

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 657–664, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Algorithm for Parallelizing Sequential Minimal
Optimization

Xinyue Wang and Jun Guo

Computer Center
East China Normal University

3663 Zhong Shan Rd. N., Shanghai, China
jguo@cc.ecnu.edu.cn

Abstract. In this paper, a new algorithm for training support vector machines
(SVMs) for classification problems with parallel sequential minimal optimiza-
tion (SMO) is proposed. The selection of the working set is paralleled so that
the iteration of the optimization process is reduced greatly. The experimental
results show the training time of the proposed method is always less than the
original SMO algorithm, and at the same time the classification accuracy is
kept.

Keywords: SVM, SMO, Parallelization.

1 Introduction

Support Vector Machines (SVM) is a very useful tool for solving pattern recognition
problems [1]. Due to its good performance in generalization on the basis of statistical
learning theory [2], more and more research on SVM has been done and a lot of va-
riants of SVM have been implemented.

The training step of SVM in the dual space was proposed in [1] using Lagrange
multipliers. With the increasing number of the training data and support vectors, more
optimization strategies have been adopted, especially some decomposition methods
such as chunking[1], Osuna’s algorithm, and Sequential Minimal Optimization(SMO)
[3, 4].

The chunking method starts with a subset of data called chunks and iteratively en-
larges that subset by including those examples that violate the optimization conditions.
In Osuna’s algorithm, the training examples were separated into two groups: the
working set denoted as B and the rest of the data defined as N. In [4], Osuna’s theo-
rem demonstrates that moving a variable from set B to set N does not change the cost
function and ensures that there is a strict improvement in the cost function after mov-
ing a variable that violates the optimality condition. Osuna’s algorithm makes training
SVMs tractable especially when the number of support vectors is quite large. SMO [3]
ensures its convergence due to Osuna’s theorem and optimizes only two Lagrange
multipliers at a time, which means that the size of working set is only two. The per-
formance of SMO in training time is better than Osuna’s algorithm according to most

658 X. Wang and J. Guo

of the experiments in [3]. This leads to a better performance in many circumstances
and can be applied to both classification and regression problems. There are also some
other algorithms using decomposition methods like SVML୧୥୦୲[5] and the algorithm
used in LIBSVM [6, 7]. The former utilizes a first-order approximation of the object
function and seeks a steepest direction of descent. The latter considers a more precise
approximation using second order information, aiming at obtaining a faster conver-
gence speed [6].

There are some researches about the parallelizing SMO algorithm, reducing the
training time of SVM considerably. In [8], the whole data set is divided into smaller
subsets and distributed to different processors. By parallelizing the procedure of up-
dating the error array denoted by F୧, the parallel SMO algorithm is much faster than
the original one, especially when the number of data is large. The Casade SVM was
introduced in [9], which trains SVMs in layers like filters. Because some examples
are unlikely to be support vectors in an early stage of optimization, they are filtered.
Those being support vectors are passed down to another layer for further training and
testing. The process iterates until convergence. The main idea in parallel SVM is to
reduce the time and memory cost by training, which derives our parallel algorithm
dealing with working set selection.

In this paper, an algorithm of parallelizing the procedure in training SVM is pro-
posed. We focus on the selection of working sets and choose two pairs at the same
time. From the experiment, we show that the time of training is less than the original
serial SMO. Furthermore, the prediction accuracy is maintained.

This paper is organized as follows: section 2 gives a brief introduction to SVM, de-
composition methods and some related works. In section 3, we propose our paralleliz-
ing solutions and the experiment results are shown in section 4. Finally, section 5
discusses some problems in our method and gives a possible solution in future works.

2 Support Vector Machines

In classification problems, we denote
l

i i i 1{X ,y } = as input samples where
l

i i 1{X } =

are the training examples and
l

i i 1y { 1,1} == − are the corresponding labels. Training

an SVM aims at solving an optimization problem given below:

 T

w

1
min f (w) w w

2
= (1)

subject to
T

i iy (w x b) 1 i 1,2,..., l+ ≥ =

In order to handle misclassifications when the input samples contain noises, slack

variables iξ are added into (1). Thus we obtain a soft margin classification problem.

