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Preface

This volume is part of the three-volume proceedings of the 20th International
Conference on Neural Information Processing (ICONIP 2013), which was held in
Daegu, Korea, during November 3–7, 2013. ICONIP is the annual conference of
the Asia Pacific Neural Network Assembly (APNNA). This series of conferences
has been held annually since ICONIP 1994 in Seoul and has become one of the
premier international conferences in the areas of neural networks.

Over the past few decades, the neural information processing community has
witnessed tremendous efforts and developments from all aspects of neural infor-
mation processing research. These include theoretical foundations, architectures
and network organizations, modeling and simulation, empirical study, as well
as a wide range of applications across different domains. Recent developments
in science and technology, including neuroscience, computer science, cognitive
science, nano-technologies, and engineering design, among others, have provided
significant new understandings and technological solutions to move neural in-
formation processing research toward the development of complex, large-scale,
and networked brain-like intelligent systems. This long-term goal can only be
achieved with continuous efforts from the community to seriously investigate
different issues of the neural information processing and related fields. To this
end, ICONIP 2013 provided a powerful platform for the community to share their
latest research results, to discuss critical future research directions, to stimulate
innovative research ideas, as well as to facilitate multidisciplinary collaborations
worldwide.

ICONIP 2013 received tremendous submissions authored by scholars coming
from 30 countries and regions across six continents. Based on a rigorous peer
review process, where each submission was evaluated by at least two qualified
reviewers, about 270 high-quality papers were selected for publication in the
prestigious series of Lecture Notes in Computer Science. These papers cover all
major topics of theoretical research, empirical study, and applications of neural
information processing research.

In addition to the contributed papers, the ICONIP 2013 technical program
included a keynote speech by Shun-Ichi Amari (RIKEN Brain Science Institute,
Japan), 5 plenary speeches by Yoshua Bengio (University of Montreal, Canada),
Kunihiko Fukushima (Fuzzy Logic Systems Institute, Fukuoka, Japan), Soo-
Young Lee (Brain Science Research Center, KAIST, Korea), Naftali Tishby (The
Hebrew University, Jerusalem, Israel) and Zongben Xu (Xi’an Jiatong University,
China). This conference also featured invited presentations, regular sessions with
oral and poster presentations, and special sessions and tutorials on topics of
current interest.

Our conference would not have been successful without the generous patron-
age of our sponsors. We are most grateful to our sponsors Korean Brain Research
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Institute, Qualcomm Korea. We would also like to express our sincere thanks to
the International Neural Network Society, European Neural Network Society,
Japanese Neural Network Society, Brain Engineering Society of Korea, and The
Korean Society for Cognitive Science for technical sponsorship.

We would also like to sincerely thank honorary chair Shun-ichi Amari, Soo-
Young Lee, the members of the Advisory Committee, the APNNA Governing
Board and past presidents for their guidance, the organizing chair Hyeyoung
Park, the members of the Organizing Committee, special sessions chairs, Pub-
lication Committee and publicity chairs, for all their great efforts and time in
organizing such an event. We would also like to take this opportunity to express
our deepest gratitude to the members of the Program Committee and all review-
ers for their professional review of the papers. Their expertise guaranteed the
high quality of the technical program of the ICONIP 2013!

Furthermore, we would also like to thank Springer for publishing the pro-
ceedings in the prestigious series of Lecture Notes in Computer Science. We
would, moreover, like to express our heartfelt appreciation to the keynote, ple-
nary, panel, and invited speakers for their vision and discussions on the latest.

Finally, we would like to thank all the speakers, authors, and participants for
their great contribution and support that made ICONIP 2013 a huge success.

This work was supported by the National Research Foundation of Korea
Grant funded by the Korean Government.

November 2013 Minho Lee
Akira Hirose

Rhee Man Kil
Zeng-Guang Hou



Organization

Honorary Chair

Shun-ichi Amari RIKEN, Japan
Soo-Young Lee KAIST, Korea

General Chair

Minho Lee Kyungpook National University, Korea

Program Chair

Akira Hirose The University of Tokyo, Japan
Zeng-Guang Hou The Chinese Academy of Sciences, China
Rhee Man Kil Sungkyunkwan University, Korea

Organizing Chair

Hyeyoung Park Kyungpook National University, Korea

Workshop Chair

Daijin Kim POSTECH, Korea
Kyunghwan Kim NT Research, Korea
Seong-Whan Lee Korea University, Korea

Special Session Chair

Sung-Bae Cho Yonsei University, Korea
Seiichi Ozawa Kobe University, Japan
Liqing Zhang Shanghai Jiao Tong University, China

Tutorial Chair

Seungjin Choi POSTECH, Korea

Publication Chair

Yoonsuck Choe Texas A&M University, USA
Hyung-Min Park Sogang University, Korea
Seong-Bae Park Kyungpook National University, Korea



VIII Organization

Publicity Chair

Kazushi Ikeda NAIST, Japan
Chi-Sing Leung University of Hong Kong, Hong Kong
Shaoning Pang Unitec Institute of Technology, New Zealand

Registration Chair

Min-Young Kim Kyungpook National University, Korea

Financial Chair

Sang-Woo Ban Dongguk University, Korea

Local Arrangement Chair

Doo-Hyun Choi Kyungpook National University, Korea
Jong-Seok Lee Yonsei University, Korea
Rammohan Mallipeddi Kyungpook National University, Korea

Advisory Committee

Jonathan H. Chan, Thailand
Wlodzislaw Duch, Poland
Kunihiko Fukushima, Japan
Tom Gedeon, Australia
Aike Guo, China
Akira Iwata, Japan
Nik Kasabov, New Zealand
Irwin King, Hong Kong
Noboru Onishi, Japan
Ron Son, USA

Il Hong Suh, Korea
Shiro Usui, Japan
DeLiang Wang, USA
Lipo Wang, Singapore
Jun Wang, Hong Kong
Lei Xu, Hong Kong
Takeshi Yamakawa, Japan
Byoung-Tak Zhang, Korea
Li-Ming Zhang, China

Program Committee Members

Tani Jun Rubin Wang
Soo-Young Lee Xin Yao
Sung-Bae Cho S. Ma
Sungmoon jeong Honghai Liu
Kyung-Joong Kim Joarder Kamruzzaman
C.K. Loo Mallipeddi Rammohan
Nung Kion Lee Zhirong Yang
Shan He Anto Satriyo Nugroho
Dae-Shik Kim Nikola Kasabov



Organization IX

Jonghwan Lee Sheng Li
Yaochu Jin Oclay Kursun
DaeEun Kim Michel Verleysen
Tingwen Huang Peter Erdi
Fangxiang Wu Qingsong Song
Dongbing Gu Bin Li
Hongli Dong Huaguang Zhang
Cesare Alippi Derong Liu
Kyung Hwan Kim Eric Matson
Lae-Jeong Park Mehdi Roopaei
Sang-Woong Lee Jacek Ma’ndziuk
Sabri Arik Yang Shi
Chee-Peng Lim Zhiwu Lu
Haibo He Xiaofeng Liao
Dat Tran Zhigang Zeng
Kee-Eung Kim Ding-Xuan Zhou
Seungjin Choi James Tin-Yau Kwok
Robert (Bob) McKay Hsuan-Tien Lin
Xueyi (Frank) Wang Osman Elgawi
Jennie Si Chao Zhang
Markus Koskela Bo Shen
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Abstract. The classical algorithm ISOMAP can find the intrinsic 
low-dimensional structures hidden in high-dimensional data uniformly distri-
buted on or around a single manifold. But if the data are sampled from mul-
ti-class, each of which corresponds to an independent manifold, and clusters 
formed by data points belonging to each class are separated away, several dis-
connected neighborhood graphs will occur, which leads to the failure of 
ISOMAP. Moreover, ISOMAP behaves in an unsupervised manner and therefore 
works less effectively for classification. In this paper, two improved versions of 
ISOMAP, namely Multi-Class Multi-Manifold ISOMAP (MCMM-ISOMAP) 
for data visualization and ISOMAP for Classification (ISOMAP-C), are pro-
posed respectively. MCMM-ISOMAP constructs a single neighborhood graph, 
named a between-class neighborhood graph by connection of between-class 
points with shortest distance of each within-class neighborhood graph, and then 
ISOMAP algorithm is applied to find the intrinsic low-dimensional embedding 
structure. ISOMAP-C is essentially an extension of MCMM-ISOMAP to a su-
pervised manner, which is multiplied by scaling factor greater than one so that 
low dimensional data set after mapping become more compact within class and 
more separate between classes. Finally, the mapping function from original high 
dimensional space to low dimensional space can be approximately modeled us-
ing Back-Propagation neural network combined with genetic algorithm. Expe-
rimental results using MCMM-ISOMAP on synthetic and real data reveal its 
effectiveness and ones using ISOMAP-C show that the performance is greatly 
enhanced and robust to noisy data. 

Keywords: multiple manifolds, classification, data visualization, ISOMAP, 
genetic algorithm. 

1 Introduction 

In the appearance-based face recognition, a 64×64 face image is represented as a real 
vector in 4096-dimensional Euclidean space. However, in practical applications, the 
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number of face images available possibly ranges from hundreds to thousands, which is 
too sparse in so high-dimensional space, “the curse-of-dimensionality” problem 
exists(Donoho, 2000). Dimensionality reduction techniques are one of the effective 
solutions to this problem. In general, dimensionality reduction techniques are divided 
into linear and nonlinear dimensionality reduction. Classical linear dimensionality 
reduction algorithms include Principal Component Analysis (PCA) (Turk and 
Pentland, 1991), Independent Component Analysis (ICA) (Comon, 1994), 
Multi-Dimensional Scaling (MDS) (Cox and Cox, 1994), Linear Discriminant Analysis 
(LDA)  (Duda et al., 2001) and so on. The limitations of linear dimensionality 
reduction are based on the assumption that the data structure is globally linear, but in 
practice, a lot of data are more complex and have nonlinear structure. To deal with these 
data of nonlinear structure, nonlinear dimensionality reduction algorithms have been 
proposed, such as Self-Organizing Mapping (SOM) (Kohonen, 2001), Principal Curves 
(Kegl et al., 2000), Generative Topographic Mapping (GTM) (Bishop et al., 1998), 
Kernel PCA (Scholkopf et al., 1998) and so on. However, these methods often suffer 
from the difficulties in designing cost functions or tuning too many free parameters. 
Moreover, most of these methods are computationally expensive, and do not explicitly 
consider the structure of low-dimensional manifold on or around which the data 
possibly lie, thus limiting their utility in high-dimensional data sets (Lin and Zha, 
2008). In recent years, nonlinear dimensionality reduction, based on the assumption 
that the data lie on or around a single low-dimensional manifold in a high-dimensional 
Euclidean space, has become very popular in machine learning compute r vision and 
other areas, and many manifold learning algorithms have been proposed, such as 
ISOmetric feature MAPping (ISOMAP) (Tenenbaum et al., 2000), Locally Linear 
Embedding (LLE) (Roweis and Saul, 2000), Laplacian Eigenmaps (LE) (Belkin and 
Niyogi, 2003), Locality Preserving Projection (LLP) (He and Niyogi., 2004) , and 
Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2005). However, such 
manifold learning algorithms succeed only if the data lie on or around a single 
manifold. In practical applications, the sampled data may be very complicated, which 
comes from more than one manifold whose intrinsic dimension is the same or different. 
At this point the above-mentioned manifold learning algorithms fail to achieve the 
correct low-dimensional embedding.  Though the related research of multiple 
manifolds has been reported abroad in the past several years (Goldberg and Zhu; Wang 
et al., 2008), the proposed algorithm named Multi-Class Multi-Manifold ISOMAP 
(MCMM-ISOMAP) is an improvement of the classical ISOMAP algorithm, whose 
contribution is visualization of multiple separate manifolds, each for one class, in a 
single global coordinate system.Moreover, ISOMAP works in an unsupervised manner 
and therefore it is unsuitable for classification task. Therefore, the other contribution of 
this paper is to propose ISOMAP for Classification (ISOMAP-C), which is an 
extension of MCMM-ISOMAP from an unsupervised manner to a supervised one for 
the purpose of classification. 

The rest of the paper is organized as follows. In section 2, the principle of ISOMAP 
and its shortcomings are briefly introduced. In section 3, MCMM-ISOMAP is 
proposed, and the relationship between it and classical ISOMAP are discussed. In 
section 4, ISOMAP-C is proposed. The experimental results are given in section 5. 
Finally in section 6, conclusions are drawn and several issues for the future work are 
indicated. 
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2 Overview of ISOMAP 

In order to measure the true distance between the points lying on a single nonlinear 
manifold, ISOMAP adopts the shortest path between the data points in a weighted 
undirected graph formed by data points (Bernstein et al., 2000). Characteristics 
(disadvantages) of ISOMAP are as follows: 

(a) When data is sampled from multiple faraway clusters, each corresponding to a 
manifold, it is very likely that the short circuit edges will occur, which leads the 
neighborhood graph to not reflect the intrinsic geometry structure of data and therefore 
yields undesirable embeddings. 

(b) When constructing the neighborhood graph, if more than one sub-neighborhood 
graphs generate, ISOMAP only finds lower dimensional embedding for one of these 
sub-neighborhood graphs. 

(c) ISOMAP works in an unsupervised manner and therefore it is unsuitable for 
classification task.  

(d) ISOMAP can explicitly provide the mapping function from high-dimensional 
space to low-dimensional feature space mapping and therefore it is difficult to obtain 
the low-dimensional embedding for an unseen data in original high-dimensional space. 

3 MCMM-ISOMAP 

For data visualization, the goal is to map data points in original space into a two or three 
dimensional one while preserving, as much as possible, the intrinsic structure. As 
described in the above section, when the data are sampled from multi-class, each of 
which corresponds to an independent underlying manifold, and the clusters formed by 
data points from each class are separated away, ISOMAP algorithm possibly fails to 
find the low-dimensional embedding of data in high-dimensional space. However, the 
proposed algorithm MCMM-ISOMAP can effectively solve the problem. 

The main idea of this algorithm is to obtain a single neighborhood graph over all data 
points not by means of making the value of the neighborhood parameter large, but by 
selecting an appropriate value of the neighborhood parameter with which each 
within-manifold will not generate short-circuit edges. Although multiple neighborhood 
graphs will form over all data points, they will become a single neighborhood graph by 
finding pairwise data, each of which are two endpoints of the shortest Euclidean 
distance between classes, and making the two endpoints neighborhood ones. Finally the 
classical ISOMAP algorithm is used to get the low-dimensional embedding of all data. 

Consider a set of samples with labels )},(,),,{( 11 NN lxlxX = , n
i Rx ∈  and 

},,2,1{ cli ∈ , i.e., there are c classes in total in X . For convenience, three 

definitions are introduced as follows: 

Definition 1: Given a data set with label, a neighborhood graph iNG  is called as the 

i -th within-class neighborhood graph, if iNG  is constructed on a sub-data set 

belonging to the i -th class by k  nearest neighbors or some fixed radius ε .  
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According to the above definition, obviously it can be shown that c  neighborhood 
graphs can be constructed on X  in total. 

Definition 2: For the shortest distance ijd  among Euclidean distances between the 

i -th class and j -th class, the corresponding two endpoints are called as between-class 

points with shortest distance and the corresponding edge ije  as a between-class 

adjacent edge. 

Definition 3: A neighborhood graph G  is said to be a between-class neighborhood 
graph if G  is constructed by connection of c  within-class neighborhood graphs 
with between-class adjacent edges with shortest distance.  

The above three definitions are easy to understand intuitively from Figure 1, where 
Fig.1 (a) shows the cropped Swiss roll data set with two gaps which are categorized as 
three classes, each denoted by different colors (red, blue and green), three within-class 
neighborhood graphs are shown in Fig.1 (b) with neighborhood parameter k  set to 8, 
and the between-class neighborhood graph on the data set is shown in Fig.1 (c), where 
three lines in red are between-class adjacent edges. 
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             (a)                             (b)                             (c) 

Fig. 1. Swiss roll data sets and neighborhood graph: (a) Swiss roll samples with three classes 
(red, blue, green). (b) within-class neighborhood graph. (c) between-class neighborhood graph 
with three between-class adjacent edges (red). 

According to class labels, X  is split into c  disjoint sub-data sets: 

cXXXX ∪∪∪= 21 , where },,{ 21 iN
iiii xxxX =  is the data set of the 

i -th class and p
ix ( iNp ≤≤1 ) indicates the p -th sample belonging to the i -th 

class. Obviously, NN
c

i
i =

=1

. Let )( p
ixNE  be a set whose elements are composed 

of neighbors of p
ix . Let },,,{ 21 cYYYY = be the lower-dimensional embedding of 

the input data set. m
i

p
i RYy ⊂∈  indicates the m  dimensional embedding of p

ix , 
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generally nm << . The detailed description of the MCMM-ISOMAP algorithm is as 
follows: 

Step 1. Construct c  within-class neighborhood graphs with the appropriate number of 
neighbors k  with which short-circuits can not occur within class. 

Step 2. Search for between-class points with shortest distance between classes, which 
are obtained by solving the equation (1)  

)(minarg,
,1

ji

ji
cji

Xw
Xw

ji XXWMWM

jj

ii

−=
<

≤≤
∈
∈

                        (1)  

where jjii XWMXWM ∈∈ , .  

i.e.  ( iWM , jWM ) are between-class points with shortest distance between the 

i -th class and the j -th class.  

Step 3. Substitute )( iWMNE  and )( jWMNE  with }{)( ji WMWMNE ∪ and 

}{)( ij WMWMNE ∪ , respectively. In this way, a between-class neighborhood 

graph will form over the entire data set. 

Step 4. Compute the shortest path distance between all pairs of data: the shortest path 
distance between one pair of data usually is computed by the Floyd or Dijkstra 
algorithm. 

Step 5. Construct low-dimensional embedding in m  dimensional Euclidean space: 
the shortest path distance between pairwise data derived from the Step 4 is used as the 
input of MDS, consequently getting the m  dimensional embedding 

},,,{ 21 cYYYY = . 

From the above algorithm steps, it can be concluded that the difference and 
relationship between MCMM-ISOMAP and ISOMAP is as follows: 

① MCMM-ISOMAP is the same as ISOMAP in the sense that there is only one 
parameter to be adjusted in the two algorithms, which indicates the MCMM-ISOMAP 
algorithm is simply implemented and can be spread easily in practical applications. 
② Assuming that the input data sets are sampled from multi-class and that clusters 

formed by these data points belonging to different classes are closer, if the selected 
value of the neighborhood parameter can not only guarantee that the short-circuit edges 
can not be introduced within manifold, but also  that a  single  neighborhood graph 
will form over the entire data set, the above Step 2 to Step 3 can be omitted. 
Consequently MCMM-ISOMAP is the same as ISOMAP. In this sense, ISOMAP is a 
particular case of MCMM-ISOMAP, and MCMM-ISOMAP is an extension of 
ISOMAP. In other words, whether the clusters of classes are closer or not, 
MCMM-ISOMAP algorithm can obtain the low-dimensional embeddings of the input 
data sets. 
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4 ISOMAP-C 

From a classification point of view, it is expected that the classifier can make data 
belonging to different classes separate clearly, while data belonging to the same class 
are close in the low-dimensional feature space. Therefore, if the length of between-class 
adjacent edges is rescaled by multiplication with the scaling factor σ  greater than 
one, approximate geodesic distances between classes will enlarge, which will make the 
lower dimensional embedding of different classes separate clearly. Obviously, the 
larger the value of σ , the larger the margin between classes, ultimately making data 
from the same class shrink to a point when σ  approaches infinity. The 2-dimensional 
embeddings of data in Fig. 1 (a) are shown in Fig. 2 with σ  set to 1, 10 and 100, 
respectively.  
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(a) 1=σ                 (b) 10=σ                (c) 100=σ                      

Fig. 2. The embedding in 2D space with scaling factor set to different values 

It is known that the mapping function f  from the original high-dimensional 

space to low dimensional feature one is not explicitly given by ISOMAP. Therefore, for 
a test data point to be classified, its low-dimensional embedding can be found by 
repetition of the ISOMAP procedure, which is an obvious waste of time. In this paper, 
the mapping function f  can be approximated by a Back-Propagation neural network, 

whose initial weights and thresholds are optimized by Genetic Algorithms to avoid 
local minimum using gradient decent techniques. The BP neural network is trained by 
the data set in original space as input and the corresponding low-dimensional 
embedding as output. ISOMAP-C algorithm is summarized as follows:  

Step 1~3: The first three steps are the same as ones in MCMM-ISOMAP. 

Step 4: Substitute jiij WMWMd −=  with σ×= ijij dd  ( 1>σ ). 

Step 5: Calculate the shortest path between all pairs of data to approximate geodesic 
distances via Floyd’s algorithm or Dijkstra’s algorithm, and then MDS is applied to 
obtain the embedding Y . 

Step 6: BP neural network is trained with ( YX , ), whose initial weights and thresholds 

are obtained via genetic algorithm. 
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Step 7: For a given unseen point 0x , 0x  is used as input of BP neural network and 

0y  is obtained as output.  

Step 8: k -Nearest neighbors algorithm is applied on Y  to predict the class label  

of 0x . 

5 Experimental Results 

5.1 MCMM-ISOMAP for Data Visualization 

In order to test the performance of MCMM-ISOMAP for data visualization, 
experiments were carried out on synthetic data sets and real-world data sets 
respectively. 

Synthetic Data Sets 

The three classes of Swiss roll data, marked by ●,＋ and﹡respectively, are constructed 
as shown in Fig.3 (a), where each class corresponds to a two dimensional manifold. 
When the value of neighborhood parameter k  is set to 8, short-circuit edges can not 
occur in any of the three within-class neighborhood graphs. However, in order to apply 
ISOMAP to such a data set, the single neighborhood graph will form over the entire 
input data with the minimum neighborhood size 15=k . The experimental results 
using MCMM-ISOMAP and ISOMAP are shown in Fig. 3 (b) and (c), respectively. It 
can be seen from the results that MCMM-ISOMAP better preserves the topological 
structure of the data in the same class, but ISOMAP fails since it forces the class, 

marked by symbol ＋, to shrink to almost a line, and the class, marked by symbol ﹡, to 
distort in the middle. 

 

       
             (a)                              (b)                            (c) 

Fig. 3. The result on synthetic data sets: (a) three classes Swiss roll data, (b) using    

MCMM-ISOMAP, 8=k ,  (c) using ISOMAP, 15=k  

Real-World Data Sets 
The data sets in this experiment includes four classes of images (duck, building block, 
cat and face), each of which consists of 72 images which have smooth change in 
appearance due to pose variations. Data sets of the first three classes duck, building 
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block and cat can be downloaded from the Computer Vision Laboratory of Columbia 
University(Nene et al., 1996), and the class face images can be obtained by rotating 
every 5 degrees a front facial image selected from facial images data set used in 
ISOMAP1. All images were resized to 32*32.  

The result of using MCMM-ISOMAP with a neighborhood size 3=k  is shown in 
Fig. 4 (a), where part of typical images of each class are shown around the data points. 
It can be seen that MCMM-ISOMAP successfully embed images in the four classes 
into a two-dimensional global coordinate system. However, the minimum 
neighborhood size is 9=k , with which a single neighborhood graph over such four 
classes of data sets can be constructed. The result using the ISOMAP with 9=k  is 
shown in Fig. 4 (b). It can be seen from the result that ISOMAP fails to find the intrinsic 
structure of every manifold, because images belonging to the classes duck and face 
both shrink almost into a straight line, and that both classes of cat and building block 
drastically intersect after the dimensionality reduction. 

 

(a)                                   (b) 

Fig. 4. The result on real-world data sets: (a) MCMM- ISOMAP, 3=k  (b) ISOMAP, 

9=k . (duck, building block, cat and face, marked by symbol ●,＋,* and ◇, respectively) 

5.2 ISOMAP-C for Data Classification 

Data sets used in the experiment are from UCI machine learning repository (Blake and 
Merz, 1998). All instances with missing values are excluded.. ISOMAP-C method is 
compared with BP neural network (Rumelhart et al., 1986), RBF neural network (Chen 
et al., 1991), and K nearest neighbors (Ho, 1998) implemented based on WEKA 
(Witten and Frank, 2005) with default parameters and SVM (Vapnik, 1995, 1998) 
implemented based on LIBSVM (Chang and Lin, 2001). The BP neural 
network to approximate mapping function contains three layers, and the numbers of 
neurons for input layer, hidden layer and output layer is equal to the dimension n  of 

X , 20 and the dimension m  of Y  set to 2 indicating that all input data sets are 
reduced to 2 dimensional feature space. A real coded genetic algorithm is implemented 

                                                           
1 http://waldron.stanford.edu/~isomap/datasets.html 
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based on GAOT Toolbox to optimize initial weights and thresholds of the BP neural 
network. The initial population takes 50. 

On each data set, ten-fold cross validation is repeated ten times. The results are 
shown in Tab. 1. Moreover, in order to evaluate whether the performance between 
ISOMAP-C and the other classifiers is significantly different, the corrected resample 
t-test are employed at the significance level 0.05. The results are shown in Tab. 2, 
where the last row indicates the total of “win/tie/loss” between ISOMAP-C and one 
algorithm on all datasets and the last column indicates the total of “win/tie/loss” 
between ISOMAP-C and all the other algorithms on one dataset. 

Table 1. The rate of accuracy of each algorithm (in the form of mean (standard deviation)%) 

dataset ISOMAP-C ISOMAP BP RBF K-NN C4.5 SVM 

bal 96.49(1.57) 73.62(4.03) 90.69(3.04) 86.34(3.41) 90.26(1.95) 77.82(3.42) 89.87(1.67) 

bre 95.63(1.00) 73.48(3.43) 96.10(2.18) 96.32(2.18) 96.92(2.08) 95.44(2.64) 96.33(2.04) 

dia 74.60(2.41) 69.28(5.17) 74.75(4.90) 74.04(4.91) 72.94(4.26) 74.49(5.27) 65.11(0.34) 

gla 67.40(8.55) 61.08(9.69) 67.32(8.64) 64.92(9.90) 63.26(8.51) 67.63(9.31) 68.34(8.25) 

son 76.81(4.35) 64.35(10.21) 81.61(8.66) 72.62(9.91) 75.25(9.91) 73.61(9.34) 64.99(7.66) 

swr 100(0.00) 99.78(0.17) 100(0.00) 99.85(0.62) 100.00(0.00) 99.79(0.47) 99.84(0.39) 

Table 2. The win/tie/loss table comparing ISOMAP-C and other algorithms (“win” means the 
performance of ISOMAP-C is significantly better, “tie” means the performance is statistically 
equal, and “loss” means the performance is significantly worse). 

dataset ISOMAP BP RBF K-NN C4.5 SVM win/tie/loss 

bal win win win win win win 6/0/0 

bre win tie tie tie tie tie 1/5/0 

dia win tie tie tie tie win 2/4/0 

gla win tie tie tie tie tie 1/5/0 

son win tie tie tie tie win 2/4/0 

swr tie tie tie tie tie tie 0/6/0 

win/tie/loss 5/1/0 1/5/0 1/5/0 1/5/0 1/5/0 3/3/0  

As seen from Tab. 1, the performance of ISOMAP-C is the best on the four data sets 
among the above six ones and worse than BP neural network on the sonar data set. It 
may be due to the number of attributes of the data set, being relatively large, while the 
number of samples is relatively small, resulting in the excessive loss of information in 
the procedure of dimension reduction. The last row in Tab. 2 reveals that the 
performance of ISOMAP-C is not worse than the other algorithms, in particular 
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significantly better than ISOMAP on five datasets of six ones. And the last column 
reveals that ISOMAP-C is significantly better than the other algorithms on the 
balance-scale dataset. 

In addition, in order to analyze the robustness of ISOMAP-C for noisy data, we add 
1 to 5 times of Gaussian noise with mean 0 and standard deviation 1 to the above Swiss 
roll data shown in Fig. 5. Results are shown in Tab. 3 using different classifiers on the 
noisy Swiss roll data via ten times ten-fold cross validation. 
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Fig. 5. The Swiss roll data plus n  times Gaussian noise, with zero mean 0 and standard 
deviation 1 

Table 3. The accuracy of different algorithms on the Swiss roll data set with different times noise 
(in the form of mean(standard deviation)%) 

times ISOMAP-C BP RBF K-NN C4.5 SVM 

1 99.51(0.53) 99.52(0.68) 98.74(0.79) 99.71(0.65) 98.84(1.19) 97.88(2.02) 

2 94.57(1.83) 93.72(2.86) 92.47(2.08) 93.05(2.02) 92.85(2.64) 86.78(5.19) 

3 84.76(4.43) 83.49(3.79) 83.01(4.08) 83.78(4.43) 81.95(3.61) 73.65(4.49) 

4 75.24(3.79) 76.13(4.29) 74.99(4.47) 75.05(4.05) 73.61(3.80) 69.62(4.07) 

5 67.30(1.86) 68.91(5.13) 67.26(4.44) 66.88(4.49)  67.47(4.94) 51.93(5.21) 

 
It can be shown from Tab. 3 that ISOMAP-C has very good robustness and 

performance for such a dataset, and the robustness of SVM is the worst. Why 
ISOMAP-C has good robustness is likely due to the class labels being employed when 
constructing within-class neighborhood graphs and, therefore, no matter how high the 
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noise level is, one within-class neighborhood graph is constructed by data only 
belonging to the same class. In this way, margins between classes are large enough in 
the lower dimensional space. 

6 Conclusions 

In this paper, two variants of ISOMAP are proposed: MCMM-ISOMAP for 
visualization of data lying on or around multiple separate manifolds, each for one class, 
and ISOMAP-C for data classification. Essentially, ISOMAP-C is an extension of 
MCMM-ISOMAP from unsupervised manner to supervised one. For an unseen data 
point to be classified, its low dimensional embedding is found via the approximate 
mapping function constructed by BP neural network, whose initial weights and 
thresholds are optimally selected by genetic algorithm. The experimental results using 
MCMM-ISOMAP on synthetic and real-world data sets indicate it can find the intrinsic 
topological structure within class, and results using ISOMAP-C indicates that it has 
good robustness with noisy datasets, surpasses ISOMAP in classification and is highly 
competitive with those well-known classification methods.  

However, disadvantages of such algorithms are that they are time-consuming due to 
calculation of the shortest path between points, and unsuitable for data sets with 
categorical attributes and high-dimensional sparse data sets. How to deal with such 
situations is our future work. 

Acknowledgments. This work was partially supported by the National Science 
Foundation of China under Grant No.61070121 and No.60973094. 
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Abstract. We proposed a method for collecting all Pareto solutions in
multi-objective optimization problems. Our method is similar to ran-
domized algorithms or the statistical learning theory and completely re-
constructs the Pareto set with high probability from a finite number of
single-objective optimizations. We also derived an upper bound of the
mean of the probability that the method fails the perfect reconstruction.
Our analysis shows the mean error probability decreases as the number
of single-objective optimizations increases.

Keywords: Multi-objective optimization, Pareto set, randomized algo-
rithm, statistical learning theory.

1 Introduction

Multi-objective optimization (MOO) is the class of optimization problems that
have plural objective functions [1]. One example is the control of power plants
[2] and another example is the design of wing-shape [3]. An MOO problem is
formally expressed as

max f(x) f(x) = (f1(x), f2(x), . . . , fD(x))
T
,

s.t. x ∈ X ≡ {x′|gk(x′) ≤ 0, k = 1, 2, . . . ,K} , (1)

where x, fi and gk denote a vector of design variables, the ith objective function
and the jth constraint function. X is called the feasible design space and

Z ≡ {f(x)|x ∈ X} (2)

is called the feasible criterion space. Note that the maximization of a vector
function cannot be defined due to trade-offs.

To formulate (1) mathematically rigorously, the Pareto optimality has been
introduced [1]. A point x∗ ∈ X is Pareto optimal if and only if

�x ∈ X s.t. f(x) < f(x∗), ∃i, fi(x) < fi(x
∗), (3)

where the inequality of a vector takes elementwise. All Pareto optimal points
lie on the boundary of Z, which is called the Pareto set (Fig. 1). The existing

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 13–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mi.naist.jp/


14 K. Ikeda and A. Hontani

Z

f1

f2
Fig. 1. An illustration. Feasible criterion space (pentagon) and the Pareto set (thick
line). Points (black circles) may approximate the Pareto set.

w1

r1 r2
s2

w2
s1

w0

w3

Fig. 2. Optimization of a sum of objective functions with weight w

methods for obtaining the Pareto set approximate the set by particles (points)
[4–6]. However, there are few algorithms that have theoretical assurance in ap-
proximation accuracy [7]. This difficulty results from the fact that infinite par-
ticles are necessary to express the Pareto set exactly.

Consider the weighted sum of given D objective functions for a given weight
w ∈ RD. Then, one point s(w) in the Pareto set is found by optimizing this
single-objective function according to w with the distance r(w) (Fig. 2). The
function r : w �→ r(w) is a kind of the Legendre transformation when Z is
convex. Hence, the Pareto set can be reconstructed if r(w) is known for all w.
The Pareto set can be reconstructed from a finite set {s(wi)}Ni=1 if the set is a
polyhedron. In Fig. 2, for example, four times of single-objective optimizations
with w0, . . . ,w3 find four vertices of Z and hence the Pareto set.

In this study, we proposed a method for reconstructing the Pareto set using
a finite times of single-objective optimizations and analyzed its performance.
Our method chooses {wn}Nn=1 at random since we have no prior knowledge. The
method succeeds to reconstruct in some cases and it does not in others but the
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b1
b2

b3

Fig. 3. Constraints are linear functions characterized by bk

success rate increases N increases. Note that this idea is similar to randomized
algorithms [8] or probably-approximately correct (PAC) learning [9, 10].

2 Problem Statement

Suppose D objective functions and K constraint functions are given, where the
kth constraint function is a hyperplane,

bT
k f = ‖bk‖2, (4)

that is, the hyperplane with normal vector bk (Fig. 3). We assume each bk is
chosen according to the normal distribution N(0, I) in the first quadrant, that
is, its angle θk obeys the uniform distribution U(SD−1

+ ) and its length |bk| obeys
the χ2 distribution, where SD−1

+ is the first quadrant of the (D− 1)-dimensional
sphere. Then, the feasible criterion space Z is a polyhedron that consists ofM+1
points, c1, . . . , cM and the origin.

We proposed an algorithm based on a random sampling. Our algorithm chooses
a set of N weights {wn} so that ‖wn‖ = 1 and their angles obey U [0, π/2] in-
dependently. The nth weight wn unifies the D objective functions to

L(s;wn) =

D∑
i=1

(wn)ifi(x), (5)

which is maximized when s = s(wn) ∈ C = {c1, . . . , cM}. Hence, the algorithm
successfully reconstructs the feasible criterion space Z when {wn} is chosen so
that {s(wn)}Nn=1 = C, and fails otherwise.

The problem of this paper is to derive the probability E that our algorithm
fails to reconstruct Z from randomly chosen {wn}. More specifically, we derived
an upper bound of its average E [E ] as shown in the sequel.
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3 Result

The average of the error probability satisfies

E [E ] ≤
(
K
D

)∫
B+

p(B)dBV (fB)
K−D

(
1− W (B)

|SD−1
+ |

)N

(6)

where B = {b1,b2, . . . ,bD},

V (f) =

∫
SD−1
+

p(ω)pω

∫ ∞

ωT f

p(r)dr, (7)

W (B) =

∣∣∣∣∣
{

D∑
i=1

λibk|λi > 0

}
∩ SD−1

+

∣∣∣∣∣ , (8)

B+ = {B|fB > 0} , (9)

fB =

⎡⎣bT
1

. . .
bT
D

⎤⎦−1 ⎡⎣‖b1‖2
. . .

‖bD‖2

⎤⎦ , (10)

and p(ω) and p(r) obey the uniform distribution on the (D − 1)-dimensional
sphere SD−1

+ and the χ2 distribution with DOF k, respectively.

4 Proof Sketch

D hyperplanes intersect at one point with probability one. Without loss of gener-
ality, we consider the set B of D hyperplanes, b1, . . . ,bD. Then, the intersecting
point fB is expressed as (10) from (4).

The probability that our algorithm does not find fB is the product of the
probability of fB ∈ C and that of {s(wn)}Nn=1 = C when f1···D ∈ C. We can
calculate the two probabilities separately as below.

The intersecting point fB of B = {b1,b2, . . . ,bD} is included in C if and only
if fB > 0 and bT

k fB < ‖bk‖2 for any k(> D) (Fig. 4). Hence, the probability of
fB ∈ C is expressed as V (fB) in (7).

The probability that a weight w at random finds fB, that is, s(w) = fB ,
is expressed as W (B)/|SD−1

+ | since W (B) in (8) represents the measure of w

on SD−1
+ such that s(w) = fB (Fig. 5). This measure can be calculated by

considering a simplex in the hypersphere [11, 12].
Because the N weights are i.i.d., the probability of {s(wn)}Nn=1 = C when

fB ∈ C is given by

V (fB)
K−D

(
1− W (B)

|SD−1
+ |

)N

. (11)

and the mean error probability is given by its average over B.
Since the number of fB’s is given by combinations, an upper bound of the

mean error probability is given by (6).
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b1 fB

b2

b4 b3

Fig. 4. An example of an intersecting point when D = 2 and B = {b1,b2}. fB ∈ C
when b3 is added while fB �∈ C when b4 is added.

b1

b2
b3fB

Fig. 5. The area of w such that s(w) = fB when D = 3. The convex hull of b1,b2,b3

on SD−1
+ .

5 Conclusion

In this study, we proposed a method for reconstructing the Pareto set from a
finite times of single-objective optimization. Our method is based on an idea
similar to randomized algorithm or the PAC learning and works well with high
probability. We also derived an upper bound of the mean error probability from
the statistical viewpoint. The bound decreases as the number of sampling in-
creases.
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Abstract. We introduce a median variant of the Generalized Learning
Vector Quantization (GLVQ) algorithm. Thus, GLVQ can be used for
classification problem learning, for which only dissimilarity information
between the objects to be classified is available. For this purpose, the cost
function of GLVQ is reformulated as a probabilistic model such that a
generalized expectation maximization scheme can be applied as learning
procedure. We give a rigorous mathematical proof for the new approach.
Exemplary examples demonstrate the performance and the behavior of
the algorithm.

1 Introduction

Prototype based classification is one of the most successful paradigms in classi-
fication learning of vectorial data [14]. Prominent examples are support vector
machines (SVM, [18]), Soft Nearest Prototype Classifier (SNPC,[20]) or Learning
Vector Quantizers (LVQ,[15]). LVQ algorithms generate class typical prototypes
whereas in SVMs the resulting prototypes determine the class borders and are
here called support vectors. These support vectors are data points identified by
convex optimization. Yet, LVQs as introduced by Kohonen realize a Hebbian
learning but does not minimize a cost function. Sato&Yamada proposed a cost
function based generalization of LVQ such that gradient descent learning can be
applied (GLVQ,[17]). A probabilistic formulation of LVQ is the Robust Soft LVQ
(RSLVQ, [21]).

If only dissimilarity information between the data is available, median and
relational methods are required. Median methods restrict the prototypes to be
data points whereas relational approaches allow prototypes to be linear com-
binations of data. Beginning with the pioneering work by J. Bezdek [1,13,12],
median and relational variants of vector quantization are applied in unsupervised
learning for clustering and data compression. Newer approaches also uses semi-
supervised techniques [6,8]. Recently, a relational approach of the GLVQ was
introduced assuming the prototypes are linear combinations of the data points

� Supported by a grant of the European Social Foundation (ESF), Saxony.
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[5,24]. However, a pure median variant of GLVQ is an open problem so far, which
is addressed in this paper. For this purpose, we reformulate the cost function
of GLVQ in terms of a probabilistic model, such that a variant of the expecta-
tion maximization (EM) strategy becomes applicable. Doing so, generalized EM
optimization yields the desired functionality.

The paper is structured as follows: First we briefly review the standard def-
inition of GLVQ. Second, we give a reformulation suitable for an EM variant.
We provide a mathematical proof for this algorithm. Finally we demonstrate the
approach for exemplary applications and summarize with concluding remarks.

2 A Median Variant of the Generalized Learning Vector
Quantization Algorithm

Learning vector quantization comprises a family of prototype based vector quan-
tizers for classification of vectorial data, which are trained according to a heuris-
tic to minimize the classification error [15]. After learning unknown data points
are classified to that class, the closest prototype is belonging. The GLVQ algo-
rithm is a generalization of the heuristic learning scheme formalizing the objec-
tive to optimize the hypothesis margin of the classifier [4,10,19]. It approximates
the classification error by a differentiable cost function such that gradient descent
learning becomes available [17].

2.1 The Cost Function of GLVQ

Let xi ∈ X i = 1, .., N be the data points to be learned and wj ∈W j = 1, ..,M
be the prototypes. Further, let c(·) be the formal class label function, which
assigns to each data point the class label c (xi). Analogously, c (wj) returns the
class label of the prototype. We introduce the distances d+(xi) and d−(xi) as

d+(xi) = min
{wj :c(xi)=c(wj)}

d(xi, wj)

d−(xi) = min
{wj :c(xi) �=c(wj)}

d(xi, wj)

describing the minimal distances from xi to the closest prototype of the same
class (correct) and to closest prototype of any other class (incorrect), respectively.
The classifier function

μα(xi) =
d−(xi)− d+(xi)

d+(xi) + d−(xi)
+ α (1)

with μα(xi) ∈ Iα = [−1 + α, 1 + α]. For α = 0, the classifier function μα(xi)
becomes negative if d+(xi) > d−(xi) is valid, i.e. data point would be incorrectly
classified. An value α 
= 0 would shift this decision boundary as well as the
interval Iα. Sato&Yamada defined the cost function of GLVQ to be minimized
by stochastic gradient descent learning as

C(X,W) =

N∑
i=1

f(−μα(xi)) (2)
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where f is a monotonically increasing transfer function (e.g. the identity func-
tion) [17]. In fact, the choice of α does not influences the optimization.

To meet the requirements for the generalized EM-learning we translate the
minimization problem 2) into a maximization problem

K(X,W) =

N∑
i=1

log
(
g+(xi,W) + g−(xi,W)

)
(3)

specifying the transfer function as the logarithm and introducing the positive
quantities

g+(xi,W) =
α

2
− d+(xi)

d+(xi) + d−(xi)
(4)

g−(xi,W) =
α

2
+

d−(xi)

d+(xi) + d−(xi)
. (5)

This choice implies a > 1 to ensure μα(xi) > 0. for suitably chosen, we obtain an
equivalent optimization function for GLVQ now to be maximized. From numeri-
cal point of view g± ≥ 1 should be valid to avoid instabilities from the logarithm
in case of small values. One easily checks that α ≥ 4 fulfills this requirement.

2.2 Reformulation of the GLVQ Cost Function and Generalized EM
Optimization

In the following we reformulate the modified cost function K(X,W) from (3) for
application of a generalized EM strategy (gEM). For this reason we introduce
the formal probabilities

p+(W|xi) =
g+(xi,W)

g+(xi,W) + g−(xi,W)
(6)

p−(W|xi) =
g−(xi,W)

g+(xi,W) + g−(xi,W)
(7)

which sum up to p+(W|xi) + p−(W|xi) = 1. Hence, both probabilities form a
probability density p(W|xi) for a given data point xi. Additionally, we introduce
the functions γ+(W|xi) ≥ 0 and γ−(W|xi) ≥ 0, which play the role of generating
models for the prototypes for correct and incorrect classification of a given data
point xi. We consider the additional constraint

γ+(W|xi) + γ−(W|xi) = 1 (8)

such that both, γ+(W|xi) and γ−(W|xi), form together a formal probability
density function γ(W|xi). The respective Kullback-Leibler-divergence (KLD) is
calculated as

Ki(γ||p) = γ+(W|xi) · log
(
p+(W|xi)

γ+(W|xi)

)
+ γ−(W|xi) · log

(
p−(W|xi)

γ−(W|xi)

)
(9)

and, hence, Ki(γ||p) ≥ 0 holds for each xi.
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Further, we can formally introduce the generalized KLD (see [3,23])

Li(γ||g) = γ+(W|xi) · log
(
g+(xi,W)

γ+(W|xi)

)
+ γ−(W|xi) · log

(
g−(xi,W)

γ−(W|xi)

)
(10)

with g = {g+(xi,W), g−(xi,W)}. Now, we can decompose (3) into

K(X,W) =
N∑
i=1

[Li(γ||g)−Ki(γ||p)] . (11)

which is, in fact, has the structure of a maximum likelihood problem. The first
term L =

∑N
i=1 Li (γ,Θ) is a lower bound for the cost function because the

divergence property of the Ki(γ||p). The proof of the decomposition is given in
the Appendix.

With the decomposition (11) and the properties described above, we can spec-
ify an EM optimization approach for finding a maximum of the likelihood func-
tion, see Alg. 1.

Algorithm 1. gEM algorithm of GLVQ
1. Initialize Wold

2. E Step: set γ(W|xi) ← p(Wold|xi)
3. M Step: for fixed γ(W|xi) determine Wnew = argmaxW

∑N
i=1 Li(γ||g), which

improves L
4. If Wnew = Wold then STOP, else set: Wnew ← Wold and go to step 2.

Remark 1. At this point we emphasize that for this variant of the gEM-approach
we do not search for the set W∗ in the M-step, which would maximize the cost
function K(X,W). We only assume that the cost function is not decreasing for
Wnew.

Obviously, the algorithm only requires the distances d(xi, wj) between data
and prototypes. If we restrict the prototypes to be data points, which corre-
sponds exactly to the median principle, only the dissimilarities between the
data are needed. Hence, the gEM formulation of GLVQ delivers a median vari-
ant (mGLVQ). This also allows the application of non-standard metrics or dis-
similarities like divergences, correlations, kernels etc. for dissimilarity judgment
of data [11,22,23]. Further, structured data with non-standard metric like edit
distances for text sequences or mixed dissimilarities for heterogeneous data can
be investigated [7,25].

Now we give the proof for consistency of the Alg. 1:

Proof. For mathematical consistency of the gEM-approach for GLVQ it re-
mains to show that each iteration step is non-decreasing with respect to the
cost function K(X,W): In the E-Step we only change the density function
γ(W|xi) but not the prototype set W. The cost function itself does not de-
pend on γ(W|xi) and, therefore, remains unchanged. On the other hand, the
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E-step implies
∑N

i=1Ki (γ||p) = 0. Consequently, the E-step increases the lower
bound value L and, hence, K(X, Θ) = L holds at this time.

In the M-step, we take the densities γ(W|xi) fixed, and therefore, they are
independent from W. We maximize the lower bound L with respect to W. Conse-
quently, we have no reduction in the value of the cost function. Yet, this change
in the cost function can be larger than the change of the lower bound, because
the divergences Ki(γ||p) also depends on W and may contribute. Thus, the cost
function is non-decreasing during the iteration procedure, which proofs the con-
sistency of the proposed approach.

3 Experiments

We evaluate the proposed mGLVQ-model in comparison to alternatives using
the benchmark scenarios as proposed in [2]. These benchmarks contain dissimi-
larity data represented in terms of pairwise dissimilarities only. In general, these
data are non-Euclidean, such that SVM techniques cannot directly be applied.
The approach [2] investigates a preprocessing of the data by diverse techniques
to enforce a positive semi-definite kernel for SVM. In addition to SVM, we com-
pare to kernel LVQ variants and relational LVQ, which implicitly embed data
in Euclidean or pseudo-Euclidean space [24]. For SVM and kernel variants, pre-
processing of non-Euclidean data is necessary; for this purpose the best results
obtained by clip, flip, or shift are reported [2].

The data sets used are as follows [2]:

1. Voting contains 435 samples in 2 classes, representing categorical data com-
pared based on the value difference metric.

2. Aural Sonar consists of 100 signals with two classes (target of inter-
est/clutter), representing sonar signals with dissimilarity measures according
to an ad hoc classification of humans.

3. Protein consists of 213 data from 4 classes, representing globin proteins
compared by an evolutionary measure.

4. Face Recognition consists of 945 samples with 139 classes, representing faces
of people, compared by the cosine similarity.

All data sets are characterized by symmetric dissimilarity matrices only, which
are generally not Euclidean. The non-Euclideanity is judged by the signature
Σ, which corresponds to the triplet formed by the number of positive, negative,
and (numerically) zero eigenvalues of a pseudo-Euclidean embedding of the data,
respectively [16]: The data are Euclidean iff the second entry of Σ is zero. For
the data as described above, we obtain the following signature values Σ:

data set Voting Aural Protein FaceRec
Σ (16,1,418) (61,38,1) (169,38,6) (45,0,900)

This indicates, that Voting and FaceRec are almost Euclidean while the other
data contain a significant contribution of non-Euclidean nature.
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For all experiments, the setup as described in [2] was used, i.e. results are ob-
tained by a repeated ten-fold cross-validation with ten repeats. Parameters are
optimized by a cross-validation within this scheme. The number of prototypes is
chosen as a small multiple of the number of classes with random initialization. We
report the result of mGLVQ, which can be derived in an analogous way based on
the GLVQ cost function, the latter implicitly formalizing the objective to optimize
the hypothesis margin of the classifier [4,10,19]. To avoid local optima while iter-
ative optimization of the M-step, we use 10 random restarts for this step.

Table 1. Results of Median GLVQ (mGLVQ) in comparison with the best results
for kernel GLVQ (kGLVQ,[9]), and Support Vector Machines (SVM,[18]) taking the
best data preprocessing from clip/flip/shift for SVM and kGLVQ. The classification
accuracies were produced by repeated 10-fold cross-validation with 10 repeats. The
last column contains the number of prototypes used for mGLVQ and in brackets the
number of prototypes which was used for the kGLVQ.

mGLVQ kGLVQ SVM # Prototypes
Voting 0.956 0.9466 0.9511 20 (20)
Aural 0.907 0.8875 0.88 6 (10)

Protein 0.904 0.986 0.9802 4 (20)
Face Rec 0.987 0.9665 0.9627 139 (139)

In all but one case (Protein), the results obtained by mGLVQ are comparable
to best results obtained by SVM and kernel GLVQ (kGLVQ,[9]), which implicitly
embed the data in a high dimensional Hilbert space (possibly after preprocessing
a non-Euclidean data matrix), or pseudo-Euclidean case, respectively. Further,
mGLVQ represents prototypes in the form of a single exemplar, i.e. a data point,
which can be directly inspected by a human observer in the same form as data
points. This is in difference to SVM and kGLVQ, which represent prototypes in
a distributed way, i.e. in terms of a small number of representative exemplars.

4 Conclusion

The GLVQ model has been extended to general dissimilarity data by means of
reformulation of the GLVQ cost function in terms of a probabilistic model. Op-
timization of this new cost function can be done by a generalized EM scheme,
while preserving the intuitive interpretability of classical LVQ. We give a mathe-
matical proof for the convergence of the algorithm. The GLVQ becomes available
for general dissimilarity data. In case of prototypes restricted to be data points,
a median variant is obtained (mGLVQ).
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Appendix - Proof That Equation (11) Is Valid

Proof.

N∑
i=1

[Li(γ,W)−Ki(γ||p)]=
N∑
i=1

[
γ(W|xi) log

(
g+(xi,W)

γ+(W|xi)

)
+γ−(W|xi) log

(
g−(xi,W)

γ−(W|xi)

)

−γ+(W|xi) log

(
p+(W|xi)

γ+(W|xi)

)
− γ−(W|xi) log

(
p−(W|xi)

γ−(W|xi)

)]

=
N∑
i=1

[
γ(W|xi) log

(
g+(xi,W)

γ+(W|xi)

)
+γ−(W|xi) log

(
g−(xi,W)

γ−(W|xi)

)

−γ+(W|xi) log

(
g+(xi,W)

γ+(W|xi) (g+(xi,W) + g−(xi,W))

)

−γ−(W|xi) log

(
g−(xi,W)

γ−(W|xi) (g+(xi,W) + g−(xi,W))

)]

=−
N∑
i=1

[
γ+(W|xi) log

(
1

g+(xi,W) + g−(xi,W)

)

+γ−(W|xi) log

(
1

g+(xi,W) + g−(xi,W)

)]

=

N∑
i=1

[
γ+(W|xi) log

(
g+(xi,W) + g−(xi,W)

)

γ−(W|xi) log
(
g+(xi,W) + g−(xi,W)

)]

=
N∑
i=1

[(
γ+(W|xi) + γ−(W|xi)

)︸ ︷︷ ︸
=1

log
(
g+(xi,W) + g−(xi,W)

)]

=

N∑
i=1

log
(
g+(xi,W) + g−(xi,W)

)
=K(X,W)
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Abstract. In multiple-instance learning (MIL), examples are sets of in-
stances named bags and labels are associated with bags rather than
instances. A bag is labeled as positive if it contains at least one posi-
tive instance; otherwise, labeled as negative. Recently, several instance
selection-based MIL (ISMIL) algorithms show their power in solving the
MIL problem. In this paper, we propose a new ISMIL algorithm based
on the self-regulation and suppression mechanisms found in the biologi-
cal immune system. Experimental results show that our MIL algorithm
is highly comparable with other ISMIL ones in terms of classification
accuracy and computation time.

Keywords: Multiple-instance learning, Instance selection, Artificial im-
mune systems, Support vector machines.

1 Introduction

Multiple-instance learning (MIL) is a variation on standard supervised learning,
which was first introduced by Dietterich et al. when they were investigating
the problem of drug activity prediction [1]. In this learning framework, training
examples are bags of instances not single instances. Labels are associated with
bags rather than instances in bags. A bag is labeled as positive if it contains
at least one positive instance; otherwise, labeled as negative. The aim of a MIL
algorithm is to learn a classifier for predicting the labels of unseen bags. The
notion of bag together with the labeling protocol often make MIL more realistic
than standard supervised learning for particular types of applications, such as
drug activity prediction [1], stock selection [2], computer aided diagnosis [3] and
content-based image retrieval (CBIR) [4].

In recent years, several instance selection-based MIL (ISMIL) algorithms have
been proposed, including DD-SVM [7], MILES [8], MILD [9] and MILIS [10],
which will be described later in Sect. 2. Although these algorithms convey com-
petitive performance compared to the state-of-the-art MIL ones, they usually
require lots of computation time to complete the learning task, especially for
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large-scale datasets. As we know, computational efficiency is an important is-
sue for practical applications, so it is necessary to design an efficient instance
selection strategy to speed up the learning process while not sacrificing gen-
eralization accuracy much. In this paper, we propose a novel MIL algorithm
based on an efficient instance selection strategy, which is inspired by the self-
regulation and suppression mechanisms found in the biological immune system.
We call it Multiple-Instance Learning via Immunological Suppression Mechanism
(MISUP). Due to our instance selection strategy, MISUP could generate highly
comparative classification results as compared to other ISMIL algorithms. Mean-
while, MISUP could complete the process of instance selection more efficiently,
and thus it is more efficient in terms of computation time.

The remainder of this paper is organized as follows. In Sect. 2, we review
some related work to our research. In Sect. 3, we present MISUP. In Sect. 4, we
evaluate MISUP on two MIL tasks, i.e. drug activity prediction and region-based
image categorization. Finally, we conclude in Sect. 5.

2 Related Work

Since MIL was first proposed in the context of drug activity prediction, many
efforts have been endeavored to address this learning paradigm. The first MIL
algorithm is called axis-parallel rectangle (APR), which is aimed at finding an
APR including at least one instance from each positive bag but excluding all
instances from negative bags [1]. A bag is classified as positive if at least one of
its instances falls within the APR; otherwise, it is classified as negative. Similarly,
Maron and Lozano-Pérez proposed a new concept called diverse density (DD)
for MIL, which measures how many different positive bags have instances near
a point in the feature space and how far negative instances are from that point
[2]. The EM-DD algorithm combines DD with expectation maximization, aimed
at locating the target concept in a more efficient manner [11]. The mi-SVM/MI-
SVM algorithm treats the unobservable instance labels as hidden variables and
formulates MIL as a mixed integer quadratic program [12].

Recently, several ISMIL algorithms have been presented, namely DD-SVM [7],
MILES [8], MILD [9] and MILIS [10]. The basic idea is mapping each bag into
a new feature space called embedding space, which is constructed using some
instance prototypes chosen from the training set. Thus, training bags are repre-
sented by single feature vectors and the MIL problem is converted to a standard
supervised learning one. Then standard SVMs are trained using these bag-level
feature vectors. Specifically, DD-SVM uses the DD function [2] to identify in-
stance prototypes. MILES considers all instances in the training set as initial
instance prototypes and instance selection is implicitly performed via learning
a 1-norm SVM with a linear kernel. MILD performs instance selection based on
a conditional probability model. MILIS achieves the initial instance selection by
modeling the distribution of the negative population with the Gaussian-kernel-
based kernel density estimator. Then it depends on an iterative optimization
framework to update instance prototypes and learn a linear SVM.
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3 MISUP: Multiple-Instance Learning via Immunological
Suppression Mechanism

3.1 Self-Regulation and Suppression Mechanisms

Artificial immune systems (AIS) constitute a relatively new area of bio-inspired
computing. Biological models of natural immune systems have provided the in-
spiration for AIS algorithms [13]. A biological immune system is composed of
diverse sets of cells and molecules that work together with other systems, such
as the neural and endocrine systems, in order to maintain a homeostatic state
within the host. The traditionally held view of the role of the immune system is
to protect our bodies from invading infectious agents known as pathogens, and
an immune response to a pathogen is provoked by the recognition of an associ-
ated molecule called antigen. There are two arms of the immune system: innate
and adaptive [14]. Innate immunity is not directed towards specific invaders but
against general pathogens that enter the body [15], while adaptive immunity al-
lows the immune system to launch an attack against any invader that the innate
system cannot remove [16]. The adaptive immune system mainly consists of lym-
phocytes, which are white blood cells (WBCs), more specifically B and T cells.
These cells aid in the process of recognising and destroying specific substances.

During immune response, the most successful WBCs in mounting the immune
response to pathogens receive stimulus to proliferate. The least effective ones are
eliminated from the organism due to one of the immune system’s characteristics,
i.e. self-regulation mechanism. In the self-regulation mechanism, immune cells
that are no longer needed by the organism do not receive signals to stay alive and
thus they die [16]. Those signals come from the lymph nodes or other helper cells.
Moreover, suppressive signals also balance different types of pathogen-specific
WBCs according to the infection inside the organism, favoring the proliferation
of those immune cells most needed for defense in a certain point. Once the
infection is controlled, the excessive pathogen-specific WBCs are eliminated. The
self-regulation and suppression mechanisms allow the organism to save energy
and keep only the WBC repertoire most needed for self defense.

3.2 The Proposed Algorithm

Inspired by the self-regulation and suppression mechanisms, Figueredo et al.
proposed a fast immune-inspired suppressive algorithm for instance selection
in supervised learning, namely SeleSup [17]. According to the self-regulation
mechanism, those cells unable to neutralize danger tend to disappear from the
organism (or to be suppressed). By analogy, data not relevant to the learning
of a classifier are eliminated from the training process. SeleSup takes advantage
of the suppression concept and applies it to the training process in order to
eliminate very similar data instances and keep only the representative ones.

To perform such tasks, SeleSup divides the dataset into two subsets. The
first one represents the WBCs (training set) in the organism. The second one
represents a set of pathogens (suppression set) that is responsible for selecting
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the higher affinity WBCs, i.e. conducting the suppression. The algorithm starts
with the idea that the system’s model must identify the best subset of WBCs
in order to recognize pathogens. Specifically, each pathogen in the suppression
set is classified according to the closest WBC in the training set. Those WBCs
able to recognize pathogens remain while others are eliminated. This recognition
ability is obtained via comparing the label of the closest WBC with that of the
corresponding pathogen. The closest WBC is considered having the ability to
recognize the corresponding pathogen if their labels are the same, and lacking
this ability otherwise. Note that the Euclidean distance is adopted to measure
the affinity between a WBC and a pathogen in the SeleSup algorithm.

The self-regulation and suppression mechanisms used by SeleSup and its ma-
jor process remain in our MISUP algorithm. However, examples are bags com-
posed of one or more instances in MIL, the new distance metric has to be adopted
to evaluate the affinity between a WBC and a pathogen. For the current investi-
gation, the minimal Hausdorff distance [18] is adopted for this purpose, since it
has been successfully applied in many MIL problems. Formally, given two bags
Bi and Bj , the minimal Hausdorff distance between them is defined as

Hmin(Bi, Bj) = min
Bit∈Bi,Bjs∈Bj

‖Bit −Bjs‖ , (1)

where ‖Bit − Bjs‖ measures the distance between two instances Bit and Bjs,
which takes the form of Euclidean distance here. It should be noted here that
while the affinity measure for the current work relies solely on the minimal Haus-
dorff distance, other alternatives of set-based distance metrics may be viable.

From the definition of the minimal Hausdorff distance in (1), we know that
the distance between two bags is determined by the closest two instances from
them. Thus, the closest instances between a WBC and a pathogen play a key
role in evaluating the relation of them. Further, the closest instance from a WBC
(relative to its closest instance in the corresponding pathogen) and the WBC’s
label determine if this WBC is kept in the final WBC repertoire. Inspired by
this observation, we attempt to use the closest instance from a WBC with the
same label as its relevant pathogen as an instance prototype. The pseudo-code
for instance selection in MISUP has been summarized in Algorithm 1.

When the whole process in Algorithm 1 finishes, a set of instance prototypes
remains. Like other ISMIL algorithms, all such instance prototypes form the
embedding space. Now, only one issue has to be addressed, i.e. the definition of
bag-level feature mapping. As in DD-SVM and MILD, we use a similar feature
mapping to map every bag Bi to a point λ(Bi) in the embedding space as follows:

λ(Bi) = [d(Bi, t1), d(Bi, t2), . . . , d(Bi, tn)]
T , (2)

where d(·, ·) measures the minimal Hausdorff distance between a bag and an
instance prototype, and tk ∈ T , and T is the set of instance prototypes, and n
is the size of T . Thus, training bags are represented by single bag-level feature
vectors using (2). Then a standard SVM with a Gaussian kernel is trained using
these bag-level feature vectors.
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Algorithm 1. Pseudo-code for instance selection in MISUP

Input: Full training set B and the fraction f of WBCs
Output: Set of instance prototypes T
1: Randomly assign �f · |B|� examples as WBCs (training set); The remaining ex-

amples are assigned as Pathogens (suppression set)
2: Set a survival signal for every instance in every WBC and initialize it to be false
3: for p in Pathogens do
4: NearestWBC = argminw∈WBCs Hmin(p,w)
5: Find the closest instance t in NearestWBC with respect to p
6: if NearestWBC.label == p.label & t.survival == false then
7: add t to T
8: t.survival = true

4 Experiments and Analysis

4.1 Drug Activity Prediction

The MUSK datasets, MUSK1 and MUSK2, are standard benchmark datasets for
MIL [1], which are publicly available from the UCI Machine Learning Repository
[19]. These datasets consist of descriptions of molecules and the task is to predict
whether a given molecule is active or inactive. Each molecule is viewed as a bag,
the instances of which are the different low-energy conformations of the molecule.
If one of the conformations of a molecule binds well to the target protein, the
molecule is said active, and inactive otherwise. MUSK1 contains 47 positive bags
and 45 negative bags. MUSK2 contains 39 positive bags and 63 negative bags.
MUSK2 shares 72 molecules with MUSK1, but includes more conformations for
those shared molecules.

We used LIBSVM [20] to train all the SVMs. The regularization parameter
C and the Gaussian kernel parameter γ need to be specified for MISUP. These
parameters were selected according to a twofold cross-validation on the training
set. Both C and γ were chosen from {2−10, 2−8, . . . , 210} and the pair of values
giving the minimum twofold cross-validation error was chosen to set these two
parameters. We found that C = 20 and γ = 20 gave the minimum twofold
cross-validation error on MUSK1, and C = 28 and γ = 2−6 on MUSK2. The
fraction of WBCs f in Algorithm 1 was set to 0.5. We fixed these values for the
subsequent experiments. As for DD-SVM [7], MILES [8], MILD [9] and MILIS
[10], we used the same setting to determine the parameters required by them.

Table 1 reports the mean and 95% confidence interval of the results over
ten runs of tenfold cross-validation. Moreover, we have tested other ISMIL algo-
rithms. For completeness, we have also included the results from some other MIL
algorithms. Table 1 shows that APR and MILES achieve the best performance
on MUSK1 and MUSK2 datasets, respectively. Our MISUP algorithm is highly
comparable with other ones. In terms of the average prediction accuracy over
the two datasets, MISUP is the third best among all those algorithms listed in
Table 1 (90.8% for APR, 89.2% for MILES, 88.1% for MISUP). It is notewor-
thy that MISUP is the second best among all the ISMIL algorithms (DD-SVM,
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Table 1. Classification accuracies (%) of various algorithms on the MUSK datasets

Algorithm MUSK1 MUSK2

MISUP 87.7 : [87.0, 88.4] 88.5 : [87.1, 89.8]

DD-SVM [7] 78.6 : [77.1, 80.1] 85.3 : [84.5, 86.1]

MILES [8] 87.4 : [86.1, 88.7] 90.9 : [90.0, 91.8]

MILD [9] 82.2 : [80.8, 83.6] 86.2 : [84.5, 87.9]

MILIS [10] 84.4 : [83.2, 85.6] 88.8 : [87.6, 90.0]

APR [1] 92.4 89.2

DD [2] 88.9 82.5

EM-DD [11] 84.8 84.9

MI-SVM [12] 77.9 84.3

mi-SVM [12] 87.4 83.6

Table 2. Computation time (minutes) of all ISMIL algorithms on the MUSK datasets:
time spent on model selection + training time after model selection

Algorithm MUSK1 MUSK2

MISUP 0.2 + 0.2 14.6 + 17.7

DD-SVM [7] 165.4 + 111.5 2321.8 + 1170.1

MILES [8] 1.0 + 1.0 180.8 + 218.9

MILD [9] 0.5 + 0.4 36.6 + 27.4

MILIS [10] 2.5 + 2.0 705.9 + 814.2

MILES, MILD and MILIS) with respect to the overall prediction accuracy on
the MUSK datasets. Meanwhile, the difference between the accuracy of MISUP
and the highest accuracy of MILES is only 1.1%.

The we evaluate MISUP with respect to computational efficiency. Table 2
reports the overall computation time required by various ISMIL algorithms on
the MUSK datasets. The time spent on model selection and the training time
after model selection are reported separately. The time spent on model selection
is that consumed on selecting the optimal parameter values for every ISMIL
algorithm. The training time after model selection is the total training time of
ten runs of tenfold cross-validation. All the experiments were conducted on a 3.1
GHz PC. We can find that MISUP is much more efficient than other algorithms.
The speedup of MISUP over other algorithms for the MUSK2 dataset is more
obvious due to the large number of instances in this dataset.

4.2 Region-Based Image Categorization

The COREL dataset has been widely used for region-based image categorization.
The dataset contains 20 thematically diverse image categories with 100 images of
size 384×256 or 256×384 in each category.Each image is segmented into several lo-
cal regions and features are extracted from each region. The dataset and extracted
features are available at http://www.cs.olemiss.edu/~ychen/ddsvm.html.

http://www.cs.olemiss.edu/~ychen/ddsvm.html
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Table 3. Classification accuracies (%) of all ISMIL algorithms on the COREL datasets

Algorithm COREL10 COREL20

MISUP 80.5 : [79.2, 81.9] 69.7 : [68.2, 71.3]

DD-SVM [7] 80.2 : [79.5, 80.9] 67.8 : [66.7, 68.9]

MILES [8] 82.3 : [81.6, 83.0] 71.7 : [70.8, 72.6]

MILD [9] 76.2 : [75.3, 77.1] 68.4 : [67.4, 69.4]

MILIS [10] 82.4 : [81.8, 83.0] 69.6 : [68.7, 70.5]

Since this is a multiclass classification problem, we apply the one-against-the-rest
approach to train 20 binary SVMs. A test bag is assigned to the category with the
largest decision value given by the SVMs.

We have conducted two tests for the 10-category and 20-category categoriza-
tions. The first 10 categories in the COREL dataset were used in the first test
while all 20 categories were used in the second test. For each category, we ran-
domly selected half of images as training bags and the remaining half as test
bags. Training and testing were repeated for five different random partitions.
We used the same experimental setting as in Sect. 4.1 to determine the regular-
ization parameter C and the Gaussian kernel parameter γ for MISUP, as well
as the corresponding parameters for other ISMIL algorithms. The fraction of
WBCs f was still set to 0.5. COREL10 and COREL20 were used to represent
the datasets for the 10-category and 20-category categorizations, respectively.
We found that C = 24 and γ = 2−6 gave the minimum twofold cross-validation
error on COREL10, and C = 26 and γ = 2−8 on COREL20. All these parameter
values were fixed in the subsequent experiments.

The average classification accuracies over five different random test sets and
the corresponding 95% confidence intervals are provided in Table 3. Overall,
the performance of MISUP is competitive with that of other ISMIL algorithms.
Specifically, MILIS and MILES outperform MISUP on the COREL10 dataset
in terms of classification accuracy, meanwhile, MISUP is superior to DD-SVM
and MILD. On the COREL20 dataset, the performance of MISUP is only worse
than that of MILES and better than that of other algorithms. However, the
difference between MISUP and MILES is not statistically significant since the
95% confidence intervals for them overlap.

5 Conclusions

In this paper, we have proposed a novel ISMIL algorithm for MIL, MISUP,
which is inspired by the self-regulation and suppression mechanisms found in the
biological immune system. MISUP is derived by adapting an immune-inspired
suppressive algorithm for supervised learning to the MIL setting. The better
performance of MISUP for the tasks of drug activity prediction and region-
based image categorization demonstrates that our MISUP algorithm is highly
comparable with other ISMIL ones in terms of classification accuracy. With
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respect to computational efficiency, MISUP is significantly superior to other
algorithms based on the better empirical results on the MUSK datasets.
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Abstract. Recently, researchers have started to model interactions between us-
ers and search engines as an online learning ranking. Such systems obtain feed-
back only on the few top-ranked documents results. To obtain feedbacks on 
other documents, the system has to explore the non-top-ranked documents that 
could lead to a better solution. However, the system also needs to ensure that 
the quality of result lists is high by exploiting what is already known. Clearly, 
this results in an exploration/exploitation dilemma. We introduce in this paper 
an algorithm that tackles this dilemma in Context-Based Information Retrieval 
(CBIR) area. It is based on dynamic exploration/exploitation and can adaptively 
balance the two aspects by deciding which user’s situation is most relevant for 
exploration or exploitation. Within a deliberately designed online framework 
we conduct evaluations with mobile users. The experimental results demon-
strate that our algorithm outperforms surveyed algorithms.  

Keywords: Information retrieval, machine learning, exploration/exploitation 
dilemma, artificial intelligence, reinforcement learning. 

1 Introduction  

Research at the intersection of information retrieval (IR) and Multi-Armed Bandit 
problem (MAB) has increasingly engaged the interest of scientists. Authors in [3] 
consider the IR problem of online learning to rank. For the research on contextual 
bandits, this work has opened a realistic application area. Users submit queries to an 
IR system, which construct a documents list ranked according to the query. Then, the 
interactions of the user with this list can be used to infer feedbacks about the ranking. 
These feedbacks are then applied to learn better rankings.  

The main new challenge for the existent contextual bandit algorithms is to con-
struct result lists from several documents, so that one result list contains both explora-
tory and exploitative documents and the algorithms have to choose the number of 
each of them in that list. In this setting, we propose to study this problem in Context-
Based Information Retrieval (CBIR) which, to the best of our knowledge, is not yet 
addressed. We introduce in this paper an algorithm named CBIR-ε-greedy that 
achieves this goal by balancing adaptively the ranking of exploration/exploitation 
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(exp/exp) of documents according to the user’s situation. This algorithm adapts the ε-
greedy to CBIR area by selecting suitable user’s situations for either exploration or 
exploitation. 

The rest of the paper is organized as follows. Section 2 gives the key notions used 
throughout this paper. Section 3 reviews some related works. Section 4 presents our 
CBIR model and describes the algorithms involved in the proposed approach. The 
experimental evaluation is illustrated in Section 5. The last section concludes the pa-
per and points out possible directions for future work. 

2  Key Notions 

In this section, we briefly sketch the key notions that will be of use in this paper.  
The user’s model is structured as a case base, which is composed of a set of situa-

tions with their corresponding user’s interests, denoted U = {(Si; UIi)}, where Si is the 
user’s situation and UIi its corresponding user’s interests. 

The user’s interests are represented using the most representative terms derived 
from the assumed relevant documents in a particular search situation. In particular, let 
qi be the query submitted by a specific user to the retrieval situation Si. We assume 
that a document retrieved by the search engine with respect to qi is relevant if it caus-
es a user’s click. Let Di be the set of assumed relevant documents in situation Si. 
Then, UIi (the user’s interests) corresponds to the vector of weighted terms in Di, 
where the weight wtm of term tm is computed as follows:  

iDd
tmitm nndtmtf

D
=w )/log(*),(1

 
(1) 

In Eq.1, tf(tm; d) is the frequency of term tm in document d∈Di, n is the number of 
documents in the collection, ntm is the number of documents in the collection contain-
ing tm. According to Eq. 1, each document d ∈ Di is represented by a term vector 
where the relevance value of each term tm in situation Si is computed using the tf *idf 
weighting. 

The user’s context has a multi-ontology representation where each ontology cor-
responds to a context dimension: C=(OLocation, OTime, OSocial). Each dimension models 
and manages a different context information type, namely location, time, and social 
information. We focus on these three dimensions since they cover all the needed in-
formation for our application domain (detailed in Section 5).  

The user’s situation is an instantiation of the user’s context. We consider a situa-
tion as a triple S = (OLocation.xi, OTime.xj, OSocial.xk) where xi, xj and xk are ontology con-
cepts or instances. As an example, suppose the following data are sensed from the 
user’s mobile phone: the GPS shows the latitude and longitude of a point "48.89, 
2.23"; the local time is "Oct_3_12:10_2012" and the calendar states "meeting with 
Paul Gerard". The corresponding situation is:  

S = ("48.89,2.23", "Oct_3_12:10_2012", "Paul_Gerard"). To build a more ab-
stracted situation, we interpret the user’s behavior from this low-level multimodal  
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sensor data using ontology reasoning means. For example, from S, we obtain the fol-
lowing situation: Meeting = (Restaurant, Work_day,  Financial_client).  

Among the set of captured situations, some of them are characterized as High-Level 
Critical Situations.  

High-Level Critical Situations (HLCS) are situations where the user needs the most 
suitable information delivered by the IR system. In such situations (e.g. a professional 
meeting), the system must exclusively perform exploitation rather than exploration-
oriented learning. In the other case, where the user is for instance using his/her  
information system at home, on vacation with friends, the system can make some ex-
ploration by retrieving some information ignoring his/her interests. HLCS are prede-
fined by the domain expert. In our case, we conduct a study with professional mobile 
users, which is described in detail in Section 5. As examples of HLCS, we can find S1 
= (restaurant, midday, client) or S2 = (company, morning, manager).  

3 Related Work 

We refer, in the following, an overview of the existing bandit algorithms and recent 
techniques that consider the user’s context for ranking result in IR.  

Bandit Algorithms Overview. The MAB problem was originally described by Rob-
bins [8]. The ε-greedy is one of the most used algorithms to solve the bandit problem 
and was first described in [9]. The ε-greedy strategy chooses a random document with 
epsilon-frequency (ε), and chooses the document with the highest estimated mean 
otherwise. The estimation is based on the rewards observed thus far. ε must be in the 
interval [0, 1] and its choice is left to the user. Authors in [10] extend the ε-greedy 
strategy by dynamically updating the ε exploration value. At each iteration, they run a 
sampling procedure to select a new ε from a finite set of candidates. The probabilities 
associated to the candidates are uniformly initialized and updated with the Exponen-
tiated Gradient (EG) [5]. This updating rule increases the probability of a candidate ε 
if it leads to a user’s click.  

Compared to the standard multi-armed bandit problem, the CBIR does not select 
individual documents, but constructs result lists from several documents, so that one 
result list contains both exploratory and exploitative documents. Therefore, the bandit 
algorithms need to be modified to manage this new challenge. As far as we know, no 
existing works address the problem of exr/exp tradeoff in CBIR, except a recent re-
search work that studied the contextual bandit problem in IR area. Indeed, authors in 
[3] have proposed to adapt the ε-greedy approach to their need. They maintain two 
document lists, one exploitative (based on the currently learned best ranking), and one 
exploratory (introducing variations to the current best ranking to explore potential 
improvements). An exploration rate ε determines the relative number of documents 
each list contributes to the final list shown to the user. However this rate is just left to 
the user and is not deeply studied. 

Result Ranking in CBIR. The need of context in IR is ineluctably increased due to 
the wide manipulation of smartphones. Different recent works address the challenge 
of ranking IR results according to the user’s context. 
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In [7], a linear function of reordering is adopted to adjust the search results to the 
user. The initial score of the document is multiplied by a score of customization, 
which is a linear combination as a weighted sum of the preferences of user content 
and location. To rank documents in [7], a pre rank is calculated to measure how much 
a document is related to a particular context and the post rank is measured to know 
how much a document is related to user query. The total rank weight is calculated by 
summing up pre rank weight and post rank weight. Documents are ranked in descend-
ing order of their final rank weight. 

In [2] the contextual user’s profile is used to reorder the search results. They pro-
pose a linear combination of the original result returned by a conventional IR with a 
score of customization calculated between the document and the profile of the user's 
document ranking. The personalization score is calculated for each document with the 
contextual user's profile based on a similarity measure between the vector of weighted 
concepts of the document and the user profile is also represented as a vector of 
weighted concepts. 

As shown above, none of the mentioned works address the exr/exp problem in 
CBIR. This is precisely what we intend to do in our approach: we propose to consider 
the criticality of the user’s situation when managing the exr/exp-tradeoff to rank the 
results. This strategy achieves high exploration when the current user’s situation is not 
critical and achieves high exploitation in the inverse case. 

4 CBIR Model 

In our CBIR, the selection and ranking of documents is modeled as a contextual ban-
dit problem including user’s situation information. Formally, a bandit algorithm 
proceeds in discrete trials t = 1…T. For each trial t, the algorithm performs the follow-
ing tasks: 

Task 1: Let St be the current user’s situation when he/she submits a request, and 
PS the set of past situations. The system compares St with the situations in PS in 
order to choose the most similar one, Sp:   

),(maxarg
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The semantic similarity metric is computed by: 
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In Eq. 3, simj is the similarity metric related to dimension j between two con-
cepts xj

t and xj
c; αj is the weight associated to dimension j (during the experimen-

tal phase, αj has a value of 1 for all dimensions). This similarity depends on how 
closely xj

c and xj
c are related in the corresponding ontology. We use the same 
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In Eq. 4, LCS is the Least Common Subsumer of xj
t and xj

c, and deph is the 
number of nodes in the path from the node to the ontology root.  

