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Abstract. Co-clustering is a powerful technique with varied applica-
tions in text clustering and recommender systems. For large scale high
dimensional and sparse real world data, there is a strong need to provide
an overlapped co-clustering algorithm that mitigates the effect of noise
and non-discriminative information, generalizes well to the unseen data,
and performs well with respect to several quality measures. In this pa-
per, we introduce a novel fuzzy co-clustering algorithm that incorporates
multiple regularizers to address these important issues. Specifically, we
propose MRegFC that considers terms corresponding to Entropy, Gini
Index, and Joint Entropy simultaneously. We demonstrate that MRegFC
generates significantly higher quality results compared to many existing
approaches on several real world benchmark datasets.

1 Introduction

Co-clustering or bi-clustering is a powerful tool that alleviates notable limitations
of clustering techniques such as poor scalability, lack of cluster intrepretability
and sensitivity to noise [1]. Co-clustering allows simultaneous clustering of the
rows and columns of a matrix, and has been used successfully in text min-
ing [2], [3] and collaborative filtering [4]. In collaborative filtering, for example,
co-clustering can be used for identifying groups of customers with similar inter-
ests or preferences toward a set of products. The co-clusters thus obtained can
be leveraged for target marketing in recommender systems.

Many co-clustering methods partition the data into non-overlapping regions
where each point belongs to only one cluster such as ITCC [3], Bregman co-
clustering [5]. However, in real world applications, fuzzy co-clustering, that al-
lows the data points to be members of two or more clusters, is more suitable. For
example, when clustering documents into topics, documents may contain multi-
ple relevant topics and hence an overlapped co-clustering is more appropriate [6].
Overlapped co-clustering algorithms also capture the vague boundaries between
clusters and improve the representation and interpretability of the clusters.

Further, certain issues need to be addressed for obtaining superior perfor-
mance using fuzzy co-clustering. The points or features occurring across a large
number of clusters should not be allowed to dominate since they contain very
little discriminative information. Also, noise in the underlying data needs to be
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effectively handled. One common way to deal with such issues is to devise fuzzy
techniques that focus on optimizing an objective based on some regularizer as
shown in FCR [7] and FCM with Maximum Entropy regularization [8]. A ma-
jor limitation of these techniques lies in the insufficiency of a single regularizer
to perform well with respect to several quality measures. For example, FCR
uses entropy in the objective function which helps to obtain better degree of
aggregation on real datasets, but shows lower accuracy.

FCCM [9] is a fuzzy clustering algorithm that maximizes the co-occurrence
of categorical attributes (keywords) and the individual patterns (documents) in
clusters. However, this algorithm poses difficulties while handling large data sets
and also works for only categorical data. Fuzzy-CoDoK [10], a scalable modifica-
tion of FCCM, involves heavy parameter tuning that makes the approach data-
dependent, is susceptible to variations in data and may often fail to converge.
Technique such as SCAD [11] only works with data lying in some Euclidean
space. SKWIC [12] overcomes this limitation but lacks in parameter tuning and
scalability. Similarly, technique such as MOCC [13] performs poorly with respect
to degree of aggregation.

In this paper, we formulate a framework, Multi-Regularization for Fuzzy Co-
clustering (MRegFC), based on maximizing an objective function that incorpo-
rates penalty terms based on the Entropy, the Gini Index, and the Joint Entropy
simultaneously under certain constraints. Each one of the regularizers used in
MRegFC contribute to address the issues related to co-clustering, as explained
later in Section 2. MRegFC can also handle high dimensional and sparse data
without over-fitting. However, incorporating multiple regularizers becomes chal-
lenging as different regularizers might have contrasting behaviors and learning
a good set of weights for several regularizers simultaneously is important. Our
technique MRegFC alleviates both these issues. Further, MRegFC provides valid
range of values for different parameters used, to obtain high quality results.
In experimental evaluation, we demonstrate superior performance in terms of
precision, recall, and F-measure as compared to prior approaches: MOCC [13],
ITCC [3], FCR [7] and algorithms employing only one of these regularizers. Our
algorithm also demonstrates better RMSE compared to FCR [7] and individual
regularizers on all the datasets in consideration. To the best of our knowledge,
MRegFC is the first multiple regularizer based approach for fuzzy co-clustering.

