18], we give
a general characterization (Definition 10) of a secure class of compilers and we
use it in order to present our result in a self-contained way. The way we present
our positive result may also be of independent interest: first, we define a class of
compilers (Definition 10) that have the property that if they have certain tam-
per resilience characteristics against an arbitrary class of adversaries, then the
circuits that they produce are tamper-resilient against that class of adversaries.
Seen in this light, the result of [18] is a specific instance that belongs to this
class of compilers that satisfies the basic tamper resilience characteristics of the
class against appropriately bounded wire adversaries. We proceed analogously to
prove that the circuit transformation that removes the randomness gates satis-
fies the necessary tamper resilience characteristics against appropriately bounded
gate adversaries. The resulting compiler produces circuits of comparable size to
those of [18] however the parameter t in our case reflects the bound on the
gate-tampering adversary.

2 Preliminaries

Definition 1 (Circuit). A Boolean circuit C, over a set of gates G, with n
input bits and q output bits, is a directed acyclic graph C = (V,E), such that
every v ∈ V belongs to one of the following sets of nodes:

– VI (Input): For all v ∈ VI , the indegree is zero, the outdegree is greater than
1, and each v represents one input bit. We label these nodes by i1, . . . , in.

– VG(Gate): Each v ∈ VG represents a logic gate in G, and its indegree is equal
to the arity of the logic gate. The outdegree is at least 1.

– VO (Output): For all v ∈ VO, the indegree is one and the outdegree is zero,
and each v represents one output bit. We label these nodes by o1, . . . , oq.

The cardinalities of the sets defined above are n, s and q respectively. Finally,
the edges of the graph represent the wires of the circuit. The set of all circuits
with respect to a set of gates G, will be denoted by CG.
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The circuit’s private memory is considered as a peripheral component and con-
sists of m additional gates. The value m is the memory’s storage capacity in
bits.2 Formally,

Definition 2 (Circuit with Private memory). A graph C is a circuit with
private memory provided that its set of vertices can be partitioned into two sets
V, V ′ such that (i) the graph C \ V ′ is a DAG conforming to definition 1, (ii)
there are no edges between nodes in V ′, (iii) each vertex v ∈ V ′ possesses at most
one incoming and exactly one outgoing edge. The set V ′ represents the memory
gates of C; in this case, we refer to C as a circuit with private memory V ′ and
we also denote by E′ the edges of C that are incident to V ′. We denote |V ′| = m.

From now on we will use the terms Circuit and Graph interchangeably, as well
as the terms wire/edge.

Definition 3 (Computation). Let C be a circuit with private memory V ′ that
contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit input. The computation
y = Cs(x) consists of the following steps:

i. Memory access: for each v ∈ V ′, the value of v propagates to the outgoing
edge.

ii. Breadth-first traversal of C:

– Assign to each input node ij, for j ∈ [n], the value xj and propagate xj
to its outgoing wires.

– For v ∈ VG (gate node), apply the boolean function that corresponds to
v on the incoming edges and propagate the result to the outgoing edges.

– Every output node oi, for i ∈ [m], evaluates to the incoming value, and
determines the value yi.

iii. Memory update: every v ∈ V ′ is updated according to its incoming value.

Informally, in each computation the circuit receives an input x, produces an
output y, and it may also update its private memory from s to some value s′.
From now on, a circuit with secret state s will be denoted by Cs, or by C, if
there is no need to refer to s explicitly.

In the following, we give a generalization of the above definition for multiple
rounds and we formally define the adversarial models we consider.

Definition 4 (v-round computation). Let C be a circuit and Env = (s,v)
a pair of random variables. A v-round circuit execution w.r.t. Env is a random
variable (v,AC(·)(v)) s.t. A is a polynomial-time algorithm that is allowed to
submit v queries to the circuit which is initialized to state s and in each query it
performs a calculation over its input as in Definition 3.

2 In many circumstances we refer to private memory using the terms secret state or
private state.
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In the above definition, v represents all public information related to private
memory s. For instance, if C implements the decryption algorithm of a public-
key encryption scheme with secret key s, then v should contain information such
as the length of s and the corresponding public-key. Now we define the adversary
of [18].

Definition 5 (t-wire tampered computation). Let C be a circuit with pri-
vate memory V ′ that contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit
input. The t-wire tampered computation y = CT

s (x) for some tampering strategy
T is defined as follows.

1. T is a set of up to t triples of the form (α, e, p), where e is an edge of C,
and α may be one of the following tampering attacks:

– Set: set the value of e to 1,

– Reset: set the value of e to 0,

– Toggle: flip the value of e,

and if p ∈ {0, 1} is set to 1 then the attack is persistent, i.e., the modification
made by α is preserved in all subsequent computations. For non-persistent
attacks we write (α, e, 0) or just (α, e).

2. The computation of the circuit is executed as in definition 3 taking into
account the tampering instructions of T .

Next we define gate-tampered computation.

Definition 6 (t-gate tampered computation). Let C be a circuit with pri-
vate memory V ′ that contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit
input. The t-gate tampered computation y = CT

s (x) for some tampering strategy
T is defined as follows.

1. T is a set of up to t triples of the form (f, g, p), where g ∈ VG ∪ V ′, f
can be any function f : {0, 1}l → {0, 1}, where l is the arity of the gate
represented by g, and p defines persistent (or not) attacks as in definition 5.
The tampering substitutes the gate functionality of g to be the function f .

2. The computation of the circuit is executed as in definition 3 taking into
account the tampering instructions of T .

Definition 7 (v-round wire (resp. gate) tampered computation). Let
C be a circuit and Env = (s,v) a pair of random variables. A v-round tam-
pered computation w.r.t. Env is a random variable (v,AC∗(·)(v)) s.t. A is a
polynomial-time algorithm that is allowed to submit v queries to the circuit which
is initialized to state s and in the i-th query it performs a wire (resp. gate) tam-
pered computation according to tampering instructions Ti specified by A. Note
that the computation respects persistent tampering as specified by A.
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Notation. We will denote wire and gate adversaries respectively by Aw and Ag.
Moreover, At

w (resp. At
g) denotes a wire (resp. gate) adversary who tampers

with t circuit wires (resp. gates). The output of a single-round wire (resp. gate)
adversary Aw (resp. Ag) with strategy Tw (resp. Tg) who performs a tampered

computation on C is denoted by A[C,Tw]
w (resp. A[C,Tg]

g ). The output of a multi-

round adversary Ag (resp. Aw) is denoted by AC∗(·)
g (resp. AC∗(·)

w ). For n ∈ N,
[n] is the set {1, . . . , n}. The statistical distance between two random variables
X, Y , with range D, is denoted by Δ(X,Y ), i.e., Δ(X,Y ) = 1

2

∑
u∈D |Pr[X =

u] − Pr[Y = u]|. Finally, if D is a distribution over D, X ∼ D indicates that
variable X follows distribution D.

3 Impossibility Results

In this section we prove that for any non-trivial cryptographic device imple-
mented by some circuit C ∈ CG of depth d, where G contains boolean logic
gates, tamper-resilience is impossible (i) when wire adversaries land d(k − 1)
non-persistent tampering attacks on the wires of C, where k is the maximum
fan-in of the elements in G, and (ii) when gate adversaries non-persistently tam-
per with d gates of C. In order to do so, we define the notion of non-triviality,
which characterizes meaningful implementations and then we prove that every
non-trivial circuit C possesses a weakly unpredictable bit (Lemma 1). Then we
define an adversarial strategy T , such that for any x ∈ {0, 1}n, CT (x) is statis-
tically far from the output of SC(·), for any PPT algorithm S.

A non-trivial cryptographic device is one that contains a circuit for which no
adversary can produce its entire secret-state in polynomial-time when allowed
black-box access to it. Formally,

Definition 8 (non-triviality property). Let Env = (s,v) be a pair of ran-
dom variables, and let Cs be a circuit with secret state s. We say that Cs satisfies
the non-triviality property w.r.t. environment Env if for every PPT algorithm
A there exists a non-negligible function f(m) such that

Pr[ACs(·)(v) = s] < 1− f(m).

The above definition is a necessary property from a cryptographic point of
view, since its negation implies that the device can be replicated with only black-
box access. Thus any attacker can render it redundant by recovering its secret
state and instantiating it from scratch. We then focus on specific bits of the
secret state. We define a bit to be weakly unpredictable if predicting its value
always involves a non-negligible error given black-box access to the device.

Definition 9 (weakly unpredictable bit). Let Env = (s,v) be a pair of
random variables, and Cs be a circuit with secret state s. Then Cs possesses
a weakly unpredictable bit w.r.t. environment Env if there exists an index i,
1 ≤ i ≤ m, such that for every PPT algorithm A there exists a non-negligible
function δ(m) such that

Pr[ACs(·)(v) = si] < 1− δ(m).
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Armed with the above definitions we demonstrate that any non-trivial circuit
possesses at least one weakly unpredictable bit.

Lemma 1. Let Env = (s,v) be a pair of random variables. Then for every
circuit Cs, if Cs satisfies the non-triviality property w.r.t. enviroment Env, then
Cs possesses a weakly unpredictable bit, again w.r.t. Env.

The above lemma is proved3 by contradiction: we consider a circuit Cs which
satisfies the non-triviality property and none of its bits is a weakly unpredictable
bit. Then we construct an algorithm which extracts s with probability 1− f(m),
for some non-negligible function f(m).

We next give the impossibility result for circuits that consist of standard
AND, NOT and OR gates, and for the case of wire adversaries. The impossibil-
ity is via a construction: we design a specific single round adversary A that is
non-simulatable in polynomial time. The main idea behind the construction is
exploiting the tampering instructions so that we correlate the output of the cir-
cuit with the weakly unpredictable bit contained in the secret state. Concretely,
in the proof of theorem 1 we define a wire adversary Aw who acts as follows:
she targets the weakly unpredictable bit si and a path P from the i-th memory
gate to one output gate, say yj . Then she chooses a tampering strategy Tw on
wires which ensures that si remains unchanged during its pass through the cir-
cuit gates. For instance, if at some point the circuit computes g(si, x), where x
is an input or secret state bit, then (i) if g is an AND (resp. OR) gate then Aw

sets (resp. resets) the wire that carries x, and the circuit computes ∧(si, 1) = si
(resp. ∨(si, 0) = si). After defining Tw, Aw executes CTw

s (x) for some x ∈ {0, 1}n
of her choice and outputs si. The challenge for S is to output the unpredictable
bit with probability close to 1, while having only black box access to Cs.

Theorem 1. (Wire Adversaries - Binary Fan-in) Let Env = (s,v) be a pair
of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where
G = {∧,∨,¬} and s ∈ {0, 1}m, that satisfies the non-triviality property w.r.t.
Env, there exists a single round adversary Aw with strategy Tw, where |Tw| ≤ d,
such that for every PPT simulator S having black-box access to Cs, it holds that

Δ(SCs(·)(v), A[Cs,Tw]
w (v)) ≥ f(m), for some non-negligible function f(m).

The above theorem also holds for circuits that contain NAND gates, when the
adversary is allowed to tamper with 2d circuit wires. Concretely, the adversarial
strategy against g(si, x), where g is a NAND gate, is the following: Aw resets
the wire that carries x and toggles the wire that carries si. The next corollary
generalizes the above theorem for circuits that consist of gates with fan-in greater
than two. Consider for example an AND gate with fan-in k, which receives the
weakly unpredictable bit, si, on some of its input wires. If the adversary sets the
k − 1 remaining wires, then the gate outputs si.

Corollary 1. (Wire Adversaries - Arbitrary Fan-in) Let Env = (s,v) be a pair
of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where

3 For detailed proofs see the paper’s full version.
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s ∈ {0, 1}m and G = {∧,∨,¬} with bounded fan-in k, that satisfies the non-
triviality property, there exists a single round adversary Aw with strategy Tw,
where |Tw| ≤ d(k − 1), such that for every PPT simulator S having black-box

access to Cs, Δ(SCs(·)(v),A[Cs,Tw]
w (v)) ≥ f(m), for some non-negligible function

f(m).

Finally, we give an impossibility result with respect to gate adversaries. The
main idea behind Ag’s strategy in the following theorem, e.g. against an AND
gate with fan-in k that receives the weakly unpredictable bit si, is the following:
Ag substitutes the AND gate with the function that projects the value of the
incoming wire that carries si to all outgoing wires.

Theorem 2. (Gate Adversaries - Arbitrary Fan-in) Let Env = (s,v) be a pair
of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where
s ∈ {0, 1}m and G = {∧,∨,¬} with bounded fan-in k, that satisfies the non-
triviality property, there exists a single round adversary Ag with strategy Tg,
where |Tg| ≤ d, such that for every PPT simulator S having black-box access to

Cs, Δ(SCs(·)(v),A[Cs,Tg]
g (v)) ≥ f(m), for some non-negligible function f(m).

Notice here that |Tg| does not depend on k.

4 Wire vs. Gate Adversaries

In this section we investigate the relation between wire and gate adversaries
of Definitions 5 and 6, respectively. Concretely, we prove that for any boolean
circuit Cs and PPT adversary At

w with strategy Tw, t ∈ N, there exists a PPT
adversary At

g with strategy Tg, such that for any tampering action in Tw, there
exists an action in Tg that produces the same tampering effect (Theorem 3).
Then we show that the other direction does not hold, i.e., we prove that gate
adversaries are strictly stronger than wire ones (Theorem 4).

Wire adversaries are subsumed by Gate adversaries. We show that any wire
tampering strategy is possible to be simulated by a suitable gate tampering
strategy.

Now we briefly discuss the main idea behind Theorem 3, i.e., we describe how
the gate adversary simulates tampering attacks on circuit wires w.r.t. to an AND
gate g with two input wires, x, y, and one output wire w. So, if At

w, t ≥ 3, resets
x or y, then At′

g , t
′ ≥ 1, replaces g with the zero function, and if At

w sets both x
and y, then the gate adversary replaces g with f(x, y) = 1. On the other hand,
if At

w sets x (resp. y) then At
g substitutes g with f(x, y) = y (resp. f(x, y) = x).

The other cases consider more complex tampering combinations on input and
output wires, as well as, tampering with memory gates, and they can be similarly
dealt with.

Theorem 3. Let Env = (s,v) be a pair of random variables. For every circuit
C with gates G = {∧,∨,¬}, t ∈ N, and any v-round PPT wire adversary At

w,
there exists a v-round gate adversary Al

g, for some l ∈ N, l ≤ t, such that

AC∗
s (·)

w (v) is identically distributed to AC∗
s (·)

g (v).
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Gate adversaries are stronger than wire adversaries. Consider a PPT gate ad-
versary At

g, t = 1, who tampers with an AND or an OR gate g that consists of
two input wires x, y, and a single output wire w, by replacing g with some g′ that
implements one of the 16 possible binary boolean functions4 fi : {0, 1}2 → {0, 1},
i ∈ [16]. For each fi, i ∈ [16]\{7, 10}, we give a tampering strategy for At

w, t ≤ 3,
that simulates the tampering effect of fi, for both AND and OR gates. Here we
abbreviate the attacks set, reset and toggle by S,R and T, respectively.

In the following, the variables x, y, w, will denote both circuit wires, as well
as their bit-values.

Table 1. All boolean functions from {0, 1}2 to {0,1} and At
w’s tampering strategy

(0, 0) (0, 1) (1, 0) (1, 1) Repr. 1 Repr. 2

f1 1 1 1 1 1 ∧ 1 1 ∨ y

f2 1 1 1 0 ¬(x ∧ y) (¬x ∨ ¬y)

f3 1 1 0 1 ¬(x ∧ ¬y) ¬x ∨ y

f4 1 1 0 0 ¬x ∧ 1 ¬x ∨ 0

f5 1 0 1 1 ¬(¬x ∧ y) x ∨ ¬y

f6 1 0 1 0 ¬y ∧ 1 ¬y ∨ 0

f7 1 0 0 1 x == y (x ∧ y) ∨ (¬x ∧ ¬y)

f8 1 0 0 0 ¬x ∧ ¬y ¬(x ∨ y)

f9 0 1 1 1 ¬(¬x ∧ ¬y) x ∨ y

f10 0 1 1 0 x �= y (x ∧ ¬y) ∨ (¬x ∧ y)

f11 0 1 0 1 1 ∧ y 0 ∨ y

f12 0 1 0 0 ¬x ∧ y ¬(x ∨ ¬y)

f13 0 0 1 1 x ∧ 1 x ∨ 0

f14 0 0 1 0 x ∧ ¬y ¬(¬x ∨ y)

f15 0 0 0 1 x ∧ y ¬(¬x ∨ ¬y)

f16 0 0 0 0 0 ∧ y 0 ∨ 0

At
w’s strategy − AND gate At

w’s strategy − OR gate

((S, x), (S, y)) (S, x)

(T, w) ((T, x), (T, y))

((T, y), (T, w)) (T, x)

((T, x), (S, y)) ((T, x), (R, y))

((T, x), (T, w)) (T, y)

((T, y), (S, x)) ((T, y), (R, x))

— —

((T, x), (T, y)) (T, w)

((T, x), (T, y), (T, w)) No action

— —

(S, x) (R, x)

(T, x) ((T, y), (T, w)

(S, y) (R, y)

(T, y) ((T, x), (T, w)

No action ((T, x), (T, y), (T, w))

(R, x) ((R, x), (R, y))

We observe that there is no tampering strategy for At
w consisting of set, reset

or toggle attacks on x, y and w, that simulates the tampering effect of f7(x, y) =
(x == y) (NXOR) and f10(x, y) = (x �= y) (XOR). We use this observation as
a key idea behind theorem 4 which provides a “qualitative” separation between
the two classes of adversaries.

In the following we prove that for any n, l, k ∈ N, there exist a circuit C̃
whose size depends on n, l, k, and a PPT adversary An

g , such that for all PPT
adversariesAt

w, where t ≤ l, At
w fails to simulate the view of An

g while interacting

with C̃. Our construction for the counterexample circuit C̃ is presented in Figure
1. It consists of two subcircuits, C1, C2, which will be protected against adver-
saries who tamper with up to l of their wires (l-wire secure). C1 is the secure
transformation of some circuit C′

1 which implements a pseudorandom function
Fs(x), together with a counter (Cra) and a signing algorithm (Signsk′) of a dig-
ital signature scheme Π =(Gen,Sign,Vrfy) with secret key sk′, |sk′| = 2n. C1

computes Fs(c) and produces two n-bit strings s′a and s′b. Here, c denotes the
current counter value and the computation is based on the secret s. Afterwards,
the computation σ1 =Signsk′(c, s′a,s

′
b) takes place and m1 = ((c, s′a, s

′
b), σ1) is

given as input to C2, which is the l-wire secure transformation of a circuit C′
2.

Furthermore, the two n-bit strings s′a and s′b, are given as input to the AND gates

4 For clarity, and besides f7 and f10, we give the functions’ representation by logic
formulas with respect to both ∧ (Repr. 1) and ∨ (Repr. 2) operators.
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which compute s′a ∧ s′b. The result z is given as input to C2 which implements
another instantiation of the signing algorithm on input z and the counter (Cr2).
Eventually C2 computes σ2=Signsk′(c, z,m1) and outputs m2 = ((c, z,m1), σ2).
Notice that Cr1 and Cr2 produce the same output in every round and their initial
value is zero.

In order to construct the l-wire secure circuits C1, C2, we employ the compiler
of [18]. This compiler receives the security parameter k, the maximum number
of tampering attacks l, C′

1, and outputs C1. In the same way we transform C′
2 to

C2. Since [18] considers reversible NOT gates, i.e., gates on which any tampering
action on either side propagates to the other side as well, the NOT gates of
C1, C2, are also reversible. The final circuit C̃ is the composition of C1, C2, as
shown in Figure 1. Now, the area between C1 and C2 (we call this the critical

z1 zn. . .

s′ns′1 . . .s′n+1 s′2n

Cr1

(counter)

(counter)

Cr2

s1

∧· · ·∧

. . .

c

Secret key

C1

C2

· · ·

Fs(c)
(PRF)

c

c

z

s′bs′a

m1 = ((c, s′a, s
′
b), σ1)

l-wire secure implementation

l-wire secure implementation

m2 = ((c, z,m1), σ2)

Signsk′(c, s
′
a, s

′
b)

Signsk′(c, z,m1)

s2n

C̃

Fig. 1. The circuit C̃ for the separation theorem

area) is the part of C that the gate adversary will tamper with by substituting
each AND gate with an XOR gate. This will be the main challenge for the wire
adversary and its reason to fail the simulation. Specifically, in order to succeed
in the simulation the wire adversary should produce two valid signatures σ1 and
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σ2 on the messages (c, s′a, s
′
b) and (c, z,m1) where c is an integer representing the

number of rounds the circuit has been executed and z = s′a ⊕ s′b. Now observe
that in normal execution the value z is defined as s′a ∧ s′b and it is infeasible
for the wire adversary to simulate XOR gates using wire tampering directly in
the critical area. We emphasize that even by fully controlling the input z to the
second circuit C2 (and thus entirely circumventing the difficulty of manipulating
the ∧ gates) the wire adversary is insufficient since it will have to provide a valid
signature in order to execute a proper C2 evaluation and the only way such a
string can come to its possession is via a previous round of circuit execution; this
will make the counter found inside each of the two signatures of the final output
to carry different values and thus be detectable as a failed simulation attempt.

Using the above logic we now proceed as follows. For the circuit that we have
described we consider a simple one-round gate adversary An

g that tampers with
the gates in the critical area transforming them into XOR gates and then returns
the output of the circuit. Then we show that there exists a polynomial-time
distinguisher that given any wire-adversary operating on the same circuit for
any polynomial number of rounds is capable of essentially always telling apart
the output of the wire adversary from the output of the gate adversary. The
impossibility result follows: the knowledge gained by the gate adversary from
interacting with the circuit (just once!) is impossible to be derived by any wire
adversary (no matter the number of rounds it is allowed to run the circuit).

In the following, the circuit defined above is called C̃s̃ with parameters n, k,
l ∈ N, where s̃ denotes its secret state. Now we define a distinguisher D w.r.t.

C̃s̃, which receives the public information v related to s̃ and AC̃∗
s̃ (·), for some

tampering adversary A, and distinguishes the output of the gate adversary from
the output of the wire adversary.

Distinguisher D(v,m2) w.r.t. C̃s̃:
Distinguisher precondition: The environment variable Env = (s̃,v) where s̃
determines the secret-state of C̃ is such that v consists of the public key pk of
the digital signature Π and s̃ contains two copies of the secret key of Π , sk′, the
secret-key of the PRF and the two counters initialized to 0.

Verification: On input m2 = ((c′,d,m1), σ2), where m1 = ((c,da,db), σ1):

if Vrfypk((c
′,d,m1), σ2) = 0, output 0,

else if Vrfypk((c,da,db), σ1)) = 0, output 0,

else if d = da ⊕ db, output 0,

else if c′ = c, output 0,

else output 1.

Fig. 2. The distinguisher D



Tamper Resilient Circuits: The Adversary at the Gates 175

Theorem 4. For all l, k ∈ N, polynomial in n, for the circuit C̃s̃ of Figure 1 with
parameters n, k, l and Env as in Figure 2, there exists 1-round gate adversary
An

g such that for every (multi-round) PPT wire adversary Al
w it holds for the

distinguisher D defined in Figure 2:

|Pr[D(v,AC̃∗
s̃ (·)

w ) = 1]− Pr[D(v,AC̃∗
s̃ (·)

g ) = 1]| = 1− negl(n).

In the above theorem, the circuit C̃s̃ which distinguishes wire and gate adver-
saries has a persistent private state which is a random cryptographic key and
is operational for an unbounded number of invocations. If one accepts more re-
stricted circuits to be used as counterexamples for separation, specifically circuits
that self-destruct after one invocation, we can simplify the separation result via
a much simpler circuit. For more details we refer the reader to the paper’s full
version.

5 Protecting against Gate Adversaries

5.1 Properties That Ensure Security

The following definition generalizes the properties of the compiler presented in
[18] and formalizes the functionality for the main parts of the transformed circuit.
Definition 10 is a versatile tool for providing tamper-resilient compilers that may
be of independent interest. The logic is as follows: we define a (t, k)-secure circuit
compiler to be a mapping that produces a circuit accompanied with certain
distributions and gate encodings. Specifically the compiler substitutes each wire
of the given circuit with a wire-bundle and each gate with a gate that operates
over wire-bundles. Within each wire-bundle a specific probability distribution is
supposed to exist that encodes probabilistically the 0’s and 1’s of the original
circuit. We note that in the definition below we purposefully leave the exact
nature of the class of tampering attacks undetermined.

Definition 10 ((t, k)-secure circuit compiler). For every t, k ∈ N, the map-
ping T over circuits C ∈ CG with n input bits and m output bits where G = {∧,¬}
and n, m ∈ N and memory strings s,

(C, s)→ 〈D0,D1,D⊥〉 , 〈C∧, C¬〉 ,
〈
Cenc, Cdec, Ĉ, s

′, Ccascade

〉
is a (t, k)-secure circuit compiler if the circuit C′

s′ = Cdec ◦Ccascade ◦ Ĉs′ ◦Cenc re-
alizes the same functionality with Cs and for any PPT adversary A with strategy
T , where |T | ≤ t, the following hold

1. (Encoding) D0, D1 are distributions of strings in {0, 1}p, which correspond
to valid encodings of the bits 0 and 1, respectively. The length of the encoding,
p, depends on the security parameter k and also on t. Moreover, let Si be
the support set of Di, for i ∈ {0, 1}. Then, the aforementioned distributions
must satisfy the following properties:
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(a) S0 ∩ S1 = ∅. The set of invalid encodings is S⊥ = {0, 1}p\(S0 ∪ S1).
(b) Each tampering attack against a circuit component that affects a wire-

bundle that contains either a sample from D0 or D1 may (i) leave the
value unchanged, or (ii) produce an element in S⊥. Moreover, there is
an efficient way to predict the effect of the tampering (as a distribution
over the two events (i) and (ii)).

2. (Encoder-decoder) The circuit Cenc for each input bit 0 (resp. input bit
1) samples D0 (resp. D1). Moreover, for any x ∈ {0, 1}n the distribution
of CT

enc(x) is predictable given the tampering strategy T and x. Cdec is a
deterministic circuit which maps any element of S0 to 0 and any element of
S1 to 1.

3. (Circuit gates) The secret state of C, s, is substituted by s′, where s′ is the
encoding of s. Additionally, every gate in C with functionality f ∈ {∧,¬},
n′ input wires and m′ output wires, is being substituted with the circuit Cf

with pn′ input wires and pm′ output wires. Every wire of C is substituted by
a bundle of wires w, which carries an element in S0 ∪ S1.
The resuling circuit is Ĉ and the following hold:
(a) (Correctness) For i, j ∈ {0, 1}, if x ∼ Di, y ∼ Dj then it holds that

C∧(x,y) ∼ D∧(i,j) and C¬(x) ∼ D¬i.
(b) (Error propagation) If x ∈ S⊥ or y ∈ S⊥, then C∧(x,y) ∼ D⊥ and

CT
∧ (x,y) ∈ S⊥. The case for C¬ is similar.

(c) (Simulatability) For i, j ∈ {0, 1}, x ∼ Di, y ∼ Dj, one of the following
must hold: (i) CT

∧ (x,y) = C∧(x,y) or (ii) CT
∧ (x,y) ∈ S⊥. Moreover,

there is an efficient way to predict the effect of the tampering as a distri-
bution over the events (i) and (ii), given T . The case for C¬ is similar.

4. (Error propagation & self destruction) Ccascade is a circuit which re-
ceives ({0, 1}p)m′

wires and returns output in ({0, 1}p)m′
, i.e., it receives m′

wire-bundles and outputs m′ wire-bundles. It is applied on the output wire-
bundles of Ĉ as well as the wire-bundles of Ĉ that update the circuit’s secret
state (therefore m ≤ m′ ≤ m+q). Its purpose is to propagate encoding errors
and erase the circuit memory (if needed); it works as follows:
(a) If for all i ∈ {1, . . . ,m′}, yi ∈ S0 ∪ S1, then (1) for all i ∈ {1, . . . ,m′},

the i-th output wire-bundle of Ccascade(y1, . . . ,ym′) is equal to yi, and (2)
the output distributions of Ccascade(y1, . . . ,ym′) and CT

cascade(y1, . . . ,ym′)
are simulatable given T and Cs(x), where x ∈ {0, 1}n denotes the circuit
input.

(b) If there exists i ∈ {1, . . . ,m′}, s.t. yi ∈ S⊥, then, (1) all output wire-
bundles of Ccascade(y1, . . . ,ym′)) will be distributed according to D⊥, (2)
all output wire-bundles of CT

cascade(y1, . . . ,ym′) will be in S⊥, and (3)
the distribution of all output wire-bundles of CT

cascade(y1, . . . ,ym′) will be
simulatable given the tampering strategy T and Cs(x).

5.2 Tamper-Resilient Circuits against Gate Adversaries

Now we give a high level overview of [18] casted as an instance of Definition
10, and we define a gate adversary that compromises its security by attacking
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randomness gates. Then we prove that by substituting randomness gates with
PRNGs, we receive a (t, k)-secure circuit compiler against gate adversaries who
tamper with up to t circuit gates. Finally, we prove security for any compiler
that satisfies the properties of Definition 10.

A high level description. In [18] the authors consider an encoding in which each
input or secret state bit, say x, in the original circuit is encoded into a string of
2k2t bits (r2kt1 || . . . ||r2ktk ), where each ri is a random bit, i ∈ [k − 1], and rk =
x⊕r1⊕. . .⊕rk−1. Here, k denotes the security parameter and t is the upper bound
on the number of wires that the adversarymay tamper with in each computation.
The resulting encoding is handled by circuits that implement the functionality of
the atomic AND and NOT gates, perform computations over encoded values and
satisfy the properties of Definition 10 against wire adversaries. Concretely, let C
be a circuit, x an input bit to C and s a secret state bit, and assume that some
part of C computes z = x ∧ s. According to the aforementioned encoding, the
transformed circuit C′ encodes x to (r2kt1 || . . . ||r2ktk ), where ri, i ∈ [k− 1], is the
output of a randomness gate with fan-out (2kt), 5 and computes z = C∧(x, e),
using a subcircuit C∧ that handles the encoded circuit values and “securely”
implements the AND gate. Here, e and z denote the encoded version of s and
z, respectively, and z = (z2kt1 || . . . ||z2ktk ) is the output of C∧ which satisfies
zi = risi⊕

⊕
j �=iRi,j , for 1 ≤ i < j ≤ k, Ri,j is the output of a randomness gate

with fan-out a multiple of 2kt and Rj,i = (Ri,j ⊕ risj) ⊕ rjbi. The number of

randomness gates employed by C∧ is k(k−1)
2 . Observe that the value of each wire

in the original circuit is shared among k wires and each one of them is replicated
2kt times, i.e., each “bundle” consists of k “subbundles”with 2kt wires each. The
negation of an encoding e is computed by a circuit C¬ which consists of 2kt NOT
gates that simply negate one of the subbundles of e. The whole transformation
is the composition of three compilers, and the above description refers to the the
second compiler, say Trand. The third compiler replaces randomness gates with
circuits that generate pseudo-random bits.

Fact: The compiler of [18] conforms to Definition 10. LetAt
w be a wire adversary

for C′, which is the t-secure transformation of C with respect to Trand, and let
s be a secret state bit of C. As we discussed above, s is encoded into e =
(e2kt1 || . . . ||e2ktk ), where each ei, i ∈ [k−1], is a random bit, and ek = s⊕e1⊕ . . .⊕
ek−1. Let us consider what happens if At

w tampers with up to t wires of C′, where
t can be greater than k, and moreover, assume that she tampers with at most
k− 1 different “subbundles” that carry randomized shares of the value s. In such
a scenario, the size of each subbundle, which is 2kt, and the randomization of the
carrying values ensure that the adversary may leave the value of each subbundle
unchanged or she may alter the value of up to t of its wires, in which case she
instantly produces an invalid encoding. Moreover, the effect of the tampering
is simulatable in the following way. The simulator simulates the output of the

5 Besides the 2kt wires employed by the encoding, some extra copies of r2kti are needed
for computing r2ktk , i ∈ [k − 1].
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randomness gates by producing her own randomness, and then she decides the
effect of the tampering without touching the distribution of s. On the other
hand, if the adversary tampers with all subbundles, and since the randomization
on the circuit’s signals ensures that each tampering attack produces a fault
with constant probability, the simulator knows that the probability that none of
the attacks produce an invalid encoding is exponentially small in k. Therefore,
with all but negligible (in k) probability an error is induced and propagated
by the following circuit components: the cascade phase (Property 4) and the
circuits that implement the standard gates of the original circuit (Property 3).
Since C∧ and C¬ also produce randomized shares, a similar argument gives us
simulatability against adversaries who tamper with such encodings.

Reversible gates. As we have already discussed in section 4, [18] assumes re-
versible NOT gates. As in [18], in this section we will consider reversible tam-
pering, i.e., the adversary who tampers with a reversible NOT gate produces
a tampering effect that propagates to the gate’s incoming wire (note also that
w.r.t. NOT gates the wire and gate adversaries are equivalent).

The compiler Trand is insecure against gate tampering. Let x, s, z and x, e, z
be the values defined above and consider an adversary who (i) sets to zero the
k − 1 randomness gates Ri,i+1, for i ∈ [k − 1], that lie on C∧, (ii) sets to zero
the k − 1 randomness gates that lie on Cenc and produce the randomness which
is used to encode an input bit x into x = (r2kt1 || . . . ||r2ktk ), and (iii) tampers
with a gate that outputs zk. Apparently, the 2(k−1) attacks on the randomness
gates are fully simulatable. Nevertheless, we have zi = 0, for i ∈ [k − 1] and
zk = x · s. Hence, in order to simulate the attack on the gate that outputs zk,
the simulator has to make a “guess”on s and the simulation breaks. Notice, that
since we consider persistent tampering, an adversaryAt

g, with t < k, can land the

aforementioned attack in 2�kt � rounds by tampering with t circuit gates in each
round. In general any persistent gate adversary may completely eliminate the
circuit’s randomness, and the second stage compiler Trand of [18] collapses when
subjected to this gate adversary attack. Now, we describe how to circumvent
such attacks.

In the full version of the paper we describe how to substitute randomness gates
with pseudo-random generators, and then we prove that the resulting compiler,
named Tcomp, satisfies the properties of Definition 10 against gate adversaries.
Here we give the intuition on why this construction retains its properties against
gate adversaries. The key idea is that eliminating randomness gates effectively
removes the advantage of the gate adversary. This is the case because all other
gates employed by Trand even those whose fan-out is somehow big (and hence
may be thought to be higher value targets for a gate attack), lead to different
wire-subbundles. Therefore, a gate adversary that induces a fault will spread the
fault to multiple circuit gates. The circuit’s defense mechanisms of [18] will then
be able to detect the invalid encodings with high probability.

Theorem 5. For every t, k ∈ N, the compiler Tcomp is a (t, k)-secure circuit
compiler per definition 10 w.r.t. the class of PPT gate attackers At

g.
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The final theorem (which may be of independent interest) states that any com-
piler which satisfies the properties of definition 10, produces tamper resilient
circuits with respect to the standard simulation based security definition.

Theorem 6. Let Cs any boolean circuit, Tcomp a (t, k)-secure circuit compiler,
t, k ∈ N, and let C′

s′ be the secure transformation of Cs w.r.t. Tcomp. Then
for every tampering adversary A for which definition 10 applies, there exists a

simulator S such that Δ(SCs(·)(v),AC
′∗
s′ (·)(v)) is negligible in k.

The proofs of the above theorems are given in the full version of this paper.
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12. Gács, P., Gál, A.: Lower bounds for the complexity of reliable boolean circuits with
noisy gates. IEEE Transactions on Information Theory 40(2), 579–583 (1994)



180 A. Kiayias and Y. Tselekounis

13. Gal, A., Szegedy, M.: Fault tolerant circuits and probabilistically checkable proofs.
In: Proceedings of Tenth Annual IEEE Structure in Complexity Theory Conference,
pp. 65–73. IEEE (1995)

14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete re-
sults. In: Koc↪, C↪.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (2001)

15. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
pp. 218–229. ACM (1987)

17. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: Proceedings of the 2003 Symposium on Security and Privacy, pp. 154–165. IEEE
(2003)

18. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

19. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

20. Katz, J., Lindell, Y.: Introduction to modern cryptography. Chapman & Hall (2008)
21. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product

ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

23. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

24. Kuhn, M.G., Anderson, R.J.: Soft tempest: Hidden data transmission using
electromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525,
pp. 124–142. Springer, Heidelberg (1998)

25. Liu, F.-H., Lysyanskaya, A.: Algorithmic tamper-proof security under probing at-
tacks. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 106–120.
Springer, Heidelberg (2010)

26. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

27. Pippenger, N.: On networks of noisy gates. In: 26th Annual Symposium on Foun-
dations of Computer Science, pp. 30–38. IEEE (1985)

28. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

29. Rao, J.R., Rohatgi, P.: Empowering side-channel attacks. IACR ePrint, 37 (2001)
30. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,

B.S., Koc↪, C↪.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)



Efficient General-Adversary Multi-Party Computation

Martin Hirt and Daniel Tschudi�

ETH Zurich
{hirt,tschudid}@inf.ethz.ch

Abstract. Secure multi-party computation (MPC) allows a set P of n players
to evaluate a function f in presence of an adversary who corrupts a subset of
the players. In this paper we consider active, general adversaries, characterized
by a so-called adversary structure Z which enumerates all possible subsets of
corrupted players. In particular for small sets of players general adversaries better
capture real-world requirements than classical threshold adversaries.

Protocols for general adversaries are “efficient” in the sense that they require
|Z|O(1) bits of communication. However, as |Z| is usually very large (even ex-
ponential in n), the exact exponent is very relevant. In the setting with perfect
security, the most efficient protocol known to date communicates O(|Z|3) bits;
we present a protocol for this setting which communicates O(|Z|2) bits. In the
setting with statistical security, O(|Z|3) bits of communication is needed in gen-
eral (whereas for a very restricted subclass of adversary structures, a protocol
with communication O(|Z|2) bits is known); we present a protocol for this set-
ting (without limitations) which communicates O(|Z|1) bits.

Keywords: Secure Multiparty Computation, General Adversaries, Efficiency.

1 Introduction

Secure Multi-Party Computation. Secure Multi-Party Computation (MPC) allows a
set P of n players to securely evaluate a function f even when a subset of the play-
ers is corrupted by a central adversary. MPC was introduced by Yao [Yao82]. A first
solution (with computational security) was given by Goldreich, Micali, and Wigder-
son [GMW87]. Later solutions [BGW88, CCD88, RB89] provide statistical and even
perfect security. All these protocols consider threshold adversaries (characterized by an
upper bound t on the number of corrupted parties). This was generalized in [HM00]
by considering so-called general adversaries, characterized by an adversary structure
Z = {Z1, . . . , Z�}, which enumerates all possible subsets of corrupted players.

In the setting with perfect active security, MPC is achievable if and only if t < n
3 ,

respectively Q3(P ,Z) (the union of no three sets in Z covers P). In the setting with
statistical or cryptographic active security, MPC is achievable if and only if t < n

2 ,
respectivelyQ2(P ,Z) (the union of no two sets in Z covers P).
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Threshold vs. General Adversaries. Clearly, general adversaries are more flexible,
which is relevant in particular when the set of players is not very large. However, gen-
eral-adversary protocols are typically by orders of magnitude less efficient than thresh-
old protocols; more specifically, threshold protocols usually communicate Poly(n) bits
per multiplication, whereas general-adversary protocols require Poly(|Z|) bits. As typ-
ically |Z| is exponential in n, this is a huge drawback. However, in some scenarios
(e.g. with very different types of players), threshold protocols are not applicable, and
general-adversary protocols must be used. In these settings, the concrete communi-
cation complexity of the general-adversary protocol is highly relevant: For example
for n = 25, |Z| is expected to be around one million, and a protocol communicating
|Z| · Poly(n) might be acceptable, whereas a protocol communicating |Z|3 · Poly(n)
might be useless.

Contributions. In the statistically-secure model, one can tolerate at most adversary
structures satisfying Q2(P ,Z). The most efficient protocol known to date, which is
also optimal in terms of resilience, requires |Z|3 · Poly(n, κ) bits of communication
(where κ is the security parameter) [Mau02, HMZ08]. There exists a protocol with
communication complexity of |Z|2 ·Poly(n, κ) [PSR03]. But this results is non-optimal
in terms of resilience, as it tolerates only adversaries satisfying Q3.

Using a new approach for multiplication, we construct a protocol communicating
|Z| · Poly(n, κ) bits and tolerating Q2 adversary structures. This protocol is optimal
both in terms of overall efficiency and resilience. We stress that even with cryptographic
security, Q2 is necessary and complexity linear in |Z| is required at least with respect
to the computation (see [Hir01]).

Furthermore, we present a perfectly secure protocol (with no error probability) with
communication complexity of |Z|2 · Poly(n). It is optimal in terms of resilience (Q3)
and also the most efficient protocol up to date in the model with perfect security.

Table 1. Communication complexity of different protocols

Setting Cond. Bits / Mult. Reference

passive perfect Q2 |Z| · Poly(n) [Mau02]

active perfect Q3 |Z|3 · Poly(n) [Mau02]

active perfect Q3 |Z|2 · Poly(n) our result

active unconditional Q2 |Z|3 · Poly(n, κ) [Mau02]/[HMZ08]

active unconditional Q3 |Z|2 · Poly(n, κ) [PSR03]

active unconditional Q2 |Z| · Poly(n, κ) our result

2 Preliminaries

Players and Computation. Let P = {P1, . . . , Pn} be a set of n players. The players
in P want to compute a function f over some finite field F. The function is specified
by a circuit C consisting of input, output, random, addition, and multiplication gates.
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In an ideal world, a trusted party does all the computation. In the real world, players
are connected by a complete network of secure (private and authentic) synchronous
channels. There exist authenticated broadcast channels (they can be simulated by the
players, see e.g. [FM98] or [PW96] ). In order to compute the function f , the players
simulate the trusted party by using some MPC-protocol Π .

Adversary and Adversary Structure. Dishonesty is modeled in terms of a central ad-
versaryA who corrupts players. During the execution of the protocol the adversary can
access the internal state of corrupted players and make them deviate from the protocol
at will. We allow that the adversary is computationally unbounded. Before the execution
of the protocol the adversary has to specify the players he wants to corrupt. His choice is
limited by means of an adversary structure Z = {Z1, . . . , Z�} ⊆ 2P , i.e. all corrupted
players must be part of an adversary set in Z . We denote the chosen set by Z∗. Note
that Z∗ is not known to the honest players and is solely used for ease of notation. We
say that Z satisfies the Qk(P ,Z) property if P �⊆ Z1 ∪ · · · ∪ Zk ∀Z1, . . . , Zk ∈ Z .

Security. We say a protocol is Z-secure if anything the adversary achieves during the
execution of the protocol can be achieved in the ideal world as well. More precisely, for
every adversary in the real world there exists an adversary in the ideal world such that
both the information the adversary gets and the output of honest players are statistically
indistinguishable for perfect security respectively statistically close for unconditional
security. The main result from [HM97] states that Q3(P ,Z) resp. Q2(P ,Z) are the
necessary and sufficient conditions for the existence of perfectly resp. unconditionally
Z-secure protocols considering active adversaries. For simplicity we assume that all
messages sent during the execution of Π are from the right domain. If a player receives
a message where this is not the case, he replaces it with an arbitrary element from the
right domain. If a player receives an unexpected message, he ignores it.

3 Perfect Protocol

In this section we present a perfectlyZ-secure protocol for an arbitrary adversary struc-
ture Z satisfying the Q3 property. The communication complexity of the protocol is
quadratic in |Z|. The efficiency gain is due to an improved multiplication protocol. The
sharing is (up to presentation) the same as in [Mau02].

3.1 Secret Sharing

Secret sharing allows a player to distribute a secret value among the player set, such that
only qualified subsets of players are able reconstruct it. The secret sharing used for our
protocol is based on the one from [Mau02] / [BFH+08]. It is characterized by a sharing
specification S = (S1, . . . , Sh), which is a tuple of subsets of P .

Definition 1. A value s is shared with respect to sharing specification S = (S1, . . . , Sh)
if the following holds:
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a) There exist shares s1, . . . , sh such that s =
∑h

q=1 sq
b) Each sq is known to every (honest) player in Sq

We denote the sharing of a value s by [s] and use [s]q as notation for sq , the q-th
share. A sharing specification S = (S1, . . . , Sh) is called Z-private if for every Z ∈ Z
there is an S ∈ S such that Z ∩ S = ∅. A sharing specification S = (S1, . . . , Sh) and
an adversary structure Z satisfy Qk(S,Z) if S �⊆ Z1 ∪ · · · ∪ Zk ∀Z1, . . . , Zk ∈
Z S ∈ S. If S is Z-private, a sharing [s] does not leak information to the adversary,
as all shares known by the adversary are statistically independent of s. The players
can compute a sharing of any linear combination of shared values (with respect to a
sharing specification S) by locally computing the linear combination of their shares.
This property is called the linearity of the sharing. The following protocol Share allows
a dealer PD to correctly share value s among the players in P .

Protocol Share(P,Z, S, PD, s) [Mau02]
0: The dealer PD takes s as input.
1: PD splits s into random shares s1, . . . , s|S| subject to s =

∑|S|
q=1 sq.

2: for all q ∈ {1, . . . , |S|} do
3: PD sends sq to every player in Sq .
4: Each player in Sq forwards the received value to every player in Sq .
5: Each player in Sq checks that the received values are all the same and

broadcasts OK, or NOK accordingly.
6: If a player in Sq broadcast NOK, the dealer broadcasts sq and the

players in Sq take this value (resp. some default value if the dealer does
not broadcast) as share. Otherwise every player in Sq takes the value he
received in Step 3 as share.

7: end for
8: The players in P collectively output [s].

Lemma 1. For any adversary structure Z the protocol Share(P ,Z, S, PD, s) securely
computes a sharing [s′]. For honest PD it holds that s′ = s. The protocol communicates
at most |S| (n2 + n) log |F| bits and broadcasts at most |S| (log |F|+ n) bits.

Proof. Correctness: For each sq either all the honest players in Sq hold the same value
after Step 3, or one of them complains and they receive a consistent value in Step 6.
Hence the protocol outputs a (consistent) sharing [s′]. If the dealer is honest he is able
to ensure in Steps 3 and 6 that the honest players use the intended value for sq such that
s = s′. Privacy: Let the dealer be honest, as otherwise secrecy is trivially fulfilled. All a
player learns beyond his designated output are values broadcast in Step 6. However this
does not violate secrecy as these values are already known to the adversary (from Step
3). Complexity: For each share at most n + n2 values are sent and at most n+ log |F|
bits broadcast. ��

For publicly known value s the players can invoke DefaultShare to get a sharing [s]
without having to communicate.
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Protocol DefaultShare(P,Z, S, s)
0: Every player takes s as input.
1: The share s1 is set to s and all other shares are set to 0.
2: The players in P collectively output [s].

Lemma 2. DefaultShare(P ,Z, S, s) securely computes a sharing [s] where s is a pub-
licly known value. The protocol does not communicate.

Proof. Correctness: In Step 1 every honest player in Sq takes the same value for share
sq. As the sum of all shares is s, the protocol outputs a consistent sharing [s]. Privacy:
During the protocol no communication occurs, hence the adversary does not obtain new
information. ��
The protocolReconstructShare allows the reconstruction of a share [s]q to the players in
some set R. This implies that the players can reconstruct a shared value [s] by invoking
ReconstructShare for each share.

Protocol ReconstructShare(P,Z, S, [s]q, R)
0: The players in Sq take the share [s]q as input.
1: Every player Pi in Sq sends [s]q to every player in R.
2: For each player Pj ∈ R let vj,i be the value received from Pi. Then Pj outputs

some value vj such that there exists aZ ∈ Z with vj,i = vj for allPi ∈ Sq\Z .

Lemma 3. If Sq and Z satisfy Q2(Sq,Z), the protocol ReconstructShare securely re-
constructs the share [s]q to the players in R, such that every (honest) player outputs
[s]q . The protocol communicates at most n2 log |F| bits.

Proof. Correctness: In Step 1 all honest player will send the same value [s]q , which
is a suitable choice for vj for an (honest) player Pj ∈ R in Step 2. For the sake of
contradiction suppose there exist two values v1 �= v2 with corresponding Z1, Z2 ∈ Z
such that the condition of Step 2 holds for both of them. Hence (Sq \Z1)∩(Sq \Z2) = ∅
and thus Sq ⊆ Z1 ∪ Z2 which contradicts Q2(Sq,Z). Therefore every honest players
outputs the value [s]q . Privacy: The adversary learns at most [s]q (if a malicious player
is part of R). Complexity: Each player in Sq sends his value to at most n players. ��

Protocol Reconstruct(P,Z, S, [s], R) [Mau02]
0: The players in P take collectively [s] as input.
1: ∀q ∈ {1, . . . , |S|} protocol ReconstructShare(P ,Z, S, [s]q, R) is invoked.
2: The players in R locally sum up the obtained shares and output the sum s.

Lemma 4. If S and Z satisfy Q2(S,Z) and [s] is a sharing of the value s, then
Reconstruct(P ,Z, S, [s], R) securely reconstructs s to the players in R. The protocol
communicates at most |S|n2 log |F| bits.

Proof. Correctness and privacy follow directly from Lemma 3. As ReconstructShare
is invoked |S| times the complexity follows as well. ��
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3.2 Multiplication

We present a protocol for the perfectly-secure computation of the (shared) product of
two shared values [a] and [b] (with respect to a sharing specification S). Along the
lines of [Mau02] the fundamental idea of multiplication is to assign each local product
apbq to a player in Sp ∩ Sq , who computes and shares his designated products. The
sum of all these sharings is a sharing of ab as long as no player actively cheated. So
each player is mapped to a collection of local products, formalized by a function I :
[n] → 2{(p,q) | 1≤p,q≤|Z|} with the constraint that ∀(p, q) ∃! i such that (p, q) ∈ I(i).
W.l.o.g let I(i) ..= {(p, q) | Pi = minP {P ∈ Sp ∩ Sq}}. We first show an optimistic
multiplication protocol which takes an additional parameterZ and computes the correct
product if the actual adversary set Z∗ is a subset of Z . In this protocol local products
are assigned to players in P \Z only. Clearly this is possible if and only if for each local
product a player inP\Z holds both involved shares, i.e. ∀Sp, Sq ∈ S : Sp∩Sq\Z �= ∅.
So for each Z ∈ Z let IZ be a mapping as above with the additional constraint that
∀Pi ∈ Z IZ(i) = ∅. Without loss of generality, let IZ(i) ..= {(p, q) | Pi = minP {P ∈
Sp ∩ Sq \ Z}}.

Protocol OptimisticMult(P,Z, S, [a], [b], Z)
0: The players in P take collectively [a], [b] and Z as input.
1:

a) Each player Pi ∈ P \ Z (locally) computes his designated products and
shares the sum ci =

∑
(p,q)∈IZ (i) apbq.

b) For each Pi ∈ Z DefaultShare(P ,Z, S, 0) is invoked to share ci = 0.
2: The players collectively output ([c1], . . . , [cn]) and [c] =

∑n
i=1[ci].

Lemma 5. Let Z ⊆ P such that ∀Sp, Sq ∈ S : Sp ∩ Sq \ Z �= ∅. Then the protocol
OptimisticMult securely computes sharings [c], ([c1], . . . , [cn]). If no player in P \ Z
actively cheats (in particular, if Z∗ ⊆ Z), then ∀i ci =

∑
(p,q)∈IZ (i) apbq and c =

ab. The protocol communicates at most O(|S|n3 log |F|) bits and broadcasts at most
O(|S| (n log |F|+ n2)) bits.

Proof. Correctness: The properties of the sharing protocol guarantee that the outputs
are valid sharings. If none of the players in P \ Z cheated actively, it holds for each Pi

that ci =
∑

(p,q)∈IZ (i) apbq. The condition ∀Sp, Sq ∈ S : Sp ∩ Sq \Z �= ∅ guarantees
that ab =

∑n
i=1

∑
(p,q)∈IZ (i) apbq . Hence it follows that c = ab. Privacy / Complexity:

Follow directly from Lemmas 1 and 2. ��

As the players do not know the actual adversary set Z∗, they invoke OptimisticMult
once for each set Z ∈ Z (Step 1 of the Multiplication protocol). This guarantees
that at least one of the resulting sharings is correct. By comparing them the players
can determine whether cheating occurred (Step 2 of the Multiplication protocol). If all
sharings are equal, no cheating occurred and any of the sharings can serve as sharing
of the product. Otherwise at least one player cheated. In this case the (honest) play-
ers can identify him and remove all sharings where he was involved in computation,
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as these sharings are potentially tampered (Step 3 of the Multiplication protocol). This
checking and removing is repeated until all remaining sharing are equal (and hence cor-
rect). As the identification of cheaters does not reveal any information to the adversary,
Multiplication allows the secure computation of the product of two shared secret values.

Protocol Multiplication(P,Z, S, [a], [b])
0: Set M = ∅.
1: Invoke OptimisticMult(P ,Z, S, [a], [b], Z) to compute ([c

(Z)
1 ], . . . , [c

(Z)
n ])

and [c(Z)] for each Z ∈ Z .
2: Set ZM

..= {Z ∈ Z | M ⊆ Z}, fix some Z̃ ∈ ZM and reconstruct the

differences [c(Z̃)]− [c(Z)] ∀Z ∈ ZM .

3: If all differences are zero, output [c(Z̃)] as sharing of the product.

Otherwise let ([d1], . . . , [dn]) ..= ([c
(Z̃)
1 ], . . . , [c

(Z̃)
n ]), ([e1], . . . , [en]) ..=

([c
(Z)
1 ], . . . , [c

(Z)
n ]), D ..= IZ̃ and E ..= IZ , where [c(Z̃)]− [c(Z)] �= 0.

a) Each Pi shares the 2n values di,j =
∑

(p,q)∈D(i)∩E(j) apbq and ei,j =∑
(p,q)∈E(i)∩D(j) apbq

b) For each player Pi reconstruct the differences [di]−
∑n

j=1[di,j ] and [ei]−∑n
j=1[ei,j ]. If one of them is non-zero set M ←M ∪ {Pi} and continue

at Step 2.
c) For each (ordered) pair (Pi, Pj) of players reconstruct the difference

[di,j ] − [ej,i]. If it is non-zero, reconstruct [di,j ],[ej,i] and all shares
{ap, bq | (p, q) ∈ D(i) ∩ E(j)} to find the cheater P ∈ {Pi, Pj}. Set
M ←M ∪ {P} and continue at Step 2.

Lemma 6. If S and Z satisfy Q2(S,Z) the protocol Multiplication yields a sharing
[c] = [ab]. No information is leaked to the adversary. Multiplication communicates
at most O(|S| |Z|n3 log |F| + |S|n5 log |F|) bits and broadcasts at most O(|S| |Z| (n
log |F|+ n2) + |S| (n3 log |F|+ n4)) bits.

Proof. Correctness: By invoking OptimisticMult for each Z ∈ Z it holds for Z∗ that
[c(Z

∗)] = [ab] (due to Q2(S,Z) ∀Sp, Sq ∈ S : Sp ∩ Sq \ Z �= ∅ holds) . If for
every Z ∈ ZM the difference in Step 2 is zero, then [c(Z)] = [ab] ∀Z ∈ ZM (M = ∅
at the beginning). Hence the protocol terminates successfully outputting a sharing of
ab. Otherwise there exists [c(Z̃)] − [c(Z)] �= 0 and thus

∑n
i=1[di] �=

∑n
i=1[ei]. In

Step 3a) each player is supposed to share a partition of his shares. Hence one of the
following cases must occur: There exists a player Pi such that [di] �=

∑n
j=1[di,j ] or

[ei] �=
∑n

j=1[ei,j ]. Or there exists a pair of players (Pi, Pj) such that [di,j ] �= [ej,i]. In
the first case Pi will be detected as cheater in Step 3b). In the second case the cheater
will be detected in Step 3c). In both cases M ⊆ P is strictly increased, hence the
protocol will terminate after at most n iterations. It holds that M ⊆ Z∗ and thus Z∗ ∈
ZM . Therefore the correct sharing [c(Z

∗)] is always used in Step 2 and the protocol will
output the correct result. Privacy: By the properties of the sharing scheme and Lemma
5 the invocation of Share, Reconstruct, OptimisticMult does not violate privacy. The
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adversary learns the differences reconstructed in Steps 2 and 3 of Multiplication, which
are all zero unless the adversary cheats. In case of cheating the reconstructed values
depends solely on the inputs of the adversary and are thus already known to him, thus
privacy is not violated. All values further reconstructed in Step 3c) are known to the
adversary before, as either Pi or Pj is corrupted. Complexity: Follows from Lemmas 1,
4 and 5 by counting the number of invocations of the corresponding sub-protocols. ��

3.3 MPC Protocol

Combining Share, Reconstruct, and Multiplication the players can securely compute a
circuit C over F, where all intermediate values are shared according to Definition 1.

Protocol MPC(P,Z, C)
0: The players take S ..= {P \ Z|Z ∈ Z} as sharing specification.
1: For every gate of C being evaluated do the following:

- Input gate for PD: Share(P ,Z, S, PD, s) is invoked to share s, where PD

is the input-giving player.
- Linear gate: The linear combination of the corresponding shares is com-

puted locally using the linearity of the sharing.
- Random gate: Each player shares a random value. The sum of these values

is used as output of the gate.
- Multiplication gate: Multiplication(P ,Z, S, [a], [b]) is used to multiply
[a] and [b].

- Output gate: The players invoke Reconstruct(P ,Z, S, [s], R) to recon-
struct the sharing [s] to players in R.

Theorem 1. LetP be a set of n players, C a circuit over F andZ an adversary structure
satisfying Q3(P ,Z), then MPC(P ,Z, C) perfectly Z-securely evaluates C. It commu-
nicates |C| |Z|2 · Poly(n, log |F|) bits.

Proof. It is easy to see that S ..= {P \ Z|Z ∈ Z} is a sharing specification satisfying
Q2(S,Z). Hence by the properties of the sharing scheme and Lemma 6 the statement
follows. The protocol communicatesO(|C| |Z|2 n3 log |F|+ |C| |Z|n5 log |F|) bits and
broadcasts O(|C| |Z|2 (n log |F|+ n2) + |C| |Z| (n3 log |F| + n4)) bits. Broadcast can
be simulated with the protocol in [FM98], which communicates Poly(n) bits in order
to broadcast one bit. This yields the claimed communication complexity. ��

4 Unconditional Protocol

Our main result is an MPC protocol unconditionally Z-secure for an Q2 adversary
structure Z . Its communication complexity is linear in |Z|. This is the first protocol
reaching the optimal lower bound of Ω(|Z|) on the computational complexity (see
Section 6).
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4.1 Information Checking

In the perfect model, Q3 enables the honest players to securely reconstruct shares, as it
assures that every share is held by enough honest players. Here, Q2 only ensures that
each share is held by at least one honest player. Correctness is achieved by the use of
information checking, a technique that prevents (malicious) players from announcing
wrong values (see [RB89, Bea91a, CDD+99, HMZ08]). The following information-
checking protocol is a slight variation of [CDD+99]. It is a three party protocol between
a sender Pi, a recipient Pj and a verifier Pk. The sender Pi provides Pj with some
authentication tag and Pk with some verification tag, such that Pj later can prove the
authenticity of a value s to the verifier Pk. We assume that each pair Pi, Pk of players
knows a fixed secret value αi,k ∈ F \ {0, 1}.

Definition 2. A vector (s, y, z, α) is 1-consistent if there exists a polynomial f of degree
1 over F such that f(0) = s, f(1) = y, f(α) = z. We say a value s is (Pi, Pj , Pk)-
authenticated if Pj knows s and some authentication tag y and Pk knows a verifica-
tion tag z such that (s, y, z, αi,k) is 1-consistent. The vector (y, z, αi,k) is denoted by
Ai,j,k(s).

Lemma 7. A (Pi, Pj , Pk)-authenticated value s does not leak information to Pk .

Proof. The verification tag z is statistically independent of the value s. ��

Lemma 8. Let s be (Pi, Pj , Pk)-authenticated, i.e. (s, y, z, αi,k) is 1-consistent. Then
for Pj being able to find an authentication tag y′ for a value s′ �= s such that (s′, y′, z,
αi,k) is 1-consistent is equivalent to finding αi,k.

Proof. If both (s, y, z, αi,k) and (s′, y′, z, αi,k) are 1-consistent, then also (s− s′, y −
y′, 0, αi,k) is 1-consistent. The corresponding polynomial of degree 1 is not parallel to
the x-axis, as s− s′ �= 0. Thus it has an unique root at αi,k = s−s′

s−s′−y+y′ .

Lemma 9. The players Pj and Pk can locally compute an authentication and a verifi-
cation tag of any linear combination of (Pi, Pj , Pk)-authenticated values (for fixed Pi).
This is called the linearity of the authentication.

Proof. Let sa and sb be (Pi, Pj , Pk)-authenticated with authentication tags ya, yb and
verification tags za, zb and the (fixed) point αi,k and let L be a linear function. Then
L(sa, sb) is (Pi, Pj , Pk)-authenticated with authentication tag y = L(ya, yb) and ver-
ification tag z = L(za, zb). This works as the polynomials of degree 1 over F form a
vector space, hence (L(sa, sb), L(ya, yb) , L(za, zb), αi,k) is 1-consistent. ��

Let s be a value known to Pj and Pk . Then these players can use the protocol Default
Authenticate to (Pi, Pj , Pk)-authenticate s without communication for arbitrary Pi.
Note that Pi does not play an (active) role in this protocol.

Protocol DefaultAuthenticate(Pi, Pj, Pk, s)
0: Pj , Pk take the value s as input.
1: Pj outputs authentication tag y = s. Pk outputs verification tag z = s.
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Lemma 10. If the value s is known to the honest players in {Pj, Pk} protocol Default
Authenticate(Pi, Pj , Pk, s) securely (Pi, Pj , Pk)-authenticates s without any
communication.

Proof. Correctness: (s, s, s, αi,k) is 1-consistent for anyαi,k. Privacy/Communication:
No communication occurs. ��

The non-robust protocol Authenticate allows to securely (Pi, Pj , Pk)-authenticate a
(secret) value s.

Protocol Authenticate(Pi, Pj, Pk, s)
0: Pi and Pj take the value s as input.
1: Pi chooses random values (y, z) ∈ F such that (s, y, z, αi,k) is 1-consistent

and random values (s′, y′, z′) ∈ F such that (s′, y′, z′, αi,k) is 1-consistent
and sends (s′, y, y′) to Pj and (z, z′) to Pk

2: Pk broadcasts random r ∈ F.
3: Pi broadcasts s′′ = rs+ s′ and y′′ = ry + y′.
4: Pj checks if s′′ = rs + s′ and y′′ = ry + y′ and broadcast OK or NOK

accordingly. If NOK was broadcast the protocol is aborted.
5: Pk checks if (s′′, y′′, rz + z′, αi,k) is 1-consistent. If yes Pk sends OK to Pj

otherwise he sends (αi,k, z) to Pj , who adjusts y such that (s, y, z, αi,k) is
1-consistent.

6: Pj outputs y and Pk outputs z.

Lemma 11. If Pk is honest and s is known to the honest players in {Pi, Pj}. Then
Authenticate(Pi, Pj , Pk, s) either securely (Pi, Pj , Pk)-authenticates s or aborts ex-
cept with error probability of at most 1

|F| . In the case of an abort a player in {Pi, Pj}
is corrupted. The protocol communicates at most 7 log |F| bits and broadcasts at most
3 log |F|+ 1 bits.

Proof. Correctness: If the protocol was aborted, either s′′ �= rs + s′ or y′′ �= ry + y′

meaning Pi is corrupted, or Pj misleadingly accused Pi. Otherwise, the players use
some (s, y, z, αi,k) as authentication of s. The probability that (s, y, z, αi,k) is not
1-consistent is |F|−1, as for a fixed r there is exactly one way to choose y, z such
that the inconsistency is not detected. Privacy: The verification tag z, the values s′′ and
y′′ are statistically independent of the value s. Also αi,k is sent only to Pj if either Pi

or Pk is malicious. Communication: Seen by counting the number of messages sent or
broadcast during the protocol. ��

Remark 1. If the (honest) players Pi and Pj do not know the same s the protocol will
abort as well.

Assume that Pk knows a candidate s′ for a (Pi, Pj , Pk)-authenticated value s. If Pj

wants to prove the authenticity of s′ (i.e. that s′ = s) the players invoke the protocol
Verify. If Pk accepts the proof he outputs s′, otherwise he outputs⊥.
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Protocol Verify(Pi, Pj, Pk, s
′, Ai,j,k(s))

0: Let Ai,j,k(s) = (y, z, αi,k). Pj takes y as input and Pk takes s′, z as input.
1: Pj sends y to Pk

2: Pk outputs s′ if (s′, y, z, αi,k) is 1-consistent otherwise⊥.

Lemma 12. Assume s is (Pi, Pj , Pk)-authenticated and let Pk be an honest player
knowing s′. If Pj is honest and s′ = s, Pk will output s in Verify. Otherwise Pk will
output⊥ or s except with error probability of at most 1

|F|−2 . The protocol communicates
at most log |F| bits.

Proof. Correctness: Let Pk be an honest player,let Ai,j,k(s) = (y, z, αi,k) be consis-
tent with s, i.e. (s, y, z, αi,k) is 1-consistent and assume that s′ = s. If Pj sends the
right y the vector (s′, y, z, αi,k) is 1-consistent and Pk will output s. Otherwise Pk al-
ways outputs ⊥. So assume s′ �= s. Then the probability of finding y′ such that the
vector (s′, y′, z, αi,k) is 1-consistent is at most 1

|F|−2 , thus Pk outputs ⊥ except with

error probability of at most 1
|F|−2 . Privacy/Communication: No information except y

is sent. ��

4.2 Unconditional Secret Sharing

Starting from the secret sharing of Section 3.1 we construct a sharing scheme for the
Q2 case using the information-checking scheme of the previous section.

Definition 3. A value s is shared with respect to the sharing specification S = (S1, . . . ,
Sh), if the following holds:

a) There exist shares s1, . . . , sh such that s =
∑h

q=1 sq
b) Each sq is known to every (honest) player in Sq

c) ∀Pi, Pj ∈ Sq Pk ∈ P sq is (Pi, Pj , Pk)-authenticated.

We denote the sharing of a value s by [s]. Let [s]q = (sq, {Ai,j,k(sq)}), where sq is
the q-th share and {Ai,j,k(sq)} the set of all associated authentications. As the perfect
sharing from Section 3.1 this sharing is linear and does not leak information to the
adversary (for a Z-private S).

The following protocol allows a dealer PD to securely share a secret value s.

Protocol Share(P,Z, S, PD, s)
0: The dealer PD takes s as input.
1: PD splits s into random shares s1, . . . , s|S| subject to s =

∑|S|
q=1 sq.

2: for all q ∈ {1, . . . , |S|} do
3: PD sends share sq to every player in Sq.
4: ∀Pi, Pj ∈ Sq and ∀Pk ∈ P invoke Authenticate(Pi, Pj , Pk, sq).

If (for fixed q) any Authenticate(Pi, Pj , Pk, sq) was aborted
PD broadcasts sq, the players in Sq replace there share and
DefaultAuthenticate(Pi, Pj , Pk, sq) is invoked ∀Pi, Pj ∈ Sq ∀Pk ∈ P .

5: end for
6: The players in P collectively output [s].
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Lemma 13. For any adversary structureZ the protocol Share(P ,Z, S, PD, s) securely
computes a sharing [s′] except with error probability of at most 1

|F|n
3 |S| and if PD

is honest s′ = s. The protocol communicates at most |S| (7n3 + n) log |F| bits and
broadcasts at most |S| ((3n3 + 1) log |F|+ n3) bits.

Proof. Correctness: Assume that PD does not send the same value to the (honest) play-
ers in Sq (Step 3). In this case at least one invocation of Authenticate will abort (see
Remark 1) and PD must broadcast the value. Otherwise all (honest) player use the
same value sq in Step 3. We have to show that every (honest) Pj gets his authenti-
cations Ai,j,k(sq). If all instances of Authenticate do not abort the statement follows
from Lemma 11. Otherwise sq is broadcast and the players use DefaultAuthenticate
resulting in the proper sharing state (c.f. Lemma 10). Note that a single invocation of
Authenticate has an error probability of at most 1

|F| , so the above upper bound on the
error probability follows. Privacy: We only have to check that broadcasting sq in Step
4 does not violate privacy. But sq is only broadcast when at least one Authenticate was
aborted. In this case either PD or a player in Sq is malicious, hence sq is known to
the adversary before the broadcast (Lemma 11 and Remark 1). Communication: Fol-
lows directly by counting the numbers of messages sent or broadcast (c.f. Lemmas 11
and 10) ��

If a value is publicly known the player can use DefaultShare to obtain a sharing of it.

Protocol DefaultShare(P,Z, S, s)
0: Every player takes s as input.
1: The share s1 is set to s and all other shares are set to 0.
2: DefaultAuthenticate(Pi, Pj , Pk, sq) is invoked ∀Sq∀Pi, Pj ∈ Sq ∀Pk ∈ P .
3: The players in P collectively output [s].

Lemma 14. DefaultShare(P ,Z, S, s) securely computes a sharing [s] of s. The proto-
col does not communicate.

Proof. The statement follows from Lemmas 2 and 10. ��
The protocol ReconstructShare allows reconstruction of a share from some sharing
[s] to players in R ⊆ P . Hence the players can reconstruct s by invoking protocol
ReconstructShare for each share of [s].

Protocol ReconstructShare(P,Z, S, [s]q, R)
0: The players in Sq take collectively [s]q = (sq, {Ai,j,k(sq)}) as input.
1: Every player Pj in Sq sends sq to every player in R.
2: for all Pj ∈ Sq, Pk ∈ R do
3: Invoke Verify(Pi, Pj , Pk, s

(j)
q , Ai,j,k(sq)) ∀Pi ∈ Sq where s(j)q is the

value received byPk fromPj in Step 1. IfPk output s(j)q in each invocation
he acccepts it as value for sq .

4: end for
5: Each Pk outputs some value he accepted in Step 3 (or ⊥ if never accepted a

value).
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Lemma 15. Assume Sq and Z satisfy Q1(Sq,Z) and let [s]q be a consistent share.
Every honest player in R outputs sq in ReconstructShare except with error probability
of at most 1

|F|−2n |Sq|. The protocol communicates at most (n3 + n2) log |F| bits and
does not broadcast.

Proof. Correctness: As Sq and Z satisfy Q1(Sq,Z) there exists at least one honest
player Pj in Sq , who sends the right value sq to Pk ∈ R in Step 1. Hence every (honest)
Pk will accept sq in Step 3 from Pj , as Pj has a valid authentication for sq from every
player in Sq (c.f. Lemma 12). On the other hand a malicious player does not have a
valid authentication for s′q �= sq from every player in Sq (one of them is honest!). So
no honest player will accept s′q �= sq in Step 3 and thus Pk output sq in the last step
except with error probability of at most 1

|F|−2 |Sq| (c.f. Lemma 12). As there are at most
n players in R the overall error probability follows. Privacy: Follows from Lemma
12. Communication: Follows directly by counting the numbers of messages sent (c.f.
Lemma 12) ��

Protocol Reconstruct(P,Z, S, [s], R)
0: The players in P take collectively [s] as input.
1: for all q = 1, . . . , |S| do
2: ReconstructShare(P ,Z, S, [s]q, R) is invoked.
3: end for
4: The players locally sum up the shares to obtain and output s.

Lemma 16. Assume S and Z satisfy Q1(S,Z) and let [s] be a sharing of the value
s. Every honest player in R outputs s in Reconstruct except with error probability of
at most 1

|F|−2n
2 |S|. The protocol communicates at most |S| (n3 + n2) log |F| bits and

does not broadcast.

Proof. The statement follows directly from Lemma 15, as the players invoke the proto-
col ReconstructShare for each share. ��

4.3 Multiplication

We present a protocol for the unconditionally-secure computation of the (shared) prod-
uct of two shared values [a] and [b]. The idea is, as in the perfect case, to use an opti-
mistic multiplication. The protocol BasicMult takes a set M of (identified) malicious
players as input and outputs the correct product given that no player in P \M actively
cheated. In a next step a probabilistic check is used to determine whether the prod-
uct computed in BasicMult is correct. This allows us to detect malicious behaviour. If
cheating occured, all involved sharings (from BasicMult) are reconstructed to identify
a cheater in P \M . These reconstructions violate the privacy of the involved factors
the protocol is not used directly in the actual circuit computation. Instead we use it to
multiply two random values and make use of circuit randomization from [Bea91b] for
actual multiplication gates.
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Protocol BasicMult(P,Z, S, [a], [b],M)
0: The players in P take collectively [a], [b] and M as input.
1: ∀Sq : Sq ∩M �= ∅ invoke ReconstructShare to reconstruct aq and bq .
2: a) Each player Pi ∈ P \M (locally) computes his designated products and

shares the sum ci =
∑

(p,q)∈I(i) apbq.
b) For each Pi ∈ M DefaultShare(P ,Z, S, ci) is invoked where ci =∑

(p,q)∈I(i) apbq.
3: The players collectively output ([c1], . . . , [cn]) and [c] =

∑n
i=1[ci].

Lemma 17. Let M ⊆ Z∗ be a set of (identified) malicious players and assume that Z
and S satisfy Q1(S,Z). Then BasicMult(P ,Z, S, [a], [b],M) securely computes shar-
ings [c], ([c1], . . . , [cn]) except with error probability of O( 1

|F|n
4 |S|). If no player in

P \M actively cheats, then ∀i ci =
∑

(p,q)∈IZ(i) apbq and c = ab. The protocol com-

municates at most O(|S|n4 log |F|) bits and broadcasts at most O(|S|n4 log |F|) bits.

Proof. Correctness: The properties of the sharing protocol guarantee that the outputs
are valid sharings except with error probability ofO( 1

|F|n
4 |S|). TheQ1(S,Z) property

allows the players to securely reconstruct shares and grants that there exists a proper
assignment of players in P to the local products. If none of the players in P \ M
cheated, it holds for eachPi that ci =

∑
(p,q)∈IZ (i) apbq (for players inM DefaultShare

is used on reconstructed values). Privacy: All reconstructed shares aq,bq are known to
players in M . Complexity: Follow directly from the properties of the sharing scheme
(c.f. Lemmas 13, 14 and 15). ��

Detectable Random Triple Generation. The following unconditionally secure proto-
col takes a set M of malicious players as an additional input and computes a random
multiplication triple ([a], [b], [c]) where c = ab given that no player in P \M actively
cheats. Otherwise it outputs a set of malicious playersM ′ such that M �M ′. This pro-
tocol uses a probabilistic check to detect cheating. First the players generate a shared
random challenge [r] and a blinding [b′]. Then they use BasicMult to compute the shar-
ings [c] = [a][b], [c′] = [a][b′] and check whether [a](r[b] + [b′]) = (r[c] + [c′]). If this
is the case the multiplication triple ([a], [b], [c]) is output. Otherwise the players identify
(at least) one cheater in P \M by reconstructing [a], [b], [b′], [c], [c′].

Lemma 18. If S and Z satisfy Q1(S,Z) and M ⊆ Z∗, the protocol RandomTriple
outputs either a random multiplication triple ([a], [b], [c]) or set M ′ ⊆ Z∗ where M �

M ′ except with error probability of O( 1
|F| |S|n4) + 1

|F| . No information is leaked to the

adversary. RandomTriple communicates at most O(|S|n4 log |F|) bits and broadcasts
at most O(|S|n4 log |F|) bits.

Proof. Correctness: In Step 2, the players compute [c] and [c′]. Given that no player in
P \M actively cheated it holds that c = ab and c′ = ab′. In this case [a](r[b] + [b′])−
r[c]− [c′], which is computed in Step 3, is zero for all r and the players reconstruct the
random multiplication triple ([a], [b], [c]). If c �= ab the difference [a](r[b]+[b′])−r[c]−
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[c′] is non-zero except for at most one r and the players go to Step 5 with probability at
least (1− 1

|F| ) (assuming that no errors happen in sharing and reconstruction of values).
For at least one player Pi ∈ P \M it must hold that rci + c′i �=

∑
(p,q)∈I(i) r(apbq) +

(apb
′
q). By opening all involved sharing it is easy to find these players. Thus it holds

that M � M ′ and M ′ ⊆ Z∗. The overall error probability is composed of the error
probability of the sharing scheme and the one of the random challenge check in Step
3. Privacy: Neither the protocol BasicMult nor the sharing scheme do violate privacy
(c.f. Lemma 17). The values e is statistically independent of ([a], [b], [c]), as b′ acts as
blinding. If no cheating occurred the value d is always zero. If Step 5 is invoked, the
reconstructed values are not used, and privacy is met. Communication: Follows from
counting the number of messages sent (c.f. Lemmas 13, 16 and 17). ��

Protocol RandomTriple(P,Z, S,M)
0: The players take the set M ⊆ P as input.
1: The players generate random shared values [a], [b], [b′], [r] by summing up

shared random values (one from each player) for each value.
2: Invoke BasicMult(P ,Z, S, [a], [b],M) to compute the sharing [c] and the vec-

tor ([c1], . . . , [cn]) and invoke BasicMult(P ,Z, S, [a], [b′],M) to compute the
sharing [c′] and the vector ([c′1], . . . , [c

′
n]).

3: Reconstruct [r] and (locally) compute [e] = r[b] + [b′] and reconstruct it to
obtain e. Then [d] = e[a]− r[c]− [c′] is computed (locally) and reconstructed.

4: If the value d is zero the players output ([a], [b], [c]).
5: Otherwise reconstruct the sharings [a], [b], [b′], [c1], . . . , [cn], [c′1], . . . , [c

′
n].

The players outputM ′ = M∪{Pi : rci+c
′
i �=

∑
(p,q)∈I(i) r(apbq)+(apb

′
q)}.

Multiplication with Circuit Randomization. The actual multiplication is based on
circuit randomization [Bea91b]. It allows players to compute the product [xy] of two
shared values [x] and [y] at the cost of two reconstructions given a random multiplica-
tion triple ([a], [b], [c]), where ab = c. The trick is to use that xy = ((x− a) + a)((y −
b) + b). By reconstructing d = x − a and e = y − b the players can compute [xy] as
de+d[b]+[a]e+[c]. This does not violate the secrecy of [x] or [y] as the random values
[a] and [b] act as blinding.

Protocol Multiplication(P,Z, S, [x], [y])
0: The players in P take collectively [x], [y] as input and set M ..= ∅.
1: InvokeRandomTriple(P ,Z, S,M). If the protocol outputs a setM ′, setM ←
M ′ and repeat Step 1. Otherwise use the output as random multiplication triple
([a], [b], [c]).

2: Compute and reconstruct [dx] = [x] − [a] and [dy ] = [y] − [b]. Compute
dxdy + dx[b] + dy[a] + [c] = [xy] to obtain a sharing of xy.
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Lemma 19. Multiplication(P ,Z, S, [x], [y]) is an unconditional secure multiplication
protocol given that S and Z satisfy Q1(S,Z). The protocol has an error probability
of O( 1

|F| |S|n5), communicates at most O(|S|n5 log |F|) bits and broadcasts at most

O(|S|n5 log |F|) bits.

Proof. Correctness: Assume that RandomTriple in Step 1 outputs a set M ′, then we
have that M � M ′ ⊆ P . Hence this step is repeated less then n times and results in
a random multiplication triple ([a], [b], [c]) (c.f. Lemma 18). The rest of the protocol is
just the multiplication from [Bea91b]. Privacy: Follows from [Bea91b] and Lemma 18.
Communication: Follows from counting the number of messages sent (c.f. Lemmas 16
and 18). ��

4.4 Unconditional MPC Protocol

The combination of Share, Reconstruct and Multiplication directly gives the following
unconditionally secure MPC protocol.

Protocol MPC(P,Z, C)
0: The players take S ..= {P \ Z|Z ∈ Z} as sharing specification.
1: For every gate of C being evaluated do the following:

- Input gate for PD: Share(P ,Z, S, PD, s) is invoked to share s
- Linear gate: The linear combination of the corresponding shares is com-

puted locally using the linearity of the sharing.
- Random gate: Each player shares a random value. The sum of these values

is used as output of the gate.
- Multiplication gate: Multiplication(P ,Z, S, [x], [y]) is used to multiply
[x] and [y].

- Output gate: The players invoke Reconstruct(P ,Z, S, [s], R) to recon-
struct s for players in R.

Theorem 2. Let C be a circuit over F, where |F | ∈ Ω(2κ) and κ is a security pa-
rameter, and let Z be an adversary structure satisfying Q2(P ,Z), then MPC(P ,Z, C)
Z-securely evaluates C with an error probability of 2−κ |C| |Z|·Poly(n, κ). It communi-
cates |C| |Z|·Poly(n, κ) bits and broadcasts |C| |Z|·Poly(n, κ) bits within Poly(n, κ)·d
rounds, where d denotes the multiplicative depth of C.

Proof. It is easy to see that S ..= {P \ Z|Z ∈ Z} is a sharing specification satisfying
Q1(S,Z). Hence by the properties of the sharing scheme and Lemma 19 correctness
and the bound on the error probability follow. The claimed communication and broad-
cast complexity follow directly from the used subprotocols. Inspection of the subproto-
cols also shows that it is possible to evaluate gates on the same multiplicative depth of
C in parallel. As each subprotocol only requires Poly(n, κ) rounds, the total number of
rounds follows. ��
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Note that broadcast can be (unconditionally secure) simulated using the protocol from
[PW96], which communicates Poly(n, κ) bits in order to broadcast one bit (with error
probability of O(2−κ)). This results in an MPC protocol with the same efficiency and
error probability as stated in Theorem 2.

The error probability of the presented protocol grows linearly in the size of the ad-
versary structure Z . As |Z| is typically exponential in n, the security parameter κ must
be chosen accordingly (such that |Z| ∈ Poly(κ)). This results in a huge security pa-
rameter and therefore in inefficient protocols. We therefore provide an extension of the
previous protocol in which the error probability only depends on log |Z|, and hence a
reasonably large security parameter κ is sufficient.

5 Unconditional Protocol for Superpolynomial |Z|
The protocol from the previous section has an error probability linear in |Z|, which is
problematic for large adversary structures Z . In this section, we present modifications
to the protocol that reduce the dependency to log |Z|, which is in Poly(n).

The reason for the error probability being dependent on |Z| is twofold: Firstly, the
protocol requires Ω(|Z|) probabilistic checks, in each of them a cheating party might
remain undetected with probability 2−κ. Secondly, the protocol requiresΩ(|Z|) broad-
casts, each of them having a small probability of failure.

5.1 Information Checking

In each invocation of Authenticate / Verify, a cheating attempt of a malicious player
Pi is not detected with probability of O( 1

|F|) (c.f. Section 4.1). As these protocols are
invoked Θ(|Z|) times per sharing, the resulting error probability depends linearly on
|Z|. To avoid this we use local dispute control to deal with detected cheaters.

More formally, each player Pk locally maintains a list Lk of players whom he dis-
trusts. At the beginning of the MPC protocol these lists are empty. Protocol
Authenticate is modified, such that Pj puts Pi on his list Lj if the check in Step 4
fails. Once Pi ∈ Lj , Pj behaves in all future invocations of the protocol as if the check
in Step 4 failed independently whether this is the case or not. Similarly Pk puts Pi on
his list Lk if the check in Step 5 fails. As soon as Pi ∈ Lk , Pk behaves in Step 5 as if
the corresponding check failed. Furthermore, in protocol Verify, Pk puts Pj on his list
Lk if the check in Step 2 failed. Again Pk behaves for all Pj ∈ Lk as if the check failed
independently whether this is the case or not.

In both protocols the adversary has a chance of O( 1
|F|) to cheat successfully, but if

he fails (with probabilityΩ(1− 1
|F|)) one corrupted player Pi is put on the list Lk of an

honest player Pk . From then on Pi is never able to cheat in instances of both protocols
when Pk takes part (in the right position). This means that the adversary actually has at
most n2 attempts to cheat. Hence total error probability of arbitrary many instances of
Verify and Authenticate is at most O( 1

|F|n
2) and no longer depends on Z .

Note that the parallel invocation of Authenticate, as it is used in Share, requires
special care. For example if in one of the parallel invocations of Authenticate (with Pi
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and Pk) the consistency check fails Pk must assume that all other parallel checks failed.
Analogous modifications are made in Verify and Multiplication.

Lemma 20. The modified Authenticate and Verify protocols have a total error proba-
bility of O( 1

|F|n
2) independent of the number of invocations.

5.2 Broadcast

Although broadcast is only needed in Share, the total number of broadcast calls is in
Θ(|Z|). If [PW96] is used, the resulting overall error probability depends linearly on
|Z|. To avoid this problem, the number of broadcast calls must be reduced.

To reach this goal we use the fact that the Share protocol only has constantly many
rounds. In each round a player PS must broadcast Θ(|Z|) many messages of size
O(log |F|). Instead of broadcasting these messages in parallel, PS sends their concate-
nation to the other players, who then check that they received the same message. If an
inconsistency is detected the protocol is repeated. To limit the number of repetitions we
use the concept of dispute control from [BH06] which prevents the malicious players
from repetitive cheating. Dispute control is realized by a publicly known dispute set
Γ ⊆ P × P , a set of unordered pairs of players. If {Pi, Pj} ∈ Γ it means that there is
a dispute between Pi and Pj and thus at least one of them is corrupted. Note that from
Pi’s view all player in {Pj |{Pi, Pj} ∈ Γ} are malicious and thus he no longer trust
them. At the beginning of the MPC protocol Γ is empty.

Protocol OptimisticBroadcast(P,Z, PS,m)
0: The player PS takes m ∈ {0, 1}w as input.
1: ∀{Pi, PS} �∈ Γ PS sends m as mi to Pi.
2: ∀{Pi, Pj} �∈ Γ Pi sends mi as mij to Pj .
3: ∀Pi if all received values are the same Pi is happy, otherwise unhappy. Pi

broadcasts using [PW96] his happy bit.
4: If all players are happy, each Pi outputs the value he holds.

Otherwise, an unhappy player Pi (e.g. the one with the smallest index) broad-
casts j, j′, z, b where mji differs from mj′i at bit-position z and b is the bit
of mji at position z. Then PS , Pj , Pj′ broadcast their versions of the bit at
position z. Using this information the players localize a dispute between two
players of {Pi, PS , Pj , Pj′}. Then the protocol is repeated with updated Γ .

Lemma 21. The protocol OptimisticBroadcast(P ,Z, PS ,m) achieves the broadcast
of a message m′ ∈ {0, 1}w. The protocol communicates at most w ·Poly(n, κ) bits and
broadcasts at most logw · Poly(n, κ).

Proof. The properties of Γ guarantee that honest players will exchange in Step 2 their
received messages from PS . So if all honest player are happy they all will output the
same message m′. For an honest PS this also ensures that m′ = m. If a player is
unhappy, at least one player misbehaved. The actions taken in Step 4 then ensure that
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the honest players will find at least one dispute. The protocol will terminate, as the
number of repetition is limited by n(n − 1). As the broadcast of z requires logw bits,
the communication and broadcast complexities follow. ��

For a message of length Θ(|Z|) the above protocol only needs to broadcast log |Z| ·
Poly(n, κ) bits, hence the total number of broadcast calls per invocation of Share is
reduced to log |Z| · Poly(n, κ).

Lemma 22. The modified Share protocol communicates |C| |Z| · Poly(n, κ) bits and
broadcasts |C| log |Z| · Poly(n, κ) bits.

5.3 Summary

The combination of the above extension results in the following Lemma:

Lemma 23. Let C be a circuit over F, where |F| ∈ Ω(2κ) and κ is a security parameter,
and let Z be an adversary structure satisfying Q2(P ,Z), then the modified protocol
MPC(P ,Z, C)Z-securely evaluates C with an error probability of 2−κ |C|·Poly(n, κ).
It communicates |C| |Z| · Poly(n, κ) bits and broadcasts |C| log |Z| · Poly(n, κ) bits.
The number of rounds is Poly(n, κ) · d, where d denotes the multiplicative depth of C.

Proof. Follows directly from Theorem 2 and Lemmas 20 and 22. ��

By replacing broadcast with the simulated one from [PW96], one gets for |Z| ∈ O(2n)
and |C| ∈ Poly(κ) the following theorem.

Theorem 3. Let C be a circuit over F, where |F| ∈ Ω(2κ) and κ is a security pa-
rameter, and let Z be an adversary structure satisfying Q2(P ,Z), then MPC(P ,Z, C)
Z-securely evaluates C with an error probability of 2−κ · Poly(n, κ). It communicates
|Z| · Poly(n, κ) bits.

6 Lower Bound on the Efficiency

The following theorem states that there exists a family of circuits and Q2 adversary
structures such that the length of unconditionally secure protocols tolerating these ad-
versaries grows exponentially in the number of players. This implies that the computa-
tional complexity of our protocol from the previous section is optimal, as there exists
no protocol with a computational complexity in o(|Z|).

Theorem 4. [Hir01] Let C be the circuit which takes inputs from P1 andP2 and outputs
the product to P1. Then there exists a family Z2,Z3, . . . of Q2 adversary structures for
player sets P2,P3, . . . (|Pn| = n) such that the length of the shortest unconditionally
Zn-secure protocol for C grows exponentially in n.
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Abstract. A reputation system for a set of entities is essentially a list of
scores that provides a measure of the reliability of each entity in the set.
The score given to an entity can be interpreted (and in the reputation
system literature it often is [12]) as the probability that an entity will
behave honestly. In this paper, we ask whether or not it is possible to
utilize reputation systems for carrying out secure multiparty computa-
tion. We provide formal definitions of secure computation in this setting,
and carry out a theoretical study of feasibility. We present almost tight
results showing when it is and is not possible to achieve fair secure com-
putation in our model. We suggest applications for our model in settings
where some information about the honesty of other parties is given. This
can be preferable to the current situation where either an honest ma-
jority is arbitrarily assumed, or a protocol that is secure for a dishonest
majority is used and the efficiency and security guarantees (including
fairness) of an honest majority are not obtained.
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1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrustful
parties P1, . . . , Pm wish to compute a function of their inputs in the presence of
adversarial behavior. The security requirements of such a computation are that
nothing beyond the output should be learned (privacy), the output received
must be correctly computed (correctness), the parties must choose their inputs
independently of each other (independence of inputs), and either no parties
receive output or all parties receive output (fairness). The formal definition of
security requires that the result of a secure protocol be like the outcome of an
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ideal execution where an incorruptible trusted party is used to compute the
function for all the parties. We remark that if there is no honest majority, then
it is impossible to achieve fairness in general [8].

Under the assumption that the majority of the parties are honest, there exist
protocols with full security [3,7,15]. However, the security of known protocols
totally collapses when this assumption does not hold; in particular, the adversary
can learn the inputs of the honest parties. Based on this, it may seem prudent
to use protocols that guarantee security except for fairness when any number
of parties are corrupted [15]. Unfortunately, all known protocols of this type
have the property that just one corrupted party can prevent the parties from
terminating successfully, and can even breach fairness. Moreover, it is known
that there exist no protocols that simultaneously achieve full security for the case
of honest majority, and security-with-abort (i.e., without fairness) when there is
no honest majority [18]. This leads to the following unfortunate situation: the
parties need to make a decision in advance whether to run a protocol that is
secure as long as there is an honest majority and thereby risk losing privacy if
they are wrong, or to run a protocol that is secure for any number of corruptions
and thereby give up on any hope of obtaining fairness. To make things worse,
this decision is essentially made with no concrete information.

Reputation Systems. A reputation system is a system whose aim is to predict
agents’ behavior in future transactions. Such systems evaluate the data about
agents’ previous transactions and estimate the probability that an agent will
behave honestly or dishonestly in future transactions [12]. Reputation systems
are very popular today in the electronic commerce market and in peer to peer
systems [2]. They are used in these contexts to choose which vendors are trust-
worthy, to determine the level of service obtained by a peer, and more. There
is considerable work on how to construct reliable reputation systems, maintain
them and so on. Such systems provide us with information regarding the honesty
of parties, and therefore could be utilized.

Reputation Systems and Secure Computation. In this paper, we study the
use of reputation systems in order to carry out secure multiparty computation.
We consider a model where all parties are given a reputation vector (r1, . . . , rm)
with the interpretation that the probability that party Pi is honest is ri. An-
other possible interpretation of this model is that there exists an adversary who
attempts to corrupt as many parties as possible. Then, ri is the probability
that party Pi remains uncorrupted, and can depend on the security measures
employed by party Pi. The main question that we ask is:

Can reputation systems be utilized in order to achieve fair and efficient
secure multiparty computation?

This model differs from the standard model of secure computation since all
parties are given information about the honesty of the other parties and the
level at which they can be trusted. Thus, there is hope that this can be used
to achieve more than is possible in the standard model. For example, it may be
possible to use protocols that require an honest majority (that are more efficient
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than those for a dishonest majority, and in addition also guarantee fairness),
without just arbitrarily hoping that a majority of the parties are honest. It is
important that this actually models a more general setting than just that of
reputation systems; see below.

1.2 Our Results

Our main contributions are as follows. First, we suggest this novel model for
secure computation and provide formal definitions of security in this model.
Next, we study the problem of secure computation with reputation systems
from a theoretical perspective. Specifically, we ask under what conditions on the
reputation vector it is possible to achieve fair secure multiparty computation.
We stress that our focus is on fairness since without this requirement one can just
ignore the reputation system entirely and run a protocol like [15] that assumes
no honest majority and guarantees security without fairness. We present both
feasibility and impossibility results for this setting.

Regarding feasibility, we provide a criterion for when the reputations are such
that there exists a subset of parties for which a majority are honest, except
with negligible probability. Thus, when a reputation vector fulfills the criterion,
it is possible to have this subset run a secure protocol that assumes an honest
majority. Using the protocol of [10], this subset can be used to run the protocol
for many other parties who just provide input and receive output (and it does not
matter how many of these other parties are corrupted). Regarding impossibility,
we present another criterion on the reputations and show that when this criterion
is fulfilled it is impossible to securely toss a coin. This is proven by showing a
reduction to the case of two-party coin tossing in the standard model of secure
computation, for which the impossibility of fair coin tossing is well known [8].
Interestingly, we show that in the case of constant reputation values (that do
not depend on the security parameter), our characterization is tight. That is, we
prove the following very informally stated theorem:

Theorem 1.1 (Feasibility Characterization – Informal Statement). Let
Rep be a reputation system. Then, there exist protocols for securely computing
every family of functionalities F with complete fairness with respect to Rep if and
only if the number of parties with reputation greater than 1/2 is superlogarithmic
in the security parameter n.

As we have mentioned, the positive result is obtained by showing that when
the condition on the number of parties with reputation greater than 1/2 is ful-
filled then there exists a subset of parties within which there is an honest ma-
jority, except with negligible probability. Thus, standard protocols for secure
computation with fairness can be run by this subset.

The main question that this leaves is whether or not it is possible to use a
reputation system to achieve fairness in a different and more “interesting” way
than just finding a subset for within which there is an honest majority. We show
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that in fact it is impossible to utilize reputations systems in any other way, and
so our upper bound is almost tight.1

We also show how it is possible to use our feasibility result given a concrete
reputation system; This is not immediate since our theoretical feasibility result is
asymptotic also in the number of parties and requires finding a subset of parties
whose reputation values fulfill a special property.

Reputation Systems with Correlations. The aforementioned basic model
implicitly assumes independence between parties, since each party Pi is cor-
rupted with probability ri as given in the reputation vector. This therefore does
not model the case that Pi and Pj are both corrupted if and only if some Pk

is corrupted. We therefore also study the more general setting where the prob-
abilities that parties are corrupted may be correlated. In this setting, we show
that as long as the correlations are “limited” in the sense that each party is
dependent on only � other parties, then an honest majority exists (except with
negligible probability) if the expected number of honest parties is “large enough”.
We formally define what it means for correlations to be limited to �, and give a
criterion on the required expected number of honest parties. We prove this using
martingales.

We remark that although this extension allows a more general type of repu-
tation system, real-world reputation systems work by providing a vector stating
the individual probabilities that every party is corrupted. Thus, we view the
basic model as our main model.

Covert Security. We observe that the model of security in the presence of
covert adversaries [1], where the guarantee is that any cheating is detected by
honest parties, is particularly suited to our setting where there is an existing
reputation system. This is due to the fact that any cheating will go immediately
punished by reporting such a cheating to the reputation system manager. In
addition, we observe that it is possible to use the protocol of [9] that is only
twice as expensive as a semi-honest information-theoretic protocol, and provides
a deterrent of 1/4 (meaning that any cheating is detected with probability at
least 1/4). Such protocols have been proven to be highly efficient.

Applications to other Settings. Our basic model for secure computation
with reputations actually relates to any setting where additional information
about the honesty of the parties is known. Two examples of such settings are
as follows. First, consider an environment with an access control scheme where
there is non-negligible probability of impersonation. Expressing this probability
of cheating as a reputation system and using our protocols, it is possible to
neutralize the threat from the impersonators. A second example relates to a set
of servers where intrusion detection tools provide an indication as to whether
or not a given server has been compromised. Rather than naively assuming

1 We remark that in the general case that the parties’ reputations may depend on
the security parameter, our results are not completely tight; in the full version of
this paper, we present a concrete example of reputation values for which neither our
feasibility result nor impossibility result holds.
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that a majority of the servers have not been compromised, it is possible to use
the indicators of the intrusion detection system within our protocol in order to
obtain a more robust solution. This setting fits in very nicely with numerous
recent projects that offer a secure computation service, where a set of servers
carry out the computation and security is guaranteed as long as a majority of
them are not compromised [4,5].

2 Definitions – The Basic Model

2.1 Reputation Vectors and Secure Computation

Let f be an m-ary functionality and let π be an m-party protocol for computing
f . A reputation vector r for the protocol π is a vector in Rm such that for
every i, the value ri indicates the probability that party Pi is honest in an
execution of π. We assume that r is public information, and is obtained from an
external authority that handles the reputation system. Our goal in this work is to
study the advantages that such public information can provide in constructing
secure protocols. We remark that reporting malicious behavior of individuals
and maintaining the reputation system is out of this scope of this work. A huge
amount of work deals with how to adapt the reputation of an individual in case
it has been corrupted. Incorporating cryptography to this task and proving the
system that indeed the entity behaves inappropriately, seems as an appealing
future direction.

In the standard setting of secure computation, we are given a fixed m-ary
function and our goal is to construct a secure m-party protocol π for computing
f . Thus the functionality to be computed is fixed and hence its arity is fixed
as well. However, in this paper we wish to work asymptotically in the number
of parties as well, and this makes things more complicated. The reason that we
work in this way is so that we can reason about the probability that some subset
of parties of a given size is corrupted. In order to see this, consider a protocol
that is secure as long as the majority of the parties are honest. Then, consider
the case that all parties are honest with probability 3/4 (and otherwise they
are corrupted). Clearly, for a sufficiently large number of parties it is possible
to apply the Chernoff bound in order to argue that the probability that there is
no honest majority is negligible. However, this is only possible when we consider
an asymptotic analysis over the number of parties. We stress that just like the
use of a security parameter, in a real instantiation of a protocol one would set a
concrete allowed error probability (e.g., 2−40) and verify that for the given real
number of parties and their reputation vector, the protocol error is below this
allowed probability.

Toward this end, we consider a family of functionalities, each with a different
arity, rather than considering a fixed functionality. We require the existence
of a polynomial-time process that is given the requested arity m and security
parameter n and outputs a circuit Cn,m for computing the functionality fm; this
suits the natural case that f computes the same function for each m and the
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only difference is the number of inputs (e.g., statistics like median, majority and
so on). Formally,

Definition 2.1. Let F = {fm}m∈N be an infinite family of functionalities,
where fm is an m-ary functionality. We say that F is a PPT family of func-
tionalities if there exists a polynomial p(·) and a machine M that on input n
and m outputs a circuit Cn,m in time at most p(n + m) such that for every
x1, . . . , xm, it holds that Cn,m(x1, . . . , xm) = f (m)(1n, x1, . . . , xm).

We define a family of protocols Π(m,n) in the same way, and say that it is
polynomial time if there exists a polynomial p(·) such that the running time of
all parties is bounded by p(m+ n). We will consider the case where the number
of parties m = m(n) is bounded by a polynomial in the security parameter n.
This makes sense since any given party cannot run more than poly(n) in any
case, and so if the number of parties m(n) is superpolynomial in n, then it will
not be possible to even send a single message to all other parties.

Summary. We consider secure computation with m = m(n) parties, where
m : N → N is bounded by a polynomial in n.2 The parties run a protocol
Π(m,n), which is an m-party protocol with security parameter n, that securely
computes the functionality fm in the class F = {fm(n)}n∈N. Finally, the parties
have for auxiliary input a reputation vector rm such that for every i ∈ [m], the
probability that party Pi is corrupted is rmi . As we will see, we will require that
for all large enough values of n (which also determines m = m(n)), the protocol
Π(m,n) securely computes fm with respect to the reputation vector rm. Thus,
we also need to consider a family of reputation vectors, one for each value of m;
we denote the family of reputation vectors for every n by Rep = {rm(n)}n∈N.

2.2 Security with Respect to a Reputation Vector

We assume that the reader is familiar with the standard definition of security for
secure computation (see [14,6]). We modify the definition to allow for a varying
number of parties, that is, m(n) for a given function m : N→ N.

Definition 2.2. Let m : N→ N be a function. We say that the protocol Π t(·)-
securely computes the functionality F = {fm(n)}n∈N with respect to m(·), if for
every ppt adversary A, there exists a ppt simulator S, such that for every ppt

distinguisher D, there exists a negligible function μ(·) such that for every n ∈ N,
every I ⊆ [m(n)] with |I| ≤ t(m(n)), every x ∈ ({0, 1}∗)m(n) and z ∈ {0, 1}∗, it
holds that: ∣∣Pr [D (

idealF ,S(z),I (n,m,x)
)
= 1

]
−Pr

[
D
(
realΠ,A(z),I (n,m,x)

)
= 1

]∣∣ ≤ μ(n).

2 We remark that the naive approach of takingm to be a parameter that is independent
of n does not work, since security would also need to hold whenm is superpolynomial
in n. However, in such a case, one cannot rely on cryptographic hardness. In addition,
bounding m by a polynomial in n is natural in the sense that parties cannot run in
time that is superpolynomial in n in any case.
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The protocol of GMW [15,14] satisfies this definition, and is secure even when
the number of parties m is a function of n, as long as it is polynomial. Formally,
let Π(m,n) denote the GMW protocol with the following change. Let F =
{fm(n)}n∈N be a functionality. Then, upon input 1n, 1m, each party runs the
polynomial-time process to obtain the circuit Cn,m for computing fm. They
then proceed to run the GMW protocol with m parties on this circuit. We are
interested here in the version of GMW that assumes an honest majority and
guarantees fairness. Thus, we have:

Fact 2.3. Let F = {fm(n)}n∈N be a functionality and let Π denote the GMW
protocol as described above for F . Then, for every polynomial m(·) : N→ N, the

protocol Π(m,n) m(n)
2 -securely computes F with respect to m(n).

Having defined security with respect to a varying number of parties, and thus
actually being asymptotic also in the number of parties, we proceed to include
the reputation system as well. The definition is the same except that instead of
quantifying over all possible subsets of corrupted parties of a certain size, the set
of corrupted parties is chosen probabilistically according to the given reputation
vector rm = (rm1 , . . . , r

m
m). We denote by I ← rm the subset I ⊆ [m] of parties

chosen probabilistically where every i ∈ I with probability 1−rmi (independently
of all j �= i). We note that the output of ideal and real includes 1n, 1m,x, z
and I. Thus the probabilistic choice of I is given to the distinguisher.

Definition 2.4 (Security with Respect to (m(·),Rep)). Let m(·), Rep, F
and Π be as above. We say that Π securely computes F with respect to (m(·),Rep),
if for every ppt adversary A, there exists a ppt simulator S, such that for every
ppt distinguisher D, there exists a negligible function μ(·) such that for every
n ∈ N, every x ∈ ({0, 1}∗)m(n) and z ∈ {0, 1}∗, it holds that:∣∣∣ Pr

I←rm(n)

[
D
(
idealF ,S(z),I (n,m(n),x)

)
= 1

]
− Pr

I←rm(n)

[
D
(
realΠ,A(z),I (n,m(n),x)

)
= 1

] ∣∣∣ ≤ μ(n)

Observe that a protocol that is secure with respect to a reputation vector is
allowed to always fail for a certain subset I of corrupted parties, if that specific
corruption subset is only obtained with negligible probability with the reputation
vectors in Rep.

3 A Theoretical Study

In this section we explore our model, and ask under what conditions on the
reputation vector, security can be obtained. We first observe that when an honest
majority (over all or just a subset of parties) can be guaranteed except with
negligible probability, then it is possible to run protocols that are secure with an
honest majority like [15,14] and [21]. We then present a simple condition on a
family of reputation vectors that determines whether or not an honest majority
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on a subset exists. We also present a condition on the reputation vectors for
which it is impossible to securely compute the coin tossing functionality. This
is shown by reduction to the impossibility of computing two-party coin tossing
with fairness [8]. Finally, we show that when the reputations are constant, then
the above conditions are complementary. In the full version we give an example
of a reputation vector with probabilities that depend on n for which neither of
our conditions apply.

3.1 Feasibility

Reputation Vectors and Honest Majority. We begin by presenting a simple
property for evaluating whether or not a family of reputation vectors guarantees
an honest majority, except with negligible probability. It is clear that if all parties
have reputation ri >

1
2 + ε for some constant ε, then there will be an honest

majority except with probability that is negligible in the number of parties; this
can be seen by applying the Chernoff bound. Likewise, if at least two thirds of the
parties have reputation ri >

3
4 + ε, then a similar calculation will yield an honest

majority except with negligible probability. However, these calculations require
a large subset of parties to have high reputation, and the use of Chernoff requires
that we use the same probability for a large set. Thus, this does not address the
case that 1/4 of the parties have very high reputation (almost 1), another half
have reputation 1/2, and the remaining 1/4 have low reputation. In order to
consider this type of case, we use the Hoeffding Inequality [19]. This enables us
to relate to the overall sum (or equivalently, average) of the reputations of all
parties. Using this inequality, we obtain a very simple condition on reputation
vectors. Namely, given a family Rep = {rm(n)}n∈N and a polynomial m = m(n),
we simply require that for all sufficiently large n’s, the average of the reputations

is greater than: 1/2 + ω

(√
logm
m

)
, or, equivalently, that the expected number

of honest parties is greater than: m/2 + ω
(√

m · logm
)
.

Before proceeding to the formal proof, we first state the Hoeffding Inequal-
ity [19] (see also [13, Sec. 1.2]). In our specific case, all of the random variables
have values between 0 and 1, and we therefore write a simplified inequality for
this case.

Lemma 3.1 (The Hoeffding Inequality). Let X1, . . . , Xm be m independent
random variables, each ranging over the (real) interval [0, 1], and let μ = 1

m ·
E[
∑m

i=1Xi] denote the expected value of the mean of these variables. Then, for

every ε > 0, Pr
[∣∣∣∑m

i=1 Xi

m − μ
∣∣∣ ≥ ε

]
≤ 2 · e−2ε2·m.

Claim 3.2. Let m : N → N be such that O(logm(n)) = O(log n), let Rep =
{rm(n)}n∈N be a family of reputation vectors and let m = m(n). If it holds that

m∑
i=1

rmi >
⌊m
2

⌋
+ ω

(√
m · logm

)
,
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then there exists a negligible function μ(n) such that for every n,

Pr
I←rm

[
|I| ≥

⌊m
2

⌋]
< μ(n) .

Proof: Fix n and let m = m(n). For every i ∈ [m], let Xi be a random
variable that equals 1 when party Pi is honest, and 0 when it is corrupted. Thus,

Pr[Xi = 1] = ri. Let X̄ =
∑m

i=1 Xi

m . Using linearity of expectations, we have that
E[X̄] = 1

m

∑m
i=1 ri.

There is an honest majority when |I| < m
2 ; equivalently, when

∑m
i=1Xi ≥

#m/2$+ 1. Let Δ = (
∑m

i=1 ri) − #m/2$ = m · E[X̄] − #m/2$. By the Hoeffding
inequality:

Pr

[
m∑
i=1

Xi ≤
⌊m
2

⌋]
= Pr

[
m∑
i=1

Xi −m · E
[
X̄
]
≤

⌊m
2

⌋
−m · E

[
X̄
]]

= Pr

[
m∑
i=1

Xi −m · E
[
X̄
]
≤ −Δ

]
= Pr

[
m∑
i=1

Xi −m · E
[
X̄
]
≤ −m · Δ

m

]

= Pr

[∑m
i=1 Xi

m
− E

[
X̄
]
≤ −Δ

m

]
≤ 2e−

2Δ2

m .

The above holds for all n and m = m(n). Asymptotically, by the assumption

in the claim, Δ = ω(
√
m · logm) and thus Δ2

m = ω(logm). Hence we have

that, Pr
[
|I| ≥

⌊
m
2

⌋]
= Pr

[∑m
i=1Xi ≤

⌊
m
2

⌋]
≤ 2e−

2Δ2

m < 2e−ω(logm) which is
negligible in m. Since m(·) is a function such that O(logm(n)) = O(log n), it
holds that e−ω(logm(n)) is a function that is negligible in n, as required.

Intuitively, in order to use the above for secure computation, all the parties
need to do is to run a protocol that is secure with an honest majority (like
GMW [15]). Since there is guaranteed to be an honest majority except with
negligible probability, then this is fine. We stress, however, that for this to work
we need to use Fact 2.3 since here we refer to the version of GMW for which the
number of parties m is a parameter, and is not fixed. We therefore conclude:

Theorem 3.3. Let F be as above, and let Π = {Π(m,n)} be the GMW protocol
of Fact 2.3. Let m(·) be a function such that O(logm(n)) = O(log n), let m =
m(n) and let Rep be as above. If

m∑
i=1

rmi >
⌊m
2

⌋
+ ω(

√
m logm) ,

then Π securely computes F with respect to (m(·),Rep).