Task 2: Let D be the documents collection. After retrieving Sp, the system ob-
serves the corresponding user’s interests UIp in the user’s model case base. 
Based on the observed UIp and the query q, the algorithm ranks documents in D 
using the traditional cosine similarity measure. 

Task 3: From the ranked list of documents presented to the user, the algorithm 
receives the set Dt of clicked documents and improves its document-selection 
strategy with the new observation: in situation St, documents in Dt

 obtain a user’s 
click. Depending on the similarity between the current situation St and its most simi-
lar situation Sp, two scenarios are possible: (1) If sim(St, Sp)<3: the current situa-
tion does not exist in the case base; the system adds this new case composed of 
the current situation St and the current user’s interest UIt computed from the set 
Dt of clicked documents using Eq. 1; (2) If sim(St, Sp) = 3: the situation exists in 
the case base; the system updates the case having as premise the situation Sp with 
the current user’s interest UIt, the update being done by integrating the new doc-
uments, Dp = Dp ∪ Dc, and computing the new vector UIt using Eq. 1.  

4.1 The IR-ε-Greedy Algorithm  

The IR-ε-greedy algorithm ranks documents using the following equation: 
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In Eq. 5, i∈{1,…N} where N is the number of documents in the collection, di ∈ Dt, l 
and j are random values uniformly distributed over [0, 1] which define the exr/exp 
tradeoff; ε ∈[0, 1] is the probability of making a random exploratory rank of docu-
ments. resultq(q,di) gives the original score returned by the system based on the query 
q using the cosine similarity as follows:  
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resultc(UIp,di) gives the contextualization score returned by the system based on the 
user’s interests UIp, and it is also computed using cosine similarity as follows :
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random(di) gives a random rank to the document di to perform exploration.  
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4.2 The  CBIR-ε-Greedy Algorithm  

To improve the adaptation of the IR-ε-greedy algorithm to HLCS situations, the CBIR 
-ε-greedy algorithm compares the current user’s situation St with Sm ∈ HLCS, which 
is the centroid of the HLCS situations (the centroid is computed using k-mean algo-
rithm [4]).  

Depending on the similarity between the St and Sm, two scenarios are possible:   

(1) If sim(St, Sm) ≥ B (B is the similarity threshold), the current situation is critical; the 
IR-ε-greedy algorithm is used with ε=0 (exploitation) and St is inserted in the HLCS 
set of situations.  
(2) If sim(St, Sm) < B, the current situation is not critical; the IR-ε-greedy algorithm is 
used with ε>0 (exploration) computed as indicated in Eq. 8.  
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In eq 5, εmax∈[0,1] is the maximum of allowed exploration. Both εmax and B are computed using EG [5].   
To summarize, the system does not make exploration when the current user’s situa-

tion is critical; otherwise, the system performs exploration. In this case, the degree of 
exploration decreases when the similarity between St and Sm increases.  

5 Experimental Evaluation 

In order to empirically evaluate the performance of our approach, and in the absence 
of a standard evaluation framework, we propose an online evaluation framework. The 
main objective of the experimental evaluation is to evaluate the performance of  
the proposed algorithm (CBIR-ε-greedy). In the following, we present and discuss the 
obtained results.  

We have conducted a diary study with the collaboration of the French software 
company Nomalys1. This company provides an enterprise search engine application 
that allows users to connect their information system throw mobile devices.  

We conduct our experiment with 3500 users of Nomalys. We compare CBIR-ε-
greedy to a variant IR-ε-greedy using existing ε trade-off described in the related 
work.  To this end, we have randomly split users on three groups: the first group has 
an IR system with the CBIR-ε-greedy;  the second group is equiped with IR-ε-
greedy, where ε is computed using EG [5], what we call EG-IR-ε-greedy; finally,the 
last group uses the IR-ε-greedy with exploration ε=0 (non exploration algorithm, 
baseline). Note that we do not evaluate the algorithm proposed in [3] because it does 
not consider the variance of the ε, wich is our goal in this evaluation.  
The experimental evaluation was carried out, as follows. 

                                                           
1  Nomalys is a company that provides a graphical application on Smartphones allowing users 

to access their company’s data. 



 Contextual Bandits for Context-Based Information Retrieval 41 

 

Number of Clicks on the Top 10 Documents. We compare the algorithms regarding 
the number of clicks on the top 10 documents. In Fig. 1, the horizontal axis represents 
the day of the month and the vertical axis is the performance metric, which is the 
number of clicks on the top 10 documents per the number of times the users make a 
request. 
 

 

Fig. 1. Average number of clicks on top 10 documents for exr/exp algorithms 

We have several observations regarding the different exr/exp algorithms. Overall, 
tested algorithms have better performances than the baseline. While the EG-IR-ε-
greedy algorithm converges to a higher number of clicks compared with a baseline, its 
overall performance is not as good as CBIR-ε-greedy. We have also observed the 
average number of clicks per request for all the 28 days and we observe that the 
CBIR-ε-greedy algorithm effectively has the best average number of clicks during this 
month, which is 0.77 click/request.  EG-IR-ε-greedy obtains 0.69 click/request and 
the baseline, 0.5141 click/request. CBIR-ε-greedy increases the average click/request 
by a factor of 1.5 over the baseline and outperforms EG-IR-ε-greedy algorithm. The 
improvement comes from a dynamic tradeoff between exr/exp on documents ranking, 
controlled by the critical situation (HLCS) estimation. The algorithm takes full advan-
tage of exploration document in non-critical situations, without wasting opportunities 
to establish good results in critical situations. 

6 Conclusion 

In this paper, we studied the problem of exploitation and exploration in Context-
Based Information Retrieval and proposed a novel approach that ranks documents by 
balancing adaptively exr/exp regarding the user’s situation. For that, we take into 
account critical situations, where the user needs to get suitable information and thus 
exploration should not be performed. We have presented an evaluation protocol based 
on real mobile user. We evaluated our approach according to the proposed evaluation 
protocol. This study yields to the conclusion that considering the explora-
tion/exploitation tradeoff, significantly increases the performance of the CBIR. 
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In the future, we plan to improve the notion of the HLCS in the scope of CBIR by 
introducing more contextual dimensions.  
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Abstract. In this paper, we propose an analysis of a self-organizing
incremental neural network(SOINN), using new network adjusting algo-
rithms, and a batched density estimation method combined with kernel
density estimation(KDE) to simulate the performance of an SOINN. To
evaluate the density estimation method, a quantitative relationship be-
tween absolute error and the number of neurons in the network is given
which shows that any accuracy can be satisfied by adjusting networks. Al-
though the precise result relies on information of the input distribution,
the analysis method can be applied to any continuous input situation.
After the error estimation, a comparison between the two new network
adjusting algorithms is provided, and experiment results are provided
and discussed.

Keywords: Self-organizing incremental neural network(SOINN), Den-
sity esimation, Unsupervised learning.

1 Introduction

A self-organizing incremental neural network(SOINN) is an unsupervised learn-
ing algorithm originally proposed by Shen and Hasegawa[1] based on a self-
organizing map[2] and the growing neural gas concept[3]. The advantages of an
SOINN are that it does not require a pre-determined clusters number k, it is
suitable for online learning tasks, and it has high noise tolerance.

The original SOINN consisted of a two-layer structure and succeeded in ob-
taining an approriate cluster number without the need to predetermine the
structure of the network. An enhaced-SOINN[4] simplifies an SOINN to a one-
layer structure with less parameters, and can distinguish between high-density
overlapped clusters. Later, a more simplified algorithm, the Adjusted SOINN
Classifier[5] with only two parameters has been proposed and has become the
fundamental algorithm for continued studies on an SOINN. Sudo, Sato and
Hasegawa have proposed a method to combine associative memory with an
SOINN[6] that has led to an application in robot navigation[7].

However, to the best of our knowledge, there has been no mathematical anal-
ysis of an SOINN; thus, its overall performance remains unclear. This paper
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presents an analysis of an SOINN to fill in the blanks, and we present a density
estimation algorithm to evaluate the performance of an SOINN.

2 SOINN Algorithm

This section presents the most common one-layer algorithm, or the fundamental
SOINN algorithm.

Algorithm 2.1 Fundamental Algorithm

(1) Parameters : A: set of all neurons. C ⊂ A×A: set of all edges. Ni: set of
all neighbors of neuron i. Wi: weight of neuron i. λ: time period to delete
redundant neurons. agemax: parameter to delete edges.

(2) if first time of input then

(3) A← c1, c2; randomly pick up two vectors from trainning data to initialize
the neuron set.

(4) C ← ∅
(5) end if

(6) while input data ξ exist do

(7) s1 ← argminc∈A ||ξ −Wc||: find out the winner.

(8) s2 ← argminc∈A\s1 ||ξ −Wc||: find out the second winner.

(9) calculate similarity thresholds Ts1 , Ts2 . If i got neighbors, Ti is the distance
to the farest neighbor, else the distance to the nearest neuron.

(10) if ||ξ −Ws1 || > Ts1 or ||ξ −Ws2 || > Ts2 then

(11) A← A ∪ ξ: insert ξ as a new neuron.

(12) else

(13) if (s1, s2) /∈ C: there is no edge between the winner and second winner,
then

(14) C ← C ∪ (s1, s2): add new edge into the network

(15) end if

(16) age(s1,s2) ← 0: reset the age of (s1, s2)

(17) age(s1,i) ← age(s1,i) + 1(∀i ∈ Nsi): increase age of edges connected with
the winner by 1.

(18) � Wsi = ε(ts1)(ξ −Ws1),� Wi = ε(100ti)(ξ −Wi)(∀i ∈ Ns1), ε(t) =
1
t

(19) using vartriangleWsi ,� Wi to adjust the winner and it‘s neighbors

(20) delete edge whos age is larger than agemax

(21) among these neurons which the edge deleted in last step connected to,
delete neurons having no neighbors.

(22) if input data number becomes n× λ(n ∈ N+) then

(23) delete neurons having less than one neighbor

(24) end if

(25) end while
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2.1 Two New Network Control Algorithm

In the standard algorithm, the Voronoi region of each neuron is highly dependent
on the input sequence of data. Therefore, two new network control algorithms
are proposed to adjust the network in its topology and to improve its statistics.

One algorithm is an edge-length control method. During every time period
when the SOINN begins deleting redundant neurons, this algorithm will check
the length of every edge, and if one edge is n times longer than the average
edge-length, a new neuron, with a learning time based on the two end neurons,
will be inserted to divide the edge, and the learning time of the the neurons will
be reduced. Using this algorithm, distance between neurons become similar.

Another algorithm is a learning time control method. It check learning time
instead of edge length to insert new neurons. Moreover it only inserts one new
neuron each time, it is invoked to reduce the influence of low probability sit-
uations. Using this algorithm, the probabilities of the Voronoi regions become
similar.

2.2 Analysis of the SOINN Algorithm

In the SOINN algorithm, the movement of neurons uses the following formulars:

� Wc = ε(t)(ξct −Wc) (1)

Wc(0) = (randomsignal according to p(ξ)) (2)

Wc(1) = Wc(0) + ε(1)(ξc1 − wc(0)) (3)

= ξci (4)

Wc(2) = Wc(1) + ε(2)(ξc2 −Wc(1)) (5)

=
ξc1 + ξc2

2
(6)

... (7)

Wc(t) =
ξc1 + ξc2 + · · ·+ ξct

t
(8)

It shold be noted that the set of signal ξc1, ξ
c
2, . . . , ξ

c
t for which a neuron c

has been chosen as the winner may contain elements that lie outside the current
Voronoi region of c. The reason is that each movement ofWc changes the borders
of the Voronoi region Vc.Therefore, although Wc(t) represents the mean of the
signals when a neuron has been a winner, it does not represent the arithmetic
mean of the neuron’s current Voronoi region Vc.

Another impotant point about the movement formulars is that there is no
strict convergence, because of the divergence:

lim
n→∞

n∑
t=1

1

t
=∞. (9)
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However, in simulatons where the signal distribution is stationary, it has been
shown that k-means, using the same moving formulars (1)-(8), asymptotically
converges to a configuration where each reference vector Wc is positioned such
that it coincides with the expectation value(10) of its Voronoi region Vc[8]. Be-
cause the SOINN also adapts nodes, using a learning rate of 1

100t , when their
neighbors become winner, this expectation value can be formulated as (11)-(13)

E(ξ|ξ ∈ V ′
c ) =

∫
V ′
c

ξp′(ξ)dξ (10)

V ′
c = Vc ∪

⋃
i∈Neighborc

Vi (11)

p′(ξ) =

⎧⎪⎨⎪⎩
1
C p(ξ), ξ ∈ Vc

1
C

p(ξ)
100 , ξ ∈ Vi, i ∈ Neighborc

(12)

C = P (Vc) +
∑

i∈Neighborc

P (Vi)

100
. (13)

In addition, as neurons are generated and ejected during the learning process,
the use of learning time to represent the probability of each Voronoi region causes
some unpredictable errors. Therefore, a method is proposed to overcome these
problems.

3 Density Estimation

Although the SOINN is not strictly proven in mathematics, it can infer the
region and density of the input data distribution very rapidly while ignoring
external noise, and neurons can be controlled during learning process to a certain
degree. Therefore, this method divides the density estimation process into two
parts. First, input a percentage of data set to obtain neurons for the SOINN,
and use the remaining data to calculate Gaussian kernels. Figure.2 shows some
experiment results of this method.

Algorithm 3.1. Gaussian kernel calculation algorithm

(1) Obtain the network information from the SOINN, calculate the threshold
region of each neuron(,Algorithm 2.1), create a shadow upon each neuron
that has the same wheight and initialized learning time as its parent neuron
for shadow movments, and collect height infomation h for region probability
estimation.

(2) Count the number n of threshold regions present in the current input, and
increase learning time and h of these neurons by 1 and 1

n , respectively, all
of these neurons become winners.

(3) Move the shadows of every winner as specified by formula (1); these shadows
will represent the arithmetic mean of each threshold region.

(4) Each neuron will record input data within its threshold region.
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(5) Finally, when the input concludes, use the weights of shadows and the input
records of the neurons to calculate variance and covariance of each Gaussian
kernel. Density estimation p∗(x) is the summation of these kernels.

4 Error Estimation

This section presents a relationship between the abusolute error of this density
estimaiton method and the number of neurons, considering input data as a 2D
standard normal distribution. Because the precise topological information of
a neural network is unpredictable and relies on the input sequence, the error
simulation depens on some assumptions:

(1) Assume that the edge-length control method is used in the SOINN, and
creats edges of exact the same length. Thus the input distribution region is
divided into regular equilateral triangles.

(2) Assume each Voronoi region has uniform distribution. The reason is that the
original Normal distribution will require the solution of many transcendental
equations otherwise.

Under these assumptions, the error estimaiton will never be precise; thus, an
upper bound must be defined.

Under assumption(1), the input region can be considered to be divided by
three sets of parallel lines; and lines belonging to two different sets are separated
by an angle of 60◦. Each Voronoi region is thus a regular hexagon, and each
threshold region is a circle with a radius equal to the edge length.

Under assumption(2), the expectation point of each Gaussian kernel will be
the weight of neuorn, and the variance can be calculated as:

δ2 =

∫
Tc

1

πr2
ξ2dξ =

r√
3

(14)

where r is the length of every edge when all edges have equal length, Threshold
area Tc is a circle with a radius of r.

The value h of each neuron is similar to the probability of each Voronoi region,
and it is easy to prove that if both the number of input data and neurons is
infinity, h and the probability are equal.

Now, with the assumptions discussed above, consider each Voronoi region.
The probability of the summation of Gaussian kernels is Chc +

1−C
6

∑
i∈Nc

hi,
thus the absolute error is

Error(Vc) =

∣∣∣∣∣hc − C′

6

∑
i∈Nc

hi

∣∣∣∣∣ (15)

� C′

6

∑
i∈Nc

|hc − hi| (16)

C′ = 1−
∫
Vc

pGaussian kernel(ξ)dξ (17)
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Futhermore, each neuron has at most three neighbors with larger values of h,
and

∂2Normal(x, y)

∂x ∂y
�

d 1√
2π

e−
x2

2

dx
= − x√

2π
e−

x2

2 (18)

� − 1√
2π

e−
12

2 �
√
3− 1, (19)

The error can be more strictly defined by

Error(Vc) �
C′

6× 2

∑
i∈Nc

|hc − hi| (20)

Consider each line in these line sets under assumption(1). There is(are) one
or two maximum h value neuron(s). Thus,

∑
i∈Lc

∑
j∈Lc∩Ni

|hi − hj | =
{
4hc, hc = maxi∈Lc hi

2(hc + h′
c), hc = h′

c = maxi∈Lc hi
(21)

Combining the three line sets:

Error � C′

12

∑
i∈Nc

|hc − hi| (22)

� 3× C′

12

∑
Lc∈Line set

∑
i∈Lc

∑
j∈Lc∩Ni

|hi − hj| (23)

� 3× 4× C′

12

∫ r
2

− r
2

∫ ∞

−∞
Normal(x, y)dxdy (24)

= C′ · erf( r

2
√
2δtrue

)→ 0(Number of neurons→∞, r → 0) (25)

C′ = 1−
∫
Vc

pGaussian kernel(ξ)dξ ≈ 1− 0.3127 (26)

Although the last result is related to input distribution, in this paper, a stan-
dard normal distribution, the inferring method can be applied to continuous
input situations. In fact, continuous distribution can be considered as a com-
bination of sets of normal distributions. In addition, if using the learning time
control method, the area or probability of the Voronoi regions, where the input
density is higher, will be smaller; therefore, performance will be improved.

4.1 Experimental Results

In this experiment, the input vector is generated from a 2D standard normal
distribution, and the absolute error is calculated using

∫ |N(ξ)− p∗(ξ)dξ|, p∗(ξ)
is the estimation result. Input number is 100,000. The number of neurons under
the same parameter sets varies in a short range.
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In Figure.1 the x-value of each error bar is the average number of neurons
under one parameter set. Figure.2 shows some experimental results of density
estimation.
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Fig. 1. Relationship between absolute error and number of neurons. The upper curve
is the result of proposed error estimation, and the error bars are experimental results
with y values of average error, maximum error and minimum error.

(a) (b)

Fig. 2. Experimental results of density estimation:, input data distribution is:
(a)standard normal distribution, (b)70% normal distribution + 30% uniform distri-
bution ranged in [−5, 5]× [−5, 5]

In this experiment, using 100, 000 input data, with 100 neurons, the running
time was approximately 10 min, using Matlab on a Lenovo y470 laptop, equipped
with an Intel i5-2450M 2.5GHz×2 processor and 8G memory. Surprisingly, the
same simulation takes less than 10s to complete using C++ code.

5 Conclusion

This paper presents an analysis of the SOINN algorithm, and a two-phase
batched density estimation method is proposed to provide an estimation of the
quantitative relationship between absolute error and number of neurons. Under
the error estimation, with enough input data, any input data distribution can be
estimated with an absolute error less than a value soley ralated to the number
of neurons. This result can be regarded as a confidence analysis of SOINN.
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6 Future Work

This paper is proposed under the assumption that the input data is from a 2D
distribution. A high-dimension problem is of future interest. Because an SOINN
uses the Euclidean distance, the concentration phenomenon becomes a problem
when considering high dimension problems. In addition, in the error estimation
section, the first assumption is based on the edge-length control method, perhaps
yielding a topology that is too ideal for real world problems. To provide a more
rigorous or strict analysis, we plan to evaluate how to realistically represent
neurons in networks in the future.

Acknowledgments. This study was sponsored by the Japan Science and Tech-
nology Agencys CREST project.
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Abstract. Recently, a novel type of evolutionary algorithms (EAs), called
GeneticNetworkProgramming (GNP), has been proposed. Inspired by the
complex human brain structures, GNP develops a distinguished directed
graph structure for its individual representations, consequently showing
an excellent expressive ability for modelling a range of complex problems.
This paper is dedicated to reveal GNP’s unique features. Accordingly, sim-
plified genetic operators are proposed to highlight such features of GNP,
reduce its computational effort and provide better results. Experimental
results are presented to confirm its effectiveness over original GNP and
several state-of-the-art algorithms.

Keywords: evolutionary algorithms, genetic network programming, di-
rected graph, transition by necessity, invalid evolution.

1 Introduction

As one of the most widely studied fields for solving optimization problems, a
large number of evolutionary algorithms (EAs) have been developed. Genetic
Algorithm (GA) and Genetic Programming (GP) are the typical examples, which
use bit-string and tree structures to represent their individuals. Different EAs
would have their own suitable problems, however which cannot guarantee that
they are superior in all problems with the No-Free-Lunch Theorem [1].

In recent years, there has been a particular interest to expand EAs by develop-
ing more complex structures. One of the directions is to study graph structures
[2, 3]. Among different variants, a novel graph-based EA, named Genetic Net-
work Programming (GNP) [3–5], has been proposed recently. GNP develops a
distinguished directed graph, which is composed of two kinds of nodes: judg-
ment and processing node, consequently allowing the flexible representation and
recombination of “if-then” type decision rules. The separation of judgment and
processing provides the fundamental basis of GNP to efficiently evolve the com-
pact programs by only transiting the necessary judgments and processing. It was
first developed to solve the problems of controlling the agents’ behavior [4, 5],
while in recent years it has been extended to many problems [6–9].

Although GNP has been studied extensively, one lack of its research is to re-
veal the fundamental features of GNP based on its distinguished directed graph.
Particularly its unique feature of “transition by necessity” is seldom addressed,
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which inspires the work of this paper. Moreover, all the current works of GNP ap-
ply traditional genetic operators, i.e., uniform crossover/mutation, to evolve the
directed graphs, regardless its unique features. This paper provides a discussion
of GNP, and proposes simplified genetic operators by taking its distinguished
features into account. By explicitly addressing its unique features, the proposed
methods allow GNP to have better evolution efficiency for finding better results.

GNP and its evolution are briefly revisited in section 2. Section 3 discusses
the drawbacks of original GNP and proposes the simplified genetic operators.
Section 4 evaluates this work in a benchmark testbed – Tileworld [4, 5, 10] – of
GNP. Finally the conclusions and potential future work are presented.

2 Genetic Network Programming (GNP) Revisited

2.1 Directed Graph Structure

Let G represent the directed graph structure of GNP:

Definition 1. G is defined by a tuple (Nnode,LIBRARY), where Nnode repre-
sents the set of nodes in G. LIBRARY denotes functions given by the problems.

Definition 2. Each node i is defined by (NTi, NFi, B(i), Ci). NTi ∈ {1, 2} de-
fines the node type for judgment/processing. NFi denotes its function. B(i) rep-
resents the set of branches in node i. Ci represents the connection of node i.

Definition 3. The connection information Ci of node i is a set of Cik indicating
the node connected from the kth branch of node i. It is noted that |Ci| = |B(i)|.
In GNP, all terms except C, that is, a set of Ci, are predefined. In other words,
the node connections are evolved by changing the variable C of each node.

Definition 4. The search dimensions of GNP is represented by the number
of branches in G, i.e.,

∑
i∈Nnode

|B(i)|.
Such a distinguished directed graph consists of several unique features. First,

GNP can avoid the bloat problem of GP even with the fixed size of G [3]. Second,
it is capable of efficiently realizing the repetitive processes based on the frequent
reuse of nodes. Most importantly, empirical results have confirmed that evolving
the node connections allows GNP to efficiently generate the compact programs
for problem solving. Fig. 1 presents an example of the directed graph G of GNP.

2.2 Transition by Necessity

Although GNP has been studied extensively in both its enhancements and appli-
cations, one lack of its current research is to intensively reveal the fundamental
features of GNP from the perspective of its distinguished graph structure.

Applying GNP for problem solving is derived by following a sequence of node
transitions in each individual. In other words, the core of each directed graph
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Fig. 1. GNP architecture
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is its node transitions obtained. By the separation of judgments and processing,
the node transitions are equivalent to a sequence of “if-then” type decision rules.
More importantly, for one particular task, only a part of the nodes and its
transitions are activated. This is the most important feature of GNP, called
“transition by necessity”, inspired by brain science that human brain works in
a way of functions distribution, where only specific parts of neurons are activated
corresponding to certain sorts of sensory information the brain perceives [11].

Fig. 1 shows an example of GNP, where only parts of structures are transited,
and some nodes are frequently reused (e.g., node 2) while the activated rules
explicitly shows more generalized forms than the traditional methods taking all
judgments into account. Fig. 2 presents an empirical example in Tileworld. Con-
sequently, the directed graph of GNP shows three unique features: 1) functions
distribution, 2) efficient reusability of nodes and 3) generalization ability.

2.3 Evolution of Original GNP

As the other EAs, GNP applies the nature of evolution to iteratively evolve the
population Pop from scratch. In every generation, Pop is subject to evolution
by two genetic operators, i.e., crossover and mutation. Though various kinds
of genetic operators can be applied to evolve GNP, it has been confirmed that
uniform genetic operators are capable of obtaining better results than the others
[12], which soon become the standard of GNP for problem solving [4, 5].

3 Simplified Genetic Operators

It is notable that the traditional genetic operators does not take the unique fea-
tures of GNP into account, which brings the unnecessary difficulty for evolution.

The most critical drawback of uniform genetic operators in GNP is the one
we define as invalid evolution. For any individual g, let TBg and UBg denote the
sets transited and untransited branches in a given task, where these two disjoint
sets are the partition of the search dimensions

∑
i∈Nnode

|B(i)|.
Clearly, traditional genetic operators treat all branches equally to evolve g,

regardless the fact that the fitness of g in a given task is only based on the
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evaluation of its node transitions, i.e., TBg. In other words, UBg has equal
opportunity to evolve, even they actually do not contribute to the task solving.
Evolving these untransited branches do not result in any reasonable improvement
of g, which is defined by a name “invalid evolution problem” in this paper.

Beyond the invalid evolution problem, uniform genetic operators result in also
the “negative evolution” that in a particular generation invalid evolution appears
in some untransited branches to modify their alleles, while such unused nodes
was phenotypically used in some previous generations. Such a situation would
cause the frequent breakage of building blocks without notice and evaluation. This
would obviously cause the potential uncertainty and low efficiency of evolution.

3.1 GNP with Simplified Genetic operators (GNP simplified)

To address the above problems, this paper proposes novel genetic operators for
GNP, named simplified genetic operators. The procedure of GNP simplified is:

1. Initially, define the set of transited branches b∗[g] ← ∅ for each individual g;
2. FOR each individual g

(a) add the transited branches TBg into b∗[g];
/* simplified crossover: step 3 to 5 */

3. Select two parent individuals P1 and P2;
4. FOR each branch b ∈ b∗[P1]

⋃
b∗[P2]

(a) IF (random seed< pc)
i. exchange the corresponding C of b between P1 and P2;
ii. remove b from b∗[P1] and b∗[P2];

5. go back to step 3 until crossover ends;
/* simplified mutation: step 6 to 8 */

6. Select parent individual P;
7. FOR each branch b ∈ b∗[P]

(a) IF (random seed< pm)
i. randomly set C of b at [1, |Nnode|] except its corresponding node;
ii. remove b from b∗[P];

8. go back to step 6 until mutation ends;
9. go back to step 2 until terminal conditions.

Intuitively, the proposed simplified genetic operators restrict the evolution
only to the activated region of each individual g, i.e., b∗[g], while the unused
sub-graphs remain unchanged. On the other hand, once new genes are produced
from the activated branches, these new branches are reset back to be untransited
(step 4.(a).ii and step 7.(a).ii), because that they are new information which GNP
has not confirmed its utility while evolving them will result in invalid evolution.

3.2 Discussion with Uniform Genetic Operators

Obviously, the proposed genetic operators would contribute to save time for
GNP evolution, which is the reason why we call it simplified :

Theorem 1. Given an individual g, the search dimension of GNP is reduced
from

∑
i∈Nnode

|B(i)| to |b∗[g]| via the simplified genetic operators.
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A A
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A Agent

Tile

Hole

Obstacle

Floor

Fig. 3. Tileworld

Table 1. LIBRARY of Tileworld

Function Description #Branches

J1 ∼ J4 Judge Forward, Backward, Left, Right 5

J5 Direction of the nearest Tile from the agent

5
J6 Direction of the nearest Hole from the agent
J7 Direction of the nearest Hole from the nearest Tile
J8 Direction of the Second nearest Tile from the agent

P1 ∼ P4 Move Forward, Turn Left, Turn Right, Stay 1

Deeper foundations motivating the proposed method arise from the nature of
brain science and evolution. First, we only evolve the activated branches which
GNP has confirmed their effectiveness, while the untransited region indicates
some kinds of unknown skills of GNP, which could be called intron in Biology.
Evolving these untransited parts is meaningless (invalid evolution) in nature
sense, because we don’t even know the quality of them, and perhaps evolving
them might cause too much randomness (negative evolution). It is explicit that
the simplified genetic operators can avoid the invalid and negative evolution. On
the other hand, the proposed method inspires another feature: atavism. Evolu-
tionarily, traits that have disappeared phenotypically actually do not disappear
from the DNA, where the gene sequence often remains even it is inactive [13]. In
the proposed method, the branches which have been transited in the previous
generations are remained in b∗ if they are not evolved in the current generation,
representing the dormant genes. This keeps the experienced branches with the
possibility to evolve in the future generations, resulting in a stronger guidance of
evolution without frequent disruption of BBs comparing with uniform method.

4 Experimental Study

As suggested by No-Free-Lunch Theorem that there is no optimization technique
to perform best results in all problems, each EA would have its own suitable
problem domains. In this paper, we evaluate the performance of the simplified
genetic operators in a widely-studied benchmark testbed – Tileworld [10].

Tileworld consists of a grid of cells on which agents, floors, obstacles, tiles
and holes exist (Fig. 3). The agent has sensory ability to judge the environment
and take the appropriate actions to move to its neighboring cells (Table 1).
The primary objective of Tileworld is to find the optimal strategy that could
control the agents to push tiles into holes as many and fast as possible by given
limited steps. Accordingly, the evaluation of a strategy can be calculated by:
f = 100DT +3(ST − Sused) + 20

∑
t∈Tile(D(t)− d(t)). Here, DT is the number

of tiles that have been pushed into the holes. ST is user-defined limited steps.
Sused denotes the number of steps that have been used. T ile represents the set
of tiles. D(t) is the original distance from tile t to its nearest hole, and d(t) is
the distance from t to its nearest hole after ST steps.

In this paper, ten Tileworlds consisting of 3 agents, tiles and holes randomly
positioned in Fig. 3 are used. In every step, 3 agents are controlled for movement
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Fig. 4. Fitness curves of Tileworld under different ST

Table 2. Detailed results

ST = 40

Fitness t-test

GP 3139.9 ± 482.3 6.54e-6

Sarsa 2971.7 ± 492.5 9.73e-7

GNP uniform 3532.1 ± 540.4 1.18e-2

GNP simplified 3920.1± 548.3 —

ST = 60

Fitness t-test

GP 3356.3 ± 679.2 8.08e-8

Sarsa 3719.2 ± 1106.2 1.34e-3

GNP uniform 4171.4 ± 692.0 4.23e-2

GNP simplified 4547.3± 596.8 —

ST = 80

Fitness t-test

GP 3802.5 ± 789.8 8.06e-5

Sarsa 4031.1 ± 802.2 1.21e-3

GNP uniform 4337.0 ± 773.4 2.79e-2

GNP simplified 4816.9± 912.4 —

ST = 100

Fitness t-test

GP 3830.0 ± 1080.9 1.93e-7

Sarsa 4463.1 ± 809.3 5.56e-4

GNP uniform 4974.3 ± 556.1 4.37e-2

GNP simplified 5381.9± 878.3 —

simultaneously. The objective of evolution is to find the optimal solution with
highest f in ten worlds, hence the fitness calculation Fitness =

∑10
w=1 f(w).

4.1 Parameter Configuration

The overall parameters of GNP include: population size is 300 (1 for elite preser-
vation, 120 for crossover and 179 for mutation); the maximal number of fitness
evaluations is 300,000.

The directed graph G is defined according to [5], where Nnode = 60. Different
ST is set to testify the scalability with different problem difficulty. With the
decrease of ST , the problem difficulty tends to increase. In this paper, ST =
{40, 60, 80, 100}. The best pc = 0.1 and pm = 0.02 are performed by hand-tuning.
The other compared state-of-the-art algorithms include original GNP uniform,
GP [14] and Sarsa Learning [15], whose parameters are set based on [5]. All the
presented experimental results are the average of 30 independent trials.

4.2 Experimental Study

Fitness Results and Scalability: The fitness curves are plotted in Fig. 4.
It is found that the proposed GNP simplified outperforms GP, Sarsa and the
original GNP uniform among all tested 4 problems. The detailed results and their
statistical t-tests are given in Table 2, showing the superiority of GNP simplified

with statistical meaning.
Evolution Behavior: To understand the advantages of the simplified genetic
operators, an intuitive analysis of its evolution behavior is carried out. As Fig.
2 illustrated, each GNP individual only transits a part of its directed graph to
adapt to the detected environment. Accordingly, when some unused branches
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are taken into account for evolution, invalid evolution will happen. Fig. 5 plots
the invalid evolution rates (defined by the fraction that evolution appears in the
branches 
∈ b∗) of GNP uniform changed over generations in all 4 problems, while
GNP simplified never causes the invalid evolution. Fig. 6 shows the changes of
search dimensions during evolution. In each generation, GNP simplified only
evolve the activated regions of G, which is adaptively determined by the interac-
tions between the detected environments and individual executions. On the other
hand, original GNP uniform considers all branches as the search dimensions, ig-
noring the fact of invalid evolution. Consequently, GNP simplified can reduce
the search dimensions, which biases the evolution power towards recombining
the experienced sub-structures, allowing higher evolution efficiency.

4.3 Discussions

Overall, the proposed GNP simplified is capable of obtaining higher fitness
values comapring with the original GNP uniform and some state-of-the-art al-
goirhtms in the benchmark of Tileworld with different problem complexities. In
the intuitive analysis of evolution behavior, it is found that even with different
problem complexities, original GNP uniform tends to have similar level of invalid
evolution rates, proving that the invalid evolution problem is widespread in GNP.
On the other hand, with the proposal of GNP simplified, the search dimensions
of GNP can be stably reduced, i.e., almost all reduced to a half-level in 4 test
problems. We present the explanation of the superiority of the simplified genetic
operators in mainly two reasons: First, GNP simplified can avoid the invalid
evolution problem; Second, GNP simplified reduces the search dimensions of
the directed graph, which contributes to simplify the search space of evolution.

5 Conclusions and Future Work

In this paper, simplified genetic operators for GNP are proposed. None of tra-
ditional genetic operators considers the unique features of GNP, which tends to
cause unnecessary invalid evolution problem. The proposed simplfied genetic op-
erators explicitly consider the “transition by necessity” feature of GNP to only
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evolve the activated regions of GNP. Our study demonstrates the superiority of
the proposed method in terms of avoding the invalid evolution and reducing the
search dimensions. Since the aim of this study is to propose general-suitable ge-
netic operators for GNP, in the future we will try to extend this work to address
the real-world applications.
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Abstract. We are interested in local models for time series forecast-
ing and we propose a new approach based on hierarchical clustering.
This new approach uses a binary tree, k-means clustering and pruning
strategies to find out the adequate clustering with MLP and SVM as pre-
dictors. The experimentations give very good results for this approach.
Three strategies were tested and a comparative study with other meth-
ods show that the hierarchical predictor model outperformed the existing
models on the three used datasets.

Keywords: Multilayer perceptron, SVM (Support Vector Machines),
time series forecasting, local model, hierarchical clustering, binary trees,
k-means.

1 Introduction

Time series forecasting is a widely discussed issue which is found in many do-
mains. Our focus in this paper will be on local models for time series forecasting.
The objective of these models can be described in three steps: during the first
step, the time series embedded into M-dimensional space vectors, then they are
clustered into sub learning sets and finally local predictions are executed on each
subset.

In section 2, a brief presentation of related works in local approaches are
presented. In section 3, we describe our hierarchical model, followed by the ex-
perimentations on section 4 and finally we conclude with a discussion of this
methods and possible perspectives in section 5.

2 Related Works

In the literature, many models and algorithms have been proposed, among them
are, Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM). In
addition, methods and techniques to push the limits of prediction error have
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been proposed. The local model [1,2] techniques are one of them. It consists in
dividing the data into homogeneous clusters using Vector Quantization (VQ [3]).

Theoretically, dividing the data in distinct and homogeneous clusters should
allow the predictor to estimate an easier function in each cluster instead of a
global and probably more complex one. For example in [1], this technique was
used to predict non-linear time series by linear predictors. Another application
was to predict seasonal time series in [4].

After embedding the time series values into a multi-dimensional vector space
which is done by sliding a temporal window on the data sets, comes the step of
dividing the data into subspaces or clusters. According to the literature several
methods were used for this task. In our knowledge, all of them come from the
category of partitional clustering. The most used method is the Self-Organizing
Maps (SOM [5]) and the Neural Gas (NG [6]). Many adaptations for temporal
sequences were presented in [7].

The third and final step is the prediction where for each created cluster a
predictor is associated during the learning process. Many types of predictors
were used such as MLP [2] and SVM [8]. All these methods share the point
that the prediction and clustering steps are not linked. Our proposition tries to
emphasize this particular point in order to improve the final results.

3 Proposed Method

We propose a new approach for time series forecasting which is based on the
same principle of local models seen in the previous section. According to the
literature most of the local approaches are based on SOM clustering algorithms
and more generally on partitional clustering algorithms. Both experiments and
rational deduction show that the number of clusters and their composition are
important factors for forecasting performances. Since existing methods do not
propose any link between the clustering step and the prediction step, we propose
a new hierarchical local model that is based on binary tree for clustering data.
The idea is to drive the tree development by the local predictor performances.

Our method tends to provide a link between the prediction step and the
clustering step which is missing in previous works. Further more, the introduction
of hierarchical architecture allows us to imagine several parameters in order to
control the height of the tree. For example, the cluster size is useful to avoid
small clusters and limits the number of nodes.

The tree development is performed through k-means algorithm. Basically, for
each node, one 2-means with two centroids (k=2) is applied on vectors linked
to this node. The k-means choice is justified by fastness and simplicity. We have
chosen a binary tree modelling (k=2) to start with the simplest way.

In this model the predictors are used as black boxes. They take as input a
temporal window which represents the past values and they give as output the
corresponding future value. Typically, each node has his own predictor in which
the evaluation of efficiency of the clustering is done by the normalized mean
square error (NMSE) over a validation set.
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3.1 Tree Description

We describe a binary tree as a graph defined by :

T = (V,E, γ) (1)

where V denotes the set of nodes, E the set of oriented edges linking two nodes
and γ is the function that links two nodes v1 and v2 by the edge a defined by

γ : E → V × V
a �→ (v1, v2)

(2)

Three node types can be defined : root node, leaf nodes and inner nodes. The
root node is unique in a tree and have only two edges toward only child nodes.
The leaves are the tree bottom nodes with no child. We refer by inner nodes the
ones in the middle (they have child nodes and a parent node).

For each node vi are associated a set of vectors from the learning set A denoted
by A(vi) which can be seen as the obtained clusters at the node vi. We define
an horizontal cut H for a tree T as the clustering of the set A verifying the two
conditions

A =

k⋃
i=1

A(vi) and

k⋂
i=1

A(vi) = ∅ (3)

where k is the number of nodes in H . For example, the root node r and the leaf
set can be seen as two horizontal cuts for T .

This approach opens the possibility for different strategies to find an adequate
horizontal cut. For instance, when the time processing is important, we can use
a strategy that stops early the tree decomposition. From an opposite point of
view we can think about a strategy that construct the complete tree and then,
with a pruning technique, try to find out the optimal clustering.

We propose in this paper three different strategies.

3.2 Strategy 1 : Pre-pruning

In this strategy, tree development is done alternatively with the predictors eval-
uation. In this way the pruning is applied during the tree construction, for this
reason we call this strategy pre-pruning. Our proposition is to develop each node
at one step for two successive levels. This leads to one complete tree of two levels
(h = 2) with one root node, two regular nodes and four leaves, respectively r,
n1, n2, li (1 ≤ i ≤ 4), as shown in the figure 1. Then the predictors are applied
on these 7 nodes. In this configuration 5 horizontal cuts are possible represented
in the figure 1.

The proposed algorithm uses one list Lc that contains the leaf nodes to be
developed and stops when Lc is empty. The algorithm 1 describes the principles
of the operation. F denotes the leaf sets and find_cut_min(n) is a function
that return the optimal cut for the sub tree exposed in figure 1 by the five
different colors.
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Test 1

Test 2

Test 3

Test 4 Test 5

Fig. 1. Obtained tree by pre-pruning strategy, each color represents a different hori-
zontal cut

Algorithm 1. Pre-pruning algorithm
Lc ← r
while ¬empty(Lc) do
n← unstack(Lc)
Develop(n)
Predict(n)
H ← find_cut_min(n)
for all m ∈ H do

if m ∈ F then
Lc ← m ∈ H

else
Lf ← m ∈ H

end if
end for

end while
return Lf

3.3 Strategy 2 : Post-pruning

In this strategy, the idea is to develop the tree at its maximum ability. It operates
in three steps: the development step which is the tree construction, the learning
step where all predictors perform the learning and finally selecting clustering by
searching the best horizontal cut over a validation set.

The pruning in this strategy is performed by an O(n) algorithm (where n is
the number of nodes). The algorithm uses two lists : Lf for the final horizontal
cut and a temporary list Lt.
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In the beginning, the final list can be initialized by any horizontal cut, we
choose the set of leaves. In each iteration one node is selected and replaces all its
progeny in the temporary list. By repeating this, we save the horizontal cut that
gives the best performance in the validation set. Detailed steps can be found in
the algorithm 2.

Algorithm 2. Post-pruning algorithm
Lf ← F
MSE ← calculateGlobalError(Lf)
for all vi ∈ V − F do
Lt ← Lf − progeny(vi) + {vi}
MSEt ← calculateGlobalError(Lt)
if MSEt < MSE then
MSE ←MSEt

Lf ← Lt

end if
end for
return Lf

3.4 Strategy 3 : Leaf Mapping

In this strategy, we do not search for the optimal clustering from the tree. The
idea is to take benefits from all trained predictors in the tree. In order to do
that we define for each node ni its local prediction error Ei and the cluster size
denoted τi, defined by :

τi =
Card(ni)

Card(r)
(4)

where Card(n) is the number of vectors affected to the node n.
This allow us to establish the error contribution for each node by the expres-

sion :
ci = τi × Ei (5)

It is easy to establish the relation between the global prediction error and the
contributions :

NMSE =
∑
ni∈H

ci (6)

from the observation that the ci are positif elements, we may think that mini-
mizing the global error could be assimilated to finding the nodes that give the
less contributions. In the proposed algorithm, we associate to each leaf the node
that has the smallest error contribution from the parents (including the node
itself).
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4 Experimentation

In this section we test the proposed methods on well-known time series (Sunspots,
Mackey-Glass and FIR-Laser). For comparison purposes, we studied earlier works
like [9,2,1,10] which have used the same data under similar conditions. In order to
see clearly the contribution of the hierarchical models on the results, both MLP
and SVM were used as predictors and we used the Normalized Mean Square
Error (NMSE) criteria.

4.1 Tests on Sunspots

State of the art results for Sunspot time series are presented in the table 1. The
results are compared with a recurrent neural networks (RNN) in [11], an MLP
with feature selection in [12], a boosted RNN in [13] and SVM predictor with
composite kernel [9]. The best results are obtained by the mapping strategy +
MLP predictor.

Table 1. Sunspot compared results

Model NMSE Test
RNN [11] 0.084
MLP [12] 0.078
Boosting [13] 0.078
SVM [9] 0.039
Mapping + MLP 0.0034

4.2 Tests on Laser

The table 2 summaries state of the art results for Laser time series. in this table
we can find implementation of RSOM local model in [10] using MLP predictors.
In [14] a MLP using FIR connections is used. In [15] another local model is
presented based on SOM and SVM. A RNN with an algorithm of adding con-
nections is proposed in [11]. And finaly, in [13] a boosted RNN is used. We can
see that our proposed method, based on Pre-Pruning + MLP, gives the best
results over all.

4.3 Tests on MG-17

Table 3 presents some results on MG-17, in wich we found a local model of [2]
with SOM and MLP and [15] with SOM and functional networks and the boosted
RNN [13]. It’s shown that our model outperform other methods for MG-17 too,
the best performances are obtained by pre-pruning strategy + SVM predictor.

The results exposed in the table 4 show best performances obtained by the
three strategies with the three time series. Both, MLP and SVM as predictors
are presented. For Sunspot, the mapping strategy gives the best results by using
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Table 2. Laser compared results

Model NMSE Test
RSOM [10] 0.084
FIR MLP [14] 0.023
[15] 0.011
RNN [11] 0.008
Boosting [13] 0.005
Pre-Pruning + MLP 0.0039

Table 3. MG-17 compared results

Model NMSE Test (10−3)
Barreto [16] 0.75
Vesanto [2] 0.17
Boosting [13] 0.11
NoeliaSanchez [15] 5.75× 10−4

Pre-Pruning + SVM 1.37× 10−5

MLP predictor (0.0034) and SVM with (0.0045). However, the three stategies
are close. For Laser, the best perfomance is obtained by pre-pruning with both
MLP and SVM predictors (respectively 0.0039 and 0.0043). For MG-17 time
series, the superiority of the SVM is clear and confirmed by post-pruning and
pre-pruning strategies with equal NMSE (1.37× 10−8 for SVM and 9.82× 10−6

for MLP).

Table 4. Best performances obtained by hierarchical models

SunSpots Laser MG-17
MLP SVM MLP SVM MLP SVM

Pre Prunning 0, 0040 0, 0049 0,0039 0, 0043 9, 82E − 06 1,37E-08
Post Pruning 0, 0051 0, 0046 0,0039 0, 0050 9, 82E − 06 1,37E-08

Mapping 0,0034 0, 0045 0, 0040 0, 0043 1, 50E − 05 1, 94E − 08

5 Discussion

According to the experimentations, it appears that our proposition outperforms
the existing methods but also put classical predictors such as MLP or SVM to a
better position than more complicated ones (for example RNN). This improve-
ment can be linked to one important fact : clustering step and prediction step are
no longer separated. Not only the number of clusters can be "self-controlled" but
also the tree composition. As future work, it can be suggested to find a relation
between the hierarchical clustering and the best pruning strategy to use.
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Abstract. Co-clustering is a powerful technique with varied applica-
tions in text clustering and recommender systems. For large scale high
dimensional and sparse real world data, there is a strong need to provide
an overlapped co-clustering algorithm that mitigates the effect of noise
and non-discriminative information, generalizes well to the unseen data,
and performs well with respect to several quality measures. In this pa-
per, we introduce a novel fuzzy co-clustering algorithm that incorporates
multiple regularizers to address these important issues. Specifically, we
propose MRegFC that considers terms corresponding to Entropy, Gini
Index, and Joint Entropy simultaneously. We demonstrate that MRegFC
generates significantly higher quality results compared to many existing
approaches on several real world benchmark datasets.

1 Introduction

Co-clustering or bi-clustering is a powerful tool that alleviates notable limitations
of clustering techniques such as poor scalability, lack of cluster intrepretability
and sensitivity to noise [1]. Co-clustering allows simultaneous clustering of the
rows and columns of a matrix, and has been used successfully in text min-
ing [2], [3] and collaborative filtering [4]. In collaborative filtering, for example,
co-clustering can be used for identifying groups of customers with similar inter-
ests or preferences toward a set of products. The co-clusters thus obtained can
be leveraged for target marketing in recommender systems.

Many co-clustering methods partition the data into non-overlapping regions
where each point belongs to only one cluster such as ITCC [3], Bregman co-
clustering [5]. However, in real world applications, fuzzy co-clustering, that al-
lows the data points to be members of two or more clusters, is more suitable. For
example, when clustering documents into topics, documents may contain multi-
ple relevant topics and hence an overlapped co-clustering is more appropriate [6].
Overlapped co-clustering algorithms also capture the vague boundaries between
clusters and improve the representation and interpretability of the clusters.

Further, certain issues need to be addressed for obtaining superior perfor-
mance using fuzzy co-clustering. The points or features occurring across a large
number of clusters should not be allowed to dominate since they contain very
little discriminative information. Also, noise in the underlying data needs to be
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effectively handled. One common way to deal with such issues is to devise fuzzy
techniques that focus on optimizing an objective based on some regularizer as
shown in FCR [7] and FCM with Maximum Entropy regularization [8]. A ma-
jor limitation of these techniques lies in the insufficiency of a single regularizer
to perform well with respect to several quality measures. For example, FCR
uses entropy in the objective function which helps to obtain better degree of
aggregation on real datasets, but shows lower accuracy.

FCCM [9] is a fuzzy clustering algorithm that maximizes the co-occurrence
of categorical attributes (keywords) and the individual patterns (documents) in
clusters. However, this algorithm poses difficulties while handling large data sets
and also works for only categorical data. Fuzzy-CoDoK [10], a scalable modifica-
tion of FCCM, involves heavy parameter tuning that makes the approach data-
dependent, is susceptible to variations in data and may often fail to converge.
Technique such as SCAD [11] only works with data lying in some Euclidean
space. SKWIC [12] overcomes this limitation but lacks in parameter tuning and
scalability. Similarly, technique such as MOCC [13] performs poorly with respect
to degree of aggregation.

In this paper, we formulate a framework, Multi-Regularization for Fuzzy Co-
clustering (MRegFC), based on maximizing an objective function that incorpo-
rates penalty terms based on the Entropy, the Gini Index, and the Joint Entropy
simultaneously under certain constraints. Each one of the regularizers used in
MRegFC contribute to address the issues related to co-clustering, as explained
later in Section 2. MRegFC can also handle high dimensional and sparse data
without over-fitting. However, incorporating multiple regularizers becomes chal-
lenging as different regularizers might have contrasting behaviors and learning
a good set of weights for several regularizers simultaneously is important. Our
technique MRegFC alleviates both these issues. Further, MRegFC provides valid
range of values for different parameters used, to obtain high quality results.
In experimental evaluation, we demonstrate superior performance in terms of
precision, recall, and F-measure as compared to prior approaches: MOCC [13],
ITCC [3], FCR [7] and algorithms employing only one of these regularizers. Our
algorithm also demonstrates better RMSE compared to FCR [7] and individual
regularizers on all the datasets in consideration. To the best of our knowledge,
MRegFC is the first multiple regularizer based approach for fuzzy co-clustering.

2 The Proposed Approach

In this work we propose an approach called MRegFC for fuzzy co-clustering
which formulates the objective function employing the Entropy, the Gini In-
dex, and the Joint Entropy regularizers simultaneously. A regularization term
is added to the objective function in order to prevent it from being an ill-posed
problem and to avoid overfitting. The regularization term based on Entropy [8]
elegantly captures the notion of purity of a co-cluster while emphasizing the
marginal coherence along the rows (points) and the columns (features). Hence,
the homogeneity along the points and the features are appropriately taken into
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Table 1. Notation

Symbol Definition

C Number of co-clusters

N Number of data points (rows)

K Number of features (columns)

uci Membership of row i in co-cluster c

vcj Membership of column j in co-cluster c

dij Measure of extent of correlation between row i and column j

account using the Entropy regularizer. Gini Index, despite being similar to En-
tropy, ensures that the points and features that occur across a large number of
clusters are not provided with any unfair advantage, besides imparting numeri-
cal stability to the algorithm [10]. Joint Entropy [14] characterizes, in a natural
way, the statistical dependence of the points (rows) and the features (columns)
on each other. Moreover, the Joint Entropy term, in conjunction with Entropy,
creates a Mutual Information term thereby lending a better generalization abil-
ity to MRegFC by making it robust against noise. It is easy to see that the Joint
Entropy term is maximized when the product uci.vcj is evenly distributed across
the different co-clusters. Thus incorporating a joint entropy fuzzifier also reduces
the susceptibility of the algorithm to overfitting1.

A typical fuzzy co-clustering algorithm strives to maximize an objective func-
tion, generally the degree of aggregation. Using the notations given in Table 1,

the degree of aggregation for cluster c can be quantified as

N∑
i=1

K∑
j=1

ucivcjdij , for c ∈ {1, 2, . . . , C} (1)

The intuition is that we want to bring together rows and columns with high dij
values in the same co-cluster. To maximize the value of the objective function,
for such i and j, we need to set high values for both uci and vcj for the same
cluster c. Additionally, we impose the following constraints:

C∑
c=1

uci = 1, uci ∈ [0, 1], i ∈ {1, 2, . . . , N} (2)

K∑
j=1

vcj = 1, vcj ∈ [0, 1], c ∈ {1, 2, . . . , C} (3)

The first constraint requires that the addition of membership values of each row
across all the co-clusters is equal to 1. Such a constraint is said to satisfy the
Ruspini’s condition [15]. The second constraint, on the other hand, requires
that the summation of all column memberships must be one for each co-cluster

1 The under-fitting issues are implicitly taken care of by the term corresponding to
the degree of aggregation.
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thereby implying a weighting scheme for the columns, instead of the partitions2.
We now add regularization terms corresponding to Entropy, Gini Index and Joint
Entropy in the objective function. Consequently, using the weight parameters
Tu1 and Tu2 for Entropy, Tv1 and Tv2 for Gini Index, Tuv for Joint Entropy to
specify the extent of fuzziness, we strive to maximize our regularized objective
function, OBJ

=

C∑
c=1

N∑
i=1

K∑
j=1

ucivcjdij − Tuv

C∑
c=1

N∑
i=1

K∑
j=1

ucivcj log(ucivcj)− Tu1

C∑
c=1

N∑
i=1

uci log(uci)

− Tu2

C∑
c=1

N∑
i=1

u2
ci − Tv1

C∑
c=1

K∑
j=1

vcj log(vcj)− Tv2

C∑
c=1

K∑
j=1

v2cj

+

N∑
i=1

λi

(
C∑

c=1

uci − 1

)
+

C∑
c=1

γc

(
K∑

j=1

vcj − 1

)
(4)

Differentiating with respect to uci we get

⇒
∂OBJ

∂uci
=

K∑
j=1

vcjdij − Tu1 (1 + log(uci)) − 2Tu2uci − Tuv

K∑
j=1

vcj (1 + log(ucivcj)) + λi (5)

For optimality of OBJ , we must have
∂OBJ

∂uci
= 0. Further, since uci, vcj ∈ [0, 1],

approximating (1 + log uci) and (1 + log ucivcj) by uci and vcj respectively, we
have

⇒ uci =

λi +

K∑
j=1

vcjdij

Tu1 + 2Tu2 + Tuv

K∑
j=1

v2cj

(6)

Now using

C∑
c=1

uci = 1, and simplifying, we obtain

uci =
1

C
+

1

Tu1 + 2Tu2 + Tuv

K∑
j=1

v2cj

∗
⎛⎝ K∑

j=1

vcjdij − 1

C

C∑
t=1

K∑
j=1

vtjdij

⎞⎠ (7)

Following a similar procedure of obtaining uci, we can compute

vcj =
1

K
+

1

Tv1 + 2Tv2 + Tuv

N∑
i=1

u2
ci

∗
(

N∑
i=1

ucidij − 1

K

K∑
t=1

N∑
i=1

ucidit

)
(8)

2 We do not impose Ruspini’s condition on the columns since then a single co-cluster
containing all the rows and columns would be formed.
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A good selection of the parameters Tu1 , Tu2 , Tv1 , and Tv2 can be mathe-
matically derived in a straightforward way (omitted due to space constraints):

0 < Tu1 <

C∑
t=1

K∑
j=1

vtjPj

N
− Tuv max

c

K∑
j=1

v2cj (9)

Tu2 =

C∑
t=1

K∑
j=1

vtjPj −NTuv max
c

K∑
j=1

v2cj −NTu1

2N
(10)

0 < Tv1 <

K∑
j=1

Pj

C
− Tuv max

c

N∑
i=1

u2
ci (11)

Tv2 =

K∑
j=1

Pj − CTv1 − CTuv max
c

N∑
i=1

u2
ci

2C
(12)

Please note that this is a lateral benefit of our approach since in general, tuning
the input parameters appropriately is a difficult problem, and the algorithm may
not perform satisfactorily in the absence of any tuning guidelines.

Algorithm 1 describes our approach for fuzzy co-clustering. The algorithm
takes as input the number of co-clusters C, the row-column correlation matrix
D, and a threshold ε to specify the stopping criterion. It can be observed that
the parameters λ and γ do not play a role in the resulting algorithm and hence
show no effect on the overall performance. The different row memberships are
randomly initialized subject to the constraint that their summation is equal to
1. Based on selection of Tuv, the values of the parameters Tv1 and Tv2 is chosen
from the respective acceptable range. The algorithm then alternately updates
the row and column memberships repeatedly, until the change in all the row
memberships across two successive iterations is bounded by ε. At termination,
the algorithm outputs appropriate row and column memberships across the dif-
ferent co-clusters.

3 Experimental Evaluation

In this section, we present experimental evaluation on several benchmark datasets
that demonstrates a superior performance of MRegFC over the FCR, ITCC and
MOCC algorithms. We also demonstrate the benefits of using multiple regulariz-
ers in MRegFC by presenting a comprehensive evaluation against the individual
regularizers.
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Algorithm 1. Multi-Regularized Fuzzy Co-clustering (MRegFC)

Input : No. of co-clusters C, row-col matrix D, and threshold parameter ε
Output: Membership values uci and vcj

1 Compute Pj =

N∑
i=1

dij . Initialize randomly memberships uci ≥ 0, c ∈ [C] and

i ∈ [N ] such that
∑C

c=1 uci = 1.

2 Choose Tuv ∈

⎛
⎜⎜⎜⎜⎝0,

∑K
j=1 Pj

Cmaxc

N∑
i=1

u2
ci

⎞
⎟⎟⎟⎟⎠.

3 Choose Tv1 using Eqn. (11).
4 Compute Tv2 using Eqn. (12).
5 Compute memberships vcj using Eqn. (8).
6 Choose Tu1 using Eqn. (9).
7 Compute Tu2 using Eqn. (10).

8 uold
ci ← uci

9 Update memberships uci using Eqn. (7).

10 if
(
max

c
|uci − uold

ci | > ε
)
then

11 Update memberships vcj using Eqn. (8).
12 Go to step 9

13 end

We conducted experimentation on the following datasets [16], [13]: (a) Movie-
lens for movie recommendations, (b) Classic3 for document collections, (c)
Jester for joke ratings (d) Reuters (21578) for text categorization, and (e) 20
Newsgroups for text classification and clustering. We used two subsets of the
Movielens dataset: (a) (Mv1 : 679 movies from 3 genres - Animation, Children
and Comedy, and (b) Mv2 : 232 movies from 3 genres - Thriller, Action and Ad-
venture. These are similar to the ones used in [13], and therefore provide for
a consistent comparison with the MOCC and ITCC algorithms. Each reported
result is based on an average over 10 trials. The number of clusters chosen for ex-
periments E1 and E2 were 8 and 16, respectively for MRegFC ; other algorithms
were represented by (5, 5) and (10, 10) row and column clusters. The threshold
parameter ε was set to 0.00001. In order to compare the quality of clustering
results, we use the following standard measures: RMSE, precision, recall, and
F-measure [13].

3.1 Comparison with Existing Approaches

Table 2 presents the comparative results for precision, recall and f-measure on the
Movielens dataset. MRegFC has a high average precision value of around 0.73,
and consistently outperforms the other algorithms. MRegFC achieves a high
recall value of about 0.67 on an average. Further, it can be seen that MRegFC
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Table 2. Precision, Recall, F-measure Comparison with Existing Approaches

Dataset Precision Recall F-measure

MRegFC MOCC ITCC FCR MRegFC MOCC ITCC FCR MRegFC MOCC ITCC FCR

Mv1-E1 0.75 0.60 0.63 0.750.65 0.67 0.19 0.61 0.69 0.63 0.29 0.67

Mv1-E2 0.76 0.62 0.65 0.75 0.71 0.65 0.13 0.61 0.73 0.63 0.22 0.67

Mv2-E1 0.70 0.46 0.54 0.69 0.64 0.62 0.23 0.57 0.66 0.53 0.32 0.63

Mv2-E2 0.70 0.48 0.57 0.69 0.69 0.58 0.16 0.56 0.69 0.52 0.25 0.63

Table 3. Precision, Recall and F-measure Comparison with Individual Regularizers.
(E: Entropy, GI: Gini Index, JE: Joint Entropy)

Dataset Precision Recall F-measure

MRegFC E GI JE MRegFC E GI JE MRegFC E GI JE

Reuters
(21578)

0.548 0.409 0.31 0.43 0.63 0.546 0.555 0.477 0.6 0.46 0.49 0.38

20News
Groups

0.516 0.3 0.304 0.3 0.825 0.767 0.546 0.609 0.66 0.43 0.39 0.4

Mv1 0.756 0.701 0.689 0.711 0.653 0.562 0.554 0.216 0.7 0.62 0.61 0.35

Mv2 0.718 0.684 0.69 0.702 0.64 0.515 0.558 0.268 0.67 0.59 0.61 0.39

has an average F-measure of 0.69, while the closest competitor FCR achieves a
value of 0.65. This clearly demonstrates that MRegFC yields consistently better
quality clusters compared to the existing algorithms.

Fig. 1. F-measure vs no. of co-clusters
(Mv2)

Fig. 1 presents the variation of
F-measure (using the Mv2 dataset),
as the number of clusters and row-
clusters increases from 2 to 10,
for MRegFC and other algorithms
(MOCC, FCR and ITCC ). This re-
sult was used to choose the num-
ber of co-clusters in the algorithm. It
can be seen that as the number of
clusters increases beyond 5, MRegFC
consistently outperforms the other
algorithms by a convincing margin.

3.2 Comparison with Individual Regularizers

To quantify the benefit of incorporating multiple regularizers, we also compared
MRegFC with similar algorithms that include only one of the Entropy, Gini In-
dex, and Joint Entropy regularizers. Table 3 presents the comparison results on
the different datasets in terms of F-measure. Clearly, MRegFC outperforms the
techniques using individual regularizers. Since MRegFC also achieves the lowest
RMSE of all techniques across all data sets (Table 4, we conclude that the need
for incorporating multiple regularizers, as inMRegFC, cannot be overemphasized.
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We also varied the parameter Tuv over a large range on all the datasets and ob-
served that training time and RMSE do not vary much with change in Tuv. This
demonstrates the robustness of the proposed approach with respect to the input
parameter Tuv. We omit the details due to space constraints.

Table 4. RMSE comparison

Dataset MRegFC Entropy Gini Index Joint Entropy FCR

Reuters (21578) 1.37 1.47 1.51 1.58 1.4

20News Groups 1.45 1.56 1.56 1.57 1.56

Mv1 1.36 1.39 1.45 1.56 1.48

Mv2 1.23 1.28 1.3 1.51 1.4

Jester-1 17.68 20.47 20.68 22.12 20.64

Jester-2 17.55 22.55 20.56 25.7 20.02

Classic3 (CRAN) 1.04 1.09 1.13 1.16 1.46

Classic3 (MED) 1.27 1.57 1.59 1.59 1.59

4 Conclusion

We present a novel fuzzy co-clustering framework that simultaneously incorpo-
rates multiple regularizers namely Entropy, Gini Index, and Joint Entropy while
trying to maximize the degree of aggregation. The approach can handle cate-
gorical and numerical data in addition to the highly sparse high dimensional
data, without over-fitting. Furthermore, unlike existing algorithms, we provide
an appropriate range of values for tuning the various parameters to obtain high
quality results. We demonstrate superior performance, in terms of several quality
measures such as precision, recall, F-measure and RMSE compared to the prior
approaches as well as algorithms using individual regularizers.
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Abstract. Classifier ensemble is an active topic for learning from non-stationary
data. In particular, batch growing ensemble methods present one important di-
rection for dealing with concept drift involved in non-stationary data. However,
current batch growing ensemble methods combine all the available component
classifiers only, each trained independently from a batch of non-stationary data.
They simply discard interim ensembles and hence may lose useful information
obtained from the fine-tuned interim ensembles. Distinctively, we introduce a
comprehensive hierarchical approach called Dynamic Ensemble of Ensembles
(DE2). The novel method combines classifiers as an ensemble of all the interim
ensembles dynamically from consecutive batches of non-stationary data. DE2

includes two key stages: (1) Component classifiers and interim ensembles are
dynamically trained; (2) the final ensemble is then learned by exponentially-
weighted averaging with available experts, i.e., interim ensembles. We engage
Sparsity Learning to choose component classifiers selectively and intelligently.
We also incorporate the techniques of Dynamic Weighted Majority, and
Learn++.NSE for better integrating different classifiers dynamically. We perform
experiments with the data in a typical non-stationary environment, the Pascal
Large Scale Learning Challenge 2008 Webspam Data, and compare our DE2

method to other conventional competitive ensemble methods. Experimental re-
sults confirm that our approach consistently leads to better performance and has
promising generalization ability for learning in non-stationary environments.

Keywords: Ensemble of ensembles, classifier ensemble, growing ensemble, spar-
sity learning, nonstationary environment, concept drift.

1 Introduction

Many real-world applications for data learning and mining appear in nonstationary envi-
ronments, where the underlying data distribution changes over time (i.e., concept drift),
such as climate or financial data analysis, network intrusion, spam and fraud detection,
information retrieval, and web mining. Informally, concept drift refers to a change in
the class (concept) definitions over time, i.e., a set of examples has legitimate class
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labels at one time and has different legitimate labels at another time. An environment
from which such data is obtained is a nonstationary environment. Concepts may change
suddenly or gradually, and if we view concepts as shapes in a representation space, then
they can change their shape, size, and location ([1]).

Recently, learning such nonstationary data with concept drift has started to received
much attention and be an active topic in machine learning and data mining. Methods
designed for concept drift can be characterized in several different ways, such as single
classifier versus ensemble-based approaches, or online versus batch algorithms. Single
classifier based approaches track concept drift, train, and update one classifier incre-
mentally in a nonstationary environment, e.g. STAGGER ([2]) and FLORA ([3]). More
popularly, classifier ensemble has been intensively studied to be an effective technique
for overcoming the limitations of individual classifiers’ accuracy and stability. Conse-
quently, a variety of ensemble based approaches have been investigated and proposed
for learning nonstationary data with concept drift ([4]). Generally, there are mainly
two categories: the fixed ensemble and the growing ensemble. The fixed ensemble has
fixed component learners trained in advance, e.g., Weighted Majority ([5]), Warmuth et
al.’s methods ([6,7]). Given new data, it only updates the combination rules or weights
of the ensemble, or updates the parameters of existing ensemble components with
online learning. Contrarily, the growing ensemble dynamically adds or/and removes
components and updates voting weights with each incoming dataset. More specifically,
online growing ensembles, e.g. Dynamic Weighted Majority (DWM) ([1,8]) and Ad-
dExp ([9]), utilize online (incremental) algorithms; however batch growing ensem-
bles use batch algorithms, i.e., repeated applications of off-line learning algorithms to
process batches of training examples. More researchers are interested on batch grow-
ing ensemble technologies, e.g., Streaming Ensemble Algorithm (SEA) ([10], Stream-
Miner [11]), Selectively Recursive Ensemble Approach (SREA and REA) ([12,13]),
and Learn++.NSE ([14]).

In this paper, following the batch growing ensemble, we propose a more adap-
tive method, Dynamic Ensemble of Ensembles (DE2), for learning nonstationary data.
DE2 combines classifiers dynamically from consecutive batches of nonstationary data.
Firstly, we train interim ensembles using general batch growing ensemble approaches
to deal with concept changes over time. At each time (when a batch of data come),
one interim ensemble is constructed by weighted majority voting. We engage the Spar-
sity Learning in order to learn the weight of each component classifiers selectively and
intelligently. The Dynamic Weighted Majority (DWM) and Learn++.NSE can be also
incorporated into this step. Then, we manage to learn an ensemble for combining all
available interim ensembles. The final ensemble of DE2 is weighted-majority voted by
all past and current interim ensembles. The proposed framework is justified theoreti-
cally with a shifting regret bound analysis and also validated extensively on real-world
benchmark datasets. While current batch growing ensemble methods resort to com-
bining component classifiers only, our proposed DE2 attempts to combine all interim
ensembles. In other words, existing batch growing ensemble methods usually discard
previous interim ensembles when a new batch of data come. In comparison, the novel
DE2 aims to take full advantages of knowledge from these previous interim “experts”.
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The rest of this paper is organized as follows. Section III demonstrates our Dynamic
Ensemble of Ensembles for learning from nonstationary environments. Several com-
parative experiments with the Pascal Competition 2008 spam data are demonstrated in
Section IV. Finally, conclusions are presented in Section V.

2 Learning Data with Dynamic Ensemble of Ensembles

The stream data in a nonstationary environment is separated to chunks, i.e., a series of
training datsets Dt = xt(i) ∈ X, yt(i) ∈ Y, i = 1, . . . ,mt, where t is a time index. For
simplicity, we assume the classification task is a two-class problem, and specifically
set yt ∈ {−1, 1}. xt(i) is the ith instance of the dataset, drawn from an unknown
distribution P t(x, y) in the environment at time t. At time t + 1, a new batch of data
drawn from P t+1(x, y) is arrived.

2.1 Dynamic Ensemble of Ensembles (DE2)

DE2 is a growing ensemble with batch learning, which includes two stages. In the first
stage, at each time an interim ensemble is constructed by weighted majority voting. In
the second stage, a final ensemble is also weighted-majority voted by all former and
current interim ensembles as a global problem. Weights of classifiers in one interim
ensemble can be learned with sparsity learning, and weights of components in the final
ensemble are set with exponentially-weighted averaging.

Interim Ensemble with Sparsity Learning In most cases, ensemble of some parts of
available component classifiers is better than ensemble as a whole. This leads to sparsity
learning for the combination of multiple classifiers. A sparse model representation can
improve the generalization performance and computational efficiency. Consequently,
we use sparsity learning to construct the interim ensemble in our DE2 method.

As described above, given one classifier with each time, at time t, we will get t classi-
fier components, h1, h2, . . . , ht. Using weighted majority voting, a combined classifier
for a given instance x at time t is,

Ht(x) = (wt)Tht(x) (1)

where ht(x) = [h1(x) . . . ht(x)]
T .

At time t, given the training data Dt = xt(i) ∈ X, yt(i) ∈ Y, i = 1, . . . ,mt, and
using the sparsity learning with the least squares loss, the optimization for the weights,
wt, is

min
wt

mt∑
i=1

1

2
((wt)Tht(xt(i))− yt(i))2 + λ ‖ wt ‖1 s.t. wt ≥ 0 (2)

where λ is the control parameter for the sparsity regularization. With the empirical
logistic loss, the optimization is converted to

min
wt

mt∑
i=1

log(1 + e−yt(i)((wt)Tht(xt(i))) + λ ‖ wt ‖1 s.t. wt ≥ 0 (3)
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Lastly, we normalize the weights wt with

wt = wt/ ‖ wt ‖1 (4)

Note that the first stage of DE2 with interim ensembles can also be performed by
many other batch growing ensemble approaches, e.g., Dynamic weighted majority ([1]),
Learn++.NSE ([14]).

Final Ensemble with Dynamic Weighted. Currently, most batch growing ensemble
methods resort to combining component classifiers only, i.e., usually discard previous
interim ensembles when a new batch of data come. More rationally, taking full advan-
tages of knowledge from previous interim “experts” has a more attractive profit. As a
result, our novel DE2 method combines classifiers as an ensemble of all the interim
ensembles dynamically from consecutive batches of nonstationary data.

After the weighted majority ensemble with sparsity learning at time t, we will get an
interim ensemble Ht in (1). Consequently, all the former and current interim ensembles
are,

{H1, H2, . . . , Ht} (5)

Exponentially-weighted averaging is a popular method for ensemble with online
learning ([5,6,15]). We use exponentially-weighted averaging to combine interim en-
sembles.

Given t interim ensembles at time t in (5), initial positive weight φ1,1 = 1 for the
starting classifier h1, or the interim ensemble H1 , and a learning rate η > 0, the final
ensemble at time t is constructed by a weighted average,

Ht(x) =

∑t1=t
t1=1 φt,t1Ht1(x)∑t1=t

t1=1 φt1,t

(6)

The general exponentially-weighted averaging updates the weights by

φt,t1 = φt−1,t1e
−η
(Ht1 ) (7)

where �(Ht1) is the loss of the interim ensemble Ht1 , e.g., the classification error rate
(the 1− 0 loss function) or the least squares loss.

In our DE2, we use an another way for updating weights, which is more suitable
for ensemble with classifier sequences. The ensemble with this strategy is called as the
fixed shares forecaster (ensemble) ([6,7,15]), which is equivalent to the exponentially
weighted average forecaster (ensemble) ([15]). The weight updating equations are

φt,t1 = (1 − α)ϕt,t1 + α

∑j=t
j �=t1

ϕt,j

t
(8)

and
ϕt,t1 = φt−1,t1e

−η
(Ht1 ) (9)

where α ∈ [0, 1] is another control setting.
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INPUT:
Training set {D1, D2, D3, . . . }, Learning rate η, control parameter α, initial weight φ0.

INITIALIZATION:
H = Φ, h = Φ, φ1,0 = φ0.

for t = 1,2,3,. . .
STEP 1: Train interim ensembles

{Ht, ht} = middle ensemble train(Dt, H , h); h = h
⋃
ht; H = H

⋃
Ht;

STEP 2: Train the final ensemble
for t1 = 1, 2, . . . , t

ϕt,t1 = φt−1,t1e
−η�(Ht1 ); φt,t1 = (1− α)ϕt,t1 + α

∑j=t
j �=ti

ϕt,j

t
;

Ht(x) =
∑t1=t

t1=1 φt,t1Ht1 (x)
∑t1=t

t1=1 φt,t1

;

OUTPUT:
The final ensembles {H1,H2,H3, . . . }.

Fig. 1. Algorithm for the DE2 learning (Algorithm I)

Here, DE2 combines classifiers dynamically from consecutive batches of nonstation-
ary data. In the first stage, interim ensembles are dynamically learned with batch grow-
ing ensembles, e.g., Sparsity learning, Dynamic weighted majority, or Learn++.NSE.
In the second stage, a final ensemble is combined with all past and current interim en-
sembles according to their series performances. We use exponentially weighting and
dynamically updating strategy with an online style for these interim ensembles. As a
result, we call our proposed method as Dynamic Ensemble of Ensembles (DE2).

2.2 Learning Algorithm

As demonstrated above, at time t, our learning algorithm includes two stages which is
shown in Figure 1: Firstly, train component classifiers and construct interim ensembles
(middle ensemble train()); secondly, learn the final ensemble with exponentially updat-
ing of weights ((6) ∼ (8)). In Figure 1, we use the classification error rate as the loss of
the interim ensemble, i.e., �(Ht) is equal to the classification error rate of Ht.

In the first stage of DE2, we can use three ensemble approaches, i.e., Sparsity Learn-
ing Combination (1), Dynamic weighted majority ([1]) (if the base classifier is an incre-
mental learner), Learn++.NSE ([14]), to train component classifiers and construct the
interim ensembleHt in Figure 1. When training interim ensembles with Sparsity Learn-
ing. In our implementation, we use the least squares optimization (2) for computing the
sparse weights.

Our method can also use Dynamic Weighted Majority (DWM) ([1]) to construct the
interim ensemble (middle ensemble train() in Figure 1), where the base classifier must
be an incremental learner. In our DE2 with DWM, the interim ensemble at each time
step is the DWM, which incrementally creates, removes, and trains base classifiers.
Moreover, with Learn++.NSE ([14]) for middle ensemble train(), at each time step,
the Learn++.NSE adds a new classifier at each time, dynamically updates classifiers’
weights, and weightedly combines component classifiers.
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3 Experiments

In our experiments, one new classifier is trained at one time, and at the time t, there are
t classifiers {h1, h2, . . . , ht−1, ht}. At the time step t, the SINGLE approach uses only
one new classifier ht to classify testing samples; the AVERAGING method combines
all t available classifiers with averaging; and the SPARSITY approach ensembles these
t classifiers with sparsity learning.Moreover, we also compare two popular growing en-
semble methods for nonstationary data learning with concept drift: Dynamic Weighted
Majority (DWM) ([1]), and Learn++.NSE ([14]). The base learner of DWM must be
an incremental classifier.

In our experiments, three kinds of interim ensembles are utilized: DWM, Learn++.
NSE, and SPARSITY. Two kinds of base learners are used: Supported Vector Machines
(SVM) and Naive Bayes Classifiers (NBC). Because the DWM needs an incremental
base learner, Online NBC is used in DWM. Consequently, for the SVM base learner, our
experimental DE2 algorithms are DE2

SPARSITY (middle ensemble train() using SPAR-
SITY in Figure 1), and DE2

NSE (using Learn++.NSE). For the NBC base learner, our
experimental DE2 algorithms are DE2

SPARSITY (using SPARSITY), DE2
DWM (using

DWM with the incremental naive Bayes classifier), and DE2
NSE (using Learn++.NSE).

In these experiments, for each classifier with each data set, the classification system
is performed for ten times. And the presented results are averaged on all ten times.

3.1 Experiments with Pascal 2008 Webspam Data

The Pascal Large Scale Learning Challenge 2008 webspam data set is the Web spam
corpus, which consists of 350, 000 Web spam pages ([16]). All positive examples are
taken and the negative examples are created by randomly traversing the Internet starting
at well known (e.g. news) web-sites. As we know, the Internet is a typical nonstationary
environment. Consequently, classifying web spam data is a difficult problem with a
heavy concept drift. We preprocess this dataset by the way in LIBSVM ([17]), where
they treated continuous n bytes as a word: trigram if n = 3 and unigram if n = 1.
They used word count as the feature value and normalize each instance to unit length.
In this experiment, we use the unigram features the number of which is 254. Moreover,
the features are performed with dimension reduction to 30 dimensions by principal
components analysis (PCA). This set includes 350, 000 samples. At each time step, the
former 875 samples are used for training, and the next 875 samples are for testing.