 An Algorithm for Parallelizing Sequential Minimal Optimization 659

l

T
i

w
i 1

1
min f (w) w w C

2 =

= + ξ (2)

subject to
T

i i iy (w x b) 1+ ≥ − ξ

i 0, i 1,2,..., lξ ≥ =

where C > 0 is the regularization parameter. One way of solving (2) is to handle with
the following dual problem based on Lagrange duality theorem and get the following
optimization problem in the dual.

l l l

T
i i j i j i j

i 1 i 1 j 1

1
max Q() y y (x) (x)

2α = = =

α = α − α α ϕ ϕ  (3)

subject to
l

i i
i 1

y 0
=

α =

i0 C i 1,2,..., l≤ α ≤ =

where α୧ is the Lagrange multiplier and (x)ϕ is the mapping function and we denote
TK(x,x) (x) (x)′ ′= ϕ ϕ known as the kernel function which implicitly maps data to

a high-dimensional space without computing the mapping function. There are some
typical kernel functions such as polynomial kernel and Gaussian kernel. Finally, if the
kernel matrix satisfies Mercer’s condition which means that K is positive semi-
definite, (1) becomes a QP optimization problem which contains no local minima.

3 Sequential Minimal Optimization

However, the Kernel matrix i j i jy y K(x ,x) may be too costly to be fit into the

memory due to its size and density. Platt’s sequential minimal optimization (SMO)
[3] focuses on choosing two instances as working set. However, due to its underlying
inefficiency in choosing the threshold value, modifications of Platt’s SMO are pro-
posed in [10], which introduces an improvement by choosing and updating the worst
violating pair and also deals with two threshold parameters. The optimization problem
is defined as follows. First, we rewrite the optimization problem from (3).

l l l

i i j i j i j
i 1 i 1 j 1

1
max Q() y y K(x , x)

2α = = =

α = α − α α  (4)

660 X. Wang and J. Guo

subject to
l

i i
i 1

y 0
=

α =

i0 C i 1,2,..., l≤ α ≤ =

According to [10], we define:

up 0 1 2I () I () I () I ()α = α α α 

low 0 3 4I () I () I () I ()α = α α α 

where

0I () {i : 0 C}α = < α <

1 i iI () {i : y 1, 0}α = = α =

2 i iI () {i : y 1, C}α = = − α =

3 i iI () {i : y 1, C}α = = α =

4 i iI () {i : y 1, 0}α = = − α =

The optimization condition for the problem is the following:

up low

i ji I () j I ()
min F () max F ()
∈ α ∈ α

α ≥ α (5)

where
l

i i i j i j i jj 1
i

Q()
F () y y (y y K(x ,x) 1)

=

∂ αα = = α −
∂α  . Thus, if a pair of indices

(i, j) violates the above optimization condition, it is called a violating pair. Due to
[10], the optimality holds if and only if no violating pair exists.

4 Parallelizing the Process of Working Set Selection

In this section, the parallel algorithm is proposed. First, we briefly introduce the idea
of our algorithm and its difference from some other solutions. Then we give a more
detailed picture of how to perform our parallelization on choosing violating pairs in
working set selection.

Different from the methods above, we parallelize the process of working set selec-
tion and the updates of Lagrange multipliers in LIBSVM. In one of the parallelizing
processes, we choose the maximal violating pair and we also choose the second max-
imal violating pair in the other one. Thus we make the time spent on training de-
creased in classification problems. Different from [8], our method is not similar to a
single program multiple data model (SPMD) because we choose different working
sets in the two parallel processes. Also, our algorithm does not require interaction
between the two parallelizing processes because we simultaneously choose the max-
imal and the second maximal violating pairs and thus do not use the information from
each other until they complete their updates.