The proof of this is immediate; if there is an honest majority then the real
and ideal executions are indistinguishable, and there is an honest majority except
with negligible probability.
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Subset Honest Majority. In order to achieve secure computation with com-
plete fairness, it suffices to have a subset of parties for which there is guaranteed
to be an honest majority except with negligible probability [10]. This works by
having the subset carry out the actual computation for all other parties. Specif-
ically, all the parties send shares of their inputs to the subset, who compute
shares of the output and return them. In more detail, the protocol of [10] works
as follows. Let T ⊆ [m(n)] be the subset of parties that carry out the actual com-
putation; these are called the servers. All the parties distribute their inputs to
the set of servers T using VSS (verifiable secret sharing) with threshold |T |/2+1.
The servers then compute shares of the outputs by computing the circuit gate by
gate. At the output phase, the servers send the appropriate shares of the outputs
to each party, who then reconstructs the output. See [10] for details, and for a
proof that the protocol is secure as long as a majority of the parties in T are
honest. Thus, as long as there exists a subset of parties T ⊆ [m(n)] with honest
majority except with negligible probability, there exists a protocol for this m(·)
and family of reputation vectors. Thus, we have:

Claim 3.4. Let F , m(·) and Rep be as above. If there exists a negligible func-
tion μ(·), such that for every n there exists a subset Tn ⊂ [m(n)] for which

PrI←rm(n)

[
|Tn ∩ I| ≤ |Tn|

2

]
≤ μ(n), then there exists a (non-uniform) protocol

Π that securely computes F with respect to (m(·),Rep).

The proof of this claim is the same as the proof of Theorem 3.3: if there is a
subset with an honest majority then the security of [10] holds, and the probability
that there is not an honest majority is negligible. There is one subtle point here,
which is that the protocol as described is non-uniform since the subset Tn may
be different for every n. Nevertheless, as we will see below, our criteria for the
existence of such a subset is such that an appropriate subset Tn can always be
efficiently computed from the reputation vector rm(n) (assuming its existence).

Criteria on the Reputation Vector. Our next goal is to analyze when a fam-
ily of reputation vectors guarantees a subset of parties with an honest majority,
except with negligible probability. We first present the technical criteria, and
then explain its significance below.

Claim 3.5. Let m(·), and Rep be as above. For every n and subset Tn ⊆ [m(n)],

let ΔTn

def
=

∑
i∈Tn

r
m(n)
i − |Tn|

2 . If there exists a series of subsets {Tn}n∈N (each

Tn ⊆ [m(n)]) such that
(ΔTn )2

|Tn| = ω(logn), then there exists a negligible function

μ(·) such that for every n, PrI←rm(n)

[
|I ∩ Tn| > |Tn|

2

]
≤ μ(n).

Proof: The proof of this claim is very similar to that of Claim 3.2, and uses
the Hoeffding inequality. Let {Tn}n∈N be a series of subsets as in the claim. Fix
n and T = Tn. Then, for every i ∈ T , let Xi be a random variable that equals 1
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when the party is honest and 0 when it is corrupted. An identical calculation to
that carried out in the proof of Claim 3.2 yields that for every n,

Pr
I←rm(n)

[
|I ∩ Tn| >

|Tn|
2

]
= Pr

[∑
i∈Tn

Xi ≤
|Tn|
2

]
≤ 2e−

2(ΔTn
)2

|Tn| . (1)

Since
(ΔTn )2

|Tn| = ω(logn), we conclude that PrI←rm(n)

[
|I ∩ Tn| > |Tn|

2

]
≤

2e−ω(logn) which is negligible in n, as required.

Combining Claim 3.5 with Claim 3.4 we conclude that:

Corollary 3.6. Let F , m(·) and Rep be as above. For every n and subset Tn ⊆
[m(n)], let ΔTn

def
=

∑
i∈Tn

r
m(n)
i − |Tn|

2 . If there exists a series of subsets {Tn}n∈N

(each Tn ⊆ [m(n)]) such that
(ΔTn )2

|Tn| = ω(logn), then there exists a (non-

uniform) protocol Π that securely computes F with respect to (m(·),Rep).

Efficiently Finding the Subset Tn. The non-uniformity of the protocol is due
to the fact that in general, the subset Tn may not be efficiently computable from
the reputation vector. Nevertheless, we show now that assuming the existence of
a subset Tn fulfilling the condition, it is easy to find a subset T ′

n (not necessarily
equal to Tn) that also fulfills the condition.

In order to see this, first note that for any size t, the largest value of Δ (over
all subsets Tn ⊆ [m(n)] of size t) is obtained by taking the t indices i for which

ri is largest. This follows since ΔTn = (
∑

i∈Tn
ri) − |Tn|

2 and so replacing an ri
in the sum with a larger rj always gives a larger ΔTn . This gives the following
algorithm for finding an appropriate subset:

1. Given rm, sort the values in decreasing order; let ri1 , . . . , rim be the sorted
values.

2. For every j = 1, . . . ,m, compute Δj =
(∑j

k=1 rik

)
− j

2 .

3. Let j be the index for which
(Δj)

2

j is maximum over all j’s. Then, output

the subset T = {i1, . . . , ij}.

In order to see that this fulfills the requirement, observe that by the above
observation, the maximum value of ΔTn for all possible subsets Tn is one of
the values of Δ1, . . . , Δm. Therefore, if there exists a subset that fulfills the
requirement, the subset output by the algorithm also fulfills the requirement.

A Protocol for the Concrete Setting. Our protocols above are proven se-
cure under the assumption that there exists a subset Tn fulfilling the required
asymptotic property. However, concretely, how can a set of parties know that
there exists such a subset, and which subset to take? This turns out to be very
easy since the Hoeffding inequality is exact, and not asymptotic. Thus, for a
given error parameter δ (e.g., δ = 2−40 or δ = 2−80) and subset Tn, it is possible
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to simply compute ΔTn and then check if 2e−
2(ΔTn

)2

|Tn| < δ (this bound is obtained
similarly to the bound in the proof of Claim 3.2; see Eq. (1) for more details).
By the algorithm given above for finding the subset, it is possible to efficiently
find an appropriate Tn with an error below the allowed bound, if one exists. (If
one does not exist, then the parties know that they cannot run the protocol.)
We remark that for efficiency, it is best to take the smallest subset that gives a
value below the allowed error parameter, since this means that the protocol run
by the parties has less participants, and so is more efficient.

Inaccurate Reputation System. Sometimes, the reputation system may be
inaccurate, where the true reputation value of the party is ε-far from its public
value. This error may arise in both directions, that is, sometimes the public
reputation might be lower than the true one, and sometimes it might be higher.
However, it is easy to generalize our results to deal with this case as well, while
taking the reputation as the minimum guaranteed value and considering the
worst case scenario.

3.2 Impossibility

We now turn to study under what conditions on the family of reputation vectors
it is not possible to achieve (general) secure computation. We stress that we focus
on the question of fairness here since one can always ignore the reputation vector
and run a general protocol for secure computation with abort that is resilient
to any number of corrupted parties. We therefore consider the problem of coin
tossing, since it is impossible to fairly toss a coin without an honest majority [8]
(or, more accurately, with only two parties).

Let m(·) be a function and let Rep = {rm(n)}n∈N be a family of reputation
vectors. For every n, we denote by H1/2

n the set of all indices i of parties Pi such

that 1
2 < r

m(n)
i < 1. Recall that m(·) denotes the number of parties and so the

size of the set H1/2
n is bounded by m(n). We denote by F = {fm(n)

CT }n∈N the

coin-tossing functionality: f
m(n)
CT (1n, . . . , 1n) = (U1, . . . , U1), where U1 denotes a

uniform random bit; i.e., the output of the function is the same random bit for
all parties.

The idea behind our proof of impossibility is as follows. Consider first for
simplicity the case that all the reputations are at most 1/2, and thus H1/2

n is
empty. This means that the expected number of corrupted parties is at least
half and thus, intuitively, any protocol that is secure with respect to such a
reputation vector must be secure in the presence of a dishonest majority. We
show that this implies the existence of a two party protocol for fair coin tossing.
We also prove impossibility when H1/2

n is not empty but the probability of all
parties in H1/2

n being corrupted is non-negligible. In this case, we show that since
security must hold even when all parties in H1/2

n are corrupted, we can reduce to
fair coin tossing even here.

Theorem 3.7. Let m(·) be polynomially bounded, and let Rep be a family of
reputation vectors. If there exists a polynomial p(·) such that for infinitely many
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n’s it holds that the probability that all parties in H1/2
n are corrupted is at least

1
p(n) , then there does not exist a protocol Π that securely computes the multiparty

coin-tossing functionality F = {fm(n)
CT }n∈N with respect to (m(·),Rep).

Proof Sketch: Assume the existence of a protocol Π that securely computes

the family F = {fm(n)
CT }n∈N with respect to a polynomial m(·) and a family of

reputation vectors Rep, and that there exists a polynomial p(·) such that for
infinitely many n’s, PrI←rm(n)

[
H1/2

n ⊆ I
]
≥ 1

p(n) . We show that this implies the

existence of an infinitely-often3 non-uniform two-party protocol π′ = 〈P ′
0, P

′
1〉 for

the coin-tossing functionality that is secure in the presence of malicious adver-
saries, in contradiction to the fact that fair coin tossing cannot be achieved [8].4

We start with an informal description of our transformation and we provide
an informal explanation of why it works; we then describe in Protocol 3.8 the
construction of π′, the formal proof appears in the full version of this paper. We
begin with the simpler case where Rep is such that for infinitely many n’s, H1/2

n

is empty; that is, each party is honest with probability at most 1/2. We use this
to construct a two-party protocol π′ in which on security parameter n, the two
parties P ′

0 and P
′
1 emulate an execution of the m = m(n)-party protocolΠ(m,n)

by randomly choosing which of the m parties in Π(m,n) is under the control of
P ′
0 and which of the parties in Π is under the control of P ′

1. This can be done
by tossing m coins, and giving the control of each (virtual) party for which the
coin is 0 to P ′

0, and the control of each (virtual) party for which the coin is 1 to
P ′
1. The two parties then emulate an execution of the m-party protocol Π for

the coin-tossing functionality fm
CT , and determine the resulting bit according to

the outputs of the (virtual) parties under their control.
Loosely speaking, we claim that the security ofΠ implies that this emulation is

secure as well. To see this, note that in an execution of π′, the m-party protocol
Π is invoked when each of the parties of Π is under the control of P ′

0 with
probability 1/2 and under the control of P ′

1 with probability 1/2. Thus, for every
adversary controlling one of the parties in π′, we expect to have about half of the
parties in Π under its control (since each party in Π is under the adversary’s
control with probability 1/2). Since Π is secure with respect to a family of
reputation vectors Rep such that H1/2

n is empty (and so, rmi ≤ 1
2 for every i), Π

is secure when the expected number of the corrupted parties is
∑

i (1− rmi ) ≥ m
2 ,

and thus can handle the number of corruptions in the emulation carried out by
the two party protocol π′.

So far, we have ignored two issues in the construction of π′. First, the coin
tossing we use to decide which of the parties is controlled by P ′

0 and which
is controlled by P ′

1 is only secure with abort, and so an adversary controlling
P ′
0 or P ′

1 might abort before the other party sees the output of the coin tossing.
However, we show that in this case the honest party can simply output a random
bit and this adds no bias to the output. Intuitively, the reason that this works

3 This means that the security of the protocol holds for infinitely many n’s.
4 We note that the proof of impossibility of two-party coin tossing of [8] holds also for
infinitely-often non-uniform protocols (the proof of [8] holds for every fixed n).
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is that if a party aborts before beginning the emulation of Π , then it has no
meaningful information and so cannot bias the outcome. Thus, the other party
may just output a random bit. Second, after the emulation ends, each of the
parties P ′

0 and P ′
1 should determine their outputs. Recall that each of the two

parties has a subset of the m parties in Π under its control and hence at the end
of the emulation of Π , each of P ′

0 and P ′
1 sees a set of outputs (as each party in

Π has an output). However, we expect that when the parties play honestly, all
parties in Π output the same output. Moreover, even if some of the parties in Π
are corrupted, by the security of Π , the output of the honest parties should be
the same (except with a negligible probability). Therefore, intuitively it seems
that P ′

0 (resp. P ′
1) can determine its output by considering the set of all outputs

of the parties under its control. If all those parties have the same output, then
P ′
0 outputs the common bit. Since we expect the event of not all parties having

the same output happen only with a negligible probability, in this case P ′
0 (resp.

P ′
1) can just output a ⊥ symbol. However, when trying to formalize this idea, a

technical problem arises because the expected number of honest outputs in π′

may be larger than the expected number of honest outputs in Π (recall that in
π′ the expected number of honest parties is m

2 whereas in a real execution of
Π the expected number of honest parties is

∑
i r

m
i ≤ m

2 ). We overcome this by
having the honest party in π′ not consider the set of all outputs of the parties
under its control, but rather choose a subset of the outputs that is expected to
be of size

∑
i r

m
i . To do this, the parties in π′ must know the vector rm and

hence the protocol we construct is non-uniform.
So far we only discussed the case that for infinitely many n’s, H1/2

n is empty.
Now, assume that this does not hold and H1/2

n is non-empty. In this case, the
construction of π′ fails because in the execution simulated by π′, each party is
corrupted with probability 1

2 whereas in the real execution of Π , we have parties
whose probabilities to be corrupted are strictly less than 1

2 . For example, assume
that a certain party Pi in Π(m,n) is honest with probability 0.9 (and hence -
corrupted with probability 0.1). However, by the way π′ is defined, this party will
be under the control of the adversary with probability 1

2 . In this case, it might
be that π′ is not secure even though Π is secure, simply because the party Pi

is more likely to be corrupted in π′ than in Π(m,n). However, we show that if
for infinitely many n’s, the probability of all parties in H1/2

n being corrupted is
polynomial in n, then Π must remain (infinitely often) secure even conditioned
on the event that the parties in H1/2

n are corrupted. This will imply that we can
slightly modify the construction of π′ such that one of the parties always controls
the parties in H1/2

n , and obtain that even though these parties are more likely to
be corrupted when π′ simulates Π than in real executions of Π , the simulation
carried out by π′ still remains secure.

A formal construction of π′ is given in Protocol 3.8 and the full proof that π′

securely computes the two-party coin-tossing functionality with fairness appears
in the full version of this paper.
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PROTOCOL 3.8 (Protocol π′ = 〈P ′
0, P

′
1〉 for two-party coin-tossing)

– (Non-uniform) auxiliary input: 1n, rm(n).
– The Protocol:

1. Set up subsets for emulation: Parties P ′
0 and P ′

1 invoke m = m(n)
executions of the f2

CT functionality with security-with-abort in order
to obtain m coins; let b ∈ {0, 1}m be the resulting coins. If one of the
parties receives ⊥ (i.e., abort) for output, then it outputs a random
bit and halts.
Otherwise, the parties define I0 = {i | bi = 0}∪H1/2

n , and I1 = [m]\I0.
2. Emulate Π: The parties P ′

0 and P ′
1 emulate an execution Π =

Π(m(n), n) for computing fm
CT where P ′

0 controls the parties in I0
and P ′

1 controls the parties in I1; all parties use input 1n.
3. Determine outputs:

(a) Party P ′
0 selects a subset S0 ⊆ I0 of the (virtual) parties under

its control as follows. For every i ∈ H1/2
n , Pi is added to S0 with

probability rmi ; for every i ∈ I0 \ H1/2
n , Pi is added to S0 with

probability 2rmi (note that since i ∈ H1/2
n , it holds that rmi ≤ 1

2

and hence 2rmi is a valid probability).
P ′
0 outputs the bit b ∈ {0, 1} if all the virtual parties in S0 output

b in Π . Otherwise, it outputs ⊥.
(b) Party P ′

1 selects a subset S1 ⊆ I1 of the (virtual) parties under
its control by adding each Pi (for i ∈ I1) with probability 2rmi (as
before, i ∈ H1/2

n and hence 2rmi is a valid probability).
P ′
1 outputs the bit b ∈ {0, 1} if all the virtual parties in S1 output

b in Π . Otherwise, it outputs ⊥.

3.3 Tightness of the Feasibility and Impossibility Results

Our feasibility result states that if there exists a series of subsets {Tn}n∈N (each

Tn ⊆ [m(n)]) such that
(ΔTn )2

|Tn| = ω(logn), then there exists a secure protocol.

In contrast, our impossibility result states that if for infinitely many n’s, the
probability that all parties in H1/2

n are corrupted is 1/p(n), then there exists no
protocol. In this section, we clarify the relation between these two results.

Constant Reputations. We consider the case that all reputations are con-
stant. This is somewhat tricky to define since the reputation vectors are modeled
asymptotically themselves (each vector of length m(n) can have different values
and thus can depend on n). We therefore define “constant” by saying that there
exists a finite set R = {r1, . . . , rL} such that all reputation values (in all vectors)
in Rep are in R, and 1 /∈ R (if 1 ∈ R then this is an uncorruptible trusted party
and secure computation is trivial). In this case, we say that Rep has constant
reputations. We have the following theorem:

Theorem 3.9. Let m(·) be a polynomial, and let Rep be a family of constant
reputations. Then, there exist protocols for securely computing every PPT fam-
ily of functionalities F with respect to (m(·),Rep), if and only if it holds that
|H1/2

n | = ω(logn).
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Proof: The existence of protocols for every family of functionalities F when
|H1/2

n | = ω(logn) can be seen as follows. Let r be the smallest value greater
than 1/2 in R. This implies that all reputations in H1/2

n for all n are at least r.

Thus, Δ
H

1/2
n

=
∑

i∈H
1/2
n

(
r
m(n)
i − 1

2

)
≥

∑
i∈H

1/2
n

(
r − 1

2

)
= |H1/2

n | ·
(
r − 1

2

)
. Now,

take Tn = H1/2
n and we have that

(ΔTn )2

|Tn| ≥ |Tn|2·(r− 1
2 )

2

|Tn| = |Tn| ·
(
r − 1

2

)2
=

ω(logn), where the last equality holds because (r − 1/2)2 is constant, and by
the assumption |Tn| = |H1/2

n | = ω(logn). Thus, by Corollary 3.6, there exists a
protocol for every family F .

For the other direction, assume that it is not the case that |H1/2
n | = ω(logn),

for every n. This implies that there exists a constant c such that for infinitely
many n’s, |H1/2

n | ≤ c · logn. Now, let r′ be the highest value in R. It follows
that for every i ∈ H1/2

n , ri ≤ r′. Thus, for infinitely many n’s the probability
that all parties in H1/2

n are corrupted is at least (1 − r′)−c·logn. Since (1 − r′)
is constant, (1 − r′)−c·logn is 1/poly(n). Thus, by Theorem 3.7, there exists no
protocol for coin-tossing (and so it does not hold that all functionalities can be
securely computed).

We conclude that in the case of constant reputations, our results are tight.
In the full version we give an example of a family of reputation vectors with
non-constant reputations, for which neither our upper bound nor lower bound
applies.

4 Secure Computation with Correlated Reputations

Until now, we have considered reputation systems where the probability that
each party is corrupted is independent of the probability that all other parties
are corrupted. This follows directly from how we define reputation systems (and,
indeed, the way these systems are typically defined in other fields). A natural
question that arises is what happens when the probabilities that parties are
corrupted are not independent; that is, when there is a correlation between the
probability that some party Pi is corrupted and the probability that some Pj

(or some subset of other parties) is corrupted. In this section we take a first
step towards exploring the feasibility of fair secure computation with correlated
reputation systems.

We begin by extending Definition 2.4 to this more general case. First, observe
that a reputation system can no longer be represented as a vector of probabilities,
since this inherently assumes independence. (Specifically, no vector can represent
a corruption situation where with probability 1/2 both parties P1 and P2 are
corrupted and with probability 1/2 they are both honest.) Thus, we represent
a reputation system with m = m(n) parties where m : N → N is bounded by
a polynomial in n by a probabilistic polynomial-time sampling machine M that
receives the security parameter n ∈ N and outputs a set I ⊆ [m(n)], such that
Pi is corrupted if i ∈ I. We call (m,M) the reputation system.

The definition of security is the natural extension of Definition 2.4. Specifically,
we say that a protocol Π securely computes F with respect to a reputation system
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(m,M) if all is the same as in Definition 2.4 except that the set I of corrupted
parties is chosen by running M(1n).

We remark that unlike the case of reputation vectors, it does not suffice to
look at the expected number of honest parties here. In order to see this, consider
the case of m parties such that with probability 1/100 all the parties but one
are corrupted, and with probability 99/100 all the parties are honest. According
to this, the expected number of honest parties is 1 · 1/100+ 99/100 ·m which is
greater than 0.99m. Nevertheless, the probability that there is a dishonest ma-
jority is 1/100 which is clearly non-negligible. Thus, in the setting of correlated
reputations where there is dependency between parties, a high expected number
of honest parties does not imply that there is an honest majority except with
negligible probability.

We show that when the “amount of dependence” between the parties is lim-
ited, then it is possible to obtain fair secure computation. In a nutshell, we show
that if each party is dependent on at most �(m) other parties, where �(m) is
some function, and the expected number of honest parties in a sampling byM is
m
2 +ω(�(m) ·

√
m logm), then there is an honest majority except with negligible

probability. Given this fact, it is possible to run any multiparty computation
protocol that is secure with an honest majority. Thus, in contrast to the above
example, we conclude that when dependence is limited, it is possible to use
the expected number of honest parties in order to bound the probability of a
dishonest majority. This is a direct generalization of Theorem 3.3, where the
bound in Theorem 3.3 is obtained by setting �(m) = 1. This result is proven by
defining a martingale based on the random variables indicating the corruption
status of each party, and then applying Azuma’s inequality. We also consider a
generalization of our model, where a party can be correlated also with all other
m− �(m) parties, but only to a very small extent. In addition, as with the case
of reputation vectors, we also show how to extend this result to the case of a
large enough subset with high enough expectation.

Another way to interpret the aforementioned result is as follows. In practical
applications the reputation system is usually represented as a vector, although
dependency between the parties may exist. Thus, the parties do not have all the
information about the honesty of the parties. However, our analysis shows that
the vector of reputations alone may still be useful. By linearity of expectation,
the expected number of honest parties is the sum of reputations even if those
are somehow dependent. Therefore, if this sum is large enough, honest major-
ity is guaranteed except with negligible probability, even if there exists some
correlation between the parties.

We now provide our definition for “limited correlations” and a formal state-
ment of the main result. The full proof, together with additional results appear
in the full version of this paper.

Defining Limited Dependence. LetX1, . . . , Xm be Boolean random variables
such thatXi = 1 if and only if Pi is honest, or equivalently if and only if i /∈ I. We
begin by defining what it means for two parties to be dependent on each other.
It is important to note that in our context the naive approach of saying that
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Pi and Pj are dependent if the random variables Xi and Xj are dependent does
not suffice. In order to see this, assume that there are three parties P1, P2 and
P3, such that P3 is honest if and only if only one of P1 and P2 is honest, and that
P1 and P2 are honest with probability 1/2 (independently of each other). Clearly,
by the standard notion of dependence P1 and P2 are independent. However, the
honesty or lack thereof of P1 and P2 is influenced by P3; stated differently, the
random variablesX1 andX2 are not independent when conditioning onX3. Since
we need to consider the global context of who is honest and who is corrupted,
in such a case we should define that P1 and P2 are correlated.

Based on the above discussion, we define a new notion of dependency that
we call correlation amongst P , where P = {P1, . . . , Pm} is the set of all parties.
Intuitively, we say that a pair of parties Pi and Pj are correlated amongst P if
there exists a subset of parties in P such that the random variables Xi and Xj

are not independent when conditioning on the corruption status of the parties in
the subset. We stress that Pi and Pj are correlated as soon as the above holds for
any subset. We believe that this is quite a natural definition that captures the
intuitive meaning of dependence where the probability that a party is corrupted
can depend on coalitions amongst other parties and whether or not they are
corrupted. Formally:

Definition 4.1 (Correlated Amongst P). Let (m,M) be a reputation sys-
tem. We say that parties Pi and Pj are correlated amongst P if there exists a
subset S ⊆ [m], and Boolean values bi, bj , {bk}k∈S such that

Pr
[
Xi = bi ∧Xj = bj

∣∣∣ {Xk = bk}k∈S

]
�= Pr

[
Xi = bi

∣∣∣ {Xk = bk}k∈S

]
· Pr

[
Xj = bj

∣∣∣ {Xk = bk}k∈S

]
.

Let D(i) be the set of all parties Pj for which Pi and Pj are correlated amongst
P . Intuitively, we say that a reputation system has an �-limited correlation if for
every i it holds that the size of D(i) is at most �; that is the number of parties
with which any party Pi is correlated is at most �.

Definition 4.2 (�-Limited Correlation). Let (m,M) be a reputation system
and � = �(m). We say that (m,M) has an �-limited correlation if for every i ∈ [m],
it holds that |D(i)| ≤ �(m).

An Honest Majority in �-limited Correlated Reputation Systems. We
show that if the expected number of honest parties in an �-limited correlated
reputation systems is large enough, as a function of m and �, then an honest
majority is guaranteed except with negligible probability. The proof of this fact
uses martingales and Azuma’s inequality, and appears in the full version of this
paper. Recall that Xi is a random variable that equals 1 when Pi is honest; thus∑m

i=1Xi gives the number of honest parties. We show that the probability that
this sum is less than m/2 is negligible.
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Theorem 4.3. Let m : N→ N be a function such that O(logm(n)) = O(log n),
let (m(n),M) be a family of reputation systems, and let � = �(m) where m =
m(n). If (m(n),M) has an �-limited correlation and

E

[
m∑
i=1

Xi

]
≥ m

2
+ ω

(
�(m) ·

√
m logm

)
,

then there exists a negligible function μ(·) such that for every n,

Pr

[
m∑
i=1

Xi ≤
m

2

]
< μ(n).

The full proof and additional results appear in the full version of the paper.

5 Reputation and Covert Security

In the model of secure computation in the presence of covert adversaries [1],
the security guarantee is that if a party cheats then it will be detected cheating
with some probability ε (this probability is called the deterrent). The deterrent
parameter ε can be tailored depending on the requirements. For ε = 1/2, the cost
of computing is between 2 and 4 times the cost of protocols that are secure for
semi-honest adversaries. Thus, this is much more efficient than security in the
presence of malicious adversaries. The model of covert adversaries is particularly
suited to a setting with reputation systems since if cheating is detected, then an
immediate “punishment” can be incurred via a report to the reputation system
manager. Thus, the use of protocols that are secure for covert adversaries makes
real sense here.

In addition to the above, we observe that great efficiency can be obtained by
using the protocol of [9]. This protocol assumes an honest majority and obtains
security in the presence of covert adversaries with deterrent 1

4 , at just twice
the cost of obtaining information-theoretic security in the semi-honest model.
Thus, this protocol is extremely efficient. Combining this with the fact that
it is possible to run the protocol on the smallest subset that yields an honest
majority except with probability below the allowed error δ (see Section 3.1),
we have that large-scale computation involving many thousands of participants
can be efficiently computed by taking a much smaller subset to run the protocol
of [9].
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Abstract. We present a computationally secure MPC protocol for threshold ad-
versaries which is parametrized by a value L. When L = 2 we obtain a classical
form of MPC protocol in which interaction is required for multiplications, as L
increases interaction is reduced, in that one requires interaction only after com-
puting a higher degree function. When L approaches infinity one obtains the FHE
based protocol of Gentry, which requires no interaction. Thus one can trade com-
munication for computation in a simple way. Our protocol is based on an inter-
active protocol for “bootstrapping” a somewhat homomorphic encryption (SHE)
scheme. The key contribution is that our presented protocol is highly communi-
cation efficient enabling us to obtain reduced communication when compared to
traditional MPC protocols for relatively small values of L.

1 Introduction

In the last few years computing on encrypted data via either Fully Homomorphic
Encryption (FHE) or Multi-Party Computation (MPC) has been subject to a remark-
able number of improvements. Firstly, FHE was shown to be possible [23]; and this
was quickly followed by a variety of applications and performance improvements
[6,9,8,24,25,29,30]. Secondly, whilst MPC has been around for over thirty years, only
in the last few years we have seen an increased emphasis on practical instantiations;
with some very impressive results [5,18,28].

We focus on MPC where n parties wish to compute a function on their respective
inputs. Whilst the computational overhead of MPC protocols, compared to computing
“in the clear”, is relatively small (for example in practical protocols such as [20,28] a
small constant multiple of the “in the clear” cost), the main restriction on practical de-
ployment of MPC is the communication cost. Even for protocols in the preprocessing
model, evaluating arithmetic circuits over a field Fp, the communication cost in terms
of number of bits per multiplication gate and per party is a constant multiple of the bit
length, log p, of the data being manipulated for a typically large value of the constant.
This is a major drawback of MPC protocols since communication is generally more
expensive than computation. Theoretical results like [15] (for the computational case)
and [16] (for the information theoretic case) bring down the per gate per party com-
munication cost to a very small quantity; essentially O( log n

n · log |C| · log p) bits for a

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 221–240, 2013.
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circuit C of size |C|. While these results suggest that the communication cost can be
asymptotically brought down to a constant for large n, the constants are known to be
large for any practical purpose. Our interest lies in constructing efficient MPC protocols
where the efficiency is measured in terms of exact complexity rather than the asymptotic
complexity.

In his thesis, Gentry [22] showed how FHE can be used to reduce the communication
cost of MPC down to virtually zero for any number of parties. In Gentry’s MPC pro-
tocol all parties send to each other the encryptions of their inputs under a shared FHE
public key. They then compute the function homomorphically, and at the end perform a
shared decryption. This implies an MPC protocol whose communication is limited to a
function of the input and output sizes, and not to the complexity of the circuit. However,
this reduction in communication complexity comes at a cost, namely the huge expense
of evaluating homomorphically the function. With current understanding of FHE tech-
nology, this solution is completely infeasible in practice.

A variant of Gentry’s protocol was presented by Asharov et al. in [1] where the
parties outsource their computation to a server and only interact via a distributed de-
cryption. The key innovation in [1] was that independently generated (FHE) keys can
be combined into a “global” FHE key with distributed decryption capability. We do
not assume such a functionality of the keys (but one can easily extend our results to
accommodate this); instead we focus on using distributed decryption to enable efficient
multi-party bootstrapping. In addition the work of [1], in requiring an FHE scheme, as
opposed to the somewhat homomorphic encryption (SHE) scheme of our work, requires
the assumption of circular security of the underlying FHE scheme (and hence more
assumptions). Although in our instantiation, for efficiency reasons, we use a scheme
which assumes circular security; this is not however theoretically necessary.

In [20], following on the work in [4], the authors propose an MPC protocol which
uses an SHE scheme as an “optimization”. Based in the preprocessing model, the au-
thors utilize an SHE scheme which can evaluate circuits of multiplicative depth one to
optimize the preprocessing step of an essentially standard MPC protocol. The optimiza-
tions, and use of SHE, in [20] are focused on the case of computational improvements.
In this work we invert the use of SHE in [20], by using it for the online phase of the MPC
protocol, so as to optimize the communication efficiency for any number of parties.

In essence we interpolate between the two extremes of traditional MPC protocols
(with high communication but low computational costs) and Gentry’s FHE based solu-
tion (with high computation but low communication costs). Our interpolation is depen-
dent on a parameter, which we label as L, where L ≥ 2. At one extreme, for L = 2 our
protocol resembles traditional MPC protocols, whilst at the other extreme, for L = ∞
our protocol is exactly that of Gentry’s FHE based solution. We emphasize that our
construction is general in that any SHE can be used which supports homomorphic com-
putation of depth two circuits and threshold decryption. Thus the requirements on the
underlying SHE scheme are much weaker than the previous SHE (FHE) based MPC
protocols, such as the one by Asharov et al. [1], which relies on the specifics of LWE
(learning with errors) based SHE i.e. key-homomorphism and demands homomorphic
computation of depth L circuits for big enough L to bootstrap.
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The solution we present is in the preprocessing model; in which we allow a prepro-
cessing phase which can compute data which is neither input, nor function, dependent.
This preprocessed data is then consumed in the online phase. As usual in such a model
our goal is for efficiency in the online phase only. We present our basic protocol and
efficiency analysis for the case of passive threshold adversaries only; i.e. we can toler-
ate up to t passive corruptions where t < n. We then note that security against t active
adversaries with t < n/3 can be achieved for no extra cost in the online phase. For the
active security case, essentially the same communication costs can be achieved even
when t < n/2, bar some extra work (which is independent of |C|) to eliminate the
cheating parties when they are detected. The security of our protocols are proven in the
standard universal composability (UC) framework [10].

Finally we note that our results on communication complexity, both in a practical and
in an asymptotic sense, in the computational setting are comparable (if not better) than
the best known results in the information theoretic and computational settings. Namely
the best known optimally resilient statistically secure MPC protocol with t < n/2 has
(asymptotic) communication complexity of O(n) per multiplication [3], whereas ours
isO(n/L) (see Section 6 for the analysis of our protocol). With near optimal resiliency
of t < (13 − ε)n, the best known perfectly secure MPC protocol has (asymptotic) com-
munication complexity of O(polylog n) per multiplication [16], but a huge constant
is hiding under the O. In the computational settings, with near optimal resiliency of
t < (12− ε)n, the best known MPC protocol has (asymptotic) communication complex-
ity of O(polylog n) per multiplication [15], but again a huge constant is hiding under
theO. All these protocols can not win over ours when exact communication complexity
is compared for even small values of L.

Overview: Our protocol is intuitively simple. We first take an L-levelled SHE scheme
(strictly it has L + 1 levels, but can evaluate circuits with L levels of multiplications)
which possesses a distributed decryption protocol for the specific access structure re-
quired by our MPC protocol. We assume that the SHE scheme is implemented over a
ring which supports N embeddings of the underlying finite field Fp into the message
space of the SHE scheme. Almost all known SHE schemes support such packing of the
finite field into the plaintext slots in an SIMD manner [24,30]; and such packing has
been crucial in the implementation of SHE in various applications [17,20,25].

Clearly with such a setup we can implement Gentry’s MPC solution for circuits
of multiplicative depth L. All that remains is how to “bootstrap” from circuits with
multiplicative depth L to arbitrary circuits. The standard solution would be to bootstrap
the FHE scheme directly, following the blueprint outlined in Gentry’s thesis. However,
in the case of applications to MPC we could instead utilize a protocol to perform the
bootstrapping. In a nutshell that is exactly what we propose.

The main issue then is show how to efficiently perform the bootstrapping in a dis-
tributed manner; where efficiency is measured in terms of computational and communi-
cation performance. Naively performing an MPC protocol to execute the bootstrapping
phase will lead to a large communication overhead, due to the inherent overhead in
dealing with homomorphic encryptions. But on its own this is enough to obtain our
asymptotic interpolation between FHE and MPC; we however aim to provide an ef-
ficient and practical interpolation. That is one which is efficient for small values of L.
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It turns out that a special case of a suitable bootstrapping protocol can be found as a sub-
procedure of the MPC protocol in [20]. We extract the required protocol, generalise it,
and then apply it to our MPC situation.

To ease exposition we will not utilize the packing from [24] to perform evaluations
of the depth L sub-circuits; we see this as a computational optimization which is or-
thogonal to the issues we will explore in this paper. In any practical instantiation of the
protocol of this paper such a packing could be used, as described in [24], in evaluating
the circuit of multiplicative depth L. However, we will use this packing to perform the
bootstrapping in a communication efficient manner.

The bootstrapping protocol runs in two phases. In the first (offline) phase we re-
peatedly generate sets of ciphertexts, one set for each party, such that all parties learn
the ciphertexts but only the given party learns their underlying messages (which are
assumed to be packed). The offline phase can be run in either a passive, covert or ac-
tive security model, irrespective of the underlying access structure of the MPC protocol
following ideas from [18]. In the second (online) phase the data to be bootstrapped
is packed together, a random mask is added (computed from the offline phase data),
a distributed decryption protocol is executed to obtain the masked data which is then
re-encrypted, the mask is subtracted and then the data is unpacked. All these steps
are relatively efficient, with communication only being required for the distributed
decryption.

To apply our interactive bootstrapping method efficiently we need to make a mild
assumption on the circuit being evaluated; this is similar to the assumptions used in
[15,16,21]. The assumption can be intuitively seen as saying that the circuit is relatively
wide enough to enable packing of enough values which need to be bootstrapped at each
respective level. We expect that most circuits in practice will satisfy our assumption,
and we will call the circuits which satisfy our requirement “well formed”.

We pause to note that the ability to open data within the MPC protocol enables one to
perform more than a simple evaluation of an arithmetic circuit. This observation is well
known in the MPC community, where it has been used to obtain efficient protocols for
higher level functions [11,14]. Thus enabling a distributed bootstrapping also enables
one to produce more efficient protocols than purely FHE based ones.

We instantiate our protocol with the BGV scheme [7] and obtain sufficient parameter
sizes following the methodology in [18,25]. Due to the way we utilize the BGV scheme
we need to restrict to MPC protocols for arithmetic circuits over a finite field Fp, with
p ≡ 1 (mod m) with m = 2 ·N and N = 2r for some r. The distributed decryption
method uses a “smudging” technique (see the full version of the paper) which means
that the modulus used in the BGV scheme needs to be larger than what one would need
to perform just the homomorphic operations. Removing this smudging technique, and
hence obtaining an efficient protocol for distributed decryption, for any SHE scheme is
an interesting open problem; with many potential applications including that described
in this paper.

We show that even for a very small value of L, in particular L = 5, we can achieve
better communication efficiency than many practical MPC protocols in the preprocess-
ing model. Most practical MPC protocols such as [5,20,28] require the transmission of
at least two finite field elements per multiplication gate between each pair of parties.
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In [20] a technique is presented which can reduce this to the transmission of an aver-
age of three field elements per multiplication gate per party (and not per pair of parties).
Note the models in [5] (three party, one passive adversary) and [20,28] (n party, dishon-
est majority, active security) are different from ours (we assume honest majority, active
security); but even mapping these protocols to our setting of n party honest majority
would result in the same communication characteristics. We show that for relatively
small values of L, i.e. L > 8, one can obtain a communication efficiency of less than
one field element per gate and party (details available in Section 6).

Clearly, by setting L appropriately one can obtain a communication efficiency which
improves upon that in [15,16]; albeit we are only interested in communication in the
online phase of a protocol in the preprocessing model whilst [15,16] discuss total com-
munication cost over all phases. But we stress this is not in itself interesting, as Gentry’s
FHE based protocol can beat the communication efficiency of [15,16] in any case. What
is interesting is that we can beat the communication efficiency of the online phase of
practical MPC protocols, with very small values of L indeed. Thus the protocol in this
paper may provide a practical tradeoff between existing MPC protocols (which con-
sume high bandwidth) and FHE based protocols (which require huge computation).

Our protocol therefore enables the following use-case: it is known that SHE schemes
only become prohibitively computationally expensive for largeL; indeed one of the rea-
sons why the protocols in [18,20] are so efficient is that they restrict to evaluating homo-
morphically circuits of multiplicative depth one. With our protocol parties can a priori
decide the value of L, for a value which enables them to produce a computationally effi-
cient SHE scheme. Then they can execute an MPC protocol with communication costs
reduced by effectively a factor of L. Over time as SHE technology improves the value
of L can be increased and we can obtain Gentry’s original protocol. Thus our method-
ology enables us to interpolate between the case of standard MPC and the eventual goal
of MPC with almost zero communication costs.

2 Well Formed Circuits

In this section we define what we mean by well formed circuits, and the pre-processing
which we require on our circuits. We take as given an arithmetic circuit C defined over
a finite field Fp. In particular the circuitC is a directed acyclic graph consisting of edges
made up of nI input wires, nO output wires, and nW internal wires, plus a set of nodes
being given by a set of gates G. The gates are divided into sets of Add gates GA and
Mult gates GM , with G = GA ∪ GM , with each Add/Mult gate taking two wires (or
a constant value in Fp) as input and producing one wire as output. The circuit is such
that all input wires are open on their input ends, and all output wires are open on their
output ends, with the internal wires being connected on both ends. We let the depth of
the circuit d be the length of the maximum path from an input wire to an output wire.
Our definition of a well formed circuit is parametrized by two positive integer values
N and L.

We now associate inductively to each wire in the circuit an integer valued label as
follows. The input wires are given the label one; then all other wires are given a label
as follows (where we assume a constant input to a gate has label L):
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Label of output wire of Add gate = min(Label of input wires),

Label of output wire of Mult gate = min(Label of input wires)− 1.

Thus the minimum value of a label is 1−d (which is negative for a general d). Looking
ahead, the reason for starting with an input label of one is when we match this up with
our MPC protocol this will result in low communication complexity for the input stage
of the computation.

We now augment the circuit, to produce a new circuit Caug which will have labels in
the range [1, . . . , L], by adding in some special gates which we will call Refresh gates;
the set of such gates are denoted as GR. A Refresh gate takes as input a maximum of
N wires, and produces as output an exact copy of the specified input wires. The input
requirement is that the input wires must have label in the range [1, . . . , L], and all that
the Refresh gate does is relabel the labels of the gate’s input wires to be L. At the end of
the augmentation process we require the invariant that all wire labels in Caug are then
in the range [1, . . . , L], and the circuit is now essentially a collection of “sub-circuits”
of multiplicative depth at most L− 1 glued together using Refresh gates. However, we
require that this is done with as small a number of Refresh gates as possible.

Definition 1 (Well Formed Circuit). A circuit C will be called well formed if the num-
ber of Refresh gates in the associated augmented circuit Caug is at most 2·|GM |

L·N .

We expect that “most” circuits will be well formed due to the following argument: We
first note that the only gates which concern us are multiplication gates; so without loss
of generality we consider a circuitC consisting only of multiplication gates. The circuit
has d layers, and let the width of C (i.e. the number of gates) at layer i be wi. Consider
the algorithm to produce Caug which considers each layer in turn, from i = 1 to d and
adds Refresh gates where needed. When reaching level i in our algorithm to produce
Caug we can therefore assume (by induction) that all input wires at this layer have
labels in the range [1, . . . , L]. To maintain the invariant we only need to apply a Refresh
operation to those input wires which have label one. Let pi denote the proportion of
wires at layer i which have label one when we perform this process. It is clear that the
number of required Refresh gates which we will add into Caug at level i will be at most
�2 · pi · wi/N�, where the factor of two comes from the fact that each multiplication
gate has two input wires.

Assuming a large enough circuit we can assume for most layers that this proportion
pi will be approximately 1/L, since wires will be refreshed after their values have
passed through L multiplication gates. So summing up over all levels, the expected
number of Refresh gates in Caug will be:

d∑
i=1

⌈
2 · wi

L ·N

⌉
≈ 2

L ·N ·
d∑

i=1

wi =
2 · |GM |
L ·N .

Note, we would expect that for most circuits this upper bound on the number of Refresh
gates could be easily met. For example our above rough analysis did not take into ac-
count the presence of gates with fan-out greater than one (meaning there are less wires
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to Refresh than we estimated above), nor did it take into account utilizing unused slots
in the Refresh gates to refresh wires with labels not equal to one.

Determining an optimum algorithm for moving from C to a suitable Caug, with a
minimal number of Refresh gates, is an interesting optimization problem which we
leave as an open problem; however clearly the above outlined greedy algorithm will
work for most circuits.

3 Threshold L-Levelled Packed Somewhat Homomorphic
Encryption (SHE)

In this section, we present a detailed explanation of the syntax and requirements for
our Threshold L-Levelled Packed Somewhat Homomorphic Encryption Scheme. The
scheme will be parametrized by a number of values; namely the security parameter
κ, the number of levels L, the amount of packing of plaintext elements which can be
made into one ciphertext N , a statistical security parameter sec (for the security of the
distributed decryption) and a pair (t, n) which defines the threshold properties of our
scheme. In practice the parameter N will be a function of L and κ. The message space
of the SHE scheme is defined to be M = FN

p , and we embed the finite field Fp into M
via a map χ : Fp −→M.

Let C(L) denote the family of circuits consisting of addition and multiplication gates
whose labels follow the conventions in Section 2; except that input wires have label
L and whose minimum wire label is zero. Thus C(L) is the family of standard arith-
metic circuits of multiplicative depth at most L which consist of 2-input addition and
multiplication gates over Fp, whose wire labels lie in the range [0, . . . , L]. Informally,
a threshold L-levelled SHE scheme supports homomorphic evaluation of any circuit
in the family C(L) with the provision for distributed (threshold) decryption, where the
input wire values vi are mapped to ciphertexts (at level L) by encrypting χ(vi).

As remarked in the introduction we could also, as in [24], extend the circuit family
C(L) to include gates which process N input values at once as

N -Add (〈u1, . . . , uN〉, 〈v1, . . . , vN 〉) := 〈u1 + v1, . . . , uN + vN 〉,
N -Mult (〈u1, . . . , uN〉, 〈v1, . . . , vN 〉) := 〈u1 × v1, . . . , uN × vN 〉.

But such an optimization of the underlying circuit is orthogonal to our consideration.
However, the underlying L-levelled packed SHE scheme supports such operations on
its underlying plaintext (we will just not consider these operations in our circuits being
evaluated).

We can evaluate subcircuits in C(L); and this is how we will describe the homomor-
phic evaluation below (this will later help us to argue the correctness property of our
general MPC protocol). In particular if C ∈ C(L), we can deal with sub-circuits Csub

of C whose input wires have labels lin1 , . . . , l
in
�in

, and whose output wires have labels
lout1 , . . . , lout�out

, where lini , l
out
i ∈ [0, . . . , L]. Then given ciphertexts c1, . . . , c�in encrypt-

ing the messages m1, . . . ,m�in , for which the ciphertexts are at level lin1 , . . . , l
in
�in

,
the homomorphic evaluation function will produce ciphertexts ĉ1, . . . , ĉ�out , at levels
lout1 , . . . , lout�out

, which encrypt the messages corresponding to evaluating Csub on the
components of the vectors m1, . . . ,m�in in a SIMD manner. More formally:
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Definition 2 (Threshold L-levelled Packed SHE). An L-levelled public key packed
somewhat homomorphic encryption (SHE) scheme with the underlying message space
M = FN

p , public key space PK, secret key space SK, evaluation key space EK, ci-
phertext space CT and distributed decryption key space DKi for i ∈ [1, . . . , n] is a
collection of the following PPT algorithms, parametrized by a computational security
parameter κ and a statistical security parameter sec:

1. SHE.KeyGen(1κ, 1sec, n, t)→ (pk, ek, sk, dk1, . . . , dkn): The key generation algo-
rithm outputs a public key pk ∈ PK, a public evaluation key ek ∈ EK, a secret key
sk ∈ SK and n keys (dk1, . . . , dkn) for the distributed decryption, with dki ∈ DKi.

2. SHE.Encpk(m, r) → (c, L): The encryption algorithm computes a ciphertext c ∈
CT , which encrypts a plaintext vector m ∈ M under the public key pk using
the randomness1 r and outputs (c, L) to indicate that the associated level of the
ciphertext is L.

3. SHE.Decsk(c, l) → m′: The decryption algorithm decrypts a ciphertext c ∈ CT of
associated level l where l ∈ [0, . . . , L] using the decryption key sk and outputs a
plaintext m′ ∈M. We say that m′ is the plaintext associated with c.

4. SHE.ShareDecdki(c, l) → μ̄i: The share decryption algorithm takes a ciphertext
c with associated level l ∈ [0, . . . , L], a key dki for the distributed decryption, and
computes a decryption share μ̄i of c.

5. SHE.ShareCombine((c, l), {μ̄i}i∈[1,...,n]) → m′: The share combine algorithm
takes a ciphertext c with associated level l ∈ [0, . . . , L] and a set of n decryption
shares and outputs a plaintext m′ ∈M.

6. SHE.Evalek(C
sub, (c1, l

in
1 ), . . . , (c�in , l

in
�in

)) → (̂c1, l
out
1 ), . . . , (̂c�out , l

out
�out

): The
homomorphic evaluation algorithm is a deterministic polynomial time algorithm
(polynomial in L, �in, �out and κ) that takes as input the evaluation key ek, a sub-
circuit Csub of a circuit C ∈ C(L) with �in input gates and �out output gates
as well as a set of �in ciphertexts c1, . . . , c�in , with associated level lin1 , . . . , l

in
�in

,
and outputs �out ciphertexts ĉ1, . . . , ĉ�out , with associated levels lout1 , . . . , lout�out

re-
spectively, where each lini , l

out
i ∈ [0, . . . , L] is the label associated to the given

input/output wire in Csub.
Algorithm SHE.Eval associates the input ciphertexts with the input gates of Csub

and homomorphically evaluatesCsub gate by gate in an SIMD manner on the com-
ponents of the input messages. For this, SHE.Eval consists of separate algorithms
SHE.Add and SHE.Mult for homomorphically evaluating addition and multiplica-
tion gates respectively. More specifically, given two ciphertexts (c1, l1) and (c2, l2)
with associated levels l1 and l2 respectively where l1, l2 ∈ [0, . . . , L] then2:

– SHE.Addek((c1, l1), (c2, l2)) → (cAdd,min (l1, l2)): The deterministic polyno-
mial time addition algorithm takes as input (c1, l1), (c2, l2) and outputs a ci-
phertext cAdd with associated level min (l1, l2).

1 In the paper, unless it is explicitly specified, we assume that some randomness has been used
for encryption.

2 Without loss of generality we assume that we can perform homomorphic operations on cipher-
texts of different levels, since we can always deterministically downgrade the ciphertext level
of any ciphertext to any value between zero and its current value using SHE.LowerLevelek.
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– SHE.Multek((c1, l1), (c2, l2)) → (cMult,min (l1, l2) − 1): The deterministic
polynomial time multiplication algorithm takes as input (c1, l1), (c2, l2) and
outputs a ciphertext cMult with associated level min (l1, l2)− 1.

– SHE.ScalarMultek((c1, l1), a) → (cScalar, l1): The deterministic polynomial
time scalar multiplication algorithm takes as input (c1, l1) and a plaintext
a ∈M and outputs a ciphertext cScalar with associated level l1.

7. SHE.Packek((c1, l1), . . . , (cN , lN )) → (c,min(l1, . . . , lN )): If ci is a ciphertext
with associated plaintext χ(mi), then this procedure produces a ciphertext (c,
min(l1, . . . , lN )) with associated plaintext m = (m1, . . . ,mN ).

8. SHE.Unpackek(c, l) → ((c1, l), . . . , (cN , l)): If c is a ciphertext with associated
plaintext m = (m1, . . . ,mN ), then this procedure produces N ciphertexts (c1, l),
. . . , (cN , l) such that ci has associated plaintext χ(mi).

9. SHE.LowerLevelek((c, l), l
′) → (c′, l′): This procedure, for l′ < l, produces a ci-

phertext c′ with the same associated plaintext as c, but at level l′. �

We require the following homomorphic property to be satisfied:

– Somewhat Homomorphic SIMD Property: Let Csub : F�in
p → F�out

p be any sub-
circuit of a circuitC in the family C(L) with respective inputs m1, . . . ,m�in ∈M,
such that Csub when evaluated N times in an SIMD fashion on the N components
of the vectors m1, . . . ,m�in , producesN sets of �out output values m̂1, . . . , m̂�out

∈ M. Moreover, for i ∈ [1, . . . , �in] let ci be a ciphertext of level lini with asso-
ciated plaintext vector mi and let (̂c1, lout1 ), . . . , (̂c�out , l

out
�out

) = SHE.Evalek(C
sub,

(c1, l
in
1 ), . . . , (c�in , l

in
�in

)). Then the following holds with probability one for each
i ∈ [1, . . . , �out]:

SHE.Decsk(ĉi, l
out
i ) = m̂i.

We also require the following security properties:

– Key Generation Security: Let S and Di be the random variables which denote the
probability distribution with which the secret key sk and the ith key dki for the dis-
tributed decryption is selected from SK andDKi by SHE.KeyGen for i = 1, . . . , n.
Moreover, for a set I ⊆ {1, . . . , n}, let DI denote the random variable which de-
note the probability distribution with which the set of keys for the distributed de-
cryption, belonging to the indices in I , are selected from the corresponding DKis
by SHE.KeyGen. Then the following two properties hold:
• Correctness: For any set I ⊆ {1, . . . , n} with |I| ≥ t+1, H(S|DI) = 0. Here
H(X |Y ) denotes the conditional entropy of a random variable X with respect
to a random variable Y [13].

• Privacy: For any set I ⊂ {1, . . . , n} with |I| ≤ t, H(S|DI) = H(S).
– Semantic Security: For every set I ⊂ {1, . . . , n} with |I| ≤ t and all PPT adver-

saries A, the advantage of A in the following game is negligible in κ:
• Key Generation: The challenger runs SHE.KeyGen(1κ, 1sec, n, t) to obtain (pk,
ek, sk, dk1, . . . , dkn) and sends pk, ek and {dki}i∈I to A.

• Challenge: A sends plaintexts m0,m1 ∈ M to the challenger, who randomly
selects b ∈ {0, 1} and sends (c, L) = SHE.Encpk(mb, r) for some randomness
r to A.
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• Output: A outputs b′.
The advantage of A in the above game is defined to be | 12 − Pr[b′ = b]|.

– Correct Share Decryption: For any (pk, ek, sk, dk1, . . . , dkn) obtained as the output
of SHE.KeyGen, the following should hold for any ciphertext (c, l) with associated
level l ∈ [0, . . . , L]:

SHE.Decsk(c, l) = SHE.ShareCombine((c, l), {SHE.ShareDecdki(c, l)}i∈[1,...,n]).

– Share Simulation Indistinguishability: There exists a PPT simulator SHE.ShareSim,
which on input a subset I ⊂ {1, . . . , n} of size at most t, a ciphertext (c, l) of
level l ∈ [0, . . . , L], a plaintext m and |I| decryption shares {μ̄i}i∈I outputs
n − |I| simulated decryption shares {μ̄∗

j}j∈I with the following property: For
any (pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, any sub-
set I ⊂ {1, . . . , n} of size at most t, any m ∈ M and any (c, l) where m =
SHE.Decsk(c, l), the following distributions are statistically indistinguishable:

({μ̄i}i∈I , SHE.ShareSim((c, l),m, {μ̄i}i∈I))
s≈
(
{μ̄i}i∈I , {μ̄j}j∈I

)
,

where for all i ∈ [1, . . . , n], μ̄i = SHE.ShareDecdki(c, l). We require in particu-
lar that the statistical distance between the two distributions is bounded by 2−sec.
Moreover

SHE.ShareCombine((c, l), {μ̄i}i∈I ∪ SHE.ShareSim((c, l),m, {μ̄i}i∈I))

outputs the result m. Here I denotes the complement of the set I; i.e. I = {1, . . . ,
n} \ I .

In the full version of the paper we instantiate the abstract syntax with a threshold SHE
scheme based on the BGV scheme [7]. We pause to note the difference between our
underlying SHE, which is just an SHE scheme which supports distributed decryption,
and that of [1] which requires a special key homomorphic FHE scheme.

4 MPC from SHE – The Semi-Honest Settings

In this section we present our generic MPC protocol for the computation of any arbitrary
depth d circuit using an abstract threshold L-levelled SHE scheme. For the ease of
exposition we first concentrate on the case of semi-honest security, and then we deal
with active security in Section 5.

Without loss of generality we make the simplifying assumption that the function f
to be computed takes a single input from each party and has a single output; specifi-
cally f : Fn

p → Fp. The ideal functionality Ff presented in Figure 1 computes such
a given function f , represented by a well formed circuit C. We will present a protocol
to realise the ideal functionality Ff in a hybrid model in which we are given access to
an ideal functionality FSETUPGEN which implements a distributed key generation for the
underlying SHE scheme. In particular the FSETUPGEN functionality presented in Figure 2
computes the public key, secret key, evaluation key and the keys for the distributed de-
cryption of an L-levelled SHE scheme, distributes the public key and the evaluation key
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Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-input
function f : Fn

p → Fp.

– Upon receiving (sid, i, xi) from the party Pi for every i ∈ [1, . . . , n] where xi ∈ Fp,
compute y = C(x1, . . . , xn), send (sid, y) to all the parties and the adversary S and halt.
Here C denotes the (publicly known) well formed arithmetic circuit over Fp representing
the function f .

Fig. 1. The Ideal Functionality for Computing a Given Function

to all the parties and sends the ith key dki (for the distributed decryption) to the party
Pi for each i ∈ [1, . . . , n]. In addition, the functionality also computes a random en-
cryption c1 with associated plaintext 1 = (1, . . . , 1) ∈M and sends it to all the parties.
Looking ahead, c1 will be required while proving the security of our MPC protocol. The
ciphertext c1 is at level one, as we only need it to pre-multiply the ciphertexts which
are going to be decrypted via the distributed decryption protocol; thus the output of a
multiplication by c1 need only be at level zero. Looking ahead, this ensures that (with
respect to our instantiation of SHE) the noise is kept to a minimum at this stage of the
protocol.

Functionality FSETUPGEN

FSETUPGEN interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an
L-levelled SHE scheme.

– Upon receiving (sid, i) from the party Pi for every i ∈ [1, . . . , n], com-
pute (pk, ek, sk, dk1, . . . , dkn) = SHE.KeyGen(1κ, 1sec, n, t) and (c1, 1) =
SHE.LowerLevelek((SHE.Encpk(1, r), 1) for 1 = (1, . . . , 1) ∈ M and some ran-
domness r. Finally send (sid, pk, ek, dki, (c1, 1)) to the party Pi for every i ∈ [1, . . . , n]
and halt.

Fig. 2. The Ideal Functionality for Key Generation

4.1 The MPC Protocol in the FSETUPGEN -Hybrid Model

Here we present our MPC protocol Π SH
f in the FSETUPGEN -hybrid model. Let C be the

(well formed) arithmetic circuit representing the function f and Caug be the associated
augmented circuit (which includes the necessary Refresh gates). The protocolΠ SH

f (see
Figure 3) runs in two phases: offline and online. The computation performed in the
offline phase is completely independent of the circuit and (private) inputs of the parties
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and therefore can be carried out well ahead of the time (namely the online phase) when
the function and inputs are known. If the parties have more than one input/output then
one can apply packing/unpacking at the input/output stages of the protocol; we leave
this minor modification to the reader.

In the offline phase, the parties interact with FSETUPGEN to obtain the public key,
evaluation key and their respective keys for performing distributed decryption, corre-
sponding to a threshold L-levelled SHE scheme. Next each party sends encryptions of
ζ random elements and then additively combines them (by applying the homomorphic
addition to the ciphertexts encrypting the random elements) to generate ζ ciphertexts
at level L of truly random elements (unknown to the adversary). Here ζ is assumed to
be large enough, so that for a typical circuit it is more than the number of refresh gates
in the circuit, i.e. ζ > GR. Looking ahead, these random ciphertexts created in the of-
fline phase are used in the online phase to evaluate refresh gates by (homomorphically)
masking the messages associated with the input wires of a refresh gate.

During the online phase, the parties encrypt their private inputs and distribute the
corresponding ciphertexts to all other parties. These ciphertexts are transmitted at level
one, thus consuming low bandwidth, and are then elevated to level L by the use of a
following Refresh gate (which would have been inserted by the circuit augmentation
process). Note that the inputs of the parties are in Fp and so the parties first apply the
mapping χ (embedding Fp into the message space M of SHE) before encrypting their
private inputs.

The input stage is followed by the homomorphic evaluation of Caug as follows: The
addition and multiplication gates are evaluated locally using the addition and multi-
plication algorithm of the SHE. For each refresh gate, the parties execute the following
protocol to enable a “multiparty bootstrapping” of the input ciphertexts: the parties pick
one of the random ciphertext created in the offline phase (for each refresh gate a differ-
ent ciphertext is used) and perform the following computation to refresh N ciphertexts
with levels in the range [1, . . . , L] and obtain N fresh level L ciphertexts, with the
associated messages unperturbed:

– Let (c1, l1), . . . , (cN , lN ) be the N ciphertexts with associated plaintexts
χ(z1), . . . , χ(zN ) with every zi ∈ Fp, that need to be refreshed (i.e. they are the
inputs of a refresh gate).

– The N ciphertexts are then (locally) packed into a single ciphertext c, which is then
homomorphically masked with a random ciphertext from the offline phase.

– The resulting masked ciphertext is then publicly opened via distributed decryption.
This allows for the creation of a fresh encryption of the opened value at level L.

– The resulting fresh encryption is then homomorphically unmasked so that its asso-
ciated plaintext is the same as original plaintext prior to the original masking.

– This fresh (unmasked) ciphertext is then unpacked to obtain N fresh ciphertexts,
having the same associated plaintexts as the original N ciphertexts ci but at
level L.

By packing the ciphertexts together we only need to invoke distributed decryption once,
instead of N times. This leads to a more communication efficient online phase, since
the distributed decryption is the only operation that demands communication. Without
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Protocol ΠSH
f

Let Caug denote an augmented circuit for a well formed circuit C over Fp representing f and let SHE be
a threshold L-levelled SHE. Moreover, let P = {P1, . . . , Pn} be the set of n parties. For the session ID
sid the parties do the following:

Offline Computation: Every party Pi ∈ P does the following:
– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Randomly select ζ plaintexts mi,1, . . . ,mi,ζ ∈ M, and compute (cmi,k , L) =

SHE.Encpk(mi,k, ri,k). Send (sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) to all parties in P .
– Upon receiving (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) from all parties Pj ∈ P , apply SHE.Add for

1 ≤ k ≤ ζ , on (cm1,k , L), . . . , (cmn,k , L), set the resultant ciphertext as the kth offline ciphertext
cmk with the (unknown) associated plaintext mk = m1,k + · · ·+mn,k .

Online Computation: Every party Pi ∈ P does the following:
– Input Stage: On having input xi ∈ Fp, compute (cxi , 1) =

SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness ri and send (sid, i, (cxi , 1)) to
each party. Receive (sid, j, (cxj , 1)) from each party Pj ∈ P .

– Computation Stage: Associate the received ciphertexts with the corresponding input wires of Caug and
then homomorphically evaluate the circuit Caug gate by gate as follows:
• Addition Gate and Multiplication Gate: Given (c1, l1) and (c2, l2) associated with

the input wires of the gate where l1, l2 ∈ [1, . . . , L], locally compute (c, l) =
SHE.Addek((c1, l1), (c2, l2)) with l = min (l1, l2) for an addition gate and (c, l) =
SHE.Multek((c1, l1), (c2, l2)) with l = min (l1, l2) − 1 for a multiplication gate; for the multi-
plication gate, l1, l2 ∈ [2, . . . , L], instead of [1, . . . , L]. Associate (c, l) with the output wire of
the gate.

• Refresh Gate: For the kth refresh gate in the circuit, the kth offline ciphertext (cmk , L) is used.
Let (c1, l1), . . . , (cN , lN ) be the ciphertexts associated with the input wires of the refresh gate
where l1, . . . , lN ∈ [1, . . . , L]:
∗ Packing: Locally compute (cz, l) = SHE.Packek({(ci, li)}i∈[1,...,N]) where l =

min (l1, . . . , lN ).
∗ Masking: Locally compute (cz+mk

, 0) = SHE.Addek(SHE.Multek((cz, l),
(c1, 1)), (cmk , L))

∗ Decrypting: Locally compute the decryption share μ̄i = SHE.ShareDecdki (cz+mk
, 0) and

send (sid, i, μ̄i) to every other party. On receiving (sid, j, μ̄j) from every Pj ∈ P , compute
the plaintext z+mk = SHE.ShareCombine((cz+mk

, 0), {μ̄j}j∈[1,...,n]).
∗ Re-encrypting: Locally re-encrypt z+mk by computing (̂cz+mk

, L) = SHE.Encpk(z+
mk, r) using a publicly known (common) randomness r, (This can simply be the zero string
for our BGV instantiation, we only need to map the known plaintext into a ciphertext ele-
ment).

∗ Unmasking: Locally subtract (cmk , L) from (̂cz+mk
, L) to obtain (̂cz, L).

∗ Unpacking: Locally compute (̂c1, L), . . . , (̂cN , L) = SHE.Unpackek (̂cz, L) and associate
(̂c1, L), . . . , (̂cN , L) with the output wires of the refresh gate.

– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 =

(0, . . . , 0) and send (sid, i, (ci, L)) to every other party. On receiving (sid, j, (cj , L)) from ev-
ery Pj ∈ P , apply SHE.Add on {(cj , L)}j∈[1,...,n] to obtain (c0, L). Compute (̂c, 0) =
SHE.Addek(SHE.Multek((c, l), (c1, 1)), (c0, L)).

• Output Decryption: Compute γ̄i = SHE.ShareDecdki (̂c, 0) and send (sid, i, γ̄i)
to every party. On receiving (sid, j, γ̄j) from every Pj ∈ P , compute y =
SHE.ShareCombine((̂c, 0), {γ̄j}j∈[1,...,n]), output y and halt, where y = χ−1(y).

Fig. 3. The Protocol for Realizing Ff against a Semi-Honest Adversary in the FSETUPGEN -hybrid
Model
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affecting the correctness of the above technique, but to ensure security, we add an ad-
ditional step while doing the masking: the parties homomorphically pre-multiply the
ciphertext c with c1 before masking. Recall that c1 is an encryption of 1 ∈ M gener-
ated by FSETUPGEN and so by doing the above operation, the plaintext associated with
c remains the same. During the simulation in the security proof, this step allows the
simulator to set the decrypted value to the random mask (irrespective of the circuit in-
puts), by playing the role ofFSETUPGEN and replacing c1 with c0, a random encryption of
0 = (0, . . . , 0). Furthermore, this step explains the reason why we made provision for
an extra multiplication during circuit augmentation by insisting that the refresh gates
take inputs with labels in [1, . . . , L], instead of [0, . . . , L]; the details are available in
the simulation proof of security of our MPC protocol.

Finally, the function output y is obtained by another distributed decryption of the
output ciphertext. However, this step is also not secure unless the ciphertext is random-
ized again by pre-multiplication by c1 and adding n encryptions of 0 where each party
contributes one encryption. In the simulation, the simulator gives encryption of χ(y)
on behalf of one honest party and replaces c1 by c0, letting the output ciphertext corre-
spond to the actual output y, even though the circuit is evaluated with zero as the inputs
of the honest parties during the simulation (the simulator will not know the real inputs
of the honest parties and thus will simulate them with zero). A similar idea was also
used in [19]; details can be found in the security proof.

Intuitively, privacy follows because at any stage of the computation, the keys of the
honest parties for the distributed decryption are not revealed and so the adversary will
not be able to decrypt any intermediate ciphertext. Correctness follows from the prop-
erties of the SHE and the fact that the level of each ciphertext in the protocol remains in
the range [1, . . . , L], thanks to the refresh gates. So even though the circuit C may have
any arbitrary depth d > L, we can homomorphically evaluate C using an L-levelled
SHE.

Theorem 1. Let f : Fn
p → Fp be a function over Fp represented by a well formed

arithmetic circuit C of depth d over Fp. Let Ff (presented in Figure 1) be the ideal
functionality computing f and let SHE be a threshold L-levelled SHE scheme. Then
the protocol Π SH

f UC-secure realizes Ff against a static, semi-honest adversary A,
corrupting upto t < n parties in the FSETUPGEN -hybrid Model.

The proof is given in the full version of the paper.

5 MPC from SHE – The Active Setting

The functionalities from Section 4 are in the passive corruption model. In the presence
of an active adversary, the functionalities will be modified as follows: the respective
functionality considers the input received from the majority of the parties and performs
the task it is supposed to do on those inputs. For example, in the case of Ff , the func-
tionality considers for the computation those xis, corresponding to the Pis from which
the functionality has received the message (sid, i, xi); on the behalf of the remaining
Pis, the functionality substitutes 0 as the default input for the computation. Similarly
for FSETUPGEN , the functionality performs its task if it receives the message (sid, i) from
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the majority of the parties. These are the standard notions of defining ideal functionali-
ties for various corruption scenarios and we refer [26] for the complete formal details;
we will not present separately the ideal functionality Ff and FSETUPGEN for the mali-
cious setting.

A closer look at Π SH
f shows that we can “compile” it into an actively secure MPC

protocol tolerating t active corruptions if we ensure that every corrupted party “proves”
in a zero knowledge (ZK) fashion that it constructed the following correctly: (1) The
ciphertexts in the offline phase; (2) The ciphertexts during the input stage and (3) The
randomizing ciphertexts during the output stage.

Apart from the above three requirements, we also require a “robust” version of the
SHE.ShareCombine method which works correctly even if up to t input decryption
shares are incorrect. In the full version we show that for our specific SHE scheme, the
SHE.ShareCombine algorithm (based on the standard error-correction) is indeed robust,
provided t < n/3. For the case of t < n/2 we also show that by including additional
steps and zero-knowledge proofs (namely proof of correct decryption), one can also
obtain a robust output. Interestingly the MPC protocol requires the transmission of at
most O(n3) such additional zero-knowledge proofs; i.e. the communication needed to
obtain robustness is independent of the circuit. We stress that t < n/2 is the optimal
resilience for computationally secure MPC against active corruptions (with robustness
and fairness) [12,27]. To keep the protocol presentation and its proof simple, we as-
sume a robust SHE.ShareCombine (i.e. for the case of t < n/3), which applies error
correction for the correct decryption.

Functionality FR
ZK

FR
ZK interacts with a prover Pi ∈ {P1, . . . , Pn} and the set of n verifiers P = {P1, . . . , Pn} and

the adversary S .

– Upon receiving (sid, i, (x,w)) from the prover Pi ∈ {P1, . . . , Pn}, the functionality sends
(sid, i, x) to all the verifiers in P and S if R(x,w) is true. Else it sends (sid, i,⊥) and halts.

Fig. 4. The Ideal Functionality for ZK

The actively secure MPC protocol is given in Figure 4, it uses an ideal ZK func-
tionality FR

ZK, parametrized with an NP-relation R. We apply this ZK functionality to
the following relations to obtain the functionalities FRenc

ZK and FRzeroenc

ZK . We note that
UC-secure realizations of FRenc

ZK and FRzeroenc

ZK can be obtained in the CRS model,
similar techniques to these are used in [2]. Finally we do not worry about the instanti-
ation of FSETUPGEN as we consider it a one time set-up, which can be done via standard
techniques (such as running an MPC protocol).

– Renc = {((c, l), (x, r)) | (c, l) = SHE.Encpk(x, r) if l = L ∨ (c, l) =
SHE.LowerLevelek(SHE.Encpk(x, r), 1) if l = 1}: we require this relation to hold
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Protocol ΠMAL
f

Let C be the well formed arithmetic circuit over Fp representing the function f , let Caug denote
an augmented circuit associated with C, and let SHE be a threshold L-levelled SHE scheme. For
session ID sid the parties in P = {P1, . . . , Pn} do the following:

Offline Computation: Every party Pi ∈ P does the following:

– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Do the same as in the offline phase of Π SH

f , except that for every message mik for
k ∈ [1, . . . , ζ] and the corresponding ciphertext (cmik , L) = SHE.Encpk(mik, rik), call
FRenc

ZK with (sid, i, ((cmik , L), (mik, rik))). Receive (sid, j, (cmjk , L)) from FRenc
ZK for

k ∈ [1, . . . , ζ] corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRenc
ZK for

some Pj ∈ P , then consider ζ publicly known level L encryptions of random values from
M as (cmjk , L) for k ∈ [1, . . . , ζ].

Online Computation: Every party Pi ∈ P does the following:

– Input Stage: On having input xi ∈ Fp, compute level L ciphertext (cxi , 1) =
SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness ri and call FRenc

ZK with the
message (sid, i, ((cxi , 1), (χ(xi), ri))). Receive (sid, j, (cxj , 1)) from FRenc

ZK correspond-
ing to each Pj ∈ P . If (sid, j,⊥) is received from FRenc

ZK for some Pj ∈ P , then consider a
publicly known level 1 encryption of χ(0) as (cxj , 1) for such a Pj .

– Computation Stage: Same as Π SH
f , except that now the robust SHE.ShareCombine is used.

– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where
l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 =

(0, . . . , 0) and call FRzeroenc
ZK with the message (sid, i, ((ci, L), (0, r

′
i))). Receive

(sid, j, (cj , L)) from FRzeroenc
ZK corresponding to each Pj ∈ P . If (sid, j,⊥) is re-

ceived from FRzeroenc
ZK for some Pj ∈ P , then consider a publicly known level L

encryption of 0 as (cj , L) for such a Pj .
• The rest of the steps are same as in Π SH

f , except that now the robust
SHE.ShareCombine is used.

Fig. 5. The Protocol for Realizing Ff against an Active Adversary in the
(FSETUPGEN ,FRenc

ZK ,FRzeroenc
ZK )-hybrid Model
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for the offline stage ciphertexts (where l = L) and for the input stage ciphertexts
(where l = 1).

– Rzeroenc = {((c, L), (x, r)) | (c, L) = SHE.Encpk(x, r) ∧ x = 0}: we require
this relation to hold for the randomizing ciphertexts during the output stage.

We are now ready to present the protocol ΠMAL
f (see Figure 5) in the (FSETUPGEN ,

FRenc

ZK ,FRzeroenc

ZK )-hybrid model and assuming a robust SHE.ShareCombine based on
error-correction (i.e. for the case t < n/3).

Theorem 2. Let f : Fn
p → Fp be a function represented by a well-formed arithmetic

circuit C over Fp. Let Ff (presented in Figure 1) be the ideal functionality computing
f and let SHE be a threshold L-levelled SHE scheme such that SHE.ShareCombine
is robust. Then the protocol ΠMAL

f UC-secure realises Ff in the (FSETUPGEN ,FRenc

ZK ,

FRzeroenc

ZK )-hybrid Model against a static, active adversary A corrupting t parties.

See the full version for a proof of this theorem.

6 Estimating the Consumed Bandwidth

In the full version we determine the parameters for the instantiation of our SHE scheme
using BGV by adapting the analysis from [18,25]. In this section we use this parameter
estimation to show that our MPC protocol can in fact give improved communication
complexity compared to the standard MPC protocols, for relatively small values of the
parameter L. We are interested in the communication cost of our online stage compu-
tation. To ease our exposition we will focus on the passively secure case from Section
4; the analysis for the active security case with t < n/3 is exactly the same (bar the
additional cost of the exchange of zero-knowledge proofs for the input stage and the
output stage). For the case of active security with t < n/2 we also need to add in the
communication related to the dispute control strategy outlined in the full version for at-
taining robust SHE.ShareCombine with t < n/2; but this is a cost which is proportional
to O(n3).

To get a feel for the parameters we now specialise the BGV instantiation from the
full version of this paper to the case of finite fields of size p ≈ 264, statistical security
parameter sec of 40, and for various values of the computational security level κ. We
estimate in Table 1 the value of N , assuming a small value for n (we need to restrict to
small n to ensure a large enough range in the PRF needed in the distributed decryption
protocol; see the full version).

Since a Refresh gate requires the transmission of n−1 elements (namely the decryp-
tion shares) in the ring Rq0 from party Pi to the other parties, the total communication
in our protocol (in bits) is

|GR| · n · (n− 1) · |Rq0 |,

where |Rq0 | is the number of bits needed to transmit an element in Rq0 , i.e. N · log2 p0.
Assuming the circuit meets our requirement of being well formed, this implies that total
communication cost for our protocol is

2 · |GM | · n · (n− 1) ·N · log2 p0
L ·N =

2 · n · (n− 1) · |GM |
L

· log2(309 · 2sec · p ·
√
N).
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Table 1. The value of N for various values of κ and L

L κ = 80 κ = 128 κ = 256

2 16384 16384 32768
3 16384 16384 32768
4 16384 32768 32768
5 32768 32768 65536
6 32768 32768 65536
7 32768 32768 65536
8 32768 65536 65536
9 32768 65536 65536
10 65536 65536 65536

Using the batch distributed decryption technique (of efficiently and parallely evaluat-
ing t + 1 independent Refresh gates simultaneously) from the full version this can be
reduced to

Cost =
4 · n · (n− 1) · |GM |

L · (t+ 1)
· log2(309 · 2sec · p ·

√
N).

We are interested in the overhead per multiplication gate, in terms of equivalent num-
bers of finite field elements in Fp, which is given by Cost/(|GM | · log2 p), and the cost
per party is Cost/(|GM | · n · log2 p).

At the 128 bit security level, with p ≈ 264, and sec = 40 (along with the above
estimated values of N ), this means for n = 3 parties, and at most t = 1 corruption, we
obtain the following cost estimates:

L 2 3 4 5 6 7 8 9 10
Total Cost Cost/(|GM | · log2 p) 12.49 8.33 6.31 5.05 4.21 3.61 3.19 2.84 2.55

Per party Cost Cost/(|GM | · n · log2 p) 4.16 2.77 2.10 1.68 1.40 1.20 1.06 0.94 0.85

Note for L = 2 our protocol becomes the one which requires interaction after every
multiplication, for L = 3 we require interaction only after every two multiplications
and so on. Note that most practical MPC protocols in the preprocessing model have a
per gate per party communication cost of at least 2 finite field elements, e.g. [20]. Thus,
even when L = 5, we obtain better communication efficiency in the online phase than
traditional practical protocols in the preprocessing model with these parameters.
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Abstract. Injective one-way trapdoor functions are one of the most
fundamental cryptographic primitives. In this work we show how to de-
randomize lossy encryption (with long messages) to obtain lossy trapdoor
functions, and hence injective one-way trapdoor functions.

Bellare, Halevi, Sahai and Vadhan (CRYPTO ’98) showed that if Enc
is an IND-CPA secure cryptosystem, and H is a random oracle, then
x �→ Enc(x,H(x)) is an injective trapdoor function. In this work, we
show that if Enc is a lossy encryption with messages at least 1-bit longer
than randomness, and h is a pairwise independent hash function, then
x �→ Enc(x, h(x)) is a lossy trapdoor function, and hence also an injective
trapdoor function.

The works of Peikert, Vaikuntanathan and Waters and Hemenway,
Libert, Ostrovsky and Vergnaud showed that statistically-hiding 2-round
Oblivious Transfer (OT) is equivalent to Lossy Encryption. In their con-
struction, if the sender randomness is shorter than the message in the
OT, it will also be shorter than the message in the lossy encryption. This
gives an alternate interpretation of our main result. In this language, we
show that any 2-message statistically sender-private semi-honest oblivi-
ous transfer (OT) for strings longer than the sender randomness implies
the existence of injective one-way trapdoor functions. This is in contrast
to the black box separation of injective trapdoor functions from many
common cryptographic protocols, e.g. IND-CCA encryption.

Keywords: public-key cryptography, derandomization, injective
trapdoor functions, oblivious transfer, lossy trapdoor functions.

1 Introduction

One-way functions are one of the most basic cryptographic primitives, and their
existence is necessary for much of modern cryptography. Despite their immense
value in cryptography, one-way functions are not sufficient for many useful
cryptographic applications [IR89,RTV04], and in many situations a trapdoor is
needed.

Constructing injective one-way trapdoor functions (a deterministic primi-
tive) from a secure protocol, e.g. public-key encryption or oblivious transfer

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 241–260, 2013.
c© International Association for Cryptologic Research 2013
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(randomized primitives) has received much attention over the years with lit-
tle success. One step in this direction was given by Bellare, Halevi, Sahai and
Vadhan [BHSV98], who showed that in the Random Oracle Model IND-CPA se-
cure encryption implies injective one-way trapdoor functions. Since it is known
([GKM+00]) 2-message OT implies IND-CPA encryption, the results of Bellare
et al. can be viewed as a construction of injective one-way trapdoor functions
from 2-message oblivious transfer in the random oracle model.

Our main contribution is to give a simple construction of injective trapdoor
functions from lossy encryption (with long messages). In contrast to the results
of [BHSV98], our results are in the standard model, and do not rely on ran-
dom oracles. Our results can also be viewed as a derandomization of the basic
cryptographic primitive Oblivious Transfer (OT) [Rab81,EGL85].

Lossy Encryption [KN08,PVW08,BHY09], is a public-key encryption protocol
with two indistinguishable types of public keys, injective keys and lossy keys.
Ciphertexts created under injective keys can be decrypted, while ciphertexts
created under lossy keys are statistically independent of the underlying plaintext.
The security of the encryption is then guaranteed by the indistinguishability of
the two types of keys.

Building on the construction of [PW08], in [PVW08], Peikert, Vaikuntanathan
and Waters showed that lossy encryption implies statistically sender-private
2-message oblivious transfer. In [HLOV11], Hemenway, Libert, Ostrovsky and
Vergnaud showed that the two primitives are, in fact, equivalent.1 Throughout
this work, we will use the terminology of lossy encryption because it makes the
constructions more transparent.

If PKE = (Gen,Enc,Dec) is a lossy encryption scheme our construction has a
simple description: we choose as our function candidate,

Fpk,h(x) = Enc(pk, x, h(x))

where h is some 2-wise independent hash function. Our main theorem says that
if messages in PKE are at least one-bit longer than the encryption randomness,
then Fpk,h(·) is a family of injective one-way trapdoor functions. In this setting,
we are able to prove that this is secure even though the randomness is dependent
on the message. In [BBO07], Bellare et al. used a similar construction, and they
showed that Enc(pk, x, h(pk||m)) is one-way (in fact a deterministic encryption)
if h is a Random Oracle. In their results the random oracle serves to break the
dependence between the message and the randomness. In this work, we do not
rely on random oracles, instead we use the lossiness of the encryption scheme
to break this dependence. This is interesting given how difficult it has been to
realize other forms of circular security, e.g. Key Dependent Message (KDM)
security [CL01,BRS03,BHHO08].

The primary limitation of our construction is the requirement that the mes-
sage space be larger than the randomness space. The lossy encryption protocols

1 Their construction of lossy encryption from OT also preserves the randomness and
message lengths, so if the OT uses sender randomness shorter than the messages so
does the lossy encryption.
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based on the Paillier cryptosystem [RS08,FGK+10], satisfy this requirement, and
in Appendix B we give constructions of lossy encryption with short randomness
based on the DDH, DCR and QR assumptions. These do not lead to significantly
new constructions of LTDFs, however, as direct constructions of lossy trapdoor
functions are already known from these assumptions. It is an intriguing question
whether this restriction can be removed. In addition to increasing the applica-
bility of our construction, a removal of the restriction on message length would
imply a black-box separation between OT and statistically sender-private OT
by the results of [GKM+00].

Although our construction does not provide more efficient ways of construct-
ing lossy trapdoor functions, it provides an interesting theoretical connection
between lossy trapdoor functions and lossy encryption. Constructing injective
trapdoor functions from randomized primitives such as public-key encryption or
oblivious transfer has proven to be an elusive goal, and our results provide one
of the few positive examples in this area without relying on random oracles.

The notion of RDM security has also been studied by Birrell, Chung, Pass
and Telang [BCPT13], who show that full RDM security (where the message
can be an arbitrary function of the randomness) is not possible. Birrell et al. go
on to show that any encryption scheme where the randomness is longer than the
message can be transformed into a bounded-RDM secure cryptosystem. Their
work, which requires the message to be shorter than the encryption randomness,
nicely complements this work where we insist the opposite, that the message is
longer than the encryption randomness.2 While Birrell et al. focus on the goal of
building RDM secure encryption for general circuits, in this work, we use RDM
encryption as a stepping stone for building injective trapdoor functions from
lossy encryption. Birrell et al. provide more general constructions of RDM en-
cryption than we do, but their constructions do not immediately imply injective
trapdoor functions.

1.1 Previous Work

Injective one-way trapdoor functions were one of the first abstract cryptographic
primitives to be defined, and their value is well recognized. In [Yao82], Yao
showed that injective trapdoor functions imply IND-CPA secure encryption,
and Gertner, Malkin and Reingold [GMR01] showed a black-box separation
between injective (also poly-to-one) trapdoor functions and public-key encryp-
tion schemes. Gertner, Kannan, Malkin, Reingold, and Viswanathan [GKM+00]
showed a black-box separation between 2-message oblivious transfer (OT) and
injective trapdoor functions, in both directions.

In this work, we show that statistically sender-private OT for long strings
implies injective one-way trapdoor functions. Combining our results with the
separation results of [GKM+00] gives a separation between standard OT and
statistically sender-private OT for long strings.

2 We also require the initial cryptosystem to be lossy, while their construction works
with any semantically secure cryptosystem with short messages.
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This work actually constructs lossy trapdoor functions (LTDFs), a stronger
primitive than injective one-way trapdoor functions. Peikert and Waters intro-
duced LTDFs in [PW08]. Lossy trapdoor functions imply injective trapdoor
functions [PW08,MY10], but appear to be a strictly stronger primitive, as they
cannot be constructed in a black-box manner from even one-way trapdoor per-
mutations as shown by Rosen and Segev [RS09]. This separation was later ex-
tended by Vahlis in [Vah10]. A family of lossy trapdoor functions contains two
computationally indistinguishable types of functions: injective functions with a
trapdoor, and lossy functions, which are functions that statistically lose infor-
mation about their input. The indistinguishability of the two types of functions
shows that the injective functions are, in fact, one-way.

A similar property can be defined for cryptosystems
[GOS06,PVW08,KN08,BHY09]. A cryptosystem is called lossy encryption, if
there are two indistinguishable types of public keys, injective keys which behave
normally, and lossy keys, which have the property that ciphertexts created under
a lossy key are statistically independent of the plaintext. It was shown in Bel-
lare, Hofheinz and Yilek [BHY09] that just as injective trapdoor functions imply
IND-CPA secure encryption, LTDFs imply lossy encryption. One interpretation
of our main theorem is as a partial converse of that result.

Although LTDFs immediately imply injective one-way trapdoor functions,
Rosen and Segev [RS09] showed that LTDFs cannot be constructed from one-
way trapdoor permutations in a black-box manner, and currently the only known
generic construction of LTDFs is from homomorphic smooth hash proof systems
[HO12]. In this work, we construct lossy trapdoor functions, and hence injective
one-way trapdoor functions from lossy encryption with long plaintexts.

While lossy trapdoor functions were created as a building block for IND-
CCA secure encryption, lossy encryption was initially created to help prove
security against an active adversary in the Multiparty Computation Setting.
Lossy encryption has gone by many names. Groth, Ostrovsky and Sahai called
it “parameter-switching” in the context of perfect non-interactive zero knowledge
proofs [GOS06]. In [KN08], Kol and Naor called it “Meaningful/Meaningless”
encryption, in [PVW08], Peikert, Vaikuntanathan and Waters called it “Dual-
Mode Encryption”, and in [BHY09] Bellare, Hofheinz and Yilek called it “Lossy
Encryption”. In this work, we use the name Lossy Encryption to highlight its
connection to Lossy Trapdoor Functions.. Despite the apparent utility of lossy
encryption, it has proven rather easy to construct, and in [HLOV11], Hemen-
way, Libert, Ostrovsky and Vergnaud give constructions of lossy encryption
from, rerandomizable encryption, statistically-hiding oblivious transfer, univer-
sal hash proofs, private information retrieval schemes and homomorphic en-
cryption. Combining the results of [PVW08] and [HLOV11], shows that lossy
encryption with short randomness can be viewed exactly as a statistically sender
private

(
2
1

)
-oblivious transfer with short randomness. Thus, throughout this

work, we will use the terminology of lossy encryption because it preserves the
intuition of our construction, but it should be noted that lossy encryption can
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be substituted throughout the paper by 2-message statistically sender-private(
2
1

)
-oblivious transfer and all of our results remain valid.

1.2 Our Contributions

One of the most fundamental techniques in modern cryptography is the use of
randomization in protocols to achieve higher levels of security. On the other
hand, because deterministic protocols are more versatile, a significant body of
research has explored the question of where deterministic primitives can be cre-
ated from their randomized counterparts. One (negative) example of this type
was the results of Gertner, Malkin and Reingold showing that IND-CPA secure
encryption cannot be used in a black-box way to construct injective one-way
trapdoor functions. Our work is perhaps best viewed in this light. We show
that lossy encryption, a randomized primitive, which is a strengthening of the
standard IND-CPA secure encryption, can be used to construct lossy trapdoor
functions, a deterministic primitive, which is the analogous strengthening of in-
jective one-way trapdoor functions. Since we construct a deterministic primitive
from the analogous randomized one, it is natural to think of these results as a
“derandomization” of lossy encryption3.

Our main result is to give a black-box construction of LTDFs (and hence
injective one-way trapdoor functions, and IND-CCA secure encryption) from
any lossy encryption over a plaintext space which is (at least 1-bit) larger than
its randomness space. This is an interesting connection because many generic
constructions of lossy encryption exist, while injective one-way trapdoor func-
tions have proven difficult to construct and are black-box separated from many
common primitives ([Rud89,IR89,GKM+00,GMR01]).

Main Theorem. Suppose PKE = (Gen,Enc,Dec) is a lossy encryption scheme
over message space M, randomness space R and ciphertext space C. If |M| >
2|R|, i.e. messages are at least one bit longer than the randomness, and H is a
2-wise independent hash family, with h :M→R, for h ∈ H, then the function

Fpk,h :M→ C
x %→ Enc(pk, x, h(x))

is a slightly lossy trapdoor function.

While these functions are fairly simple to describe, the circular nature of the
construction makes the proof very delicate. Applying the results of Mol and
Yilek [MY10], we have the following corollaries:

Corollary. If there exists a lossy encryption scheme with messages at least one
bit longer than the encryption randomness, then there exist Correlated Product
secure functions.
3 It is important to note, however, that any notion of one-wayness depends inherently
on the fact that the inputs are randomized. While one-way functions must have
“random” inputs to provide any one-wayness guarantees they do not require auxiliary
random inputs as public-key encryption does.
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Corollary. If there exists a lossy encryption scheme with messages at least one
bit longer than the encryption randomness, then there exists IND-CCA secure
encryption.

Applying the recent results of Kiltz, Mohassel and O’Neill [KMO10], we have

Corollary. If there exists a lossy encryption scheme with messages at least one
bit longer than the encryption randomness, then there exist adaptive trapdoor
functions.

2 Preliminaries

2.1 Notation

If f : X → Y is a function, for any Z ⊂ X , we let f(Z) = {f(x) : x ∈ Z}.
If A is a PPT machine, then we use a

$← A to denote running the machine
A and obtaining an output, where a is distributed according to the internal

randomness of A. If R is a set, and no distribution is specified, we use r
$← R to

denote sampling from the uniform distribution on R.
If X and Y are families of distributions indexed by a security parameter λ,

we say that X is statistically close to Y , (written X ≈s Y ) to mean that for all
polynomials p and sufficiently large λ, we have

∑
x |Pr[X = x]− Pr[Y = x]| <

1
p(λ) .

We say that X and Y are computationally close (written X ≈c Y ) to mean
that for all PPT adversaries A, for all polynomials p, and for all sufficiently large
λ, we have |Pr[AX = 1]− Pr[AY = 1]| < 1/p(λ).

2.2 Lossy Trapdoor Functions

We briefly review the notion of Lossy Trapdoor Functions (LTDFs) as described
in [PW08]. Intuitively, a family of Lossy Trapdoor Functions is a family of func-
tions which have two modes, or branches, injective mode, which has a trapdoor,
and lossy mode which is guaranteed to have a small image size. This implies that
with high probability the preimage of an element in the image will be a large
set. Formally we have:

Definition 1. A tuple (Sltdf, Fltdf , F
−1
ltdf) of PPT algorithms is called a family of

(n, k)-Lossy Trapdoor Functions if the following properties hold:

– Sampling Injective Functions: Sltdf(1
λ, 1) outputs s, t where s is a func-

tion index, and t its trapdoor. We require that Fltdf(s, ·) is an injective de-
terministic function on {0, 1}n, and F−1

ltdf(t, Fltdf(s, x)) = x for all x.
– Sampling Lossy Functions: Sltdf(1

λ, 0) outputs (s,⊥) where s is a func-
tion index and Fltdf(s, ·) is a function on {0, 1}n, where the image of Fltdf(s, ·)
has size at most 2n−k.

– Indistinguishability: The first outputs of Sltdf(1
λ, 0) and Sltdf(1

λ, 1) are
computationally indistinguishable.
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We recall a basic result about Lossy Trapdoor Functions from [PW08].

Lemma 1. (From [PW08]) Let λ be a security parameter. If (Sltdf, Fltdf , F
−1
ltdf)

is a family of (n, k) Lossy Trapdoor Functions, and k = ω(log(λ)), then the
injective branches form a family of injective one-way trapdoor functions.

In [MY10], Mol and Yilek observed that if f is an (n, k)-LTDF, then defining
f(x1, . . . , xt) = (f(x1), . . . , f(xt)), is a (tn, tk)-LTDF. Thus if k > 1/ poly, t can
be chosen such that tk = ω(log(λ)), and hence f is a injective one-way trapdoor
function by Lemma 1. Mol and Yilek went on to show how to construct correlated
product secure functions, and hence IND-CCA secure cryptosystems from these
slightly lossy trapdoor functions.

2.3 Lossy Encryption

Peikert and Waters introduced LTDFs as a means of constructing IND-CCA
secure cryptosystems. In their original work, however, they also observed that
LTDFs can be used to create a simple IND-CPA secure cryptosystem, Enc(m, r)=
(Fltdf(r), h(r) + m). This simple cryptosystem has powerful lossiness proper-
ties. The lossiness of this cryptosystem was further developed and explored in
[PVW08] where Peikert, Vaikuntanathan and Waters defined Dual-Mode En-
cryption, as a means of constructing efficient and composable oblivious transfer.
Dual-Mode encryption is a type of cryptosystem with two types public-keys, in-
jective keys on which the cryptosystem behaves normally and “lossy” or “messy”
keys on which the system loses information about the plaintext. In particular
they require that the encryptions of any two plaintexts under a lossy key yield
distributions that are statistically close, yet injective and lossy keys remain com-
putationally indistinguishable. Groth, Ostrovsky and Sahai [GOS06] previously
used a similar notion in the context of non-interactive zero knowledge. With
the goal of creating selective opening secure cryptosystems, in [BHY09] Bellare,
Hofheinz and Yilek defined Lossy Encryption, extending the definitions of Dual-
Mode Encryption in [PVW08], Meaningful/Meaningless Encryption in [KN08]
and Parameter-Switching [GOS06]. We review the definition of Lossy Encryption
here:

Definition 2. Formally, a lossy public-key encryption scheme is a tuple PKE =
(Gen,Enc,Dec) of polynomial-time algorithms such that

– Gen(1λ, inj) outputs keys (pk, sk), keys generated by Gen(1λ, inj) are called
injective keys.

– Gen(1λ, lossy) outputs keys (pklossy,⊥), keys generated by Gen(1λ, lossy) are
called lossy keys.

– Enc(pk, ·, ·) :M×R→ C.

Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all x ∈ M,

Pr
[
(pk, sk)

$← Gen(1λ, inj); r
$←R : Dec(sk,Enc(pk, x, r)) = x

]
= 1.
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2. Indistinguishability of keys. We require that the public key, pk, in lossy
mode and injective mode are computationally indistinguishable. Specifically,
if proj : (pk, sk) %→ pk is the projection map,

{proj(Gen(1λ, inj))} ≈c {proj(Gen(1λ, lossy))}

3. Lossiness of lossy keys. For all (pklossy, sklossy)
$← Gen(1λ, lossy), and all

x0, x1 ∈ M, the two distributions {r $← R : (pklossy,Enc(pklossy, x0, r))} and

{r $←R : (pklossy,Enc(pklossy, x1, r))} are statistically close, i.e. the statistical
distance is negligible in λ.

We call a cryptosystem ν-lossy if for all (pklossy, sklossy)
$← Gen(1λ, lossy) we

have

max
x0,x1∈M

Δ({r $← R : (pklossy,Enc(pklossy, x0, r))}, {r $← R : (pklossy,Enc(pklossy, x1, r))}) < ν.

We call a cryptosystem perfectly lossy if the distributions are identical. The
works of [PW08,PVW08,HLOV11], show that lossy encryption is identical to
statistically sender private

(
2
1

)
-OT.

3 Constructing Slightly Lossy Trapdoor Functions

In this section we describe our main result: a generic construction of a slightly
lossy trapdoor functions from lossy encryption. Let PKE = (Gen,Enc,Dec) be
a Lossy Encryption, with Enc(pk, ·, ·) : M× R → Cpk. Let H be a family of
pairwise independent hash functions, with h : M → R, for all h ∈ H. The
construction is described in Figure 1.

The injectivity, and correctness of inversion of the functions described in
Figure 1 is clear, it remains only to show that the lossy branch of Fpk,h is
slightly lossy.

Sampling an Injective Function: Evaluation:

(pk, sk)
$← Gen(1λ, inj) Fpk,h : M → C,

h
$← H Fpk,h(x) = Enc(pk, x, h(x))

Sampling a Slightly Lossy Function:Trapdoor:

(pk,⊥)
$← Gen(1λ, lossy) F−1

pk,h(c) = Dec(sk, c)

h
$← H

Fig. 1. Slightly Lossy Trapdoor Functions from Lossy Encryption
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4 Proof of Security

In this section we prove that the function family defined in Figure 1 is slightly
lossy. To build intuition, we begin by considering the case when the encryption
scheme PKE = (Gen,Enc,Dec) is perfectly lossy, i.e. for a lossy key pk, the
distributions Enc(pk, x) and Enc(pk, y) are identical for any x, y ∈ M.

4.1 The Perfectly Lossy Case

Lemma 2. If PKE = (Gen,Enc,Dec), be a perfectly lossy encryption scheme,

then for all pk
$← Gen(1λ, lossy), the sets Enc(pk,M,R) and Enc(pk, 0,R) are

equal.

Proof. The perfect lossiness property says that

Pr[r
$←R : Enc(pk, x) = c] = Pr[r

$←R : Enc(pk, y) = c],

for all x, y ∈ M and all c ∈ C, thus we have that as sets Enc(pk, x,R) =
Enc(pk, y,R). Since Enc(pk,M,R) =

⋃
x∈M Enc(pk, x,R), the claim follows.

Lemma 3. If PKE = (Gen,Enc,Dec), is a perfectly lossy encryption scheme,
and h is any function from M to R, then the function defined in Figure 1 is a
(log |M|, log |M| − log |R|)-LTDF.

Proof. The indistinguishability of injective and lossy modes follows from the
indistinguishability of injective and lossy keys for PKE. The trapdoor follows
from the correctness of decryption for PKE .

Notice that for any function h, the image of Fpk,h is a subset of the ciphertext
space C = Enc(pk,M,R). In lossy mode, from Lemma 2 we have that the set
Enc(pk,M,R) is equal to the set Enc(pk, 0,R), but |Enc(pk, 0,R)| ≤ |R|, so if
pk is a lossy key, the image size of Fpk,h is at most |R|, and the result follows.

Notice that the specific form of the function h was never used in the proof
of Lemma 3. For example, we could choose h to be a constant function, and
the result would still hold! In particular, if the hypotheses of Lemma 3 hold
and |M| > |R|, the function Fpk,h(x) = Enc(pk, x, 0) is one-way. It is instruc-
tive to examine this a little further. For most ordinary encryption schemes, the
function Fpk,h(x) = Enc(pk, x, 0), i.e. encrypting the message x using some fixed
randomness (in this case the zero string), will not be a one-way function. To see
this, we can take any IND-CPA secure encryption scheme and modify it so that
if the zero string is used for the randomness, the encryption algorithm simply
outputs the message in the clear. This will not affect the CPA security of the
encryption scheme, but it will mean the function Fpk,h defined in this way will
be the identity function, and hence trivially invertible. On the other hand, if
PKE is a perfectly lossy encryption, and |M| > |R|, then this modification will
break the perfect lossiness of PKE .
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It is tempting to conclude that if PKE were only statistically lossy, then
Lemma 3 would still hold. To see that this is not the case, notice that the
counterexample given in the previous paragraph applies even when PKE is sta-
tistically lossy. In the next section, we will construct a lossy trapdoor function
from statistically lossy encryption, but significantly more machinery is needed.

As remarked above, one reason why this argument does not trivially ex-

tend to the statistically-lossy case is that although the distributions {r $← R :

Enc(pk, x, r)} and {r $← R : Enc(pk, y, r)}, will be statistically close for any
x, y ∈ M, we are not choosing the randomness uniformly. In our situation, the
randomness is uniquely defined by the message, so new techniques are needed.
See Appendix C for further discussion.

4.2 The Statistically Lossy Case

In the preceding section, we examined the perfectly lossy case. There, we were
free to choose the function h arbitrarily, even a constant function sufficed to
prove security! In the statistical setting the proofs are significantly more delicate,
and we will need to make use of the fact that h is a pairwise independent hash
function.

For the following, consider a fixed (lossy) public key pk. Let C0 be the set of
encryptions of 0, i.e. C0 = Enc(pk, 0,R). This immediately implies that |C0| ≤
|R|. For x ∈ M, define Ax to be the event (over the random choice of h

$← H)
that Fpk,h(x) �∈ C0. Let dx = Pr[Ax] = E(1Ax). Let d = 1

|M|
∑

x∈M dx. Thus

Cauchy-Schwarz says that
∑

x∈X d2x ≥ |M|d2. Let Z be the random variable
denoting the number of elements in the domain that map outside of C0, so
Z =

∑
x∈M 1Ax =

∑
x∈M 1Fpk,h(x) �∈C0

. Thus the image of Fpk,h has size bounded
by |C0|+ Z.

To show that Fpk,h is a lossy trapdoor function, we must show that with high
probability (over the choice of h), the image of Fpk,h is small (relative to the
domain M). We begin with the easy observation:

E(Z) = E

(∑
x∈M

1Ax

)
=

∑
x∈M

dx = |M|d. (1)

Notice as well, that since h pairwise independent, it is 1-universal and hence

Pr[h
$← H : Fpk,h(x) = c] = Pr[r ← R : Enc(pk, x, r) = c] for all x ∈ M, c ∈ C.

We will use this fact to show that d is small. In fact, it’s not hard to see that d
is bounded by the lossiness of PKE.

This shows that the expected image size is small, but we wish to show that
with high probability the image size of Fpk,h is small. To do this we examine
the variance of Z. Since Z =

∑
x∈M 1Ax , where the variables 1Ax are bernoulli

random variables with parameter dx. The variables 1Ax are pairwise independent
(because h is pairwise independent), thus we have
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Var(Z) =
∑
x∈M

Var(1Ax) =
∑
x∈M

dx(1 − dx) = |M|d−
∑
x∈M

d2x

Thus by Cauchy-Schwarz, we arrive at the upper bound

Var(Z) ≤ |M|d− |M|d2 = |M|(d− d2). (2)

On the other hand, we have

Var(Z) =

|M|∑
z=0

(z − E(Z))2 Pr[Z = z] =

|M|∑
z=0

(z − |M|d)2 Pr[Z = z]

≥
|M|∑

z=(1−ε)|M|
(z − |M|d)2 Pr[Z = z] ≥

|M|∑
z=(1−ε)|M|

((1 − ε)|M| − |M|d)2 Pr[Z = z]

= (1− ε− d)2|M|2
|M|∑

z=(1−ε)|M|
Pr[Z = z]

For any ε with 0 < ε < 1, and 1 − ε > d. Since the parameter ε is under our
control, we can always ensure that this is the case. This will not be a stringent
restriction, however, since d (the proportion of inputs that map outside of C0)
will always negligible by the statistical lossiness of PKE. In the proof of the
following, we will find another restriction on ε, namely to achieve a useful degree

of lossiness, ε must be chosen so that ε > |R|
|M| .

Rearranging, we have

|M|∑
z=(1−ε)|M|

Pr[Z = z] ≤ Var(Z)

(1 − ε− d)2|M|2 .

Applying the bound on the variance obtained in Equation 2, we have

|M|∑
z=(1−ε)|M|

Pr[Z = z] ≤ |M|(d− d2)

(1− ε− d)2|M|2 ≤
d(1− d)

(1 − ε− d)2|M| . (3)

This upper bound on the probability that Z is large can be extended to show:

Lemma 4. If PKE = (Gen,Enc,Dec) is a ν-lossy encryption, and if |M| = t|R|,
for some t > 1, then for any 0 < ε < 1 such that 1− ε is noticeable, and ε > 1

t ,
with all but negligible probability over the choice of h, the function Fpk,h is a
(log |M|,− log(1− ε+ 1

t ))-LTDF family.
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Proof. Suppose PKE is ν-Lossy, i.e. Δ({r $← R : Enc(pk, x, r)}, {r $← R :

Enc(pk, y, r)}) < ν. Then by the pairwise independence of h, Δ({h $← H :

Fpk,h(0)}, {h $← H : Fpk,h(x)}) < ν for all x ∈ M. In particular, dx = Pr(Ax) <
ν for all dx, so d = 1

|M|
∑

x∈M dx < ν. Because the random variable Z represents

the number of x ∈M such that Fpk,h(x) �∈ C0, we have |Fpk,h(M)| ≤ |C0|+ Z.
Since |C0| ≤ |R| = 1

t |M|, by Equation 3, we have

Pr[|Fpk,h(M)| > (1− ε+
1

t
)|M|] < (ν − ν2)

(1− ε − ν)2|M| .

We would like to choose ε as close to 1 as possible but subject to the constraint

that ν−ν2

(1−ε−ν)2|M| is negligible. Since ν is negligible, and 1
|M| is negligible, the

right hand side will certainly be negligible if 1 − ε − ν is non-negligible. But
this holds because ν is negligible, and 1− ε is non-negligible. Thus with all but
negligible probability, the residual leakage is log((1− ε+ 1

t )|M|), so the lossiness
is log(|M|)− log((1− ε+ 1

t )|M|) = − log(1− ε + 1
t ).

From Lemma 4, we see that if 1 − 1
t is non-negligible, such an ε will exist.

This immediately implies the result:

Theorem 1 (Main Theorem). If PKE is a ν-Lossy Encryption with |M| =
t|R|, for some t > 1 with 1 − 1

t non-negligible, then the functions described in
Figure 1 form a family of lossy trapdoor functions.

Proof. From the proof of Lemma 4, it suffices to find an ε such that 1 − ε is
noticeable, and ε − 1

t is noticeable.

In this case, we can take ε = 1
2 +

1
2t . In this case 1− ε = ε− 1

t =
1− 1

t

2 which is
noticeable since 1− 1

t was assumed to be noticeable. In this case, the lossiness of

the function will be − log(1 − ε + 1
t ) =

∑∞
j=1

(ε− 1
t )

j

j ≥ ε − 1
t = 1

2 (1−
1
t ), which

is noticeable.

Taking t = 2, and applying the results of [MY10], we have

Corollary 1. If there exists Lossy Encryption with |M| > 2|R|, and there is
an efficiently computable family of 2-wise independent hash functions from M
to R, then there exist injective one-way trapdoor functions, Correlated Product
secure functions and IND-CCA2 secure encryption.

Although Theorem 1 provides lossy trapdoor functions and hence IND-CCA
secure encryption [MY10], we would like to see exactly how lossy the functions
can be. This is captured in Corollary 2.

Corollary 2. If |M| = t|R|, and 1
t is negligible, i.e. the messages are ω(logλ)

bits longer than the randomness, then the functions described in Figure 1 form
a family of injective one-way trapdoor functions.
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Proof. From Equation 3, we have

Pr[|Fpk,h(M)| > (1− ε+
1

t
)|M|] < (ν − ν2)

(1− ε − ν)2|M| .

If we set ε = 1 − ν − 1√
|M|

, then the right hand side becomes ν − ν2, which

is negligible. The lossiness is then − log
(
1− ε+ 1

t

)
= − log

(
ν + 1

t +
1√
|M|

)
>

− log(ν + 1
t + |M|−1/2). Since both ν and 1

t were assumed to be negligible, and

since |M| > |R|, the sum ν+ 1
t + |M|−1/2 is also negligible. But this means that

− log(ν + 1
t + |M|−1/2) ∈ ω(logλ). Thus we can apply Lemma 1 to conclude

that Fpk,h is a family of injective one-way trapdoor functions.

Finally, we observe that applying the results of [KMO10], we can construct
adaptive trapdoor functions from lossy encryption with messages one bit longer
than the randomness.

Corollary 3. If there exists lossy encryption with messages at least one bit
longer than the encryption randomness then there exist adaptive trapdoor
functions.

5 Conclusion

The results of Gertner, Malkin and Reingold [GMR01] show that injective one-
way trapdoor functions cannot be constructed in a black-box manner from IND-
CPA secure encryption. Our results show that when the cryptosystem is indis-
tinguishable from a one which loses information about the plaintext (i.e. lossy
encryption), then we can construct injective trapdoor functions from it which are
indistinguishable from functions that statistically lose information about their
inputs (i.e. lossy trapdoor functions). The only requirement we have is that the
plaintext space of the cryptosystem be larger than its randomness space.

An interesting feature of this result is that it does not parallel the standard
(non-lossy) case. This result somewhat surprising as well given the number of
generic primitives that imply lossy encryption, and the lack of constructions of
injective one-way trapdoor functions from general assumptions. Our proof relies
crucially on showing that lossy encryption with long plaintexts remains one-
way even when encrypting with randomness that is dependent on the message.
The notion of security in the presence of randomness dependent messages is an
interesting one, and we hope it will prove useful in other constructions.

Applying the results of [MY10] to our constructions immediately gives a con-
struction of IND-CCA secure encryption from lossy encryption with long plain-
texts. Applying the results of [KMO10] to our constructions gives a construction
of adaptive trapdoor functions from lossy encryption with long plaintexts.

The primary limitation of our results is the requirement that the message
space be larger than the randomness space. Whether this restriction can be
removed is an important open question.
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Appendix

A Randomness Dependent Message (RDM) Security

It is well-established that the semantic security of a public-key cryptosystem
may not hold when the messages being encrypted cannot be efficiently com-
puted by an adversary given access to the public key alone. Previous work has
explored the notion of security when the plaintext is allowed to depend
on the secret key (dubbed key dependent message (KDM) security)
[BRS03,BHHO08,HU08,ACPS09]. In this work we consider new notions of se-
curity when the plaintext may depend on the encryption randomness. While
the need for KDM security arises naturally in practical applications, the notion
of Randomness Dependent Message (RDM) security arises naturally in crypto-
graphic constructions.