Table 1. The average classification performance comparisons with SINGLE, ensembles, and DE2

methods using SVM and NBC base classifier

SVM SINGLE AVERAGING SPARSITY Learn++.NSE DE2
NSE DE2

SPARSITY

Accuracy(%) 91.8 ± 0.2 92.5 ± 0.2 92.1 ± 0.3 92.5 ± 0.2 92.6 ± 0.1 92.7 ± 0.3
Sparsity 1.0 100.5 9.5 38.9 47.8 19.0
NBC SINGLE AVERAGING SPARSITY Learn++.NSE DE2

NSE DE2
SPARSITY DWM DE2

DWM

Accuracy(%) 81.9 ± 0.0 64.5 ± 0.0 82.1 ± 0.1 82.3 ± 0.1 82.4 ± 0.1 82.2 ± 0.1 80.8 ± 0.2 80.9 ± 0.1
Sparsity 1.0 100.5 12.0 19.3 21.0 17.0 11.1 16.4
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Fig. 2. Comparative performances on the Webspam dataset with the RBF SVM base learner

The results with the SVM base learner are shown in Figure 2 and Table 3.1, where
the LIBSVM is used with the RBF kernel. The parameters of LIBSVM are decided by
the grid search procedure. Some remarks are highlighted from these experimental re-
sults. Firstly, because there are enough samples at each time (875 samples), the SINGLE
method shows a good performance. Moreover, the AVERAGING approach has a quite
high classification accuracy (92.5% in Table 3.1). Secondly, the growing ensembles
(Learn++.NSE, DE2

NSE and DE2
SPARSITY) show a much better performance. In par-

ticular, our DE2 methods have more impressive results. Specifically, the DE2
SPARSITY

has the highest accuracy (92.7% in Table 3.1) among all experimental methods. The
results with the Naive Bayes Classifier (NBC) base learner are similar to the ones with
SVM.

As described in Table 3.1, some remarks are as follows. Firstly, the growing ensem-
ble techniques (DWM, Learn++.NSE and DE2) are better than the SINGLE method,
and simple ensemble methods (AVERAGE and SPARSITY). This shows that the grow-
ing ensemble approach is an effective technology for learning nonstationary data. Sec-
ondly, our DE2 approaches, DE2

DWM, DE2
NSE and DE2

SPARSITY, are better than their
interim ensembles, DWM, NSE and SPARSE, respectively. Specifically, our proposed
DE2 approach, including DE2

SPARSITY and DE2
NSE, all are competitive to and even

better than famous growing ensembles (DWM and Learn++.NSE). Very interestingly,
with the SVM base learner, the DE2

SPARSITY has the best performance among all ex-
perimental methods; with the NBC base learner, our DE2

NSE is the best one. Finally,
similar to DWM and Learn++.NSE, our DE2 method has a rather low sparsity (only
using a few trained classifiers) without requiring access to previously seen data. All
these experimental results confirm that our approach has a promising generalization
performance for learning in nonstationary environments.

4 Conclusions

Classifier ensemble is widely considered to be an effective technique for improving
the accuracy and stability for a nonstationary data classification system. In this paper,
we introduce a classifier ensemble approach for incremental learning of concept drift.
This growing ensemble method, Dynamic Ensemble of Ensembles (DE2), combines
classifiers dynamically from consecutive batches of nonstationary data with two key
stages. In the first stage, at each time an interim ensemble is constructed by weighted



Dynamic Ensemble of Ensembles 83

majority voting, e.g., SPARSITY learning, Dynamic Weighted Majority (DWM), or
Learn++.NSE. In the second stage, a final ensemble is also weighted-majority voted by
all former and current interim ensembles as a global problem, and weights of compo-
nents are set with exponentially-weighted averaging. Experimental results confirm that
our method has a very promising generalization performance for learning in nonstation-
ary environments.
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Abstract. In this paper, we point out problems in concurrent Q-learning
(CQL), which is one of the adaptation techniques to dynamic environ-
ment in reinforcement learning and propose the modification of the re-
laxation procedure in CQL. We apply the proposed algorithm to the
problem of maze in reinforcement learning and validate what kind of
behavior the original CQL and the proposed algorithm show for the
changes of environment such as the change of goals and the emergence
of obstacles.

Keywords: Reinforcement Learning, Dynamic Environment, Concur-
rent Q-Learning, Relaxation.

1 Introduction

In reinforcement learning [1], which is one of machine learning techniques, the
agents interact with the environment by repeated trail-and-error in order to ob-
tain the sequence of appropriate actions to achieve the goals. It is different from
supervised learning in a sense that there is no teacher to tell the correct actions
and that the agent learns the optimal action based on the rewards which are
given by the environment. Since the agents learn the optimal action from the
environment, it is said that it is able to achieve its optimal behavior automat-
ically even if the environment changes. However, learning in the past interferes
with adaptation to the new environment. In this case, it is necessary to adjust
learning parameters. It is still an open problem how to adjust parameters when
the environment suddenly changes.

On the other hand, Morris water maze experiment [2] reveals that the rats
immediately adapt to the changes of the environment. When the platform is
moved to the new location, rats trained to find the hidden platform in the water
can directly go to the new one once the new platform is found.

Foster et al. performed simulations of water maze task by combination of TD
learning and spatial coordinate learning and obtained the same results as the
biological rats [3]. Acquiring the spatial coordinates enables the agents to obtain
the shortest path between the current location and the goal and to cope with
the environmental changes immediately. Although the algorithm is efficient for
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the changes of goals, it does not work for the changes such as abrupt emergence
of obstacles in the path.

Kaelbling proposed DG learning which learns Q-values for the multiple goals
simultaneously and demonstrated that it can adapt the change of the goal [4].
Ollington and Vamplew introduced the eligibility trace in the similar learning
to the DG learning and proposed concurrent Q-learning (CQL) which adapts to
the change of goals and emergence of obstacles [5].

In this paper, we point out the serious problems in CQL and aim at the
improvement in the relaxation procedure. The propose method is applied to
the maze problem where the goals and the obstacles are changed. We make
comparison between the original CQL and the proposed method.

This paper is organized as follows. The belief introductions for the Q-learning
are given in Sec. 2. We describe the eligibility trace in Sec. 3 and concurrent
Q-learning in Sec. 4. In Sec. 5, we point out the problems in CQL and propose
the improvement in the relaxation procedure. In Sec. 6, we show the results of
computer simulations, comparing the proposed method to the original CQL.

2 Q-Learning

Q-learning, which is based on the Q-value, is one of the reinforcement learning
algorithms. The Q-value, Q(s, a) represents the cumulative rewards expected to
get by taking the action a in the state s. The Q-value is updated during learning
by

δ ← r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a) (1)

Q(s, a)← Q(s, a) + αδ (2)

where r, s, a, s′, a′ denote the reward, the current state, the current action, the
next state, and one of the next possible actions. A(s′) is a set of actions which the
agent can take in the next state s. α is a learning rate, γ is a discount rate and
δ is the TD error. The learning rate and the discount rate are metaparameters.
The learning rate controls the speed and the stability of the learning and the
discount rate represents the credibility of the past and the future learning.

3 Eligibility Trace

The eligibility trace is a way of giving the appropriate rewards to the state-action
pairs which the agent took in the past. Here, Watkins Q(λ) is used for updating
the eligibility trace [1]. e(s, a) is the eligibility trace for a state-action pair and
is set to zero initially. When the action a in a state s is selected, the eligibiliry
is set to

e(s, a)← 1 . (3)

Then for all the state-action pairs, the following updating

Q(s, a)← Q(s, a) + αδe(s, a) (4)

e(s, a)← γλe(s, a) (5)

is executed, where δ is the TD error and λ is the eligibility trace decay factor.
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4 Concurrent Q-Learning [4]

Ollington and Vamplew developed the idea of DG learning by Kaelbling and
proposed the CQL which can solve the navigation problem for all of the possible
goals concurrently. We briefly introduce the CQL-e, one of the CQL techniques.

4.1 Relaxation

When the following equation,

AC ≤ AB +BC (6)

for the distances between three locations A, B, and C in maze holds, this ex-
pression can be replaced in the expression of the Q-values as

QC(sA, a) ≥ QB(sA, a)×maxa′∈A(sB)Q
C(sB, a

′) (7)

where Q∗(s, a) is the Q-value of state s and action a for the goal ∗. This rule
is applied to the Q-values for all of the state-action pairs (s0, a0) in learning.
When this rule does not hold, namely δ0

δ0 ← Qs(s0, a0) [r∗ + γmaxaQ
∗(s′, a)]−Q∗(s0, a0) (8)

is larger than zero, the Q-value Q∗(s0, a0) is modified by

Q∗(s0, a0)← Q∗(s0, a0) + αδ0 . (9)

The algorithm of CQL is given in Fig. 1. The action selection is performed by
the ε-greedy method.

5 Problems and Improvements

5.1 Conditions of Simulations

We have applied the CQL algorithm to the maze problem of the grid world to
investigate the efficiency of CQL. We consider a grid world in which the field
composed of 10 × 10 grid is divided into two rooms with the wall in Fig. 2. The
rooms are connected by two doors. At least one door is open and the agent has
to go through one of the doors to reach a goal from a start. Each action of the
agent is chosen from one of four directions of up, right, down and left.

To simulate the changing environments, we consider four types of changes, (i)
the change of goal, (ii) detour, (iii) blocking and (iv) shortcut. In the case of the
change of the goal location, both of the doors are open all the time. After the
change of the goal, the agent has to take a shortcut through the other door. In
the detour experiment, both of the doors are open at the beginning and then
the door which the agent learns as a shortcut is closed. The agent has to search
for the shortest path through the other door. In blocking, one door is closed at
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Initialize Q*(s,a) and e*(s,a)=0 for all *(goal), s, a

Initialize s, a

Repeat:

Take action a, observe s’

Choose action a’ from s’

For each goal *:

e*(s,a) = 1

delta = r* + gamma x max Q*(s’, a’) - Q*(s, a)

for all state-action pairs s0, a0:

if e*(s0, a0) > 0

Q(lambda) Update Eq. (4)

else

Relaxation

delta calculation Eq. (8)

if delta > 0

Eq. (9)

eligibility trace update Eq. (5)

s = s’, a = a’

Fig. 1. Algorithm of the original CQL

Fig. 2. Maze of the grid world

the beginning and then the door which the agent learns to go through will be
closed and the other door will be opened. In the shortcut experiment, one door
is closed at first and both of the doors will be opened after the change of the
environment. The agent is expected to use the other door to find a shorter path.

In each experiment, we investigate the steps taken by the agent from the start
to the goal. The change of the environment occurs after 200 goals, or episodes.
One set of the experiment consists of 400 episodes and we perform 100 sets of
experiments to take average. The parameters for the experiment are set to 0.1
for the learning rate, 0.95 for the discount rate and 0.1 for the probability of
random exploration of ε-greedy action selection.
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Fig. 3. Performance of the conventional CQL: (Left) Change of number of steps to the
goal in the conventional CQL (Right) Time change of Q-values

5.2 Problems in the CQL

Figure 3 (Left) shows the typical result obtained by the simulation of the original
CQL. The environmental change, the blocking, occurred after 200 episodes and
the figure shows the change of the steps taken by the agent from the start to
the goal. It is observable that the agent adapts to the new environment quickly.
However, after adapting to the new environment, the number of steps taken is
gradually increasing. This means that the agent does not take the shortest path
even though it can find it once.

5.3 Relaxation

In order to clarify the cause for the above mentioned problem, we investigate
the relaxation procedure in detail. The relaxation procedure is a method where
the agent can take shorter path to the goal. For example, when the value of the
action going directly from the location A to the location C is smaller then that of
the action going from A to C by making a detour through B. Fig. 3 (Right) shows
the time development of the Q-values for each actions (up, right, down, left) at
a location. All of the Q-values for each action gradually increase and saturate to
the same value. Since the relaxation procedure is applied to the Q-values for all
of state-action pairs, all of the Q-values are increasing and converge to the high
value. This causes inappropriate action selection because the Q-values, which
can be a guide for the action selection, are not distinguishable.

5.4 Modified Relaxation Procedure

In order to solve the problem mentioned above, we propose the modified CQL
algorithm where not only the Q-value directly going to C but also the Q-value
detouring through B is also updated when the shortcut condition (7) is not
satisfied. The Q-value detouring through B is reduced as

δ0 ← Qs(s0, a0) [r∗ + γmaxaQ
∗(s′, a)]−Q∗(s0, a0) (10)
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Q∗(s0, a0)← Q∗(s0, a0) + αδ0 (11)

Qs(s0, a0)← Qs(s0, a0)× (1− δ0) . (12)

This reduction of the Q-value avoids from all saturating Q-values. However, in
the proposed algorithm, the values of detours decrease unlimitedly if the Q-values
are decreased at each time of calculation for all of the possible goals. When an
action is taken in a state, the Q-values Q∗(s0, a0) for all the possible locations
(s0, a0) and all the possible goals ∗ are calculated as in Fig. 1. Without updating
the Q-values for detours in each calculation, we preserve the Q-values for detours
until the next action is taken and the Q-values are updated just before next
action using (i) the maximum of the Q-values and (ii) the minimum of the Q-
values. We also performed (iii) the updating at each time for calculations without
saving the Q-values. Therefore, we propose three algorithm for decreasing the
Q-values for detouring

Qs(s0, a0)← max∗
[
Qs(s0, a0)× (1− δ0)

]
(13)

Qs(s0, a0)← min∗
[
Qs(s0, a0)× (1− δ0)

]
(14)

Qs(s0, a0)← Qs(s0, a0)× (1 − δ0) . (15)

Eq. (13) is an algorithm in which the largest Q-value is used to update the Q-
values for detouring. Eq. (14) denotes an algorithm in which the smallest Q-value
is used for updating. The third algorithm updates the Q-values using Eq. (15)
at the same time as the calculation is performed when the Q-values for detour is
larger than the direct path. We call these proposed algorithms as the proposed
algorithm (max), the proposed algorithm (min) , and the proposed algorithm
(direct).

6 Experiments

6.1 Experimental Results

The experimental results for four types of the environmental changes are given
in Fig. 4.

In the experiment of the goal change, the detour and blocking, the proposed
algorithms (min, max, and direct) suppress the increase of the steps after the
change of the environment. In the original CQL, the steps are increasing after
the environmental change. In the blocking experiment, the proposed algorithm
(direct) shows the fastest learning convergence of all. In the shortcut experiment,
none of the algorithm could notice the environmental changes.

Figure 5 shows how the Q-values of a location evolves after the environmental
changes. In the proposed algorithm (max), the Q-values for all the actions are
increasing, but still they can be distinguishable. As for the proposed algorithm
(min), although the Q-values of actions tend to increase slightly, the action of
the highest Q-value is distinguishable compared to the others.
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Fig. 4. Changes of time steps: (a) the change of goal (b) detour (c) blocking (d) shortcut

Fig. 5. Time change of the Q-values of a location: (Left) the proposed algorithm (max),
(Right) the proposed algorithm (min)

7 Conclusions

In this paper, we have pointed out the problems in CQL and proposed the modi-
fied algorithm concerning the relaxation procedure. In CQL, the steps needed to
reach the goal increase although the agent can find a shorter path right after the
environmental change. This is due to the relaxation procedure which enlarges
the Q-values of the direct path and this causes the increase of all the Q-values.
We proposed the modified algorithm with the combination of decreasing the Q-
values for detours. The proposed algorithm adapts to the new environment at
the same speed of the original CQL and improves the problem of increasing time
steps after the environmental change. As future problems, we need to investigate
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the effects of modification of the algorithm on the adaptation speed to the new
environment and the stability of the adaptation in details.
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Abstract. A number of nonlinear dimensionality reduction, or graph
embedding, techniques have been proposed recently. These embedding
techniques aim to provide a low-dimensional depiction of graphs while
preserving certain properties of the data. In this manuscript we propose a
novel graph embedding method which tries to optimize the “modularity”
of graphs during dimensionality reduction. The embedding method has a
simple formulation and is naturally relaxed and solved by a convex semi-
definite program, with the guaranteed global optimum. We evaluate the
performance of the method with a variety of examples and the method
reports promising results in inspecting the cluster structures of graphs.

Keywords: Dimensionality Reduction, Modularity Embedding, Semi-
definite Programming.

1 Introduction

The study of graph embedding has attracted much research interest recently. It
often appears as a kind of dimensional reduction techniques for high-dimensional
learning problems. With the assumption that the data have an intrinsic dimen-
sion that is significantly lower than the number of features they appear to have,
the dimensionality reduction techniques have been widely studied during the
past decades as a treatment to the “curse of dimensionality”. The techniques in-
clude principal component analysis (PCA) [1] and metric multidimensional scal-
ing (MDS) [2]. These linear methods project the data from a high-dimensional
space into a low-dimensional subspace by either maximizing the projected vari-
ance or best preserving the pairwise squared distance among the data.

More recently, there have been a lot of research on the nonlinear methods for
dimensionality reduction. These methods build upon but go beyond the classical
linear methods. They assume the data are from a low-dimensional manifold em-
bedded in a high-dimensional space, which is more general than the assumption
of subspace by linear methods. To get the intrinsic representation of the data,
a neighborhood graph is often constructed by connecting each data point to its
nearest neighbors. The graph serves as an approximation to the data manifold.
With such a graph, people can get the low-dimensional representation of the
data by further applying some analysis techniques, such as the spectral graph
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methods [3]. Some of the recent manifold learning algorithms include Isomap,
LLE and others [4–9].

These nonlinear dimensionality reduction techniques provide a natural solu-
tion for graph embedding. With these techniques, different signatures of the
underlying manifold are preserved, such as the geodesic distances between in-
puts, the local angles and distances, etc. These properties make the embedding
algorithms suitable for different applications.

In this paper, we provide a novel model for graph embedding. Comparing
with existing methods, our model is based on a more semantic criterion, the
“modularity” measure of networks. It tries to find a low-dimensional depiction
of networks while preserving the cluster structure inherent in the network. This
criterion tries to organize intra-cluster vertices closer, while separating inter-
cluster vertices apart. This specific criterion makes the method to give quite
different results from other embedding techniques.

To directly compute the embedding results of the model is difficult. We resort
to a relaxation technique, and we are able to solve the model by a positive
semi-definite program, which provides an effective and efficient solution.

2 Background

Dramatic advances have been made in the development of semi-definite program
(SDP) techniques[10, 11] recently. It is concerned with the optimization problems
over symmetric positive semi-definite matrix variables with linear cost function
and linear constraints. Denote by Sn the space of all n× n real symmetric ma-
trices, equipped with the inner product 〈X,Y 〉 = tr

(
XTY

)
=
∑n

i,j=1 xijyij . A
symmetric matrix X is positive semi-definite if all its eigenvalues are nonnega-
tive; we write X � 0. SDP deals with optimization problems of the type

min
X0

tr
(
ATX

)
(1)

subject to
tr
(
AT

i X
)
= ci, i = 1, 2, · · · ,m (2)

in variables X ∈ Sn.
SDP has a structure that makes its solution computationally tractable by

interior-point methods. It is now used in a host of applications, including relax-
ation of combinatorial optimizations and learning problems [12–14, 8].

3 Modularity Embedding

3.1 Model

For an undirected networkG = (V,E), where V = {v1, · · · , vn} is a set of vertices
and E is a set of edges connecting vertex pairs in V . Let wij be an element of the
adjacency matrix W of the network, which gives the number of edges between
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vertices vi and vj . We further denote mi =
∑

j wij as the degree of vi and

m = 1
2

∑
imi as the total edge number.

Assuming the degree mi associated with each vertex vi is preserved, under
uniform random selection the expected number of edges between two vertices vi
and vj is

mimj

2m . A value bij = wij − mimj

2m gives the observed number of edges
minus the expected number of edges between vi and vj . It is positive if the edge
weight between vi and vj is larger than the expected weight between them. It is
zero or negative otherwise. The value quantifies a kind of affinities between the
two nodes. A larger bij means a stronger connection between vi and vj and a
higher chance that the two nodes are in the same clusters.

An n × n square matrix B with elements {bij} is called a modularity ma-
trix, which has been found useful in seeking the underlying cluster (community)
structure in many networks [15]. It has a nice property. All rows and columns of
the matrix sum to zero, i.e.,∑

j

bij = 0, and,
∑
i

bij = 0 (3)

for all i and j respectively.
Our work wishes to find a d-dimensional (typically d� n) embedding of the

network G such that the cluster structure is preserved. To do this, we propose
the following modularity embedding model

min
X

∑
ij

bij × � (xi, xj) (4)

subject to the constraint ∑
i

xT
i xi = n. (5)

Here X = [x1, · · · , xn], where xi gives the d-dimensional coordinate of vertex vi
and � (xi, xj) is the squared Euclidean distance between xi and xj .

Using the model, if the value of bij is positively large, which indicates a high
chance of vi and vj being in the same cluster, we wish to have a short distance
between them in the embedding. Otherwise, if the value is negatively large, which
indicates a low possibility of the two vertices being in the same cluster, we then
wish to separate them apart as further as possible.

3.2 SDP Relaxation

It is not easy to solve the proposed model directly [16, 17]. But it can be relaxed
by a positive semi-definite program. This is done by noting that � (xi, xj) =
xT
i xi + xT

j xj − 2xT
i xj . The optimization objective becomes∑

ij

bij ×
(
xT
i xi + xT

j xj − 2xT
i xj

)
= −2

∑
ij

bijx
T
i xj (6)

due to the properties in Eq. (3).
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Let S = XTX , which implicitly enforces a constraint on positive semi-
definiteness of S, a constraint on the trace tr (S) = n which comes from Eq.
(5) and a constraint on the rank rank (S) = d. With these constraints, our
objective can be written equivalently as the maximization of tr (BS).

The rank constraint makes the problem difficult. A special case of the problem
becomes an NP-hard binary partition problem discussed in [18]. Fortunately,
there is a simple relaxation that is often found effective in practice. We go on
with the optimization by neglecting this inconvenient rank constraint and the
problem becomes

max
S0

tr (BS) (7)

subject to
tr (S) = n. (8)

The problem becomes a standard SDP and can be solved in polynomial time.
With matrix S, it is straightforward to recover the embedding results X by

matrix decomposition. Assume λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of S. Let
V k
i denote the ith element of the kth eigenvector V k, with eigenvalue λk. Then

each element of the matrix S can be written as

sij =

n∑
k=1

λkV
k
i V

k
j . (9)

Thus the d-dimensional embedding coordinate of vertex vi is given by

xi =
(√

λ1V
1
i , · · · ,

√
λdV

d
i

)T
. (10)

4 Evaluations

We used both real-world and synthetic datasets to evaluate the performance of
the modularity embedding method.

4.1 An Artificial Dataset with Four Clusters

We randomly generated a dataset with four clusters. Each cluster has 50 points
drawn from a normal distribution centering around the four corners of a tetra-
hedron in a 3-dimensional space (see Fig. 1). We constructed a network by con-
necting each point with its six nearest neighbors and compared 1-dimensional
and 2-dimensional embedding results from the Isomap algorithm and modularity
embedding.

Fig. 2(a) and 3(a) give the embedding results which tried to preserve the pair-
wise distance with the Isomap algorithm. From the results we can see, as the
intrinsic dimension of the data is 3, when we tried to embed the data in lower
dimensions, the cluster structure was not well preserved. In 1-dimensional em-
bedding, three clusters (in black, blue and red respectively) were mixed together



96 W. Li

Fig. 1. A synthetic dataset with four clusters

(a) Isomap (b) modularity embedding

Fig. 2. 1-dimensional embedding of the synthetic dataset

(a) Isomap (b) modularity embedding

Fig. 3. 2-dimensional embedding of the synthetic dataset

and can’t be separated. In 2-dimensional embedding, situations were improved.
But still a large part of black and red clusters overlapped.

Comparatively, the modularity embedding reported significantly improved re-
sults in Fig. 2(b) and 3(b). In 1-dimensional embedding, a much smaller part
of black and red data points were mixed, while most other points can be easily
separated into correct clusters. In 2-dimensional embedding, all the clusters can
be easily identified.

4.2 MNIST Handwritten Images

We used MNIST database [19]. The dataset collects 70, 000 handwritten images
of digits from 0 to 9. Each image has 28 × 28 pixels. We used 250 images of
digits 1 to 4 respectively, with a total of 1, 000 images. A network was built by
connecting each vertex to its 6 nearest neighbors by Euclidean distances.
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Fig. 4. 2-dimensional embedding of MNIST images

Fig. 5. 2-dimensional embedding of COIL-20 images

From the 2-dimensional embedding result in Fig. 4, we can see that the bound-
aries were made up with the writings that may not be easy to distinguish. Those
standard writings were pushed far away from the boundary of the clusters.

4.3 On COIL-20 Images

In previous examples, the networks to be analyzed all have an inherent natural
cluster structure. Now we’d like to investigate the performance of the proposed
method if the data have no cluster structures.

We used an object’s images from COIL-20 database [20]. The images were
created by viewing the same object from 72 different angles, with each differing
5 degrees. Each image has 128 × 128 greyscale pixels, thus having an input
with 16384-dimension. Although the input is very high-dimensional, the object’s
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images are effectively parameterized by one degree of freedom – the angle of
rotation.

To apply our method, we created an undirected network with 72 vertices for all
images. Each vertex was connected to its 6 nearest neighbor vertices in Euclidean
distance and thus we had a connected graph. All the edge weights in the graph
were set to be identically one. After applying the modularity embedding method
for 2-dimensional embedding, we discovered an intuitive representation as a circle
shown in Fig. 5, which effectively captures the underlying dimensionality of the
images.

5 Conclusion

Significant achievements have been witnessed in the study of graph embedding
methods during the recent years. These methods are based on rather different
geometric intuitions, have different properties and are suitable for different ap-
plications. In this manuscript, we propose a novel modularity embedding method
for graph embedding. Comparing with other methods, the new method highlights
the cluster structure inherent in the data.

Acknowledgments. The work is supported by The Science and Technology
Development Fund, Macao SAR, China.
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Abstract. Graph-partition based algorithms are widely used for image
segmentation. We propose an improved graph-partition segmentation
method based on a key notion from complex network analysis: parti-
tion modularity. In particular, we show how optimizing the modularity
measure can automatically determine the number of segments as well
as their respective structure—greatly reducing the level of human inter-
vention in the image segmentation process. We furthermore develop an
efficient spectral approach that allows for a fast segmentation procedure.
The proposed method is simple, efficient, and provides a practical tool
for analyzing real-world images.

Keywords: Image Segmentation, Graph Cut, Modularity Segmenta-
tion.

1 Introduction

Image segmentation involves classifying pixels into disjoint sets that correspond
to individual surfaces, objects, etc. Such segmentation requires that each pixel
be assigned a label such that pixels with the same label share important visual
characteristics while those with differing labels do not. In this way, an image can
be mapped into a simplified representation that enables easier analysis [1, 2].

Among image segmentation methods, graph-partition based approach proved
to be particularly popular, primarily due to their efficiency and flexibility. In this
approach an image is modeled as a graph, where vertices represent individual
pixels and weighted edges represent the pairwise similarity between neighboring
pixels. The graph is then partitioned into disjoint sets by optimizing standard
criterion, such as minimum cut, normalized cut, or related variants [3–7]. Cru-
cially, the number of sets in the partition is determined manually by a user in
these approaches.

In this paper, we propose a new graph partition method, modularity segmen-
tation, that exploits recent ideas from network analysis [8]. A key feature of the
method is that it automatically determines the number of segments to use by
optimizing a natural and theoretically justified criterion, eliminating the need for
human intervention. In addition, we develop a simple and fast spectral approach
to optimizing the proposed modularity measure, based on an iterative rounding
approach that can be scaled to graphs with millions of vertices—a standard size
for image segmentation problems.
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2 Modularity-Based Image Segmentation

We investigate a new graph-based image segmentation method that exploits
the alternative concept of modularity [8]. This measure arose from ground state
analysis of spin glasses in theoretical physics [9], and has since been successfully
applied to community detection problems in complex networks [10, 11].

2.1 The Modularity Model

In graph-partition based segmentation, each image is represented as an undi-
rected graph G = (V,E), where each vertex in V = (v1, v2, · · · , vn) corresponds
to an individual pixel, and each edge in E connect pairs of vertices (neighboring
pixels). The weight on each edge, wij , is a nonnegative value that measures the
affinity between two vertices vi and vj ; a higher affinity indicates a stronger re-
lation between the associated pixels. We further let di =

∑
j wij denote the sum

of the affinities associated with vertex vi, and m = 1
2

∑
i di =

1
2

∑
ij wij denote

the total sum of the edge weights in the graph.
Given a candidate division of vertices into disjoint groups, the modularity

is defined to be the fraction of the affinities that fall within the given groups,
minus the expected such fraction when the affinities are distributed randomly.
The randomization is conducted by preserving the total affinity di of each vertex.
Under this assumption, the expected affinity between two vertices vi and vj is
didj/2m, hence the corresponding modularity is wij − didj/2m. Summing over
all vertex pairs within the same group, the modularity, denoted Q, is given by

Q =
1

2m

∑
ij

[
wij − didj

2m

]
δ (ci, cj) , (1)

where ci denotes the group to which vi belongs and δ (ci, cj) is 1 if ci = cj and
0 otherwise. An equivalent formulation can be given by defining sik to be 1 if
vertex vi belongs to group k and 0 otherwise. Then δ (ci, cj) =

∑
k siksjk and

hence

Q =
1

2m

∑
ij

∑
k

[
wij − didj

2m

]
siksjk =

1

2m
tr
(
STBS

)
, (2)

where S is a matrix having elements sik and B is a modularity matrix with
elements bij = wij − didj/2m.

2.2 Automatic Cluster Number Discovery

The modularity measure possesses a striking set of properties that prove useful.
Its value always lies in the range [−1, 1]. All rows and columns of the modularity
matrix B sum to zero, meaning that the modularity value of an unsegmented
graph is always zero. Its value is positive if the intra-group affinities exceed
the expected affinities achieved at random. Thus seeking for a partition that
maximizes the modularity automatically determines the appropriate number of
segments to choose as well as their respective structure, rather than require the
number of segments to be pre-specified.
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3 Computational Approach

Unfortunately, like normalized cut, finding a graph partition that maximizes the
modularity is NP-hard [12]. Therefore, approximate solutions must be sought to
ensure tractability. For small to medium graphs, simulated annealing or math-
ematical programming methods can be applied [13–15]. For larger graphs, the
dominant approach is a spectral relaxation method [16]. By computing the lead-
ing eigenvector of the modularity matrix (plus exchange heuristics), this method
is able to bi-partition graphs of moderate size while attaining reasonable modu-
larity values. However, for image segmentation, which typically involves graphs
with millions of vertices, the approach still does not scale sufficiently well. There-
fore, we develop a simple yet efficient new approach that enables practical ap-
plications of modularity segmentation.

3.1 A Spectral Approach

To find a segmentation that achieves high modularity in a large graph, we begin
with a simple spectral method like the one proposed in [16]. First assume the
graph is to be divided into just two groups, hence we can use si = ±1 to indicate
the segment to which node vi belongs. This leads to:

Q =
1

4m

∑
ij

bijsisj =
1

4m
sTBs, (3)

where s is a vector with elements si. Now express s as a linear combination of
the normalized eigenvectors, ui, of the modularity matrix B; that is, let s =∑n

i=1 aiui with ai = uT
i s. Then we have

Q =
1

4m

∑
i

aiu
T
i B
∑
j

ajuj =
1

4m

n∑
i=1

(
uT
i s
)2

λi, (4)

where λi is an eigenvalue of B with the eigenvector ui.
Assume the eigenvalues are labeled non-increasingly, λ1 ≥ · · · ≥ λn. To max-

imize Q, one would like to have s concentrate as much weight as possible in
the terms of the sum with the largest eigenvalues. Without “±1” constraint, one
could simply choose s to be proportional to the first eigenvector u1, which places
all the weight in the term with the largest eigenvalue λ1. However, with the con-
straint, s cannot be so freely chosen, which makes the optimization difficult. In
practice one often uses a simple heuristic by setting

si =

{
+1
−1

u1i > 0
otherwise

, (5)

which ignores the hard constraints and partitions the vertices according to the
signs of each element in u1. This is the standard spectral approach. This method
can be easily applied by using a power iteration method [17] to efficiently com-
pute the dominant eigenvalue and eigenvector of B.
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The spectral method directly works for two-way partitions. For multi-way
partitions, a recursive method is possible by applying and checking the two-way
partition results repeatedly on subgraphs.

In practice, the spectral method is applied in conjunction with an exchange
heuristic [18]. Given two groups of vertices, a refinement successively finds the
vertex that, when moved to the other group, achieves the largest increase in
Q, or the smallest decrease if no increase exists. Such moves are repeated until
no more improvement is possible. Unfortunately, the heuristic has an expensive
cost, nearly O

(
n3
)
, which prevents the spectral method’s application to large

problems as in image segmentation. We have to seek other solutions.

3.2 Iterative Rounding

To overcome the difficulties in maximizing the partition modularity, we propose
an iterative rounding approach that avoids the complexity of exchange heuristics
with ideas rooted in [19, 20].

Recall that the standard spectral method uses a rounding strategy, Eq. (5),
entirely based on the signs of the leading eigenvector elements, regardless of their
magnitudes. However, it is clear that different magnitude contributes differently
to Q, and hence affects our confidence in making decisions. If u1i has a large
magnitude, then si has significant influence on uT

1 s and therefore on Q, one
would be more confident to infer its rounded value. Conversely, if the magnitude
is small, si’s contribution is not evident, and one would be less confident. In this
case, we postpone the rounding to a later phase.

Based on this simple intuition, we propose a successive rounding approach
that only rounds variables with large magnitudes. That is, unlike conventional
rounding that sets the entire bi-partition in a single batch, we propose to recover
a more accurate partition structure incrementally, using a strategy we refer to
as iterative rounding.

Consider the following illustration of the proposed approach. In the first iter-
ation, one has the same problem, max sTBs, as the standard spectral method.
Here, one simply uses the power method to obtain the initial leading eigenvec-
tor. However, rather than deploy conventional rounding, we then only round the
elements with sufficiently large magnitudes (say, ≥ 1) into decisions.

After the first iteration, we are left a residual problem to solve. Now suppose

s =

(
s1
s2

)
where s1 denotes the elements that are already fixed, and s2 has γ

elements yet to be rounded to ±1. The objective is then to maximize(
s1
s2

)T (
B11 B12

B21 B22

)(
s1
s2

)
= sT2 B22s2 + 2sT2 B21s1 + sT1 B11s1 (6)

where B11, B12, B21 and B22 are sub-matrices of B. Equivalently, we maximize

L = sT2 B22s2 + 2sT2 B21s1 (7)

with respect to s2, subject to the constraint that ‖s2‖ = √γ.
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(a) (b) Q = .3774 (c) Q = .6271 (d) Q = .7906

Fig. 1. (a): Synthetic gray-scale image. (b)-(d): Different number (2,3,5) of segments
separated by bold lines, showing the corresponding modularity values achieved.

(a) (b) Q = .4958 (d) Q = .8451 (e) Q = .8885

Fig. 2. (a): Natural gray-scale image. (b)-(d): Different number (2, 8, 18) of segments
separated by bold lines, showing the corresponding modularity values achieved.

Although the residual problem appears harder than the initial problem, an
efficient solution procedure fortunately exists. The main idea is to employ a
generalized form of power method iteration: Starting with s02 (which may be
B21s1 provided it is not zero, or a random vector), successively apply the update

st+1
2 =

B22s
t
2 +B21s1

‖B22st2 +B21s1‖
√
γ (8)

until convergence.
This update can be explained intuitively. For s2 to reach a fixed point the

gradient ∇L must be parallel to s2: ∇L = 2λs2 for some scalar λ, yielding

s2 =
B22s2 +B21s1

λ
. (9)

Considering the length requirement on s2, it must hold that ‖B22s2 +B21s1‖ =
λ
√
γ, hence λ must be positive and we recover the update rule above.

4 Evaluation

To evaluate the proposed model, we applied it to both synthetic and real images
from the Berkeley segmentation dataset.Each image has 481 × 321 gray-scale
pixels, which yields a graph of 154, 401 vertices. The graph affinity matrix W
was constructed by the intervening contours method [21].

4.1 Detecting the Number of Segments

A synthetic example helps illustrate the capability of modularity segmentation
in detecting the correct number of segments. Fig. 1(a) depicts a synthetic image
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Fig. 3. The first row shows the original images. The second row shows the segmentation
results by normalized cut. The last row shows the modularity segmentation results.

with four regions of different intensities to which zero-mean white noise with a
standard deviation of 0.02 was added. After a two-way segmentation, the modu-
larity value achieved is 0.3774 (Fig. 1(b)). With more segments, the modularity
value increases to 0.6271 (Fig. 1(c)) and stops at its maximum of 0.7906 with
five segments (Fig. 1(d)).

Fig. 2 demonstrates the proposed method’s behavior on a natural scene. With
a binary partition (Fig. 2(b)), the modularity value is 0.4958. The value increases
with additional segments, finally reaching a maximum of 0.8885 at eighteen
segments (Fig. 2(d)). For these two examples, modularity segmentation correctly
identifies major components of the scene.

4.2 Comparison to Normalized Cut

To compare the performance of modularity segmentation to the state-of-the-art,
we conducted a number of experiments with normalized cut. In particular, we ran
modularity segmentation to first recover the number of segments that achieves
the highest Q value, then ran normalized cut with the same number of segments.
Fig. 3 demonstrates typical outcomes from this experiment. Here we can see that
the two methods achieve similar segmentation quality on the benchmark images.
These results held throughout our evaluation on the Berkeley dataset.

4.3 Time and Memory Requirements

We also studied the time and memory requirements of the various methods. All
methods were implemented in MATLAB 1, and ran on a workstation with a
single Intel i7-980 CPU and 24GB RAM.

1 An efficient MATLAB implementation of normalized cut was downloaded from
http://www.seas.upenn.edu/~timothee.

http://www.seas.upenn.edu/~timothee
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In comparing the time required by normalized cut and modularity segmenta-
tion, we observed that for small images of 50× 50 pixels, the two methods had
comparable speed and partition images in less than a second. As the image size
increased, the two methods demonstrated similar scaling in run time; on images
of 1000× 1000 pixels, both required about 15 minutes.

For the memory consumed, normalized cut must compute the eigenvectors
of an affinity matrix, which is sparse and memory therefore is not a significant
concern. In comparison, modularity segmentation needs to compute the first
eigenvector of a dense modularity matrix. Fortunately, by utilizing its relation-
ship with the affinity matrix (cf. Section 2.1), one does not need to store the
dense matrix either. In particular, modularity segmentation shows similar trends
in memory consumption to normalized cut, as our experiments verified.

5 Conclusion

Our work investigates the possibility of applying a criterion of network modular-
ity to image segmentation. Unlike previous graph partition methods, maximiz-
ing the modularity measure automatically determines the appropriate number
of segments to use, which reduces the level of manual intervention required to
perform image segmentation. We have proposed a specialized spectral method
and an accompanying iterative rounding strategy that yields efficient yet accu-
rate results on large scale problems, enabling the use of modularity in image
processing. The outcome is an effective segmentation technique that achieves
state-of-the-art quality and efficiency while automating an important facet of
the segmentation process.
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Abstract. With the increasing popularity of mobile web, social net-
working services (SNSs) are an integral part of our everyday lives, since
they are used for communicating with friends, for gaining information
on other people or some items of interest, and even for business profits.
Social network information is incorporated into recommender systems to
improve their performance, but most of existing work is focused on user-
centric cases in which items or venues are recommended for users. On
the other hand, brands are also important social objects. For instance,
in Foursquare, which is a location-based online SNS, brands provide in-
formation on venues and share the tips with their followers. Thus, it is
important to recommend venues for brands so that brands select interest-
ing venues for their followers, leading to brand-centric recommendation
where the targets for recommendation are brands (not users). In con-
trast to user-centric recommendation, brands have few social links to
other brands, so trust between brands is difficult to use. In this paper we
present a method for brand-centric recommendation where inter-brand
similarities are implicitly determined by decomposing a brand-follower
matrix. This social information on inter-brand similarity is incorporated
into probabilistic matrix factorization to reveal brand latent factors as
well as venue latent factors. Experiments on the dataset collected from
Foursquare (by web crawling) demonstrate that our method improves
the recommendation performance over existing matrix factorizations.

Keywords: Collaborative filtering, matrix factorization, recommender
systems.

1 Introduction

As social network services have been widely used, there emerged diverse types
of users. Brands, communities and celebrities started to use social networking
services and their proportions are becoming large. Brands can be corporations,
chain-stores, online services, famous TV-series or others. Users follow interesting

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 108–115, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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brands and get related information. For example, in Foursquare1, a location-
based online social network application, brands give tips on venues and followers
check the places and tips. Online dating sites present good restaurants or shop-
ping sites shows great places to buy clothes. Also, in Facebook2, brands such
as famous TV-series or movies update famous quotes everyday or advertise re-
lated events. It is time that brands need to extend their stage to online world to
sell their products and increase brand value. For brands to effectively get pop-
ular, there needs recommender system which predicts their followers’ interests,
brand-centric recommendation.

Matrix factorization is a method for seeking a low-rank latent structure of
data, approximating the data matrix as a product of two or more factor matri-
ces. Matrix factorization is popular for collaborative prediction, where unknown
ratings are predicted by user and item factor matrices which are determined
to approximate a user-item matrix as their product [1–3]. Various methods for
trust-aware recommendation have been developed to predict ratings of users
while taking rating values of friends as an independent source of information
[4, 5]. However, existing methods cannot be directly applied to brand-centric
recommendation because brands have a few social links with other brands. The
goal of brands is to attract many people and advertise to them, not to so-
cialize with other brands. Thus, we infer inter-brand similarities implicitly by
decomposing brand-follower matrix constructed from a social network of brands
and their followers. Then, we incorporate these inter-brand similarities into the
trust-exploited matrix factorization method [5]. Experiments on the Foursquare
dataset (by web crawling) demonstrate that our method improves the recom-
mendation performance over existing matrix factorizations.

2 Method

Denote by B, V, F, a set ofN brands, a set ofM venues, and a set of P followers of
brands, respectively. The brand-follower matrix Y is a binary matrix, in which
entries Yi,j = 1 implies brand i is followed by user j and otherwise Yi,j = 0.
Entries Xi,j of the brand-venue rating matrix represents the rating value on
venue j by brand i. Our method consists of two steps:

1. We compute inter-brand similarities {Ti,k}, inferring latent matrices B and
F which approximates the the brand-follower matrix Y ∈ RN×P (see Fig. 1
(a)).

2. We then learn a weighted low-rank approximation of the brand-venue ma-
trix X , decomposing it as X = U�V with U regularized by inter-brand
similarities, as shown in Fig. 1 (b).

Prediction of the rating value on a venue by a brand is to fill in missing entries
of the brand-venue matrix X . This is done by the reconstruction U�V .

1 www.foursquare.com
2 www.facebook.com

www.foursquare.com
www.facebook.com
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σU σV

σX

i ∈ B
j ∈ V

k ∈ Ni

Ti,k

(a) (b)

Fig. 1. Graphical representations for matrix factorizations for: (a) brand-follower ma-
trix; (b) brand-venue matrix with inter-brand similarities.

2.1 Inter-brand Similarity

We calculate inter-brand similarities {Ti,k}, approximating the brand-follower

matrix Y ∈ RN×P as Y = B�F , where B = [b1, . . . , bN ] ∈ RK×N is the
brand-specific latent matrix and F = [f1, . . . ,fP ] ∈ RK×P is the follower-
specific latent matrix. Graphical representation for this factorization model is
shown in Fig. 1 (a), where the probability of observing the brand-follower matrix
Y conditioned on latent matrices B and F is given by

p(Y |B,F , σ2
Y ) =

N∏
i=1

P∏
j=1

[
N (Yi,j |b�i f j , σ

2
Y )
]OY

i,j

, (1)

where N (y|μy , σ
2
y) denotes Gaussian distribution with mean μy and variance σ2

y ,

and {OY
i,j} are indicators to specify observed entries of Y , i.e., OY

i,j = 1 when

Yi,j is observed and otherwise OY
i,j = 0. We place zero-mean spherical Gaussian

priors on B and F :

p(B|σ2
B) =

N∏
i=1

N (bi|0, σ2
BI), (2)

p(F |σ2
F ) =

P∏
j=1

N (f j |0, σ2
F I), (3)

where I is the identity matrix. As in probabilistic matrix factorization (PMF)
[6], we compute MAP estimates of B and F . To this end, we consider the log of
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the posterior distribution over B and F :

log p(B,F |Y ) ∝ − 1

2σ2
Y

N∑
i=1

P∑
j=1

OY
i,j(Yi,j − b�i f j)

2 − 1

2σ2
B

N∑
i=1

‖bi‖2

− 1

2σ2
F

P∑
j=1

‖f j‖2, (4)

where ‖ · ‖ represents Euclidean norm. Then we calculate binary inter-brand
similarities Ti,k in accordance with cosine-similarities between MAP estimates
of brand-specific latent vectors bi and bk, given a threshold value t, i.e.,

Ti,k =

{
1 if cos(bi, bk) ≥ t,
0 otherwise.

(5)

2.2 Matrix Factorization Regularized by Inter-brand Similarity

We decompose brand-venue matrix X decomposed as X = U�V , as shown in
Fig. 1 (b), where inter-brand similarities are incorporated using the relation

ui =

∑
k∈Ωi

Ti,kuk∑
k∈Ωi

Ti,k
,

whereΩi is the set of brands which are related to brand i. Our regularized matrix
factorization was motivated by [5, 7], where social network information among
users is incorporated into decomposing a user-rating matrix. We normalize each
row of the inter-brand similarity T such that

∑N
j=1 Ti,j = 1. Then we have

ui =
∑
k∈Ωi

Ti,kuk. (6)

The joint distribution over X, U , and V is given by

p(X,U ,V ) = p(X|U ,V )p(U |T )p(U )p(V ), (7)

where the probability of observing Xi,j conditioned on ui and vj is described
by

p(X|U ,V , σ2
X) =

N∏
i=1

M∏
j=1

[N (Xi,j |u�
i vj , σ

2
X)
]OX

i,j , (8)

where OX
i,j = 1 when Xi,j is observed and otherwise OX

i,j = 0. We place zero-
mean Gaussian priors on both U and V :

p(U |σ2
U ) =

N∏
i=1

N (ui|0, σ2
UI), (9)

p(V |σ2
V ) =

M∏
j=1

N (vj |0, σ2
V I). (10)
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The conditional distribution over brand-specific latent matrix U given its direct
neighbors is

p(U |T ) =
N∏
i=1

N (ui|
∑
k∈Ωi

Ti,kuk, σ
2
T I). (11)

With this parametrization, the log of the posterior distribution over U and V
is given by

log p(U ,V |X) ∝ − 1

2σ2
X

N∑
i=1

M∑
j=1

OX
i,j(Xi,j − u�

i vj)
2 − 1

2σ2
T

N∑
i=1

‖ui −
∑
k∈Ωi

Ti,kuk‖2

− 1

2σ2
U

N∑
i=1

‖ui‖2 − 1

2σ2
V

M∑
j=1

‖vj‖2, (12)

leading to the following objective function

J =

N∑
i=1

M∑
j=1

OX
i,j(Xi,j − u�

i vj)
2 + λT

N∑
i=1

‖ui −
∑
k∈Ωi

Ti,kuk‖2

+ λU

N∑
i=1

‖ui‖2 + λV

M∑
j=1

‖vj‖2, (13)

where λT = σ2
X/σ2

T , λU = σ2
X/σ2

U , λV = σ2
X/σ2

V . We use stochastic coordinate
descent to determine U and V which mimimize (13).

3 Experiments

3.1 Foursquare Dataset Description

We constructed ’FoursquareDataset’ crawled fromFoursquarewhich is a location-
based social networkingwebsite launched in 2009.Users access Foursquare through
mobile devices and check-in at places. Users also write tips about venues which
serve as suggestions for great things to do, see or eat at the venue. They create to-
do lists and add interesting venues to visit or tips to follow next time. Users can
follow others or have reciprocal relationships with others. There are three types of
users: brand, celebrity and user. Brand is a type of users for corporations, chain-
stores, online-services and other communities. Celebrity is for TV stars, singers
or people with more than 1000 friends. User is a people who uses the service
for information on interesting venues and communication with their friends. For
our dataset, we crawled all brands in Foursquare and their followers. We also
crawled the venues where the brands have given tips on. Each tip provides the
number of people who added the tips to their to-do list, todo count, and the
number of people who followed the tips, done count.
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Table 1 shows the statistics of the dataset in the left panel, in which the
number of brands, venues, followers, tips by brands, and links that relate users
to brands, is shown. To avoid the sparsity problem, we considered brands which
have given tips on at least two venues and venues which have at least two tips.
The right panel in Table 1 shows the distributions of the dataset. A brand gave
tips on 8 venues on average and 147 venues at maximum. Minimum number of
followers of a brand is 9, average number is 315 and maximum number is 499.

Table 1. Description of Foursquare dataset

number of brands 1832

number of venues 5437

number of followers 35113

number of tips by brands 14739

number of links 577681

Avg. venues of tips 8

Max. venues of tips 147

Min. followers 9

Avg. followers 315

Max. followers 499

The total counts of todo and done can be interpreted as a rating value of a
brand on a venue since high number of counts would imply the popularity of
the venue among followers. For rating matrix X , we transformed the summation
of todo and done counts into ratings on a scale from 1 to 5. Since some brands
might get high number of counts because it is already popular, we need to scale
differently according to brands. We use the method of equal width intervals(EWI)
[8]. Let count(i, j) be the summation of todo and done counts of a tip where a
brand i gave on venue j. Let count(i) be the set of the number of counts of tips
given by brand i. First, EWI computes a step for each brand i as:

stepi =
max(count(i))−min(count(i))

5
. (14)

The rating for brand i on venue j, Xi,j , is set to k ∈ {1, 2, 3, 4, 5} if,

stepi ∗ (k − 1) <= counti,j −Min(count(i)) < stepi ∗ k. (15)

3.2 Empirical Results

For comparisons, we compare TrustMF with the following methods.

– UserMean: For Xi,j , this recommends average ratings of brand i.
– ItemMean: For Xi,j , this recommends average ratings of venue j.
– PMF : This is probabilistic matrix factorization which trains latent features

based solely on rating matrix X .

The parameters are set as λT = λU = λV = 0.1 and K = 5. The threshold
value for constructing trust network is set to 0.9.
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For the performance measurements, we used RMSE and MAE.

RMSE =

√∑
(i,j)∈Xtest

(Xi,j − X̂i,j)2

|Xtest| , (16)

MAE =

∑
(i,j)∈Xtest

|Xi,j − X̂i,j |
|Xtest| , (17)

where Xi,j is true rating value, X̂i,j is predicted value and Xtest is dataset for
test.

For experiments, we prepared two datasets. The Dataset1 has test dataset of
ratings given by cold-start brands and Dataset2 has test dataset from ratings
given by brands who have less than 20 friends from trust network T . Cold-start
brands are those with less than 5 ratings.

Table 2. The RMSE and MAE values on Dataset1

Method RMSE MAE

UserMean 2.0604(15.06%) 1.6470(25.03%)

ItemMean 2.0593(15.01%) 1.6491(25.12%)

PMF 1.8197(3.82%) 1.3149(6.10%)

TrustMF 1.7501(-) 1.2347(-)

Table 2 shows the RMSE and MAE results on Dataset1. It reports that
TrustPMF enhances RMSE and MAE significantly compared to other methods.
TrustMF enhances RMSE of UserMean, ItemMean and PMF by 15.06%, 15.01%
and 3.82% each. Also, it enhances MAE of UserMean, ItemMean and PMF by
25.03%, 25.12% and 6.10% each. The results verify that cold-start brands get
benefit from the trust network. One noticeable point is that MAE, compared
to RMSE, shows more significant improvement. RMSE gets largely affected by
big differences of ratings and tends to ignore small improvements, whereas MAE
takes values of errors with equal weights. Though TrustMF does not significantly
reduce the errors with big gap, it predicts ratings precisely in overall.

Table 3. The RMSE and MAE values on Dataset2

Method RMSE MAE

UserMean 2.0176(37.50%) 1.7074(59.04%)

ItemMean 2.0154(37.44%) 1.7049(58.98%)

PMF 1.2740(1.02%) 0.7450(6.12%)

TrustPMF 1.2609(-) 0.6994(-)

The RMSE and MAE values on Dataset2 are presented in Table 3. Appar-
ently, TrustMF shows significantly accurate results compared to UserMean and
ItemMean. Compared to PMF, TrustMF enhances RMSE and MAE by 1.02%
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and 6.12%. As previously seen in Dataset1, MAE shows more improvement than
RMSE. The results prove that the inferred trust network T helps improve rec-
ommendation accuracies.

4 Conclusions

We have addressed a problem of brand-centric recommendation which is the
first attempt in recommendation systems, to our best knowledge. To this end,
we have developed a method of computing inter-brand similarities where the
brand-follower matrix is decomposed to infer brand-specific latent factors which
are used to calculate inter-brand similarities. These inter-brand similarities are
incorporated into the matrix factorization involving the brand-venue matrix.
Experiments on ’Foursquare Dataset’ confirmed the validity of our method.

Acknowledgments. This work was supported by NIPA ITRC Support Pro-
gram (NIPA-2013-H0301-13-3002), and POSTECH Rising Star Program.

References

1. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. IEEE Computer 4242(8), 30–37 (2009)

2. Yoo, J., Choi, S.:Bayesianmatrix co-factorization: Variational algorithm andCramér-
Rao bound. In: Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),
Athens, Greece (2011)

3. Park, S., Kim, Y.D., Choi, S.: Hierarchical Bayesian matrix factorization with side
information. In: Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), Beijing, China (2013)

4. Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble.
In: Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), Boston, MA (2009)

5. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation
for recommendation in social networks. In: Proceedings of the ACM International
Conference on Recommender Systems (RecSys), Barcelona, Spain (2010)

6. Salakhutdinov, R., Mnih, A.: Probablistic matrix factorization. In: Advances in
Neural Information Processing Systems (NIPS), vol. 20. MIT Press (2008)

7. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social
regularization. In: Proceedings of the ACM International Conference on Web Search
and Data Mining (WSDM), Hong Kong (2010)

8. Berjani, B., Strufe, T.: A recommendation system for spots in location-based online
social networks. In: Proceedings of the 4th Workshop on Social Network Systems,
Salzburg, Austria (2011)



Flexible Nonparametric Kernel Learning

with Different Loss Functions

En-Liang Hu1,2 and James T. Kwok1

1 Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong

2 Department of Mathematics
Yunnan Normal University, Yunnan, China

{jamesk,ynelhu}@cse.ust.hk

Abstract. Side information is highly useful in the learning of a nonpara-
metric kernel matrix. However, this often leads to an expensive semidefi-
nite program (SDP). In recent years, a number of dedicated solvers have
been proposed. Though much better than off-the-shelf SDP solvers, they
still cannot scale to large data sets. In this paper, we propose a novel
solver based on the alternating direction method of multipliers (ADMM).
The key idea is to use a low-rank decomposition of the kernel matrix
Z = X�Y, with the constraint that X = Y. The resultant optimiza-
tion problem, though non-convex, has favorable convergence properties
and can be efficiently solved without requiring eigen-decomposition in
each iteration. Experimental results on a number of real-world data sets
demonstrate that the proposed method is as accurate as directly solving
the SDP, but can be one to two orders of magnitude faster.

1 Introduction

Kernel methods have been highly successful in classification, regression, cluster-
ing, ranking, and dimensionality reduction. Because of the central role of the
kernel, it is important to identify an appropriate kernel function or matrix for
the task at hand. Over the past decade, there have been a large body of litera-
ture on this kernel learning problem [8,1]. While a parametric form of the kernel
or a combination of multiple kernels are often assumed, nonparametric kernel
learning, which takes no such assumptions, is more flexible and has received
significant interest in recent years [10,7,6,14,11].

To facilitate kernel learning, obviously one has to utilize information from
the data. The most straightforward approach is to use class labels. However,
obtaining label information may sometimes be expensive and time-consuming.
In this paper, we focus on a weaker form of supervisory information, namely,
the so-called must-link and cannot-link pairwise constraints [12]. These pairwise
constraints, or side information, define whether the two patterns involved should
belong to the same class or not. Another useful source of information, which
is commonly used in semi-supervised learning, is the data manifold [2]. This
encourages patterns that are locally nearby on the manifold to have similar
predicted labels.
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To learn a kernel matrix Z, we consider the following SDP problem

min
Z0

R(Z) + λ�(Z,T), (1)

where Z = [Zij ] ∈ Rn×n is the kernel matrix to be learned (which has to be sym-
metric and positive semidefinite (psd), denoted Z � 0), L is the graph Laplacian
matrix of the data manifold,T = [Tij ] with a similarity/dissimilarity (resp.must-

link/cannot-link) indicator matrix such that Tij =

{
1 (i, j) ∈ S,
−1 (i, j) ∈ D, , and λ

is a regularization parameter. As in [6,9,11], we use a low-rank approximation
on the kernel matrix Z. In other words, Z is approximated as Z � X�X, where
X ∈ Rr×n and rank r � n. Problem (1) can then be rewritten as

min
X,Z

R(Z) + λ�(Z,T) : Z = X�X. (2)

In this paper, we present a novel solver for (2) based on the alternating direction
method of multipliers (ADMM) [3]. Our key observation is that (2) can often

be decoupled as
∑

ij

(
R̃(Zij) + �̃(Zij , Tij)

)
. Thus, solving (2) reduces to the

solving of each individual entry Zij , which is easier and more efficient.
Notations: In the sequel, matrices and vectors are denoted in bold, with

upper-case letters for matrices and lower-case for vectors. The transpose of a
vector/matrix is denoted by the superscript �. Moreover, I is the identity matrix.

2 Alternating Direction Method of Multipliers (ADMM)

ADMM is a simple but powerful algorithm that has been successfully used in
machine learning and data mining. The standard ADMM is for solving convex
problems. Here, we consider the more general bi-convex problem [3]:

min
x,y

F (x,y) : G(x,y) = 0, (3)

where F (·, ·) is bi-convex and G(·, ·) is bi-affine1. As in the method of multi-
pliers, the more general ADMM considers the augmented Lagrangian of (3):

L (x,y,Λ) = F (x,y) +Λ�G(x,y) + ρ
2 ‖G(x,y)‖2, where Λ is the vector of La-

grangian multipliers, and ρ > 0 is a penalty parameter. At the kth iteration, the
values of x,y and Λ (denoted xk,yk and Λk) are updated as

xk+1 = argmin
x

L (x,yk,Λk), yk+1 = argmin
y

L (xk+1,y,Λk),

Λk+1 = Λk + ρG(xk+1,yk+1).

Note that while the method of multipliers minimizes L (x,y,Λk) w.r.t. x and
y jointly, ADMM allows easier decomposition of the optimization problem by
minimizing them in an alternating manner.

1 In other words, for any fixed x,y, F (·,y) and F (x, ·) are convex; while G(·,y) and
G(x, ·) are affine.
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3 Kernel Learning by ADMM

In this section, we introduce an extra variable Y to allow easier decoupling of
the optimization problem. Specifically, (2) can be equivalently formulated as

min
X,Y,Z

R(Z) + λ�(Z,T) : Z = X�Y, X = Y. (4)

Consider R(Z) = tr(ZL). Notice that both tr(ZL) and �(Z,T) are bi-convex,
and that the constraints are bi-affine. The augmented Lagrangian of (4) is

L (X,Y,Z;Λ,Π) = tr(ZL) + λ�(Z,T) +Λ • (Z−X�Y)

+
α

2

∥∥Z−X�Y
∥∥2 +Π • (X−Y) +

β

2
‖X−Y‖2 ,

where Λ,Π are the Lagrange multipliers. ADMM then updates the variables as

Xk+1 = argmin
X

L (X,Yk,Zk;Λk,Πk),Yk+1 = argmin
Y

L (Xk+1,Y,Zk;Λk,Πk),

Zk+1 = argmin
Z

L (Xk+1,Yk+1,Z;Λk,Πk),

Λk+1 = Λk + α(Zk+1 − Sk+1), Πk+1 = Πk + β(Xk+1 −Yk+1), (5)

where Sk ≡ Xk�Yk. By straightforward differentiation, the optimization sub-
problems of Xk+1,Yk+1 and Zk+1 can be solved as

Xk+1 = (Ak)−1ck, (6)

where Ak = βI+ αYkYk�, and ck = Yk(Λk + αZk + βI)� −Πk;

Yk+1 = (Bk)−1dk, (7)

where Bk = βI+ αXk+1Xk+1�, and dk = Xk+1(Λk + αZk + βI) +Πk;

Zk+1
ij =

⎧⎪⎨⎪⎩
min
z

fij(z) (i, j) ∈ Ω (8a)(
Sk+1 − 1

α
(Λk + L)

)
ij

(i, j) /∈ Ω, (8b)

where Ω = S ∪ D, and

fij(z) = λ�̃(z, Tij) +
α

2

(
z − Sk+1

ij +
Λk
ij + Lij

α

)2

. (9)

Hence, the only remaining issue is how to solve (8a).

3.1 Different Loss Functions

In this section, we show that problem (8a) can be easily solved for a variety of
loss functions.
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�2-Loss �̃(z, Tij) = 1
2
(z−Tij)

2. Problem (8a) can be easily solved by setting
the derivative of the objective in (9) to zero, leading to

z∗ =
1

α+ λ
(αSk+1

ij + λTij − Λk
ij − Lij). (10)

Hinge Loss �̃(z, Tij) = max{1 − zTij , 0}. Problem (8a) can be rewritten

as minz,ε λε + α
2

(
z − Sk+1

ij +
Λk

ij+Lij

α

)2

: Tijz ≥ 1 − ε, ε ≥ 0. Let θ be the

Lagrange multiplier for the constraint Tijz ≥ 1− ε. Using the standard method
of Lagrange multipliers, it can be easily shown that

z∗ =
θTij − Λk

ij − Lij

α
+ Sk+1

ij , (11)

where θ = min

{
max

{
α−Tij(αS

k+1
ij −Λk

ij−Lij)

T 2
ij

, 0

}
, λ

}
.

Squared Hinge Loss �̃(z, Tij) = 1
2
max{1 − zTij , 0}2. Problem (8a) can

be rewritten as minz,ε
λ
2 ε

2 + α
2

(
z − Sk+1

ij +
Λk

ij+Lij

α

)2

: Tijz ≥ 1 − ε. Similar

to the hinge loss, the optimal solution can be obtained as

z∗ =
θTij − Λk

ij − Lij

α
+ Sk+1

ij , (12)

where θ = max

{
α−Tij(αS

k+1
ij −Λk

ij−Lij)
α
λ+T 2

ij
, 0

}
.

�1-Loss �̃(z, Tij) = |z− Tij|. With the �1-loss, fij(z) in (9) can be written as

fij(z) =
λ

α
|z − Tij |+ 1

2

(
z − Sk+1

ij +
Λk
ij + Lij

α

)2

=
λ

α
|ẑ|+ 1

2

(
ẑ + Tij − Sk+1

ij +
Λk
ij + Lij

α

)2

,

where ẑ = z−Tij. Hence, problem (8a) becomes a standard problem with �2-loss
and �1-regularizer, and the optimal ẑ∗ can be obtained as

ẑ∗ = Th λ
α

(
Sk+1
ij − Tij −

Lij + Λk
ij

α

)
,

where Thν(x) =

⎧⎨⎩
x− ν x > ν
0 −ν ≤ |x| ≤ ν
x+ ν x < −ν,

is the soft-thresholding operator. Con-

sequently,

z∗ = ẑ∗ + Tij = Th λ
α

(
Sk+1
ij − Tij −

Lij + Λk
ij

α

)
+ Tij . (13)
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3.2 Algorithm

To monitor convergence, we require the primal and dual residuals at iteration
k + 1

Δprimal1 =
∥∥Zk+1 − Sk+1

∥∥ , Δprimal2 =
∥∥Xk+1 −Yk+1

∥∥ , Δdual =
∥∥Xk+1 −Xk

∥∥
(14)

to be small [3]. Moreover, to improve convergence, it is common to vary the
penalty parameters in each ADMM iteration. Specifically, following [3], we up-
date them as

α←
{
2α Δprimal1 > 10Δdual

max(α/2, 1.5) Δdual > 10Δprimal1

, (15)

and

β ←
{
2β Δprimal2 > 10Δdual

max(β/2, 1.5) Δdual > 10Δprimal2

. (16)

The whole procedure is shown in Algorithm 1.

Algorithm 1. Kernel learning by ADMM.

1: Input: X0,Y0,Z0, parameters ε and IterMax.

2: Output: Z = Xk�Xk (or Yk�
Yk).

3: k ← 0;
4: repeat
5: update Xk+1,Yk+1 by (6) and (7) respectively;
6: update {Zk+1

ij | (i, j) /∈ Ω} by (8a);

7: update {Zk+1
ij | (i, j) ∈ Ω} by (10), (11), (12) or (13), depending on the loss;

8: update Λk+1,Πk+1 by (5);
9: update α and β using (15) and (16);
10: compute the primal and dual residuals in (14);
11: k ← k + 1;
12: until max(Δprimal1 ,Δprimal2 ,Δdual) < ε or k > IterMax.

3.3 Convergence

With the low-rank decomposition, problem (4) is nonconvex w.r.t. X and Y,
and so we can only consider local convergence [3]. As in [13], we show below a
necessary condition for local convergence.

Lemma 1. Let W ≡ (X,Y,Z), Γ ≡ (Λ,Π), and {Wk,Γ k)} be a sequence

generated by Algorithm 1. Then, L (Wk, ·)−L (Wk+1, ·) ≥ μ
∥∥Wk −Wk+1

∥∥2,
and L (Γ k, ·) −L (Γ k+1, ·) ≥ − 1

μ

∥∥Wk −Wk+1
∥∥2, where μ = min{α, β}, and

L (X, ·) denotes that all the variables in L except X are fixed.

Proposition 1. Let {Xk,Yk,Zk,Λk,Πk} be a sequence generated by Algo-

rithm 1. If {Λk,Πk} is bounded and
∞∑
k=0

(∥∥∥Λk+1 −Λk
∥∥∥2 + ∥∥∥Πk+1 −Πk

∥∥∥2) <

∞, then Xk−Xk+1 → 0, Y k−Yk+1 → 0,Zk−Zk+1 → 0, and any accumulation
point of {Xk,Yk,Zk} satisfies the Karush-Kuhn-Tucker condition of (4).
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4 Experiments

As in [5,10], we study the performance of the proposed approach in the con-
text of data clustering. Specifically, a kernel matrix is learned from the pairwise
constraints (i.e., must-link and cannot-link), which is then used for clustering
by the kernel k-means algorithm. Experiments are performed on a number of

Table 1. Data sets used in the experiment

data set #classes #patterns #features #constraints

glass 6 214 9 256
heart 2 270 13 324
iris 3 150 4 180

protein 6 116 20 140
sonar 2 208 60 250
wine 3 178 12 214

odd-even 2 4000 256 4800

Table 2. Comparison on clustering accuracy (%) on the data sets with the squared
loss (SL), hinge loss (HL), squared hinge loss (SHL), and �1-loss (�1). The best and
comparable results (according to the pairwise t-test with 95% confidence) are high-
lighted.

loss method glass heart iris protein sonar wine odd-even

SL
ADMM 80.9±1.1 93.3±1.9 99.0±1.1 87.7±1.9 95.5±2.5 83.2±1.8 99.37±0.06
BCD 80.8±1.0 93.4±2.5 99.2±0.9 86.0±1.9 95.7±2.5 82.9±1.7 99.57±0.03

S-NPKL 80.3±1.8 91.7±2.5 99.2±1.0 86.7±2.5 95.2±2.6 82.9±1.8 99.35±0.09

HL

ADMM 80.1±1.2 92.4±2.5 99.2±1.0 87.2±1.7 95.9±2.4 83.4±1.6 99.35±0.05
BCD 79.6±1.9 85.9±3.0 98.9±1.0 85.9±2.0 94.2±3.9 83.2±1.8 99.55±0.05

S-NPKL 80.6±1.1 88.1±4.1 99.1±0.8 85.0±2.5 95.5±2.4 83.3±1.6 99.42±0.08
SDPLR 79.6±1.5 90.0±2.8 98.9±0.7 83.1±2.8 94.9±1.2 82.1±2.3 98.35±0.20

SHL
ADMM 80.7±1.6 93.4±2.0 99.0±1.1 86.8±1.8 95.5±2.5 83.1±2.1 99.35±0.10
BCD 81.0±1.6 93.4±2.5 99.2±0.9 86.4±2.3 95.7±2.5 82.9±1.7 99.57±0.03

S-NPKL 80.5±2.0 93.2±2.2 99.2±1.0 82.0±2.2 95.5±2.5 83.0±2.0 99.35±0.09

1 ADMM 79.1±1.8 88.0±4.5 98.2±1.6 84.4±2.5 94.7±2.4 80.5±2.4 96.62±0.12

Table 3. Comparison on CPU time (second) on the data setswith the squared loss (SL),
hinge loss (HL), squared hinge loss (SHL), and �1-loss (�1). The best and comparable
results (according to the pairwise t-test with 95% confidence) are highlighted.

loss method glass heart iris protein sonar wine odd-even

SL
ADMM 5.5±1.2 10.4±2.7 2.3±1.0 1.6±1.6 6.8±1.8 3.6±2.3 359±12.5
BCD 9.9±4.2 28.9±10.1 0.9±0.1 2.2±1.5 8.3±4.9 4.0±2.1 653±18.4

S-NPKL 46.2±19.3 311.0±149.2 23.4±7.6 60.8±40.2 176.0±58.7 37.0±17.5 3,680±219.8

HL

ADMM 6.9±1.8 12.8±7.8 2.9±1.5 1.8±1.5 7.4±3.0 4.9±2.2 361±10.4
BCD 163.6±49.7 319.7±44.8 34.8±26.8 41.8±16.9 217.8±45.3 81.8±35.5 5,694±184.2

S-NPKL 59.8±13.5 224.0±106.2 41.9±6.5 44.0±8.06 180.7±82.7 49.1±23.1 1,955±352.2
SDPLR 17.4±6.6 40.1±11.2 8.8±2.0 4.7±0.9 21.6±9.8 9.4±5.7 20,065±374.6

SHL
ADMM 5.1±1.4 11.5±5.4 1.9±1.2 1.2±0.6 5.1±1.7 3.9±2.4 357±11.1
BCD 78.3±42.1 231.9±72.8 5.5±2.9 27.2±25.1 56.8±43.8 44.8±21.3 6,030±237.7

S-NPKL 57.76±17.6 157.0±86.0 15.3±3.1 43.6±8.9 131.2±56.3 55.4±29.5 1,736±284.4

1 ADMM 7.7±1.8 13.6±5.8 3.6±1.8 1.7±0.3 8.4±1.7 5.5±2.2 413±8.2
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benchmark data sets2 (Table 1) that have been commonly used for nonparamet-
ric kernel learning [5,6,14].

The proposed Algorithm 1 (denoted “ADMM”) is compared with the three
solvers: block coordinate descent method (denoted “BCD”) [6], simple nonpara-
metric kernel learning (denoted “S-NPKL”) [14] and low-rank SDP (denoted
“SDPLR”) [4]. Similar to ADMM, all are based on a rank-r approximation of Z.
Moreover, we follow [14,6] and set the rank of the kernel matrix to the largest r
satisfying r(r + 1)/2 ≤ m, where m is the total number of constraints in Ω.

Results on the clustering accuracy and CPU time are shown in Tables 2 and
3, respectively. As can be seen, ADMM is more efficient than the other methods,
while yielding comparable clustering accuracy.

5 Conclusion

In this paper, we proposed an efficient solver for nonparametric low-rank kernel
learning. Using ADMM, it decouples the optimization problem into computation-
ally inexpensive subproblems that involve only individual entries of the kernel
matrix. Moreover, with an explicit low-rank factorization, it no longer needs to
enforce the psd constraint that would lead to expensive eigen-decomposition in
each iteration. Experimental results on a number of real-world data sets demon-
strate that the proposed method is as accurate as directly solving the SDP, but
is much faster than existing solvers.
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Abstract. Probabilistic topic models have become a standard in modern machine
learning with wide applications in organizing and summarizing ‘documents’ in
high-dimensional data such as images, videos, texts, gene expression data, and so
on. Representing data by dimensional reduction of mixture proportion extracted
from topic models is not only richer in semantics than bag-of-word interpretation,
but also more informative for classification tasks. This paper describes the Topic
Model Kernel (TMK), a high dimensional mapping for Support Vector Machine
classification of data generated from probabilistic topic models. The applicability
of our proposed kernel is demonstrated in several classification tasks from real
world datasets. We outperform existing kernels on the distributional features and
give the comparative results on non-probabilistic data types.

Keywords: Classification, Kernel Method, Support Vector Machine, Topic Mod-
elling Features, Latent Dirichlet Allocation, Hierarchical Dirichlet Process.

1 Introduction

Data representation is critical in data analysis tasks. Central to Support Vector Ma-
chines are kernels, that maps the input data to another dimensional spaces in which the
linear separating hyperplanes are easier to construct. The choice of kernel is crucial . In
this paper we focus on a class of problem for SVM when the data can be conveniently
represented in distributional forms. Such distributions constitute rich information one
can exploit, as they are outputs from the probabilistic topic models [1], latent variables
can be used as distributional representation for data. Examples include Latent Dirich-
let Allocation [1] or Hierarchical Dirichlet Processes [2], that can produce multinomial
distributions over topics given text data or raw pixels in images. This distribution is not
only richer in semantics than the original bag of words, but also Blei et al [1] have ver-
ified that the reduced representation by topic model features attains richer information
for classification than the original word feature as treating individual words as feature.
Moreover, such derived features occupy only 99.6 percent in space compared to a very
large raw feature set of individual words.

The combinations of generative approaches (such as LDA, HDP) with discriminative
ones (e.g. SVM) have recently shown to be very effective [3], hence it is attractive to
expose methods that integrate these statistical models and discriminative classifiers.

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 124–131, 2013.
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Furthermore, we are motivated by recent successful applications of Jensen Shannon
divergences to compute the similarities and distances when the data are drawn from
probabilistic distributions [4,5].

We make use of preprocessing raw data with topic models, allows exploitation of
powerful, latent semantics. Together with the use of divergence in probability space, our
main contributions are derivation of a proper kernel originated from the Jensen-Shannon
divergence [6], which we call Topic Model Kernel (TMK). The fact that recent advance
in topic modelling and Bayesian nonparametrics, such as the HDP [2] which automat-
ically determine the number of topics make the proposed framework more attractive to
real-world application. We conducted extensive experimental validation of the proposed
TMK which outperforms other existing kernels on the probabilistic derived feature and
yields a comparative performance on other data types (free-distribution guarantee).

2 Related Background

2.1 Support Vector Machines and Kernel Method

Support Vector Machines (SVM) [7] is a well-known supervised learning method for
classification . The goal is to find a better representation by mapping the data into a
high dimensional feature space, a fundamental step in SVM. Because the mapping can
be general, there are numerous existing kernels in literature1. Each kernel is taking into
account different ‘genres’ of the real world data type for the best performance. The
most appropriate kernel must guarantee the smoothness amongst data within the same
class, maintain distinction to others classes. We choose the four baseline kernels for
comparison built-in in LibSVM [8]:

– Radial Basic Function Kernel (RBF) k (x, y) = exp
(−γ ‖ x− y ‖2), the parame-

ter γ plays a crucial role in the classification performance.
– Linear Kernel k (x, y) = xT y + c , where c is a constant.

– Polynomial Kernel k (x, y) =
(
αxT y + c

)d
, with polynomial degree d.

– Sigmoid Kernel k (x, y) = tanh
(
αxT y + c

)
where slope parameter α need to be

adjusted for best performance.

2.2 Probabilistic Topic Models

The discrete distribution features in practice can be the outcome of probabilistic topic
models. Blei et al [1] introduce Latent Dirichlet Allocation (LDA) which is a class of
topic modelling that provides a simple way to analyze large volumes of unlabeled text.
At the first glance, LDA can be seen as mixture distribution, comprising an underly-
ing set of distributions interpreting the complex data into a group of simpler densities.
A ‘topic’ consists of the group of words that frequently occur together. There are K
topics βk, k ∈ {1, ...,K} which are discrete distributions over words. Then, each doc-
ument is assumed to be characterized by a mixture proportion (the latent variable θj
and πj on Figure 1). This document feature representation is a k-dimensional vector
where an element k-th indicates how much the document j contributes to the topic k-th.

1 Many kernels can be found in http://crsouza.blogspot.com.au/2010/03/
kernel-functions-for-machine-learning.html

http://crsouza.blogspot.com.au/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.blogspot.com.au/2010/03/kernel-functions-for-machine-learning.html
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(a) LDA Representation (b) HDP Representation

Fig. 1. Probabilistic Topic Models

Two noticeable versions of topic modelling in parametric and nonparametric settings are
Latent Dirichlet Allocation [1] and Hierarchical Dirichlet Processes [2]. Due to limited
space, the details of probabilistic topic models can refer to our technical report [9].

3 Topic Model Kernel

3.1 Kullback–Leibler Divergence

The Kullback–Leibler (KL) divergence [10] is a non-symmetric measure of the similar-
ity between two probability distributions. Its intuitive understanding arises from likeli-
hood theory measuring the distance between the initialized probability parameter. The
KL divergence from distribution P to Q for discrete case is defined as:

DKL (P ‖ Q) =
∑
i

P (i) ln
P (i)

Q(i)
(1)

where p and q denote the densities of the distributions P and Q. Moreno et al [11]
have proposed a symmetric KL divergence kernel for classifying objects under the
Gaussian mixture models, a step toward classifying distribution data with SVM.