 An Algorithm for Parallelizing Sequential Minimal Optimization 661

Then, we provide a description of the parallel algorithm. Recall that problem (3) is
to be solved. Based on [6, 7], we are going to solve the object function using its
second order information. After initialization, the parallelization phase begins. We
denote the maximal violating pair as iα ,

jα and the second maximal violating pair as

mα , nα . The training algorithm works as follows:

Algorithm 1:
begin
Initialize step:

Initialize gradient ∇ αQ() and Lagrange multipliers
αi, i = 1….l,

where l is the total number of training instances
repeat
Parallel step:

 1: Select working set and choose the maximal violating
pair αi and α j

2: Select working set and choose the second maximal
violating pair αm and αn

Serialization step:
 Update the status of αi and α j

 Update the status of gradient ∇ αiQ() and ∇ α jQ()
 Update the status of αm and αn
 Update the status of gradient ∇ αmQ() and ∇ αnQ()
 Compute the object value
until the optimization criteria are met

Calculate the object value and output the decision func-
tion
end.

5 Experiments

The algorithm is implemented on LIBSVM and it shows that the algorithm approx-
imately halves the time cost by the serial LIBSVM algorithm. Furthermore, the loss in
accuracy of the parallel algorithm is acceptable. The data sets used are from the web
page of LIBSVM [13]. The first data set is the Adult data set, which contains 14 fea-
tures originally and is preprocessed according to [4]. The number of training exam-
ples range from 1605 to 16100 and the number of test examples range from 16461 to
30956. It shows that there is a speedup at almost 50%. We also examine data sets
from [3], which show nearly the same result as the Adult data set. We also test our
algorithm on small data sets such as splice from Delve and SVMguide from [11],
obtaining results similar to the above ones.

662 X. Wang and J. Guo

Table 1. Experiments on data sets with test examples

Data Sets

Size of
training
examples

Size of test
examples

Accuracy
(LIBSVM / Parallel SVM)

Time Elapsed
(LIBSVM / Parallel SVM) (ms)

a1a(UCI) 1605 30956 84.4166% / 84.2422% 483 /220
a2a(UCI) 2265 30296 84.592% / 84.5887% 936 /562

a4a(UCI) 4781 27780 84.5392% / 84.5887% 3588 / 1482
a5a(UCI) 6414 26147 84.4227% / 84.4418% 6599 / 3197
a6a(UCI) 11220 21341 84.4806% / 84.4853% 20561/ 11451
a7a(UCI) 16100 16461 84.8065% / 84.7336% 42292/20878
w1a (JP98a) 2477 47272 97.9121% / 97.9311% 297 / 109
w2a (JP98a) 3470 46279 98.0704% / 98.0704% 546 / 298
w3a (JP98a) 4912 44837 98.2314% / 98.1823% 904 / 544
w4a (JP98a) 7366 42383 98.1667% / 98.1667% 1591 / 998
w5a (JP98a) 9888 39861 98.2063% / 98.1987% 2543 / 1219
w6a (JP98a) 17188 32561 98.4184% / 98.4184%

8065 / 4322

splice(Delve) 1000 2175 88.5517% / 88.5517% 483 / 264
svmguide(CWH03a) 3089 4000 93.025% / 94.075% 4805 / 923

There are also some data sets which do not include specific data for testing. Thus,
we split the whole data set into 7 pieces randomly and choose 6 of the 7 pieces of data
for training and the rest one for testing. Because such preprocessing is done every
time before running an experiment, the data is quite reliable. We average the results
from the sum of the 10 experiments.

Table 2. Experiments on data sets without test examples

Data sets

Size of train-
ing examples

Accuracy
(LIBSVM / Parallel SVM)

Time Elapsed
(LIBSVM / Parallel
SVM) (ms)

breast-cancer(scaled) 683

96.30712% / 96.18366% 9.4 / 9.3

diabetes(scaled) 768 76.38394% / 75.78623% 71.7 / 48.5
heart(scaled) 270 80.71581% / 81.27854% 26.6 / 9.5

From the table above, it shows that the time cost by LIBSVM is almost the same as
the time cost by the parallel algorithm in breast-cancer data set from UCI. Actually,
the above three data set does not contain a large number of examples, leading to short
running time in both LIBSVM and parallel algorithm. The accuracy is also quite ac-
ceptable as we can see from above. In diabetes, the LIBSVM outperforms the parallel
algorithm by less than 0.6% in prediction while they are very close to each other in
the rest two data sets.