Definition 3 (Strong RDM Security). We consider two experiments:

RDM (Real) RDM (Ideal)

pk
$← Gen(1λ) pk

$← Gen(1λ)

r = (r1, . . . , rn)
$← coins(Enc) r = (r1, . . . , rn)

$← coins(Enc)

(f1, . . . , fn)
$← A1(pk) (f1, . . . , fn)

$← A1(pk))
c = (Enc(pk, f1(r), r1), . . . ,Enc(pk, fn(r), rn)) c = (Enc(pk, 0, r1), . . . ,Enc(pk, 0, rn))

b ← A2(c) b
$← A2(c).

Fig. 2. RDM security

A cryptosystem PKE = (Gen,Enc,Dec) is called Strongly RDM Secure with
respect to F if for all polynomials n = n(λ), and all PPT adversaries A =
(A1, A2) for which A1 only outputs fi ∈ F , we have∣∣Pr[ARDMreal = 1]− Pr[ARDMideal = 1]

∣∣ < ν

for some negligible function ν = ν(λ).

It is natural as well to consider a weakened notion of RDM security, called
RDM One-wayness.

Definition 4 (RDM One-Way). Let PKE = (Gen,Enc,Dec) be a public key
cryptosystem. Consider the following experiment

A cryptosystem PKE = (Gen,Enc,Dec) is called RDM One-Way with respect
to family F if for all polynomials n = n(λ), and all PPT adversaries A =
(A1, A2) for which A1 only outputs fi ∈ F , we have Pr[r = r′] < ν for some
negligible function ν = ν(λ).

A special case of RDM one-wayness, is the encryption of a randomness cycle.
As before we can consider both the decision and the search variants.
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RDM One-Way

pk
$← Gen(1λ)

r = (r1, . . . , rn)
$← R

(f1, . . . , fn)
$← A1(pk)

c = (Enc(pk, f1(r), r1), . . . ,Enc(pk, fn(r), rn))
r′ ← A2(c)

Fig. 3. RDM One-Way

Definition 5 (RCIRC Security). A cryptosystem PKE = (Gen,Enc,Dec) will
be called randomness circular secure (RCIRC secure) if we have

{pk,Enc(pk, r2, r1),Enc(pk, r3, r2), . . . ,Enc(pk, rn, rn−1),Enc(pk, r1, rn)} ≈c

{pk,Enc(pk, 0, r1), . . . ,Enc(pk, 0, rn)},

where pk
$← Gen(1λ), and ri

$← coins(Enc) for i = 1, . . . , n.

When using a cryptosystem as a building block in a more complicated proto-
col, it is sometimes desirable to encrypt messages that are correlated with the
randomness. Similar to the notion of circular security ([CL01,BRS03,BHHO08]),
which talks about security when encrypting key cycles, we define a notion of se-
curity related to encrypting randomness cycles. We call this property RCIRC
One-Wayness.

Definition 6 (RCIRC One-wayness). We say that a cryptosystem is RCIRC
One-Way if the family of functions, parametrized by pk

Fpk : coins(Enc)n → Cn

(r1, . . . , rn) %→ (Enc(pk, r2, r1), . . . ,Enc(pk, r1, rn)),

is one-way.

It is not hard to see that a cryptosystem that is RCIRC One-Way gives rise
to an injective one-way trapdoor function.

An immediate corollary of Theorem 1 is that if the functions described in
Figure 1 are a family of injective one-way trapdoor functions, that means that
the underlying cryptosystem, is RCIRC One-Way

Corollary 4. If PKE = (Gen,Enc,Dec) is a lossy encryption, and if |M| = t|R|,
and 1

t is negligible, if we define P̃KE = (G̃en, Ẽnc, D̃ec), with

– G̃en(1λ), generates (pk, sk)
$← Gen(1λ), and h

$← H and sets p̃k = (pk, h),
s̃k = sk.

– Ẽnc(p̃k,m, r) = Enc(pk,m, h(r)).

– D̃ec(s̃k, c) = Dec(sk, c).

Then P̃KE is RCIRC One-Way.

We remark that the construction outlined above is RCIRC-OW for one input.
A straightforward modification of the above arguments shows that if h is a 2k-
wise independent hash family, then P̃KE is RCIRC-OW for k inputs.
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B Constructing Lossy Encryption with Long Plaintexts

In [HLOV11], Hemenway et al. showed that lossy encryption can be constructed
from statistically rerandomizable encryption and from statistically sender private(
2
1

)
-oblivious transfer. This immediately yields constructions of lossy encryption

from homomorphic encryption and smooth universal hash proof systems. Using
the generic transformation from re-randomizable encryption to lossy encryption
given in [HLOV11], we have efficient Lossy Encryption from the Damg̊ard-Jurik
cryptosystem.

Recall, that with a standard IND-CPA secure cryptosystem PKE = (Gen,Enc,
Dec) we can arbitrarily extend the plaintext space by expanding the randomness
with a pseudorandom generator. Specifically, if PRG is pseudorandom generator,
such that PRG : R → Rk, we can define a new cryptosystem, with encryption
of (m1, . . . ,mk) under randomness r given by setting r1, . . . , rk = PRG(r), and
setting the ciphertext as Enc(m1, r1), . . . ,Enc(mk, rk). It is important to notice
that applying this construction to a lossy encryption scheme, will yield an IND-
CPA secure scheme, but not necessarily a lossy encryption scheme.

Below, we describe lossy encryption protocols that have plaintexts that can
be made much longer than the encryption randomness. These schemes are based
on the Extended Decisional Diffie Hellman (EDDH) assumption. The EDDH
assumption is a slight generalization of the DDH assumption. The EDDH as-
sumption has semantics that are very similar to the DDH assumption but the
EDDH assumption is implied by the DCR, DDH and QR assumptions, so by
framing our cryptosystems in this language we achieve unified constructions
based on different hardness assumptions.

B.1 The EDDH Assumption

Hemenway and Ostrovsky [HO12] introduced the Extended Decisional Diffie-
Hellman (EDDH) assumption

Definition 7 (The EDDH Assumption). For a group G, and a (samplable)
subgroup H � G, with samplable subsets G ⊂ G, and K ⊂ Z the extended deci-
sional diffie hellman (EDDH) assumption posits that the following two distribu-
tions are computationally indistinguishable:

{(g, ga, gb, gab) : g $← G, a, b
$← K} ≈c {(g, ga, gb, gabh) : g $← G, a, b

$← K, h
$← H}

It follows immediately that if K = {1, . . . , |G|}, and H = G, then the EDDH
assumption is just the DDH assumption in the group G. A straightforward ar-
gument shows:

Lemma 5. If the EDDH assumption holds in a group G, then for any fixed
h∗ ∈ H, the distributions

{(g, ga, gb, gab) : g $← G, a, b
$← K} ≈c {(g, ga, gb, gabh∗) : g $← G, a, b

$← K}

are computationally indistinguishable.
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Lemma 6. If the EDDH assumption holds in a group G, then for any m ∈
{0, 1}n, and any h ∈ H, the distributions

Λ = {(h, g, ga, gb1 , . . . , gbn , gab1 , . . . , gabn) : g $← G, a, b1, . . . , bn
$← K},

Λm = {(h, g, ga, gb1 , . . . , gbn , gab1hm1 , . . . , gabnhmn ) : g
$← G, a, b1, . . . , bn

$← K,h
$← H}

are computationally indistinguishable.

Proof. Let ei denote the ith standard basis vector, i.e. ei has a one in the ith
position and zeros elsewhere. By a standard hybrid argument, it is enough to
show that the distributions Λm ≈ Λm+ei .

Given an EDDH challenge (g, g1, g2, g3) = (g, ga, gb, g3), we sample

b1, . . . , bi−1, bi+1, . . . , bn
$← K and create the vector

v = (h, g, g1, g
b1 , . . . , gbi−1 , g2, g

bi+1 , . . . , gbn , gb11 h
m1 , . . . , g

bi−1

1 hmi−1 ,

g3, g
bi+1

1 hmi+1 , . . . , gbn1 hmn)

The vector v will be in Λm or Λm+ei depending on whether g3 = gabh or g3 = gab.

B.2 Lossy Encryption from EDDH

In this section, we describe a simple lossy encryption scheme based on the EDDH
assumption.

– Public Parameters:
A group G under which the EDDH assumption holds. A generator g

$← G,
an element 1 �= h ∈ H.

– Lossy Key Generation:

Sample a0, a1, . . . , an, b1, . . . , bn
$← K. Set v = (ga0b1 , . . . , ga0bn)

v1 = (ga1b1h, ga1b2 , . . . , ga1bn)

...

vn = (ganb1 , ganb2 , . . . , ganbn−1 , ganbnh)

and set gi = gai for i = 0, . . . , n. The public key will be (g0, . . . , gn,v,
v1, . . . ,vn). The secret key will be b1, . . . , bn.

– Injective Key Generation:

Sample a, a1, . . . , an, b1, . . . , bn
$← K. Set v = (gab1 , . . . , gabn)

v1 = (ga1b1 , ga1b2 , . . . , ga1bn)

...

vn = (ganb1 , ganb2 , . . . , ganbn−1 , ganbn)

and set gi = gai for i = 0, . . . , n. The public key will be (g0, . . . , gn,v,
v1, . . . ,vn).
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– Encryption:

To encrypt a message m ∈ {0, 1}n, choose an element r
$← K, and set

c = vrvm1
1 · · ·vmn ∈ Gn

where all the operations are done coordinate-wise (the natural group action
in the cartesian product group). and c0 = gr0

∏n
i=1 g

mi

i .
– Decryption:

Given (c0, c), calculate (c1c
−b1
0 , . . . , cnc

−bn
0 ) = (hm1 , . . . , hmn) and the mi

can be recovered by inspection.

The injective and lossy modes are indistinguishable by Lemma 6. In lossy
mode, the ciphertext space has size bounded by the order of g. By choosing n
large enough so that 2n is much greater than the order of g we can achieve any

degree of lossiness. The encryption randomness is a single element r
$← K, so

choosing n > K, makes the plaintexts longer than the encryption randomness.

C Perfectly Lossy Encryption

The perfect lossiness property discussed in Section 4.1 is so strong that we can
actually extend Lemma 3.

Lemma 7. If PKE = (Gen,Enc,Dec), is a perfectly lossy encryption scheme,
0 < t ∈ Z, and h1, . . . , ht are any functions from Mt to R, then the function

Fpk,h :Mt → Ct

(x1, . . . , xt) %→ (Enc(pk, x1, h1(x1, . . . , xt)), . . . ,Enc(pk, xt, ht(x1, . . . , xt))),

is a (t log |M|, t(log |M| − log |R|))-LTDF.

The proof is essentially identical to the proof of Lemma 3. One simple conse-
quence of Lemma 7 is

Lemma 8. If PKE = (Gen,Enc,Dec), is a perfectly lossy encryption scheme,
0 < t ∈ Z, and log (|M|/|R|) = ω(log(λ)), then for any map h : M → R, the

encryption Ênc(pk, x, y) = Enc(pk, x, h(y)) is strongly t-RCIRC-One Way.
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Abstract. We revisit the problem of basing pseudorandom generators
on regular one-way functions, and present the following constructions:

– For any known-regular one-way function (on n-bit inputs) that is
known to be ε-hard to invert, we give a neat (and tighter) proof for
the folklore construction of pseudorandom generator of seed length
Θ(n) by making a single call to the underlying one-way function.

– For any unknown-regular one-way function with known ε-hardness,
we give a new construction with seed lengthΘ(n) andO(n/ log (1/ε))
calls. Here the number of calls is also optimal by matching the lower
bounds of Holenstein and Sinha (FOCS 2012).

Both constructions require the knowledge about ε, but the dependency
can be removed while keeping nearly the same parameters. In the lat-
ter case, we get a construction of pseudo-random generator from any
unknown-regular one-way function using seed length Õ(n) and
Õ(n/ log n) calls, where Õ omits a factor that can be made arbitrarily
close to constant (e.g. log log log n or even less). This improves the ran-
domized iterate approach by Haitner, Harnik and Reingold (CRYPTO
2006) which requires seed length O(n·logn) and O(n/ log n) calls.

1 Introduction

The seminal work of H̊astad, Impagliazzo, Levin and Luby (HILL) [14] that one-
way functions (OWFs) imply pseudorandom generators (PRGs) constitutes one
of the centerpieces of modern cryptography. Technical tools and concepts (e.g.
pseudo-entropy, leftover hash lemma) developed and introduced in [14] were
found useful in many other contexts (such as leakage-resilient cryptography).
Nevertheless, a major drawback of [14] is that the construction is quite involved
and too inefficient to be of any practical use, namely, to obtain a PRG with
comparable security to the underlying OWF on security parameter n, one needs
a seed of length O(n8)1. Research efforts (see [15,13,23], just to name a few)
have been followed up towards simplifying and improving the constructions, and

1 More precisely, the main construction of [14] requires seed length O(n10), but [14]
also sketches another construction of seed length O(n8), which was proven in [15].

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 261–279, 2013.
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the current state-of-the-art construction [23] requires seed length O(n3). Let us
mention all aforementioned approaches are characterized by a parallel construc-
tion, namely, they run sufficiently many independent copies of the underlying
OWFs (rather than running a single trail and feeding its output back to the input
iteratively) and there seems an inherent lower bound on the number of copies
needed. This is recently formalized by Holenstein and Sinha [16], in particular,
they showed that any black-box construction of a PRG from an arbitrary OWF
f requires Ω(n/ logn) calls to f in general.2

PRGs from Special OWFs. Another line of research focuses on OWFs with
special structures that give rise to more efficient PRGs. Blum, Micali [3] and Yao
[26] independently introduced the notion of PRGs, and observed that PRGs can
be efficiently constructed from one-way permutations (OWPs). That is, given a
OWP f on input x and its hardcore function hc (e.g. by Goldreich and Levin
[10]), a single invocation of f already implies a PRG g(x) = (f(x), hc(x)) with a
stretch3 ofΩ(log n) bits and it extends to arbitrary stretch by repeated iterations
(seen by a hybrid argument):

g�(x) = ( hc(x), hc(f
1(x)), . . . , hc(f

�(x)), . . .)

where f i(x)
def
=f(f i−1(x)) and f1(x)

def
=f(x). The above PRG, often referred to

as the BMY generator, enjoys many advantages such as simplicity, optimal seed
length, and minimal number of calls. Levin [19] observed that f is not necessar-
ily a OWP, but it suffices to be one-way on its own iterate. Unfortunately, an
arbitrary OWF doesn’t have this property. Goldreich, Krawczyk, and Luby [9]
assumed known-regular4 OWFs and gave a construction of seed length O(n3) by
iterating the underlying OWFs and applying k-wise independent hashing in be-
tween every two iterations. Later Goldreich showed a more efficient (and nearly
optimal) construction from known-regular OWFs in his textbook [7], where in
the concrete security setting the construction does only a single call to the un-
derlying OWF (or ω(1) calls in general). The construction was also implicit in
many HILL-style constructions (e.g. [15,13]). Haitner, Harnik and Reingold [12]
refined the technique used in [9] (which they called the randomized iterate) and
adapted the construction to unknown regular OWFs with reduced seed length
O(n · log n). Informally, the randomized iterate follows the route of [9] and
applies a random pairwise independent hash function hi in between every two
applications of f , i.e.

f1(x)
def
=f(x); for i≥2 let f i(x;h1, . . . , hi−1)

def
=f(hi−1(f

i−1(x;h1, · · · , hi−2)))

The key observation is “the last iterate is hard-to-invert”[11], more precisely,
function f , when applied to hi−1(f

i−1;h1, · · · , hi−2), is hard-to-invert even if

2 The lower bound of [16] also holds in the concrete security setting, namely,
Ω(n/ log (1/ε)) calls from any ε-hard OWF.

3 The stretch of a PRG refers to the difference between output and input lengths.
4 A function f(x) is regular if the every image has the same number (say α) of preim-
ages, and it is known- (resp., unknown-) regular if α is efficiently computable (resp.,
inefficient to approximate) from the security parameter.
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h1, . . ., hi−1 are made public. The generator follows by running the iterate
O(n/ logn) times, and outputting Ω(log n) hardcore bits per iteration, which
requires seed length O(n2/ logn) and can be further pushed to O(n · log n) using
derandomization techniques (e.g., Nisan’s bounded-space generator [20]). The
randomized iterate matches the lower bound on the number of OWF calls5, but
it remains open if any efficient construction can achieve linear seed length and
O(n/ logn) OWF calls simultaneously.

Summary of Contributions. We contribute an alternative proof for the folk-
lore construction of PRGs from known-regular OWFs via the notion of unpre-
dictability pseudo-entropy, which significantly simplifies and tightens the proofs
in [7]. We also give a new construction from any unknown-regular one-way func-
tion using seed length Õ(n) and making Õ(n/ logn) calls, where both parameters
are optimal in the concrete security setting and nearly optimal in general (up to
an arbitrarily close to constant factor), and this improves the randomized iterate
[11]. We sketch both constructions as follows.

Entropy Observation. We start by assuming a (t,ε)-OWF f (see Defini-
tion 2) with known regularity 2k (i.e., every image has 2k preimages under f).
The key observation is that for uniform X (over {0, 1}n) we have X given f(X)
has k + log (1/ε) bits of pseudo-entropy (defined by the game below and for-
mally in Definition 5). That is, no adversary A of running time t can win the
following game against the challenger C with probability greater than (2−k · ε).
The rationale is that conditioned on any f(X) = y random variable X is uni-

Challenger C

x ← Un; y := f(x)

A wins iff x′ = x

Adversary A

x′ := A(y)

y

x′

Fig. 1. The interactive game between A and C that defines unpredictability pseudo-
entropy, where x ← Un denotes sampling a random x ∈ {0, 1}n

formly distributed on set f−1(y)
def
= {x : f(x) = y} of size 2k, and thus even if

any deterministic (or probabilistic) A recovers a x′∈f−1(y), the probability that
X = x′ is only 2−k.

PRGs from Known-Regular OWFs. Given the above observation, we im-
mediately obtain the following folklore construction using three extractions along
with a three-line proof.

5 As explicitly stated in [16], the lower bound of Ω(n/ log n) calls also applies to
unknown regular OWFs.
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– Randomness extraction from f(X). f(X) has min-entropy n− k, and
thus we can extract nearly n− k statistically random bits.

– Randomness extraction from X. X has min-entropy k given any y =
f(X), so we can extract another k statistically random bits.

– Pseudorandomness extraction from X. The second extraction re-
duces the unpredictability pseudo-entropy of X given f(X) by no more than
k (i.e., log(1/ε) bits remaining by the entropy chain rule), and hence we use
Goldreich-Levin hardcore functions [10] to extract another O(log (1/ε)) bits.

Novelty of our analysis. While the construction was already known in lit-
erature (explicit in [7] and implicit in HILL-style generators [14,13,23]), its full
proof was only seen in [7] and we further simplify the analysis via the use of un-
predictability pseudo-entropy. In addition to simplicity, our technique can also
be used to refine and tighten the proof given in [7] (see Section 3.2 and Remark 2
for details). We mention that our proofs sketched above are not implied by the
recent work of [13,23]. In particular, the construction of [13] applies a dedicated
universal hash function h of description length O(n2) to f(X) such that the first
k output bits are statistically random and the next O(log n) bits are compu-
tationally random, and this holds even if k is unknown (which is desired for a
general OWF f whose preimage size may vary for different images). However, in
our context k is known and it is crucial that the description length of the hash
functions is linear, for which we do two extractions from f(X) using h2 and hc
respectively. We also stress that our observation that “X given f(X) has unpre-
dictability pseudo-entropy k+log (1/ε)” is incomparable with the counterpart in
[23, Thm 1.5], which was informally stated as “(f(X), X) has next-bit pseudo-
entropy n+Ω(log n)”. Firstly, our proof enjoys simplicity and tightness whereas
theirs employs the uniform version of Min-Max Theorem which is much involved
and interesting in its own right. Secondly, next-bit pseudo-entropy was a newly
introduced notion [13] and whether it implies (or is implied by) unpredictability
pseudo-entropy is unknown to our knowledge, and the ways of extraction from
these two sources are different. See Section 3.2 and Remark 3 for details.

Concrete vs. asymptotic security. The above construction is optimal (in
seed length and the number of OWF calls), but requires the knowledge about
parameter ε, more precisely, we need ε to decide entropy loss d such that the first
extraction outputs n−k−d bits with statistical error bounded by 2−d/2 (by the
Leftover Hash Lemma [14]) and let the third extraction output more than d bits
to achieve a positive stretch. It is unknown how to remove the dependency on ε
for free (see also the discussions in [7]). Fortunately, there is a known repetition
trick to solve the problem using seed length Õ(n) and Õ(1) OWF calls, where
notation Õ omits a factor of q ∈ ω(1) (i.e. q can be any factor arbitrarily close
to constant such as log log logn).

PRGs from Unknown-Regular OWFs. We also give a new construction
oblivious of the regularity of f . The construction follows the steps below.
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– Convert to known regularity. The key idea is to transform any un-
known regular OWF into another known regular OWF (over a special do-
main). That is, for a (length-preserving) unknown-regular (t, ε)-OWF f :
{0, 1}n → Y where Y ⊆ {0, 1}n is the range of f , define function f̄ :

Y × {0, 1}n → Y as f̄(y, r)
def
= f(y ⊕ r) where “⊕” denotes bitwise XOR.

It is not hard to see that f̄ has regularity 2n (regardless of the regularity of
f) and it preserves the hardness of f .

– Construct a Z-seeded PRG. Similar to that observed in the 1st con-
struction, f̄(Y,R) hides n+log (1/ε) bits of pseudo-entropy about (Y,R), and
thus we can extract n + O(log (1/ε)) pseudorandom bits, namely, we get a
special PRG ḡ that maps random elements over Y×{0, 1}n to pseudorandom
ones over Y×{0, 1}n+O(log(1/ε)). This PRG is known as the “Z-seeded PRG”
[23], one that given input distribution Z outputs (Z ′,Us) which is computa-
tionally indistinguishable from (Z,Us), where in the above case Z = (Y,R)
and stretch s = O(log (1/ε)). Note that if Z were U2n then this would be a
standard PRG.

– Iterative composition of Z-seeded PRG. Nevertheless, to use the
above Z-seeded PRG ḡ we need to efficiently sample from Y = f(Un) (i.e.
uniform distribution over Y), which costs n random bits despite that the
entropy of Y may be far less than n. Quite naturally (following [23,3]), the
construction invests n bits (to sample a random y←f(Un)) at initialization,
runs ḡ in iterations, and outputs O(log (1/ε)) bits per iteration. The stretch
becomes positive after O(n/ log (1/ε)) iterations, which matches the lower
bounds of [16]. The seed length remains of order Θ(n) by reusing the coins
for universal hash and G-L functions at every iteration, thanks to the hybrid
argument.

– Remove dependency on ε (optional). Similarly, in case that ε is un-
known, we pay a penalty factor Õ(1) for using the repetition trick. That
is, we construct a PRG from any unknown-regular OWF using seed length
Õ(n) and Õ(n/ logn) OWF calls.

2 Preliminaries

Notations and definitions. We use capital letters (e.g. X , Y , A) for random
variables, standard letters (e.g. x, y, a) for values, and calligraphic letters (e.g.
X , Y, S) for sets. |S| denotes the cardinality of set S. For function f , we let

f(X )
def
= {f(x) : x ∈ X} be the set of images that are mapped from X under

f , and denote by f−1(y) the set of y’s preimages under f , i.e. f−1(y)
def
= {x :

f(x) = y}. We say that distribution X is flat if it is uniformly distributed
over some set X . We use s ← S to denote sampling an element s according
to distribution S, and let s ← S denote sampling s uniformly from set S, and
y := f(x) denote value assignment. We use Un to denote the flat distribution
over {0, 1}n independent of the rest random variables in consideration, and let
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f(Un) be the distribution induced by applying function f to Un. We use CP(X)

to denote the collision probability of X , i.e., CP(X)
def
=

∑
x Pr[X = x]2, and

collision entropy H2(X)
def
= − logCP(X) ≥ H∞(X). We also define average (aka

conditional) collision entropy and average min-entropy of a random variable X
conditioned on another random variable Z by

H2(X |Z) def
= − log

(
Ez←Z

[ ∑
x Pr[X = x|Z = z]2

] )
H∞(X |Z) def

= − log ( Ez←Z [ maxx Pr[X = x|Z = z] ] )

An entropy source refers to a random variable that has some non-trivial amount
of entropy. A function μ : N → [0, 1] is negligible if for every polynomial poly
we have μ(n) < 1/poly(n) holds for all sufficiently large n’s. We define the

computational distance between distribution ensembles X
def
= {Xn}n∈N and Y

def
=

{Yn}n∈N as follows: we say that X and Y are (t(n), ε(n))-close, denoted by
CDt(n)(X ,Y )≤ ε(n), if for every probabilistic distinguisher D of running time up
to t(n) it holds that

| Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1] | ≤ ε(n) .

The statistical distance between X and Y , denoted by SD(X,Y ), is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = CD∞(X,Y )

We use SD(X,Y |Z) (resp. CDt(X,Y |Z)) as shorthand for SD((X,Z), (Y, Z))
(resp. CDt((X,Z), (Y, Z))).

Simplifying Assumptions and Notations. To simplify the presentation,
we make the following assumptions without loss of generality. It is folklore that
one-way functions can be assumed to be length-preserving (see [12] for formal
proofs). Throughout, most parameters are functions of the security parameter
n (e.g., t(n), ε(n), α(n)) and we often omit n when clear from the context
(e.g., t, ε, α). Parameters (e.g. ε, α) are said to be known if they are known
to be polynomial-time computable from n. By notation f : {0, 1}n → {0, 1}l
we refer to the ensemble of functions {fn : {0, 1}n → {0, 1}l(n)}n∈N. As slight
abuse of notion, poly might be referring to the set of all polynomials or a certain
polynomial, and h might be either a function or its description, which will be
clear from the context.

Definition 1 (universal hash functions [4]). A family of functions H def
=

{h : {0, 1}n → {0, 1}l} is called a universal hash family, if for any x1 �= x2 ∈
{0, 1}n we have Prh←H[h(x1) = h(x2)] ≤ 2−l.

Definition 2 (one-way functions). A function f : {0, 1}n → {0, 1}l(n) is
(t(n),ε(n))-one-way if f is polynomial-time computable and for any probabilistic
algorithm A of running time t(n)

Pr
y←f(Un)

[A(1n, y)∈f−1(y)] ≤ ε(n).
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For ε(n) = 1/t(n), we simply say that f is ε(n)-hard. f is a one-way function if
it is ε(n)-hard for some negligible function ε(n).

Definition 3 (regular functions). A function f is α-regular if there exists an
integer function α, called the regularity function, such that for every n ∈ N and
x ∈ {0, 1}n we have

|f−1(f(x))| = α(n).

In particular, f is known-regular if α is polynomial-time computable, or called
unknown-regular otherwise. Further, f is a (known-/unknown-) regular OWF if
f is a OWF with (known/unknown) regularity.

Definition 4 (pseudorandom generators [3,26]). A function g : {0, 1}n →
{0, 1}l(n) (l(n) > n) is a (t(n),ε(n))-secure PRG if g is polynomial-time com-
putable and

CDt(n)( g(1
n, Un) , Ul(n) ) ≤ ε(n).

where (l(n) − n) is the stretch of g, and we often omit 1n (security parameter
in unary) from g’s parameter list. We say that g is a pseudorandom generator
if both 1/t(n) and ε(n) are negligible.

Definition 5 (unpredictability pseudo-entropy[2,17]). For distribution en-

semble (X,Z)
def
= {(Xn, Zn)}n∈N, we say that X has k(n) bits of pseudo-entropy

conditioned on Z for all t(n)-time adversaries, denoted by Ht(n)(X |Z) ≥ k(n),
if for any n ∈ N and any probabilistic adversary A of running time t(n)

Pr
(x,z)←(Xn,Zn)

[A(1n, z) = x] ≤ 2−k(n)

Alternatively, we say that X is 2−k(n)-hard to predict given Z for all t(n)-time
adversaries.

Unpredictability pseudo-entropy can be seen as a relaxed form of min-entropy
by weakening adversary’s running time from unbounded to parameter t(n), which
(presumably) characterizes the class of practical adversaries we care about. Note
that the notion seems only meaningful in its conditional form as otherwise (when
Z is empty) non-uniform attackers can simply hardwire the best guess about X ,
and thus Ht(n) collapses to H∞. Let us mention the unpredictability pseudo-
entropy is different from (and in fact, strictly weaker than [2,17]) the HILL
pseudo-entropy [14], which is another relaxed notion of min-entropy by consid-
ering its computationally indistinguishable analogues.

3 Pseudorandom Generators from Regular One-Way
Functions

3.1 Technical Tools

The first technical tool we use is the leftover hash lemma. Informally, it states
that when applying a randomuniversal hash function tomin-entropy (orRényi en-
tropy) source, one obtain random strings that are statistical close to uniform even
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conditioned on the description of hash function. The objects were later formalized
as randomness extractors [21]. Universal hash functions are also good condensers
(whose outputs have nearly maximal entropy) for a wider range of parameters
than extractors.

Lemma 1 (leftover hash lemma [14]). For any integers d<k≤n, there exists

a (efficiently computable) universal hash function family H def
= {h : {0, 1}n →

{0, 1}k−d} such that for any joint distribution (X,Z) where X ∈ {0, 1}n and
H2(X |Z) ≥ k, we have

SD(H(X), Uk−d | H,Z) ≤ 2−
d
2

where H is uniformly distributed over the members of H, the description size of
H is called seed length, and d is called entropy loss, i.e., the difference between
the entropy of X (given Z) and the number of bits that were extracted from X.

Lemma 2 (condensers from hash functions). Let H def
= {h : {0, 1}n →

{0, 1}k} be any universal hash function family and let (X,Z) be any random
variable with X ∈ {0, 1}n and H2(X |Z) ≥ k. Then, for H uniform distributed
over H we have H2(H(X) | H,Z) ≥ k − 1.

Proof. Let X1 and X2 be i.i.d. to X | Z = z (i.e. X conditioned on Z = z).

2−H2(H(X)|H,Z) = Eh←H,z←Z

[
Pr

x1←X1,x2←X2

[H(x1) = H(x2)|H = h, Z = z]

]
≤ Ez←Z

[
Pr

x1←X1,x2←X2

[x1 = x2|Z = z]

]
+ Ez←Z

[
Pr

h←H
[ h(x1) = h(x2) | x1 �=x2, Z = z]

]
≤ 2−k + 2−k = 2−(k−1) .

We refer to [22,6,18] for extremely efficient constructions of universal hash
functions with short description (of length Θ(n)), such as multiplications be-
tween matrices and vectors, or over finite fields.

Reconstructive extractors. We will also need objects that extract pseu-
dorandomness from unpredictability pseudo-entropy sources. Unfortunately, the
leftover hash lemma (and randomness extractors [21] in general) does not serve
the purpose. Goldreich and Levin [10] showed that the inner product function is
a reconstructive bit-extractor for unpredictability pseudo-entropy sources. Fur-
ther, there are two ways to extend the inner product to multiple-bit extractors:
(1) multiplication with a random matrix of length O(n2) and extracts almost
all entropy (by a hybrid argument); (2) multiplication with a random Toeplitz
matrix of length Θ(n) and extracts O(log (1/ε)) bits (due to Vazirani’s XOR
lemma [25,10]). We will use the latter multi-bit variant (as stated below) to
keep the seed length linear. Interestingly, the Toeplitz matrix based functions
also constitute pairwise independent and universal hash function families.
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Theorem 1 (Goldreich-Levin [10]). For distribution ensemble (X,Y ) ∈
{0, 1}n × {0, 1}∗, and for any integer m ≤ n, there exists6 a function family

HC
def
= {hc : {0, 1}n → {0, 1}m} of description size Θ(n), such that

– If Y = f(X) for any (t,ε)-OWF f and X uniform over {0, 1}n, then we
have

CDt′( HC(X) , Um | Y,HC) ∈ O(2m · ε) . (1)

– If X is ε-hard to predict given Y for all t-time adversaries, namely, entropy
condition satisfies Ht(X |Y )≥ log(1/ε), then we have

CDt′( HC(X) , Um | Y,HC) ∈ O(2m · (n · ε) 1
3 ) . (2)

where t′ = t · (ε/n)O(1) and function HC is uniformly distributed over the mem-
bers of HC .

Remark 1 (unpredictability vs. one-wayness). To see the difference between the
two versions above, consider the interactive game in Figure 1, where by unpre-
dictability A’s prediction is successful only if x = x′, but in contrast A inverts
OWF f as long as he finds any x′ satisfying f(x′) = y. Recall that the proof
of the theorem can be seen as an efficient local list decoding procedure for the
Hadamard code, where in the former case the decoder returns a random member
from the candidate list while in the latter case it goes through all candidates
and outputs the one x′ satisfying f(x′) = y (if exists). We refer to Goldreich’s
exposition [8] for further details.

We recall two folklore facts below, namely the chain rule of unpredictabil-
ity (pseudo-)entropy and the replacement inequality. Intuitively, any leakage
Y ∈ {0, 1}l decreases the unpredictability about secret X by a factor of no more
than 2l, which can be seen by a simple reduction (e.g., by replacing Y with a
random string). The replacement inequality states that any information that is
(efficiently) computable from the knowledge of the adversary does not help fur-
ther reduce the unpredictability (pseudo-)entropy of the secret in consideration.

Fact 1 (chain rule of entropies). For any joint distribution (X,Y ,Z) where
Y ∈ {0, 1}l, we have

H∞(X |Y, Z) ≥ H∞(X |Z)− l ,

Ht′(X |Y, Z) ≥ Ht(X |Z)− l ,

where t′ ≈ t.

Fact 2 (replacement inequalities). For any joint distribution (X,Y ,Z) and
any th-time computable function h : Y → {0, 1}∗, we have

H∞(X |h(Y ), h, Z) ≥ H∞(X |Y, Z) ,

Ht−th(X |h(Y ), h, Z) ≥ Ht(X |Y, Z) .
6 For example (see [10]), we can use an m×n Toeplitz matrix am,n to describe the fam-

ily of functions, i.e., HC
def
= {hc(x)

def
=am,n ·x, where x ∈ {0, 1}n, am,n ∈ {0, 1}m+n−1}.
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3.2 PRGs from OWFs with Known Regularity and Hardness

We state our motivating observation as the lemma below.

Lemma 3 (regular OWFs imply unpredictability pseudo-entropy). Let
f : X → Y be a 2k-regular (t,ε)-OWF. Then, we have

Ht(X | f(X)) ≥ k + log (1/ε) , (3)

where X is uniform over X .

Proof. The (t,ε)-one-wayness of f guarantees that for any deterministic adver-
sary A of running time t

Pr
x←X ,y:=f(x)

[ A(y)∈f−1(y) ] ≤ ε

which in turn implies (as conditioned on f(X) = y, X is uniform over f−1(y) of
size 2k):

Pr
x←X ,y:=f(x)

[ A(y) = x ] ≤ 2−k · ε

which is essentially Equation (3) by taking a negative logarithm. Note that the
above argument extends to probabilistic t-time A as well, by considering A(y; r)
on every fixing of his random coin r.

The Construction for Known α and ε. As sketched in introduction, our
first construction essentially extracts from the joint distribution (X, f(X)) three
times, namely, use universal hash function h1 to extract nearly (up to entropy
loss) n − k bits from f(X), and then apply h2 and hc to extract k statistical
random bits and another Θ(log(1/εn)) pseudo-random bits from X respectively.
For convenience, we assume without loss of generality that the regularity is a
power of two, i.e., α = 2k.

Theorem 2 (preliminary construction based on known regularity and
hardness). Let f : {0, 1}n → {0, 1}n be a known 2k-regular length-preserving
(t,ε)-OWF, let d, s be any integer functions satisfying 9d+6s = 2 log(1/εn), let

H1
def
= {h1 : {0, 1}n → {0, 1}n−k−d}, H2

def
= {h2 : {0, 1}n → {0, 1}k} be universal

hash function families, let HC
def
= {hc : {0, 1}n → {0, 1}d+s} be a Goldreich-Levin

function family, and let g be

g : {0, 1}n ×H1 ×H2 ×HC → {0, 1}(n−k−d)+k+(d+s) ×H1 ×H2 ×HC

(x, h1, h2, hc) %→ (h1(f(x)), h2(x), hc(x), h1, h2, hc)

where x ∈ {0, 1}n, h1 ∈ H2, h2 ∈ H2, hc ∈ HC . Then, g is a ( t · (ε/n)O(1),

O((23s · ε · n) 1
9 ) )-secure PRG with stretch s.

We deal with the situation where n− k − d ≤ 0 by letting h1 output nothing.
Another special case k = 0 (i.e., f is a OWP) is handled by letting h1 and h2
output the identity and empty strings respectively.
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Proof. The entropy conditions for the (pseudo)-randomness extractions are guar-
anteed by Lemma 4. We have by Equation (4), Equation (5) and the leftover
hash lemma that the first n− d bits extracted are statistically random, namely,

SD( (H1(f(X)), H2(X)), Un−d | H1, H2)

≤ SD( H1(f(X)), Un−k−d | H1) + SD( H2(X), Uk | H1(f(X)), H1, H2)

≤ 2·2−d
2 = 2·2 s

3+
1
9 log(εn) = O((23s · ε · n) 1

9 )

Next, as stated in Equation (6), conditioned on the prefix of n− d random bits
(and the seeds used), X remains (t − nO(1), ε)-hard to predict, and thus by
Goldreich-Levin (Theorem 1)

CDt′ ( HC(X) , Ud+s | H1(f(X)), H2(X), H1, H2, HC) = O(2d+s · (n·ε) 1
3 )

= O(2−
d
2 ) = O((23s · ε · n) 1

9 )

holds for t′ = t · (ε/n)O(1). The conclusion follows by a triangle inequality.

Lemma 4 (entropy conditions). Let f , H1, H2 be defined as in Theorem 2,
we have

H∞(f(X)) = n− k , (4)

H∞(X | h1(f(X)), h1) ≥ H∞(X)− (n− k − d) = k + d , (5)

Ht−nO(1)(X | h1(f(X)), h2(X), h1, h2) ≥ Ht(X | f(X), h2(X), h2) ≥ log (1/ε)
(6)

hold for every h1 ∈ H1, h2 ∈ H2, and X uniform over {0, 1}n.

Proof. Equation (4) follows from the regularity of f , i.e., every y = f(x) has
2k preimages, and thus f(X) is uniformly distributed over a set of size 2n−k.
Equation (5) is due to the chain rule of min-entropy (see Fact 1). The first
inequality of Equation (6) is the replacement inequality (see Fact 2), and the
second one is obtained by applying the chain rule of unpredictability entropy to
Equation (3), i.e., Ht(X | f(X), h2(X), h2) ≥ Ht(X |f(X))− k = log (1/ε).

Therefore, we already complete the proof for the PRG with linear seed length
by doing a single call to any 2k-regular ε-hard OWF provided that ε and k are
known. We provide an alternative (and simpler) proof to that given by Goldreich
[7] for essentially the same construction via unpredictability pseudo-entropy.

On Tightening Security Bounds. Concretely, if the underlying OWF is
n− logn- (resp., 2−

n
3 -) hard, then the outputs of the resulting PRG will be nearly

n− log n
9 - (resp., 2−

n
27 -) close to uniform (with respect to reasonably weakened ad-

versaries than counterparts of the OWF). The main lossy step in the reduction is

that we considered function f ′(x, h2)
def
= (f(x), h2(x), h2), where by Equation (6)

X is (ε, t)-hard to predict given f ′(X) and thus we directly applied Equation (2)
to get the inferior bounds. However, a closer look at f ′ suggests that it is almost
1-to-1, which implies that f ′ is a OWF (stated as in Lemma 5), which allows
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us to use the tight version of Goldreich-Levin Theorem (see Equation (1)). This
is actually the approach taken by [7], where however f ′ was only shown to be
roughly ε1/5-hard (by checking the proof of [7, Prop 3.5.9]). We give a refined
analysis below to get the tighter

√
ε-hardness of f ′, and this eventually leads to

the improved construction as in Theorem 3.

Lemma 5 (unpredictability and almost 1-to-1 imply one-wayness). Let

f and H2 be as defined in Theorem 2, then function f ′(x, h2)
def
= (f(x), h2(x), h2)

is a (t,3
√
ε)- one-way function.

Proof. Suppose for contradiction there exists A of running time t such that

Pr
[
A(f ′(X,H2))∈f ′−1(f ′(X,H2))

]
> 3

√
ε

Recall that f(X) has min-entropy n − k and conditioned on any y = f(X) X
has min-entropy k, and thus by the condensing property of universal hashing
(see Lemma 2, setting Z = f(X) and H = H2) H2(H2(X)|H2, f(X)) ≥ k −
1, which implies that CP(f(X), H2(X) | H2) ≤ 2−(n−k)·2−(k−1) = 2−(n−1).
It follows from Lemma 6 (setting a = 2−n/

√
ε, X1 = (f(X), H2(X)), Z1 =

H2) that f ′(X,H2) hits set S (defined below) with negligible probability, i.e.,
Pr[f ′(X,H2) ∈ S] ≤ 2

√
ε where

S def
= {(y, w, h2) : Pr[(f(X), h2(X)) = (y, w) | H2 = h2] ≥ 2−n/

√
ε}

= {(y, w, h2) : |f ′−1(y, w, h2)| ≥ 1/
√
ε} .

Then, let E be the event that A inverts f ′ on any image whose preimage size is

bounded by 1/
√
ε, i.e., E def

= A(f ′(X,H2))∈f ′−1(f ′(X,H2)) ∧ f ′(X,H2) /∈ S
Pr [A(f ′(X,H2))=X ] ≥ Pr [E ] · Pr[A(f ′(X,H2)) = X | E ]

> (3
√
ε− 2

√
ε) · ( 1

1/
√
ε
) = ε ,

where the probability of hard-to-invertness is related to unpredictability by the
maximal preimage size. The conclusion follows by reaching a contradiction to
the (t,ε)-unpredictability of X given f ′(X,H2) (as stated in Equation (6)).

Lemma 6 (H2 implies H∞ with small slackness). Let (X1,Z1) be a random

variable, for a > 0 define Sa def
= {(x, z) : Pr[X1 = x|Z1 = z] ≥ a}, it holds that

Pr[(X1, Z1) ∈ Sa] ≤ CP(X1|Z1)/a.

Proof. The proof is a typical Markov type argument.

CP(X1|Z1) = Ez←Z1

[ ∑
x

Pr[X1 = x|Z1 = z]2

]
=

∑
(x,z)

Pr[(X1, Z1) = (x, z)]·Pr[X1 = x|Z1 = z]

≥
∑

(x,z)∈Sa

Pr[(X1, Z1) = (x, z)]·Pr[X1 = x|Z1 = z]

≥ a · Pr[(X1, Z1) ∈ Sa] .
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Theorem 3 (improved construction based on known regularity and
hardness). For the same f , g, H1, H2, HC as assumed in Theorem 2 except
that d and s satisfy 3d + 2s = log(1/ε), we have that g is a ( t · (ε/n)O(1),
O((22s · ε)1/6)-secure PRG with stretch s.

Proof sketch. The proof is similar to Theorem 2. The first n − d bits ex-
tracted are 2−d/2-statistically random, conditioned on which the next d+ s bits
are O(2d+s

√
ε)-computationally random. It follows that the bound is 2−d/2 +

O(2d+s√ε) = O(2−d/2) = O((22s · ε)1/6). �

Remark 2 (a comparison with [7]). We provide an alternative (and much simpli-
fied) proof to the counterpart in [7]. Both approaches start by considering func-
tion f ′(x, h2) = (f(x), h2(x), h2) and observing that distribution f ′(X,H2) is
nearly of full entropy (i.e. the amount of random bits used to sample f ′(X,H2)).
The analysis of [7] then gets somewhat involved to show that f ′ is a (t, O(ε1/5))-
OWF, and we simply apply the chain rule to get that the unpredictability
pseudo-entropy about X given f ′(X,H) is at least log (1/ε) (see Lemma 4).
Therefore, by Goldreich-Levin one can extract more bits from X to make a PRG.
Combined with another idea that f ′ is nearly 1-to-1 and thus unpredictability
implies one-wayness, our proof also implies a tighter version of [7], namely, f ′ is
a (t, 3

√
ε)-OWF.

Remark 3 (next-bit vs. unpredictability pseudo-entropy).Wemention that our ob-
servation that “X given f(X) has unpredictability pseudo-entropy k+log(1/ε)” is
incomparable with the counterpart7 in [23] that “(f(X),X) has next-bit pseudo-
entropyn+Ω(log n)”. First, the proof of [23] is fundamentally different via the uni-
formversion ofMin-MaxTheoremwhich is technically involved and useful inmuch
broader contexts [24]. Secondly, there are no known reductions in relating unpre-
dictability pseudo-entropy to next-bit pseudo-entropy from either directions, and
in the former case one needs special extractors (that support reconstruction) while
for the latter one needs to concatenatemany copies of next-bit entropy sources and
to extract many times (see [23, Figure 1]).

Three Extractions are Necessary. We argue that three extractions (using
h1, h2 and hc) seem necessary. One might think that the first two extractions
(using h1 and h2) can be merged using a single universal hash function (that
applies to the source (X, f(X)) and outputs n−d bits). However, by doing so we
cannot ensure the entropy condition (see Equation (6)) for the third extraction
(using hc). From another perspective, the merge would remove the dependency
on the regularity and thus result in a generic construction that does a single call
to any unknown regular OWFs, which is a contradiction to [16]. Furthermore,
it seems necessary to extract from X at least twice, namely, using h2 and hc to
get statistically and computationally random bits respectively.

7 In fact, this was first observed in [13] via the application of a special universal hash
function of description length O(n2), and the work of [23] shows that the use of the
hash function is not necessary.
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3.3 PRGs from Any Known Regular OWFs: Removing the
Dependency on ε

The parameterization of the aforementioned construction depends on ε, but
sometimes ε is unknown or not polynomial-time computable. It is thus more
desirable to have a construction based on any known-regular OWF regardless of
parameter ε (as long as it is negligible). We observe that by setting entropy loss
to zero (in which case hash functions are condensers) and letting G-L functions
extract O(log n) bits the resulting generator is a generic (i.e. without relying on
ε) pseudo-entropy generator (PEG) with a (collision) entropy stretch of O(log n)
bits. Note however the output of the PEG is not indistinguishable from uniform
but from some high collision entropy sources (with small constant entropy defi-
ciency), which implies a PRG by running q ∈ ω(1) copies of the PEG and doing
a single extraction from the concatenated outputs.

Definition 6 (pseudo-entropy generators). Function g : {0, 1}n → {0, 1}l+e

(l > n) is a (t,ε) H2-pseudo-entropy generator (PEG) if g is polynomial-time
computable and there exists a random variable Y ∈ {0, 1}l+e with H2(Y ) ≥ l

CDt( g(Un) , Y ) ≤ ε.

where (l − n) is the stretch of g, and e is the entropy deficiency. We say that g
is an H2-pseudo-entropy generator if 1/ε and t are both super-polynomial.

Theorem 4 (PEGs from any known-regular OWFs). For the same f , g,
H1, H2, HC as assumed in Theorem 2 except that d = 0 and s = 2 logn+2, we
have that if f is a known-regular one-way function then g is a H2-pseudo-entropy
generator with stretch 2 logn and entropy deficiency 2.

Proof sketch. It is not hard to see (using Lemma 2) that for d = 0 we have

2−H2(H1(f(X)),H2(X) | H1,H2) = CP(H1(f(X)), H2(X) | H1, H2)

≤ Pr
x1,x2←Un,h1←H1

[h1(f(x1)) = h1(f(x2))]

× Pr
x1←X1,x2←X2,h2←H2

[h2(x1) = h2(x2) | f(X1) = f(X2) ]

≤ 2−(n−k−1) · 2−(k−1) = 2−(n−2) .

And we have by Lemma 5 and Goldreich-Levin the 2 logn+ 2 hardcore bits are
pseudo-random given H1(f(X)) and H2(X), which completes the proof. �

Theorem 5 (PRGs from any known-regular OWFs). For any known
k, there exists a generic construction of pseudo-random generator with seed
length Õ(n) by making Õ(1) calls to any (length-preserving) 2k-regular one-way
function.



Pseudorandom Generators from Regular One-Way Functions 275

Proof sketch. The idea is to run q ∈ ω(1) independent copies of the PEGs as
in Theorem 4 to get an entropy stretch of 2q logn followed by a single random-
ness extraction with entropy loss q logn. This yields a PRG with stretch q logn
that is roughly O(q·n2√ε+n−q) computationally indistinguishable from uniform
randomness, where n−q is negligible for any q ∈ ω(1). �

3.4 PRGs from Any Unknown Regular OWFs

The first attempt: a parallel construction. A straightforward way to
adapt the construction to unknown regular OWFs is to pay a factor of n/ logn.
That is, it is not hard to see the construction for known regularity α = 2k

remains secure even by using an approximated value α̃ = 2k̃ with accuracy
|k̃ − k| ≤ logn. This immediately implies a parallel construction by running
n/ logn independent copies of our aforementioned construction, where each ith

copy assumes regularity 2i· log n. Therefore, at least one (unknown) copy will be
a PRG and thus we simply XOR the outputs of all copies and produce it as the
output. Unfortunately, similar to the HILL approach, the parallelism turns out
an inherent barrier to linear seed length. We will avoid this route by giving a
sequential construction.

Step 1: convert to known regularity. Now we present the construction
from any (length-preserving) unknown-regular OWF. We first transform it into a
hardness-preserving equivalent with known regularity 2n, as stated in Lemma 7.

Lemma 7 (unknown to known regularity). For any length-preserving un-
known regular (t,ε)-OWF f : {0, 1}n → {0, 1}n, define

f̄ : Y × {0, 1}n → Y
f̄(y, r)

def
= f(y ⊕ r)

(7)

where Ydef
=f({0, 1}n) ⊆ {0, 1}n, “⊕” denotes bit-wise XOR. Then, f̄ is a 2n-

regular (t−O(n),ε)-OWF.

Proof. On uniform (y,r) over Y×{0, 1}n, y⊕r is uniform over {0, 1}n. Thus, any
algorithm inverts f̄ to produce (y, r) with probability ε implies another algorithm
that inverts f with the same probability by outputting y⊕r. Let us assume that
f is α-regular. Then, for any y1 = f̄(y, r) = f(y⊕r) we have |f−1(y1)| = α, and
for any x ∈ f−1(y1) we have |{(y, r) ∈ Y × {0, 1}n : y ⊕ r = x}| = |Y| = 2n/α,
which implies |f̄−1(y1)}| = α · (2n/α) = 2n.

Step 2: Z-seeded PRG. Similarly to the known regular case, we first as-
sume ε is known and then eliminate the dependency. Intuitively, the output of f̄
hides n bits of min-entropy about its input (by the 2n-regularity) plus another
log (1/ε) bits of pseudo-entropy (due to the one-wayness), and thus one can ex-
tract n+O(log (1/ε)) pseudorandom bits. This is formalized in Lemma 8, where
we build a Z-seeded PRG ḡ that expands random elements over Y×{0, 1}n into
pseudorandom ones over Y×{0, 1}n+O(log(1/ε)). The proof of Lemma 8 is similar
to that of Theorem 2, and we defer it to the appendix.
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Definition 7 (Z-seeded PRG [23]). A function gz : Z → Z × {0, 1}s is a
(t,ε)-secure Z-seeded PRG with stretch s if gz is polynomial-time computable
and CDt( g

z(Z) , (Z, Us) ) ≤ ε.

Lemma 8 (construct Z-seeded PRG). Let f , f̄ be defined as in Lemma 7,

for any integers d, s satisfying 7d+ 6s = 2 log(1/εn), let H def
= {h : {0, 1}2n →

{0, 1}n−d} be a universal hash function family, let HC
def
= {hc : {0, 1}2n →

{0, 1}d+s} be a G-L function family, define ḡ as

ḡ : Y × {0, 1}n ×H ×HC → Y × {0, 1}n+s ×H ×HC

ḡ(y, r, h, hc)
def
= ( f̄(y, r), (h(y, r), hc(y, r)), h, hc)

(8)

Then, we have that ḡ is a (t ·(ε/n)O(1),O((23s ·ε ·n) 1
7 ))-secure Z-seeded PRG for

Z = (Y,R,H,HC), where (Y,R) is identically distributed to (f(U1
n), U

2
n), and

H, HC are uniform over H, HC respectively.

Step 3: Sequential composition. Notice, however, ḡ is NOT a standard
PRG with positive stretch as the only black-box way to sample distribution Y
is to compute f(Un), which costs n random bits (despite that H∞(Y ) might be
far less than n). Quite naturally and thanks to the sequential composition, the
construction simply iterates ḡ, reuses the random seeds (in each iteration), and
outputs s = O(log(1/ε)) bits per iteration.

Lemma 9 (sequential composition [23,3]). Let gz : Z → Z × {0, 1}s be a
(t,ε)-secure Z-seeded PRG, for 1≤i ≤ � iteratively compute (zi,wi):=g

z(zi−1),

and define gz,�(z0)
def
= (z�, w1, . . . , w�). Then, we have that gz,� is a (t− � ·nO(1),

� · ε)-secure Z-seeded PRG with stretch �·s.

Proof. The proof is seen by a hybrid argument.

Theorem 6 (PRGs from any unknown-regular OWFs with known
hardness). Let function f : {0, 1}n → {0, 1}n be any (possibly unknown) regular
length-preserving (t,ε)-OWF, define f̄ ,ḡ, H, HC, s as in Lemma 8, and define

g : {0, 1}n × {0, 1}n×H×HC → ({0, 1}s)� × {0, 1}n ×H×HC

g(x, r0, h, hc)
def
= (w1, w2, . . . , w�, r�, h, hc)

where g computes y = f(x), and sequentially composes (as in Lemma 9) the Z-
seeded PRG ḡ (on input z0 = (y, r0, h, hc)) � times to produce output w1, w2,. . .,
w�, r�, h, hc. Then, for any s ≤ log(1/εn)/3, we have that function g is a (t ·
(ε/n)O(1) − � · nO(1), O(� · (23s · ε · n) 1

7 ))-secure PRG with stretch � · s− n.

Proof. We can almost complete the proof by Lemma 8 and Lemma 9 except that
the stretch of g (as a standard PRG) is � · s− n instead of � · s. This is because
we need to take into account that n bits are used to sample y at initialization.
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Concrete parameters. Therefore, for any unknown-regular OWF with
known hardness, we obtain a PRG with linear seed length, and by letting
s ∈ Θ(log( 1

εn )) the number of calls � ∈ Θ(n/s) = Θ(n/ log(1/εn)) matches
the lower bound of [16]. This extends to the general case (where the hardness
parameter is unknown) by repetition.

Theorem 7 (PRGs from any unknown-regular OWFs). There exists a
generic construction of pseudo-random generator with seed length Õ(n) by mak-
ing Õ(n/ logn) calls to any unknown-regular one-way function.

Proof sketch. For any unknown-regular OWF f , define ḡ as in Lemma 8 except
setting d = 0 and s = 2 logn + 1. It is not hard to see that the resulting ḡ
is a H2-pseudo-entropy generator with stretch 2 logn and entropy deficiency 1
(proof similar to that in Theorem 4). We then use the repetition trick (similar
to Theorem 5), namely, for any q ∈ ω(1) run q independent copies of ḡ and do a
single extraction on the concatenated output with entropy loss set to qlogn. This
gives us a Z ′-seeded PRG ḡ′ for Z ′ = (Y, Un, H,Hc)

q with stretch q ·log n. Again,
sequential composing ḡ′ for �′ = �(qn+1)/q logn� ∈ O(n/ logn) iterations yields
a standard PRG

g′ : {0, 1}2qn×Hq×Hq
C → {0, 1}2qn+s′ ×Hq×Hq

C

where the stretch s′ = (q· logn)·�′ − q·n ≥ 1. This completes the proof. �
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A Proofs Omitted

Proof of Lemma 8. Note that f̄(Y,R) is identically distributed to Y , so it is
equivalent to show

CDt·(ε/n)O(1)( (H(Y,R), HC(Y,R)) , Un+s | f̄(Y,R), H,HC ) = O((23s·ε·n) 1
7 ) .

It follows from the (t−O(n), ε)-one-way-ness of f̄ (see Lemma 7) and Lemma 3
that

Ht−O(n)((Y,R) | f̄(Y,R)) ≥ n+ log (1/ε) . (9)

Then, similar to Lemma 4, we have the following entropy conditions

H∞((Y,R) | f̄(Y,R)) = n ,

Ht−O(n)((Y,R) | f̄(Y,R), h(Y,R), h) ≥ Ht−O(n)((Y,R) | f̄(Y,R))− (n− d)

≥ d+ log (1/ε) ,

hold for any h ∈ H, where the second inequality is by applying the chain rule to
Equation (9). Therefore,

CDt·(ε/n)O(1) ( (H(Y,R), HC(Y,R)) , Un+s | f̄(Y,R), H,HC )

≤ SD(H(Y,R), Un−d |f̄(Y,R), H)

+ CDt·(ε/n)O(1)(HC(Y,R), Ud+s | f̄(Y,R), H(Y,R), H,HC)

≤ 2−
d
2 +O(2d+s · (n·ε·2−d)

1
3 ) = 2−

d
2 +O(2d+s · (2

−(7d+6s)
2 ·2−d)

1
3 )

= O(2−
d
2 ) = O(2

3s+log(ε·n)
7 ) = O((23s · ε · n) 1

7 )

where the first inequality is triangle, the statistical distance is due to the leftover
hash lemma and the computational distance of the second inequality is by the
Goldreich-Levin Theorem. �
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Abstract. We put forward a new notion of pseudorandom functions
(PRFs) we call constrained PRFs. In a standard PRF there is a mas-
ter key k that enables one to evaluate the function at all points in the
domain of the function. In a constrained PRF it is possible to derive
constrained keys ks from the master key k. A constrained key ks en-
ables the evaluation of the PRF at a certain subset S of the domain and
nowhere else. We present a formal framework for this concept and show
that constrained PRFs can be used to construct powerful primitives such
as identity-based key exchange and a broadcast encryption system with
optimal ciphertext size. We then construct constrained PRFs for sev-
eral natural set systems needed for these applications. We conclude with
several open problems relating to this new concept.

1 Introduction

Pseudorandom functions(PRF) [20] are a fundamental concept in modern cryp-
tography. A PRF is a function F : K × X → Y that can be computed by a
deterministic polynomial time algorithm: on input (k, x) ∈ K×X the algorithm
outputs F (k, x) ∈ Y. Note that given the key k ∈ K, the function F (k, ·) can be
efficiently evaluated at all points x ∈ X .

In this paper we put forward a new notion of PRFs we call constrained PRFs.
Consider a PRF F : K × X → Y and let k0 ∈ K be some key for F . In a
constrained PRF one can derive constrained keys ks from the master PRF key
k0. Each constrained key ks corresponds to some subset S ⊆ X and enables
one to evaluate the function F (k0, x) for x ∈ S, but at no other points in the
domain X . A constrained PRF is secure if given several constrained keys for sets
S1, . . . , Sq of the adversary’s choice, the adversary cannot distinguish the PRF
from random for points x outside these sets, namely for x �∈ ∪q

i=1Si. We give
precise definitions in Section 3.

While constrained PRFs are a natural extension of the standard concept of
PRFs, they have surprisingly powerful applications beyond what is possible with
standard PRFs. We list a few examples here and present more applications in
Section 6:
� The full version is available as Cryptology ePrint Archive, Report 2013/352.
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– Left-Right PRFs: Let F : K × X 2 → Y be a secure PRF. Its domain is
X × X . Now, suppose that for every w ∈ X there are two constrained keys
kw,left and kw,right. The key kw,left enables the evaluation of F (k0, ·) at the
subset of points {(w, y) : y ∈ X} (i.e. at all points where the left side is
w). The key kw,right enables the evaluation of F (k0, ·) at the subset of points
{(x,w) : x ∈ X} (i.e. at all points where the right side is w). We show
that such a constrained PRF can be used to construct an identity-based
non-interactive key exchange (ID-NIKE) system [31,14,27,16].

– Bit-Fixing PRFs: Let X = {0, 1}n be the domain of the PRF. For a
vector v ∈ {0, 1, ?}n let Sv ⊆ X be the set of n-bit strings that match v at
all the coordinates where v is not ’?’. We say that Sv is bit-fixed to v. For
example, the set containing all n-bit strings starting with 00 and ending in
11 is bit-fixed to v = 00? . . .?11.
Now, suppose that for every bit-fixed subset S of {0, 1}n there is a con-
strained key ks that enables the evaluation of F (k0, x) at x ∈ S and nowhere
else. We show that such a constrained PRF can be used to construct an opti-
mal secret-key1 broadcast encryption system [15]. In particular, the length of
the private key and the broadcast ciphertext are all independent of the num-
ber of users. We compare these constructions to existing broadcast systems
in Section 6.1.

– Circuit PRFs: Let F : K×{0, 1}n → Y be a secure PRF. Suppose that for
every polynomial size circuit C there is a constrained key kc that enables the
evaluation of F (k0, x) at all points x ∈ {0, 1}n such that C(x) = 1. We show
that such a constrained PRF gives rise to a non-interactive policy-based key
exchange mechanism: a group of users identified by a complex policy (en-
coded as a circuit) can non-interactively setup a secret group key that they
can then use for secure communications among group members. A related
concept was studied by Gorantla et al. [21], but the schemes presented are
interactive, analyzed in the generic group model, and only apply to policies
represented as polynomial size formulas.

In the coming sections we present constructions for all the constrained PRFs
discussed above as well as several others. Some of our constructions use bilinear
maps while others require κ-linear maps [7,17,11] for κ > 2. It would be quite
interesting and useful to develop constructions for these constrained PRFs from
other assumptions such as Learning With Errors (LWE) [28]. This will give new
key exchange and broadcast encryption systems from the LWE problem.

In defining security for a constrained PRF in Section 3 we allow the adversary
to adaptively request constrained keys of his choice. The adversary’s goal is to
distinguish the PRF from a random function at input points where he cannot
compute the PRF using the constrained keys at his disposal. The definition of
security allows the adversary to adaptively choose the challenge point at which
he tries to distinguish the PRF from random. However, to prove security of our
constructions we require that the attacker commit to the challenge point ahead

1 Secret-key broadcast encryption refers to the fact that the broadcaster’s key is known
only to the broadcaster.
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of time thereby only proving a weaker notion of security called selective security.
A standard argument called complexity leveraging (see e.g. [4, Sec. 7.1]) shows
that selective security implies adaptive security via a non-polynomial time re-
duction. Therefore, to obtain adaptive security we must increase the parameters
of our schemes so that security is maintained under the complexity leveraging re-
duction. A fascinating open problem is to construct standard model constrained
PRFs that are adaptively secure under a polynomial time reduction.

Related work. Concurrently with this paper, similar notions to constrained PRFs
were recently proposed by Kiayias et al. [24] where they were called delegatable
PRFs and Boyle et al. [9] where they were called functional PRFs. Both papers
give constructions for prefix constraints discussed in Section 3.3. A related con-
cept applied to digital signatures was explored by Bellare and Fuchsbauer [1]
where it was called policy-based signatures and by Boyle et al. [9] where it was
called functional signatures.

2 Preliminaries: Bilinear and κ-Linear Maps

Recently, Garg, Gentry, and Halevi [17] proposed candidate constructions for lev-
eled multilinear forms. Building on their work Coron, Lepoint, and Tibouchi [11]
gave a second candidate. We will present some of our constructions using the
abstraction of leveled multilinear groups.

The candidate constructions of [17,11] implement an abstraction called graded
encodings which is similar, but slightly different from multilinear groups. In the
full version [8] we show how to map our constructions to the language of graded
encodings.

Leveled multilinear groups. We assume the existence of a group generator G,
which takes as input a security parameter 1λ and a positive integer κ to indicate
the number of levels. G(1λ, κ) outputs a sequence of groups G = (G1, . . . ,Gκ)
each of large prime order p > 2λ. In addition, we let gi be a canonical generator
of Gi that is known from the group’s description. We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥
1; i+ j ≤ κ}. The map ei,j satisfies the following relation:

ei,j
(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each
valid i, j. When the context is obvious, we will sometimes drop the subscripts
i, j, For example, we may simply write:

e
(
gai , g

b
j

)
= gabi+j .

We define the κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) assumption
as follows:
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Assumption 1 (κ-Multilinear Decisional Diffie-Hellman: κ-MDDH)
The κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) problem states the
following: A challenger runs G(1λ, κ) to generate groups and generators of order
p. Then it picks random c1, . . . , cκ+1 ∈ Zp.

The assumption then states that given g = g1, g
c1 , . . . , gcκ+1 it is hard to

distinguish the element T = g
∏

j∈[1,κ+1] cj
κ ∈ Gκ from a random group element in

Gκ, with better than negligible advantage in the security parameter λ.

3 Constrained Pseudorandom Functions

We now give a precise definition of constrained Pseudorandom Functions. We
begin with the syntax of the constrained PRF primitive and then define the
security requirement.

3.1 The Constrained PRF Framework

Recall that a pseudorandom function (PRF) [20] is defined over a key space K, a
domain X , and a range Y (and these sets may be parameterized by the security
parameter λ). The PRF itself is a function F : K×X → Y that can be computed
by a deterministic polynomial time algorithm: on input (k, x) ∈ K × X the
algorithm outputs F (k, x) ∈ Y. A PRF can include a setup algorithm F.setup(1λ)
that takes a security parameter λ as input and outputs a random secret key
k ∈ K.

A PRF F : K×X → Y is said to be constrained with respect to a set system
S ⊆ 2X if there is an additional key space Kc and two additional algorithms
F.constrain and F.eval as follows:

– F.constrain(k, S) is a randomized polynomial-time algorithm that takes as
input a PRF key k ∈ K and the description of a set S ∈ S (so that S ⊆ X ).
The algorithm outputs a constrained key kS ∈ Kc. This key kS enables the
evaluation of F (k, x) for all x ∈ S and no other x.

– F.eval(kS , x) is a deterministic polynomial-time algorithm (in λ) that takes
as input a constrained key ks ∈ Kc and an x ∈ X . If kS is the output of
F.constrain(k, S) for some PRF key k ∈ K then F.eval(kS , x) outputs

F.eval(kS , x) =

{
F (k, x) if x ∈ S

⊥ otherwise

where⊥ �∈ Y.As shorthandwewill occasionallywriteF (kS, x) forF.eval(kS , x).

Note that while in general deciding if x ∈ S may not be a poly-time problem,
our formulation of F.eval effectively avoids this complication by requiring that
all S ∈ S are poly-time decidable by the algorithm F.eval(kS , ·). This poly-time
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algorithm outputs non-⊥ when x ∈ S and ⊥ otherwise thereby deciding S in
polynomial time.

Occasionally it will be convenient to treat the set system S ⊆ 2X as a fam-
ily of predicates PP =

{
p : X → {0, 1}

}
. For a predicate p ∈ PP we have

F.eval(kp, x) = F (k, x) whenever p(x) = 1 and ⊥ otherwise. In this case we say
that the PRF F is constrained with respect to the family of predicates PP.

The trivial constrained PRF. All PRFs F : K × X → Y are constrained with
respect to the set system S consisting of all singleton sets: S =

{
{x} : x ∈ X

}
.

To see why, fix some PRF key k ∈ K. Then the constrained key k{x} for the
singleton set {x} is simply k{x} = F (k, x). Given this key k{x}, clearly anyone
can evaluate F (k, x) at the point x. This shows that we may assume without loss
of generality that set systems S used to define a constrained PRF contain all
singleton sets. More generally, we may also assume that S contains all polynomial
size sets (polynomial in the security parameter λ). The constrained key kS for a
polynomial size set S ⊆ X is simply the set of values F (k, x) for all x ∈ S. This
construction fails for super-polynomial size sets since the constrained key kS for
such sets is too large.

3.2 Security of Constrained Pseudorandom Functions

Next, we define the security properties of constrained PRFs. The definition cap-
tures the property that given several constrained keys as well as several function
values at points of the attacker’s choosing, the function looks random at all
points that the attacker cannot compute himself.

Let F : K × X → Y be a constrained PRF with respect to a set system
S ⊆ 2X . We define constrained security using the following two experiments
denoted EXP(0) and EXP(1) with an adversary A. For b = 0, 1 experiment
EXP(b) proceeds as follows:

First, a random key k ∈ K is selected and two helper sets C, V ⊆ X are
initialized to ∅. The set V ⊆ X will keep track of all the points at which the
adversary can evaluate F (k, ·). The set C ⊆ X will keep track of the points
where the adversary has been challenged. The sets C and V will ensure that
the adversary cannot trivially decide whether challenge values are random
or pseudorandom. In particular, the experiments maintain the invariant that
C ∩ V = ∅.
The adversary A is then presented with three oracles as follows:
– F.eval: given x ∈ X from A, if x �∈ C the oracle returns F (k, x) and

otherwise returns ⊥. The set V is updated as V ← V ∪ {x}.
– F.constrain: given a set S ∈ S from A, if S ∩ C = ∅ the oracle returns a

key F.constrain(k, S) and otherwise returns ⊥. The set V is updated as
V ← V ∪ S.

– Challenge: given x ∈ X from A where x �∈ V , if b = 0 the adversary
is given F (k, x); otherwise the adversary is given a random (consistent)
y ∈ Y. The set C is updated as C ← C ∪ {x}.
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Once the adversary A is done interrogating the oracles it outputs b′ ∈ {0, 1}.
For b = 0, 1 letWb be the event that b

′ = 1 in EXP(b). We define the adversary’s
advantage as AdvPRFA,F (λ) = |Pr[W0]− Pr[W1]|.
Definition 1. The PRF F is a secure constrained PRF with respect to S if for
all probabilistic polynomial time adversaries A the function AdvPRFA,F (λ) is
negligible.

When constructing constrained functions it will be more convenient to work
with a definition that slightly restricts the adversary’s power, but is equivalent
to Definition 1. In particular, we only allow the adversary to issue a single
challenge query (but multiple queries to the other two oracles). A standard
hybrid argument shows that a PRF secure under this restricted definition is also
secure under Definition 1.

3.3 Example Predicate Families

Next we introduce some notation to capture the predicate families described in
the introduction.

Bit-Fixing Predicates. Let F : K × {0, 1}n → Y be a PRF. We wish to
support constrained keys kv that enable the evaluation of F (k, x) at all points
x that match a particular bit pattern. To do so define for a vector v ∈ {0, 1, ?}n
the predicate p(BF)

v : {0, 1}n → {0, 1} as

p(BF)

v (x) = 1 ⇐⇒ (vi = xi or vi =?) for all i = 1, . . . , n .

We say that F : K × {0, 1}n → Y supports bit fixing if it is constrained with
respect to the set of predicates

PBF =
{
p(BF)

v : v ∈ {0, 1, ?}
}

Prefix Predicates. Prefix predicates are a special case of bit fixing predicates
in which only the prefix is fixed. More precisely, we say that F : K×{0, 1}n → Y
supports prefix fixing if it is constrained with respect to the set of predicates

PPRE =
{
p(BF)

v : v ∈ {0, 1}� ?n−�, � ∈ [n]
}

Secure PRFs that are constrained with respect to PPRE can be constructed
directly from the GGM PRF construction [20]. For a prefix v ∈ {0, 1}� the
constrained key kv is simply the secret key in the GGM tree computed at the
internal node associated with the string v. Clearly this key enables the evalu-
ation of F (k, v‖x) for any x ∈ {0, 1}n−|v|. A similar construction, in a very
different context, was used by Fiat and Naor [15] and later by Naor, Naor, and
Lotspiech [25] to construct combinatorial broadcast encryption systems. The se-
curity proof for this GGM-based prefix constrained PRF is straight forward if
the adversary commits to his challenge point ahead of time (a.k.a selective se-
curity). Full security can be achieved, for example, using standard complexity
leveraging by guessing the adversary’s challenge point ahead of time as in [4,
Sec. 7.1].
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Left/Right Predicates. Let F : K×X 2 → Y be a PRF. For all w ∈ X we wish
to support constrained keys kw,left that enable the evaluation of F

(
k, (x, y)

)
at all points (w, y) ∈ X 2, that is, at all points in which the left side is fixed to
w. In addition, we want constrained keys kw,right that fix the right hand side
of (x, y) to w. More precisely, for an element w ∈ X define the two predicates
p(L)
w , p(R)

w : X 2 → {0, 1} as

p(L)

w (x, y) = 1 ⇐⇒ x = w and p(R)

w (x, y) = 1 ⇐⇒ y = w

We say that F supports left/right fixing if it is constrained with respect to the
set of predicates

PLR =
{
p(L)

w , p(R)

w : w ∈ X
}

Constructing left/right constrained PRFs. We next show that secure PRFs that
are constrained with respect to PLR can be constructed straightforwardly in
the random oracle model [3]. Constructing left/right constrained PRFs without
random oracles is a far more challenging problem. We do so, and more, in the
next section.

To construct a left/right constrained PRF in the random oracle model let
e : G × G → GT be a bilinear map where G and GT are groups of prime order
p. Let H1, H2 : X → G be two hash functions that will be modeled as random
oracles. The setup algorithm will choose such a group and a random key k ∈ Zp.
Define the following PRF:

F
(
k, (x, y)

)
= e

(
H1(x), H2(y)

)k
. (1)

For (x∗, y∗) ∈ X 2 the constrained keys for the predicates p(L)

x∗ and p(R)

y∗ are

kx∗ = H1(x
∗)k and ky∗ = H2(y

∗)k

respectively. Clearly kx∗ is sufficient for evaluating f(k, y) = F
(
k, (x∗, y)

)
and

ky∗ is sufficient for evaluating g(k, x) = F
(
k, (x, y∗)

)
, as required. We note the

structural similarities between the above construction and the Boneh-Franklin [5]
IBE system and the Sakai-Ohgishi-Kasahara [31] non-interactive key exchange
system.

Theorem 2. The PRF F defined in Eq. (1) is a secure constrained PRF with re-
spect to PLR assuming the decision bilinear Diffie-Hellman assumption (DBDH)
holds for (G, GT , e) and the functions H1, H2 are modeled as random oracles.

Due to space constraints the proof, which uses a standard argument, is given in
the full version of the paper [8].

Circuit Predicates. Let F : K×{0, 1}n → Y be a PRF. For a boolean circuit
c on n inputs we wish to support a constrained key kc that enable the evaluation
of F (k, x) at all points x ∈ X for which c(x) = 1.

Let C be the set of polynomial size circuits. We say that F supports circuit
predicates if it is constrained with respect to the set of predicates

Pcirc =
{
c : c ∈ C

}
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4 A Bit-Fixing Construction

We now describe our bit-fixing constrained PRF. We will present our construc-
tion in terms of three algorithms which include a setup algorithm F.setup in ad-
dition to F.constrain and F.eval. Our construction builds on the Naor-Reingold
DDH-based PRF [26].

4.1 Construction

F.setup(1λ, 1n):
The setup algorithm takes as input the security parameter λ and the bit length,
n, of PRF inputs. The algorithm runs G(1λ, κ = n + 1) and outputs a se-
quence of groups G = (G1, . . . ,Gκ) of prime order p, with canonical generators
g1, . . . , gκ, where we let g = g1. It then chooses random exponents α ∈ Zp and
(d1,0, d1,1), . . . , (dn,0, dn,1) ∈ Zp

2 and computes Di,β = gdi,β for i ∈ [1, n] and
β ∈ {0, 1}. The PRF master key k consists of the group sequence (G1, . . . ,Gκ)
along with α, di,β and Di,β for i ∈ [1, n] and β ∈ {0, 1}.

The domain X is {0, 1}n and the range of the function is Gk.
2 Letting xi

denote the i-th bit of x ∈ {0, 1}n, the keyed function is defined as

F (k, x) = g
α
∏

i∈[1,n] di,xi
κ ∈ Gκ .

F.constrain(k,v):
The constrain algorithm takes as input the master key k and a vector v ∈
{0, 1, ?}n. (Here we use the vector v to represent the set for which we want to
allow evaluation.) Let V be the set of indices i ∈ [1, n] such that vi �=?. That is
the the indices for which the bit is fixed to 0 or 1.

The first component of the constrained key is computed as

k′v = (g1+|V |)
α
∏

i∈V di,vi

Note if V is the empty set we interpret the product to be 1. The constrained
key kv consists of k′v along with Di,β ∀i /∈ V, β ∈ {0, 1}.

F.eval(kv, x):
Again let V be the set of indices i ∈ [1, n] such that vi �=?. If ∃i ∈ V such that
xi �= vi the algorithm aborts. If |V | = n then all bits are fixed and the output
of the function is kv. Otherwise, using repeated application of the pairing and
Di,β ∀i /∈ V, β ∈ {0, 1} the algorithm can compute the intermediate value

T = (gn−|V |)
∏

i∈[1,n]\V (di,xi
) .

Finally, it computes e(T, k′v) = g
α
∏

i∈[1,n] di,xi
κ = F (k, x).

2 In practice one can use an extractor on the output to produce a bit string.
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A few notes. We note that the values Di,β = gdi,β for i ∈ [1, n] and β ∈ {0, 1}
could either be computed in setup and stored or computed as needed during
the F.constrain function. As an alternative system one might save storage by
utilizing a trusted common setup and make the group description plus the Di,β

values public. These values would be shared and only the α parameter would be
chosen per key. Our proof though will focus solely on the base system described
above.

In the full version [8] we show how to map the construction above stated using
multilinear maps to the language of graded encodings for which [17,11] provide
a candidate instantiation.

4.2 Proof of Security

To show that our bit-fixing construction is secure we show that for an n-bit
domain, if the κ = n+1-Multilinear Decisional Diffie-Hellman assumption holds
then our construction is secure for appropriate choice of the group generator
security parameter.

As stated in Section 3 a standard hybrid argument allows us to prove security
in a definition where the attacker is allowed a single query x∗ to the challenge
oracle. Our proof will use the standard complexity leveraging technique of guess-
ing the challenge x∗ technique to prove adaptive security. The guess will cause a
loss of 1/2n factor in the reduction. An interesting problem is to prove security
with only a polynomial factors. The reduction will program all values of Di,β to
be gci if xi = β and gzi otherwise for known zi.

Theorem 3. If there exists a poly-time attack algorithm A that breaks our bit-
fixing construction n-bit input with advantage ε(λ) there there exists a poly-time
algorithm B that breaks the κ = n + 1-Multilinear Decisional Diffie-Hellman
assumption with advantage ε(λ)/2n.

Proof. We show how to construct B. The algorithm B first receives an κ =
n+ 1-MDDH challenge consisting of the group sequence description G and g =

g1, g
c1, . . . , gcκ+1 along with T where T is either g

∏
j∈[1,k+1] cj

k or a random group
element in Gκ. It then chooses a value x∗ ∈ {0, 1}n uniformly at random. Next,
it chooses random z1, . . . , zn (internally) sets

Di,β =

{
gci if x∗i = β

gzi if x∗i �= β

for i ∈ [1, n], β ∈ {0, 1}. This corresponds to setting di,β = ci if x∗i = β and
zi otherwise. We observe this is distributed identically to the real scheme. In
addition, it will internally view α = ck · ck+1.

Constrain Oracle We now describe how the algorithm responds to the key query
oracle. Suppose a query is made for a secret key for v ∈ {0, 1, ?}n. Let V be the
set of indices i ∈ [1, n] such that vi �=?. That is the the indices for which the bit
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is fixed to 0 or 1. B identifies an arbitrary i ∈ V such that vi �= x∗i . If no such
i exists this means that the key cannot be produced since it could be used to
evaluate F (k, x∗). In this case abort and output a random guess for δ′ ∈ {0, 1}.

If the query did not cause an abort, B first computes gα2 = e(gck , gck+1). It
then gathers allDj,vj for j ∈ V/i. It uses repeated application of the pairing with

these values to compute (g1+|V |)
α
∏

j∈V/i dj,vj . (Recall, our previous assignments
to dj , β.) Finally, it raises this value to di,vI = zi which is known to the attacker

to get. k′vv = (g1+|V |)
α
∏

j∈V/i dj,vj . The rest of the key is simply the Dj,β values
for j /∈ V, β ∈ {0, 1}.

Evaluate Oracle To handle the evaluation oracle, we observe that the output
of F (k, x) for x ∈ {0, 1} is identical to asking a key for kv=x (a key with no ?
symbols. Therefore, queries to this oracle can be handled as secret key queries
described above.

Challenge Finally, the attacker can query a challenge oracle once. If the query
to this oracle is not equal to x∗ then B randomly guesses δ′ ∈ {0, 1}. Otherwise,
it outputs T as a response to the oracle query.

The attack algorithm will eventually output a guess b′. If B has not aborted,
it will simply output δ′ = b′.

We now analyze the probability that B’s guess δ′ = δ, where δ indicates if T
was an MDDH tuple. We have

Pr[δ′ = δ] = Pr[δ′ = δ|abort] · Pr[abort] + Pr[δ′ = δ|abort] · Pr[abort]

=
1

2
(1− 2−n) + Pr[δ′ = δ|abort] · (2−n)

=
1

2
(1− 2−n) + (

1

2
+ ε(λ)) · (2−n)

=
1

2
+ ε(λ) · (2−n)

The set of equations shows that the advantage of B is ε(λ)2−n. The second
equation is derived since the probability of B not aborting is 2−n. The third
equation comes from the fact that the probability of the attacker winning given
a conditioned on not aborting is the same as the original probability of the
attacker winning. The reason is that the attacker’s success is independent of
whether B guessed x∗. This concludes the proof.

5 Constrained PRFs for Circuit Predicates

Next we build constrained PRFs where the accepting set for a key can be de-
scribed by a polynomial size circuit. Our construction utilizes the structure used
in a recent Attribute-Based Encryption scheme due to Garg, Gentry, Halevi,
Sahai, and Waters [18].

We present our circuit construction for constrained PRFs in terms of three
algorithms which include a setup algorithm F.setup in addition to F.constrain
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and F.eval. The setup algorithm will take an additional input � which is the
maximum depth of circuits allowed. For simplicity we assume all circuits are
depth � and are leveled. We use the same notation for circuits as in [18]. We
include the notation in Appendix A for completeness. In addition, like [18] we
also build our construction for monotone circuits (limiting ourselves to AND and
OR gates); however, we make the standard observation that by pushing NOT
gates to the input wires using De Morgan’s law we obtain the same result for
general circuits.

5.1 Construction

F.setup(1λ, 1n, 1�):
The setup algorithm takes as input the security parameter λ and the bit length,
n, of inputs to the PRF and � the maximum depth of the circuit. The algorithm
runs G(1λ, κ = n + �) and outputs a sequence of groups G = (G1, . . . ,Gκ) of
prime order p, with canonical generators g1, . . . , gκ, where we let g = g1. It then
chooses random exponents α ∈ Zp and (d1,0, d1,1), . . . , (dn,0, dn,1) ∈ Zp

2 and
computes Di,β = gdi,β for i ∈ [1, n] and β ∈ {0, 1}. The key k consists group
sequence (G1, . . . ,Gk) along with α, di,β and Di,β for i ∈ [1, n] and β ∈ {0, 1}.

The domain X is {0, 1}n and the range of the function is Gk. Letting xi denote
the i-th bit of x ∈ {0, 1}n, the keyed function is defined as

F (k, x) = g
α
∏

i∈[1,n] di,xi
κ ∈ Gκ .

F.constrain
(
k, f = (n, q, A,B, GateType)

)
:

The constrain algorithm takes as input the key and a circuit description f . The
circuit has n+ q wires with n input wires, q gates and the wire n+ q designated
as the output wire.

To generate a constrained key kf the key generation algorithm chooses random
r1, . . . , rn+q−1 ∈ Zp, where we think of the random value rw as being associated
with wire w. It sets rn+q = α. The first part of the constrained key is given out
as simply all Di,β for i ∈ [1, n] and β ∈ {0, 1}.

Next, the algorithm generates key components for every wire w. The structure
of the key components depends upon if w is an input wire, an OR gate, or an
AND gate. We describe how it generates components for each case.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The
key component is:

Kw = g
rwdw,1

2

– OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp. Then the algorithm creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw ·rA(w)

j , Kw,4 = g
rw−bw·rB(w)

j
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– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp.

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j

The constrained key kf consists of all these n + q key components along with
{Di,β} for i ∈ [1, n] and β ∈ {0, 1}.

F.eval(kf , x):
The evaluation algorithm takes as input kf for circuit f = (n, q, A,B, GateType)
and an input x. The algorithm first checks that f(x) = 1; it not it aborts.

The goal of the algorithm is to compute F (k, x) = (gκ=n+�)
α
∏

i∈[1,n] di,xi .
We will evaluate the circuit from the bottom up. Consider wire w at depth j; if
fw(x) = 1 then, our algorithm will compute Ew = (gj+n)

rw
∏

i di,xi . (If fw(x) = 0
nothing needs to be computed for that wire.) Our decryption algorithm proceeds
iteratively starting with computing E1 and proceeds in order to finally compute
En+q. Computing these values in order ensures that the computation on a depth
j − 1 wire (that evaluates to 1) will be defined before computing for a depth j
wire. Since rn+q = α, En+q = F (k, x).

We show how to compute Ew for all w where fw(x) = 1, again breaking the
cases according to whether the wire is an input, AND or OR gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose

that xw = fw(x) = 1. The algorithm computes Ew = g
rw

∏
i di,xi

n+1 . Using the

pairing operation successively it can compute g
∏

i�=w di,xi

n−1 from the values
Dxi,β for i ∈ [1, n] �= w. It then computes

Ew = e(Kw, g
∏

i�=w di,xi

n−1 ) = e(g
rwdw,1

2 , g
∏

i�=w di,xi

n−1 ) = g
rw

∏
i di,xi

n+1

– OR gate
Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j =

depth(w) be the depth of wire w. For exposition we define D(x) = g
∏

i di,xi
n .

This is computable via the pairing operation from Dxi,β for i ∈ [1, n].
The computation is performed if fw(x) = 1. If fA(w)(x) = 1 (the first input
evaluated to 1) then we compute:

Ew = e(EA(w),Kw,1) · e(Kw,3, D(x)) =

= e((gj+n−1)
rA(w)

∏
i di,xi , gaw) · e(grw−aw·rA(w)

j , g
∏

i di,xi
n ) = (gj+n)

rwg

∏
i di,xi

n

Otherwise, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew = e(EB(w),Kw,2) · e(Kw,4, D(x)) =

= e((gj+n−1)
rB(w)

∏
i di,xi , gbw) · e(grw−bw·rB(w)

j , g
∏

i di,xi
n ) = (gj+n)

rwg

∏
i di,xi

n
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– AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. Then
fA(w)(x) = fB(w)(x) = 1 and we compute:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, D(x))

= e
(
(gj+n−1)

rA(w)

∏
i di,xi , gaw

)
· e
(
(gj+n−1)

rB(w)

∏
i di,xi , gbw

)
·

· e
(
g
rw−aw·rA(w)−cw·rB(w)

j , g
∏

i di,xi
n

)
= (gj+n)

rw
∏

i di,xi

The procedures above are evaluated in order for all w for which fw(x) = 1. The
final output gives En+q = F (k, x).

5.2 Proof of Security

We now prove security of the circuit constrained construction. We show that for
an n-bit domain and circuits of depth �, if the κ = n+ �-Multilinear Decisional
Diffie-Hellman assumption holds then our construction is secure for appropriate
choice of the group generator security parameter.

Our proof begins as in the bit-fixing proof where a where we use the stan-
dard complexity leveraging technique of guessing the challenge x∗ ahead of time
to prove adaptive security. The guess will cause a loss of 1/2n factor in the
reduction. The delegate oracle queries, however, are handled quite differently.

Theorem 4. If there exists a poly-time attack algorithm A that breaks our cir-
cuit constrained construction n-bit input and circuits of depth � with advan-
tage ε(λ) there there exists a poly-time algorithm B that breaks the κ = n + �-
Multilinear Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Due to space constraints the proof appears in the full version of the paper [8].

6 Applications

Having constructed constrained PRFs for several predicate families we now ex-
plore a number of remarkable applications for these concepts. Our primary goal
is to demonstrate the versatility and general utility of constrained PRFs.

6.1 Broadcast Encryption with Optimal Ciphertext Length

We start by showing that a bit-fixing constrained PRF leads a broadcast en-
cryption system with optimal ciphertext size. Recall that a broadcast encryption
system [15] is made up of three randomized algorithms:

Setup(λ, n). Takes as input the security parameter λ and the number of re-
ceivers n. It outputs n private keys d1, . . . , dn and a broadcaster key bk. For
i = 1, . . . , n, recipient number i is given the private key di.
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Encrypt(bk, S). Takes as input a subset S ⊆ {1, . . . , n}, and the broadcaster’s
key bk. It outputs a pair (hdr, k) where hdr is called the header and k ∈ K is
a message encryption key chosen from the key space K. We will often refer
to hdr as the broadcast ciphertext.

Let m be a message to be broadcast that should be decipherable precisely
by the receivers in S. Let cm be the encryption of m under the symmetric
key k. The broadcast data consists of (S, hdr, cm). The pair (S, hdr) is often
called the full header and cm is often called the broadcast body.

Decrypt(i, di, S, hdr). Takes as input a subset S ⊆ {1, . . . , n}, a user id i ∈
{1, . . . , n} and the private key di for user i, and a header hdr. If i ∈ S the
algorithm outputs a message encryption key k ∈ K. Intuitively, user i can
then use k to decrypt the broadcast body cm and obtain the message m.

In what follows the broadcaster’s key bk is a secret key known only to the
broadcaster and hence our system is a secret-key broadcast encryption.

The length efficiency of a broadcast encryption system is measured in the
length of the header hdr. The shorter the header the more efficient the system.
Remarkably, some systems such as [6,13,12,7,30] achieve a fixed size header that
depends only on the security parameter and is independent of the size of the
recipient set S.

As usual, we require that the system be correct, namely that for all subsets

S ⊆ {1, . . . , n} and all i ∈ S if (bk, (d1, . . . , dn))
R← Setup(n) and (hdr, k)

R←
Encrypt(bk, S) then Decrypt(i, di, S, hdr) = k.

A broadcast encryption system is said to be semantically secure if an adaptive
adversary A that obtains recipient keys di for i ∈ S of its choice, cannot break
the semantic security of a broadcast ciphertext intended for a recipient set S∗

in the complement of S, namely S∗ ⊆ [n] \ S. More precisely, security is defined
using the following experiment, denoted EXP(b), parameterized by the total
number of recipients n and by a bit b ∈ {0, 1}:

(bk, (d1, . . . , dn))
R← Setup(λ, n)

b′ ← ARK(·),SK(·),RoR(b,·)(λ, n)
where

RK(i) is a recipient key oracle that takes as input i ∈ [n] and returns di,
SK(S) takes as input S ⊆ [n] and returns Encrypt(bk, S), and
RoR(b, S∗) is a real-or-random oracle: it takes as input b ∈ {0, 1} and

S∗ ⊆ [n], computes (hdr, k0)
R← Encrypt(bk, S∗) and k1

R← K,
and returns (hdr, kb).

We require that all sets S∗ given as input to oracle RoR are distinct from all
sets S given as input to SK and that S∗ does not contain any index i given as
input to RK. For b = 0, 1 let Wb be the event that b

′ = 1 in EXP(b) and as usual
define AdvBEA(λ) = |Pr[W0]− Pr[W1]|.
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Definition 2. We say that a broadcast encryption is semantically secure if for
all probabilistic polynomial time adversaries A the function AdvBEA(λ) is neg-
ligible.

An length-optimal broadcast encryption construction. A bit-fixing PRF such as
the one constructed in Section 4 gives a broadcast encryption system with op-
timal ciphertext length. Specifically, the header size is always 0 for all recipient
sets S ⊆ [n]. The system, denoted BEF works as follows:

Setup(λ, n): Let F : K × {0, 1}n → Y be a secure bit-fixing constrained PRF.

Choose a random key bk
R← K and for i = 1, . . . , n compute

di ← F.constrain(bk, pi)

where pi : {0, 1}n → {0, 1} is the bit-fixing predicate satisfying pi(x) = 1
iff xi = 1. Thus, the key di enables the evaluation of F (bk, x) at any point
x ∈ {0, 1}n for which xi = 1. Output (bk, (d1, . . . , dn)).

Encrypt(bk, S): Let x ∈ {0, 1}n be the characteristic vector of S and compute
k ← F (bk, x). Output the pair (hdr, k) where hdr = ε. That is, the output
header is simply the empty string.

Decrypt(i, di, S, hdr): Let x ∈ {0, 1}n be the characteristic vector of S. If i ∈ S
then the bit-fixing predicate pi satisfies pi(x) = 1. Therefore, di can be used
to compute F (bk, x), as required.

Theorem 5. BEF is a semantically secure broadcast encryption system against
adaptive adversaries assuming that the underlying constrained bit-fixing PRF is
secure.

Proof. Security follows immediately from the security of the bit-fixing PRF.
Specifically, oracle RK in the broadcast encryption experiment is implemented
using oracle F.constrain in the constrained security game (Section 3.2). Oracle SK
is implemented using oracle F.eval in the constrained security game. Finally, the
broadcast encryption real-or-random oracle is the same as the Challenge oracle in
the constrained security game. Therefore, an attacker who succeeds in breaking
semantic security of the broadcast encryption system will break security of the
bit-fixing PRF.

Comparison to existing fully collusion resistant schemes. While our primary goal
is to illustrate applications of abstract constrained PRFs, it is instructive to ex-
amine the specific broadcast system that results from instantiating the system
above with the bit-fixing PRF in Section 4. We briefly compare this system to ex-
isting broadcast encryption systems such as [6,13,12,30]. These existing systems
are built from bilinear maps, they allow the broadcaster’s key to be public, and
the broadcast header contains a constant number of group elements. The benefit
of the instantiated system above is that the header length is smaller: its length
is zero. However, the system uses multi-linear maps and the broadcaster’s key is
secret. The system is closely related to the multilinear-based broadcast system
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of Boneh and Silverberg [7] which has similar parameters. To re-iterate, our goal
is to show the general utility of constrained PRFs. Nevertheless, we hope that
future constrained PRFs will lead to new families of broadcast systems.

6.2 Identity-Based Key Exchange

Next, we show that a left/right constrained PRF directly implies an identity-
based non-interactive key exchange (ID-NIKE) system [31,14,27,16]. Recall that
such a system is made up of three algorithms:

– Setup(λ) outputs public parameters pp and a master secret msk,
– Extract(msk, id) generates a secret key skid for identity id, and
– KeyGen(pp, skid, id

′) outputs a shared key kid,id′ .

For correctness we require that KeyGen(pp, skid, id
′) = KeyGen(pp, skid′ , id) for

all id �= id′ and pp generated by Setup.
Briefly, the security requirement, defined by Dupont and Enge [14] and further

refined by Paterson and Srinivasan [27], is that an adversaryA who obtains secret
keys skid for all identities id ∈ S for a set S of his choice, cannot distinguish
the shared key kid∗,id′∗ from random for identities id∗, id

′
∗ �∈ S of his choice. The

adversary may also ask to reveal the shared key kid,id′ for any pair of identities
(id, id′) �= (id∗, id

′
∗).

Identity-based key exchange from left/right constrained PRFs. The system works
as follows:

– Setup(λ) : let F : K × X 2 → Y be a secure left/right constrained PRF.

Choose a random msk
R← K and output msk. The public parameters pp are

the (optional) public parameters of the PRF.

– Extract(msk, id): compute dl = F.constrain(msk, p(L)

id ) and
dr = F.constrain(msk, p(R)

id ). Output skid = (dl, dr).

– KeyGen(skid, id
′): We assume that the identity strings are lexicographically

ordered. Output kid,id′ = F
(
msk, (id, id′)

)
if id < id′ using dl. Output

kid,id′ = F
(
msk, (id′, id)

)
if id > id′ using dr. By definition of a left/right

constrained PRF, both values can be computed just given skid.

Correctness of the system follows directly from the correctness of the constrained
PRF and lexicographic convention. Security again follows directly from the se-
curity definition of a constrained PRF. Oracle F.constrain in the constrained
security game (Section 3.2) enables the adversary A to request the secret keys
for any set of identities S of her choice. Oracle F.eval enables the adversary
A to reveal the shared key kid,id′ for any pair of identities (id, id′). If A could
then distinguish F (msk, (id∗, id

′
∗)) from random for some id∗, id

′
∗ �∈ S and for

which reveal was not called then she would solve the challenge in the constrained
security game.
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Comparison to existing ID-NIKE. While our primary goal is to explore ap-
plications of general constrained PRFs, it is instructive to examine the specific
ID-NIKE systems obtained by instantiating the ID-NIKE above with our specific
PRFs. The first concrete ID-NIKE is obtained from the left/right constrained
PRF in Eq. (1). This ID-NIKE is identical to the Sakai-Ohgishi-Kasahara [31]
ID-NIKE which was analyzed in [14,27]. A second ID-NIKE is obtained by us-
ing the bit-fixing constrained PRF in Section 4 as a left/right constrained PRF.
The resulting ID-NIKE is related to a recent ID-NIKE due to Freire et al. [16]
which is the first ID-NIKE proven secure in the standard model. While KeyGen
in our instantiated ID-NIKE uses fewer group elements than [16], we achieve
adaptive security via complexity leveraging which forces our multilinear groups
to be substantially larger. This likely results in an overall less efficient ID-NIKE
when compared to [16].

As stated above, our primary goal here is to explore the power of constrained
PRFs. We hope that future constrained PRFs, especially ones built from the
learning with errors (LWE) assumption, will give new ID-NIKE systems.

6.3 Policy-Based Key Distribution

More generally, our constrained PRF construction for circuit predicates (Sec-
tion 5) gives rise to a powerful non-interactive group key distribution mecha-
nism.

Suppose each user in the system is identified by a vector id ∈ {0, 1}n that
encodes a set of attributes for that user. Our goal is that for any predicate
p : {0, 1}n → {0, 1}, users whose id satisfies p(id) = 1 will be able to com-
pute a shared key kp. However, a coalition of users for which p(id) = 0 for all
members of the coalition learns nothing about kp. We call this mechanism non-
interactive policy-based key exchange (PB-NIKE) since only those users whose
set of attributes satisfies the policy p are able to compute the shared key kp.

For example, consider the policy p that is true for users who are members of
the IACR and have a driver’s license. All such users will be able to derive the
policy shared key kp, but to all other users the key kp will be indistinguishable
from random. This kp can then be used for secure communication among the
group members. This functionality is related to the concept of Attribute-Based
Encryption [29,22].

We implement policy-based key agreement using a constrained PRF F : K ×
{0, 1}m → Y for circuit predicates. To do so, let U(·, ·) denote a universal circuit
that takes two inputs: an identity id ∈ {0, 1}n and an m-bit description of a
circuit for a predicate p : {0, 1}n → {0, 1}. The universal circuit U(id, p) is
defined as:

U(id, p) = p(id) ∈ {0, 1}
We define the secret key skid given to user id to be the constrained PRF key that
lets user id evaluate F (msk, p) for all p for which U(id, p) = p(id) = 1. Thus,
users whose set of attributes id satisfies p(id) = 1 can compute the policy key
kp = F (msk, p) using their secret key skid. All other users cannot.
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In more detail, the system works as follows:

– Setup(λ) : let F : K × {0, 1}m → Y be a secure constrained PRF for circuit
predicates. The master secret msk is chosen as a random key in K.

– Extract(msk, id): output skid = F.constrain
(
msk, U(id, ·)

)
. By definition,

this key skid enables the evaluation of F (msk, p) at all p such that U(id, p) =
p(id) = 1, as required.

The properties of F imply that for any predicate p (whose description is at most
m bits), the group key kp = F (msk, p) can be computed by any user whose id
satisfies p(id) = 1. Moreover, the security property for constrained PRFs implies
that a coalition of users for which p(id) = 0 for all members of the coalition
cannot distinguish kp from random.

7 Extensions and Open Problems

We constructed constrained PRFs for several natural predicate families and
showed applications for all these constructions. Here we point out a few pos-
sible directions for future research.

First, it would be interesting to generalize the constrained concept to allow
for multiple levels of delegation. That is, the master key for the PRF can be
used to derive a constrained key ks for some set S ⊂ X . That key ks can be used
in turn to derive a further constrained key k′

s
for some subset S′ ⊂ S, and so

on. This concept is in similar spirit to Hierarchical IBE [23,19,10] or delegation
in ABE [22]. For the GGM prefix system, this is straightforward. Some of our
constructions, such as the bit fixing PRF, extend naturally to support more than
one level of delegation while others do not.

Second, for the most interesting predicate families our constructions are based
on multilinear maps. It would be quite useful to provide constructions based on
other assumptions such as Learning With Errors (LWE) or simple bilinear maps.
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A Circuit Notation

We now define our notation for circuits that adapts the model and notation of
Bellare, Hoang, and Rogaway [2] (Section 2.3). For our application we restrict
our consideration to certain classes of boolean circuits. First, our circuits will
have a single output gate. Next, we will consider layered circuits. In a layered
circuit a gate at depth j will receive both of its inputs from wires at depth j− 1.
Finally, we will restrict ourselves to monotonic circuits where gates are either
AND or OR gates of two inputs. 3

Our circuits will be a five tuple f = (n, q, A,B, GateType). We let n be the
number of inputs and q be the number of gates. We define inputs = {1, . . . , n},
Wires = {1, . . . , n + q}, and Gates = {n + 1, . . . , n + q}. The wire n + q is
the designated output wire. A : Gates → Wires/outputwire is a function where
A(w) identifies w’s first incoming wire and B : Gates → Wires/outputwire is
a function where B(w) identifies w’s second incoming wire. Finally, GateType :

3 These restrictions are mostly useful for exposition and do not impact functionality.
General circuits can be built from non-monotonic circuits. In addition, given a circuit
an equivalent layered exists that is larger by at most a polynomial factor.
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Gates → {AND,OR} is a function that identifies a gate as either an AND or
OR gate.

We require that w > B(w) > A(w). We also define a function depth(w) where
if w ∈ inputs depth(w) = 1 and in general depth(w) of wire w is equal to the
shortest path to an input wire plus 1. Since our circuit is layered we require that
for all w ∈ Gates that if depth(w) = j then depth(A(w)) = depth(B(w)) = j−1.

We will abuse notation and let f(x) be the evaluation of the circuit f on input
x ∈ {0, 1}n. In addition, we let fw(x) be the value of wire w of the circuit on
input x.
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Abstract. We define and construct a new primitive called a fully homo-
morphic message authenticator. With such scheme, anybody can perform
arbitrary computations over authenticated data and produce a short tag
that authenticates the result of the computation (without knowing the
secret key). This tag can be verified using the secret key to ensure that
the claimed result is indeed the correct output of the specified computa-
tion over previously authenticated data (without knowing the underlying
data). For example, Alice can upload authenticated data to “the cloud”,
which then performs some specified computations over this data and
sends the output to Bob, along with a short tag that convinces Bob of
correctness. Alice and Bob only share a secret key, and Bob never needs
to know Alice’s underlying data. Our construction relies on fully homo-
morphic encryption to build fully homomorphic message authenticators.

1 Introduction

The rise of the cloud computing paradigm requires that users can securely out-
source their data to a remote service provider while allowing it to reliably per-
form computations over the data. The recent ground-breaking development of
fully homomorphic encryption [24] allows us to maintain confidentiality/privacy
of outsourced data in this setting. In this work, we look at the analogous but
orthogonal question of providing integrity/authenticity for computations over
outsourced data. In particular, if a remote server claims that the execution of
some program P over the user’s outsourced data results in an output y, how can
the user be sure that this is indeed the case?

More generally, we can consider a group of mutually-trusting users that share
a secret key – each user can authenticate various data items at various times
(without keeping state) and upload the authenticated data to an untrusted cloud.
The cloud should be able to perform a joint computation over various data of
several users and convince any user in the group of the validity of the result.

Toward this goal, we define and instantiate a new primitive, called a fully
homomorphic message authenticator. This primitive can be seen as a symmetric-
key version of fully homomorphic signatures, which were defined by Boneh
and Freeman [10], but whose construction remains an open problem. We will
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return to survey the related work on partially homomorphic signatures and au-
thenticators, as well as related work on delegating memory and computation, in
Section 1.3. First, we describe our notion of fully homomorphic message authen-
ticators, which will be the focus of this work.

1.1 What Are Homomorphic Message Authenticators?

Simplified Description. In a homomorphic message-authenticator scheme, Al-
ice can authenticate some large data D using her secret key sk. Later, anybody
can homomorphically execute an arbitrary program P over the authenticated
data to produce a short tag ψ (without knowing sk), which certifies the value
y = P(D) as the output of P . It is important that ψ does not simply authen-
ticate y out of context; it only certifies y as the output of a specific program
P . Another user Bob, who shares the secret key sk with Alice, can verify the
triple (y,P , ψ) to ensure that y is indeed the output of the program P evaluated
on Alice’s previously authenticated data D (without knowing D). The tag ψ
should be succinct, meaning that its size is independent of the size of the data
D or the complexity of the program P . In other words, homomorphic message
authenticators allow anyone to certify the output of a complex computation over
a large authenticated data with only a short tag.

Labeled Data and Programs. The above high-level description considers a
restricted scenario where a single user Alice authenticates a single large data D
in one shot. We actually consider a more general setting where many users, who
share a secret key, can authenticate various data-items (say, many different files)
at different times without keeping any local or joint state. In this setting, we
need to establish some syntax for specifying which data is being authenticated
and which data a program P should be evaluated on. For this purpose, we rely
on the notion of labeled data and programs.

Whenever the user wants to authenticate some data-item D, she chooses a
label τ for it, and the authentication algorithm authenticates the data D with
respect to the label τ . For example, the label τ could be a file name. For the
greatest level of granularity, we will assume that the user authenticates indi-
vidual bits of data separately. Each bit b is authenticated with respect to its
own label τ via a secretly-keyed authentication algorithm σ ← Authsk(b, τ). For
example, to authenticate a long file named “salaries” containing the data-bits
D = (b1, . . . , bt), the user can create separate labels τi =(“salaries”, i) to denote
the ith bit of the file, and then authenticate each bit bi of the file under the label
τi. Our scheme is oblivious to how the labels for each bit are chosen and whether
they have any meaningful semantics.

Correspondingly, we consider labeled programs P , where each input bit of the
program has an associated label τi indicating which data it should be evaluated
on. For example, a labeled-program P meant to compute the median of the
“salaries” data would have its input bits labeled by τi =(“salaries”, i). In general,
the description of the labeled program P could be as long as, or even longer than,
the input data itself. However, as in the above example, we envision the typical
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use-case to be one where P has some succinct description, such as computing
the “median of the salaries data”. We note that a labeled program can compute
over data authenticated by different users at different times, as long as it was
authenticated with the same shared secret key,

Homomorphic authenticators allow us to certify the output of a labeled pro-
gram, given authentication tags for correspondingly labeled input data. In partic-
ular, there is a public homomorphic evaluation algorithm ψ = Eval(P , σ1, . . . , σt)
that takes as input tags σi authenticating some data-bits bi with respect to some
labels τi, and a labeled program P with matching input labels τ1, . . . , τt. It out-
puts a tag ψ that certifies the value y = P(b1, . . . , bt) as the correct output of
the program P . The verification algorithm Versk(y,P , ψ) uses the secret key sk
to verify that y is indeed the output of the labeled program P on previously
authenticated labeled input-data, without needing to know the original data.

Composition. Our homomorphic authenticators are also composable so that
we can incrementally combine authenticated outputs of partial computations
to derive an authenticated output of a larger computation. In particular, if the
tags ψ1, . . . , ψt authenticate some bits b1, . . . , bt as the outputs of some labeled
programs P1, . . . ,Pt respectively, then ψ

∗ = Eval(P∗, ψ1, . . . , ψt) should authen-
ticate the bit b∗ = P∗(b1, . . . , bt) as the output of the composed program, which
first evaluates P1, . . . ,Pt on the appropriately labeled authenticated data, and
then runs P∗ on the outputs.

Succinct Tags vs. Efficient Verification. The main requirement that makes
our definition of homomorphic authenticators interesting is that the tags should
be succinct. Otherwise, there is a trivial solution where we can authenticate
the output of a computation P by simply providing all of its input bits and
their authentication tags. The succinctness requirement ensures that we can
certify the output of a computation P over authenticated data with much smaller
communication than that of simply transmitting the input data.1 Therefore, this
primitive is especially useful when verifying computations that read a lot of input
data but have a short output (e.g., computing the median in a large database).

However, we note that the verification algorithm in a homomorphic authenti-
cator schemes is allowed to have a large computational complexity, proportional to
the complexity of the computation P being verified. Therefore, although homo-
morphic authenticators allow us to save on communication, they do not necessarily
save on the computational complexity of verifying computations over outsourced
data. We believe that communication-efficient solutions are already interesting,
and may be useful, even without the additional constraint of computational effi-
ciency. In Section 4, we explore how to combine our communication-efficient ho-
momorphic authenticators with techniques from delegating computation to also
achieve computationally efficient verification.

1 Note that we do not count the cost of transmitting the labeled-program P itself.
As a previous note explains, we envision that in the typical use-case such programs
should have a succinct description.
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1.2 Overview of Our Construction

Our construction of fully homomorphic authenticators relies on the use of fully
homomorphic encryption (FHE). Let n denote the security parameter, and define

[n]
def
= {1, . . . , n}. The secret key of the authenticator consists of: a random veri-

fication set S ⊆ [n] of size |S| = n/2, a key-pair (pk, sk) for a fully homomorphic
encryption (FHE) scheme and a pseudo-random function (PRF) fK(·).