3.2 Jensen–Shannon Divergence

Based on the KL divergence, the Jensen-Shannon (JS) divergence [6] calculates the
distance between two probability distributions P and Q as:

DJS (P,Q) =πDKL (P ‖M) + (1− π)DKL (Q ‖M) (2)

where M = 1
2 (P +Q), and DKL is the KL divergence. The lower bound of JS

divergence is 0 when two distributions are identical. Its square root [6] is proved as
a metric with the triangle inequality property for two distributions. This distance can
be seen (in the symmetric KL flavour) as the average distance between two random
distributions to their empirical mean, with π is set as 0.5 [12].
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3.3 Topic Model Kernel

The kernel function is basically a measurement criteria that compares the similarity
between two points or vectors. But not all of the measurement distances or similarity
functions yield proper attributes to be a valid kernel. The Topic Model Kernel (TMK)
is defined as following:

KTM (X,Y ) = exp

{
− 1

σ2
×DJS (X,Y )

}
=exp

{
− 1

σ2
×
[
1

2

∑
i

X(i) ln
X(i)

M(i)
+

1

2

∑
i

Y (i) ln
Y (i)

M(i)

]}
(3)

By exponentiating the negative JS divergence, it leads to the positive definite kernel
function KTM because (1) JS divergence is negative definite on R+ ×R+ [13], (2) let
exponentiate the negative of JS divergence giving the positive definite kernel that pro-
jecting the divergence distance into the bounded range of 0 and 1. Thus, TMK satisfies
the Mercer condition of cTKTMc ≥ 0 with KTM(i,j) = kTM (xi, xj) for the validity
of the kernel. The variance σ2 plays a role as a shape parameter to more flexibly flatting
or widening the data.

4 Experiments

Experiments are conducted using real world data in numerous classification scenarios,
including: (1) the topic model features derived from LDA and HDP inference, (2) the
raw features that we do not guarantee them fit into any type of distribution (3) we
further analyze the kernel performance on parameter space. LibSVM [8] is used as a
standard library to compare the proposed kernel with four baseline LibSVM built-in
kernels mentioned in section 2.1. The data will be scaled as recommended in LibSVM
to ensure the best performance.

The scores are reported in two manners at the default parameter (set by LibSVM)
and the optimal parameter (for the best performance) by brute-force cross validation
searching. For Topic Model Kernel, we empirically set the value of our default parame-
ter σ2 is equal to the feature dimension size after observing TMK operations on several
datasets. Each training and testing set are randomly selected and run SVM for 10 times.

Fig. 2. Two examples of LDA topic βk on LiveJournal Data
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Fig. 3. Examples of the reduced feature θj by LDA from 65,483 to 50

4.1 Topic Model Feature

We run LDA and HDP to extract the mixture proportions θj (LDA) and πj (HDP), then
use SVM for classification on LiveJournal, Reuter21578, and LabelMe dataset.

4.1.1 LDA Feature on LiveJournal and Reuter21578 Datasets
We crawled the communities listed in the Livejournal directory2. These communities
are categorised by Livejournal into 10 groups , summarizing of 8,758 posts giving the
vocabulary size of 65,483 (the feature dimension of raw data). The task is to predict the
category, given text data from user’s posts.

We treat each user post as a document and run LDA with fixed number of latent fac-
tors from {6, 10, 20, 50}.The examples of estimated topic βk, about literature and life,
are visualized in Figure 2 and the LDA feature examples are in Figure 3 which reduced
from original high dimension of 65483 to 50. We do the experiments progressively with
increasing numbers of training samples from 10 to 400 (refer Figure 4b and varying the
number of hidden factors K (refer Figure 4a) to clearly shows the effect of increasing
the number of learned feature or number of training instance.

Similar to Live Journal data, we utilize posterior inference of LDA on Reuters21578
dataset to extract the mixing proportion feature θj in which the number of hidden factors
is set as 20. The results in Figure 4 and Table 5 demonstrate the superiority of our kernel.

4.1.2 HDP Feature on LabelMe Dataset
LabelMe [14] is one of the most well known benchmark dataset for image annotations
and object categorizations. To discard the noise and mistagging issues, top 30 high
frequency tags are chosen giving a vocabulary size of 30. The Hierarchical Dirichlet
Processes [2] is carried out to extract the topic assignment feature properly, each image
is treated as a document while each tag is considered as word yji (refer 1b) in the model.
HDP automatically identifies 24 topics φk giving the feature πj dimension of 24.

2 http://www.livejournal.com/browse/, retrieved August 2012.

http://www.livejournal.com/browse/
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(a) With varied feature dimension. (b) With varied number of training data.

Fig. 4. Performances comparison on LDA feature derived from LiveJournal

Dataset\Kernel TMK RBF Linear Polynomial Sigmoid

LiveJournal 58.1±2.1 54.9±4.9 54.4±5.2 52.6±6.6 51.8±5.1
Default Reuter21578 81.3±0.2 79.0±0.5 78.2±0.1 77.9±0.1 77.4±0.4

Parameter LabelMe 72.3±1.9 70.8±1.9 71.5±1.8 62.7±4.2 69.8±1.6
MNIST 88.4±0.9 82.2±1.9 91.3±0.5 83.7±2.6 79.6±3.4

LiveJournal 58.7±1.7 55.0±4.8 54.9±4.2 54.2±5.2 53.5±4.7
Optimal Reuter21578 81.9±0.1 79.4±0.5 79.0±0.1 78.9 + 0.1 79.2±0.3

Parameter LabelMe 76.1±1.8 73.3±2.0 74.8±1.4 74.5±2.2 73.9±1.3
MNIST 90.8±2.2 89.3±2.5 88.4±2.7 88.7±2.9 85.8±2.7

Fig. 5. SVM classification comparison with TMK and four baseline kernels

4.2 Non-distributional Data Source

To highlight the generality, we show how the proposed kernel performs on the raw
(non-distribution) data of MNIST dataset instead of extracting topic model features as
previously.

MNIST Dataset. The ready-to-use extracted feature in MNIST dataset, a benchmark
in handwritten digit recognition, is available at author website 3 . In this experiment,
we do not aim to beat the state of the art result on MNIST, but we want to illustrate the
classification comparison between the TMK versus others with SVM tool. We note that
this kind of raw image data is not pledged to be drawn from any type distribution when
use with TMK for classification. The accuracy of 600 training with 100 testing instances
is recorded in Table 5, although Linear kernel perform very well with default parameter,
our kernel achieves the best result with an optimal parameter (after parameter selection).

3 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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(a) HDP feature on LabelMe dataset. (b) MNIST dataset.

Fig. 6. Cross validation accuracy by brute-force parameter searching

4.3 Parameter Space Analysis

We now move on to our characterization of performance on various axes of parameters.
To demonstrate the TMK kernel is more robust on the parameter space, we record the
accuracy planes with parameter C in SVM optimization equation [8] and TMK parame-
ter σ shown in Figure 6a. We get the peak accuracy of 0.82 on by 3 fold cross validation
at which the optimal parameter is further used for testing. The average accuracy with
standard deviation is used to evaluate the preeminent of TMK when the data is drawn
from distribution. Topic Model Kernel accomplishes the best in the way that it get the
highest score on average accuracy (0.74), lowest standard deviation (0.029), and the
TMK’s peak (0.82) is the highest among four baseline kernel’s peaks (refer Table 1).

Table 1. Accuracy on parameter space comparison

Kernels
LabelMe: HDP probabilistic feature MNIST: Non-probabilistic feature
Peak Average Std Peak Average Std

TMK 0.82 0.74 0.029 0.91 0.83 0.053
RBF 0.77 0.70 0.033 0.90 0.67 0.252

Linear 0.75 0.70 0.034 0.88 0.80 0.029
Polynomial 0.75 0.35 0.236 0.88 0.44 0.295

Sigmoid 0.76 0.69 0.041 0.85 0.43 0.304

Further, we would like to see the performance of TMK on the non-distribution fea-
ture by varying the parameters of TMK. Although, it is not really stable as on topic
model features, at a certain area (obtained by cross validation) it perform pretty well
with comparable accuracy to others kernel.

5 Conclusion

We introduced the Topic Model Kernel, a bridge connecting between the informa-
tion theory and kernel method, and compared it to other existing kernels in SVM
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classification tasks. The significant applications of this work in practical data are ex-
amined on the influential feature derived from recent probabilistic topic frameworks of
LDA and HDP that the TMK outperforms other existing kernels on topic model feature
(drawn from probabilistic assumption). We also show its comparative performance on
the natural application of digit recognition (without any assumption of distribution).
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Abstract. We present a novel method to train predictive Gaussian dis-
tributions p(z|x) for regression problems with neural networks. While
most approaches either ignore or explicitly model the variance as an-
other response variable, it is trained implicitly in our case. Establishing
stochasticty by the injection of noise into the input and hidden units, the
outputs are approximated with a Gaussian distribution by the forward
propagation method introduced for fast dropout [1]. We have designed
our method to respect that probabilistic interpretation of the output
units in the loss function. The method is evaluated on a synthetic and
a inverse robot dynamics task, yielding superior performance to plain
neural networks, Gaussian processes and LWPR in terms of likelihood.

Keywords: neural networks, predictive distributions, deep learning.

1 Introduction

Deep learning stands at the center of several key advancements in visual and
audio recognition in the past few years [2,3]. The stacking of several layers of
computation results in a hierarchy of feature detectors of which each conveys new
intermediate representations of the data. Prediction is assumed to be substan-
tially easier in these representational spaces than in input space, since previously
entangled “factors of variation” [4] are well separated. Initially, research on deep
learning was started by [5] of which a crucial ingredient was the greedy layer
wise pretraining in an unsupervised fashion. Yet, the increase in availabilty of
computational power (especially in the form of GPUs) showed that deep neu-
ral networks can as well be trained if lots of data is available [6], special non-
saturating units are used [7] or with the help of a powerful regularizer named
dropout [8]. The latter randomly discards units in the network during training,
making co-adaption of units and thus poor generalization less likely.

Perceiving the units of a network as stochastic entities goes back at least
to [9]. While neural networks can be used to represent any output distribution
which can be summarized by a finite number of sufficient statistics, these have
to be defined a priori and are not part of the learning. Contrary, the promise of

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 132–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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stochastic networks is that p(z|x) can have a number of maxima exponential in
the number of units, allowing complex one-to-many relations.

Research on these models has seen notable papers most recently. For one,
[10] introduces a deep density estimator p(x) which can be efficiently trained
via back-propagation [11] and is a consistent estimator of the underlying data
distribution. Learning a stochastic feed-forward net leading to a multi-modal
output distribution p(z|x) is made practical in [12]. Novel techniques to train
stochastic neural networks with back-propagation have been presented in [13].

Using deep architectures for the estimation of predictive distributions has been
tackled before in [14,15]. Our contribution is to make use of findings from [1] to
approximate each unit in a stochastic neural network up to second order with a
Gaussian and reflect this in the construction of the loss. This leads to unimodal
Gaussian predictive distributions which play nicely with dropout regularization
for deep neural networks.

2 Approach

The well known method of mixture density networks [16] and a recent develop-
ment in approximating dropout [1] lie at the heart of our work. A brief overview
of both will be given in order to establish a base upon which our contribution
can be described. We begin with a short review of neural networks.

2.1 Neural Networks

Neural networks can be described as a stack of layers of which each consists
of an adaptable affine transformation and a subsequent nonlinear function. Let
x ∈ RI be an input to the network from which we wish to produce an output
y ∈ RO. Given a network of K layers, we compute the output u of a layer given
the output of the previous layer u′ via the following equation

u = f(u′W + b), . (1)

The weight matrix W , the bias term b and the transfer function f are layer spe-
cific. The whole set of adaptable parameters is referred to as θ = {(W k, bk)}Kk=1

where we added the top index to distinguish between parameters from differ-
ent layers. Typical choices for the transfer functions {fk}Kk=1 are the sigmoid
f(κ) = 1

1+exp(−κ) , the rectifier f(κ) = max(κ, 0) or the identity f(κ) = κ, where

κ ∈ R. Transfer functions are applied component wise. A single component of a
layer is referred to as a unit or neuron.

The most popular and arguably most efficient way to adapt the behaviour as
desired is backpropagation [11,17,18]. Doing so involves the definition of a loss
function L(θ) which can be differentiated with respect to the parameters θ and
fed into an optimizer such as stochastic gradient descent or nonlinear conjugate
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gradient. One of the most common choices for a loss function is the mean squared
error:

LMSE(θ) =
1

N

N∑
i

||yi − zi||22. (2)

It is defined as a sum over a data set D = {(xi, zi)}Ni=1 which consists of inde-
pendent samples from a function which the network shall mimic. A probabilistic
interpretation is that the network models the data with a Gaussian conditioned
on the input: p(z|x) = N (μ(x), σ2), where the mean is defined by the output of
the network, i.e. μ(x) = y. The variance σ2 is assumed to be constant, which is
commonly referred to as homoscedastic variance. Taking the log of the likelihood
of the data

∏
i p(zi|xi) and neglecting constant terms irrelevant to optimization

leaves us with Equation (2).

2.2 Density Networks

Mixture density networks [16] are ordinary neural networks with special trans-
fer function at the last layer and a matching loss. The output represents the
sufficient statistics of a mixture of Gaussians: priors, means and covariances of
each component. The resulting model can be trained via maximum likelihood
by numerical minimization of the negative log-likelihood. We consider mixture
density networks with only a single component and a diagonal covariance, and
thus call them density networks for brevity. Given a regression problem of target
dimensionality D, that is D = {(xi, zi)} with zi ∈ RD, the output layer is de-
signed to be of size O = 2D. The first D components represent the mean while
the second D give the variance of a Gaussian:

μ(xi,d) = yi,d, (3)

σ2(xi,d) = y2i,D+d. (4)

The square assures positive variance. We use these values to specify a condi-
tional Gaussian distribution of p(z|x) = N (μ(x), σ2(x)) which is heteroscedastic
since the variance depends on the input. Computing and differentiating the log-
likelihood of the targets given the inputs is now straightforward and leads to
training via the average negative log-likelihood:

LNLL(θ) =
1

N

∑
i,d

(zi,d − μ(xi,d))
2

2σ2(xi,d)
+ log

√
2πσ2(xi,d). (5)

In practice, optimization can be difficult: the variances might collapse to very
small numbers, leading to very high likelihoods and numerical instabilities [19].
As a counter measure we added a constant term of 0.0001 to the variances in
the objective function and its gradients.
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2.3 Fast Dropout

Dropout [8] is a powerful regularizer for neural networks. By randomly neglecting
input and hidden units from the network during forward- and back-propagation,
the method prevents different units of the network from coadapting and subse-
quently depending on each other too much. This results in a vast improvement
of performance and lead to several significant improvements in visual and audio
recognition.

A problem of dropout is that training times tend to be rather long due to the
necessesity of sampling and the resulting noisy gradients. To circumvent this, the
author’s of [1] proposed to approximate the input to each layer of the net a =
u′W + b. Using a diagonal Gaussian â ∼ N (μ, s2) is reasonable due to the central
limit theorem. Given some mild conditions on the distribution of u′ as well as its
mean ν′ and variance τ ′2 the first two moments of â can be computed exactly:

m = d(ν′W + b), (6)

s2 = diag(d(1 − d)ν′2W 2 + dτ ′2W 2). (7)

Here, d refers to the dropout rate. Obtaining the moments ν and τ2 of o = f(â)
can then be done by propagating μ and s2 through f . This is possible in closed
form for the rectifing linear and approximately for the sigmoid. In other cases,
the unscented transform [20] or sampling can be used. The authors of [1] provide
more details; no significant loss in performance and yet significant improvements
in training time is reported, due to less sampling operations.

2.4 Implicit Variance Networks

A consequence of treating each unit in a network as stochastic and approximating
it up to second order is that the output of the network is also stochastic. Since
fast dropout already handles the forward propagation of variance, in contrast to
plain neural networks, the variance of the output units is readily available. We
propose to not neglect the variance at the output layer. Instead we incorporate
it into the negative log-likelihood (Equation (5)), where we model the statistics
with the output of the last layer, i.e. μ(xi) = mK

i and σ2(xi) = (sKi )2.
We extended the model further in two ways: incorporating input variance

and a special bias for the variance of units. Variance of inputs arises naturally
in many settings (e.g. noisy sensor data) and can be respected during forward
propagation from the inputs to the first hidden layer. A principled treatment
for inferring the variance of the inputs can be employed, but we assume it to
be constant over the data set and dimensions, essentially treating it as another
hyper parameter.

During preliminary experiments, we noticed that the network duplicates units
at the last hidden layer to reduce variance at the output layer where required for
further minimizing the loss. This effect, which we call “pseudo pruning” is due to
the (invalid) assumption of independency between the activations of a layer. The
network can just copy a unit and half their outgoing weights to reduce the variance
contribution while maintaining the mean contribution to the following layer.1

1 We omit a formal argument due to space restrictions.
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While pseudo pruning might seem desirable as it reduces overfitting, it can
lead to extreme underfitting and is also computationally not efficient. The for-
ward propagation of variance (given in Equation (7)) was thus adapted to the
following:

s2 = diag(d(1 − d)ν′2W 2 + dτ ′2W 2)� β, (8)

where � is the element wise product and β > B is constrained to be greater
than some positive number B; this can be done by elegantly by reparametrizing
β = exp(β̂) + B and optimizing with respect to β̂. B is treated as a hyper
parameter.

3 Experiments

We present experiments on a synthetic data set involving heteroscedastic be-
haviour as a sanity check for our model. We then move to a real world bench-
mark where inverse robot dynamics are to be learned; this task has been tackled
previously in [21,22]. 2

For all experiments, the inputs as well as the targets were normalized to zero
mean and unit variance; the former helps with optimization [23] and the latter
leads to more comparable results for evaluation as it is equivalent to using the
normalized MSE. Determination of good hyper parameters was performed via
a random search as recommended by [24] for which the search distribution is
given in Table 2; batch size and number of hidden units are data set specific and
given in the respective section. We picked 32 random configurations for each
experiment. Training took place for a fixed number of epochs after which the
network with the best score on a held out validation set was picked for final
evaluation on the test data. We minimized the LMSE in case of NN and FD and
LNLL for DN and IVN. Optimization was performed with rmsprop [25] using
Nesterov momentum [26,27]. For the plain neural networks, where no variance is
modelled, we assume homoscedastic variance which we estimate after training as
the variance of the residuals. We report the mean squared error and the negative
log likelihood, both averaged over the test sets, in Table 1.

3.1 Toy Data

This data set was proposed by [28] in order to evaluate the ability of a model
to express heteroscedasticity in an easily inspectable way. It is governed by the
following two equations,

μi = 2(exp(−30(xi − 1

4
)2) + sin(πx2

i )),

σ2
i = exp(sin(2πxi)),

2 We also considered the “Abalone” data set, but could not make the performance of
IVNs competitive with Gaussian processes (which reached an MSE of about 0.29,
compared to 0.39 for IVNs) and thus discarded that data set as a good way to
compare IVNs to other neural models.
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which specify Gaussian distributions p(yi|xi) = N (μi, σ
2
i ). To generate a data set

we sample {xi} points uniformly from the input range [−0.1, 1], and then sam-
ple {yi} accordingly. To compare plain neural networks (NN), density networks
(DN), networks trained with fast dropout (FD) and implicit variance networks
(IVN), we constructed a setting which is far from tailored towards neural net-
works: very little data.

The data set contained only 50 points for training, 10 for validation and 50
additional points to asses the performance as a test set. We trained the networks
for 5000 epochs with batch size either 10, 25, 50 and 10, 25, 50 or 100 hidden units.

Discussion Notably, all methods except ours perform as bad as expected for a
neural network model in this setting. While the density networks are en par with
our method in terms of mean squared error, they overfit extremly with respect
to their predictive distribution. Neural networks neither trained classically nor
with fast dropout achieve good results; the variance of fast dropout seems to be
meaningless, which is not surprising as it is not trained.

Table 1. Results on the toy benchmark and the sarcos data set

Toy Sarcos
Method MSE NLL MSE NLL

NN 4.2395 2.2694 0.0047 -1.1893
DN 3.8706 9.7303 0.0096 -1.2532
FD 4.3491 43486.7 0.0065 1.2667
IVN 3.8985 1.6187 0.0079 -1.3606

Table 2. Hyper parameter ranges common over different data sets

Hyper parameter Choices

#hidden layers 1, 2, 3
Transfer function rectifier, sigmoid
Step rate 10−5, 10−4, 10−3, 10−2, 10−1

Momentum 0, 0.5, 0.9, 0.99, 0.999
Decay 0.7, 0.8, 0.9
Input variance 0, 0.1, 0.2
Variance offset B 0, 0.5, 1

3.2 Sarcos: Inverse Robot Dynamics

We evaluated the models under consideration on a standard benchmark for learn-
ing robot inverse dynamics, the “Sarcos” data set. We trained the networks for
500 epochs and picked the batch size from {64, 128, 256, 512} and the number of
hidden units from {50, 100, 200, 300}.We want to stress several observations. For
one, IVNs seem to be the best choice if one is interested in good performance of
both MSE and NLL. Secondly, plain neural networks perform surprisingly well
in our experiments. While both Gaussian processes and LWPR models have dif-
ferent advantages compared to neural networks (model uncertainty and efficient
incremental online learning, respectively) our experiments show that both are
outperformed in terms of predictive quality.
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Fig. 1. Predictive distributions of IVNs and DNs on the toy benchmark

4 Conclusion and Acknowledgements

We presented a novel method to estimate predictive distributions via deep neural
networks that plays nicely with fast dropout. The results are competitive or
superior to other neural approaches in our experiments and en par with Gaussian
processes and LWPR in a robotics task.

S. Urban was supported by German Research Foundation (DFG) SPP 1527
Autonomes Lernen.
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Abstract. Imbalanced learning is a challenged task in machine learn-
ing, where the data associated with one class are far fewer than those
associated with the other class. In this paper, we propose a novel model
called One-Side Probability Machine (OSPM) able to learn from imbal-
anced data rigorously and accurately. In particular, OSPM can lead to
a rigorous treatment on biased or imbalanced classification tasks, which
is significantly different from previous approaches. Importantly, the pro-
posed OSPM exploits the reliable global information from one side only,
i.e., the majority class , while engaging the robust local learning [2] from
the other side, i.e., the minority class. Such setting proves much effec-
tive than other models such as Biased Minimax Probability Machine
(BMPM). To our best knowledge, OSPM presents the first model capable
of learning from imbalanced data both locally and globally. Our proposed
model has also established close connections with various famous models
such as BMPM and Support Vector Machine. One appealing feature is
that the optimization problem involved can be cast as a convex second
order conic programming problem with a global optimum guaranteed. A
series of experiments on three data sets demonstrate the advantages of
our proposed method against four competitive approaches.

1 Introduction

Learning classifiers from imbalanced data is a challenged topic, arising very often
in practice. Within this context, almost all the instances are labelled as one
class, while far fewer instances are labelled as the other class, usually the more
important class. Traditional classifiers seeking accurate performance over all the
instances are not suitable to deal with imbalanced learning tasks. Obviously, such
methods tend to classify all the data into the majority class, which is usually
the less important class and hence would lead to serious problems in imbalanced
data classification.

In the literature, there are various methods to deal with imbalanced data [8].
Among them are the methods of sampling, the methods of moving the decision
thresholds, and the methods of adjusting the cost matrix. The first type of
methods aims to reduce the data imbalance by “down-sampling” (removing)
instances from the majority class or “up-sampling” (duplicating) the training
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instances from the minority class or both. The second type of methods tries to
tune the decision threshold to impose a bias on the minority class. Similarly,
the third type of methods improves the prediction performance by adapting the
weight (cost) for each class.

It is argued that none of the methods is rigorous or systematic when
handling imbalanced data [9,5,1]. Specifically, for the sampling method, either
up- or down-sampling is unsuitable: up-sampling will introduce noise, while
down-sampling the data will lose information. Moreover, it is usually difficult to
know what a proportion should be sampled in order to incorporate a good bias.
For these reasons, Provost states it as an open problem whether simply varying
the skewness of the data distribution can improve prediction performance sys-
tematically [9]. For the method of adjusting the cost matrix or adapting weights,
similar problems are also encountered, i.e., they are hard to establish direct con-
nections between the cost matrix or the weights and the biased classification
quantitatively. To impose a suitable bias towards the important class, they have
to adapt these factors by trials. Therefore, these methods cannot rigorously han-
dle imbalanced data.

In order to rigorously handle imbalanced data, a Biased Minimax Probabil-
ity Machine (BMPM) [1] was proposed. In comparison with previous methods,
BMPM takes advantages of the worst-case probability theory and establishes an
explicit connection between the classification accuracy and the bias. It thus offers
an elegant way to incorporate the bias into classification by directly controlling
the real accuracy rather than intermediate factors. However, BMPM relies on
exclusively certain global information for each class, i.e., the first and second
order moments of data. Within the context of imbalanced learning, these global
information, in particular, the second order moment for the minority data will
be extremely unreliable due to its limited number.

Different from all the above mentioned approaches, in this paper, we propose
a new model called One-Side Probability Machine (OSPM) which enjoys both
the merits of BMPM and one important local learning method, i.e., Support
Vector Machine (SVM).1 When compared with the above-mentioned traditional
three types of methods, OSPM neither duplicates or removes samples from data
nor tunes those intermediate factors. It is also different from BMPM in that the
proposed OSPM exploits the reliable global information from one side only, i.e.,
the majority class, while engaging the robust local learning [3] from the other
side, i.e., the minority class. Similar to BMPM, OSPM presents a rigorous ap-
proach for imbalanced learning by directly tuning the accuracy of the majority
class, while solving elegantly the limitation of BMPM by combining the thoughts
of local learning for the minority class. This approach is appealing both theo-
retically and empirically on many aspects: (1) to our best knowledge, it is the
first model capable of learning from imbalanced data both locally and globally;
(2) it enjoys close theoretical connections with many other famous models, e.g.,
Maxi-Min Margin Machine [3], BMPM, and SVM; (3) an explicit connection

1 Readers could refer to [3] on why SVM is regarded as one typical local learning
model.



142 R. Zhang and K. Huang

between the classification accuracy and the bias is still immediately available,
making the model both rigorous and physically meaningful; (4) the involved op-
timization problem can be cast as a convex second order conic programming
problem, which can be efficiently solved with a global optimum guaranteed.

2 Notation and Biased Minimax Probability Machine

Notation. The notation of this paper largely follows that used in [1,3]. For sim-
plicity, we only consider the binary classification problem in this paper. Suppose
two random d-dimensional vectors x and y represent two classes of data, where x
belongs to the family of distributions with a given mean x̄ and a covariance Σx,
denoted as x ∼ (x̄, Σx); similarly, y belongs to the family of distributions with a
given mean ȳ and a covarianceΣy, denoted as y ∼ (ȳ, Σy). Here x, y, x̄, ȳ ∈ Rd,
and Σx, Σy ∈ Rd×d. In this paper, the class x also represents the important or
minority class and the class y represents the corresponding less important or
majority class. Given a training data set D consisting of nx and ny samples for
class x and y respectively, i.e., D = {x1,x2, . . . ,xnx ,y1,y2, . . . ,yny}, the objec-
tive of classification can be informally described to find an hyperplane {w, b}
(w 
= 0) so that a future data sample z could be correctly classified. Namely, if
w�z + b ≥ 0, z is classified as class x, otherwise as class y. Within the context
of imbalanced classification where the class x is more important than the class
y (usually nx � ny), we should maximize the accuracy of x while maintaining
acceptable the accuracy of y.

Biased Minimax Probability Machine. BMPM [1] involves the following
optimization problem:

max
α,β,b,w �=0

α s.t. inf
x∼(x̄,Σx)

Pr{wTx+ b ≥ 0} ≥ α , (1)

inf
y∼(ȳ,Σy)

Pr{wTy + b ≤ 0} ≥ β , β ≥ β0 . (2)

α means the lower bound of the probability (accuracy) for the classification
of future cases of the class x with respect all distributions with the mean and
covariance as (x, Σx); in other words, α is the worst-case accuracy for the class x.
Similarly, β is the lower bound of the accuracy of the class y. This optimization
achieves to maximize the accuracy (probability α) for the biased class x while
simultaneously maintaining the class y’s accuracy at an acceptable level β0.

BMPM obtains the biased classifier by directly controlling the real accuracy
β0 over the majority class. This presents a rigorous approach which distinguishes
it from traditional methods adapting intermediate parameters (cost matrices or
weights) based on trials. However, the optimization of BMPM exclusively relies
on the global information, i.e., the means x̄, ȳ and the covariances Σx, Σy. In
imbalanced learning, the more important class, or the minority class x contains
very limited number of samples, especially when compared with that of the
majority class y. This leads the mean x̄ and the covariance Σx are extremely
unreliable. Such drawback may limit the performance of BMPM. Targeting this
problem, we then propose the novel One-Side Probability Machine.
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3 One-Side Probability Machine

Model Definition. The model of OSPM is formulated as

min
w,b,ξ

1

2
||w||2 + C

nx∑
i=1

ξi s.t. (3)

w�xi + b ≥ 1− ξi, ∀i, 1 ≤ i ≤ nx , (4)

inf
y∼(ȳ,Σy)

Pr{w�y + b ≤ 0} ≥ β0 . (5)

In the above, we are trying to maintain the real test accuracy of the majority class
y using the constraint (5). Specifically, given the reliable mean ȳ, and covariance
Σy, the left part of (5) represents the worst-case accuracy for class y associated
with the hyperplane {w, b} among all possible distributions with the given mean
and the covariance for class y. This worst-case accuracy is required to be greater
than a pre-defined accuracy β0. For example, β0 could be set to 60%, meaning
that we would like to maintain the accuracy of the majority class acceptable at
the level of 60%. In comparison, the objective function and the constraint of (4)
simply borrows the idea of SVM: the minority class x should be classified as
correctly as possible by satisfying x in (4) and minimizing the “error”

∑nx

i=1 ξi
plus one regularization term 1

2 ||w||2 in (3). Note that the majority data affect
the decision plane by the single constraint (5). This significantly moderates the
negative influence caused by its overwhelming number of samples against the
minority class.

Observed from the above model, OSPM exploits a one-side probabilistic set-
ting only, which motivates the name of our model. Namely, we require its worst-
case accuracy is maintained at the accuracy of β0 merely for the majority or
less important side (class), since the global information ȳ, and covariance Σy

can be reliably estimated. As the number of the more important side (class) is
very limited, the global information associated with x will not be reliable. We
hence engage the robust local information, i.e., each single data point in (4). The
setting of focusing on the local information is called local learning [3,2]. In brief,
the proposed novel model utilizes both reliable global information and robust
local information. To the best of our knowledge, this is the first model which
learns from imbalanced data both locally and globally.

Connection with Biased Minimax Probability Machine. It is easily ob-
served that the proposed One-Side Probability Machine is closely linked with
BMPM. BMPM focuses on using global probabilistic information from both
sides, i.e., the means and covariances from both classes, while our proposed
model merely exploits one side probabilistic information from the majority class,
which is usually reliable. For the minority class, OSPM takes advantages of the
local learning, focusing on every single local point instead of unreliable global
information. This presents one big advantage over BMPM.
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Connection with Support Vector Machine. The model of SVM can be
described as

min
w �=0,b,ξ

1

2
||w||2 + C

nx+ny∑
i=1

ξi s.t. (6)

w�xi + b ≥ 1− ξi, ∀i, 1 ≤ i ≤ nx , (7)

−w�yi − b ≥ 1− ξj+nx , ∀j, 1 ≤ j ≤ ny . (8)

When the number of minority class is limited, the above optimization maximiz-
ing the full range of instances tends to classify all the samples as the majority
class. To alleviate the problem, the item of C

∑nx+ny

i=1 ξi is usually replaced as
Cx

∑nx

i=1 ξi +Cy

∑ny

i=1 ξi+nx so that different weights could be given to different
classes. However, without explicit connection between the trade-off parameters
Cx, Cy and the accuracy, it is difficult to precisely impose bias to the important
class. In comparison, the proposed OSPM directly controls the real accuracy
given by the parameter β0, presenting a more rigorous treatment on imbalanced
data.

Connection with Maxi-Min Margin Machine. Maxi-Min Margin Machine
(M4) presents the first model capable of learning from balanced data locally and
globally. Considering both the global information obtained from covariance ma-
trices Σx and Σy as well as local information from each local point, M4 success-
fully unifies the SVM, Minimax Probability Machine, and Linear Discriminant
Analysis into a common framework. However, M4 merely targets the balanced
data set. Similarly, given highly imbalanced data, the mean and the covariance
of the minority data could still be unreliably estimated. In comparison, the pro-
posed OSPM is designed specially for imbalanced data. It utilizes reliable global
information from the majority class, while engaging local information of each
specific data point from the minority class. To our best knowledge, OSPM is the
first model capable of learning from imbalanced data both locally and globally.

Optimization

Lemma 1. Given w 
= 0 and b, such that wTy + b ≤ 0 and β ∈ [0, 1), the
condition infy∼(y,Σy) Pr{wTy + b ≤ 0} ≥ β holds if and only if −b − wTy ≥
κ(β)
√

wTΣyw with κ(β) =
√

β
1−β .

The lemma can be proved according to the Marshall and Olkin Theory and the
Lagrangian Multiplier theory. The details can be found in [6] and [2]. By using
Lemma 1, we can transform the OSPM optimization problem as follows:

min
w,b,ξ

1

2
||w||2 + C

nx∑
i=1

ξi s.t. (9)

w�xi + b ≥ 1− ξi, ∀i, 1 ≤ i ≤ nx (10)

−b−wTy ≥ κ(β0)
√
wTΣyw (11)

where κ(β0) =
√

β0

1−β0
. (11) is directly obtained from (5) by using Lemma 1.
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The above optimization problem can easily be verified to be a jointly con-
vex problem with respect to w, b, and ξ or in particular, one Second Order
Conic Programming Problem (SOCP) [7]. First, the objective function (9) is
quadratically convex. Moreover, constraint (10) is linear. To better examine the
convexity of (11), we could always pre-process the data associated with y so
that the mean ȳ can be shifted to zero. It will then be easily seen that (11) is a
typical second-order convex constraint. In summary, the involved optimization
problem is a convex second-order conic programming problem, which could be
solved efficiently by many off-the-shelf softwares, e.g., Sedumi or CVX.

4 Experiments

In this section, we evaluate the performance of our proposed OSPM on three
real world imbalanced data sets in comparison with four other competitive ap-
proaches, i.e., the Naive Bayesian (NB) classifier, the k-Nearest Neighbor (k-NN)
method, the decision tree classifier C4.5, and the BMPMmodel in both the linear
(BMPML) and Gaussian (BMPMG) kernels. For brevity, we name the linear and
the Gaussian kernel versions of our proposed model as OSPML and OSPMG.
Following previous work [1,4], we engage the criterion of the Maximum Sum
(MS) of the accuracies on the majority class (True Negative) and the minority
class (True Positive), and the area of Receiver Operating Characteristic (ROC)
curve to conduct comparisons.

Evaluations on the Recidivism Dataset. A training set where 570 (27.5%)
individuals were recidivists and 970 (72.5%) were not and a test set with 1, 151
individuals as recidivists were released for the recidivism data set in the North
Carolina prison system [1]. We compare the performance of our proposed OSPM
model in both the linear (OSPML) and the Gaussian kernel setting (OSPMG),
with the above-mentioned four approaches. We run k-NN methods for k =
1, 3, 5, . . . , 21, but we only present the best three results for brevity. We present
the experimental results based on the MS and the ROC area criteria in Table 1
where Tn and Tp represent true negative and true positive respectively. The av-
erage, i.e., Tp+Tn

2 represents the MS criterion. To be more comparable, we show
the average of the accuracy for each class when each classifier attains the point

Table 1. Performance on Recidivism using the MS and ROC criteria

Method Tn (%) Tp (%) MS (%) Method Area Under ROC Curve (%)

NB 61.8 63.8 62.7 NB 66.5
k-NN(9) 62.6 54.6 58.6 k-NN(11) 61.6
k-NN(11) 62.4 55.4 58.9 k-NN(13) 61.9
k-NN(13) 55.7 62.0 58.9 k-NN(17) 61.5

C4.5 74.1 49.0 61.5 C4.5 63.8
BMPML 70.4 57.5 63.9 BMPML 68.4
BMPMG 72.0 57.8 64.9 BMPMG 68.0
OSPML 70.9 57.5 64.2 OSPML 68.8
OSPMG 72.9 57.5 65.2 OSPMG 68.9
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Table 2. Comparison based on the MS criterion on Breast-cancer and Heart

breast-cancer (%) heart (%)

Method Specificity Sensitivity MS Method Specificity Sensitivity MS
k-NN(11) 99.0 ± 0.5 96.2 ± 0.3 97.6 ± 0.3 k-NN(17) 76.5 ± 0.3 88.4 ± 0.2 82.5 ± 0.3
k-NN(17) 98.6 ± 0.9 96.6 ± 0.6 97.6 ± 0.5 k-NN(7) 77.5 ± 0.4 88.4 ± 0.4 83.0 ± 0.4
k-NN(7) 97.2 ± 0.7 97.5 ± 0.5 97.4 ± 0.6 k-NN(15) 75.1 ± 0.3 86.5 ± 0.4 80.8 ± 0.4

NB 93.7 ± 0.6 97.2 ± 0.5 95.4 ± 0.5 NB 78.6 ± 0.5 80.2 ± 0.3 79.4 ± 0.4
C4.5 93.8 ± 0.7 95.8 ± 0.7 94.8 ± 0.7 C4.5 88.3 ± 0.2 70.7 ± 0.2 79.5 ± 0.2

BMPML 96.8 ± 0.3 98.7 ± 0.2 97.8 ± 0.2 BMPML 85.5 ± 0.4 81.6 ± 0.1 83.5 ± 0.4
BMPMG 96.1 ± 0.2 99.2 ± 0.0 97.6 ± 0.2 BMPMG 84.0 ± 0.1 85.7 ± 0.2 84.9 ± 0.3

OSPML 96.9 ± 0.3 99.2 ± 0.2 98.1 ± 0.2 OSPML 85.8 ± 0.3 82.2 ± 0.2 84.0 ± 0.2
OSPMG 96.3 ± 0.2 99.6 ± 0.1 98.0 ± 0.2 OSPMG 84.7 ± 0.2 86.1 ± 0.3 85.4 ± 0.3

Table 3. Comparison based on the ROC analysis

breast-cancer (%) heart (%)
Method Area under ROC Curve Method Area under ROC Curve
k-NN(11) 99.1 ± 0.6 k-NN(17) 87.0 ± 0.4
k-NN(17) 99.0 ± 1.0 k-NN(7) 86.9± 0.5
k-NN(7) 98.9 ± 0.8 k-NN(15) 86.0 ± 0.4

NB 98.4 ± 0.6 NB 81.6 ± 0.3
C4.5 97.6 ± 1.2 C4.5 83.0± 0.4

BMPML 99.5 ± 0.2 BMPML 88.1± 0.6
BMPMG 99.6 ± 0.2 BMPMG 89.3± 0.4

OSPML 99.6 ± 0.2 OSPML 88.6± 0.5
OSPMG 99.7 ± 0.3 BMPMG 89.8± 0.4

of the maximum sum. As observed, in terms of both MS and the area of ROC,
the OSPML and OSPMG achieve the best performance. In comparison, except
OSPM, the BMPML and BMPMG achieve the highest results among all the
remaining algorithms. Our method further boosts the performance of BMPML
and BMPMG by solving the limitation of BMPM.

Evaluations on Disease Data Sets. Diagnosing diseases contains a very sim-
ilar characteristic to the imbalanced learning, since one class, often the disease
class needs to be given more bias than the other class. Therefore, the above
discussed model modifications will be automatically applicable for this kind of
tasks. In the following, we evaluate the performance of OSPM on two disease data
sets, namely, the Breast-cancer data and the Heart-disease data set, obtained
from UCI machine learning repository. In the context of diagnosing diseases,
the true positive rate is usually called sensitivity, while the true negative rate is
called specificity. Therefore, we should maximize the sensitivity while maintain-
ing the specificity acceptable. We randomly split the data for each data set into
a training set with 80% data and a test set with 20% data. We then construct
classifiers based on the training data set and perform evaluations on the test
data set. We repeat this procedure ten times and use the average of the results
as the performance metric.

We present the results based on the MS criterion in Table 2 for the breast-
cancer and the heart disease data set. As observed, the proposed model also
demonstrates a superiority to other four models. We also show the experimental
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results based on the ROC area analysis in Table 3. Similarly, our proposed
OSPML and OSPMG once again outperform the other comparison algorithms.

5 Conclusion

In this paper, we have proposed a novel model called One-Side Probability Ma-
chine (OSPM) that is specially designed for imbalanced learning. Different from
the previous approaches, OSPM can lead to a rigorous treatment on biased clas-
sification tasks. Importantly, the proposed OSPM exploits the reliable global
information from one side only, i.e., the majority class , while engaging the ro-
bust local learning [2] from the other side, i.e., the minority class. A series of
experiments demonstrated the effectiveness of our new model.
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Abstract. Constructing an informative and discriminative graph plays
an important role in the graph based semi-supervised learning meth-
ods. Among these graph construction methods, low-rank representation
based graph, which calculates the edge weights of both labeled and un-
labeled samples as the low-rank representation (LRR) coefficients, has
shown excellent performance in semi-supervised learning. In this paper,
we additionally impose twofold constraints (local affinity and distant re-
pulsion) on the LRR graph. The improved model, termed structure pre-
serving LRR (SPLRR), can preserve the local geometrical structure but
without distorting the distant repulsion property. Experiments are taken
on three widely used face data sets to investigate the performance of
SPLRR and the results show that it is superior to some state-of-the-art
semi-supervised graphs.

Keywords: Structure preserving, Low-rank representation, Semi-
supervised learning, Face recognition.

1 Introduction

Recently, semi-supervised learning (SSL) has received increasing attention be-
cause it can utilize both limited labeled samples and rich yet unlabeled samples.
The currently available semi-supervised methods can be roughly categorized into
four groups: generative models, low-density separation models, heuristic models
and graph-based models. In this paper, we focus our work on graph-based SSL
due to its empirical success in practice and computational efficiency.

Graph-based SSL relies on using a graph G = (V,E,W ) to represent data
structure, where V is a set of vertices in which each vertex represents a data
point, E ⊆ V ×V is a set of edges connecting related vertices and W is an adja-
cency matrix recording the pairwise weights between vertices. Usually, the graph
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is constructed using relationship of domain knowledge or similarity of samples.
Upon the graph is constructed, each sample spreads its label information to
its neighbors until a global stable state is achieved on the whole data set. Thus,
both labeled and unlabeled samples remarkably affect the construction of graphs
and how to construct a good graph for representing the data structure is criti-
cal for graph-based SSL. Recently, some commonly used graphs have been well
investigated, such as k nearest neighbors graph [10], graph for label propagation
based on linear neighborhoods (LNP) [11], �1 graph [5], sparse probability graph
(SPG) [6] and so on.

The �1 graph is motivated by which each datum can be reconstructed by the
sparse linear superposition of the training data [5] and the sparse reconstruction
coefficients are derived by solving an �1 optimization problem. Differing from
the sparse representation which enforces the representation coefficients to be
sparse, the semi-supervised low-rank representation graph (LRR) was proposed
for pattern classification [12]. However, the low rankness constraint can only cap-
ture the global mixture of subspaces structure while ignoring the local structure
of data. To compensate the drawback of LRR graph, we propose a structure
preserving low-rank representation based graph, which is imposed on twofold
constraints: local affinity and distant repulsion. Therefore, the proposed struc-
ture preserving low-rank representation can properly preserve the local affinity
structure without distorting the distant repulsion property.

The remainder of this paper is organized as follows. We present a brief review
of low-rank representation in section 2. In section 3, we propose the formulation
of structure preserving low-rank representation (SPLRR) model and its imple-
mentation which is based on the inexact ALM algorithm. Section 4 shows the
semi-supervised classification method used in this paper. Experiments on three
widely used face databases for evaluating the performance of SPLRR are illus-
trated in section 5. Conclusion is given in section 6.

2 Low-Rank Representation

Let X = [x1,x2, · · · ,xn] ∈ Rd×n be a set of data points in d-dimensional
space. We try to represent each sample in X based on the dictionary A =
[a1, a2, · · · , am] ∈ Rd×m using X = AZ, where Z is the representation coef-
ficients matrix. When the dictionary A is over-complete, there will be many
solutions to this problem. LRR seeks a lowest-rank solution by solving the fol-
lowing problem [8] (we use the data matrix X itself as dictionary):

min
z

rank(Z), s.t. X = XZ. (1)

The optimal solution to (1) is called the “lowest-rank representations” of data
X w.r.t. a dictionary X. However, this problem is NP-hard to solve due to the
discrete nature of rank function. Fortunately, we can convert (1) to following
convex optimization problem instead based on the work of [3]:

min
Z

||Z||�, s.t. X = XZ, (2)
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where || · ||� denotes the nuclear norm of a matrix [2], i.e., the sum of the singular
values of the matrix.

In real-world applications, data points are often noisy or even grossly corrupted.
Therefore, the corrupted data can be separated to two parts, i.e., X = XZ + E.
Thus, the affinity matrix Z can be obtained by solving the following problem:

min
Z,E

||Z||� + λ||E||�, s.t. X = XZ+E, (3)

where || · ||
 can be the �2,1 or �1 norm (in this paper we choose �1 norm). The
optimal solution Z� to problem (3) can be obtained via the Inexact Augmented
Lagrange Multiplier Method (ALM) [7].

3 Structure Preserving Low-Rank Representation

In this section, we propose the structure preserving low-rank representation
(SPLRR) model as well as its solution based on Inexact Augmented Lagrange
Multiplier Method [7]. SPLRR can properly preserve the local affinity structure
without distorting the distant repulsion property. The local affinity indicates
the local neighborhood correlation, which means that if xi and xj are close in
the original data space, their corresponding representation coefficients zi and zj
should be also close in the transformed space. The distant repulsion property
is inspired by the elastic embedding [4], which enforces the corresponding rep-
resentation coefficients of distant data points in the original space to be kept
distant in the transformed space.

3.1 Formulation of SPLRR

We first introduce the two constraints: local affinity and distant repulsion.
• Local affinity. To preserve the local geometrical structure in the coefficient

space, one may naturally hope that, if two data points xi and xj are close in
the intrinsic manifold, their corresponding representation coefficients zi and zj
should also be close to each other. This can be viewed as manifold assumption for
smoothness transition. Several methods can achieve this manifold-like property
and in this work we choose the graph regularization term which is similar to
graph regularized non-negative matrix factorization (GNMF) in [1]:

min
Z

1

2

n∑
i,j=1

wij ||zi − zj ||2 =
n∑

i=1

diiz
T
i zi −

n∑
i,j=1

wijz
T
i zj

=Tr(ZDZT )− Tr(ZWZT ) = Tr(ZL1Z
T )

(4)

where D is a diagonal matrix whose entries are column (or row, since W is
symmetric) sums of W , dii =

∑
j wij . We can compute the graph Laplacian

L1 = D −W, wij is the measure of affinity between xi and xj in the original
space. Here, we use the ‘HeatKernel’ formulation:

wij =

{
exp(−||xi − xj ||2/2t2), if xi ∈ Nk1(xj) or xj ∈ Nk1(xi),
0, otherwise,

(5)
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where Np(xi) denotes the set of p nearest neighbors of xi.
• Distant repulsion. This property enforces dissimilar data pairs in the orig-

inal space to be far apart in the embedded space. Here we use the identical
formulation with the ‘local affinity’ property as

min
Z

1

2

n∑
i,j=1

sij ||zi − zj ||2 = Tr(ZL2Z
T ), (6)

where L2 has similar property as L1 and

sij =

{ ||xi − xj ||2 exp(−||xi − xj ||2/2t2), if xi ∈ Nk2(xj) or xj ∈ Nk2(xi),
0, otherwise.

(7)

Integrating Eqs.(4), (6) into the low-rank representation model, we can get the
SPLRR model as follows:

min
Z,E

||Z||� + λ||E||1 + αTr(ZL1Z
T ) + βTr(ZL2Z

T ) s.t. X = XZ+E. (8)

3.2 Solution to SPLRR

Similar to [8], Eq.(8) can be transformed into the following equivalent problem
by introducing the auxiliary variable J:

min
Z,E

||J||�+λ||E||1 + αTr(ZL1Z
T ) + βTr(ZL2Z

T )

s.t. X = XZ+E and Z = J.
(9)

In order to efficiently solve the optimization problem (9), the ALM method [7]
is utilized. Thus, the Augmented Lagrange function w.r.t. (9) is:

min
Z,E,J,Y1,Y2

||J||� + λ||E||1 + αTr(JL1J
T ) + βTr(JL2J

T ) + 〈Y1,X−XZ−E〉

+〈Y2,Z − J〉+ μ/2
(||X−XZ−E||2F + ||Z − J||2F

)
.

(10)

Obviously, we need to optimize this problem over one variable with others fixed.
The subproblem w.r.t. each variable is convex and thus can provide correspond-
ing unique optimal solutions. The optimization method to SPLRR is summarized
in Algorithm 1. Note that, we give the relaxation of the objective when updating
variable J and the derivation of Eq.(13) is as follows:

L = min ||J||� + λ||E||1 + Tr
(
J(αL1 + βL2)J

T
)

≤ min ||J||� + λ||E||1 + ||J||F · ||αL1 + βL2||F · ||J||F
= min ||J||� + λ||E||1 + a〈J,J〉 (a � ||αL1 + βL2||F ).

(11)

For updating J while other variables fixed, we have

J = argmin ||J||� + a〈J,J〉 − 〈Y2 + μZ, J〉+ μ/2〈J, J〉
= argmin ||J||� + (a+ μ/2) 〈J,J〉 − μ〈Z+Y2/μ, J〉

= argmin
1

2a+ μ
||J||� + 1

2
||J − μ

2a+ μ

(
Z+

Y2

μ

)
||2F .

(12)

The SPLRR-based graph construction model is concluded in Algorithm 2.
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Algorithm 1. Solving Problem (8) via Inexact ALM

Input: Data matrix X; regularization parameters λ, α and β; parameters for con-
structing the affinity graph Laplacian and repulsion graph Laplacian.

Output: The affinity matrix Z.
Initialization: set Z = J = 0, E = 0, Y1 = Y2 = 0, μ = 10−6, M = 1010, ρ = 1.1
and ε = 10−8.
Construct the graph Laplacian L1 for local affinity and L2 for distant repulsion.
Repeat until converge:

• Updating J:

J = argmin
1

2a+ μ
||J||� + 1

2
||J− μ

2a+ μ

(
Z +

Y2

μ

)
||2F , a = ||αL1 + βL2||F

(13)

• Updating Z: Z = (I+XTX)−1(XTX−XTE+ J+ (XTY1 −Y2)/μ)
• Updating E: E = argmin λ

μ
||E||1 + 1

2
||E − (X−XZ+Y1/μ) ||2F

• Updating multipliers: Y1 = Y1 + μ (X−XZ−E) , Y2 = Y2 + μ (Z− J)
• Updating the parameter μ by μ = min (ρμ,M)
• Checking the convergence conditions

||X −XZ−E||∞ < ε and ||Z − J||∞ < ε

Algorithm 2. Graph construction based on SPLRR

Input: Data marix X, parameters for computing affinity graph Laplacian and repul-
sion graph Laplacian.

Output: The weight matrix of SPLRR based graph Z.
Normalize all the samples xi to �

2 unit norm.
Solve problem (8) using Algorithm 1. and get the optimal solution Z�.
Normalize each column of Z� via z�i = z�i /||z�i ||2 and shrink entries in Z� by θ.
Construct the graph weight matrix W by W =

(|Z�|+ (|Z�|)T ) /2.

4 Semi-supervised Classification

Denote Y = [(y1)T ; (y2)T ; · · · ; (yn)T ] ∈ Rn×c as the initial label matrix. If xi

is the unlabeled data, then yi = 0. If xi is labeled data in class k, then the k-th
element of yi is 1 and the other elements of yi are 0. Generally, graph based
semi-supervised learning models solve the following problem [13]:

min
Q

Tr(QT L̃Q) + Tr((Q−Y)TU(Q−Y)), (14)

where L̃ = D−1/2LD−1/2 is the normalized graph Laplacian, U is a diagonal
matrix with the i-th diagonal element to control the impact of the initial label
yi of xi, Q ∈ Rn×c is the label matrix to be solved. For fair comparison, we
simply set Uii = 1 for all algorithms in our experiments.

Taking the derivative of Eq.(14) w.r.t Q and setting it to zero, we have:

LQ+U(Q−Y) = 0 ⇒ Q = (L+U)−1 (UY). (15)
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5 Experiments

ORL, Extended Yale B and CMU PIE data sets are used in our experiments.

• ORL: There are 10 gray scale images for each of the 40 subjects. They were
taken at different times, varying the lighting, facial expressions and facial details.
Each face image is cropped and resized to 32×32.
• Extended Yale B: This database has 38 individuals, each subject having
around 64 near frontal images under different illuminations. We simply use the
first 50 cropped images of the first 20 individuals, and then resize them to 32×32.
• PIE: It contains 41368 images of 68 subjects with different poses, illumination
and expressions. We only use their images in five near frontal poses and under
different illuminations and expressions. The first 50 images of the first 20 subjects
are selected. Each image is manually cropped and resized to size 32×32.

Fig. 1. Sample images from ORL, Extended Yale B and CMU PIE data sets

Some sample images from these three face databases are shown in Figure 1.
For evaluating the performance of proposed model, we compare SPLRR with

some state-of-the-art graph construction models listed as follows:

• knn-graph: The number of nearest neighbors for KNN1 and KNN2 are 4
and 8 respectively. The distance is measured using heat kernel and the kernel
parameter is the average of squared Euclidean distances for all edged pairs.
• LNP [11]: We follow the pipeline of linear label propagation in to construct

the graph. The neighborhood size in LNP is set to 40 to achieve the best results.
• �1 graph [5]: The �1 regularization item λ is empirically set to 0.01. And the

�1 regularized least square problem is solved by l1-ls package.
• SPG graph [6]: we implement the SPG algorithm by setting nknn as 10% of

the size of data set and λ = 0.001.
• LRR graph [12]: the λ in LRR is set to an near optimal value 0.1.
• SPLRR graph: The number of nearest neighbors for ‘local affinity’ and

‘distant repulsion’ constraints are 4 and 20 respectively. The kernel parameter is
empirically set as 0.1×

√
−d̄/ ln{0.1/k} [9] (d̄ is the average of squared Euclidean

distances for all edged pairs on the graph, k is the neighbor number to construct
the neighborhood graph). The hyper-parameters λ, α and β are empirically set
as 0.5, 0.9 and 0.1 for all data sets.

For each face data set, we randomly select 10% to 60% face images per subject
as labeled samples and the rest as unlabeled samples. Tables 1 reports the face
recognition results on these three data sets.For each configuration, we conduct 50
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Table 1. Experimental results on ORL, Extended Yale B and PIE(mean±std-dev%)

ORL KNN1 KNN2 LNP L1-Graph SPG LRR SPLRR

10% 64.98±2.07 53.47±2.80 71.21±2.30 61.89±2.69 65.92±2.42 71.63±2.45 77.31±2.17

20% 74.07±2.71 63.97±2.69 82.01±2.20 76.16±2.73 78.74±1.98 83.67±2.12 87.73±2.17

30% 79.42±2.24 68.93±2.72 88.06±2.45 84.61±2.32 86.24±2.36 88.66±1.79 91.66±1.67

40% 81.16±2.43 71.64±2.82 91.43±1.68 89.31±1.90 90.72±1.64 91.35±1.72 94.11±1.84

50% 82.76±2.41 72.83±2.44 93.15±1.74 92.47±1.69 93.20±1.64 93.54±1.41 95.93±1.51

60% 83.23±2.20 74.75±2.69 94.69±1.64 94.25±1.59 95.46±1.50 94.46±1.55 96.94±1.38

YaleB KNN1 KNN2 LNP L1-Graph SPG LRR SPLRR

10% 73.04±1.62 55.82±2.91 86.22±1.52 77.69±1.74 82.92±1.62 87.18±1.35 92.96±0.98

20% 77.13±1.31 63.03±2.39 90.86±1.14 87.58±1.05 89.84±1.16 92.36±1.17 95.86±0.92

30% 80.12±1.38 67.29±1.91 92.45±0.72 92.13±1.15 92.75±0.99 93.98±0.99 97.31±0.65

40% 81.49±1.35 69.86±2.46 93.42±0.86 94.39±0.94 94.26±0.77 95.42±0.81 98.23±0.53

50% 83.50±1.43 72.24±2.45 93.85±0.82 95.90±1.03 95.59±0.72 96.13±0.82 98.75±0.42

60% 84.25±2.03 74.74±2.42 94.89±0.98 97.29±0.93 96.37±0.85 96.73±0.86 99.12±0.45

PIE KNN1 KNN2 LNP L1-Graph SPG LRR SPLRR

10% 49.38±2.83 40.09±2.11 67.50±2.77 63.60±2.35 65.29±2.16 75.93±2.05 77.07±2.32

20% 59.22±2.24 51.99±1.93 79.11±1.47 76.43±1.18 77.80±1.70 87.00±1.42 88.11±1.65

30% 64.69±1.73 60.76±1.77 83.54±1.73 82.93±1.44 83.82±1.26 90.33±1.17 91.20±1.23

40% 67.12±1.91 68.56±1.45 87.02±1.35 86.99±1.25 87.23±1.25 92.39±1.05 93.56±1.09

50% 69.87±2.09 75.11±1.10 89.08±1.38 89.34±1.02 89.35±1.41 93.79±1.11 94.60±1.04

60% 71.49±2.04 81.15±1.11 90.07±1.53 90.96±1.32 91.60±1.63 94.79±1.02 95.47±1.34

independent runs for each algorithm. The mean accuracy as well as the standard
deviation of the performance are reported.

From the experimental results, we can observe that: 1) The LRR based meth-
ods, both LRR and SPLRR, perform consistently well on three data sets, which
suggests that the LRR induced affinity matrix is efficient for semi-supervised
learning. Generally, LNP, L1-Graph and SPG have similar performances while
the baseline KNN graph has the lowest accuracy. 2) SPLRR graph consistently
achieves the lowest classification error rates over other graphs even with low
labeling percentages which can be observed from results on ORL and Extended
Yale B data sets. When there are only 10% labeled samples, SPLRR can still
obtain very high accuracies. This means the structure information of data set,
which should be preserved in transformation process, is important when building
an informative graph for semi-supervised learning.

6 Conclusion

In this paper, we have proposed a new graph construction model for semi-
supervised face recognition, called structural preserving low-rank representation
(SPLRR). SPLRR constructs the graph with preserving the structure of data
set, which enforces the local affinity property to be preserved without distort-
ing of the distant repulsion property. As a result, the proposed model derives
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a informative graph and shows the best performance in the comparison with
state-of-the-art methods for semi-supervised face recognition.
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Abstract. Domain adaptation, which aims to learn domain-invariant
features for sentiment classification, has received increasing attention.
The underlying rationality of domain adaptation is that the involved do-
mains share some common latent factors. Recently neural network based
on Stacked Denoising Auto-Encoders (SDA) and its marginalized version
(mSDA) have shown promising results on learning domain-invariant fea-
tures. To explicitly preserve the intrinsic structure of data, this paper
proposes a marginalized Denoising Autoencoders via graph Regulariza-
tion (GmSDA) in which the autoencoder based framework can learn
more robust features with the help of newly incorporated graph regular-
ization. The learned representations are fed into the sentiment classifiers
and experiments show that the GmSDA can effectively improve the clas-
sification accuracy when comparing with some state-of-the-art models
on the cropped Amazon benchmark data set.

Keywords: Domain Adaptation, Marginalized Denoising Autoencoder,
Graph Regularization.

1 Introduction

Sentiment analysis [9] aims to determine the attitude of a speaker or a writer
with respect to some topic or the overall contextual polarity of a document
which is now a popular application; however, it often suffers from cross domain
learning curse. To solve this problem, one solution is domain adaptation, which
can build classifiers that are robust to mismatched distributions [1] [8] [12].
This presents a major difficult in adapting predictive models. Recent work has
investigated techniques for alleviating the difference: instance re-weighting [8],
sub-sampling from both domains [5] and learning joint target and source feature
representations[4] [7] [12] [6].
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Learning domain-invariant features is under the assumption that there is a
domain invariant feature space [4] [2] [3] where the source and target domains
have the same or similar marginal distributions and the posterior distribution of
the labels are the same across domains. A deep model (SDA: stacked denoising
autoencoders) was proposed in [7] to learn domain-invariant features. Denois-
ing autoencoder [10] is a single layer neural network, whose output aims at
reconstructing the partially corrupted input. Denoizers can be used as building
block to construct deep architecture. The linearized version of SDA: marginal-
ized stacked denoising autoencoder (mSDA)[6], is computational economy with
a closed form solution and has few hyper-parameters to tune.

In real applications, the data is likely to reside on a low-dimensional am-
bient space. It has been shown that the geometrical information of the data
is important for pattern recognition. Though deep model has show promising
performance on domain adaption, it does not explicitly considers the intrinsic
structure of data. To compensate this drawback and simultaneously harness the
great power of feature learning of deep architecture, we propose a graph regular-
ized marginalized SDA, which considers the local manifold structure of the data.
The graph regularization term can be seen as a smooth operator for making the
learned features vary smoothly along the geodesics of the data manifold.

The remainder of this paper is organized as follows. Brief review on mSDA is
given in section 2. The proposed model, marginalized Denoising Autoencoders
via graph Regularization (GmSDA), is introduced in section 3. Section 4 eval-
uates our method on a benchmark composed of reviews of 4 types of Amazon
products and section 5 is conclusion.

Notation and Background. We assume the data originates from two domains,
source S and target T . We samples data DS = {x1, · · · ,xnS} ∈ Rd with ground
truth label LS = {y1, · · · , ynS}. For target domain, only data without labels
DT = {xnS+1, · · · ,xn} ∈ Rd are available. We do not assume that both use
identical features and pad all input vectors with zeros to make both domain
have same dimensionality d. The goal is to learn a classifier h ∈ H with labeled
data DS and unlabeled data DT to predict labels T of data in DT .

2 Marginalized Denoising Autoencoders

mSDA is a linearized version of SDA, in which the building block of mSDA is a
single layer denoising autoencoder. Given data points D = {x1, · · · ,xU} ∈ Rd ,
where D = DS

⋃DT , corruption is applied to them by random feature removal.
Then each feature has a probability p to be set to 0. Denote the corrupted version
of xi as x̃i. Reconstruction of corrupted input using mapping W : Rd → Rd is
equal to minimizing the squared reconstruction loss:

1

2n

n∑
i=1

||xi −Wx̃i||2. (1)

We can incorporate the bias into the mapping W = [W,b] with slightly mod-
ifying the feature as xi = [xi; 1]. And we assume that the constant feature is
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never corrupted. Considering a low variance, the m times passes over the input
are implied to corrupt different feature each time. Then the problem becomes to
solve the W which aims to minimize the overall squared loss:

1

mn

m∑
j=1

n∑
i=1

||xi −Wx̃||2. (2)

By defining the design matrixX = {x1, · · · ,xn} ∈ Rd×n, itsm-times repeated

version as X = [X, · · · ,X] and corrupted version of X as X̃, (1) can be reduced
to

1

2mn
Tr

[
(X−WX̃)T (X−WX̃)

]
, (3)

whose solution can be expressed as the closed form solution for ordinary least
squares:

W = PQ−1 with Q = X̃X̃T and P = X̄X̃T . (4)

Let m → ∞, denoising transform W can be effectively computed with in-
finitely many copies of noise data. By the weak law of large numbers, P and
Q converge to their mean values when m → ∞. Then the mapping W can be
expressed as:

W = E[P]E[Q]−1 with E[Q] =

n∑
i=1

[x̃ix̃
T
i ]. (5)

Off-diagonal entries in x̃ix̃
T
i are uncorrupted with the probability (1 − p)2,

while for diagonal entries, this holds with probability 1 − p. Denote a vector
q = [1 − p, · · · , 1 − p]T ∈ Rd+1, where qα and qβ represent the probabilities of
no corruption happen to the feature α and β respectively. Defining the scatter
matrix of the original uncorrupted input as S = XXT , the mean of Q can be
expressed as:

E[Q]α,β =

{
Sαβqαqβ if α �= β
Sαβqα if α = β.

(6)

Similarly, the mean of P can be expressed as

E[Q]α,β = Sαβqβ. (7)

Then the reconstruction mapping W can be computed directly. This is the
algorithm of the marginalized denoising autoencoder (mDA) [6].

Usually, the nonlinearity and the deep architecture is beneficial to feature
learning. The nonlinearity is injected through the nonlinear quashing function
h(·) after the reconstruction mapping W is computed. To perform the layer-wise
stacking, several mDA layers are stacked by feeding the output of the (t− 1)-th
mDA (after the squashing function) as the input into the t-th layer mDA.

3 Marginalized SDA with Graph Regularization

In this section, we present our graph regularized marginalized Stacked Autoen-
coder (GmSDA) model.
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3.1 General Graph Regularization Framework

As described in [11], a general class of graph regularization algorithms described
by the following optimization problem: given the data D = {x1, · · · ,xU} ∈ Rd,
we need to find a transformed representation f(xi) w.r.t. xi by minimizing

U∑
i,j=1

L(f(xi, α), f(xj , α),Wij) (8)

w.r.t. λ, subject to Balance constraint.
This type of optimization problem has the following main notations: f(x) ∈

Rn is the embedding one trying to learn from a given example x ∈ Rd. It
is parameterized by λ. In many techniques f(xi) = fi is a lookup table where
each example i is assigned an independent vector fi. L is a loss function between
pairs of examples. Each elementWij in W specifies the similarity or dissimilarity
between samples xi and xj . A balance constraint is often required for certain
object functions so that a trivial solution is not reached.

3.2 Marginalized SDA with Graph Regularization

We propose the mSDA based deep learning system with graph regularization to
learn domain-invariant features, which are used for training a linear SVM senti-
ment classifier. Our method can maximize the empirical likelihood (by DA) [10]
and preserve the geometric structure (by graph regularization) simultaneously.

Considering a graph with N vertices where each vertex corresponds to a data
point in the data set. The edge weight matrix S is usually defined as follows:

Sij =

{
1, if x̃i ∈ Np(x̃j) or x̃j ∈ Np(x̃i)
0, otherwise.

(9)

Np(xi) denotes the set of p nearest neighbors of xi. Let fi and fj be the
transformed representation (embedding) corresponding to x̃i and x̃j respectively,
where fi = Wx̃i, fj = Wx̃j , we hope to preserve the local structure of data by
minimizing the following equation:

1

2

n∑
i,j=1

||fi − fj ||2Sij = Tr(WX̃LX̃TWT ), (10)

where L is the graph Laplacian, which can be obtained by L = D − S. D is a
diagonal matrix whose entries are column (or row, since S is symmetric) sums
of S, Dii =

∑
j Sij .

By integrating this graph regularization term into the objective function of
mDA, we can get the objective function of the building block for our model:

argmin
W

1

2mn
Tr

[
(X̄−WX̃)T (X−WX̃)

]
+ Tr(WX̃LX̃TWT ), (11)

which can be solved analytically

W = P(Q+ λX̃LX̃T )−1, (12)
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where P and Q have the same definition in Eq.(3) and λ represents the pa-
rameter to balance the contribution of the graphic regularization. Follow the
marginalized configuration in Section 2. We can solved W in closed form as in
Eq.(4). The whole process of our GmSDA model is summarized in Algorithm 1.

Algorithm 1. mSDA via Graph Regularization (GmSDA)

Input: Data point D = {x1, · · · ,xU} ∈ Rd , where D = DS
⋃DT , number of

the layer l, corruption level p, number of nearest neighbors k, parameter
λ to balance the contribution of the graph regularizer

Output: hidden representation of l layer hl

Construct a weighted graphic S by KNN in Binary style;
Compute the graph Laplacian L;
Initialize X0 = D;
for t← 1 to l do

Compute X̃t−1X̃t−1T , X
t−1

X̃t−1T and X̃t−1LX̃t−1T ;
Solve Wt according to Eq.(12);
Compute ht = tanh(WtXt−1);
Define Xt = [Xt−1;h];

end

return hl

To apply GmSDA to domain adaptation, we first learn feature representa-
tion in an unsupervised fashion on the whole set including source domain and
target domain data. Then the output of all layers, after squashing function
tanh(Wtht−1), are combined with original features h0 to form new represen-
tations. Finally a linear SVM is trained on the new features.

4 Experiments

We evaluate GmSDA on the reduced Amazon reviews benchmark dataset [4]
together with several other related algorithms. This data set is more control-
lable and contains review from 4 type of domains: books, DVDs, electronics
and Kitchen appliances. For computational reasons, we followed the convention
of [7] and [6], considering only binary classification problem: whether a review
is positive or negative. The data is preprocessed as the setting in [4][6]. Our
experiments are using the first 5000 features.

We followed the experimental configuration in [6]: training a linear SVM on
the raw bag-of-words feature from the labeled source domain and test it on target
domain as the baseline. PCA (as another baseline) is used to project the entire
data set on to a low dimensional subspace where dense features are learned.
Another three type of features are also used to train a linear SVM: structural
correspondence learning (SCL) [4], 1-layers SDA [7] and mSDA[6].

We use Transfer Loss, Transfer Ratio and Transfer Distance [7] as metrics
for evaluating the performance of models.
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There are 4 parameters in GmSDA: the corruption level p, number of layers
l, number of nearest neighbors k and the balance parameter λ. k and λ are set
as 30 and 0.01 respectively in our experiments. p was selected with 5-fold cross
validation on the labeled data on source domain, following the setup in [6]. Near
optimal value p is obtained by this cross validation process for each domain.

Figure 1 displays the transfer loss across the twelve domain adaptation tasks.
The GmSDA outperforms all the compared models, achieving the best perfor-
mance. For some tasks, the transfer loss has negative results which denotes that
the learned features from source domain can train a better classifier than the
one trained on the original target domain. It is worth noticing that, GmSDA
achieves a lower transfer loss in ten out of twelve tasks than mSDA, indicating
that the learned features bridge the gap between domains.
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Fig. 1. Transfer losses on the Amazon benchmark of 4 domains: Books(B), DVDs(D),
Electronics(E) and Kitchen(K) by different methods
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Figure 2 shows the transfer ratio for different methods and here we consider
different layers of deep architectures as well. Compared with other methods, de-
noising autoencoder framework achieves better performance. In this framework,
the deep architectures outperform the shallow ones and GmSDA get the best
results. We can conclude that: 1). sharing the unsupervised pre-training across
all domains is beneficial; 2). preserving the geometric structure is helpful to learn
domain-invariant features; 3). deep architecture is better than the shallow one.
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Fig. 3. Transfer distance: GmSDA vs. mSDA on the Amazon benchmark

Figure 3 shows the PAD of GmSDA and mSDA. All the points located beyond
the blue line. It denotes that GmSDA features have bigger transfer distance
than mSDA feature, which means it will be easier to distinguishing two domains
with GmSDA features. We explain this effect through the fact that GmSDA is
regularized with graph. With the help of the graph regularization, geometrical
structure is exploited and the local invariance is considered, resulting a generally
better representation. This helps both tasks, distinguishing between domains and
sentiment analysis.

5 Conclusion

In this paper, we propose the mSDA based deep learning system with graph
regularization. It can learn domain-invariant features which are suitable for sen-
timent classification. With help of the deep DA framework, we can maximize
the empirical likelihood. Similarly, incorporating the graph regularization into
mSDA, we can preserve the geometric structure to incorporate prior knowledge.
This overcomes the shortcomings of most existing domain adaptation methods
which focus only one aspect of the data or shallow framework. We compare
our proposed approach against deep learning baselines over the reduced Ama-
zon review benchmark. The experiments prove that our approach significantly
outperforms all the baselines.
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Abstract. The Dendritic Cell Algorithm (DCA) is an immune algo-
rithm based on the behavior of dendritic cells. The DCA performance re-
lies on its data pre-processing phase which includes two sub-steps; feature
selection and signal categorization. For an automatic data pre-processing
task, DCA applied Rough Set Theory (RST). Nevertheless, the developed
rough approach presents an information loss as data should be discretized
beforehand. Thus, the aim of this paper is to develop a new DCA fea-
ture selection and signal categorization method based on Fuzzy Rough
Set Theory (FRST) which allows dealing with real-valued data with no
data quantization beforehand. Results show that applying FRST, in-
stead of RST, is more convenient for the DCA data pre-processing phase
yielding much better performance in terms of accuracy.

Keywords: Evolutionary Algorithm, Fuzzy Rough Set Theory, Feature
Selection.

1 Introduction

One of the emerging algorithms within the set of evolutionary computing al-
gorithms is the Dendritic Cell Algorithm (DCA) [1]. DCA is inspired by the
function of the natural dendritic cells. DCA has the ability to combine a series
of informative signals with a sequence of repeating abstract identifiers, termed
“antigens”, to perform anomaly detection. To achieve this and through the pre-
processing phase, DCA selects a subset of features and assigns each selected
feature to a specific signal category; either as “Danger Signal” (DS), “Safe Sig-
nal” (SS) or as “Pathogen-Associated Molecular Pattern”(PAMP). The result-
ing correlation signal values are then classified to form an anomaly detection
style of two-class classification. Technically and for an automatic DCA data
pre-processing task, Rough Set Theory (RST) [2] was introduced leading to the
development of various rough-DCA algorithms; namely RST-DCA [3], RC-DCA
[4] and QR-DCA [5]. Based on the RST concepts and to perform feature selec-
tion, the rough DCA algorithms keep only a set of the most informative features,
a subset termed reduct, that preserve nearly the same classification power of the
original dataset; and to assign each selected feature to its specific signal cate-
gory, the algorithms are based on the RST reduct and core concepts. The main
difference between the algorithms is that RST-DCA assigns the same attribute
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to both SS and PAMP signals. However, RC-DCA and QR-DCA assign different
attributes for SS and PAMP. Another main difference, is that QR-DCA looks
for a trade-off between generating good classification results and preserving the
lightweight of the DCA algorithm. More details about the algorithms can be
found in [3][4][5]. Nevertheless, in all these crisp rough algorithms, the use of
RST as a pre-processor technique is reliant upon crisp datasets; the feature
values of the input dataset have to be discretized beforehand. Consequently, im-
portant information may be lost as a result of quantization [6]. This information
loss may influence the rough-DCA algorithms, RST-DCA, RC-DCA, QR-DCA,
feature selection process by generating an incorrect set of selected attributes; as
a consequence, this will misguide the algorithms categorization phase by catego-
rizing the features to erroneous signal categories. As a result, this will influence
the algorithms classification process by generating unreliable classification re-
sults. To overcome the RST applicability restriction, Fuzzy Rough Set Theory
(FRST) was introduced in [7] as it provides the means of data reduction for crisp
and real-value attributed datasets which utilizes the extent to which values are
similar. FRST encapsulates the related but distinct concepts of vagueness (for
fuzzy sets) and indiscernibility (for rough sets), both of which occur as a result
of uncertainty in data; a method employing fuzzy-rough sets can handle this un-
certainty. Therefore, in this paper, we propose to develop a novel DCA version
based on a new feature selection and signal categorization technique. Specifically,
our new model, named FLA-DCA, is based on the framework of fuzzy rough set
theory for data pre-processing and more precisely on the use of the fuzzy lower
approximation (FLA); to guarantee a more rigorous data pre-processing phase.
The main contributions of this paper are to introduce the concept of FRST in
the DCA data pre-processing phase and to show how FRST can be applied to
search for the convenient features to retain and how it can be appropriate for
the categorization of each selected feature to its right type of signal. This will be
achieved by avoiding the information loss already discussed and by keeping the
attribute values unchanged with no need for a quantization process beforehand.

2 The Dendritic Cell Algorithm

DCA is a population based system, with each agent in the system is represented
as a cell. Each cell has the capacity to collect data items, termed antigens. For-
mally, the DCA initial step is the automatic data pre-processing phase where
feature selection and signal categorization are achieved. More precisely, DCA
selects the most important features, from the initial input database, and as-
signs each selected attribute to its specific signal category (SS, DS or PAMP).
Once data pre-processing is achieved and after calculating the values of the safe,
PAMP and DS signals [1], DCA adheres these three signal categories and antigen
to fix the context of each object (DC) which is the step of Signal Processing.
In fact, the algorithm processes its input signals (already pre-categorized) in
order to get three output signals: costimulation signal (Csm), semi-mature sig-
nal (Semi) and mature signal (Mat) [1]. A migration threshold is incorporated
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into the DCA in order to determine the lifespan of a DC. As soon as the Csm
exceeds the migration threshold; the DC ceases to sample signals and antigens.
The migration state of a DC to the semi-mature state or to the mature state is
determined by the comparison between cumulative Semi and cumulative Mat.
If the cumulative Semi is greater than the cumulative Mat, then the DC goes
to the semi-mature context, which implies that the antigen data was collected
under normal conditions. Otherwise, the DC goes to the mature context, signi-
fying a potentially anomalous data item. This step is known to be the Context
Assessment phase. The nature of the response is determined by measuring the
number of DCs that are fully mature and is represented by the Mature Context
Antigen Value (MCAV). MCAV is applied in the DCA final step which is the
Classification procedure and used to assess the degree of anomaly of a given
antigen. The closer the MCAV is to 1, the greater the probability that the
antigen is anomalous. By applying thresholds at various levels, analysis can be
performed to assess the anomaly detection capabilities of the algorithm. Those
antigens whose MCAV are greater than the anomalous threshold, which can be
automatically generated from the input data, are classified as anomalous while
the others are classified as normal.