We next do our experiments on the MNIST data set which consists of 60000 in-
stances for training examples and 10000 for testing. Actually, training MNIST is a
problem of multiclass-classification since the data from MNIST is from 10 classes.
According to [7], “one against one” strategy is used in such classification problems,
so k(k-1)/2 classifiers are created where k is the number of classes. In MNIST, this
means that 45 classifiers will be constructed before the training model is built.

 An Algorithm for Parallelizing Sequential Minimal Optimization 663

We average the sum of all the running time in the training process and then do the
prediction. The average time and the accuracy are listed in the table below and we
find that the training time is reduced by 53.45% and the loss in prediction accuracy is
about 0.08%. Therefore, the result is quite acceptable.

Table 3. Experiment on multi-class data sets

Data sets

Size of
training
examples

Size of test
examples

Accuracy
(LIBSVM
/Parallel SVM)

Time Elapsed
(LIBSVM / Parallel SVM) (ms)

MNIST 60000 10000 98.21% / 98.13% 15687.8 / 7302.178

6 Discussion

Based on the algorithm in [6, 7], we proposed a parallel method of training support
vector machines. We choose and update both the maximal violating pair and the
second maximal violating pair in the working set, approximately halving the time
consumed by LIBSVM and maintaining the prediction accuracy in most cases.

However, in some cases the algorithm fails to converge. Although some of the
problems are solved after tuning the parameter C and gamma, the convergence of the
algorithm is not confirmed yet. In future works, we will attempt to make the algo-
rithm surely converge by introducing the idea of function gain [12] into our work.
After a considerable gain from the parallel step of our algorithm is obtained, we will
stop the parallel phase of the algorithm and come back again to run LIBSVM which is
serial so as to guarantee the convergence of our algorithm.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China via the Grant No. 60903092.

References

1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifi-
ers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp.
144–152. ACM (July 1992)

2. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
3. Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector ma-

chines (1998)
4. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector ma-

chines. In: Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal
Processing VII, pp. 276–285. IEEE (September 1997)

5. Joachims, T.: Making large-scale support vector machine learning practical. In: Advances
in Kernel Methods, pp. 169–184. MIT Press (February 1999)

6. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for
training support vector machines. The Journal of Machine Learning Research 6, 1889–
1918 (2005)

664 X. Wang and J. Guo

7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

8. Cao, L.J., Keerthi, S.S., Ong, C.J., Zhang, J.Q., Periyathamby, U., Fu, X.J., Lee, H.P., Pe-
riyathamby, U., Fu, X.J., Lee, H.P.: Parallel sequential minimal optimization for the train-
ing of support vector machines. IEEE Transactions on Neural Networks 17(4), 1039–1049
(2006)

9. Graf, H.P., Cosatto, E., Bottou, L., Dourdanovic, I., Vapnik, V.: Parallel support vector
machines: The cascade SVM. In: Advances in Neural Information Processing Systems, pp.
521–528 (2004)

10. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s
SMO algorithm for SVM classifier design. Neural Computation 13(3), 637–649 (2001)

11. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification (2003)
12. Glasmachers, T., Igel, C.: Maximum-gain working set selection for SVMs. The Journal of

Machine Learning Research 7, 1437–1466 (2006)
13. LIBSVM–A library for Support Vector Machines,

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

	An Algorithm for Parallelizing Sequential Minimal
Optimization
	1 Introduction
	2 Support Vector Machines
	3 Sequential Minimal Optimization
	4 Parallelizing the Process of Working Set Selection
	5 Experiments
	6 Discussion
	References