To authenticate a bit b under a label τ , Alice creates n ciphertexts c1, . . . , cn
as follows. For i ∈ [n] \ S, she chooses the ciphertexts ci ← Encpk(b) as random
encryptions of the actual bit b being authenticated. For i ∈ S, she computes ci =
Encpk(0; fK((i, τ))) as pseudorandom encryptions of 0, where the random coins
are derived using the PRF. Notice that for the indices i ∈ S in the verification
set, the pseudorandom ciphertexts ci can be easily re-computed from Alice’s
secret key and the label τ alone, without knowing the data bit b. Alice outputs
the authentication tag σ = (c1, . . . , cn), consisting of the n ciphertexts.

Given some program P with t input-labels and t authentication tags {σj =
(c1,j , . . . , cn,j)}j∈[t] for the correspondingly labeled data, we can homomorphi-
cally derive an authentication tag ψ = (c∗1, . . . , c

∗
n) for the output by setting

c∗i = Eval(P , ci,1, . . . , ci,t), where Eval is the homomorphic evaluation of the FHE
scheme. In other words, for each position i ∈ [n], we perform a homomorphic
evaluations of the program P over the t FHE ciphertexts that lie in position
i. We assume (without loss of generality) that the evaluation procedure for the
FHE scheme is deterministic so that the results are reproducible.

Alice can verify the triple (y,P , ψ), where the tag ψ = (ĉ1, . . . , ĉn) is supposed
to certify that y is the output of the labeled program P . Let τ1, . . . , τt be the
input labels of P . For the indices i ∈ S in the verification set, Alice can re-
compute the pseudo-random input ciphertexts {ci,j = Encpk(0; fK((i, τj)))}j∈[t]

using the PRF, without knowing the actual input bits. She then computes c∗i =
Eval(P , ci,1, . . . , ci,t) and checks that the ciphertexts in the tag ψ were computed

correctly with ĉi
?
= c∗i for indices i ∈ S. 2 If this is the case, and all of the other

ciphertexts ĉi for i ∈ [n] \ S decrypt to the claimed bit y, then Alice accepts.
Intuitively, the only way that an attacker can lie about the output of some pro-

gram P is by producing a tag ψ = (ĉ1, . . . , ĉt) where the ciphertexts ĉi for indices
in the verification set i ∈ S are computed correctly but for i ∈ [n] \ S they are
all modified so as to encrypt the wrong bit. But this is impossible since the secu-
rity of the FHE should ensure that the attacker cannot distinguish encryptions
of 0 from those of the authenticated bits, and hence cannot learn anything about
the set S. In particular, the FHE hides the difference between data-independent
pseudorandom ciphertexts ci : i ∈ S, which allow Alice to check that the compu-
tation was performed correctly, and data-containing ciphertexts ci : i ∈ [n] \ S,
which allow Alice to check that the output bit y is the correct one. Note that the
authentication tags ψ in our scheme always consist of n (= security parameter)
ciphertexts, no matter how many inputs the program P takes and what its com-
plexity is. Therefore, we satisfy the succinctness requirement.

2 In this step, Alice has to perform work comparable to that of computing P .
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We remark that several recent schemes for delegating computation [21,16,2]
(see Section 1.3 on related work) also use FHE in a similar manner to check
that a computation is performed correctly by a remote server. In particular,
the work of Chung, Kalai and Vadhan [16] relies on a similar idea, where the
output of the homomorphic evaluation for some “data-independent ciphertexts”
is known in advance and used to check that the computation was done correctly
for the relevant “data-containing” ciphertexts. However, in all these previous
works, the technique is used to verify computations over a short known input,
whereas in our case we use it to verify computations over unknown authenticated
data. The main novelty in our use of the technique is to notice that the “data-
independent ciphertexts” can be made pseudorandom, so that they can be re-
derived in the future given only a short secret PRF key without needing to
sacrifice any significant storage.

Security and Verification Queries. We show that our construction is secure
in the setting where the attacker can adaptively make arbitrarily many authen-
tication queries for various labels, but cannot make verification queries to test
if a maliciously constructed tag verifies correctly. In practice, this means that
the user needs to abort and completely stop using the scheme whenever she gets
the first tag that doesn’t verify correctly. It is easy to allow for some fixed a-
priori bounded number of verification queries q, just by increasing the number
of ciphertexts contained in an authentication tag from n to n+ q.

The difficulty of allowing arbitrarily many verification queries also comes up
in most prior schemes for delegating computation in the “pre-processing” model
[21,16,2] (see Section 1.3 on related work), and remains an important open prob-
lem in both areas.

Fast Verification. One of the limitations of our solution above is that the ver-
ification algorithm is no more efficient than running the computation P . There-
fore, although it saves tremendously on the communication complexity of verify-
ing computations over outsourced data, it does not save on user’s computational
complexity. In Section 4, we explore the option of using schemes for delegating
computation to also offload the computational cost of the verification procedure
to the remote server. As one of our contributions, we show how to achieve fully
homomorphic MACs with fast verification using our initial construction and suc-
cinct non-interactive arguments for polynomial-time computation: P-SNARGs.
In contrast, a simple solution that bypasses fully-homomorphic MACs would re-
quire succinct non-interactive arguments of knowledge for all non-deterministic
polynomial-time computation: NP-SNARKs.

1.3 Related Work

Homomorphic Signatures and MACs. Many prior works consider the
question of homomorphic message authentication (private verification) and sig-
natures (public verification) for restricted homomorphisms, and almost exclu-
sively for linear functions. Perhaps the first work to propose this problem is



306 R. Gennaro and D. Wichs

that of Johnson et al. [29]. Since then, many works have considered this no-
tion in the context of network coding, yielding a long line of positive results
[1,9,23,10,5,11,15,20]. Another line of works considered this notion in the con-
text of proofs of data possession and retrievability [3,33,18,4].

The only work that considers a larger class of homomorphisms beyond linear
functions is that of Boneh and Freeman [10], who show how to get homomorphic
signatures for bounded (constant) degree polynomials. In that work, they also
present a general definition along the same lines as the definition we use in
this work, and pose the question of constructing fully homomorphic signatures
for arbitrary functions.3 Although the question of fully homomorphic publicly
verifiable signatures under standard assumptions still remains open, our work
provides the first positive result for the case of private verification.

Succinct Arguments of Knowledge. One method that would allow us to con-
struct fully homomorphic (publicly verifiable) signatures is to rely on CS-Proofs
[30] or, more generally, any succinct non-interactive argument of knowledge for
all of NP (NP-SNARK) [7]. This primitive allows us to create a short “ar-
gument” π for any NP statement, to prove “knowledge” of the corresponding
witness. The length of π is independent of the statement/witness size, and the
complexity of verifying π only depends on the size size of the statement.

Using SNARKs, we can authenticate the output y of a labeled program P ,
by creating a short argument π that proves the knowledge of some “labeled
input dataD along with valid signatures authenticatingD under the appropriate
labels, such that P(D) = y”. Since this is an argument of knowledge, a forged
signature for the output of some programP would allow us to extract out a forged
signature for the underlying input data, breaking the security of signatures.

Unfortunately, constructing succinct non-interactive arguments for NP is
known to require the use of non-standard assumptions [25]. Current construc-
tions either rely on the random-oracle model [30] or on various “knowledge”
assumptions (see, e.g., [28,7,8,22]).

Delegating Computation. Several prior works consider the problem of dele-
gating computation to a remote server while maintaining the ability to efficiently
verify the result [27,21,16,2,6,31]. In this scenario, the server needs to convince
the user that P(x) = y, where the user knows the program P , the input x and
the output y, but does not want to do the work of computing P(x). In contrast,
in our scenario the verifier only knows P , y, but does not know the previously
authenticated inputs that P should have been executed on. On the other hand,
we are not trying to minimize work, just communication.

Despite these differences, some of the results on delegating computation in the
“pre-processing” model [21,16,2], can also be (re-)interpreted for our setting. In
this model, the user “pre-processes” a circuit C and stores some value σ on the
server. Later, the user can ask the server to compute C(x) for various inputs

3 See [10,20] for an explanation of how this definition generalizes that of prior works
on network coding.
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x, and the server uses σ to derive a short and efficiently verifiable proof ψ that
certifies correctness of the computation. One caveat is that, in all these schemes,
the user first needs to send some challenge c = chall(x) to the server, and the
proof ψ is computed as a response to c.

We can apply these results to our setting of outsourced data as follows.
Consider outsourcing the “universal circuit” CD(·) that has the data D “hard-
coded”, gets as input a program P , and outputs CD(P) = P(D). Then, we can
think of the pre-processing of CD as creating an authentication tag σ for the data
D. Later, the user can take a program P , create a challenge c = chall(P), and
get back a short tag ψ that authenticates y = CD(P) = P(D).4 One advantage
of this approach is that the tag ψ can be verified efficiently, with less work than
that of computing P(D). However, there are several important disadvantages of
this approach as compared to our notion of homomorphic authenticators:

1. Interaction: Homomorphic authenticators allow anybody to evaluate a chosen
program P over authenticated data and non-interactively authenticate the
output. The above delegation-based schemes require a round of interaction;
the user first creates a challenge chall(P) for the program P , and only then
can the server authenticate the output P(D) with respect to this challenge.

2. Single Use: Homomorphic authenticators allow several users to authenticate
various labeled data “on the fly” (without any state) and verify arbitrary
computations over all of the data in the future using a fixed secret key. The
above delegation-based schemes require that a single user outsources all of
the data D in one shot, and stores some small secret state associated with
the data to verify computations over only this data in the future.

3. Bounded Size: The above delegation-based schemes require that the circuit-
size of the computations P is a-priori bounded by some fixed polynomial
chosen during authentication. Furthermore, the complexity of authentication
is proportional to this polynomial. Our fully homomorphic authenticators
have no such restriction.

4. No composition: The above delegation-based schemes does not support the
composition of several partial authenticated computations.

Memory Delegation. The work of Chung et al. [17] on memory delegation
explicitly considers the problem of outsourcing a large amount of data while
maintaining the ability to efficiently verify later computations over it. The main
advantages of memory delegation over our work are that: (I) the verification is
more efficient than the computation, (II) the data can be efficiently updated
by the user in the future, (III) it does not suffer from the verification prob-
lem. However, memory delegation suffers from many of the same disadvantaged
outlined above for delegation-based schemes. In particular, the general memory
delegation scheme of [17] is interactive, requiring 4 rounds of interaction during
verification. The paper also provides a non-interactive solution where the size of

4 Here, we assume that P has a short uniform description so that reading /transmitting
P is much more efficient than evaluating P .
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the tag grows with the depth of the computation-circuit (and therefore does not
satisfy our succinctness property). Furthermore, memory delegation considers
the setting where a single user outsources a single data item D in one shot, and
store some small secret state associated with the data to verify computations over
it in the future. In particular, it does not provide a method where various users
can authenticate various (small) pieces of data independently, and verify joint
computations over all of the data in the future. Lastly, the memory-delegation
solutions do not support composition.

Follow-Up Work. Following our work, Catalano and Fiore [14] (Eurocrypt
’13) give a very efficient and simple construction of homomorphic-message au-
thenticators for low-depth arithmetic circuits – in particular, the computa-
tion/verification time and the tag size depend polynomially on the degree of
the circuit, which can be exponential in the depth of the circuit. Their con-
struction only relies on one-way functions. In contrast, our construction here is
significantly more general (works for any polynomial-size boolean circuit) but
relies on the “heavier machinery” of fully homomorphic encryption.

2 Definitions

2.1 Homomorphic Authenticators

Labeled Programs. We begin by defining the concept of a labeled program,
where the labels denote which data the program should be evaluated on. For-
mally, a labeled-program P = (f, τ1, . . . , τk) consists of a circuit f : {0, 1}k →
{0, 1} along with a distinct input label τi ∈ {0, 1}∗ for each input wire i ∈ [k]. 5

Given some labeled programs P1, . . . ,Pt and a circuit g : {0, 1}t → {0, 1},
we can define the composed program, denoted by P∗ = g(P1, . . . ,Pt), which
corresponds to evaluating g on the outputs of P1, . . . ,Pt. The labeled inputs of
the composed program P∗ are just all the distinct labeled inputs of P1, . . . ,Pt,
meaning that we collect all the input wires with the same label and convert them
into a single input wire.

We define the identity program with label τ as Iτ := (gid, τ) where gid is
the canonical identity circuit and τ ∈ {0, 1}∗ is some label. Notice that any
program P = (f, τ1, . . . , τk) can be written as a composition of identity programs
P = f(Iτ1 , . . . , Iτk).

Syntax. A homomorphic authenticator scheme consists of the probabilistic-
polynomial time algorithms (KeyGen, Auth, Ver, Eval) with the following syntax:

5 Although the above description of P is long (proportional to its input size and
complexity), in many scenarios it is possible that P may also have an alternative
succinct description. For example, P may compute the median value in a large file
called “salaries” and its input labels are simply τi = (“salaries”, i) for each bit i.
Therefore, although we are concerned with succinctness, we will ignore the cost of
communicating the program P from future consideration.
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– KeyGen(1n) → (evk, sk): Outputs the secret key sk and an evaluation key
evk.

– Authsk(b, τ)→ σ: Creates a tag σ that authenticates the bit b ∈ {0, 1} under
the label τ ∈ {0, 1}∗. (Equivalently, we say that σ authenticates b as the
output of the identity program Iτ .)

– Evalevk(f,σ) → ψ: The deterministic evaluation procedure takes a vector

of tags σ = (σ1, . . . , σk) and a circuit f : {0, 1}k → {0, 1}. It outputs
a tag ψ. If each σi authenticates a bit bi as the output of some labeled-
program Pi (possibly the identity program), then ψ should authenticate b∗ =
f(b1, . . . , bk) as the output of the composed program P∗ = f(P1, . . . ,Pk).

– Versk(e,P , ψ)→ {accept, reject}: The deterministic verification procedure
uses the tag ψ to check that e ∈ {0, 1} is the output of the program P on
previously authenticated labeled data.

We require that the scheme satisfies the following properties, defined below:
authentication correctness, evaluation correctness, succinctness and authentica-
tor security.

Authentication Correctness. We require that for any b ∈ {0, 1} and any
label τ ∈ {0, 1}∗, we have:

Pr
[
Versk(b, Iτ , σ) = accept

∣∣ (evk, sk)← KeyGen(1n), σ ← Authsk(b, τ)
]
= 1

where Iτ is the identity program with label τ . In other words, the tag σ =
Authsk(b, τ) correctly authenticates b under the label τ , which is equivalent to
saying that it authenticates b as the output of the identity program Iτ .

Evaluation Correctness. Fix any (evk, sk) in the support of KeyGen(1n).
Fix any circuit g : {0, 1}t → {0, 1} and any set of program/bit/tag triples
{ (Pi, bi, ψi) }ti=1 such that Versk(bi,Pi, ψi) = accept. Set:

b∗ := g(b1, . . . , bt), P∗ := g(P1, . . . ,Pt), ψ
∗ := Evalevk(g, (ψ1, . . . , ψt)).

Then we require Versk(b
∗,P∗, ψ∗) = accept.

In words, assume that each tag ψi certifies that the output of the labeled
program Pi is bi. Then the tag ψ∗ certifies that b∗ is the output of the composed
programP∗. If all of the programsPi = Iτi are identity programs, then the above
says that as long as the tags ψi authenticate bits bi under the labels τi, the tag
ψ∗ authenticates b∗ as the output of P∗ = (g, τ1, . . . , τt). Therefore, the above
definition captures the basic correctness of computing over freshly authenticated
data, as well as the composability of computing over the authenticated outputs
of prior computations.

Succinctness. We require that the tag-size is always bounded by some fixed
polynomial in the security parameter n, and is independent of the size of the
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evaluated circuit or the number of inputs it takes. That is, there exists some
polynomial p(·) such that, for any (evk, sk) in the support of KeyGen(1n), the
output-size of Authsk(·, ·) and of Evalevk(·, ·) is bounded by p(n) for any choice
of their input.

Authenticator Security. Consider the following game ForgeGameA(1n) be-
tween an attacker A(1n) and a challenger:

1. The challenger chooses (evk, sk) ← KeyGen(1n) and gives evk to A. It ini-
tializes T := ∅.

2. The attackerA can adaptively submit arbitrarilymany authentication queries
of the form (b, τ) to the challenger. On each such query, if there is some (τ, ·) ∈
T (i.e. the label τ is not fresh) then the challenger ignores it. Else it updates
T := T ∪ {(τ, b)}, associating the label τ with the authenticated bit b, and
replies with σ ← Authsk(b, τ).

3. Finally, the attacker outputs some forgery (e∗,P∗ = (f∗, τ∗1 , . . . , τ
∗
k ), ψ

∗).
The output of the game is 1 iff Versk(e

∗,P∗, ψ∗) = accept and one of the
following two conditions holds:
– Type I Forgery: There is some i ∈ [k] such that the label (τ∗i , ·) does

not appear in T . (i.e., No bit was ever authenticated under the label τ∗i
involved in the forgery.)

– Type II Forgery: The set T contains tuples (τ∗1 , b1), . . . , (τ
∗
k , bk), for some

bits b1, . . . , bk ∈ {0, 1} such that f∗(b1, . . . , bk) �= e∗. (i.e., The labeled
program P∗ does not output e∗ when executed on previously authenticated
labeled data b1, . . . , bk .)

We say that a homomorphic authenticator scheme is secure (without ver-
ification queries) if, for any probabilistic polynomial-time A, we have
Pr[ForgeGameA(1n) = 1] ≤ negl(n). We can also define a stronger variant, called
security with verification queries, where we insist that the above probability
holds for a modified version of the game, in which the attacker can also adap-
tively make arbitrarily many verification queries of the form (e,P , ψ), and the
challenger replies with Versk(e,P , ψ).

2.2 Homomorphic Encryption

A fully homomorphic (public-key) encryption (FHE) scheme is a quadruple of
PPT algorithms HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) defined as follows.

– HE.KeyGen(1n)→ (pk, evk, sk): Outputs a public encryption key pk, a public
evaluation key evk and a secret decryption key sk.

– HE.Encpk(b) → c: Encrypts a bit b ∈ {0, 1} under public key pk. Outputs
ciphertext c.

– HE.Decsk(c)→ b: Decrypts ciphertext c using sk to a plaintext bit b ∈ {0, 1}.
– HE.Evalevk(g, c1, . . . , ct)→ c∗: The deterministic evaluation algorithm takes

the evaluation key evk, a boolean circuit g : {0, 1}t → {0, 1}, and a set of t
ciphertexts c1, . . . , ct. It outputs the result ciphertext c∗.

An FHE should also satisfy the following properties.
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Encryption Correctness. For all b ∈ {0, 1} we have:

Pr [HE.Decsk(HE.Encpk(b)) = b | (pk, evk, sk)← HE.KeyGen(1n)] = 1

Evaluation Correctness. For any (pk, evk, sk) in the support of
HE.KeyGen(1n), any ciphertexts c1, . . . , ct such that HE.Decsk(ci) = bi ∈ {0, 1},
and any circuit g : {0, 1}t → {0, 1} we have

HE.Decsk(HE.Evalevk(g, c1, . . . , ct)) = g(b1, . . . , bt).

Succinctness. We require that the ciphertext-size is always bounded by some
fixed polynomial in the security parameter, and is independent of the size of
the evaluated circuit or the number of inputs it takes. That is, there exists some
polynomial p(·) such that, for any (pk, evk, sk) in the support of HE.KeyGen(1n),
the output-size of HE.Encpk(·) and of Evalevk(·) is bounded by p(n), for any choice
of their inputs.

Semantic Security. Lastly, an FHE should satisfy the standard notion of
semantic security for public-key encryption, where we consider the evaluation
key evk as a part of the public key. That is, for any PPT attacker A we have:

| Pr [A(1n, pk, evk, c0) = 1]− Pr [A(1n, pk, evk, c1) = 1] | ≤ negl(n)

where the probability is over (pk, evk, sk) ← KeyGen(1n), {cb ←
HE.Encpk(b)}b∈{0,1}, and the coins of A.

Canonical FHE. We can take any FHE scheme and make it canonical, meaning
that the HE.Eval procedure just evaluates the circuit recursively, level-by-level
and gate-by-gate. In particular, for any circuit g : {0, 1}k → {0, 1} taking input
bits b1, . . . , bk, if the top gate of g is h : {0, 1}t → {0, 1} and the inputs to h
are computed by sub-circuits f1(bi1,1 , . . . bi1,k1 ) . . . , ft(bit,1 , . . . bit,kt ) then

HE.Evalevk(g, c1, . . . , ck) = HE.Evalevk(h, c
∗
1, . . . , c

∗
t )

where c∗j = HE.Evalevk(fj , cij,1 , . . . , cij,kj ) for j ∈ [t]. We also assume that, if

gid is the canonical identity circuit on one input, then HE.Evalevk(gid, c) = c.
Making the FHE scheme canonical will be important when we want to reason
about composition, since it will ensure that the evaluation procedure outputs the
exact same ciphertext when we homomorphically evaluate the entire circuit in
one shot as when we first homomorphically evaluate some sub-circuits and then
combine the results via additional independent homomorphic evaluations.

See, e.g., the works of [24,34,13,12] for constructions of fully homomorphic
encryption.
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3 Constructing Homomorphic Authenticators

We now describe our construction of homomorphic authenticators. Although
it closely follows our high-level description in the introduction, there are some
differences. Most notably, the simple scheme in the introduction does not ap-
propriately protect against type I forgeries. For example, it is possible that
for the function g0 which always outputs 0, the FHE scheme always outputs
HE.Evalevk(g0, c) = C0 where C0 is some fixed and known ciphertext encrypting
0. In that case, the attacker can always authenticate the output of the labeled-
program P0 = (g0, τ) for any label τ , even if he never saw any previously authen-
ticated data under the label τ . This would qualify as a type I forgery, breaking
our definition. To fix this, we add an extra component to our tags that ensures
that the attacker must have seen authentication tags for all of the underlying
input labels. We describe this component below.

Hash Tree of a Circuit. If g : {0, 1}k → {0, 1} is a circuit andH : {0, 1}∗ →
{0, 1}m is some hash function, we define the hash-tree of g, denoted gH , as a
Merkle-Tree that has the same structure as the circuit g, but replaces all internal
gates with the hash function H . More precisely, the hash-tree gH : ({0, 1}∗)k →
{0, 1}m is a function which takes as input strings νi ∈ {0, 1}∗ for each input wire
of g. For every wire w in the circuit g, we define the value of gH(ν1, . . . , νk) at
w inductively as:

– val(w) = H(νi) if w is the ith input wire of g.
– val(w) = H(val(w1), . . . , val(wt)) if w is the output wire of some gate with

input wires w1, . . . , wt.

We define the output of the function gH(ν1, . . . , νk) to be its its value at the
output wire of g.

Construction. Let HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) be a canonical
fully homomorphic encryption scheme, where the encryption algorithm uses r =

r(n) = ω(log(n)) random bits. Let
{
fK : {0, 1}∗ → {0, 1}r(n)

}
K∈{0,1}n

be a

(variable-input-length) pseudo-random function PRF family. Let H be a family
of (variable-length) collision-resistant hash functions (CRHF) H : {0, 1}∗ →
{0, 1}m(n)

. We define the authenticator scheme Π = (KeyGen,Auth,Eval,Ver) as
follows:

KeyGen(1n): Choose a PRF key K ← {0, 1}n and a CRHF H ← H. Choose an
encryption key (pk, evk′, sk′) ← HE.KeyGen(1n). Select a subset S ⊆ [n] by
choosing whether to add each index i ∈ [n] to the set S independently with
probability 1

2 . Output evk = (evk′, H), sk = (pk, evk′, H, sk′,K, S).
Authsk(b, τ): Given b ∈ {0, 1} and τ ∈ {0, 1}∗ do the following:

1. Choose random coins rand1, . . . , randn by setting randi = fK((τ, i)).
Set ν := fK(τ).
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2. Create n ciphertexts c1, . . . , cn as follows. For i ∈ [n] \ S, choose ci =
HE.Encpk(b; randi) as encryptions of the bit b. For i ∈ S, choose ci =
HE.Encpk(0; randi) as encryption of 0.

3. Output σ = (c1, . . . , cn, ν).

Evalevk(g,σ): Given σ = (σ1, . . . , σt), parse each σj = (c1,j , . . . , cn,j , νj).

– For each i ∈ [n], compute c∗i = HE.Evalevk′ (g, ci,1, . . . , ci,t).

– Compute ν∗ = gH(ν1, . . . , νt) to be the output of the hash-tree of g
evaluated at ν1, . . . νt.

Output ψ = (c∗1, . . . , c
∗
n, ν

∗).
Versk(e,P , ψ): Parse P = (g, τ1, . . . , τt) and ψ = (c∗1, . . . , c

∗
n, ν

∗).

1. Compute ν1 := fK(τ1), . . . , νt = fK(τt) and ν′ := gH(ν1, . . . , νt). If
ν′ �= ν∗, output reject.

2. For i ∈ S, j ∈ [t], compute randi,j := fK((τj , i)) and set ci,j :=
HE.Encpk(0; randi,j).
For each i ∈ S, evaluate c′i := HE.Evalevk′ (g, ci,1, . . . , ci,t) and if c′i �= c∗i
output reject.

3. For each i ∈ [n] \ S, decrypt ei := HE.Decsk′ (c∗i ) and if e �= ei output
reject.

If the above doesn’t reject, output accept.

Theorem 1. If {fK} is a PRF family, H is a CRHF family and HE is a se-
mantically secure canonical FHE, then the homomorphic authenticator scheme
Π is secure without verification queries.

Proof. It is easy to verify that the authentication correctness of Π just follows
from the encryption correctness of HE, and the evaluation correctness of Π
follows from that of HE, along with the fact that HE is canonical.

We now prove the security of Π (without verification queries). Let A be some
PPT attacker and let μ(n) = Pr[ForgeGameA(1n) = 1]. We use a series of hybrid
games modifying ForgeGame to prove that μ(n) must be negligible.

Game1: We modify ForgeGame so as to replace the PRF outputs with truly
random consistent values. That is, the challenger replaces all calls to fK
needed to answer authentication queries and to check the winning condi-

tion Versk(e
∗,P∗, ψ∗)

?
= accept, with calls to a completely random function

F : {0, 1}∗ → {0, 1}r(n), whose outputs it chooses efficiently “on the fly”.

By the pseudo-randomness of {fK}, we must have Pr[GameA1 (n) = 1] ≥
μ(n)− negl(n).

Game2: We now define Game2 by modifying the winning condition, so that the
attacker only wins (the game outputs 1) if the attacker outputs a valid type
(II) forgery (and the game outputs 0 on a type I forgery). Let E be the event
that attacker wins with a type I forgery in Game1. Then we claim that, under
the collision-resistance of H, we have Pr[E] = negl(n) and therefore:

Pr[GameA2 (n) = 1] ≥ Pr[GameA1 (n) = 1]− Pr[E] ≥ μ(n)− negl(n)
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Assume otherwise that Pr[E] is non-negligible. Recall that the event E only
occurs when the attacker submits a forgery

e∗,P∗ = (g, τ∗1 , . . . , τ
∗
t ), ψ

∗ = (c∗1, . . . , c
∗
n, ν

∗)

such that the attacker never asked any authentication query containing one
of the labels τ∗j for some j ∈ [t], and verification accepts. During the com-
putation of Versk(e

∗,P∗, ψ∗), when checking that verification accepts in

Game1, the challenger chooses the value νj = F (τ∗j ) ← {0, 1}r(n) freshly
at random, since the label τ∗j was never queried before. If we rewind and

re-sample ν′j ← {0, 1}r(n) freshly an independently at random again, then
the probability that verification accepts both times, which we denote by the
event E2, is at least Pr[E2] ≥ Pr[E]2. Let C be the event that E2 occurs
and the values νj �= ν′j are distinct, so that Pr[C] ≥ Pr[E]2 − 2−r(n) =

Pr[E]2 − negl(n) is non-negligible. When the event C occurs then we must
have ν∗ = gH(ν1, . . . , νj , . . . , νt) = gH(ν1, . . . , ν

′
j , . . . , νt) which immediately

gives us some collision on H at some level of the hash tree gH . Therefore,

A can be used to efficiently find collisions on H
$← H with non-negligible

probability, which gives us a contradiction.
Game3: In Game3 we modify the winning condition yet again. When answering

authentication queries, the challenger now also remembers the tag σ that it
uses, storing (τ, b, σ) in T . If the attacker outputs a type II forgery

e∗,P∗ = (g, τ∗1 , . . . , τ
∗
t ), ψ

∗ = (c∗1, . . . , c
∗
n, ν

∗),

we modify how the challenger checks Versk(e
∗,P∗, ψ∗)

?
= accept. Recall

that for a type II forgery, the tags τ∗i were previously used in authentication
queries, so that T must contain some tuples

((τ∗1 , b1, σ1 = (c1,1, . . . , cn,1, ν1)), . . . , (τ
∗
t , bt, σt = (c1,t, . . . , cn,t, νt)).

Let ĉi := HE.Evalevk(g, ci,1, . . . , ci,t) for i ∈ [n] be the “honest ciphertexts”
that would be included in an honestly generated tag ψ for the program P∗.
In Game3, we replace steps (2), (3) of the verification procedure as follows:
2’. For each i ∈ S: if ĉi �= c∗i then output reject.
3’. For each i ∈ [n] \ S: if ĉi = c∗i then output reject.
Notice that step (2’) is actually the same as the original step (2) used in
Game2, since in both cases we just check the forgery ciphertexts c∗i against
the honest ciphertexts c′i = ĉi. The only difference is that previously we
re-computed c′i from scratch by re-encrypting ci,j , and now we compute ĉi
using the stored ciphertexts ci,j in T (but the values are equivalent).
Step (3’), in Game3 is different from the original step (3) in Game2. In the
original step (3), we decrypted the forgery ciphertexts for i ∈ [n] \ S and

checked that they decrypt to the claimed output e∗
?
= Decsk′(c∗i ). Let e =

g(b1, . . . , bt) be the correct output of g on previously authenticated data. In
an accepting type II forgery, we must have e∗ �= e but the decryption of the
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“honest ciphertexts” will satisfy HE.Decsk′ (ĉi) = e. So it must be the case
that c∗i �= ĉi for all i ∈ [n] \ S for any accepting type II forgery in Game2.
Therefore, any type II forgery that’s accepting in Game2 is also accepting in
Game3 and hence: Pr[GameA3 (n) = 1] ≥ Pr[GameA2 (n) = 1] ≥ μ(n)− negl(n).

Game4: We modify Game3 so that, when answering authentication queries, the
challenger computes all of the ciphertexts ci (even for i ∈ S) as encryptions
of the correct bit b in step (2) of the authentication procedure. In particular,
the choice of S is ignored when answering authentication queries.
We claim that:

Pr[GameA4 (n) = 1] ≥ Pr[GameA3 (n) = 1]− negl(n) ≥ μ(n)− negl(n). (1)

This simply follows by the semantic security of the encryption scheme HE.
Given challenge ciphertexts which either encrypt the attacker’s bits b or 0,
we can embed these into the authentication procedures for positions i ∈ S
and either simulate Game3 or Game4. We can efficiently determine if the
output of the game is 1, since the decryption secret key sk′ is never used in
these games. Therefore, if the above didn’t hold, the attacker A would break
semantic security.

Negligible Advantage. We now claim that, information theoretically,
Pr[GameA4 (n) = 1] ≤ 2−n. Together with equation (1), this shows that
μ(n) ≤ 2−n + negl(n) = negl(n), as we wanted to show.
In Game4, the choice of the set S ⊆ [n] is not used at all when answering au-
thentication queries and so we can think of the challenger as only picking the
set S during verification. For any type II forgery e∗,P∗, ψ∗ = (c∗1, . . . , c

∗
n, ν

∗),
let c′1, . . . , c

′
n be the “honest ciphertexts” that would be included in an hon-

estly generated tag ψ for the output of P∗ (see description of Game3). Let
S′ := {i ∈ [n] : c∗i = c′i} be the indices on which the forged and honest
ciphertexts match. The attacker only wins if steps (2’), (3’) of verification
pass, which only occurs if S = S′. But this only occurs with probability 2−n

over the random choice of S.

3.1 Fully Homomorphic Authenticator-Encryption

We can also extend homomorphic message authenticators to homomorphic
authenticator-encryption. Given the secret key sk, it should be possible to decrypt
the correct bit b from the tag authenticating it, but given only the evaluation key
evk, the tags should not reveal any information about the authenticated bits.

We can allow decryption generically. Take any homomorphic authenticator
scheme (KeyGen, Auth, Eval, Ver) and define VerDec(P , ψ) → {0, 1, reject} as
follows: run Ver(e,P , ψ) for both choices of e ∈ {0, 1} and, if exactly one of the
runs is accepting, return the corresponding e, else return reject.

We notice that our specific construction of homomorphic authentica-
tors already provides chosen-plaintext-attack (CPA) security for the above
authenticator-encryption scheme. Even if the attacker gets evk and access to
the authentication oracle Authsk(·, ·), if he later sees a tag σ ← Authsk(b, τ) for
a fresh label τ , he cannot distinguish between the cases b = 0 and b = 1.
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3.2 Security with Verification Queries?

The scheme presented in Section 3 only provides security without verification
queries, and it remains an interesting open problem to construct fully homomor-
phic authenticators that allow for the stronger notion of security with verification
queries. We make several observations here.

An Efficient Attack. We note that there is an efficient attack against our
basic scheme from Section 3, in the setting of security with verification queries.

The attacker gets evk and makes a single authentication query to get a tag
σ ← Authsk(1, τ), authenticating the bit b = 1 under some arbitrary label τ . We
parse σ = (c1, . . . , cn, ν).

The attacker then makes several verification queries whose aim is to learn the
secret set S ⊆ [n]. It does so as follows: for each i ∈ [n] he computes c′i by adding
an encryption of 0 to ci (or performing any homomorphic operation that changes
the ciphertext while preserving the plaintext) and sets the modified tag σi to be
the same as σ, but with ci replaced by c′i. Then, for each i ∈ [n], the attacker
makes a verification query Versk(1, Iτ , σi) to test if the modified tag σi is valid. If
the query rejects then the attacker guesses that i ∈ S and otherwise guesses i �∈ S.
With overwhelming probability the attacker correctly recovers the entire set S.

Now the attacker can construct a type II forgery for the identity program Iτ ,
claiming that its value is 0 (recall, that we previously authenticated b = 1 under
the label τ). To do so, the attacker takes the tag σ and, for i �∈ S, replaces the
ciphertexts ci with fresh encryptions of 0. Let’s call the resulting modified tag
σ∗. Then it’s easy to see that (0, Iτ , σ∗) is a valid type II forgery.

Bounded Verification Queries. The above attack requires n verification
queries to break the scheme. It is relatively easy to show that the scheme is
secure against O(log(n)) verification queries. In particular, the attacker only
gets O(log(n)) bits of information about the set S, which is not enough to break
the scheme. Similarly, for any a-priori bound q, we can modify our scheme so that
the tags contain n+ q ciphertexts to get security against q verification queries.

Computation with Long Output. Our basic scheme considers homomorphic
authentication for a program P with a 1-bit output. Of course, we can extend
the scheme to authenticate a program with longer output, by simply authen-
ticating each bit of the output separately. However, this means that the tag is
proportional to the output size of the computation. A simple trick allows us
to authenticate a long output of some program P with only a short tag which
is independent of the output size. Instead of homomorphically authenticating
the output of the program P , we just authenticate the output of a program
H(P) which first computes the output y of P and then outputs H(y) where
H is a collision-resistant hash function. Since H(P) has a short output even
when P has a long output, the resulting tag is short. Moreover, by getting the
short tag ψ computed as above and the long output y, the verifier can check
Versk(H(y), H(P), ψ) = accept to ensure that y is the output of the computa-
tion P over previously authenticated data.
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4 Improving Verification Complexity

One of the main limitations of our homomorphic authenticator scheme from the
previous section is that the complexity of the verification algorithm is no better
than that of executing the program P . Therefore, although the scheme saves on
the communication complexity of transmitting the input data, it does not save on
the computation complexity of executing P . As we discussed in the introduction,
works in the area of delegating computation obtain efficient verification whose
complexity is independent (or at least much smaller than) the computation of
P , but require that the user knows the entire input x. We explore the idea
of “marrying” these two techniques by delegating the computation required to
verify the authentication tag in our homomorphic authenticator scheme.

Firstly, we notice that the verification procedure Versk(e,P , ψ) of our scheme
as described in Section 3 has special structure. The only “expensive” computa-
tion (proportional to the complexity of the the program P) is independent of
the tag ψ. In particular, this computation uses the secret key sk and the pro-
gram P to compute the output of the “hash-tree” ν′ and the ciphertexts c′i for
i ∈ S derived by evaluating P over the pseudorandom encryptions of 0. We call
this computation Expensive(P , sk). Given the outputs of Expensive(P , sk), the
rest of the verification procedure Versk(e,P , ψ) consists of simple comparisons
and is incredibly efficient (independent of the complexity of P). Therefore, we
can delegate the computation of Expensive(P , sk) prior to knowing the tag ψ
that needs to be verified. One issue is that the computation does depend on
the secret key sk, which needs to be kept private. We note that we can always
(generically) keep the input of a delegated computation private by encrypting
it under an FHE scheme. In our context, we can encrypt the value sk under an
independently chosen FHE key, and publish this ciphertext Csk in the evaluation
key. We can then delegate the computation Expensive′(P , Csk) which takes P
as an input and homomorphically executed Expensive(P , sk).

We now explore the advantages of using the above approach with some con-
crete delegation schemes.

Using SNARGs. We can use succinct non-interactive arguments for
polynomial-time computation (P-SNARGs). This primitive allows anyone to
provide a short proof π certifying the correctness of an arbitrary polynomial-
time computation y = f(x), where f is a Turing Machine. The tuple (f, y, x, π)
can be verified in some fixed polynomial-time p(|x|, |y|, |f |), that only depends
on the description-length of the machine f , but is independent of the running
time of f . Given P-SNARGs, we get a completely non-interactive delegation
of computation (assuming the computation has a short uniform description).
Therefore, using the above approach, we get homomorphic authenticators satis-
fying our original non-interactive syntax and security, but also allowing efficient
verification for programs P having a short uniform description. During evalua-
tion, we simply also have the server compute Expensive′(P , Csk) and provide
a SNARG proof π that it was done correctly. Recall that, in the introduction,



318 R. Gennaro and D. Wichs

we described a significantly simpler solution to the problem of efficiently verifi-
able homomorphic authenticators (and signatures) using succinct non-interactive
argument of knowledge for all of NP, or NP-SNARKs. Therefore, the main ad-
vantage of the above technique is that now we only require P-SNARGs, which
is a much weaker primitive. For example, if we instantiate the random-oracle
CS-Proofs of Micali [30] with some cryptographic hash function, it may be more
reasonable to assume that we get a P-SNARG, than it is to assume that we get
an NP-SNARK. In particular, the former is a falsifiable assumption whereas
the latter cannot be proved under any falsifiable assumption (see [25]).

Using Delegation with Pre-Processing. Alternatively, we can use the dele-
gation techniques in the “pre-processing” model [21,16,2] to outsource the com-
putation of Expensive′(P , Csk) where P is given as an input. This scheme will
have many of the same advantages and disadvantages as the approach of using
delegation with “pre-processing” directly to outsource the data (see a descrip-
tion of this latter approach in Section 1.3). In particular, in both approaches, the
verification will be efficient but the scheme will now require one round of interac-
tion, where the user needs to create a challenge chall(P) for the computation P
that she wants to verify. The main advantages of our approach, combining dele-
gation with homomorphic authenticators, over a direct delegation-based scheme
is the following. When using delegation directly, the user needs to outsource all
of the data in one shot and remember some short partial information about it;
now the user can arbitrarily authenticate fresh labeled data “on the fly” and
verify computations over all of it using a single independent secret key.

5 Conclusions

In this work we give the first solution to fully homomorphic message authentica-
tors, allowing a user to verify computations over previously authenticated data.
The authentication tag is short, independent of the size of the authenticated in-
put to the computation. Our work leaves many interesting open questions. Per-
haps the most ambitious one is to construct fully homomorphic signatures with
public verification. Less ambitiously, construct fully homomorphic authenticators
that allow an unbounded number of verification queries. Lastly, it would be in-
teresting to improve the verification efficiency of our construction. One pressing
question is to make the verification complexity independent of the complexity of
the program P while maintaining all of the advantages of our scheme (standard
assumptions, no interaction). But a less ambitious, still interesting question is
to just reduce the tag size from O(n) ciphertexts to something smaller, say a
single ciphertext.

Acknowledgement. We thank Craig Gentry for his valuable comments. In
particular, a prior version of this work included a speculative suggestion for
achieving security with verification queries via “randomness-homomorphic en-
cryption”; Craig pointed out that this latter primitive cannot exist.
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1 Introduction

The Basic Principles of Modern Cryptography . . .

Principle 1—Formulation of Exact Definitions

One of the key intellectual contributions of modern cryptography has
been the realization that formal definitions of security are essential pre-
requisites for the design, usage, or study of any cryptographic primitive
or protocol. —Katz and Lindell [53]

In this paper we will show that CBC MAC construction is secure if the
underlying block cipher is secure. To make this statement meaningful
we need first to discuss what we mean by security in each case.

—Bellare, Kilian, and Rogaway [12, Section 1.2]

Why do we believe that AES-CBC-MAC is secure? More precisely: Why do we
believe that an attacker limited to 2100 bit operations, and 250 message blocks,
cannot break AES-CBC-MAC with probability more than 2−20?

The standard answer to this question has three parts. The first part is a
concrete definition of what it means for a cipher or a MAC to be secure. We quote
from the classic paper [12, Section 1.3] by Bellare, Kilian, and Rogaway: the
PRP-“insecurity” of a cipher such as AES (denoted “Advprp

AES(q
′, t′)”) is defined

as the “maximum, over all adversaries restricted to q′ input-output examples
and execution time t′, of the ‘advantage’ that the adversary has in the game of
distinguishing [the cipher for a secret key] from a random permutation.” The

PRF-insecurity of m-block AES-CBC-MAC (denoted “Advprf
CBCm-AES(q, t)”) is

defined similarly, using a uniform random function rather than a uniform random
permutation.

The second part of the answer is a concrete security theorem bounding the
insecurity of AES-CBC-MAC in terms of the insecurity of AES, or more generally
the insecurity of F -CBC-MAC in terms of the insecurity of F for any �-bit
block cipher F . Specifically, here is the main theorem of [12]: “for any integers
q, t,m ≥ 1,

Advprf
CBCm-F (q, t) ≤ Advprp

F (q′, t′) +
q2m2

2l−1

where q′ = mq and t′ = t + O(mql).” One can object that the O constant is
unspecified, making this theorem meaningless as stated for any specific q, t,m
values; but it is easy to imagine a truly concrete theorem replacing O(mql) with
the time for mql specified operations.

The third part of the answer is a concrete conjecture regarding the security
of AES. NIST’s call for AES submissions [66, Section 4] identified “the extent
to which the algorithm output is indistinguishable from [the output of] a [uni-
form] random permutation” as one of the “most important” factors in evaluat-
ing candidates; cryptanalysts have extensively studied AES without finding any
worrisome PRP-attacks; it seems reasonable to conjecture that no dramatically
better attacks exist. Of course, this part of the story depends on the details of
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AES; analogous conjectures regarding, e.g., DES would have to be much weaker.
For example, Bellare and Rogaway in [16, Section 3.6] wrote the following:

“For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

. . . In other words, we are conjecturing that the best attacks are either
exhaustive key search or linear cryptanalysis. We might be bolder with
regard to AES and conjecture something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.”

One can again object that the c1 and c2 are unspecified here, making these con-
jectures non-concrete and unfalsifiable as stated. A proper concrete conjecture
would specify, e.g., c1 = c2 = 3. One can also quibble that the TDES and TAES

factors do not properly account for inner-loop speedups in exhaustive key search
(see, e.g., [27]), that q/240 is a rather crude model of the success probability of
linear cryptanalysis, etc., but aside from such minor algorithm-analysis details
the conjectures seem quite reasonable.

This AES security conjecture (with small specified c1 and c2) says, in partic-
ular, that the attacker cannot PRP-break AES with probability more than 2−21

after 250 cipher outputs and 2100 bit operations. The CBC-MAC security theo-
rem (with small specified O) then says that the same attacker cannot PRF-break
AES-CBC-MAC with probability more than 2−20.

Of course, this answer does not prove that AES-CBC-MAC is secure; it re-
lies on a conjecture regarding AES security. Why not simply conjecture that
AES-CBC-MAC is secure? The answer is scalability. It is reasonable to ask
cryptanalysts to intensively study AES, eventually providing confidence in the
security of AES, while it is much less reasonable to ask cryptanalysts to inten-
sively study AES-CBC-MAC, AES-OMAC, AES-CCM, AES-GCM, AES-OCB,
and hundreds of other AES-based protocols. Partitioning the AES-CBC-MAC
security conjecture into an AES security conjecture and a CBC-MAC security
proof drastically simplifies the cryptanalyst’s job.

The same three-part pattern has, as illustrated by Appendix L (in the full ver-
sion), become completely standard throughout the literature on concrete “prov-
able security”. First part: The insecurity of X—where X is a primitive such as
AES or RSA, or a higher-level protocol such as AES-CBC-MAC or RSA-PSS—
is defined as the maximum, over all algorithms A (“attacks”) that cost at most
C, of the probability (or advantage in probability) that A succeeds in breaking
X. This insecurity is explicitly a function of the cost limit C; typically C is sep-
arated into (1) a time limit t and (2) a limit q on the number of oracle queries.
Note that this function depends implicitly on how the “cost” of an algorithm is
defined.

Often “the (q, t)-insecurity of X is at most ε” is abbreviated “X is (q, t, ε)-
secure”. Many papers prefer the more concise notation and do not even mention
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the insecurity function. We emphasize, however, that this is merely a superficial
change in notation, and that both of the quotes in this paragraph refer to exactly
the same situation: namely, the nonexistence of algorithms that cost at most (q, t)
and that break X with probability more than ε.

Second part: Concrete “provable security” theorems state that the insecurity
(or security) of a complicated object is bounded in terms of the insecurity (or
security) of a simpler object. Often these theorems require restrictions on the
types of attacks allowed against the complicated object: for example, Bellare and
Rogaway in [14] showed that RSA-OAEP has similar security to RSA against
generic-hash attacks (attacks in the “random-oracle model”).

Third part: The insecurity of a well-studied primitive such as AES or RSA-
1024 is conjectured to match the success probability of the best attack known.
For example, Bellare and Rogaway, evaluating the concrete security of RSA-FDH

and RSA-PSS, hypothesized that “it takes time Ce1.923(logN)1/3(log logN)2/3 to
invert RSA”; Bellare, evaluating the concrete security of NMAC-h and HMAC-
h, hypothesized that “the best attack against h as a PRF is exhaustive key
search”. See [15, Section 1.4] and [7, Section 3.2]. These conjectures seem to
precisely capture the idea that cryptanalysts will not make significant further
progress in attacking these primitives.

1.1. Primary Contribution of This Paper. Our primary goal in this paper
is to convincingly undermine all of the standard security conjectures reviewed
above. Specifically, Sections 2, 3, 4, and 5 show—assuming standard, amply
tested heuristics— that there exist high-probability attacks against AES, the
NIST P-256 elliptic curve, DSA-3072, and RSA-3072 taking considerably less
than 2128 time. In other words, the insecurity of AES, NIST P-256, DSA-3072,
and RSA-3072, according to the standard concrete-security definitions, reaches
essentially 100% for a time bound considerably below 2128. The conjectures by
Bellare and Rogaway in [15, Section 1.4], [16, Section 3.6], [7, Section 3.2],
etc. are false for every reasonable assignment of the unspecified constants.

The same ideas show that there exist high-probability attacks against AES-
CBC-MAC, RSA-3072-PSS, RSA-3072-OAEP, and thousands of other “provably
secure” protocols, in each case taking considerably less than 2128 time. It is not
clear that similar attacks exist against every such protocol in the literature, since
in some cases the security reductions are unidirectional, but undermining these
conjectures also means undermining all of the security arguments that have those
conjectures as hypotheses.

We do not claim that this reflects any actual security problem with AES, NIST
P-256, DSA-3072, and RSA-3072, or with higher-level protocols built from these
primitives. On the contrary! Our constructions of these attacks are very slow; we
conjecture that any fast construction of these attacks has negligible probability
of success. Users have nothing to worry about.

However, the standard metrics count only the cost of running the attack, not
the cost of finding the attack in the first place. This means that there is a very
large gap between the actual insecurity of these primitives and their insecurity
according to the standard metrics.
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This gap is not consistent across primitives. We identify different gaps for
different primitives (for example, the asymptotic exponents for high-probability
attacks drop by a factor of 1.5 for ECC and a factor of only 1.16 for RSA), and
we expect that analyzing more primitives and protocols in the same way will
show even more diversity. In principle a single attack is enough to illustrate that
the standard definitions of security do not accurately model actual security, but
the quantitative variations from one attack to another are helpful in analyzing
the merits of ideas for fixing the definitions. It is of course also possible that the
gaps for the primitives we discuss will have to be reevaluated in light of even
better attacks.

1.2. Secondary Contribution of This Paper (in the full version). Our
secondary goal in this paper is to propose a rescue strategy: a new way to
define security—a definition that restores, to the maximum extent possible, the
attractive three-part security arguments described above.

All of the gaps considered in this paper come from errors in quantifying feasi-
bility. Each of the high-probability attacks presented in this paper (1) has a cost
t according to the standard definitions, but (2) is obviously infeasible, even for
an attacker able to carry out a “reasonable” algorithm that costs t according to
the same definitions. The formalization challenge is to say exactly what “reason-
able” means. Our core objective here is to give a new definition that accurately
captures what is actually feasible for attackers.

This accuracy has two sides. First, the formally defined set of algorithms must
be large enough. Security according to the definition does not imply actual se-
curity if the definition ignores algorithms that are actually feasible. Second, the
formally defined set of algorithms must be small enough. One cannot conjecture
security on the basis of cryptanalysis if infeasible attacks ignored by cryptana-
lysts are misdeclared to be feasible by the security definition.

We actually analyze four different ideas for modifying the notion of feasibility
inside existing definitions:

– Appendix B.2: switching the definitions from the RAM metric used in [12]
to the NAND metric, an “alternative” mentioned in [12];

– Appendix B.3: switching instead to the AT metric, a standard hardware-
design metric formally defined by Brent and Kung in [29] in 1981;

– Appendix B.4: adding constructivity to the definitions, by a simple trick that
we have not seen before (with a surprising spinoff, namely progress towards
formalizing collision resistance); and

– Appendix B.5: adding uniformity (families) to the definitions.

Readers unfamiliar with the RAM, NAND, and AT metrics should see Ap-
pendix A (in the full version) for a summary and pointers to the literature.

The general idea of modifying security definitions, to improve the accuracy
with which those definitions model actual security, is not new. A notable example
is the change from the algorithm cost metric used in [11], the original Crypto ’94
version of [12], to a more complicated algorithm cost metric used in subsequent
definitions of security; readers unfamiliar with the details should see Appendix A
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for a review. The attacks in this paper show that this modification was not
enough, so we push the same general idea further, analyzing the merits of the
four modifications listed above. It is conceivable that this general idea is not the
best approach, so we also analyze the merits of two incompatible approaches:
(Appendix B.1) preserving the existing definitions of security; (Appendix B.7)
trying to build an alternate form of “provable security” without definitions of
security.

Ultimately we recommend the second and third modifications (AT and con-
structivity) as producing much more accurate models of actual feasibility. We
also recommend refactoring theorems (see Appendix B.6) to simplify further
changes, whether those changes are for even better accuracy or for other rea-
sons. We recommend against the first and fourth modifications (NAND and
uniformity). Full details of our analysis appear in Appendix B; the NAND and
AT analyses for individual algorithms appear in Sections 2, 3, 4, and 5. Ap-
pendix Q (in the full version) is a frequently-asked-questions list, serving a role
for this paper comparable to the role that a traditional index serves for a book.

Our recommended modifications have several positive consequences. Incorrect
conjectures in the literature regarding the concrete security of primitives such
as AES can be replaced by quite plausible conjectures using the new definitions.
Our impression is that most of the proof ideas in the literature are compatible
with the new definitions, modulo quantitative changes, so most concrete-security
theorems in the literature can be replaced by meaningful concrete-security theo-
rems using the new definitions. The conjectures and theorems together will then
produce reasonable conclusions regarding the concrete security of protocols such
as AES-CBC-MAC.

We do not claim that all proofs can be rescued, and it is even possible that
some theorems will have to be abandoned entirely. Some troublesome examples
have been pointed out by Koblitz and Menezes in [55] and [56]. Our experience
indicates, however, that such examples are unusual. For example, there is nothing
troublesome about the CBC-MAC proof or the FDH proof; these proofs simply
need to be placed in a proper framework of meaningful definitions, conjectures,
and theorem statements.

1.3. Priority Dates; Credits; New Analyses. On 20 March 2012 we publicly
announced the trouble with the standard AES conjectures; on 17 April 2012
we publicly announced the trouble with the standard NIST P-256, DSA-3072,
and RSA-3072 conjectures. The low-probability case of the AES trouble was
observed independently by Koblitz and Menezes and announced earlier in March
2012; further credits to Koblitz and Menezes appear below. We are not aware of
previous publications disputing the standard concrete-security conjectures.

Our attacks on AES, NIST P-256, DSA-3072, and RSA-3072 use many stan-
dard cryptanalytic techniques cited in Sections 2, 3, 4, and 5. We introduce
new cost analyses in all four sections, and new algorithm improvements in Sec-
tions 3, 4, and 5; our improvements are critical for beating 2128 in Section 5. In
Sections 2, 3, and 4 the standard techniques were already adequate to (heuris-
tically) disprove the standard 2128 concrete-security conjectures, but as far as



Non-uniform Cracks in the Concrete: The Power of Free Precomputation 327

we know we were the first to point out these contradictions. We do not think
the contradictions were obvious; in many cases the standard techniques were
published decades before the conjectures!

This paper was triggered by a 23 February 2012 paper [55], in which Koblitz
and Menezes objected to the non-constructive nature of Bellare’s security proof
[7] for NMAC. Bellare’s security theorem states a quantitative relationship be-
tween the standard-definition-insecurity of NMAC-h and the standard-definition-
insecurity of h: the existence of a fast attack on NMAC-h implies the existence of
a fast attack on h. The objection is that the proof does not reveal a fast method
to compute the second attack from the first: the proof left open the possibility
that the fastest algorithm that can be found to attack NMAC-h is much faster
than the fastest algorithm that can be found to attack h.

An early-March update of [55] added weight to this objection by pointing out
the (heuristic) existence of a never-to-be-found fast algorithm to attack any 128-
bit function h. The success probability of the algorithm was only about 2−64,
but this was still enough to disprove Bellare’s security conjectures. Koblitz and
Menezes commented on “how difficult it is to appreciate all the security implica-
tions of assuming that a function has prf-security even against unconstructible
adversaries”.

Compared to [55], we analyze a much wider range of attacks, including higher-
probability PRF attacks and attacks against various public-key systems, showing
that the difficulties here go far beyond PRF security. We also show quantitative
variations of the difficulties between one algorithm cost metric and another, and
we raise the possibility of eliminating the difficulties by carefully selecting a cost
metric.

Readers who find these topics interesting may also be interested in the fol-
lowup paper [56] by Koblitz and Menezes, especially the detailed discussion in
[56, Section 2] of “two examples where the non-uniform model led researchers
astray”. See also Appendices Q.13, Q.14, and Q.15 of our paper for further
comments on the concept of non-uniformity.

2 Breaking AES

This section analyzes the cost of various attacks against AES. All of the attacks
readily generalize to other block ciphers; none of the attacks exploit any partic-
ular weakness of AES. We focus on AES because of its relevance in practice and
to have concrete numbers to illustrate the attacks.

All of the (single-target) attacks here are “PRP” attacks: i.e., attacks that
distinguish the cipher outputs for a uniform random key (on attacker-selected
inputs) from outputs of a uniform random permutation. Some of the attacks go
further, recovering the cipher key, but this is not a requirement for a distinguish-
ing attack.

2.1. Breaking AES with MD5.We begin with an attack that does not use any
precomputations. This attack is feasible, and in fact quite efficient; its success
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probability is low, but not nearly as low as one might initially expect. This is a
warmup for the higher-success-probability attack of Section 2.2.

Let P be a uniform random permutation of the set {0, 1}128; we label elements
of this set in little-endian form as integers 0, 1, 2, . . . without further comment.
The pair (P (0), P (1)) is nearly a uniform random 256-bit string: it avoids 2128

strings of the form (x, x) but is uniformly distributed among the remaining
2256 − 2128 strings.

If k is a uniform random 128-bit string then the pair (AESk(0),AESk(1))
is a highly nonuniform random 256-bit string, obviously incapable of covering
more than 2128 possibilities. One can reasonably guess that an easy way to
distinguish this string from (P (0), P (1)) is to feed it through MD5 and output
the first bit of the result. The success probability p of this attack—the absolute
difference between the attack’s average output for input (AESk(0),AESk(1))
and the attack’s average output for input (P (0), P (1))— is far below 1, but it
is almost certainly above 2−80, and therefore many orders of magnitude above
2−128. See Appendix V for relevant computer experiments.

To understand why p is so large, imagine replacing the first bit of MD5 with
a uniform random function from {0, 1}256 to {0, 1}, and assume for simplicity
that the 2128 keys k produce 2128 distinct strings (AESk(0),AESk(1)). Each key
k then has a 50% chance of choosing 0 and a 50% chance of choosing 1, and
these choices are independent, so the probability that 2127 + δ keys k choose 1

is exactly
(

2128

2127+δ

)
/22

128

; the probability that at least 2127 + δ keys k choose 1 is

exactly
∑

i≥δ

(
2128

2127+i

)
/22

128

; the probability that at most 2127 − δ keys k choose

1 is the same. The other 2256 − 2129 possibilities for (P (0), P (1)) are practically
guaranteed to have far smaller bias. Consequently p is at least≈δ/2128 with prob-

ability approximately 2
∑

i≥δ

(
2128

2127+i

)
/22

128 ≈ 1−erf(δ/
√
2127) ≈ exp(−δ2/2127),

where erf is the standard error function. For example, p is at least ≈2−65 with
probability above 30%, and is at least ≈2−80 with probability above 99.997%.

Of course, MD5 is not actually a uniform random function, but it would be
astonishing for MD5 to interact with AES in such a way as to spoil this attack.
More likely is that there are some collisions in k �→ (AESk(0),AESk(1)); but
such collisions are rare unless AES is deeply flawed, and in any event will tend
to push δ away from 0, helping the attack.

2.2. Precomputing Larger Success Probabilities. The same analysis ap-
plies to a modified attack Ds that appends a short string s to the AES outputs
(AESk(0),AESk(1)) before hashing them: with probability ≈ exp(−δ2/2127) the
attackDs has success probability at least ≈δ/2128. If s is long enough to push the
hash inputs beyond one block of MD5 input then the iterated structure of MD5
seems likely to spoil the attack, so we define Ds using “capacity-1024 Keccak”
rather than MD5.

Consider, for example, δ = 267: with probability ≈ 1 − erf(23.5) ≈ 2−189 the
attack Ds has success probability at least ≈2−61. There are 2192 choices of 192-
bit strings s, so presumably at least one of them will have Ds having success
probability at least ≈2−61. Of course, actually finding such an s would require
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inconceivable amounts of computation by the best methods known (searching
2189 choices of s, and computing 2128 hashes for each choice); but this is not
relevant to the definition of insecurity, which considers only the time taken
by Ds.

More generally, for any n ∈ {0, 1, 2, . . . , 64} and any s, with probability ≈
1 − erf(2n+0.5) ≈ exp(−22n+1), the attack Ds has success probability at least

≈2n−64. There are 23·2
2n

choices of (3·22n)-bit strings s, and 23·2
2n

is considerably
larger than exp(22n+1), so presumably at least one of these values of s will have
Ds having success probability at least ≈2n−64.

Similar comments apply to essentially any short-key cipher. There almost
certainly exists a (3 · 22n)-bit string s such that the following simple attack
achieves success probability ≈2n−K/2, where K is the number of bits in the
cipher key: query 2K bits of cipher output, append s, and hash the result to 1
bit. Later we will write p for the success probability; note that the string length
is close to 2Kp2.

As n increases, the cost of hashing 3 · 22n + 2K bits grows almost linearly
with 22n in the RAM metric and the NAND metric. It grows more quickly in
the AT metric: storing the 3 · 22n bits of s uses area at least 3 · 22n, and even
a heavily parallelizable hash function will take time proportional to 2n simply
to communicate across this area, for a total cost proportional to 23n. In each
metric there are also lower-order terms reflecting the cost of hashing per bit; we
suppress these lower-order terms since our concern is with much larger gaps.

2.3. Iteration (Hellman etc.). Large success probabilities are more efficiently
achieved by a different type of attack that iterates, e.g., the function f7 :
{0, 1}128 → {0, 1}128 defined by f7(k) = AESk(0)⊕ 7.

Choose an attack parameter n. Starting from f7(k), compute the sequence of
iterates f7(k), f

2
7 (k), f

3
7 (k), . . . , f

2n

7 (k). Look up each of these iterates in a table
containing the precomputed quantities f2n

7 (0), f2n

7 (1), . . . , f2n

7 (2n − 1). If f j
7 (k)

matches f2n

7 (i), recompute f2n−j
7 (i) as a guess for k, and verify this guess by

checking AESk(1).
This computation finds the target key k if k matches any of the following

keys: 0, f7(0), . . . , f
2n−1
7 (0); 1, f7(1), . . . , f

2n−1
7 (1); etc. If n is not too large (see

the next paragraph) then there are close to 22n different keys here. The compu-
tation involves ≤2n initial iterations; 2n table lookups; and, in case of a match,
≤2n iterations to recompute f2n−j

7 (i). The precomputation performs many more
iterations, but this precomputation is only the cost of finding the algorithm, not
the cost of running the algorithm.

This heuristic analysis begins to break down as 3n approaches the key size
K. The central problem is that a chain f7(i), f

2
7 (i), . . . could collide with one of

the other 2n−1 chains; this occurs with probability ≈23n/2K , since there are 2n

keys in this chain and almost 22n keys in the other chains. The colliding chains
will then merge, reducing the coverage of keys and at the same time requiring
extra iterations to check more than one value of i. This phenomenon loses a
small constant factor in the algorithm performance for n ≈ K/3 and much more
for larger n.
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Assume from now on that n is chosen to be close to K/3. The algorithm then
has success chance ≈2−K/3. The algorithm cost is on the scale of 2K/3 in both
the RAM metric and the NAND metric; for the NAND metric one computes the
2n independent table lookups by sorting and merging.

This attack might not sound better (in the RAM metric) than the earlier
attack Ds, which achieves success chance ≈2−K/3 for some string s with ≈2K/3

bits. The critical feature of this attack is that it recognizes its successes. If the
attack fails to find k then one can change 7 to another number and try again,
almost doubling the success chance of the algorithm at the expense of doubling
its cost; for comparison, doubling the success chance of Ds requires quadrupling
its cost. Repeating this attack 2K/3 times reaches success chance ≈1 at cost
22K/3.

In the AT metric this attack is much more expensive. The table of precom-
puted quantities f2n

7 (0), f2n

7 (1), . . . , f2n

7 (2n − 1) uses area on the scale of 2n, and
computing f2n

7 (k) takes time on the scale of 2n, for a total cost on the scale of 22n

for an attack that finds ≈ 22n keys. One can compute f2n

7 (0), f2n

7 (1), . . . , f2n

7 (2n−
1) in parallel within essentially the same bounds on time and area, replacing
each precomputed key with a small circuit that computes the key from scratch;
precomputation does not change the exponent of the attack. One can, more
straightforwardly, compute any reasonable sequence of 22n guesses for k within
essentially the same cost bound. Achieving success probability p costs essentially
2Kp.

2.4. Multiple Targets. Iteration becomes more efficient when there are mul-
tiple targets: U cipher outputs AESk1

(0),AESk2
(0), . . . ,AESkU

(0) for U inde-
pendent uniform random keys k1, . . . , kU . Assume for simplicity that U is much
smaller than 2K ; the hypothesis U ≤ 2K/4 suffices for all heuristics used below.

Compute the iterates f7(k1), f
2
7 (k1), . . . , f

2n

7 (k1), and similarly for each of
k2, . . . , kU ; this takes 2nU iterations. Look up each iterate in a table of 2nU
precomputed keys. Handle any match as above.

In the RAM metric or the NAND metric this attack has cost on the scale
of 2nU , just like applying the previous attack to the U keys separately. The
benefit of this attack is that it uses a larger table, producing a larger success
probability for each key: the precomputation covers 22nU keys instead of just
22n keys. To avoid excessive chain collisions one must limit 2n to 2K/3U−1/3 so
that 23nU does not grow past 2K ; the attack then finds each key with probability
22nU/2K = 2−K/3U1/3, with a cost of 2n = 2K/3U−1/3 per key, a factor of U2/3

better than handling each key separately. Finding each key with high probability
costs 22K/3U−2/3 per key.

As before, the AT metric assigns a much larger cost than the RAM and NAND
metrics. The computation of f2n

7 (k1), f
2n

7 (k2), . . . , f
2n

7 (kU ) is trivially parallelized,
taking time on the scale of 2n, but the 2nU precomputed keys occupy area 2nU ,
for a total cost on the scale of 22nU , i.e., 22n per key, for success probability
22nU/2K per key. Note that one can carry out the precomputation using essen-
tially the same area and time. There is a large benefit from handling U keys
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together—finding all U keys costs essentially 2K , i.e., 2K/U per key—but this
benefit exists whether or not precomputation costs are taken into account.

2.5. Comparison. We summarize the insecurity established by the best attacks
presented above. Achieving success probability p against U keys costs

– RAM metric: ≈2Kp2 for p ≤ 2−K/3U−2/3; ≈(22K/3U−2/3)p for larger p.
– NAND metric: same.
– AT metric: ≈23K/2p3 for p ≤ 2−K/4U−1/2; ≈2KU−1p for larger p.

Figure G.1 graphs these approximations for U = 1, along with the cost of ex-
haustive search.

2.6. Previous Work. All of the attacks described here have appeared before.
In fact, when the conjectures in [16, Section 3.6] and [7, Section 3.2] were made,
they were already inconsistent with known attacks.

The iteration idea was introduced by Hellman in [45] for the special case
U = 1. Many subsequent papers (see, e.g., [25] and [49]) have explored variants
and refinements of Hellman’s attack, including the easy generalization to larger
U . Hellman’s goal was to attack many keys for a lower RAM cost than attacking
each key separately; Hellman advertised a “cost per solution” of 22K/3 using
a precomputed table of size 22K/3. The generalization to larger U achieves the
same goal at lower cost, but the special case U = 1 remains of interest as a
non-uniform single-key attack.

Koblitz and Menezes in [55] recently considered a family of attacks analo-
gous to Ds. They explained that there should be a short string s where Ds has
success probability at least ≈ 2−K/2, and analyzed some consequences for prov-
able concrete secret-key security. However, they did not analyze higher levels of
insecurity.

Replacing Ds with a more structured family of attacks, namely linear crypt-
analysis, can be proven to achieve insecurity 2−K/2 at low cost. (See, for example,
[39, Section 7], which says that this is “well known in complexity theory”.) De,
Trevisan, and Tulsiani in [36] proved cost ≈2Kp2, for both the RAM metric
and the NAND metric, for any insecurity level p. A lucid discussion of the gap
between these attacks and exhaustive search appears in [36, Section 1], but with-
out any analysis of the resulting trouble for the literature on provable concrete
secret-key security, and without any analysis of possible fixes.

Biham, Goren, and Ishai in [23, Section 1.1] pointed out that Hellman’s attack
causes problems for defining strong one-way functions. The only solution that
they proposed was adding uniformity. Note that this solution abandons the goal
of giving a definition for, e.g., the strength of AES as a one-way function, or the
strength of protocols built on top of AES. We analyze this solution in detail in
Appendix B.5.

Our AT analysis appears to be new. In particular, we are not aware of previous
literature concluding that switching to the AT metric removes essentially all of
the benefit of precomputation for large p, specifically p > 2−K/4U−1/2.
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3 Breaking the NIST P-256 Elliptic Curve

This section analyzes the cost of an attack against NIST P-256 [67], an elliptic
curve of 256-bit prime order � over a 256-bit prime field Fp. The attack computes
discrete logarithms on this curve, recovering the secret key from the public key
and thus completely breaking typical protocols that use NIST P-256.

The attack does not exploit any particular weakness of NIST P-256. Switching
from NIST P-256 to another group of the same size (another curve over the same
field, a curve over another field, a hyperelliptic curve, a torus, etc.) does not
stop the attack. We focus on NIST P-256 for both concreteness and practical
relevance, as in the previous section.

3.1. The Standard Attack without Precomputation. Let P be the spec-
ified base point on the NIST P-256 curve. The discrete-logarithm problem on
this curve is to find, given another point Q on this curve, the unique integer k
modulo � such that Q = kP . The standard attack against the discrete-logarithm
problem is the parallelization by van Oorschot and Wiener [72] of Pollard’s rho
method [73], described in the following paragraphs.

This attack uses a pseudorandom walk on the curve points. To obtain the
(i + 1)-st point Pi+1, apply a hash function h : Fp → I to the x-coordinate of
Pi, select a step Sh(x(Pi)) from a sequence of precomputed steps Sj = rjP (with
random scalars rj for j ∈ I), and compute Pi+1 = Pi + Sh(x(Pi)). The size of
I is chosen large enough to have the walk simulate a uniform random walk; a
common choice, recommended in [87], is |I| = 20. The walk continues until it
hits a distinguished point: a point Pi where the last t bits of x(Pi) are equal to
zero. Here t is an attack parameter.

The starting point of the bth walk is of the form aP + bQ where a is chosen
randomly. Each step increases the multiple of P , so the distinguished point has
the form a′P + bQ for known a′, b. The triple (a′P + bQ, a′, b) is stored and a
new walk is started from a different starting point. If two walks hit the same
distinguished point then a′P + bQ = c′P +dQ which gives (a′− c′)P = (d− b)Q;
by construction d 
≡ b mod �, revealing k ≡ (a′ − c′)/(d− b) mod �.

After
√
� ≈ 2128 additions (in approximately 2128−t walks, using storage

2128−t), there is a high chance that the same point has been obtained in two
different walks. This collision is recognized from a repeated distinguished point
within approximately 2t additional steps.

3.2. Precomputed Distinguished Points. To use precomputations in this
attack, build a database of triples of the form (a′P, a′, 0), i.e., starting each walk
at a multiple of P . The attack algorithm takes this database and starts a new
walk at aP + bQ for random a and b. If this walk ends in a distinguished point
present in the database, the DLP is solved. If the walk continues for more than
2t+1 steps (perhaps because it is in a cycle) or reaches a distinguished point not
present in the database, the attack starts again from a new pair (a, b).

The parameter t is critical for RAM cost here, whereas it did not significantly
affect RAM cost in Section 3.1. Choose t as �(log2 �)/3. One can see from the
following analysis that significantly smaller values of t are much less effective,
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and that significantly larger values of t are much more expensive without being
much more effective.

Construct the database to have exactly 2t distinct triples, each obtained from
a walk of length at least 2t, representing a total of at least 22t (and almost
certainly O(22t)) points. Achieving this requires searching for starting points
in the precomputation (and optionally also varying the steps Sj and the hash
function) as follows. A point that enters a cycle without reaching a distinguished
point is discarded. A point that reaches a distinguished point in fewer than
2t steps is discarded; each point survives this with probability approximately
(1 − 1/2t)2

t ≈ 1/e. A point that produces a distinguished point already in the
database is discarded; to see that a point survives this with essentially constant
probability (independent of �), observe that each new step has chance 2−t of
reaching a distinguished point, and chance O(22t/�) = O(2−t) of reaching one of
the previous O(22t) points represented by the database. Computer experiments
that we reported in [22], as a followup to this paper, show that all theO constants
here are reasonably close to 1.

Now consider a walk starting from aP + bQ. This walk has chance approxi-
mately 1/e of continuing for at least 2t steps. If this occurs then those 2t steps

have chance approximately 1−(1−22t/�)2
t ≈ 1−exp(−23t/�) ≥ 1−1/e of reach-

ing one of the 22t points in the precomputed walks that were within 2t of the
distinguished points in the database. If this occurs then the walk is guaranteed
to reach a distinguished point in the database within a total of 2t+1 steps. The
algorithm thus succeeds (in this way) with probability at least (1−1/e)/e ≈ 0.23.
This is actually an underestimate, since the algorithm can also succeed with an
early distinguished point or a late collision.

To summarize, the attack uses a database of approximately 3
√
� distinguished

points; one run of the attack uses approximately 2 3
√
� curve additions and suc-

ceeds with considerable probability. The overall attack cost in the RAM metric
is a small constant times 3

√
�. The security of NIST P-256 in this metric has thus

dropped to approximately 286. Note that the precomputation here is on the scale
of 2170, much larger than the precomputation in Section 2.3 but much smaller
than the precomputation in Section 2.2.

In the NAND metric it is simplest to run each walk for exactly 2t+1 steps,
keeping track of the first distinguished point found by that walk and then com-
paring that distinguished point to the 2t points in the database. The overall
attack cost is still on the scale of 3

√
�.

In the AT metric the attack cost is proportional to 3
√
�
2
, larger than the

standard
√
�. In this metric one does better by running many walks in parallel:

if Z points are precomputed, one should run approximately Z walks in parallel
with inputs depending on Q. The precomputation then covers 2tZ points, and
the computations involving Q cover approximately 2tZ points, leading to a high
probability of success when 2tZ reaches

√
�. The AT cost is also 2tZ. This attack

has the same cost as the standard Pollard rho method, except for small constants;
there is no benefit in the precomputations.
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3.3. Comparison. We summarize the insecurity established by the best attacks
presented above. Achieving success probability p costs

– RAM metric: ≈(p�)1/3.
– NAND metric: same.
– AT metric: ≈(p�)1/2.

Figure G.2 graphs these approximations.

3.4. Related Work. Kuhn and Struik in [58] and Hitchcock, Montague, Carter,
and Dawson in [46] considered the problem of solving multiple DLPs at once.
They obtain a speedup of

√
U per DLP for solving U DLPs at once. Their

algorithm reuses the distinguished points found in the attack on Q1 to attack Q2,
reuses the distinguished points found for Q1 and Q2 to attack Q3, etc. However,
their results do not seem to imply our 3

√
� result: they do not change the average

walk length and distinguished-point probabilities, and they explicitly limit U to
c 4
√
� with c < 1. See also the recent paper [61] by Lee, Cheon, and Hong, which

considered solving DLPs with massive precomputation for trapdoor DL-groups.
None of these papers noticed any implications for provable security, and none of
them went beyond the RAM metric.

Our followup paper [22] experimentally verified the algorithm stated above,
improved it to 1.77 · 3

√
� additions using 3

√
� distinguished points, extended it

to DLPs in intervals (using slightly more additions), and showed constructive
applications in various protocols.

4 Breaking DSA-3072

This section briefly analyzes the cost of an attack against the DSA-3072 signa-
ture system. The attack computes discrete logarithms in the DSA-3072 group,
completely breaking the signature system.

DSA uses the unique order-q subgroup of the multiplicative group F∗
p, where

p and q are primes with q (and not q2) dividing p− 1. DSA-3072 uses a 3072-bit
prime p and is claimed to achieve 2128 security. The standard parameter choices
for DSA-3072 specify a 256-bit prime q, allowing the 286 attack explained in
Section 3, but this section assumes that the user has stopped this attack by
increasing q to 384 bits (at a performance penalty).

4.1. The Attack. Take y = 2110, and precompute logg x
(p−1)/q for every prime

number x ≤ y, where g is the specified subgroup generator. There are almost
exactly y/ log y ≈ 2103.75 such primes, and each logg x

(p−1)/q fits into 48 bytes,
for a total of 2109.33 bytes.

To compute logg h, first try to write h as a quotient h1/h2 in F∗
p with h2 ∈{

1, 2, 3, . . . , 21535
}
, h1 ∈

{
−21535, . . . , 0, 1, . . . , 21535

}
, and gcd{h1, h2} = 1; and

then try to factor h1, h2 into primes ≤ y. If this succeeds then logg h
(p−1)/q is

a known combination of known quantities logg x
(p−1)/q, revealing logg h. If this

fails, try again with hg, hg2, etc.
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One can write h as h1/h2 with high probability, approximately (6/π2)23071/p,
since there are approximately (6/π2)23071 pairs (h1, h2) and two distinct such
pairs have distinct quotients. Finding the decomposition of h as h1/h2 is a very
fast extended-Euclid computation.

The probability that h1 is y-smooth (i.e., has no prime divisors larger than
y) is very close to u−u ≈ 2−53.06 where u = 1535/110. The same is true for h2;
overall the attack requires between 2107.85 and 2108.85 iterations, depending on
23071/p. Batch trial division, analyzed in detail in Section 5, finds the y-smooth
values among many choices of h1 at very low cost in both the RAM metric and
the NAND metric. This attack is much slower in the AT metric.

4.2. Previous Work. Standard attacks against DSA-3072 do not rely on pre-
computation and cost more than 2128 in the RAM metric. These attacks have
two stages: the first stage computes discrete logarithms of all primes ≤ y, and
the second stage computes logg h. Normally y is chosen to minimize the cost of
the first stage, whereas we replace the first stage by precomputation and choose
y to minimize the cost of the second stage.

The simple algorithm reviewed here is not the state-of-the-art algorithm for
the second stage; see, e.g., the “special-q descent” algorithms in [51] and [32].
The gap between known algorithms and existing algorithms is thus even larger
than indicated in this section. We expect that reoptimizing these algorithms
to minimize the cost of the second stage will produce even better results. We
emphasize, however, that none of the algorithms perform well in the AT metric.

5 Breaking RSA-3072

This section analyzes the cost of an attack against RSA-3072. The attack com-
pletely breaks RSA-3072, factoring any given 3072-bit public key into its prime
factors, so it also breaks protocols such as RSA-3072-FDH and RSA-3072-OAEP.

This section begins by stating a generalization of the attack to any RSA key
size, and analyzing the asymptotic cost exponents of the generalized attack. It
then analyzes the cost more precisely for 3072-bit keys.

5.1. NFS with Precomputation. This attack is a variant of NFS, the standard
attack against RSA. For simplicity this description omits several NFS optimiza-
tions. See [30] for an introduction to NFS.

The attack is determined by four parameters: a “polynomial degree” d; a
“radix” m; a “height bound” H; and a “smoothness bound” y. Each of these pa-
rameters is a positive integer. The attack also includes a precomputed “factory”

F =

{
(a, b) ∈ Z× Z :

−H ≤ a ≤ H; 0 < b ≤ H;
gcd{a, b} = 1; and a− bm is y-smooth

}
.

The standard estimate (see [30]) is that F has (12/π2)H2/uu elements where
u = (logHm)/ log y. This estimate combines three approximations: first, there
are about 12H2/π2 pairs (a, b) ∈ Z×Z such that −H ≤ a ≤ H, 0 < b ≤ H, and
gcd{a, b} = 1; second, a− bm has approximately the same smoothness chance as
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a uniform random integer in [1, Hm]; third, the latter chance is approximately
1/uu.

The integers N factored by the attack will be between md and md+1. For
example, with parameters m = 2256, d = 7, H = 255, and y = 250, the attack
factors integers between 21792 and 22048. Parameter selection is analyzed later
in more detail. The following three paragraphs explain how the attack handles
N .

Write N in radix m: i.e., find n0, n1, . . . , nd ∈ {0, 1, . . . ,m− 1} such that
N = ndm

d + nd−1m
d−1 + · · ·+ n0. Compute the “set of relations”

R =
{
(a, b) ∈ F : nda

d + nd−1a
d−1b+ · · ·+ n0b

d is y-smooth
}

using Bernstein’s batch trial-division algorithm [19]. The standard estimate is
that R has (12/π2)H2/(uuvv) elements where v = (log((d+ 1)Hdm))/ log y.

We pause the attack description to emphasize two important ways that this
attack differs from conventional NFS: first, conventional NFS chooses m as a
function of N , while this attack does not; second, conventional NFS computes R
by sieving all pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H to detect smoothness
of a − bm and nda

d + · · · + n0b
d simultaneously, while this attack computes R

by batch trial division of nda
d+ · · ·+n0b

d for the limited set of pairs (a, b) ∈ F .
The rest of the attack proceeds in the same way as conventional NFS. There

is a standard construction of a sparse vector modulo 2 for each (a, b) ∈ R,
and there is a standard way to convert several linear dependencies between the
vectors into several congruences of squares modulo N , producing the complete
prime factorization of N ; see [30] for details. The number of components of each
vector is approximately 2y/ log y, and standard sparse-matrix techniques find
linear dependencies using about 4y/ log y simple operations on dense vectors of
length 2y/ log y. If the number of elements of R is larger than the number of
components of each vector then linear dependencies are guaranteed to exist.

5.2. Asymptotic Exponents. Write L = exp((logN)1/3(log logN)2/3). For
the RAM metric it is best to choose

d ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

logm ∈ (0.9051 . . .+ o(1))(logN)2/3(log logN)1/3,

log y ∈ (0.8193 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL,

logH ∈ (1.0034 . . .+ o(1))(logN)1/3(log logN)2/3 = (1.0034 . . .+ o(1)) logL.

so that

u ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

u log u ∈ (0.3682 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.3682 . . .+ o(1)) logL,

d logH ∈ (1.1085 . . .+ o(1))(logN)2/3(log logN)1/3,

v ∈ (2.4578 . . .+ o(1))(logN)1/3(log logN)−1/3,

v log v ∈ (0.8193 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL.
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Out of the L2.0068...+o(1) pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H, there
are L1.6385...+o(1) pairs in the factory F , and L0.8193...+o(1) relations in R, just
enough to produce linear dependencies if the o(1) terms are chosen appropriately.
Linear algebra uses y2+o(1) = L1.6385...+o(1) bit operations.

The total RAM cost of this factorization algorithm is thus L1.6385...+o(1). For
comparison, factorization is normally claimed to cost L1.9018...+o(1) (in the RAM
metric) with state-of-the-art variants of NFS. Similar comments apply to the
NAND metric.

This algorithm runs into trouble in the AT metric. The algorithm needs space
to store all the elements of F , and can compute R in time Lo(1) using a chip of
that size (applying ECM to each input in parallel rather than using batch trial
division), but even the most heavily parallelized sparse-matrix techniques need
much more than Lo(1) time, raising the AT cost of the algorithm far above the
size of F . A quantitative analysis shows that one obtains a better cost exponent
by skipping the precomputation of F and instead computing the elements of F
one by one on a smaller circuit, for AT cost L1.9760...+o(1).

5.3. RAM Cost for RSA-3072. This attack breaks RSA-3072 with RAM
cost considerably below the 2128 security level usually claimed for RSA-3072.
Of course, justifying this estimate requires replacing the above o(1) terms with
more precise cost analyses.

For concreteness, assume that the RAM supports 128-bit pointers, unit-cost
256-bit vector operations, and unit-cost 256-bit floating-point multiplications.
As justification for these assumptions, observe that real computers ten years ago
supported 32-bit pointers, unit-cost 64-bit vector operations, and unit-cost 64-
bit floating-point multiplications; that the RAM model requires operations to
scale logarithmically with the machine size; and that previous NFS cost analyses
implicitly make similar assumptions.

Take m = 2384, d = 7, H = 262+261+257, and y = 266+265. There are about
12H2/π2 ≈ 2125.51 pairs (a, b) with −H ≤ a ≤ H, 0 < b ≤ H, and gcd{a, b} = 1,
and the integers a − bm have smoothness chance approximately u−u ≈ 2−18.42

where u = (logHm)/ log y ≈ 6.707, so there are about 2107.09 pairs in the factory
F . Each pair in F is small, easily encoded as just 16 bytes.

The quantities nda
d + nd−1a

d−1b+ · · ·+ n0b
d are bounded by (d+ 1)mHd ≈

2825.3. If they were uniformly distributed up to this bound then they would
have smoothness chance approximately v−v ≈ 2−45.01 where v = (log((d +
1)mHd))/ log y ≈ 12.395, so there would be approximately (12H2/π2)u−uv−v ≈
262.08 relations, safely above 2y/ log y ≈ 262.06. The quantities nda

d+nd−1a
d−1b+

· · ·+n0b
d are actually biased towards smaller values and thus have larger smooth-

ness chance, but this refinement is unnecessary here.
Batch trial division checks smoothness of 258 of these quantities simultane-

ously; here 258 is chosen so that the product of those quantities is larger (about
267.69 bits) than the product of all the primes ≤ y (about 267.11 bits). The main
steps in batch trial division are computing a product tree of these quantities and
then computing a scaled remainder tree. Bernstein’s cost analysis in [20, Section
3] shows that the overall cost of these two steps, for T inputs having a B-bit
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product, is approximately (5/6) log2 T times the cost of a single multiplication
of two (B/2)-bit integers. For us T = 258 and B ≈ 267.69, and the cost of batch
trial division is approximately 25.59 times the cost of multiplying two (B/2)-bit
integers; the total cost of smoothness detection for all (a, b) ∈ F is approximately
254.68 times the cost of multiplying two (B/2)-bit integers.

It is easiest to follow a standard floating-point multiplication strategy, dividing
each (B/2)-bit input into B/(2w) words for some word size w ∈ Ω(log2 B) and
then performing three real floating-point FFTs of length B/w. Each FFT uses
approximately (17/9)(B/w) log2(B/w) arithmetic operations (additions, sub-
tractions, and multiplications) on words of slightly more than 2w bits, for a
total of (17/3)(B/w) log2(B/w) arithmetic operations. A classic observation of
Schönhage [82] is that the RAM metric allows constant-time multiplication of
Θ(log2 B)-bit integers in this context even if the machine model is not assumed
to be equipped with a multiplier, since one can afford to build large multipli-
cation tables; but it is simpler to take advantage of the hypothesized 256-bit
multiplier, which comfortably allows w = 69 and B/w < 261 + 260, for a total
multiplication cost of 270.03. Computing R then costs approximately 2124.71.

Linear algebra involves 263.06 simple operations on vectors of length 262.06.
Each operation produces each output bit by xoring together a small number of
input bits, on average fewer than 32 bits. A standard block-Wiedemann compu-
tation merges 256 xors of bits into a single 256-bit xor with negligible overhead,
for a total linear-algebra cost of 2122.12. All other steps in the algorithm have
negligible cost, so the final factorization cost is 2124.93.

5.4. Previous Work. There are two frequently quoted cost exponents for NFS
without precomputation. Buhler, Lenstra, and Pomerance in [30] obtained RAM
cost L1.9229...+o(1). Coppersmith in [33] introduced a “multiple number fields”
tweak and obtained RAM cost L1.9018...+o(1).

Coppersmith also introduced NFS with precomputation in [33], using ECM
for smoothness detection. Coppersmith called his algorithm a “factorization fac-
tory”, emphasizing the distinction between precomputation time (building the
factory) and computation time (running the factory). Coppersmith computed
the same RAM exponent 1.6385 . . . shown above for the cost of one factorization
using the factory.

We save a subexponential factor in the RAM cost of Coppersmith’s algorithm
by switching from ECM to batch trial division. This is not visible in the asymp-
totic exponent 1.6385 . . . but is important for RSA-3072. Our concrete analysis
of RSA-3072 security is new, and as far as we know is the first concrete analysis
of Coppersmith’s algorithm.

Bernstein in [18] obtained AT exponent 1.9760 . . . for NFS without precom-
putation, and emphasized the gap between this exponent and the RAM exponent
1.9018 . . .. Our AT analysis of NFS with precomputation, and in particular our
conclusion that this precomputation increases the AT cost of NFS, appears to
be new.
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1 Introduction

In 2003, Taiwan introduced an e-government initiative to provide a national
public-key infrastructure for all citizens. This national certificate service allows
citizens to use “smart” ID cards to digitally authenticate themselves to govern-
ment services, such as filing income taxes and modifying car registrations online,
as well as to a growing number of non-government services. RSA keys are gen-
erated by the cards, digitally signed by a government authority, and placed into
an online repository of “Citizen Digital Certificates”.

On some of these smart cards, unfortunately, the random-number generators
used for key generation are fatally flawed, and have generated real certificates
containing keys that provide no security whatsoever. This paper explains how
we have computed the secret keys for 184 different certificates.
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Fig. 1. Retrospective summary of the data flow leading to successful factorizations.
After successfully factoring keys using a batch GCD algorithm, we characterized the
failures, and used trial division to check for broader classes of specified primes (input
on the right) as exact divisors. We then extended the attack and applied Coppersmith’s
method to check for the specified primes as approximate divisors.
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1.1 Factorization Techniques

Bad randomness is not new. Last year two independent research teams [13,17]
exploited bad randomness to break tens of thousands of keys of SSL certificates
on the Internet, a similar number of SSH host keys, and a few PGP keys.

Our starting point in this work is the same basic attack used in those papers
against poorly generated RSA keys, namely scanning for pairs of distinct keys
that share a common divisor (see Section 3). The basic GCD attack, applied to
the entire database of Citizen Digital Certificates, shows that 103 keys factor
into 119 different primes.

We go beyond this attack in several ways. First, the shared primes provide
enough data to build a model of the prime-generation procedure. It is surprising
to see visible patterns of non-randomness in the primes generated by these smart
cards, much more blatant non-randomness than the SSL key-generation failures
identified by [13,17]. One expects smart cards to be controlled environments with
built-in random-number generators, typically certified to meet various standards
and practically guaranteed to avoid such obvious patterns. For comparison, the
SSL keys factored last year were typically keys generated by low-power networked
devices such as routers and firewalls running the Linux operating system while
providing none of the sources of random input that Linux expects.

The next step is extrapolation from these prime factors: we hypothesize a
particular model of randomness-generation failures consistent with 18 of the
common divisors. The same model is actually capable of generating 164 different
primes, and testing all of those primes using batch trial division successfully
factors further keys. One might also speculate that the cards can generate primes
fitting a somewhat broader model; this speculation turns out to be correct,
factoring a few additional keys and bringing the total to 125. See Section 4 for
a description of the patterns in these primes.

There are also several prime factors that are similar to the 164 patterns
but that contain sporadic errors: some bits flipped here and there, or short
sequences of altered bits. We therefore mount several Coppersmith-style lattice-
based partial-key-recovery attacks to efficiently find prime divisors close to the
patterns. The univariate attacks (Section 5) allow an arbitrary stretch of er-
rors covering the bottom 40% of the bits of the prime. The bivariate attacks
(Section 6) allow two separate stretches of errors. The internal structure of the
patterns makes them particularly susceptible to these attacks. These attacks
produce dozens of additional factorizations, raising the total to 184.

In the end nearly half of the keys that we factored did not share any common
divisors with other keys; most of these were factored by the Coppersmith-style
attacks. This is, to our knowledge, the first publicly described instance of a
Coppersmith-style attack breaking keys in the wild.

1.2 Certification

The flawed keys were generated by government-issued smart cards that both the
certification authority and manufacturer advertise as having passed stringent
standards certifications. See Section 2.1.
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It is clear from their externally visible behavior, as shown in this paper, that
the random-number generators used to generate the vulnerable keys actually fall
far short of these standards. This demonstrates a failure of the underlying hard-
ware and the card’s operating system, both of which are covered by certification.

1.3 Response to Vulnerabilities

When we reported the common-divisor vulnerabilities to government authorities,
their response was to revoke exactly the certificates sharing common factors and
to issue new cards only to those users. See Section 7 for more details.

Our further factorizations demonstrate how dangerous this type of response
is. Randomness-generation failures sometimes manifest themselves as primes ap-
pearing twice, but sometimes manifest themselves as primes that appear only
once, such as the primes that we found by Coppersmith-type attacks. Both cases
are vulnerable to attackers with adequate models of the randomness-generation
process, while only the first case is caught by central testing for repeated primes.

We endorse the idea of centrally testing RSA moduli for common divisors as
a mechanism to detect some types of randomness-generation failures. We em-
phasize that finding repeated primes is much more than an indication that those
particular RSA keys are vulnerable: it shows that the underlying randomness-
generation system is malfunctioning. The correct response is not merely to elim-
inate those RSA keys but to revoke all keys generated with that generation of
hardware and throw away the entire randomness-generation system, replacing it
with a properly engineered system.

We also emphasize that an absence of common divisors is not an indication
of security. If the primes generated by these smart cards had been modified to
include a card serial number as their top bits then the keys would have avoided
common divisors but the primes would still have been reasonably predictable to
attackers. Our work illustrates several methods of translating different types of
malfunctioning behavior into concrete vulnerabilities. There are many potential
vulnerabilities resulting from bad randomness; it is important to thoroughly test
every component of a random-number generator, not merely to look for certain
types of extreme failures.

2 Background

2.1 The Taiwan Citizen Digital Certificate Program

Taiwan’s Citizen Digital Certificates (CDCs) are a standard means of authenti-
cation whenever Taiwanese citizens want to do business over the Internet with
the government and an increasing number of private companies.

CDCs are issued by the Ministry of Interior Certificate Authority (MOICA), a
level 1 subordinate CA of the Taiwanese governmental PKI. Since the program’s
launch in 2003, more than 3.5 million CDCs have been issued, providing public
key certificate and attribute certificate services. These digital certificates form
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a basis for the Taiwanese government’s plan to migrate to electronic certificates
from existing paper certificates for a range of applications including national and
other identification cards, driver’s licenses, and various professional technician
licenses.

Today, Taiwanese citizens can already use the CDC to authenticate them-
selves over the Internet in a number of important government applications, e.g.,
to file personal income taxes, update car registration, and make transactions
with government agencies such as property registries, national labor insurance,
public safety, and immigration. In addition, the CDC is accepted as a means
of authentication by a variety of organizations such as the National Science
Council, several local governments, and recently some private companies such
as Chunghwa Telecom. Overall, the CDC program appears quite successful as a
two-sided network, as it has attracted an increasing number of both applications
and subscribers.

Certificate registration: In order to generate CDCs, citizens bring their (paper)
ID cards to a government registration office. A government official places the
(smart) ID card into a registration device. The device prompts the card to gener-
ate a new cryptographic key, and the public key is incorporated into a certificate
to be signed by MOICA. The certificate is made available in a database online
for authentication purposes. In general, an individual will have two certificates:
one for signing, and one for encryption, each with distinct keys.

Standards certifications: MOICA states that these cards are “high security”, and
“have been accredited to FIPS 140-1 level 2”, and also that “A private key is
created inside and the private key can’t export from IC card after key created”.
(See [20] or search for “FIPS” on MOICA’s website http://moica.nat.gov.tw/
html/en/index.htm.) For comparison, the SSL keys factored last year were gen-
erated by software-hardware combinations that had never claimed to be evalu-
ated for cryptographic security, such as Linux running on a home router.

2.2 Collecting Certificates

In March 2012, inspired by the results of [13] and [17], we retrieved 3002273
CDCs from the MOICA LDAP directory at ldap://moica.nat.gov.tw. Out
of these CDCs, 2257569 have 1024-bit RSA keys, while the remaining, newer
744704 have 2048-bit RSA keys, as in 2010 MOICA migrated to 2048-bit RSA
and stopped issuing certificates of 1024-bit RSA keys.

The 1024-bit CDCs contain 2086177 distinct moduli, of which 171366 moduli
appear more than once. The repeated moduli appear to all be due to expired cer-
tificates still contained in the database, which contain the same keys as renewal
certificates issued to the same individuals.

http://moica.nat.gov.tw/html/en/index.htm
http://moica.nat.gov.tw/html/en/index.htm
ldap://moica.nat.gov.tw
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2.3 Random Number Generation

While generating high-quality random numbers is critical to the security of cryp-
tographic systems, it is also notoriously difficult to do. Non-deterministic behav-
ior is considered to be a fault in almost every other component of a computer,
but it is a crucial component of generating random numbers that an attacker
cannot predict. Several national and international standards for random number
generation [22,1,11] specify correct behavior for these types of systems. In gen-
eral, software pseudo-random number generators require a significant amount of
entropy before their output is useful for cryptographic purposes.

As we will see later in the paper, the smart cards used in the PKI we examined
fail to follow many well-known best practices and standards in hardware random
number generation: they appear to utilize a source of randomness that is prone
to failing, they fail to perform any run-time testing before generating keys, and
they clearly do not apply any post-processing to the randomness stream. The
lack of testing or post-processing causes the initial randomness-generation failure
to be much more damaging than it would have been otherwise.

Analog RNG circuits: An analog circuit is the standard choice when hardware
designers have the luxury of designing dedicated circuits for random-number
generation. An analog circuit allows the designer to obtain randomness from
simple quantum effects. While the use of radioactive decay is rare in commercial
products, the quantum noise exhibited by a current through a suitably biased
diode can be amplified and sampled to deliver a high-quality entropy source.

On-chip RNG circuits: Mixing analog and digital circuits on the same die
is costly, so chip designers often seek other sources of unpredictability. These
sources can include variation in gate propagation delays or gate metastability,
which exhibit inherent randomness. Designers can explicitly harness gate-delay
variation by building sets of free-running ring oscillators and sampling the be-
havior at hopefully uncorrelated intervals. To take advantage of randomness in
gate metastability, designers build circuits that output bits based on the time it
takes for the circuit to settle to a steady state, a variable which should be hard
to predict. These designs are often tricky to get right, as the chip fabrication
process can reduce or eliminate these variations, and subtle on-chip effects such
as inductive coupling or charge coupling between components can cause free-
running oscillators to settle into synchronised patterns and metastable circuits
to predictably land one way or the other depending on other components nearby
on the chip.

Handling entropy sources: Even with a perfectly unpredictable source of ran-
domness, care needs to be taken to convert the raw signal into usable random
numbers. Generally, designers characterize circuits in advance to understand the
entropy density, test the signal from the entropy source at run time, and run the
output through a compression function such as a cryptographically secure hash
function. These practices are required by a number of security standards such
as FIPS 140 [21].
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3 Batch GCD

This section reviews the approach of [13,17] for detecting common factors in a
collection of RSA keys, and reports the results of this approach applied to the
collection of Citizen Digital Certificates.

If there are two distinct RSA moduli N1 = pq1 and N2 = pq2 sharing exactly
one prime factor p, then the greatest common divisor of N1 and N2 will be p.
Computing this GCD is fast, and dividing it out of N1 and N2 produces the
other factors q1 and q2.

Of course, this type of vulnerability should never arise for properly generated
RSA keys. However, since [13,17] had observed weak random-number generators
producing keys with repeated factors in the wild, we began by checking whether
there were repeated factors among the Citizen Digital Certificates.

Instead of the naive quadratic-time method of doing this computation (check-
ing each N1 against each N2), we used a faster batch-GCD algorithm using
product and remainder trees described in [2,13]. We used the C implementation
available at https://factorable.net/resources.html.

We ran this implementation on the 3192962 distinct RSA moduli and found
that 103 moduli were factored due to nontrivial common factors. This computa-
tion, parallelized across four cores of a 3.1GHz AMD FX-8120, finished in just
45 minutes.

4 Attacking Patterned Factors

A properly functioning random number generator would never generate identi-
cal 512-bit primes, so the discovery of repeated prime factors described in the
previous section immediately indicates that the random-number-generation pro-
cess producing these keys is broken. This section analyzes the structure of the
repeated factors generated by the flawed random-number generator and designs
a targeted attack against this structure.

The 103 moduli with repeated factors show a remarkable distribution of the
shared factors; see Figure 2. The complete list of factors found using the GCD
approach is given in Appendix A.

One prime factor, p110, appears a total of 46 times with different second
primes. The hexadecimal representation of this factor is

0xc00000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000002f9

which is the next prime after 2511 + 2510.
The next most common factor, repeated 7 times, is

0xc92424922492924992494924492424922492924992494924492424922492924

992494924492424922492924992494924492424922492924992494924492424e5

which displays a remarkable periodic structure. The binary representation of this
integer, excluding a few most and least significant bits, is a repeated sequence
of the string 001 with a “hiccup” every 16 bits.

https://factorable.net/resources.html
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Fig. 2. Relationships between keys with shared factors. Each ellipse represents a prime;
edges connect prime factors dividing the same modulus.

Nearly all of the shared prime factors had a similar and immediately apparent
periodic structure. We hypothesized that nearly every repeated prime factor had
been generated using the following process:

1. Choose a bit pattern of length 1, 3, 5, or 7 bits, repeat it to cover more than
512 bits, and truncate to exactly 512 bits.

2. For every 32-bit word, swap the lower and upper 16 bits.
3. Fix the most significant two bits to 11.
4. Find the next prime greater than or equal to this number.

We generated the 164 distinct primes of this form corresponding to all
patterns of length 1, 3, 5, and 7 and tested divisibility with each modulus. This
factored a total of 105 moduli, including 18 previously unfactored moduli, for a
total of 121.
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None of the repeated primes exhibit a (minimal) period of length 9 or larger.
On the other hand, the data for period lengths 1, 3, 5, 7 shows that patterns with
longer periods typically appear in fewer keys than patterns with shorter periods,
and are thus less likely to appear as divisors of two or more keys, raising the
question of whether there are primes with larger periods that appear in only one
key and that are thus not found by the batch-GCD computation. We therefore
extended this test to include length-9 periods and length-11 periods. The length-
9 periods factored 4 more keys but the length-11 periods did not factor any new
keys, leading us to speculate that 3, 5, and 7 are the only factors of the period
length. We then ran a complete test on all length-15 patterns but did not find
any further factors. The total number of certificates broken by these divisibility
tests, together with the initial batch-GCD computation, is 125.

Sporadic errors: The handful of shared prime factors in our sample of GCD-
factored keys that did not match the above form were differing from patterns in
very few positions. We experimented with finding more factors using brute-force
search starting from 0xc0...0 and found a few new factors, but these factors are
more systematically and efficiently found using LLL in Coppersmith’s method,
as described in the next section.

We also experimented with searching for sporadic errors in factors using the
techniques of Heninger and Shacham [14] and Paterson, Polychroniadou, and
Sibborn [23]. The main idea is to assume that both of the factors of a weak
modulus share nearly all bits in common with a known pattern, with only spo-
radic errors in each. It is then possible to recover the primes by enumerating, bit
by bit, a search tree of all possible prime factors, and using depth- or breadth-
first search with pruning to find a low-Hamming weight path through the search
tree of all solutions.

Unfortunately, there are a few difficulties in applying this idea to the case at
hand. The first is that because the primes are generated by incrementing to the
next prime, a single sporadic error is likely to cause the least significant 9 bits of
each prime to appear random (except for the least significant bit which is set to
1), so generating a solution tree from the least significant bits necessarily begins
with that much brute forcing. Second, there is only a single constraint on the
solutions (the fact that pq = N), instead of four constraints, which results in
a lower probability of an incorrect solution being pruned than in the examples
considered by [14,23]. And finally, in order to apply the algorithms, we must
guess the underlying pattern, which in our case requires applying the algorithm
to 1642 possibilities for each modulus.

Applying this algorithm using only the all-zeros pattern for both factors to the
45 moduli with 20 bits of consecutive zeros took 13 minutes and factored 5 mod-
uli. All of these moduli were also factored by the GCD method or Coppersmith
methods described in the next section.
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5 Univariate Coppersmith

Several of the factors computed via the GCD algorithm in Section 3 follow the
bit patterns described in Section 4, but are interrupted by what appear to be
sporadic errors. Coppersmith’s method [6,7] factors RSA moduli if the top bits
of the primes are known, which matches our situation if the errors appear in the
bottom few bits of a factor. The method uses lattice basis reduction to factor in
polynomial time if at least half of the most significant bits of a prime factor are
known; however, since the running time scales very poorly as one approaches this
bound, we will be more interested in less optimal parameters that are efficient
enough to apply speculatively to millions of keys.

This section presents this method following Howgrave-Graham [16] for lattices
of dimension 3 and 5 and gives an outlook of how more keys could be factored
using larger dimensions. The idea is as follows: we assume that some prime factor
p of N is of the form

p = a+ r

where a is a known 512-bit integer (one of the bit patterns described in the
previous section) and r is a small integer error to account for a sequence of bit
errors (and incrementing to next prime) among the least significant bits of p.

In the Coppersmith/Howgrave-Graham method, we can write a polynomial

f(x) = a+ x

and we would like to find a root r of f modulo a large divisor of N (of size
approximately N1/2 ≈ p). Let X be the bound on the size of the root we are
searching for. We will use lattice basis reduction to construct a new polynomial
g(x) where g(r) = 0 over the integers, and thus we can factor g to discover r.

Let L be the lattice generated by the rows of the basis matrix⎡⎣X2 Xa 0
0 X a
0 0 N

⎤⎦
corresponding to the coefficients of the polynomials Xxf(Xx), f(Xx), N . Any
vector in L can be written as an integer combination of basis vectors, and,
after dividing by the appropriate power of X , corresponds to the coefficients
of a polynomial g(x) which is an integer combination of f and N , and is thus
divisible by p by construction. A prime p is found by this method if we can find
g such that g(ri) ≡ 0 mod p holds not only modulo p but over the integers. The
latter is ensured if the coefficients of g are sufficiently small, which corresponds
to finding a short vector in L.

To find such a short vector, we apply the LLL lattice basis reduction algo-
rithm [18]. To finish the algorithm, we regard the shortest vector in the reduced
basis as the coefficients of a polynomial g(Xx), compute the roots ri of g(x),
and check if a+ ri divides N . If so, we have factored N .
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The shortest vector v1 found by LLL is of length

|v1| ≤ 2(dimL−1)/4(detL)1/ dimL,

which must be smaller than p for the attack to succeed.
In our situation this translates to

21/2
(
X3N

)1/3
< N1/2 ⇔ X < 2−1/2N1/6,

so for N ≈ 21024 we can choose X as large as 2170, meaning that for a fast
attack using dimension-3 lattices up to the bottom third of a prime can deviate
from the pattern a. In the following we ignore the factor 2(dimL−1)/4 since all
lattices we deal with are of small dimension and the contribution compared to
N is negligible.

5.1 Experimental Results

A straightforward implementation using Sage 5.8 took about one hour on one
CPU core to apply this method for one of the 164 patterns identified in Section 4.
Running it for all 164 patterns factored 160 keys, obviously including all 105 keys
derived from the patterns without error, and found 39 previously unfactored
keys.

It is worth noting that the 160 keys included all but 2 of the 103 keys factored
with the GCD method, showing that most of the weak primes are based on the
patterns we identified and that errors predominantly appeared in the bottom
third of the bits. The missing 2 keys are those divisible by 0xe0000...0f. In-
cluding 0xd0000...0, 0xe0000...0, 0xf0000...0 as additional bit patterns
did not reveal any factors beyond the known ones, ruling out the hypothesis that
the prime generation might set the top 4 bits rather than just 2. Instead this
prime must have received a bit error in the top part.

5.2 Handling More Errors

Coppersmith’s method can find primes with errors in up to 1/2 of their bits using
lattices of higher dimension. Getting close to this bound is prohibitively expen-
sive, but trying somewhat larger dimensions than 3 is possible. For dimension 5
we used basis

{N2, Nf(xX), f2(xX), xXf2(xX), (xX)2f2(xX)}

which up to LLL constants handles X < N1/5, i.e. up to 204 erroneous bottom
bits in p for N of 1024 bits. The computation took about 2 hours per pattern
and revealed 6 more factors.

We did not use higher dimensions because the “error” patterns we observed
are very sparse making it more profitable to explore multivariate attacks (see
Section 6).
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5.3 Errors in the Top Bits

The factor 0xe000...f (2511+2510+2509+15) appeared as a common factor after
taking GCDs but was not found by the lattice attacks described in this section
applied to the basic patterns described in Section 4. We can apply Coppersmith’s
attack to search for errors in higher bits of p by defining the polynomial f as
f(x) = a + 2tx. Here t is a bit offset giving the location of the errors we hope
to learn. The method and bounds described in this section apply as well to this
case.

However, since we hypothesize that the prime factors are generated by incre-
menting to the next prime after a sequence of bits output by the flawed RNG,
we will not know the least significant bits of a because they have been modified
in the prime generation process. This problem might speculatively be overcome
by brute forcing the m least significant bits of each pattern: for each application
of the algorithm to a single pattern a, we would apply the algorithm to the 2m−1

patterns generated by fixing a and varying the bottom m bits, with the least
significant bit always fixed to 1. This will find factors if finding the next prime
from the base string with errors did not require incrementing by more than those
bottom m bits.

The following rough analysis suggests that for this attack to have a 50% chance
of success, we need to apply the algorithm to 128 new patterns for every old
pattern. Recall that the chance that a number around z is prime is approximately
1/ log z, where log is the natural logarithm. In particular, each number around
2512 has about a 1/355 chance of being prime. Since 1 − (1 − 1/355)256 ≈ 0.5,
trying 128 patterns for the bottom eight bits for odd patterns has a 50% chance
of covering a sufficiently large interval to find a prime. See [12] for more precise
estimates. Applying this to our 164 base patterns, our implementation would
require 20992 core hours, or close to 2.5 core years. It is fairly likely that more
factors would be found with this search but the method presented in the following
section is more efficient at handling errors in top and bottom positions unless a
very large portion of the top bits are erroneous.

6 Bivariate Coppersmith

The lattice attacks described in the previous section let us factor keys with un-
predictable bits occurring in the least significant bits of one of the factors, with
all of the remaining bits of the factor following a predictable pattern. In this sec-
tion, we describe how we extended this attack to factor keys with unpredictable
bits among the middle or most significant bits of one of the factors, without
resorting to brute-forcing the bottom bits.

In the basic setup of the problem, we assume that one of the factors p of N
has the form

p = a+ 2ts+ r

where a is a 512-bit integer with a predictable bit pattern (as described in
Section 4), t is a bit offset where a sequence of bit errors s deviating from the
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predictable pattern in a occurred during key generation, and r is an error at the
least significant bits to account for the implementation incrementing to the next
prime.