3 Fuzzy-Rough Sets for Feature Selection

1) Basic Concepts: In the same way that crisp equivalence classes are cen-
tral to rough sets [2], fuzzy equivalence classes are central to the fuzzy-rough
set approach [7]. For typical applications, this means that the decision values
and the conditional values may all be fuzzy. The concept of crisp equivalence
classes can be extended by the inclusion of a fuzzy similarity relation S on
the universe, which determines the extent to which two elements are similar
in S. The fuzzy lower and fuzzy upper approximations become μRPX(x) =
infy∈UI(μRP (x, y), μX(y)) and μRPX(x) = supy∈UT (μRP (x, y), μX(y)). In the
presented formulae, I is a fuzzy implicator and T is a t-norm. RP is the fuzzy sim-
ilarity relation induced by the subset of features P : μRP (x, y) =

⋃
a∈P {μRa(x, y)}

where μRa(x, y) is the degree to which objects x and y are similar for feature
a. A fuzzy similarity relation can be constructed for this purpose, defined as:

μRa(x, y) = max(min( (a(y)−(a(x)−σa))
(a(x)−(a(x)−σa))

, ((a(x)+σa)−a(y))
((a(x)+σa)−a(x))), 0) where σa is the stan-

dard deviation of feature a. The fuzzy lower approximation contains information
regarding the extent of certainty of object membership to a given concept. The
fuzzy upper approximation contains information regarding the degree of uncer-
tainty of objects. The couple < P (X), P (X) > is called a fuzzy-rough set.
2) Reduction Process: To search for the optimal subset of features, the
fuzzy-rough reduct, the fuzzy positive region has to be calculated. Formally,
in the traditional RST, the crisp positive region is defined as the union of
the lower approximations. By the extension to the fuzzy principal, the mem-
bership of an object x ∈ U belonging to the fuzzy positive region can be de-
fined by: μPOSRP (Q)

(x) = supX∈U/QμRPX(x). Object x will not belong to the
fuzzy positive region only if the fuzzy equivalence class it belongs to is not
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a constituent of the fuzzy positive region. Using the definition of the fuzzy
positive region, the fuzzy-rough dependency function can be defined as follows:

γ
′
P (Q) =

∑
x∈U μPOSRP (Q)(x)

|U| . As with crisp rough sets, the dependency of Q on

P is the proportion of objects that are discernible out of the entire dataset.
In the present approach, this corresponds to determining the fuzzy cardinal-
ity of μPOSRP (Q)

(x) divided by the total number of objects in the universe. A
Fuzzy-Rough QuickReduct algorithm can be constructed for locating a fuzzy-
rough reduct based on this measure. According to Fuzzy-Rough QuickReduct
algorithm, the fuzzy dependency degree of the addition of each attribute to the
current fuzzy reduct candidate, R, (initially empty) is calculated, and the best
candidate is chosen. This process continues until the fuzzy dependency of the
subset equals the fuzzy dependency degree (consistency) of the entire dataset,
i.e., γ

′
R(D) = γ

′
C(D). A worked example on how to compute a fuzzy-rough

reduct using the Fuzzy-Rough QuickReduct algorithm, based on the fuzzy lower
approximation, can be found in [6].

4 FLA-DCA: The Solution Approach

4.1 The FLA-DCA Signal Selection Process

For antigen classification, our learning problem has to select high discriminat-
ing features from the original input database which corresponds to the antigen
information dataset. We may formalize this problem as an information table,
where universe U = {x1, x2, . . . , xN} is a set of antigen identifiers, the condi-
tional attribute set C = {c1, c2, . . . , cA} contains each feature of the information
table to select and the decision attribute D of our learning problem corresponds
to the class label of each sample. As FLA-DCA is based on the standard DCA
concepts, except for the data pre-processing phase, and since DCA is applied
to binary classification problems; then our developed FLA-DCA will be, also,
applied to two-class datasets. Therefore, the decision attribute, D, of the input
database of our FLA-DCA has binary values dk: either the antigen is collected
under safe circumstances reflecting a normal behavior (classified as normal) or
the antigen is collected under dangerous circumstances reflecting an anomalous
behavior (classified as anomalous). The condition attribute feature D is defined
as follows: D = {normal, anomalous}. For feature selection, FLA-DCA com-
putes, first of all, the fuzzy lower approximations of the two decision concepts
dk, for all attributes ci and for all objects xj ; denoted by μRci

{dk}(xj). Using

these results, FLA-DCA calculates the fuzzy positive regions for all ci, for each
object xj , defined as μPOSRci

(D)(xj). Based on these calculations and to find the

fuzzy-rough reduct, FLA-DCA starts off with an empty set and moves to calcu-
late the fuzzy dependency degrees of D on ci, defined as γ

′
ci(D); as presented in

Section 3. The attribute cm having the greatest value of fuzzy-rough dependency
degree is added to the empty fuzzy-rough reduct set. Once the first attribute cm
is selected, FLA-DCA adds, in turn, one attribute to the selected first attribute
and computes the fuzzy-rough dependency degree of each obtained attributes’
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couple γ
′
{cm,ci}(D). The algorithm chooses the couple having the greatest fuzzy-

rough dependency degree. The process of adding each time one attribute to the
subset of the selected features continues until the fuzzy-rough dependency de-
gree of the obtained set of features equals the fuzzy-rough dependency degree,
γ

′
C(D), of the entire database.

4.2 The FLA-DCA Signal Categorization Process

Our method has to assign, now, for each selected attribute, included in the
generated fuzzy-rough reduct, its definite and specific signal category; either as
SS, as DS or as a PAMP signal. The general guidelines for signal categorization
are based on the semantic of each signal category:

Safe signals : They certainly indicate that no anomalies are present.
PAMPs : They usually means that there is an anomalous situation.
Danger signals : They may or may not show an anomalous situation, however
the probability of an anomaly is higher than under normal circumstances.

Based on the immunological definitions stated above, it is clear that both
PAMP and SS are positive indicators of an anomalous and normal signal while
the DS is measuring situations where the risk of anomalousness is high, but there
is no signature of a specific cause. This problem can be formulated as follows:
Based on the semantics of the mentioned signals, a ranking can be performed for
these signals. More precisely, both SS and PAMP are more informative than DS
which means that both of these signals can be seen as indispensable attributes;
reflecting the first and the second ranking positions. To represent this level of
importance, our method uses the first obtained couple of features through the
fuzzy-rough reduct generation. On the other hand, DS is less informative than
PAMP and SS; reflecting the last and third ranking position. Therefore, our
method applies the rest of the fuzzy-rough reduct attributes, discarding the two
first selected attributes that are chosen to represent the SS and PAMP signals,
to represent the DS. More precisely, our method processes as follows:

As FLA-DCA has already calculated the fuzzy-rough dependency degree of
each attribute ci a part, γ

′
ci(D), FLA-DCA selects the first attribute cm having

the greatest fuzzy-rough dependency degree to form the SS as it is considered
the most informative first feature added to the fuzzy-rough reduct set. With no
additional computations and since FLA-DCA has already computed the fuzzy-
rough dependency degrees of each attributes’ couple γ

′
{cm,ci}(D) when adding,

in turn, one attribute ci to the selected first attribute cm that represents the SS,
FLA-DCA chooses the couple having the greatest dependency degree. More pre-
cisely, FLA-DCA selects that second attribute cr having the greatest γ

′
{cm,cr}(D)

among the calculated γ
′
{cm,ci}(D); to form the PAMP signal. Finally, the rest of

the reduct attributes are combined and affected to represent the DS as it is less
than certain to be anomalous. Once signal categorization is achieved, FLA-DCA
processes its next steps as the DCA does [1].
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5 Experimental Setup

To test the validity of our FLA-DCA fuzzy-rough model, our experiments are
performed on two-class, real-valued attributes, databases from [8]. In [5], a com-
parison between the rough DCA algorithms is performed and it was shown that
QR-DCA outperforms both RST-DCA and RC-DCA in terms of classification
accuracy. Another characteristic of QR-DCA is that it takes less time to process
than RC-DCA and RST-DCA. Therefore, in what follows we will compare our
new fuzzy-rough developed approach, FLA-DCA, to the QR-DCA crisp rough
algorithm.

Table 1. Description of Databases

Database Ref � Instances � Attributes

Sonar SN 208 61
Molecular-Bio Bio 106 59
Spambase SP 4601 58
Cylinder Bands CylB 540 40
Ionosphere IONO 351 35
Sick Sck 3772 30

For data pre-processing, FLA-DCA and QR-DCA uses FRST and RST, re-
spectively. For both approaches, each data item is mapped as an antigen, with the
value of the antigen equal to the data ID of the item. For all DCA algorithms,
a population of 100 cells is used. To perform anomaly detection, a threshold
which is automatically generated from the data is applied to the MCAVs. The
MCAV threshold is derived from the proportion of anomalous data instances of
the whole dataset. Items below the threshold are classified as class one and above
as class two. The resulting classified antigens are compared to the labels given
in the original datasets. For each experiment, the results presented are based on
mean MCAV values generated across a 10-fold cross validation. We evaluate the
performance of the mentioned DCA methods in terms of number of extracted
features, running time, sensitivity, specificity and accuracy which are defined
as: Sensitivity = TP/(TP + FN);Specificity = TN/(TN + FP );Accuracy =
(TP+TN)/(TP+TN+FN+FP ); where TP, FP, TN, and FN refer respectively
to: true positive, false positive, true negative and false negative.

6 Results and Analysis

In this Section, we aim to show that applying FRST, instead of RST, can avoid
the information loss caused by the mandatory step of data quantization. Fur-
thermore, we aim to show that by leaving the attribute values unchanged, our
proposed fuzzy-rough FLA-DCA algorithm is able to select fewer features than
the crisp rough QR-DCA approach, leading to better guide the FLA-DCA algo-
rithm classification task. This is confirmed by the results presented in Table 2.
For instance, from Table 2, we can notice that our new fuzzy-rough DCA model,



170 Z. Chelly and Z. Elouedi

Table 2. Comparison Results of the Rough DCA Approaches

Specificity(%) Sensitivity(%) Accuracy(%) Time(s) � Attributes
Database DCA DCA DCA DCA DCA

QR FLA QR FLA QR FLA QR FLA QR FLA

SN 92.79 96.90 89.19 95.49 90.86 96.15 7.79 9.41 22 10

Bio 79.24 92.45 77.35 86.79 78.30 89.62 5.25 8.47 19 9

SP 98.67 99.89 99.17 99.77 98.87 99.84 1976.05 2071.8 11 8

CylB 97.75 98.39 97.00 97.00 97.46 97.85 12.68 18.96 7 5

IONO 96.88 99.11 96.03 98.41 96.58 98.86 15.88 30.72 22 9

Sck 97.65 99.12 96.53 96.96 97.58 98.99 510.05 602.8 22 14

Fig. 1. Classifiers’ Average Accuracies

FLA-DCA, selects fewer features than the crisp rough DCA model, QR-DCA.
This is explained by the fact that FLA-DCA, by applying the Fuzzy-Rough
QuickReduct algorithm, incorporates the information usually lost in crisp dis-
cretization by utilizing the fuzzy lower approximation to provide a more informed
technique. For instance, applying FLA-DCA to the SN database, the number of
selected attributes is reduced by more than 50% (10 features) in comparison
to the number of features selected by QR-DCA, which is set to 22. Our FLA-
DCA new approach performs much better than traditional RST on the whole,
in terms of both feature selection and classification quality. For instance, when
applying the algorithms to the SN dataset, the classification accuracy of FLA-
DCA is set to 96.15%. However, when applying QR-DCA to the same database,
the accuracy is set to 90.86%. Same remark is observed for the specificity and
the sensitivity criteria. When comparing the results in terms of running time, we
can notice that the time taken by our FLA-DCA to process is a bit longer than
the time needed by QR-DCA to function. This is explained by the fact that our
FLA-DCA incorporates the fuzzy component in comparison to QR-DCA.

We have, also, compared the performance of our FLA-DCA to other classifiers
which are the Support Vector Machine (SVM), Artificial Neural Network (ANN)
and the Decision Tree (DT). The comparison made is in terms of the average
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of accuracies on the databases presented in Table 1. Fig.1 shows that that the
highest classification accuracy is noticed for our fuzzy-rough DCA new model,
FLA-DCA.

7 Conclusion and Future Work

A new hybrid DCA classification model based on fuzzy rough set theory is pro-
posed in this paper. Our fuzzy-rough model ensures a more rigorous data pre-
processing when dealing with datasets with real-valued attributes. Results show
that our FLA-DCA is capable of performing better its classification task than
the crisp rough model and other classifiers. As future work, we aim to boost
the DCA data pre-processing phase by extending the application of FRST to
databases with missing data.

References

1. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the
dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS,
vol. 4163, pp. 404–417. Springer, Heidelberg (2006)

2. Pawlak, Z.: Rough sets. International Journal of Computer and Information
Science 11, 341–356 (1982)

3. Chelly, Z., Elouedi, Z.: RST-DCA: A dendritic cell algorithm based on rough set
theory. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III.
LNCS, vol. 7665, pp. 480–487. Springer, Heidelberg (2012)

4. Chelly, Z., Elouedi, Z.: RC-DCA: A new feature selection and signal categorization
technique for the dendritic cell algorithm based on rough set theory. In: Coello
Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.)
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Abstract. Spiking networks are third generation artificial neural net-
works with a higher level of biological realism. This realism comes at
the cost of extra computation, which alongside their complexity makes
them impractical for general machine-learning applications. We propose
that for some problems, spiking networks can actually be more efficient
than second generation networks. This paper presents several enhance-
ments to the supervised learning algorithm SpikeProp, including reduced
precision, fewer subconnections, a lookup table and event-driven compu-
tation. The cputime required by our new algorithm SpikeProp+ was
measured and compared to multilayer perceptron backpropagation. We
found SpikeProp+ to use 20 times less CPU than SpikeProp for learning
a classifier, but it remains ten times slower than the perceptron network.
Our new networks are not optimal however, and several avenues exist for
achieving further gains. Our results suggest it may be possible to build
highly-efficient neural networks in this way.

Keywords: spiking neural networks, computational costs, efficiency.

1 Introduction

Within the vast field of neural networks, the term itself is most commonly asso-
ciated with the sigmoid multilayer perceptron (sometimes called a second gen-
eration network), and it is commonplace in today’s applications. Among other
branches of the field are spiking neural networks, which some consider to be the
third generation. Spiking networks simulate real neurons rather then emulate
them, computing membrane potentials through time. Maass has shown their
greater level of realism confers a greater representational ability [1].

As with simpler networks, there are numerous ways to make use of spik-
ing networks. Examples of learning rules discovered thus far include SpikeProp,
SpikeNet, ReSuMe and Tempotron. SpikeProp [2] is a general-purpose super-
vised machine learning rule whose behaviour is well understood after a decade’s
scrutiny. It uses the principle of error backpropagation first applied to the multi-
layer perceptron (Backprop) [3], using the same feedforward structure but work-
ing with spike times instead of abstract “activations”.

SpikeProp is time-stepped, meaning neuron states are calculated at small
time intervals called timesteps. Smaller timesteps better approximate continuous

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 172–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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neuron dynamics, however this comes with a computation penalty – halving the
timestep doubles the computation. Event-driven computation [4] and lookup
tables [5] are two ways researchers have tackled this problem. Spiking algorithms
are also more complex and entail many more parameters than Backprop. For
these reasons, spiking networks have not made inroads in the general machine-
learning community.

We propose that the heavy computational penalty of spiking networks can be
eliminated, giving way to high-efficiency artificial neural networks. Our reasoning
is that the brain’s networks are highly adapted to achieve unprecedented energy-
efficiency [6], something which spiking networks by their nature could reproduce.
Brain networks are relatively noisy and slow, yet are able to perform highly
complex processing, invoking only a fraction of their neurons at any time. A
more efficient alternative to established neural networks would be desirable in
view of the growing mountain of modern data.

In our work, we found SpikeProp to require up to two orders of magnitude
more processing time to achieve the same classification performance as Backprop.
This paper introduces several enhancements to the algorithm to reduce that
computational footprint, described in the next section. The section after outlines
our experiments comparing the new SpikeProp+ to SpikeProp and Backprop,
and the experimental environment in detail. In section 4 we present the results,
which are analysed in the Discussion along with their implications.

2 Methodology

A very brief description of SpikeProp is given here, details may be found in the
original paper [2]. Networks take the familiar input-hidden-output layer feedfor-
ward structure, with each layer fully connected to the next. Each connection is
composed of n subconnections or synapses, each with a weight and a progressive
delay. A spike emitted from a neuron evokes at each target neuron a post-synaptic
potential (PSP), scaled and delayed by each synapse. The PSP takes the form
of an alpha function in the original algorithm, but others have been proposed
[7]. The contributions of all PSPs are summed at the target neuron at every
timestep, causing it to emit its own spike when a threshold is crossed. Neuronal
dynamics after the first spike are ignored, since only its timing is used by the
algorithm.

Training inputs are preprocessed into spike times for the input neurons, and
the network is run for as many timesteps as required for all neurons to have
spiked. The difference between output spike times and suitably preprocessed
training values are squared and summed. Every weight is then adjusted in the
direction minimising this sum-squared-error. The process is repeated until con-
vergence in a manner essentially the same as Backprop [3].

2.1 Speeding Up SpikeProp

Here we describe the enhancements to SpikeProp used in this paper, which to-
gether comprise SpikeProp+. Shorthands used in the figures are in brackets.
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Alternate spike response functions (int-, tanh-). In earlier work we discovered
that using the spike response functions (SRFs) intalpha and tanh resulted in
quicker and more reliable convergence over the standard (alpha) [7]. Here we
find that they also convey computational benefits.

Unitary subconnections (-1). SpikeProp was intended to use a number of
synapses per link between neurons. We found that with an appropriate time
constant, a single subconnection performs just as well.

Lookup table (L). Many relatively slow floating point calculations can be
avoided by pre-calculating and storing the value of the spike response function
at every timestep over a fixed range (1000 steps here). These are stored in an
array for rapid lookup [5].

Winner-takes-all optimisation (W). We focus on classification in this paper,
with the output class indicated by the first output neuron to spike. Once that
has occurred, no further computation of the network is required. This is only
possible during the testing phase, since all output times are required by the
SpikeProp algorithm.

Event-driven simulation (E). Instead of calculating the sum of PSPs at every
every timestep, we can do this at a smaller number of event times. When a neuron
spikes, events indicating the future arrival of PSPs are entered into a priority
queue. The algorithm repeatedly removes the earliest event and calculates the
membrane voltage at that time. If superthreshold, a spike is recorded, enqueuing
further PSP events. If subthreshold, a second NEURON type event is enqueued,
with a linear prediction of the spiking timestep. As long as the derivative of the
SRF is monotonically decreasing (tanh only), the true first spiking timestep will
not be missed, however multiple events will occur as the prediction is iteratively
refined.

Coarse Timesteps (Sn). We found that despite the distorted dynamics, Spike-
Prop continues to function normally at timesteps as high as 1ms, depending on
the dataset. Our experience suggests that the limiting factor is the ability to
alias input patterns to separate timesteps.

Reducing convergence-testing (Tn). Since running a SpikeProp network is rel-
atively expensive compared to Backprop, we can test for convergence once every
n epochs while training. Testing half as often is unlikely to cause networks in
training to fail when they otherwise wouldn’t.

2.2 Measuring CPU Loading

When comparing networks of the same type, the number of epochs (one pass
over every training record) is commonly used to compare learning performance.
However, across algorithms this figure is not directly comparable because the
amount of computation per epoch can vary significantly. This discrepancy is
seen in [2], where SpikeProp needs three orders of magnitude fewer epochs than
Backprop while it would be expected to run more slowly.

To compare the two algorithms, we measured the cputime of each training
and testing run. Cputime is the amount of time a process is scheduled on a
processor core by the OS, which is mostly independent of other running tasks.
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It gives an accurate indication of the computational load of a program, which is
closely related to the energy it consumes [8]. Cputime is a better measure than
runtime, which can be influenced by other running tasks and multiprocessing.
The term “speed” refers to runtime, but we use all three terms loosely to refer
to computation.

Both SpikeProp and Backprop were implemented in the same program using
object-oriented C++. This was done to eliminate as many runtime environment
effects as possible, and by keeping the same network representation, observe only
algorithmic differences. All experiments were run on a 3 GHz Intel Core 2 Duo
CPU with 2GB RAM running Linux 3.5.0-31.

3 Experiments

Our experiments used two benchmark classification datasets, the Fisher Iris and
Wisconsin Breast Cancer datasets [9] (table 1). All datapoints in the datasets
used were scaled to [0..1] over the given ranges. These were then scaled to [-1..1]
for Backprop inputs and outputs, for the tanh activation function. For SpikeProp,
the datapoints were scaled and delayed to the intervals specified in table 2, and
quantized to the nearest timestep. All networks included a reference input neuron
whose value is always zero [10], and no biases were used. Backprop weights
were randomly initialized in the interval [-2..2], while SpikeProp weights were
initialized in [1..10] with thresholds equal to the number of incoming synapses
(“method 6”). Network output decoding uses a winner-takes-all encoding where
the earliest-firing (SpikeProp) or least-activated (Backprop) neuron codes for the
desired class. Online learning (weights updated after every record rather than
every epoch) was always used, for quicker learning [11]. Datasets were split in
two by de-interleaving, one each for training and testing.

The first experiment was to find the optimal value of the learning rate η for
each algorithm and best spike response function. These were indicated by the
fewest epochs required (with acceptable failure rate) to reach 95% classification
accuracy on the Iris dataset. Several values of learning rate were tried while
SpikeProp’s timestep was held at 0.1ms. Training was done for a maximum of
1000 epochs.

In the next experiment, we tested the efficacy of each SpikeProp enhancement
described in the previous section, separately and in aggregate. Our event-driven
algorithm requires the tanh SRF, so it was tried alongside intalpha. Timesteps of
0.1ms (if not mentioned) and 0.5ms were used. For unitary subconnections, we
used the best coding intervals, time-constants and learning rates found through
considerable parameter tuning (see table 2). For our final experiment, the two
best SpikeProp+ configurations were compared to Backprop on both datasets.

4 Results

The results of our experiments are presented in figures 1 – 3. The plot on the left
of each figure gives an idea of the convergence rate and success of each configu-
ration. The epochs required for each run are marked with a cross, giving an idea
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Table 1. Experimental datasets and network encoding. 16 records with missing data
were removed from the Breast Cancer dataset, leaving 683 records.

Dataset n Train n Test Missing Attrs. Outputs Network Neurons
Iris 75 75 0 4 3 5, 4, 3 12
WBC 342 341 16 9 2 10, 6, 2 18

Table 2. List of parameters used in experiments

Parameter Value Description
alpha16 int16 int1 tanh1

η 0.3 1 0.1 0.1 Learning rate
srf alpha intalpha intalpha tanh Spike response function [7]
τ 7 1 7 21 SRF time-constant
ϑ - Spike threshold (see text)

ΔTin 6 6 5 7 Input spike interval (ms)
ΔTout 6 6 7 7 Output spike interval (ms)
Tout 10 10 7 7 Output spike delay (ms)

reference neuron yes Additional input with spike time 0
inhibitory neurons 0 Inhibitory hidden neuron count

subconnections 16 16 1 1 Synaptic terminals per connection
weight_init_method 6 Weight init. method (see text)
weight_random_seed 1–20 Random seed for weight init.

negative weights yes Permit negative weights
max_steps 5000 Max. steps per simulation
timestep 0.1, 0.5 Simulation step size (ms)
target 95% accuracy Training target

max_epochs 1000 Epochs to wait for convergence

of their distribution, and the percentage of successful convergences are shown in
the bar chart at the bottom (e.g. figure 1a). On the right, the cputimes elapsed
for the training (red) and testing (green) phases are shown (e.g. figure 2b). Me-
dians were taken to avoid outliers skewing the data, and error-bars indicate one
standard-deviation. Plots were truncated to clearly display salient information.

The first experiment’s results are shown in figure 1, highlighting the heavy
computational cost of SpikeProp. Considering both the convergence data and
cputimes, the best learning rates were selected: 0.1 for Backprop (cputime 0.036s)
and 0.3, 1 and 1 for the SRFs alpha, intalpha and tanh respectively. With Spike-
Prop, intalpha is about twice as fast as the original alpha-function, tanh trailing
at about 50% faster. We therefore focused on intalpha and tanh.

Figure 2 presents the improvements of each of the SpikeProp enhancements
described in Section 2.1. (Testing cputime plots are overlaid on the training
plots, not added). From left to right, we see again that with the original 16
subconnections, switching from alpha to intalpha roughly halves training time
and it converges significantly better. Using intalpha hereafter, figure 2a shows
that raising the timestep from 0.1ms to 0.5ms comes at a severe penalty in
convergence, but improves training time slightly and more than halves the test
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Fig. 1. Selecting the best η and SRF. SPtanh never converged for η = 10.
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time (figure 2b). The WTA method produces a similar improvement in training
time, but only about 25% improvement in testing time. Testing for convergence
only every two epochs during training shows a roughly 10% benefit in train-
ing cputime, and obviously none for testing. Using a lookup table produces a
significant 40% speedup in both training and testing. Finally, using a single sub-
connection rather than 16 gives a drastic speedup of around 70% to both training
and testing. The int1-all setup more than halves this further, a mere 10% of the
int16, and a minute 5% of the alpha16 setup originally described by Bohte et
al. – a 20 times speedup. Notably, the earlier convergence penalty of the coarser
timestep is not seen.

Since the event-driven algorithm currently only works with tanh, we con-
ducted some further runs with it. With 16 subconnections, figure 2b shows the
algorithm gives a 15% speed gain. Dropping to one subconnection however, the
event-driven algorithm now takes 35% less training time and slightly improves
testing time. The second-to-last run includes all enhancements with a timestep of
0.1ms, which is then raised to 0.5ms in the last run. The former is a mere 17% of
the tanh16 setup, however this jumps over four times with the coarser timestep,
along with a big drop in convergence. Evidently the coarser timestep prevents
some of the enhancements from working with tanh. The best event-driven tanh
run is still twice as slow as the best (non-event-driven) intalpha one.

In the final experiment, the two best setups from the previous experiment
are compared against Backprop. Figure 3a shows a noticeable penalty in con-
vergence for SpikeProp+ on the Iris dataset. In figure 3b, the intalpha version
of SpikeProp+ has reduced to about 13 times Backprop in training, with the
tanh version trailing at 29 times. For this dataset, SpikeProp+ testing cputimes
are double that of Backprop but still tiny (figure 3c). On the WBC dataset,
SpikeProp+ is orders of magnitude worse in all respects besides convergence. It
is possible that parameter tuning needs to be repeated for the new dataset. All
converged algorithms had similar test accuracies with minimal variance (90%
Iris and 96% WBC).

5 Discussion

Our results show that SpikeProp will function several times faster with uni-
tary subconnections. Alternate spike response functions and sacrificing precision
with coarse timesteps also improve speed. SpikeProp performance was signifi-
cantly improved with a lookup table, as did our event-driven scheme in certain
conditions. Using these and other techniques in SpikeProp+, we were able to
slash the computation levels of SpikeProp by a remarkable 20 times. In the best
case, this still leaves SpikeProp+ about ten times slower than the multilayer
perceptron trained with backpropagation.

We have good reason to believe that the remaining gap can be closed. Al-
though considerable parameter tuning was needed to arrive at our best Spike-
Prop+ networks, they are unlikely to be optimal. The parameter space for
SpikeProp is large, and more insightful selection could achieve further gains.
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Our event-driven algorithm is also relatively inefficient; a better method would
minimise iteration and use the superior intalpha spike response function. Fur-
thermore, we have yet to implement improvements published by others [12,13],
though ultimately another spiking algorithm may prove more efficient.

This work holds promise for building spiking neural networks with better com-
putational efficiency than earlier networks. By importing properties like reduced-
precision and event-based computation from the brain, spiking networks could
take us a step towards that organ’s efficiency. This is essentially bringing another
level of biomimicry to artificial neural networks.
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Abstract. With the recent development of network and sensor technolo-
gies, vast amounts of data are being continuously generated in real time
from real-world environments. Such data includes in many noise, and it
is not easy to predict that distribution underlying the data in advance.
Probability density estimation is a critical task of machine learning, but
it is difficult to accomplish it for big data in the real world. For handling
such data, we propose a robust fast online multivariate non-parametric
density estimator. Our proposed method extends the kernel density es-
timation and Self-Organizing Incremental Neural Network. The experi-
mental results show that our proposed method outperforms or achieves
a state-of-the-art performance.

1 Introduction

With the recent increased development of network and sensor technologies, vast
amounts of data are being continuously generated in real time from innumerable
real-world environment. Such data are called “big data” and are expected to be
analyzed and utilized in many ways.

When analyzing data, a probability density estimator is often used, but it is
difficult to use this estimator with conventional methods for big data. Density
estimators for big data should satisfy the three conditions described below.

First, density estimators should be fast online learning methods that can se-
quentially learn samples. The essence of big data is the velocity of data genera-
tion. Vast amounts of data are generated very fast, which leads to accumulation
of large amount of data. Because these data are generated in real time on a
massive scale, they cannot be analyzed using batch learning methods.

Second, density estimators should be non-parametric approaches which do not
require an initial distribution underlying observed data to be supplied. The pur-
pose of analyzing big data is primarily for data mining and knowledge discovery.
In many cases, it is not easy to predict in advance the distribution underlying
the observed data. Therefore, we cannot make use of parametric density estima-
tors which assume that certain known distributions generate observed samples.
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If this assumed distribution does not correspond with the distribution of the
observed data, the estimators’ performance severely degrades.

Third, density estimators should have high levels of robustness. Data are gen-
erated from the real-world environments and often include noise. There are two
types of noise: (1) noise that must be realized via probability distributions, such
as the variance and fluctuation in a phenomenon; and (2) noise generated from
the environments, which have to be eliminated, such as outliers, abnormal sam-
ples, and samples generated from diffuse or non abundant distributions. The
function to eliminate noise (2) is robustness [1]. To analyze data from the en-
vironments, such analysis methods need high robustness because noise included
in training data results in over-fitting and a decrease in performance.

There is no conventional method that simultaneously satisfies these three
points. The typical non-parametric density estimation technique is kernel density
estimation (KDE) [2]. Given training samples {xi|xi ∈ Rd, i = 1, 2, · · · , N}, the
kernel density estimator is

p̂(x) =
1

N

N∑
i=1

KH(x− xi), (1)

where K is a kernel function. The Gaussian kernel

KH(x− μ) =
(
(2π)d|H |)− 1

2 exp
(−1/2 (x− μ)TH−1(x− μ)

)
(2)

is often used asK, whereH is a parameter called the bandwidthmatrix, whichma-
terially affects the performance of the estimator. Therefore, numerous optimiza-
tion approaches exist [3–5] However, because these methods are batch methods,
they cannot handle big data. With an increase in the size of the training data, the
time and space complexity of KDE increases. Furthermore, to attain high perfor-
mance, KDE requires many samples [3]. Hence, there is a trade-off between com-
plexity andperformance.There aremethods thatdecrease complexity to introduce

Fig. 1. Outline of proposed method: (a) learn samples online as networks of sample
prototypes; (b) determine the shape and size of each kernel on a node by the local struc-
ture of a network around the node; and (c) estimate the probability density function
as a linear combination of kernels.
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online learning [6, 7]. however, their training speed is not fast and they do not
have high robustness. equation (1) shows that if training samples include noises,
KDE locates kernels in noises, which in turn causes over-fitting and leads to the
decrease in performance. Kim et al. [1] consider KDE as one of the kernel meth-
ods and optimize it using robust estimation, and realize robust KDE. However,
this method is a batch method, and therefore cannot handle big data.

In this study, to handle big data, we propose a non-parametric density esti-
mation approach that accomplishes fast online learning and has high robustness.

2 Proposed Methods

Our proposed method is an extension of KDE and Self-Organizing Incremental
Neural Network (SOINN) [8,9]. The outline of our proposed method is illustrated
in Fig.1. Our method learns samples as prototype networks and estimate density
function using the networks.

2.1 Self-Organizing Incremental Neural Network

SOINN is a online learning method based on network structure of prototypes. It
can learns samples from noisy complex non-stationary distributions as a network
structure in which the number of nodes is much less than that of samples. It
doesn’t requires the initialization of the number of nodes and location of nodes;
therefore, it can be applied to incremental learning. There are some versions of
SOINN. In this paper, Adjusted SOINN [9] is called SOINN.

SOINN have been used for clustering method in many applications, but we
consider that SOINN’s networks has the information regarding sample distribu-
tion and it can be extended to density estimation.

When inputting a sample to SOINN online in real time, its nodes perform
competitive learning on the sample. On the basis of this, nodes are inserted,
deleted, and moved, and then edges are added and deleted as necessary. Then,
SOINN’s networks are updated to approximate samples distribution. Each node
is behalf of samples which are counted to the node in competitive learning. The
node is located on the mean of these samples. An Edge exists between nodes
when the frequency of samples between the nodes is relatively high and the
samples of which the nodes are representative scatter in the direction of the
edge. We perceive each node as a prototype that is representative of samples
around the node, and that the network around the node expresses the breadth
and direction of spread of the samples.

2.2 Density Estimator

Our proposed method estimates the density function by using information ex-
pressed by the SOINN’s networks shown above in 2.1.

The density estimator of our proposed method p̂(x) is defined as follows :

p̂(x) =
1

TN

∑
n∈N

tnKCn(x−wn) (3)
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Table 1. Definitions of variables and symbols

ξ Input sample. ψ(t) ψ(t) = 1/t. A function to decide a
coefficient of local optimization.N The set of all nodes.

E The set of all edges. E ⊂ N ×N . Θi The threshold of node i to create a
node and edge.Pi The set of nodes connected to

node i. λ A parameter for deleting nodes.
wi The positional vector of node i. agemax A parameter for deleting edges.
ti The winning times of node i in

competitive learning.
ρ A parameter for thresholds.
I Identity matrix.

ae The age of edge e. |S| The number of elements of set S

Algorithm 1. Learning algorithm

1: if initialization then
2: N ← {c1, c2} : c1 and c2 are samples selected randomly from learning data set.
3: E ← φ
4: end if
5: while There is ξ ∈ R

n. do
6: s1 ← arg minc∈N ||ξ −wc||
7: s2 ← arg minc∈N\{s1} ||ξ −wc||
8: Calculate thresholds Θs1 , Θs2 with equation (5)
9: if ||ξ −ws1 || > Θs1 OR ||ξ −ws2 || > Θs2 then

10: if ||ξ −ws1 || < Θs1
4

then
11: ts1 ← ts1 + 1
12: ws1 ← ws1 + ψ(ts1)(ξ −ws1)
13: else
14: N ← N ∩ {ξ}
15: end if
16: else
17: if (s1, s2) /∈ E then
18: E ← E ∩ {(s1, s2)}
19: end if
20: a(s1,s2) ← 0
21: a(s1,i) ← a(s1,i) + 1(∀i ∈ Ps1)
22: ts1 ← ts1 + 1
23: ws1 ← ws1 + ψ(ts1)(ξ −ws1)
24: delete edges Eold = {e | e ∈ E , ae > agemax}
25: delete nodes {i | ∃j, (i, j) ∈ Eold, |Pi| = 0}
26: end if
27: if the number of input signals is the multiple of λ then
28: delete nodes {i | |Pi| = 0}
29: end if
30: end while
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where TN =
∑

n∈N tn and K is the Gaussian kernel function equation (2). Our
proposed method locates kernels on nodes and estimates the density function
as a linear summation of kernels. The kernel located on node n is weighted by
winning times tn, where the number of samples represented by node n. The
covariance matrix Cn which decides the shape of Gaussian kernel is adaptively
determined by the network around node n. We refer to this the “local network
covariance matrix,” and define it as follows:

Cn =
1

TPn

∑
p∈Pn

tp(wp −wn)(wp −wn)
T , (4)

where TPn =
∑

i∈Pn
ti The local network covariance matrix is an extension of

the original covariance matrix. It approximates the spread of samples around n.

2.3 Learning Algorithm

Algorithm 1 shows the learning algorithm of our proposed method. One of the
extensions of the learning algorithm from SOINN is the decision-making part
regarding threshold regions which is arguably the most important part of the
SOINN algorithm to add new node and edge.

SOINN threshold region spreads in all directions, including the direction with-
out edges where samples relatively do not exist. This in turn can cause the algo-
rithm to create a long edge unrelated to the density of samples. This edge may
have harmful effects on the creation of networks which appropriately express
density.

To eliminate network distortion, our proposed method identifies threshold
region of a node conforming to the local structure of the network around the
node. Θi the threshold of node i is decided as follows:

Θi =
√
dTMd, (5)

where

d =
ξ −wi

||ξ −wi|| , M = Ci + ργI, γ =

⎧⎨⎩ min
p∈N\{i}

||wp −wi|| (Pi = φ)

1
|Pi|
∑

p∈Pi
||wp −wi|| (otherwise)

.

A threshold region of each node is a unit hypersphere transformed by its local
network covariance matrix.

3 Experiments

We conducted experiments to compare our proposed method with the state-of-
the-art methods in terms of robustness, learning time, and estimate accuracy.
All experiments were performed on a PC with 3.20 GHz CPU×8 and 8.00 GB
RAM; the implementation language was MATLAB.



Robust Fast Online Multivariate Non-parametric Density Estimator 185

3.1 Robustness

We evaluated the accuracy of estimate when methods learn from noisy data.
The training data we used were X ∼ f = (1 − α)f0 + αf1, where f0 is a true
distribution, and f1 is a contaminating distribution, with α being the propor-
tion of contamination. Each method learns X and estimates f0. We evaluated
how the accuracy of estimate changed as α increased. We used JS divergence
as our evaluation measure. True distribution f0(x) = N(x; t, 0.2 · I), where

t = [a, sin(3a)]
T
, a ∈ [−2, 2]. Contaminating distribution f1 is a uniform dis-

tribution whose range of each dimension is [−4, 4]. Training data consisted of
5,000 samples, whereas, test data consisted of 20,000 samples. For each value
of α, we conducted experiments 20 times and evaluated the mean. We compare
our proposed method with other three methods: an online approach of KDE
(oKDE) [7], a batch approach of KDE that optimize bandwidth matrix with
cross-validation via maximum-likelihood criterion (CVML) [5], a batch approach
of KDE that takes robustness into account (RKDE) [1]. Since RKDE requires
a bandwidth matrix optimized by other method, we used the bandwidth ma-
trix optimized by CVML for RKDE. Parameters of methods are set as follows:
λ = 300, agemax = 50, ρ = 0.1, Dth = 0.01.

Fig.2 shows the results of the experiments. When α = 0, our proposed method
achieved comparable performance to other methods. As α increased, the accu-
racy of oKDE and CVML decreased, but the accuracy of our proposed method
did not, which indicated that our proposed method has a high level of robustness.

3.2 Training Time

We evaluated increases in training time due to increases in the number of samples
in the training data. The experimental setup was the same as that in 3.1, but
the training data do not contain noise. Finally, the number of samples in the
training data was increased from 1,000 to 100,000.

Fig.3 is the experimental results. Fig.3(a) shows training time. Since CVML
that is a batch method takes too much time, we stopped the experiment of
CVML when the number of training samples was 10,000. Then, our proposed
method is approximately 1277 times faster than CVML. To learn 100,000 sam-
ples, proposed method is 47.6 times faster than oKDE.

Fig.3(b) shows training time increments. Online approaches incrementally
learn samples. We evaluated howmuch time each method took to learn additional
1,000 samples. training time increment of oKDE increases with the numbers of
samples learned thus far. Compared to this, increases in proposed method are
minimal, indicating that our proposed method has a high level of scalability.

3.3 Density Estimation of Real Data

We compared our proposed method with other methods used above in 3.1 in
terms of density estimation with real data-sets obtained from the UCI Machine
Learning Repository. We used data-sets named Iris, Pima, Wine, Wine Red,
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and Wine White. We conducted each experiment with samples from each class
of each data set; furthermore, samples were normalized by whitening. Next,
75% samples were randomly selected to be used to training data, whereas the
rest were used as test data. Each experiment was conducted 20 times, and we
evaluated the mean of the results of the data sets. The evaluation measure is
negative log likelihood, and the parameters of proposed method and oKDE are
set as follows: λ = 300, agemax = 50, ρ = 0.5, Dth = 0.1.
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Fig. 2. The experimental results eval-
uating robustness. We compared our
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Fig. 4. The experimental results of estimating density functions of real data. Evalua-
tion measure is negative log likelihood (NLL), and bar charts show the means of NLL;
error bars show the standard deviations of NLL.

Fig.4 shows the results of the experiments. The performance of our proposed
method with some data sets is superior to that of the other method, whereas
with some data sets, other methods outperform our proposed method. The per-
formance of our proposed method is comparable when standard deviations are
considered. The standard deviations of our proposed method are smaller than
those of the other methods, indicating that our proposed method was more sta-
ble than the other methods. These results show that our proposed method can
be useful in estimating density for real data.
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4 Conclusion

In this study, to handle big data, we proposed a robust fast online non-parametric
density estimation technique. Our proposed method decreases time and space
complexities by creating networks of sample prototypes along sample distribu-
tions. The experimental results show that our proposed method considerably
outperforms the state-of-the-art methods in terms of robustness and learning
times. Furthermore, our proposed method achieves a performance comparable
to that of other approaches in terms of estimate accuracy. Because it is difficult
to successfully handle noise in real time given huge amounts of data, analysis
methods that have high level of robustness and that can handle high-speed data
are necessary. In this respect, we feel that our proposed method has a consider-
ably broader range of applications.

Acknowledgement. This work was sponsored by Japan Science and Technol-
ogy Agencys CREST.
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Abstract. This paper studies a simple digital dynamical system that
can generate various spike-trains. In order to consider the steady and
transient states, we use two basic feature quantities. The first one is the
number of co-existing periodic spike-trains that can characterize richness
of the steady state. The second one is the concentricity of transition
to the periodic spike-trains that can characterize variation of transient
phenomena. Performing numerical experiments for two typical examples
based on the bifurcating neuron, basic classification of the dynamics is
considered.

Keywords: spiking neurons, digital dynamical systems, spike-train sta-
bility, nonlinear dynamics.

1 Introduction

This paper studies the digital spike-phase map (DPM) that is a simple digital
dynamical system from a set of one-dimensional lattice points to itself [1] [2].
Depending on parameters and initial condition, the DPM can generate a variety
of periodic spike-trains (PSTs) and transient spike-trains (TSTs) to the PSTs.
Motivations for studying the DPM are many, including the following. First, the
DPM can be a simple example that can contribute to develop study of digital
dynamical systems [3]-[5]. The DPM is a digital version of the analog maps that
have been contributed to develop study of analog dynamical systems [6]. Second,
the spiking signals play important roles in various systems. Analysis of the spike-
trains is basic for considering spike-based information processing functions and
for developing spike-based engineering applications, e.g., signal processing, spike-
based communication, modeling and neural prosthesis [7]-[12]. Third, the DPM
has advantages such as robust hardware implementation by the digital circuits
and precise computer-aided design/analysis of the circuits. The DPM can have
a huge variety of configuration and can output various spike-trains. The results
of the analysis can be basic information for modeling various spiking neuron
dynamics and for design of reconfigurable hardware of spike-train [8] [9] [13].

In order to consider the spike-trains, we use two basic feature quantities. The
first quantity is the number of co-existing PSTs (#PST). The DPM can have
plural PSTs and exhibits either of them depending on the initial condition. The
#PST can characterize richness of the PSTs. The second quantity is the con-
centricity of transition to the PSTs (Ct). This quantity can characterize variety
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of the transient phenomena. This quantity is based on the concentricity of state
transition in random neural networks [14]. We then analyze DPMs based on ana-
log spike-phase map (APMs) of the bifurcating neuron (BN). The BN is a sim-
ple spiking neuron model that can output various periodic/chaotic analog spike
trains. Especially, we consider two kinds of DPMs: the first DPM is based on
smooth APM and the second DPM is based on a piecewise linear (PWL) APM.
Performing numerical experiments for the DPMs, we give basic classification of
the spike-train dynamics. As a typical example, the first DPM (respectively, the
second DPM) has a large number of different PSTs (respectively, similar PSTs)
in the case where the smooth APM (respectively PWL APM) exhibits chaotic
spike-train. Note that our previous papers do not discuss the second quantity
and comparison of the two kinds of DPMs.

2 Digital Spike-Phase Maps

The digital spike-phase map (DPM) is defined by

θn+1 = f(θn), f : L1 → L1, L1 ≡ {l1, l2, · · · lN}, li ≡ i− 1

N
, i = 1 ∼ N (1)

where f is a mapping from a set of lattice point L1 and θn is the n-th digital
spike-phase in the normalized period 1. Iteration of f generates the sequence of
the phases {θn}. Since each of N lattice points has one image, the DPM has NN

variations and can exhibit various phenomena. Using the phases, we define the
digital spike-train

Y (τ) =

{
1 for τ = τn
0 for τ 
= τn

τn = θn+n−1 ∈ {l1+n−1, · · · , lN +n−1} ≡ Ln (2)

For the DPM, we give basic definitions of the steady state. A point p ∈ L1 is
said to be a periodic point (PEP) with period k if p = fk(p) and f(p) to fk(p)
are all different where fk is the k-fold composition of f . The PEP with period
1 is referred to as a fixed point. A sequence of the PEPs {p, f(p), · · · , fk−1(p)}
is said to be a periodic orbit (PEO) with period k. Note that a PEP with
period k corresponds to one PST with period k and that a PEO with period k
corresponds to k PSTs. Figure 1 shows an example of the DPM. As shown in the
figure, the one fixed point corresponds to one PST, the one PEO with period 2
corresponds to 2 PST and one PEO with period 3 corresponds to 3 PSTs. This
correspondence is different from analog 1D map whose one PEO corresponds
to one steady state [6]. In general, one PEO with period k consists of k PEPs,
{f(p), · · · , fk(p)}. Each PEP can be an initial spike position in L1 that gives one
PST with period k {τ1, · · · , τk} such that

τ1 = fm(p) ∈ L1, τ2 = fm(p) + 1 ∈ L2, · · · , τk = fm+k(p) + (k − 1) ∈ Lk (3)

where m = 1 ∼ k and τk+1 = τ1+k. Each of these PSTs is coincident with other
ones by phase shift.
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Next, we give basic definitions of the transient state. A point q ∈ L1 is said
to be an eventually periodic point (EPP) with step k if the q is not a PEP but
falls into some PEP p after k steps: fk(q) = p. An EPP corresponds to an initial
spike-position that gives a transient spike-train to the PST. The EPP represents
a TST and characterizes the domain of attraction to the PST. Figure 1 shows
an EPP that fall into the PEP with period 2. Corresponding TST is also shown.

3 Basic Feature Quantities

In order to analyze dynamics of the DPM and PST, we introduce two basic
feature quantities. The first quantity is a basic one: the number of PSTs (#PST)
that can characterize richness of the steady state. #PST is given by the number
of PEPs of the DPM.

#PST = #{PEPs of f} (4)

EPP

PEO

(b’)

(d)

(a)

(b)

(c)

Fig. 1. Digital spike-phase map (DPM). The fixed point (black), the blue PEO with
period two, and the red PEO with period three correspond to one PST in (a), two PSTs
in (b), and three PSTs in (c), respectively. Eventually periodic point (l14) corresponds
to the TST in (b’). (d) Distribution of EPPs. #PST=6, Ct = 30/6 = 5. The 1st PEP
is l0 with 1 EPP (M1 = 1), the 2nd PEP is l2 with 2 EPPs (M2 = 2), the 3rd PEP is
l5 with 2 EPPs (M3 = 2), the 4th PEP is l8 with 8 EPPs (M4 = 8), the 5th PEP is
l10 with 1 EPP (M5 = 1) and the 6th PEP is l13 with 2 EPPs (M5 = 2),
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The DPM can have plural PSTs and exhibits one of them depending on the
initial condition. Figure 1 illustrates an example of the DPM where #PST=6.

The second quantity is the concentricity of EPPs that can characterize the
variation of the domain of attraction. In the case where the DPM has Np PEPs
corresponding to Np PSTs, let Mi denote the number of EPPs that fall into the
i-th PEP where i = 1 ∼ Np. Figure 1 illustrates distribution of the EPPs for
Np = 6. The second quantity is the 2nd moment of the distribution of the EPPs:

Ct =
1

Np

Np∑
i=1

M2
i (5)

Figure 1 (d) illustrates a distribution of EPPs. This DPM gives Ct = 30/5.
We refer to Ct as the concentricity of spike-position transition. This quantity is
based on the concentricity of state transition in random neural networks [14].

4 Examples Based on the Bifurcating Neurons

We introduce a typical example of the DPM based on the BN that a simple
spiking neuron model. Repeating integrate-and-fire behavior between the con-
stant threshold and periodic base signal b(τ) as shown in Fig. 2, the BN can
output various chaotic/periodic spike-trains [15] [16]. Let τn denote the n-th
spike-position of the BN with base signal b(τ) with period 1. Let θn = τn mod 1
be the n-th spike-phase. The spike-phase is governed by the analog spike-phase
map (APM)

θn+1 = θn + 1− b(τn) mod 1 ≡ ga(θn) (6)

where θn ∈ [0, 1) and b(τ) = b(τ + 1). |b(τ)| < 1 is satisfied for all τ . Note
that the BN can output various spike-trains depending on the shape of b(τ).
This APM is a typical example of nonlinear dynamical systems that can exhibit
various peiorid/chaotic phenomena. For simplicity, we consider two examples: a
sinusoidal base signal b1(τ) = −k sin 2πτ and a PWL triangular base signal

b2(τ) =

{−4kτ for − 1
4 ≤ τ < 1

4
4k(τ − 1

2 ) for 1
4 ≤ τ < 3

4

for 0 ≤ τ < 1, b2(τ) = b2(τ + 1) (7)

where 0 < k < 1. Figure 2 shows dynamics for these base signals. Figure 3 shows
examples of the APMs. For the sinusoidal base signal b1(τ), the APM is smooth.
As k increases, the stable fixed point is changed into chaotic orbit via period
doubling bifurcation. For the triangular base signal b2(τ), the APM is piecewise
linear. As k increases, the stable fixed point is changed suddenly into chaotic
orbit. The stable fixed point corresponds to a stable periodic spike-train with
period 1. In the same manner as the APMs, the stable periodic spike-train of
the BN is changed into chaotic/periodic spike-trains.

Discretizing the APM, we obtain the DPM:

θn+1 =
1

N
INT(Nga(θn) + 0.5) ≡ gd(θn) (8)
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where θn ∈ L0 and INT(X) means the integer part of X . This is a concrete
example of the DPM defined in Eq. (1). As N varies, the dynamics of the DPM
varies in extremely complex ways. For simplicity, this paper studies the case
N = 128. Figure 5 (a) shows the DPM for N = 128 corresponding to the APM
of sinusoidal base signal in Fig. 4 (b). This smooth APM exhibits chaotic orbit
whereas the corresponding DPM has 22 PEPs (22 PSTs). Figure 5 (b) shows the
DPM for N = 128 corresponding to the APM of triangular base signal in Fig. 4
(d). This PWL APM exhibits chaotic orbit whereas the corresponding DPM has
42 PEPs (42 PSTs). In general, as compared with the APMs, the DPMs tend
to have larger number of steady state (PSTs) and exhibit either one depending
on the initial state.

5 Basic Classification

We try to give basic classification of the DPMs using the feature quantities: the
number of PSTs (#PST = #PEP) and concentricity of transition to the PSTs
(Ct). Although detailed classification is hard, this paper shows two cases: simple
dynamics and complex dynamics.

Case 1: #PST is small and Ct is very large. In this case, almost all initial
states fall into a small number of PST (PSP) and the TSTs concentrate into
small number of PSTs. A long transient phenomenon can exist. Figure 4 shows
typical examples. In the figure, orbits started from almost all EPP fall into one
fixed point. In the sinusoidal base signal b1(τ) for k = 0.159 and the triangular
base signal b2(τ) for k = 0.375, the APM has one stable fixed point (Fig. 3
(a) and (c)) whereas DPM has two fixed points (Fig. 4 (a) and (b)). In the
DPM, orbit from all the EPPs fall into the one fixed point at lattice l63. The
distribution of the number of EPPs (Mi) is almost δ function and Ct is very
large. The corresponding steady state PST consists of equidistant inter-spike
intervals with period 1. In these examples, dynamics based on the sinusoidal
and triangular bases are the almost same.

Case 2: #PST is large and Ct is (very) small. In this case, the DPM has a
large number of PSTs and exhibits either PST depending on the initial states.
That is, the DPM can have rich PSTs. The distribution of the number of EPPs
(Mi) does not concentrate into a small number of PEPs (PSTs). The domains of
attraction are not wide, however, some transients can be long. Such a situation
may be suitable for spike-based coding with error correction function. Figure
5 shows typical examples in this case. In the sinusoidal base signal b1(τ) for
k = 0.705, the APM exhibits chaotic orbit ( Fig. 3 (b) ) whereas the DPM has
22 PSTs (Fig. 5 (a)): two PSTs with period 4, two PSTs with period 3, three
PSTs with period 2 and two PSTs with period 1 (fixed points). In the triangular
base signal b2(τ) for k = 0.705, the APM has chaotic orbit (Fig. 3 (d)) whereas
DPM has 44 PSTs (Fig. 5 (b)): 20 PSTs with period 20 and 2 PSTs with pe-
riod 1 (fixed points). The distribution of the number of EPPs (Mi) is shown in
Fig. 5 and Ct is small. Note that the sinusoidal-based DPM and triangular-based



Digital Dynamical Systems of Spike-Trains 193

0           1             2            3

1

0

0           1             2            3

1

0

Fig. 2. Integrate-and-fire dynamics of the bifurcating neuron (BN) with (a) sinusoidal
base signal b1(τ ) and (b) triangular base signal b2(τ )

(b) (d)

(a) (c)

Fig. 3. Examples of analog phase maps (APMs). sinusoidal base signal b1(τ ): (a) k =
0.159, (b) k = 0.705. Triangular base signal b2(τ ): (c) k = 0.375, (d) k = 0.705.

DPM have differences. First, except for the fixed points, the number of PEO is
6 and 2. The triangular-based DPM has large number of PSTs, however, they
are coincident to each other by phase shift. Second, the distribution of Mi of the
sinusoidal-based DPM has larger variation (a variety of domains of attraction)
than the triangular-based DPM. Note that the DPMs can exhibit a huge variety
of dynamics (#PST and Ct vary in a very complex way) as k varies. However,
the analysis is very hard and will be considered in the future.
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(a) (b)

Fig. 4. Typical DPMs corresponding to APMs with stable fixed point. (a) k = 0.159,
#PEP=#PST=2, Ct = 8065 (b) k = 0.375, #PEP=#PST=2, Ct = 8065

(a) (b)

Fig. 5. Typical DPMs corresponding chaotic APMs. The PEOs are distinguished
by their colors. (a) k = 0.705, #PEP=#PST=22, Ct = 108.9 (b) k = 0.705,
#PEP=#PST=42, Ct = 11.1
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6 Conclusions

Typical dynamics of the DPM has been studied in this paper. Using the two
feature quantities, #PST and Ct, two examples of the DPM have been analyzed
and basic classification of the dynamics has been given. Especially, in the case
where the APM exhibits chaotic spike-train, the corresponding DPM can exhibit
a variety of PSTs.

Future problems include analysis of bifurcation phenomena of the DPMs,
classification of PSTs with coding capabilities and hardware implementation for
engineering applications.
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Abstract. Multiple time-scales recurrent neural network (MTRNN) model is a 
useful tool to record and regenerate a continuous signal for a dynamic task. 
However, the MTRNN itself cannot classify different motions because there  
are no output nodes for classification tasks. Therefore, in this paper, we propose 
a novel supervised model called supervised multiple time-scales recurrent  
neural network (SMTRNN) to handle the classification issue. The proposed  
SMTRNN can label different kinds of signals without setting the initial states. 
SMTRNN provided both prediction and classification signals simultaneously 
during testing. In addition, the experiment results show that SMTRNN success-
fully classifies a continuous signal including multiple kinds of actions as well 
predicts motions. 

Keywords: Human action, SMTRNN, continuous time-scales recurrent neuron 
network, classification. 

1 Introduction 

Human action classification plays an important role in human-computer interaction 
(HCI). Humans can easily recognize the activities of other humans but it is still a 
challenging task for artificial intelligent systems to do so via mathematical and com-
putational algorithms even with advanced sensor systems. In literature, vision-based 
recognition has been proved to be an efficient method for human motion classification 
[9]. Hidden Markov Model (HMM) is considered to be one of the traditional dynamic 
models to recognize motion sequences [8, 12]. 

On the other hand, some researchers [10, 13] try to use the “behavior compositio-
nality” [11] to recognize various kinds of actions based on the trajectories sequences. 
Based on this idea, Yamashita and Tani [14] proposed a neural-dynamic model  
referred to as multiple time scale recurrent neural networks (MTRNN) to imitate the 
human motor control system. The MTRNN is an extension of continuous timescale 
recurrent neural networks (CTRNN) [4] and can predict a continuous signal. The 
MTRNN possesses an important feature called “self-organization”. It is a phenome-
non in which a global coherent structure appears in a system not by a central authority 
but by local interactions among elements of the system [5]. Further research on 
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MTRNN [1, 7] validates its ability to generate some untrained continuous signal 
based on the existing knowledge. 

MTRNN is also applied in signal classification. In [15], the authors use a conven-
tional neural network to analyze the values of slow context units in MTRNN. In  
addition, they try to use the prediction error to classify known and unknown sound 
signals. Even though, the experimental results show that different signals are classifi-
able, they concede that their method based on a 3-layer neural network is inefficient 
to extract information from slow context units. 

By assigning different initial states, MTRNN can easily estimate multiple kinds of 
signals. However, the estimation performance of MTRNN depends on the accuracy of 
the initial states corresponding to the signal in both training and testing. The problem 
of setting the accurate initial states makes MTRNN impossible to classify different 
motion sequences. In [6], some researchers proposed a recurrent neural network 
(RNN) model for dynamic signal classification. RNN consists of two kinds of output 
neurons: prediction neurons and classification neurons. Both work together to output 
the prediction and classification signals synchronously. This model shows a possible 
way to classify different dynamic signals. 

In this paper, we proposed a new model called supervised multiple time-scales re-
current neural network (SMTRNN) by composing MTRNN and supervised training 
algorithm. In our proposed model, the initial states of all signals are the same. Instead 
of the initial states, we appoint a certain area located in slow context layer for output 
classification using supervised methods. In the current work, we redefine the error 
function of MTRNN by including the label information and use back propagation 
though time (BPTT) for training. Unlike most classification methods, the classifica-
tion output of our model is a continuous sequence where the length of the classifica-
tion output is equal to the input signal. SMTRNN inherits the “self-organization” 
capability of MTRNN and is able to classify a long untrained signal including several 
short trained signal sequences.  

Fig. 1 shows the motivation of the proposed model. During training, certain labels 
are given to SMTRNN along with the training signals which are then used as the 
target outputs for classification in the slow context layer. In testing stage, in addition 
to classification, SMTRNN is able to predict and follow human subjects’ action at the 
same time. 

  

Fig. 1. Motivation of the proposed model 

2 Related Works 

In MTRNN literature, self-organizing map (SOM) is used as an input/output layer to 
accept vision signals and output the prediction signals. SOM algorithm has the ability 
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to preserve topological properties of the input space. In the present work, since the 
focus is on action recognition, we simplified the model, proposed by Yamashita et al. 
[7], and employ an 8*8 SOM layer to accept the 40 dimensional visual inputs. In our 
model, the output of SOM can be regarded as the prediction of human actions. 

Context layers, the main components of MTRNN, are modeled by CTRNN. 
CTRNN is a special type of RNN and is a dynamical system model of biological 
neural networks. In CTRNN, the output of each neuron is calculated using both the  
current input samples and the past history of the neural states. Hence, making 
CTRNN suitable for predicting the continuous sensori-motor sequences [3]. 

In the current work, Back Propagation Through Time (BPTT) is used for training 
where the error function is defined using Kullback–Leibler divergence: 

 E ∑ ∑ , log ,,  (1) 

where O units in input-output layer, ,  is the desired output value of the i-th 
neuron at time step t and ,  is the prediction value of the i-th neuron with the 
existing weights and the initial states. In our model, we combine the proprioceptive 
and the vision input into one SOM layer.  

The weight updating rule is described by the following equation: 

 1 α  (2) 

where n is the iteration step, αis the learning rate and is set to 0.0005 in our 

experiments. The partial differential  is given by: 

 ∑ , ,  (3) 

, , , 1 , ∈∑ , [ 1 , ]∈         (4) 

where f’(x) is the derivative of the sigmoid function and δ  is Kronecker 
delta(δ  = 1 if i = kand otherwise 0). 

3 Proposed Model 

3.1 Motivation 

Before explaining the proposed model, we would like to reveal the possibility of 
MTRNN based classification. The experiment results presented by the authors in [15] 
point out that the slow context units can be used for classification. In other words, 
some of the slow context nodes contain valuable information for classification. How-
ever, the identification of the slow context nodes that contain valuable information 
has a significant problem. In addition, we are not sure if the slow context nodes that 
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contain valuable information and needed for classification are distributed randomly 
over the entire slow context layer. To understand the phenomena, we conducted an 
experiment. 

In the experiment, we used MTRNN to predict and classify 3 kinds of actions (run-
ning, walking and swinging arms) based on the KINECT [2]. The stimulus output 
values of slow context nodes are recorded as shown in Fig. 2 (a) ~ (c). The difference 
between nodes 28 ~30 and nodes 25 ~27 is that the latter ones are assigned to differ-
ent initial conditions. The initial states for nodes 28, 29 and 30 are set by 100, 010 and 
001, respectively, while we use the same initial values for all other nodes. The initial 
values are only used for training process. In other words, all the initial states (includ-
ing node 28 ~ 30) of 3 different actions are the same during testing. As shown in Figs. 
2 (a), (b) and (c), it seems that 3 different kinds of single actions in the slow context 
units are classifiable. However, it is hard to recognize the combination of each motion 
based on conventional MTRNN. Since the MTRNN stores dynamic characteristics 
with large inertia energy of the first action and it is difficult to quickly adapt a conti-
nuous motion change with different dynamic characteristics, which intrinsically in-
duces the unpredictable time delay, the monitoring of initial values of the convention-
al MTRNN is not enough for classifying the motion change and/or the combination of 
single motion as shown Fig. 2 (d). 

 

 

Fig. 2. The nodes related with initial states (node 28 ~30) have different behaviors comparing 
with other nodes. (a) Running (b) Walking (c) Swinging arms (d) Walking +Swinging 

In Fig. 2(d), we analyzed a long continuous signal including two different actions 
(first walking, then swinging), and the stimulus output was similar with walking con-
dition as Fig. 2 (b). When the human test changed his action to swinging after about 
160th frame, the stimulus output of node 29 decreased very slowly. By comparing Fig. 
2 (c) with Fig. 2 (d), it’s hard to say that we find a swinging motion after 160th frame 
of Fig. 2 (d). Thus, we wanted to develop a model to overcome these short come sings 
of previous models. Therefore, in our model we add some constraints which will 
make some certain nodes to generate stable signals which can be directly assigned to 
action labels. 

3.2 The Proposed Supervised MTRNN 

In the proposed model, the classification nodes are a part of slow context and have the 
same time constant τ. The classification part works similar to the input-output layer. 
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The purpose of the input-output layer is to accept the current motion signal and output 
the prediction signal. Classification nodes will accept the label value of last frame and 
output the label for the current frame. The difference between classification nodes and 
other slow context nodes is that classification nodes need to back propagate classifica-
tion error to other nodes. The number of classification nodes is decided by the class 
number. In our experiments we used 1-N encoding, which is a kind of encoding algo-
rithm used in [6]. Thus the number of classification nodes is equal to the class num-
ber. The node with highest output dominates the class label. Considering the defini-
tion of error function in MTRNN, we define the error function of SMTRNN as: 

 E ∑ ∑ ,, log ,,  (5) 

where O and C denote the prediction and classification output nodes, respectively.  
Then we can deduce the partial differentialequations as: 

,
, , 1 , ∈

, , ∑ , [ 1 , ]∈ ∈∑ , [ 1 , ]∈
       (6) 

The training process of the proposed model is shown in Fig. 3. The classification 
nodes and input-output nodes work synchronously. The action prediction output of 
input-output layer can be viewed as a by-product of action classification.  

 

Fig. 3. Training process of the hybrid system 

4 Results 

Experimental results reported in this paper were performed on an IBM computer with 
Microsoft Windows 7 running on an Intel Core (TM) 29400 2.67 GHz, 4GB memory. 
The data corresponding to 3 different human actions: walking, running and swing 
arms were collected.  10 samples corresponding to each action were collected. Each 
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action was captured over a time period of 3 seconds (90 frames) using KINECT. The 
skeletal view of 3 different actions is shown in Fig. 4. In Fig. 4, the blue arrows ex-
press the vibration magnitude. As shown in Fig. 4, the vibration magnitude legs dur-
ing running (Fig. 4 (b)) is relatively larger compared to the other two actions, walking 
(Fig. 4 (a)) and swinging arms (Fig. 4 (c)). 

During the training process, the mean square error (MSE), which is the average 
square error per neuron per step over all teaching sequences, was reduced. Training 
was done over 10,000 iterations and the MSE converged to 0.001342. The total train-
ing time was about 3 hours.  

   
                      (a)                       (b)                      (c) 

Fig. 4. 3 different kinds of human actions obtained by KINECT. (a) corresponds to walking 
action; (b) corresponds to running action and (c) corresponds to swinging arms action 

  
                      (a)                                               (b) 

 

Fig. 5. Two typical classification results 

Fig. 5 shows the experimental results. As shown in Fig. 5 (a), due to the time scale 
feature of MTRNN, the output curve changes gradually and becomes stable after the 
13th frame. In Fig. 5 (a), the proposed model could easily classify the running action 
from the other two actions due to the significant variation in the vibration of the legs. 
Fig.5 (b demonstrates the case where the system should recognize the walking action, 
which is similar to swinging arms to some extent. Due to the significant difference 
between walking and running, SMTRNN exclude the possibility of running quickly 
(before 7th frame). However, SMTRNN gets confused between walking and swinging 
arms. Therefore, the stimulus value corresponding to both the actions are high (close 
to 0.5) till the 19th frame after which the system can successfully classify the input 
signal. 

Table 1 shows the recognition performance of the proposed model in recognizing 
single actions using our dataset. We define the highest output node as the real time 
classification output of the given input sample.  
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To test the robustness of the proposed SMTRNN model in classifying multiple ac-
tions we performed an experiment where the input signal was 3 times the length (270 
frames) of a single action signal employed previously. In other words, the test signal 
included 3 different actions. It is to be noted that the SMTRNN was not trained with 
multiple actions signals. However, the system tried to use its knowledge based on 
single motion to classify the signals that contained multiple actions. The human sub-
ject changed his motion from first to second around 160 ~ 180thframes. Fig. 6 (a) 
shows a near-ideal output without any noise. We would like to emphasize that data 
used in Fig. 6 (a) was also used in Fig. 2 (d). The walking curve starts to decrease 
when human tester begins to change his motion from walking to swinging arms (in 
Fig. 6 (a)). There is a short delay (about 20 ~ 30 frames) until SMTRNN switches its 
output to the correct ones in all the 3 cases. Fig. 6 (b) and (c) indicates some trouble 
in classification between walking and swinging arms at first, but soon SMTRNN pro-
duced the correct output after about 20 frames. It’s hard to define a boundary frame 
between the two actions, thus we cannot measure the recognition rate accurately. But 
we can still find that there is a clear cross point nearby 180th frame in Fig. 6 (a) ~ (c).  

Table 1. Recognition result of 3 kinds of action 

Human action Recognition result % 
Walking 96.4 
Running 98.9 
Swinging 97.6 

 

 

Fig. 6. Classification result of 3 continuous signals. (a)Walking +Swinging arms, (b) Swinging 
arms + Walking, (c) Walking +Running 

5 Conclusion 

In this paper, we proposed a dynamic classification model called SMTRNN for hu-
man action recognition and classification. The method was evaluated by experiments 
using KINECT. We investigated the possibility of slow context based classification. 
Although some certain slow nodes contain valuable information for classification, 
such information is weak and not stable for application. We conclude that our model 
can output a real time classification signal with high accuracy. It can also predict the 
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changes in human actions. Additionally, our model offers a possible way to perform a 
real-time human-computer interaction. 

Acknowledgment. This work was supported by the Industrial Strategic Technology 
Development Program (10044009) funded by the Ministry of Knowledge Economy 
(MKE, Korea) (50%) and also supported by the Converging Research Center Program 
funded by the Ministry of Education, Science and Technology (2013K000333) (50%). 

References 

1. Arie, H., Arakaki, T., Sugano, S., Tani, J.: Imitating others by composition of primitive ac-
tions: A neuro-dynamic model. Robotics and Autonomous Systems 60(5), 729–774 (2012) 

2. Cruz, L., Djalma, L., Luiz, V.: Kinect and RGBD Images: Challenges and Applications 
Graphics. In: 2012 25th SIBGRAPI Conference on Patterns and Images Tutorials 
(SIBGRAPI-T), August 22-25 (2012) 

3. Doya, K., Yoshizawa, S.: Adaptive neural oscillator using continuous-time back-
propagation learning. Neural Network 2, 375–386 (1989) 

4. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous timere-
current neural networks. Neural Networks 6(6), 801–806 (1993) 

5. Hinoshita, W., Arie, H., Tani, J., Okuno, H.G., Ogata, T.: Emergence of hierarchical struc-
ture mirroring linguistic composition in a recurrent neural network. Neural Net-
works 24(4), 311–320 (2011) 

6. Husken, M., Stagge, P.: Recurrent Neural Networks for Time Series Classification. Neuro 
Computing 50(C), 223–235 (2003) 

7. Jeong, S., Arie, H., Lee, M., Tani, J.: ·Neuro-robotics study on integrative learning of 
proactive visual attention and motor behaviors. Cogn. Neurodyn. 6, 43–59 (2011, 2012) 

8. Joslin, C., El-Sawah, A., Chen, Q., Georganas, N.: Dynamic Gesture Recognition. In: 
IMTC 2005 – Instrumentation and Measurement Technology Conference, Ottawa, Canada, 
May 17-19 (2005) 

9. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Compu-
ting 28(6), 976–990 (2010) 

10. Sakai, K., Kitaguchi, K., Hikosaka, O.: Chunking during human visuomotor sequence 
learning. Exp. Brain Res. 152, 229–242 (2003) 

11. Tani, J., Nishimoto, R., Paine, R.: Achieving “organic compositionality” throughself-
organization: reviews on brain-inspired robotics experiments. NeuralNetworks 21, 584–603 
(2008) 

12. Thomas, K., Andre, B., Michalis, F., KcC: HMM-based Human Motion Recognition with 
Optical Flow Data. In: 9th IEEE-RAS International Conference on Humanoid Robot, Par-
is, France, December 7-10 (2009) 

13. Thoroughman, K.A., Shadmehr, R.: Learning of action through adaptive combination of 
motor primitives. Science 407, 742–747 (2000) 

14. YamashitaY., T.J.: Emergence of functional hierarchy in a multiple timescaleneural net-
work model: a humanoid robot experiment. PLoS ComputationalBiology 4(11) (2008) 

15. Zhang, Y., Ogata, T., Takahashi, T., Okuno, H.G.: Dynamic Recognition of Environmental 
Sounds with Recurrent Neural Network. In: The 28th Annual Conference of the Robotics 
Society of Japan, Nagoya, Japan (2010) 

 



Nonnegative Source Separation with Expansive

Nonlinearity: Comparison with the Primary
Visual Cortex

Hiroki Yokoyama

Graduate School of Information Systems,
The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu, 182-8585 Tokyo, Japan
h-yokoyama@hi.is.uec.ac.jp

Abstract. We introduced the kernel trick to a linear generative model.
In the present study, we trained a single layer model with nonnegativ-
ity constraint and expansive nonlinearity. After training, we found that
the basis images acquired from natural scenes represented Gabor-like
features. Moreover, the distributions of shape parameters of the basis
images were similar to those found in V1. Other similar models, such
as the sparse coding and the independent component analysis, fail to
exhibit these properties.

Keywords: primary visual area (V1), simple cell, unsupervised learn-
ing, sparse coding, NMF, kernel trick.

1 Introduction

Many probabilistic models, such as the sparse coding[5], have provided insightful
explanation of how cortical connectivity is organized to adapt the environment.
Basic viewpoint of these models are that neural population in higher areas at-
tempt to predict input signals from lower areas. Assuming the error between
the prediction x̂ and the actual input x is normally distributed, the goal of this
model is to minimize the sum of the squared error:

E =
1

2

∑
k

||xk − f(Ayk)||2

=
1

2
Tr
{
(X − f(AY ))T (X − f(AY ))

}
(1)

where T denotes the transpose of a matrix, || · ||2 the squared norm in the
Euclidean space, Y = (y1,y2, · · · ) represents the response of the neuronal popu-
lation, A = (a1,a2, · · · ) the set of the receptive fields, f(·) a certain nonlinearity,
and k is the index of the input image. The gradient of E gives the dynamics of
the population response:

ΔY ∝ −∂E

∂Y
= AT {f ′(AY )⊗ (f(AY )−X)} (2)
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where ⊗ denotes component-wise multiplication. In this model, the prediction
f(AY ) is conveyed via the feedback connection A followed by the nonlinearity
f(·), whereas the residual error is conveyed via feedback connection AT .

On the other hand, many constructive models employ nonlinearities which
conveys approximately the maximum values of the responses of the lower mod-
ules to the higher modules (e.g.[2]). This property seems to be important to
learn the invariant response of complex cells. In this study, we use the kernel
trick to introduce such nonlinearities to the modules of the model.

2 Model

We consider a function φ(X) = (φ(x1), φ(x2), · · · ) which maps vectors in the
space of the visual input into a higher dimensional feature space. Measuring the
distance between the prediction and the actual input in the feature space, we
obtain the following optimization problem:

min
Y,A

E = 1
2Tr
{
(φ(X)− φ(A)Y )T (φ(X)− φ(A)Y )

}
(3)

s.t. Y ≥ 0, A ≥ 0, ∀i, ||ai||2 = 1. (4)

Then, instead of defining φ(x), we directly define the inner product of two vectors
in the feature space:

k(x,y) = φ(x)Tφ(y) (5)

which is called kernel function.
If we set k(x,y) = f(xTy), we obtain the gradient of (3):

ΔY ∝ −∂E

∂Y
= f(ATX)− f(ATA)Y, (6)

which shows that the input is conveyed via feedforward connection AT followed
by the static nonlinearity f(s). To be physiologically plausible, we restrict f(s)
to be positive.

3 Numerical Experiment

To investigate the effects of the kernel functions, we trained the models with
natural images.

The input images were ten 512× 512− pixel gray scale photographs of nat-
ural scenes provided by Olshausen et al.[5]. These images were preprocessed

by filtering with bandpass filter R(f) = fe−(f/200)4, which approximately corre-
sponds to receptive fields in LGN. We extracted 9610 16×16-pixel image patches
from the scenes and reshaped them into 256-dimensional column vectors. Here
we define X1 as the matrix which consists of the column vectors. To simulate
the responses of on- and off-channel receptive fields, we set X+ = (|X1|+X1)/2
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(a) (b)

Fig. 1. The basis images acquired by training. (a) γ = 1.1. (b) γ = 3.0.

and X− = (|X1| − X1)/2, X = (XT
+ , X

T
−)

T , and normalized its columns. The
input X , described in section 2, was thus 512 × 9610 matrix with nonnegative
elements.

We used multiplicative update rules[4] to update the model parameters. First,
on the basis of the gradient of eq. (3), we obtained an additive update rule for
Y :

Y ← Y + η ⊗ (f(ATX)− f(ATA)Y ). (7)

Subsequently, we set η = Y !B and obtained

Y ← Y ⊗ f(ATX)! f(ATA)Y (8)

where ! denotes componentwise division. For A, we followed the same procedure
to obtain the multiplicative update rule:

A← A⊗X(Y ⊗ f ′(ATX))T !A(Y Y T ⊗ f ′(ATA)). (9)

In above equations, the componentwise multiplication and division have lower
precedence than matrix multiplication. We alternately updated Y and A using
eqs. (8) and (9), respectively.

4 Result

4.1 Our Model

In this section, we discuss the basis images acquired by the training. Since the ba-
sis vectors, as well as the input vector, represent on- and off-channels separately,
the nonnegative representation of image feature is not unique. For example, a
certain pixel value v > 0 can be represented not only by on-channel v but also
by combination of on-channel v + w and off-channel w. For the acquired basis
vectors, however, either of corresponding on- and off-channel was approximately
zero. Therefore the basis images can be reconstructed by subtracting off-channel
basis vector from on-channel.

Fig. 1 shows examples of the acquired basis images reconstructed as described
above. (a) and (b) correspond to the cases where γ = 1.1 and γ = 3.0, respec-
tively. When kernel function’s exponent γ was small, the basis images represented
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Fig. 2. Distribution of shapes of the basis images in the nx–ny plane (γ = 2.5)

single bright or dark spots. On the other hand, some of them became elon-
gated and Gabor-like as γ increases. Most of them were Gabor-like for γ ≥ 2.5.
Therefore, when the nonlinearity is sufficiently expansive, our model can extract
Gabor-like features.

4.2 Comparison with Related Models

Many other theories, such as the SC[5] and the independent component analysis
(ICA)[1], also extract Gabor-like functions from natural scenes. However, there
are subtle differences in detail between their result and actual receptive fields in
V1. Ringach[6] reported that both of these theories predict receptive fields with
a larger number of subfields than those in the experimental data. In addition,
they do not generate receptive fields that are broadly tuned in orientation, which
are commonly seen in the monkey V1. Here we compare our model’s basis images
with these theories and the experimental data.

To analyze the shape of basis images, a two-dimensional Gabor function

g(x′, y′) = A exp

(
−
(

x′2

2σ2
x′

+
y′2

2σ2
y′

))
cos(2πfx′ + φ) +B (10)

x′ = (x− x0) cos θ + (y − y0) sin θ (11)

y′ = −(y − y0) sin θ + (y − y0) cos θ (12)

was fit to our result. The coordinate system (x′, y′) is obtained by translating
the original coordinate system (x, y) by (x0, y0) and rotating it by θ. In this co-
ordinate system, the x′ axis represents the direction the cosine function varies.
The parameters σx′ and σy′ represent the width of the Gaussian envelope along
the corresponding axes, f and φ the spatial frequency and the spatial phase
respectively. The parameters A and B are the amplitude and the constant, re-
spectively, which are not important for the shape properties but are required for
the fitting.
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Fig. 3. Histograms of the spatial phase parameters. (a) The original spatial phase φ.
(b) The symmetry parameter φ̂ obtained by eq. (13).

Ringach[6] compared SC and ICA with the experimental data by the numbers
of subfields in the receptive fields. This property is obtained as nx = σx′f and
ny = σy′f , which can be considered as the numbers of sinusoidal cycles fit into
a segment of length σx′ and σy′ , respectively. Receptive fields are circular when
nx = ny, have many subfields when nx is large, and are blob-like when (nx, ny)
is located near the origin. His study showed that the distribution of (nx, ny) lay
approximately on a one-dimensional curve, which passed near the origin. The
basis images obtained by SC and ICA, on the other hand, tend to have more
subfields.

The relationship between nx and ny for our model is shown in Fig. 2. This
shows that the population includes both blob-like and elongated Gabor-like
shapes. In addition, it shows also that a part (at the lower right) of the popula-
tion appeared to form a curve similar to that found in the experimental data.