2 The Proposed Approach

In this work we propose an approach called MRegFC for fuzzy co-clustering
which formulates the objective function employing the Entropy, the Gini In-
dex, and the Joint Entropy regularizers simultaneously. A regularization term
is added to the objective function in order to prevent it from being an ill-posed
problem and to avoid overfitting. The regularization term based on Entropy [8]
elegantly captures the notion of purity of a co-cluster while emphasizing the
marginal coherence along the rows (points) and the columns (features). Hence,
the homogeneity along the points and the features are appropriately taken into
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Table 1. Notation

Symbol Definition

C Number of co-clusters

N Number of data points (rows)

K Number of features (columns)

uci Membership of row i in co-cluster c

vcj Membership of column j in co-cluster c

dij Measure of extent of correlation between row i and column j

account using the Entropy regularizer. Gini Index, despite being similar to En-
tropy, ensures that the points and features that occur across a large number of
clusters are not provided with any unfair advantage, besides imparting numeri-
cal stability to the algorithm [10]. Joint Entropy [14] characterizes, in a natural
way, the statistical dependence of the points (rows) and the features (columns)
on each other. Moreover, the Joint Entropy term, in conjunction with Entropy,
creates a Mutual Information term thereby lending a better generalization abil-
ity to MRegFC by making it robust against noise. It is easy to see that the Joint
Entropy term is maximized when the product uci.vcj is evenly distributed across
the different co-clusters. Thus incorporating a joint entropy fuzzifier also reduces
the susceptibility of the algorithm to overfitting1.

A typical fuzzy co-clustering algorithm strives to maximize an objective func-
tion, generally the degree of aggregation. Using the notations given in Table 1,

the degree of aggregation for cluster c can be quantified as

N∑

i=1

K∑

j=1

ucivcjdij , for c ∈ {1, 2, . . . , C} (1)

The intuition is that we want to bring together rows and columns with high dij
values in the same co-cluster. To maximize the value of the objective function,
for such i and j, we need to set high values for both uci and vcj for the same
cluster c. Additionally, we impose the following constraints:

C∑

c=1

uci = 1, uci ∈ [0, 1], i ∈ {1, 2, . . . , N} (2)

K∑

j=1

vcj = 1, vcj ∈ [0, 1], c ∈ {1, 2, . . . , C} (3)

The first constraint requires that the addition of membership values of each row
across all the co-clusters is equal to 1. Such a constraint is said to satisfy the
Ruspini’s condition [15]. The second constraint, on the other hand, requires
that the summation of all column memberships must be one for each co-cluster

1 The under-fitting issues are implicitly taken care of by the term corresponding to
the degree of aggregation.
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thereby implying a weighting scheme for the columns, instead of the partitions2.
We now add regularization terms corresponding to Entropy, Gini Index and Joint
Entropy in the objective function. Consequently, using the weight parameters
Tu1 and Tu2 for Entropy, Tv1 and Tv2 for Gini Index, Tuv for Joint Entropy to
specify the extent of fuzziness, we strive to maximize our regularized objective
function, OBJ

=

C∑

c=1

N∑

i=1

K∑

j=1

ucivcjdij − Tuv

C∑

c=1

N∑

i=1

K∑

j=1

ucivcj log(ucivcj)− Tu1

C∑

c=1

N∑

i=1

uci log(uci)

− Tu2

C∑

c=1

N∑

i=1

u2
ci − Tv1

C∑

c=1

K∑

j=1

vcj log(vcj)− Tv2

C∑

c=1

K∑

j=1

v2cj

+

N∑

i=1

λi

(
C∑

c=1

uci − 1

)
+

C∑

c=1

γc

(
K∑

j=1

vcj − 1

)
(4)

Differentiating with respect to uci we get

⇒ ∂OBJ

∂uci
=

K∑

j=1

vcjdij − Tu1 (1 + log(uci)) − 2Tu2uci − Tuv

K∑

j=1

vcj (1 + log(ucivcj)) + λi (5)

For optimality of OBJ , we must have
∂OBJ

∂uci
= 0. Further, since uci, vcj ∈ [0, 1],

approximating (1 + log uci) and (1 + log ucivcj) by uci and vcj respectively, we
have

⇒ uci =

λi +

K∑

j=1

vcjdij

Tu1 + 2Tu2 + Tuv

K∑

j=1

v2cj

(6)

Now using

C∑

c=1

uci = 1, and simplifying, we obtain

uci =
1

C
+

1

Tu1 + 2Tu2 + Tuv

K∑

j=1

v2cj

∗
⎛

⎝
K∑

j=1

vcjdij − 1

C

C∑

t=1

K∑

j=1

vtjdij

⎞

⎠ (7)