To apply Coppersmith’s method, we can define an equation f(x, y) = a +
2tx + y and try to use lattice basis reduction to find new polynomials Qi(x, y)
with the property that if f(s, r) vanishes modulo a large unknown divisor p of
N and s and r are reasonably small, then Qi(s, r) = 0 over the integers. In that
case, we can attempt to find appropriate zeros of Qi. The most common method
to do this is to look at multiple distinct polynomials Qi and hope that their
common solution set is not too large.

These types of bivariate Coppersmith attacks have many cryptanalytic ap-
plications, perhaps most prominently Boneh and Durfee’s attack against RSA
private key d < N0.29 [3]. Our approach is very similar to that described by
Herrmann and May for factoring RSA moduli with bits known [15], although for
the application we describe here, we are less interested in optimal parameters,
and more in speed: we wish to find the keys most likely to be factored using very
low dimensional lattices.

Algebraic independence: Nearly all applications of multivariate Coppersmith
methods require a heuristic assumption that the attacker can obtain two (or sev-
eral) algebraically independent polynomial equations determined by the short
vectors in a LLL-reduced lattice; this allows the attacker to compute a finite
(polynomially-sized) set of common solutions. Most theorem statements in these
papers include this heuristic assumption of algebraic independence as a matter of
course, and note briefly (if at all) that it appears to be backed up experimentally.

Notably, in our experiments, this assumption did not hold in general. That is,
most of the time the equations we obtained after lattice basis reduction were not
algebraically independent, and in particular, the algebraic dependencies arose
because all of the short vectors in the lattice were polynomial multiples of a
single bivariate linear equation. This linear equation did in fact vanish at the
desired solution, but without further information, there are an infinite number
of additional solutions that we could not rule out. However, we were often able
to find the solution using a simple method that we describe below.

Herrmann and May [15] describe one case where the assumption of algebraic
independence did not hold in their experiments, namely when X and Y were
significantly larger than the values of s and r. Similar to our case they observed
that the polynomials of small norm shared a common factor but unlike in our
case this factor was the original polynomial f . Note that the linear polynomial
in our case vanishes over the integers at (s, r) while f vanishes only modulo p.

We experimented with running smaller dimensional lattice attacks in order
to generate this sublattice more directly. The attack worked with smaller degree
equations than theoretically required to obtain a result, but when we exper-
imented with lattices generated from linear equations, this sublattice did not
appear. Note that we specify a slightly different basis for the lattice, in terms
of monomial powers rather than powers of f , which may have an effect on the
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output of the algorithm compared to the examples in [15] and might explain why
we find a useful linear equation in the sublattice instead of the useless factor f .

6.1 Implementation Details

Lattice construction: Let X and Y be bounds on the size of the roots at x
and y we wish to find. Our lattice is constructed using polynomial multiples of
f(x, y) = a+ 2txX + yY and N up to degree k vanishing to degree 1 modulo p.
Our lattice basis consists of the coefficient vectors of the set of polynomials

{(Y y)h(Xx)if jN � | j + � = 1, 0 ≤ h+ i+ j ≤ k}
= {N, xXN, f, (xX)2N, (xX)f, . . . , (yY )k−2(xX)f, (yY )k−1f},

using coefficients of the monomials {1, x, y, x2, . . . , yk−1x, yk}. The determinant
of this lattice is

detL = Nk+1(XY )(
k+2
3 ).

and the dimension is
(
k+2
2

)
. Omitting the approximation factor of LLL, we want

to ensure that

(detL)1/ dimL < p(
Nk+1(XY )(

k+2
3 )

)1/(k+2
2 )

< N1/2.

So for N ≈ 21024, setting k = 3 should let us find XY < 2102 and k = 4 should
let us find XY < 2128. The parameter choice k = 2 results in a theoretical bound
XY < 1, but we also experimented with this choice; see below.

Solving for solutions: After running LLL on our lattice, we needed to solve the
system of equations it generated over the integers to find our desired roots. The
usual method of doing this in bivariate Coppersmith applications is to hope
that the two shortest vectors in the reduced basis correspond to algebraically
independent polynomials, and use resultants or Gröbner bases to compute the
set of solutions. Unfortunately, in nearly all of our experiments, this condition
did not hold, and thus there were an infinite number of possible solutions.

However, a simple method sufficed to compute these solutions in our experi-
ments. In general, the algebraic dependencies arose because the short vectors in
the reduced basis corresponded to a sublattice of multiples of the same degree-
one equation, with seemingly random coefficients, which vanished at the desired
roots. (The coefficient vectors were linearly independent, but the underlying
polynomials were not algebraically independent.) The other polynomial factors
of these short polynomials did not vanish at these roots. This linear equation
has an infinite number of solutions, but in our experiments our desired roots cor-
responded to the smallest integer solution, which we could obtain by rounding.

Let
ux+ vy − w = 0
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be an equation we want to solve for x and y. If u and v are relatively prime,
then we can write c1u+ c2v = 1, and parametrize an integer family of solutions

x = c1w + vz

y = c2w − uz

with z = c2x− c1y.
In experiments with the already-factored moduli, we observed that the solu-

tion was often the minimum integer value of x or y among the solution family.
So we searched for z among the rounded values of −c1w/v and c2w/u. This solu-
tion successfully factored the moduli in our dataset whenever the shortest-vector
polynomial returned by lattice basis reduction was not irreducible.

For the handful of cases where the lattice did result in independent equations,
we computed the solutions using a Gröbner basis generated by the two shortest
vectors.

6.2 Experimental Results

We ran our experiments using Sage 5.8 [24] parallelized across eight cores on
a 3.1GHz AMD FX-8120 processor. We used fpLLL [4] for lattice basis reduc-
tion, and Singular [8] to factor polynomials and compute Gröbner bases. For
each lattice, we attempted to solve the system of equations either by factoring
the polynomial into linear factors and looking for small solutions of the linear
equations as described above or using Gröbner bases.

We attempted to factor each of the 2,086,171 1024-bit moduli using several
different parameter settings. For k = 3, we had 10-dimensional lattices, and
attempted to factor each modulus with the base pattern a = 0 using Y = 230,
X = 270, and t = 442. We then experimented with k = 4, Y = 228, and
X = 2100, which gave us 15-dimensional lattices, and experimented with a base
pattern a = 2511 + 2510 and five different error offsets: t = 0 with Y = 2128 and
X = 1, and t = 128, t = 228, t = 328, and t = 428 with Y = 228 and X = 2100.
Finally, we experimented with the choice k = 2, X = 4, Y = 4 and the choices
of t and a used in the k = 4 experiments, which used 6-dimensional lattices and
theoretically should not have produced output, but in fact turned out to produce
nearly all of the same factorizations as the choices above. We ran one very large
experiment, using k = 2, t = 1, Y = 228, X = 274, t = 438, and running against
all 164 patterns, which produced 155 factored keys, including two previously
undiscovered factorizations. The choice k = 1 with the same parameter choices
as k = 2 did not produce results.

6.3 Handling More Errors

From these experimental settings, it seems likely that many more keys could
be factored by different choices of parameters and initial pattern values; one
is limited merely by time and computational resources. We experimented with
iterating over all patterns, but the computation quickly becomes very expensive.
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Table 1. Experimental results from factoring keys using a bivariate Coppersmith ap-
proach, using the parameters listed in the text. Where we collected data, we noted
the very small number of cases where the lattice produced algebraically independent
polynomials; all of the other cases were solved via the heuristic methods described
above.

k log2(XY ) # t # patterns # factored keys # alg. indep. eqns. running time

2 4 5 1 104 3 4.3 hours
2 4 1 164 154 21 195 hours
3 100 1 1 112 - 2 hours
4 128 5 1 108 4 20 hours

Patterned factors: Mysteriously, using the base patterns a = 0 and a = 2511 +
2510, the algorithm produced factorizations of keys with other patterned factor-
izations. This is because the product of the bit pattern of the relevant factor
multiplied with a small factor produced an integer of the form we searched for,
but we are as yet unable to characterize this behavior in general.

Higher powers of p: Similar to the univariate case we can construct higher-
dimensional lattices in which each vector is divisible by higher powers of p, e.g.
using multiples of N2, Nf , and f2 for divisibility by p2. However, this approach
is successful in covering larger ranges of XY only for lattices of dimension at
least 28, which would incur a significantly greater computational cost to run over
the entire data set of millions of keys.

More variables: More isolated errors can be handled by writing p = a+
∑c

i=1 2
tisi

with appropriate bounds on the si < Xi so that the intervals do not overlap. The
asymptotically optimal case is described in [15] and reaches similar bounds for∏c

i=1Xi as in the univariate and bivariate case. However, the lattice dimension
increases significantly with c. For c = 3, i.e. two patches of errors together with
changed bottom bits to generate a prime, the condition (detL)dim1/L < p holds
only for lattices of dimension at least 35 at which point X1X2X3 < N1/14 can
be found. A lattice of dimension 20 leads to the condition X1X2X3 < 1. A
sufficiently motivated attacker can run LLL on lattices of these dimensions but
we decided that factors found thus far were sufficient to prove our point that the
smart cards are fatally flawed.

6.4 Extension to Implicit Factoring

Ritzenhofen and May [19] and Faugère, Marinier, and Renault [9] give algorithms
to factor RSA moduli when it is known that two or more moduli have prime
factors that share large numbers of bits in common. Unfortunately, these results
seem to apply only when the moduli have prime factors of unbalanced size,
whereas in our case, both prime factors have 512 bits.
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7 Hardware Details, Disclosure, and Response

Around 2006–2007, MOICA switched card platforms from their initial supplier
and began to use Chunghwa Telecom’s HiCOS PKI smart cards, specifically
Chunghwa Telecom HD65145C1 cards (see [5]), using the Renesas AE45C1 smart
card microcontroller (see [10]). We have confirmed these details with MOICA.

Unfortunately, the hardware random-number generator on the AE45C1 smart
card microcontroller sometimes fails, as demonstrated by our results. These fail-
ures are so extreme that they should have been caught by standard health tests,
and in fact the AE45C1 does offer such tests. However, as our results show,
those tests were not enabled on some cards. This has now also been confirmed
by MOICA. MOICA’s estimate is that about 10000 cards were issued without
these tests, and that subsequent cards used a “FIPS mode” (see below) that
enabled these tests.

The random numbers generated by the batch of problematic cards obviously
do not meet even minimal standards for collecting and processing entropy. This
is a fatal flaw, and it can be expected to continue causing problems until all of
the vulnerable cards are replaced.

The AE45C1 chip was certified conformant with Protection Profile BSI-PP-
0002-2001 at CC assurance level EAL4+ [10]. The HD65145C1 card and HICOS
operating system were accredited to FIPS 140-2 Level 2 [5]. The CC certifi-
cation stated “The TOE software for random number postprocessing shall be
implemented by the embedded software developer”, and the FIPS certification
was limited to “FIPS mode” (see http://www.cryptsoft.com/fips140/out/

cert/614.html). However, neither certification prevented the same card from
also offering a non-FIPS mode, and neither certification caught the underlying
RNG failures. We recommend that industry move to stronger certifications that
prohibit error-prone APIs and that include assessments of RNG quality.

In April 2012 we shared with MOICA our preliminary list of 103 certificates
compromised by GCD. We announced these results in a talk in Taiwan in July
2012. We provided an extended list of compromised certificates to MOICA and
Chunghwa Telecom in June 2013, along with an early draft of this paper. MOICA
and Chunghwa Telecom subsequently confirmed our results; asked the cardhold-
ers to come in for replacement cards; revoked the compromised certificates; and
initiated the task of contacting 408 registration offices across Taiwan to manually
trace and replace all of the vulnerable cards from the same batch.
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A Appendix: Raw Data

The following data presents all primes found using the GCD method (Section 3);
the initial number indicates how often that particular prime was found.

46, 0xc00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002f9

7, 0xc92424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424e5

7, 0xc00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101ff

6, 0xd24949244924249224929249924949244924249224929249924949244924249224929249924949244924249224929249924949244924249224929249924949d7

4, 0xf6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdbc1

4, 0xdb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6c6e23

4, 0xedb6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b867

3, 0xd0840842421021080842842121081084842142101084084242102108084284212108108484214210108408424210210808428421210810848421421010840985

2, 0xe000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000f

2, 0xf5ad5ad6d6b56b5a5ad6ad6b6b5ab5adad6bd6b5b5ad5ad6d6b56b5a5ad6ad6b6b5ab5adad6bd6b5b5ad5ad6d6b56b5a5ad6ad6b6b5ab5adad6bd6b5b5ad5d39

2, 0xc28550a128500a14850aa14250a114280a144285a14228501428850a428550a128500a14850aa14250a114280a144285a14228501428850a428550a128500a6f

2, 0xfdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefe0b1

2, 0xd2494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992484a0f

2, 0xe94a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a529294b9af5

2, 0xdb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d7015

2, 0xca52a529294a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a601

2, 0xc000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002030b

2, 0xd8c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c69107

2, 0xf18c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c1907

2, 0xf7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd8289

2, 0xc4214210108408424210210808428421210810848421421010840842421021080842842121081084842142101084084242102108084284212108108484214369

2, 0xef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf969

1, 0xd4e682e94f1d6018a02056c0db850a74b3591b0f840514ce4017b2f5d25925ba2429a66e384b5be96e6a0a03d4a11eba10416018de3b3e354477250037b6f813

1, 0xcac05be5c1eabf0c21f8e95ce5d3c0777904282d1fd0c1738d727e197a0a32fda4cc59cc50b99d29f7fa8d07c972402ab88573e255db6bab05505812c73c2911

1, 0xcf052499061243cd82cd1b2059446c963487834d929ac929d92b259245254c7828ed3e92259292c924d24947d4896d1545f4001029b3b265d0ea4d144e242dbd

1, 0xfa94a972e2dcff068ee1257e228b53e9b9fcf46877f07daaa4d13c2bedf132d07730f549f4691f68553f84be8ff405f16a663d8fb8f82987bd9e073a8108edc3

1, 0xef7befbdbdef9ef6f7bd7bde9ef7ef7b7bdd9dcfef7b37bd9feddef7b7bd7bdedee6ef3b5bde3de7ed7bfa99adebdef7b7bd77d7cff1ee7b7bdebdeeef79f8ab

1, 0xeeb2919e1dc9ce33c2a0d9e190465b164a53c7c03e9a3d009ecf8fd6bdf743e04444332b7ff4a0e8f53b5123a5422563a06a487cd6cb5f36cd5411f0ae4dbc69

1, 0xf51576e530188d59bbc5f4f6ec9e824d7a9e70142952b11c49a6f38188ad9dbe3d29d1d9498b7aeffc4d9b0420f71895f62e2a7b79d4887e45b6227e0b84fb97

1, 0xd83f22a49af67d7f196df580d514464d6dbb880b03bea50ddcc1f931ef7f09af2f880de26d88cbf24567302a0d6eed7c8eab859aa0c1cc18bd8efacdce194c13

http://moica.nat.gov.tw/html/en_T2/faq22-066-090.htm
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/nistpubs/800-29/sp800-29.pdf
http://www.sagemath.org
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1, 0xc1df3e8db5f7b7f456edc1f60d23f60360536565836ce37af6f02e55de24a8dc373f3c5d49c93ba6fee0d44d08bc5fb0655781adee5c05777fd4da2bcd803d0f

1, 0xe279872638463a0a32a1412b13efccfa5ed68db44963c7f6955a3816bcaa33f94794c8b75298ddf4a8664e485ef99e6d9469f5187939e395cb1f09e666786741

1, 0xce73e73939ce9ce7e738739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73ead7

1, 0xd92ae5c6453efec55c5614207827de2b77bf3ef027f4230f8aac1fd9b0d69fdc61934132766f8dd1d8cb22ec38d834037eff6d9dd3535b9e582fbdd2327c9ce5

1, 0xc080000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000000001003f

1, 0xfff7fffffefffffffffffffffffffffe7ffffff7fffffffffffffffffffffd7ffffffbffffff7bfffbfcffff7fffffffffbf00000000000000000000000000c1

1, 0xeb6f80ff65b4a6d462cfa5961f542f25e207667752b0482f5ac9dc091f4dc854de9c73b288aaa5da5298a33928f7b2920f89b81e3635932bc9db99a34e52b82b

1, 0xfdf7b9bffbffdebeb28592b76f69bbffbffdafaeffd9f7bdf1ee7bfa6e2f33bb67d5a5b5676d2bf6a1de3626f06be367ffde73db1e01f5d3855f21f0eda8b4db

1, 0xe643203b22b4048427210bd390d45a3a62ac132c0063990067686123d50128812e09411f27098400c841e09183400431018100a2b1cc0954c0405026420e8c7f

1, 0xffefef7ffde6ffff7fffffbfffffffbffeffbffdfffffffffffffffffffffffffffffffff1fcffffef46fffdfdfff7fffffffffffffffffffffeefefeceffe8d

1, 0xf6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66b37b6db019a4697

1, 0xc000b800000000000000000000000000000000000000000000000000000000000000068000000000000000000000000000000000000000000000000000000251

1, 0xccc5ebfea2f4beb8b62dfef5429f97f06af0af8d08159d21df4540a0197ffdb8386c8ebb18bd70b0f46c9615d2fcd0ea38a2cadb522cf79f2c3ab27d9564a197

1, 0xedb6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dadb6d9b6f6db66da6b6fbf6cb9b7ddb656d9e6d36a7dbb673ba6ddb6f6db66df6b5e5

1, 0xe7fa15ab6c3d2c3d13960f598cd2bbf74a688580e5fdc70064563a10558f1dfd36d5e8aec88897c79d73ebdcbec1b5f0121175c8aae69e3a31a63f9e66e0bfc5

1, 0xffb308867fee16267feb2b1af212ffefffffe4308866fff5fffefe13ffcf869aff4bf907ff1f9393fff0fff3fffcfff7ff3ef703ffaa8c7ffffe491affeff3b1

1, 0xc010208a48c18021210810848421423010a4084242006309ca468d2123081084a520431000c40a425210210a084a8ce1290810cc84204a9011ac2842401022e1

1, 0xe739729c9ce7ce73539c29cec126e7383b8e89bd2207faed08428421318c1084c410631858c68c63e31035cc8c63ce31318810c64331231818c60e63623b32a3

1, 0xfeb1b9efa29f64ed53628a10a924b5268163dd887f653a6b82edb063b6874c2039e4938018ab949a3c28cdc785fe2be58872c0c8a9ec5171e37ea6a82d5d46d7

1, 0xc0100000000000000000000000009000004260400c000000000018000000000040208000000000202000010800000000000000000000000000028000000002f3

1, 0xf9d5834f918b673e1f7eaae3cc5d97dd2706dd8de9c5b2fbef679b2c196933fe30f62ac3f7fcc1c593fb63a0bbb8838b8486eac959cc3949ea9182c46396fbcb

1, 0xdac45d37aadacfec73b3184ef43d52d6314754abd38414dde03ade396bd809aa2811047f015c9c71f0cbb0a91028190adeacc36165b0e0e6fce64549f947e0d5

1, 0xf49808713746a41a331625a7cb389611eaa3905984245f99e828f17f867413cfae91230478715024db5ead44beb20fbc73a23a271d627a11747b5823f753eb03

1, 0xd67a7b111c0401971f57806a2be12a174b8923fd3972ec64fe3de3ee96594a14207831d12f16f545851cad6356bb16221bee68eb2fee9427e0da0ca5f98e5861

1, 0xe83071df5288c373a5bc43fb20309e25e99fd85b61a9a4e6f3f71511b98f7ec87047fb32520d94cd7753dbe173304445ca648231f601dd19d3cd40c74190c71d

1, 0xed4294b5a529529c94250ad35394214a4a52a569a94a94a5e56b52948ca74a52529429524a5aa529294a9ca5e1295294d4a74a727394696a4a13a529236a968d

1, 0xd621eb6e5ab7992c6efba5f34a7b7b28026fc93138998c113831dbaaaca1a15738a7b7a9d191bcd77955b92b75263ad9f6bbd4ce0b4edca1efd5f3e24b3a2889

1, 0xd9a43ff058df6b8d55085028eac413a7439e1dc89e5d6e8b5de09e7bc7483d762788ff9e36527ff67c39360cfc0d2a75986b7fb35614027cffb932ee1112ee8d

1, 0xe492924992494924492524922492924992494924492424922492924992494924492424922492924992494925492424922492924992494925492524922492938f

1, 0xf9cf9b29d767edb655b2f6bf964bce697f652fb669b322eb63dffb6e7a6c69bb798396d284d85169883d42a6ec96b292761d6dcd7ab595b2ad0a9a5d7e97fe41

1, 0xfffefffefffffffffffefffefffefffefffffffefffffffefffefffefffffffffffefffefffefffefffefffeffffffff000000000000000000000000000000bd

1, 0xf9ce9ce7e738738c9ce7ce73739cb9cece73e738398e9ce7e719739c9ce7ce7373dc39cece73e53839ce9ce7e7b9739c9ce7ce73739c39cece73e73839ce9d63

1, 0xd53bd2f169ab7fb38abb7f05cb1550e200914674b65ce176001ffeb29dbd1e90c21a77e28c6dbfd6e6a782baaba532e2a98eff9ed8e924986af702c48504d0d1

1, 0xc36e8f2addb602d9d18b2b040bc7a00bc7046b2030c2d3e91c4c161ed562a31d2d056afc759042a46c28e218e25e7c7882fb1cb2d66039ed961dace5ea69c5d7

1, 0xed15cb0fde1567b278ef2422ee01ed658173594b0bcb71594a18df455fc75ca7c5b529bb6b9ec229be6ba977773eca917ac08a1e9f557adf079ab8bceb2bc01b

1, 0xd00b0dd78fd35c88db31806803799deab89b8b36c39dc0321574801fb936f90e2920f3dd65400ddc00be90ebcefdd62d5c5c062c200bdb04aa6a5acf697e2a0d

1, 0xd0054c94020831e800450e05811840282088a906825002d9a0c340938dc0b20628072f800334102c08010309c020800710200c04a604083700aa440088411987

1, 0xc7592d7dc9ee1031dcd3d30f43028858305ac46ac981cafa164a8000a9c6eeb698181505242ac9dfee9e51c92460b987dbc8161def71863d35ac18fa1235a903

1, 0xfffbfcf7f7ffdf3dfffef5ffffffbfffff9ffffffffdff7dffffff9ffffffef7dffffffffbfffdfffeffbffffffffffffff77fffdfffffffffff1fffffffff35

1, 0xf5eb05d73ad4df3cdaf4fd2eaf41e8e405952b7a327479147fffa33eb829039e77ff116f9e4958a3f604743ed2c55ba67b47631842905dbc2f12c66fb6c4e40f

1, 0xc3ff4d30474f40df0e7ffffdfa92ffff11d59d35d214ffff85c357c5c85ed72acaf1fb7d43f76d85ee6b4fb3ffdd60d5095ef1f290df4ff888e7e37efe4f9e8f

1, 0xcc7b18295347824ccb395bed351993c598c7cf7f4e32dcb9ab7a5d7e0baa7626d1b8dc651b34f5e4f5d3f2530b52fb9bd10e75259b36d774f059141bf9ede911

1, 0xe675a7059b1e6df20198f8a75a0ab28123fff79a67f59c7049fd37d48128f3b3a9b69475b902f4bc854ca1deecbce73cdab89b17ae3c6401a9d43594775a926b

1, 0xef7b77bd3defdef7f7b47bdedef76f7b7bdebdefef7bf7bdbdee7ef7b73d7b9edef7ef7b7b9e3deeef7bf7b9bdefd6ffffb97bdedef7ef7b7b9ebdafef3bf845

1, 0xfd23b110962000d598488c43407369898cd0086df780826dcfa14784f38388874362851b7711dc13564441351335c71fbd7c564d5d5008f5de20d43f2476d715

1, 0xe918f1658790911a71a9ae1895cfe56dbed767816e337e2f950462affb3280d8a8dcb1240620ec8f1d19c3750afcfe295c58cca117b36632414cd9e114fdb097

1, 0xffffaa55ffffffffff3cd9fe3ffff676fffffffffffe00000000000000000000000000000000000000000000000000000000000000000000000000000000009d

1, 0xc02100004804100000100010008001ce2064004242c812186250154c00000088ba78008a43a9713bc0abb849220e8362cc838b53cf88fcdbdd7fca83c8df8145

1, 0xe318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c63631831d3

1, 0xd501973162d4017f4e3b3c9d6803d4cc46a1d457c91feb5b6c2ae77423ba41c9cfbd5f4b9235667874507e9cafb4123e1992d1c5ae75ee295087011a822a6ccf

1, 0xe28ecce1de7a0326423076465160c1b03f8e721181e046ef4860ae94d7802a082f9f6007c0011f20056de200677aa7d8a47118e6692ee4b3f862c24e04b543b5

1, 0xda2f36d74bc2dc29de4de92f4b37b03942173e15a2dfb67e8f09e790ed1656af5a8aadef14b696426f1e929699da0ee3ad9f21a9f66ede57d945fc165b27d217

1, 0xd28550a3a8520a1c850aa14250a114ba0a144285a14228501428850a428550e128400a14850aa14250a114080a144285a14228511428852a4685d0a128500a2d

1, 0xe79082499b094b2459266493608a9249b2410d3409242692a490824d934941254935265a341086119449d824691524922697926bb24949044027108a8c939a5d

1, 0xedfc373f783ffbfff7fefed3fffafffefffd5fffffdefff5ffdffff3ff5ffffefefd3fef7fbf5dfff613bb59f9fb5f5bd52aefd78ebddfe6edeeffe3f3fb3df5

1, 0xfff71fb6fbfffefffffffeeffffeefffef7fffebfffeffffffffefff9fffffcbfdbff0faffffdfff7f7edffee7adfffafffbfb7effffdffde7fadfdef63e806b

1, 0xcaf67d473c10f4e73d6678d4a27e4eb04a743925d12c31f97efa510ca68558b2c56d839acecbe75e935f86cec7dae7c95aa0b93065a3aa924594fdfb9f521535

1, 0xf6b43e3bd52841756d1a27f22a8590a8a1c43c1c36b95cc72d0102f26b6da1b238236856f7c6e6faa83cc70e84f2db44088487fd94a175f22a0d990cc1afea6b

1, 0xd2a20d1b986de2152b9d93cf60bf98f68e9f9e050feb9820b006e5dc581f17a82f35a78d23fb34fab3962ae95bcf3a1e442eb5b1d72cd6956fa599483eee38c1

1, 0xe52e529494a54a535294294a4a51a509294a96a5a529529494a54a52529d29ea4a52a522298a94a5a522529494a44a525294294a4842a52e294af4a5a52f554b

1, 0xc942c4644b1169461581e0713ba400570237a55c9ae69e3fe58d189aa751d218208421934f2132a888e796bc1f0914a8c9b4f116358cca22c69c35596bd961e5

1, 0xed7f7e78afc7d3735fc1dfb0d13887cddcd715c9fe530530e0efceaa4bcaffbaebac9e601623db36fffef47fffffefffffff00000000000000000000000003ed

1, 0xf6db9b6dda6d29b61dfe73dbba5bdb6ddead69beedf6a6dbf7dadb6ddf6c6cb66db6f6d3b6db9b64997c6dbe6cb4364b96dbdb6ddb6c67be6da4b7cbaedadf35

1, 0xc080a1000000000000000000000000000000000000000000003008000880000002608020010120004408001004202080000800000050000000100000000900e1

1, 0xe5335f76a97c5e29d4557170cd9ef3ed53efc819fda87a566a5efe247ef102b85c7ad90c484ade030c7ebc23455e0dcbca2cec6afdf0e8c978cb6fbed5733fa5

1, 0xc0000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000400000000000000000000000000000165

1, 0xc924249324929249b2cf49244924649264921a4892494936593320b93f9292e992497d1449242492229293499249492449262493248e96fff3c9104432f4cdbb

1, 0xc9242492249292499249492449242492249292499249492449242492249292499249492449242492249292499249492449242492249292499249492449342b29

1, 0xc0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000177

1, 0xc00000041002400005080008021000049000000100000002080000000001021005180000000000000000210080600040082000400000183001000000200020f1

1, 0xcad0ca7166b2aaf6c82b0eadfeb13409da7c2679517d4fd96f89719659133e0492d209da600753dc5c2570ce128cf985332f944143204b706bf6e990c0e43dcb

1, 0xe739739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73e73939ce9ce7e73973df

1, 0xe0929249924949244924249a249292499249492449242493249292499a494924493424922492924992494924492424922492b24992494924492424922482926f

1, 0xc000100000000000000000000000000000000000000000000000000000000000000100802000cb0040908809180008c8000000010c00012101b20000000002ad

1, 0xcec727009ef07418dc89e2c96e796d44bc2244d88a0bb8ca90b4d661736b486b6e1d8352822a4697cdd0702a3d8b7c4b23ada2285a2af09234a71346ba141795

1, 0xc8dce72c0e38ecaf2e3e11aef07326e3431a92ad87ef296d3d0b5d4b3d00646bebd7b3af6c9e424e074e1486d186d26997a4d9c131acb524881aecace287c057

1, 0xee09f0be62014c7299e188527ab8cd004809c631f1fd50a20013331678ccad20631879842b8a122569eb18c4b1dd5e4b11bce7a14f4ae76973debf4ca768c4bd

1, 0xd66cdaeef275bfd3d1ee65df430dd7ae015bd0e9a5e43890e7835e2a2a0fb702703d6c3fd50d5917f3ba77aeb851c016d26135d754c114adf303d091500462bd

1, 0xfa147ea58cddaaabe6dfa04ff891009db3ff37e1272d573b7a3da5334f24f9512fda7ff4f163a72482a0edffa9140001aae21f5a64fd330f93e819a968acafb7

1, 0xf718c0bc8c57cc318c99fa15236191a531828a95856d6ac833a7e3a2110dded25226ea4344cabbb2fe19de14863b8c46e31b44038c87e8ce4aea42a10afabf91

1, 0xd86d99e183ba3c0870238db37f1d3f673cdec3112196acfaa1239657bcb3a3a7f6749f3229f550d5097510e5a5df0626a641e2112112f95080c5629973b1c975

1, 0xfc1fc95ee7482142bccb7f0bc5cd674ad82edca61fe2653c78622ee673485cc11c993aaeeb15f77d90dfe1c6a945e239ab47e5ca3eb2aeb702f2de36626858db

1, 0xf7c6bf218fcfadcba926ac5efdf60f97aeba8d5f70ceb27eff0f5d57e763bfe86dc7a86ee76b8ba9d076bf1a8f4a7fcfb0297a96c6c5a70ea7e5e3c38326ff83

1, 0xc594391e8e8c24c8a7fe971d78db784d43c96ba3384f02acf71fc2506736c65f7c44ef6c3bbf7b05659b954c6b9ce96f648c900b56c5f3ca01e47384ad4de577

1, 0xda975410693d3120b32997c8c728f09d09610f5fef089a7cf63ff1dcf673ffffb493c19c64167e0457646aaba4f3409f9648ff7c390c25d4a8a3d7c9b2f16b2d

1, 0xf16fead9af03cfcb36571b8b3fe3cf24e313aece858b7d4e800838329c9b729ecc6d691df4ee8547a9fdb18debbca338af8214fa1e03ad53f8e3a0503bfb6735

1, 0xddf3b56a7bb556afa1476addb54aa95e569c94ab62d5fa95c054af04b5a3b56adff55e2dbb466ed1b56aad5a1629c5a93ad55bf5ad1e3ba4e5ab9722daf5d7bd

1, 0xd9958fe30334b89c8c02ac210c4dc8e6e610d1c958cb4d436e11aede0f72e3b8a88e18b7c663533218c68ed560b031ad4ce38aa13bbc10b6c73fe3911acc8de1

1, 0xfcb0663ef5e3c922936834039fd787a0de9fdd178017021129cfb592570fd3c5e60787fc59128bce5bfcb38be0c064b08c087fd8fe6b960207c93ca4cf3c5add
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Abstract. We introduce quantitative usability and security models to
guide the design of password management schemes — systematic strate-
gies to help users create and remember multiple passwords. In the same
way that security proofs in cryptography are based on complexity-
theoretic assumptions (e.g., hardness of factoring and discrete loga-
rithm), we quantify usability by introducing usability assumptions. In
particular, password management relies on assumptions about human
memory, e.g., that a user who follows a particular rehearsal schedule will
successfully maintain the corresponding memory. These assumptions are
informed by research in cognitive science and can be tested empirically.
Given rehearsal requirements and a user’s visitation schedule for each
account, we use the total number of extra rehearsals that the user would
have to do to remember all of his passwords as a measure of the usability
of the password scheme. Our usability model leads us to a key observa-
tion: password reuse benefits users not only by reducing the number of
passwords that the user has to memorize, but more importantly by in-
creasing the natural rehearsal rate for each password. We also present
a security model which accounts for the complexity of password man-
agement with multiple accounts and associated threats, including online,
offline, and plaintext password leak attacks. Observing that current pass-
word management schemes are either insecure or unusable, we present
Shared Cues — a new scheme in which the underlying secret is strategi-
cally shared across accounts to ensure that most rehearsal requirements
are satisfied naturally while simultaneously providing strong security.
The construction uses the Chinese Remainder Theorem to achieve these
competing goals.

Keywords: Password Management Scheme, Security Model, Usability
Model, Chinese Remainder Theorem, Sufficient Rehearsal Assumption,
Visitation Schedule.

1 Introduction

A typical computer user today manages passwords for many different online
accounts. Users struggle with this task—often forgetting their passwords or
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adopting insecure practices, such as using the same password for multiple ac-
counts and selecting weak passwords [33,30,39,24]. While there are many ar-
ticles, books, papers and even comics about selecting strong individual pass-
words [29,42,35,61,55,27,48,3], there is very little work on password manage-
ment schemes—systematic strategies to help users create and remember mul-
tiple passwords—that are both usable and secure. In this paper, we present a
rigorous treatment of password management schemes. Our contributions include
a formalization of important aspects of a usable scheme, a quantitative security
model, and a construction that provably achieves the competing security and
usability properties.

Usability Challenge. We consider a setting where a user has two types of mem-
ory: persistent memory (e.g., a sticky note or a text file on his computer) and
associative memory (e.g., his own human memory). We assume that persistent
memory is reliable and convenient but not private (i.e., accessible to an ad-
versary). In contrast, a user’s associative memory is private but lossy—if the
user does not rehearse a memory it may be forgotten. While our understand-
ing of human memory is incomplete, it has been an active area of research [17]
and there are many mathematical models of human memory [37,59,14,40,56].
These models differ in many details, but they all model an associative memory
with cue-association pairs: to remember â (e.g., a password) the brain associates
the memory with a context ĉ (e.g., a public hint or cue); such associations are
strengthened by rehearsal . A central challenge in designing usable password
schemes is thus to create associations that are strong and to maintain them
over time through rehearsal. Ideally, we would like the rehearsals to be natural,
i.e., they should be a side-effect of users’ normal online activity. Indeed insecure
password management practices adopted by users, such as reusing passwords,
improve usability by increasing the number of times a password is naturally
rehearsed as users visit their online accounts.

Security Challenge. Secure password management is not merely a theoreti-
cal problem—there are numerous real-world examples of password breaches
[2,30,20,7,51,12,5,9,8,11,10]. Adversaries may crack a weak password in an on-
line attack where they simply visit the online account and try as many guesses
as the site permits. In many cases (e.g., Zappos, LinkedIn, Sony, Gawker
[12,5,8,7,20,11]) an adversary is able to mount an offline attack to crack weak
passwords after the cryptographic hash of a password is leaked or stolen. To pro-
tect against an offline attack, users are often advised to pick long passwords that
include numbers, special characters and capital letters [48]. In other cases even
the strongest passwords are compromised via a plaintext password leak attack
(e.g., [4,9,51,10]), for example, because the user fell prey to a phishing attack
or signed into his account on an infected computer or because of server miscon-
figurations. Consequently, users are typically advised against reusing the same
password. A secure password management scheme must protect against all these
types of breaches.
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Contributions. We precisely define the password management problem in
Section 2. A password management scheme consists of a generator—a function
that outputs a set of public cue-password pairs—and a rehearsal schedule. The
generator is implemented using a computer program whereas the human user
is expected to follow the rehearsal schedule for each cue. This division of work
is critical—the computer program performs tasks that are difficult for human
users (e.g., generating random bits) whereas the human user’s associative
memory is used to store passwords since the computer’s persistent memory is
accessible to the adversary.

Quantifying Usability. In the same way that security proofs in cryptography are
based on complexity-theoretic assumptions (e.g., hardness of factoring and dis-
crete logarithm), we quantify usability by introducing usability assumptions. In
particular, password management relies on assumptions about human memory,
e.g., that a user who follows a particular rehearsal schedule will successfully
maintain the corresponding memory. These assumptions are informed by
research in cognitive science and can be tested empirically. Given rehearsal
requirements and a user’s visitation schedule for each account, we use the total
number of extra rehearsals that the user would have to do to remember all of
his passwords as a measure of the usability of the password scheme (Section
3). Specifically, in our usability analysis, we use the Expanding Rehearsal
Assumption (ER) that allows for memories to be rehearsed with exponentially
decreasing frequency, i.e., rehearse at least once in the time-intervals (days)
[1, 2), [2, 4), [4, 8) and so on. Few long-term memory experiments have been
conducted, but ER is consistent with known studies [53,60]. Our memory
assumptions are parameterized by a constant σ which represents the strength
of the mnemonic devices used to memorize and rehearse a cue-association pair.
Strong mnemonic techniques [52,34] exploit the associative nature of human
memory discussed earlier and its remarkable visual/spatial capacity [54].

Quantifying Security. We present a game based security model for a password
management scheme (Section 4) in the style of exact security definitions [18]. The
game is played between a user (U) and a resource-bounded adversary (A) whose
goal is to guess one of the user’s passwords. Our game models three commonly
occurring breaches (online attack, offline attack, plaintext password leak attack).

Our Construction. We present a new password management scheme, which we
call Shared Cues, and prove that it provides strong security and usability prop-
erties (see Section 5). Our scheme incorporates powerful mnemonic techniques
through the use of public cues (e.g., photos) to create strong associations. The
user first associates a randomly generated person-action-object story (e.g., Bill
Gates swallowing a bike) with each public cue. We use the Chinese Remainder
Theorem to share cues across sites in a way that balances several competing se-
curity and usability goals: 1) Each cue-association pair is used by many different
web sites (so that most rehearsal requirements are satisfied naturally), 2) the
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total number of cue-association pairs that the user has to memorize is low, 3)
each web site uses several cue-association pairs (so that passwords are secure)
and 4) no two web sites share too many cues (so that passwords remain secure
even after the adversary obtains some of the user’s other passwords). We show
that our construction achieves an asymptotically optimal balance between these
security and usability goals (Lemma 2, Theorem 3).

Related Work. A distinctive goal of our work is to quantify usability of pass-
word management schemes by drawing on ideas from cognitive science and
leverage this understanding to design schemes with acceptable usability. We
view the results of this paper–employing usability assumptions about rehearsal
requirements—as an initial step towards this goal. While the mathematical con-
structions start from the usability assumptions, the assumptions themselves are
empirically testable, e.g., via longitudinal user studies. In contrast, a line of prior
work on usability has focused on empirical studies of user behavior including
their password management habits [33,30,39], the effects of password composi-
tion rules (e.g., requiring numbers and special symbols) on individual passwords
[38,22], the memorability of individual system assigned passwords [50], graphi-
cal passwords [28,19], and passwords based on implicit learning [23]. These user
studies have been limited in duration and scope (e.g., study retention of a single
password over a short period of time). Other work [25] articulates informal, but
more comprehensive, usability criteria for password schemes.

Our use of cued recall is driven by evidence that it is much easier than pure
recall [17]. We also exploit the large human capacity for visual memory [54]
by using pictures as cues. Prior work on graphical passwords [28,19] also takes
advantage of these features. However, our work is distinct from the literature
on graphical passwords because we address the challenge of managing multiple
passwords. More generally, usable and secure password management is an excel-
lent problem to explore deeper connections between cryptography and cognitive
science.

Security metrics for passwords like (partial) guessing entropy (e.g., how many
guesses does the adversary need to crack α-fraction of the passwords in a dataset
[41,44,24]? how many passwords can the adversary break with β guesses per ac-
count [26]?) were designed to analyze the security of a dataset of passwords
from many users, not the security of a particular user’s password management
scheme. While these metrics can provide useful feedback about individual pass-
words (e.g., they rule out some insecure passwords) they do not deal with the
complexities of securing multiple accounts against an adversary who may have
gained background knowledge about the user from previous attacks — we refer
an interested reader to the full version [21] of this paper for more discussion.

Our notion of (n, �, γ)-sharing set families (definition 5) is equivalent to Nisan
and Widgerson’s definition of a (k,m)-design [43]. However, Nisan and Widger-
son were focused on a different application (constructing pseudorandom bit gen-
erators) and the range of parameters that they consider are not suitable for our
password setting in which � and γ are constants. See the full version[21] of this
paper for more discussion.
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2 Definitions

We use P to denote the space of possible passwords. A password management
scheme needs to generate m passwords p1, ..., pm ∈ P — one for each account
Ai.

Associative Memory and Cue-Association Pairs. Human memory is associative.
Competitors in memory competitions routinely use mnemonic techniques (e.g.,
the method of loci [52]) which exploit associative memory[34]. For example, to
remember the word ‘apple’ a competitor might imagine a giant apple on the
floor in his bedroom. The bedroom now provides a context which can later be
used as a cue to help the competitor remember the word apple. We use ĉ ∈ C to
denote the cue, and we use â ∈ AS to denote the corresponding association in
a cue-association pair (ĉ, â). Physically, ĉ (resp. â) might encode the excitement
levels of the neurons in the user’s brain when he thinks about his bedroom (resp.
apples) [40].

We allow the password management scheme to store m sets of public cues
c1, ..., cm ⊂ C in persistent memory to help the user remember each password.
Because these cues are stored in persistent memory they are always available to
the adversary as well as the user. Notice that a password may be derived from
multiple cue-association pairs. We use ĉ ∈ C to denote a cue, c ⊂ C to denote a
set of cues, and C =

⋃m
i=1 ci to denote the set of all cues — n = |C| denotes the

total number of cue-association pairs that the user has to remember.

Visitation Schedules and Rehearsal Requirements. Each cue ĉ ∈ C may have a
rehearsal schedule to ensure that the cue-association pair (ĉ, â) is maintained.

Definition 1. A rehearsal schedule for a cue-association pair (ĉ, â) is a sequence
of times tĉ0 < tĉ1 < .... For each i ≥ 0 we have a rehearsal requirement, the
cue-association pair must be rehearsed at least once during the time window[
tĉi , t

ĉ
i+1

)
= {x ∈ R tĉi ≤ x < tĉi+1}.

A rehearsal schedule is sufficient if a user can maintain the association (ĉ, â) by
following the rehearsal schedule. We discuss sufficient rehearsal assumptions in
section 3. The length of each interval

[
tĉi , t

ĉ
i+1

)
may depend on the strength of

the mnemonic technique used to memorize and rehearse a cue-association pair
(ĉ, â) as well as i — the number of prior rehearsals. For notational convenience,
we use a function R : C × N → R to specify the rehearsal requirements (e.g.,
R (ĉ, j) = tĉj), and we use R to denote a set of rehearsal functions.

A visitation schedule for an accountAi is a sequence of real numbers τ i0 < τ i1 <
. . ., which represent the times when the account Ai is visited by the user. We
do not assume that the exact visitation schedules are known a priori. Instead we
model visitation schedules using a random process with a known parameter λi
based on E

[
τ ij+1 − τ ij

]
— the average time between consecutive visits to account

Ai. A rehearsal requirement
[
tĉi , t

ĉ
i+1

)
can be satisfied naturally if the user visits

a site Aj that uses the cue ĉ (ĉ ∈ cj) during the given time window. Formally,
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Definition 2. We say that a rehearsal requirement
[
tĉi , t

ĉ
i+1

)
is naturally sat-

isfied by a visitation schedule τ i0 < τ i1 < . . . if ∃j ∈ [m], k ∈ N s.t ĉ ∈ cj and

τ jk ∈
[
tĉi , t

ĉ
i+1

)
. We use

Xt,ĉ =
∣∣∣{i tĉi+1 ≤ t ∧ ∀j, k.

(
ĉ /∈ cj ∨ τ jk /∈

[
tĉi , t

ĉ
i+1

))}∣∣∣ ,
to denote the number of rehearsal requirements that are not naturally satisfied
by the visitation schedule during the time interval [0, t].

We use rehearsal requirements and visitation schedules to quantify the
usability of a password management scheme by measuring the total number
of extra rehearsals. If a cue-association pair (ĉ, â) is not rehearsed natu-
rally during the interval

[
tĉi , t

ĉ
i+1

)
then the user needs to perform an extra

rehearsal to maintain the association. Intuitively, Xt,ĉ denotes the total
number of extra rehearsals of the cue-association pair (ĉ, â) during the time
interval [0, t]. We use Xt =

∑
ĉ∈C Xt,ĉ to denote the total number of extra re-

hearsals during the time interval [0, t] to maintain all of the cue-assocation pairs.

Usability Goal: Minimize the expected value of E [Xt].

Password Management Scheme. A password management scheme includes a
generator Gm and a rehearsal schedule R ∈ R. The generator Gm (k, b,λ, R)
utilizes a user’s knowledge k ∈ K, random bits b ∈ {0, 1}∗ to generate passwords
p1, ..., pm and public cues c1, ..., cm ⊆ C. Gm may use the rehearsal schedule R
and the visitation schedules λ = 〈λ1, ..., λm〉 of each site to help minimize E [Xt].
Because the cues c1, ...cm are public they may be stored in persistent memory
along with the code for the generator Gm. In contrast, the passwords p1, ...pm
must be memorized and rehearsed by the user (following R) so that the cue
association pairs (ci, pi) are maintained in his associative memory.

Definition 3. A password management scheme is a tuple 〈Gm, R〉, where Gm is
a function Gm : K×{0, 1}∗×Rm×R →

(
P × 2C

)m
and a R ∈ R is a rehearsal

schedule which the user must follow for each cue.

Our security analysis is not based on the secrecy of Gm, k or the public cues
C =

⋃m
i=1 ci. The adversary will be able to find the cues c1, ..., cm because they

are stored in persistent memory. In fact, we also assume that the adversary has
background knowledge about the user (e.g., he may know k), and that the adver-
sary knows the password management scheme Gm. The only secret is the random
string b used by Gm to produce p1, ..., pm.
Example Password Management Schemes. Most password suggestions
are too vague (e.g.,“pick an obscure phrase that is personally meaningful to
you”) to satisfy the precise requirements of a password management scheme —
formal security proofs of protocols involving human interaction can break down
when humans behave in unexpected ways due to vague instructions [46]. We con-
sider the following formalization of password management schemes: (1) Reuse
Weak — the user selects a random dictionary word w (e.g., from a dictionary of
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20, 000 words) and uses pi = w as the password for every account Ai. (2) Reuse
Strong — the user selects four random dictionary words (w1, w2, w3, w4) and
uses pi = w1w2w3w4 as the password for every account Ai. (3) Lifehacker (e.g.,
[3]) — The user selects three random words (w1, w2, w3) from the dictionary as
a base password b = w1w2w3. The user also selects a random derivation rule d
to derive a string from each account name (e.g., use the first three letters of the
account name, use the first three vowels in the account name). The password for
account Ai is pi = bd (Ai) where d (Ai) denotes the derived string. (4) Strong
Random and Independent — for each account Ai the user selects four fresh
words independently at random from the dictionary and uses pi = wi

1w
i
2w

i
3w

i
4.

Schemes (1)-(3) are formalizations of popular password management strategies.
We argue that they are popular because they are easy to use, while the strongly
secure scheme Strong Random and Independent is unpopular because the
user must spend a lot of extra time rehearsing his passwords. See the full ver-
sion [21] of this paper for more discussion of the security and usability of each
scheme.

3 Usability Model

People typically adopt their password management scheme based on usability
considerations instead of security considerations [33]. Our usability model can
be used to explain why users tend to adopt insecure password management
schemes likeReuse Weak, Lifehacker, orReuse Strong. Our usability metric
measures the extra effort that a user has to spend rehearsing his passwords. Our
measurement depends on three important factors: rehearsal requirements for
each cue, visitation rates for each site, and the total number of cues that the
user needs to maintain. Our main technical result in this section is Theorem 1
— a formula to compute the total number of extra rehearsals that a user has to
do to maintain all of his passwords for t days. To evaluate the formula we need
to know the rehearsal requirements for each cue-association pair as well as the
visitation frequency λi for each account Ai.

Rehearsal Requirements. If the password management scheme does not mandate
sufficient rehearsal then the user might forget his passwords. Few memory
studies have attempted to study memory retention over long periods of time so
we do not know exactly what these rehearsal constraints should look like. While
security proofs in cryptography are based on assumptions from complexity
theory (e.g., hardness of factoring and discrete logarithm), we need to make
assumptions about humans. For example, the assumption behind CAPTCHAs
is that humans are able to perform a simple task like reading garbled text
[58]. A rehearsal assumption specifies what types of rehearsal constraints
are sufficient to maintain a memory. We consider two different assumptions
about sufficient rehearsal schedules: Constant Rehearsal Assumption (CR) and
Expanding Rehearsal Assumption (ER). Because some mnemonic devices are
more effective than others (e.g., many people have amazing visual and spatial
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memories [54]) our assumptions are parameterized by a constant σ which
represents the strength of the mnemonic devices used to memorize and rehearse
a cue association pair.

Constant Rehearsal Assumption (CR): The rehearsal schedule given by
R (ĉ, i) = iσ is sufficient to maintain the association (ĉ, â).

CR is a pessimistic assumption — it asserts that memories are not perma-
nently strengthened by rehearsal. The user must continue rehearsing every σ
days — even if the user has frequently rehearsed the password in the past.

Expanding Rehearsal Assumption (ER): The rehearsal schedule given
by R (ĉ, i) = 2iσ is sufficient to maintain the association (ĉ, â).

ER is more optimistic than CR — it asserts that memories are strengthened
by rehearsal so that memories need to be rehearsed less and less frequently as
time passes. If a password has already been rehearsed i times then the user
does not have to rehearse again for 2iσ days to satisfy the rehearsal require-
ment

[
2iσ , 2iσ+σ

)
. ER is consistent with several long term memory experiments

[53],[17, Chapter 7], [60] — we refer the interested reader to full version[21] of this
paper for more discussion. We also consider the rehearsal schedule R (ĉ, i) = i2

(derived from [15,57]) in the full version — the usability results are almost in-
dentical to those for ER.

Visitation Schedules. Visitation schedules may vary greatly from person to per-
son. For example, a 2006 survey about Facebook usage showed that 47% of users
logged in daily, 22.4% logged in about twice a week, 8.6% logged in about once a
week, and 12% logged in about once a month[13]. We use a Poisson process with
parameter λi to model the visitation schedule for site Ai. We assume that the
value of 1/λi — the average inter-visitation time — is known. For example, some
websites (e.g., gmail) may be visited daily (λi = 1/1 day) while other websites
(e.g., IRS) may only be visited once a year on average (e.g., λi = 1/365 days).
The Poisson process has been used to model the distribution of requests to a
web server [47]. While the Poisson process certainly does not perfectly model
a user’s visitation schedule (e.g., visits to the IRS websites may be seasonal)
we believe that the predictions we derive using this model will still be useful
in guiding the development of usable password management schemes. While we
focus on the Poisson arrival process, our analysis could be repeated for other
random processes.

We consider four very different types of internet users: very active, typical,
occasional and infrequent. Each user account Ai may be visited daily (e.g., λi =
1), every three days (λi = 1/3), every week (e.g. λi = 1/7), monthly (λi = 1/31),
or yearly (λi = 1/365) on average. See table 1 to see the full visitation schedules
we define for each type of user. For example, our very active user has 10 accounts
he visits daily and 35 accounts he visits annually.
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Table 1. Visitation Schedules -
number of accounts visited with
frequency λ (visits/days)

Schedule λ 1
1

1
3

1
7

1
31

1
365

Very Active 10 10 10 10 35

Typical 5 10 10 10 40

Occasional 2 10 20 20 23

Infrequent 0 2 5 10 58

Table 2. E [X365]: Extra Rehearsals over the
first year for both rehearsal assumptions.
B+D: Lifehacker
SRI: Strong Random and Independent

Assumption CR (σ = 1) ER (σ = 1)

Schedule/Scheme B+D SRI B+D SRI

Very Active ≈ 0 23, 396 .023 420

Typical .014 24, 545 .084 456.6

Occasional .05 24, 652 .12 502.7

Infrequent 56.7 26, 751 1.2 564

Extra Rehearsals. Theorem 1 leads us to our key observation: cue-sharing bene-
fits users both by (1) reducing the number of cue-association pairs that the user
has to memorize and (2) by increasing the rate of natural rehearsals for each
cue-association pair. For example, a active user with 75 accounts would need to
perform 420 extra-rehearsals over the first year to satisfy the rehearsal require-
ments given by ER if he adopts Strong Random and Independent or just
0.023 with Lifehacker — see table 2. The number of unique cue-association
pairs n decreased by a factor of 75, but the total number of extra rehearsals
E[X365] decreased by a factor of 8, 260.8 ≈ 75×243 due to the increased natural
rehearsal rate.

Theorem 1. Let iĉ∗ =
(
argmaxx t

ĉ
x < t

)
− 1 then

E [Xt] =
∑
ĉ∈C

iĉ∗∑
i=0

exp

⎛⎝−
⎛⎝ ∑

j:ĉ∈cj

λj

⎞⎠(
tĉi+1 − tĉi

)⎞⎠
Theorem 1 follows easily from Lemma 1 and linearity of expectations. Each

cue-association pair (ĉ, â) is rehearsed naturally whenever the user visits any site
which uses the public cue ĉ. Lemma 1 makes use of two key properties of Poisson
processes: (1) The natural rehearsal schedule for a cue ĉ is itself a Poisson process,
and (2) Independent Rehearsals - the probability that a rehearsal constraint is
satisfied is independent of previous rehearsal constraints.

Lemma 1. Let Sĉ = {i ĉ ∈ ci} and let λĉ =
∑

i∈Sĉ
λi then the probability that

the cue ĉ is not naturally rehearsed during time interval [a, b] is exp (−λĉ (b− a)).

4 Security Model

In this section we present a game based security model for a password manage-
ment scheme. The game is played between a user (U) and a resource bounded
adversary (A) whose goal is to guess one of the user’s passwords. We demon-
strate how to select the parameters of the game by estimating the adversary’s
amortized cost of guessing. Our security definition is in the style of the exact
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security definitions of Bellare and Rogaway [18]. Previous security metrics (e.g.,
min-entropy, password strength meters) fail to model the full complexity of the
password management problem (see the full version [21] of this paper for more
discussion). By contrast, we assume that the adversary knows the user’s pass-
word management scheme and is able to see any public cues. Furthermore, we
assume that the adversary has background knowledge (e.g., birth date, hobbies)
about the user (formally, the adversary is given k ∈ K). Many breaches occur
because the user falsely assumes that certain information is private (e.g., birth
date, hobbies, favorite movie)[6,49].

Adversary Attacks. Before introducing our game based security model we con-
sider the attacks that an adversary might mount. We group the adversary attacks
into three categories:Online Attack — the adversary knows the user’s ID and at-
tempts to guess the password. The adversary will get locked out after s incorrect
guesses (strikes). Offline Attack — the adversary learns both the cryptographic
hash of the user’s password and the hash function and can try many guesses
q$B. The adversary is only limited by the resources B that he is willing to invest
to crack the user’s password. Plaintext Password Leak Attack — the adversary
directly learns the user’s password for an account. Once the adversary recov-
ers the password pi the account Ai has been compromised. However, a secure
password management scheme should prevent the adversary from compromising
more accounts.

We model online and offline attacks using a guess-limited oracle. Let S ⊆ [m]
be a set of indices, each representing an account. A guess-limited oracle OS,q is
a blackbox function with the following behavior: 1) After q queries OS,q stops
answering queries. 2) ∀i /∈ S, OS,q (i, p) = ⊥ 3) ∀i ∈ S, OS,q (i, pi) = 1 and 4)
∀i ∈ S, p �= pi, OS,q (i, p) = 0. Intutively, if the adversary steals the cryptographic
password hashes for accounts {Ai i ∈ S}, then he can execute an offline attack
against each of these accounts. We also model an online attack against account
Ai with the guess-limited oracle O{i},s with s * q (e.g., s = 3 models a three-
strikes policy in which a user is locked out after three incorrect guesses).

Game Based Definition of Security. Our cryptographic game proceeds as follows:
Setup: The user U starts with knowledge k ∈ K, visitation schedule λ ∈ Rm, a
random sequence of bits b ∈ {0, 1}∗ and a rehearsal schedule R ∈ R. The user
runs Gm (k, b,λ, R) to obtain m passwords p1, ..., pm and public cues c1, ..., cm ⊆
C for accounts A1, ..., Am. The adversary A is given k, Gm, λ and c1, ..., cm.
Plaintext Password Leak Attack: A adaptively selects a set S ⊆ [m] s.t |S| ≤ r
and receives pi for each i ∈ S.
Offline Attack: A adaptively selects a set S′ ⊆ [m] s.t. |S′| ≤ h, and is given
blackbox access to the guess-limited offline oracle OS′,q .
Online Attack: For each i ∈ [m]− S, the adversary is given blackbox access to
the guess-limited offline oracle O{i},s.
Winner: A wins by outputting (j, p), where j ∈ [m]− S and p = pj .

We useAdvWins (k, b,λ,Gm,A) to denote the event that the adversary wins.
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Definition 4. We say that a password management scheme Gm is
(q, δ,m, s, r, h)-secure if for every k ∈ K and adversary strategy A we
have

Pr
b
[AdvWins (k, b,λ,Gm,A)] ≤ δ .

Discussion: Observe that the adversary cannot win by outputting the pass-
word for an account that he already compromised in a plaintext password leak.
For example, suppose that the adversary is able to obtain the plaintext pass-
words for r = 2 accounts of his choosing: pi and pj . While each of these breaches
is arguably a success for the adversary the user’s password management scheme
cannot be blamed for any of these breaches. However, if the adversary can use
this information to crack any of the user’s other passwords then the password
management scheme can be blamed for the additional breaches. For example, if
our adversary is also able to use pi and pj to crack the cryptographic password
hash h(pt) for another account At in at most q guesses then the password man-
agement scheme could be blamed for the breach of account At. Consequently,
the adversary would win our game by outputting (t, pt). If the password manage-
ment scheme is (q, 10−4,m, s, 2, 1)-secure then the probability that the adversary
could win is at most 10−4 — so there is a very good chance that the adversary
will fail to crack pt.

Economic Upper Bound on q. Our guessing limit q is based on a model of a
resource constrained adversary who has a budget of $B to crack one of the
user’s passwords. We use the upper bound qB = $B/Cq , where Cq = $R/fH
denotes the amortized cost per query (e.g., cost of renting ($R) an hour of
computing time on Amazon’s cloud [1] divided by fH — the number of times the
cryptographic hash function can be evaluated in an hour.) We experimentally
estimate fH for SHA1, MD5 and BCRYPT[45] — more details can be found
in the full version [21] of this paper. Assuming that the BCRYPT password
hash function [45] was used to hash the passwords we get qB = B

(
5.155× 104

)
— we also consider cryptographic hash functions like SHA1, MD5 in the full
version[21] of this paper. In our security analysis we focus on the specific value
q$106 = 5.155× 1010 — the number of guesses the adversary can try if he invests
$106 to crack the user’s password.

Sharing and Security. In section 3 we saw that sharing public cues across ac-
counts improves usability by (1) reducing the number of cue-association pairs
that the user has to memorize and rehearse, and (2) increasing the rate of natural
rehearsals for each cue-association pair. However, conventional security wisdom
says that passwords should be chosen independently. Is it possible to share pub-
lic cues, and satisfy the strong notion of security from definition 4? Theorem 2
demonstrates that public cues can be shared securely provided that the public
cues {c1, . . . , cm} are a (n, �, γ)-sharing set family. The proof of theorem 2 can
be found in the full version of this paper [21].
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Definition 5. We say that a set family S = {S1, ..., Sm} is (n, �, γ)-sharing if
(1) |

⋃m
i=1 Si| = n, (2)|Si| = � for each Si ∈ S, and (3) |Si ∩ Sj | ≤ γ for each

pair Si �= Sj ∈ S.

Theorem 2. Let {c1, . . . , cm} be a (n, �, γ)-sharing set ofm public cues produced
by the password management scheme Gm. If each ai ∈ AS is chosen uniformly
at random then Gm satisfies (q, δ,m, s, r, h)-security for δ ≤ q

|AS|�−γr and any h.

Discussion: To maintain security it is desirable to have � large (so that
passwords are strong) and γ small (so that passwords remain strong even after
an adversary compromises some of the accounts). To maintain usability it is
desirable to have n small (so that the user doesn’t have to memorize many
cue-association pairs). There is a fundamental trade-off between security and
usability because it is difficult to achieve these goals without making n large.

For the special case h = 0 (e.g., the adversary is limited to online attacks)
the security guarantees of Theorem 2 can be further improved to δ ≤ sm

|A|�−γr

because the adversary is actually limited to sm guesses.

5 Our Construction

(a) PAO Story with Cue
(b) Account A19 using Shared Cues with the
(43, 4, 1)-sharing set family CRT (90, 9, 10, 11, 13).

Fig. 1.

We present Shared Cues— a novel password management scheme which balances
security and usability considerations. The key idea is to strategically share cues
to make sure that each cue is rehearsed frequently while preserving strong secu-
rity goals. Our construction may be used in conjunction with powerful cue-based
mnemonic techniques like memory palaces [52] and person-action-object stories
[34] to increase σ — the association strength constant. We use person-action-
object stories as a concrete example.

Person-Action-Object Stories. A random person-action-object (PAO) story for a
person (e.g., Bill Gates) consists of a random action a ∈ ACT (e.g., swallowing)
and a random object o ∈ OBJ (e.g., a bike). While PAO stories follow a very
simple syntactic pattern they also tend to be surprising and interesting because
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the story is often unexpected (e.g., Bill Clinton kissing a piranha, or Michael
Jordan torturing a lion). There is good evidence that memorable phrases tend
to use uncommon combinations of words in common syntactic patterns [31].
Each cue ĉ ∈ C includes a person (e.g., Bill Gates) as well as a picture. To help
the user memorize the story we tell him to imagine the scene taking place inside
the picture (see Figure 1a for an example). We use algorithm 2 to automatically
generate random PAO stories. The cue ĉ could be selected either with the user’s
input (e.g., use the name of a friend and a favorite photograph) or automatically.
As long as the cue ĉ is fixed before the associated action-object story is selected
the cue-association pairs will satisfy the independence condition of Theorem 2.

5.1 Constructing (n, �, γ)-sharing set families

We use the Chinese Remainder Theorem to construct nearly optimal (n, �, γ)-
sharing set families. Our application of the Chinese Remainder Theorem is differ-
ent from previous applications of the Chinese Remainder Theorem in cryptogra-
phy (e.g., faster RSA decryption algorithm [32], secret sharing [16]). The inputs
n1, ..., n� to algorithm 1 should be co-prime so that we can invoke the Chinese
Remainder Theorem — see Figure 1b for an example of our construction with
(n1, n2, n3, n4) = (9, 10, 11, 13).

Algorithm 1. CRT (m,n1, ..., n�)

Input: m, and n1, ..., n�.
for i = 1 → m do

Si ← ∅
for j = 1 → � do

Nj ←
∑j−1

i=1 nj

Si ← Si ∪ {(i mod nj) +Nj}
return {S1, . . . , Sm}

Algorithm 2. CreatePAOStories

Input: n, random bits b, images I1, ..., In, and names P1, ..., Pn.
for i = 1 → n do

ai
$← ACT , oi

$← OBJ %Using random bits b
%Split PAO stories to optimize usability

for i = 1 → n do
ĉi ← ((Ii, Pi, ‘Act′) , (Ii+1 mod n, Pi+1 mod n, ‘Obj′))
âi ← (ai, oi+1 mod n)

return {ĉ1, . . . , ĉn}, {â1, . . . , ân}

Lemma 2 says that algorithm 1 produces a (n, �, γ)-sharing set family of sizem
as long as certain technical conditions apply (e.g., algorithm 1 can be run with
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any numbers n1, ..., n�, but lemma 2 only applies if the numbers are pairwise
co-prime.).

Lemma 2. If the numbers n1 < n2 < . . . < n� are pairwise co-prime and
m ≤

∏γ+1
i=1 ni then algorithm 1 returns a (

∑�
i=1 ni, �, γ)-sharing set of public

cues.

Proof. Suppose for contradiction that |Si

⋂
Sk| ≥ γ + 1 for i < k < m, then

by construction we can find γ + 1 distinct indices j1, ..., jγ+1 ∈ such that i ≡ k
mod njt for 1 ≤ t ≤ γ + 1. The Chinese Remainder Theorem states that there

is a unique number x∗ s.t. (1) 1 ≤ x∗ <
∏γ+1

t=1 njt , and (2) x∗ ≡ k mod njt for

1 ≤ t ≤ γ + 1. However, we have i < m ≤
∏γ+1

t=1 njt . Hence, i = x∗ and by
similar reasoning k = x∗. Contradiction!

Example: Suppose that we select pairwise co-prime numbers n1 = 9, n2 =
10, n3 = 11, n4 = 13, then CRT (m,n1, . . . , n4) generates a (43, 4, 1)-sharing
set family of size m = n1 × n2 = 90 (i.e. the public cues for two accounts will
overlap in at most one common cue), and for m ≤ n1 × n2 × n3 = 990 we get a
(43, 4, 2)-sharing set family.

Lemma 2 implies that we can construct a (n, �, γ)-sharing set system of size

m ≥ Ω
(
(n/�)

γ+1
)

by selecting each ni ≈ n/�. Theorem 3 proves that we

can’t hope to do much better — any (n, �, γ)-sharing set system has size m ≤
O
(
(n/�)

γ+1
)
. We refer the interested reader to the full version[21] of this paper

for the proof of Theorem 3 and for discussion about additional (n, �, γ)-sharing
constructions.

Theorem 3. Suppose that S = {S1, ..., Sm} is a (n, �, γ)-sharing set family of

size m then m ≤
(

n
γ+1

)/(
�

γ+1

)
.

5.2 Shared Cues

Our password management scheme —Shared Cues— uses a (n, �, γ)-sharing set
family of size m (e.g., a set family generated by algorithm 1) as a hardcoded
input to output the public cues c1, ...cm ⊆ C and passwords p1, ..., pm for each
account. We use algorithm 2 to generate the underlying cues ĉ1, . . . , ĉn ∈ C
and their associated PAO stories. The computer is responsible for storing the
public cues in persistent memory and the user is responsible for memorizing and
rehearsing each cue-association pair (ĉi, âi).

We use two additional tricks to improve usability: (1) Algorithm 2 splits each
PAO story into two parts so that each cue ĉ consists of two pictures and two
corresponding people with a label (action/object) for each person (see Figure 1b).
A user who sees cue ĉi will be rehearsing both the i’th and the i+1’th PAO story,
but will only have to enter one action and one object. (2) To optimize usability
we use GreedyMap (Algorithm 4) to produce a permutation π : [m]→ [m] over
the public cues — the goal is to minimize the total number of extra rehearsals
by ensuring that each cue is used by a frequently visited account.
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Algorithm 3. SharedCues [S1, . . . , Sm, ] Gm
Input: k ∈ K, b, λ1, ..., λm, Rehearsal Schedule R.
{ĉ1, . . . , ĉn}, {â1, . . . , ân} ← CreatePAOStories (n, I1, ..., In,P1, . . . ,Pn)
for i = 1 → m do

ci ← {ĉj j ∈ Si}, and pi ← {âj j ∈ Si}.
% Permute cues

π ← GreedyMap (m,λ1, ..., λm, c1, . . . , cm, R, σ)
return

(
pπ(1), cπ(1)

)
, . . . ,

(
pπ(m), cπ(m)

)
User: Rehearses the cue-association pairs (ĉi, âi) by following the rehearsal schedule
R.
Computer: Stores the public cues c1, ..., cm in persistent memory.

Once we have constructed our public cues c1, ..., cm ⊆ C we need to create a
mapping π between cues and accounts A1, ..., Am. Our goal is to minimize the
total number of extra rehearsals that the user has to do to satisfy his rehearsal
requirements. Formally, we define the Min-Rehearsal problem as follows:
Instance: Public Cues c1, ..., cm ⊆ C, Visitation Schedule λ1, ..., λm, a rehearsal
schedule R for the underlying cues ĉ ∈ C and a time frame t.
Output: A bijective mapping π : {1, ...,m} → {1, ...,m} mapping account Ai

to public cue Sπ(i) which minimizes E [Xt].
Unfortunately, we can show that Min-Rehearsal is NP-Hard to even approx-
imate within a constant factor. Our reduction from Set Cover can be found in
the full version[21] of this paper. Instead GreedyMap uses a greedy heuristic to
generate a permutation π.

Theorem 4. It is NP-Hard to approximate Min-Rehearsal within a constant
factor.

Algorithm 4. GreedyMap

Input: m,λ1, ..., λm, c1, . . . , cm, Rehearsal Schedule R (e.g., CR or ER with param-
eter σ).
Relabel: Sort λ’s s.t λi ≥ λi+1 for all i ≤ m− 1.
Initialize: π0 (j) ← ⊥ for j ≤ m, UsedCues ← ∅.
%πi denotes a partial mapping [i] → [m],for j > i, the mapping is

undefined (e.g., πi (j) = ⊥). Let Sk = {ĉ ĉ ∈ ck}.
for i = 1 → m do

for all j ∈ [m]− UsedCues do

Δj ←
∑
ĉ∈Sj

E

⎡⎢⎣Xt,ĉ λĉ = λi +
∑

j:ĉ∈Sπi−1(j)

λj

⎤⎥⎦−E

⎡⎢⎣Xt,ĉ λĉ =
∑

j:ĉ∈Sπi−1(j)

λj

⎤⎥⎦
% Δj: expected reduction in total extra rehearsals if we set πi(i) = j

πi (i) ← argmaxj Δj , UsedCues ← UsedCues ∪ {πi (i)}
return πm
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5.3 Usability and Security Analysis

We consider three instantiations of Shared Cues: SC-0, SC-1 and SC-2. SC-0
uses a (9, 4, 3)-sharing family of public cues of size m = 126 — constructed
by taking all

(
9
4

)
= 126 subsets of size 4. SC-1 uses a (43, 4, 1)-sharing family

of public cues of size m = 90 — constructed using algorithm 1 with m = 90
and (n1, n2, n3, n4) = (9, 10, 11, 13). SC-2 uses a (60, 5, 1)-sharing family of pub-
lic cues of size m = 90 — constructed using algorithm 1 with m = 90 and
(n1, n2, n3, n4, n5) = (9, 10, 11, 13, 17).

Our usability results can be found in table 3 and our security results can be
found in table 4. We present our usability results for the very active, typical,
occasional and infrequent internet users (see table 1 for the visitation schedules)
under both sufficient rehearsal assumptions CR and ER. Table 3 shows the values
of E [X365] — computed using the formula from Theorem 1 — for SC-0, SC-
1 and SC-2. We used association strength parameter σ = 1 to evaluate each
password management scheme — though we expect that σ will be higher for
schemes like Shared Cues that use strong mnemonic techniques 1.

Table 3. E [X365]: Extra Rehearsals over the first year for SC-0,SC-1 and SC-2

Assumption CR (σ = 1) ER (σ = 1)

Schedule/Scheme SC-0 SC-1 SC-2 SC-0 SC-1 SC-2

Very Active ≈ 0 1, 309 2, 436 ≈ 0 3.93 7.54

Typical ≈ 0.42 3, 225 5, 491 ≈ 0 10.89 19.89

Occasional ≈ 1.28 9, 488 6, 734 ≈ 0 22.07 34.23

Infrequent ≈ 723 13, 214 18, 764 ≈ 2.44 119.77 173.92

Our security guarantees for SC-0,SC-1 and SC-2 are illustrated in Table 4.
The values were computed using Theorem 2. We assume that |AS| = 1402 where
AS = ACT × OBJ (e.g., their are 140 distinct actions and objects), and that
the adversary is willing to spend at most $106 on cracking the user’s passwords
(e.g., q = q$106 = 5.155 × 1010). The values of δ in the h = 0 columns were
computed assuming that m ≤ 100.

Discussion: Comparing tables 3 and 2 we see that Lifehacker is the most
usable password management scheme, but SC-0 compares very favorably! Un-
like Lifehacker, SC-0 provides provable security guarantees after the adversary
phishes one account — though the guarantees break down if the adversary can
also execute an offline attack. While SC-1 and SC-2 are not as secure as Strong
Random and Independent— the security guarantees from Strong Random
and Independent do not break down even if the adversary can recover many
of the user’s plaintext passwords — SC-1 and SC-2 are far more usable than
Strong Random and Independent. Furthermore, SC-1 and SC-2 do provide
very strong security guarantees (e.g., SC-2 passwords remain secure against of-
fline attacks even after an adversary obtains two plaintext passwords for accounts

1 We explore the effect of σ on E [Xt,c] in the full version[21] of this paper.
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Table 4. Shared Cues (q$106 , δ,m, s, r, h)-Security: δ vs h and r using a (n, �, γ)-sharing
family of m public cues

Offline Attack? h = 0 h > 0

(n, �, γ)-sharing r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
(n, 4, 3) (e.g., SC-0) 2× 10−15 0.011 1 3.5× 10−7 1 1
(n, 4, 1) (e.g., SC-1) 2× 10−15 4× 10−11 8× 10−7 3.5× 10−7 0.007 1
(n, 5, 1) (e.g., SC-2) 1× 10−19 2× 10−15 4× 10−11 1.8× 10−11 3.5× 10−7 0.007

of his choosing). For the very active, typical and occasional user the number of
extra rehearsals required by SC-1 and SC-2 are quite reasonable (e.g., the typ-
ical user would need to perform less than one extra rehearsal per month). The
usability benefits of SC-1 and SC-2 are less pronounced for the infrequent user
— though the advantage over Strong Random and Independent is still
significant.

6 Discussion and Future Work

We conclude by discussing future directions of research.
Sufficient Rehearsal Assumptions: While there is strong empirical evidence
for the Expanding Rehearsal assumption in the memory literature (e.g., [60]),
the parameters we use are drawn from prior studies in other domains. It would
be useful to conduct user studies to test the Expanding Rehearsal assumption in
the password context, and obtain parameter estimates specific to the password
setting. We also believe that user feedback from a password management scheme
like Shared Cues could be an invaluable source of data about rehearsal and long
term memory retention.
Expanding Security over Time: Most extra rehearsals occur soon after the
user memorizes a cue-association pair — when the rehearsal intervals are still
small. Is it possible to start with a password management scheme with weaker
security guaratnees (e.g., SC-0), and increase security over time by having the
user memorize additional cue-association pairs as time passes?
Human Computable Passwords: Shared Cues only relies on the human
capacity to memorize and retrieve information, and is secure against at most r =
�/γ plaintext password leak attacks. Could we improve security (or usability) by
having the user perform simple computations to recover his passwords? Hopper
and Blum proposed a ‘human authentication protocol’ — based on the noisy
parity problem — as an alternative to passwords [36], but their protocol seems
to be too complicated for humans to execute. Could similar ideas be used to
construct a secure human-computation based password management scheme?

References

1. Amazon ec2 pricing, http://aws.amazon.com/ec2/pricing/ (retrieved October
22, 2012)

http://aws.amazon.com/ec2/pricing/


378 J. Blocki, M. Blum, and A. Datta

2. Cert incident note in-98.03: Password cracking activity (July 1998),
http://www.cert.org/incident_notes/IN-98.03.html

(retrieved August 16, 2011)
3. Geek to live: Choose (and remember) great passwords (July 2006),

http://lifehacker.com/184773/geek-to-live--choose-and-remember-great-

passwords (retrieved September 27, 2012)
4. Rockyou hack: From bad to worse (December 2009), http://techcrunch.com/

2009/12/14/rockyou-hack-security-myspace-facebook-passwords/ (retrieved
September 27, 2012)

5. Oh man, what a day! an update on our security breach (April 2010),
http://blogs.atlassian.com/news/2010/04/oh man what a day an update

on our security breach.html (retrieved August 18, 2011)
6. Sarah palin vs the hacker (May 2010), http://www.telegraph.co.uk/news/

worldnews/sarah-palin/7750050/Sarah-Palin-vs-the-hacker.html (retrieved
September 9, 2012)

7. Nato site hacked (June 2011), http://www.theregister.co.uk/2011/06/24/
nato hack attack/ (retrieved August 16, 2011)

8. Update on playstation network/qriocity services (April 2011),
http://blog.us.playstation.com/2011/04/22/update-on-playstation-

network-qriocity-services/ (retrieved May 22, 2012)
9. Apple security blunder exposes lion login passwords in clear text (May 2012),

http://www.zdnet.com/blog/security/apple-security-blunder-exposes-

lion-login-passwords-in-clear-text/11963 (retrieved May 22, 2012)
10. Data breach at ieee.org: 100k plaintext passwords (September 2012),

http://ieeelog.com/ (retrieved September 27, 2012)
11. An update on linkedin member passwords compromised (June 2012),

http://blog.linkedin.com/2012/06/06/linkedin-member-

passwords-compromised/ (retrieved September 27, 2012)
12. Zappos customer accounts breached (January 2012), http://www.usatoday.com/

tech/news/story/2012-01-16/mark-smith-zappos-breach-tips/52593484/1

(retrieved May 22, 2012)
13. Acquisti, A., Gross, R.: Imagined communities: awareness, information sharing,

and privacy on the facebook. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS,
vol. 4258, pp. 36–58. Springer, Heidelberg (2006)

14. Anderson, J., Matessa, M., Lebiere, C.: Act-r: A theory of higher level cognition
and its relation to visual attention. Human-Computer Interaction 12(4), 439–462
(1997)

15. Anderson, J.R., Schooler, L.J.: Reflections of the environment in memory. Psycho-
logical Science 2(6), 396–408 (1991)

16. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transac-
tions on Information Theory 29(2), 208–210 (1983)

17. Baddeley, A.: Human memory: Theory and practice. Psychology Pr. (1997)
18. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with

RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

19. Biddle, R., Chiasson, S., Van Oorschot, P.: Graphical passwords: Learning from
the first twelve years. ACM Computing Surveys (CSUR) 44(4), 19 (2012)

20. Biddle, S.: Anonymous leaks 90,000 military email accounts in latest antisec attack
(July 2011), http://gizmodo.com/5820049/anonymous-leaks-90000-military-

email-accounts-in-latest-antisec-attack (retrieved August 16, 2011)

http://www.cert.org/incident_notes/IN-98.03.html
http://lifehacker.com/184773/geek-to-live--choose-and-remember-great-passwords
http://lifehacker.com/184773/geek-to-live--choose-and-remember-great-passwords
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://blogs.atlassian.com/news/2010/04/oh_man_what_a_day_an_update_on_our_security_breach.html
http://blogs.atlassian.com/news/2010/04/oh_man_what_a_day_an_update_on_our_security_breach.html
http://www.telegraph.co.uk/news/worldnews/sarah-palin/7750050/Sarah-Palin-vs-the-hacker.html
http://www.telegraph.co.uk/news/worldnews/sarah-palin/7750050/Sarah-Palin-vs-the-hacker.html
http://www.theregister.co.uk/2011/06/24/nato_hack_attack/
http://www.theregister.co.uk/2011/06/24/nato_hack_attack/
http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/
http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/
http://www.zdnet.com/blog/security/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/11963
http://www.zdnet.com/blog/security/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/11963
http://ieeelog.com/
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://www.usatoday.com/tech/news/story/2012-01-16/mark-smith-zappos-breach-tips/52593484/1
http://www.usatoday.com/tech/news/story/2012-01-16/mark-smith-zappos-breach-tips/52593484/1
http://gizmodo.com/5820049/anonymous-leaks-90000-military-email-accounts-in-latest-antisec-attack
http://gizmodo.com/5820049/anonymous-leaks-90000-military-email-accounts-in-latest-antisec-attack


Naturally Rehearsing Passwords 379

21. Blocki, J., Blum, M., Datta, A.: Naturally rehearsing passwords. CoRR
abs/1302.5122 (2013)

22. Blocki, J., Komanduri, S., Procaccia, A., Sheffet, O.: Optimizing password com-
position policies

23. Bojinov, H., Sanchez, D., Reber, P., Boneh, D., Lincoln, P.: Neuroscience meets
cryptography: designing crypto primitives secure against rubber hose attacks. In:
Proceedings of the 21st USENIX Conference on Security Symposium, pp. 33–33.
USENIX Association (2012)

24. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 538–552.
IEEE (2012)

25. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes.
In: IEEE Symposium on Security and Privacy, pp. 553–567. IEEE (2012)

26. Boztas, S.: Entropies, guessing, and cryptography. Department of Mathematics,
Royal Melbourne Institute of Technology, Tech. Rep 6 (1999)

27. Brand, S. Department of defense password management guideline
28. Brostoff, S., Sasse, M.: Are Passfaces more usable than passwords: A field trial

investigation. In: People and Computers XIV-Usability or Else: Proceedings of
HCI, pp. 405–424 (2000)

29. Burnett, M.: Perfect passwords: selection, protection, authentication. Syngress
Publishing (2005)

30. Center, I.: Consumer password worst practices. Imperva (White Paper) (2010)
31. Danescu-Niculescu-Mizil, C., Cheng, J., Kleinberg, J., Lee, L.: You had me at hello:

How phrasing affects memorability. In: Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers, vol. 1, pp. 892–901.
Association for Computational Linguistics (2012)

32. Ding, C., Pei, D., Salomaa, A.: Chinese remainder theorem. World Scientific (1996)
33. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-

ings of the 16th International Conference on World Wide Web, pp. 657–666. ACM
(2007)

34. Foer, J.: Moonwalking with Einstein: The Art and Science of Remembering Every-
thing. Penguin Press (2011)

35. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:
Proceedings of the Second Symposium on Usable Privacy and Security, SOUPS
2006, pp. 44–55. ACM, New York (2006)

36. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

37. Kohonen, T.: Associative memory: A system-theoretical approach. Springer, Berlin
(1977)

38. Komanduri, S., Shay, R., Kelley, P., Mazurek, M., Bauer, L., Christin, N., Cra-
nor, L., Egelman, S.: Of passwords and people: measuring the effect of password-
composition policies. In: Proceedings of the 2011 Annual Conference on Human
Factors in Computing Systems, pp. 2595–2604. ACM (2011)

39. Kruger, H., Steyn, T., Medlin, B., Drevin, L.: An empirical assessment of fac-
tors impeding effective password management. Journal of Information Privacy and
Security 4(4), 45–59 (2008)

40. Marr, D.: Simple memory: a theory for archicortex. Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences, 23–81 (1971)

41. Massey, J.: Guessing and entropy. In: Proceedings of the 1994 IEEE International
Symposium on Information Theory, p. 204. IEEE (1994)



380 J. Blocki, M. Blum, and A. Datta

42. Monroe, R.: Xkcd: Password strength, http://www.xkcd.com/936/ (retrieved Au-
gust 16, 2011)

43. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and Sys-
tem Sciences 49(2), 149–167 (1994)

44. Pliam, J.O.: On the incomparability of entropy and marginal guesswork in brute-
force attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977,
pp. 67–79. Springer, Heidelberg (2000)

45. Provos, N., Mazieres, D.: Bcrypt algorithm
46. Radke, K., Boyd, C., Nieto, J.G., Brereton, M.: Towards a secure human-and-

computer mutual authentication protocol. In: Proceedings of the Tenth Aus-
tralasian Information Security Conference (AISC 2012), vol. 125, pp. 39–46. Aus-
tralian Computer Society Inc. (2012)

47. Rasch, G.: The poisson process as a model for a diversity of behavioral phenomena.
In: International Congress of Psychology (1963)

48. Scarfone, K., Souppaya, M.: Guide to enterprise password management (draft).
National Institute of Standards and Technology 800-188 6, 38 (2009)

49. Schechter, S., Brush, A., Egelman, S.: It’s no secret. measuring the security and
reliability of authentication via ‘secret’ questions. In: 2009 30th IEEE Symposium
on Security and Privacy, pp. 375–390. IEEE (2009)

50. Shay, R., Kelley, P., Komanduri, S., Mazurek, M., Ur, B., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.: Correct horse battery staple: Exploring the usability of
system-assigned passphrases. In: Proceedings of the Eighth Symposium on Usable
Privacy and Security, p. 7. ACM (2012)

51. Singer, A.: No plaintext passwords. The Magazine of Usenix & Sage 26(7) (Novem-
ber 2001) (retrieved August 16, 2011)

52. Spence, J.: The memory palace of Matteo Ricci. Penguin Books (1985)
53. Squire, L.: On the course of forgetting in very long-term memory. Journal of Ex-

perimental Psychology: Learning, Memory, and Cognition 15(2), 241 (1989)
54. Standingt, L.: Learning 10,000 pictures. Quarterly Journal of Experimental Psy-

chology 5(20), 7–22 (1973)
55. Stein, J.: Pimp my password. Time, 62 (August 29, 2011)
56. Valiant, L.: Memorization and association on a realistic neural model. Neural Com-

putation 17(3), 527–555 (2005)
57. van Rijn, H., van Maanen, L., van Woudenberg, M.: Passing the test: Improving

learning gains by balancing spacing and testing effects. In: Proceedings of the 9th
International Conference of Cognitive Modeling (2009)

58. Von Ahn, L., Blum, M., Hopper, N., Langford, J.: Captcha: Using hard ai problems
for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 646–646.
Springer, Heidelberg (2003)

59. Willshaw, D., Buckingham, J.: An assessment of marr’s theory of the hippocampus
as a temporary memory store. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 329(1253), 205 (1990)

60. Wozniak, P., Gorzelanczyk, E.J.: Optimization of repetition spacing in the practice
of learning. Acta Neurobiologiae Experimentalis 54, 59–59 (1994)

61. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: Empirical results. IEEE Security & Privacy 2(5), 25–31 (2004)

http://www.xkcd.com/936/


Leakage-Resilient Chosen-Ciphertext Secure

Public-Key Encryption from Hash Proof System
and One-Time Lossy Filter

Baodong Qin1,2 and Shengli Liu1,�

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

2 College of Computer Science and Technology, Southwest University of Science and
Technology, Mianyang 621010, China
{qinbaodong,slliu}@sjtu.edu.cn

Abstract. We present a new generic construction of a public-key en-
cryption (PKE) scheme secure against leakage-resilient chosen-ciphertext
attacks (LR-CCA), from any Hash Proof System (HPS) and any one-
time lossy filter (OT-LF). Efficient constructions of HPSs and OT-LFs
from the DDH and DCR assumptions suggest that our construction is
a practical approach to LR-CCA security. Most of practical PKEs with
LR-CCA security, like variants of Cramer-Shoup scheme, rooted from
Hash Proof Systems, but with leakage rates at most 1/4− o(1) (defined
as the ratio of leakage amount to secret-key size). The instantiations of
our construction from the DDH and DCR assumptions result in LR-CCA
secure PKEs with leakage rate of 1/2−o(1). On the other hand, our con-
struction also creates a new approach for constructing IND-CCA secure
(leakage-free) PKE schemes, which may be of independent interest.
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1 Introduction

Research on leakage-resilient cryptography is motivated by those side-channel
attacks [17], in which a significant fraction of the secret key SK is leaked to
the adversary. Cryptosystems proved secure in the traditional model may suffer
from these key-leakage attacks, as shown in [17]. This fact leads to design and
security proof of a variety of leakage-resilient cryptosystems, including stream
ciphers [14,30], block ciphers [12], digital signatures [20,15], public key encryp-
tion [27,1,2,3,4], identity-based encryption [24,7,16], etc.

Leakage Oracle, Bounded-Leakage Model and Leakage Rate. Side-
channel attacks characterized by key leakage can be formalized in a general
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framework [1] with a leakage oracle Oλ,κ
SK(·): the adversary queries arbitrary

efficiently computable functions fi : {0, 1}∗ → {0, 1}λi of the secret key SK
repeatedly and adaptively, and the leakage oracle responds with fi(SK). The
bounded-leakage model limits the total amount of information about SK leaked
by the oracle to a bound λ during the life time of the cryptosystem. This model
is simple and powerful, but a thorough understanding of this model is essential
to those more complicated models [4]. If a cryptosystem is secure against the
above key-leakage attacks, we call it λ-leakage-resilient (λ-LR, for short). The
leakage rate is defined as the ratio of λ to the secret key size, i.e., λ/|SK|.

Leakage-Resilient CCA Security and Hash Proof System. In the key-
leakage scenario of public key encryption (PKE), leakage-resilient security against
chosen-plaintext attacks (LR-CPA) is characterized by the indistinguishability
between the encryptions of two plaintexts (of equal length) chosen by any Prob-
abilistic Polynomial-Time (PPT) adversary, who is given access to a key-leakage
oracle. If the adversary is equipped with a decryption oracle as well, with restric-
tion that the challenge ciphertext is refused by the decryption oracle and the
leakage oracle stops working after the generation of the challenge ciphertext, the
notion becomes leakage-resilient security against chosen-ciphertext attacks (LR-
CCA). Naor-Yung paradigm applies to LR-CCA security [27]. It achieves leakage
rate of 1− o(1), but the simulation-sound Non-Interactive Zero-Knowledge (ss-
NIZK) proof is far from practical. It was later improved by Dodis et al. [11] with
true-simulation extractable NIZK (tSE-NIZK), but the construction is still not
practical. Recently, Galindo et al. [16] constructed an identity-based encryption
(IBE) scheme with master key-dependent chosen-plaintext (mKDM-sID-CPA)
security based on the decisional linear assumption over bilinear groups. They
suggested that their mKDM-sID-CPA secure IBE scheme is also master key
leakage resilient with rate 1−o(1), hence can be transformed into a LR-CCA se-
cure PKE scheme with leakage rate 1−o(1) by applying the CHK transform [6].
However, their claim that the mKDM-sID-CPA secure IBE scheme is also master
key leakage resilient was not supported by any rigorous proof.

Hash Proof Systems (HPSs), due to Cramer and Shoup [9], have long been
served as the most practical approach to PKEs with IND-CCA security. They
are also intrinsically LR-CPA secure, and a HPS based on the DDH assumption
(and its d-Linear variant) was proved to be LR-CPA secure with leakage rate
of 1 − o(1) [27]. As to LR-CCA security, however, the HPS approach to IND-
CCA security is inherently limited to leakage rate below 1/2, as pointed out by
Dodis et al. [11]. Recall that to achieve IND-CCA security, Cramer and Shoup [9]
proposed to use two independent HPSs, one is a smooth HPS to mask and hide
the plaintext, and the other is a universal2 HPS used to verify whether the
ciphertext is well-formed. Hence two independent secret keys are involved in the
construction, and either one, if totally leaked, will kill the LR-CCA security.
That is why the leakage rate must be less than 1/2.

Prior constructions of PKE with LR-CCA security from HPSs enjoy great
efficiency, but suffer from low leakage rate. The variants [27,26] of Cramer-
Shoup DDH-based scheme [8] achieve leakage rate of 1/6− o(1), which was later
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improved to 1/4−o(1) [25]. To the best of our knowledge, no constructions from
HPSs are known to be LR-CCA secure with leakage rate of 1/2 − o(1). The
question is: can we find a new way to construct LR-CCA secure PKEs which are
not only as practical as HPS but also with reasonable high leakage rates (like
1/2− o(1))?

Our Contributions. We propose a new generic construction of PKE with LR-
CCA security from a Hash Proof System (HPS) and a one-time lossy filter (OT-
LF). The new primitive, one-time lossy filter (OT-LF), is a weak version of
lossy algebraic filter [19], and we show how to construct OT-LFs from the DDH
and DCR assumptions. In the generic construction of LR-CCA secure PKE,
the HPS is used to generate an encapsulated key K, which is not only used to
mask the plaintext, but also used in the OT-LF to verify the well-formedness
of ciphertexts. OT-LF helps to obtain a higher leakage rate, compared to the
constructions solely from HPSs.

– We give instantiations of PKEs with LR-CCA security under the DDH
(DCR) assumption, by combining an efficient construction of DDH (DCR)-
based OT-LF and DDH (DCR)-based HPS. The leakage rate is as high as
1/2− o(1).

– In case of no leakage on secret key at all, the leakage-free version of our con-
struction opens another practical approach to IND-CCA security, as com-
pared to the HPS-based construction by Cramer and Shoup.

Overview of Our Techniques. Different from the HPS-based approach to
CCA-security, in which a universal2 hash proof system is employed to reject
ill-formed ciphertexts, we use a one-time lossy filter (OT-LF) to do the job.
OT-LF is a simplified version of lossy algebraic filter, which was introduced by
Hofheinz [19] recently to realize key-dependent chosen-ciphertext security [5].
The concept of OT-LF is similar to (chameleon) all-but-one lossy trapdoor func-
tion [31,23]. But it does not require efficient inversion. Roughly, a OT-LF is a
family of functions indexed by a public key Fpk and a tag t = (ta, tc). A func-
tion LFFpk,t(·) from that family maps an input X to a unique output. For a
fixed public key, the set of tags contains two computationally indistinguishable
disjoint subsets, namely the subset of injective tags and the subset of lossy ones.
If tag t = (ta, tc) is injective, then so is the corresponding function LFFpk,t(·).
If the tag is lossy, the output of the function reveals only a constant amount of
information about its input X . For any ta, there exists a lossy tag (ta, tc) such
that tc can be efficiently computed through a trapdoor Ftd. Without this trap-
door, however, it is hard to generate a new lossy tag even with the knowledge of
one lossy tag. Trapdoor Ftd and lossy tag are only used for the security proof.

Roughly speaking, a hash proof system HPS is a key-encapsulation mecha-
nism. Given public key pk, an element C ∈ V and its witness w, the encapsu-
lated key is given by K = HPS.Pub(pk, C,w). With secret key sk, decapsulation
algorithm HPS.Priv(sk, C) recovers K from C ∈ V . If C ∈ C \ V , the output
of HPS.Priv(sk, C) has a high min-entropy even conditioned on pk and C. The
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hardness of subset membership problem requires that elements in V are indis-
tinguishable from those in C \ V .

In our construction, the secret key is just sk from the HPS, and the HPS and
OT-LF are integrated into a ciphertext CT,

CT = (C, s, Ψ = Ext(K, s)⊕M, Π = LFFpk,t(K), tc),

via K = HPS.Pub(pk, C,w) = HPS.Priv(sk, C) (it holds for all C ∈ V).
The encapsulated key K functions in two ways. (1) It serves as an input,

together with a random string s, to extractor Ext(K, s) to mask and hide the
plaintext M to deal with key leakage. (2) It serves as the input of LFFpk,t(·)
to check the well-formedness of the ciphertext. Tag t = (ta, tc) is determined
by ta = (C, s, Ψ) and a random tc. LFFpk,t(K) can also be considered as an
authentication code, which is used to authenticate the tag t = ((C, s, Ψ), tc)
with the authentication key K.

In the security proof, some changes are made to the generation of the challenge
ciphertext CT ∗ = (C∗, s∗, Ψ∗, Π∗, t∗c): C

∗ is sampled from C \ V and the tag t∗

is made lossy by computing a proper tc with trapdoor Ftd. A PPT adversary
cannot tell the changes due to the hardness of subset membership problem and
the indistinguishability of lossy tags and injective ones. Conditioned on CT ∗,
the encapsulated key K∗ = HPS.Priv(sk, C∗) still maintains a high min-entropy
since Π∗ = LFFpk,t∗(K

∗) works in lossy mode and only little information is
released. When a PPT adversary chooses an invalid ciphertext CT in the sense
that C ∈ C \ V for decryption query, the corresponding tag t is injective with
overwhelming probability. Then LFFpk,t(·) is injective and Π preserves the high
min-entropy of K = HPS.Priv(sk, C). Hence invalid ciphertexts will be rejected
by the decryption oracle with overwhelming probability. On the other hand,
the information of pk has already determined K = HPS.Priv(sk, C) for all C ∈
V . Thus the decryption oracle does not help the adversary to gain any more
information about K∗. Then an extractor can be applied to K∗ to totally mask
the information of challenge plaintext, and a large min-entropy ofK∗ conditioned
on pk and Π∗ implies a high tolerance of key leakage.

Thanks to efficient constructions for HPS and OT-LF under the DDH and
DCR assumptions, the instantiations are practically efficient. More precisely,
|K| ≈ L/2, where L is the length of the secret key of HPS. Due to the lossiness
of the OT-LF and the property of the HPS, the min-entropy conditioned on the
public key and challenge ciphertext, approaches (1/2−o(1))L. Hence the leakage
rate approaches 1/2.

2 Preliminaries

Notation. Let [n] denote the set {1, . . . , n}. Let κ ∈ N denote the security
parameter and 1κ denote the string of κ ones. If s is a string, then |s| denotes its
length, while if S is a set then |S| denotes its size and s← S denotes the operation
of picking an element s uniformly at random from S. We denote y ← A(x) the
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operation of running A with input x, and assigning y as the result. We write
log s for logarithms over the reals with base 2.

Randomness Extractor. Let SD(X,Y ) denote the statistical distance of ran-
dom variables X and Y over domain Ω. Namely, SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X =

ω]−Pr[Y = ω]|. The min-entropy of X is H∞(X) = − log(maxω∈Ω Pr[X = ω]).
Dodis et al. [13] formalized the notion of average min-entropy of X conditioned

on Y which is defined as H̃∞(X |Y ) = − log(Ey←Y [2
−H∞(X|Y=y)]). They proved

the following property of average min-entropy.

Lemma 1. [13] Let X, Y and Z be random variables. If Y has at most 2r

possible values, then H̃∞(X |(Y, Z)) ≥ H̃∞(X |Z)− r.

Definition 1 (Randomness Extractor). An efficient function Ext : X ×S →
Y is an average-case (ν, ε)-strong extractor if for all pairs of random variables

(X,Z) such that X ∈ X and H̃∞(X |Z) ≥ ν, we have

SD((Z, s,Ext(X, s)), (Z, s, UY)) ≤ ε,

where s is uniform over S and UY is uniform over Y.
A family of universal hash functions H = {Hs : X → Y}s∈S can be used as

an average-case (H̃∞(X |Z), ε)-strong extractors whenever H̃∞(X |Z) ≥ log |Y|+
2 log(1/ε), according to the general Leftover Hash Lemma [13].

2.1 Leakage-Resilient Public-Key Encryption

A Public-Key Encryption (PKE) scheme with plaintext space M is given by
three PPT algorithms (PKE.Gen,PKE.Enc,PKE.Dec). The key generation al-
gorithm PKE.Gen takes as input 1κ, and outputs a pair of public/secret keys
(PK, SK). The encryption algorithm PKE.Enc takes as input a public key PK
and a plaintext M ∈M, and returns a ciphertext CT = PKE.Enc(PK,M). The
decryption algorithm PKE.Dec takes as input a secret key SK and a ciphertext
CT , and returns a plaintext M ∈ M ∪ {⊥}. For consistency, we require that
PKE.Dec(SK,PKE.Enc(PK,M)) = M holds for all (PK, SK) ← PKE.Gen(1κ)
and all plaintexts M ∈M.

Following [27,28], we define leakage-resilient chosen-ciphertext security (LR-
CCA) for PKE.

Definition 2 (Leakage-Resilient CCA security of PKE). A public-key
encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) is λ-leakage-resilient
chosen-ciphertext secure (λ-LR-CCA-secure), if for any PPT adversary A =

(A1,A2), the function Advlr-ccaPKE,A(κ) :=
∣∣∣Pr[Explr-ccaPKE,A(κ) = 1]− 1

2

∣∣∣ is negligible in
κ. Below defines Explr-ccaPKE,A(κ).

1. (PK, SK)← PKE.Gen(1κ), b← {0, 1}.
2. (M0,M1, state)← AOλ,κ

sk (·),PKE.Dec(SK,·)
1 (pk), s.t. |M0| = |M1|.

3. CT ∗ ← PKE.Enc(PK,Mb). b
′ ← APKE.Dec �=CT∗(SK,·)

2 (state, CT ∗).
5. If b = b′ return 1 else return 0.

In the case of λ = 0, Definition 2 is just the standard CCA security [32].
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2.2 Hash Proof System

We recall the notion of hash proof systems introduced by Cramer and Shoup [9].
For simplicity, hash proof systems are described as key encapsulation mecha-
nisms (KEMs), as did in [21].

Projective Hashing. Let SK, PK and K be sets of public keys, secret keys
and encapsulated keys. Let C be the set of all ciphertexts of KEM and V ⊂ C
be the set of all valid ones. We assume that there are efficient algorithms for
sampling sk ← SK, C ← V together with a witness w, and C ← C \ V .

Let Λsk : C → K be a hash function indexed with sk ∈ SK that maps
ciphertexts to symmetric keys. The hash function Λsk is projective if there exists
a projection μ : SK → PK such that μ(sk) ∈ PK defines the action of Λsk over
the subset V of valid ciphertexts.

Definition 3 (universal[9]). A projective hash function Λsk is ε-universal, if
for all pk, C ∈ C \ V , and all K ∈ K, it holds that Pr[Λsk(C) = K | (pk, C)] ≤ ε,
where the probability is over all possible sk ← SK with pk = μ(sk).

The lemma below follows directly from the definition of min-entropy.

Lemma 2. Assume that Λsk : C → K is an ε-universal projective hash function.
Then, for all pk and C ∈ C\V, it holds that H∞(Λsk(C)|(pk, C)) ≥ log 1/ε, where
sk ← SK with pk = μ(sk).

Hash Proof System. A hash proof system HPS consists of three PPT al-
gorithms (HPS.Gen, HPS.Pub, HPS.Priv). The parameter generation algorithm
HPS.Gen(1κ) generates parameterized instances of the form params=(group, K,
C, V , SK, PK, Λ(·) : C → K, μ : SK → PK), where group may contain additional
structural parameters. The public evaluation algorithm HPS.Pub(pk, C,w) takes
as input a projective public key pk = μ(sk), a valid ciphertext C ∈ V and a wit-
ness w of the fact that C ∈ V , and computes the encapsulated key K = Λsk(C).
The private evaluation algorithm HPS.Priv(sk, C) takes a secret key sk and a ci-
phertext C ∈ V as input, and returns the encapsulated key K = Λsk(C) without
knowing a witness. We assume that μ and Λ(·) are efficiently computable.

Subset Membership Problem. The subset membership problem associated
with a HPS suggests that a random valid ciphertext C0 ← V and a random
invalid ciphertext C1 ← C \ V are computationally indistinguishable. This is
formally captured by a negligible advantage function Advsmp

HPS,A(κ) for all PPT
adversary A, where

Advsmp
HPS,A(κ) = |Pr[A(C,V, C0) = 1 | C0 ← V]− Pr[A(C,V, C1) = 1 | C1 ← C \ V]| .

Definition 4. A hash proof system HPS = (HPS.Gen,HPS.Pub,HPS.Priv) is ε-
universal if: (i) for all sufficiently large κ ∈ N and for all possible outcomes of
HPS.Gen(1κ), the underlying projective hash function is ε(κ)-universal for negli-
gible ε(κ); (ii) the underlying subset membership problem is hard. Furthermore,
a hash proof system is called perfectly universal if ε(κ) = 1/|K|.
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2.3 One-Time Lossy Filter

One-time Lossy Filter (OT-LF) is a simplified version of lossy algebraic filters
recently introduced by Hofheinz [19]. A (Dom, �LF)-OT-LF is a family of functions
indexed by a public key Fpk and a tag t. A function LFFpk,t from the family
maps an input X ∈ Dom to an output LFFpk,t(X). Given public key Fpk, the
set of tags T contains two computationally indistinguishable disjoint subsets,
namely the subset of injective tags Tinj and the subset of lossy ones Tloss. If t is
an injective tag, the function LFFpk,t is injective and has image size of |Dom|. If
t is lossy, the output of the function has image size at most 2�LF . Thus, a lossy
tag ensures that LFFpk,t(X) reveals at most �LF bits of information about its
input X . This is a crucial property of an LF.

Definition 5 (OT-LF). A (Dom, �LF)-one-time lossy filter LF consists of three
PPT algorithms (LF.Gen, LF.Eval, LF.LTag):

Key Generation. LF.Gen(1κ) outputs a key pair (Fpk, F td). The public key
Fpk defines a tag space T = {0, 1}∗× Tc that contains two disjoint subsets,
the subset of lossy tags Tloss ⊆ T and that of injective tags Tinj ⊆ T . A
tag t = (ta, tc) ∈ T consists of an auxiliary tag ta ∈ {0, 1}∗ and a core tag
tc ∈ Tc. Ftd is a trapdoor that allows to efficiently sample a lossy tag.

Evaluation. LF.Eval(Fpk, t,X), for a public key Fpk, a tag t and X ∈ Dom,
computes LFFpk,t(X).

Lossy Tag Generation. LF.LTag(Ftd, ta), for an auxiliary tag ta and the trap-
door Ftd, computes a core tag tc such that t = (ta, tc) is lossy.
We require that an OT-LF LF has the following properties:

Lossiness. If t is injective, so is the function LFFpk,t(·). If t is lossy, then
LFFpk,t(X) has image size of at most 2�LF . (In application, we are interested
in OT-LFs that have a constant parameter �LF even for larger domain.)

Indistinguishability. For any PPT adversary A, it is hard to distinguish a
lossy tag from a random tag, i.e., the following advantage is negligible in κ.

AdvindLF,A(κ) := |Pr[A(Fpk, (ta, t
(0)
c )) = 1]− Pr[A(Fpk, (ta, t

(1)
c )) = 1|

where (Fpk, F td)← LF.Gen(1κ), ta ← A(Fpk), t
(0)
c ← LF.LTag(Ftd, ta) and

t
(1)
c ← Tc.

Evasiveness. For any PPT adversary A, it is hard to generate a non-injective
tag1 even given a lossy tag, i.e., the following advantage is negligible in κ.

AdvevaLF,A(κ) := Pr

⎡⎣ (t′a, t
′
c) = (ta, tc) ∧

(t′a, t
′
c) ∈ T \ Tinj

:
(Fpk, F td) ← LF.Gen(1κ);
ta ← A(Fpk); tc ← LF.LTag(Ftd, ta);
(t′a, t

′
c) ← A(Fpk, (ta, tc))

⎤⎦
Remark 1. The definition of one-time lossy filter is different from that of lossy
algebraic filter [19] in two ways. First, the one-time property in our definition
allows the adversary to query lossy tag generation oracle only once in both
indistinguishability and evasiveness games.While in [19], the adversary is allowed
to query the oracle polynomial times. Secondly, unlike lossy algebraic filter, one-
time lossy filter does not require any algebraic properties.

1 In some case, a tag may neither injective nor lossy.
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2.4 Chameleon Hashing

A chameleon hashing function [22] is essentially a hashing function associated
with a pair of evaluation key and trapdoor. Its collision-resistant property holds
when only the evaluation key of the function is known, but is broken with the
trapdoor. We recall the formal definition of chameleon hashing from [18].

Definition 6 (Chameleon Hashing). A chameleon hashing function CH con-
sists of three PPT algorithms (CH.Gen,CH.Eval,CH.Equiv):

Key Generation. CH.Gen(1κ) outputs an evaluation key ekch and a trapdoor
tdch.

Evaluation. CH.Eval(ekch, x; rch) maps x ∈ {0, 1}∗ to y ∈ Y with help of the
evaluation key ekch and a randomness rch ← Rch. If rch is uniformly dis-
tributed over Rch, so is y over Y.

Equivocation. CH.Equiv(tdch, x, rch, x
′) outputs a randomness r′

ch
∈ Rch such

that
CH.Eval(ekch, x; rch) = CH.Eval(ekch, x

′; r′
ch
), (1)

for all x, x′ and rch. Meanwhile, r′
ch

is uniformly distributed as long as rch
is.

Collision Resistance. Given evaluation key ekch, it is hard to find (x, rch) �=
(x′, r′

ch
) with CH.Eval(ekch, x; rch) = CH.Eval(ekch, x

′; r′
ch
). More precisely,

for any PPT adversary A, the following advantage is negligible in κ.

AdvcrCH,A(κ) := Pr

[
(x, rch) �= (x′, r′

ch
)

∧ Eq. (1)holds.
:
(ekch, tdch)← CH.Gen(1κ)
(x, rch, x

′, r′
ch
)← A(ekch)

]
3 The Construction

Let HPS = (HPS.Gen,HPS.Pub,HPS.Priv) be an ε1-universal hash proof system,
where HPS.Gen(1κ) generates instances of params=(group, K, C, V , SK, PK,
Λ(·) : C → K, μ : SK → PK). Let LF = (LF.Gen, LF.Eval, LF.LTag) be a (K, �LF)-
one-time lossy filter. Define ν := log(1/ε1). Let λ be a bound on the amount of
leakage, and let Ext : K×{0, 1}d → {0, 1}m be an average-case (ν −λ− �LF, ε2)-
strong extractor. We assume that ε2 is negligible in κ. The encryption scheme
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with plaintext space {0, 1}m is described
as follows.

Key Generation. PKE.Gen(1κ) runs HPS.Gen(1κ) to obtain params and runs
LF.Gen(1κ) to obtain (Fpk, F td). It also picks sk ← SK and sets pk =
μ(sk). The output is a public/secret key pair (PK, SK), where PK =
(params, Fpk, pk) and SK = sk.

Encryption. PKE.Enc(PK,M) takes as input a public key PK and a message
M ∈ {0, 1}m. It chooses C ← V with witness w, a random seed s← {0, 1}d
and a random core tag tc ← Tc. It then computes

K = HPS.Pub(pk, C,w), Ψ = Ext(K, s)⊕M, Π = LFFpk,t(K),

where the filter tag is t = (ta, tc) with ta = (C, s, Ψ). Output the ciphertext
CT = (C, s, Ψ,Π, tc).
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Decryption. PKE.Dec(SK,CT ), given a secret key SK = sk and a ciphertext
CT = (C, s, Ψ,Π, tc), computesK ′ = HPS.Priv(sk, C) andΠ ′ = LFFpk,t(K

′),
where t = ((C, s, Ψ), tc). It checks whether Π = Π ′. If not, it rejects with ⊥.
Otherwise it outputs M = Ψ ⊕ Ext(K ′, s).