The spatial phase properties of receptive fields are also discussed in [6]. This
study reported that the receptive fields clustered into even and odd symmetry
classes. Interestingly, there was a tendency for receptive fields that are “well
tuned” in orientation and spatial frequency (with (nx, ny) located away from
the origin) to be odd symmetric and, conversely, for those that are “broadly
tuned” (with (nx, ny) located near the origin) to be even symmetric. To analyze
the symmetry of basis images for a comparison, we employed the symmetry
parameter defined in [6]:

φ̂ = arg(| cosφ|+ i| sinφ|), (13)
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Fig. 4. Histograms of the symmetry parameters for (a) broadly tuned and (b) well
tuned basis images
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Fig. 5. The shape properties of nonnegative matrix factorization with sparseness
constraints[3]. (a) A scatter plot in the nx–ny plane, corresponding to Fig. 2. (b)
A histogram of symmetry parameter φ̂, corresponding to Fig. 3(b).

where i denotes imaginary unit. In this notation, the Gabor function is even
symmetric when φ̂ = 0 and odd symmetric when φ̂ = π/2.

Fig. 3(a) is a histogram of the spatial phases of the basis images. It shows
that the distribution of the spatial phases is not uniform, and many of the basis
images are either even- or odd- symmetric, which can be seen more clearly by
obtaining φ̂, which is shown in Fig. 3(b).

Fig. 4(a) and (b) are histograms of the symmetry parameters for broadly
tuned and well tuned basis images, respectively. Fig. 4(a) shows that broadly
tuned basis images tend to be even symmetric, and Fig. 4(b), compared with
Fig. 3(b), indicates a tendency for well tuned ones to be odd symmetric.

In addition to SC and ICA, the nonnegative matrix factorization (NMF)
also extracts Gabor-like features when sparseness constraint is added (Hoyer,
2004[3]). To compare the shape properties of Hoyer’s and our models, we trained
Hoyer’s model with the same set of input images as that used above.

Fig. 5(a) shows the shape distribution of the basis images in the nx–ny plane.
It can be seen from this distribution that this model generates not only well
tuned but also broadly tuned filters, as well as our model. On the other hand,
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this model does not exhibit the spatial phase property. Fig. 5(b) shows that

almost all the basis images are odd symmetric (φ̂ ≈ π/2).

5 Conclusion

The sparse coding and other generative models have provided explanations of
how the visual system works (e.g., the role of bidirectional connections and how
the Gabor-like receptive fields are acquired). However, the response properties
derived from minimization of linear prediction error does not always agree with
the static nonlinearity of cortical neurons. In the present study, we introduced
nonlinearity to the generative model by representing input and basis images as
elements of a feature space. In addition, we constrained the model parameters
to be nonnegative for the sake of physiological plausibility.

After training with natural images, our model exhibited properties similar to
V1 neurons, e.g. sparse response, Gabor-like receptive fields. Furthermore, the
distributions of shape parameters of acquired basis images were more similar
to those found in V1 than other models. The shape properties should be an
important part of difference between our model and other models. The compari-
son with other models suggests that the nonnegative source separation (both
Hoyer’s and our models) can extract both blob-like and Gabor-like features
from natural scenes, unlike SC or ICA. However, the nonnegativity is not suf-
ficient for the spatial phase property. Our model, with expansive nonlinearity,
can extract both even and odd symmetric features, whereas Hoyer’s can extract
only odd symmetric features. This suggests that both nonnegativity and non-
linearity are necessary to exhibit spatial properties similar to receptive fields
in V1.

The question then arises: what is the statistical role of the nonlinearity? Al-
though it requires further study to answer this question, we can consider a prob-
abilistic model including the nonlinearity as follows. The optimization function
can be regarded as the negative logarithm of the posterior of A and Y , namely,

p(A, Y |X) ∝ exp
(−Tr (f(XTX)− 2f(ATX)TY + f(ATA)Y Y T

))
. (14)

In this interpretation, the solution to the optimization corresponds to maxi-
mum a posteriori (MAP) estimation of A and Y . Assuming A is constant, eq.
(14) means that the posterior distribution of Y is truncated normal distribu-
tion (the truncation is due to nonnegativity of Y ), whose parameters depend
nonlinearly on X . The posterior distribution of A can be considered as well, al-
though its shape is more complicated because of the nonlinearity. On the other
hand, the model of input images p(X |A, Y ) which is consistent with the poste-
rior p(A, Y |X) is not Gaussian, because of the nonlinearity. Therefore, although
our model exhibit similar properties to SC and other linear models, these are
essentially different as probabilistic models.
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Abstract. Deep learning methods that comprise a new class of learn-
ing algorithms give state-of-the-art performance. We propose a novel
methodology to learn deep architectures and refer to it as a deep rela-
tional machine (DRM). A DRM learns the first layer of representation
by inducing first order Horn clauses and the successive layers are gener-
ated by utilizing restricted Boltzmann machines. It is characterised by
its ability to capture structural and relational information contained in
data. To evaluate our approach, we apply it to challenging problems in-
cluding protein fold recognition and detection of toxic and mutagenic
compounds. The experimental results demonstrate that our technique
substantially outperforms all other approaches in the study.

Keywords: Deep Relational Learning, Restricted Boltzmann Machines,
Inductive Logic Programming, Multi-class classification.

1 Introduction

Deep learning (DL) is an emerging state-of-that-art class of algorithms, and
whose well-known examples are deep belief networks (DBNs) [1] and stacked
auto encoders (SAEs) [2]. In DL, a machine learns many layers of representation
to capture structure and variations in data, and this process generally improves
its generalisation performance.

The standard DL techniques operate on input features (derived from raw input
data) that are in binary or numeric form. The data generated in many real-world
problems, and especially in biological and chemical domains, is naturally rela-
tional. The conversion of data into a form that is amenable to such techniques
may loose important information during this process. This establishes a need
to propose a novel DL methodology that can handle arbitrary forms of data.
First order logic (FOL) provides a useful means to represent data and is well
known for its expressive powers. McCarthy who has pioneered the application of
logic to construct intelligent machines has observed “If one wants a machine to
be able to discover an abstraction, it seems most likely that the machine must
be able to represent this abstraction in some relatively simple way”, and FOL
has been viewed as a means to increasing generality, and expressing knowledge
and reasoning [3]. In FOL we can efficiently express both complex information
that is needed for solving complex tasks like chess problems and commonsense
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knowledge that is required to do a simple task, hence in this paper we take a logi-
cist approach for learning deep relational architectures, namely, deep relational
machines (DRMs).

A DRM learns a deep architecture by stacking a set of induced logical rules
and any number of generative models. It learns the first layer of representation by
using an Inductive Logic Programming (ILP) system. A set of hypothesised rules
are used as an input for the second layer, where a restricted Boltzmann machine
(RBM) is used for learning the second and successive layers. Once a suitable
representation is obtained, classification or regression problems are solved by
using support vector machines (SVMs) in conjunctions with the features learned
at the highest layer. In DRM the use of first order logic provides the flexibility
of using arbitrary forms of structured and non-structured data, and it exploits
semantic and syntactic relational structures and variations to train a machine
with low error probability.

ILP has been used to construct features and this process is termed as propo-
sitionalisation [4]. Recently, features (rules) generated by ILP algorithms have
been used to design logic based kernel methods [5,6]. The design of a DRM and its
objectives are fundamentally different from these apparently related approaches.
It is based on the belief that the representation learned by an ILP system does
not capture all the structure and variations in data, and much needed refinement
is achieved by performing deep learning.

We evaluate the proposed methodology by applying it to biological and chem-
ical domains, namely protein fold recognition and identification of toxic and
mutagenic compounds. The experimental results show that our approach pro-
vides accurate solutions to complex problems and generally outperforms related
approaches.

2 Generative Models and Inductive Logic Programming

Generative Models: RBM [7] is a well known example of generative models.
It displays a bipartite structure and consists of a single hidden layer where there
are connections between the units of visible and hidden layers but there are no
connections between the units of any individual layer. The connections between
the units are weighted and there is also a bias associated with each unit. In
its standard form, the hidden and visible units of an RBM are of the form
(0, 1). The probability over the joint configuration of hidden and visible units is

given by p(d,h) =
exp

(
−E
(
d,h
))

Z , where d and h are input and hidden vectors.

Z is a normalization constant described by the expression: Z =
∑

d,h exp
(
−

E(d,h)). E is an energy function and is defined by E(d,h) = −cᵀh − bᵀd −
hᵀWd. In this expression the vector h gives the hidden layer activations and
the activations of visible units (input data) is supplied by d . The entries of
vector b are indexed by the biases of visible units and c is a bias vector for
hidden layer. W is N ∗M matrix where N represent numbers of visible units
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and the number of hidden units is denoted by M . The training of an RBM can be
performed by maximizing the log-likelihood using a gradient ascent scheme. As
the computations can become intractable, an approximation procedure is used.
In this method, data is sampled back and forth and error is minimized.

Inductive Logic Programming. The class of learning algorithms that form
ILP are well known for representing relations and structures in data. In ILP first
order logic is used to express data, background knowledge (prior knowledge) and
the induced hypothesis. The standard learning framework, within which most
ILP algorithms are designed, is learning from entailment. In this setting, we
consider a training set D = {(d1, t1), (d2, t2), . . . , (dn, tn)} of input-output pair
examples and background knowledge B. Each di belongs to a domain D and
each ti belongs to the set T , where T = {0, 1}. All the examples having ti = 1
form the positive training set D+, and the negative training set D− comprises
all the examples having ti = 0. An ILP algorithm aims to induce a hypothesis
(set of Horn clauses, rules) F from background knowledge, B, and data D with
the aim that it does not imply or more specifically entail any negative example,
and all the positive examples satisfy the conditions of the hypothesis. Formally,
B ∪ F |= D+ and B ∪ F 
|= D−.

In this paper we use the symbol F for a hypothesis (typically a set of a few
rules) returned by a standard ILP algorithm, the symbol F for a hypothesis that
is comprised of all the R rules generated during the search of the hypothesis
space and symbol F for a hypothesis that is given by a set of N rules that
describe the first layer of a DRM.

3 Deep Relational Machines

The Logical Layer. We build the first layer by adopting the learning from
entailment setting and term it the logical layer. The data D comprising positive
and negative examples are encoded as ground facts. The background knowledge
B is given by a set of Horn clauses where the set comprises ground facts or non-
ground clauses. A hypothesis F , in the form of Horn Clauses (rules), is induced.
The data is transformed for the next layer by determining whether an example
di is implied by the hypothesis F conjoined with the background knowledge. A
rule fj ∈ F conjoined with background knowledge B is viewed as an encoding
function E(d, B,F ) that maps data into the Boolean representation as described
below:

E(di, B, fj) =

{
1 if B ∪ fj |= di

0 if B ∪ fj 
|= di

In contrast to DBN and SAE, a DRM performs supervised learning in the
logical layer. The methodology is presented as Algorithm 2. The algorithm takes
as input data that is encoded in FOL form. It utilizes an ILP system to generate
a set of first order logical rules and considers all the clauses generated during
the search of the hypothesis space as candidate features. The set of induced fea-
tures can be very very large but finite. In this paper we introduce a well known
measure, namely Gain Ratio (GR) to score the rules. The selection of the rules
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Algorithm 1. Quantification of the goodness of rules and selection of a subset

Input: A set of input-output pair examples D where di ∈ D and ti ∈ {0, 1}. The
domain background knowledge B, a set F of R induced rules, and N
Output: A set of selected rules F
for j = 1 to R do

Compute gain ratio value for each rule fj that quantifies its goodness
end for
Sort the computed values and select the first N rules with highest GR values.
Return: F = {f1, f2, . . . , fN}

Algorithm 2. The logical layer for DRM for binary classification

Input: A set of input-output pair training examples D =
{(d1, t1), (d2, t2) . . . , (dn, tn)} where di ∈ D and ti ∈ {0, 1}
Output: An encoding function E that maps data into the Boolean representation
E : di → (αj)

j=N
j=1 where αj = 0 or αj = 1

Induce a set of rules F by using an ILP algorithm.
Consider all the R rules generated during the search of the hypothesis space.
Select the most informative subset F = {f1, f2, . . . , fN} by using Algorithm 1.
Compute coverage by using entailment: E(di, B,F ) = (α1, . . . , αN ), where
if fj ∪B |= di then
αj = 1

else if fj ∪ B �|= di then
αj = 0

end if
Return E(d, B,F )

is an important process as it reduces complexity and improves generalization
performance of a DRM. To derive an expression for GR we first define entropy
and Information Gain (IG). The entropy of a logically encoded (training) data
D is the expected value of information required to assign a category to an exam-

ple: entropy(D) = H(D) = −∑1≤ι≤m

|Dι|
|D| log2

( |Dι|
|D|
)
. |Dι| is the number of

examples that are grouped into category ι. Information gain measures expected
reduction in entropy. The IG value between a rule fjand a category ι is computed
by considering the division of data D into subsets according to the varying val-

ues of the rule, and it is given as: IG(fj) = H(D)−∑i∈values(fj )

|Di|
|D|H(Di). We

obtain a mathematical expression for GR by normalising IG. The normalization

value (Z) is given by: Z(fj) = −∑i∈values(fj )

|Di|
|D| log2

( |Di|
|D|
)
. Now we can de-

fine the gain ratio of the rule as follows:GR(fj) =
IG(fj)

Z(fj)
. The method computes

GR values for all rules, and identifies the most relevant and informative features
by using the procedure described as Algorithm 1. As the higher values of GR
tells the goodness of fit for a rule, the N rules with the highest GR are selected.
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Algorithm 3. The logical layer for DRM for multi-class classification

Input: A set of input-output pair training examples D =
{(d1, t1), (d2, t2) . . . , (dn, tn) where di ∈ D and ti ∈ {1, 2, . . . ,m}. The back-
ground domain knowledge B
Output: An encoding function E that maps data into the Boolean representation
E : di → (αj)

j=N
j=1 where αj = 0 or αj = 1

F = {}
for ι = 1 to m do

Select a class from m classes .
Formulate the binary class problem by assigning label ‘1’ to examples of class p
and ‘0’ to examples of remaining classes.
Generate a set of rules Fι by inducing an ILP algorithm.
Consider all the Rι rules generated during the search of the hypothesis space.
Select the most informative and relevant subset Fι by invoking Algorithm 1.
Add Fι to F .

end for
The final F is given by: F = {F1,F2, . . . ,Fm}.
Assess whether examples are implied by rules fj ∈ F : E(di, B, fj) = (α1, . . . , αN ).
Return: E(d, B,F )

The logical layer of a DRM is learned by using the procedure described as
Algorithm 2 for examples belonging to two classes. In scenarios where examples
belong to m > 2 categories, we propose a strategy given as Algorithm 3 to
construct the logical layer. The goal is to extract relevant features that describe
the data belonging to diverse classes. The multi-class problem is divided into m
binary tasks and a positive training set is defined by selecting a class ι where the
examples belonging to the remaining classes form the negative training set. A
hypothesis that consists of N rules is induced. A subset Fι is selected by applying
Algorithm 1 to a validation or training set. The process is repeated for all the
classes, and hence comprises m iterations. The obtained m subsets are merged
into a rule set F . If there are any redundant rules they are removed from the
set F . An input data vector for the next layer is generated by assessing whether
the example satisfy the conditions of the rule set F or not.

The Generative Layers. As the features, learned in the first layer, may not
model all the structure, relations and variations in the data, a DRM learns more
layers of representation by using RBMs. In these layers an RBM is trained in an
unsupervised manner: the weights and the biases are measured, activations of in-
put and hidden unit are computed. The activations of the hidden units of the pre-
vious layer become the input data for the current RBM. This process is repeated
l times. Predictive problems are solved by using the extracted features.

4 Experiments and Analysis

In this section we describe experiments and results. We empirically tested the
proposed method on datasets comprising protein domains, mutagenic and toxic
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Table 1. 10-fold cross-validated accuracy ± standard deviation for mutagenesis

kFOIL nFOIL PROGOL SVILP DRM(1) DRM(4)

81.3 ± 11.0 75.4 ±12.3 78.7 ± 10.8 87.2 ± 07.5 88.82 ± 7.63 89.90 ± 6.33

Table 2. Five-fold cross validated accuracy ± standard deviation for DSSTOX dataset
for MC ILP, DL SVILP and DRM (DRM(1) & DRM(4))

MC ILP DL SVILP DRM(1) DRM(4)

57.1 ± 2.4 65.2 ± 02.3 63.57 ± 2.29 66.06 ± 2.25

compounds. The experiments were performed by a combination of in house
scripts and publicly available software systems. A deep relational architecture
was learned that comprised of four layers. The first layer was given by hypothe-
sised rules, and the remaining layers of representation were learned by an RBM.
The activation function for these layers was a logistic sigmoid. The features gen-
erated at the first and the fourth layer were used in conjunction with an SVM
to perform classification tasks. A DRM with one layer and four layers is denoted
by DRM(1) and DRM(4) respectively. We compared the performance of DRM
with SVILP, PROGOL, multi-class ILP (MC ILP) [8], and decision list based
SVILP (DL SVILP) [9]. We used accuracy [10] as the evaluation measure. For
multi-class classification problems we calculated accuracy for each class and for
overall (OA) of the dataset.

Datasets: We conducted experiments on three benchmark datasets. The mu-
tagenesis dataset [11] comprises 188 compounds. Of the 188 molecules, 125 are
positive examples and 63 are negative examples. The EPA Fathead Minnow
Acute Toxicity database (DSSTox) contains highly diverse organic compounds
[12]. In the database there are 442 compounds with unique mode of action that
is experimentally determined. The compounds are placed into 8 categories, and
the class distribution is skewed in this dataset. Protein dataset [13] has been
extracted from the Structural Classification of Proteins (SCOP) database. It
contains protein domains belonging to forty five folds (classes). These folds are
categorized into four main structural classes, namely α, β, α/β and α+ β. The
number of test protein domains are 405. The distribution of protein folds in the
dataset is skewed where number of domains in a fold ranges from four to thirty
two.

In the case of mutagenesis dataset molecules were represented by using the
key information that was given in the form of atom and bond. The compounds in
DSSTox dataset were represented by atom bond descriptions, functional groups
and rings. The background knowledge described in [13] was used to represent
protein domains.

Results: The results presented in Table 1 demonstrated efficacy of DRM for mu-
tagenesis dataset. DRM substantially improved performance of PROGOL and
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Table 3. Average accuracy ± standard deviation for protein fold dataset for MC ILP,
DL SVILP and DRM (DRM(1) & DRM(4))

Fold MC ILP DL SVILP DRM(1) DRM(4)

α (8 classes) 57.78 ± 5.21 62.22 ± 5.11 67.02 ± 4.85 74.47 ± 4.50

β (14 classes) 33.64 ± 4.57 45.79 ± 4.82 42.31± 4.84 44.23 ± 4.87

α/β (14 classes) 56.45 ± 4.45 62.90 ± 4.33 62.60 ± 4.36 65.04 ± 4.30

α+ β 9 classes) 66.67 ± 5.41 72.62 ± 5.27 77.01 ± 5.19 88.51 ± 5.11

All (45 classes) 52.84 ± 2.48 60.25 ± 2.43 61.52 ± 2.41 66.92 ± 2.33
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Fig. 1. Accuracy values for DL SVILP and DRM (DRM(1) & DRM(4)) for 45 protein
folds

SVILP. We also contrasted DRM with kFOIL and nFOIL by considering the
results reported in [6]. The accuracy values confirmed its low error probability
as compared to the related shallow methods. Five-fold cross-validated accuracy
values were presented in Table 2 for the DSSTox dataset. We compared perfor-
mance of proposed technique with MC ILP and DL SVILP. The results showed
usefulness of deep learning in detecting toxic compounds. In Table 3 and Fig-
ure 1, the results of experiments on protein fold dataset were shown. From the
results it was evident that DRM substantially and significantly improved upon
MC ILP and DL SVILP. DRM improved upon DL SVILP for 23 folds. It was
worth noting that the over all accuracy of DRM was substantially and signifi-
cantly better than DL SVILP for α, α/β, and α + β structural classes. These
experiments showed that DRM generally outperformed the related approaches
in the study.

5 Conclusion

In this paper we have presented a novel methodology to learn a deep relational
architecture by integrating hypothesised logical rules and generative models.
The performance of the proposed technique is empirically tested by applying
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it to complex tasks of protein fold recognition and classification of toxic and
mutagenic compounds. Experimental comparisons of the performance of deep
relational machine with related approaches show that the proposed approach
generally achieves an accuracy that is substantially higher than all the other
methods considered in the study. We aim to further develop DRM by extending
the integration stage, exploring non-probabilistic methods for the second and
the successive layers and applying it to other challenging real-world problems.
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acknowledge the support of the FP7 Collaborative Project COGNITO.
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Abstract. Sum–product networks (SPNs) are deep architectures that can learn 
and infer at low computational costs. The structure of SPNs is especially impor-
tant for their performance; however, structure learning for SPNs has until now 
been introduced only for batch-type dataset. In this study, we propose a new on-
line incremental structure learning method for SPNs. We note that SPNs can be 
represented by mixtures of basis distributions. Online learning of SPNs can be 
formulated as an online clustering problem, in which a local assigning instance 
corresponds to modifying the tree-structure of the SPN incrementally. In the 
method, the number of hidden units and even layers are evolved dynamically on 
incoming data. The experimental results show that the proposed method outper-
forms the online version of the previous method. In addition, it achieves the 
performance of batch structure learning. 

Keywords: sum–product networks, structure learning, online learning, incre-
mental learning, deep architecture, probabilistic graphical model. 

1 Introduction 

As learning the structure of graphical models is one of the most important issues in 
machine learning fields, many researchers have contributed to its study. Noteworthy 
examples of these research studies are Bayesian networks [1], Markov networks [2], 
deep networks [3], and sum–product networks (SPNs) [4]. 

Studies on online learning, however, are limited because it is not easy to change 
the form of probability tables without information about forgotten training data. Nev-
ertheless, online learning is an essential problem in machine learning, and there are 
some learning environments in which it should be applied, such as large-scale data 
learning or lifelong learning. In a successful study, a single-layer denoising autoen-
coder was learned using online incremental structure learning [5]. It had been verified 
that this model learns the changing probability distribution of data. They also argued 
the possibility of extension to multi-layer models. 

In order to solve the online learning problem using enough representation power, 
however, we focus on the SPN, a hierarchical architecture that includes sum nodes, 
product nodes, and univariate nodes [6]. In recent research on SPNs [4], Gens and 
Domingos used hierarchical biclustering to learn the structure of SPNs well. 
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The framework that they used is, however, not suitable for online learning because 
entire data should be used in the structure learning steps. Toward making an incre-
mental model, we first note that structure learning of SPNs is highly dependent on 
clustering instances. Using this perspective, we convert the online structure learning 
problem to an online clustering problem. We propose a simple mini-batch clustering 
algorithm which can modify the number of clusters dynamically on incoming data, 
and apply it to incremental structure learning. The experiments show that it outper-
forms the online version of the previous method [4], and achieves the performance of 
batch structure learning. 

The remainder of the paper is organized as follows: In section 2, we introduce a 
brief definition of SPNs, and a previous study on structure learning. In section 3, we 
suggest online incremental structure learning methods. In section 4, we show the ex-
perimental results of applying online incremental learning methods, and conclude this 
paper in section 5. 

2 Sum–Product Networks 

2.1 Representation of SPNs 

SPNs are one of probabilistic graphical models (PGMs) which have specialized struc-
ture for fast inference. They are constrained to have tree structures (rooted directed 
acyclic graphs), and their leaves represent univariate distribution such as multinomial 
distribution for discrete variables, Gaussian, Poisson and other continuous distribu-
tions. Internal nodes in the tree represent products or sums of their children with the 
corresponding weights as the Figure 1. Recursive definition of SPNs introduced in [4] 
is as follows. 

 
Definition 1. An SPN is defined as follows: 

1. A tractable univariate distribution is an SPN. 
2. A product of SPNs with disjoint scopes is an SPN. 
3. A weighted sum of SPNs with the same scope is an SPN, provided all weights are 

positive. 
4. Nothing else is an SPN. 

The scope of an SPN is defined as the set of variables that appear in it. The sub-
SPN  is a sub-tree at a node i as a root and corresponds to a probability distribution 
over its scope. 

 

Fig. 1. Types of nodes in SPN: Univariate node (left); Product node (middle); Sum node (right) 
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Let , … ,  are variables in an SPN S and , … ,  be a state in their 
possible world. [ ] be the probability of the i-th node of the state , and [ ] be 
the probability represented by the root node (the 0-th node). Considering the weights, 
the recursive relationship among  [ ] of arbitrary nodes is as follows: 
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where  represents the input variables that appear in a sub-SPN , ch(i) is the 
index set of child nodes of node i, and  is a generic univariate distribution of the 
variable, which  contains only one variable. The joint probability distribution of 
an SPN S is  [ ] if the weights at each sum node sum to one. 

Many previous works related to SPNs, including sigma-pi neural networks [7], 
arithmetic circuits [8], and other compact representations exist. However, SPNs  
are a more general probabilistic model that enjoys enough representation power. 
SPNs show a remarkable performance in image classification tasks [9] and video 
learning [10]. 

2.2 Structure Learning of SPNs 

In the seminal work of SPNs [6], the structure of SPNs was built in the application-
oriented manner. After that, structure learning for SPNs has been introduced in [4, 
11]. Dennis & Ventura [11] collected variables using regional relationship to find 
better structure to solve the image completion task. Gens & Domingos [4] firstly pro-
posed batch-type structure learning method by splitting the variables into mutually 
independent subsets toward compact representation of joint distribution minimizing 
the representation power loss. 

As a brief introduction, structure learning in [4] is a recursive procedure given da-
taset T and set of variables V. At first, it checks whether the variables can be split into 
mutually independent subsets. If possible, the split recursions are done for each sub-
set, and return the products of the resulting SPNs (building internal product nodes). 
Otherwise, the instances T are clustered into similar subsets, and it returns the 
weighted sum of the resulting SPNs (building internal sum nodes). Weights for child 
nodes are determined to be proportional to the number of the assigned instances. At 
the end of the recursive process, all leaves consist of a univariable node. 

At the clustering process, they use a naïve Bayes mixture model to pick most likely 
component in the mixture, where all variables are independent conditioned on the 
cluster. They use a hard expectation-maximization (hard EM) algorithm, where each 
instance is wholly assigned to only its most probable cluster in expectation.  
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3 Online Incremental Structure Learning Methods 

Online structure learning of PGMs is a challenging task because there is no guarantee 
that new incoming instances follow the learnt model. If new instances are not ex-
plained with the structure, it should be modified. Fortunately, in the case of SPNs, 
online structure learning is deeply related to hard clustering, so we use this property. 

We first suggest simple mini-batch incremental clustering problem in Algorithm 1. 
In Algorithm 1, new instances are assigned to one of the existing clusters. New clus-
ters are added with new instances if they are needed. To find an appropriate number 
of clusters k, we increase the number of clusters one by one until likelihood does not 
increase any more than threshold. 
 

 
 

We can extend the above clustering process to learn the structure of SPNs. Algo-
rithm 2 illustrates online incremental learning algorithm for SPNs. The algorithm 
hierarchically adds new child nodes onto the sum nodes in whole layers. The cluster-
ing process is used in algorithm 2 as one part. It basically uses the distributions of 
child nodes. If there is no model for applying to new cluster, however, it also use 
naïve Bayes model, as the structure learning on the previous study does. After cluster-
ing, existing child nodes are augmented recursively, whereas new child nodes are 
constructed by previous structure learning methods. Our learning method is hybrid of 
methods in parameter learning [6] and structure learning [4] as illustrated in Figure 2. 
This method also use hard EM of SPNs as previous methods does. Previous studies 
show this hierarchical hard clustering strategy is powerful in practice and verify our 
new learning method is valid. 

If the model explains new data well, the structure isn’t changed much. Otherwise, 
the SPN increases their nodes to express new data. The method makes models learn 
different tree-structure of SPNs if the incoming order of data flow is shuffled with the 
same data stream.  

Algorithm 1 IncrementalClustering(T,V,M) 
input: set of mini-batch instances T, set of variables V, 
a cluster model M 
output: sets of instances assigned to the existing cluster 
{ }, sets of instances assigned to the new cluster { } 
likelihood = -inf 
while true 
 while model M is converge 
  assign T with variables V and model M 
  update model M with T 
 end 
 calculate likelihood 
 if increase of likelihood is less than threshold 
  break 
 end 
 add a new cluster to the model M 
end 

.
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Note that, on the other hands, the variable subsets split by the product node will not 

change after the product node is generated once. If they are not mutual independent 
on new data, the product node cannot fully explain them. It may cause the model 
heavier with meaningless product nodes. It is a major limitation of our method. 

  
Fig. 2. Parameter learning [6] (left); Structure learning [4] (middle); Online incremental struc-
ture learning of SPNs (right). Online structure learning method is hybrid of methods in parame-
ter learning and structure learning. Arrows indicate flows of assigning instances to the node. 

4 Experiments 

We evaluated online incremental structure learning methods on variants of the “hand-
written optic digits” [12] to illustrate our argument. These digit data include an image 
pixel and a digit class. However, pixels are binarized for our experiments. We make two 

Algorithm 2 AugmentSPN(T,V,M) 
input: set of mini-batch instances T, set of variable V,
and an SPN M 
output: an augmented cluster model M’ 
if root of M is univariate node 
 M = ParameterLearnNode(T,V,M) 
elseif root of M is product node 
 for each child node  of root 
   = AugmentSPN(T, , ) 
 end 
elseif root of M is sum node 
 ({ },{ }) = IncrementalClustering(T,V,M) 
 for each instance sets of i-th existing cluster 
   = ParameterLearnNode( ,V, ) 
   = AugmentSPN( ,V, ) 
 end 
 for each instance sets of j-th new cluster 
   = StructureLearnSPN( ,V) 
 end 
end 

.
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settings: “homo” and “hetero.” In the hetero setting, we only reorder the dataset accord-
ing to the class label. In other words, the models first meet all the digit0 images, then the 
digit1 images, and so on. The homo setting uses only the dataset’s own order, and it 
yields a stable probability distribution of data. The hetero setting, however, yields a 
dynamically changing probability distribution of data in the mini-batch task. 

We evaluated the suggested model in a mini-batch environment. The number of 
mini-batches was 16. Three models were compared. The first is “classical online 
learning”, which uses only the first mini-batch for structure learning which following 
previous research studies. The second is “online ensemble learning” which ensembles 
16 SPNs constructed by “classical online learning” method. “Classical online learn-
ing” methods, It is possible that more complex model may do better, which is why 
this second model used in the comparison. Our models are quite larger than the first 
comparable model, but slightly smaller than the second model. The third model is 
“batch learning,” which uses the whole dataset for structure learning and is exactly 
same as the classical methods used in previous studies. 

We tested two methods for evaluating performances, one of which measures like-
lihood. The other goal is to infer the probability of a subset of the variables (the 
query) given the values of another (the evidence). We used 50% of the variables as 
the query and 30% of the variables as the evidence in the experiments. 

Figure 3 shows the performance results of the various learning methods as a hetero 
handwritten dataset arrives. The suggested model not only outperforms naïve online 
models, but also achieves the performances of batch structure learning. The results 
imply that the suggested learning method represents well the probability distribution 
of the data. We also catch that “online ensemble learning” method do better than 
“classical online learning” methods, which means that previous studies may not have 
fully tuned their own model. 

 

 

Fig. 3. Log-likelihoods (left). Average conditional log-likelihoods for arbitrary query and evi-
dence (right). 

We also investigated the form of the structure of changing SPNs. According to dif-
ferent characteristics of the order in which the data arrive, the structure changes diffe-
rently. First, the complexities of SPNs are different. Figure 4 shows that, in the hetero 
setting, the models need more nodes to represent the probability distribution as new 
data arrive. Second, the structure of SPNs or the numbers of child nodes of a root 
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layers are evolved dynamically on incoming data to follow the changing distribution 
of data. 

This paper is also a source of motivation for some future studies. First, our methods 
should be verified on larger-scale data as online learning tasks may be needed in 
large-scale data environments. Second, the concept of incremental learning can also 
be used in batch learning with non-parametric Bayesian methods. By applying a non-
parametric Bayesian technique, we could more plausibly learn the structure of a 
Bayesian network. We hope this property can be used for lifelong learning to allow 
the model to catch new concepts and concept drift [13].  
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Abstract. In recent years, kernel methods are used in many applications, such as 
text classification and gene recognition. The parameters of kernels are 
empirically decided by the context of application. In order to select the 
appropriate kernel parameters, kernel polarization is presented as a universal 
kernel optimality criterion, which is independent of the classifier to be used. 
However, kernel polarization has several disadvantages, leading to the 
inconvenience of applying such method. In this paper, a clustering algorithm 
called Cooperative Clustering is integrated with kernel polarization. The 
experimental results showed the effectiveness of the approach. 

Keywords: Support vector machine, Kernel polarization, Cooperative 
clustering. 

1 Introduction 

Kernel methods [1, 2] have been used in many applications of classification, such as 
text classification, intrusion detection, and so on. The idea behind kernel methods is 
that it can map the data points into a high dimensional feature space by introducing 
kernel functions. Therefore, the classification accuracy is related to mapping functions, 
i.e. the kernels. In order to achieve higher performance, various kernels are designed, 
including Radial Basis Function (RBF) kernels [3], string kernels and tree kernels [2]. 
Besides, the parameters of kernels [4] are closely related to the classification accuracy. 
In short, kernels and their parameters are critical factors in classification problems.  

Kernel polarization (KP) [5] is proposed as a criterion in measuring whether the 
kernel function is good especially for the parameters selection in the model. However, 
the KP has its disadvantages at the same time. When the size of the two kinds of 
samples is biasing, the larger one will have great influence on the result which would 
make a large error. Besides, the KP only focuses on the overall optimization of the two 
kinds of samples and ignores the boundary distribution which will also lead to a large 
error of the result. Additionally, it needs all the samples to be trained which would 
make the efficiency very low.  

According to the above problems, we have made some improvements such as the 
improved kernel polarization (IKP), improved kernel polarization based on clustering 
(CIKP). But the methods proposed above only improved on a particular aspect of the 
defect. In this paper, we propose a method called “improved kernel polarization based 
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on cooperative clustering (CCIKP)” for parameter selection. On one hand, it highlights 
the influence of the boundary sample; on the other hand, it greatly reduces the numbers 
of samples which improves the learning efficiency. Finally, we test our method with 
RBF kernels [6, 7] and make a comparison with the other three methods. 

The rest of this article is organized as follows. In section 2, we give a short 
description of KP. In section 3, IKP is introduced. In section 4, we show a method of 
CIKP. And our method CCIKP is presented in detail in section 5. Experimental results 
showing its effectiveness are presented in section 6 and at last we draw conclusions 
with some future works in section 7. 

2 KP 

Given a set of labeled pointswhere, the kernel function defines a symmetric positive 

definite kernel matrix K by ( ),ij i jK k x x= . Let ( )1, , ny y y
Τ=  , the ideal kernel matrix 

would be yyΤ  which perfectly suits the training data. Then the KP is defined as  

follows [5]:    

( ) ( ) ( )
1 1

, , , ,
i j i j

n n

i j i j i j i j
i j y y y y

K yy y y K x x k x x k x xϕ Τ

= = = ≠

=< >= = −    (1)

Through the above formula, it is easy to find that the KP measures the similarity of the 
kernel with yyΤ  on the training data. And obviously, ϕ  will increase if the similarity 

represented by the kernel turns larger for input patterns of the same class while that for 
patterns of different classes turns smaller. This is the intuitive idea behind preferring a 
kernel with high kernel polarization in the machine learning. However, this method has 
some disadvantages, which are as follows: 

(1) When the size of the two kinds of samples is biasing, the larger one will have 
great influence on the result which would make a large error. 

(2) The KP only focuses on the overall optimization of the two samples but 
ignores the boundary distribution which will also lead to a large error of the result. 

(3) This method needs all the samples to be trained which reduce the efficiency. 

3 IKP 

As we know, when there is a big difference between the numbers of the two samples, 
the performance of KP will be poor. So people have made some efforts in order to 
surmount this problem. For the purpose of eliminating the unbalance of the two 

samples’ numbers, they introduce a new variable ir  and call this method IKP: 

( )
=1 =1 0 1

1  = 1
= , where =

- /  = -1

n n
i

i j i j i
i j i

y
J r r K x x r

n n y





  (2)

where 0n is the positive samples’ number and 1n  is the negative samples’ number.  
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This method takes the number of two kinds of samples into consideration, and 
makes great contributions in eliminating the unbalance of the two samples’ numbers. 

4 CIKP 

In the method of IKP, all samples are used in the training process, which inevitably 
requires longer training time. In order to reduce the time complexity, the idea of 
clustering can be used to preprocess the training samples. We call this method CIKP. 

In CIKP, each class can be divided into several clusters, and each cluster can be 
represented by its central sample. For binary classification, the positive class is divided 
into p clusters and the negative one is divided into q clusters. Then every cluster is 
replaced with its cluster center to as the training sample of IKP, and the sample number 
of each cluster is used as the weight of its cluster center. For multiple class 
classification, there are some differences. Suppose that there are r classes, and each 
class has p cluster centers. For the i-th classifier, the class i is set with + and divided into 
p clusters, the other classes are set with – and divided into q clusters, where = (r-1)q p . It 

is similar to binary classification. If the size of the two kinds of samples is biasing, we 
can set >q p , and then the similar effect can be achieved, too. 

Suppose the number of the training set in class i is n0, and that in other classes is n1, 

and ( ) ( ) ( ){ }1 1 2 2= , , , , , ,n nZ z y z y z y is the sample set of KP, and it is the weight of the 

sample Zi. Then the CIKP is defined as follows: 

( )
=1 =1 0 1

= 1
= ,    where   =

- /  = -1

n n
i i

i j i j i
i j i i

t y
J s s K z z s

t n n y





  (3)

5 CCIKP 

As described above, the method of CIKP could reduce the number of the training set, 
but it does not consider the boundary samples. However, those ones often have a great 
influence on the result. Therefore, cooperative clustering is integrated into IKP, called 
CCIKP. And CCIKP can highlight the influence of the boundary samples. 

5.1 Method of Cooperative Clustering 

The thought of cooperative clustering is put forward by Tian et al [8]. Suppose that 
there are two-class data sets +X and -X . With k-means [9] algorithm, the two data sets 
are divided into p clusters and q clusters where p q≤ . Now choose the cluster centers 

of class + and class – marked as { }+ + +
1= , , pv v v  and { }- - -

1= , , qv v v . H represents the 

distance matrix between the two sets +v  and -v . The ij-th entry ijh  of matrix H can 

be computed as 
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2+ -= - =1,..., , =1,...,ij i jh v v i p j q  (4)

We take out each pair of cluster centers with smallest distance from sets +v  and -v  
iteratively according to matrix H. The two cluster centers in ( )+ -,a bv v  should move 

towards each other. Let +
ar  be the average radius of cluster a in class + and -

br  be the 

average radius of cluster b in class -. So we have 

+ -

+ + - -
+ -

1 1
= - = -

a b

a a b b
x X x Xa b

r x v r x v
n n∈ ∈
   (5)

where +
an  and -

bn  are sample numbers in clusters +
aX  and -

bX  respectively. Then 

each pair ( )+ -,a bv v  is updated as follows 

( ) ( )
+ -

+ + - + - - + -
+ - + -

= + - = + -
+ +
a b

a a b a b b a b
a b a b

r r
v v v v v v v v

r r r r
λ λ  (6)

where ( )0,1λ ∈  is the quantity who controls the distance between +
av  and -

bv . 

The whole procedure of the cooperative clustering is as follows: 

(1) Partition +X  and -X  into p and q clusters with k-means respectively, and get 
the cluster centers  { }+ + +

1= , , pv v v  in class + and { }- - -
1= , , qv v v  in class -. 

(2) Set ={}sV , compute the matrix { }= 1 ,1ijH h i p j q≤ ≤ ≤ ≤ with eq (4). 

(3) Find the smallest element in H, update the center pair ( )+ -,a bv v  with eq (6). 

(4) Add ( )+ -,a bv v  into sV  and delete the row a and the column b from matrix H. 

(5) If the number of pairs in set sV  is less than p, go to step (3). 
(6) Partition +X  and -X  into clusters { }+ + +

1 2, , , pX X X  and { }- - -
1 2, , qX X X  with 

updated cluster centers, and compute new cluster centers in class + and in class -. 
(7) If the partition is changed in step (6), go to step (2). 

With the above procedure, we can find p pairs of cluster centers in sV . Each pair 
crosses the boundary of the two classes.  

5.2 CCIKP 

Cooperative clustering can generate p pairs of clusters, and each pair crosses the 
boundary of the two classes. After cooperative clustering, the p pairs of clusters are as 
the samples of IKP, and the weight of each cluster is 1. At the same time, the cluster 
centers of the other samples except the p pairs are as the samples of IKP, too, but the 
weight of each cluster center is the number of its samples. Therefore, the sample set 
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represents all the samples. It highlights the influence of the samples near to the 
boundary while keeping the small quantity of the training set. 

Suppose the number of the training set in class i is 0n , and that in other classes 

is 1n , ( ) ( ) ( ){ }1 1 2 2= , , , , , ,n nZ z y z y z y is the sample set of the IKP, and it is the weight 

of sample iz  except the p pairs of clusters. Let sV  represents the p pairs of clusters 

which around the boundary of the two classes. Then the CCIKP is defined as follows: 

( ) 0 1
=1 =1

=1

= , where = - / =-1

1

s
i i in n

s
i j i j i i i i

i j s
i

t y y V
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y V
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CCIKP is the improvement made on the basis of foregoing methods. It overcomes the 
drawbacks of KP and takes the boundary samples into consideration.  

6 Experiments 

Our experiments are based on RBF Kernels, which is defined as follows [3]: 

2, ,( , ) exp[ ]K x x b x x= − −  (8)

We choose kernel polarization as the criterion for kernel selection [10] and use the 
gradient-based method [11] for learning its width parameter b. So we have 

2 2

=1 =1

= - -z exp - -
m m

i j i j i j
i j

J
s s z b z z

b

∂  
  ∂   (9)

The following is the algorithm of the gradient-based method and the parameter of 
the step length marked as stp is self-driven. And the original value of b is set to 1. 

for = 0 to100

{ = / = ;   if ( == 0 || > 0.1){ = 0.1 / fabs( ); = 0.1;} += ;}

p

jg J b st jg stp p st stp jg st b st∂ ∂ ∗；

 

To test the effectiveness of the above methods, we apply them to four benchmark 
data sets from the UCI Machine Learning Repository [12] summarized in Table 1. 

Table 1. Data sets used in the experiments 

Problem #training 
data 

#testing 
data 

#attribute #class 

pima 537 231 8 2 
vehicle 592 254 18 4 
segment 1617 693 19 7 

pendigitst 7494 3498 16 10 
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Among many learning procedures for Support Vector Machine (SVM), we choose 
Platt’s sequential minimal optimization (SMO) [13] as training algorithm. The parameter 
λ  of the cooperative clustering algorithm is fixed to =0.3λ . The parameter C in SMO 
is chosen the best one among {0.1, 1, 10, 100} according to the testing accuracy. The 
number of clusters of each class is set to about 10% of the training data. For problems 
pima, vehicle and segment, we randomly choose 70% for training and test the remaining 
30%. Then we run it for 10 times and choose the average values as the results. For 
problem pendigitst, training set and testing set are provided separately in the UCI 
repository. For all problems, we linearly scale all training data to be in [-1,1] for features 
with plus and minus values and in [0,1] for features with only plus values. Then testing 
data are scaled accordingly. The results are shown in Table 2 to Table 5. 

Table 2. Classification results on the pima data set for different methods 

Method #Training 
data for b 

C Training 
acc(%) 

Training 
time(s) 

Testing 
acc(%) 

Testing 
time(s) 

KP 537 10 77.28 2.52 74.03 0.01 
IKP 537 1 81.56 2.50 76.62 0.01 

CIKP 52 1 81.94 0.23 75.76 0.01 
CCIKP 537 1 81.56 2.56 76.62 0.01 

Table 3. Classification results on the vehicle data set for different methods 

Method #Training 
data for b 

C Training 
acc(%) 

Training 
time(s) 

Testing 
acc(%) 

Testing 
time(s) 

KP 592 10 23.14 12.10 24.80 0.05 
IKP 592 10 88.85 15.10 76.77 0.05 

CIKP 56 10 90.20 2.81 76.38 0.05 
CCIKP 331 10 89.86 6.87 76.77 0.05 

Table 4. Classification results on the segment data set for different methods 

Method #Training 
data for b 

C Training 
acc(%) 

Training 
time(s) 

Testing 
acc(%) 

Testing 
time(s) 

KP 1617 100 14.16 159.29 14.72 0.72 
IKP 1617 100 98.21 179.69 96.54 0.75 

CIKP 161 100 98.27 11.86 96.68 0.76 
CCIKP 555 100 98.21 33.25 96.54 0.75 

Table 5. Classification results on the pendigitst data set for different methods 

Method #Training 
data for b 

C Training 
acc(%) 

Training 
time(s) 

Testing 
acc(%) 

Testing 
time(s) 

KP 7494 10 9.59 4812.94 9.61 24.11 
IKP 7494 10 99.91 4923.42 98.71 24.23 

CIKP 740 10 99.96 126.88 98.66 24.24 
CCIKP 1918 10 99.91 462.14 98.71 24.19 
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7 Conclusion 

In this paper, we introduced a new kernel optimality criterion, which is called CCIKP. 
It overcomes the problem that the traditional kernel polarization is sensitive to the 
disequilibrium of the number of samples. It not only considers the overall sample, but 
also takes the boundary samples into account. Moreover, it greatly reduces the training 
time while keeping the classification accuracy. In the experiments, the performance is 
demonstrated with some UCI machine learning benchmark examples. And the 
experimental results show that our method is very effective. Future investigation will 
focus on the selection of the sample centers, decreasing their redundancy in CCIKP.  
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Abstract. This paper will be presented regression models to estimate
the assumed income that is of utmost importance to the credit market
since the client does not prove your income. The proposed models are
lognormal and gamma which is a generalized linear model, both will
be compared who perform better will be chosen, where the result of
the chosen model will undergo an addition of a noise to get a better
estimated. Every analysis and simulation were implemented in [7].

Keywords: Income Presumed, lognormal, Generalized Linear Model,
Kolmogorov-Smirnov, Holdout.

1 Introduction

One of the most frequent problems that companies face when making decisions
is the vulnerability in relation to the accuracy of information of monthly income
that the consumer spends to fill a business proposal. It is not easy to confirm
this income, the risk of adulteration of documents and the difficulty of getting
confirmations with employers and providers.

It is a fact that asymmetric information and high transaction costs in the
pursuit of income data in specialized bureaus are the main problems and can
cause inefficiency in the market for the determination of income. Usually the
individual has more information about yourself (both positive and negative) of
the company and avoid rising defaults.

It is natural to expect that there is an accumulation of cases of bad customers
greater the commitment of monthly income. The larger the monthly commitment
in relation to presumed income, the higher the default. To avoid these situations,
companies have used the model of presumed income, which enables the intelli-
gent use of information. [1] start from an assumption of lognormal distribution
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of income. In this article we will use the lognormal model against gamma gen-
eralized linear model. The data to be used in our project is from the National
Survey by Households Sample (2009), witch was conducted by the Brazilian
Institute of Geography and Statistics. The data provides a comprehensive set
of information about the population, in its many aspects. The publication also
includes technical notes on which stand the concepts and definitions used in re-
search, methodological considerations that allow to know the main aspects of its
historical evolution, and the sampling plan.

In addition to this information, are listed at the end of the publication, all
the topics investigated by the survey since 1992, for the following characteristics:
household, general data of residents, migration, education, child labour 5-9 years
of age, work, and fertility.We are going to just pick some variables from this huge
data set to do our statistical analysis under the proposed model framework.

2 Model Specification

Our goal is to create a model for an estimated income very close to the real
income by gender, education level, occupation, age and federative unit, where
these covariates have a significant influence on income. Thus, in our model, we
use the income variable response that can be treated as a continuous random
variable. CHAID technique was used to classify occupations see [6], Figure 1
shows a piece of this classification.

Fig. 1. Classification of occupations
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The predictor variables included are:

Gender: Male/Female
Education: Primary/Elementary, Middle, Top completed, Master’s
degree/PhD and Literacy
Age: be between 18-65
Federative: Unit are the 27 states including the Federal District
Profession: Included are 125 groups with 599 professions

The age can be treated as a continuous variable. All other predictor variables
are categorical, dummy variables are used in the definition model. Another is-
sue is that after checking the data, it is found that income has a decreasing
exponential. So it will be two models are examined them, lognormal and gamma
generalized linear model with logarithmic link function. Below is the structure
of the mathematical model of income with their covariates,

Income = 1 +Gender + Education+Age+ Federative+ Profession (1)

Because an overall intercept is included in the model, the number of dummy
variables within each predictor should be one fewer than the level of that pre-
dictor. For instance, there are 5 levels of education as described before, so there
should be 4 dummy variables associated with the predictor education.

3 Model Training

This section presents the application of the proposed models in the training base,
the method Holdout is to divide the whole data into two mutually exclusive
subsets, one for training (estimation of parameters) and the other for testing
(validation), see [5]. The data set can be split in equal amounts or not. The
proportion used for dividing the base was 75% for training and 25% for the test.

Fig. 2. Graph of model fit lognormal
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Figure 2 illustrates the setting of the dependent variable transformed with
the log function, where the exponential function is used which is the inverse of
the log to obtain the estimated income, the red line represents the adjustment
of the model.

The red line represents the estimate of the lognormal model shows that the
model fits well the income.

Figure 3 illustrates the model fit with gamma log link function, where the red
line approximates well to the training data.

Fig. 3. Graph of model fit gamma

Then the test is performed adequacy to the two models, for the lognormal
model was used F test (see [4]) based on the hypothesis (3) and the gamma
model is used the Wald statistic (see [2]) following the hypothesis (2) and (3),
the level of significance was set at α = 5%.

H0 = β1 = β2 = ... = 0

H1 = β1 
= β2 
= ... 
= 0 (2)

H0 = The model is suitable

H1 = Otherwise (3)

therefore, we have the p-value of the lognormal model is 2.2e−16% which is
a value lower than the significance level α, ie, we reject the null hypothesis (2),
where the alternative hypothesis states that the lognormal model is suitable for
the F test, while the Wald test in the gamma model had a p-value of 56% which
is a value greater than α, so do nor reject the null hypothesis (3) soon the gamma
model is also suitable. The choice of model will be based from the pseud − R2

model that present the greatest value will be used to analyse the test base. The
pseud−R2 is denoted by the following:

pseud−R2 = (correlation(value Predict, value T rue))2 (4)

the lognormal model obtained the pseud− R2 of 0.66, while the gamma model
had a value of 0.72, so the model chosen is the gamma.
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Table 1 shows the approach of estimated income compared to income from
real quantiles ranging from 1%, 25%, 50%, 75% and 99%.

Table 1. Income estimated versus actual income training

1% 25% 50% 75% 99%

True 510 700 900 1470 8000
Predicted 551 767 924 1412 7782

Table 2 shows the test results obtained on the basis based on the training
model estimated gamma follows the comparison of the quantile previously de-
termined between the estimated income versus the true.

Table 2. Income estimated versus actual income test

1% 25% 50% 75% 99%

True 510 700 900 1481 8000
Predicted 565 764 945 1401 7338

From the estimated value is calculated by the equation (4), the value obtained
was 0.712, which means 71.2% of the dependent variable can be explained by
the covariates in the model.

4 Simulation and Results

Since the problems of estimating income, this section will be presented the tech-
nique for reducing the bias of the model. Regression models always show bias,
ie, information not captured by the model, it is simulated with the residues
randomly with a mean and standard deviation obtained in model training.

The residue model training follows a normal distribution with a mean 2.12e−
11 and standard deviation 0.26, Figure 2 illustrates a simulation done with a
random generator with the mean and standard deviation of residue obtained
from modelling, where the red line represents the estimation density residue and
the red line represents the values of the generation of random numbers normal,
it is apparent that the red line and blue are very close.

Then, the test was performed adhesion of the residue model training from the
residue generated randomly the average and standard deviation of the model
residue. Test was used to Kolmogorov-Smirnov (see [3]), the p-value of the test
will not be used because of the instability with large samples, so the value of the
statistic obtained was 0.0012, ie, the closest to zero is greater the approach of
randomly generated residue to the residue of the model.

The simulation proposed in this paper will be the addition of waste generated
randomly with the distribution and the parameters obtained by the analysis
of the residue of the training model with linear predictor with logarithmic link
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Fig. 4. Approximate model of the residue by residue generated randomly

function to get the original value is applied to the inverse logarithmic function
that is exponentially, as shown in equation (5).

η = exp (β̂X +N(2.12e−11, 0.26)) (5)

From this new linear predictor was performed a simulation of size 3000 and
after the simulation was obtained average quantiles and pseudo-R2. Table 3
shows the results of quantile

Table 3. Income estimated versus real income simulation

1% 25% 50% 75% 99%

True 510 700 900 1470 8000
Predicted 513 706 912 1472 7985

Therefore, correcting the bias of estimated income base test was closest real
income and had a significant increase in the pseudo − R2 from 0.712 to 0.783.
Therefore, the model with gamma correction in vies presents a better result than
without correction. Below is presented the scope of the algorithm:

1. Select a random sample of 75% j the index i = 1, 2, ..., N , where N is the
size of the base.

2. With basic training X[j,p], run the generalized linear model with gamma
their p covariates.

3. Then get the β and the estimated residue model ε.
4. Mount the base test X[−j,p].
5. Determine the size of the simulation n = 3000.
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(a) Generate a looping from 1 to n.
(b) Generate randomnumbersRwith mean and standard deviation of residue

model.
(c) Calculate the estimated value of the base teste exp(βX[−j,p]+R).
(d) Calculate and store the vector of the pseudo-R2 and the quantiles of the

estimated value at each iteration.

6. Return the average pseudo-R2 and quantiles.

5 Conclusion

The proposed models work well with positive data decrease exponentially, where
the gamma model outperformed lognormal, for the model with gamma correc-
tion ensures greater accuracy vies assumed income estimated in relation to the
actual income from this improvement, the models used in the financial market
may possibly have a better score for the client company. The variables pre-
dictive played a very important role to estimate the assumed income, variable
profession that suffered a supervised classification aiming to reduce the amount
of levels which was quite significant for modelling, representing a gain of 32%
in the pseudo-R2 training model. Note that whenever possible to confirm that
the information passed to the customer is true that the model can accurately
estimate the presumed income of the individual.

Future work includes other features such as the breed of individual who would
be an important factor to distinguish better the assumed income and applying
the multinomial model to determine which range of income the individual fits
and so applying this variable as a new input variable to model chosen.
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Abstract. Policy iteration, as one kind of reinforcement learning methods is ap-
plied here to solve the optimal problem of nonlinear discrete-time non-affine 
system with continuous-state and continuous-action space. By applying action-
value function or Q function, the implementation of policy iteration avoids the 
dependence on system dynamics. Online model-free recursive least-squares  
policy iteration (RLSPI) algorithm is proposed with continuous policy approx-
imation. It is the first attempt to develop online LSPI algorithm for nonlinear 
discrete-time non-affine systems with continuous policy. A nonlinear discrete-
time system is simulated to verify the efficiency of our algorithm. 

Keywords: online policy iteration, Q function, nonlinear discrete-time non-
affine system, linear parametrization, RLSPI. 

1 Introduction  

Reinforcement learning (RL) refers to one kind of methods that try to find optimal or 
near-optimal policies for complicated systems or agents [1-3]. Policy iteration (PI) is 
one powerful instrument of RL to solve optimal problems. PI [4] includes two steps: 
policy evaluation and policy improvement. With iteration of these two steps, PI im-
proves policy constantly and finally achieves the optimal one [5].  

As RL developed, function approximation (FA) technique was introduced to RL to 
solve continuous optimal problems and promoted the development of RL. Such as 
approximate SARSA [6], TD(λ) [7] and so on. Especially recent years, a new branch 
of RL, adaptive dynamic programming (ADP) was proposed [2]. Some overviews 
about ADP are given in [2], [3], [8] and [9]. 

As FA technique is used for the approximation of value function, parameters of 
approximation have to be learned based on data. And a lot of online algorithms  
have developed. SARSA is an online algorithm which modifies value function based 
on temporal difference (TD) error with gradient method. Si and Wang [10] applied 
ADP for online learning of under-actuated control systems and presented great  
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performance. However, those algorithms make a limited use of data, which does not 
benefit their application.  

To solve those problems, Busoniu et al. [11] extended offline least-squares policy 
iteration (LSPI) [12] to an online LSPI algorithm. And this algorithm employed Q 
function featured as model-free and the results revealed great performance for online 
learning. However, a batch least-squares method was used and only discrete-action 
policies were applied.  

In this paper, we focus on a brand new research field of online model-free recur-
sive learning with continuous-action policy approximation for nonlinear discrete-time 
non-affine systems. An online model-free RLSPI algorithm is proposed using linear 
function approximation for continuous state and action systems. To the limit of our 
knowledge, it is the first attempt to combine continuous policy approximation with 
LSPI for online learning.  

This paper is organized as follows. In Section 2, PI method using Q function is in-
troduced to solve optimal control problem of nonlinear discrete-time non-affine sys-
tem. Then an online model-free algorithm, RLSPI, is proposed in Section 3 to solve 
this kind of problems online. And a nonlinear example is simulated with the new al-
gorithm. In the end, we have our conclusion. 

2 PI for Nonlinear Discrete-Time Non-affine Optimal Problem 

2.1 Nonlinear Discrete-Time Non-affine Optimal Problem 

In this paper, the nonlinear discrete-time non-affine system is denoted by 

1 ( , )k k kx f x u+ = , where 1, n
k kx x R+ ∈ , m

ku R∈ , : n m nf R R R× → , and k is the 

step index. Assume the system is controllable on a compact set Ω and 0 is the equili-
brium point. Suppose a negative definite function ( , )k kr x u  is used as the reward at 

each step, and : n mh R R→  represents a policy.  
Given a policy h , the following definition specifies its action-value function, or Q 

function 

 ( , ) ( , ) ( ( , ), ( ( , )))h h
k k k k k k k kQ x u r x u Q f x u h f x u= + . (1) 

hQ  are negative definite. And the optimal control problem is to find the maximum Q 

function and optimal policy, namely 

 * ( , ) max ( , )h
k k k k

h
Q x u Q x u= , (2) 

 * *( ) arg max ( , )k k
u

h x Q x u= . (3) 

It is important to note that the Q function defined here is undiscounted. So a defini-
tion is introduced from [13] to guarantee the validity  
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Definition 1. (Admissible Policy) A control policy h  is defined to be admissible, 
denoted by ( )h ψ∈ Ω , if h  is continuous on Ω, (0) 0h = , h  stabilizes the system 

on Ω and for kx∀ ∈Ω , ( , )h
k kQ x u  is finite. 

2.2 Policy Iteration 

Based on Q function, policy evaluation and policy improvement of PI is presented as 
follows 

PI method 

1. Policy evaluation: given an admissible control policy ( ) ( )ih ψ∈ Ω , calculate rele-

vant Q function by 

 ( ) ( ) ( ) ( )( , ) ( , ) ( ( , ), ( ( , ))), (0,0) 0.i i i i
k k k k k k k kQ x u r x u Q f x u h f x u Q= + =  (4) 

2. Policy improvement: generate a new improved policy ( )ih  using  

 ( 1) ( )( ) arg max ( , ).i i
k k

u
h x Q x u+ =  (5) 

As the policy is improved over and over again, the optimal policy can be finally ob-
tained. 

3 An On-Line Model-Free RLSPI Algorithm 

LSPI method was first proposed by Lagoudakis and Parr [12] to utilize the linear 
property of PI method and apply least-squares method for finite state and action sets. 
Then Busoniu et al. [11] extended this method to an online version for infinite and 
continuous-state space and finite-action sets. However, their algorithm is not suitable 
for more general continuous action systems. 

Different from offline or online LSPI algorithm using batch least-squares at the end 
of iterations, a new online model-free RLSPI algorithm is proposed which applies 
RLS method at each step and uses continuous policy approximation for continuous 
state and action control problems.  

3.1 Q Function and Policy Approximation 

As state and action spaces are continuous, approximation of Q function and policy is 
necessary. Here, linear parametrization technique [13] is used.  

A linear parametrization of Q function can be expressed by ˆ( , ) ( , )TQ x u x uφ θ= , 

where 1( , ) [ ( , ),..., ( , )]TNx u x u x uφ φ φ=  is a vector of N basis functions (BFs), and 
NRθ ∈  is a parameter vector. Like many others works [13], polynomials are adopted 
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here as BFs. Suppose 1[ ,..., ]Tnx x x=  and 1[ ,..., ]Tmu u u= and let polynomial BF iφ  

have the form 1 2 1 2
1 2 1 2( , )

i i i ii i
n m

i n mx u x x x u u uα α β βα βφ =   .  

Similarly, denote the linear parametrization of policy by ˆ( ) ( )Th x xω ϕ= , where 

1( ) [ ( ),..., ( )]TMx x xϕ ϕ ϕ=  and 1[ ,..., ] M m
m Rω ω ω ×= ∈ , while each vector M

j Rω ∈  

is associated with action ju . And the polynomial BF jϕ  is defined as 

1 2
1 2( )

j j j
n

j nx x x xγ γ γϕ =  . 

3.2 Policy Evaluation with Q Function Approximation 

With Q function approximation and policy evaluation, the calculation of parameters 

vector θ  can be implemented using online data. Suppose current policy is ( )ˆ ih  and 

try to solve parameters vector ( )iθ . 1{( , , )}t t tx u x +  denotes online data.  

For each sample 1( , , )t t tx u x + , combine ( )ˆ iQ  and (4)  and we have 

 ( ) ( )
1 1

ˆ[ ( , ) ( , ( ))] ( , ).i T i
t t t tt tx u x x r x uhφ φ θ+ + =−  (6) 

It is obvious that (6) is a linear to ( )iθ . Besides, online samples are collected step by 

step. So RLS method is applied for learning ( )iθ . The whole learning process is pre-
sented by  

 

( )
1 1

( )

1

1
( ) ( )

( ) ( , )

( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ( , ) ( , ( ))

1

( 1) ( ) ( ) ( )

( ) ( ) ( )

t t

T

i
t t t t

i i i
t t

T
t

T

z t r x u

s t

q t P t s t s t P t s t

P t I

x

q t s t P t

q t z

u x h

t s t

xφ φ

θ θ θ

+ +

−

+

=

=

 = + 
 + = − 

 = +

−

− 

 (7) 

3.3 Policy Improvement with Policy Approximation 

After ( )iθ  is achieved, policy improvement continues to extract an improved policy 
( 1)ˆ ih + . However, because of the linear parametrization for Q function and polynomials 

BFs, it is difficult to solve policy improvement (5) directly and have an explicit solu-

tion of ( 1)iω +  associated with ( 1)ˆ ih + . In this way, a gradient-based method is more 

suitable for policy improvement, which is denoted by j

j j

uQ
j j u ωω ω α ∂∂

∂ ∂
= + , where α is 

the learning rate. 
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To guarantee the accuracy of ( 1)ˆ ih +  or ( 1)iω +  on the whole state space Ω, a train-
ing set which is evenly distributed over the state space is defined beforehand, { }sX , 

1,..., ss N= . For any BF iφ , its partial differential to action ju  has the following 

form 

 

( , )
, if 0

( , )

0, if 0

i i
j ji

j

j
j

x u
u

ux u
u

u

φβφ
 ≠∂ = ∂  =

 (8) 

So partial differential of ( )ˆ iQ  can be formulated by 
( )ˆ ( )( , ) ( , )
i

jj

Q T i
uu

x u x uφ θ∂
∂

= where 

1 ,..., N

j j j

T

u u u

φφφ ∂∂
∂ ∂
 =   

. In this way, the gradient-based updating formula for ( 1)i
jω +  on 

training set { }sX  is obtained 

 ( 1) ( 1)( 1) ( )
, , 1 , 1( , ( ) ) ( )

j

i ii T T i
j s u s s sj s j sX X Xω ω αφ ϕ ω θ ϕ+ ++

− −= +  (9) 

where 1,...,j m= . It is noted that in order to generate an accurate parameter ( 1)iω + , 

updating formula (9) on training set { }sX  can be implemented for sufficient times. 

3.4 Exploration 

Exploration is necessary for online algorithm to find optimal polices. Here, we intro-
duce ε -greedy exploration and reset scheme in [11]. At each step t, it has 1 tε−  

probability to apply the current policy directly and tε  probability to add uniform 

random exploration noise tn  to the action. Besides, at the beginning of the algorithm, 

the exploration probability is relatively large to encourage exploration. As the algo-
rithm runs, the proportion of the exploitation increases. A decay exploration is de-

noted by 0
t

t dε ε ε= , where 0ε  is the initial value and dε  is the decay factor with 

0 1dε< < .  

However, as the policy is admissible and the exploration noise is small, the system 
can still be stabilized after enough steps. At that time, the added exploration noise is 
not sufficient to drive the state away from the equilibrium and a new trial starting 
from non-equilibrium points is more benefit for the exploration. Namely, after every 

trialT  steps, the state is reset away from equilibrium.  

Algorithm 1 presents our online RLSPI algorithm. It should be noted that during 
the implementation, no information of system dynamics is needed and the algorithm 
only relies on online data. 
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Algorithm 1. Online RLSPI algorithm 

1:   initialize (0) 0θ ← , (0)
0hω ← , (0) N NP aI ×= , 0i =  and 0x  

2:   for every step 0,1,2,...t =  do 

3:       
( )

( )

ˆ ( ) at 1  probability

ˆ ( ) at  probability

i
t t

t i
t t t

h x
u

h x n

ε

ε

 −= 
+

 

4:        apply tu and measure next state 1tx +  and reward tr  

5:        policy evaluation ( )iθ  by (7) 
6:        if ( 1) updatet i K= +  then 

7:             policy improvement ( 1)iω +  using (9) on { }sX  and 1i i= +  

8:        end if 
9:   end for 

4 Simulation Example 

The nonlinear discrete-time system to test our algorithm is a mass-spring system with 
two states and one action. The dynamics of this system is presented in [14]. We define 
the reward function by a negative definite quadratic function with respect to state and 

action, ( , ) T T
k k k k k kr x u x Qx u Ru= − − , where 2 20.5 , 1Q I R×= = . 

As the system is nonlinear, the associated Q function or policy is complicated and 
a plenty of BFs are required to achieve high precision. In this way, up to 6-order 

( , )x uφ  and up to 5-order ( )xϕ  are used 

 

2 2 2 4 4 4 3 2 2 3 3 2 2 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2

2 2 2 3 6 6 6 5 4 2 3 3 2 4 5
1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

5 4 3 2 2 3 4 5 2 4
1 1 2 1 2 1 2 1 2 2 1

, , , , , , , , , , , , [ , , , ],

[ , , ], [ , ], , , , , , , , ,
( , )

[ , , , , , ], [ ,

x x u x x x u x u x x u x x x x x x u x x x x x x

u x x x x u x x x x u x x x x x x x x x x
x u

u x x x x x x x x x x u x x
ϕ =

3 2 2 3 4
1 2 1 2 1 2 2

3 3 2 2 3 4 2 2 5
1 1 2 1 2 2 1 1 2 2 1 2

3 2 2 3 5 4 3 2 2 3 4 5
1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2

, , , ],

[ , , , ], [ , , ], [ , ]

( ) , , , , , , , , , , ,

T

T

x x x x x x

u x x x x x x u x x x x u x x

x x x x x x x x x x x x x x x x x x xϕ

 
 
 
 
 
  

 =  

 

For this system, the initial state of each trial is set to [ 0.2,0.2]T− . And the length 

of each trial trialT  is 1000 steps. Besides, the policy evaluation length updateK  is set 

to 200 and the training set { }sX  selects 2{ 0.1, 0.08,...,0.08,0.1}− − . The uniform 

random exploration noise is limited between [ 0.1,0.1]− . The initial exploration value 

0ε  is 1 and the decay factor dε  is 0.999977. As the system is self-stable, policy 

equal to 0 is adopted as the initial admissible policy. 
The results of the RLSPI algorithm is presented in Fig. 1, where (a) reveals 10 rep-

resentative trials during implementation, respectively at 0th, 10000th, 20000th, …, 
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90000th step. It is obvious that our algorithm can learn to improve the policy to a 
good one which stabilizes the system very well. The performance of the finial learned 

policy using RLSPI is presented in (b) starting from [ 0.2,0.2]T− . And (c) reveals 

scores of policies at the end of different trials in RLSPI with respect to step index. 
The scores of policies increase as RLSPI running.  

 

Fig. 1. Implementation of RLSPI algorithm for nonlinear discrete-time system. (a) Trajectory 
of representative trials in RLSPI algorithm. (b) Performance of finial learned policy using 

RLSPI algorithm. (c) Scores of different policies from [ 0.2,0.2]T− . 

5 Conclusion 

PI method for nonlinear discrete-time non-affine systems with continuous-state and 
continuous-action space is considered in this paper. Q function is introduced to ap-
proach undiscounted value function in PI. Relying on Q function, PI method does not 
need the information of system dynamics. Using linear parametrization, an online 
model-free RLSPI algorithm is proposed with RLS method and continuous policy 
approximation. The algorithm reveals efficiency on nonlinear discrete-time systems. 
Without the information of system dynamics and only relying on online data, RLSPI 
can learn optimal or near-optimal policies with finite steps. 
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Abstract. A new algorithm for causal discovery in linear acyclic graphic model
is proposed in this paper. The algorithm measures the entropy of observed data
sequences by estimating the parameters of its approximate distribution to a gen-
eralized Gaussian family. Causal ordering can be discovered by an entropy base
method. Compared with previous method, the sample complexity of the proposed
algorithm is much lower, which means the causal relationship can be correctly
discovered by a smaller number of samples. An explicit requirement of data se-
quences for correct causal inference in linear acyclic graphic model is discussed.
Experiment results for both artificial data and real-world data are presented.

Keywords: Causal inference, Linear Acyclic Model, Entropy.

1 Introduction

Causal discovery from observed data is an important problem in various domains. A lot
of works have been done in the field of machine learning. A linear non-Gaussian acyclic
model for casual discovery is proposed in [10] in which an independent component
analysis technic is used to discover the causal relations of data sets. Following this line
of research, a model for causal inference from data sequences with time structures is
proposed in [4]. [5] extended the acyclic graph model method to a cyclic one. And
nonlinear causal models were discussed in [3] and [1].

In above works, the information for correct causal discovering comes from either
non-Gaussian noises or nonlinear functions [1], or both [3]. Once the causal direction
is found, the rest of work is data modeling, which is a traditional topic and can be
done by a variety of methods. As pointed out in [9], the effect of nonlinear function or
additive noises is making the result sequence closer to a standard normal distribution.
In generalized Gaussian distribution family this distance can be measure by the entropy
of the probability density function with unit second order central moment. Using this
feature implicitly, the LiNGAM method [10] requires non-gaussian data sequences.
When noise signal ratio is low, the sample complex of this algorithm increases rapidly.
Unfortunately, sample data collection can be a laborious job in many applications.

In this paper, we first discussed the conditions for correct causal inference, which is
influenced by noises pdf, noise signal ratio, model parameters and so on. Based on this

� This work is supported by the Funds NSFC61171121 and the Science Foundation of Chinese
Ministry of Education-China Mobile 2012.
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discussion, a new algorithm for causal discovery on the model of linear acyclic graph
with additive noises is proposed. The entropy of an equivalent generalized Gaussian
distribution is used to measure the gaussianity of sequences. The propose entropy based
algorithm has a much lower sample complexity than the previous method, especially in
the cases with small additive noises. When both the signal sequences and the noise
sequences are pure Gaussian, the entropy value will be equal for both directions thus
wrong results can be avoided.

2 Preliminaries

2.1 Linear Acyclic Model

Linear acyclic model is an important way to present causal relationships among ob-
served variables. xi, i ∈ {1, ...,m}are m data sequences with length n. X is an m× n
matrix. Each row of X is a sequence of one observed variable. The causal ordering of
these variable can be denoted by an order function k(xi). ei, i ∈ {1, ...,m} are the
correspond noise data. The linear acyclic model with additive noise can be expressed
as: xi =

∑
k(xj)<k(xi)

bijxj + ei.

Definition 1. For sequence ei,if bij = 0 for all j, ei is called a signal sequence and the
otherwise ei is a noise sequence.

2.2 Generalized Gaussian Distribution(GGD)

The generalized gaussian distribution’s PDF is: f(x) = s
2σΓ (1/s)exp{−|x−μ

σ |s}. For
simplicity we discuss the GGD with μ = 0. The details of GGD’s parameters and
properties can be find in [7]. Many widely used distributions can be represented or
approximated by generalize gaussian distribution.

The generation of GGD data is discussed in [8]. A maximum likelihood estimator
for parameters of GGD is proposed in [2]. The shannon entropy of the GGD is defined
as: Entropy(f(x|s, σ)) = 1

s − log{ s
2σΓ (1/s)} The entropy of a random variable with

a particular distribution is influenced by its shape of a pdf as well as the value of its

variance. var(f(x|s, σ)) = σ2Γ (3/s)
Γ (1/s) If the variance or the second order moment of the

pdf is set to be 1, that is σ2 = Γ (1/s)/Γ (3/s), we can obtain the following entropy
function for GGD with unit variance.

Definition 2. UnitEntropy(s) = 1
s−log{ sΓ (3/s)

1
2

2Γ (1/s)
3
2
} This is entropy function for GGD

with unit variance.

3 Main Results

In this section, we first discuss the conditions for two variables in the linear model
using entropy of GGD. Then we extend the results to a graphic model with more than 2
variables.
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Lemma 3. The entropy function for GGD with unit variance UnitEntropy(s) reaches
the highest value when s = 2 (a standard normal distribution).

Though this is an obvious result, the derivative may not be straightforward. We calcu-
lated the value of UnitEntropy(s). It increases rapidly for s from near 0 to 2, and
decreases very slowly from 2 to infinity.

Lemma 4. x1 and x2 are random variables with unit variance. x1 is non-gaussian.
y = ax1 + (1 − a2)

1
2x2, |a| < 1 apparently var(y) = 1, define γ = a2

1−a2 as the
signal noise ratio. Suppose x1 is the cause and x2 is the noise and y the effect. The
effect sequence y is closer to standard gaussian than the cause sequence x1, if:

h(γ) = (1 + γ)n/2 − γn/2 > κn(x2)/κn(x1) (1)

where n is even integers larger than 2 and κn(x) is the nth cumulant for x.

Proof. For a standard gaussian distribution (GGD with s = 2) the κn = 0 ∀n ≥ 4; And
for GGD s 
= 2,κn = 0 when n is an odd number and κn is positive when n is an even
number. So if κn(y) < κn(x1), ∀n ≥ 4, we can say that y is closer to gaussian than x1

κn(y) = κn(ax1 +
√
1− a2x2) = anκn(x1) + (1− a2)n/2κn(x2)

when κn(y) < κn(x1), we have (1 − an)κn(x1) > (1 − a2)n/2κn(x2) where κn(x1)
and κn(x2) are positive for even number of n ≥ 4. And (1 − an)/(1 − a2)n/2) >
κn(x2)/κn(x1) notice that a2 = γ

1+γ , then the equation (1) is obtained.

Theorem 5. x1 and x2 are random variables with arbitrary variance, and x1 is non-
gaussian. y = bx1 + x2, where x1 and y are input and output of a linear causal
relationship respectively . x2 is the disturb noise. The causal direction between x1 and
y can be correctly discovered by comparing the unit entropy function when the following
inequality holds:

h(γ) >
κn(x2/

√
v2)

κn(x1/
√
v1)

(2)

where h(γ) = (1 + γ)n/2 − γn/2 and γ = b2v1/v2 v1 and v2 are variance of x1 and
x2, n ≥ 4.

Proof. Theorem 5 can be directly obtained using Lemma 3 and Lemma 4.

If the condition in theorem 5 is met, the unit entropy function value of the cause
data sequence is smaller than the value of the effect data sequence. Suppose sx1 and
sy are the parameter of the approximate GGD of x1 and y, UnitEntropy(sx1) <
UnitEntropy(sy) when x1 is the cause and y is the effect.

Corollary 6. x1 and x2 are random variables with arbitrary variance. y = bx1 + x2,
where x1 and y are input and output of a linear causal relationship respectively . x2 is
the disturb noise. If x2 is more gaussian than x1, the causal direction can be correctly
obtained.
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Proof. Under conditions in Corollary 6, the value of right side of (2) is in (0, 1), so (2)
always holds.

Next, we extend the result into model with more than 2 sequences. If the causal model
is a tree like graphic model, the above theorems can be directly applied. Otherwise if
the effect variable has more than one causes, rewrite graph model equation as: xi =
bijxj + ēi where ēi =

∑
k(xl)<k(xi),l �=j bilxl + ei In a linear acyclic model, The causal

order between xi and xj can be correctly discovered by comparing the unit entropy

function when the following inequality holds: h(γ) >
κn(ēi/

√
vēi )

κn(xj/
√

vxj
)

and γ = b2ijvxj/vēi

vxj and vēi are variance of xj and ēi, and ∀n ≥ 4.

4 Algorithm for Causal Discovery in Acyclic Graphic Model with
Additive GGD

Based on the results of previous section, we propose an algorithm for causal discovery
in acyclic graph with additive generalized gaussian noises. x1, ..., xm are observed data
vectors with length n. X is the m × n data matrix X = (x1, ..., xm)T . e1, ..., em are
source data sequence in this model, S = (e1, ..., em)T . So the vector version of linear
acyclic model can be write as: X = BX + S and X = AS where A = W−1 =
(I − B)−1, I is a unit matrix. B is a lower triangle matrix defined directly by the
parameters bij of the graphic model. And W = I − B is a lower triangle matrix with
zeros on the main diagonal.

Algorithm of Entropy Based Method for causal discovery:

STEP1:Estimate parameters of an approximate GGD. Let ui = (xi − μxi)/
√
var(xi).