Following a similar procedure of obtaining uci, we can compute

vcj =
1

K
+

1

Tv1 + 2Tv2 + Tuv

N∑

i=1

u2
ci

∗
(

N∑

i=1

ucidij − 1

K

K∑

t=1

N∑

i=1

ucidit

)
(8)

2 We do not impose Ruspini’s condition on the columns since then a single co-cluster
containing all the rows and columns would be formed.
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A good selection of the parameters Tu1 , Tu2 , Tv1 , and Tv2 can be mathe-
matically derived in a straightforward way (omitted due to space constraints):

0 < Tu1 <

C∑

t=1

K∑

j=1

vtjPj

N
− Tuv max

c

K∑

j=1

v2cj (9)

Tu2 =

C∑

t=1

K∑

j=1

vtjPj −NTuv max
c

K∑

j=1

v2cj −NTu1

2N
(10)

0 < Tv1 <

K∑

j=1

Pj

C
− Tuv max

c

N∑

i=1

u2
ci (11)

Tv2 =

K∑

j=1

Pj − CTv1 − CTuv max
c

N∑

i=1

u2
ci

2C
(12)

Please note that this is a lateral benefit of our approach since in general, tuning
the input parameters appropriately is a difficult problem, and the algorithm may
not perform satisfactorily in the absence of any tuning guidelines.

Algorithm 1 describes our approach for fuzzy co-clustering. The algorithm
takes as input the number of co-clusters C, the row-column correlation matrix
D, and a threshold ε to specify the stopping criterion. It can be observed that
the parameters λ and γ do not play a role in the resulting algorithm and hence
show no effect on the overall performance. The different row memberships are
randomly initialized subject to the constraint that their summation is equal to
1. Based on selection of Tuv, the values of the parameters Tv1 and Tv2 is chosen
from the respective acceptable range. The algorithm then alternately updates
the row and column memberships repeatedly, until the change in all the row
memberships across two successive iterations is bounded by ε. At termination,
the algorithm outputs appropriate row and column memberships across the dif-
ferent co-clusters.

3 Experimental Evaluation

In this section, we present experimental evaluation on several benchmark datasets
that demonstrates a superior performance of MRegFC over the FCR, ITCC and
MOCC algorithms. We also demonstrate the benefits of using multiple regulariz-
ers in MRegFC by presenting a comprehensive evaluation against the individual
regularizers.
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Algorithm 1. Multi-Regularized Fuzzy Co-clustering (MRegFC)

Input : No. of co-clusters C, row-col matrix D, and threshold parameter ε
Output: Membership values uci and vcj

1 Compute Pj =

N∑

i=1

dij . Initialize randomly memberships uci ≥ 0, c ∈ [C] and

i ∈ [N ] such that
∑C

c=1 uci = 1.

2 Choose Tuv ∈

⎛

⎜⎜⎜⎜⎝
0,

∑K
j=1 Pj

Cmaxc

N∑

i=1

u2
ci

⎞

⎟⎟⎟⎟⎠
.

3 Choose Tv1 using Eqn. (11).
4 Compute Tv2 using Eqn. (12).
5 Compute memberships vcj using Eqn. (8).
6 Choose Tu1 using Eqn. (9).
7 Compute Tu2 using Eqn. (10).

8 uold
ci ← uci

9 Update memberships uci using Eqn. (7).

10 if
(
max

c
|uci − uold

ci | > ε
)
then

11 Update memberships vcj using Eqn. (8).
12 Go to step 9

13 end

We conducted experimentation on the following datasets [16], [13]: (a) Movie-
lens for movie recommendations, (b) Classic3 for document collections, (c)
Jester for joke ratings (d) Reuters (21578) for text categorization, and (e) 20
Newsgroups for text classification and clustering. We used two subsets of the
Movielens dataset: (a) (Mv1 : 679 movies from 3 genres - Animation, Children
and Comedy, and (b) Mv2 : 232 movies from 3 genres - Thriller, Action and Ad-
venture. These are similar to the ones used in [13], and therefore provide for
a consistent comparison with the MOCC and ITCC algorithms. Each reported
result is based on an average over 10 trials. The number of clusters chosen for ex-
periments E1 and E2 were 8 and 16, respectively for MRegFC ; other algorithms
were represented by (5, 5) and (10, 10) row and column clusters. The threshold
parameter ε was set to 0.00001. In order to compare the quality of clustering
results, we use the following standard measures: RMSE, precision, recall, and
F-measure [13].