The correctness of PKE follows from the correctness of the underlying hash
proof system.

The idea of our construction is to employ a Hash Proof System (HPS) to gen-
erate an encapsulated key K, which is then used not only to mask the plaintext,
but also to verify the well-formedness of the ciphertext. To deal with the secret
key leakage, an extractor converts K to a shorter key to hide the plaintext M .
A one-time lossy filter LFFpk,t(K) helps to implement the verification. The filter
in the challenge ciphertext CT ∗ works in the lossy mode, and it leaks only a
limited amount of information about the key K. For any invalid ciphertext sub-
mitted by the adversary to the decryption oracle, the filter works in the injective
mode with overwhelming probability. Consequently, the output of the filter in
the invalid ciphertext preserves the entropy of K, which makes the ciphertext
rejected by the decryption oracle with overwhelming probability.

The security of the construction is established by the theorem below.

Theorem 1. Assuming that HPS is an ε1-universal hash proof system, LF is a
(K, �LF)-one-time lossy filter, and Ext : K×{0, 1}d → {0, 1}m is an average-case
(ν − λ − �LF, ε2)-strong extractor, the encryption scheme PKE is λ-LR-CCA-
secure as long as λ ≤ ν−m− �LF−ω(log κ), where m is the plaintext length and
ν := log(1/ε1). Particularly,

Advlr-ccaPKE,A(κ) ≤ AdvindLF,B1
(κ) +Q(κ) · AdvevaLF,B2

(κ) + Advsmp
HPS,B3

(κ) +
Q(κ)2λ+�LF+m

2ν −Q(κ)
+ ε2

where Q(κ) denotes the number of decryption queries made by A.

Parameters and Leakage Rate. To make our construction tolerate leakage
as much as possible, it is useful to consider a “very strong” hash proof system
(i.e., ε1 ≤ 2/|K|). In this case, ν = log(1/ε1) ≥ log |K| − 1. Thus, when K
is sufficiently large, the leakage rate (defined as λ/|SK|) in our construction
approaches (log |K|)/|SK| asymptotically.

CCA-Security. Clearly, if λ = 0 and log(1/ε1) ≥ m+ �LF +ω(log κ), the above
construction is CCA-secure. Thus, it provides a new approach for constructing
CCA-secure PKE from any universal hash proof system and OT-LF.

Proof. The proof goes with game arguments [33]. We define a sequence of games,
Game0, . . . , Game6, played between a simulator Sim and a PPT adversary A. In
each game, the adversary outputs a bit b′ as a guess of the random bit b used
by the simulator. Denote by Si the event that b = b′ in Gamei and denote by
CT ∗ = (C∗, s∗, Ψ∗, Π∗, t∗c) the challenge ciphertext.

Game0: This is the original LR-CCA game Explr-ccaPKE,A(κ). The simulator generates
the public/secret key pair (PK, SK) by invoking PKE.Gen(1κ) and sends the
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public key PK to the adversary A. For each decryption query CT or leakage
query fi, Sim responds with PKE.Dec(SK,CT ) or fi(SK) using secret key
SK. Upon receiving two messagesM0,M1 of equal length from the adversary,
Sim selects a random b ∈ {0, 1} and sends the challenge ciphertext CT ∗ :=
PKE.Enc(PK,Mb) to A. The simulator continues to answer the adversary’s
decryption query as long as CT �= CT ∗. Finally, A outputs a bit b′, which
is a guess of b. By the Definition 2, we have Advlr-ccaPKE,A(κ) :=

∣∣Pr[S0]− 1
2

∣∣ .
Game1: This game is exactly like Game0, except for PKE.Gen(1

κ) and the gen-
eration of the core tag t∗c of the filter tag in the challenge ciphertext. When
calling PKE.Gen(1κ), the simulator keeps the trapdoor Ftd of LF as well
as SK. Instead of sampling t∗c at random from Tc, Sim computes t∗c with
LF.LTag(Ftd, t∗a), where t∗a = (C∗, s∗, Ψ∗). A straightforward reduction to
LF’s indistinguishability of lossy tag and random tag yields |Pr[S1]−Pr[S0]| ≤
AdvindLF,B1

(κ) for a suitable adversary B1 on LF’s indistinguishability.

Game2: This game is exactly like Game1, except that a special rejection rule
applies to the decryption oracle. If the adversary queries a ciphertext CT =
(C, s, Ψ,Π, tc) such that t = (ta, tc) = (t∗a, t

∗
c) = t∗, then the decryption

oracle immediately outputs ⊥ and halts. For convenient, we call such tag a
copied LF tag. We show that a decryption query with a copied LF tag is
rejected in decryption oracles in both Game1 and Game2. We consider the
following two cases.

– case 1: Π = Π∗. This implies CT = CT ∗. In this case the decryption
oracles in Game1 and Game2 proceed identically since A is not allowed
to ask for the decryption of challenge ciphertext.

– case 2: Π �= Π∗. Since t = ((C, s, Ψ), tc) = ((C∗, s∗, Ψ∗), t∗c) = t∗, it
follows that K = K∗, and thus LFFpk,t(K) = LFFpk,t∗(K

∗) = Π∗. So,
such decryption queries would have been rejected already in Game1.

According to above analysis, we have Pr[S2] = Pr[S1].

Game3: This game is exactly like Game2, except for the generation of K∗

used in the challenge ciphertext. In this game, Sim computes K∗ with
HPS.Priv(sk, C∗) instead of HPS.Pub(pk, C∗, w∗). Since HPS is projective,
this change is purely conceptual, and thus Pr[S3] = Pr[S2].

Game4: This game is exactly like Game3, except for the generation of C∗ in the
challenge ciphertext CT ∗ = (C∗, s∗, Ψ∗, Π∗, t∗c). Now Sim samples C∗ from
C \V instead of V . A straightforward reduction to the indistinguishability of
the subset membership problem yields |Pr[S4]− Pr[S3]| ≤ Advsmp

HPS,B3
(κ) for

a suitable adversary B3.

Game5: This game is the same as Game4, except that another special rejection
rule is applied to the decryption oracle. If the adversary queries a ciphertext
CT = (C, s, Ψ,Π, tc) for decryption such that C ∈ C \V , then the decryption
oracle immediately outputs ⊥ . Let badC be the event that a ciphertext
is rejected in Game5 that would not have been rejected under the rules of
Game4. Then Game5 and Game4 proceed identically until event badC occurs.
We have

|Pr[S5]− Pr[S4]| ≤ Pr[badC ] (2)
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by the difference lemma of [33]. We show the following lemma shortly (af-
ter the main proof), which guarantees that badC occurs with a negligible
probability.

Lemma 3. Suppose that the adversary A makes at most Q(κ) decryption
queries. Then

Pr[badC ] ≤ Q(κ) · AdvevaLF,B(κ) +
Q(κ)2λ+�LF+m

2ν −Q(κ)
(3)

where B is a suitable adversary attacking on LF’s evasiveness.

Game6: This game is exactly like Game5, except for the generation of Ψ∗ in CT ∗.
In this game, Sim chooses Ψ∗ uniformly at random from {0, 1}m instead of
using Ext(Λsk(C

∗), s∗)⊕Mb.

Claim 1. For C∗ ← C \ V if the decryption algorithm rejects all invalid
ciphertexts, then the value Λsk(C

∗) has average min-entropy at least ν−λ−
�LF ≥ ω(log κ)+m given all the other values in A’s view (denoted by view′

A).

We prove Claim 1 by directly analyzing the average min-entropy of Λsk(C
∗)

from the adversary’s point of view. Since all invalid ciphertexts are rejected
by the decryption oracle in both Game5 and Game6, A cannot learn more
information on the value Λsk(C

∗) from the decryption oracle other than pk,
C∗, Π∗ and the key leakage. Recall that Π∗ has only 2�LF possible vales and
H∞(Λsk(C

∗) | (pk, C∗)) ≥ ν (which holds for all pk and C∗ ∈ C \V). Hence,

H̃∞(Λsk(C
∗) | view′

A) = H̃∞(Λsk(C
∗) | pk, C∗, λ-leakage, Π∗)

≥ H̃∞(Λsk(C
∗) | pk, C∗)− λ− �LF ≥ ν − λ− �LF

according to Lemma 1.
Applying an average-case (ν−λ−�LF, ε2)-strong extractor Ext : K×{0, 1}d →
{0, 1}m to Λsk(C

∗), we have that Ext(Λsk(C
∗), s∗) is ε2-close to uniform

given A’s view. Hence,

|Pr[S6]− Pr[S5]| ≤ ε2 (4)

Observe that in Game6, the challenge ciphertext is completely independent
of the random coin b picked by the simulator. Thus, Pr[S6] = 1/2.

Putting all together, Theorem 1 follows. ��

It remains to prove Lemma 3. We do it now.

Proof (Proof of Lemma 3). Let F be the event that in Game4 there exists a
decryption query CT = (C, s, Ψ,Π, tc), such that t = ((C, s, Ψ), tc) is a non-
injective, non-copied tag. We have

Pr[badC ] = Pr[badC ∧ F ] + Pr[badC ∧ F ] ≤ Pr[F ] + Pr[badC | F ] (5)

Thus, it suffices to prove the following two claims: Claim 2 and Claim 3.
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Claim 2. Suppose that the adversary A makes at most Q(κ) decryption queries.
If LF is a one-time lossy filter, then

Pr[F ] ≤ Q(κ) · AdvevaLF,B(κ) (6)

where B is a suitable adversary on LF’s evasiveness.

Proof. Given a challenge LF evaluation key F ∗
pk, B simulates A’s environment

in Game4 as follows. It generates the PKE’s public key PK as in Game4 but sets
Fpk = F ∗

pk. Note that B can use PKE’s secret key to deal with A’s decryption
queries. To simulate the challenge ciphertext (in which the LF tag should be
lossy), B queries its lossy tag generation oracle once with t∗a = (C∗, s∗, Ψ∗) to
proceed t∗c , where (C

∗, s∗, Ψ∗) are generated as in Game4. Finally, B chooses i ∈
[Q(k)] uniformly, and outputs the tag t = ((C, s, Ψ), tc) extracted from A’s i-th
decryption query (C, s, Ψ,Π, tc). Clearly, if the event F occurs, with probability
at least 1/Q(κ), t is a non-injective tag. That is Pr[F ] ≤ Q(κ) · AdvevaLF,B(κ). ��

Claim 3. Suppose that the adversary A makes at most Q(κ) decryption queries.
If HPS is ε1-universal, then

Pr[badC | F ] ≤ Q(κ)2λ+�LF+m

2ν −Q(κ)
(7)

where ν = log(1/ε1).

Proof. Suppose that CT = (C, s, Ψ,Π, tc) is the first ciphertext that makes badC
happen given F , i.e. C ∈ C\V but Π = LFFpk,t(Λsk(C)), where t = ((C, s, Ψ), tc)
is an injective LF tag. For simplicity, we call CT = (C, s, Ψ,Π, tc) an invalid
ciphertext if C ∈ C\V . Denote by viewA the adversary’s view prior to submitting
the first invalid ciphertext. Observe that only pk, the challenge ciphertext CT ∗,
and the key leakage of at most λ bits reveal information of the secret key to the
adversary. According to Lemma 1, we have

H̃∞(Λsk(C) | viewA) = H̃∞(Λsk(C) | pk, C,CT ∗, λ-leakage)

≥ H̃∞(Λsk(C) | pk, C,CT ∗)− λ

≥ H∞(Λsk(C) | (pk, C))− λ− �LF −m (8)

≥ ν − λ− �LF −m (9)

Eq. (8) follows from the fact that in the challenge ciphertext CT ∗, only Ψ∗

and Π∗ are related to the secret key, and Ψ∗ has at most 2m possible val-
ues and Π∗ has at most 2�LF possible values. Note that the information re-
vealed by t∗c has already been completely taken into account by Ψ∗, since t∗c =
LF.LTag(Ftd, (C∗, s∗, Ψ∗)) can be regarded as a function of Ψ∗. Eq. (9) follows
from the fact that for all pk and C ∈ C\V , H∞(Λsk(C) | (pk, C)) ≥ log(1/ε1) = ν
, which is due to the ε1-universal property of HPS and Lemma 2. The fact
that event F does not occur implies that t = ((C, s, Ψ), tc) is an injective tag.
Applying an injective function to a distribution preserves its min-entropy, we
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have H̃∞(LFFpk,t(Λsk(C)) | viewA) ≥ ν − λ − �LF −m. Thus, in Game4 the de-
cryption algorithm accepts the first invalid ciphertext with probability at most
2λ+�LF+m/2ν. Observe that the adversary can rule out one more value of K from
each rejection of invalid ciphertext. So, the decryption algorithm accepts the i-th
invalid ciphertext with probability at most 2λ+�LF+m/(2ν− i+1). Since A makes
at most Q(κ) decryption queries, it follows that

Pr[badC | F ] ≤ Q(κ)2λ+�LF+m

2ν −Q(κ)
(10)

which is negligible in κ if λ ≤ ν −m− �LF − ω(log κ). ��

This completes the proof of Lemma 3. ��

4 Instantiation from the DDH Assumption

This section is organized as follows. In Section 4.1, we present a variant of
hash proof system from the Decisional Diffie-Hellman (DDH) assumption [9].
In Section 4.2, we introduce an efficient DDH-based OT-LF. In Section 4.3,
we apply the construction in Section 3 to the two building blocks and obtain
an efficient DDH-based LR-CCA secure PKE scheme, depicted in Fig. 1. In
Section 4.4, we show a comparison of our scheme with some existing LR-CCA
secure PKE schemes.

The DDH Assumption. We assume a PPT algorithm G(1κ) that takes as
input 1κ and outputs a tuple of G = 〈q,G, g〉, where G is a cyclic group of
prime order q and g is a generator of G. The Decisional Diffie-Hellman (DDH)
assumption holds iff

AdvddhG,D(κ) =
∣∣∣Pr[D(g1, g2, g

r
1, g

r
2) = 1]− Pr[D(g1, g2, g

r
1, g

r′
2 ) = 1]

∣∣∣
is negligible in κ for any PPT adversary D, where g1, g2 ← G, r ← Zq and
r′ ← Zq \ {r}.

4.1 A DDH-Based HPS

Let 〈q,G, g〉 ← G(1κ) and let g1, g2 be two random generators of G. Choose
n ∈ N. We assume there is an efficient injective mapping Inj : G → Zq

2.

For any u = (u1, . . . , un) ∈ Gn, let Ĩnj(u) = (Inj(u1), . . . , Inj(un)) ∈ Zn
q .

Clearly, Ĩnj is also an injection. We define a hash proof system HPS1 =
(HPS1.Gen,HPS1.Pub,HPS1.Priv) below.

The parameter params = (group,K, C,V ,SK,PK, Λsk, μ) is set up as follows.

2 For example,G is a q-order elliptic curve group over finite field Fp. For 80-bit security,
p and q can be chosen to be 160-bit primes. In such a group, elements (i.e., elliptic
curve points) can be represented by 160-bit strings.
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– group = 〈q,G, g1, g2, n〉, C = G × G, V = {(gr1 , gr2) : r ∈ Zq} with witness set
W = Zq.

– K = Zn
q , SK = (Zq × Zq)

n, PK = Gn.
– For sk = (xi,1, xi,2)i∈[n] ∈ SK, define pk = (pki)i∈[n] = μ(sk) = (g

xi,1

1 g
xi,2

2 )i∈[n].

– For all C = (u1, u2) ∈ C, define Λsk(C) = Ĩnj((u
xi,1

1 u
xi,2

2 )i∈[n]).

The public evaluation and private evaluation algorithms are defined as follows:

– For all C = (gr1 , g
r
2) ∈ V with witness r ∈ Zq , define HPS1.Pub(pk, C, r) =

Ĩnj(pkr1 , . . . , pk
r
n).

– For all C = (u1, u2) ∈ C, define HPS1.Priv(sk, C) = Λsk(C).

Correctness of HPS1 follows directly by the definitions of μ and Λsk. The subset
membership problem in HPS1 is hard because of the DDH assumption. If n = 1,
this is just the DDH-based hash proof system introduced by Cramer and Shoup
with encapsulated key set K = Zq, and is known to be perfectly universal [9,21].
We have the following theorem with proof in the full version of the paper.

Theorem 2. For any n ∈ N, HPS1 is perfectly universal under the DDH as-
sumption with encapsulated key size |K| = qn.

4.2 A DDH-Based OT-LF

We use the following notations. If A = (Ai,j) is an n×n matrix over Zq̃, and g̃ is

an element of q̃-order group G̃. Then g̃A denotes the n×n matrix (g̃Ai,j ) over G̃.

Given a vector X = (X1, . . . , Xn) ∈ Zn
q̃ and an n×n matrix E = (Ei,j) ∈ G̃n×n,

define

X ·E := (

n∏
i=1

EXi

i,1 , . . . ,

n∏
i=1

EXi

i,n) ∈ G̃n.

Let CH = (CH.Gen,CH.Eval,CH.Equiv) define a chameleon hashing function
with image set Zq̃. The OT-LF is LF1 = (LF1.Gen, LF1.Eval, LF1.LTag), as shown
below.

Key Generation. LF1.Gen(1
κ) runs G(1κ) to obtain G̃ = 〈q̃, G̃, g̃〉 and runs

CH.Gen(1κ) to obtain (ekch, tdch). Pick a random pair (t∗a, t
∗
c)← {0, 1}∗×Rch

and compute b∗ = CH.Eval(ekch, t
∗
a; t

∗
c). Choose r1, . . . , rn, s1, . . . , sn ← Zq̃,

and compute an n × n matrix A = (Ai,j) ∈ Zn×n
q̃ with Ai,j = risj for

i, j ∈ [n]. Compute matrix E = g̃A−b∗I ∈ G̃n×n, where I is the n × n

identity matrix over Zq̃. Finally, output Fpk = (q̃, G̃, g̃, ekch, E) and Ftd =
(tdch, t

∗
a, t

∗
c). The tag space is defined as T = {0, 1}∗ × Rch, where Tloss =

{(ta, tc) : (ta, tc) ∈ T ∧ CH.Eval(ekch, ta; tc) = b∗} and Tinj = {(ta, tc) :
(ta, tc) ∈ T ∧ CH.Eval(ekch, ta; tc) /∈ {b∗, b∗ −Tr(A)}}.

Evaluation. For a tag t = (ta, tc) ∈ {0, 1}∗ ×Rch and an input X = (X1, . . . ,
Xn) ∈ Zn

q̃ , LF1.Eval(Fpk, t,X) first computes b = CH.Eval(ekch, ta; tc) and
outputs

y = X · (E ⊗ g̃bI),

where “⊗” denotes the operation of entry-wise multiplication.
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Lossy Tag Generation. For an auxiliary tag ta, LF1.LTag(Ftd, ta) computes a
core tag tc = CH.Equiv(tdch, t

∗
a, t

∗
c , ta) with the trapdoor Ftd = (tdch, t

∗
a, t

∗
c).

Theorem 3. LF1 is a (Zn
q̃ , log q̃)-OT-LF under the DDH assumption.

Proof. The proof of Theorem 3 is given in the full version of the paper. ��

4.3 The DDH-Based PKE Scheme

Let G = 〈q,G, g〉 and G̃ = 〈q̃, G̃, g̃〉 be two group descriptions. Suppose n ∈
N satisfies n log q ≥ log q̃ + λ + m + ω(log κ). Set n = �n log q/ log q̃�. Let
(ekch, tdch) ← CH.Gen(1κ) be a chameleon hash function with image set Zq̃.
Let Ext : Zn

q ×{0, 1}d → {0, 1}m be an average-case (n log q− log q̃−λ, ε2)-strong
extractor. Applying the general construction in Section 3 to the aforementioned
DDH-based HPS and OT-LF, we obtain a DDH-based PKE scheme in Fig. 1.

Key Generation. PKE1.Gen(1
κ): Choose g1, g2 ← G and (xi,1, xi,2) ← Zq for i ∈ [n].

Set pki = g
xi,1

1 g
xi,2

2 for i ∈ [n]. Also choose a random pair (t∗a, t
∗
c) ∈ {0, 1}∗ ×Rch

and set b∗ = CH.Eval(ekch, t
∗
a; t

∗
c). Choose r1, . . . , rn, s1, . . . , sn ← Zq̃, and com-

pute matrix E = (Ei,j)i,j∈[n] ∈ G̃n×n, where Ei,j = g̃risj for i, j ∈ [n], i = j, and

Ei,i = g̃risi g̃−b∗ for i ∈ [n]. Return PK = (q,G, g1, g2, n, (pki)i∈[n], q̃, G̃, g̃, E, ekch)
and SK = (xi,1, xi,2)i∈[n].

Encryption. PKE1.Enc(PK,M): For a public key PK and a message M ∈ {0, 1}m,
it chooses r ← Zq and s ← {0, 1}d. Compute

C = (gr1 , g
r
2), K = Ĩnj (pkr

1, . . . , pk
r
n) , Ψ = Ext(K, s)⊕M, Π = K · (E ⊗ g̃bI)

where b = CH.Eval(ekch, ta; tc) for the auxiliary tag ta = (C, s, Ψ) and a random
filter core tag tc ∈ Rch. Note that in the computation of Π , K is regarded as
a vector of dimension n over Zq̃ (this works well since n log q ≤ n log q̃). Return

CT = (C, s, Ψ,Π, tc) ∈ G2 × {0, 1}d × {0, 1}m × G̃n ×Rch.
Decryption. PKE1.Dec(SK,CT ): For a ciphertext CT = (C, s, Ψ,Π, tc), it parses

C as (u1, u2) ∈ G2 and then computes K′ = Ĩnj
(
u
x1,1

1 u
x1,2

2 , . . . , u
xn,1

1 u
xn,2

2

)
and

Π ′ = K′·(E⊗g̃bI), where b = CH.Eval(ekch, (C, s, Ψ); tc). Finally, it checks whether
Π = Π ′. If not, it rejects with ⊥. Else, it returns M = Ψ ⊕ Ext(K′, s).

Fig. 1. A DDH-based PKE Scheme PKE1 = (PKE1.Gen,PKE1.Enc,PKE1.Dec)

Theorem 4. If the DDH assumptions hold in groups G and G̃, and the CH is a
chameleon hash function, then PKE1 is λ-LR-CCA secure if λ ≤ n log q− log q̃−
m−ω(log κ) (i.e., n ≥ (λ+log q̃+m+ω(log κ))/ log q). In particular, the leakage
rate in PKE1 is 1/2− o(1) and

Advlr-ccaPKE1,A(κ) ≤ AdvddhG,B1
(κ) + 2nAdvddh

G̃,B2
(κ) +

Q(κ) · q̃ · 2λ+m

qn −Q(κ)
+ ε2

+Q(κ)
(
(2n+ 1)Advddh

G̃,B2
(κ) + AdvcrCH,B3

(κ)
)

where Q(κ) is the number of decryption queries made by A.



396 B. Qin and S. Liu

Proof. Theorem 2 showed that the underlying HPS in PKE1 is perfectly universal
(i.e., ε1 = 1/qn). Theorem 3 said that the underlying filter is a (q̃n, log q̃)-OT-
LF. Consequently, PKE1 is λ-LR-CCA secure according to Theorem 1. If the
parameter n in PKE1 increases, with q̃,m fixed, λ/|SK| = (n log q − log q̃ −m−
ω(log κ))/(2n log q) = 1/2− o(1). ��

4.4 Efficiency Discussion

In this section, we show a comparison of our DDH-based PKE scheme with the
existing DDH/DLIN based LR-CCA secure PKE schemes [28,25,11,16] in terms
of leakage rate and ciphertext overhead (defined as the difference between the
ciphertext length and the embedded message length). Note that the GHV12
scheme is obtained by applying the CHK transformation to the mKDM-sID-
CPA secure scheme [16]. The GHV12 scheme is LR-CCA secure only if the
mKDM-sID-CPA secure scheme [16] is master-key leakage sID-CPA secure. In
fact, Galindo et.al. claimed their mKDM-sID-CPA secure scheme is master-key
leakage sID-CPA secure with leakage rate 1 − o(1), but without any rigorous
proof. We personally regard that proving that claim is very hard, since the proof
involves constructing a PPT simulator to answer not only key leakage queries,
but also identities’ private key queries. Nevertheless, we include the GHV12
scheme in the comparison. For simplicity, in a ciphertext, we only consider the
length of group elements, ignoring the constant length non-group elements, e.g.,
the seed used in a randomness extractor. We also assume that elements in q-
order group can be encoded as bit strings of length log q. To be fair, like in [11,
Theorem 6], we will consider the ciphertext overhead (shorted as “CT overhead”)
under any fixed and achievable leakage rate. We begin by giving an overview of
the secret key size (shorted as “SK size”), the amount of absolute leakage and
the number of group elements in the ciphertexts of the PKE schemes [28,25,16]
in Table 1. In table 1, κ is the security parameter; q′, q and q̃ are group sizes;
m is the message length and n is a parameter as in Fig. 1 and [16, Section 5].

In our scheme, n = �n log q/ log q̃�. So, the bit-length of n elements in group G̃
equals that of n elements in group G.

Table 1. Secret-key size, leakage amount and ciphertext overhead

Schemes SK size Leakage amount CT overhead
(# bits) (# bits) (#G)

GHV12 [16] n log q λ ≤ n log q − 3 log q − 2�(κ) 2n+ 6
NS09 [28] 6 log q′ λ ≤ log q′ − ω(log κ)−m 3
LZSS12 [25] 4 log q′ λ ≤ log q′ − ω(log κ)−m 3
Ours 2n log q λ ≤ n log q − log q̃ −m− ω(log κ) n+ 2

We observe that in our scheme as well as that of [11,16] the group size (i.e. q
and q̃) remains constant even with larger leakage. While in [28] and [25], both
of them rely on increasing the group size (i.e., q′) to tolerate larger leakage. So,
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it is more reasonable to compare the bit-length of ciphertext overhead rather
than the number of group elements for the same leakage rate. As an example,
we give the concrete relations between ciphertext overhead and leakage-rate of
our scheme. In our scheme, for a security level �(κ), we can choose |q| = |q̃| =
2�(κ). From [13], applying a universal hash function to a source with 3�(κ)
entropy suffices to extract �(κ)-bit random key that is 2−�(κ)-close to a uniform
distribution over {0, 1}�(κ). So, we can set ω(log κ) = 2�(κ) and m = �(κ).
According to Theorem 4, the amount of leakage is bounded by (2n − 5)�(κ).
Thus, for any δ ∈ [0, 1/2), the leakage rate in our scheme achieves δ, as long as
n ≥ �5/(2− 4δ)� (i.e., λ ≤ �(κ)(2�5/(2− 4δ)� − 5)) and the ciphertext overhead
is (�5/(2− 4δ)�+ 2)2�(κ) bits (ignoring the seed and the core tag part).

Similarly, we can compute the other schemes’ ciphertext overheads for rea-
sonable leakage rates. We summarize these results in Table 2.

Table 2. Relations between ciphertext overhead and leakage rate

Schemes CT overhead Leakage rate Assumption
(#�(κ) bits) interval (δ)

DHLW10 [11] 21/(1− δ) + 70 [0, 1) DLIN (with tSE-NIZK)
GHV12 [16] 4�4/(1 − δ)�+ 12 [0, 1) DLIN (without proof)
NS09 [28] 9/(1− 6δ) [0, 1/6) DDH
LZSS12 [25] 9/(1− 4δ) [0, 1/4) DDH
Ours 2�5/(2 − 4δ)� + 4 [0, 1/2) DDH

Table 3. Quantitative comparison (# �(κ)-bit)

�������Schemes
Leakage-rate

1/8 1/6 1/4 1/3 3/8 2/5 1/2 1

DHLW10 [11] 94 95.2 98 101.5 103.6 105 112 -
GHV12 [16] 32 32 36 36 40 40 44 -
NS12 [28] 36 - - - - - - -
LZSS12 [25] 18 27 - - - - - -
Ours 12 12 14 20 24 30 - -

Finally, we give a quantitative comparison among these LR-CCA secure PKE
schemes in Table 3. While for some achievable leakage rate (e.g., δ ≤ 0.4), our
scheme is more efficient compared with the other four schemes. As our construc-
tion is general, we can also instantiate it under other standard assumptions, e.g.,
the DCR assumption [29,10]. In [16], the scheme is obtained by applying the CHK
transformation [6] to a master-key leakage resilient identity-based encryption
scheme. To the best of our knowledge, the constructions of identity-based PKE
schemes [16,24] with master-key leakage-resilience are all based on the assump-
tions (e.g., DLIN) over bilinear groups. Our schemes are the first DDH/DCR
based efficient LR-CCA secure PKE schemes with leakage rate 1/2− o(1).



398 B. Qin and S. Liu

5 Instantiation from the DCR Assumption

LetN = PQ = (2P ′+1)(2Q′+1), Ñ = P̃ Q̃ = (2P̃ ′+1)(2Q̃′+1), and the message

space be {0, 1}m. Let n, n ∈ N such that n(logN − 1) ≥ log Ñ +λ+m+ω(logκ)

and n = �n logN/ log Ñ�. Let (ekch, tdch) ← CH.Gen(1κ) sample a chameleon

hash function with image set {0, 1}|Ñ|/4. Let Ext : Zn
N × {0, 1}d → {0, 1}m be

an average-case (n(logN − 1) − log Ñ − λ, ε2)-strong extractor. Define a map
χ(y) = b ∈ ZN for y ∈ Z∗

N2 , where y = a + bN mod N2 (0 ≤ a, b ≤ N − 1).
The LR-CCA secure PKE from the DCR assumption is presented in Fig. 2, and
proof is in the full version.

Key Generation. PKE2.Gen(1
κ): Compute g = −h2N mod N2 with h ← Z∗

N2 .
Choose x1, . . . , xn ← {0, . . . , �N2/2�} and compute pki = gxi mod N2. Choose
a random pair (t∗a, t

∗
c) ← {0, 1}∗ × Rch and compute b∗ = CH.Eval(ekch, t

∗
a; t

∗
c).

Compute E = g̃Ñ
n

(1 + Ñ)−b∗ mod Ñn+1 with a random g̃ ← Z∗
Ñn+1 . Return

PK = (N, n, pk1, . . . , pkn, g, Ñ , n,E, ekch) and SK = (x1, . . . , xn).
Encryption. PKE2.Enc(PK,M): For a public key PK and a message M ∈ {0, 1}m,

choose a random r ∈ {0, . . . , �N/2�} and a random seed s ∈ {0, 1}d. It then
computes C = gr mod N2, K = (χ(pkr

1), . . . , χ(pk
r
n)), Ψ = Ext(K, s)⊕M, Π =

(E(1 + Ñ)b)K mod Ñn+1, where b = CH.Eval(ekch, ta; tc) for the auxiliary tag
ta = (C, s, Ψ) and a random filter core tag tc ∈ Rch. Return CT = (C, s, Ψ,Π, tc).
Note that in the computation of Π, K is considered as an element in ZÑn .

Decryption. PKE2.Dec(SK,CT ), given a ciphertext CT = (C, s, Ψ,Π, tc), computes

K′ = (χ(pkx1
1 ), . . . , χ(pkxn

n )) and Π ′ = (E(1 + Ñ)b)K
′
mod Ñn+1, where b =

CH.Eval(ekch, (C, s, Ψ); tc). It checks whether Π = Π ′. If not, it rejects with ⊥.
Else, it returns M = Ψ ⊕ Ext(K′, s).

Fig. 2. A DCR-based PKE Scheme PKE2 = (PKE2.Gen,PKE2.Enc,PKE2.Dec)

6 Conclusion and Further Work

We present a new generic construction of a public-key encryption scheme secure
against leakage-resilient chosen-ciphertext attacks, from any ε-universal HPS
and any one-time lossy filter (OT-LF). Instantiations from the DDH and DCR
assumptions show that our construction is practical and achieves leakage rate
of 1/2 − o(1). When a slightly weaker universality property of HPS holds with
overwhelming probability over the choice of C from the invalid set, LR-CPA
security with leakage rate of 1−o(1) can be easily constructed from HPS [27]. In
our construction, the HPS is required to be ε-universal for the worst-case choice
of C from the invalid set C \ V . That is the reason why those LR-CPA security
with leakage rate of 1− o(1) from some HPS cannot be converted into LR-CCA
security with OT-LF. The open question is how to further improve leakage rate
while keeping the practicality of PKE.
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Abstract. Let G be a group of prime order q, and let g1, . . . , gn be
random elements of G. We say that a vector x = (x1, . . . , xn) ∈ Zn

q

is a discrete log representation of some some element y ∈ G (with re-
spect to g1, . . . , gn) if g

x1
1 · · · gxn

n = y. Any element y has many discrete
log representations, forming an affine subspace of Zn

q . We show that
these representations have a nice continuous leakage-resilience property
as follows. Assume some attacker A(g1, . . . , gn, y) can repeatedly learn
L bits of information on arbitrarily many random representations of
y. That is, A adaptively chooses polynomially many leakage functions
fi : Zn

q → {0, 1}L, and learns the value fi(xi), where xi is a fresh and
random discrete log representation of y. A wins the game if it eventually
outputs a valid discrete log representation x∗ of y. We show that if the
discrete log assumption holds in G, then no polynomially bounded A can
win this game with non-negligible probability, as long as the leakage on
each representation is bounded by L ≈ (n− 2) log q = (1− 2

n
) · |x|.

As direct extensions of this property, we design very simple contin-
uous leakage-resilient (CLR) one-way function (OWF) and public-key
encryption (PKE) schemes in the so called “invisible key update” model
introduced by Alwen et al. at CRYPTO’09. Our CLR-OWF is based on
the standard Discrete Log assumption and our CLR-PKE is based on the
standard Decisional Diffie-Hellman assumption. Prior to our work, such
schemes could only be constructed in groups with a bilinear pairing.

As another surprising application, we show how to design the first
leakage-resilient traitor tracing scheme, where no attacker, getting the
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1 Introduction

Let G be a group of prime order q, and let g1, . . . , gn be random elements of
G. We say that a vector x = (x1, . . . , xn) ∈ Zn

q is a discrete log representa-
tion of some some element y ∈ G with respect to g1, . . . , gn if

∏n
i=1 g

xi

i = y. A
basic and well-known property of discrete log representations says that, given
one such discrete log representation, it is hard to find any other one, assum-
ing the standard Discrete Log (DL) problem is hard. In various disguises, this
simple property (and its elegant generalizations) has found a huge number of ap-
plications in building various cryptographic primitives, from collision-resistant
hash functions and commitment schemes [Ped91], to actively secure identifica-
tion schemes [Oka92], to chosen-ciphertext secure encryption [CS02], to key-
insulated cryptography [DKXY02], to broadcast encryption [DF03], to traitor
tracing schemes [BF99], just to name a few.

More recently, discrete log representations have found interesting applications
in leakage-resilient cryptography [NS09, ADW09, KV09], where the secret key of
some system is a discrete log representation x of some public y, and one argues
that the system remains secure even if the attacker can learn some arbitrary
(adversarially specified!) “leakage function” z = f(x), as long as the output
size L of f is just slightly shorter than the length of the secret |x| = n log q.
Intuitively, these results utilize the fact that the actual secret key x still has
some entropy even conditioned on the L-bit leakage z and the public key y,
since the set of valid discrete log representations of y has more than L bits of
entropy. On the other hand, the given scheme is designed in a way that in order
to break it — with or without leakage — the attacker must “know” some valid
discrete log representation x∗ of y. Since the real key x still has some entropy
even given z and y, this means that the attacker will likely know a different
discrete log representation x∗ �= x, which immediately contradicts the discrete
log assumption.1

Although very elegant, this simple argument only applies when the overall
leakage given to the attacker is a-priori upper bounded by L bits, where L is
somewhat less than the secret key length n log q. Of course, this is inevitable
without some change to the model, since we clearly cannot allow the attacker to
learn the entire secret x. Thus, when applied to leakage-resilient cryptography,
so far we could only get bounded-leakage-resilient (BLR) schemes, where the
bound L is fixed throughout the lifetime of the system. In contrast, in most
applications we would like to withstand more powerful continual leakage, where
one only assumes that the rate of leakage is somehow bounded, but the overall
leakage is no longer bounded. To withstand continual leakage, the secret key must
be continually refreshed in a way that: (a) the functionality of the cryptosystem
is preserved even after refreshing the keys an arbitrary number of times, and

1 This argument works for unpredictability applications, such as one-way functions.
For indistinguishability applications, such as encryption, a similar, but slightly
more subtle argument is needed. It uses the Decisional Diffie-Hellman (DDH) as-
sumption in place of the DL assumption, as well as the fact that the inner product
function is a good “randomness extractor” [CG88, NZ96].
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yet, (b) one cannot combine the various leaked values obtained from different
versions of the key to break the system. Such model of invisible key updates was
formalized by Alwen et al. [ADW09]. In that model, one assumes the existence
of a trusted, “leak-free” server, who uses some “master key” MSK to continually
refresh the secret key in a way that it still satisfies the conflicting properties (a)
and (b) above. We stress that the server is only present during the key updates,
but not during the normal day-to-day operations (like signing or decrypting
when the leakage actually happens). We will informally refer to this continual-
leakage-resilient (CLR) model of “invisible key updates” as the floppy model, to
concisely emphasize the fact that we assume an external leak-free storage (the
“floppy” disk) which is only required for rare refreshing operations.2

We notice that all bounded leakage schemes based on discrete log represen-
tations naturally permit the following key refreshing procedure. The master
key MSK consists of a vector of the discrete logarithms α = (α1, . . . , αn) of
the generators g1, . . . , gn with respect to some fixed generator g. The refresh
simply samples a random vector β = (β1, . . . , βn) orthogonal to α, so that∏
gβi

i = g〈α,β〉 = 1. The new DL representation x′ of y is set to be x′ := x+ β.
It is easy to verify that x′ is simply a fresh, random representation of y indepen-
dent of the original DL representation x. However, it is not obvious to see if this
natural key refreshing procedure is continual-leakage-resilient. For the most basic
question of key recovery,3 this means that no efficient attacker A(g1, . . . , gn, y)
can compute a valid DL representation x∗ of y despite (adaptively) repeating the
following “L-bounded-leakage” step any polynomial number times. At period i,
A chooses a leakage function fi : Zn

q → {0, 1}L, and learns the value fi(xi),
where xi is a fresh and random discrete log representation of y, as explained
above.

Our Main Result. As our main conceptual result, we show that the above
intuition is correct: the elegant invisible key update procedure above for refreshing
DL representations is indeed continual-leakage-resilient. In other words, one can
continually leak fresh discrete log representations of the public key, without
affecting the security of the system. Moreover, the leakage bound L can be made
very close to the length of our secret x, as n grows: L ≈ (n−2) log q = (1− 2

n )·|x|.
Our proof crucially uses a variant of the subspace-hiding with leakage lemma

from Brakerski et al. [BKKV10] (for which we also find an alternative and
much simpler proof than that of [BKKV10]). In its basic form, this information-
theoretic lemma states that, for a random (affine) subspace S of some fixed
larger space U , it is hard to distinguish the output of a bounded-length leakage
function Leak(s) applied to random sample s ← S, from the output of Leak(u)
applied to random sample u ← U , even if the distinguisher can later learn the

2 Another reason is to separate the floppy model from a more demanding CLR model
of invisible updates subsequently introduced by [BKKV10, DHLW10a], discussed
in the Related Work paragraph below.

3 For more powerful CLR goals (such as encryption and traitor tracing we discuss
below), A’s task could be more ambitious and/or A could get more information in
addition to the public key and the leakage.
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description of S after selecting the leakage function Leak. Given this Lemma, the
overall high-level structure of our proof is as follows. Let U be the full (n− 1)-
dimensional affine space of valid discrete-log representations of y, and let S be a
random (n− 2)-dimensional affine subspace of U . Assume the attacker A leaks
information on t different representations of y. In the original Game 0, all of the
representations are sampled from the entire space U , as expected. In this case,
the probability that A would output a representation x∗ ∈ S is negligible since
it gets no information about S during the course of the game and S takes up
a negligible fraction U . We then switch to Game 1 where we give the attacker
leakage on random representations from S rather than U . We do so in a series of
hybrids where the last i = 0, 1, . . . , t representations are chosen from S and the
first t − i from U . We claim that, the probability of the attacker outputting a
representation x∗ ∈ S remains negligible between successive hybrids, which fol-
lows directly from the subspace-hiding with leakage lemma. Therefore, in Game
1, the attacker only sees (leakage on) representations in the small affine space
S, but is likely to output a representation x∗ �∈ S. This contradicts the standard
DL assumption, as shown by an elegant lemma of Boneh and Franklin [BF99],
which was proven in the context of traitor tracing schemes.

Applications. By extending and generalizing the basic CLR property of dis-
crete log representations described above, we obtain the following applications.

First, we immediately get that the natural multi-exponentiation function
hg1...gn(x1 . . . xn) = gx1

1 . . . gxn
n is a CLR one-way function (OWF) in the floppy

model, under the standard DL assumption, with “leakage fraction” L/|x| roughly
1− 2

n . This result elegantly extends the basic fact from [ADW09, KV09] that h
is a bounded-leakage OWF with “leakage fraction” roughly to 1− 1

n .
Second, we show that the Naor-Segev [NS09] bounded-leakage encryption

scheme is also CLR-secure in the floppy model. The scheme is a very natural gen-
eralization of the ElGamal encryption scheme to multiple generators g1, . . . , gn.
The secret key is x, the public key is y = gx1

1 . . . gxn
n , and the encryption of

m is (gr1, . . . , g
r
n, y

r · m) (with the obvious decryption given x). The scheme
is known to be secure against bounded-leakage under the standard Decisional
Diffie-Hellman (DDH) assumption. In this work, we examine the security of the
scheme against continual leakage in the “floppy” model, with the same style of
updates we described above for the one-way function. By carefully generalizing
our one-wayness argument from DL to an indistinguishability argument from
DDH, we show that this natural scheme is also CLR-secure in the floppy model.

As our final, and more surprising application, we apply our techniques to de-
sign the first leakage-resilient (public-key) traitor tracing (TT) scheme [CFN94,
BF99]. Recall, in an N -user public-key traitor tracing scheme, the content owner
publishes a public-key PK, generates N individual secret keys SK1, . . . , SKN , and
keeps a special tracing key UK. The knowledge of PK allows anybody to encrypt
the content, which can be decrypted by each user i using his secret key SKi.
As usual, the system is semantically secure given PK only. More interestingly,
assume some T parties (so called “traitors”) try to combine their (valid) secret
keys in some malicious way to produce another secret key SK∗ which can decrypt
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the content with noticeable probability. Then, given such a key SK∗ and using
the master tracing key UK, the content owner should be able to correctly identify
at least one of the traitors contributing to the creation of SK∗. This non-trivial
property is called (non-black-box) traitor tracing.

Boneh and Franklin [BF99] constructed a very elegant traitor tracing scheme
which is semantically secure under the DDH assumption and traceable under
the DL assumption. Using our new technique, we can considerably strengthen
the tracing guarantee for a natural generalization of the Boneh-Franklin scheme.
In our model, in addition to getting T keys of the traitors in full, we allow the
attacker to obtain L bits of leakage on the keys of each of the (N −T ) remaining
parties. Still, even with this knowledge, we argue the attacker cannot create a
good secret key without the content owner tracing it to one of the traitors. We
notice that, although our TT scheme is described in the bounded leakage model,
where each user only gets one key and leaks L bits to the attacker, we can view
the availability of N different looking keys as continual leakage “in space” rather
than “time”. Indeed, on a technical level we critically use our result regarding
the continual leakage-resilience of DL representations, and our final analysis is
considerably more involved than the analysis of our CLR-OWF in the floppy
model.4

Related Work. The basic bounded-leakage resilience (BLR) model considered
by many prior works: e.g., [Dzi06, CDD+07, AGV09, ADW09, NS09, KV09]
[ADN+10, CDRW10, BG10, GKPV10, DGK+10, DHLW10b, BSW11, BHK11,
HL11], [JGS11, BCH12, BK12, HLWW12]. As we mentioned, the floppy model
was introduced by Alwen et al. [ADW09] as the extension of the BLR moel.
They observed that bounded-leakage signatures (and one-way relations) can be
easily converted to the floppy model using any (standard) signature scheme. The
idea is to have the floppy store the signing key sk for the signature scheme, and
use it to authenticate the public key pki for the BLR signature scheme used in
the i-th period. This certificate, along with the value of pki, is now sent with
each BLR signature. Upon update, a completely fresh copy of the BLR scheme is
chosen and certified. Unfortunately, this approach does not work for encryption
schemes, since the encrypting party needs to know which public key to use.
In fact, it even does not work for maintaining a valid pre-image of a one-way
function (as opposed to a one-way relation). In contrast, our work directly gives
efficient and direct CLR one-way functions and encryption schemes.

Following [ADW09], Brakerski et al. [BKKV10] and Dodis et al. [DHLW10a]
considered an even more ambitious model for continual leakage resilience, where
no leak-free device (e.g., “floppy”) is available for updates, and the user has to
be able to update his secret key “in place”, using only fresh local randomness.
Abstractly, this could be viewed as a “floppy” which does not store any long-
term secrets, but only contributes fresh randomness to the system during the
key update. In particular, [BKKV10, DHLW10a] managed to construct signature

4 We believe that our TT scheme can also be extended to the floppy model; i.e.,
become continual both in “space” and “time”. For simplicity of exposition, we do
not explore this direction here.
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and encryption schemes in this model. These works were further extended to
the identity-based setting by [LRW11]. More recently, [LLW11, DLWW11] even
constructed remarkable (but much less efficient) CLR encryption schemes where
the attacker can even leak a constant fraction of the randomness used for each
local key update. While the above encryption schemes do not require a “floppy”,
all of them require a bi-linear group, are based on the less standard/understood
assumptions in bi-linear groups than the classical DL/DDH assumptions used
here, and are generally quite less efficient than the simple schemes presented
here. Thus, in settings where the existence of the “floppy” can be justified, our
schemes would be much preferable to the theoretically more powerful schemes
of [DHLW10a, BKKV10, LRW11, LLW11, DLWW11].

More surprisingly, we point out that in some applications, such as traitor
tracing considered in our work, the existence of local key updates is actually
an impediment to the security (e.g., tracing) of the scheme. For example, the
key updates used in prior bi-linear group CLR constructions had the (seem-
ingly desirable) property that a locally updated key looks completely inde-
pendent from the prior version of the same key. This held even if the prior
version of this key is subsequently revealed, and irrespective of whatever trap-
door information the content owner might try to store a-priori. Thus, a single
user can simply re-randomize his key without the fear of being traced later.
In contrast, when a “floppy” is available, one may design schemes where it
is infeasible for the user to locally update his secret key to a very “differ-
ent” key, without the help of the “floppy”. Indeed, our generalization of the
Boneh-Franklin TT scheme has precisely this property, which enables efficient
tracing, and which seems impossible to achieve in all the prior pairing-based
schemes [DHLW10a, BKKV10, LRW11, LLW11, DLWW11].

We also point out that the floppy model is similar in spirit to the key-insulated
model of Dodis et al. [DKXY02], except in our model the “outside” does not
know about the scheduling (or even the existence!) of key updates, so one cannot
change the functionality (or the effective public key) of the system depending
on which secret key is currently used.

Finally, although we mentioned much of the prior work with the most direct
relation to our work, many other models for leakage-resilient cryptography have
been considered in the last few years (see e.g., [ISW03, MR04, DP08, Pie09]
[DHLW10a, BKKV10, LLW11, DLWW11, GR12, Rot12, MV13] for some exam-
ples). We refer the reader to [Wic11] and the references therein for a detailed
discussion of such models.

Many of the proofs are relegated to the full version, which is available on
ePrint archive.

2 Preliminaries

Below we present the definitions and lemmata that we will need. We begin with
some standard notation.
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2.1 Notation

We will denote vectors by bold lower case letters (e.g., u) and matrices by bold
upper case letters (e.g., X). For integers d, n,m with 1 ≤ d ≤ min(n,m), we use
the notation Rkd(F

n×m
q ) to denote the set of all n × m matrices over Fq with

rank d. If A ∈ Fn×m
q is a n×m matrix of scalars, we let colspan(A), rowspan(A)

denote the subspaces spanned by the columns and rows of A respectively. If
V ⊆ Fn

q is a subspace, we let V⊥ denote the orthogonal space of V , defined by

V⊥ def
= { w ∈ Fn

q | 〈w,v〉 = 0 ∀v ∈ V }. We write (v1, . . . ,vm)⊥ as shorthand

for span(v1, . . . ,vm)⊥. We let ker(A)
def
= colspan(A)⊥. Similarly, we let ker(α)

denote the set of all vectors in Fn
q that are orthogonal to α. If X is a probability

distribution or a random variable then x← X denotes the process of sampling a

value x at random according to X . If S is a set then s
$← S denotes sampling s

according to the uniformly random distribution over the set S. For a bit string
s ∈ {0, 1}∗, we let |s| denote the bit length of s. We let [d] denote the set
{1, . . . , d} for any d ∈ Z+.

Throughout the paper, we let λ denote the security parameter. A function
ν(λ) is called negligible, denoted ν(λ) = negl(λ), if for every integer c there
exists some integer Nc such that for all integers λ ≥ Nc we have ν(λ) ≤ 1/λc

(equivalently, ν(λ) = 1/λω(1)).

Computational Indistinguishability. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be
two ensembles of random variables. We say that X,Y are (t, ε)-indistinguishable
if for every distinguisher D that runs in time t(λ) we have |Pr[D(Xλ) = 1] −
Pr[D(Yλ) = 1]| ≤ 1

2 + ε(λ). We say that X,Y are computationally indistinguish-

able, denoted X
c≈ Y , if for every polynomial t(·) there exists a negligible ε(·)

such that X,Y are (t, ε)-indistinguishable.

Statistical Indistinguishability. The statistical distance between two random vari-
ables X,Y is defined by SD(X,Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We write

X
s≈ε Y to denote SD(X,Y ) ≤ ε and just plain X

s≈ Y if the statistical distance
is negligible in the security parameter. In the latter case, we say that X,Y are
statistically indistinguishable.

Matrix-in-the-Exponent Notation: Let G be a group of prime order q generated
by an element g ∈ G. Let A ∈ Fn×m

q be a matrix. Then we use the notation

gA ∈ Gn×m to denote the matrix
(
gA

)
i,j

def
= g(A)i,j of group elements. We will

use a similar notational shorthand for vectors.

2.2 Hiding Subspaces in the Presence of Leakage

In this section we prove various indistinguishability lemmas about (statistically)
hiding subspaces given leakage on some of their vectors.
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Hiding Subspaces. The following lemma says that, given some sufficiently small
leakage on a random matrix A, it is hard to distinguish random vectors from
colspan(A) from uniformly random and independent vectors. A similar lemma
was shown in [BKKV10, LLW11, DLWW11], and the following formulation is
from [DLWW11]. The proof follows directly from the leftover-hash lemma.

Lemma 1 (Subspace Hiding with Leakage [DLWW11]). Let n ≥ d ≥
u, s be integers, S ∈ Zd×s

q be an arbitrary (fixed and public) matrix and

Leak : {0, 1}∗ → {0, 1}L be an arbitrary function with L-bit output. For ran-

domly sampled A
$← Zn×d

q , V
$← Zd×u

q ,U
$← Zn×u

q , we have:

(Leak(A),AS,V,AV)
s≈ ( Leak(A),AS,V,U)

as long as (d− s− u) log(q) − L = ω(log(λ)) and n = poly(λ).

We also show a dual version of Lemma 1, where a random matrix A is chosen
and the attacker either leaks on random vectors in colspan(A) or uniformly
random vectors. Even if the attacker is later given A in full, it cannot distinguish
which case occurred. This version of “subspace hiding” was first formulated by
[BKKV10], but here we present a significantly simplified proof and improved
parameters by framing it as a corollary (or a dual version of) Lemma 1.

Corollary 1 (Dual Subspace Hiding). Let n ≥ d ≥ u be integers, and let
Leak : {0, 1}∗ → {0, 1}L be some arbitrary function. For randomly sampled

A
$← Zn×d

q , V
$← Zd×u

q ,U
$← Zn×u

q , we have:

(Leak(AV),A)
s≈ ( Leak(U),A)

as long as (d− u) log(q)− L = ω(log(λ)), n = poly(λ), and q = λω(1).

Proof. We will actually prove the above assuming that A,V,U are random
full-rank matrices, which is statistically close to the given statement since q is
super-polynomial. We then “reduce” to Lemma 1.

Given A and C such that C = AV or C = U, we can probabilistically choose
a n× d′ matrix A′ depending only on C and a n× u′ matrix C′ depending only
on A such that the following holds:

– If C = AV for a random (full rank) d× u matrix V, then C′ = A′V′ for a
random (full rank) d′ × u′ matrix V′.

– If C = U is random (full rank) and independent of A, then C′ = U′ is
random (full rank) and independent of A′.

and where d′ = n − u, u′ = n − d. To do so, simply choose A′ to be a random
n × d′ matrix whose columns form a basis of colspan(C)⊥ and choose C′ to be
a random n× u′ matrix whose columns form a basis of colspan(A)⊥. If C = U
is independent of A, then C′ = U′ is a random full-rank matrix independent
of A′. On the other hand, if C = AV, then colspan(A)⊥ ⊆ colspan(C)⊥ is a
random subspace. Therefore C′ = A′V′ for some uniformly random V′.
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Now assume that our lemma does not hold and that there is some func-
tion Leak and an (unbounded) distinguisher D that has a non-negligible dis-
tinguishing advantage for our problem. Then we can define a function Leak′

and a distinguished D′ which breaks the problem of Lemma 1 (without even
looking at AS, V ). The function Leak′(A) samples C′ as above and outputs
Leak = Leak(C′). The distinguisher D′, given (Leak, C) samples A′ using C as
above and outputs D(Leak,A′). The distinguisher D′ has the same advantage
as D. Therefore, by Lemma 1, indistinguishability holds as long as

(d′ − u′) log(q)− L = ω(log(λ)) ⇔ (d− u) log(q)− L = ω(log(λ))

It is also easy to extend the above corollary to the case where (the column
space of) A is a subspace of some larger public space W.

Corollary 2. Let n ≥ m ≥ d ≥ u. Let W ⊆ Zn
q be a fixed subspace of dimension

m and let Leak : {0, 1}∗ → {0, 1}L be some arbitrary function. For randomly

sampled A
$← Wd (interpreted as an n × d matrix), V

$← Zd×u
q ,U

$← Wu

(interpreted as an n× u matrix), we have:

(Leak(AV),A)
s≈ ( Leak(U),A)

as long as (d− u) log(q)− L = ω(log(λ)), n = poly(λ), and q = λω(1).

Proof. Let W be some n × m matrix whose columns span W . Then we can
uniquely write A = WA′, where A′ ∈ Zm×d

q is uniformly random. Now we just
apply Lemma 1 to A′.

A variant of the corollary holds also for affine subspaces. Namely:

Corollary 3. Let n ≥ m ≥ d ≥ u. Let W ⊆ Zn
q be a fixed subspace of dimension

m and let Leak : {0, 1}∗ → {0, 1}L be some arbitrary function and let B ∈ Zn×u
q

be an arbitrary matrix. For randomly sampled A
$←Wd (interpreted as an n× d

matrix), V
$← Zd×u

q ,U
$←Wu (interpreted as an n× u matrix), we have:

(Leak(AV +B),A)
s≈ ( Leak(U),A)

as long as (d− u) log(q)− L = ω(log(λ)), n = poly(λ), and q = λω(1).

3 One-Wayness of Discrete Log Representations under
Continual Leakage

In this section, we show the one-wayness of discrete log representations under

continual leakage. Namely, we show that for random g1, . . . , gn
$← G and h

$← G,
obtaining leakage on many representations x = (x1, ..., xn) such that

∏n
i=1 g

xi

i =
h does not help an efficient PPT adversary output any representation of h in
terms of g1, . . . , gn in full (except with negligible probability) assuming that the
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discrete log assumption is true. Thus, in succinct terms, we show that discrete
log representations are one-way under continual leakage, based on the (plain)
discrete log assumption.

We first define the notion of a continual leakage resilient one-way function in
the floppy model.

3.1 Defining One-Way Functions in Floppy Model

A continuous leakage resilient (CLR) one-way function in the Floppy
Model (OWFF) consists of consists of the following PPT algorithms
(Gen, Sample,Eval,Update):

1. KeyGen(1λ) is a PPT algorithm that takes as input the security parameter λ
and outputs the public parameters PP, the update key UK. The parameters
PP are implicit inputs to all other algorithms and we will not write them
explicitly for cleaner notation.

2. Sample(PP): Takes as input the public parameters PP and samples a random
value x.

3. Eval(PP,x) : This is a deterministic algorithm that takes as input x and
outputs y ∈ {0, 1}∗.

4. Update(UK,x) is a PPT algorithm that takes as input the update key UK
and a string x ∈ {0, 1}∗ and outputs x′ ∈ {0, 1}∗.

Correctness. We require that for any (PP,UK) ← KeyGen(1λ), and any x ∈
{0, 1}∗, we have

Eval(Update(UK,x)) = Eval(x).

Security. Let L = L(λ) be a function of the security parameter. We say that a
tuple of algorithms (KeyGen,Eval,Update) is an L-CLR secure one-way function
in the floppy model, if for any PPT attacker A, there is a negligible function μ
such that Pr[A wins] ≤ μ(λ) in the following game:

– The challenger chooses (PP,UK) ← KeyGen(1λ). Next, it chooses a random
element x1 ← Sample(PP) and sets y ← Eval(x1). The challenger gives PP,y
to A.

– A may adaptively ask for leakage queries on arbitrarily many pre-
images. Each such query consists of a function (described by a circuit)
Leak : {0, 1}∗ → {0, 1}L with L bit output. On the ith such query Leaki, the
challenger gives the value Leaki(xi) to A and computes the next pre-image
xi+1 ← Update(UK,xi).

– A eventually outputs a vector x∗ and wins if Eval(x∗) = y.

3.2 Constructing One-Way Function in the Floppy Model

We construct a one-way function F = (KeyGen, Sample,Eval,Update) as follows
for some parameter n = n(λ) which determined the amount of leakage that can
be tolerated.
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1. KeyGen(1λ): Choose a group G of prime order q with generator g by running

the group generation algorithm G(1λ). Choose a vector α = (α1, . . . , αn)
$←

Zn
q , and let gi = gαi for i ∈ [n]. Output the parameters PP = (G, g, g1, . . . , gn)

and the update key UK = α.

2. Sample(PP): Sample a random vector x
$← Zn

q .
3. Eval(PP,x): Parse x = (x1, . . . , xn) and output y :=

∏n
i=1 g

xi

i .

4. Update(UK,x): Choose a uniformly random vector β
$← ker(α), and output

x+ β.

Correctness follows from the fact that the inner product 〈x+ β,α〉 = 〈x,α〉+
〈β,α〉 = 〈x,α〉, since α and β are orthogonal (mod q).

Theorem 1. Let L = L(λ) and n = n(λ) be functions of the security parameter
λ satisfying

L < (n− 2) log(q)− ω(log(λ))

Then, F is an L-CLR secure one-way function in the floppy model (see definition
3.1) under the discrete log assumption for G.

Proof. Suppose that the attacker has a non-negligible chance of winning the L-
CLR-OWF game. Then, assuming that the DL assumption holds, we will arrive
at a contradiction. The proof proceeds by a sequence of games. Without loss of
generality, assume that the attacker makes exactly T leakage queries.

Game 0: This is the security game in the definition of a CLR-one way function
in the floppy model. Namely, the adversary is given the public parameters PP
and y = Eval(PP,x1), and asks a polynomial number of queries adaptively.
Each query is a function Leaki : Zn

q → {0, 1}L, in response to which the
challenger returns Leaki(xi) where, for i > 1, the ith preimage xi is computed

as xi = xi−1 + βi where βi
$← ker(α).

By assumption, we have Pr[A wins ] ≥ ε(λ) for some non-negligible ε.
Game 1: Game 1 is defined as a sequence of T+1 sub-games denoted by Games

1.0, . . . , 1.T . For i = 1, . . . , T , we have:

Game 1.i: In this game, the challenger chooses a random (n−2)-dimensional
subspace S ⊆ ker(α) in the beginning and answers the first T − i queries
differently from the last i queries as follows:

– For every 1 < j ≤ T − i, compute xj = x+ βj where βj
$← ker(α).

– For every T − i < j ≤ T , compute xj = x+ sj where sj
$← S.

In the above, we define x := x1 to be the initial pre-image output by
Sample.

Game 2: In Game 2, the challenger chooses all the vectors from the affine

subspace x+ S, i.e. it sets xj = x+ sj where sj
$← S, j ∈ [T ].

Game 1.0 is identical to Game 0 since, in both games, all of the values xi are
just uniformly random over the affine space {xi : g〈xi,α〉 = y}. By definition,
Game 1.T is identical to Game 2.
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In each of the games 1.i, i = 0, . . . , T , define the event Ei to be true if the
adversary wins and returns a vector x∗ such that x∗ − x �∈ S. Then, first we
claim that in game 1.0, the probability of the event E0 happening is negligibly
close to ε.

Claim. There is a negligible function μ : N→ [0, 1] such that

Pr[E0] ≥ ε(λ) − μ(λ).

Proof. We have Pr[E0] ≥ ε(λ) − Pr[x∗ − x ∈ S] ≥ ε(λ) − 1/q, where the latter
probability over a random choice of S (since the adversary has no information
about S in game 1.0).

Next, we show that this probability does not change much across games:

Claim. There is a negligible function μ : N→ [0, 1] such that for every 1 ≤ i ≤ T ,

|Pr[Ei]− Pr[Ei−1]| ≤ μ(λ).

Proof. We have by Corollary 3, that as long as L < (n − 2) log(q) − ω(log(λ))

an attacker cannot distinguish leakage on βi
$← ker(α) from leakage on si

$← S,
even if α is public and known in the beginning and S becomes public after the
leakage occurs. Therefore, knowing only α, we can simulate the first i−1 leakage
queries for the attacker and then use leakage on the challenge vector (βi or si)
to answer the ith query. We can then use knowledge of S (after the ith leakage
query) to simulate the rest of the leakage queries and test if eventually the event
(Ei−1 or Ei) occurs. This proves the claim.

Combining the above two claims and the observation that Game 2 is identical
to Game 1.T , we have that there is a negligible function μ : N→ [0, 1] such that
in Game 2,

Pr[A wins and x∗ − x �∈ S] ≥ ε(λ) − μ(λ).

Finally we show that the above contradicts the DL assumption.

Claim. If the Discrete Log assumption holds, then there is a negligible function
μ : N→ [0, 1] such that in Game 2,

Pr[A wins and x∗ − x /∈ S] ≤ μ(λ)

Proof. Note that in Game 2, all the leakage queries of the adversary are answered
using a randomly chosen (n − 2)-dimensional subspace S ⊆ ker(α), hence by
Lemma 3 an adversary who outputs x∗ such that x∗−x /∈ S can be transformed
into one that solves the discrete log problem.

Thus we arrive at a contradiction, which shows that under the Discrete Log
assumption, the attacker could not have output x∗ such that f(x∗) = y. Thus,
F is an L− CLR secure one way function for L < (n− 2) log(q)− ω(log(λ)).
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4 Public-Key Encryption in the Continuous Leakage
Model

In this section, we show the semantic security of the cryptosystems of Boneh et
al. [BHHO08] and Naor and Segev [NS09] with continual leakage on the secret
keys in the floppy model (i.e., with invisible updates) under the DDH assump-
tion. We first define semantic security under continual leakage.

4.1 Defining Encryption in the Floppy Model

A CLR public key encryption scheme (CLR-PKE) in the Floppy Model consists
of the following algorithms:

1. KeyGen(1λ): Takes as input the security parameter λ and outputs the public
key PK, the secret key SK and the update key UK.

2. Update(UK, SK): Outputs an updated secret key SK′.
3. Encrypt(PK,M): Outputs the ciphertext CT.
4. Decrypt(SK,CT): Outputs the decrypted message M .

For convenience, we define the algorithm Updatei that performs i ≥ 0 consec-
utive updates as:

Updatei(UK, SK)→ SK′ : Let SK0 = SK, SK1 ← Update(UK, SK0), . . . SKi ←
Update(UK, SKi−1). Output SK′ = SKi

Security. Let L = L(λ) be a function of the security parameter. We say that
a CLR PKE is L-CLR secure in the floppy model, if, for any PPT adversary
A, there is a negligible function μ such that |Pr[A wins ] − 1

2 | ≤ μ(λ) in the
following game:

– Challenger chooses (PK,UK, SK1)← KeyGen(1λ).

– A may adaptively ask for leakage queries on arbitrarily many secret
keys. Each such query consists of a function (described by a circuit)
Leak : {0, 1}∗ → {0, 1}L with L bit output. On the ith such query Leaki, the
challenger gives the value Leaki(SKi) to A and computes the next updated
key SKi+1 ← Update(UK, SKi).

– At some point A gives the challenger two messages M0,M1. The challenger

chooses a bit b
$← {0, 1} and sets CT← Encrypt(PK,Mb).

– The attacker A gets CT and outputs a bit b̃. We say A wins if b̃ = b with
non-negligible probability.

4.2 Constructing Encryption in the Floppy Model

We define our scheme as follows for some parameter n = n(λ) which determined
the amount of leakage that can be tolerated.
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1. KeyGen(1λ): Let (G, q, g)
$← G(1λ). Choose vectors α

$← Zn
q and x

$← Zn
q ,

and let f = g〈α,x0〉.
The public parameters PK consists of (g, f, gα).
The update key UK = α and the secret key is set to SK = x + β where

β
$← ker(α).

2. Update(UK, SK): Choose β
$← ker(α), and output SK + β as the updated

secret key.

3. Encrypt(PK,M): To encrypt M ∈ G, pick a random scalar r
$← Zq. Output

the ciphertext CT← (grα,M · f r).
4. Decrypt(SK,CT): Parse the ciphertext CT as (gc, h) and output h · g−〈c,SK〉

as the message.

A correctly formed ciphertext CT looks like (gc, h) = (grα,M · gr〈α,x〉). The
secret key (after arbitrarily many updates) is SK = x + β where β ∈ ker(α).
The decryption computes

h · g−〈c,x+β〉 =M · gr〈α,x〉 · g−〈rα,x+β〉 = M · gr〈α,x〉 · g−r〈α,x〉 = M

since 〈α,β〉 = 0 (mod q).

Theorem 2. Let L = L(λ) and n = n(λ) be functions of the security parameter
λ satisfying

L < (n− 2) log(q)− ω(log(λ))

Then, the public key encryption scheme (KeyGen,Update,Encrypt,Decrypt) is L-
CLR secure secure in the Floppy Model under the DDH assumption for G.

5 Traitor Tracing in the Bounded Leakage Model

In this section, we generalize the constructions in Section 3 and Section 4 to
obtain “leaky” traitor tracing in the bounded leakage model, which could be
viewed as continual leakage-resilience in “space” rather than “time”, but with
strong traitor tracing properties. First, we define traitor tracing and associated
security notions.

5.1 Definition of Traitor Tracing

The traitor tracing scheme is given by the following algorithms:

1. KeyGen(1λ; 1N , 1T )→ PK, SK1, . . . , SKN : Takes as input the security param-
eter λ, number of parties N , and number of traitors T . Outputs the public
key PK, and secret keys {SKi}Ni=1 for each party i ∈ [N ].

2. Encrypt(PK,M)→ CT: Takes as input the public key PK, a message M and
outputs the ciphertext CT.

3. Decrypt(PK,CT, SK) → M : Takes as input the public key PK, a ciphertext
CT and a secret key SK and outputs a message M .
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4. Trace(PK, SK∗)→ i: Takes as input the public key PK, and some secret key
SK∗ and outputs an index i ∈ [N ] corresponding to an accused traitor.

Note that the tracing algorithm takes a valid secret key SK∗ as input, and
this is what makes the scheme non black box. This assumes that if the traitors
collude and construct a “pirate decoder” that decrypts the encrypted content,
then one can always extract the decryption key from this decoder. The stronger
notion of black box traitor tracing only assumes that one can test whether the
pirate decoder plays the encrypted content or not.

Correctness: For any integers N, T, U, i ∈ [N ] any PK,TK, SK1, . . . , SKN ←
KeyGen(1λ; 1N , 1T ), CT ← Encrypt(M,PK) and M ′ ← Decrypt(CT, SKi): we
have M ′ = M .

We define security in terms of two properties: semantic security and tracing
security.

Semantic Security: The standard notion of semantic security requires that, for
any PPT A, we have |Pr[A wins ]− 1

2 | ≤ μ(λ) in the following game:

– Attacker A chooses the values 1N , 1T to the challenger.

– Challenger chooses (PK, SK1, . . . , SKN ) and gives PK to A.

– At some point A gives the challenger C two messages M0,M1.

– The challenger chooses a bit b ← {0, 1} at random and set CT ←
Encrypt(PK,Mb).

– The attacker A gets CT and outputs a bit b̃. We say A wins if b̃ = b.

Tracing Security: To define non-black-box tracing, we first define the predicate
GOOD(PK, SK) which holds iff there exists some message M in message-domain
such that

Pr[M ′ = M : CT← Encrypt(M,PK),M ′ ← Decrypt(CT, SK)] ≥ 1

2
.

In other words, a key SK is good if it succeeds in decryping at least somemessageM
with probability at least a 1

2 . We say that leakage-resilient traitor tracing security
holds if, for any PPTA, we have Pr[A wins ] ≤ μ(λ) in the following game:

– Attacker A chooses the values 1N , 1T .

– Challenger C chooses (PK, SK1, . . . , SKN ) and gives PK to A.

– A may adaptively ask C for the following type of queries:
• Leakage queries: Attacker gives a user index i ∈ [N ] and a function
(defined by a circuit) Leak : {0, 1}∗ → {0, 1}L with L bit output. If no
leakage query for user i was made before, then the challenger outputs
Leak(SKi) and otherwise it ignores the query.

• Corrupt Queries: Attacker asks for user index i and gets SKi.
– AtsomepointAoutputs someSK∗ andthechallenger runs i← Trace(PK, SK∗).

We say thatAwins if all of the following conditions hold: (1)Amade atmost T
corrupt queries throughout the game, (2) the predicateGOOD(PK, SK∗) holds,
(3) the traced index i was not part of any corrupt query.
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Before presenting the encryption scheme, we review some necessary notions
from the theory of error correcting codes.

Error Correcting Code. For traitor tracing with N parties and T traitors, we
will rely on an [N,K, 2T + 1]q-linear-ECC over Fq, where K is chosen as large
as possible. For the Reed-Solomon code, we can set K = N − 2T , which we
will assume from now on. Therefore, we will also assume that N > 2T (this is
without loss of generality as we can always increase N by introducing “dummy
users” if necessary). Let A be a generation matrix and B be a parity check
matrix so that BA = 0. Note that B is a 2T ×N matrix. Lastly, we will assume
efficient syndrome-decoding so that we can efficiently recover a vector e ∈ ZN

q

from B · e as long as the hamming-weight of e is less than T . This holds for the
Reed-Solomon code.

The Scheme. We now present our Traitor-Tracing scheme which is a natural
generalization of the Boneh-Franklin scheme [BF99]. The scheme is defined as
follows for some parameter n = n(λ).

1. KeyGen(1λ, 1N , 1T )→ PK, SK1, . . . , SKN :

Choose (G, q, g)
$← G(1λ). Choose α

$← Zn
q and β

$← Zq.
Let B be the parity-check matrix of an [N,K, 2T + 1]q-ECC as described
above and let us label its columns by b1, . . . ,bN where bi ∈ Z2T

q for i ∈ [N ].
For i ∈ [N ], choose SKi = (bi||x) ∈ Zn

q where x = (x1, . . . , xn−2T ) and is
constructed choosing x2, . . . , xn−2T uniformly random and uniquely fixing
x1 so that 〈α, SKi〉 = β. Set PK := [ g, gα = (g1, . . . , gn), f = gβ ,B].

2. Encrypt(PK,M) → CT: Choose a random r
$← Zq. Output CT ← (grα, f r ·

M)

3. Decrypt(PK,CT, SK)→M : Let CT = (gc, h). Output hg−〈c,SK〉.

4. Trace(PK, SK∗) → i: Check that the input is a valid key SK∗ satisfy-
ing g〈α,SK∗〉 = f . To trace, do the following: (1) Write SK∗ = (b∗||x∗).
(2) Use syndrome decoding on b∗ to recover a low-weight “error vector”
(e1, . . . , eN) ∈ ZN

q . Output ⊥ if this fails. (3) Output some index i such that
ei �= 0.

Semantic security follows from [BF99] (under the DDH assumption). The
reason is that given the public key values (gα, f = gβ) it is hard to distinguish
the ciphertext values grα, f r for some r ∈ Zq from a uniformly random and
independent vector of n + 1 group elements. Since this part does not involve
leakage, we omit the formal proof and instead concentrate on the novel tracing
part. The theorem below states the leakage resilient tracing security achieved by
our scheme.

Theorem 3. Assuming we choose n ≥ 3T + 2 and L ≤ (n − 3T − 2) log(q) −
ω(log(λ)) the above scheme satisfies L-leakage resilient tracing security under
the DL assumption.
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A Computational Hardness Assumptions

We will rely on discrete-log type hardness assumptions in prime-order groups.We

let such groups be defined via an abstract group generation algorithm (G, g, q)
$←

G(1λ), where G is a (description of a) cyclic group of prime order q with gener-
ator g. We assume that the group operation, denoted by multiplication, can be
computed efficiently.

Definition 1 (Extended Rank Hiding Assumption). The extended rank
hiding assumption for a group generator G states that for any integer constants
j > i ∈ N and n,m ∈ N and t ≤ min{n,m} − max{i, j}, the following two
ensembles are computationally indistinguishable:

{(
G, q, g, gX,v1, . . . ,vt

)
: (G, q, g) ← G(1λ); X

$← Rki(F
n×m
q ); {v�}t�=1

$← ker(X)

}
c≈{(

G, q, g, gX,v1, . . . ,vt

)
: (G, q, g) ← G(1λ); X

$← Rkj(F
n×m
q ); {v�}t�=1

$← ker(X)

}
Lemma 2. The Extended Rank Hiding assumption is equivalent to the DDH
assumption.

Proof is implicit in [BKKV10].

Hardness of finding DL representation outside known span. We will also exten-
sively use the following lemma of Boneh and Franklin, which states that given a
number of discrete log representations of a group element h, an adversary cannot
generate any other representation that is not in their span.

Lemma 3 ([BF99], Lemma 1). Let λ be the security parameter and let

(G, q, g)
$← G(1λ). Under the discrete log assumption on the group generator

G, for every PPT adversary A and all integers d = d(λ), n = n(λ) such that
d < n− 1, there is a negligible function μ such that

Pr[(G, q, g) ← G(1λ); α
$← Z

n
q ; β

$← Zq; s1, . . . , sd
$← Z

n
q subject to 〈α, si〉 = β;

s∗ ← A(G, q, g, gα, gβ, s1, . . . , sd) : s
∗ /∈ span(s1, . . . , sd) and 〈α, s∗〉 = β] ≤ μ(λ)

where the probability is over the coins of G and the adversary A and all the
random choices made in the experiment.

The above implies that any valid representation s∗ that
A(G, q, g, gα, gβ , s1, . . . , sd) produces must lie in span(s1, . . . , sd). In par-
ticualr, this means that s∗ must be a convex combination of s1, . . . , sd
(with coefficients summing up to 1) since only such combinations give valid
representations.



Hiding the Input-Size in Secure Two-Party
Computation�

Yehuda Lindell��, Kobbi Nissim� � �, and Claudio Orlandi†

Abstract. In the setting of secure multiparty computation, a set of
parties wish to compute a joint function of their inputs, while preserving
properties like privacy, correctness, and independence of inputs. One se-
curity property that has typically not been considered in the past relates
to the length or size of the parties inputs. This is despite the fact that
in many cases the size of a party’s input can be confidential. The rea-
son for this omission seems to have been the folklore belief that, as with
encryption, it is impossible to carry out non-trivial secure computation
while hiding the size of parties’ inputs. However some recent results (e.g.,
Ishai and Paskin at TCC 2007, Ateniese, De Cristofaro and Tsudik at
PKC 2011) showed that it is possible to hide the input size of one of the
parties for some limited class of functions, including secure two-party
set intersection. This suggests that the folklore belief may not be fully
accurate.

In this work, we initiate a theoretical study of input-size hiding se-
cure computation, and focus on the two-party case. We present defini-
tions for this task, and deal with the subtleties that arise in the setting
where there is no a priori polynomial bound on the parties’ input sizes.
Our definitional study yields a multitude of classes of input-size hiding
computation, depending on whether a single party’s input size remains
hidden or both parties’ input sizes remain hidden, and depending on who
receives output and if the output size is hidden from a party in the case
that it does not receive output. We prove feasibility and impossibility
results for input-size hiding secure two-party computation. Some of the
highlights are as follows:
– Under the assumption that fully homomorphic encryption (FHE)

exists, there exist non-trivial functions (e.g., the millionaire’s prob-
lem) that can be securely computed while hiding the input size of
both parties.

– Under the assumption that FHE exists, every function can be se-
curely computed while hiding the input size of one party, when both
parties receive output (or when the party not receiving output does
learn the size of the output). In the case of functions with fixed out-
put length, this implies that every function can be securely computed
while hiding one party’s input size.

� This work was funded by the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
n. 239868.

�� Bar-Ilan University, Israel. email: lindell@biu.ac.il.
� � � Ben-Gurion University, Israel. kobbi@cs.bgu.ac.il. This work was carried out

while at Bar-Ilan University.
† Aarhus University, Denmark. email: orlandi@cs.au.dk. This work was carried out

while at Bar-Ilan University.

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 421–440, 2013.
c© International Association for Cryptologic Research 2013



422 Y. Lindell, K. Nissim, and C. Orlandi

– There exist functions that cannot be securely computed while hid-
ing both parties’ input sizes. This is the first formal proof that, in
general, some information about the size of the parties’ inputs must
be revealed.

Our results are in the semi-honest model. The problem of input-size
hiding is already challenging in this scenario. We discuss the additional
difficulties that arise in the malicious setting and leave this extension for
future work.

Keywords: Secure two-party computation; input-size hiding.

1 Introduction

Background. Protocols for secure two-party computation enable a pair of par-
ties P1 and P2 with private inputs x and y, respectively, to compute a function f
of their inputs while preserving a number of security properties. The most cen-
tral of these properties are privacy (meaning that the parties learn the output
f(x, y) but nothing else), correctness (meaning that the output received is in-
deed f(x, y) and not something else), and independence of inputs (meaning that
neither party can choose its input as a function of the other party’s input). The
standard way of formalizing these security properties is to compare the output of
a real protocol execution to an “ideal execution” in which the parties send their
inputs to an incorruptible trusted party who computes the output for the parties.
Informally speaking, a protocol is then secure if no real adversary attacking the
real protocol can do more harm than an ideal adversary (or simulator) who in-
teracts in the ideal model [GMW87, GL90, MR91, Bea91, Can00]. In the 1980s,
it was shown that any two-party functionality can be securely computed in the
presence of semi-honest and malicious adversaries [Yao86]. Thus, this stringent
definition of security can actually be achieved.

Privacy and Size Hiding. Clearly, the security obtained in the ideal model is
the most that one can hope for. However, when looking closer at the formalization
of this notion, it is apparent that the statement of privacy that “nothing but the
output is learned” is somewhat of an overstatement. This is due to the fact that
the size of the parties’ inputs (and thus also the size of the output) is assumed to
be known (see the full version for a discussion on how this is actually formalized
in the current definitions). However, this information itself may be confidential.
Consider the case of set intersection and companies who wish to see if they have
common clients. Needless to say, the number of clients that a company has is
itself highly confidential. Thus, the question that arises is whether or not it is
possible to achieve secure computation while hiding the size of the parties’ inputs.
We stress that the fact that input sizes are revealed is not a mere artifact of the
definition, and all standard protocols for secure computation indeed assume that
the input sizes are publicly known to the parties.

The fact that the input size is always assumed to be revealed is due to the
folklore belief that, as with encryption, the length of the parties’ inputs can-
not be hidden in a secure computation protocol. In particular, the definition
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in [Gol04, Sec. 7.2.1.1] uses the convention that both inputs are of the same
size, and states “Observe that making no restriction on the relationship among
the lengths of the two inputs disallows the existence of secure protocols for com-
puting any non-degenerate functionality. The reason is that the program of each
party (in a protocol for computing the desired functionality) must either depend
only on the length of the party’s input or obtain information on the counterpart’s
input length. In case information of the latter type is not implied by the output
value, a secure protocol cannot afford to give it away”. In the same way in [HL10,
Sec. 2.3] it is stated that “We remark that some restriction on the input lengths
is unavoidable because, as in the case of encryption, to some extent such infor-
mation is always leaked.”. It is not difficult to see that there exist functions for
which hiding the size of both inputs is impossible (although this has not been
formally proven prior to this paper). However, this does not necessarily mean
that “non-degenerate” or “interesting” functions cannot be securely computed
without revealing the size of one or both parties’ inputs.

State of the Art. The first work to explicitly refer to hiding input size is that
of zero-knowledge sets [MRK03], in which a prover commits to a set S and later
proves statements of the form x ∈ S or x /∈ S to a verifier, without revealing
anything about the cardinality of S. Zero-knowledge sets are an interesting in-
stance of size-hiding reactive functionality, while in this work we only focus on
non-reactive computation (i.e., secure function evaluation).

Ishai and Paskin [IP07] also explicitly refer to the problem of hiding input size,
and construct a homomorphic encryption scheme that allows a party to evaluate
a branching program on an encrypted input, so that the length of the branching
program (i.e., the longest path from the initial node to any terminal node) is
revealed but nothing else about its size. This enables partial input-size hiding
two-party computation by having one party encode its input into the branching
program. In particular this implies a secure two-party private set intersection
protocol where the size of of the set of one of the two parties is hidden.

Ateniese et al. [ACT11] constructed the first (explicit) protocol for private set-
intersection that hides the size of one of the two input sets. The focus of their
work is on efficiency and their protocol achieves high efficiency, in the random or-
acle model. The construction in their paper is secure for semi-honest adversaries,
and for a weaker notion of one-sided simulatability when the adversary may be
malicious (this notion guarantees privacy, but not correctness, for example). In
addition, their construction relies on a random oracle.

Those works demonstrate that interesting, non-degenerate functions can be
computed while at least hiding the input size of one of the parties, and this raises
a number of fascinating and fundamental questions:

Can input-size hiding be formalized in general, and is it possible to se-
curely compute many (or even all) functions while hiding the input size
of one of the parties?
Are there any interesting functions that can be securely computed while
hiding both parties’ inputs sizes?



424 Y. Lindell, K. Nissim, and C. Orlandi

Before proceeding, we remark that in many cases it is possible to hide the input
sizes by using padding. However, this requires an a priori upper bound on the
sizes of the inputs. In addition, it means that the complexity of the protocol is
related to the maximum possible lengths and is thus inherently inefficient. Thus,
this question is of interest from both a theoretical point of view (is it possible
to hide input size when no a priori upper bound on the inputs is known and so
its complexity depends only on each party’s own input and output), and from
a practical point of view. In this paper we focus on theoretical feasibility, and
therefore we do not consider side-channel attacks that might be used to learn
additional information about a party’s input size e.g., by measuring the response
time of that party in the protocol, but we hope that our results will stimulate
future work on more efficient and practical protocols.

Our Results. In this paper, we initiate the theoretical study of the problem of
input-size hiding two-party computation. Our main contributions are as follows:

– Definition and classification: Even though some input-size hiding protocols
have been presented in the literature, no formal definition of input-size hid-
ing generic secure computation has ever been presented. We provide such a
definition and deal with technical subtleties that relate to the fact that no a
priori bound on the parties’ input sizes is given (e.g., this raises an issue as
to how to even define polynomial-time for a party running such a protocol).
In addition, we observe that feasibility and infeasibility depend very much
on which party receives output, whether or not the output-size is revealed to
a party not receiving output, and whether one party’s input size is hidden or
both. We therefore define a set of classes of input-size hiding variants, and
a unified definition of security. We also revisit the standard definition where
both parties’ input sizes are revealed and observe that the treatment of this
case is much more subtle than has been previously observed. (For example,
the standard protocols for secure computation are not secure under a defi-
nition of secure computation for which both parties receive output if their
input sizes are equal, and otherwise both parties receive ⊥. We show how
this can be easily fixed.)

– One-party input-size hiding: We prove that in the case that one party’s input
size is hidden and the other party’s input size is revealed, then every function
can be securely computed in the presence of semi-honest adversaries, when
both parties receive either the output or learn the output size (or when
the output size can be upper bounded as a function of one party’s input
size). This includes the problem of set intersection and thus we show that
the result of [ACT11] can be achieved without random oracles and under
the full ideal/real simulation definition of security. Our protocols use fully
homomorphic encryption [Gen09] (we remark that although this is a very
powerful tool, there are subtleties that arise in attempting to use it in our
setting). This is the first general feasibility result for input-size hiding.
We also prove that there exist functionalities (e.g., unbounded input-length
oblivious transfer) that cannot be securely computed in the presence of semi-
honest adversaries while hiding one party’s input size, if one of the parties
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is not supposed to learn the output size. This is also the first formal impos-
sibility result for input-size hiding, and it also demonstrates that the size of
the output is of crucial consideration in our setting. (In the standard defini-
tion where input sizes are revealed, a fixed polynomial upper-bound on the
output size is always known and can be used.)

– Two-party input-size hiding: We prove that there exist functions of interest
that can be securely computed in the presence of semi-honest adversaries
while hiding the input size of both parties. In particular, we show that the
greater-than function (a.k.a., the millionaires’ problem) can be securely com-
puted while hiding the input size of both parties. In addition, we show that
the equality, mean, median, variance and minimum functions can all be com-
puted while hiding the size of both parties’ inputs (our positive result holds
for any function that can be efficiently computed with polylogarithmic com-
munication complexity). To the best of our knowledge, these are the first ex-
amples of non trivial secure computation that hides the size of both parties’
inputs, and thus demonstrate that non-degenerate and interesting functions
can be securely computed in contradiction to the accepted folklore. We also
prove a general impossibility result that it is impossible to hide both parties’
input sizes for any function (with fixed output size) with randomized com-
munication complexity Ω(nε) for some ε > 0. Combined with our positive
result, this is an almost complete characterization of feasibility.

– Separations between size-hiding variants: We prove separations between dif-
ferent variants of size-hiding secure computation, as described above. This
study shows that the issue of size-hiding in secure computation is very del-
icate, and the question of who receives output and so on has a significant
effect on feasibility.

Our results provide a broad picture of feasibility and infeasibility, and demon-
strate a rich structure between the different variants of input-size hiding. We
believe that our results send a clear message that input-size hiding is possible,
and we hope that this will encourage future research to further understand feasi-
bility and infeasibility, and to achieve input-size hiding with practical efficiency,
especially in applications where the size of the input is confidential.

Malicious Adversaries – Future Work. In this initial foundational study
of the question of size-hiding in secure computation, we mainly focus on the
model of semi-honest adversaries. As we will show, many subtleties and difficul-
ties arise already in this setting. In the case of malicious adversaries, it is even
more problematic. One specific difficulty that arises in this setting is due to the
fact that the simulator must run in time that is polynomial in the adversary.
This is a problem since any input-size hiding protocol must have communication
complexity that is independent of the parties’ inputs sizes. Thus, the simula-
tor must extract the corrupted party’s input (in order to send it to the trusted
party) even if it is very long, and in particular even if its length is not a priori
polynomially bounded in the communication complexity. In order to ensure that
the simulator is polynomial in the adversary, it is therefore necessary that the
simulator somehow knows how long the adversary would run for. This is a type
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of “proof of work” for which rigorous solutions do not exist. We remark that we
do provide definitions for the case of malicious adversaries. However, the problem
of constructing input-size hiding protocols for the case of malicious adversaries
is left for future work.

2 Technical Overview

In this section we provide a brief overview of the results and the techniques
used through the paper. Due to space limitation, much of the technical material
has been removed from this version, but can be found in the full version of this
article [LNO12].

Definitions. In Section 3 we formalize the notion of input-size hiding in secure
two-party computation, following the ideal/real paradigm. As opposed to the
standard ideal model, we define the sizes of the input and output values as
explicit additional input/outputs of the ideal functionality and, by considering
all the combinations of possible output patterns we give a complete classification
of ideal functionalities. The different classes can be found in Figure 6 on the
last page of this submission. We consider three main classes (class 0,1 and 2)
depending on how many input sizes are kept hidden (that is, in class 2 the size
of both parties input is kept hidden, in class 1 the size on party’s input is kept
hidden, and in class 0 neither parties inputs are hidden). Even for class 0, where
both input sizes are allowed to leak, we argue that our definition of the ideal
world is more natural and general than the standard one. This is due to the
fact that in standard definitions, it is assumed that the parties have agreed on
the input sizes in some “out of band” method. As we show, this actually leads
to surprising problems regarding the definition of security and known protocols.
Each of the classes is then divided into subclasses, depending on what kind
of information about the output each party receives (each party can learn the
output value, the output size or no information about the output). As we will
see, the information about the output that is leaked, and to which party, has
significant ramifications on feasibility and infeasibility.

The next step on the way to providing a formal definition is to redefine the
notion of a protocol that runs in polynomial time.In order to see why this is
necessary, observe that there may not exist any single polynomial that bounds
the length of the output received by a party, as a function of its input. This is
because the length of the output may depend on the length of the other party’s
input, which can vary. Due to space limitations all formal definitions are deferred
to the full version.

Class 1 – Positive and Negative Results. In Section 4.1 we show how
every function can be computed while hiding the input size of one party, if both
parties are allowed to learn the size of the output (or its actual value). The
idea behind our protocol is very simple, and uses fully homomorphic encryption
(FHE) with circuit privacy: One party encrypts her input x under her public key
and sends it to the other party, who then uses the homomorphic properties in
order to compute an encryption of the output f(x, y) and sends the encrypted
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result back. Due to circuit privacy, this does not reveal any information about
the length of |y| and therefore size-hiding is achieved. Despite its conceptual
simplicity, we observe that one subtle issue arises. Specifically, the second party
needs to know the length of the output (or an upper bound on this length) since
it needs to construct a circuit computing f on the encrypted x and on y. Of
course, given |x| and |y| it is possible to compute such an upper bound, and the
ciphertext containing the output can be of this size. Since P2 knows |x| and y it
can clearly compute this bound, but when P1 receives the encrypted output it
would learn the bound which could reveal information about |y|. We solve this
problem by having the parties first compute the exact size of the output, using
FHE. Then, given this exact size, they proceed as described above.

It turns out that this simple protocol is in fact optimal for class 1 (even though
P2 learns the length of the output f(x, y)), since it is in general impossible
to hide the size of the input of one party and the size of the output at the
same time. In the full version we prove that two natural functions (oblivious
transfer with unbounded message length and oblivious pseudorandom-function
evaluation) cannot be securely computed in two of the subclasses of class 1 where
only one party receives output, and the party not receiving output is not allowed
to learn the output size. The intuition is that the size of the transcript of a size-
hiding protocol must be independent of the size of one of the inputs (or it will
reveal information about it). But, as the length of the output grows with the size
of the input, we reach a contradiction with incompressibility of (pseudo)random
data.

Class 2 – Positive and Negative Results. In this class, both of the parties’
input sizes must remain hidden; as such, this is a much more difficult setting and
the protocol described above for class 1 cannot be used. Nevertheless, we present
positive results for this class and show that every function that can be computed
insecurely using a protocol with low communication complexity can be compiled
into a size-hiding secure two party protocol. The exact requirements for the
underlying (insecure) protocol are given in Definition 3 and the compilation uses
FHE and techniques similar to the one discussed for class 1 above. Interesting
examples of functions that can be securely computed while hiding the size of
both parties input using our technique include statistical computations on data
such as computing the mean, variance and median. With some tweaks, known
protocols with low communication complexity for equality or the greater-than
function can also be turned into protocols satisfying our requirements

As opposed to class 1, we do not have any general positive result for class 2.
Indeed, in Theorem 6 we show that there exist functions that cannot be securely
computed while hiding the input size of both parties. Intuitively, in a size-hiding
protocol the communication complexity must be independent of the input sizes
and therefore we reach a contradiction with lower-bounds in communication
complexity. Examples of interesting functions that cannot be computed in class
2 include the inner product, hamming distance and set intersection functions.

Separations between Classes. In the full version we show that even in class
2, the output size plays an important role. Specifically, we show that there exist
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functions that can be computed in class 2 only if both parties are allowed to learn
the output size. Furthermore we highlight that, perhaps surprisingly, class 2 is
not a subset of class 1. That is, there exist functions that cannot be computed
in some subclasses of class 1 that can be securely computed in class 2. These
results demonstrate that the input-size hiding landscape is rich, as summarized
in Table 1 in Section 6.

3 Definitions – Size-Hiding Secure Two-Party
Computation

In this section, we formalize the notion of input-size hiding in secure two-party
computation. Our formalization follows the ideal/real paradigm for defining se-
curity due to [Can00, Gol04]. Thus, we specify the security goals (what is learned
by the parties and what is not) by describing appropriate ideal models where
the parties send their inputs to an incorruptible trusted party who sends each
party exactly what information it is supposed to learn. The information sent to
a party can include the function output (if it is supposed to receive output), the
other party’s input-length (if it is supposed to learn this), and/or the length of
the function output (this can make a difference in the case that a party does
not learn the actual output). We will define multiple ideal models, covering the
different possibilities regarding which party receives which information. As we
will see, what is learned and by whom makes a big difference to feasibility. In
addition, in different applications it may be important to hide different infor-
mation (in some client/server “secure set intersection” applications it may be
important to hide the size of both input sets, only the size of one the input sets,
or it may not be important to hide either). Our definitions are all for the case of
static adversaries, and so we consider only the setting where one party is honest
and the other is corrupted; the identity of the corrupted party is fixed before the
protocol execution begins.

The Function and the Ideal Model: We distinguish between the function
f that the parties wish to compute, and the ideal model that describes how the
parties and the adversary interact and what information is revealed and how.
The ideal model type expresses the security properties that we require from our
cryptographic protocol, including which party should learn which output, what
information is leaked to the adversary, which party is allowed to learn the output
first and so on. In our presentation, we focus on the two-party case only; the
extension to the multiparty setting is straightforward.

In the full version, we review the standard way that input sizes are dealt with
and observe that there are important subtleties here which are typically ignored.
We present the different classes of size-hiding here. The formal definitions of
security based on these classes, including the ideal and real model descriptions,
and the definitions for security in the presence of semi-honest and malicious
adversaries, are deferred to the full version. We stress that a number of technical
subtleties do arise when formalizing these notions.
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3.1 Classes of Size Hiding

We define three classes of size hiding, differentiated by whether neither party’s
input size is hidden, one party’s input size is hidden or both parties input sizes
are hidden (note that the class number describes how many input sizes are kept
hidden: 0, 1 or 2):

1. Class 0: In this class, the input size of both parties is revealed (See the full
version);

2. Class 1: In this class, the input size of one party is hidden and the other is
revealed. There are a number of variants in this class, depending on whether
one or both parties receive output, and in the case that one party receives
output depending on whose input size is hidden and whether or not the
output size is hidden from the party not receiving output.

3. Class 2: In this class, the input size of both parties’ inputs are hidden. As
in Class 1 there are a number of variants depending on who receives output
and if the output size is kept hidden to a party not receiving output.

We now turn to describe the different variants/subclasses to each class. Due to
the large number of different subclasses, we only consider the more limited case
that when both parties receive output, then they both receive the same out-
put f(x, y). When general feasibility results can be achieved, meaning that any
function can be securely computed, then this is without loss of generality [Gol04,
Prop. 7.2.11]. However, as we will see, not all classes of input-size hiding yield
general feasibility; the study of what happens in such classes when the parties
may receive different outputs is left for future work.

Subclass Definitions:

0. Class 0: We formalize both the f ′ and f ′′ formulations (that can be found in
the full version). In both formulations, we consider only the case that both
parties receive the function output f(x, y). There is no need to consider
the case that only one party receives f(x, y) separately here, since general
feasibility results hold and so there is a general reduction from the case
that both receive output and only one receives output. In addition, we add a
strictly weaker formulation where both parties receive f(x, y) if |x| = |y|, and
otherwise receive only the input lengths. We include this since the standard
protocols for secure computation are actually secure under this formulation.
The subclasses are:
(a) Class 0.a: if |x| = |y| then both parties receive f(x, y), and if |x| �= |y|

then both parties receive ⊥
(b) Class 0.b: if |x| = |y| then both parties receive f(x, y), and if |x| �= |y|

then P1 receives 1|y| and P2 receives 1|x|

(c) Class 0.c: P1 receives (1|y|, f(x, y)) and P2 receives (1|x|, f(x, y))
In the full version,it is shown that every functionality can be securely com-
puted in classes 0.a, 0.b and 0.c.

1. Class 1: We consider five different subclasses here. In all subclasses, the
input-size 1|x| of P1 is revealed to P2, but the input-size of P2 is hidden from
P1. The different subclasses are:



430 Y. Lindell, K. Nissim, and C. Orlandi

(a) Class 1.a: both parties receive f(x, y), and P2 learns 1|x| as well
(b) Class 1.b: only P1 receives f(x, y), and P2 only learns 1|x|

(c) Class 1.c: only P1 receives f(x, y), and P2 learns 1|x| and the output
length 1|f(x,y)|

(d) Class 1.d: P1 learns nothing at all, and P2 receives 1|x| and f(x, y)
(e) Class 1.e: P1 learns 1|f(x,y)| only, and P2 receives 1|x| and f(x, y)

2. Class 2: We consider three different subclasses here. In all subclasses, no
input-sizes are revealed. The different subclasses are:
(a) Class 2.a: both parties receive f(x, y), and nothing else
(b) Class 2.b: only P1 receives f(x, y), and P2 learns nothing
(c) Class 2.c: only P1 receives f(x, y), and P2 learns the length of the output

1|f(x,y)|

See Figure 6 (at the last page of this submission) for a graphic description of
the above (we recommend referring back to the figure throughout). We stress
that the question of whether or not the output length 1|f(x,y)| is revealed to
a party not receiving f(x, y) is of importance since, unlike in standard secure
computation, a party not receiving f(x, y) or the other party’s input size cannot
compute a bound on 1|f(x,y)|. Thus, this can make a difference to feasibility.
Indeed, as we will see, when 1|f(x,y)| is not revealed, it is sometimes impossible
to achieve input size-hiding.

When considering symmetric functions (where f(x, y) = f(y, x) for all x, y),
the above set of subclasses covers all possible variants for classes 1 and 2 regarding
which parties receive output or output length. This is due to the fact that when
the function is symmetric, it is possible to reverse the roles of the parties (e.g., if
P2’s input-length is to be revealed to P1, then by symmetry the parties can just
exchange roles in class 1). We focus on symmetric functions in this paper1.

We remark that P1’s input-length and the output-length are given in unary,
when revealed; this is needed to give the simulator enough time to work in the
case that one party’s input is much shorter than the other party’s input and/or
the output length.

4 Feasibility Results

4.1 General Constructions for Class 1.a/c/e Input-Size Hiding
Protocols

In this section, we prove a general feasibility result that any function f can be
securely computed in classes 1.a, 1.c and 1.e (recall that in class 1, the size of

1 The non-symmetric case is not so different with respect to feasibility: e.g., the
greater-than function is not symmetric (recall that a function f is symmetric if
f(x, y) = f(y, x) for all x, y). Nevertheless, it can be made symmetric by defining
f((x, b1), (y, b2)) to equal GT(x, y) if b1 = 0 and b2 = 1, and to equal GT(y, x) if
b1 = 1 and b2 = 0, and to equal (⊥, b1) if b1 = b2. Since b1 and b2 are always re-
vealed, it is possible for the parties to simply exchange these bits, and then to run
the protocol for GT in the “appropriate direction”, revealing the output as deter-
mined by the class. We leave the additional complexity of non-symmetric functions
for future work.
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P2’s input is hidden from P1, but the size of P1’s input is revealed to P2). In
Section 5, we will see that such a result cannot be achieved for classes 1.b and
1.d, and so we limit ourselves to classes 1.a/c/e. We begin by proving the result
for class 1.c, where P1 obtains the output f(x, y), and P2 obtains P1’s input
length 1|x| and the output length 1|f(x,y)|, and then show how a general protocol
for class 1.c can be used to construct general protocols for classes 1.a and 1.e.

The idea behind our protocol is very simple, and uses fully homomorphic
encryption (FHE) with circuit privacy (see the full version for the definition).
Party P1 begins by choosing a key-pair for an FHE scheme, encrypts its input
under the public key, and sends the public key and encrypted input to P2. This
ciphertext reveals the input length of P1, but this is allowed in class 1.c. Next,
P2 computes the function on the encrypted input and its own input, and obtain
an encryption of f(x, y). Finally, P2 sends the result to P1, who decrypts and
obtains the output. Observe that this also reveals the output length to P2, but
again this is allowed in class 1.c.

Despite its conceptual simplicity, we observe that one subtle issue arises.
Specifically, party P2 needs to know the length of the output f(x, y), or an
upper bound on this length, since it needs to construct a circuit computing f on
the encrypted x and on y. Of course, given |x| and |y| it is possible to compute
such an upper bound, and the ciphertext containing the output can be of this
size (the actual output length may be shorter, and this can be handled by hav-
ing the output of the circuit include the actual output length). Since P2 knows
|x| and y it can clearly compute this bound. However, somewhat surprisingly,
having P2 compute the upper bound may actually reveal information about P2’s
input size to P1. In order to see this, consider the set union functionality. Clearly,
the output length is upper bounded by the sum of the length of P1’s input and
P2’s input, but if P2 were to use this upper bound then P1 would be able to
learn the length of P2’s input which is not allowed. We solve this problem by
having the parties first compute the exact size of the output, using FHE. Then,
given this exact size, they proceed as described above. The protocol is presented
in Figure 1, and uses an FHE scheme (Gen,Enc,Dec,Eval). We denote by n the
length |x| of P1’s input, and by m the length |y| of P2’s input. In addition, we
denote x = x1, . . . , xn and y = y1, . . . , ym.

Theorem 2. Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function. If (Gen,Enc,Dec,Eval) constitutes a fully homomorphic encryption with
circuit privacy, then Protocol 1 securely computes f in class 1.c, in the presence
of a static semi-honest adversary.

Proof: Recall that in order to prove security in the presence of semi-honest ad-
versaries, it suffices to present simulators S1 and S2 that receive the input/output
of parties P1 and P2, respectively, and generate their view in the protocol. The
requirement is that the joint distribution of the view generated by the simu-
lator and the honest party’s output be indistinguishable from the view of the
corrupted party and the honest party’s output.

We begin with the case that P1 is corrupted. Simulator S1 receives (x, f(x, y))
and prepares a uniformly distributed random tape for P1. Then, S1 uses
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PROTOCOL 1 (Class 1.c Size-Hiding for Any Functionality – Semi-Honest)

– Inputs: P1 has x, and P2 has y. Both parties have security parameter 1κ.
– The protocol:

1. P1 chooses (pk, sk) ← Gen(1κ), computes c1 = Encpk(x1), . . . , cn =
Encpk(xn) and sends (pk, c1, . . . , cn) to P2.

2. P2 receives c1, . . . , cn, and constructs a circuit Csize,y(·) that computes
the output length of f(·, y) in binary (i.e., Csize,y(x) = |f(x, y)|),
padded with zeroes up to length log2 κ. Then, P2 computes csize =
Evalpk(Csize,y, 〈c1, . . . , cn〉), and sends csize to P1.

3. P1 receives csize and decrypts it using sk; let � be the result. Party
P1 sends � to P2.

4. P2 receives � from P1 and constructs another circuit Cf,y(·) that com-
putes f(x, y) (i.e., Cf,y(x) = f(x, y)), and has � output wires. Then,
P2 computes cf = Evalpk(Cf,y, 〈c1, . . . , cn〉), and sends cf to P1.

5. P1 receives cf and decrypts it using sk to obtain a string z.
– Outputs: P1 outputs the string z obtained in the previous step; P2 out-

puts nothing.

that random tape to sample (pk, sk) ← Gen(1κ). Then, S1 computes csize =
Encpk(|f(x, y)|) padded with zeroes up to length log2 κ, and cf = Encpk(f(x, y)).
Finally, S1 outputs the input x, the random tape chosen above, and the incoming
messages csize and cf . The only difference between the view generated by S1 and
that of P1 in a real execution is that csize and cf are generated by directly en-
crypting |f(x, y)| and f(x, y), rather than by running Eval. However, the circuit
privacy requirement guarantees that the distributions over these ciphertexts are
statistically close.

Next, consider a corrupted P2. Simulator S2 receives (y, (1|x|, 1|f(x,y)|)),
and generates (pk, sk) ← Gen(1κ) and c1 = Encpk(0), . . . , c|x| = Encpk(0).
Then, S2 outputs y, a uniform random tape, and incoming messages
(pk, c1, . . . , c|x|, |f(x, y)|) as P2’s view. The indistinguishability of the simulated
view from a real view follows immediately from the regular encryption security
of the fully homomorphic encryption scheme.

Extensions. It is not difficult to see that given protocols for class 1.c, it is
possible to obtain protocols for classes 1.a and 1.e (for class 1.a just have P1

send the output to P2, and the compute in class 1.e by computing a function
in class 1.a that masks the output from P1 so that only P2 can actually obtain
it). In addition, we show that with the function has a bounded output length
(meaning that it is some fixed polynomial in the length of P1’s input), then any
function can be securely computed in classes 1.b and 1.e as well. An important
application of this is the private set intersection problem (observe that the size
of the output is upper bounded by the size of P1’s input). We therefore obtain
an analog to the result of [ACT11] without relying on random oracles. These
extensions appear in the full version.
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4.2 Feasibility for Some Functions in Class 2

In this section we prove that some non-trivial functions can be securely computed
in class 2. This is of interest since class 2 protocols reveal nothing about either
party’s input size, beyond what is revealed by the output size. In addition, in
class 2.b, nothing at all is revealed to party P2. We start by presenting protocols
for class 2.c and then discuss how these can be extended to class 2.a, and in
what cases they can be extended to class 2.b.

There are functionalities that are impossible to securely compute in any sub-
class of class 2; see Section 5. Thus, the aim here is just to show that some
functions can be securely computed; as we will see, there is actually quite a
large class of such functions. We leave the question of characterizing exactly
what functions can and cannot be computed for future work.

Class 2.c. We begin by considering class 2.c, where party P1 receives the
output f(x, y) and P2 receives 1|f(x,y)|, but nothing else is revealed. Intuitively
this is possible for functions that can be computed efficiently by two parties
(by an insecure protocol), with communication that can be upper bounded by
some fixed polynomial in the security parameter. In such cases, it is possible
to construct size-hiding secure protocols by having the parties run the insecure
protocol inside fully homomorphic encryption. We formalize what we require
from the insecure protocol, as follows.

Definition 3 (size-independent protocols). Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗, and let π be a probabilistic protocol. We say that π is size independent
if it satisfies the following properties:

– Correctness: For every pair of polynomials q1(·), q2(·) there exists a negligible
function μ such that for every κ ∈ N, and all x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ):
Pr[π(x, y) �= f(x, y)] ≤ μ(κ).

– Computation efficiency: There exist polynomial-time interactive probabilistic
Turing Machines π1, π2 such that for every pair of polynomials q1(·), q2(·),
all sufficiently large κ ∈ N, and every x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ), it holds
that (π1(1κ, x), π2(1κ, y)) implements π(x, y).

– Communication efficiency: There exists a polynomial p(·) such that for every
pair of polynomials q1(·), q2(·), all sufficiently large κ ∈ N, and every x ∈
{0, 1}q1(κ), y ∈ {0, 1}q2(κ), the number of rounds and length of every message
sent in π(x, y) is upper bounded by p(κ).

Observe that by computation and communication efficiency, given x, κ and
a random tape r, it is possible to efficiently compute a series of circuits
C1P1,κ,x,r

, . . . , Cp(κ)−1
P1,κ,x,r

that compute the next message function of π1(1κ, x; r)
(i.e., the input to the circuit CiP1,κ,x,r

is a vector of i − 1 incoming messages
of length p(κ) each, and the output is the response of P1 with input x, se-
curity parameter κ, random coins r, and the incoming messages given in the
input). Likewise, given y, κ and s, it is possible to efficiently compute analo-
gous C1P2,κ,y,s

, . . . , Cp(κ)P2,κ,y,s
. We stress that since the length of each message in π
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is bounded by p(κ), the circuits can be defined with input length as described
above. For simplicity, we assume that in each round of the protocol the parties
exchange messages that are dependent only on messages received in the previous
rounds (this is without loss of generality).

In addition, it is possible to generate a circuit CoutputP1,κ,x,r
for computing the

output of P1 given its input and all incoming messages. As in Protocol 1, in
order to generate CoutputP1,κ,x,r

we need to know the exact output size (recall that
using an upper bound may reveal information). Therefore, we also use a circuit
CsizeP1,κ,x,r

that computes the exact output length given all incoming messages; this
circuit has output length log2 κ (and so any polynomial output length can be
encoded in binary in this number of bits) and can also be efficiently generated.