Estimate the parameter of the approximate GGD probabilistic density function of ui, i =
1...m. The probability density function of the GGD can be expressed as fi(x|σi, si). σi

and si are obtained.
STEP2:Calculate the unit entropy of xi. eni = UnitEntropy(si). Sort the vector of
unit entropy en in ascending order. The ordering function k(xi) can be obtained by this
order. Let k(xi) equals the index of unit entropy eni in the sorted vector.
STEP3:Rearrange the rows of matrix X. X̄ = PX where P is the row permutation
matrix of X, with Pk(xi)i = 1 and other elements of P is zero. The matrix X̄ contains
the observed variables in the entropy order.
STEP4:Decomposition X̄ . Apply an independent component analysis (ICA) algorithm
to matrix X̄ . Matrix W as well as matrix A described above can be obtained.
STEP5:Find the right order of ei by sloving: W̄=minw̄∈Perm(W )

∑
i

1
|Wii|si Perm(W )

is a set comprises all the row permutation matrix of W .
STEP6:Compute the matrix Ŵ where the elements of Ŵ is denoted as ŵij and let

ŵij =

{
0 for i < j
w̄ij/w̄ii for i ≥ j

The diagonal elements of Ŵ is 1.
STEP7: The estimation of matrix B is given by B̂ = I − Ŵ

In the above algorithm step 4, 6, 7 are similar to LiNGAM while step 1-3 and 5 are
different.
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5 Experiments

Three experiments with simulated data are presented to illustrate the method’s perfor-
mance under different s, γ, and m. The performance of the proposed Entropy Based
Method and LiNGAM in [10] are both affected by these parameters. All the experi-
ments are done by Matlab. We generate sequence ei in generalized gaussian distribution
by the method in [8].

The results of first experiment are shown in figure 1. In this experiment we generate
generalized Gaussian density noises with s = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. The number
of observed variable is m = 2, both ei in this experiment have same s. For the other
parameters, we set γ = 1.25 with b21 = 0.5. The X axis is the length of an observed
variable n with ranges from 200 to 2000. The Y axis is the percentage of the experi-
ments with causal order function k(xi) correctly calculated. For each point in the figure,
100 experiments are done with random generated observed data sets.

The Entropy Based Method converges and gives a better performance, except when
s = 2, which means that all data sequences are pure gaussian. But the result given by
Entropy Based Method under pure gaussian is more reasonable than LiNGAM. The
chance is 50-50 for candidate causal orders. By contrast, the result of LiNGAM can
be misleading. As can be seen from the figure, sample complexity increases for both
method when s is close to 2.
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Fig. 1. Performance of Causal Discovery Methods on different s. X-axis: length of the observed
variable n, from n = 200 to 2000; Y-axis: The number of successes in 100 experiments.

In the experiment represented in figure 2, the performance of Entropy Based Method
and LiNGAM under different value of γ are compared. γ represents the ratio of signal
and noise in the linear equation. We let γ = 2.5, 1.25, 0.5, 0.25 and s = 1. The rest
parameters are the same as first experiment. The performance of Entropy Based Method
is better than LiNGAM under different value of γ.

In the third experiment, we compare the performance of methods’ when m = 3 and
4, where m is the number of observed variables.

For m = 3, we set b21 = 0.4, b31 = 0.1, and b32 = 0.6. The rest elements in matrix
B are set to be 0, so B is a low triangle matrix. The variance of e1, e2 and e3 are all
set to be 1. And parameter s of e1, e2 and e3 are 0.5, 1.5, 2.0 respectively. For m = 4,
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Fig. 2. Performance of Causal Discovery Methods on different γ
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Fig. 3. Performance of Causal Discovery Methods on different number of observed sequences m

we set b21 = 0.5, b31 = 0.1, b32 = 0.4, b41 = 0.0, b42 = 0.1, and b43 = 0.2. The
variance of ei, i = 1...4 are set to be 1.0, 1.0, 0.8, 0.8 respectively.

The time complexity of the entropy based method is mainly affected by the sample
size m × n, where n is the length of an observed data sequence and n is number of
data sequence. The running time of the Entropy Based Method is generally equal to the
previous method.

In experiment with real-world data, abalone data set in [6] is analyzed. This data
set can also be found in UCL repository of machine learning. Though nonlinear causal
modeling for this data set is also discussed in [3], linear modeling is more practical in
many applications.

Abalone is a kind of shellfish. Data sequence X denotes the number of rings on
a shell, and Y is the diameter of the shell. Number of rings equals to the age of the
shellfish plus 1.5. So the causal order should be X causes Y , or k(X) < k(Y ), if
presented in an order function.

0 1000 2000 3000 4000
−0.5

0

0.5

1

1.5

0 1000 2000 3000 4000
0

0.5

1

Fig. 4. Performance of Entropy Based Method on Abalone data set. Left: Result of the causal
discovery using first x samples, 1 indicates success; Right: Moving average of the top half of the
figure with a window length of 500.

In the left half of figure 4, the x-axis mean the length of vector, n. The value of
y-axis denotes whether the correct causal order is obtained. Value 1 means a correct
causal inference and 0 mean an incorrect one. As shown in figure 4, the Entropy Based
Method makes a stable choice after 1500 number of samples.
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By contrast, the LiNGAM algorithm gives the wrong causal order in every sample
size from 20 to above 4000. This Entropy based method works well on abalone data
for several reasons.The data distribution of abalone data is somewhat close to GGD and
the noise in this data set can be interpreted as additive. Though we believe the causal
relation is actually nonlinear, it can also be interpreted by a linear model.

6 Conclusions

In this paper, a new method for causal discovery in linear acyclic model is proposed.
This algorithm finds the causal order using an entropy based method. The conditions to
get correct causal orders in the linear acyclic model are discussed. In a linear acyclic
model the result of causal discovery can be affected by the distribution of signals and
noises sequences, the signal noise ratio, the number of sample variables and its length.
Experiments results on both artificial data and the real-world data set abalone are pre-
sented. The Entropy Based Method gives better experimental result than the state-of-art
method. The sample complexity of this new method is significantly lower. Since data
collection can be a hard work in many field, a method with lower sample complexity is
valuable.
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Abstract. Link Prediction deals with predicting important non-existent
edges in a social network that are likely to occur in the near future. Typ-
ically a link between two nodes is predicted if the two nodes have high
similarity. Well-known local similarity functions make use of informa-
tion from all the local neighbors. These functions use the same form
irrespective of the degree of the common neighbors. Based on the power
law degree distributions that social networks generally follow, we propose
non-linear schemes based on monotonically non-increasing functions that
give more emphasis to low-degree common nodes than high-degree com-
mon nodes. We conducted experiments on several benchmark datasets
and observed that the proposed schemes outperform the popular simi-
larity function based methods in terms of accuracy.

Keywords: Degree of neighbors, Common Neighbors, Adamic Adar,
Resource Allocation Index, Markov Inequality.

1 Introduction

Link prediction problem employs similarity that could be based on either local or
global neighborhood. Here, we concentrate on some of the state-of-the art local
neighborhood measures. One of the local measures which is popularly employed
is the Resouore Allocation Index. The similarity function employed by this index
makes the contribution of each of the common neighbors inversely proportional
to its degree.

Social networks follow the power law degree distribution. According to this
law, the probability of encountering a high degree node is very small. We use
an appropriate threshold to split the set of nodes based on their degree into low
and high degree node sets. We have given different weights to common nodes
in different clusters while computing the similarity between a pair of nodes.
Specifically, we have compared the performance of the modified algorithms with
common neighbors, Adamic Adar and resource allocation index. We emphasize
the role of low degree common nodes in terms of their contribution to the simi-
larity and either deemphasize or ignore the contributions of high degree common
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nodes. We justify the proposed scheme formally. The modified algorithms have
resulted in an improved performance in terms of classification accuracy on sev-
eral benchmark datasets. Our specific contributions in this paper are:

1. We establish formally that the number of high degree common neighbors is
insignificant compared to the low degree common neighbors.

2. To deemphasize the role of high degree neighbors and increase the contribu-
tion of low degree neighbors in computing similarity.

2 Background and Related Work

We can view any social network as a graph G. Each link can be viewed as an
edge in the graph. We can represent the graph as G = (V, E) where V is the
set of vertices and E is the set of edges in the graph. Now, let us consider that
at some future instance t′ the graph after addition of some edges has become
G′ = (V ′, E′) where V ′ is the set of vertices of graph G′ and E′ is the set of
edges of G′. Link Prediction problem deals with the prediction of edges from the
set of edges E′ − E accurately.

According to the power law, the probability of finding a k degree node in the
social network which is denoted by pk is directly proportional to k−α where α is
some positive constant usually between 2 and 3. Hence, the probability of finding
a high degree node in the graph is very less as the corresponding value of k is
very high.In general, given G, it is not clear as to which are high degree nodes
and which are low degree nodes. For differentiating between high degree and low
degree nodes we make use of the Markov Inequality. It can be defined as: if X
is a non-negative random variable and there exists some positive constant b > 0
then,

P (X ≥ b) ≤ E[X ]

b
. (1)

We make use of the above inequality to find a threshold value (T) which divides
the set of nodes based on degrees into low degree nodes and high degree nodes.
In this case, as degree is always non-negative we can make degree as the non-
negative random variable and T will be positive, we can represent the above
inequality as:

P (degree ≥ T ) ≤ E[degree]

T
⇒ T ≤ E[degree]

P (degree ≥ T )
. (2)

Thus, from inequality (2) we can calculate the threshold that we require based
on the number of high degree nodes that we need. The similarity functions could
be either local or global (takes the whole graph into account along with some
distance based measures). [1] and [2] present the survey of various similarity
measures and higher level approaches used in the area of link prediction. Further,
they show that Resource Allocation Index outperforms the other local similarity
measures. [3] refines the common neighbors approach by giving the less connected
neighbors higher weight and is popularly known as the Adamic-Adar index (AA)
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known after the authors. The authors in [4] designed the Resource Allocation
(RA) Index which is motivated by the resource allocation dynamics where node x
can transmit a resource through a common neighbor to another node y. In [5], the
authors make use of the latent information from communities and showed that
embedding community information into the state-of-the-art similarity functions
can improve the classification accuracy.

3 Standard Similarity Measures and Our Approach

We formally explain different similarity functions which are used for experimen-
tal comparison against our approach. Here, N(x) is the set of nodes adjacent to
node x.

Common Neighbors (CN): Score between nodes x and y is calculated as the
number of common neighbors between x and y.

CN(x, y) =| N(x) ∩N(y) | . (3)

Adamic Adar (AA): Score between nodes x and y is calculated as the sum of
inverse of the log of degree of each of the common neighbors z between x and y.

AA(x, y) =
∑

z∈N(x)∩N(y)

1

log(degree(z))
. (4)

Resource Allocation Index (RA): Score between nodes x and y is calculated
as the sum of inverse of the degree of each of the common neighbors z between
x and y.

RA(x, y) =
∑

z∈N(x)∩N(y)

1

degree(z)
. (5)

We use (2) discussed in section 2 to bound the threshold. For conducting the
experiment, we use P (degree ≥ T ) between 0.01 and 0.1 and on experimenting
we find the best threshold for each dataset. The thresholds are listed in table 2.
Once we have the threshold value, we divide the node set V based on the thresh-
old into low degree and high degree node sets. We justify our deemphasis of the
high degree common neighbors using the theorem below. Let,

– n = Number of nodes in the graph, nL = Number of Low degree nodes,
nH = Number of High Degree nodes, pk = Probability existence of a k degree
node in graph

– Lavg = Average degree of a node in the low degree region , Havg = Average
degree of a node in the high degree node

– KL = Expected number of low degree common neighbors for any pair of
nodes, KH = Expected number of low degree common neighbors for any
pair of nodes

– T = Threshold on degree, max = Maximum degree, L = {x|degree(x) < T }
, H = {x|degree(x) ≥ T }
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Theorem 1. For any pair of nodes x and y, the expected number of common
neighbors of high degree is very small when compared to expected number of
common neighbors of low degree.

Proof: Consider the possibility that both x, y ∈ L. The probability that a
common neighbour z ∈ L is given by

P (z ∈ L) =
nL

n
∗ pLavg ∗

nL

n
∗ pLavg ∗

nL

n
∗ pLavg ∗

nL

n
∗ pLavg . (6)

where nL

n accounts for the selection of a node from L and pLavg accounts for the
average probability of existence of a low degree node. Note that the first four
terms correspond to the probability of existence of an edge between x and z and
the last four terms correspond to the probability of existence of an edge between
y and z. The above equation can be simplified to the following form :

P [z ∈ L] =
nL

n
∗ pLavg ∗

nL

n
∗ pLavg ∗ (

nL

n
∗ pLavg )

2. (7)

In a similar way the probability that a common neighbor z ∈ H is given by

P [z ∈ H ] =
nL

n
∗ pLavg ∗

nL

n
∗ pLavg ∗ (

nH

n
∗ pHavg )

2. (8)

So,

KL = n ∗ P [z ∈ L] = n ∗ nL

n
∗ pLavg ∗

nL

n
∗ pLavg ∗ (

nL

n
∗ pLavg )

2. (9)

and

KH = n ∗ P [z ∈ H ] = n ∗ nL

n
∗ pLavg ∗

nL

n
∗ pLavg ∗ (

nH

n
∗ pHavg )

2. (10)

Thus, the ratio of KH to KL, from (4) and (5) is given by

KH

KL
= (

nH

nL
)2 ∗ (pHavg

pLavg

)2. (11)

Note that there are 3 other possbilities for assigning x and y to L and H; these
are: 1. x ∈ L and y ∈ H , 2. x ∈ H and y ∈ L and 3. x ∈ H and y ∈ H Note
that in all these 3 cases also, the value of KH

KL
is the same as the one given in

(6). Using power law
pLavg = C ∗ (Lavg)

−α. (12)

From (6) and (7), we have

KH

KL
= (

nH

nL
)2 ∗ (Lavg

Havg
)2α. (13)

Consider nH

nL
which can be simplified as, (degree 1 nodes are ignored)

nH

nL
=

n ∗∑max
i=T pi

n ∗∑T−1
i=2 pi

. (14)
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Note that

2−α ≤
T∑
i=2

i−α ≤ (T − 1) ∗ 2−α. (15)

Using power law we can substitute i−α for pi and cancelling out n, we get

nH

nL
=

∑max
i=T i−α∑T−1
i=2 i−α

≤ (max− T ) ∗ T−α

2−α
= (max− T ) ∗ ( 2

T
)α. (16)

Also by noting that Lavg < T and Havg > T we can bound
Lavg

Havg
as follows,

Lavg

Havg
=

T − δ

T + δ
for some 1 < δ < max (17)

Lavg

Havg
= (1− 2δ

T + δ
) < e−

2δ

T + δ
(18)

So from (13), (16) and (18), we get

KH

KL
≤ (max− T )2 ∗ ( 2

T
)2 ∗ (e− 2δ

T + δ
)2α (19)

which is a very small quantity and it tends to zero as T tends to a large value
which happens when the graph is large. It is intuitively clear that Lavg < Havg.
Further, because of the power law and selection of an appropriate threshold value
we can make nH

nL
as small as possible. For example, by selecting the value of T to

be less than or equal to max
2 where max = maxx(degree(x)) we get

nH

nl
to range

between 0.003 to 0.04 for the datasets considered and for the same threshold
the value of

Lavg

Havg
ranges from 0.07 to 0.14. So, the value of KH

KL
ranges from

0.000009 ∗ (0.0049)α to 0.019 ∗ (0.0016)α. Further, the value of α lies between 2
and 3. So, KH

KL
can be very small. We show the corresponding values in Table 2

Now we present our modifications to the above metrics, let us call them CN1,
AA1 and RA1 where these stand for the modified similarity functions for CN ,
AA and RA respectively. Let R = N(x) ∩N(y).

CN1(x, y) = | S(z) | where S(z) = {z|z ∈ R ∧ degree(z) < T } (20)

AA1(x, y) =
∑

z∈R∧degree(z)<T

1

log(degree(z))
(21)

RA1(x, y) =
∑

z∈R∧degree(z)<T

1√
degree(z)

+
∑

z∈R∧degree(z)≥T

1

degree(z)2
(22)

Thus, in general we can write the score function as a combination of two mono-
tonically non-increasing functions low and high , where low is applied on com-
mon neighbors having degree less than threshold and high is applied on common
neighbors having degree greater than the threshold.

score(x, y) =
∑
z∈R

(low(z) + high(z)) (23)
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Table 1. low(z) and high(z) for various schemes

Metric low(z) high(z)

CN1 1 0

AA1 1
log(degree(z))

0

RA1 1√
degree(z)

1
degree(z)2

where z is the common neighbor of x and y. In our approach we use values for
functions low and high as shown in table 1. It is clear from our approach that
we have given less importance or zero weight to high degree nodes. Let z1 and
z2 be two common neighbors of nodes x and y with degrees p and q respectively
such that z1 ∈ L and z2 ∈ H then their contributions are:

– contribution of z1 to RA is 1
p and for RA1 it is 1√

p ; further, 1√
p > 1

p

– contribution of z2 to RA is 1
q and for RA1 it is 1

q2 ; further, 1
q2 < 1

q
– contribution of z1 to CN is same as its contribution in CN1 and contri-

bution of z2 does not contribute to CN1 as it contributes in CN. Similar
interpretation holds for AA and AA1.

So, common neighbors in L contribute more to RA1 than RA and those in H
contribute less to RA1 than to RA.

Table 2. Details of various datasets

Dataset | V | | E | T Lavg Havg nL nH
Lavg

Havg

nH
nL

GrQc 5241 28968 65 9 99 5168 73 0.09 0.014

HepTh 9875 51946 53 9 80 9792 83 0.1125 0.008

CondMat 23133 186878 45 13 92 22221 912 0.14 0.04

AstroPh 18771 396100 322 40 551 18714 57 0.07 0.003

4 Datasets and Experimental Methodology

For conducting our experiments we used collaboration graphs [6] which are undi-
rected. In the case of collaboration graphs, the nodes represent the authors and
the edge between two nodes x and y represents a collaboration between authors
x and y. We conduct the experiments on the four datasets listed in table 2. We
remove the self loops and nodes having degree one. The details of the datasets
after preprocessing are given in Table 2. The datasets for papers from January
1993 to April 2003 are : AstroPh (Astro Physics), CondMat (Condense Mat-
ter Physics), GrQc (General Relativity and Quantum Cosmology), and HepTh
(High Energy Physics - Theory).
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We perform the link prediction on a static snapshot of the graph. We follow
the approach to set up the data similar to the one explained in [2] and [5]. We
take each of the graph datasets and randomly partition the graph into five parts
by removing the edges randomly where each part has 20% of the edges. Now, we
use one part as test data and the remaining 4 parts for training. That is we use
a 5 fold cross validation. We repeat this five times each time taking a different
part to be the test data; we report the average values.

5 Results and Discussions

On performing the experiments using the modified metrics described in section 3
we report the results in table 3 which indicate the accuracy on various datasets.
From table 3 we observe that RA outperforms CN and AA. This result is con-

Table 3. Percentage Classification Accuracy

Dataset CN CN1 AA AA1 RA RA1

GrQc 98.4 99.3 98.7 99.5 98.4 99.5

HepTh 78.1 85.4 90.4 93.8 92.2 94.5

CondMat 81.61 93.42 92.41 96.76 96.76 97.13

AstroPh 98.81 99.02 99.36 99.45 99.45 99.55

sistent with the results shown in [2]. We can observe that our modified approach
for each of the similarity functions CN, AA and RA performs better than the
corresponding base metric as shown in boldface. We can observe that on the
above datasets, CN1 performs almost as well as AA and AA1 performs as well
as RA. Further, RA1 is the best. Also note that in some cases the accuracy has
increased up to 12%.

6 Conclusion

Based on experimentation, we observed that our approach performs better than
the corresponding base similarity functions. RA1 performs the best among all
the metrics. Thus, from the results we can conclude that our approximation of
the state-of-the-art local neighborhood similarity functions performs better than
the original similarity functions in terms of classification accuracy; further, it can
decrease time when the contribution of high degree neighbors is ignored. We can
conclude that high degree neighbors are not so useful in predicting new links.
Thus, we can completely ignore or minimize the contributions of high degree
nodes by making use of a suitable non-linear similarity function to weigh their
contributions accordingly.
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Abstract. We verify whether the optimal pairs of coupling functions
and spike-timing-dependent plasticity (STDP) window functions for ex-
ecuting the auto-associative memory algorithm derived from the view-
point of hardware implementation are identical to those derived from
the computational viewpoint by Lengyel et al. (2005). With a zero noise
limit, we obtained the same relation between the coupling function and
the STDP window function as that which Lengyel et al. obtained.

Keywords: coupling function, STDP, auto-associative memory.

1 Introduction

The hippocampus is an information processing system designed to address the
task of storing memories and retrieving them. Marr [1] defined three levels
at which such information processing systems must be understood completely
as computational, algorithmic, and implementational. Contrasting the previous
studies using mathematical models related to hippocampal memory with Marr’s
tri-level hypothesis [1], they can be divided broadly into two categories:

One is the top-down approach to bridge the computational and algorithmic
levels. Lengyel et al. [2] derived an algorithm related to auto-associative mem-
ory function in the hippocampal area CA3 by treating auto-associative memory
retrieval as a kind of Bayesian inference. Moreover, they developed a theory for
the auto-associative memory algorithm that specifies an optimal relation be-
tween the synaptic plasticity rule for storing memories and the form of neural
interactions for memory retrieval. Given the speculation that a coupling func-
tion is appropriate to formulate the neuronal interactions if memories are stored
by spike-timing-dependent plasticity (STDP), they derived the relation between
the coupling function Γ (φi − φj) and the STDP window function Ω(φi − φj):

Γ (φi − φj) ∝ ∂

∂φi
Ω(φi − φj), (1)

where φi and φj respectively denote presynaptic and postsynaptic spike phases.
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The other is the bottom-up approach to bridge the implementational and al-
gorithmic levels. In our previous work [3], we derived an algorithm related to
hetero-associative memory function in the hippocampal area CA1, by applica-
tion of the reductive perturbation method [4] into a high-dimensional nonlinear
dynamical system of neurons. Thereafter, we derived optimal pairs of coupling
functions and STDP window functions for executing the hetero-associative mem-
ory algorithm.

Unfortunately, a relation between our algorithm derived from the bottom up
and Lengyel’s algorithm derived from the top down has not yet been reported.We
now address this issue. In this paper, we verify whether the optimal pairs of cou-
pling functions and STDP window functions for executing the auto-associative
memory algorithm derived by our bottom-up approach are identical to Lengyel’s
results [2]. We can understand memories in the hippocampal CA3 at the three
levels if we obtain results consistent with them.

Under the assumption of regular spiking and weak coupling, we first formulate
an auto-associative memory model retrieving spike patterns as a phase oscillator
model consisting of a coupling function and an STDP window function. Next, we
analytically derive the mutual information between a stored spike pattern and
the retrieval pattern, and use it to evaluate the memory retrieval performance.
By maximizing the mutual information, we search for a set of optimal coupling
functions under the same constraint of the STDP window function as Lengyel
et al. [2]. The theoretically derived coupling functions are compared with the
previous study. In the zero noise limit, we obtained the same relation between
the coupling function and the STDP window function as that which Lengyel et
al. obtained.

2 Methods

2.1 Minimum Model Functioning As an Auto-associative Memory

In line with the previous study [2], we assume that the hippocampal CA3 works
as auto-associative memory retrieving a spatiotemporal spike pattern from a
partial or noisy cue. We formulate a minimum model functioning as a temporal
auto-associative memory as the recurrent network model presented in Fig. 1.
The model consists of N oscillator neurons. For simplicity, these neurons have
the same spiking period. Neuron i is connected to neuron j through a synapse
with an efficacy (weight) Jij . The theoretical derivations presented below assume
all-to-all connectivity.

Fig. 1. Schematic diagram of a recurrent network with
oscillator neurons. Neurons numbered i = 1, · · · , N are
characterized by their phases φ1, · · · , φN , representing
their individual spike timings. The angle of the radius
line in the circle represents the phase. Neurons are fully
connected by N2 synaptic connections.
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For mathematical tractability and simplicity, we assume that the timescale
of synapse dynamics in the memory storage process is far different from that of
network dynamics in the memory retrieval process. Under such an assumption
of timescale separation, the storage process and retrieval process are separable
from one another.

Synapse Dynamics in the Storage Process. In the storage process, we
treat θj as the spike phase of presynaptic neuron j (= 1, · · · , N), and θi as that
of postsynaptic neuron i (= 1, · · · , N). Also, Jij denotes the synaptic weight
between presynaptic neuron j and postsynaptic neuron i. Memory storage occurs
as a result of synaptic weight change. The amount of synaptic weight change,
ΔJij , is determined according to the following synaptic plasticity rule as

ΔJij =
1

N
Ω(θi − θj). (2)

Therein,Ω(·) is the STDP window function, for which the relative phase (timing)
of presynaptic and postsynaptic spikes determines the sign and extent of synaptic
weight change. When storing more than one pattern (μ = 1, · · · , p), we also make
a simplifying assumption that synaptic plasticity is additive across memories.

Jij =
1

N
J0 +

1

N

p∑
μ=1

Ω(θμi − θμj ), (3)

Therein, 1
N J0 (> 0) is the initial synaptic weight, which avoids negative values

of Jij . This plasticity rule is similar to that described in the previous study [2].
The difference from the previous study is the scaling of the synaptic weight with
the number of neurons, N . This scaling is necessary for derivation of the order
parameter mμ

k,l, which measured the overlap between the μ-th memory pattern
θμ and the retrieval pattern φ, as we discuss later. Because the magnitude of
Ω(·) is arbitrary, there is no loss of generality because of the scaling in Eqs.
(2) and (3). Each element of the μ-th memory pattern θμi is assigned to an
independent random number in [0, 2π) with a uniform probability, P (θμi ) =

1
2π .

Consequently, these memory patterns are not mutually correlated.

Network Dynamics in the Retrieval Process. In the retrieval process, we
treat φj as the spike phase of presynaptic neuron j, and φi as that of postsynaptic
neuron i. When the neurons have the same spiking period (i.e., regular spiking)
and the synaptic weight Jij is sufficiently small (i.e., weak coupling), the retrieval
dynamics can be expressed by the Langevin phase equation (LPE)[3,5]:

dφi

dt
=

N∑
j=1

JijΓ (φi − φj) + σsi(t). (4)

Γ (·) is called the coupling function, indicating the effect of presynaptic spike
phase φj on the postsynaptic one φi. si(t) is white noise satisfying < si(t) >= 0,
< si(t)sj(t

′) >= 2δijδ(t− t′). σ represents the noise intensity.
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Here, we expand the STDP window function and the coupling function into
their Fourier series:

Ω(θμi − θμj ) =

∞∑
k=−∞

ak exp(ik(θ
μ
i − θμj )), ak =

1

2π

∫ ∞

−∞
dθΩ(θ) exp(−ikθ), (5)

Γ (φi − φj) =
∞∑

l=−∞
bl exp(il(φi − φj)), bl =

1

2π

∫ ∞

−∞
dφΓ (φ) exp(−ilφ), (6)

where ak and bl respectively denote the Fourier coefficients of the STDP win-
dow function and the coupling function (k and l denote frequency components).
Ω(·) and Γ (·), which are real-valued functions, satisfy a−k = a∗k and b−l = b∗l
(superscript ∗ denotes the complex conjugate), respectively. The initial synaptic
weight J0 can be involved in the DC component a0 without loss of general-
ity. Here, we define Ak and ζk respectively as the amplitude and the phase of
ak, (ak = Ak exp(iζk)). Bl and χl represent the amplitude and the phase of bl
(bl = Bl exp(iχl)). They satisfy A−k = Ak, B−l = Bl, ζ−k = −ζk, χ−l = −χl.

The order parameter mμ
k,l, the overlap between the μ-th memory pattern θμ

and the retrieval pattern φ in each frequency component, is defined as

mμ
k,l =

1

N

N∑
j=1

exp(i(kθμj − lφj)), (7)

All the neurons share the same order parameter: mμ
k,l.

Using ak, bl and mμ
k,l, the LPE (4) can be transformed into

dφi

dt
=

∞∑
k=−∞

∞∑
l=−∞

p∑
μ=1

a∗kblm
μ
k,l exp(i(lφi − kθμi )) + σsi(t). (8)

The neurons share the samemμ
k,l and are driven by independent noise. Therefore,

the N neurons can be regarded as statistically mutually independent and as
having the same statistical characteristics.

2.2 Equilibrium Phase Distribution When Storing a Finite Number
of Patterns

We here consider the case in which the number of stored patterns p is finite
in the thermodynamic limit as N → ∞ (i.e., p << N). The first memory
pattern is to be retrieved (φ ≈ θ1). As described above, the memory patterns
θμ (μ = 1, · · · , p) are not mutually correlated.

Each overlap mμ
k,l is calculable as follows. The average overlap with μ = 1

between two components with the same frequency (k = l) is

〈
m1

l,l

〉
=

1

N

N∑
j=1

〈
exp(il(θ1j − φj))

〉
= O(1). (9)

However, the average overlap with μ = 1 between the other components (k 
= l)

is
〈
m1

k,l

〉
= 0 and the deviation is O(1/

√
N). Moreover, for any k and l, the
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overlap between the retrieval pattern φ and a memory pattern other than the

first (μ ≥ 2) is on average
〈
mμ

k,l

〉
= 0, and the deviation is O(1/

√
N). In the case

of a finite p, the number of terms with μ ≥ 2 in Eq. (8) is finite. Moreover, the
Fourier coefficients al and bl rapidly approach zero as l increases. Consequently,
contributions of the terms except those with μ = 1 and k = l to Eq. (8) are
negligible in the limit N →∞. The phase dynamics can be rewritten as

dφi

dt
= 2

∞∑
l=1

AlBl|m1
l,l|

l
sin(l(φi − θ1i )− ζl + χl + ∠m1

l,l −
π

2
)
)
+ σsi(t). (10)

The term consisting of DC components a0 and b0 in Eq. (8) is a constant. We
can safely neglect this term because the constant term can be involved in the
natural frequency ω without loss of generality. Equation (10) shows that the
statistical properties of the auto-associative memory model in the case of finite
loading (p << N) and those in the simplest case of just one pattern to be stored
(p = 1) are identical.

From Eq. (10), we obtain the equilibrium phase distribution of each neuron:

P (φi|θ1i ) =
1

ZNF
exp
( 2
σ2

∞∑
l=1

AlBl|m1
l,l|

l
cos(l(φi−θ1i )−ζl+χl+∠m1

l,l−
π

2
)
)
, (11)

ZNF =

∫ 2π

0

dφ exp
( 2
σ2

∞∑
l=1

AlBl|m1
l,l|

l
cos(lφi − ζl + χl + ∠m1

l,l −
π

2
)
)
, (12)

where ZNF is the normalizing factor. In a self-consistent manner [5], we can
obtain the order parameter equation, which denotes the overlap at equilibrium:

m1
l,l =

1

N

N∑
i=1

exp(il(θ1i − φi)) =

∫ 2π

0

dφiP (φi|θ1i ) exp(−ilφi). (13)

2.3 Mutual Information per Neuron

Mutual information, which measures how related two random variables are, is
nonnegative and takes 0 only if these variables are independent.

When retrieving the first memory pattern θ1, the mutual information of the
retrieval pattern φ to θ1 per neuron, 1

NH(φ; θ1), is given as

1

N
H(φ; θ1) =

1

N
H(φ)− 1

N
H(φ|θ1). (14)

Here, 1
NH(φ) is the entropy of φ per neuron, which measures the uncertainty

associated with φ. 1
NH(φ|θ1) is the conditional entropy of φ given θ1, which

quantifies the remaining uncertainty of φ given that θ1 is known. Because each
neuron is statistically independent and has the same statistical characteristics as
those described above, 1

NH(φ) and 1
NH(φ|θ1) can be written simply as follows.

1

N
H(φ) = − 1

N

N∑
i=1

∫ 2π

0

dφi

∫ 2π

0

dθ1iP (φi|θ1i )P (θ1i ) ln

∫ 2π

0

dθiP (φi|θ1i )P (θ1i ) = ln 2π,

(15)
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1

N
H(φ|θ1) = − 1

N

N∑
i=1

∫ 2π

0

dθ1iP (θ1i )

∫ 2π

0

dφiP (φi|θ1i ) lnP (φi|θ1i )

= − 2

σ2ZNF

∫ 2π

0

dφ
∞∑
l=1

AlBl|m1
l,l|

l
cos(lφ− ζl + χl + ∠m1

l,l −
π

2
)

× exp
( 2
σ2

∞∑
l=1

AlBl|m1
l,l|

l
cos(lφ− ζl + χl + ∠m1

l,l −
π

2
)
)
+ lnZNF. (16)

Because 1
NH(φ) in Eq. (15) is a constant, maximization of the mutual in-

formation 1
NH(φ; θ1) in Eq. (14) is identical to minimization of the conditional

entropy 1
NH(φ|θ1) in Eq. (16).

3 Results

3.1 Retrieval Performance of the Network with Typical Parameters

We conducted numerical simulations on the auto-associative memory model with
typical parameters. Then we compared the numerical results with theoretical
predictions. Here, we use the auto-associative memory model endowed with the
STDP window function (Fig. 2(a)) and the coupling function (Fig. 2(b)), which
are used in the previous study [2]. In the following numerical simulations, three
random phase patterns θμ (μ = 1, 2, 3) were stored; θ1 was retrieved.

We verified the effect of intrinsic noise on the retrieval performance of this
model. Figure 3 depicts the absolute value of overlap at equilibrium, |m1

l,l|
(l = 1, · · · , 4), vs. the noise intensity σ. In this figure, the LPE (8) was solved
numerically using the Euler method. The values of |m1

l,l| calculated with Eq. (7)
were compared with theoretical predictions obtained by Eq. (13). As depicted in
Fig. 3, the numerical results coincide with the theoretical values for all frequency
components l. The retrieval pattern φ has an appreciable overlap with θ1, i.e.,
|m1

l,l| ≈ O(1) if the noise intensity σ is less than 0.1. However, if σ > 0.1, then

|m1
l,l| converges to zero. Consequently, the network with the parameters used in

the previous study [2] functions as an auto-associative memory within σ < 0.1.
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Fig. 2. (a) STDP window function used in the previous study [2], Ω(θμi − θμj ), which is
a continuous fit to the data of hippocampal neurons [6]. (b) Coupling function derived
from the previous study [2], Γ (φi − φj), which is optimally matched to the STDP (a).
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Fig. 3. Absolute values of overlaps at equilib-
rium, |m1

l,l| (l = 1, · · · , 4), as a function of noise
intensity σ. We use the same STDP (Fig. 2(a))
and coupling function (Fig. 2(b)) as Lengyel et
al. [2]. Curve lines are theoretical results ob-
tained from Eq. (13). The points are obtained
from numerical simulations using Eqs. (7, 8). In
this simulation, N = 1000 and p = 3.
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Fig. 4. Examples of coupling functions opti-
mally matched to the hippocampal STDP win-
dow function (Fig. 2(a)), Γ (φi − φj), which are
derived by maximizing the mutual information
(14). The solid line is an example of coupling
functions when σ = 0.03. The point is one when
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3.2 Coupling Functions Optimally Matched to the Hippocampal
STDP Window Function

We searched for coupling functions that were optimally matched to the hip-
pocampal STDP window function presented in Fig. 2(a). Substituting the Fourier
coefficients of the hippocampal STDP into al of the mutual information (14),
and under the constraint of the STDP, we searched for bl (l = 1, · · · , 4), the
Fourier coefficients of optimal coupling function to maximize the mutual infor-
mation. Because the mutual information (14) increases monotonically as Bl (the
amplitude of bl) increases, we imposed the following constraint condition on the
power of coupling function:

4∑
l=1

B2
l ≤ Const. (17)

Referring to the value of the power of coupling function in the previous study [2],
we set Const. = 0.12. To solve this optimization problem, we used the FMINCON
function in the Matlab Optimization Toolbox.

Figure 4 shows examples of the coupling function derived by mutual informa-
tion maximization. A set of optimal coupling functions forms a continuous set
equipped with a ring topology. As portrayed in Fig. 4, when the noise intensity is
small (σ = 0.03), the theoretically derived coupling function almost conforms to
that derived by Lengyel et al. [2]. However, for a large noise intensity (σ = 0.08),
the derived coupling function has a shape like a Gaussian function.

We verified the retrieval performance of the network model with the optimal
coupling functions including Fig. 4 and the hippocampal STDP window function
(Fig. 2(a)) in numerical simulations, and confirmed that the model works as an
auto-associative memory (results not shown).
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4 Discussion

We verify whether the optimal pairs of coupling functions and STDP window
functions for executing the auto-associative memory algorithm derived from the
viewpoint of hardware implementation coincide with those derived from the com-
putational viewpoint by Lengyel et al. [2]. Using mutual information maximiza-
tion, we derived coupling functions that were optimally matched to the classical
form of the hippocampal STDP window function, which was the same constraint
as that used in [2]. When the noise intensity was sufficiently small (σ = 0.03),
the derived coupling function closely resembled that derived by Lengyel et al.

To speculate on the outcome, we here derive the limit of the mutual informa-
tion (14) when σ goes to zero. By evaluating the integrals in Eqs. (12) and (16)
with the saddle point method, we obtain the mutual information in the limit
of zero noise as 1

NH(φ; θ1) = ln(σ) + 1
2 ln
∑∞

l=1(lAlBl) + Const. We can eval-
uate the maximum value of this function using the following Cauchy–Schwarz

inequality: (
∑∞

l=1(lAlBl))
2 ≤ ∑∞

l=1(lAl)
2
∑∞

l=1(Bl)
2. We have equality if and

only if
Bl = lAl, l = 1, 2, · · · . (18)

Equation (18) shows that equality in the inequality holds if the coupling function
is determined by the derivative of the STDP window function. Therefore, in the
zero noise limit, we obtained the same relation between the coupling function
and the STDP window function as that obtained by Lengyel et al. (i.e., Eq. (1)).

Finally, we express our gratitude to Japanese Neural Network Society (JNNS)
for supporting English proofreading.
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Abstract. This work aims at finding discriminative multi-word features
or phrases from a given set of text documents. We use a modified Shapley
value measure to select the list of discriminative features. The feature se-
lection algorithm is employed on 20-newsgroup and Wikipedia datasets,
along with several existing classifiers. Based on the results obtained, we
show that adding phrases to the feature list can improve classification
performance in comparison to using words alone; further, the improve-
ment varies depending upon the separability of the classes.

Keywords: Text classification, Feature Selection, Discriminative Phrases.

1 Introduction

Classification of text documents is an important task in today’s scenario of ever-
increasing volume of information. Considerable work has been done on designing
classification methods for text documents. Most of these methods represent each
document as a vector of its term frequencies. This Bag-of-Words (BOW) model
has proved to be quite effective in the past. However, including phrases in the
feature list can often increase the semantic information contained in the repre-
sentation of the documents. Therefore, the idea of terms in the context of text
classification has been extended from single words to phrases.

Our aim is to find such discriminative phrases and use them for classification.
To find such discriminative features, we use the concept of Shapley value. We
show that the game defined in this case is concave. Also, we employ statistical
t-test to show that both the terms in most discriminative bigrams come from
the the same zone in the Zipf’s curve.

2 Related Work

The challenges involved in designing a good classifier are mainly twofold : First,
the classification performance on the test documents should be good and two,
the model constructed should be simple. Dimensionality reduction is one of
the measures towards constructing a simple model for classification. Mutual
Information[1] has been used to select features for text classification previously
in [2], whereas works like [3] employ frequency-based feature selection.

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 273–280, 2013.
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Previously, work has been done to determine whether the use of phrases can
improve the classification performance, with both positive and negative results.
Caropreso et. al.[4] define a scoring scheme for terms and uses top ranked n-
grams for classification. Their results show that often using phrases along with
words bring down the classification accuracy. Tan et. al. in [3] have used most
frequent words to generate phrases, from which top few are selected.

The solution concept of Shapley value has been used previously for feature
selection. In [5], the backward elimination version of the Contribution Selection
Algorithm is used, where in every iteration, the features with the lowest Shapley
values are eliminated. In [6] and [7], Sun et. al. have used feature interdependency
measures as the characteristic function and selected the most discriminative
features using Shapley value.

3 Our Work

3.1 Analysis of Bigrams

From Zipf’s Law, we know that the frequency of a word in a document collec-
tion is inversely proportional to its rank. Now we try to relate the frequency
of a bigram to the ranks of its constituent words. We use a the two-tailed, one
sample t-test to show that most significant bigrams usually comprise of words
from the same frequency range. We rank the words in a class by their collection
frequency and divide them into the following zones : Ranks 1-10 (Zone 1), 11-100
(Zone 2), 101-1000 (Zone 3), and so on. Now, we consider all possible bigrams
and rank them by their MI with respect to that class. Now, we take the top
100 bigrams and for each bigram, we find the difference(d) between the zones in
which the first and the second terms of the bigram lie. Our null hypothesis is
that the mean of the values of d is equal to 0. We use the classes ‘sci.crypto’ and
‘comp.graphics’ for the test, considering the bigrams from the class ‘sci.crypto’.

Null Hypothesis : H0 : μ0 = 0
Alternative Hypothesis : H1 : μ0 
= 0
Sample size(n) = 100
Number of degrees of freedom = 100-1 = 99
Sample mean(x̄) = -0.02
Sample standard deviation(s) = 1.0148
Test statistic(t) = x̄−μ0

s/
√
n
= -0.1970

From the value of t, the value of p is calculated to be 0.8442. Since this
value is greater than 0.05, the null hypothesis is not rejected. So, we can say
that the distribution of d values follow a t-distribution with mean 0 i.e. most
discriminative bigrams consist of words from the same zone in the rank spectrum.
Now, if we rank the bigrams in term of their collection frequencies and plot their
ranks versus their MI values, we get the plot in Figure 1. This shows that the
discriminative bigrams are generally more frequent. Similar results are observed
for other classes as well.
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Fig. 1. MI(y-axis) versus rank(x-axis) of all bigrams

3.2 Algorithm for Feature Selection

Our feature selection algorithm uses the concept of Shapley value in a trans-
ferable utility(TU) game to assign a significance measure to each feature. The
algorithm is as follows:

1. For each class, we select wdim words having the highest MI with respect
to that class. The value of wdim is chosen such that at least one of the
top wdim words appears in every document in the class. The reason for
this is explained later. For binary classification, these two sets are the same.
So in that case, we arrange the words in descending order of their MI and
assign each of them to the class where the word is ranked higher in terms of
frequency till we obtain wdim words for each class.

2. Now, for each class, we consider the possible (wdim)2 bigrams that can
be constructed using these wdim words. Thus we have a set N consisting
of wdim + (wdim)2 features from each class. Now we consider this set N
as the set of players of a cooperative game. We define the characteristic
function for a set of features C, v(C), as the total fraction of documents in
which at least one of these features is present, which we also call the Span
of that set. The reason behind this choice is that phrases are generally rarer
than words. Also, we have seen previously that frequent phrases are generally
more discriminative. So we aim to find the set of features that contribute the
most to covering the documents in a class. We ensured previously that the
Span of the entire set of features is 1. We calculate the Shapley value of the
coalition using the following equation and take the top tdim features having
the highest values.The values of parameters wdim and tdim are varied and
the optimal values are selected.

φi(N, v) =
1

n!

∑
p∈P

[v(Ci
p ∪ {i})− v(Ci

p)] (1)
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where i ∈ N , n = |N | and P is the set of all possible permutations of
the set N and Ci

p represents the set of players that come before i in the
permutation p.

Approximate calculation of Shapley value. To compute the Shapley value, we
have to consider n! possible permutations of the n features. However, it has
been shown in [8] that if p (where p � n) randomly selected permutations are
chosen from the n! possible permutations, the resulting error between the actual
and calculated Shapley value is bounded. We vary parameter p while applying
the algorithm to the data sets and see that the classification accuracy does not
increase by changing the number of permutations beyond a certain threshold.

3.3 Nature of the Game

We shall now prove that the resulting game is concave. Let us consider two sets
of features P and Q. We previously defined the Span of a set as the fraction of
documents where at least one of the features in the set occur. To prove that the
game is concave, we need to show that Span(P ) + Span(Q) ≥ Span(P ∩ Q)
+ Span(P ∪ Q). Let us represent the sets P − Q, P ∩ Q and Q − P by A, B
and C respectively. If at least one phrase in a set occurs in a document, we say
that the phrase set spans the document. In Figure 2, the three circles represent
the documents spanned by sets A, B and C. The number of documents in each
region of the Venn diagram is denoted by a, b, c, d, e, f , g and h. Let the total
number of documents be s, where s = a+ b+ c+ d+ e+ f + g + h.

Fig. 2. Documents spanned by 3 phrase sets A, B and C

We can see that,
Span(P )= (a+ b+ c+ d+ e+ f)/s
Span(Q)= (b+ c+ d+ e + f + g)/s
Span(P ∩ Q) = (b + c+ e+ f)/s
Span(P ∪ Q) = (a+ b+ c+ d+ e+ f + g)/s
[ Span(P ) + Span(Q) ] - [ Span(P ∩ Q) + Span(P ∪ Q) ] = d/s
Since, d ≥ 0, Span(P ) + Span(Q) ≥ Span(P ∩ Q) + Span(P ∪ Q).
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Hence the game is concave. This means that the gain obtained in terms of
document coverage by adding a feature to a set of features will be less than that
obtained by adding it to a subset of that set.

4 Experimental Results

4.1 Datasets and Classifiers Used

Four classes from the 20-newsgroup dataset (www.cs.umb.edu/ smimarog/
textmining) after removal of stop words are used in this work. We have also
used Wikipedia web pages from three categories. Details of both datasets are
given in Table 1. For classification, we use Libsvm, k-NN and Decision Tree
(Rapidminer).

Table 1. Classes used from 20-newsgroup dataset

Dataset Class Number of Training
Documents

Number of Test
Documents

20-newsgroup sci.crypto 595 396
rec.sport.hockey 600 399

alt.atheism 480 319
comp.graphics 584 389

Wikipedia Data Mining 54 37
Machine Learning 77 51
Computer Graphics 130 86

4.2 Results

We compare the classification accuracies using (a) all features in the collection
having a document frequency higher than a certain threshold, (b) top wdim
words from each class, ranked using their MI and (c) top tdim features from
each class selected using the above algorithm using Shapley value. The value
of the parameters chosen in all the following cases are as follows: wdim = 10,
tdim = 10, p = 1000, Frequency Threshold = 10. Table 2 shows the classifi-
cation accuracies obtained for different pairs of classes and their corresponding
Bhattacharyya Coeffiecients[9]. Figure 3 shows the effect of varying the number
of random permutations p on the classification accuracies obtained using SVM
classifier for each pair of classes.

4.3 Interpretation

The following remarks can be made from the results observed:

1. Most discriminative bigrams are frequent and consist of words which belong
to the same frequency range.

2. The feature selection algorithm using Shapley value improves the classifi-
cation accuracy in almost all cases, as compared to the baseline accuracy
without feature selection. In most cases, there is an improvement in classifi-
cation accuracy as compared to using words only.
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Table 2. Classification accuracies obtained for different data and classifiers

Class 1(C1) Class 2(C2) BC(C1,C2) Features Used Accuracy
(SVM)

Accuracy
(Decision
Tree)

Accuracy
(k-NN)

Machine Learning Data Mining 0.3611 All features 87.5 77.63 68.04
Top wdim words 92.04 87.21 93.15
Top tdim features 93.18 88.58 93.61

Machine Learning Computer Graphics 0.0 All features 99.27 97.67 95.35
Top wdim words 100 98.84 99.71
Top tdim features 100 100 100

Data Mining Computer Graphics 0.0 All features 98.54 97.72 61.24
Top wdim words 100 100 99.67
Top tdim features 100 100 100

sci.crypto comp.graphics 0.201 All features 92.23 90.73 83.25
Top wdim words 94.65 92.41 82.38
Top tdim features 94.90 92.41 82.38

rec.sports.hockey alt.atheism 0.1363 All features 94.84 88.43 81.87
Top wdim words 94.71 87.99 89.32
Top tdim features 94.84 87.99 88.93

sci.crypto alt.atheism 0.0396 All features 91.05 94.56 83.54
Top wdim words 98.74 97.71 98.49
Top tdim features 98.74 97.71 98.49

sci.crypto rec.sports.hockey 0.0807 All features 93.08 94.07 83.02
Top wdim words 97.36 94.12 96.23
Top tdim features 97.36 94.12 96.23

Fig. 3. Number of random permutations p versus classification accuracy
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3. This improvement is greater for classes which have a higher overlap among
them. For example, we can intuitively say that the classes ‘Machine Learn-
ing’ and ‘Data Mining’ will have a greater overlap in terms of common fea-
tures as compared to the classes ‘Cryptography’ and ‘Computer Graphics’.
This can also be shown by comparing the Bhattacharyya Coefficient(BC)
between these two pairs of classes, which ranges from 0 (completely sep-
arated classes) to 1(completely overlapping classes). We can see that the
improvement obtained by adding phrases is greater for classes which have
higher Bhattacharyya coefficient. This can be explained as follows: In classes
with higher overlap, the number of common features is higher. In such cases,
adding discriminative phrases can improve the classification accuracy (Table
2). However, in case of classes with lower overlap, using only words is al-
most as good as incorporating phrases. In some cases, where the classes are
very well separated, adding phrases can even bring down the classification
accuracy.

4. In all cases, the classification accuracy stabilizes at or below 500 random per-
mutations. The total number of features is (wdim+(wdim)2)∗2. Therefore,
for a value of wdim = 10, there are 220! possible permutations. Therefore, we
can say that the approximation is quite good and computationally efficient.

5. SVM performs much better than Decision Tree as well as k-NN in terms of
classification accuracy, especially when the number of features is high. Also,
SVM as well as k-NN outperforms Decision Tree in terms of time taken for
training the classifier.

5 Conclusions and Future Work

From the results obtained, we can conclude that the effectiveness of adding bi-
grams to the feature list depends on the dataset. In case of classes which are well
separated, it is seen that there is not much incentive to be gained from including
phrases in the feature list. However, in case of overlapping classes, bigrams can
provide more discriminative information as compared to words alone. Our ap-
proach could be extended to phrases of length greater than 2. But, such phrases
are rarer and much less likely to improve the classification performance. Also,
the game involved in feature selection is concave. Hence we cannot guarantee
that the solution is in the core. One future direction could be to modify the
characteristic function such that the resulting game is convex.
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Abstract. Multi-label support vector machine (Rank-SVM) is an ef-
fective algorithm for multi-label classification, which is formulated as a
quadratic programming problem with q equality constraints and lots of
box constraints for a q-class multi-label data set. So far, Rank-SVM is
solved by Frank-Wolfe method (FWM), where a large-scale linear pro-
gramming problem needs to be dealt with at each iteration. In this pa-
per, we propose a random block coordinate descent method (RBCDM)
for Rank-SVM, in which a small-scale quadratic programming problem
with at least (q+1) variables randomly is solved at each iteration. Exper-
iments on three data sets illustrate that our RBCDM runs much faster
than FWM for Rank-SVM, and Rank-SVM is a powerful candidate for
multi-label classification.

Keywords: Multi-label classification, support vector machine, Frank-
Wolfe method, block coordinate descent method.

1 Introduction

Traditional supervised classification deals with problems in which one instance
is only associated with a single class label and thus the classes are mutually ex-
clusive. However, in many real world applications, one instance possibly belongs
to several labels at the same time, e.g., a sunset image could be annotated by
sun, sky and mountain simultaneously [1]. Such a classification issue is referred
to as multi-label classification and has been attracted a lot of attention in the
recent decade. So far, a variety of multi-label methods have been proposed and
validated [2–4], among which multi-label support vector machine (Rank-SVM)
[5, 6] is one of the most famous methods.

Let a finite set of q class labels be L = {1, 2, ..., q} and its all possible subsets
be 2L. We denote a training set of the size l drawn identically and independently
from an unknown probability distribution on Rd × 2L by

{(x1, L1), ..., (xi, Li), ..., (xl, Ll)}, (1)
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where xi ∈ Rd and Li ∈ 2L represent the ith instance and its relevant label sub-
set. Additionally, the complement of Li, i.e., L̄i = L− Li, indicates the irrele-
vant label subset. In the original d-dimensional input space, q linear discriminant
functions are defined as,

fk(x) = wT
k x+ bk, k = 1, 2, ..., q. (2)

It is desirable that any relevant label should be ranked higher than any irrele-
vant one. Through considering all possible pairwise constraints between relevant
labels and irrelevant ones of each instance, the primary form of Rank-SVM is
formulated as follows,

min 1
2

q∑
k=1

wT
k wk + C

l∑
i=1

1

|Li||L̄i|
∑

(m,n)∈(Li×L̄i)

ξimn,

s.t. (wm −wn)
T xi + (bm − bn) ≥ 1− ξimn,

ξimn ≥ 0, (m,n) ∈ (Li × L̄i), i = 1, ..., l,

(3)

where C is a positive regularization constant and ξimn represent the slack vari-
ables. The dual version of (3) becomes,

min F = 1
2

q∑
k=1

l∑
i,i′=1

βkiβki′
(
xT
i xi′
)− l∑

i=1

∑
(m,n)∈(Li×L̄i)

αimn,

s.t.
l∑

i=1

∑
(m,n)∈(Li×L̄i)

ckimnαimn = 0, k = 1, ..., q,

0 ≤ αimn ≤ Ci, (m,n) ∈ (Li × L̄i), i = 1, ..., l,

(4)

with,

ckimn =

⎧⎨⎩
1,
−1,
0,

if k = m,
if k = n,
otherwise,

βki =
∑

(m,n)∈(Li×L̄i)

ckimnαimn,

wk =
l∑

i=1

βkixi,

Ci =
1

|Li||L̄i|C.

(5)

We observe that the ith training instance is associated with a set of variables of
the size li = |Li| ×

∣∣L̄i

∣∣ to be solved, and the total number of variables is identical

to lt =
∑l

i=1 li. Therefore, Rank-SVM is a large-scale quadratic programming
problem with q equality constraints and lt box ones. Due to the complicated
constraints, Rank-SVM is now solved by Frank-Wolfe method (FWM) [7, 8], in
which the same scale linear programming problem is handled at each iteration.

The block coordinate descent method (BCDM) partitions all variables to be
solved into some manageable blocks and updates a single block only at each
iteration when the remaining blocks are fixed [9]. As we known, binary SVM
is widely optimized by sequential minimization optimization (SMO), in which
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a sub-problem with two variables are solved at each iteration [10, 11]. In [12],
a coordinate gradient descent method (CGDM) was proposed for binary SVM.
Essentially, such two methods are a greedy BCDM form since the gradient infor-
mation is used to select two variables. Recently, a random BCDM (RBCDM) is
presented for binary SVM [13], where two variables at least are chosen randomly
at each iteration. It is also commended to apply RBCDM to some composite
problems with many equality and box constraints, but no numerical example
was provided [13]. In this paper, we utilize RBCDM to solve the above Rank-
SVM, in which a smaller scale quadratic programming sub-problem is handled at
each iteration. Our experiments on three data sets demonstrate that RBCDM is
averagely 3 times faster than FWM for Rank-SVM, and Rank-SVM is a powerful
candidate for multi-label classification, compared with the other four multi-label
classifiers.

This paper is organized as follows. In Sections 2, FWM for Rank-SVM is
reviewed. Our RBCDM for Rank-SVM is designed and implemented in Section
3. We experimentally analyze the convergence of RBCDM and FWM for Rank-
SVM, and then compare Rank-SVM with the other four classifiers, in Section 4.
Finally, this paper ends with some conclusions.

2 Frank-Wolfe Method for Rank-SVM

Let the entire solution vector α and the gradient one g for (4) be,

α =
[
αimn|(m,n) ∈ (Li × L̄i), i = 1, ..., l

]T
,

g =
[
gimn|(m,n) ∈ (Li × L̄i), i = 1, ..., l

]T
,

(6)

where,

gimn = ∂F
∂αimn

=
q∑

k=1

ckimn

l∑
i′=1

βki′ (x
T
i xi′)− 1 =

q∑
k=1

ckimnfki − 1,

fki =
l∑

i′=1

βki′ (x
T
i xi′).

(7)

The Frank-Wolfe method (FWM) is a simple and classical first order feasible
direction optimization method [7, 8]. FWM generates a sequence of feasible vec-
tors {α(t)}(t = 1, 2, ...) using a linear search α(t+1) = α(t) + λ(t)d(t), in which
λ(t) ∈ [0, 1] is a step size and d(t) = ᾱ(t) −α(t) a feasible descent direction sat-
isfying z(t) = (d(t))T g(t) < 0. To find out a best feasible direction, i.e., the best
ᾱ(t), FWM utilizes the first order Taylor series expansion of F (α) around the
vector α(t) and then solves the following linear programming (LP) problem,

min
(
ᾱ(t)
)T

g(t) =
l∑

i=1

∑
(m,n)∈(Li×L̄i)

ᾱ
(t)
imng

(t)
imn,

s.t.
l∑

i=1

∑
(m,n)∈(Li×L̄i)

ckimnᾱ
(t)
imn = 0, k = 1, ..., q,

0 ≤ ᾱ
(t)
imn ≤ Ci, (m,n) ∈ (Li × L̄i), i = 1, ..., l.

(8)
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Algorithm 1. FWM for Rank-SVM

1. Set two stopping criteria: M and ε.

2. Initialize α
(1)
imn, β

(1)
ki , and f

(1)
ki to be 0, and g

(1)
imn = −1.

3. For t=1,2,...,M.
3-1. Solve the LP problem (8)

3-2. Calculate d(t) and z(t).

3-3. (Option) if |z(t)| ≤ ε, then stop.

3-4. Estimate the step size λ(t) using (9)

3-5. Update α(t+1) = α(t) + λ(t)d(t).

3-6. Re-calculate β
(t+1)
ki , f

(t+1)
ki and g

(t+1)
imn .

3-7. If the stopping condition (11) is satisfied, then stop.

This LP problem is usually optimized by simplex or interior point method. It
has been proved that FWM has a sub-linear convergence rate [8].

According to (5) and ᾱ(t), we calculate β̄
(t)
ki correspondingly. For some widely

used Mercer kernels, e.g., linear, polynomial and RBF kernels, the objective
function F (α) of Rank-SVM is strictly convex generally. In this case, the step
size has a closed form, i.e.,

λ(t) = min

⎧⎨⎩1,−z(t)/
q∑

k=1

l∑
i,i′=1

(
β̄
(t)
ki − β

(t)
ki

)(
β̄
(t)
ki′ − β

(t)
ki′

)
(xT

i xi′ )

⎫⎬⎭ . (9)

Additionally, if F (α) has an optimal value F (α∗), then

F (α(t))− F (α∗) ≤ −z(t). (10)

Therefore, usually |z(t)| ≤ ε is used as a stopping condition in FWM. Note that
this condition is related to the upper bounds Ci. Fairly, we define a relative
stopping condition in this study,√√√√ q∑

k=1

l∑
i=1

(
β
(t+1)
ki − β

(t)
ki

)2/√√√√ q∑
k=1

l∑
i=1

(
β
(t+1)
ki

)2
≤ ε. (11)

The FWM for Rank-SVM [6] is summarized in Algorithm 1, where M indicates
the maximal number of iterations or epochs. In Algorithm 1, the most expensive
step is to solve the LP problem, whose time complexity is O(ql2t ) for simplex
method.

3 Random Block Coordinate Descent Method for
Rank-SVM

The block coordinate descent method (BCDM) splits all variables to be solved
into some manageable blocks, and then updates a single block only at each iter-
ation when the remaining blocks are fixed [9]. In its random version (RBCDM),
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Algorithm 2. RBCDM for Rank-SVM

1. Set two stopping criteria: M and ε.
2. Initialize αimn, βki, and fki to be 0.
3. For t = 1, 2, ...,M .

3-1. Permute all variables and then divide them into M ′ = lt/p blocks.
3-2. For t′ = 1, 2, ...,M ′.

3-2-1. Construct the QP sub-problem.
3-2-2. Solve this QP problem using FWM listed in Algorithm 1.
3-2-3. Update αimn, βimn, and fki.

3-3. If the stopping condition (11) is satisfied, then stop.

the variables in a single block are selected randomly. In this section, we apply
RBCDM to solve Rank-SVM.

Due to q equality constraints in Rank-SVM, the size of block is identical to
q+1 at least. Assume that p ≥ q + 1 variables are chosen randomly, and their
indexes are denoted by W = {imn}, where |W | = p. Additionally, the indexes
of the other variables are represented by N .

According to W and N , we permute the elements of αimn, and then divide
them into two parts,

αimn =

{
αW
imn, imn ∈W,

αN
imn, imn ∈ N.

(12)

Now these variables in W are optimized and the others are fixed, i.e.,

α
(t+1)
imn ⇐

{
α
W (t)
imn +Δα

W (t)
imn , imn ∈ W,

α
N(t)
imn , imn ∈ N.

(13)

Correspondingly, through isolating c
kW (t)
imn , g

W (t)
imn , β

W (t)
ki , and C

W (t)
i , we build a

optimization subproblem of Rank-SVM as,

min 1
2

q∑
k=1

∑
i,i′∈W

Δβ
W (t)
ki Δβ

W (t)
ki′

(
xT
i xi′
)− ∑

imn∈W

g
W (t)
imn Δα

W (t)
imn ,

s.t.
∑

imn∈W

c
kW (t)
imn Δα

W (t)
imn = 0, k = 1, ..., q,

0 ≤ α
W (t)
imn +Δα

W (t)
imn ≤ C

W (t)
i , imn ∈W,

(14)

where Δβ
(t)
ki is associated with Δα

(t)
imn via (5). In this study, we use FWM in

the above section to solve this sub-problem. With Δα
(t)
imn and W , we estimate

Δβ
(t)
ki , and then recursively update β

(t+1)
ki and f

(t+1)
ki . Additionally, we calculate

the gradients g
(t+1)
imn ,(imn ∈W ) using (7) temporarily rather than maintaining

the entire gradient vector g.
Our training procedure based on RBCDM for Rank-SVM is listed in Algo-

rithm 2, in which, at each epoch, all lt variables are permuted randomly and split
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Table 1. Statistics of three benchmark data sets

Data set Train Test Feature Class Average label Variable γ in RBF

Emotions 391 202 72 6 1.87 2793 2−1

Scene 1211 1196 294 6 1.07 6278 2−3

Yeast 1500 917 103 14 4.24 58248 20

Table 2. Comparison of RBCDM and FWM for Rank-SVM on three data sets

Method FWM RBCDM (the size of the active block = z(q+1))

z=1 z=10 z=20 z=30 z=40 z=50

Emotion

Fval -105.88 -105.76 -105.89 -105.89 -105.89 -105.89 -105.89

Epoch 125 136 27 15 15 17 15

Time 8.1 5.1 5.3 4.2 4.0 4.7 4.7

F1 63.65 64.19 63.50 63.50 63.50 63.36 63.50

Scene

Fval -174.92 -174.86 -174.96 -174.96 -174.96 -174.96 -174.96

Epoch 227 180 23 20 23 22 23

Time 70.9 178.7 18.5 17.1 19.3 19.1 21.1

F1 78.10 78.10 77.92 77.82 77.82 78.10 77.82

Yeast

Fval -399.53 -397.07 -399.35 -399.45 -399.49 -399.50 -399.51

Epoch 61 374 71 37 38 21 23

Time 1433.0 3380.7 498.6 291.2 335.7 212.4 257.7

F1 59.03 59.04 59.05 59.21 59.03 59.11 59.20

into M ′ = lt/p blocks, and then each block are optimized by FWM sequentially.
The convergence rate of our RBCDM for Rank-SVM could be proved by the
theorem 4 in [13].

4 Experiments

In this section, we analyze the convergence of RBCDM and FWM for Rank-SVM,
and then compare the performance of Rank-SVM with four existing multi-label
classifiers: BP-MLL [14], ML-RBF [15], ML-NB [16] and ML-kNN [17], on three
data sets (Emotions, Scene and Yeast) from [18]. Table 1 lists some basic statis-
tics of three sets, including the numbers of training instances (Train), testing
instances (Test), features (Feature) and classes (Class) respectively, average la-
bels, the number of variables to be solved in Rank-SVM (Variable), and the
optimal scale factor γ in RBF kernel k(x,y) = exp(−γ||x− y||22). Our RBCDM
and FWM for Rank-SVM are coded using C++ language in MLC-SVM software
package [19], where the free LPSOL5.5 from [20] is used as a LP solver. The free
Matlab software of the other four classifiers is downloaded from [21].



RBCDM for Multi-label SVM 287

0.1 1 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

(a) Emotions (z=30)

F
1

Time (seconds)

FWM
BCDM(1)
BCDM(z)

1 10 100
0.65

0.7

0.75

0.8
(b) Scene (z=20)

Time (seconds)
10 100 1000

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
(c) Yeast (z=40)

Time (seconds)

Fig. 1. The convergence of RBCDM and FWM for Rank-SVM on three data sets

4.1 Convergence Analysis of RBCDM and FWM for Rank-SVM

We divide each training set in Table 1 into two parts according to the ratio of 70%
to 30%. The first one is used as a training subset to train a Rank-SVM model,
and the other as a validating subset to evaluate the classification performance.

Given C=1.0,M=50 and ε = 10−3, which are the default setting in [5],[14–17],
we execute RBCDM with z=1 for Rank-SVM using 13 γ’s: 22, 21, ..., 2−9, 2−10

and select the optimal γ with the highest F1 measure for each data set, as shown
in the last column of Table 1.

With the optimal γ’s in Table 1, we set M = 1, 2, ..., 19, 20, 30, ..., 90, 100, 150,
200, 250, 350, 400, and observe the optimization performance of FWM and
RBCDM with the different size of block p = z(q + 1), z = 1, 10, 20, 30, 40, 50.

When ε = 10−3 is just satisfied, the objective function value (Fval), the num-
ber of epochs (Epoch), and training time (Time) in seconds from training subsets,
and F1 value from validating subsets, are listed in Table 2, in which the best val-
ues are highlighted by boldface. It is found out that two optimization techniques
can obtain a satisfactory performance, since the maximal relative difference of
the objective function value and F1 are 0.62% on Yeast and 1.29% on Emotions,
respectively. Except for z=1 (i.e., the size of block is q+1), our RBCDM needs
less training time and less epochs than FWM. At the optimal cases, our RBCDM
runs 1.03, 3.15 and 5.75 times faster than FWM on Emotions (z=30), Scene (30)
and Yeast (40) respectively. Correspondingly, we recommend z=40 as a proper
default setting.

To observe the convergence of RBCDM and FWM for Rank-SVM, we estimate
the training time and F1 value of different epochs, as shown in Fig.1, where three
curves from FWM and RBCDM with z=1 and the optimal z value are plotted,
and the training procedure is terminated by ε = 10−3. FWM oscillates and then
tend to be stable. RBCDM with z=1 converges the slowest among three methods.
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Table 3. Performance comparison of six methods on three data sets

Method RBCDM FWM BP-MLL ML-RBF ML-NB ML-kNN

Emotion

Hamming loss ↓ 0.2038(2) 0.2022(1) 0.2170(5) 0.2079(3) 0.2294(6) 0.2088(4)

Accuracy ↑ 0.5540(2) 0.5573(1) 0.5363(4) 0.5371(3) 0.4468(6) 0.5008(5)

F1 ↑ 0.6343(2) 0.6361(1) 0.6234(3) 0.6104(4) 0.5262(6) 0.5847(5)

Precision ↑ 0.6988(2) 0.7005(1) 0.6675(4) 0.6733(3) 0.6114(6) 0.6576(5)

Recall ↑ 0.6320(3) 0.6337(2) 0.6469(1) 0.6056(4) 0.5124(6) 0.5734(5)

Subset accuracy ↑ 0.3069(3) 0.3168(1) 0.2475(4) 0.3119(2) 0.2079(6) 0.2376(5)

Average rank ↓ 2.33 1.17 3.50 3.17 6.00 4.83

Scene

Hamming loss ↓ 0.0888(1) 0.0900(2) 0.2907(6) 0.0945(3) 0.1242(5) 0.0989(4)

Accuracy ↑ 0.7398(1) 0.7361(2) 0.1682(6) 0.5949(4) 0.5325(5) 0.6293(3)

F1 ↑ 0.7655(1) 0.7616(2) 0.1704(6) 0.6084(4) 0.5668(5) 0.6483(3)

Precision ↑ 0.7747(1) 0.7713(2) 0.1732(6) 0.6221(4) 0.5552(5) 0.6605(3)

Recall ↑ 0.7818(1) 0.7772(2) 0.1706(6) 0.6083(5) 0.6133(4) 0.6547(3)

Subset accuracy ↑ 0.6630(1) 0.6597(2) 0.1622(6) 0.5544(4) 0.4323(5) 0.5727(3)

Average rank ↓ 1.00 2.00 6.00 4.00 4.83 3.17

Yeast

Hamming loss ↓ 0.1988(2) 0.1990(3) 0.2086(6) 0.2004(4) 0.2066(5) 0.1980(1)

Accuracy ↑ 0.5092(2.5) 0.5092(2.5) 0.5185(1) 0.5038(4) 0.4890(6) 0.4920(5)

F1 ↑ 0.6192(2) 0.6189(3) 0.6313(1) 0.6081(4) 0.5995(5) 0.5993(6)

Precision ↑ 0.7094(2) 0.7089(3) 0.6680(6) 0.7024(4) 0.6982(5) 0.7322(1)

Recall ↑ 0.5949(2) 0.5944(3) 0.6443(1) 0.5832(4) 0.5698(5) 0.5491(6)

Subset accuracy ↑ 0.1658(3) 0.1679(2) 0.1527(5.5) 0.1778(1) 0.1527(5.5) 0.1592(4)

Average rank ↓ 2.25 2.75 3.42 3.50 5.25 3.83

Attractively, RBCDM with the optimal z value can quickly achieve to be stable,
which implies that RBCDM has a good convergence rate.

4.2 Performance Comparison

In this sub-section, we evaluate the performance of Rank-SVMwith RBCDM and
FWM, BP-MLL [14], ML-RBF [15], ML-NB [16] and ML-kNN [17] using a train-
test mode. Additionally, for the last four methods, we accept their recommended
parameter settings. For BP-MLL, the number of hidden neurons is set to be 20%
of the number of input neurons, the learning rate is 0.05, the number of training
epochs is fixed to be 100, and the regularization constant is 0.1. For ML-kNN,
the smooth factor s = 1 and nearest instances k = 10 with Euclidean distance.
For ML-RBF, the fraction factor α = 0.01 and the scaling factor μ = 1.0. For
ML-NB, the fraction of remaining features after PCA is set to be 0.3.

We retrain six classifiers on three training sets and then estimate their perfor-
mance on three testing sets in Table 1. In this study, six indicative instance-based
measures [3, 4] are used, i.e., Hamming loss, accuracy, F1, precision, recall and
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subset accuracy. Our experimental results are listed in Table 3, where ↑ means
that the higher a measure is, the better a method performs, and reversely for ↓.

To compare these classifiers fairly and comprehensively, we rank six methods
using 1-6 in the brackets for each measure, and calculate the average rank of
each method over six measures [22], as listed in Table 3. On Emotions, FWM
for Rank-SVM performs the best on five measures and achieves the best rank,
but RBCDM for Rank-SVM obtains the second best rank. About Scene, our
RBCDM for Rank-SVM works the best on all six measures. As per Yeast, BP-
MLL performs the best and worst on three measures respectively, which implies
that BP-MLL is not stable. Further, our RBCDM for Rank-SVM achieves the
best rank on Yeast.

According to the average rank over three data sets, we can sort six techniques in
descending order as RBCDM for Rank-SVM (1.86), FWM for Rank-SVM (1.97),
ML-RBF(3.56), BP-MLL(4.31), ML-kNN(3.94) and ML-NB(5.36). It can be con-
cluded that Rank-SVM is a powerful candidate for multi-label classification.

5 Conclusions

In this paper, we propose a random block coordinate descent method for multi-
label support vector machine to speed up its training procedure. The convergence
analysis on three data sets illustrate that our method runs averagely 3.31 times
faster that Frank-Wolfe method. Further, the performance of six instance-based
measures demonstrates that Rank-SVM is still a powerful candidate for multi-
label classification, compared with the other four existing methods. In future, we
will conduct more detailed experiments on more data sets to validate our novel
training technique.
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Abstract. In this paper, we propose a Chaotic Complex-valued Multi-
directional Associative Memory (CCMAM) with adaptive scaling factor
and investigate its generalization ability for network size. The proposed
model is based on the conventional CCMAM with variable scaling fac-
tor and can realize one-to-many associations of M -tuple multi-valued
patterns. In the proposed model, the scaling factor of refractoriness is
determined based on not only the time but also the internal states of
neurons. We carried out a series of computer experiments and confirmed
that the proposed model can determine the scaling factor of refractori-
ness automatically in various size networks.

1 Introduction

As the model which can deal with multi-valued patterns, the complex-valued
neural network[1] has been proposed. Moreover, we modified the complex-valued
neural network by introducing chaotic complex-valued neurons[2] and proposed
some models which can realize one-to-many associations of multi-valued pat-
terns [3]–[8]. In these models, the association of multi-valued patterns is realized
by complex-valued neurons, and one-to-many association is realized by chaotic
complex-valued neurons. Moreover, in the Chaotic Complex-valued Multidirec-
tional Associative Memory (CCMAM) with variable scaling factor[6][7], one-
to-many association ability is improved by introducing variable scaling factor.
However, in these models, their property is very sensitive to chaotic complex-
valued neuron parameters, and in most cases, these parameters are determined
based on the designer’s experiments or trial and errors.

In this paper, we propose the Chaotic Complex-valued Multidirectional Asso-
ciative Memory (CCMAM) with adaptive scaling factor. In the proposed model,
the appropriate parameter (scaling factor of refractoriness) can be determined
based on the internal states of neurons automatically.

2 Chaotic Complex-Valued Multidirectional Associative
Memory with Adaptive Scaling Factor

Here, I explain the proposed Chaotic Complex-Valued Multidirectional Asso-
ciative Memory (CCMAM) with adaptive scaling factor. The proposed model

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 291–298, 2013.
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Fig. 1. Structure of Proposed CCMAM with Adaptive Scaling Factor

is based on the conventional Chaotic Complex-Valued Multidirectional Asso-
ciative Memory with variable scaling factor[6][7], and can realize one-to-many
association of M -tuple multi-valued patterns.

2.1 Structure

The proposed model has three or more layers as similar as the conventional CC-
MAM with variable scaling factor. Figure 1 shows the structure of the proposed
model which has three layers (X Layer, Y Layer and Z Layer). Each layer consists
of two parts; (1) key input part composed of complex-valued neuron models[1]
and (2) context part composed of chaotic complex-valued neuron models[2]. In
this model, since the chaotic complex-valued neuron models in the context part
change their states by chaos, one-to-many association can be realized.

2.2 Learning Process

In the proposed model, pattern sets are memorized by the orthogonal learning.
In the proposed model which has M layers, the connection weights from the
layer x to the layer y is given by

wyx = Xx(X
∗
yXy)

−1X∗
y (1)

where * shows the conjugate transpose, −1 shows the inverse, and Xx and Xy

are the training pattern matrixes which are memorized in the layer x and the
layer y, and are given by

Xx = {X(1)
x , · · · ,X(p)

x , · · · ,X(P )
x } (2)

Xy = {X(1)
y , · · · ,X(p)

y , · · · ,X(P )
y } (3)

where X(p)
x is the pattern p which is stored in the layer x, X(p)

y is the pattern p
which is stored in the layer y and P is the number of the training pattern sets.

In the orthogonal learning, since the stored common pattern cause super-
imposed pattern in the recall process, the pattern sets including one-to-many
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relation can not be memorized. In the proposed model, each learning pattern is
memorized together with its own contextual information in order to memorize
the training set including one-to-many relations as similar as the conventional
CCMAM with variable scaling factor. Here, the contextual information patterns
are generated randomly.

2.3 Recall Process

In the recall process, only neurons in the key input part receives input in the first
step. This is because we assume that contextual information is usually unknown
for users. In the proposed model, since the chaotic complex-valued neurons in
the context part change their states by chaos, plural patterns corresponding to
the input common pattern can be recalled.

Step 1 : Input to Layer x
The input pattern is given to the key input part in the layer x.

Step 2 : Propagation from Layer x to Other Layers
The information in the layer x is propagated to the key input part in other

layers. The output of the neuron k in the key input part of the layer y (y 
= x)
at the time t, xy

k(t) is calculated by

xy
k(t) = f

⎛⎝Nx∑
j=1

wyx
kj x

x
j (t)

⎞⎠ (4)

where Nx is the number of neurons in the layer x, wyx
kj is the connection weight

from the neuron j in the layer x to the neuron k in the layer y, and xx
j (t) is the

output of the neuron j in the layer x at the time t. f(·) is the output function
which is given by

f(u) =
ηu

η − 1.0 + |u| (η ∈ R) (5)

where η is the constant (η > 1).

Step 3 : Propagation from Other Layers to Layer x
The information in other layers is propagated to the layer x. The output of

the neuron j in the key input part of the layer x, xx
j (t+ 1), is given by

xx
j (t+ 1) = f

⎛⎝ M∑
y �=x

(
ny∑
k=1

wxy
jk x

y
k(t)

)
+ vAx

j

⎞⎠ (6)

where M is the number of layers, ny is the number of neurons in the key input
part of the layer y, wxy

jk is the connection weight from the neuron k in the layer y
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to the neuron j in the layer x, and v is the connection weight from the external
input. Ax

j is the external input to the neuron j in the layer x and is given by

Ax
j =

{
0, t < tin
x̂x
j (tin), tin ≤ t (7)

tin = min

⎧⎨⎩t

⏐⏐⏐⏐⏐⏐
nx∑
j=1

(x̂x
j (t)− x̂x

j (t− 1)) = 0

⎫⎬⎭ (8)

x̂x
j (t) = argmin

s
(ωs − xx

j (t))
∗(ωs − xx

j (t)) (s = 0, 1, ..., S − 1) (9)

ω = exp

(
i
2π

S

)
(10)

where x̂x
j (t) is the quantized output of the neuron j in the layer x at the time t,

S is the number of states and i is the imaginary unit.
The output of the neuron j of the context part in the layer x, xx

j (t + 1) is
given by

xx
j (t+ 1) = f

⎛⎝ M∑
y �=x

(
ny∑
k=1

wxy
jk

t∑
d=0

kdmxd
k(t− d)

)
− α(t, I)

t∑
d=0

kdrx
x
j (t− d)

⎞⎠(11)

where km and kr are damping factors. And, α(t, I) is the scaling factor of re-
fractoriness at the time t and the average internal state without refractoriness
I. The average internal state without refractoriness I is given by

I =
1

Nx − nx

Nx∑
j=nx+1

|Re uj|+ |Im uj|
2

(12)

uj =
M∑
y �=x

(
ny∑
k=1

wxy
jk

t∑
d=0

kdmxy
k(t− d)

)
. (13)

In Eq.(11), α(t, I) is given by

α(t, I) = a(I) + b(a(I), S) sin
(
c · π

12
· t
)

(14)

a(I) = 0.75 + 0.009(I − 1.0)2 (15)

b(a(I), S) =

{
a(I), S = 4, 8
a(I)/2, S = 16.