3.1 Comparison with Existing Approaches

Table 2 presents the comparative results for precision, recall and f-measure on the
Movielens dataset. MRegFC has a high average precision value of around 0.73,
and consistently outperforms the other algorithms. MRegFC achieves a high
recall value of about 0.67 on an average. Further, it can be seen that MRegFC
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Table 2. Precision, Recall, F-measure Comparison with Existing Approaches

Dataset Precision Recall F-measure

MRegFC MOCC ITCC FCR MRegFC MOCC ITCC FCR MRegFC MOCC ITCC FCR

Mv1-E1 0.75 0.60 0.63 0.750.65 0.67 0.19 0.61 0.69 0.63 0.29 0.67

Mv1-E2 0.76 0.62 0.65 0.75 0.71 0.65 0.13 0.61 0.73 0.63 0.22 0.67

Mv2-E1 0.70 0.46 0.54 0.69 0.64 0.62 0.23 0.57 0.66 0.53 0.32 0.63

Mv2-E2 0.70 0.48 0.57 0.69 0.69 0.58 0.16 0.56 0.69 0.52 0.25 0.63

Table 3. Precision, Recall and F-measure Comparison with Individual Regularizers.
(E: Entropy, GI: Gini Index, JE: Joint Entropy)

Dataset Precision Recall F-measure

MRegFC E GI JE MRegFC E GI JE MRegFC E GI JE

Reuters
(21578)

0.548 0.409 0.31 0.43 0.63 0.546 0.555 0.477 0.6 0.46 0.49 0.38

20News
Groups

0.516 0.3 0.304 0.3 0.825 0.767 0.546 0.609 0.66 0.43 0.39 0.4

Mv1 0.756 0.701 0.689 0.711 0.653 0.562 0.554 0.216 0.7 0.62 0.61 0.35

Mv2 0.718 0.684 0.69 0.702 0.64 0.515 0.558 0.268 0.67 0.59 0.61 0.39

has an average F-measure of 0.69, while the closest competitor FCR achieves a
value of 0.65. This clearly demonstrates that MRegFC yields consistently better
quality clusters compared to the existing algorithms.

Fig. 1. F-measure vs no. of co-clusters
(Mv2)

Fig. 1 presents the variation of
F-measure (using the Mv2 dataset),
as the number of clusters and row-
clusters increases from 2 to 10,
for MRegFC and other algorithms
(MOCC, FCR and ITCC ). This re-
sult was used to choose the num-
ber of co-clusters in the algorithm. It
can be seen that as the number of
clusters increases beyond 5, MRegFC
consistently outperforms the other
algorithms by a convincing margin.

3.2 Comparison with Individual Regularizers

To quantify the benefit of incorporating multiple regularizers, we also compared
MRegFC with similar algorithms that include only one of the Entropy, Gini In-
dex, and Joint Entropy regularizers. Table 3 presents the comparison results on
the different datasets in terms of F-measure. Clearly, MRegFC outperforms the
techniques using individual regularizers. Since MRegFC also achieves the lowest
RMSE of all techniques across all data sets (Table 4, we conclude that the need
for incorporating multiple regularizers, as inMRegFC, cannot be overemphasized.



74 V.K. Garg, S. Chaudhari, and A. Narang

We also varied the parameter Tuv over a large range on all the datasets and ob-
served that training time and RMSE do not vary much with change in Tuv. This
demonstrates the robustness of the proposed approach with respect to the input
parameter Tuv. We omit the details due to space constraints.

Table 4. RMSE comparison

Dataset MRegFC Entropy Gini Index Joint Entropy FCR

Reuters (21578) 1.37 1.47 1.51 1.58 1.4

20News Groups 1.45 1.56 1.56 1.57 1.56

Mv1 1.36 1.39 1.45 1.56 1.48

Mv2 1.23 1.28 1.3 1.51 1.4

Jester-1 17.68 20.47 20.68 22.12 20.64

Jester-2 17.55 22.55 20.56 25.7 20.02

Classic3 (CRAN) 1.04 1.09 1.13 1.16 1.46

Classic3 (MED) 1.27 1.57 1.59 1.59 1.59

4 Conclusion

We present a novel fuzzy co-clustering framework that simultaneously incorpo-
rates multiple regularizers namely Entropy, Gini Index, and Joint Entropy while
trying to maximize the degree of aggregation. The approach can handle cate-
gorical and numerical data in addition to the highly sparse high dimensional
data, without over-fitting. Furthermore, unlike existing algorithms, we provide
an appropriate range of values for tuning the various parameters to obtain high
quality results. We demonstrate superior performance, in terms of several quality
measures such as precision, recall, F-measure and RMSE compared to the prior
approaches as well as algorithms using individual regularizers.
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