Due to lack of space in this abstract, we describe protocol here informally and
refer to the full version for a formal description and proof. We start with class 2.c
and show that if a function has a size-independent protocol, then we can securely
compute the function in class 2.c. In more detail, a size-independent protocol
has communication complexity that can be bound by a fixed polynomial p(κ),
for inputs of any length (actually, of length at most κlog κ and so for any a priori
unbounded polynomial-length inputs)2. Then, we can run this protocol inside
fully homomorphic encryption; by padding all messages to their upper bound
(and likewise the number of messages), we have that nothing is revealed by the
size of the ciphertexts sent. We note, however, that unlike in the protocols for
class 1, in this case neither party is allowed to know the secret key of the fully
homomorphic encryption scheme (since both parties must exchange ciphertexts,
as in the communication complexity protocol). This is achieved by using thresh-
old key generation and decryption, which can be obtained using standard secure
computation techniques (observe that no size hiding issues arise regarding this).
In the full version, we formally prove the following corollary:

Corollary 4. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function. If there exists
a size-independent protocol for computing f , and fully homomorphic encryption
schemes exist, then f can be securely computed in classes 2.a and 2.c in the
presence of static semi-honest adversaries. Furthermore, if in addition to the
above the output-size of f is fixed for all inputs, then f can be securely computed
in class 2.b in the presence of static semi-honest adversaries.

In addition, we show the following applications of the above corollary:

Corollary 5. Assuming the existence of fully homomorphic encryption, the
greater-than, equality, mean, variance and median functions can be securely com-
puted in classes 2.a, 2.b and 2.c, in the presence of static semi-honest adver-
saries. In addition, the min function can be securely computed in classes 2.a and
2.c, in the presence of static semi-honest adversaries.

2 Note that upper bounding the input sizes to κlog κ is not a real restriction: if the
adversary has enough time to read an input of this size, then it has time to break
the underlying computational assumption and no secure protocol exists.
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5 Negative Results and Separations between Classes

In this section, we deepen our understanding of the feasibility of achieving input-
size hiding by proving impossibility results for all classes where general secure
computation cannot be achieved (i.e., for classes 1.b, 1.d, 2.a, 2.b and 2.c). In
addition, we show that the set of functions computable in class 2.b is a strict
subset of the set of functions computable in 2.a and 2.b, and that classes 1.b
and 1.d are incomparable (they are not equal and neither is a subset of the
other). Finally, we consider the relations between subclasses of class 1 and class
2, and show that class 2.b is a strict subset of class 1.b, but class 2.c is not (and
so sometimes hiding both parties’ inputs is easier than hiding only one party’s
input).

Due to lack of space, we present only the proof of impossibility for class 2;
this provides the flavor of all of our impossibility results. All the other results
can be found in the the full version.

5.1 Not All Functions Can Be Securely Computed in Class 2

In this section we show that there exist functions for which it is impossible
to achieve input-size hiding in any subclass of class 2 (where neither parties’
input sizes are revealed). In order to strengthen the result, we demonstrate this
on a function which has fixed output size. Thus, the limitation is not due to
issues related to revealing the output size (as in class 2.b), but is inherent to the
problem of hiding the size of the input from both parties.

The following theorem is based on the communication complexity of a func-
tion. Typically, communication complexity is defined for functions of equal sized
input. We therefore generalize this definition, and measure the communication
complexity of a function, as a function of the smaller of the two inputs. That is,
a function f has randomized communication complexity Ω(g(n)) if any proba-
bilistic protocol for computing f(x, y) with negligible error requires the parties
to exchange Ω(g(n)) bits, where n = min{|x|, |y|}.3

Theorem 6. Let R be a range of constant size, and let f : {0, 1}∗ × {0, 1}∗ →
R be a function. If there exists a constant ε > 0 such that the randomized
communication complexity of f is Ω(nε), then f cannot be securely computed in
class 2.a, 2.b or 2.c, in the presence of static semi-honest adversaries.

Proof: The idea behind the proof of the theorem is as follows. On the one
hand, if a function has Ω(nε) communication complexity, then the length of the
transcript cannot be independent of the input lengths, and must grow as the

3 Even more formally, we say that a probabilistic protocol π computes f if there
exists a negligible function μ such that for every x, y ∈ {0, 1}∗ the probability that
the output of π(x, y) does not equal f(x, y) is at most μ(n), where n = min{|x|, |y|}.
Next, we say that f has communication complexity Ω(g(n)) if for every protocol
for computing f (as defined above) there exists a constant c and an integer N ∈ N

such that for every n > N , the number of bits sent by the parties is at least c ·g(n).
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inputs grow. On the other hand, in class 2 the input lengths are never revealed
and since the output range is constant, the output says almost nothing about
the input lengths. Thus, we can show that the length of the transcript must
actually be independent of the input lengths, in contradiction to the assumed
communication complexity of the function. We now prove this formally.

Let f be a family of functions as in the theorem statement, and assume by
contradiction that there exists a protocol π that securely computes f in class 2.a.
(We show impossibility for class 2.a since any protocol for class 2.b or 2.c can be
converted into a protocol for class 2.a by simply having P1 send P2 the output
at the end. Thus, impossibility for class 2.a implies impossibility for classes 2.b
and 2.c as well.)

We claim that there exists a polynomial p(·) such that the communication
complexity of π is at most p(κ). Intuitively, this is due to the fact that the
transcript cannot reveal anything about the input size and so must be bound by a
fixed polynomial. Proving this formally is a little bit more tricky, and we proceed
to do this now. Let α ∈ R be an output value, and let Iα ⊆ {0, 1}∗ × {0, 1}∗ be
the set of all string pairs such that for every (x, y) ∈ Iα it holds that f(x, y) = α.
Now, by the definition of class 2.a, there exist simulators S1 and S2 that generate
P1 and P2’s views from (x, f(x, y)) and (y, f(x, y)), respectively. Thus, for every
(x, y) ∈ Iα, the simulators S1 and S2 must simulate given only (x, α) and (y, α),
respectively.

Let x be the smallest string for which there exists a y so that (x, y) ∈ Iα,
and let p′(·) be the polynomial that bounds the running-time of S1. Define
pα(κ) = p′(|x| + |α| + κ); note that this is a polynomial in κ since |x| and |α|
are constants. We claim that the polynomial pα(·) is an upper bound on the
length of the transcript for every (x, y) ∈ Iα. This follows immediately from
the fact that S1 runs in time that is polynomial in its input plus the security
parameter. Thus, it cannot write a transcript longer than this when given input
(x, α). If the transcript upon input (x, y) ∈ Iα is longer than pα(κ) with non-
negligible probability, then this yields a trivial distinguisher, in contradiction to
the assumed security with simulator S1.

Repeating the above for every α ∈ R, we have that there exists a set P =
{pα(κ)}α∈R of polynomials so that any function upper bounding these polyno-
mials is an upper bound on the transcript length for all inputs (x, y) ∈ {0, 1}∗.
Since R is of constant size, we have that there exists a single polynomial p(κ)
that upper bounds all the polynomials in P , for every κ.4 We conclude that
there exists a polynomial p(κ) that upper bounds the size of the transcript, for
all (x, y) ∈ {0, 1}∗.

Now, let c be a constant such that p(κ) < κc, for all large enough κ. We
construct a protocol π′ for f as follows. On input (x, y) ∈ {0, 1}∗ × {0, 1}∗,
execute π with security parameter κ = nε/2c, where n = min{|x|, |y|}. By the

4 This argument is not true if R is not of a constant size. This is because it is then
possible that the set of polynomials bounding the transcript sizes is P = {ni}i∈N.
Clearly each member of P is a polynomial; yet there is no polynomial that upper
bounds all of P .
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correctness of π, we have that the output of π(x, y) equals f(x, y) except with
negligible probability. This implies that the output of π′(x, y) also equals f(x, y)
except with negligible probability (the only difference is that we need to consider
larger inputs (x, y), but in any case correctness only needs to hold for all large
enough inputs). Thus, π′ computes f ; see Footnote 3. The proof is finished by
observing that the communication complexity of protocol π′ is upper bounded
by p(κ) < (nε/2c)c = nε/2, in contradiction to the assumed lower bound of Ω(nε)
on the communication complexity of f .

Impossibility. From results on communication complexity [KN97], we have
that:

– The inner product function IP(x, y) =
∑min(|x|,|y|)

i=1 xi ·yi mod 2 has commu-
nication complexity Ω(n).

– The set disjointness function defined by DISJ(X,Y ) = 1 if X ∩ Y = ∅, and
equals 0 otherwise has communication complexity Ω(n).5 This implies that
INTERSECT(X,Y ) = X ∩ Y also has communication complexity Ω(n).

– The Hamming distance function HAM(x, y) =
∑min(|x|,|y|)

i=1 (xi−yi)2 has com-
munication complexity Ω(n).

Thus:

Corollary 7. The inner product, set disjointness, set intersection and Hamming
distance functions cannot be securely computed in classes 2.a, 2.b or 2.c, in the
presence of static semi-honest adversaries.

Thus our protocol for set intersection (see the full version) that hides only
one party’s input size is “optimal” in that it is impossible to hide both parties’
input sizes.

We conclude by observing that by combining Corollary 4 and Theorem 6,
we obtain an almost complete characterization of the functions with constant
output size that can be securely computed in class 2. This is because any function
with fixed output length that can be efficiently computed with polylogarithmic
communication complexity has a size-independent protocol by Definition 3, and
so can be securely computed in all of class 2. We therefore conclude:

Corollary 8. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function. If f can be effi-
ciently computed with polylogarithmic communication complexity, then it can be
securely computed in all of class 2 in the presence of static semi-honest and ma-
licious adversaries, assuming the existence of collision-resistant hash functions
and fully homomorphic encryption schemes. In contrast, if there exists an ε > 0
such that the communication complexity of f is Ω(nε) then f cannot be securely
computed in any subclass of class 2.

The above corollary is not completely tight since f may have communication
complexity that is neither polylogarithmic, nor Ω(nε). In addition, our lower

5 The disjointness function is not symmetric. However, it can be made symmetric
using the method described in Footnote 1.
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and upper bounds do not hold for functions that can be inefficiently computed
with polylogarithmic communication complexity.

Additional Results. In the full version, we prove a series of impossibility
results and study the relations between the different classes. Amongst other
things, we show that the oblivious transfer function with strings of unbounded
length cannot be securely computed in classes 1.b and 2.b, but can be securely
computed in classes 2.a,2.c and 1.d (it can be computed in classes 1.a/c/e since
all functions can be securely computed in these classes).

6 Summary

Our work provides quite a complete picture of feasibility, at least on the level
of in which classes can all functions be securely computed and in which not. In
addition, we show separations between many of the subclasses, demonstrating
that the input-size hiding landscape is rich. In Table 1 we provide a summary of
what functions can and cannot be computed in each class. This is in no terms a
full characterization, but rather some examples that demonstrate the feasibility
and infeasibility in the classes.

All f All f (even GT
vecxor Intersection OT omprf(bounded output) unbounded output) (x > y)

2.a × × � � × � �
2.b × × � × × × �
2.c × × � � × � �
1.a � � � � � � �
1.b � × � � � × �
1.c � � � � � � �
1.d � × � � � � ×
1.e � � � � � � �

Fig. 1. Summary of feasibility
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1 Introduction

Secure two-party computation is a general cryptographic functionality that al-
lows two parties to interact as if intermediated by a trusted third party [Gol04].
A canonical example is the millionaire’s problem [Yao82], where two parties
find who is the richer of the two, without revealing to the other any additional
information about the amounts they own. Applications of secure computation
can be envisioned in many cases where mutually distrustful parties can benefit
from learning something from their combined data, without sharing their inputs
[Kol09]. For example, two parties may evaluate a data mining algorithm over
their combined databases, in a privacy-preserving manner [LP02]. On a different
example, one party with a private message may obtain a respective message au-
thentication code calculated with a secret key from another party (i.e., a blind
MAC) [PSSW09]. This paper considers secure two-party evaluation of Boolean
circuits, henceforth denoted “S2PC”, which can be used to solve the mentioned
examples. Each party begins the interaction with a private input encoded as a
bit-string, and a public specification of a Boolean circuit that computes an in-
tended function. Then, the two parties interact so that each party learns only the
output of the respective circuit evaluated over both private inputs. Probabilistic
functionalities can be implemented by letting the two parties hold additional
random bits as part of their inputs.

This paper focuses on the malicious model, where parties might maliciously
deviate from the protocol specification in a computationally bounded way. Fur-
thermore, within the standard model of cryptography, adopted herein, it is as-
sumed that some problems are computationally intractable, such as those related
with inverting trapdoor permutations. Security is defined within the ideal/real
simulation paradigm [Can00]; i.e., a protocol is said to implement S2PC if it
emulates an ideal functionality where a trusted third party mediates the com-
munication and computation between the two parties. The trusted party receives
the private inputs from both parties, makes the intended computation locally
and then delivers the final private outputs to the respective parties.

As a starting point, this paper considers the cut-and-choose (C&C) of garbled
circuits (GCs) approach to achieve S2PC. Here, a circuit constructor party (PA)
builds several GCs (cryptographic versions of the Boolean circuit that computes
the intended function), and then the other party, the circuit evaluator (PB),
verifies some GCs for correctness and evaluates the remaining to obtain the
information necessary to finally decide a correct circuit output. Recently, this
approach has had the best reported efficiency benchmark [KSS12, FN13] for
S2PC protocols with a constant number of rounds of communication.

1.1 Contributions

This paper introduces a new bit commitment (BitCom) approach and a new eval-
uation technique, dubbed forge-and-lose, and blends them into a C&C approach,
to achieve a new C&C-GCs-based S2PC protocol with significant improvements
in applicability and efficiency.
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Applicability. The new protocol achieves S2PC-with-BitComs, as illustrated
in Fig. 1. Specifically, both parties receive random BitComs of all circuit in-
put and output bits, with each party also learning the decommitments of only
her respective circuit input and output bits. This is an augmented version of
secure circuit evaluation. Given the reusability of BitComs, the protocol can
be taken as a building block to achieve other goals, such as reactive linkage of
several S2PCs, efficiently and securely linking the input and output bits of one
execution with the input bits of subsequent executions. Furthermore, given the
XOR-homomorphic properties of these BitComs, a party may use efficient spe-
cialized zero-knowledge proofs (ZKPs) to prove that her private input bits in
one execution satisfy certain non-deterministic polynomially verifiable relations
with the private input and output bits of previous executions.1 In previous C&C-
GCs-based solutions, without committed inputs and outputs with homomorphic
properties, such general linkage would be conceivable but using more expensive
ZKPs of correct behavior.

The main technical description in this paper is focused on a standalone 1-
output protocol, where the two parties, PA and PB, interact so that only PB
learns a circuit output.2 In the new BitCom approach, the two possible decom-
mitments of the BitCom of each circuit input or output bit (independent of the
number of GCs) are connected to the two keys of the respective input or output
wire of each GC, via a new construction dubbed connector. PA commits to these
connectors and then reveals them partially for verification or evaluation. This
ensures, within the C&C, the correctness of circuit input keys and the privacy
of decommitments of BitComs, without requiring additional ZKPs. The BitCom
approach enables particularly efficient extensions of this 1-output protocol into
2-output protocols where both parties learn a respective private circuit-output.

Efficiency. The new protocol requires only an optimal minimum number of
GCs in the C&C, for a certain soundness guarantee (i.e., for an upper bound
on the probability with which a malicious PA can make PB accept an incor-
rect output). Specifically, by only requiring that at least one evaluation GC is
correct, the total number of GCs is reduced asymptotically about 3.1 times,
in comparison with the previously best known C&C-GCs configuration [SS11]
that required a correct majority of evaluation GCs. The significance of this im-
provement stems from the number of GCs being the source of most significant
cost of C&C-GCs-based S2PC protocols, for circuits of practical size. Remark:
two different techniques [Lin13, HKE13] developed in concurrent research also
just require a single evaluation GC to be correct – a brief comparison is made in
§7.1, but the remaining introductory part of this paper only discusses the typical
C&C-GCs approach that requires a correct majority of evaluation GCs.

1 For simplicity, “ZKPs” is used hereafter both for ZK proofs and for ZK arguments.
2 The “1-output” characterization refers to only one party learning a circuit output,

though in rigor the protocol implements a probabilistic 2-output functionality (as
both parties receive random BitComs).
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Fig. 1. Secure Two-Party Computation with Committed Inputs and Out-
puts. Legend: PA and PB (the names of the two parties); xp, yp and Cp (the private
circuit input, the private circuit output and the public circuit specification of party
Pp, respectively, with p being A or B); and (commitment and decommitment,
respectively, of the variable inscribed inside the dashed square). Colors red, blue and
purple are related with PA, PB and both parties, respectively.

The reduction in number of GCs is achieved via a new forge-and-lose tech-
nique, providing a path by which PB can recover the correct final output when
there are inconsistent outputs in the evaluated GCs. Assume that PA is able
to forge a GC; i.e., build an incorrect GC that, if selected for evaluation, de-
garbles smoothly into an output that cannot be perceived as incorrect. Then,
PB somehow combines the forged output with a correct output, in a way that
reveals a secret key (a trapdoor) with which the input of PA has previously been
encrypted (committed). In this way, PA loses privacy of her input bits, enabling
PB to compute the intended circuit output in the clear.

The protocol can be easily adjusted to integrate several optimizations in com-
munication and memory, such as random seed checking [GMS08] and pipelining
[HEKM11]. Since the garbling scheme is abstracted, the protocol is also compat-
ible with many garbling optimizations, e.g., point and permute [NPS99], XOR
for free [KS08b], garbled row reduction [PSSW09], dual-key cipher [BHR12].

1.2 Roadmap

The remainder of this paper is organized as follows. Section 2 reviews the basic
building blocks of the typical C&C-GCs approach and some properties of BitCom
schemes. Section 3 introduces a new BitCom approach, explaining how BitComs
can be connected to circuit input and output wire keys, to ensure the consis-
tency of the keys across different GCs. Section 4 describes the forge-and-lose
technique, achieving a major efficiency improvement over the typical cut-and-
choose approach. Section 5 presents the new protocol for 1-output S2PC-with-
BitComs, where only one party learns a private circuit-output, and both parties
learn BitComs of the input and output bits of both parties. Section 6 comments
on the complexity of the protocol and shows how the BitCom approach enables
efficient linkage of S2PCs. Section 7 compares some aspects of related work.
The full version of this paper includes a more formal description, analysis and
optimization of the protocol and a proof of security.
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2 Background

2.1 C&C-GCs-Based S2PC

Basic garbed-circuit approach. The theoretical feasibility of S2PC, for func-
tions efficiently representable by Boolean circuits, was initially shown by Yao
[Yao86].3 In the semi-honest model (where parties behave correctly during the
protocol) simplified to the 1-output setting, only one of the parties (PB) intends
to learn the output of an agreed Boolean circuit that computes the desired func-
tion. The basic GC approach starts with the other party (PA) building a GC – a
cryptographic version of the Boolean circuit, which evaluates keys (e.g., random
bit-strings) instead of clear bits. The GC is a directed acyclic graph of garbled
gates, each receiving keys as input and outputting new keys. Each gate output
key has a corresponding underlying bit (the result of applying the Boolean gate
operation to the bits underlying the corresponding input keys), but the bit cor-
respondence is hidden from PB. PA sends the GC and one circuit input key per
each input wire to PB. Then, PB obliviously evaluates the GC, learning only one
key per intermediate wire but not the respective underlying bit. Finally, each
circuit output bit is revealed by a special association with the key learned for
the respective circuit output wire. Lindell and Pinkas [LP09] prove the security
of a version of Yao’s protocol (valid for a 2-output setting).

There are many known proposals for garbling schemes [BHR12]. This paper
abstracts from specific constructions, except for making the typical assumptions
that: (i) with two valid keys per circuit input wire (and possibly some additional
randomness used to generate the GC), PB can verify the correctness of the GC, in
association with the intended Boolean circuit, and determine the bit underlying
each input and output key; and (ii) with a single key per circuit input wire,
PB can evaluate the GC, learning the bits corresponding to the obtained circuit
output keys, but not learn additional information about the bit underlying the
single key obtained for each input wire of PA and for each intermediate wire.

Oblivious transfer. An essential step of the basic GC-based protocol re-
quires, for each circuit input wire of PB (the GC-evaluator), that PA (the GC-
constructor) sends to PB the key corresponding to the respective input bit of PB,
but without PA learning what is the bit value. This is typically achieved with 1-
out-of-2 oblivious transfers (OTs) [Rab81, EGL85, NP01], where the sender (PA)
selects two keys per wire, but the receiver (PB) only learns one of its choice, with-
out the sender learning which one. Some protocols use enhanced variations, e.g.,
committing OT [CGT95], committed OT [KS06], cut-and-choose OT [LP11],
authenticated OT [NNOB12], string-selection OT [KK12]. In practice, the com-
putational cost of OTs is often significant in the overall complexity of protocols,
though asymptotically the cost can be amortized with techniques that allow
extending a few OTs to a large number of them [Bea96, IKNP03, NNOB12].

3 See [BHR12, §1] for a brief historical account of the origin of the garbled-circuit
approach, including references to [GMW87, BMR90, NPS99].
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The new protocol presented in this paper uses OTs at the BitCom level, to
coordinate decommitments between the two parties, as follows. For each circuit
input bit of PB, PB selects a bit encoding (a decommitment) and uses it to
produce the respective BitCom. Then, PA uses a trapdoor to learn two decom-
mitments (i.e., bit-encodings for the two bits) for the same BitCom. These OTs
are herein dubbed 2-out-of-1 OTs, since one party chooses one value and leads
the other party to learn two values. This is in contrast with the typical 1-out-of-2
OT (commonly used directly at the level of wire keys), where PA chooses two
keys and leads PB to learn one of them.

Cut-and-choose approach. Yao’s protocol is insecure in the malicious model.
For example, a malicious PA could construct an undetectably incorrect GC, by
changing the Boolean operations underlying the garbled gates, but maintaining
the correct graph topology of gates and wires. To solve this, Pinkas [Pin03]
proposed a C&C approach, achieving 2-output S2PC via a single-path approach
where only PB evaluates GCs. A simplified high level description follows. PA
constructs a set of GCs. PB cuts the set into two complementary subsets and
chooses one to verify the correctness of the respective GCs. If no problem is
found, PB evaluates the remaining GCs to obtain, from a consistent majority,
its own output bits and a masked version of the output of PA. PB sends to PA
a modified version of the masked output of PA, without revealing from which
GC it was obtained. Finally, PA unmasks her final output bits. This approach
has two main inherent challenges: (1) how to ensure that input wire keys are
consistent across GCs, such that equivalent input wires receive keys associated
with the same input bits (in at least a majority of evaluated GCs); (2) how to
guarantee that the modified masked-output of PA is correct and does not leak
private information of PB. Progressive solutions proposed across recent years
have solved subtle security issues, e.g., the selective-failure-attack [MF06, KS06],
and improved the practical efficiency of C&C-GC-based methods [LP07, Woo07,
KS08a, NO09, PSSW09, LP11, SS11]. As a third challenge, the number of GCs
still remains a primary source of inefficiency, in these solutions that require a
correct majority of GCs selected for evaluation. For example, achieving 40 bits of
statistical security4 requires at least 123 GCs (74 of which are for verification).
Asymptotically, the optimal C&C partition (three fifths of verification GCs)
leads to about 0.322 bits of statistical security per GC [SS11].

The BitCom approach developed in this paper deals with all these challenges.
First, taking advantage of XOR-homomorphic BitComs, the verification of con-
sistency of input wire keys of both parties is embedded in the C&C, without an
ad-hoc ZKP of consistency of keys across different GCs. Second, PB can directly
learn, from the GC evaluation, decommitments of BitComs of one-time-padded
(i.e., masked) output bits of PA, and then simply send these decommitments to
PA. Privacy is preserved because the decommitments do not vary with the GC

4 The number of bits of statistical security is the additive inverse of the logarithm
base 2 of the maximum error probability, i.e., for which a malicious PA can make
PB accept an incorrect output.
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index. Correctness is ensured because the decommitments are verifiable (i.e., au-
thenticated) against the respective BitComs. The BitCom approach also enables
achieving 2-output S2PC via a dual-path execution approach – the parties play
two 1-output S2PCs, with each party playing once as GC evaluator of only her
own intended circuit, using the same BitComs of input bits in both executions.5
Third, the BitCom approach enables the forge-and-lose technique, which reduces
the correctness requirement to only having at least one correct evaluation GC,
thus increasing the statistical security to about 1 bit per GC.

2.2 Bit Commitments

The BitCom approach introduced in this paper is based on several properties of
(some) BitCom schemes, reviewed hereafter. A BitCom scheme [Blu83, BCC88]
is a two-party protocol for committing and revealing individual bits. In a commit
phase, it allows a sender to commit to a bit value, by producing and sending
a BitCom value to the receiver. The BitCom binds the sender to the chosen
bit and, initially, hides the bit value from the receiver. Then, in a reveal phase,
the sender discloses a private bit-encoding (the decommitment), which allows
the receiver to learn the committed bit and verify its correctness. A scheme is
XOR-homomorphic if any pair of BitComs can be combined (under some group
operation) into a new BitCom that commits the XOR of the original committed
bits, and if the same can be done with the respective decommitments.

The following paragraphs describe several properties related with decommit-
ments and trapdoors of practical BitCom schemes. For simplicity, the description
focuses on a scheme based on a square operation with some useful collision-
resistance (i.e., “claw-free” [GMR84, Dam88]) properties.

Unconditionally hiding (UH). A BitCom scheme is called UH if, before the
reveal phase, a receiver with unbounded computational power cannot learn any-
thing about the committed bit. If there is a trapdoor (known by the receiver),
then it can be used to retrieve, from any BitCom, respective bit-encodings of
both bits. Still, this does not reveal any information about which bit the sender
might have committed to. A practical instantiation was used by Blum for coin
flipping [Blu83]. There, in a multiplicative group modulo a Blum integer with
factorization unknown by the sender, bits 0 and 1 are encoded as group-elements

5 This is a concrete C&C-GCs-based dual-path solution to 2-output S2PC, where
the circuits evaluated by each party only compute her respective output. [Kir08,
§6.6] and [SS11, §1.2] conceptualized dual-path approaches in high level, but did
not explain how to ensure the same input across the two executions. Other dual-
path approaches have been proposed using a single GC per party (i.e., not C&C-
based), but with potential leakage of one bit of information [MF06, HKE12]. A recent
method [HKE13] (see comparison in §7) devised a C&C-based dual-path approach
but requiring both parties to evaluate GCs with the same underlying Boolean circuit
(for some 2-output functionalities this implies that GCs have the double of the size).
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with Jacobi Symbol 1 or −1, respectively.6 The commitment of a bit is achieved
by sending the square of a random encoding of the bit. The revealing is achieved
by sending the known square-root.

Henceforth, a XOR-homomorphic UH BitCom scheme is suggestively dubbed
a 2-to-1 square scheme if it also has the following three useful properties:

– Proper square-roots. Any BitCom (dubbed square) has exactly two de-
commitments (dubbed proper square-roots), encoding different bits. In the
Blum integer example, each square has four square-roots, two per bit, but it
is possible to define a single proper square-root per bit (e.g., the square-root
whose least significant bit is equal to the encoded bit). The multiplicative
group (set of residues and respective multiplication operation) can be easily
adjusted to consider only proper square-roots, since the additive inverse of
a non-proper square root is a proper square-root encoding the same bit.

– From trapdoor to decommitments. There is a trapdoor whose knowledge
allows extracting a pair of proper square-roots (the two decommitments) from
any square (the BitCom). Such pair is dubbed a non-trivially correlated pair,
in the sense that the two proper square-roots are related but cannot be
simultaneously found (except with the help of a trapdoor). This property
allows a 2-out-of-1 OT: PB selects a proper square-root and sends its square
to PA, who then uses the trapdoor to obtain the two proper square-roots.
In the Blum integer example, the trapdoor is its factorization.

– From decommitments to trapdoor. Any non-trivially correlated pair is
a trapdoor. This is useful for the forge-and-lose technique, as the discovery
(by PB) of such a pair (a trapdoor of PA), in case PA acted maliciously, is the
condition that allows PB to decrypt the input bits of PA. In the Blum integer
example, its factorization can be found from any pair of proper square-roots
of the same square.

Unconditionally binding (UB). A BitCom scheme is called UB if a sender
with unbounded computational power cannot make the receiver accept an in-
correct bit value in the reveal phase. If there is a trapdoor known by some party,
then the party can use it to efficiently retrieve (i.e., decrypt) the committed
bit from any BitCom value. A practical instantiation is the Goldwasser-Micali
probabilistic encryption scheme [GM84], assuming that modulo a Blum integer
it is intractable for the receiver to decide quadratic residuosity (of residues with
Jacobi Symbol 1). A bit 1 or 0 is committed by selecting a random group element
and sending its square, or sending the additive inverse of its square, respectively.7
To decommit 1 or 0, the sender reveals the bit and the respective random group
element, letting the receiver verify that its square or additive-inverse of the
6 A Blum integer is the product of two prime powers, where each prime is congruent

with 3 modulo 4, and each power has an odd exponent. For a fixed Blum integer, the
Jacobi Symbol is a completely multiplicative function that maps any group element
into 1 or −1 (more detailed theory can be found, for example, in [NZM91]).

7 The additive inverse of a square is necessarily a non-quadratic residue with Jacobi
Symbol 1, modulo a Blum integer, because −1 has the same property.
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square, respectively, is equal to the BitCom value. The factorization of the Blum
integer is a trapdoor that enables efficient decision of quadratic residuosity.

Remark. The basis of the forge-and-lose technique (§4) is a combination of UB
and UH BitCom schemes, with the sender in the UB scheme being the receiver
in the UH scheme, and knowing a common trapdoor for both schemes. For
the Blum integer examples, and assuming intractability of deciding quadratic
residuosity (without a trapdoor), this would mean using the same Blum integer
in both schemes, with its factorization as trapdoor. There are known protocols
to prove correctness of a Blum integer (e.g., [vdGP88]).

The two exemplified schemes are XOR-homomorphic under modular multipli-
cation. For the purpose of the new S2PC-with-BitComs protocol (§5), this ho-
momorphism is useful in enabling efficient ZKPs of knowledge (ZKPoKs) related
with committed bits, and efficient negotiation of random bit-encodings and re-
spective BitComs (emulating an ideal functionality where the trusted third party
would select the BitComs randomly). The property is also useful for linking sev-
eral S2PC executions, via ZKPs about relations between the input bits of one
execution and the input and output bits of previous executions (§6).

3 The BitCom Approach

This section introduces a BitCom approach that combines a BitCom setting
(where there is a BitCom for each circuit input and output bit) and a C&C struc-
ture (where there are several GCs, each with two keys for each input and output
wire). In this approach, based on the XOR-homomorphism of UH BitComs, the
consistency of input and output wire keys across different GCs is statistically
ensured within the C&C, rather than using a ZKP of consistency.8

3.1 Cut-and-Choose Stages

The S2PC-with-BitComs protocol to be defined in this paper is built on top
of a C&C approach with a Commit-Challenge-Respond-Verify-Evaluate
structure. In a Commit stage, PA builds and sends several GCs, as well as com-
plementary elements (dubbed connectors) related with BitComs and with the
circuit input and output wire keys of GCs. At this stage, PA does not yet re-
veal the circuit input keys that allow the evaluation of each GC. Then, in the
Challenge stage, PA and PB jointly decide a random partition of the set of
GCs into two subsets, one for verification and the other for evaluation. Possi-
bly, the subsets may be conditioned to a predefined restriction about their sizes
(e.g., a fixed proportion of verification vs. evaluation GCs, or simply not letting
the number of evaluation GCs exceed some value). In the subsequent Respond
stage, PA sends to PB the elements that allow PB to fully verify the correct-
ness of the GCs selected for verification, to partially verify the connectors of
8 The protocol still includes several efficient ZKPs related with BitComs, but they are

not about the consistency of wire keys across different GCs.
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Fig. 2. Connectors. Legend: PA (GC constructor); PB (GC evaluator); JV and JE

(subsets of verification and evaluation GC indices, respectively); (group-element
encoding bit c); key[c] (wire key with underlying bit c).

all the GCs (in different ways, depending on whether they are associated with
verification or evaluation challenges), and to evaluate the GCs (and respective
connectors) selected for evaluation. In the Verify stage, if any verification step
fails, then PB aborts the protocol execution; otherwise, PB establishes that there
is an overwhelming probability that at least one GC (and respective connectors)
selected for evaluation is correct. PB finally proceeds to an Evaluate stage,
evaluating the evaluation GCs and respective connectors, and using their results
to determine the final circuit output bits and respective decommitments of out-
put BitComs. Notice that between the Verify and Evaluate stages there is
no response stage that could let PA misbehave.

3.2 Connectors

This section develops the idea of connectors – structures used to sustain the
integration between BitComs and the C&C structure. They are built on top of a
setup where one initial UH-BitCom has been defined for each input and output
wire of each party, independently of the number of GCs. Then, for each input and
output wire in each GC, a connector is built to provide a (statistically verifiable)
connection between the two BitCom decommitments and the respective pair of
wire keys. The functionality of connectors varies with the type of wire they refer
to (input of PA, input of PB, output of PB), as illustrated in high level in Fig. 2.

Connectors are used in a type of commitment scheme (i.e., with commit and
reveal phases) that takes advantage of the C&C substrate. First, each connector
is committed in the C&C Commit stage, hiding the respective two wire keys,
but binding PA to them and to their relation with BitCom decommitments.
Then, each connector is partially revealed during the C&C Respond stage, in
one of two possible complementary modes: a reveal for verification, related with
verification GCs; or a reveal for evaluation, related with evaluation GCs. All
verifications associated with these two reveal modes are performed in the C&C
Verify stage, when PB can still, immune to selective failure attacks, complain
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and abort in case it finds something wrong. PA never executes simultaneously the
two reveal modes for the same wire of the same GC, because such action would
reveal the input bits (in case of wires of PA) or both BitCom decommitments
(i.e., the trapdoor of PA, in case of wires of PB). Nonetheless, since the com-
mitment to the connector binds PA to the answers that it can give in each type
of reveal phase, an incorrect connector can pass undetectably at most through
one type of reveal mode. Thus, within the C&C approach, there is a negligible
probability that PA manages to build incorrect connectors for all evaluation
indices and go by undetected. The specific constructions follow:

For each input wire of PA:

– Commit. PA selects a random permutation bit and a respective random
encoding (a group-element dubbed multiplier) using the same 2-to-1 square
scheme used to commit the input bits of PA. PA uses the homomorphic group
operation to obtain a new encoding (dubbed inner encoding) that encodes
the permuted version of her input bit, and sends its square (a new inner UH
BitCom) to PB. PA then builds a commitment of each of the two wire input
keys (using some other commitment scheme), one for bit 0 and the other
for bit 1, and sends them to PB in the form of a pair with the respective
permuted order.

– Reveal for verification. PA decommits the two wire input keys (using
the reveal phase of the respective commitment scheme), and decommits the
permutation bit (by revealing the multiplier). PB uses the two wire input
keys (obtained for all input wires) to verify the correctness of the GC and
simultaneously obtain the underlying bit of each input key. Then, PB verifies
that the ordering of the bits underlying the pair of revealed input keys is
consistent with the decommitted permutation bit.

– Reveal for evaluation. PA decommits the input key that corresponds to
her input bit, and decommits the permuted input bit (by revealing the inner
encoding), thus allowing PB to verify that it is consistent with the position of
the opened key commitment. As the value of the permuted bit is independent
of the real input bit, nothing is revealed about the bit underlying the opened
key. If PA would instead reveal the other key, PB would detect the cheating
in a time when it is still safe to abort the execution and complain.

For each input wire of PB:

– Commit. PA selects a pair of random encodings of bit 0 (dubbed multipli-
ers) and composes them homomorphically with the two known decommit-
ments of the original input BitCom of PB (which PA has extracted using
the trapdoor), thus obtaining two new independent encodings (dubbed in-
ner encodings, one for bit 0 and one for bit 1). PA then sends to PB the
respective squares (dubbed inner squares). For simplicity, it is assumed here
that the inner encodings can be directly used as input wire keys of the GC
(the full version of this paper shows how to relax this assumption).

– Reveal for verification. PA reveals the two inner encodings. PB verifies
that they are the proper square-roots of the received inner squares, and that
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they encode bits 0 and 1, respectively. Then, PA uses them as the circuit
input keys in the GC verification procedure, verifying their correctness. A
crucial point is that the two inner encodings are proper square-roots of in-
dependent BitComs and thus do not constitute a trapdoor.

– Reveal for evaluation. PA reveals the two multipliers. PB verifies that
both encode bit 0, and homomorphically verifies that they are correct (their
squares lead the original BitCom into the two received inner squares). Since
PB knows one (and only one) decommitment of the input BitCom, it can
multiply it with the respective multiplier to learn the respective inner en-
coding and use it as an input wire key. This procedure is resilient to selective
failure attack, because both multipliers are verified for correctness, and be-
cause the two inner encodings (of which PB only learns one) are statistically
correct input keys (i.e., they would be detected as incorrect if they had been
associated with a verification GC).

For each output wire of PB: The construction is essentially symmetric to
the case of input wires of PB. Again for simplicity, it is assumed here that the
output keys can directly be group-elements (dubbed inner encodings) that are
proper square-roots of independent squares. The underlying bit of each output
key is thus the bit encoded by it (in the role of inner encoding). PA commits by
initially sending the two inner squares to PB. Then, for verification challenges,
from the GC verification procedure PB learns 2 keys and respective underlying
bits. PB can verify that they are respective proper square-roots of the inner
squares and that they encode the respective bits. For evaluation challenges, PA
sends only the two multipliers, and PB verifies homomorphically that they are
correct. Then, PB learns one output key from the GC evaluation procedure,
which is an inner encoding, and uses the respective multiplier to obtain the
respective decommitment of the output BitCom.

The overall construction requires a number of group elements (multipliers
and inner encodings) proportional to the number of input and output wires, but
independent of the number of intermediate wires in the circuit.

4 The Forge-and-Lose Technique

This section introduces a new technique, dubbed forge-and-lose, to improve the
typical C&C-GCs-based approach, by using the BitCom approach to provide a
new path for successful computation of final circuit output. More precisely, if in
the Evaluate stage there is at least one GC and respective connectors leading
to a correct output (i.e., decommitments of the UH BitComs, for the correct
circuit output bits), and if a malicious P∗

A successfully forges some other output,
then P∗

A loses the privacy of her input bits to PB, allowing PB to directly use
a Boolean circuit to compute the intended output. This loss of privacy is not a
violation of security, but rather a disincentive against malicious behavior by P∗

A.
The forge-and-lose path significantly reduces the probabilistic gap available for

malicious behavior by PA that might lead PB to accept an incorrect output. The
technique provides up to 1 bit of statistical security per GC, which constitutes
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an improvement factor of about 3.1 (either in reduction of number of GCs or in
increase of number of bits of statistical security) in comparison with C&C-GCs
that require a majority of correct evaluation GCs. As noted by Lindell [Lin13], in
this setting the optimal C&C partition corresponds to an independent selection
of verification and evaluation challenges. Still, for some efficiency tradeoffs it
may be preferable to impose some restrictions on the number of verification
and evaluation challenges (e.g., ensure that there are more verification than
evaluation challenges). The full version of this paper shows the error probabilities
associated with different C&C partition methods.

The forge-and-lose technique is illustrated in high level in Fig. 3. It can be
merged into the C&C and BitCom approach as follows:

– Encryption scheme. PA encrypts her own input bits using as key the
trapdoor (known by PA) of the UH-BitCom scheme used (by PA) to produce
BitComs of the output bits of PB. Then, PA gives a ZKP that her encrypted
input is the same as that used in the S2PC protocol, i.e., the one committed
by PA with an UH-BitCom scheme with trapdoor known by PB. If both
schemes are XOR-homomorphic (see practical example in §2.2), the ZKP can
be achieved efficiently with standard techniques, namely with a statistical
combination across input wires, requiring communication linear with the
statistical security parameter.

– Forge-and-lose evaluation. In the Evaluate stage, if a connector leads
an output key to an invalid decommitment, then the respective GC is ig-
nored altogether. If for the remaining GCs all connectors lead to consistent
decommitments across all GCs, i.e., if for each output wire index the same
valid bit-encoding (proper square-root of the output BitCom) is obtained,
then PB accepts them as correct. However, if PA acted maliciously, there
may be a forged GC and connector leading to a valid (verifiable) decommit-
ment that is different from the decommitment obtained from another correct
GC and connector, for the same output wire index. If PB obtains any such
pair of decommitments, i.e., a non-trivially correlated pair of square-roots of
the same square, then PB gets the trapdoor with which PA encrypted her
input, and follows to decrypt the input bits of PA and use them directly to
compute the correct final circuit output in the clear.

5 Protocol for 1-Output S2PC-with-BitComs

This section describes the new C&C-GCs-based protocol for 1-output S2PC-
with-BitComs, enhanced with a forge-and-lose technique. The BitComs are XOR-
homomorphic, so the mentioned ZKPoKs are efficient using standard techniques.

0. Setup. The parties agree on the protocol goal, namely on a specification of
a Boolean circuit whose evaluation result is to be learned privately by PB,
on the necessary security parameters, on a C&C partitioning method, and
on the necessary sub-protocols. Each party selects a 2-to-1 square scheme,
and proposes it to the other party, without revealing the trapdoor but giving
a respective ZKPoK that proves the correctness of the public parameters.
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Fig. 3. Forge-and-lose. Evaluation path followed by PB, the evaluator of garbled
circuits (GCs), if different GCs built by a malicious PA and selected for evaluation (e.g.,
with indices j′, j′′) lead to valid but different decommitments of the same uncondition-
ally hiding (UH) BitCom (e.g., with index i).

1. Produce initial BitComs.
(a) UH Commit Input Bits. Each party selects an initial UH BitCom for

each of its own circuit input bits, using the 2-to-1 square scheme with
trapdoor known by the other party, and sends it to the other party. PB
gives a ZKPoK of a valid decommitment of the respective BitComs.

(b) UB Commit Input Bits of PA. PA commits again to each of her in-
put bits, now using an UB-BitCom scheme with trapdoor equal to the
trapdoor (known by PA) of the UH-BitCom scheme used by PB to com-
mit the input bits of PB. PA gives a ZKPoK of equivalent decommitments
between the UH BitComs of the input of PA (with trapdoor known by
PB) and the UB BitComs of the input of PA (with trapdoor known by
PA), i.e., a proof that the known decommitments encode the same bits.

(c) UH Commit Output Bits of PB. For each output wire index of PB,
PA selects a random encoding of bit 0 (using the UH BitCom scheme
with trapdoor known by PA) and sends its square to PB. (PB will find
a respective decommitment only later, in the Evaluate stage.)

2. Commit. PA uses her trapdoor to extract a non-trivially correlated pair of
proper square-roots from each UH BitCom of the input bits (this is the so
called 2-out-of-1 OT, which replaces the typical 1-out-of-2 OT used in other
S2PC protocols) and output bits of PB. Then, PA builds several GCs (in
number consistent with the agreed parameters) and respective connectors
to each input and output wire, and sends the GCs and commitments to the
connectors (as specified in §3.2) to PB.

3. Challenge. The two parties use a coin-tossing sub-protocol to determine a
random challenge bit for each GC, conditioned to the agreed C&C method
(e.g., same number of challenges of each type, or more verification than
evaluation challenges, or independent selection).9

4. Decide UH-BitCom Permutations. In order to emulate a trusted third
party deciding the UH BitCom of each circuit input and output bit, both

9 The standalone coin-tossing does not need to be fully simulatable, but the proof of
security takes advantage of the ability of the simulated PA (with rewinding access to
a possibly malicious P∗

B) to decide the outcome of the coin-toss. Subtle alternatives
would be possible, depending on some changes related with the remaining stages.
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parties interact in a fully-simulatable coin-tossing sub-protocol to decide a
random encoding of bit 0 for each wire index.10 Later, each party will locally
use these encodings to permute the encodings of her respective private bits,
and use the square of the encodings to permute the respective UH BitComs
of both parties. Given the XOR-homomorphism, the initial and the final UH
BitComs commit to the same bits.

5. Respond. For each C&C challenge bit, PA makes either the reveal for veri-
fication or the reveal for evaluation of the connectors, as specified in §3.2.

6. Verify. For verification indices, PB obtains two keys per input wire, veri-
fies the correctness of the GC and makes the respective partial verification of
connectors (without learning the decommitments of the BitComs of output
bits of PB). For evaluation indices, PB makes the respective partial verifica-
tion of the connectors and obtains one key per input wire. If something is
found wrong, PB aborts and outputs Fail.

7. Evaluate. For each evaluation index, PB uses the one key per input wire
to evaluate the GC, obtain one key per output wire and use the respective
revealed part of the connector (namely, one of the two received multipliers)
to obtain a decommitment (bit encoding) of the respective output BitCom.
There is an overwhelming probability that there is at least one evaluation
GC whose connectors lead to valid decommitments in all output wires. If
all obtained valid decommitments are consistent across different GCs, then
PB accepts them as correct. Otherwise, PB proceeds into the forge-and-lose
path as follows. It finds a non-trivially correlated pair of square-roots and
uses it as a trapdoor to decrypt the input bits of PA, from the respective
UB BitComs. In possession of the input bits of both parties, PB directly
evaluates the final circuit output. Then, from within the decommitments
already obtained from the evaluation connectors, PB finds the output bit
encodings that are consistent with the circuit output bits, and accepts them
as the correct ones. This marks the end of the forge-and-lose path.

8. Apply BitCom Permutations. Each party applies the previously decided
random permutations to the encodings of the respective circuit input and
output bits, and applies the square of the random encodings as permutations
to the UH BitComs of the circuit input and output bits of both parties.

9. Final Output. Each party privately outputs her circuit input and output
bits and the respective final encodings, and also outputs the (commonly
known) final UH BitComs of the circuit input and output bits of both
parties. PA outputs even if PB aborts at any time after the
Apply BitCom Permutations stage.

10 To achieve simulability of the overall protocol under each possible malicious party
(P∗

A and P∗
B), the simulator of this coin-tossing needs to be able to induce the final

BitComs in the real world to be equal to those decided by the trusted third party in
the ideal world, and at the same time deal with a probabilistic possibility of abort
dependent on those final BitCom values (e.g., see [Lin03]).
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Remark. When using the 1-output protocol within larger protocols, care needs
to be taken so that PA cannot distinguish between PB having learned his output
via the normal evaluation path vs. via the forge-and-lose path.

6 Discussion

6.1 Complexity

Besides the computation and communication related with (the reduced num-
ber of) GCs, the new S2PC-with-BitComs protocol requires instantiating the
connectors (which brings a cost proportional to the number of input and out-
put wires, multiplied by the number of GCs), performing ZKPoKs related with
BitComs and to prove correctness of the BitCom scheme parameters, and per-
forming secure two-party coin-tossing (which is significant for the decision of
random BitComs values). Based on the XOR-homomorphism, the ZKPoKs re-
lated with input wires can be parallelized efficiently with standard techniques,
with a communication cost linear in a statistical parameter but independent of
the number of input wires, though with computational cost proportional to the
product of the statistical parameter and the number of input wires.

With an instantiation based on Blum integers, the inversion of an UH BitCom
using the trapdoor (i.e., computing a modular square-root) is approximately
computationally equivalent to one exponentiation modulo each prime factor.
Thus, besides proving correctness of the Blum integer (which can be achieved
with a number of exponentiations that is linear in the statistical parameter),
and performing a fully-simulatable coin-tossing sub-protocol to decide random
BitCom permutations (which can be instantiated with a number of exponentia-
tions that is linear in the number of input and output wires, and performed in a
group of smaller order), the 1-output S2PC-with-BitComs protocol only requires
a number of exponentiations that is linear in the number of input wires of PB,
and only computed by PA. This is in contrast with other protocols whose re-
quired number of exponentiations by both parties is proportional to the number
of GCs multiplied by the number of input wires (e.g., [LP11]), though in com-
pensation those exponentiations are supported in groups with smaller moduli
length and sub-groups of smaller order.

The protocol can be optimized in several ways. For example, with a random
seed checking (RSC) technique [GMS08] the communication of elements (includ-
ing GCs and connectors) associated with verification challenges can be replaced
by the sending and verification of small random seeds (used to pseudo-randomly
generate the elements) and a commitment (to the elements). The technique can
be applied independently to GCs and connectors, and can also be used to reduce
some of the communication corresponding to connectors associated with evalu-
ation challenges. As another example, some group elements used in connectors
of PA can be reduced in size, since their binding properties only need to hold
during the execution of the protocol.
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Concrete results. An analytic estimation of communication complexity is
made in the full version of this paper (ignoring overheads due to communication
protocols), for two different circuits: an AES-128 circuit with 6,800 multiplicative
gates [Bri13] and 128 wires for the input of each party and for the output of PB;
and a SHA-256 circuit with 90,825 multiplicative gates [Bri13] and 256 wires for
the input of each party and output of PB.

An interesting metric is the proportional overhead of communicated elements
beyond GCs (i.e., connectors, BitComs and associated proofs) in comparison
with the size occupied only by the GCs. For 128 bits of cryptographic security,
instantiated with 3,072-bit Blum integers [BBB+12], and 40 bits of statistical
security achieved using 41 GCs of which at most 20 are for evaluation, the
estimated overhead is about 55% and 8%, for the AES-128 and SHA-256 circuits,
respectively, without the RSC technique applied to the GCs. This metric gives an
intuition about the communication cost inherent to the BitCom approach, but
is not good enough on its own. For example, when applying the RSC technique
also at the level of GCs, the overall communication is reduced significantly, but
(because the size corresponding to GCs is reduced) the proportional overhead
increases to 158% and 23%, respectively. Nonetheless, even these overheads are
low when compared to the cost associated with the additional GCs needed in
a C&C that requires a majority of correct evaluation GCs (i.e., on its own an
overhead of about 200%, and asymptotically up to about 210%). Clearly, the
proportional overhead decreases with the ratio given by the number of input
and output wires divided the number of multiplicative gates.

There are other optimizations and C&C configurations that reduce the com-
munication even more, with tradeoffs with computational complexity. For exam-
ple, by restricting the number of evaluation GCs to be at most 8, but increasing
the overall number of GCs to 123 (this was the minimal number of GCs required
by the typical C&C to achieve 40 bits of statistical security), the estimated
communication complexity is approximately of the order of 62 million bits and
418 million bits, respectively for the exemplified circuits. A pipelining technique
[HEKM11] could also be considered, such that the garbled-gates are not all stored
in memory at the same time. This would increase the computation by PA, but
not affect the amount of communicated elements.

6.2 Linked Executions

A simple example of linked executions is the mentioned dual-path execution
approach, where each party reuses the same input bits (and BitComs) in two
different executions. Furthermore, it may be useful to achieve more general link-
age, such as proving that the private input bits of a S2PC satisfy certain non-
deterministic polynomial verifiable relations with the private input and output
bits of previous S2PCs. Based on the XOR-homomorphism of BitComs, this
can be proven with efficient ZKPs. For example, proving that a certain BitCom
commits to the NAND of the bits committed by two other BitComs can be re-
duced to a simple ZKP that there are at least two 1’s committed in a triplet of
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BitComs, with the triplet being built from a XOR-homomorphic combination of
the original three BitComs.11

For example, since Boolean circuits can be implemented with NAND gates
alone, it is possible to prove, outside of the GCs, those transformations and
relations that involve only the bits of one party. For example, for protocols
defined as a recursion of small GC-based S2PC sub-protocols in the semi-honest
model (e.g., [LP02]), security can be enhanced to resist also the malicious model,
by simply (1) replacing each GC with a C&C-GCs with BitComs, and (2) by
naturally using the input and output of previous executions (or transformations
thereof) as the input of the subsequent executions.

6.3 Security

The protocol can be proven secure in the plain model (i.e., without hybrid ac-
cess to ideal functionalities), assuming the simulator has black-box access with
rewindable capability to a real adversary. The simulator is able to extract the
input of the malicious party in the real world from the respective ZKPoKs of
decommitments, and thus hand it over to the trusted third party in the ideal
world. The two-party coin tossing used to select random permutations of group-
elements needs to be fully-simulatable, because the final BitComs and decom-
mitments are also part of the final output of honest parties. Subtle changes are
needed to the ideal functionality when the protocol is adjusted to the 2-output
case where each party learns a private circuit output. Achieving security in the
universal composability model [CLOS02] is left for future work.

7 Related Work

7.1 Two Other Optimal C&C-GCs

Two recently proposed C&C-GCs-based protocols [Lin13, HKE13] also minimize
the number of GCs, requiring only that at least one evaluation GC is correct.

Lindell [Lin13] enhances a typical C&C-GCs-based protocol by introducing
a second C&C-GCs, dubbed secure-evaluation-of-cheating (SEOC), where PB
recovers the input of PA in case PB can provide two different garbled output
values from the first C&C-GCs. The concept of input-recovery resembles the
forge-and-lose technique, but the methods are quite different. For example, the
SEOC phase requires interaction between the parties after the first GC evalua-
tion phase, whereas in the forge-and-lose the input-recovery occurs offline.

Huang, Katz and Evans [HKE13] propose a method that combines the C&C-
GCs approach with a verifiable secret sharing scheme (VSSS). The parties play
different roles in two symmetric C&C-GCs, and then securely compare their out-
puts. This requires the double of GCs, but in parallel across the two parties. By
11 The first bit is the NAND of the two last if and only if there are at least two 1’s in

the triplet composed of the first bit and of the XOR of the first bit with each of the
other two bits [Bra06]. A different method can be found in [BDP00].
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requiring a predetermined number of verification challenges, the necessary num-
ber of GCs is only logarithmically higher than the optimal that is achieved with
an independent selection of challenges. In their method, the deterrent against
optimal malicious GCs construction does not involve the GC constructor party
having her input revealed to the GC evaluator.

In the SEOC and VSSS descriptions, the method of ensuring input consis-
tency across different GCs is supported on discrete-log based intractability as-
sumptions. The descriptions do not consider general linkage of S2PC executions
related with output bits, but the techniques used to ensure consistency of in-
put keys could be easily adapted to achieve XOR-homomorphic BitComs of the
input bits. In contrast, the S2PC-with-BitComs described in this paper, with
an instantiation based on Blum integers, is based on intractability of deciding
quadratic residuosity and requires a lower number of exponentiations, though
with each exponentiation being more expensive due to the larger size of group
elements and group order, for the same cryptographic security parameter. Future
work may better clarify the tradeoffs between the three techniques.

7.2 Other Related Work

Jarecki and Shmatikov [JS07] described a S2PC protocol with committed inputs,
using a single verifiably-correct GC, but with the required number of exponen-
tiations being linear in the number of gates. In comparison, the protocol in this
paper allows garbling schemes to be based on symmetric primitives (e.g., block-
ciphers, whose greater efficiency over-compensates the cost of multiple GCs in
the C&C), and the required number of exponentiations to be linear in the num-
ber of circuit input and output bits and in the statistical parameter.

Nielsen and Orlandi proposed LEGO [NO09], and more recently Frederiksen
et al. proposed Mini-Lego [FJN+13], a fault-tolerant circuit design that computes
correctly even if some garbled gates are incorrect. Their protocol, which uses a
cut-and-choose at the garbled-gate level (instead of at the GC level) to ensure
that most garbled gates used for evaluation are correct, requires a single GC but
of larger dimension. It would be interesting to explore, in future work, how to
integrate a forge-and-lose technique into their cut-and-choose at the gate level.

Kolesnikov and Kumaresan [KK12] described a S2PC slice-evaluation proto-
col, based on information theoretic GCs, allowing the input of one GC to directly
use the output of a previous GC. Their improvements are valid if the linked GCs
are shallow, and if one party is semi-honest and the other is covert. In contrast,
the S2PC-with-BitComs protocol in this paper allows any circuit depth and any
party being malicious.

Nielsen et al. [NNOB12] proposed an OT-based approach for S2PC, poten-
tially more efficient than a C&C-GCs if network latency is not an issue. However,
the number of communication rounds of their protocol is linear in the depth of
the circuit, thus being outside of the scope of this paper (restricted to C&C-
GCs-based protocols with a constant number of communication rounds).
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Abstract. The question of compatibility of differential paths plays a
central role in second order collision attacks on hash functions. In this
context, attacks typically proceed by starting from the middle and con-
structing the middle-steps quartet in which the two paths are enforced on
the respective faces of the quartet structure. Finding paths that can fit
in such a quartet structure has been a major challenge and the currently
known compatible paths extend over a suboptimal number of steps for
hash functions such as SHA-2 and HAS-160. In this paper, we investigate
a heuristic that searches for compatible differential paths. The applica-
tion of the heuristic in case of HAS-160 yields a practical second order
collision over all of the function steps, which is the first practical result
that covers all of the HAS-160 steps. An example of a colliding quartet
is provided.

1 Introduction

Whenever two probabilistic patterns are combined for the purpose of passing
through maximal number of rounds of a cryptographic primitive, a natural ques-
tion that arises is the question of compatibility of the two patterns. A notable
example is the question of compatibility of differential paths in the context of
boomerang attacks. In 2011, Murphy [25] has shown that care should be exer-
cised when estimating the boomerang attack success probability, since there may
exist dependency between the events that the two paths behave as required by
the boomerang setting. The extreme case is the impossibility of combining the
two paths, where the corresponding probability is equal to 0.

In the context of constructing second order collisions for compression func-
tions using the start-from-the-middle technique, due to availability of message
modification in the steps where the primitive follows the two paths, the above
mentioned probability plays less of a role as long as it is strictly greater than 0.
In that case, the two paths are said to be compatible. Several paths that were
previously believed to be compatible have been shown to be incompatible in the
previously described sense, e.g., by Leurent [15] and Sasaki [29] for BLAKE and
RIPEMD-160 hash functions, respectively.

The compatibility requirement in this context can be stated with more pre-
cision as follows. Let φ and ω be two differential paths over some number of
steps of an iterative function f = fj+n ◦ . . . ◦ fj . If there exists a quartet of f

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 464–483, 2013.
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inputs x0, x1, x2 and x3 such that computations (x0, x1) and (x2, x3) follow φ
whereas (x0, x2) and (x1, x3) follow ω, we say that φ and ω are compatible. Usu-
ally the path φ is left unspecified over the last k steps (backward path) and ω is
unspecified over the remaining steps (forward path). Such paths have also been
previously called independent [4]. Another closely related notion is the concept
of non-interleaving paths in the context of biclique attacks [9].

Our Contributions. In this paper, we present a heuristic that allows us to
search for compatible differential paths. The heuristic builds on the previous
de Cannière and Rechberger automatic differential path search method. Instead
of working with pairs, our proposed heuristic operates on quartets of hash ex-
ecutions and includes cross-path propagations. We present detailed examples
of particular propagations applied during the search. As an application of our
proposed heuristic, a second order collision for the full HAS-160 compression
function is found. The best previous practical distinguisher for this function
covered steps 5 to 80 [30]. This is the first practical distinguisher for the full
HAS-160. This particular hash function is relevant as it is standardized by the
Korean government (TTAS.KO-12.0011/R1) [1].

Related Work. The differential paths used in groundbreaking attacks on
MD4, MD5 and SHA-1 [36,35] were found manually. Subsequently, several tech-
niques for automatic differential path search have been studied [31,7,32,5]. The
de Cannière and Rechberger heuristic [5] was subsequently applied to many
MDx/SHA-x based hash functions, such as RIPEMD-128, HAS-160, SHA-2 and
SM3 [21,19,20,22]. To keep track of the current information in the system, the
heuristic relies on 1-bit constraints that express the relations between pairs of
bits in the differential setting. This was generalized to multi-bit constraints by
Leurent [15], where finite state machine approach allowed uniform representa-
tion of different constraint types. Multi-bit constraints have been used in the
context of differential path search in [16].

The boomerang attack [33], originally applied to block ciphers, has been
adapted to the hash function setting independently by Biryukov et al. [4] and
by Lamberger and Mendel [13]. In particular, in [4], a distinguisher for the 7-
round BLAKE-32 was provided, whereas in [13] a distinguisher for the 46-step
reduced SHA-2 compression function was provided. The latter SHA-2 result was
extended to 47 steps [3]. Subsequently, boomerang distinguishers have been ap-
plied to many hash functions, such as HAVAL, RIPEMD-160, SIMD, HAS-160,
SM3 and Skein [27,29,30,18,11,37,17]. Outside of the boomerang context, zero-
sum property as a distinguishing property was first used by Aumasson [2].

As for the previous HAS-160 analysis, in 2005, Yun et al. [38] found a prac-
tical collision for the 45-step (out of 80) reduced hash function. Their attack
was extended in 2006 to 53 steps by Cho et al. [6], however, with computa-
tional complexity of 255 53-step compression function computations. In 2007,
Mendel and Rijmen [23] improved the latter attack complexity to 235, provid-
ing a practical two-block message collision for the 53-step compression function.
Preimage attacks on 52-step HAS-160 with complexity of 2152 was provided in
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2008 by Sasaki and Aoki [28]. Subsequently, in 2009, this result was extended
by Hong et al. to 68 steps [8] where the attack required a complexity of 2156.3.
In 2011, Mendel et al. provided a practical semi-free-start collision for 65-step
reduced compression function [19]. Finally, in 2012, Sasaki et al. [30] provided a
theoretical boomerang distinguisher for the full HAS-160 compression function,
requiring 276.6 steps function computations. In the same work, a practical second
order collision was given for steps 5 to 80 of the function.

Paper Outline. In the next section, we provide the review of boomerang
distingiushers and the recapitulation of the de Cannière and Rechberger search
heuristic, along with the HAS-160 specification. In Section 3, the general form of
the our search heuristic is provided and its application to HAS-160 is discussed.
The three propagation types used in the heuristic are explained in Section 4.
Concluding remarks are given in Section 5.

2 Review of Related Work and the Specification of
HAS-160

In the following subsections, we provide a description of a commonly used strat-
egy to construct second order collisions, an overview of the de Cannière and
Rechberger path search heuristic and finally the specification of HAS-160 hash
function.

2.1 Review of Boomerang Distinguishers for Hash Functions

First, we provide a generic definition of the property used for building compres-
sion function distinguishers. Let h be a function with n-bit output. A second
order collision for h is a set {x,Δ,∇} consisting of an input for h and two
differences, such that

h(x+Δ+∇)− h(x+Δ)− h(x+∇) + h(x) = 0 (1)

As explained in [3], the query complexity for finding a second order collision is
3 · 2n/3 where n denotes the bit-size of the output of the function f . By the
query complexity, the number of queries required to be made to h function is
considered. On the other hand, for the computational complexity, which would
include evaluating h around 3 · 2n/3 times and finding a quartet that sums to 0,
the best currently known algorithm runs in complexity no better than 2n/2. If for
a particular function a second order collision is obtained with a complexity lower
than 2n/2, then this hash function deviates from the random function oracle.

Next, we explain the strategy to construct quartets satisfying (1) for Davies-
Meyer based functions, as commonly applied in the previous literature. An
overview of the strategy is provided in Fig. 1. We write h(x) = e(x) + x, where
e is an iterative function consisting of n steps. The goal is to find four inputs
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Fig. 1. Start-from-the-middle approach for constructing second-order collisions

xA, xB, xC and xD that constitute the inputs in (1) according to Fig. 1 (c). In
particular, the goal is to have

xA − xD = xB − xC

e(xA)− e(xB) = e(xD)− e(xC)
(2)

where the two values specified by (2) are denoted respectively by α and β in
Fig. 1 (c). In this case, we have h(xA) − h(xB) + h(xC) − h(xD) = e(xA) +
xA − e(xB) − xB + e(xC) + xC − e(xD) − xD = 0. Now, one can put xA = x,
Δ = xD − xA and ∇ = xB − xA and (1) is satisfied.

A preliminary step is to decide on two paths, called the forward path and
the backward path. As shown on Fig. 1, these paths are chosen so that for some
n0 < n1 < n2 < n3 < n4 < n5, the forward path has no active bits between
steps n3 and n4 and the backward path has no active bits between steps n1

and n2. The forward path is enforced on faces (xA, xB) and (xD, xC) (front
and back) whereas the backward differential is enforced on faces (xA, xD) and
(xB , xC) (left and right). In the case of MDx-based designs, the particular n
values depend mostly on the message schedule specification.

The procedure can be summarized as follows:

(a) The first step is to construct the middle part of the quartet structure, as
shown in Fig. 1 (a). The forward and backward paths end at steps n3 and
n2, respectively. On steps n2 to n3, the two paths need to be compatible for
this stage to succeed.

(b) Following Fig. 1 (b), the paths are extended to steps n1 backward and to
n4 forward with probability 1, due to the absence of disturbances in the
corresponding steps.

(c) Some of the middle-step words are randomized and the quartet is recomputed
backward and forward, verifying if (2) is satisfied. If yes (see Fig. 1 (c)),
return the quartet, otherwise, repeat this step.
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This strategy, with variations, has been applied in several previous works, such
as [3,30,29,27]. In Table 1, we provide the forward/backward path parameters
for the previous boomerang distinguishers on some of the MDx/SHA-x based
compression functions following the single-pipe design strategy.

Table 1. Overview of some of the previously used boomerang paths

Compression function n0 n1 n2 n3 n4 n5 Reference Message block size

SHA-2 0 6 22 31 47 47 [3] 16× 32

HAVAL 0 2 61 97 157 160 [27] 32× 32

HAS-160 5 13 38 53 78 80 [30] 16× 32

In [3,30], the number of steps in the middle was 9 and 16 steps, respectively.
It can be observed that these number of middle steps are suboptimal, since
the simple message modification allows trivially satisfying 16 steps in case of
SHA-2 and HAS-160. Since the forward and the backward paths are sparse
towards steps n3 and n2, one can easily imagine satisfying more than 16 steps,
while there remains enough freedom to randomize the inner state although some
penalty in probability has to be paid. In case of HAVAL [27], the simple message
modification allows passing through 32 steps and the middle part consists of as
many as 36 steps. However, it should be noted that this is due to the particular
property of HAVAL which allows narrow paths [10].

2.2 Review of de Cannière and Rechberger Search Heuristic

This search heuristic is used to find differential paths that describe pairs of
compression function executions. The symbols used for expressing differential
paths are provided in Table 2. For example, when we write -x-u, we mean a set
of 4-bit pairs

-x-u = {T, T ′ ∈ F 4
2 |T3 = T ′

3, T2 �= T ′
2, T1 = T ′

1, T0 = 0, T ′
0 = 1}

where Ti denotes i-th bit in word T .

Table 2. Symbols used to express 1-bit conditions [5]

δ(x,x′) meaning (0,0) (0,1) (1,0) (1,1)

? anything
√ √ √ √

- x = x′ √
- -

√

x x = x′ -
√ √

-
0 x = x′ = 0

√
- - -

u (x, x′) = (0, 1) -
√

- -
n (x, x′) = (1, 0) - -

√
-

1 x = x′ = 1 - - -
√

# - - - -

δ(x,x′) meaning (0,0) (0,1) (1,0) (1,1)

3 x = 0
√ √

- -
5 x′ = 0

√
-

√
-

7
√ √ √

-
A x′ = 1 -

√
-

√

B
√ √

-
√

C x = 1 - -
√ √

D
√

-
√ √

E -
√ √ √
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Next, an example of condition propagation is provided. Suppose that a small
differential path over one modular addition is given by

----+ ---x = ---x (3)

Here (3) describes a pair of additions: x + y = z and x′ + y′ = z′, and from
this “path” we have that x = x′ and also that y and y′ are different only on
the least significant bit (same for z and z′). However, this can happen only if
x0 = x′0 = 0, i.e. if the lsb of x and x′ is equal to 0. We thus propagate a condition
by substituting (3) with

---0+ ---x = ---x

The de Cannière and Rechberger heuristic [5] searches for differential paths over
some number of compression function steps. It starts from a partially specified
path which typically means that the path is fully specified at some steps (i.e.,
consisting of symbols {-,u,n}) and unspecified at other steps (i.e., symbol ‘?’).
The heuristic attempts to complete the path, so that the final result is non-
contradictory by proceeding as follows:

- Guess: select randomly a bit position containing ‘?’ or ‘x’. Substitute the
symbol in the chosen bit position by ‘-’ and {u,n}, respectively.

- Propagate: deduce new information introduced by the Guess step.

When a contradiction is detected, the search backtracks by jumping back to one
of the guesses and attempts different choices.

2.3 HAS-160 Specification

The HAS-160 hash function follows the MDx/SHA-x hash function design strat-
egy. Its compression function can be seen as a block cipher in Davies-Meyer
mode, mapping 160-bit chaining values and 512-bit messages into 160-bit di-
gests. To process arbitrary-length messages, the compression function is plugged
in the Merkle-Damg̊ard mode.

Before hashing, the message is padded so that its length becomes multiple of
512 bits. Since padding is not relevant for this paper, we refer the reader to [1]
for further details. The underlying HAS-160 block cipher consists of two parts:
message expansion and state update transformation.

Message Expansion: The input to the compression function is a message
m = (m0, . . .m15) represented as 16 32-bit words. The output of the message
expansion is a sequence of 32-bit words W0, . . .W79. The expansion is specified
in Table 3. For example, W26 = m15.

State Update: One compression function step is schematically described by
Fig. 2 (a). The Boolean functions f used in each step are given by

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
f1(x, y, z) = x⊕ y ⊕ z

f2(x, y, z) = (x ∨ ¬z)⊕ y
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Table 3. Message expansion in HAS-160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕ m9 m0 m1 m2 m3
m12 ⊕ m13 m4 m5 m6 m7

m0 ⊕ m1 m8 m9 m10 m11
m4 ⊕ m5 m12 m13 m14 m15⊕m10 ⊕ m11 ⊕m14 ⊕ m15 ⊕m2 ⊕ m3 ⊕m6 ⊕ m7

m11 ⊕ m14 m3 m6 m9 m12
m7 ⊕ m10 m15 m2 m5 m8

m3 ⊕ m6 m11 m14 m1 m4
m15 ⊕ m2 m7 m10 m13 m0⊕m1 ⊕ m4 ⊕m13 ⊕ m0 ⊕m9 ⊕ m12 ⊕m5 ⊕ m8

m4 ⊕ m13 m12 m5 m14 m7
m8 ⊕ m1 m0 m9 m2 m11

m12 ⊕ m5 m4 m13 m6 m15
m0 ⊕ m9 m8 m1 m10 m3⊕m6 ⊕ m15 ⊕m10 ⊕ m3 ⊕m14 ⊕ m7 ⊕m2 ⊕ m11

m15 ⊕ m10 m7 m2 m13 m8
m11 ⊕ m6 m3 m14 m9 m4

m7 ⊕ m2 m15 m10 m5 m0
m3 ⊕ m14 m11 m6 m1 m12⊕m5 ⊕ m0 ⊕m1 ⊕ m12 ⊕m13 ⊕ m8 ⊕m9 ⊕ m4

where f0 is used in steps 0-19, f1 is used in steps 20-39 and 60-79 and f2 is
used in steps 40-59. The constant Ki that is added in each step changes every
20 steps, taking the values 0, 5a827999, 6ed9eba1 and 8f1bbcdc. The rotational
constant si1 is specified by the following table

i mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
si1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

The other rotational constant si2 changes only each 20 steps and si2 ∈ {10, 17, 25,
30}. According to the Davies-Meyer mode, the feedforward is applied and the
output of the compression is

(A80 +A0, B80 +B0, C80 + C0, D80 +D0, E80 + E0)

Alternative Description of HAS-160: In Fig. 2 (b), the compression function
is shown as a recurrence relation, where Ai+1 plays the role of A in the usual step
representation. Namely, A can be considered as the only new computed word,
since the rotation that is applied to B can be compensated by properly adjusting
the rotation constants in the recurrence relation specification. One starts from
A−4, A−3, A−2, A−1 and A0, putting these values to the previous chaining value

A B C D E

A B C D E

+

+

+

+

si1

si2

f

Ki

Wi

Ai−5

Ai−4

Ai−3

Ai−2

Ai−1

Ai

Ai+1

Ai+2

...

...

ti1

ti2

ti3

ti4

f +

+

Ki

Wi

Fig. 2. Two equivalent representations of the state update
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(or the IV for the first message block) and computes the recurrence until A80

according to

Ai+1 = Ai−4 <<< ti1+Ki+fi(Ai−1, Ai−2 <<< ti3, Ai−3 <<< ti2)+Wi+Ai <<< ti4 (4)

The rotational values tij , 1 ≤ j ≤ 4 are derived from si1 and si2, where the
constants related to the rotation of B in the usual representation change around
the steps 20× k, k = 0, 1, 2, 3. For instance, to compute A42, we have t411 = 17,
t412 = 17, t413 = 25 and t414 = 11.

3 Compatible Paths Search Heuristic and Application to
HAS-160

In this section, we provide a new search heuristic that can be used to find com-
patible paths in the boomerang setting. The particular colliding quartet found
by applying the heuristic on HAS-160 is provided in Table 4.

Table 4. Second order collision for the full HAS-160 compression function

Message quartet

MA F6513317 810F1084 FFB71009 78CC955E C3C09F18 5379FC99 435586DA 9C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04

MB F6513317 810F1084 FFB71009 78CC955E C3C09f18 5379FC99 435786DA 9C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04

MC 76513317 010F1084 FFB71009 78CC955E 43C09F18 5379FC99 435786DA 1C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04

MD 76513317 010F1084 FFB71009 78CC955E 43C09f18 5379FC99 435586DA 1C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04

Chaining values quartet

IVA 1143BE75 9A9CA381 85B3F526 DA6ABE66 70EBE920

IVB 3AF7BD99 D08E2E63 245C2AF0 C4456954 CAC046EA

IVC 3AF7B599 D08E2E63 B45C2AF0 C425694C 3BE146F2

IVD 1143B675 9A9CA381 15B3F526 DA4ABE5E E20CE928

The heuristic uses quartets of 1-bit conditions from Table 2 to keep track of the
bit differences in each of the four compression function executions. Apart from
the single-path propagations proposed in [5], two additional types of boomerang
(cross-path) propagations are added. These boomerang propagations have been
previously listed in [15].

The forward and the backward differentials are specified next and this speci-
fication determines the initial problem on which the heuristic is applied. Let the
forward message differential consist of a one-bit difference in messages m6 and
m12 and the backward differential of a one-bit difference in m0, m1, m4 and m7,
as shown in Table 5. The particular bit-position of differences is left unspecified.
The choice of these difference positions is justified by the following start/end
points of the expanded message differences, expressed in terms of the notation
used in Fig. 1: (n0, n1, n2, n3, n4, n5) = (0, 8, 34, 53, 78, 80). It can be observed
that the middle part consists of 20 steps.

Now, the particular problem schematically described by Fig. 1 (a) is repre-
sented more specifically by Table 7, where the backward and forward message
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Table 5. Message differentials. Backward: steps 0-39, forward: steps 40-79

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕ m9 m0 m1 m2 m3
m12 ⊕ m13 m4 m5 m6 m7

m0⊕m1 m8 m9 m10 m11
m4⊕m5 m12 m13 m14 m15

⊕m10 ⊕ m11 ⊕m14 ⊕ m15 ⊕m2 ⊕ m3 ⊕m6⊕m7

m11 ⊕ m14 m3 m6 m9 m12
m7 ⊕m10 m15 m2 m5 m8

m3 ⊕ m6 m11 m14 m1 m4
m15 ⊕ m2 m7 m10 m13 m0

⊕ m1⊕ m4 ⊕m13⊕ m0 ⊕m9 ⊕ m12 ⊕m5 ⊕ m8

m4 ⊕ m13 m12 m5 m14 m7
m8 ⊕ m1 m0 m9 m2 m11

m12 ⊕m5 m4 m13 m6 m15
m0 ⊕ m9 m8 m1 m10 m3⊕ m6 ⊕m15 ⊕m10 ⊕ m3 ⊕m14 ⊕ m7 ⊕m2 ⊕ m11

m15 ⊕ m10 m7 m2 m13 m8
m11⊕ m6 m3 m14 m9 m4

m7 ⊕ m2 m15 m10 m5 m0
m3 ⊕ m14 m11 m6 m1 m12

⊕m5 ⊕ m0 ⊕m1⊕ m12 ⊕m13 ⊕ m8 ⊕m9 ⊕ m4

differentials are indicated in the first and the last column, respectively. At this
point, the only information that is present in the system is that the two paths
end at the corresponding steps n2 = 34 and n3 = 53. The output of the heuristic
in case of HAS-160 is given in Table 8. The full specifications of the two paths
intersect on 5 steps, which is the number of inner state registers in HAS-160.
Provided that the paths are compatible, one can now start from step 42 and
apply the usual message modification technique to satisfy both paths, which
resolves the middle of the boomerang as shown in Fig. 1 (a).

3.1 Search Strategy

The approach consists of variating the position of the message difference bit,
gradually extending the two paths, propagating the conditions in the quartet and
backtracking in case of a contradiction. In more detail, the heuristic proceeds as
follows:

(1) Randomize the positions of active bits in the active message words.
(2) Extend the specification of the forward/backward path backward/forward,

respectively. Ensure that paths are randomized over different step invoca-
tions.

(3) Propagate all new conditions. In case of contradiction, backtrack
(4) If the two paths are fully specified on a sufficient number of steps, return

the two paths

In step (1), the message disturbance position in the two differentials is ran-
domized to achieve variation in the paths. Alternatively, one position can be
fixed to bit 31 and the other position randomized at each step invocation. As
for step (2), at the point where the probability of contradiction between the two
paths is negligible, one can extend paths simply by randomly sampling them in
required steps and discarding non-narrow ones. Once the probability of contra-
diction becomes significant, substitute/backtrack strategy according to the Table
6 is applied to the remaining steps. In step (3), apart from propagations on a
single path [5], quartet and quartet addition propagations (explained in Section
4) are applied. The heuristic ends when the full specification of two paths (con-
taining only {-,u,n}) intersects on the number of words equal to the number of
registers in the compression function inner state, as is the case in Table 8.
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Table 6. Substitution rules: adding information to the forward path (left) and back-
ward path (right)

1. ???? �→ --??

2. ??-- �→ ----

3. ??xx �→ --xx

4. xx?? �→ {uu10,nn01}
5. xx-- �→ {uu10,nn01}
6. xxxx �→ {unnu,nuun}

1. ???? �→ ??--

2. --?? �→ ----

3. xx?? �→ xx--

4. ??xx �→ {01uu,10nn}
5. --xx �→ {01uu, 10nn}
6. xxxx �→ {unnu,nuun}

When new constraint information is to be added at a particular bit position,
one can either add information to the forward path or to the backward path.
Here, a clarification is necessary regarding the fact that in Table 8, four paths
are shown, whereas the heuristic searches for a pair of paths (forward and back-
ward path). This is due to the fact that the paths on the opposite faces of the
boomerang are equal (up to 0 and 1 symbols) and thus one can consider a pair
of paths. Nonetheless, the inner state of the search algorithm keeps all the four
paths explicitly.

The substitutions provided in Table 6 represent generalizations of the sub-
stitutions used in [5]. The choice whether the information will be added to the
forward or the backward path is made randomly each time. The left-hand and
the right-hand tables correspond to adding constraints to the forward and the
backward path, respectively. Consider for example rule xx-- %→ {uu10,nn01}. In
this notation, the symbols xx-- describe a bit position for which δ[Aj

i , B
j
i ] = x,

δ[Dj
i , C

j
i ] = x, δ[Bj

i , C
j
i ] = -, δ[Aj

i , D
j
i ] = -. The rule simply substitutes the ‘x’

symbol on the forward path by ‘u’ or ‘n’, while at the same time applying the
immediate propagation of the ‘-’ symbols to ‘0’ and ‘1’, respectively. This rule
represents a generalization of the x %→ {u,n} rule used in [5]. Other rules can be
explained in a similar manner.

One possible variation of the general heuristic above is as follows. Once the
two paths are sufficiently specified so that the contradictions are likely to occur,
instead of adding new constraints randomly, a beneficial strategy is to introduce
some graduality while extending the two paths. For example, one can choose a
parameter k and extend both paths by only k steps. If the heuristic succeeds in
extending the paths by k steps, reporting that there is no contradiction in the
system, more steps can be attempted. If in the intermediate steps of the search,
the path was in fact contradictory and this was not reported by 1-bit conditions,
further attempts to extend or find the messages satisfying the paths will fail.

3.2 Application to HAS-160

In this section, we describe how the above heuristic can be applied in the case of
HAS-160. First, we fix the position of the active bit in the backward differential
to b1 = 31. The following sequence of steps randomizes steps in the light-gray
area in Table 7:
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Table 7. Input for the search heuristic

step Δ[A,B] Δ[D,C] Δ[B,C] Δ[A,D] step

9 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 9
10 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 10
11 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 11
12 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 12
13 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 13
...

...
...

... [no difference]

...
...

29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29
30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30
31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31
32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 34
35 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 35

36 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 36
37 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 37
38 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 38

39 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 39

40 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 40

41 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 41
42 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 42
43 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 43

44 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 44

45 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 45

46 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 46
47 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 47
48 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 48
49 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51
52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52

53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53
54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54
...

... [no difference]

...
...

...
...

76 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 76

77 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 77

Table 8. Output of the heuristic: compatible paths for HAS-160

step Δ[A,B] Δ[D,C] Δ[B,C] Δ[A,D] step

29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29
30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30
31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31
32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 0??????????????????????????????? 1??????????????????????????????? u------------------------------- u------------------------------- 34
35 0??????????u???????x0???x-0????? 1??????????u???????x0???x-1????? u----------1--------0-----u----- u----------0--------0-----u----- 35

36 1x????????xu?-01B?--0Bx--u0D???? 0x????????xu?-11B?--1Bx--u0D???? n----------1--u1----u----10----- n----------0--u1----u----00----- 36
37 11-0D0B??0n0?101-x-10-01u01C???x 11-0D1B??0n1?100-x-10-00u10C???x 11-0-u---00u-10n---10-0n1un----- 11-0-u---01u-10n---10-0n0un1---- 37
38 00u0nn-1n01uu000uu-011u00nnn-01- 01u0nn-1n01uu110uu-001u10nnn-11- 0u1000-100111uu011-0n11u0000-u1- 0u0011-110100uu000-0n10u0111-u1- 38

39 n101-1000100-0-0000-1---100-010n n110-0010101-0-1001-1---001-100n 01un-n0u010u-0-u00u-1---n0u-un00 11un-n0u010u-0-u00u-1---n0u-un01 39

40 1-100010001-01--0n1-u-0-00--11-1 1-010011101-00--1n1-u-0-10--11-1 1-nu001uu01-0n--u01-1-0-u0--11-1 1-nu001uu01-0n--u11-0-0-u0--11-1 40

41 u--1--00--0-01--0--0u--001-0---1 u--0--00--0-11--1--1u--001-0---1 1--n--00--0-u1--u--u1--001-0---1 0--n--00--0-u1--u--u0--001-0---1 41
42 u---1-01001-110--n01011--n10---1 u---0-11110-011--n00000--n00---0 1---n-u1uun-n1u--00n0nn--0n0---n 0---n-u1uun-n1u--10n0nn--1n0---n 42
43 n------01----0------u------00-un n------00----0------u------01-un 0????--0nD???0x?????1x??x--0u-10 1????--0nD???0x?????0x??x--0u-01 43

44 0-----10----------------1u------ 0------0----------------1u------ 0?????C0????????????????11?????x 0?????C0????????????????10?????x 44

45 ------00------------u------1---- ------00------------u------1---- ??????00????????????1??????1???? ??????00????????????0??????1???? 45

46 u------------------------------- u------------------------------- 1??????????????????????????????? 0??????????????????????????????? 46
47 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 47
48 -------u------------------------ -------u------------------------ ???????1???????????????????????? ???????0???????????????????????? 48
49 -------n------------------------ -------n------------------------ ???????0???????????????????????? ???????1???????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51
52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52
53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53
54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54

- Randomize the position of the forward message difference active bit b2.

- With the message difference fully specified by b1, b2, sample narrow paths
in the inner state words in steps denoted by light-gray in Table 7.

- Propagate conditions w.r.t. the three propagation types explained in Section
4. This step is applied repeatedly until none of the three propagation types
can be applied on any of the bit positions.
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Here, the path sampling is performed simply by initializing randomly the two in-
stances of the path at the given step, calculating the recurrence over the required
number of steps and extracting the path. If the Hamming weight of the path
is greater than some pre-specified threshold, it is discarded and a new path is
sampled. Using the above sampling of partial solution to the paths, the following
procedure aims to find the full solution:

(1) Randomize steps in the light-gray area according to the procedure above
(steps 43-49 and 34-37 in the forward and backward paths, respectively).

(2) Randomly choose (i, j), 0 ≤ i ≤ 31, 38 ≤ j ≤ 42, a position within the
steps denoted by dark-grey in Table 7. If applicable, apply the substitution
specified by Table 6. If not, choose another position. In case there is none,
return the state.

(3) Propagate conditions and backtrack in case of contradiction. After a contra-
diction was reached a sufficient number of times, go to step (1).

After reducing the number of steps on which the two differentials meet from
5 to 3 (i.e., putting k = 4, where it should be noted that after the propagation
the number of unconstrained bits will be relatively small), we received several
paths reported as non-contradictory. At that point, there are two possible routes
to verify the actual correctness of the intermediate result. One is to switch from
1-bit conditions to multi-bit conditions (such as 1.5-bit or 2.5-bit conditions
[15]) that capture more information. ARXtools [15] can readily be used for this
purpose. Each 2.5-bit verification using ARXtools for checking the compatibility
of two paths took around 3-5 minutes. Another option is to continue with the
search heuristic towards extending the specification of the paths to more steps,
restarting always from the saved intermediate path state. As the knowledge in
the system grows, the propagations turns a high proportion of bits into 0 and 1,
which diminishes the possibility of contradiction. If the solution cannot be found
after some time threshold t, the path can be abandoned. We experimented with
both options above and concluded that both approaches are successful.

3.3 Full Complexity of Finding the HAS-160 Second Order Collision

Our implementation of the heuristic found a correct pair of compatible paths
in less than 5 days of execution on an 8-core Intel i7 CPU running at 2.67GHz.
In more detail, as explained in Section 3.2, we ran the heuristic to search for
paths that meet on 3 instead on 5 steps. It should be noted that due to many
propagations, after the search stops, the resulting paths in fact have a small
number of remaining unspecified bits in steps 38-42 (less than 32). The heuristic
yielded around 8 solutions per day and among 40 returned path pairs, one turned
out to be compatible and was successfully extended by one step more, as shown
in Table 8.

The conditions for the two paths that are not explicitly given as u,n,0,1

bits in Table 8 are provided in Tables 9 and 10. To find the quartet of message
words and inner states that follow the two differentials in steps 34 to 49, inner
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Table 9. Backward differential conditions not shown in Table 8

Step Conditions

33 A33,14 �= A32,14

34 A34,20 = A33,20

35 A35,0 �= A34,0, A35,16 �= A33,31, A35,26 �= A34,26

36 A36,3 = A35,3, A36,9 �= A35,9, A36,21 = A35,21, A36,22 = A34,5, A36,23 = A35,23

37 A37,0 = A36,0, A37,1 = A36,1, A37,2 �= A35,17, A37,13 = A36,13, A37,23 �= A36,23

38 A38,25 = A36,8

39 A39,19 ∨ A37,2 = 1

40 A40,17 ∨ A38,0 = 1, A40,30 ∨ A38,13 = 1

41 A41,16 ∨ A39,23 = 1

Table 10. Forward differential conditions not shown in Table 8

Step Conditions

37 A37,2 = A36,2, A37,3 �= A36,3, A37,10 �= A36,10, A37,13 = A36,28, A37,15 = 0, A37,25 = A36,8, A37,29 = A36,12

38 A38,0 = 1

39 A39,4 = 1, A39,8 = 0, A39,9 = 1, A39,12 = 0, A39,17 = 0, A39,19 = 1

40 A40,4 = 0, A40,5 = 0, A40,8 = 0, A40,12 = 1

41 A41,13 = 0, A41,14 = 0

42 A42,7 = 0,

43 A43,6 = 0, A43,7 ∨ A41,14 = 1

44 A44,0 = 0, A44,1 = 0, A44,4 ∨ A42,11 = 1, A44,26 ∨ A42,1 = 1

45 A45,26 = 0

46 A46,4 ∨ A44,11 = 1

47 A47,4 = 1, A47,24 ∨ A45,31 = 1, A47,31 = 1

48 A48,31 = 0

49 A49,17 = 0

50 A50,17 = 0, A50,24 = 1

51 A51,17 = 0

state registers in step 42 are chosen to follow the conditions specified by Tables
9,10 and Table 8 and then the usual message modification procedure is applied
backward and forward.

Once the middle steps of the quartet structure n2 = 34 to n3 = 53 are
satisfied, the second order collision property extends to steps n1 = 8 to n4 = 78
with probability 1 (see Fig. 1 (b)). To cover all of the compression function steps,
the middle steps are kept constant and the remaining ones are randomized until
the second order collision property is satisfied. In particular, if m6 and m15 are
randomized while m6⊕m15 is kept constant, according to the message expansion
specification, the inner state will be randomized for 54 ≤ i ≤ 80 and 0 ≤ i ≤ 35.
Similarly, if m6 and m4 are randomized where m6 ⊕ m4 is kept constant, the
randomization will happen for 52 ≤ i ≤ 79 and 0 ≤ i ≤ 34. Here, a small penalty
in probability is paid due to the fact that the paths may be corrupted towards
the start/end points. The two mentioned randomizations provide around 64 bits
of freedom.

The probability that one randomization explained above yields a second order
collision can be bounded from below by p2q2, where p and q are the probabilities
of two selected sparse differentials in steps 0 ≤ i ≤ n1 and n4 ≤ i < 80, respec-
tively. By counting the number of conditions in sparse paths that happened in
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Table 11. Message differences after propagation

step Δ[WA,WB] Δ[WD,WC ] Δ[WB,WC ] Δ[WA,WD]

33 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

34 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

35 -------------------------------- -------------------------------- -------------------------------- --------------------------------

36 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

37 -------------------------------- -------------------------------- -------------------------------- --------------------------------

38 -------------------------------- -------------------------------- -------------------------------- --------------------------------

39 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

40 0-------------u----------------- 1-------------u----------------- u-------------1----------------- u-------------0-----------------

41 --------0-----u----------------- --------0-----u----------------- --------0-----1----------------- --------0-----0-----------------

42 -------------------------------1 -------------------------------1 -------------------------------1 -------------------------------1

43 -------------------------------- -------------------------------- -------------------------------- --------------------------------

44 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

45 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

46 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

47 -------------------------------- -------------------------------- -------------------------------- --------------------------------

48 -------------------------------- -------------------------------- -------------------------------- --------------------------------

the quartet in Table 4, we obtain p = 2−22 and q = 2−3 and the probability
lower bound p2q2 = 2−50. The actual time of execution on the above mentioned
PC was less than two days, due to the additional differential paths which con-
tribute to the exact probability of achieving the second order collision property
(previously named amplified probability [3,15]).

4 Details on Condition Propagation

The heuristic keeps track of the current state of the system by keeping the
following information in memory:

- Four differential path tables keeping the current state of bit-conditions
- 4× r carry graphs [24] (one carry graph for each of four paths consisting of
r steps)

In our implementation, we used r = 16, keeping the information about steps
33-48. The carry graphs model the carry transitions allowed by the knowledge
present in the system. Below, the three types of knowledge propagation are
described. The propagations are applied as long as the system is not fully prop-
agated with respect to all three types below.

4.1 Single-Path Propagations

An explicit example of a single-path propagation [5] (see also [24,26]) is provided
below. The constraints and the corresponding carry graphs for at a particular
bit position are all explicitly shown. The new propagated constraints as well as
the removed carry graph edges are indicated.

Throughout the compression function execution specified by (4), for any 1 ≤
i ≤ 80 and 0 ≤ j ≤ 31, bit Aj

i is computed based on the 5 input bits in Ai−j ,
1 ≤ j ≤ 5, the message word bit as well as a particular constant bit. Moreover,
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. . .

δK 01101110110110011110101110100001

δ[WB,41, WC,41] --------0-----0-----------------
δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

δK 01101110110110011110101110100001

δ[WB,41, WC,41] --------0-----0-----------------
δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

. . .

c0
C

c0
B

c1
C

c1
B

c2
C

c2
B

Fig. 3. Extract of single-path path constraints

bit Aj
i depends on the carries coming from the computations at bit positions

j < k ≤ 0.
In Fig. 3, an extract of the path is provided, borrowed from the Δ[B,C]

path in Table 8. The bit positions treated in this case are δ[B1
42, C

1
42] (left) and

δ[B0
42, C

0
42] (right). The shaded bits are the bit positions participating in the

computation of the two bits. As for the carry graph, it consists of 32 subgraphs,
each comprising of 5 × 5 nodes. In Fig. 3, only the subgraphs corresponding to
bit positions 1 (left) and 0 (right) are shown. Each subgraph node represents a
particular carry configuration at the particular bit position. Due to the fact that
there is 5 summands in (4), the carry value is limited to {0, . . .4} and thus each
subgraph contains 5× 5 nodes. The edges in the graphs represent possible carry
configuration transitions from bit position i to i+ 1.

Next, the edges connecting subgraphs for bit positions i = 0 to i = 1 in Fig. 3
are explained. The shown edges and the corresponding bit-conditions are aligned
in the sense that there is no possible propagations at the particular positions
neither from the bit-conditions to graphs nor vice-versa. According to the bit-
conditions on position 0, we have

c1B|B0
42 = c1B|1 = 1 +W 0

B,41 +B15
37 + f2(1, 1, 1) + 0 = 1 +W 0

B,41 +B15
37

c1C |C0
42 = c1C |0 = 1 +W 0

C,41 + C15
37 + f2(1, 0, 1) + 0 = 1 +W 0

C,41 + C15
37 + 1

From the above two equalities, it follows that W 0
B,41 = B15

37 and W 0
C,41 = C15

37 .

Since δ[W 0
B,41,W

0
C,41] and δ[B

15
37 , C

15
37 ] are set to -, the possible carry configura-

tions are (c1B , c
1
C) ∈ {(0, 1), (1, 2)}, which corresponds to the two edges between

the two subgraphs.
Whenever it is possible to deduce new information from what is already

present in the system, propagations need to be carried out until no new informa-
tion can be derived. Continuing with the setting in Fig. 3, assume that during
the heuristic, the symbol - at position δ[W 0

B,41,W
0
C,41] is substituted by 0. Then,

the propagation at this bit consists of substituting - at position δ[B15
37 , C

15
37 ] by

0 and deleting the (0, 0) %→ (1, 2) graph edge. The edge deletion continues to
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the left and to the right. In case of Fig. 3, this amounts to deleting the edges
coming out of node (1, 2) and continuing in the same manner throughout the
rest of the subgraphs. Next, all of the influenced bit positions, either through
carry graphs or through bit-conditions, need to be repropagated similarly to the
process described above.

4.2 Quartet Propagations

This type of propagations is the simplest of all three types presented in this
section, since it does not involve the carry graphs. An example of this type of
propagation is as follows. Let (i, j) denote a specific bit position in the range
of the considered steps. Let the bit-conditions δ[Aj

i , B
j
i ], δ[D

j
i , C

j
i ], δ[B

j
i , C

j
i ],

δ[Aj
i , D

j
i ] in the four paths be equal to u, x, -, and ?, respectively. It follows

that Aj
i = 0, Bj

i = 1, Cj
i = 1 and Dj

i = 0 and thus the quartet can be readily
substituted by a new one

(ux-?) %→ (uu10)

Given a quartet of conditions, the substitution quartet is found by going through
all the bit value quartets that satisfy the given condition quartet. The new
quartet consists of the symbols from Table 2 that represent minimal sets contain
the valid bit value pairs.

4.3 Quartet Addition Propagations

In this subsection, the following terminology is adopted: carry subgraphs as
shown in Fig. 3 are called 2-graphs. Nodes with at least one input/output edge
in the 2-graphs are called active nodes. During the execution of the heuristic,
each active 2-graph node corresponds to a possible carry configuration that has
not yet been ruled out by the heuristic.

Quartet addition propagation is illustrated in Fig. 4. The four graphs in the
top part represent a particular case of the 2-graphs that correspond to a sin-
gle bit position (i, j) on paths [A,B], [B,C], [D,C], [A,D], respectively from
left to right. The active nodes are circled and the information about the num-
ber of input/output edges is abstracted from the picture. The quartet addition
propagation is based on the fact that the four different 2-graphs may impose in-
compatible constraint on the carry configurations at the considered bit position.
For instance, according to the 2-graph corresponding to the path [D,C] (third
graph from the left in Fig. 4), since node (cD, cC) = (3, 2) is active, it follows
that having a carry equal to 3 at this bit position in the branch D is not ruled
out. However, since there is no active nodes in the third column of the (cA, cD)
graph, the node (cD, cC) = (3, 2) should be deactivated.

For the purpose of deciding which 2-carry graph nodes should be deactivated,
it is convenient to introduce another type of carry graphs that will be called
4-carry graphs. For each bit-position covered by the heuristic, the four 2-carry
graphs are represented as one 4-carry graph, as shown in the bottom part of
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cD

cA

cC

cD

cC

cB

cB

cA

propagate

cA cB

cCcD

cA cB

cCcD

Fig. 4. Example: 2-carry graphs and the corresponding 4-carry graph before and after
propagation

Fig. 4. The 4-carry graphs abstract the information about active nodes in the
2-carry graphs.

As shown in Fig. 4, the 4-carry graph has four groups of nodes that simply
represent the carry values cA, cB, cC and cD, respectively. The edges in the
4-carry graph are constructed simply by mapping the active nodes in the corre-
sponding 2-carry graphs to the edges between the corresponding node groups.
This mapping is specified by an example as follows. The active nodes in the
(cA, cD) 2-carry graph are (0, 0) and (2, 1). This is translated to the edges (0, 0)
and (2, 1) between the cA and cD branches in the 4-carry graph. The other three
2-carry graph active nodes are mapped to the edges analogously.

The 4-carry graph representation allows expressing the quartet addition prop-
agation rules in a natural way. For that purpose, let a cycle denote a closed path
connecting four nodes, where no two nodes are members of the same node group
in the 4-graph. The propagation rules are then as follows:

(R1) Remove all “dead-end” edges, i.e., the ones with an end node of degree 1
(R2) Remove all edges that do not participate in any cycle

In the case of the propagation given in Fig. 4, the quartet addition propagation
consisted of three applications of (R1) and one application of (R2). Since each 4-
graph edge corresponds to a node in the corresponding 2-graph, the edge removal
according to rules (R1) and (R2) amounts to deactivating the corresponding
nodes in the 2-graph. The node deactivation is done by deleting all input and
output edges for the corresponding 2-graph node. In the case of our HAS-160
search, implementing only rule (R1) turned out to be sufficient.
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5 Conclusion

We proposed a heuristic for searching for compatible differential paths and ap-
plied it to HAS-160. Instead of working with 0/1 bit values, we used the rea-
soning on sets of bits described by 1-bit constraints. The three types of propa-
gations used during the search (single-path propagations, quartet propagations
and quartet addition propagations) are explained through particular examples.
Using the 1-bit constraints along with these propagations yielded an acceptable
rate of false positives and the second order collision was successfully found. One
possible future research direction is to evaluate the performance of the proposed
heuristic in case of SHA-2 with a goal of improving the attack [3] and to assess
the impact of high rate of contradictory paths reported in [20] in this context.

Acknowledgments. The authors would like to thank Gaëtan Leurent for his
help related to ARXtools and the discussions on the topic.
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Abstract. In this article, we propose an improved cryptanalysis of the
double-branch hash function standard RIPEMD-160. Using a carefully de-
signed non-linear path search tool, we study the potential differential
paths that can be constructed from a difference in a single message word
and show that some of these message words can lead to very good differ-
ential path candidates. Leveraging the recent freedom degree utilization
technique from Landelle and Peyrin to merge two branch instances, we
eventually manage to obtain a semi-free-start collision attack for 42 steps
of the RIPEMD-160 compression function, while the previously best know
result reached 36 steps. In addition, we also describe a 36-step semi-free-
start collision attack which starts from the first step.

Keywords: RIPEMD-160, semi-free-start collision, compression function,
hash function.

1 Introduction

Due to their widespread use in many applications and protocols, hash functions
are among the most important primitives in cryptography. A hash function H
is a function that takes an arbitrarily long message M as input and outputs a
fixed-length hash value of size n bits. Cryptographic hash functions have the
extra requirement that some security properties, such as collision resistance and
(second)-preimage resistance, must be fulfilled. More precisely, it should be im-
possible for an adversary to find a collision (two distinct messages that lead
to the same hash value) in less than 2n/2 hash computations, or a (second)-
preimage (a message hashing to a given challenge) in less than 2n hash compu-
tations. Most standardized hash functions are based upon the Merkle-Damg̊ard
paradigm [13,3] and iterate a compression function h with fixed input size to
handle arbitrarily long messages. The compression function itself should ensure
equivalent security properties in order for the hash function to inherit from them.

The cryptographic community have seen very impressive advances in hash
functions cryptanalysis in the recent years [20,18,19,17], with weaknesses or even
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sometimes collisions exhibited for many standards such as MD4, MD5, SHA-0 and
SHA-1. These functions have in common their design strategy, based on the uti-
lization of additions, rotations, xors and boolean functions in an unbalanced
Feistel network. In order to diversify the panel of standardized hash functions
and make a backup plan available in case the last survivors of this MD-SHA fam-
ily gets broken as well, NIST organized a 4-year SHA-3 competition which led
to the selection of Keccak [1] as new standardized primitive. The move of the
industry towards SHA-3 will take a lot of time and even broken functions such
as MD5 or SHA-1 remain widely used. Among the MD-SHA family, only SHA-2

and RIPEMD-160 compression functions are still unbroken, although practical
collisions on the SHA-2 compression function have been improved from 24 to
38 steps recently [11,12]. The compression function used in RIPEMD-128 was
recently shown not to be collision resistant [8].

RIPEMD can be considered as a subfamily of the MD-SHA-family as its first rep-
resentative, RIPEMD-0 [2], basically consists in two MD4-like [15] functions com-
puted in parallel (but with different constant additions for the two branches),
with 48 steps in total. Even though RIPEMD-0 was recommended by the Euro-
pean RACE Integrity Primitives Evaluation (RIPE) consortium, its security was
put into question with the early work from Dobbertin [5] and the practical col-
lision attack from Wang et al. [17]. Meanwhile, in 1996, Dobbertin, Bosselaers
and Preneel [6] proposed two strengthened versions of the original RIPEMD-0,
called RIPEMD-128 and RIPEMD-160, with 128/160-bit output and 64/80 steps
respectively. RIPEMD-0 main flaw was that its two computation branches were
too much similar and this issue was patched in RIPEMD-128 and RIPEMD-160

by using not only different constants, but also different rotation values, boolean
functions and message insertion schedules in the two branches. This two-branch
structure in RIPEMD family is a good method to reduce the ability of the attacker
to properly use the available freedom degrees and to find good differential paths
for the entire scheme. RIPEMD-160 is a worldwide ISO/IEC standards [7] that is
yet unbroken and is present in many implementations of security protocols.

As of today, the best results on RIPEMD-160 are a very costly 31-step preim-
age attack [14], a practical 36-step semi-free-start collision attack [10] on the
compression function (not starting from the first step), and a distinguisher on
up to 51 steps of the compression function with a very high complexity [16].

Our Contributions. In this article, we improve the best know results on
RIPEMD-160, proposing a semi-free-start collision attack on 42 steps of its com-
pression function and a semi-free-start collision attack on 36 steps starting from
the first step. Our differential paths were crafted thanks to a very efficient non-
linear path search tool (Section 3) and by inserting a difference only in a single
message word, in a hope for a sparse difference trail. We then explain in Sec-
tion 4 why we believe the 8th message input word (M7) is the best candidate
for that matter. Once the differential paths settled, we leverage in Section 5
the freedom degree utilization technique introduced by Landelle and Peyrin [8]
for RIPEMD-128 that merges two branch instances together in order to obtain a
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semi-free-start collision. It is to be noted that the step function of RIPEMD-160
makes it much more difficult to find a collision attack compared to RIPEMD-128.
This is mainly due to the fact that the diffusion is better, but also because
even though differences might be absorbed in the boolean function, they will
propagate anyway at least once through a free term (which was not the case in
RIPEMD-128). We give a description of RIPEMD-160 in Section 2 and summarize
our results in Section 6.

2 Description of RIPEMD-160

RIPEMD-160 [6] is a 160-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function h that takes as input a 512-bit message block mi

and a 160-bit chaining variable cvi:

cvi+1 = h(cvi,mi)

where the message m to hash is padded beforehand to a multiple of 512 bits1

and the first chaining variable is set to a predetermined initial value cv0 = IV .
We refer to [6] for a complete description of RIPEMD-160. In the rest of this

article, we denote by [Z]i the i-th bit of a word Z, starting the counting from 0.
� and � represent the modular addition and subtraction on 32 bits, and ⊕, ∨,
∧, the bitwise “exclusive or”, the bitwise “or”, and the bitwise “and” function
respectively.

2.1 RIPEMD-160 Compression Function

The RIPEMD-160 compression function is a wider version of RIPEMD-128, which
is in turn based on MD4, but with the particularity that it uses two parallel
instances of it. We differentiate these two computation branches by left and
right branch and we denote by Xi (resp. Yi) the 32-bit word of left branch (resp.
right branch) that will be updated during step i of the compression function.
The compression function process is composed of 80 steps divided into 5 rounds
of 16 steps each in both branches.

Initialization. The 160-bit input chaining variable cvi is divided into 5 words
hi of 32 bits each, that will be used to initialize the left and right branch 160-bit
internal state:

X−4 = (h0)
>>>10 X−3 = (h4)

>>>10 X−2 = (h3)
>>>10 X−1 = h2 X0 = h1

Y−4 = (h0)
>>>10 Y−3 = (h4)

>>>10 Y−2 = (h3)
>>>10 Y−1 = h2 Y0 = h1 .

1 The padding is the same as for MD4: a “1” is first appended to the message, then
x “0” bits (with x = 512 − (|m| + 1 + 64 (mod 512))) are added, and finally the
message length |m| coded on 64 bits is appended as well.
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The Message Expansion. The 512-bit input message block is divided into
16 words Mi of 32 bits each. Each word Mi will be used once in every round in
a permuted order (similarly to MD4 and RIPEMD-128) and for both branches. We
denote by W l

i (resp. W r
i ) the 32-bit expanded message word that will be used to

update the left branch (resp. right branch) during step i. We have for 0 ≤ j ≤ 4
and 0 ≤ k ≤ 15:

W l
j·16+k = Mπl

j(k)
and W r

j·16+k = Mπr
j (k)

where πl
j and πr

j are permutations.

The Step Function. At every step i, the registers Xi+1 and Yi+1 are updated
with functions f l

j and f r
j that depend on the round j in which i belongs:

Xi+1 = (Xi−3)
<<<10 � ((Xi−4)

<<<10 � Φl
j(Xi, Xi−1, (Xi−2)

<<<10)�W l
i �K l

j)
<<<sli ,

Yi+1 = (Yi−3)
<<<10 � ((Yi−4)

<<<10 � Φr
j (Yi, Yi−1, (Yi−2)

<<<10)�W r
i �Kr

j )
<<<sri ,

where K l
j,K

r
j are 32-bit constants defined for every round j and every branch,

sli, s
r
i are rotation constants defined for every step i and every branch, Φl

j , Φ
r
j are

32-bit boolean functions defined for every round j and every branch.

The Finalization. A finalization and a feed-forward is applied when all 80
steps have been computed in both branches. The four 32-bit words h′i composing
the output chaining variable are finally obtained by:

h′0 = h1 �X79 � (Y78)
<<<10 h′1 = h2 � (X78)

<<<10 � (Y77)
<<<10

h′2 = h3 � (X77)
<<<10 � (Y76)

<<<10 h′3 = h4 � (X76)
<<<10 � Y80

h′4 = h0 �X80 � Y79

3 Non-linear Path Search

To find a non-linear differential path in RIPEMD-160, we use the techniques
developed by Mendel et al. [11,12]. This automated search algorithm can be
used to find both, differential characteristics and conforming message pairs (note
that we will use it only for the differential characteristics part in this article). We
briefly describe the tool in Section 3.1, and the new improvements and specific
configuration for RIPEMD-160 and our attack in Section 3.2.

3.1 Automated Search for Differential Characteristics

The basic idea of the search algorithm is to pick and guess previously unrestricted
bits. After each guess, the information due to these restrictions is propagated
to other bits. If an inconsistency occurs, the algorithm backtracks to an earlier
state of the search and tries to correct it. Similar to [11,12], we denote these
three parts of the search by decision (guessing), deduction (propagation), and
backtracking (correction). Then, the search algorithm proceeds as follows:
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Decision (Guessing)
1. Pick randomly (or according to some heuristic) an unrestricted decision

bit.
2. Impose new constraints on this decision bit.

Deduction (Propagation)
3. Propagate the new information to other variables and equations as de-

scribed in [11,12].
4. If an inconsistency is detected start backtracking, else continue with step

1.
Backtracking (Correction)

5. Try a different choice for the decision bit.
6. If all choices result in an inconsistency, mark the bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with step 1.

During the search, we mainly use generalized conditions [4] to store, restrict
and propagate information. The decision of choosing which bits to guess depends
strongly on the specific attack, hash function and preferred resulting path. E.g.
if some parts of the non-linear path should be especially sparse, we guess the
corresponding state words first.

Similar to [11,12], new restrictions are propagated using brute-force propa-
gation within bitslices for each Boolean function and modular addition. In the
backtracking, we remember a small set of critical bits and repeatedly check if all
of them can be resolved. This way, we leave dead search branches faster. Addi-
tionally, we restart the search after a certain number of inconsistencies occur.

The main difficulty in finding a long differential characteristic lies in the fine-
tuning of the search algorithm. There are a lot of variations possible which can
decide whether the search eventually succeeds or fails. We describe the specific
improvements for RIPEMD-160 in the next section.

3.2 Improvements for RIPEMD-160

To efficiently find non-linear differential paths and message pairs for a larger
number of steps than in previous attacks [10], we had to improve the search
in several ways. Especially finding a non-linear path for the XOR-round of
RIPEMD-160 was quite challenging.

In order to improve the propagation of information, we have combined the
bitslices of the two modular additions in each step of RIPEMD-160 into a single
bitslice. The two carries of the first and second modular addition are computed
and stored together within a generalized 3-bit condition, which is defined simi-
larly as the 2.5-bit condition of [9]. Without this combination, many contradic-
tions would be detected very late during the search, and therefore reduce the
overall performance.

To find sparser paths at the beginning or end of the non-linear path, we first
propagate the single bit condition in the message word backward and forward
more or less linearly and by hand. Then, the automatic search tool is used to con-
nect the paths. Note that due to the additional modular addition in RIPEMD-160,
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we can stay sparse longer in forward direction than in backward direction. This
can be observed when looking at our resulting differential paths in Appendix A.

Once we have found a candidate for a differential path, we immediately con-
tinue the search for partial confirming message pairs, similar as in [11,12]. We
first pick decision bits ’-’ which are constraint by linear two-bit conditions of the
form (Xi,j = Xk,l or Xi,j �= Xk,l). This ensures that those bits which influence a
lot of other bits are guessed first. This way, inconsistent characteristics are found
faster and can also be corrected by the backtracking step of the path search.

4 Differential Paths

The previous semi-free-start collision attacks on RIPEMD compression functions
usually start by spending the available freedom degrees in the first steps in each
branch, and then continue the computation in the forward direction, verifying
the rest of the differential path in each branch probabilistically. With this attack
strategy, the non-linear part of the differential paths for both branches should
be located in the early steps. Indeed, the non-linear parts are usually the most
costly part and therefore should be handle in priority by the attack with the
available freedom degrees.

Since the compression functions belonging to the RIPEMD family use a two-
branch parallel structure sharing the same initial chaining value, the left and
right branches can be regarded as somehow connected in the first steps. With
this observation, in [8] Landelle and Peyrin proposed a new method to find semi-
free-start collisions for RIPEMD-128. Their method allows the attacker to use the
message freedom degrees not necessarily in the early steps of each branch, and
therefore relax a bit the constraint that the most costly parts (the non-linear
chunks) must be located in the early steps as well. Consequently, the space of
possible differential paths is increased and likely to contain better candidates
since the probabilistic part in each branch is reduced.

Figure 1 shows the difference between the previous and the new strategies.
The attack process proposed in [8] is made of three steps. Firstly, the attacker
independently choose the internal states in both branches and start fixing some
message words in order to handle the two non-linear parts. Then, he uses some
of the remaining message words available to merge the two branches to the same
chaining variable by computing backward from the middle. Finally, the rest of
the differential path in both branches is verified probabilistically by computing
forward from the middle.

4.1 On the Choice of the Message Word

As in [8], in order to find a sparse differential path for a semi-free-start collision
attack with the biggest number of steps, we chose to insert differences in only a
single message word. Then, for all the 16 message words, we have analyzed how
many steps can be potentially attacked. The results are summarized in Table 1.
Note that the details of the attacks are not considered at this stage and the final
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cvi cvi+1

Linear
Non

Linear

1 2

Linear
Non

Linear

1 2

cvi cvi+1

0 Linear
Non

Linear

1 32

0 Linear
Non

Linear

1 32

Fig. 1. The previous (left-hand side) and new (right-hand side) approach for collision
search on double-branch compression functions introduced in [8]

complexity will highly depend on the merging process and the quality of the
differential paths that can be found (both linear and non-linear parts). Yet, by
guessing for each message insertion where would be the best location for the two
non-linear parts, this preliminary analysis gives a rough estimation of how many
steps can be reached potentially. The overall attack being quite complex and
time consuming to settle, this will help us to focus directly on good candidates.

We found that message words M7 and M14 both seem to be rather good
choices when trying to verify the following criteria:

1. the non-linear part in both branches should be short, in order to consume
less freedom degrees.

2. the early steps of the two non-linear parts should be rather close to each
other, which will help the merging.

3. the late steps of the non-linear parts should be as sparse as possible, since af-
ter the merging comes the probabilistic phase and ensuring a sparse incoming
difference mask would guarantee a rather high differential probability when
computing forward.

4. some message word difference injections allow the differences injected in very
late steps in the two branches to cancel each other through the final feed-
forward operation. If this trick is applicable, one can usually get 4 to 6 extra
steps for the collision attack with a relatively low cost.

Once M7 and M14 identified as good candidates, we tried to design the entire
differential path and establish the merging phase. During our search for the
linear part of the differential path, we found it much harder to find good ones
for RIPEMD-160 compared to RIPEMD-128. The reason is that the diffusion of
the step function of RIPEMD-160 is much better than RIPEMD-128 as it prevents
from fully and directly absorbing all the differences. For example, a step in
an IF round in RIPEMD-128 can be fully controlled by the attacker such that no
difference diffusion occurs. However, in RIPEMD-160, one extra free term appears
in the addition of the step function formula and this forces at least a diffusion
of a factor two (that cannot be absorbed by the IF function). As a consequence,
we were not able to find differential paths as sparse as in [8] and the number of
attacked steps is also much lower.
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Table 1. Rough estimation of the number of attackable steps for various choices of
message words differences injection (in parenthesis are given the steps window)

Message Word M0 M1 M2 M3

Attackable Steps 51 (26-76) 46 (2-47) 52 (6-57) 48 (4-51)

Message Word M4 M5 M6 M7

Attackable Steps 42 (8-49) 50 (6-55) 39 (10-48) 56 (8-63)

Message Word M8 M9 M10 M11

Attackable Steps 36 (12-47) 39 (10-48) 37 (14-50) 38 (12-49)

Message Word M12 M13 M14 M15

Attackable Steps 38 (16-53) 34 (41-74) 58 (2-59) 43 (11-53)

4.2 Difficulty of Calculating the Probability

Another important difference between RIPEMD-128 and RIPEMD-160 is the step
differential probability calculation. While it is easy to calculate the differential
probability for each step of a given differential path of RIPEMD-128, it is not the
case for RIPEMD-160. The reason is that the step function in RIPEMD-160 is no
longer a S-function (a function for which the i-th output bit depends only on
the i first lower bits of all input words), and therefore the accurate calculation
of the differential probability is very hard. Yet, one can write the step function
as two S-functions by introducing a temporary state that we denote Qi. We use
the step function of the left branch as an example:

Qi = (Xi−4)
<<<10 � Φl

j(Xi, Xi−1, (Xi−2)
<<<10)�W l

i �K l
j,

Xi+1 = (Xi−3)
<<<10 �Q

≪sli
i .

Now the probability of the sub-steps can be calculated precisely. One possible
way to calculate the probability of the step function is to specify the conditions
on Qi and obtain Pr[Xi → Qi] · Pr[Qi → Xi+1] as the step probability.

In fact, this estimation of the probability is not correct. First, there is no
freedom degree injected in the step Qi → Xi+1, which means it is not indepen-
dent from the step of Xi → Qi. Thus their probability can not be calculated as
a simple multiplication. Even if this estimation is accurate, it will only repre-
sent a lower bound of the real probability, since there could be a lot of possible
equivalent characteristics on Qi and only one is taken in account here. We used
experiments to estimate the real probability and found that the probabilities
obtained using the first method is much lower than the real probability observed
when running the attack.

We then tried to come up with another way to calculate the step differential
probability. We summed the probabilities of the two sub-steps for all possible
characteristics on Qi, i.e. we used ΣQi(Pr[Xi → Qi] · Pr[Qi → Xi+1]) as differ-
ential probability for a step. The calculated probability turned out to be much
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higher than the real one. This is explained by the fact that characteristics on
Qi in different steps will sometimes introduce conditions on Xi and there could
be contradictions between some of the conditions. In the calculation, we did not
consider the compatibility between the Qi in different steps. It is therefore not
surprising that the calculated probability is much higher.

In the following sections, all the probabilities given were obtained by exper-
iments while testing random samples. We leave the problem of theoretically
calculating the real step differential probability as an open problem.

4.3 48-Step Semi-Free-Start Collision Path

We eventually chose M7 as message word for the single difference insertion and
the shape of the differential path that we will use can be found in Figure 2.
The non-linear parts are located between steps 16-41 and 19-36 for left the right
branch respectively. In steps 58-64, after a linear propagation of the difference
injected by M7, the differences in the output internal state are suitable to apply
the feed-forward trick that allows us to get a collision on the output of the
compression function (at the end of step 64). The complete differential path is
displayed in Figure 5 in Appendix.

Note that this differential path does not necessarily require to be followed
until step 64 to find a collision (thanks to the feed-forward trick). Indeed, by
stopping 6 steps before (step 58), the last difference insertions from M7 will be
removed and no difference will be present in the internal states in both branches
(therefore leading directly to a collision, without even using the feed-forward
trick). We did a measurement and found that the collision probability for the
feed-forward trick (from step 58 to 64) is about 2−11.3. However, our attacks
requiring already a lot of operations, we have to remove these extra 6 steps and
aim for a 42-step semi-free-start collision attack instead. Yet, one should keep
in mind that a rather small improvement with regards to the attack complexity
would probably lead to the direct obtaining of a 48-step semi-free-start collision
attack by putting back the 6 extra steps. The details of the attack will be given
in the next section.
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round 3
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Fig. 2. The shape of our 48-step differential path for the semi-free-start collision attack
on the RIPEMD-160 compression function. The numbers represent the message words
inserted at each step and the red curves represent the rough amount of differences
in the internal state during each step. The arrows show where the bit differences are
injected with M7. The dashed lines represent the limits of the steps attacked.
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4.4 36-Step Semi-Free-Start Collision Path from the First Step

Besides the 48-step path, we also exhibit a semi-free-start collision path starting
from the first step, which also use message word M7 to introduce differences.
Since the boolean function in the first round of the left branch is XOR, it is
quite hard to find a non-linear differential path. As a consequence, the path
we were able to find turns out to have three bits of differences in M7 instead
of a single one. The local collisions are located between the first two injections
of M7 in both branches, thus one can directly derive a 36-step collision path
starting from the very first step of RIPEMD-160. Figure 3 shows the shape of this
differential path and the detailed path is given in Figure 6 in Appendix.
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1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2
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5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
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15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
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8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

XOR
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Fig. 3. The shape of our differential path for the 36-step semi-free-start collision attack
on the RIPEMD-160 from the first step. The numbers are the message words inserted
at each step and the red curves represent the rough amount differences in the internal
state during each step. The arrows show where the bit differences are injected with
M7. The dashed lines represent the limits of the steps attacked.

5 Merging the Two Branches

Once the differential path is set, we need not only to find conforming pairs for
both branches, but also to merge the two branches in order to make sure that
they will reach the same chaining variables on their input. Note that for a semi-
free-start collision, one only needs to ensure that the input chaining variables
for both branches are the same and the attacker can actually choose this value
freely. In contrary, for a hash collision, the attacker would have to merge both
branches to the same chaining variable, fixed to a certain predefined value.

5.1 Semi-Free-Start Collision

As explained in previous sections, even though an interesting 48-step differential
path has been found (Figure 5), we will only look for a 42-step semi-free-start
collision attack on RIPEMD-160, since the feed-forward collision trick would in-
crease the attack complexity beyond the birthday bound. Our algorithm to find
a semi-free-start collision is separated in three phases, which we quickly describe
here as a high-level view:
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• Phase 1: fix some bits of the message words and the internal states in both
branches as preparation for the next phases of the attack. This will allow us
to fulfill in advance some conditions of the differential path.

• Phase 2: fix the internal state variables X26, X27, X28, X29, X30 of the left
branch and Y21, Y22, Y23, Y24, Y25 of the right branch. Then, iteratively fix
message words M11, M15, M8, M3, M12, M14, M10, M2, M5, M9, M0 and
M6 in this particular order, so as to fulfill the conditions located inside or
close to the non-linear parts. Once these internal state variables or message
words are successfully fixed, we call this candidate at the end of phase 2 a
starting point for the merging.

• Phase 3: use the remaining free message words M1, M4, M7 and M13 to
merge the internal states of both branches to the same input chaining value.
Since every value is fixed at this point, check if the rest of the differential
path is fulfilled as well (the uncontrolled part).

Phase 1: Preparation. Before finding a starting point for the merging, we can
prepare the differential path by introducing certain conditions on the internal
states in both branches in order to increase the probability of the uncontrolled
part of the differential path.

The condition that we will force is that bits 16 to 25 of X35 must be equal
to 0n00n00000. The effect of this condition is that when a starting point will be
generated, we will be able to directly deduce the 8 lowest bits of X37 only by
fixing bits 16 to 25 of M9. In order to explain this, note that calculating X37

during the step function in the forward direction gives:

X37 = X≪10
33 � (X≪10

32 � ONZ(X36, X35, X34)�M9 �K l
36)

≪14

Since ONZ(X36, X35, X34) = (X36 ∨ X35) ⊕ X34, bits 16 to 25 of X36 will have
no influence on the output of the boolean function ONZ if the corresponding X35

bits are set to zero (in a starting point, X32, X33, X34 and X35 are already fully
known). Then, we can choose M9 such that bit 16 of X≪10

32 � (((X36 ∨X35) ⊕
X34)&3ff) � (M9&3ff) � K36 equals zero, which will stop the carry coming
from the lower bits. As a result, the 8 lowest bits of X37 will not depend on X36

anymore (and thus neither on M4 when computing forward, since X36 directly
depends on M4) .

One example of our generated starting points is shown in Figure 4, in which
we applied our preparation trick. Before generating this starting point, we forced
the additional conditions on X35, and once the starting point found, fixing bits
16 to 25 of M9 to 01101000010 will make sure that the last 8 bits of X37 will
be equal to 11111010. Note that the 26-th bit of M9 and 9-th bit of X37 are
deduced from the known conditions.

Applying this trick is interesting for the attacker because the uncontrolled
probability (steps 35-58) of the left branch is increased.

Phase 2: Finding a Starting Point. Given the differential path from Figure 5,
we can use the freedom degrees available in both left and right branches internal
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Fig. 4. Starting point for the 48-step differential path, on which the preparation trick
was applied and the last 8 bits of X37 are fixed in advance by choosing several bits of
M9. At this point the remaining free message words are M9, M0, M6, M13, M1, M7

and M4, which will be used during the merging phase.

states (320 bits) and in the message words (512 bits) to fulfill as much differential
conditions as possible. To make the attacker easier, we chose to fix first the five
consecutive internal states words that contain the most differential conditions
(X26, X27, X28, X29, X30 in the left branch and Y21, Y22, Y23, Y24, Y25 in the right
branch). Then, we fix a few message words one by one in the given order and
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continue the computation of the internal states by computing forward and back-
ward in both branches (from X26, X27, X28, X29, X30 and Y21, Y22, Y23, Y24, Y25)

Fixing the first 5 chaining values (X26, X27, X28, X29, X30 of the left branch
and Y21, Y22, Y23, Y24, Y25 of the right branch) is quite an easy task. Note that
the two branches can be fixed independently at this stage. We used algorithms
similar to the ones searching for a differential path: we just guess the unrestricted
bits - from lower step to higher step, lower bit to higher bit and check if any
inconsistency occurs. If both 0 and 1 selection of one bit lead to an inconsistency,
we apply the backtracking in the search tree by one level and guess the same bit
again. The guessing continues until all bits are fixed. If after a predefined number
of backtracking events (chosen according to the performance of the search) no
solutions are found, we can restart the whole search in order to avoid being
trapped in a bad subspace with no solution at all.

Concerning the fixing of the message words, we used a different approach.
Here, our search was applied word by word. Following this message words order-
ing M11, M15, M8, M3, M12, M14, M10, M2, M5, M9, M0 and M6, we guess the
free bits, and some internal states values will directly be deduced by comput-
ing in both forward and backward directions from the already known internal
state values in both branches. Note that the two branches are not independent
anymore at this stage (since all message words are added several times in both
branches), so it is important to check often for any inconsistency that could be
detected. The backtracking and restarting options are also helpful here. We can
use an extra trick to get a performance improvement of the search by pre-fixing
the value of the word with the biggest number conditions in it (either message
word or internal state word), and then deduce the value from all the words
involved in this computation.

Our tool can find a starting point in a couple of minutes, with a program not
really optimized. We will discuss about the complexity to generate the starting
points in the next section.

Phase 3: Merging Both Branches with M1, M4, M7 and M13. A starting
point example is given in Figure 4. Our target is to use the remaining free
message words M1, M4, M7 and M13 to make sure that we have a perfect match
on the values of the five initial chaining words of both branches, i.e. Xi = Yi for
i ∈ {12, 13, 14, 15, 16} (the indexes started at 12 because we are not attacking
from the first step here). The merging consists of four phases and in order to
ease the reading we marked the free message words with colors in each phase.
Once their values are fixed, we use black color for them.

• Step 1: Use M13 to ensure X16 = Y16. As one can see, the value of X16 is
already fixed at this point. Now, observe the two backward step functions of
Y17 and Y16:

Y≪10
17 = (Y22 � Y≪10

18 )≫8 � IFZ(Y21, Y20, Y
≪10
19 )�Kr

21 �M13

Y≪10
16 = (Y21 � Y≪10

17 )≫12 � IFZ(Y20, Y19, Y
≪10
18 )�Kr

20 �M0
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Incorporating the equation X16 = Y16, we can direcly calculate the value of
M13 from the known ones:

M13 = (X≪10
16 � IFZ(Y20, Y19, Y

≪10
18 )�Kr

20 �M0)
≪12

�Y21 � (Y22 � Y≪10
18 )≫8 � IFZ(Y21, Y20, Y

≪10
19 )�Kr

21.

• Step 2: Similarly, useM1 andM7 to ensure conditions X15 = Y15 and X14 =
Y14. Observing the step functions:

X≪10
15 = (X20 �X≪10

16 )≫13 � IFX(X19, X18, X
≪10
17 )�K l

19 �M1

= Y≪10
15 = (Y20 � Y≪10

16 )≫7 � IFZ(Y19, Y18, Y
≪10
17 )�Kr

19 �M7

X≪10
14 = (X19 �X≪10

15 )≫8 � IFX(X18, X17, X
≪10
16 )�K l

18 �M13

= Y≪10
14 = (Y19 � Y≪10

15 )≫15 � IFZ(Y18, Y17, Y
≪10
16 )�Kr

18 �M3

and introducing notations for the constants, the equations above are simpli-
fied to

A�M1 = B �M7

(X19 � (A�M1))
≫8 �D = (Y19 � (B �M7))

≫15 � E

Let X = (X19 � (A�M1))
≫8, C0 = E�D and C1 = Y19 �X19. The above

equations become one:

X � C0 = (C1 �X≪8)≫15 (1)

where C0 and C1 are constants. The problem of finding the value of M1 and
M7 is equivalent to solving this equation. We find that this equation can be
solved with 29 computations: we can solve this equation for all 264 possible
values of C0 and C1 and store the solutions (M1 and M7) in a big look-up
table. Building and storing this table requires 273 time and 264 memory.

• Step 3: Use M4 to ensure X13 = Y13. After step 2, Y13 is already fixed. Thus
we can use a simple calculation to get the value of M4:

M4 = (X18 �X≪10
14 )≫6 � IFX(X17, X16, X

≪10
15 )� Y13

• Step 4: The uncontrolled part of the merging. At this point, all freedom
degrees have been used and the last equation on the internal state X12 = Y12
will be fulfilled with a probability of 2−32.

Uncontrolled Probability. After the merging, steps 36-58 of the left branch
and steps 29-58 of the right branch are still uncontrolled. Due to the difficulty of
calculating the probability, we used experiments to evaluate these probabilities.
Starting from a generated starting point, e.g. in Figure 4, we randomly choose
values of message words M5,M9,M0,M6,M13,M1,M7 and M4. Then we com-
pute forward to check if the differences are all canceled after the last injection
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of M7. Note that if there are conditions on message words M1, M4, M7 and
M13, they should be fulfilled probabilistically and included in the probability
estimation, since the freedom degrees of these message words are used to match
the initial internal states values. For the other free message words M5, M9, M0

and M6, we do not need to consider their conditions in the probability, because
we can freely choose their values to fulfill these conditions.

We measured the probability of both branches separately. After applying the
preparation trick, the uncontrolled probability of the left branch is 2−8.8. The
uncontrolled probability of the right branch is 2−36.6. Moreover, during the merg-
ing phase, we could not control the value matching on the first IV word, and
this adds another factor of 2−32.

In total, the uncontrolled probability is 2−32 ·2−8.8 ·2−36.6 = 2−77.4. Since this
probability is too low and already close to the birthday bound for RIPEMD-160,
we are not able to afford the feed-forward tricks in steps 58-64.

Complexity Evaluation. First we calculate the complexity to generate the
starting points. Since the uncontrolled probability is 2−77.4, we need to generate
277.4 starting points. However, we do not need to restart the generation from the
beginning. Indeed, every time we need a new starting point, we can randomize
M6 to get a new one. Once all possible choices of M6 have been used, we can
still use freedom degrees of M0,M9 and M5 to generate all the required starting
points. Though there are many constraints on these four message words, luckily
the number of conditions on M6 is only two bits (one on X18 and one on X17).
We can randomly choose value for X18 fulfilling the known conditions and check
if the one-bit condition on X17 is fulfilled. Thus, we can find a new starting point
from a known one with a complexity of 4 step functions, which is equivalent to
4/(42 ∗ 2) ≈ 2−4.4 calls of the 42-step compression function of RIPEMD-160. For
the other message words, we do not need to go into the details of the complexity,
since the number of times we have to regenerate them is quite small and it is
not the bottleneck of our attack complexity. From the reasoning above, we can
conclude that the average complexity to generate a starting point is 2−4.4. The
complexity of generating all the required starting points is then 273.

Now, we need to consider the complexity of the merging phase. In order to
evaluate this cost, we implemented the merging of the last four initial internal
states. The table lookup in second phase is estimated using a RAM access (since
the table will be very bog). In total, our implementation of the merging takes
about 145 cycles. The OPENSSL implementation of RIPEMD-160 compression
function on the same computer takes about 1040 cycles. Thus, 42 steps of the
compression function takes about 1040 ∗ 42/80 = 546 cycles. Then we can say
that our merging costs 145/546 ≈ 2−1.9 calls of the 42-step compression function.

Finally, we can calculate the complexity of the semi-free start collision attack
on 42-step RIPEMD-160: 273 + 277.4−1.9 ≈ 275.5.
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5.2 First Step Semi-Free-Start Collision

This section discusses about the merging phase of the two branches to get a
semi-free-start collision attack on the the first 36 steps. The idea of the merging
is similar to the merging for the 42-step attack and we describe it briefly.

We start with generating a starting point. After that, the path in the left
branch has been satisfied until step 14, and the remaining uncontrolled proba-
bility amounts to 2−4.6. The path in the right branch has been fully satisfied.
After that, there are free bits left in message words M0, M2, M5, M7, M9 and
M14. Next, we show these free bits are enough to generate semi-free-start colli-
sions, and thus we only need to generate a single starting point.

The procedure of merging is detailed as below.

1. Set random values to M9 and the free bits of M7, and then compute until
X2 in the left branch.

2. Set M5 = M5 � 1 (initialize M5 as 0), and compute until X−1 in the left
branch. If M5 becomes 0 again, goto Step 1.

3. Compute the values of M2 and M0 that make Y0 = X0 and Y−1 = X−1.
4. ComputeX−2 and Y−2, and check ifX−2 = Y−2 holds. In case ofX−2 �= Y−2,

goto Step 2.
5. Compute X−3, and then compute the value of M14 that makes Y−3 = X−3.

Check if the conditions on M14 are satisfied. If the conditions are not satis-
fied, goto step 1.

6. ComputeX−4 and Y−4, and check ifX−4 = Y−4 holds. In case ofX−4 �= Y−4,
goto Step 2.

Both X−2 = Y−2 and X−4 = Y−4 are satisfied with a probability 2−32, and
four bit conditions are set on M14. Thus we have to try 268 random values of
M7, M9, and M5 to succeed in merging the two branches once. Recall that the
uncontrolled probability is 2−4.6. So we need to merge the two branches 24.6

times. Thus, the total complexity of the attack is 268+4.6 × 16/72 ≈ 270.4.

6 Results

We give in Table 2 a comparison of our attacks to previous results on RIPEMD-160.
Compared to the previous best semi-free-start collision attack on RIPEMD-160

(36 middle steps), we have increased the number of attackable steps by 6 and
proposed a 36-step semi-free-start collision attack that starts from the first step.

7 Conclusion

In this article, we have proposed an improved cryptanalysis of the hash function
RIPEMD-160, which is an ISO/IEC standard. We have found a 42-step semi-
free-start collision attack on RIPEMD-160 starting from the second step and a
36-step semi-free-start collision attack starting from the first step. Compared to
previous results, we have two improvements. First the number of attacked steps
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Table 2. Summary of known and new preimage and collision attacks on RIPEMD-160

hash and compression function

Function Size Target Attack Type #Steps Complexity Ref.

RIPEMD-160 160 comp. function preimage 31 2148 [14]

RIPEMD-160 160 hash function preimage 31 2155 [14]

RIPEMD-160 160 comp. function semi-free-start collision 36 low [10]

RIPEMD-160 160 comp. function semi-free-start collision 42 275.5 new

RIPEMD-160 160 comp. function semi-free-start collision 36 270.4 new

RIPEMD-160 160 comp. function non-randomness 48 low [10]

RIPEMD-160 160 comp. function non-randomness 51 2158 [16]

is increased from 36 to 42, and secondly, for the same number of attacked steps,
we propose an attack that starts from the first step. Moreover, our semi-free-
start collision attacks give a positive answer to the open problem raised in [10],
in which the authors were not able to find any non-linear differential path in the
first step, due to the XOR function that makes the non-linear part search much
harder.

Our 42-step semi-free-start attack is obtained from a 48-step differential path.
Unfortunately, we couldn’t add these extra 6 steps to our attack without reaching
a complexity beyond the birthday bound (this extra part would be verified with
probability 2−11.3). Future works might include improving the probabilistic part
even further. If one can improve this part by a factor of about 27, a 48-step semi-
free-start collision attack would then be obtained directly with our proposed
differential path. Another possible improvement would be that if one can find
a better non-linear differential path in the first round, it might be possible to
merge both branches at the same time to a given IV and eventually obtain a
hash function collision.
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Fig. 5. The 48-step differential path
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Fig. 6. The 36-step differential path
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1 Introduction

A hash function H is a function that takes an arbitrarily long messageM as input
and outputs a fixed-length hash value of size n bits. Classical security require-
ments for a cryptographic hash function are collision resistance and (second)-
preimage resistance. Namely, it should be impossible for an adversary to find a
collision (two distinct messages that lead to the same hash value) in less than
2n/2 hash computations, or a (second)-preimage (a message hashing to a given
challenge) in less than 2n hash computations. Most standardized hash functions
are based upon the Merkle-Damgård paradigm [35,11] and iterate a compression
function h with fixed input and output size to handle arbitrarily long messages.
The compression function itself should ensure equivalent security properties in
order for the hash function to inherit from them. When the internal state size
of the compression is the same as for the hash function, then the construction is
called narrow-pipe, otherwise it is called a wide-pipe.

The SHA-3 competition organized by the NIST [49] eventually ended in early
October 2012 with the selection of KECCAK [16] as sole winner and new hash
function standard. During the last decade, due to this competition and to the
cryptanalysis breakthroughs [54,55] that provoked this reaction from the NIST,
hash functions have been among the most active topics in academic cryptogra-
phy. This infatuation is justified by the fact that these primitives are utilized
tremendously in practice, with applications ranging from digital signatures, mes-
sage authentication codes, to secure storage of passwords databases. However, a
hash function is also seen as the “swiss knife” of cryptography: many protocols
use the random oracle paradigm [3] to check and even prove that they present
no structural flaw, and while there is no such thing as a random oracle, design-
ers use hash functions to “simulate” its behavior. Overall, even if collision and
(second)-preimage resistance are their most important security properties, cryp-
tographers are therefore also expecting hash functions to present no structural
flaw whatsoever, i.e. to be indistinguishable from a random oracle. NIST, for ex-
ample, clearly specified in its SHA-3 call for candidates [49] that the submitted
proposals have to support randomized hashing and not present any “non-random
behavior”.

On the cryptanalysis side, many various distinguishers have been proposed
in the recent years, mainly against AES or SHA-3 candidates. One can cite
for example zero-sums distinguishers [2], rotational distinguishers [24] or sub-
space distinguishers [26]. Limited-birthday distinguishers have been introduced
by Gilbert and Peyrin [15] as a tool to distinguish 8 rounds of the AES block
cipher from an ideal permutation in the known-key model, and it was later
used against other symmetric key primitives [40,37,13,22]. It consists in deriving
pairs of plaintext/ciphertext couples (P,C), (P ′, C′) (or input/output couples
(M,H(M)), (M ′, H(M ′)) for a one-way function) with an input xor difference
belonging to a set IN of 2I elements and an output xor difference belonging to a
set OUT of 2O elements, i.e. P ⊕P ′ ∈ IN and C⊕C′ ∈ OUT (or M ⊕M ′ ∈ IN
and H(M) ⊕ H(M ′) ∈ OUT ). What is the best generic attack complexity in
the case of an ideal permutation (or function) ? When IN and/or OUT are big
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enough then this problem is equivalent to a classical birthday paradox prob-
lem (i.e. with complexity min

{
2(n−O)/2, 2(n−I)/2

}
), but the idea underlying the

limited-birthday is that when IN and OUT are small an attacker might not be
able to use the birthday paradox as much as he would like to. Indeed, he will have
to perform several independent smaller birthday searches instead of a single big
one, and therefore the process will require much more computations. Gilbert and
Peyrin [15] proposed the best known generic algorithm for the limited-birthday
problem, whose complexity is max

{
min

{
2(n−I+1)/2, 2(n−O+1)/2

}
, 2n−I−O+1

}
for a permutation and max

{
2(n−O+1)/2, 2n−I−O+1

}
for a function1. However,

its optimality is yet unknown and it was only conjectured that their attack is the
best possible. As of today, only Nikolić et al. [39] provided a formal lower bound
proof, which is min

{
2n/2−2, 2n−(I+O)−3

}
. Unfortunately this bound is not tight

and only applies to permutations. For example, in the case of I = O = 0, the
attack complexity in [15] is 2n−I−O+1 = 2n+1 while the proven bound in [39]
only reaches 2n/2−2.

Some might argue that the limited-birthday problem can trivially be solved by
choosing a random input pair (X,Y ) and computing IN = {X⊕Y } and OUT =
{H(X)⊕H(Y )}. However, these pathological attackers, that we call “cheating
adversaries”, are meaningless: since hash functions are not processing any secret
and are completely public (unlike other primitives in cryptography), formalizing
security notions requires some kind of challenge, in order to avoid these cheating
adversaries (the same is true concerning the chosen-key model for block ciphers).
For example, there always exists an adversary that can output a collision with
a single operation and negligible memory (i.e. the adversary that just prints a
known collision). In general, this obstacle is avoided by considering that a hash
function is part of a family indexed by a key input (for example its Initial Value
(IV)), or by formalizing the human ignorance [43]. These pathological cases of
cheating adversaries are present for all distinguishers without challenges, even for
the subspace distinguisher for hash functions [26] or q-multicollisions for block
ciphers in the chosen-key model [5].

Our Contributions. To start, we provide in Section 2.1 a proper understand-
ing of limited-birthday distinguishers for the hash function setting. Namely, we
discuss potential issues arising from security notions for a public function with-
out challenge and describe various tricks to avoid pathological cheating adver-
saries. We also show that limited-birthday distinguishers for hash functions can
be used to attack a security notion very similar to the classical Target Collision
Resistance (TCR) property, which we call differential Target Collision Resistance
(dTCR).

Secondly, we provide in Section 2.2 a proof that the currently best known
generic attack for the limited-birthday problem (proposed by Gilbert and Peyrin
at FSE 2010 [15]) is indeed the best possible. More precisely, we show that the
1 There is obviously a trade-off between the complexity and the success probability,

which here is about 0.63. The original paper [15] missed ‘+1’s in the exponents,
which was firstly corrected by [37]
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computation complexity to solve the limited-birthday problem is bounded by
max

{
2(n−O+1)/2, 2n−I−O+1

}
. We can directly conclude that if for a collision

attack (i.e., O = 0) the set IN of possible message difference of the hash function
is limited to one or a few elements regardless of the randomization input, then
one can obtain a limited-birthday distinguisher on the function, even with a
complexity well beyond the birthday bound. It is to be noted that this condition
on the message difference mask is verified for almost all known collision attacks,
as for example with the recent advances on SHA-1 [54]. Overall, most known hash
function collision attacks are in fact more then just collision finding algorithms
since the message difference mask is constrained and, as a consequence, they are
now surprisingly becoming interesting even with a complexity beyond the 2n/2

birthday bound. Our work indicates that concerning distinguishing attacks the
security of many hash functions needs to be reevaluated accordingly.

We then move to the case of a compression function, naturally easier to break
than the whole hash function. Namely, we provide in Section 3 a generic algo-
rithm that can transform a semi-free-start collision attack on the compression
function into a limited-birthday distinguisher for the entire hash function. Be-
cause it is based on a meet-in-the-middle approach, this algorithm gets more in-
teresting for the attacker as the internal state of the hash function gets narrower.
To the best of the authors knowledge, this conversion is the first result turning
a classical semi-free-start collision attack on the compression function into some
weakness on the whole hash function (a previous work from Leurent [28] also
provides such a conversion, but it is only applicable in the very uncommon case
where the average semi-free-start collisions cost is lower than a single operation).

Finally, we provide in Section 4 some applications of our findings against real-
world hash functions, such as AES-based hash functions (Section 4.1), HAS-160
(Section 4.2), LANE (Section 4.3), RIPEMD-128 (Section 4.4), SHA-256 (Sec-
tion 4.5) and Whirlpool (Section 4.6).

2 Limited-Birthday Problem

Throughout this paper, we discuss limited-birthday distinguishers for one-way
functions, i.e., in our security model querying input values to obtain the corre-
sponding output values is allowed, but the opposite is forbidden.

In Sect. 2.1, we firstly explain that validating distinguishers without any chal-
lenge is hard due to cheating adversaries. We then explain that the ambiguity of
the validity does not exist if adversaries are challenged, and the limited-birthday
problem is useful even in such a challenged setting. In Sect. 2.2, we formally prove
that the previous generic attack that was conjectured as the best attack is indeed
optimal. Finally, several remarks are given in Sect. 2.3.

2.1 Importance of the Limited-Birthday Problem in Cryptography

Cheating Adversaries. Collision resistance is the only un-challenged notion
of the three classical security properties expected from a cryptographic hash
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function (collision, preimage, second-preimage), and, as such, the one that proved
to be the most difficult to analyze. One of the difficulty that arises for example
(and which is true for any un-challenged security property on a public function)
is that there is always an adversary that can output a collision immediately,
by simply hard-coding it. Rogaway [43] proposed a potential solution to this by
formalizing the so-called notion of human ignorance.

However, the existence of another type of pathological cheating adversary
has been often utilized as criticism of the limited-birthday distinguishers for-
malization: the adversary first chooses a random input pair (X,Y ), computes
IN = {X ⊕ Y } and OUT = {H(X) ⊕ H(Y )}, and then claims that he can
solve the limited-birthday problem with sets IN and OUT (where IN and OUT
are actually defined at the end of the attack). It is to be noted that such is-
sues already exist in the case of collision resistance and actually for any security
definition regarding a public function with an adversary that is not challenged
whatsoever.

Let’s come back to our collision resistance case for example. Security engineers
obviously understand that collision is an important security definition, but for
theoreticians collision is nothing more than a certain output difference Δ which
is equal to zero. Collision resistance therefore belongs to a more generic problem
that we could name diff(Δ) and which asks for the adversary to exhibit an input
pair (X,Y ) such that H(X) ⊕H(Y ) = Δ. All members of this set are equally
hard with regards to generic attacks. Collision resistance is actually diff(0), but
cheating adversaries exist for diff(Δ): by just choosing a random input pair
(X,Y ) and trivially claiming that we can solve diff(H(X)⊕H(Y )).

Similarly, one can design cheating adversaries for the recent q-multicollision
problem [5] used on AES: define the problem q-multi-diff(Δ1, . . . , Δq) that asks
for the attacker to exhibit q input pairs (X1, Y1), . . . , (Xq, Yq) such that H(X1)⊕
H(Y1) = δ ⊕Δ1, . . . , H(Xq)⊕H(Yq) = δ ⊕Δq. Then the q-multicollision prob-
lem is nothing else than q-multi-diff(0, . . . , 0) with a predefined δ, yet obvi-
ous cheating adversaries exist for q-multi-diff: just pick q random input pairs
(X1, Y1), . . . , (Xq, Yq), and claim that you can solve q-multi-diff(H(X1)⊕H(Y1)⊕
δ, . . . , H(Xq) ⊕H(Yq) ⊕ δ). The same reasoning applies to the subspace distin-
guishers [26] as well.

As a direct analogy, the limited-birthday problem LBP(IN,OUT ) with fully
defined sets IN and OUT belongs to the more general limited-birthday prob-
lem LBP. Thus, the limited-birthday distinguishers are as valid as collision, q-
multicollision or subspace distinguishers when the sets IN and OUT are fully
defined, and we emphasize that in the rest of the article the sets IN and OUT
are considered to be fully defined before the attacker starts to actually search
for a valid pair of inputs. Yet, in addition, we propose below some solutions to
overcome any potential cheating adversaries.

Challenging the Adversary. There are several cryptographic protocols that
allow users to provide some tweak to a function H . The tweak, T , plays the role
of enhancing the security, i.e., the attacker cannot obtain the target function



Limited-Birthday Distinguishers for Hash Functions 509

HT until the tweak value is determined. The limited-birthday distinguisher is
particularly useful for evaluating such a tweakable function HT . One of such
protocols is the randomized hashing [50], where a message to be signed with a
digital signature scheme is hashed after a tweak is applied in order to enhance
the security against forgery attacks. Let us first recall the security notion called
target collision resistance [4]. An n-bit tweakable function HT is said to be target
collision resistant if it is computationally hard to perform the following attack.

Target Collision Resistance (TCR)
1. The adversary chooses an input value I after some precomputation.
2. The value of T is chosen without any control by the adversary.
3. The adversary finds an input value I⊕Δ such that HT (I) = HT (I⊕

Δ).

The TCR notion is a base of the provable security of the randomized hashing
scheme2. In the SHA-3 competition, NIST required the submitted algorithms to
provide n bits of security for the randomized hashing scheme [49, Section 4.A].
We then slightly modify the TCR notion as follows.3

Differential Target Collision Resistance (dTCR)
1. The adversary chooses an input difference Δ after some precompu-

tation.
2. The value of T is chosen without any control by the adversary.
3. The adversary finds an input value I such that HT (I) = HT (I ⊕Δ).

Let the tweak T be a choice of a part of the algorithm design such as constant
values, Sboxes, and IV. For such a tweak, a differential attack can usually choose
IN and OUT independently of T . Therefore, for such a tweak, a limited-birthday
distinguisher for the hash function setting with |IN | = 1,OUT = {0}, and with a
complexity below 2n, is an attack on the dTCR notion. In section 4, we will show
several applications to real-world hash functions that satisfy those properties
against the tweaking method of the randomized hashing. We believe that the
impact of limited-birthday distinguishers is much bigger than just identifying a
non-random behavior as several other distinguishers do.

In the case of iterative hash functions, a very simple tweak can even be con-
sidered: randomizing the first message block M1. The attacker is challenged to
exhibit a non-random property on the function and with M1 as prefix chosen by
the challenger, i.e. every message queried or used must contain message blockM1

as prefix. In fact, the randomized hashing gives a tweak by choosing a random
string r, and processing r as a prefix and then XORing r to each input message
block. Because a challenge is asked to the attacker preliminarily, no cheating
2 Strictly speaking, security of the randomized hashing scheme is based on the eTCR

notion [18], for which the adversary finds input values (T ′, I⊕Δ) such that FT (I) =
FT ′(I⊕Δ) at Step 3 of the definition of TCR. Note that breaking TCR immediately
leads to breaking eTCR.

3 The two notions are similar, yet we leave as open problem the question regarding
any formal link between them.
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adversary exists in this setting. Moreover, many differential attacks can find IN
and OUT independently of the tweak value.

Note also that it is important for the tweak set size to be big enough, in order
to avoid any adversary that would precompute cheating behavior for any tweak
value.

2.2 The Limited-Birthday Problem for Hash Functions

Definition 1 (The limited-birthday problem). Let H be an n-bit output
hash function, that can be randomized by some input (IV or tweak or etc.) and
that processes input messages of fixed size, m bits where m ≥ n. Let IN be a set
of admissible input differences and OUT be a set of admissible output differences,
with the property that IN and OUT are closed sets with respect to ⊕. Then, for
the limited-birthday problem, the goal of the adversary is to generate a message
pair (M,M ′) such that M⊕M ′ ∈ IN and H(M)⊕H(M ′) ∈ OUT for a randomly
chosen instance of H.

A generic procedure to solve the limited-birthday problem in [15] is described
below. We denote by active (resp. inactive) the input bits for which the xor
difference cannot be chosen by the attacker (resp. can be chosen by the attacker).
Its illustration is given in Figure 2 in Appendix.

1. Choose a random value for the inactive bits.
2. For all |IN | values of the active bits, call the function oracle and obtain the

corresponding output values. Then, build
(|IN |

2

)
≈ |IN |2/2 pairs with the

queries replies received.
3. If a pair whose output difference is included in OUT is found, abort the

procedure. Otherwise, go back to Step 1 and choose another random value
for the inactive bits.

Note that if
(|IN |

2

)
> 2n/|OUT |, choosing

√
2n+1/|OUT | values of active bits in

Step 2 is enough.

Theorem 1. The limited-birthday attack complexity in [15] for a one-way func-
tion is

max

{√
2n+1

|OUT | ,
2n+1

|IN | · |OUT |

}
= max

{
2

n−O+1
2 , 2n−I−O+1

}
(1)

where I and O are defined by |IN | = 2I and |OUT | = 2O, respectively.

If |IN | is small, the complexity is 2n−I−O+1. However, even if |IN | is very big,
the complexity cannot be below 2

n−O+1
2 . Thus, the complexity is the maximum

of these two cases. It was conjectured that the above attack procedure is the
best possible. Then, based on this conjecture, presenting for a real hash function
an attack which is faster than Eq. (1) was regarded as a non-ideal behavior and
many results have been published in this context [15,40,13,22]. We close an open
problem by proving below the optimality of the above generic limited-birthday
attack.
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Theorem 2. The lower bound of the number of queries for the limited-birthday
distinguisher matches Eq. (1).

Proof. Let U be the attack complexity, i.e. the number of queries for the limited-
birthday distinguisher. In the case of

(
2n−I

2

)
> 2n−O, it holds that U ≥ 2

n−O+1
2

since, in this case, the situation is equivalent to the ordinary birthday attack.
Hence, it is sufficient to prove that U ≥ 2n−I−O+1 in the case of

(
2n−I

2

)
≤ 2n−O.

First, let I := {1, 2, . . . , 2n−I} and O := {1, 2, . . . , 2n−O} represent the sets
of inactive bits in inputs and outputs, respectively, and fix a set of queries by
the limited-birthday distinguisher arbitrarily. According to this set of queries,
a bipartite graph G := (I,O, E) can be defined as shown in Figure 1, where I
and O are partite sets and E is the edge set. In the bipartite graph G, each edge
e := (i, j) ∈ E, i ∈ I, j ∈ O, corresponds to a query with an inactive bit i ∈ I
and its output j ∈ O. Due to this correspondence, the bipartite graph G allows
multiedges which share the same end vertices. The pair of queries satisfying
limited-birthday collision corresponds to the multiedges, which we are going to
find.

Hereafter, we call a pair of edges which share the same vertex in I (but no
constraint for the other end vertex in O) as a valid pair. Because, for each edge,
the end vertex belonging to O is chosen according to the uniform distribution,
the probability that a randomly chosen valid pair is a solution for the limited-
birthday problem is 2−(n−O). Therefore, the total number of valid pairs, denoted
by V , should be greater than or equal to 2n−O in order to obtain a solution for
the limited-birthday problem with a good probability.

For i ∈ I, let di be the degree of the vertex i, which is the number of edges
connected to the vertex i. It is obvious that di is no more than 2I , and the
number of valid pairs incident with the vertex i is

(
di

2

)
. Hence, the total number

V of valid pairs can be expressed as

V =
2n−I∑
i=1

(
di
2

)
≈ 1

2

2n−I∑
i=1

d2i . (2)

  Outputs classified 

by inactive bits  

  Inputs classified 

by inactive bits  

Fig. 1. Graph representation of general strategy of limited-birthday attacks
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Noticing that the degree of each vertex belonging to I can have at most 2I and
the total number of queries is U , we have the following constraints without loss
of generality:

2n−I∑
i=1

di = U ; 2I ≥ d1 ≥ d2 ≥ · · · ≥ d2n−I ≥ 0. (3)

Here, we also note that the above (d1, d2, . . . , d2n−I ) is determined by the set of
queries by the distinguisher, namely, it can represent arbitrary attack strategy
including the limited-birthday attack proposed in [15]. Hence, the best possible
attack can be obtained by maximizing the total number of valid pairs V .

In order to maximize V in Eq. (2) under the constraints Eq. (3), the-
ory of majorization is useful [30]: for real valued �-dimensional vectors x =
(x1, x2, . . . , x�) ∈ R� and y = (y1, y2, . . . , y�) ∈ R� arranged as decreasing order,
i.e. x1 ≥ x2 ≥ · · · ≥ x� and y1 ≥ y2 ≥ · · · ≥ y�, we say that y is majorized by
x, in symbols x , y, if they satisfy

∑t
i=1 xi ≥

∑t
i=1 yi for 1 ≤ t ≤ � − 1 and∑�

i=1 xi =
∑�

i=1 yi. We note that a function f : R� → R is said to be Schur-
convex if f(x) ≥ f(y) is satisfied for all x,y ∈ R� with x , y. It is well known4

that a function
∑�

i=1 x
k
i is Schur-convex on R�

+ for any k > 1.
Based on theory of majorization, the vector D∗ = (d∗1, d

∗
2, . . . , d

∗
2n−I ) defined

by5

d∗i =

{
2I , for 1 ≤ i ≤ U/2I

0, for U/2I < i ≤ 2n−I (4)

attains the maximum value of V under the constraints of Eq. (3). To see this, it
is sufficient to check that the vector D∗ majorizes all vectors satisfying Eq. (3),
and the fact that the function

∑n
i=1 x

2
i is Schur-convex. Hence, substituting Eq.

(4) into (3), we can upper-bound V as

V ≤ 1

2
· 22I · U

2I
=
U · 2I
2

. (5)

As we have already seen, V ≥ 2n−O is necessary in order to find a limited-
birthday collision with sufficiently high probability. Combining this inequality
with Eq. (5), we obtain U ≥ 2n−I−O+1, which completes the proof. ��

2.3 Remarks

The proof in Section 2.2 can be extended to the lower bound of the query com-
plexity for the 4-sum, or in general the k-sum problem, with pre-specified ad-
missible difference sets IN . Here, the k-sum problem finds k distinct input val-
ues where the xor sum of their output values is 0. It is already known that
4 For instance, this fact is immediately recognized from [30, C.1. Proposition] which

states that
∑

i g(xi) is Schur convex if g(x) is convex. Obviously, g(x) = xk, x ≥ 0,
is convex for any k > 1.

5 We roughly assume that U is a power of 2.
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several signature schemes [52] and several instantiations of the random oracle
[29] are badly affected if an underlying hash function is vulnerable against the
k-sum attack. When the degree of each input vertex is di in Figure 1, the num-
ber of valid k-tuples of edges that share the same input vertex is

∑2n−I

i=1

(
di

k

)
,

which is approximately (1/k!) ·
∑2n−I

i=1 dki . Because the function
∑

i d
k
i for any

k > 1 is Schur-convex, We can prove that D∗ which majorizes any other 2n−I-
dimensional vectors is the optimal choice to minimize the query complexity.

Finally, it is to be noted that the reasoning of our proof is only done on
the input and output set sizes. Therefore, one can use this proof even for other
properties than xor difference. When IN and/or OUT are not closed sets our
proof still applies, but is not tight since the algorithm from [15] can not be
utilized anymore. We leave this gap as an open problem, yet conjecturing that
the attack complexity will grow rapidly as the sets gets more opened.

3 Generic Limited-Birthday Distinguishers

Several previous works analyzed the complex relation between the security of a
hash function and its compression function, both in a proof oriented [9] or in an
attack oriented manner [41]. For example, a well known result is that a preimage
attack for a compression function (also called pseudo-preimage attack) can be
transformed into a preimage attack on the hash function when a narrow-pipe
design is used by a meet-in-the-middle technique. In this section, we explain how
an attacker can turn a semi-free-start collision attack (even when its complexity
is beyond the birthday bound) into a limited-birthday distinguisher on the hash
function using a meet-in-the-middle approach.

Let h be a compression function takingm bits of message and k bits of chaining
variable as inputs and outputting a k-bit value. Then, let H be an n-bit hash
function (with n ≤ k), that iteratively calls h to process incoming m-bit message
words. A semi-free-start collision is a pair ((CV,M), (CV,M ′)) with M �= M ′

and such that h(CV,M) = h(CV,M ′). We assume that an attacker is able to
find 2s distinct semi-free-start collisions for h with complexity 2c operations (by
distinct we mean that at least each CV value is different), with s ≤ k/2. Let IN
be the set of the possible message difference masks for all these semi-free-start
collisions, and we still denote its size by |IN | = 2I . We derive a limited-birthday
distinguisher on H with a simple meet-in-the-middle technique as follows:

1. generate the 2s semi-free-start collisions ((CVj ,Mj), (CVj ,M
′
j)) on h with

2c operations and add all 2s CVj values in a list L
2. from the hash function initial value IV , pick 2k−s random message blocks

Mi. Compute their corresponding output value after application of h and
place these values in a list L′.

3. check if there is a collision between a member of L and L′, and output
as solution the corresponding input message couple ((Mi||Mj), (Mi||M ′

j)),
that verifies H(Mi||Mj) = H(Mi||M ′

j). Note that collisions are propagated
when adding extra message blocks in the hash computation chain, thus the
padding constraint is always satisfied.
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First, it is clear that during the third phase we have enough elements in
both lists (2k−s and 2s) to find a collision with good probability. The overall
complexity is 2c + 2k−s operations and min

{
2k−s, 2s

}
memory.6 The attacker

outputs a collision for the hash function (fixed output difference mask to zero,
thus |OUT | = 1) with an input difference mask lying in a space IN of size 2I

(since the IV of the hash function is fixed for both members of the pair and
since the difference mask zero is applied to the first block Mi), and the limited-
birthday tells us that this should cost max

{
2n/2, 2n−I+1

}
in the ideal case. Since

2c+2k−s ≥ 2s+2k−s ≥ 2k/2 ≥ 2n/2, this attack will lead to a valid distinguisher
if and only if

2c + 2k−s < 2n−I+1. (6)

One may wonder why we do not simply use a parameter x = c − s that
represents the average semi-free-start collision cost instead of c and s (and then
the attack complexity would simply be 2(k+x)/2+1). The reason is that many
semi-free-start collision attacks consume a lot of freedom degrees and often the
attacker is unable to generate as many as he wants. Looking at the relation (6),
one can remark that for a particular hash function (i.e. k and n are fixed) and
for a fixed I, the attacker only has to find the right amount of semi-free-start
collisions that minimizes 2c + 2k−s. Also, in the best case where a semi-free-
start collision costs a single operation on average (i.e. c = s), the best for him
is to generate as many semi-free-start collisions as he can (up to 2k/2). More
generally, the cheaper are the semi-free-start collisions to generate, the closer the
distinguisher will be to the 2k/2 birthday bound. Conversely, the more expensive
are semi-free-start collisions to generate, the closer the distinguisher will be to the
2k internal preimage bound. Finally, because of its meet-in-the-middle nature,
it is only natural that the complexity of the attack reduces when the size of the
hash function internal pipe decreases. For hash candidates with double-pipe and
more (k ≥ 2n), our algorithm will never lead to a valid distinguisher, which is
yet another argument indicating that having at least a double-pipe for a hash
function increases its security.

It is to be noted that the very same reasoning can be applied even if the
semi-free-start collision attack requires several message blocks in order to be per-
formed. Moreover, one can even further generalize by looking at semi-free-start
near-collision attacks, that is finding a pair ((CV,M), (CV,M ′)) with M �= M ′

and such that h(CV,M) 	 h(CV,M ′). However, near collisions (unlike real
collisions) do not propagate when adding extra message blocks in the hash com-
putation chain. Therefore, in order to use semi-free-start near-collision attacks,
it is necessary that they have to be able to include the hash padding inside the

6 If the cost for generating each semi-free-start collision is 1, the matching process
becomes the balanced meet-in-the-middle, and thus a memoryless attack might be
possible with a cycle method. However, in order to construct the cycle, one must
define how to make the feed for the next computation and the feasibility will depend
on the details of the semi-free-start collision attack.
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last message block. Then, the only effect compared with previous reasoning will
be that |OUT | will be slightly larger than 1.

This method shows that semi-free-start collisions on a compression function
are directly meaningful even for the hash function security itself. Even better,
cryptanalyst might now be interested in finding semi-free-start collision attacks
beyond the birthday bound, in order to derive distinguishers on the entire hash
function. Previously, Leurent [28] also used a meet-in-the-middle technique on
Skein [14] to turn semi-free-start collisions into a collision on the whole hash,
but his method is only applicable in the uncommon situation where the average
cost of the semi-free-start collisions is strictly lower than 1 (in his article 270

semi-free-start collisions can be generated with 240 operations).
Finally, one may argue that distinguishers from a random oracle already ex-

isted for classical iterative hash functions with a rather narrow-pipe, for example
by using the very simple and well known length extension attack (for all Z, from
H(M1|| . . . ||Mi) one can compute the value of H(M1|| . . . ||Mi||Z), without even
knowing M1|| . . . ||Mi). However, such issues do not exist anymore for strengthen
constructions like the ones proposed by Coron et al. [9]. For example, utilizing a
HMAC-like construction (like it is done in the LANE hash function [20]) prevents
the length extension attack, while our limited-birthday distinguishing attack
would remain perfectly valid.

4 Applications

In this section, we show a few application examples of our generic hash function
limited-birthday distinguisher from compression function semi-free-start colli-
sions. While some of the results we will present here are quite interesting such
as the first result on the full LANE hash function and improved results on
RIPEMD-128 and Whirlpool, some other do not reach the full number of
rounds or do not really improve over known distinguishers. However, we em-
phasize that due to the tremendous work required to analyze the collision resis-
tance of a compression function, we mostly based our application examples on
known semi-free-start collision attacks. Therefore, since beyond-birthday com-
plexity semi-free-start collisions were not searched for so far, we expect that
several of our results can be improved by allowing this extra complexity cost.
We summarize our distinguishers in Table 1. The limited-birthday distinguisher
on the hash function with |IN | = 1, OUT = {0} can be used to attack the dTCR
notion against the randomized hashing. Our results on HAS-160, RIPEMD-128,
and SHA-256 are the cases.

4.1 Reduced-Round AES-Based Hash Functions

AES-128 [10] is a 128-bit block cipher with 128-bit keys and the NIST’s cur-
rent block cipher standard. It is composed of 10 rounds (in the last round,
the linear diffusion layer is removed) and many recent hash functions got in-
spired by this design. Classic ways to securely turn a block cipher E into a
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Table 1. Summary of the new results for the limited-birthday distinguishers on various
hash functions

target rounds time memory type source

AES-DM hash func. 7/10 2125 28 preimage attack [44]
AES-DM hash func. 6/10 2113 232 limited-birthday dist. Sect. 4.1
AES-MP hash func. 7/10 2120 28 2nd preimage attack [44]
AES-MP hash func. 6/10 289 232 limited-birthday dist. Sect. 4.1
HAS-160 hash func. 68/80 2156.3 215 preimage attack [19]
HAS-160 hash func. 65/80 281 280 limited-birthday dist. Sect. 4.2
LANE-256 hash func. full 2169 288 limited-birthday dist. Sect. 4.3
LANE-512 hash func. full 2369 2144 limited-birthday dist. Sect. 4.3

RIPEMD-128 hash func. full 2105.4 negl. limited-birthday dist. [27]
RIPEMD-128 hash func. full 295.8 233.2 limited-birthday dist. Sect. 4.4
SHA-256 hash func. 42/64 2251.7 negl. preimage attack [1]
SHA-256 hash func. 38/64 2129 2128 limited-birthday dist. Sect. 4.5

Whirlpool hash func. 6/10 2481 2256 preimage attack [26]
Whirlpool hash func. 7/10 2440 2128 limited-birthday dist. Sect. 4.6

compression function h are known for a long time e.g., the Davies-Meyer mode
(h(CV,M) = EM (CV ) ⊕ CV ) or the Miyaguchi-Preneel mode (h(CV,M) =
ECV (M) ⊕M ⊕ CV ). Concretely, we will consider compression functions built
upon AES-128 in these two modes, and placed into a Merkle-Damgård domain
extension to obtain the hash function. This was actually a proposal by Cohen [8]
and the current best attack on the whole hash function is a 7-round preimage
attack [44], but with a complexity very close to the generic one. In this Section,
we will consider truncated differential paths and denote an active/inactive byte
by a black/white cell.

Davies-Meyer Mode: we use the following 6-round truncated differential path:

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

KS

SB
SR AK6

The differential path in the key schedule can be handled independently from
the internal cipher part, and the cost is very low (only 6 Sbox transitions to
control). Using the Super-Sbox technique from [15,26], one can derive a pair
verifying the 3 middle-left rounds part (light gray cells) with complexity 1 on
average. The rest of the truncated differential path is verified probabilistically
forward and backward from this middle part. 5 Sbox differential transitions have
to be controlled on the left, 8 + 3 = 11 have to be controlled on the right, and
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for each transition we can use the best 2−6 transition probability of the AES
Sbox. Therefore, the uncontrolled part of the differential path will be verified
with probability 2−96 and one solution for the entire path (i.e. a semi-free-start
in the Davies-Meyer mode) can be found with complexity 296.

Using parameters n = k = 128, c = 112 and s = 16 for our conversion
algorithm, we obtain a hash function limited-birthday distinguisher complexity
of 2113 computations. Since difference on the input message of the compression
function is fully defined, we have I = 0 and our limited-birthday proof tells
us that the complexity for an ideal function is 2129. A basic freedom degrees
evaluation shows that one can generate much more semi-free-start collisions that
required.

Miyaguchi-Preneel Mode: we use the following 6-round truncated differential
path:

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

KS

SB
SR AK6

Using the Super-Sbox technique, one can derive a pair verifying the 3 middle
rounds part (light gray cells) with complexity 1 on average. The rest of the path
is verified probabilistically, with probability 2−32 (two MixColumns transitions
from 4 to 2 active bytes). Therefore, one solution for the entire path can be found
with complexity 232 and obtaining a collision at the output of the Miyaguchi-
Preneel mode requires an extra 216 for a total complexity of 248 computations.

Using parameters n = k = 128, c = 88 and s = 40, we obtain a hash function
limited-birthday distinguisher complexity of 289 computations. Since the input
message can contain only one byte of random difference we have I = 8 and
our limited-birthday proof tells us that the complexity for an ideal function is
2128−16+1 = 2113. Note that freedom degrees not a problem since we choose any
key value and for each key we expect about 28 semi-free-start collisions.

4.2 Reduced-Round HAS-160

HAS-160 is a hash function standardized by the Korean government and widely
used in Korea [48]. Its structure is similar to SHA-1. It adopts the narrow-
pipe Merkle-Damgård structure, and produces 160 bits digests. The compression
function consists of 80 steps.

Although a distinguisher on the full compression function is known [45], the
current best attack for the hash function is a 68-step preimage attack proposed
by Hong et al. [19], which is slightly faster than the brute force attack. For a prac-
tical complexity, a semi-free-start collision attack for 65 steps of the compression
function was proposed by Mendel et al. [33].
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The attack in [33] can generate a semi-free-start collision with complexity 1.
Moreover, the attack has enough amount of freedom degrees to generate many
semi-free-start collisions. Using parameters n = 160, k = 160, c = 80 and s = 80,
the distinguisher on the hash function can be mounted with a complexity of 281
compression function computations and 280 memory. Since the differential mask
on the message input is fully fixed, we have I = 0 and the generic complexity
to solve this limited-birthday instance is 2161 computations, which validates our
distinguisher.

4.3 LANE

LANE was designed by Indesteege [20] and submitted to the NIST’s SHA-3 com-
petition. Although LANE did not make it to the second round of the process,
no security weakness has been discovered yet on the hash function. It adopts a
narrow-pipe Merkle-Damgård like structure.

The current most significant attack on LANE is a semi-free-start collision at-
tack on the full compression function by Matusiewicz et al. [32] and its im-
provement by Naya-Plasencia [36], which generates semi-free-start collisions for
LANE-256 and LANE-512 with 280 and 2224 compression function computations
respectively and a memory to store 266 states.

By using our conversion method, this semi-free-start collision attack on the
compression function can be converted into a distinguisher on the entire hash
function (which tends to indicates thus it was eventually a wise move from NIST
to remove this candidate from the competition). Having no strong restriction on
the amount of freedom degrees, with parameters n = k = 256, c = 168 and
s = 88, the complexity of our distinguisher for LANE-256 is 2169 compression
function computations and 288 memory. On the other hand, the semi-free-start
collision attack accepts any difference on 10 fixed byte positions, which gives
us I = 80. Our limited-birthday proof tells us that the complexity for an ideal
function is 2256−80+1 = 2177, which validates our attack.

Regarding LANE-512, by choosing parameters n = k = 512, c = 368 and
s = 144, we minimize the distinguisher complexity to 2369 computations and
2144 memory. On the other hand, the semi-free-start collision attack accepts
any difference on 16 fixed byte positions, which gives us I = 128. Our limited-
birthday theorem tells us that the complexity for an ideal function to find this
input pair is 2512−128+1 = 2385, which validates our attack.

4.4 RIPEMD-128

RIPEMD-128 [12] is a 128-bit hash function (standardized at ISO/IEC [21]) that
uses the Merkle-Damgård construction and whose compression function has the
particularity to use two parallel computation branches. Semi-free-start collisions
on the compression function can be generated with 261.6 computations and neg-
ligible memory as shown recently [27]. Moreover, a distinguisher on the full hash
function was also proposed in the same article, requiring 2105.4 computations.
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Using our conversion algorithm, we utilize the semi-free-start collision attack
to derive a limited-birthday distinguisher. Namely, using parameters n = k =
128, c = 94.8 and s = 33.2, we obtain a distinguisher complexity of 295.8 com-
putations and 233.2 memory (about 233.2 semi-free-start collisions need to be
generated, which seems to not be an issue as the authors of [27] analyzed that a
lot of freedom degrees were available). Since the differential mask on the message
input for the semi-free-start collision attack is fully fixed, we have I = 0 and the
generic complexity to solve this limited-birthday instance is 2129 computations,
which validates our distinguisher.

4.5 Reduced-Round SHA-256

SHA-256 [51] is one of the NIST approved hash functions. It is a narrow-pipe
256-bit hash function that uses the Merkle-Damgård construction and whose
compression function is composed of 64 rounds. Recently, a semi-free-start colli-
sion attack on 38-round reduced SHA-256 compression function has been pro-
posed [34] with a complexity equivalent to 237 computations. However, once a
semi-free-start collision has been found many can be obtained for free, providing
an average cost of a single operation per solution. The currently best known at-
tack on the hash function is a preimage attack [1] on 42 rounds with complexity
2251.7 computations.

We utilize the semi-free-start collision attack to derive a limited-birthday dis-
tinguisher. Namely, using parameters n = k = 256, c = 128 and s = 128, we
obtain a distinguisher complexity of 2129 computations and 2128 memory (about
2128 semi-free-start collisions need to be generated in our case, which is possible
when studying the differential path provided in [34]). Since the differential mask
on the message input for the semi-free-start collision attack is fully fixed, we
have I = 0 and the generic complexity to solve this limited-birthday instance is
2257 computations, which validates our distinguisher.

4.6 Reduced-Round Whirlpool

Whirlpool [42] is a 512-bit hash function proposed by Rijmen and Barreto
in 2000. which was standardized by ISO [21] and recommended by NESSIE
[38]. The compression function consists of a 10-round AES-based cipher in a
Miyaguchi-Preneel mode and whose key schedule also consists of AES-like rounds.
The current best attack in the hash function setting is a 6-round preimage at-
tack by Sasaki et al. [46]. Lamberger et al. presented a 7-round near-collision
attack [26]. Although it can handle the fixed IV , the attack cannot satisfy the
padding constraint and thus does not apply on the full hash function.

We propose a 7-round distinguisher by using our conversion method. The
base of our distinguisher is a semi-free-start collision attack for 7 rounds of
the Whirlpool compression function proposed by Lamberger et al. [26], which
requires 2128 compression function computations and memory to store 2128 states
to generate a semi-free-start collision. However, the amount of freedom degrees
only allows to generate 272 solutions and once a precomputation table with 2128
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entries is built, the average complexity of generating a semi-free-start collision is
2120, not 2128. Therefore, we have parameters n = k = 512, c = 192 and s = 72
for our limited-birthday distinguisher.

The attack complexity is then 2440 computations and 2128 memory. Since
for Lamberger et al.’s attack, only a single byte will contain an uncontrolled
difference, we have I = 8 and the limited-birthday proof tells us that in the
ideal case finding such a pair should cost 2505 computations.

5 Conclusion

In this article, we have explored the limited-birthday distinguishers for the case
of hash functions. We believe that this type of distinguishers is powerful, and
will provide new insights on how hash functions can simulate random oracles in
practice. Surprisingly, on both the hash or the compression function, cryptana-
lysts can now look for collision attacks beyond the birthday bound and up to the
preimage bound. Finally, our conversion algorithm is yet another argument in
favor of long-pipe hash functions, which seems to be a good protection against
compression function weaknesses turning into hash function weaknesses.

As future work, we leave the security proofs for the permutation case as an
open problem. It would also be worth analyzing other types of distinguishers,
such as the ones based on integral attacks [25], and try to derive better lower
bounds for the ideal case. Obviously, on the cryptanalysis side, it would interest-
ing to see how far can the limited-birthday distinguishers go for high-end hash
functions, and in particular to what extent can the known (semi)-free-start col-
lision attacks be extended, by allowing the attacker a computation limit up to
the preimage bound.

Acknowledgments. The authors would like to thank the anonymous referees
for their helpful comments. Mitsugu Iwamoto is supported by JSPS KAKENHI
Grant Number 23760330. Thomas Peyrin is supported by the Singapore National
Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui (ed.) [31], pp. 578–597

2. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi (2009)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

5. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi (ed.) [17], pp. 231–249



Limited-Birthday Distinguishers for Hash Functions 521

6. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
7. Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)
8. Cohen, B., Laurie, B.: AES-hash. Submission to NIST: Proposed Modes (2001),

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/aes-hash/aeshash.pdf

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How
to Construct a Hash Function. In: Shoup (ed.) [47], pp. 430–448

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

11. Damgård, I.: A Design Principle for Hash Functions. In: Brassard (ed.) [6],
pp. 416–427

12. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Ver-
sion of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82.
Springer, Heidelberg (1996)

13. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack: Application to
Keccak. In: Canteaut (ed.) [7], pp. 402–421

14. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST (Round 3)
(2010)

15. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 365–383. Springer, Heidelberg (2010)

16. Peeters, M., Bertoni, G., Daemen, J., Van Assche, G.: The Keccak SHA-3 submis-
sion. Submission to NIST, Round 3 (2011)

17. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
18. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-

ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

19. Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

20. Indesteege, S.: The LANE hash function. Submission to NIST (2008)
21. International Organization for Standardization. ISO/IEC 10118-3:2004, Informa-

tion technology – Security techniques – Hash-functions – Part 3: Dedicated hash-
functions (2004)

22. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist
Grøstl. In: Canteaut (ed.) [7], pp. 110–126

23. Joux, A. (ed.): FSE 2011. LNCS, vol. 6733. Springer, Heidelberg (2011)
24. Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata,

T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)
25. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:

Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

26. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui
(ed.) [31], pp. 126–143

27. Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer,
Heidelberg (2013)

28. Leurent, G.: Construction of Differential Characteristics in ARX Designs - Appli-
cation to Skein. IACR Cryptology ePrint Archive, 2012:668 (2012)

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf


522 M. Iwamoto, T. Peyrin, and Y. Sasaki

29. Leurent, G., Nguyen, P.Q.: How Risky Is the Random-Oracle Model? In: Halevi
(ed.) [17], pp. 445–464

30. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and
Its Applications, 2nd edn. Springer (2011)

31. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)
32. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound

Attack on the Full Lane Compression Function. In: Matsui (ed.) [31], pp. 106–125
33. Mendel, F., Nad, T., Schläffer, M.: Cryptanalysis of Round-Reduced HAS-160. In:

Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 33–47. Springer, Heidelberg (2012)
34. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: New attacks on

reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

35. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard (ed.) [6],
pp. 428–446

36. Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

37. Naya-Plasencia, M., Toz, D., Varici, K.: Rebound Attack on JH42. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 252–269. Springer, Hei-
delberg (2011)

38. New European Schemes for Signatures, Integrity, and Encryption (NESSIE).
NESSIE Project Announces Final Selection of CRYPTO Algorithms (2003),
https://www.cosic.esat.kuleuven.be/nessie/deliverables/
press_release_feb27.pdf

39. Nikolić, I., Pieprzyk, J., Sokołowski, P., Steinfeld, R.: Known and Chosen Key
Differential Distinguishers for Block Ciphers. In: Rhee, K.-H., Nyang, D. (eds.)
ICISC 2010. LNCS, vol. 6829, pp. 29–48. Springer, Heidelberg (2011)

40. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

41. Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis (1993)
42. Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL Hashing Function. Submitted

to NESSIE (September 2000)
43. Rogaway, P.: Formalizing Human Ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT

2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)
44. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an

Application to Whirlpool. In: Joux (ed.) [23], pp. 378–396
45. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang Distin-

guishers for Full HAS-160 Compression Function. In: Hanaoka, G., Yamauchi, T.
(eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156–169. Springer, Heidelberg (2012)

46. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Re-
quirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang,
Sako (eds.) [53], pp. 562–579

47. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
48. Telecommunications Technology Association. Hash Function Standard Part 2:

Hash Function Algorithm Standard, HAS-160 (2000)
49. U.S. Department of Commerce, National Institute of Standards and Technology.

Federal Register 72(212), Notices (November 2, 2007), http://csrc.nist.gov/
groups/ST/hash/documents/FR_Notice_Nov07.pdf

50. U.S. Department of Commerce, National Institute of Standards and Technology.
Randomized Hashing for Digital Signatures (NIST Special Publication 800-106)
(February 2009), http://csrc.nist.gov/publications/nistpubs/
800-106/NIST-SP-800-106.pdf

https://www.cosic.esat.kuleuven.be/nessie/deliverables/press_release_feb27.pdf
https://www.cosic.esat.kuleuven.be/nessie/deliverables/press_release_feb27.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf


Limited-Birthday Distinguishers for Hash Functions 523

51. U.S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-4) (2012), http://csrc.nist.gov/publications/fips/
fips180-4/fips-180-4.pdf

52. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

53. Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658. Springer, Heidel-
berg (2012)

54. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup (ed.)
[47], pp. 17–36

55. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

Appendix

Fig. 2. The limited-birthday distinguisher on AES 8 rounds by Gilbert and Peyrin [15].
Distinguishers aim to find a pair of values satisfying the above truncated differential
forms for input and output. Grey cells represent the bytes where any difference is
acceptable. Therefore, the number of active bits for the input state is 32 bits, namely,
I = 32. and similarly, O = 32. Inactive bits are represented by empty cells.
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Abstract. The first part of this paper considers the diamond structures
which were first introduced and applied in the herding attack by Kelsey
and Kohno [7]. We present a new method for the construction of a dia-
mond structure with 2d chaining values the message complexity of which
is O(2

n+d
2 ) . Here n is the length of the compression function used. The

aforementioned complexity was (with intuitive reasoning) suggested to
be true in [7] and later disputed by Blackburn et al. in [3].

In the second part of our paper we give new, efficient variants for
the two types of Trojan message attacks against Merkle-Damgård hash
functions presented by Andreeva et al. [1] The message complexities of
the Collision Trojan Attack and the stronger Herding Trojan Attack in
[1] are O(2

n
2
+r) and O(2

2n
3 + 2

n
2
+r) , respectively. Our variants of the

above two attack types are the Weak Trojan Attack and the Strong
Trojan Attack having the complexities O(2

n+r
2 ) and O(2

2n−s
3 +2

n+r
2 ) ,

respectively. Here 2r is the cardinality of the prefix set and 2s is the
length of the Trojan message in the Strong Trojan Attack.

1 Introduction

Hash functions are mappings which take as input arbitrary strings over a fixed
alphabet (usually assumed to be the binary alphabet {0, 1}) and return a (bi-
nary) string of a fixed length as their output. These functions are used in various
cryptographic protocols such as message authentication, digital signatures and
electronic voting. In order to be useful in cryptographic context, hash functions
need to have three traditional properties, preimage resistance, second preimage
resistance and collision resistance.

An ideal hash function H from the set {0, 1}∗ of all binary strings into the set
{0, 1}n of all binary strings of length n is a random oracle: for each x ∈ {0, 1}∗ ,
the value H(x) ∈ {0, 1}n is chosen uniformly at random.

Merkle and Damgård [4,13] devised a method for constructing hash functions
from a family of fixed size collision–free compression functions. In this method,
the message to be hashed is divided into blocks and padded; the hash value
is computed by the repeated (iterative) use of the compression function to the
message blocks and to the previous value of the computation. The result of the
final computation is then defined to be the hash value of the message. Both
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Merkle and Damgård were able to prove that if the length (in blocks) of the
message is appended to the original message and the result is padded and hashed
in the previous iterative fashion using a collision resistant compression function,
then the resulting hash function is also collision resistant.

The iterative method for constructing hash functions, from a single com-
pression function, has been found quite susceptible to several different types of
attacks. Joux [6] demonstrated that, for iterated hash functions (of length n),
2k –collisions can be found with O(k · 2n/2) compression function queries; the
respective number of queries for a random oracle hash function is much higher
[15]. Multicollision attacks against more generalized hash function structures
have been studied in [14,5,9,10], and [11]. A second preimage attack against long
messages was first constructed by Kelsey and Schneier [8] while in [7] Kelsey and
Kohno presented a new form of attack named the herding attack.

The herding attack relies on diamond structures, a tree construction where
several hash values (leaves of the tree) are herded towards one (fixed) hash value
(the root). Diamond structures proved to be very useful in attack construction.
They were employed in [1] and [2] to create herding and second preimage attacks
against several iterated hash function variants also beyond Merkle-Damgåd.
Our special interest, Trojan message attacks [1], can also be based on diamond
structures.

Now, in the paper [7], a method to construct diamond structures was also in-
troduced. With intuitive reasoning the authors deduced that to build a diamond
structure with 2d chaining values takes approximately 2

n+d
2 +2 compression func-

tion queries. Later a more comprehensive study of diamond structures [3] pointed
out that the complexity estimation was too optimistic, the true complexity of
the method presented being O(

√
d 2

n+d
2 ) . We shall demonstrate a new (and,

unfortunately, also more intricate) construction algorithm with message com-
plexity O(2

n+d
2 ) for a diamond structure of 2d chaining values. Our algorithm

is based on recycling previously created hash values and message blocks.
The second goal of our paper is to fortify the two Trojan message attacks

developed in [1]. Our variant for the weaker Collision Trojan Attack (possessing
the complexity O(2

n+r
2 )) is more efficient than the original one (with the com-

plexity O(2
n
2 +r)), and moreover, offers the attacker a greater freedom to choose

the content of the second preimage message. The attack algorithm makes use of
diamond structures. Finally, we are able to significantly reduce the complexity
of the Herding Trojan Attack in our version of strong Trojan message attack.
Both expandable messages [8] elongated diamond structures [7] are exploited in
our construction.

This paper is organized in the following way. In the next section, our new
method to generate a diamond structure is presented. Section 3 contains an
introduction to Trojan message attacks. We formulate a new security property
and study the complexity of creating a Trojan message attack against a random
oracle hash function. In the fourth section two new and efficient variants of
Trojan message attacks are developed. The final section contains some conclusive
remarks.
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2 Diamond Structures

From now on, assume that our compression function f is a mapping: {0, 1}n ×
{0, 1}m → {0, 1}n such that m > n . The message hashing is carried out with
the iterative closure f∗ : {0, 1}n × ({0, 1}m)∗ → {0, 1}n of f which is defined
inductively as follows. For the empty word ε , let f∗(h, ε) := h for all h ∈
{0, 1}n . For each k ∈ N , words x1, x2, . . . , xk+1 ∈ {0, 1}m , and h ∈ {0, 1}n , let
f∗(h, x1x2 · · · xk+1) := f(f∗(h, x1x2 · · · xk), xk+1) . Note that for k = 0 above,
x1x2 · · ·xk is the empty word ε and the definition allows us to deduce that
f∗(h, x1) = f(h, x1) . All message lengths are expressed in number of blocks.

2.1 Concepts and Tools

Let H ⊆ {0, 1}n be a finite nonempty set of hash values. A pairing set of H is
any set B ⊆ H × {0, 1}m such that

(i) for each h ∈ H there exists exactly one x ∈ {0, 1}m such that (h, x) ∈
B ; and

(ii) for each (h1, x1) ∈ B there exist (h2, x2) ∈ B such that h1 �= h2 and
f(h1, x1) = f(h2, x2) .

The following technical result is eventually applied in evaluating the cardinal-
ities of message block sets when building the diamond structure.

Lemma 1. Let r ≥ 2 and n be positive integers. Define the integers sr,0, sr,1,
sr,2, . . . , sr,2 r−2 as follows.

sr,0 = �2
n−r
2 −1� sr,k+1 = sr,k +

⌈
2

n−r
2 +1

2r − 2k

⌉
for k = 0, 1, . . . , 2 r−2 − 1

Then sr,j ≥ 2
n+r
2

−1

2r−2j for each j ∈ {0, 1, . . . , 2 r−2} .

Proof. Proceed by induction on j . The case j = 0 is clear. Suppose that sr,k ≥
2

n+r
2

−1

2r−2k where k ∈ {0, 1, . . . , 2 r−2 − 1} . Then, by definition, the inequality

sr,k+1 ≥
2

n+r
2 −1 + 2

n−r
2 +1

2r − 2k

holds. It suffices to show that

2
n+r
2 −1 + 2

n−r
2 +1

2r − 2k
≥ 2

n+r
2 −1

2r − 2(k + 1)
.

But this is obvious since the inequality

(2
n+r
2 −1 + 2

n−r
2 +1)[2r − 2(k + 1)] ≥ 2

n+r
2 −1(2r − 2k)

is equivalent with k ≤ 2 r−2 − 1 . ��
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A diamond structure (with 2d chaining values, or of breadth 2d ), where d ∈
N+ , is a both vertex labeled and edge labeled complete binary tree D satisfying
the following conditions.

1. The tree D has 2d leaves, i.e., the height of the tree is d .

2. The vertices of the tree D are labeled by hash values (strings in the set
{0, 1}n ) so that the labels of vertices that are on the same distance from
the root of D are pairwise disjoint.

3. The edges of the tree D are labeled by message blocks (strings in the
set {0, 1}m ).

4. Let v1, v2 , and v with (hash value) labels h1, h2 , and h , respectively, be
any vertices of the tree D such that v1 and v2 are children of v . Suppose
furthermore that x1 and x2 are (message) labels of the edges connecting
v1 to v and v2 to v , respectively. Then f(h1, x1) = f(h2, x2) = h .

2.2 Intuitive Description of the Diamond Structure Construction
Method

Our method advances in jumps, phases, and steps. In each jump several phases
are carried out, every phase consists of numerous steps, and in each step we
search two distinct hash value and message block pairs (h1, x1) , (h2, x2) such
that f(h1, x1) = f(h2, x2) . By dividing the process in aforementioned manner
and recycling hash value and message block sets, we are able to decrease the
number of compression function queries. It is quite easy to see that our method
is not optimal, but we have to make a compromise between completeness and
the simplicity of computations.

Jumps. The construction of a diamond structure D with 2d chaining values
d ≥ 2 is carried out in d jumps Jd , Jd−1 , . . . , J1 . We proceed from the leaves
towards the root of the structure. Let Hd be the set of the 2d chaining values.
In jump Jd , a pairing set Bd of Hd is created. The set Bd is constructed so
that the cardinality of the set Hd−1 := {f(h, x)

∣∣ (h, x) ∈ Bd} is 2d−1 . In jump
Jd−1 a pairing set Bd−1 of Hd−1 is created so that the cardinality of the set
Hd−2 := {f(h, x)

∣∣ (h, x) ∈ Bd−1} is 2d−2 . We continue like this until in the last
jump J1 a pairing set B1 of H1 containing only two hash values is generated.
The set H0 := {f(h, x)

∣∣ (h, x) ∈ B1} contains only one element which is the
root of the diamond structure. By each jump the distance to the root of the
diamond structure is decreased by one. Obviously we are herding the chaining
values towards the final hash value which labels the root of our structure.

Now each jump consists of several phases ; since the structures of jumps are
mutually identical, we give below an intuitive description of the phases (and
steps) of the jump Jd only.

Phases. The jump Jd consists of d phases Pd , Pd−1 , . . . , P2 , P1 . In the phase Pd
of the jump Jd we create a pairing set Td−1 of a subset Kd−1 ⊆ Hd of cardinality
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2d−1 , in the phase Pd−1 a pairing set Td−2 of a subset Kd−2 ⊆ Hd \Kd−1 of
cardinality 2d−2 , and so on, ..., in the phase P2 a pairing set T1 of a subset K1 of
Hd\(Kd−1∪Kd−2∪· · ·∪K2) of cardinality 2 . There are two hash values (forming
the set K0 ) still without pairing left in Hd , so in the phase P1 we search a pairing
T0 of K0 . Then we set Bd := Td−1∪Td−2∪ · · · ∪T0 . Thus the jump Jd consists
of d phases after which we have created a pairing set Bd of Hd ; moreover, it
proves to be constructed so that the input set Hd−1 := {f(h, x)

∣∣ (h, x) ∈ Bd}
of jump Jd−1 is of cardinality 2d−1 .

Steps. Each phase is made up of several steps in the following way. Consider
the phase Pj of jump Jd , where j ∈ {2, 3, . . . , d} . As told above, in this phase
we create a pairing set for a subset Kj−1 of Hd \ (Kd−1 ∪Kd−2 ∪ · · · ∪Kj) of
cardinality 2j−1 . The phase is divided into 2j−2 steps

S(d, j, 0), S(d, j, 1), . . . , S(d, j, 2j−2 − 1) .

In each step we create a pairing for two hash values in Hd \(Kd−1∪Kd−2∪ · · · ∪
Kj) so that together the hash values in the pairs form a set Kj−1 of cardinality
2j−1 . A more rigorous description of each step with appropriate input and output
follows.

Initialization I(d)
As an input we have a set Ad,0 := Hd of 2d hash values. We first create a
message block set Md,0 ⊆ {0, 1}m such that

1. the cardinality of Md,0 is 2
n−d
2 −1 ; and

2. the cardinality of the set f(Ad,0,Md,0) = {f(h, x)
∣∣h ∈ As,0, x ∈ Md,0}

is 2
n+d
2 −1 .

Let Hd,0 = f(Ad,0,Md,0) . The complexity to construct such an Hd,0 is approxi-
mately 2

n+d
2 −1 . Note that our assumption on the cardinality of the set Hd,0 has

an insignificant impact to the complexity; we can easily replace the appropriate
message blocks one by one with new ones. The output of the initialization step
is: Ad,0 ; Md,0 ; Hd,0 .

Let now j ∈ {2, 3, . . . , d} and k ∈ {0, 1, 2, . . . , 2j−2 − 1} .

Step S(d, j, k)
The step takes as an input Aj,k , Mj,k , Hj,k . Here Aj,k is a set of 2j − 2k hash

values, Mj,k is a set of sj,k message blocks, where sj,k ≥ 2
n+j
2

−1

2j−2k , and

Hj,k = {f(x, h)
∣∣x ∈ Aj,k , x ∈Mj,k}

is a set of hash values such that |Hj,k| = |Aj,k| · |Mj,k| . Note that |Hj,k| ≥
(2j − 2k)sj,k ≥ 2

n+j
2 −1 .

A set M ′
j,k of �sj,k+1 − sj,k� new messages is generated so that the cardinality

of the set
f(Aj,k,M

′
j,k) = {f(h, x)

∣∣h ∈ Aj,k , x ∈M ′
j,k}
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is at least 2
n−j
2 +1 . We search for hash values hjk , h′jk ∈ Aj,k and message blocks

xjk ∈ Mj,k , x′jk ∈ M ′
j,k such that f(hjk , xjk) = f(h′jk , x

′
jk
) . Note that since

|Hi,k × f(Aj,k,M
′
j,k)| ≥ 2n , the expected number of hash values h such that

h ∈ Hi,k ∩ f(Aj,k,M
′
j,k) is at least one. Furthermore, for the sake of simplicity

of computations, we assume that (hjk , xjk ) and (h′jk , x
′
jk
) are the only colliding

pairs in Aj,k×[Mj,k∪M ′
j,k] . Now, what is the (message) complexity of the actions

and assumptions above? We may create the message set M ′
j,k as a statistical

experiment and then compute the hash values in the set f(Aj,k,M
′
j,k) . Since

|Hi,k × f(Aj,k,M
′
j,k)| ≥ 2n , a routine reasoning shows that the probability of

finding a colliding pair is greater than 0.5 . This means that the expected number
of times we have to repeat the experiment is less than two. Thus the message
complexity to create the set M ′

j,k , compute the values in f(Aj,k,M
′
j,k) , and to

find the colliding pair is at most 2·2n−j
2 +1 . Our assumptions on the cardinality of

f(Aj,k,M
′
j,k) and of the number of colliding pairs do not increase the complexity

significantly. This is ensured by either repeating the experiment sufficiently many
times or replacing messages in the set M ′

j,k one by one with new ones.

Let Aj,k+1 := Aj,k \{hjk , h′jk} , Mj,k+1 :=Mj,k∪M ′
j,k , and Hj,k+1 := f(Aj,k+1,

Mj,k+1) . Furthermore we set Bd := Bd ∪ {(hjk , xjk), (h′jk , x
′
jk
)} .

As an output of this step, we get Aj,k+1 , Mj,k+1 , Hj,k+1 , and Bd .

The output of a the step S(d, j, 2j−2 − 1) (the last step of the phase Pj )
serves as the input to the S(d, j−1, 0) (the first step of the phase Pj−1 ) for each
j ∈ {3, 4, . . . , d} . We thus define Aj−1,0 := Aj,2j−2−1 , Mj−1,0 := Mj,2j−2−1 , and
Hj−1,0 := Hj,2j−2−1 .

We carry out our diamond structure construction by running the jumps Jd ,
Jd−1 , . . . , J2 , J1 one after another in this order. We describe the inner re-
alization of the jump Jd more accurately; all the other jumps are carried out
completely analogously. The jump Jd is implemented by running all its phases
I(d) , Pd , Pd−1 , . . . , P2 , P1 . The last phase P1 takes as its input only the set
A1,0 := A2,1 of two (remaining) hash values and the pairing set Bd . It searches
a pairing set for A1,0 on its own. Each phase Pj , j ∈ {2, 3, . . . , d} , is realized
by running all its steps S(d, j, 0) , S(d, j, 1) , . . . , S(d, j, 2j−2 − 1) subsequently
in this order.

Note that in each phase (step, resp.), the message blocks and hash values gen-
erated in the previous phases (steps, resp.) are utilized, recycled, one could say.
This means that in our method the excessive growth of the message complexity
can be prevented. This is verified in the next subsection.

2.3 Diamond Structure Construction Method: The Pseudocode

1. Input: d ∈ N+ , (1 < d < n
2 ) ; Hd ⊆ {0, 1}n , |Hd| = 2d

2. for i = d downto 2 do {Jumps J(d) , J(d− 1) , ..., J(2) .}
{Input to jump J(i) : a set Hi of 2i distinct hash values.}

2.1. Ai,0 := Hi
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2.2. Generate a set Mi,0 ⊆ {0, 1}m such that |Mi,0| = 2
n−i
2 −1 and

|f(Ai,0,Mi,0)| = 2
n+i
2 −1 . {Initialization}

2.3. Hi,0 = f(Ai,0,Mi,0) ; Bi := ∅
2.4. for j = i downto 2 do {Phases P(i, i) , P(i, i− 1) , ..., P(i, 2) .}

{Input to phase P(i, j) : The sets Bi , Aj,0 , Mj,0 , and Hj,0 }
2.4.1. for k = 0 to 2j−2 − 1 do {Steps S(i, j, 0) , S(i, j, 1) , ...,

S(i, j, 2j−2 − 1) .}
{Input to S(i, j, k) : the sets Aj,k ⊆ {0, 1}n , Mj,k ⊆ {0, 1}m ,
Hj,k = f(Aj,k,Mj,k) , and Bi such that |Aj,k| = 2j − 2k ,
|Mj,k| = sj,k , and |Hj,k| = |Aj,k| · |Mj,k| .}

a. Generate a set M ′
j,k ⊆ {0, 1}m of cardinality �sj,k+1−sj,k� such

that M ′
j,k ∩Mj,k = ∅ and |f(Aj,k,M

′
j,k)| ≥ 2

n−j
2 +1 .

b. Search distinct hash values hj,k, h′j,k ∈ Aj,k and message blocks
xj,k ∈Mj,k , x′j,k ∈M ′

j,k such that f(hj,k, xj,k) = f(h′j,k, x
′
j,k) .

c. Aj,k+1 = Aj,k \ {hj,k, h′j,k} ; Mj,k+1 = Mj,k ∪M ′
j,k ; Hj,k+1 =

f(Aj,k+1,Mj,k+1) ; Bi = Bi ∪ {(hj,k, xj,k), (h′j,k, xj,k)}
d. if k = 2j−2 − 1 then

(i) Aj−1,0 := Aj,2j−2−1 , Mj−1,0 := Mj,2j−2−1 ; Hj−1,0 :=
Hj,2j−2−1

{Input to phase P(i, 1) : the set A1,0 := {h1,0, h′1,0} of two distinct hash
values.}

2.5. Generate a set M ′
1,0 ⊆ {0, 1}m of 2

n
2 message blocks such that there

exist x1,0, x
′
1,0 ∈ M ′

1,0 for whicch f(h1,0, x1,0) = f(h′1,0, x
′
1,0) . {Phase

P(i, 1) .}
2.6. Bi := Bi ∪ {(h1,0, x1,0), (h′1,0, x′1,0)} ; Hi−1 := {f(h, x)

∣∣ (h, x) ∈ Bi}
{Input to jump J(1) : the set H1 := {h1, h2} of two distinct hash values.}

3. Generate a set M1 ⊆ {0, 1}m of 2
n
2 message blocks such that there exist

x1, x2 ∈M1 for which f(h1, x1) = f(h2, x2) . {Jump J(1) .}
4. B1 := {(h1, x1), (h2, x2)} ; H0 := {h0} where h0 = f(h1, x1) = f(h2, x2)

5. Output: Bd, Bd−1, . . . , B1

2.4 The Overall Message Complexity of the Construction

Let us first compute the message complexity of jump Jd ; recall that it consists
of phases Pd , Pd−1 , . . . , P2 , P1 . Certainly the complexity of jump Jd is the
sum of the expected number of compression function enquieries in I(d) and the
phases Pd , Pd−1 , . . . , P2 , P1 . Applying Lemma 1 and induction on j and k

that sj,k ≥ 2
n+j
2

−1

2j−2k holds for each j ∈ {2, 3, . . . , d} and k ∈ {0, 1, . . . , 2j−2 −
1} . This means that the complexity analysis given in the description of step
S(d, j, k) holds. This implies, that given j ∈ {2, 3, . . . , d} , the expected number
of compression function queries to carry out phase Pj is at most (a small multiple
of) 2j−2 ·2n−j

2 +1 ; here 2j−2 naturally refers to the number of steps in the phase.
The complexity of I(d) is approximately 2

n+d
2 −1 and of P1 approximately 2·2n

2 .
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The total complexity of jump Jd is thus

comp(Jd) ≤ a ·
{
2

n+d
2 −1 +

d∑
i=2

[2j−2 · 2
n−j
2 +1] + 2 · 2n

2 } ≤ 2a · 2
n+d
2

where a is a positive rational smaller than 2 and certainly independent of both
n and d .

Remark 1. As noted above, the probability to find a colliding pair in each step
S(d, j, k) is greater than 0.5 . It can be shown that we can choose the constant a
to be approximately e

e−1 when 2n is sufficiently large.

By the cosiderations above, we can deduce that the complexity of jump Ji is
at most 2a · 2n+i

2 for i = 2, 3, . . . , d . Since running the jump J1 takes approx-
imately 2 · 2n

2 compression function queries, the overall message complexity of
our diamond structure construction is not more than

2a ·
[ d∑
j=2

2
n+j
2 + 2 · 2n

2

]
≤ 8 a · 2

n+d
2 .

2.5 Reducing the Complexity

It is quite easy to slightly reduce the complexity of the first pairing (i.e., J1 ) if
we can choose the chaining values freely. One can choose an arbitrary hash value
set A such that |A| = 2

n+d
2 . After this we can fix a single message block x and

compute the value f(h, x) for all h ∈ A . Thus we have 2
n+d
2 hash values and

the number of possibly colliding pairs is(
2

n+d
2

2

)
= 2n+d−1 − 2

n+d
2 −1 ≈ 2n+d−1.

Since the codomain of f consists of 2n elements, there should be approxi-
mately 2d−1 pairs h, h′ ∈ A such that f(h, x) = f(h′, x) . We have now found
2d−1 colliding pairs with the approximate complexity 2

n+d
2 (instead of 2 a·2n+d

2 ) .
As stated before the method presented in this section does not give us optimal

complexity. A more effacious approach would be to create new message blocks
one by one, to compute the respective hash values, and to search for colliding
pairs after each new message block. However, we certainly still need to apply
the compression function at least 2

n+d−i
2 times to create 2d−i pairs and so the

total message complexity of our diamond structure construction will thus not
drop below O(2

n+d
2 ) .

3 Trojan Message Attacks on Merkle-Damgård Structure

As mentioned before, the Trojan message attack was first presented in [1]. A
Trojan message is a nonempty string t produced offline by the attacker and
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given to the victim. The victim then chooses some word x from a fixed set P
of prefixes (also known to the attacker) and forms the word x t . The attacker’s
task is to find a second preimage for x t . Extra constraints may be imposed to
the structure of the preimage depending on the type of the Trojan attack.

In practise a Trojan message attack could happen for example in the following
situation. Two parties A (the attacker) and B (the victim) are forming a contract
and B is satisfied when choosing the first part of the contract from some set of
precreated messages; then A is free to create the rest of the contract to be a
Trojan message t . A situation like this could occur, for instance, when A does
not know the exact day when the contract will be signed, but is allowed to
otherwise formalize its details.

Inspired by the results in [1], we launch the following security property:

Trojan message resistance. Given any finite message set P , where |P | > 1 , it is
computationally infeasible to find a message t and a message set M such that
|M | = |P | and for each p ∈ P there exists m ∈M such that H(p t) = H(m) .

Assume for a moment that H : {0, 1}∗ → {0, 1}n is a random oracle hash
function and P is a set of messages with cardinality k ∈ N+ . Suppose that M
is another set of messages such that |M | = 2s for some s ∈ N+ . The probability
that a random message t satisfies the property: for each p ∈ P there exists
m ∈M satisfying H(p t) = H(m) , is approximately

(
2s

2n

)k
. Assume now that we

create a new message set T where |T | = 2j , j ∈ N+ . The expected number
of messages t ∈ T such that for each x ∈ P there exists y ∈ M satisfying
H(xt) = H(y) is 2j ·

(
2s

2n

)k
= 2j+k s−k n . In order to succesfully complete the

attack we should be able to create at least one Trojan message satisfying the
given conditions, so the above expected number of messages should certainly be
at least one. This means that j + k s− k n ≥ 0 .

The number of hash function queries needed is certainly in Ω(2j+2s) . We can
minimize the complexity by setting j = s = k n

k+1 . So the number of hash function

queries needed is in Ω(2
k

k+1 ·n) . It is interesting to see, that this is almost equal
to the number of hash function queries needed to create a k−collision [15].

From now on we consider Trojan message attacks on Merkle-Damgård hash
functions; recall that f : {0, 1}n×{0, 1}m → {0, 1}n is our compression function
and f∗ : {0, 1}n× ({0, 1}m)∗ → {0, 1}n its iterative extension. Assume further-
more that h0 ∈ {0, 1}n the initial hash value and P = {p1, p2, · · · , p2r} is the
set of prefixes, r ∈ N+ . Moreover, denote h0,i := f∗(h0, pi) for i = 1, 2, · · · , 2r .
For the sake of simplicity we will assume that all the prefixes in P are of equal
length k , k ∈ N+ .

As mentioned before, the Andreeva et al [1] offered two variants of Trojan
message attacks against Merkle-Damgård structure: the Collision Trojan Attack
(abbr. ColTrA) and Herding Trojan Attack (abbr. HerTrA). Both attacks are
comprised of three general phases. It is assumed that both the attacker and
victim are familiar with the compression function f , the initial hash value h0
and the prefix set P .
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1. The attacker, Trudy, creates a Trojan message t . The complexity of this
phase is the offline complexity of the attack.

2. The victim, Alice, chooses a prefix message p from the prefix set P ,
where |P | = 2r .

3. Trudy creates a second preimage for pt . The complexity of this phase is
the online complexity of the attack.

3.1 The Collision Trojan Attack

The first phase of ColTrA consists of 2r step. In the first step the Trudy creates
a message block pair x1, y1 such that f(h0,1, x1) = f(h0,1, y1) , x1 �= y1 . In
the step i of the attack, where i ∈ {2, 3, · · · , 2r} , the attacker computes the
value hi−1 = f(h0,i, x1x2 · · ·xi−1) and creates a message block pair xi, yi such
that f(hi−1, xi) = f(hi−1, yi) and xi �= yi . The attacker chooses then the word
t = x1x2 · · ·x2r for the Trojan message and has thus completed the offline phase
of the attack.

Assume now that in the second phase Alice chooses a prefix pj and forms the
word pj t . The word pj t is passed to Trudy.

In the third phase the attacker first sets t′ := x1x2 · · ·xj−1yjxj+1 · · ·x2r and
then offers the word pj t

′ for a second preimage to pj t . The attack is successful,
since obviously f(h0, pj t) = f(h0, pj t

′)). The offline complexity of this attack
is O(2

n
2 +r) while the online complexity is negligible.
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Fig. 1. Example of the Collision Trojan Attack when r = 2

3.2 The Herding Trojan Attack (HerTrA)

In first phase the attacker, Trudy, creates a diamond structure, with 2d chaining
values. The complexity of this operation is O(2

n+d
2 ) . Assume now that the final

value of the structure is h′ . Now Trudy creates a message x0 such that |x0| =
d . Next she searches for message block pair x1, y1 such that f(h0,1, x0x1) =
f(h′, y1) , and then sets h1 := f(h0,1, x0x1) .
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In the step i of the first phase, where i ∈ {2, 3, · · · , 2r} , Trudy computes
the value hi−1,i := f(h0,i, x0x1 · · ·xi−1) and creates a message block pair xi, yi
such that f(hi−1,i, xi) = f(hi−1, yi) . Then she simply sets hi := f(hi−1,i, xi)
and is ready to proceed to next step. Finally Trudy creates the Trojan message
t = x0x1 · · ·x2r and has finished the second phase.

Assume now that the attacker is challenged both with a prefix pj , j ∈
{1, 2, . . . , 2r} and a second prefix w such that the length |w| of w is smaller
than k . Trudy now searches for a connection message z such that |wz| = k and
f(h0, wz) is equal to some for chaining value of the created diamond structure.
Assume now that message u is the path from this chaining value to the root
hash value h′ of the diamond structure, i.e. f(h0, wzu) = h′ .

Now we have f(h0, wzuy1y2 · · · yj) = hj = f(h0, pjx0x1 · · ·xj) so clearly
wzuy1y2 · · · yjxj+1xj+2 · · ·x2r is a second preimage for the word pjt .

The complexity of creating a diamond structure is O(2
n+d
2 ) so the complexity

of the offline phase is O(2
n
2 +r +2

n+d
2 ) while the complexity of finding z is 2n−d

which means that the complexity of the online phase is also 2n−d . If we want to
minimize the total complexity, we can set d = n

3 and get the total complexity
of O(2

n
2 +r + 2

2n
3 ) .

It is easy to see that the complexity of this kind of attack is in O(2
2n
3 ) , as

long as the number of possible preimages is at most 2
n
6 , while the length of the

created message is k+ d+2r . If the number of possible preimages is larger than
2

n
6 the complexity exceeds 2

2n
3 .

In comparison the second preimage attack presented in [8] and second preim-
age attack based on diamond structure presented in [2] against message with
length 2

n
6 would have the complexity O(2

5n
6 ) .

4 New Versions of the Trojan Message Attacks

4.1 The Weak Trojan Attack (WeaTrA)

We shall now present a new variant of the Collision Trojan Attack. The complex-
ity of our construction is lower than that of the original one, while it gives the
attacker more freedom to choose the content of the created second preimage. To
ensure this we will assume that the attacker is, in addition to the prefix choice
p of the victim from the set P , challenged with another prefix v from a set
V such that |V | ≤ 2r in the second phase of the attack. The attacker, Trudy,
now has to find suffix s such that f(h0, vs) = f(h0, pt) , where t is the Trojan
message created by Trudy in the first phase.

In the first, offline phase Trudy creates a diamond structure with chaining
values h0,1, h0,2, · · · , h0,2r . The complexity is certainly O(2

n+r
2 ) . Assume now

that the final, root hash value of the diamond structure is h′ . Next the attacker
creates an expandable message, starting from the hash value h′ , with minimum
block length r+1 and maximum block length 2r+1 + r . The complexity of this
effort is O((r + 1) · 2n

2 ) [8]. Assume that the final hash value of expandable
message is h′′ .
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Fig. 2. Example of offline phase in Herding Trojan Attack when r = 2 , d = 3
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The attacker now creates a set Y consisting of 2
n+r
2 random message blocks

and computes the respective hash values f(h′′, y) for each y ∈ Y . This requires
approximately 2

n+r
2 compression function queries. In addition, the attacker now

chooses any message x0 such that the length of x0 is 2r + 1 .
Now Trudy searches for a message block x1 such that f(h0,1, x0x1) = f(h′′, y)

for some y ∈ Y . Denote h1 := f(h0,1, x0x1) . The complexity of finding such an
x1 is approximately 2

n−r
2 . The attacker sets y1 := y and is now ready for the

second step of the first phase.
Consider the step i ∈ {2, 3, · · · , 2r} of the first phase of the attack. Trudy

computes h′i−1 := f(h0,i, x0x1x2 · · ·xi−1) and searches for a message block xi
such that f(h′i−1, xi) = f(h′′, y) for some y ∈ Y . Once again the complexity of
finding xi is 2

n−r
2 . Denote hi := f(h′i−1, xi) and yi := y . Once the attacker has

completed the 2r steps, the offline phase is done. The attacker now forms the
Trojan message t = x0x1x2 · · ·x2r .

In the second phase the victim picks from P the prefix pj , where j ∈
{1, 2, . . . , 2r} . The attacker is also challenged with a second prefix v ∈ V . As-
sume that z is the expandable message with length j+ l and y is the path from
f∗(h0, v) to h′ , i.e., f∗(f∗(h0, v), y) = h′ . Obviously f∗(h0, pjx0x1 · · ·x2r ) =
f∗(h0, vyzyjxj+1xj+2 · · ·x2r ) , so clearly vyzyjxj+1xj+2 · · ·x2r is a second
preimage for pjt .

The messages created in this way have the length k + 2r + 1 + 2r . The offline
complexity of this attack is O(2

n+r
2 ) while the online complexity is negligible. Since

ColTrA has the complexity in O(2
n
2 +r) , the advantage of the WeaTrA is obvious.

4.2 The Strong Trojan Attack (StrTrA)

We shall use both expandable messages [8] and elongated diamond structures [7]
to reduce the complexity of the original HerTrA.

The attacker, Trudy, begins the first phase of the attack by creating a random
message z = z1z2 · · · z2s , where s ≥ r and z1, z2, . . . , z2s are message blocks.
Then she chooses random hash values b1, b2, · · · b2d (where d ∈ N+, d ≤ s),
computes ai := f∗(bi, z) for i = 1, 2, . . . 2d , and creates a diamond structure
with chaining values a1, a2, . . . , a2d . The number of compression function queries
needed is O(2

n+d
2 ) . Assume that the final root hash value of the structure is h′ .

Trudy then continues by constructing an expandable message, starting from the
hash value h′ , with minimun length s + 1 and maximum length s + 1 + 2s+1 .
The complexity of the construction is O((s + 1) · 2n

2 ) . Suppose that the final
hash value of the expandable message is h′′ .

Trudy now creates a set Y containing 2
n+r
2 random message blocks and

computes all the hash values f(h′′, y) , y ∈ Y . She also chooses an arbitrary
message x0 of length 2s + d+ s+1 , and searches a message block x1 such that
f∗(h0,1, x0x1) = f(h′′, y) for some y ∈ Y . The complexity of finding such x1
and y is O(2

n−r
2 ) . Denote h1 := f∗(h0,1, x0x1) and y1 := y .

Let i ∈ {2, 3, · · · , 2r} . In the step i of the first phase of the attack, Trudy
computes h′i−1 := f∗(h0,i, x0x1x2 · · ·xi−1) and searches for a message block
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xi such that f(h′i−1, xi) = f(h′′, y) for some y ∈ Y . To find such xi and
y takes approximately 2

n−r
2 compression function queries. Finally Trudy sets

hi := f(h′i−1, xi) = f(h′′, y) and yi := y .
After the 2r steps our attacker chooses t := x0x1x2 · · ·x2r for the Trojan

message and has completed the first (offline) phase of the attack. Since there were
alltogether 2r steps above, the complexity of completing them all is O(2

n+r
2 ) .

This means that the total complexity of the offline phase is O(2
n+d
2 + 2

n+r
2 ) .

Assume now that the attacker is challenged with a prefix pj ∈ P (chosen
by the victim, Alice) and another (arbitrary) prefix p with length smaller than
k . The attacker now searches for a connection message x such that length of
px is k , and f(h0, px) = l for some hash value l that satisfies the condition
l = f(bi, z1z2 · · · zk) for some i ∈ {1, 2, · · ·d} and k ∈ {1, 2, · · ·2s} . Assume now
that message y is the path from l to the hash value h′ in the diamond structure,
i.e., f(h0, pxy) = h′ ; the length of y is clearly 2s + d− k . Assume furthermore,
that w is the expandable message chosen so that the total length of the message
pxywyjxj+1xj+2 · · ·x2r is 2s + 2r + k + d+ s+ 1 .

Now f(h0, pxywyj) = f(h0, pjx0x1 · · ·xj) = hj so pxywyjxj+1xj+2 · · ·x2r is
a second preimage for the message pjt . The length of both messages is 2s+2r+
k + d+ s+ 1 .

The complexity of finding x is O(2n−d−s) which means that the complexity
of the online phase is also in O(2n−d−s) . If we want to minimize the total
complexity we can choose d = n−2s

3 which means that the total complexity of
the attack is O(2

2n−s
3 + 2

n+r
2 ) .

p2
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Fig. 4. Offline phase for Strong Trojan Message Attack example when r = 2
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This means of course, that if we are able to create longer messages we can
reduce the total complexity of the attack. Ideally we could choose s = n−3r

2

giving us the total complexity of O(2
n+r
2 ) i.e. the same as in the weak version

of the attack. For exampla in SHA-1 the maximum lenght of the message is
254 message blocks while n = 160 . This implies that if, for example r = 20
we will have 2

n+r
2 = 290 if we can choose the length of the message to be 250

message blocks. Creating a basic second preimage attacks, presented in [8] and
[2], against messages with that length would have complexity greater than 2110 ,
while the complexity of previous version of strong Trojan message attack woud
be approximately 2107 .

In practice messages are of course far shorter. However if we are able to choose,
for example s = n

5 , we would have the total complexity of O(2
3n
5 ) in comparison

to O(2
4n
5 ) offered by ordinary second preimages against messages with length

2
n
5 , while s = n

11 would give us complexity O(2
7n
11 ) in comparison to O(2

10n
11 ) .

5 Conclusion

In this paper we have presented a better and more efficient versions of Tro-
jan message attacks. By using expandable messages and elongated diamond
structures we have been able to reduce the complexity needed to create Tro-
jan message attack significantly. We have also proven that for random oracle
hash function the Trojan message complexity should be at least in Ω(2

r
r+1 ·n) .

Furhter study is needed to show if it is possible to create even more efficient
Trojan message attacks or implement them in practice.

Diamond Structure Creation Method Message Complexity
Blackburn & all O(

√
d2

n+d
2 )

New Method O(2
n+d
2 )

Trojan Message Attack Type Message Complexity AttCon
Second preimage attack O(2n−s) Any prefix
ColTrA O(2

n
2
+r) -

HerTrA O(2
2n
3 + 2

n
2
+r) Any prefix

WeaTrA O(2
n+r
2 ) Restricted prefix

StrTrA O(2
2n−s

3 + 2
n+r
2 ) Any prefix

Message complexities for Trojan message attacks when the length of the second preimage
is in O(2s) and the size of the prefix set is 2r , where r < s . Second preimage attack
means the attack presented by Kelsey and Schneier [8] AttCon refers to the controll
attacker has over created second preimage in online phase. Restricted prefix means that
the attacker can choose the prefix of the second preimage from the pregenerated set with
2r prefixes. Any prefix means that only the length of the prefix is restricted.
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