(16)

Eqs.(15) and (16) are determined based on the experiment shown in 2.4.

Step 4 : Repeat
Steps 2 and 3 are repeated.
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Table 1. Parameter Combination of a
and b when Recall Rate is Highest

M S a b
4 1.0 1.0

3 8 1.0 0.5
16 1.0 0.5
4 1.5 1.5

4 8 1.5 1.0
16 1.5 1.0
4 2.0 2.0

5 8 2.0 1.0
16 2.0 1.0

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25

a

Internal State

Fig. 2. Relation between Internal
States and Parameter a when Recall
Rate is High

2.4 Relation between One-to-Many Association Ability and
Internal States

In the chaotic complex-valued neuron model, whether chaos occurs or not is
determined based on the external input. In the CCMAM with variable scaling
factor[6][7], the internal state of each neuron is calculated based on the input
from other layers and the refractoriness of the neuron. So the input from other
layers can be considered as the external input to the neuron.

In the conventional CCMAM with variable scaling factor, the scaling factor
of refractoriness at the time t, α(t) is given by

α(t) = a+ b · sin
(
c · π

12
t
)

(17)

and it is known that the combination of the parameters a and b affects one-to-
many association ability[7][8].

Then, we examined the relation between one-to-many association ability and
internal states in the conventional CCMAM with variable scaling factor which
has 100 neurons in the key input part and 50 neurons in the context part in
order to decide the method how to determine the scaling factor of refractoriness.
We investigated the recall rate in various combination of a and b in 3∼ 5 layered
CCMAM with variable scaling factor.

Table 1 shows the combination of a and b when the recall rate is highest
in each condition. Figure 2 shows the relation between internal state without
refractoriness and the appropriate parameter a. And the green line shows the
function which determines the parameter a in the proposed model (Eq.(15)).
This function is determined based on these experiments.
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3 Computer Experiment Results

Here, we show the computer experiment results in order to demonstrate of ef-
fectiveness of the proposed model.

Here, we compared the one-to-many association ability in the 3∼5-layered
proposed model with the well-turned 3∼5-layered conventional CCMAM with
variable scaling factor[6][7]. Figure 3 shows the one-to-many association ability
of the proposed model and the conventional model. As shown in this figure, the
one-to-many association ability of the proposed model almost equals to that of
the conventional model. Here, NK is the number of neurons in the key input
part, and NC is the number of neurons in the context part.

Figure 4 shows the one-to-many association ability of the various size pro-
posed model. As shown in this figure, the proposed model has good one-to-many
association ability as similar as in the result shown in Fig. 3.
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(b) M=3, S=8
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(c) M=3, S=16
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(d) M=4, S=4

0.0

0.2

0.4

0.6

0.8

1.0

 2  3  4  5  6  7  8  9  10

R
ec

al
l R

at
e

The Number of Patterns

Proposed Model
Conventional Model
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(f) M=4, S=16
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(h) M=5, S=8
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Fig. 3. One-to-Many Association Ability Comparison with Conventional Model (NK =
100, NC = 50)
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(c) M=5, NK=200,
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(d) M=3, NK=300,
NC=50
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(e) M=4, NK=300,
NC=50
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(f) M=5, NK=300,
NC=50
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(g) M=3, NK=100,
NC=20
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(h) M=4, NK=100,
NC=20
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(i) M=5, NK=100,
NC=20
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(j) M=6, NK=100,
NC=50
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(k) M=7, NK=100,
NC=50
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Fig. 4. One-to-Many Association Ability in Various Conditions
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4 Conclusion

In this paper, we have proposed the Chaotic Complex-valued Multidirectional
Associative Memory (CCMAM) with adaptive scaling factor and investigated
its generalization ability for network size. The proposed model is based on the
conventional CCMAM with variable scaling factor[6][7] and can realize one-to-
many associations of M -tuple multi-valued patterns. In the proposed model,
the scaling factor of refractoriness is determined based on not only the time
but also the internal states of neurons. We carried out a series of computer
experiments and confirmed that the proposed model can determine the scaling
factor of refractoriness automatically in various size networks.
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Abstract. In this paper, to improve the generalization capability of
multi-class SVMs, we propose (1) a novel model selection and (2) fea-
ture extraction by SVMs. In (1), unlike the conventional model selection
in multi-class SVMs, we determine hyper-parameters, which are kernel
parameter and margin parameter, for each separating hyper-plane, sep-
arately. Namely, for each separating hyper-plane, we estimate the gen-
eralization capability and select optimal values of the hyper-parameters,
separately. In (2), we define the weighted vectors of decision functions
determined by training multi-class SVMs as the basis vector of the sub-
space, and we determine the separating hyper-planes in the subspace.
Thus, we can determine the new separating hyper-planes during con-
sidering the all separating hyper-planes. Using multi-class benchmark
data sets, we evaluate the effectiveness of the proposed methods over the
conventional method.

Keywords: classification, model selection, sparse support vector
machines.

1 Introduction

Support vector machines (SVMs) [1], [2], [3] perform very well for pattern clas-
sification problem [4] and the solution is sparse. The separating hyper-plane is
determined in training SVMs so that margins of the separating hyper-planes
are maximized. And, to enhance linear separability for nonlinear problem, input
space is mapped into high dimensional space called feature space with kernel
methods [3]. Then, it is necessary to select two optimal hyper-parameters which
are a kernel parameter and a margin parameter. To select the hyper-parameters
is called model selection. k-fold cross validation [3] is one of the major methods
of the model selection. Since the standard SVMs are two-class classifier, it is nec-
essary for multi-class problem to convert it into some two-class problems (e.g.,
one-against-all and pairwise formulation [3] etc.). Namely, there are multiple
separating hyper-planes for multi-class problem. For all separating hyper-planes,
each hyper-parameter is same value. However, these may not be optimal values
for each separating hyper-plane. And, in training multi-class SVMs, we classify
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an input datum into a class by decision functions, but each decision function is
separately-determined for each separating hyper-plane.

In this paper, for multi-class problem, we propose two methods, which are
a novel model selection and a feature extraction using SVMs. In first method,
for each two-class problem, we select hyper-parameters which are optimal values
from the standpoint of the generalization capability, separately. Namely, with
the training data, we estimate the generalization capability for each two-class
problem instead of estimating that for multi-class problem, separately. Then, the
complexity of model selection may not be increased in this method as compared
to the conventional method because we solve the same optimization problem
as that using the conventional method. In second method, at first, we obtain
the weighted vector of the decision function for each two-class problem, like the
conventional multi-class SVMs. Next, we define these as the basis vectors of
the subspace. Namely, SVMs are used as the feature extraction. And we train
SVMs in the subspace. Thus, we can determine separating hyper-plane, which
can consider all separating hyper-plane in feature space, in the subspace.

This paper is organized as follows. In Section 2, we describe the conventional
multi-class SVMs. In Section 3, we discuss the proposed methods. In Section
4, we demonstrate the effectiveness of the proposed methods through computer
experiments using benchmark data sets. And we conclude our work in Section 5.

2 Multi-class Support Vector Machines

In this section, we will describe training multi-class SVMs and model selection
in one-against-all formulation for multi-class problem.

2.1 Multi-class SVMs in One-against-All Formulation

SVMs are two-class classifier. So, for multi-class problem, we need to convert
that problem into some two-class problems. One-against-all SVMs is one of the
most major methods for multi-class SVMs. In one-against-all SVMs, an n-class
problem is converted into n two-class problems. For each two-class problem, we
determine a separating hyper-plane so that a class is separated from the others.

Let the number of classes, that of training data, the m-dimensional training
vectors, and the kernel be n, M , xj (j = 1, ...,M), and H(x,x′) = gT(x)g(x′)
where g(x) is the mapping function into the l-dimensional feature space. For
two-class problem that separate class i from the remaining classes, the decision
function Di(x) is

Di(x) = wT
i g(x) + bi, (1)

where wi and bi are the l-dimensional weighted vector and the bias term. And,
we formulate SVMs (L2-SVMs) for this problem as follows:

min 1
2w

T
i wi +

C
2

∑M
j=1 ξ

2
ij (2)

s.t. yij(w
T
i g(xj) + b) ≥ 1− ξij for j = 1, . . . ,M, (3)
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where C and ξij are the margin parameter which determines the trade-off be-
tween maximizing margins and minimizing misclassifications and the slack vari-
able for xj , respectively. If xj belongs to class i, yij = 1, otherwise y = −1. All
the decision functions Di(x) (i = 1, . . . , n) are given by solving the optimization
problem for n two-class problems. Then, an input datum x is classified into the
class

argmax
i

Di(x). (4)

However, the decision function for each two-class problem is determined without
that for the other two-class problems. So, we consider that to classify an input
datum into a class with (4) is not good.

2.2 Model Selection

In training SVMs, we must select a margin parameter C, a type of kernels, and a
kernel parameter. The parameters and this selection are called hyper-parameters
and model selection. The model selection is done by estimating the generalization
capability for each combination of available choices of the hyper-parameters with
training dataset, t. In the following computer experiments, we use k-fold cross
validation. k-fold cross validation is widely used method of the model selection.

In k-fold cross validation, at first, we divide randomly training dataset into
k subsets. Here, the sizes of these are approximately equal. Next, we select a
combination of the hyper-parameters. For this combination, we train SVMs us-
ing k − 1 subsets as training dataset and test using the remaining subset as
test dataset. These procedures is repeated k times. The generalization capabil-
ity of SVMs for the combination of the hyper-parameters is estimated by the
average recognition rate of the test datasets. And, for each combination of the
hyper-parameters, we repeat the procedures and estimate the generalization ca-
pabilities. Then, we select the classifier that realizes the highest generalization
capability.

However, for multi-class problem, there are multiple separating hyper-planes
and the selected hyper-parameters may be not optimal for each separating
hyper-plane.

3 Improved Multi-class Support Vector Machines

In this section, to overcome the above problems, we will describe two proposed
methods that are the model selection for each separating hyper-plane and the
feature extraction using SVMs.

3.1 Model Selection for Each Separating Hyper-plane

In the proposed method, like the conventional k-fold cross validation, the train-
ing dataset is divided into k subset and we select a combination of the hyper-
parameters. Using k − 1 subsets as the training datasets, we determine the deci-
sion function for each two-class problem. Unlike the conventional model selection,
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the generalization capability for each separating hyper-plane determined by the
decision function associatedwith it is estimated separately. Then, to estimate this,
we obtain the recognition rate for each separating hyper-plane. In one-against-all
formulation, i-th separating hyper-plane separates the data belonging to class i
from that belonging to the other classes. For i-th separating hyper-plane, let the
number of the test data in k-fold cross validation and that of test data that satisfy
y(x)Di(x) > 0 be Mi and Ai. Here, if x belongs to class i, y(x) = 1, otherwise
y(x) = −1. Then, the recognition rate Ri for i-th separating hyper-plane is de-
fined as follows:

Ri =
Ai

Mi
for i = 1, . . . , n. (5)

These procedures are repeated k times and the average recognition rate R′
i

(i = 1, . . . , n) is determined. For each combination of the hyper-parameters,
the average recognition rate is determined by repeating these procedures. And
we select the classifier that realizes the highest generalization capability for each
separating hyper-plane, separately. In the following, we show the algorithm of
the proposed model selection using p combination of hyper-parameters.

Step 1 Divide randomly the training dataset into approximately equal sized
k subsets.

Step 2 Set c = 1, d = 1, and i = 1.

Step 3 Set the c-th subset as test dataset and the other k − 1 subsets as
training dataset.

Step 4 Using the d-th combination of the hyper-parameters that are the mar-
gin parameter C and the kernel parameter, solve the optimization problem
(2),(3) in the dual form. And calculate Di(x) by (1) for test dataset.

Step 5 Calculate the number of test data that satisfy y(x)Di(x) > 0 and set
it to Ai.

Step 6 Using Ai determined in Step 5 and Mi, calculate Rid by (5).

Step 7 If i 
= n, set i = i+ 1 and go to Step 4. If i = n, go to Step 8.

Step 8 If c 
= k, set i = 1 and c = c+ 1, and go to Step 3. If c = k, calculate
the average recognition R′

id by Rid (i = 1, . . . , n) determined by Step 7, and
go to Step 9.

Step 9 If d 
= p, set i, c = 1 and d = d + 1, and go to Step 3. If d = p, set
i = 1 and go to Step 10.

Step 10 Calculate qi as follows:

qi = argmax
d

R′
id. (6)

Step 11 Select the qi-th combination of the hyper-parameters for i-th sepa-
rating hyper-plane.

Step 12 If i 
= n, set i = i + 1 and go to Step 10. If i = n, terminate the
algorithm.
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3.2 Feature Extraction by SVMs in One-against-All Formulation

To overcome the problem of section 2.1, multi-class SVMs is used as the feature
extraction. Namely, we let the weighted vectors, that obtained by training multi-
class SVMs in one-against all formulation, be basis vectors of the n-dimensional
subspace. And multi-class SVMs are retrained in this subspace. Then, the pro-
jection function f(x) of a input datum x into the subspace is determine as
follows:

f(x) = (wT
1 g(x), . . . ,w

T
ng(x)). (7)

Moreover, to improve the generalization capability, the bias terms are added in
each component as follows:

f (x) = (D1(x), . . . , Dn(x)), (8)

where Di(x) are given by (1). And, using (8), we resolve the optimization prob-
lem in one-against-all formulation as follows:

min 1
2v

T
i vi +

C′
2

∑M
j=1 ξ

2
ij (9)

s.t. yij(v
T
i f(xj) + b′i) ≥ 1− ξij for j = 1, . . . ,M, (10)

where vi and b′i are the n-dimensional weighted vector and the bias term. Because
n ≤M , (9) and (10) are solved in primal form. Thus, the separating hyper-planes
in the subspace are determined during considering other separating hyper-planes
in the feature space.

4 Experimental Results

We compared the generalization ability of the conventional and the proposed
multi-class SVMs, using benchmark data sets [3], [5], [6], [7], [8] listed in Table
1 that shows the number of classes, inputs, training data, and test data. In the
computational experiments, we use least square SVMs (LS-SVMs)[9], in which
the inequality constraints in L2-SVMs are converted into equality constraint
conditions as follows:

yij(v
T
i f(xj) + b′i) = 1− ξij for j = 1, . . . ,M. (11)

In training LS-SVMs, a set of linear equations is solved instead of a quadratic
programming problem.

4.1 Parameter Setting

In the following study, we normalized the input ranges into [0, 1]. For the conven-
tional and proposed methods, we determined a kernel type, a kernel parameter
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Table 1. Multi-class benchmark data sets

Data Classes Inputs Training Test

Iris 3 4 75 75
Numeral 10 12 810 820
Blood-cell 12 13 3097 3100
Thyroid 3 21 3772 3428

of the selected kernels, and a margin parameter C by five-fold cross-validation
for each problem. For the multi-class SVMs using the proposed feature extrac-
tion, we determined one more margin parameter C′ in (9). We selected a kernel
type from linear kernel: xTx′, polynomial kernel: (xTx′ + 1)d, and RBF kernel:
exp (−γ||x− x′||2). If we selected polynomial or RBF kernels, we selected d or
γ from {2, 3, 4, 5} or {0.1, 0.5, 1, 1.5, 3, 5, 10, 15, 20, 30, 50, 100, 200}. And we se-
lected C and C′ from {0.1, 1, 5, 10, 50, 100, 500, 103, 5× 103, 104}. Table 2 shows
the selected kernel and parameters for SVMs using the conventional model selec-
tion. Here, “Pol.” denote polynomial kernels. Table 3 shows the selected margin
parameter C′ for the multi-class SVMs using the proposed feature extraction.

Table 2. Determined the hyper-
parameters by the conventional model
selection

Data kernels d or γ C

Iris Pol. d = 3 500
Numeral RBF γ = 10 10
Blood-cell RBF γ = 5 103

Thyroid Pol. d = 2 5 × 103

Table 3. Determined the margin pa-
rameter C′ for the multi-class SVMs
using the feature extraction

Data C′

Iris 0.1
Numeral 0.1
Blood-cell 0.1
Thyroid 10

And, Table 4–7 show the selected type of kernels, the kernel parameters, and
the margin parameters by the above procedure for SVMs using the proposed
model selection. In these tables, i denote the separating hyper-plane’s number.
From these tables, we can confirm that the same combination of the hyper-
parameters as that of other separating hyper-planes is not selected for each
separating hyper-plane. So, the combination determined by the conventional
model selection in Table 2 is not always optimal for each separating hyper-plane.

Table 4. Determined the hyper-
parameters by the proposed model se-
lection for Iris dataset

i kernels d or γ C

1 linear – 0.1
2 RBF γ = 10 500
3 Pol. d = 2 10

Table 5. Determined the hyper-
parameters by the proposed model se-
lection for Thyroid dataset

i kernels d or γ C

1 Pol. d = 2 104

2 Pol. d = 3 103

3 Pol. d = 2 103
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Table 6. Determined the hyper-
parameters by the proposed model se-
lection for Numeral dataset

i kernels d or γ C

1 Pol. d = 2 5
2 Pol. d = 3 50
3 Pol. d = 2 1
4 RBF γ = 0.1 500
5 Pol. d = 4 500
6 linear – 1
7 Pol. d = 2 1
8 linear – 1
9 Pol. d = 4 50
10 Pol. d = 2 1

Table 7. Determined the hyper-
parameters by the proposed model se-
lection for Blood-cell dataset

i kernels d or γ C

1 RBF γ = 100 10
2 RBF γ = 100 1
3 RBF γ = 30 10
4 RBF γ = 100 50
5 RBF γ = 15 100
6 RBF γ = 200 50
7 RBF γ = 15 500
8 RBF γ = 50 100
9 RBF γ = 20 500
10 RBF γ = 30 100
11 Pol. d = 4 5
12 RBF γ = 200 5

4.2 Performance Comparison

Table 8 shows the recognition rates of the test data sets. In this table, the
best results of the recognition rates in each row of the data sets are shown
in boldface. And, “conventional SVMs”, “SVM-model selection”, and “SVM-
feature extraction” denote SVMs using the hyper-parameters determined by
the conventional model selection, that by the proposed model selection, and
SVMs using the proposed feature extraction.

For all datasets, “SVM-model selection” perform better than “conventional
SVMs”. For the datasets except for Numeral dataset, “SVM-feature extraction”
perform the best among all the methods. But, for other problems, “SVM-feature
extraction” performed about the same as “conventional SVMs”. From Table 8,
we can conclude that multi-class SVMs using the proposed methods performed
better than that using the conventional method, and “SVM-feature extraction”
performs the best among all the methods from standpoint of classification ability.

Table 8. Comparison of the recognition rates in percent

Data conventional SVMs SVMs-model selection SVMs-feature extraction

Iris 93.3 96.0 97.3
Numeral 99.3 99.3 99.1
Blood-cell 94.7 94.8 95.1
Thyroid 94.4 95.4 95.8

5 Conclusions

In this paper, we proposed the algorithm of the model selection for each sepa-
rating hyper-plane and the feature extraction using SVMs for multi-class SVMs.
Because the hyper parameters are determined separately for each separating
hyper-plane, these are optimal. And, in multi-class SVMs using feature extrac-
tion by SVMs, the separating hyper-plane can be determined during considering
other separating hyper-planes.
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According to the computer experiments using multi-class benchmark datasets,
the proposed methods perform much better than the conventional method.
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Abstract. Deep belief network (DBN) shows the ability to learn hierar-
chical feature representation from image datasets which mimics the hier-
archical organization of the mammal visual cortex. DBN is composed of a
stack of Restricted Boltzmann Machines (RBM) which serves as feature
extractors. A number of variants of RBM have been proposed to learn
feature representations similar to gabor filters. They require extracting
small image patches first. As images vary among different datasets, it
is preferable to learn the patch size or a proper region of interest. We
propose a variant of RBM with adaptive local hidden units (ALRBM) by
adding a distance function to the connection weights between visible and
hidden units. Experiments on hand-written digits and human faces show
that our algorithm has the ability to learn region-based local feature
representations adapting to the content of the images automatically.

1 Introduction

Feature representations have great impact on the performance of machine learn-
ing algorithms. Good feature representations tend to narrow down the semantic
gap between raw data and human understanding. In the past years, much effort
has been made on designing effective feature extraction methods. Design feature
is labor-intensive and requires prior knowledge on dataset which is domain spe-
cific. So it is very desirable to build an unsupervised feature learning algorithm
which can capture the information underlying the data automatically.

Fortunately, neuroscience researchers have provided insight into the principles
of the visual system of mammals [1,2] which lead to new ideas for designing sys-
tems to deliver effective feature representations. The visual cortex of mammals

� This work was supported by the National Basic Research Program (973 Program)
of China (Grant Nos. 2013CB329403 and 2012CB316301), National Natural Science
Foundation of China (Grant Nos. 61273023, 91120011, 61103062), Beijing Natural
Science Foundation (Grant No. 4132046), Tsinghua University Initiative Scientific
Research Program No. 20121088071 and Tsinghua National Laboratory for Infor-
mation Science and Technology (TNList) Cross-discipline Foundation.
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which is responsible for processing the visual image consists of several secondary
visual areas called V1, V2, V3, V4 and V5/MT that form a cortical hierarchy.
Among those machine learning algorithms, Deep Belief Network (DBN) [3] is
a popular deep learning approach which mimics the hierarchical framework of
the mammal visual cortex. DBN can be viewed as a stack of simple learning
modules, each of which is a Restricted Boltzmann Machine (RBM) that consists
of a layer of visible units representing the data and a layer of hidden units learn-
ing to capture the higher-order correlations underlying the data. DBNs have
been successfully adopted to various applications including hand-written digit
recognition [3,4], face recognition [5] and object classification [6].

In visual information processing system, good feature representations often
have two remarkable properties: locality and sparsity. Local and sparse feature
representation is more robust and produces better generalization ability[7,8,9].

Several ways of incorporating sparsity into RBM have been proposed. Ranzato
et al. [10] first incorporated sparsity into RBM by a so-called sparsifying logistic
in 2006. Later they proposed a variant [11] through assigning a Student-t prior
to the coders. Lee et al [12] developed a sparse RBM by adding a regularization
term that penalizes a derivation of the expected activation of the hidden units
from a fixed level. Their algorithms could learn localized, oriented edge filters
similar to the gabor functions which are recognized as being able to model V1
cell receptive fields from hand-written digits and small natural image patches.

Locality is first incorporated into DBN by Convolutional Deep Belief Net-
work (CDBN) [13]. In CDBN, features are extracted from convolutions of small
filters with the whole image and are sent up to the next layer by probabilistic
max-pooling. The size of the filter is hand-crafted. Because it is relative to the
resolution and content of images, setting up a proper filter size is non-trivial
with different datasets.

In this paper, we propose a different method to incorporate locality into RBM
directly. We have developed a variant of RBM in which the connection weights
between visible and hidden units are relative to the spatial distance between
themselves. The region of interest and the connection weights can be learned
simultaneously using the contrastive divergence learning rule. Experiments on
hand-written digits and human faces show that our algorithm can learn region-
based local feature representation.

2 Restricted Boltzmann Machine (RBM)

An RBM is a bipartite undirected graphical model with a set of hidden units
h, a set of visible units v, and symmetric connection weights between these two
layers represented by a weight matrix W . Suppose that we want to model k
dimensional binary data using RBM with n binary hidden units, the negative
log probability of any state in the RBM is given by the following energy function:

− logP (v,h) = E(v,h) = −
∑
i,j

viwijhj −
∑
j

bjhj −
∑
i

civi . (1)
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Here, hj are hidden unit variables, vi are visible unit variables, bj and ci are their
biases. Because there are no inter connections between visible or hidden units,
we can easily sample one layer from the other from the conditional probability
distributions:

p(hj = 1|v) = sigmoid

(∑
i

wijvi + bj

)
, (2)

p(vi = 1|h) = sigmoid

⎛⎝∑
j

wijhj + ci

⎞⎠ . (3)

For training the parameters of the model, the objective is to maximize the log-
likelihood of the data. The contrastive divergence learning algorithm gives an
efficient approximation to the gradient of the log-likelihood [4]:

Δwij = ε(< vihj >data − < vihj >recon) , (4)

where ε is the learning rate, < vihj >data is the frequency with which visible unit
i and hidden unit j are on together driven by training data and < vihj >recon is
the corresponding frequency when the hidden units are being driven by recon-
structed data. A similar learning rule can be used for the biases:

Δbj = ε(< hj >data − < hj >recon) , (5)

Δci = ε(< vi >data − < vi >recon) . (6)

2.1 Gaussian Visible Units

For data such as natural images, binary unit is a very poor representation. One
solution is to replace the binary visible units by linear units with independent
Gaussian noise. The energy function then becomes:

E(v,h) = −
∑
i,j

vi
σi

wijhj −
∑
j

bjhj −
∑
i

(vi − ai)
2

2σ2
i

. (7)

If each component of the data is normalized to have zero mean and unit variance,
we can use noise free reconstructions with the variance in (7) set to 1.

2.2 Sparse RBM

Lee et al. [12] proposed a variant of RBM with a regularization term that pe-
nalizes a deviation of the expected activation of the hidden units from a fixed
level p. Thus, given a training set {v(1), · · · , v(m)} comprising m examples, the
optimization problem is as follows:

minimizewi,j ,ci,bj −
m∑
l=1

log
∑
h

P (v(l),h(l))+λ
∑
j

|p− 1

m

m∑
l=1

E[h
(l)
j |v(l)]|2 , (8)
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where E[·] is the conditional expectation given the data, λ is a regularization
constant, and p is a constant controlling the sparseness of the hidden units hj .
This can be learned by the contrastive divergence learning rule (4), followed by
one step of gradient descent using the gradient of the regularization term on
each iteration.

3 RBM with Adaptive Local Hidden Units (ALRBM)

In the visual system of mammals, the receptive field of a visual neuron is a specific
region of visual space in which an appropriate stimulus can drive a response in
the neuron[1,2]. Receptive fields have been mapped for all levels of the visual
system from retinal ganglion cells to visual cortex cells. Sizes of receptive fields
increase along the visual pathway. The hierarchy structure of receptive fields
implies that a neuron in the higher level of the structure is mainly connected to
neurons in a small region in the lower level.

To mimic the receptive fields in the visual system, we have proposed a variant
of RBM with adaptive local hidden units, by adding a distance function r(i, j, θj)
to the connection weights between visible and hidden units. Each hidden unit
hj has its own θj . The energy function of ALRBM is given by:

E(v,h) = −
∑
i,j

viwijr(i, j, θj)hj −
∑
j

bjhj −
∑
i

civi . (9)

Based on the contrastive divergence learning rule, the original weight wij is
updated by1:

Δwij = ε · r(i, j, θj) · (< vihj >data − < vihj >recon) . (10)

And the parameter θj is updated by:

Δθj = ε(<
∑
i

viwij
∂r(i, j, θj)

∂θj
hj >data − <

∑
i

viwij
∂r(i, j, θj)

∂θj
hj >recon) .

(11)

3.1 Distance Function in ALRBM

In visual information processing system, we arrange the visible units and hidden
units in an RBM in 2-dimensional grids, see (Fig.1). Thus, each visible and hid-
den unit has x and y coordinates. Under this spatial configuration, a hidden unit
will have locality property when it is strongly connected to nearby visible units.
Here we assume the connection weights of a hidden unit take a 2-dimensional
gaussian distribution. Thus, the distance function is given by:

r(i, j, θj) = exp

(
− 1

2(1− ρ2j)

[
Δx2

σ2
xj

+
Δy2

σ2
yj

− 2ρjΔxΔy

σxjσyj

])
, (12)

1 Derivation here is omitted due to space constraints. It is similar to the derivation in
[14].
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Fig. 1. Spatial configuration of ALRBM

where θj = {ρj, σxj , σyj} are the parameters of the distance function of hj ,
Δx = xvi − xhj and Δy = yvi − yhj are the distance along each axis between vi
and hj .

4 Experiments

We train ALRBM, sparse RBM and original RBM on the MNIST database of
hand-written digits [15] and CBCL face database #1 [16]. These algorithms
are compared by the visualization of their extracted features and reconstruction
errors.

4.1 Hand-Written Digits

The MNIST dataset contains hand-written digits from 0 to 9 in 28x28 gray-scale
pixels. We have trained the original RBM, the sparse RBM and the ALRBM
respectively using all of the training examples, each pixel is normalized to the
unit interval. These networks have 784 binary visible units and 484 binary hidden
units. We use the same p = 0.02 and λ = 1/p for the sparseness of the hidden
units as [12] in sparse RBM and ALRBM. σxj and σyj are initialized by 15 in
ALRBM and ρj is initialized by 0.

4.2 Human Faces

Similar experiments are adopted on CBCL face database #1. All of the 2,429
faces in the training set are used. Each pixel is normalized to the unit interval,
subtracted by the mean and divided by the standard deviation over all images.
The networks have 361 gaussian visible units and 361 binary hidden units, σxj

and σyj are initialized by 10, other parameters are the same as those mentioned
in the previous experiment.

4.3 Discussions

Feature representation. Features learned by sparse RBM and ALRBM are vi-
sualized in Fig.2. Sparse RBM learns strokes from hand-written digits and face
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prototypes from human faces. ALRBM learns smaller region based strokes from
hand-written digits and region based facial features from human faces. In both
experiments, ALRBM learns region based feature representations adapted to the
content of the data. Further more, features learned by sparse RBM are cluttered
in the background while those learned by ALRBM are much clearer.

Fig. 2. Randomly selected features. Top-left: features learned by sparse RBM on
MNIST. Top-right: features learned by ALRBM on MNIST. Middle-left: features
learned by sparse RBM on CBCL faces. Middle-right: features learned by ALRBM
on CBCL faces. Bottom: Some facial features and their corresponding region of inter-
est selected from the features learned by ALRBM on CBCL faces.

Reconstruction power. In both experiments, reconstruction error of ALRBM is
larger than that of sparse RBM (see Fig.3). Due to the local constraints intro-
duced by the distance function, ALRBM tends to learn region-based local feature
representation. Thus, global information cannot be well encoded. This can be
easily overcome by merging sparse RBM and ALRBM together as complemen-
tation or by using ALRBM as building blocks to design a more complicated
hierarchical feature representation framework similar to CDBN.

Initialization of σxj and σyj . ALRBM learns the regions of interest by first
looking at larger areas and then contracting through iterations. Initialization of
σxj and σyj should be large enough to learn meaningful local regions of interest.
In our experiments, σxj and σyj are initialized to enable the hidden units to look
at the whole image at first.
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Fig. 3. Left: reconstruction error through iterations on MNIST; Right: reconstruction
error through iterations on CBCL faces

Efficiency. The learning algorithm of ALRBM is similar to the original RBM
except for additional parameters θj . Learning one element of θj has the same
complexity as learning wij which dominates the learning procedure of the original
RBM. Having three elements in θj , ALRBM runs roughly 4 times slower than
the original RBM in one iteration.

Convergence. Local constraints in ALRBM introduced by the distance function
improve the stability and convergence of RBM. Figure.3 shows that ALRBM
converges the fastest in both experiments.

5 Conclusions

We present a variant of RBM which encodes the locality property into the con-
nection weights between the visible units and the hidden units by introducing
a distance function. Experiments on hand-written digits and human faces show
that our model has the very function to learn region-based local feature repre-
sentation adapting to the content of the image data automatically.
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Abstract. Common Spatial Patterns (CSPs) is a popular feature ex-
traction algorithm for Brain-Computer Interface (BCI). However, the
standard CSP spatial filters completely ignore the spatial information
of EEG electrodes. To solve this problem, two smooth Regularized CSP
(RCSP) algorithms are proposed in this paper, which are Spatially RCSP
with a Gaussian Prior (GSRCSP) and Spatially RCSP with a Feature-
Associations Modeling Matrix (MSRCSP) respectively. Then these al-
gorithms are compared with the standard CSP and Spatially RCSP
(SRCSP), an existing smooth CSP, in an experiment on EEG data from
three publicly available data sets from BCI competition. Results show
that GSRCSP outperforms other algorithms in classification accuracy
and MSRCSP needs least training time. Besides, the spatial filters ob-
tained by GSRCSP and MSRCSP are smoother than the standard CSP
and SRCSP and are more interpretable neuro-physiologically.

Keywords: Brain computer interface (BCI), common spatial pattern
(CSP), smooth, regularization, spatial information.

1 Introduction

Brain-Computer Interface (BCI) system aims at transforming the brain activity
signals into different computer commands to control some applications designed
for certain people. However, the input of BCI is always raw EEG signals with a lot
of noise. To discriminate these signals effectively, features critical for classifying
different mental states should be extracted. Common Spatial Patterns (CSPs)
algorithm is such an effective feature extraction method for EEG classification
in BCI.

However, as a spatial filters, CSP ignores the spatial information of EEG
electrodes completely. From a neuro-physiological point of view, neighboring
brain cells tend to function similarly, so neighboring electrodes should measure
similar brain activity signals. Thus, we can expect that neighboring channels
of the spatial filter should have similar weights (i.e. smooth spatial filter). This
motivation inspires the improvement of the CSP to obtain smooth spatial filters.
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Lotte et al have proposed a Spatially Regularized CSP (SRCSP) to achieve this
goal by using the spatial information as a priori knowledge [1]. Despite better
results than the standard CSP, it needs quite a long time in learning spatial
filter, which a good BCI should avoid. [2] and [3] also use spatial information to
design smooth algorithms for MEG and fMRI data respectively, which inspires
our proposal of new smooth CSP algorithms for EEG data. In this paper, two
Regularized CSP (RCSP) algorithms have been proposed. They are Spatially
RCSP with a Gaussian Prior (GSRCSP) and Spatially RCSP with a Feature-
Associations Modeling Matrix (MSRCSP) respectively.

2 Method

2.1 Standard CSP

CSP aims at obtaining spatial filters that maximize the differences between
two classes of EEG signals. Features extracted by these filters can help achieve
optimal results for EEG classification in BCI. Formally, a popular method [4] is
to extremize the following function:

J(w) =
wTXT

1 X1w

wTXT
2 X2w

=
wTC1w

wTC2w
(1)

where Xi is an S ×N data matrix for class i (with S as the number of samples
and N as the number of channels), T represents transpose and Ci is the spatial
covariance matrix from class i (i ∈ [1, 2]). Lagrange multiplier method can be
used to solve this optimization problem subject to the constraint wTC2w = 1.
Then the problem turns into the following function :

C−1
2 C1w = λw (2)

It is a standard eigenvalue problem.To get optimal results, usually we choose
the first and last f eigenvectors of M = C−1

2 C1 as the spatial filters w to extract
features, which correspond to its largest and lowest eigenvalues respectively.
After projecting the bandpass-filtered EEG signal variance onto w, the logarithm
of it is in fact the features used to discriminate these signals.

2.2 Spatially RCSP with a Gaussian Prior

In order to obtain smooth spatial filter, based on the neuro-physiological knowl-
edge mentioned before, we use the spatial location as a priori to regularize the
standard CSP and design two smooth CSP algorithms. The first algorithm we
propose is a GSRCSP, which adds spatial information in the form of Gaussian
prior to regularize the standard CSP. The Gaussian prior is as follows:

Prior(w) ∝ exp

(
−1

2
wTQ−1w

)
(3)
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where Q is a positive-definite covariance matrix. A Gaussian prior allows us to
model the correlations between weights in the matrix Q [2]. Thus the distances
of EEG electrodes is used to determine the correlations between corresponding
weights directly and encode them into CSP. In other words, weights closed to
each others will be assigned high correlation, thereby ensuring the smoothness.
Specifically, the following function defines Q:

Q(i, j) = exp

(
−1

2

‖vi − vj‖2
σ2

)
(4)

where σ is a parameter determining the spatial smoothness and vi is the 3-D
spatial location vector of the ith electrode. To add the prior into the standard
CSP, we take the logarithm of the prior and turn it into a penalty form P (w),
thus it becomes:

Prior(w) ∝
(
−1

2
wTQ−1w

)
and P (w) = wTQ−1w (5)

From a statistical point, the more the filters satisfy the prior, the larger Prior(w)
will be, correspondingly, penalty P (w) will be lower. Then adding this penalty
into the objective function of standard CSP, it becomes:

Jp1(w) =
wTC1w

wTC2w + αP (w)
and Jp2(w) =

wTC2w

wTC1w + αP (w)
(6)

where α is a regularization parameter. To obtain the w, we need maximize
Jp1(w) and minimize P (w) meanwhile. Using the Lagrange multiplier method, it
becomes the problem of solving the eigenvectors of M1 = (C2 +αQ−1)−1C1 and
M2 = (C1+αQ−1)−1C2 corresponding to the largest eigenvalues. To avoid twice
matrix inversion and ensure the accuracy of calculation, they can be transformed
into the following functions by doing some basic matrix operations:

M1 = Q(C2Q+ αI)−1C1 and M2 = Q(C1Q+ αI)−1C2 (7)

where I is the identity matrix. GSRCSP will encourage the spatial filter to satisfy
the correlation structure, so the neighbouring electrodes tend to have similar
weights, thereby ensuring the spatial smoothness.

2.3 Spatially RCSP with a Feature-Associations Modeling Matrix

The other smooth CSP algorithm we propose is a MSRCSP. MSRCSP designs
a matrix to model the associations between features (i.e. EEG electrodes) and
uses this matrix to regularize CSP. Different from GSRCSP, MSRCSP uses a
generalized ridge penalty as in [3] to include the spatial information, as follows:

P (w) = ‖Γw‖22 (8)

where Γ is the feature-association modeling matrix we need to define. For each
feature, its associated features are selected according to the distances between



318 X. Li and H. Wang

features. To be more specific, a parameter p is used to choose the first p nearest
features as its associated features. Here we set parameter p ∈ {3, 4, 6}. Based
on the neurophysiological knowledge, we should set every element in Γ properly
to make sure that neighbouring features have similar weights when minimizing
the penalty. For example, if feature Fa is associated with Fb1 and Fb2 and their
corresponding weights are wa, wb1 and wb2 respectively, then we can define Γa

(the vector corresponding to Fa ) like this:

Γa = ( 2 ...−1 −1 ...)

↑ ↑ ↑
a ... b1 b2...

(9)

It assumes that all features associated with one particular feature are equally
important and the assumption can generally be met. Because, for each feature,
the distances between the feature and its associated ones show little differences.
Γ = [Γ1...ΓN ]T where N is the number of features (i.e. number of electrodes).
For every Γi, we need to set every element in the way stated in (9). Similarly,
the same method as stated in section 2.2 is used to add this penalty into the
standard CSP. M1 and M2 turn into the functions below:

M1 = (C2 + αΓTΓ )−1C1 and M2 = (C1 + αΓTΓ )−1C2 (10)

By further observing, we can find that P (w) =
∑N

i=1(wi − Sw)
2, where Sw

denotes the sum of weights corresponding to the features associated with the
ith feature. When minimizing P (w), it will force the weight of ith feature and
its associated ones to be much closer, thus ensuring the smoothness of spatial
filters.

2.4 Spatially Regularized CSP

SRCSP is an exsiting smooth CSP algorithm proposed by Lotte et al [1]. They
add a Laplacian penalty term P (w) = wTKw which includes the spatial infor-
mation in a regularization matrix K as follows:

K = DG−G with G(i, j) = exp

(
−1

2

‖vi − vj‖2
r2

)
, DG(i, i) =

∑
i

G(i, j) (11)

where vi is the 3-D coordinates of the ith electrod and r is a hyperparameter
defining the smoothness. The penalty will encourage neighbouring electrodes to
have similar weights to obtain smooth filters.

3 Experiment

To evaluate GSRCSP and MSRCSP, we compare them with standard CSP and
SRCSP on EEG data of 17 subjects from 3 publicly available data sets from BCI
competition in the experiment.
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Table 1. Data Set

Data set
BCI competition III BCI competition IV

Data set IVa Data set IIIa Data set IIa

Subject A1 A2 A3 A4 A5 B1 B2 B3 C1-C9

Training set 168 224 84 56 28 90 60 60 144

Testing set 112 56 196 224 252 90 60 60 144

All trials 280 180 120 288

Electrodes 118 60 22

MI Right hand and right foot Left and right hand Left and right hand

3.1 EEG Data Sets

Table 1 shows the detailed information about materials used in the experiment
for all data sets. All EEG data used were collected when subjects were performing
Motor Imagery (MI), which is an imagination of limbs movements [5]. For the
purpose of our study, we only choose two kinds of MI for each data set. More
precisely, right hand and right foot MI for Data set IVa, BCI competition III
and left and right hand MI for the other two.

3.2 Preprocessing

For all trials, the time segment from 0.5s to 2.5s after visual cues of raw EEG
signals was chosen and then bandpass filtered in 8-30 Hz [6], which include main
bands for classification, using a fifth-order Butterworth filter. And we used 3
pairs of filters (i.e. f=3 as mentioned in section 2.1). For each subject, ten-fold
cross-validation (CV) was used to find the best parameters for each algorithm
and filters were learnt on training sets available using LDA classifier [7].

4 Results and Discussion

In the following part, four algorithms are compared and evaluated on three
aspects of classification accuracy, smoothness and training time.

4.1 Classification Accuracy

Table 2 reports the results of classification accuracies on all data sets for each
subject. It shows in both mean and median, GSRCSP does the best and outper-
forms CSP more than 3%. All three smooth algorithms outperform the standard
CSP and have lower variances, which may suggest that smooth CSPs are more
robust. Indeed, all subjects can be grouped into two categories: good subjects
with higher accuracies and poor ones with lower accuracies. Further observation
suggests that GSRCSP does best in both of the two groups (e.g. A2,B1,C2,C5)
while MSRCSP has more advantages on the poor ones (e.g. A3,B2). A friedman
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Table 2. Results

BCI III BCI IV
Overall

Data set IVa Data set IIIa Data set II

Subject A1 A2 A3 A4 A5 B1 B2 B3 C1 C2 C3 C4 C5 C6 C7 C8 C9 MeanMedian Std

CSP 66.07 96.43 47.45 71.88 49.6 95.56 61.67 93.33 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 75.53 73.70 18.17

GSRCSP 72.32 100 57.14 82.14 79.76 97.78 56.67 93.33 88.89 57.64 96.53 63.89 62.5 65.28 81.25 93.75 90.97 78.81 80.51 15.70

MSRCSP 69.64 96.43 59.18 71.88 52.78 93.33 63.33 93.33 88.89 56.94 96.53 70.14 60.42 63.89 81.25 95.14 91. 67 76.75 74.31 15.93

SRCSP 72.32 96.43 58.16 72.32 87.30 96.67 53.33 93.33 88.89 52.78 96.53 70.14 56.25 65.97 81.94 95.14 91.67 78.19 80.07 16.4

test on GSRCSP, MSRCSP and SRCSP shows they have no significant differ-
ences (p = 0.276). However, it means these smooth CSPs are stable for all
subjects and interchangeable when using CSP.

4.2 Smoothness

Fig.1 shows an example of filters obtained by four algorithms from six subjects.
Overall, all smooth algorithms are smoother than the standard CSP since neigh-
bouring weights of them are similar to each other. Furthermore, smooth filters
can assign higher weights to the brain regions critical to MI classification [5]. So
these filters can be more interpretable neurophysiologically.

A quantified method has also been used to assess the smoothness of these
filters more precisely. For each weight, the sum of differences between it and its
four nearest ones has been calculated. Then the summation of all these sums in
each filter is used to measure the smoothness. Table 3 indicates that the order of

Fig. 1. Examples of weight vectors obtained by four algorithms (CSP, GSRCSP,
MSRCSP, SRCSP) for subjects A1, A4 (118 electrodes), B2 (60 electrodes), C2, C6,
C9 (22 electrodes)
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Table 3. Smoothness

A1 A2 A3 A4 A5 B1 B2 B3 C1 C2 C3 C4 C5 C6 C7 C8 C9 Mean Median Std

CSP 189.06 226.99 191.89 197.12 206.89 93.77 176.28 91.76 63.37 100.79 83.33 84.47 102.36 95.71 82.56 67.29 133.45 128.65 100.79 55.74

GSRCSP 93.27 148.01 61.45 142.99 69.02 67.47 11.16 91.76 63.37 71.36 72.12 31.19 88.50 86.53 82.59 62.25 70.80 77.28 71.36 33.03

MSRCSP 161.41 196.58 27.96 197.11 156.17 79.43 18.54 91.75 63.37 90.36 76.93 84.47 4.15 65.52 82.56 49.32 72.02 89.27 79.43 57.16

SRCSP 135.78 222.83 81.73 186.96 109.52 78.65 10.05 91.76 63.37 93.05 81.55 83.88 5.54 86.46 82.71 49.91 72.47 90.37 82.71 53.65

smoothness of filters from high to low is GSRCSP, MSRCSP, SRCSP and CSP.
Besides, Friedman tests show that GSRCSP and MSRCSP both have significant
differences from standard CSP (p = 0.008 and p = 0.000 respectively). So they
are smoother than CSP substantially.

4.3 Training Time

Training time has also been compared among three smooth CSP algorithms.
Table 4 suggests that for all data sets, the order of training time from short
to long is MSRCSP, GSRCSP and SRCSP. A good BCI system should avoid
tedious training procedure. Algorithms with short training time will show great
advantages especially when the size of training trials is large.

Table 4. Traing Time

Training time BCI competition III BCI competition IV
mean-std /s Data set IVa Data set IIIa Data set IIa

GSRCSP 42.83-18-10 17.70-3.32 13.00-0.77
MSRCSP 21.57-9.10 8.82-1.75 6.95-0.34
SRCSP 57.68-24.55 24.87-5.10 18.66-0.96

5 Conclusion

In this paper, we propose GSRCSP and MSRCSP to get smooth spatial filters,
by using spatial information to regularize the standard CSP. In the experiment,
they are compared with CSP and SRCSP on three EEG data sets from two BCI
competitions on three aspects of classification accuracy, smoothness and train-
ing time. Result shows that GSRCSP and MSRCSP outperform the standard
CSP in classification accuracy and GSRCSP does the best. Although statistical
tests show GSRCSP and MSRCSP have no significant differences from SRCSP,
it means that they are interchangeable when using smooth CSPs. Besides, both
GSRCSP and MSRCSP are smoother than CSP and SRCSP substantially in
both the weight vector and the quantified comparison. Moreover, the two algo-
rithms, especially MSRCSP, show great advantages on training time. In conclu-
sion, GSRCSP and MSRCSP perform well in all three aspects. So they should
be recommended in BCI designs especially when size of training trials is large.
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Abstract. Multiple Timescale Recurrent Neural Network (MTRNN) model is a 
useful tool to learn and regenerate various kinds of action. In this paper, we use 
MTRNN as a dynamic model to analyze different human motions. Prediction 
error from dynamic model is used to classify different human actions. However, 
it is difficult to fully cover the human actions depending on the speed using dy-
namic model. In order to overcome the limitation of dynamic model, we consi-
dered Slow Feature analysis (SFA) which is used to extract the unique slow  
features from human actions data. In order to make input training data, we ob-
tain 3 kinds of human actions by using KINECT. 3 dimensional slow feature 
data is be extracted by using SFA and those SFA feature data are used as the 
input of MTRNN for classification. The experiment results show that our pro-
posed model performs better than the traditional model. 

Keywords: motion recognition, multiple timescale recurrent neural network, 
slow feature analysis. 

1 Introduction  

Recognizing human motion is an important aspect in human-machine interaction 
based applications such as entertainment and engineering. Feature selection of human 
action is crucial to human motion recognition and the development of video sensors 
based technologies, such as KINECT, are opening new ways to design advanced hu-
man computer interface systems [1].  

Hidden Markov Model is a traditional dynamic model to analyze and recognize 
human motions [2]. Yamashita and Tani [3] proposed a neuro-dynamic model re-
ferred to as multiple timescale recurrent neural network (MTRNN) to provide another 
way to model dynamic signals.  As an extension of recurrent neural network (RNN) 
[4], MTRNN has an important feature called “self-organization”, which is a pheno-
menon that a global coherent structure appears in a system not by a central authority 

                                                           
∗ Corresponding author. 



324 J. Kim et al. 

 

but by local interactions among elements of the system [5].This particular feature 
makes MTRNN suitable for dynamic motion recognition tasks. 

Although, video based technology can capture the whole motion sequence, tracking 
still becomes difficult because of some unpredictable differences in human actions. 
Usually, the start point and the moving speed are not exactly same even if we try to 
perform same motion twice. Hence, it is difficult to analyze the human motions using 
MTRNN alone. In addition, using KINECT makes it even more difficult to accurately 
estimate the moving speed of each skeleton node in each frame because of the zigzag 
noise in KINECT based motion data. MTRNN predictions are based on current input 
data as well as history data. Since, variation in zigzag noise is too large, MTRNN, in 
most of the cases, fails to follow fast changes.  

To solve this problem, we need an alternative model which can generate smooth 
and slow signals. Slow feature analysis (SFA) [6] appears to be a suitable model for 
this. It is a kind of high-order network [7] and can obtain “slow” properties. Moreover, 
SFA is a kind of unsupervised learning algorithm of input in time sequence and ob-
tains robust characteristics. These characteristics can be eventually used to analyze 
human motion classification [8, 9]. 

The paper is organized as follows: We present the overview of our model and re-
lated background in section 2. The comparison results are shown in section 3. Finally 
in last section, based on our experiment results, we conclude that the proposed model 
with SFA has performs better than a single MTRNN model. 

2 Proposed Model 

2.1 Overview of Proposed Model 

Fig.1 shows an overview of the proposed human action recognition model. In this 
model, input training data are obtained from KINECT including the movement of 6 
skeleton (12 dimension data including x and y axis) nodes on right hand. Each action 
is recorded during 3 seconds with 30 frame/sec sampling time (90 frames). Then, SFA 
is used as the feature extraction method for slow features from the KINECT data. The 
output of SFA, which only includes 3 dimensional data, is used as  the input data of 
MTRNN. 
 

 

Fig. 1. The flow chart of proposed human action recognition model 
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The prediction error of MTRNN is used for motion recognition. Yamashita and Ta-
ni [3] used initial states for different actions. We also used 3 kinds of initial states for 
3 different motions. Minimum prediction error between target signal and predicted 
signal depends on the selection of correct initial state. Therefore, to recognize human 
actions by finding minimum prediction error according to different initial states, we 
need to check each initial state and record the prediction error for a test motion signal 

2.2 Slow Feature Analysis(SFA) 

SFA is an unsupervised algorithm to learn nonlinear functions that extract slowly 
varying signals from time series. In this model, SFA can extract slow features from a 
dynamic signal which can be used as an input of MTRNN. Considering the feature of 
SFA, we expect SFA to extract similar features for the same class and different fea-
tures for two different kinds of motions.  

In SFA, input signal is given that x t [ , , ] in I-dimensional space. 
SFA finds out a set of input-output functionsg x [ , , ] , such that 
each output function is given by following equation: 

 x  (1) 

such that for each j ∈ 1, , J  

 ∆   is minimal (2) 

under the constraints 

  0   (zero mean), (3) 

 1   (unit variance), (4) 

 :      (decorrelation), (5) ·  means averaging over time and  means derivative of y. Eq. (2) means temporal 
variation of the output signal. Constraints Eq. (3) and (4) normalize all output signals 
to a common scale. Constraints Eq. (5) means that different output signal carry differ-
ent information.  

The algorithm of SFA includes several steps.  

1. Input signal normalization by following equation: 

   /√    ^2   (6) 

2. Nonlinear expansion:  Expansion of input signal use quadratic form for which fol-
lowing is the equation 

 ̃  [ , , , , , , ] (7) h x is nonlinear function and z t is expanded signal.  
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3. Sphering:   Normalize the expanded signal z t  to transform z(t) 

 z t S z t z t  (8) 

S is sphering matrix that normalizes expanded signal. 

4. Principal component analysis:  Apply PCA to matrix zzT . Get j eigenvectors 
with lowest eigenvalues λ  and normalized weight vectors  

 zzT w ë w  with ë ë ë  (9) 

Thus, input-output function is 

 g x [g x , , g x ]  with g x wTh x  (10) 

and the output signal  

 y t g x t  (11) 

2.3 Multiple Timescale Recurrent Neural Network (MTRNN) 

MTRNN model is based on continuous time recurrent neural network (CTRNN) 
model[10]. The neurons of slow and fast context layer have different time scales. 
MTRNN has three groups of neural units; input-output units, fast context units and 
slow context units. Input-output units contain 64 units to accept input information 3 
dimensional data from SFA) using topology preserving map(TPM)[11].The number 
of fast and slow context units are set as 70and 30, respectively. 

The membrane potential of these neurons is modeled by the conventional firing 
rate model, which is calculated by following linear differential equation: 

 ô , , ∑ ,  (12) 

where ui,t is the membrane potential of each i-th neural unit at time step t and xj,t is the 
neural state of the j-th unit at time step t, and wij is a synaptic weight from the j-th unit 
to the i-th unit. The time constant τ is defined as the decay rate of a unit’s membrane 
potential. If the τ value is large, units change slowly in time scale because the internal 
state potential is strongly affected by the history of unit’s potential. On the other hand, 
if the τ value is small, the effect of history of unit’s potential is also small. The activi-
ty of fast context units with small time constant (τ = 2) changes quickly, whereas the 
activity of slow context units with a large time constant (τ = 40) changes slowly. The 
updating of ui,t values is done by the numerical approximation of following equation: 

 , 1 ô , ô ∑ ,∈  (13) 

The activation of the i-th unit at time t is determined by the following equation: 

 ,  ,∑  ,∈        ∈
,               (14) 
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where Z is a set of output units that correspond to motion data. The softmax activation 
function is applied only to the output units, and not to the context units. Activation 
values of the context units are calculated by the function f which is a conventional 
unipolar sigmoid function x 1/ 1  .  

The MTRNN is trained to obtain the optimal connective weights by minimizing the 
learning error E. The error function E was defined by the Kullback-Leibler diver-
gence, as shown in following equation: 

 E ∑ ∑ ∈ ,  log , / ,   (15) 

where y*
i,t is the desired activation value of the output neuron at time t, O is a set of 

output units, and yi,t is the activation value of the output neuron with the current con-
nective weight. A conventional back propagation through time (BPTT) algorithm [12] 
was used to train the model. Through iterative calculation of the BPTT, the values of 
the connective weights reach their optimal values in the sense that the errors between 
a teaching sequence and an output sequence is minimized. 

2.4 MTRNN with SFA 

Suppose we get a group of N dimensional data obtained by KINECT in time step t 
called X t [ , , … , ] . SFA will create a nonlinear mapping func-
tion and exchange the N dimensional input dataX t  to M dimensional output data X t [ , , … , ]  by using the principles mentioned in section 
2.2: 

 X t X t  (16) X t , which is the output of SFA is used as the input of TPM located in MTRNN: 

 ,  || X ||ó∑  || X ||ó∈  (17) 

where ,  is the activation value of TPM in time step t and will be used as ,  in 
Eq.(12), ∈  means the i-th node of TPM, , , , , … , ,  is 
the reference vectors set of TPM. 

By combining the two models, slow and smooth data can be obtained as the input 
data of MTRNN using SFA. 

3 Result 

3.1 Result of SFA 

Fig. 2 shows 3 kinds of signals marked by 3 colors. We obtained these results using 
minimum eigenvalue from SFA. As we mentioned in section 2.2, we need SFA to 
extract similar signals for the same kinds of motions. In Figs. 2 (a)-(c), there are 5 
curves marked by different colors. Each curve is obtained by a pattern of human arm 
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3.3 Result of Recognition 

The motion recognition result is shown in Table 1. It is clear that our proposed model 
achieves better recognition results as compared to the conventional MTRNN model. 
The star and square motions are perfectly recognized by our proposed model. Al-
though some of the circle motions are wrongly classified as star motion in our model, 
it’s much better than the performance of the MTRNN model. 

Table 1. PERFORMANCE OF RECOGNITION 

Motion type Performance of using MTRNN Performance of using MTRNN with 
SFA 

circle 13% 73% 
star 75% 100% 

square 36% 100% 

4 Conclusion 

In this paper, we proposed a novel motion recognition model based on SFA and 
MTRNN. Our experiment results show that the SFA is able to extract slow unique 
features for different motions. These slow signals can be easily learned in MTRNN 
for human motion recognition using KINECT. 

As our future work, we are trying to develop a KINECT based dance classification 
system including more complex human motion patterns. Also, we are applying the 
proposed model to recognize human intention by analyzing human gesture sequences.  
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Abstract. Protein Structure Prediction (PSP) is a well known problem for 
Bioinformatics scientists. It was considered as a NP-hard problem. Swarm 
Intelligence is a branch of evolutionary algorithm, is commonly used for PSP 
problem. The Artificial Bees Colony (ABC) optimization algorithm is inspired 
from the honey bees food foraging behavior and the Particle Swarm 
Optimization (PSO) algorithm which also simulate the process of the birds’ 
foraging behavior are both used to solve the PSP problem. This paper 
investigates the performance of the two algorithms when being applied on an 
experimental short sequence protein called Met-enkaphlin in order to predict its 
3D structure. The results illustrates clearly the power of the PSO search strategy 
and outperforms the ABC in terms of Time, Avg.NFE and success rate values 
by 70%, 73%, 3.6% respectively. However, the ABC results were more stable 
than the PSO in terms of Std.dev values, by 74%.      

Keywords: Protein structure, Prediction, Artificial Bees Colony, Particle 
Swarm Optimization. 

1 Introduction 

Protein Structure prediction is one of the interesting concepts in the Bioinformatics 
field, as the importance of the proteins to the humanity. Proteins are involved in 
performing specific functions in the human’s body. Their function and performance 
properties depend upon the three dimensional (tertiary) structures they have. Each 
protein is constructed from a sequence of amino acids connected to each other in a 
long chain. There are 20 different amino acids that combine together to build the 
protein’s sequence, each of which may appears more than once in the same sequence 
[1]. According to [2], each protein may have between 20 to 40000 amino acids and 
most of the proteins have around hundreds of amino acids. According to the type and 
the number of the amino acids in the sequence, the protein will fold in special shape 
in the cell and take its three dimension structure. 

Moreover; by knowing the 3D structure of the protein the scientists are able to 
determine its biological function. One of the methods that have been used to 
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determine the protein’s 3D structure is by using the experimental tools, such as NMR 
and X-ray Crystallography. Using these tools enabled the scientists to understand the 
biological function of the proteins as well as what type of designed drugs can be 
effective on them. However, using these experimental methods is very costly and time 
consuming [2-6]. In this paper, we investigate the performance of the two algorithms 
(ABC & PSO) on the PSP problem through a comparative study by using different 
parameter settings. 

The rest of the paper is organized as follow: Section 2 explaining protein structure. 
Section 3 and 4, an overview of ABC and PSO algorithms. Section 5 describing the 
methodology for PSP used in this work. Results implementation of the proposed 
approach can be seen in Section 6. The discussion and future work are in Section 7, 
Conclusion and future work are discussed in Section 8. 

2 Protein Structure   

 In the protein sequence, each amino acid consists of two main parts: main chain or 
backbone and side chain or R chain. The connected amino acids by peptide bonds 
generate what is called main chain or backbone from the generated side chains (R 
group). The main chain consist of a carbon alpha (Ca) which is bonded with an amino 
group (NH2), hydrogen atom (H) and carboxylic acid group (COOH). The R group or 
side chain is also connected to the carbon alpha Ca as shown in Fig 1. The carboxyl 
group of one amino acid is tending to join with the amino group of another by the 
formation called peptide bonds. Each of the joined amino acids ends is still 
unconnected, which is the amino group of the first one and the carboxyl group of the 
end once. This enables the sequence to be connected with other amino acids from the 
free sides [1].  

 
Fig. 1. Amino acid 

Source: http://www.thefoodadvicecentre.co.uk/reference/protein 
 

The representation of the protein is very important for the prediction operation. 
Since the peptide main chain bonds are effectively present the backbone by their 
connection, and the representation of the Ca atom along the protein sequence; the 
peptide ponds have the freedom to rotate around themselves. According to [1] ”Each 
peptide unit can rotate around two bonds: the Ca-Ć and the N-Ca bonds, and by 
convention the angle of rotation around the N-Ca bond is called Phi (ϕ) and the angle 
around the Ca-Ć bond from the same Ca atom is called Psi (ψ)”, Fig. 2. 

Finally; since each amino acid in the protein sequence has only two main angles 
(dihedral angles) of rotating freedom which presents its conformation; these angles  
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Fig. 2. The Phi (ϕ) and Psi (ψ) dihedral angles 
Source: http://www.molecularsciences.org/book/export/html/128. 

 
have the main responsibility to represent the whole main chain of the polypeptide in 
the protein sequence, which establish the final protein 3D structure [1]. 

In this study, Artificial Bee Colony (ABC) which is a foraging honey bee feature 
and particle Swarm Optimization (PSO) algorithms will be used in order to formulate 
the search algorithm for best protein conformation results.  

3 Artificial Bee Colony Overview 

In the ABC algorithm, the colony of artificial bees contains three groups of bees: 
employed bees, onlookers and scouts. Each employed bee is sent to only one food 
source. In each cycle of the search, the ABC conducts three steps: send the employed 
bees to the food sources and calculate their amount of nectar. Then the onlooker bees 
are sent to measure the nectar of the food sources after getting the information about 
the location of the promising food sources. The scout bee will be determined after the 
food source is exhausted by its employed bee and onlooker bee. 

In ABC algorithm each food source position represents a possible solution for the 
optimization problem. Each solution of the optimization problem is associated with 
fitness value. The ABC generates N population size of random solutions in the initial 
stage. which means that each solution represent a position of one food source and 
denoted as xij, where  i  represents the particular solution (i=1,2,…,N) and each 
solution is a D-dimension vector, and j  represents its dimension (j=1,2,…,D).  
The onlooker bee chooses a food source depending on the probability value Pi 
associated with the food source. Probability value for each food source is calculated 
by following equation (1). 

According to the information gathered so far from the neighbor around Ɵ i the 
onlooker make a comparison whether to select that food source or its neighbor. 
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The position of the chosen neighbor is calculated by the following equation (2): 

)()1( kjijiji j θθβθθ −+=+ ,                  (2)

Where i represents the particular food source position (i= 1,2,…,N), k represent the 
neighbor’s randomly chosen position (k= 1,2,…,N), the k value should be different 
from the i  value . is a random number between [-1, 1] used to estimate the neighbor 
food sources around xij. As the ABC search becomes close to the global optimum, the 
search diameter around the xij shrinks. If the fitness of the new solution (food source) 
is better, it takes the place of the old one in the memory. Otherwise, the old position 
will remain. After a number of ABC specified search cycles the food source with 
unimproved fitness will be abandoned, and the scout bee will be sent to find a new 
food source based on the equation (3). Then the food source found by the scout bee 
will take place of the abandoned one. 

)](1,0[xx minmaxijij jj xxrand −+= . (3)

4 Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) is a swarm intelligence algorithm inspired 
from the natural behavior of Swarms such as fish schooling or bird flocking in nature 
to avoid predators, seek food and mates, temperature.etc. Swarm intelligence is a 
technique based on simple proceeding units interactions (agents interactions), being 
used for problem solving processes. The inspiration of the Heppner and Grenander 
(1990) where they studied natures flocks of birds, schools of fish and swarms of 
insects; it was the initial ideas to Eberhart and kennedy (1995) to combine the 
cognitive abilities with social interaction [7]. 

In this algorithm, every single solution represents an individual which expresses a 
particle. Each individual is characterized by two parameters location and velocity. 
The location represents the solution of that particular individual. Each solution also 
has a corresponding fitness value. Thus, the goal is to find the solution of the best 
fitness value which indicates the best location found by any particle before. The most 
important parts of the algorithm are the evaluation equation and the comparison 
among the locations that the particles have gone through. In each loop, for an 
individual (particle) if the current position is better than any locations that it has 
visited before, then the individual’s location is exchanged by the current one. And the 
global best location is defined as the location of an individual with best fitness value 
at that loop. After the comparison, the location and the velocity of each single particle 
is changed by the following equation: V , w V ,  c r pbest , X , c r gbest , X , . (4)
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 X , X , V ,  (5)

where w represents inertia weight, c1 and c2 are learning factors which determine 
the relative influence of cognitive (self-confidence) and social (swarm-confidence) 
components, respectively, r1 and r2 are independent random numbers uniformly 
distributed in the range[0,1]. V ,  and X ,  and pbest ,  are the velocity, position and 
the personal best of ith particle in dth dimension for the tth iteration, respectively. The 
gbesti,d is the dth dimension of best particle in the swarm for the tth iteration. 

5 The Methodology for PSP  

 In order to evaluate the performance of the two algorithms on protein structure 
prediction, a complete program was built. According to [8] the PSP process in general 
contains three main phases: conformations creation, energy calculation and search 
algorithm implementation. Fig.3 illustrates the proposed search method for PSP 
problem. 
 
Conformations Creation: in this phase, the food sources of the search algorithm are 
generated, and then a rotation function to rotate the structure by a random value of 

main chain (Phi (ϕ) and Psi (ψ)) and side chain angles degree was applied. In each 
rotation a new conformation is added to the food sources. The number of the food 
sources is fixed from the beginning by the parameters initialization.  
 
Energy Calculation: for each conformation generated from the previous phase; an 
energy calculation function is applied. This function is used to calculate the energy of 
the conformation (generated protein structure), which reflects the inner interaction of 
the protein resident. This function is represented as the objective function for the 
search algorithm. It calculates the energy of each conformation produced during the 
search phase. The equation used for energy calculation function contains interactions 
of van der Waals (ΔGvdw) and electrostatic (Columbic) (ΔGelec) interactions solely [9]. 
The energy equation ΔG = ΔGvdw + ΔGelec is represented in (6). ∆ ∆ , ∆ ,  (6)

Many energy functions have been proposed in the previous researches. programs 
called physical-based “force fields” like: CHARMM [10], AMBER [11], OPLS [12] 
and the earlier one is SMMP by [13] (ECEPP/2 and ECEPP/3), had shown a 
convenient and effective result when being applied for small peptide proteins ([3]; 
[5]; [14]). In this work, ECEPP/2 force fields function of the SMMP program will be 
used to calculate the energy of the conformations being produced. 
 
Search algorithm implementation: A search algorithm is used in this phase. For 
each cycle of the search algorithm the conformations creation and energy calculation 
functions are called. The goal of the algorithm is to reach the optimal minimum 
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solution of the problem which is in this case (PSP problem) the conformation with the 
lowest free energy. This is based on the assumption that the proteins tend to fold into 
their native state (structure) when they are on lowest energy [15]. 

 

Fig. 3. The PSP search methodology[8] 

Search Algorithm Implementation: A search algorithm is used in this phase. For 
each cycle of the search algorithm the conformations creation and energy calculation 
functions are called. The goal of the algorithm is to reach the optimal minimum 
solution of the problem which is in this case (PSP problem) the conformation with the 
lowest free energy. This is based on the assumption that the proteins tend to fold into 
their native state (structure) when they are on lowest energy [15]. 

6 Experimental Results and Discussion 

In order to evaluate the performance of the two algorithms (ABC & PSO) for PSP 
problem, a Met-enkaphlin experimental protein was used. This is a short sequence 
protein with five amino acids resident. Each amino acid has two main chain angles 
(Phi (ϕ) and Psi (ψ)) and number of said chain angles. The number of the angles used 
that mainly influence the structure are 19 angles. Those angles are the D parameters 
of each solution in the search space. To intensively evaluate the performance of the 
two algorithms, various cases of different parameter settings were used: Table 1 for 
ABC settings and Table 2 for PSO settings. The proposed algorithms have control 
parameters: the colony size (SN= Employed bees + Onlooker bees), the Swarm 
population size (PN), the average number of function evaluations (NFE), “limit”, 
inertia weight (ω), self-confidence (C1) and swarm-confidence (C2). We have 
compared the algorithms in terms of best , worst and mean fitness function values, 
standard deviation (SD), mean process time(S) and average number of function 
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evaluations (NFE). It should be noted here that the ABC algorithm stopping criteria is 
that of the number of cycles (or generations). However, in the present study we have 
considered NFE as stopping criteria for both algorithms. The maximum number of 
function evaluations is set to 105. In every case, a run was terminated when an 
accuracy of protein free energy ≤ -12.9101 (as reported in [5],[3]) was reached or 
when the maximum number of function evaluation was reached. The tests of each 
case are repeated for 30 runs and the average NFE is recorded. The experiment was 
implemented on a normal PC with ADM Athlon(tm) 7750 Dual-Core processor  2.70 
GHz CPU and 4.00 GB RAM. The results of this test are shown by the Table 3 and 4. 

Two types of information can be inferred the results. Firstly, the effects of the 
parameters settings, where each parameter has different effect on the algorithms’ 
performance; secondly, it illustrates the advantages and the disadvantages of each 
algorithm especially when they had been applied on PSP problem.   

As shown in table 3 the results of the ABC algorithm implicitly illustrate that the 
number of the bees and the limit parameter have the main influence on the 
performance of the algorithm. From Case 1 to 3 the effect of the parameter “limit” is 
clearly presented. Limit is a parameter which determines the food source to be 
abandoned. When the parameter is set to “100” the Std.dev and Ave.Time (s) has 
been decreased. It means that increasing the “limit” makes the algorithm more stable 
and to exclusively search the food source’s neighbor before being abandoned. And 
from Case 1 to 5, the results show that increasing the number of the bees has not 
improved the performance of the algorithm when the limit parameter is set to low 
values; while Case 6 and 7 shown that increasing the bees’ number with large value of 
limit has a very positive influence on the algorithm’s performance.  

While in table 4 the results of the PSO algorithm, regarding the parameters effects 
on the algorithm’s performance, the results categorized a different reactions of PSO 
algorithm. In general, increasing the PN number has a good effect on the PSO 
performance but for a certain values only otherwise further increasing has no more 
positive effects (see Case1, 2 and Case5, 6). However, the global best location based 
strategy that the PSO uses, is the main rule for its effective search performance, 
otherwise there will be a disaster (see Case4). By giving parameter c2 larger value 
than the c1, the search will really further on the global information rather than the 
local or self-confidence information. 

However, the research results in general, implicitly illustrate that in this cases the 
PSO algorithm performance has outperformed the ABC algorithm in terms of mean 
process-time, average NFE and success rate; But when taking into account the MAX 
and Std.dev evaluation parameters it is also clear that in contrast the ABC has some 
advantages regarding the algorithm’s strategy of how to prevent itself from being 
trapped in the local minima and the algorithm’s stability as well. 

For further investigation on the ABC and PSO algorithms, the stopping condition 
of the ABC was set to 5000 iteration (regardless the number of evaluation) following 
some of the literature[17],[18]; while the stopping condition of the PSO was also set 
to be close to the number of evaluations done by the 5000 iteration of the ABC. The 
test was done on the best parameter settings cases produced by each algorithm so far. 
The results are shown in Table 5. 



338 Z.N.M. Alqattan and R. Abdullah 

 

Table 1. ABC algorithm parameter settings 

Cases 
Employed  
Bee 

Onlooker  
Bee 

Limit 

Case1 10 10 20 
Case2 10 10 50 
Case3 10 10 100 
Case4 10 20 20 
Case5 10 20 50 
Case6 10 20 100 
Case7 20 20 100 
    

Table 2. PSO algorithm parameter settings 

Cases PN c1 c2 w  
Case1 20 1.49 2.0 0.4 
Case2 25 1.49 2.0 0.4 
Case3 30 1.49 2.0 0.4 
Case4 20 1.49* 1.49* 0.7* 
Case5 50 1.49 2.0 0.4 
Case6 100 1.49 2.0 0.4 
     

*based on the parameter settings used in [16] 

Table 3. Results of applying ABC algorithm on Met-enkephalin using ECEEP/2 energy 
function* 

Cases Ave. Max Std.dev Time(S) Ave. NFE Suc.rate % 

Case1 -12.1428 -10.9101 0.86301 1315.56 77235.8 50 
Case2 -12.5466 -10.9374 0.66403 1062.828 59651 70 
Case3 -12.5649 -11.1761 0.57797 1123.162 63914 63.33 
Case4 -12.3479 -10.9738 0.70802 1340.82 72688.7 46.66 
Case5 -12.2102 -10.9101 0.79150 1379.668 76094.1 50 
Case6 -12.6368 -11.1761 0.57369 894.1145 50994.6 73.33 
Case7 -12.7039 -11.49 0.49064 1019.673 55815.7 73.33 
       

*the Min value (optimal solution) is -12.9101 always. Time(s) is the average time  

Table 4. Results of applying PSO algorithm on Met-enkephalin using ECEEP/2 energy 
function 

Cases Ave. Max Std.dev. Time(S) Ave. NFE Suc.rate % 
Case1 -12.2137 -9.8923 1.1873 719.3937 43143.3 73.33 
Case2 -12.6320 -11.49 0.7493 611.3442 35630.8 86.67 
Case3 -12.5373 -11.1761 0.7965      648.9 38529.0      80 
Case4 -12.0624 -10.7945 0.8158 1547.652 86725.3 26.66 
Case5 -12.6716 -10.1592 0.6523 549.9918 33116.7 86.67 
Case6 -12.5219 -10.1592 0.8348 774.0623 42373.3      80 

   

*the Min value (optimal solution) is -12.9101 always. Time(s) is the average time  
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Table 5. ABC and PSO comparison using 5000 iteration  

Cases Ave. Max Std.dev. Time(S) Ave. NFE Suc.rate% 
Case7/ 
ABC 

-12.8803 
 

-12.0181 
 

0.1628 
 

1573.699 
 

93995.9 
 

90 
 

Case5/ 
PSO 

-12.8150 -11.4797 
 

0.3555 751.9739 
 

43358.3 93.33 

       

*the Min value (optimal solution) is -12.9101 always. Time(s) is the average time  

Finally, it appears that the ABC algorithm’s strategy of individual’s movement using 
the equation (2) by choosing a random neighbor has shown its weakness especially 
for the PSP problem while the PSO strategy of individual movement using equation 
(4) was much better. 

7 Conclusion 

The experiments have shown the difference between the performance of the two 
algorithms ABC and PSO in term of the effects of the algorithms parameters 
initialization used and also the search strategies that the two algorithms used. The 
experiments were done on an experimental protein named Met-enkaphalin which is a 
short sequence protein of five amino acids residents. The number of the main chain 
and side chain rotatable angles is 18. The performance was interesting in terms of 
lowest energy found and acceptable in terms of time. For further research, a 
hybridization process between the two algorithms which combine the advantages of 
them in order to improve the search performance in an efficient and more stable 
manner. 
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Abstract. In this paper, we present an incremental learning method
on a budget for embedded systems. We discuss its application for two
power systems: a micro-converter for photovoltaic and a step down DC-
DC-converter. This learning method is a variation of the general re-
gression neural network but it is able to continue incremental learning
on a bounded support set. The method basically learns new instances
by adding new kernels. However, when the number of kernels reaches a
predefined upper bound, the method selects the most effective learning
option from several options: including replacing the most ineffective ker-
nel with the new kernel, modifying of the parameters of existing kernels,
and ignoring the new instance.

The proposed method is compared with other similar learning meth-
ods on a budget, which are based on kernel perceptron. Two examples
of the application of the proposed method are demonstrated in power
electronics. In these two examples, we show that the proposed system
learns the properties of the control-objects during the services and real-
izes quick control.

Keywords: Incremental Learning on a budget, Kernel Method, micro-
converter, photovoltaic, shadow-flicker, model-based control, DC-DC
converter.

1 Introduction

These days, almost all of electric circuits are controlled by micro-computers. A
microcomputer that can execute a learning algorithm will enable the creation of
embedded systems that are apt for present day scenario, aiding in circumstances
such as age deterioration of materials and environmental changes.

The learning algorithm should not only be light-weighted but also compact.
Such learning algorithms have been proposed as the variations of kernel
perceptrons[1–3]. These algorithms learn instances using a fixed number of sup-
port sets to suit them for use in embedded systems, which have a limited storage
capacity. In our previous works, we had proposed the Limited General Regres-
sion Neural Network (LGRNN) [4]. According to the preliminary results reported
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by [5], LGRNN is superior to the other methods. This is chiefly because LGRNN
executes the best learning option after considering the predicted error in each of
available learning options. In this paper, we propose a slightly extended version
of the previous version of LGRNN[5] to reduce the computational complexity of
the learning algorithm.

In addition, we present two examples of LGRNN applications. The first ex-
ample is a photovoltaic micro-converter that learns the properties of the pho-
tovoltaic while it is working, and controls the chopper circuits to maximize the
solar power generated [5]. We have presented an extended version of our previous
work [5], which operates well even under shadow flicker conditions. The second
example is a simple step down DC-DC converter, which learns the property of
the load while it is working. This converter reacts to the sudden changes in the
input voltage.

The remainder of this paper is organized as follows. In section 2 LGRNN is
explained and comparisons between its performance and that of other similar
learning methods is presented. Section 3 describes the two examples of the appli-
cation of LGRNN, a micro-converter for photovoltaic and a DC-DC converter.
The conclusion is presented in Section 4.

2 Limited General Regression Neural Networks

The LGRNN[4] is an extended GRNN. GRNN normally allocates a new kernel
on the memory to learn a new instance. The LGRNN, however, continues to
learn new instances on a limited memory capacity.

In this paper, the LGRNN algorithm is described briefly. Detailed derivations
of the equations are described in Ref[4]. However, in this paper, the algorithm
is slightly improved to simplify the learning algorithm (See Eq(7)(9)).

Although LGRNN output function is almost the same as that of GRNN [6],
we represent LGRNN output function using a vector in Hilbert space. Therefore,
the output value y(x) is

y(x) =
〈ft,K(x, ·)〉
〈gt,K(x, ·)〉 , ft =

∑
j∈It

wjK(uj , ·), gt =
∑
j∈It

RjK(uj , ·), (1)

where wj and Rj denote the output connection strength and the number of
learned samples of the j-th hidden unit. Let ft, gt be the functions after the t-th
iterations. It denotes the size of support sets. We can regard each hidden unit

as a Gaussian kernel function so that 〈K(uj , ·),K(x, ·)〉 = exp
(
− ‖x−uj‖2

2σ2

)
. In

the initial state, LGRNN has no kernels. If a new instance (xt, yt) is presented,
LGRNN appends a new kernel to record this new instance. If the number of
kernel reaches an upper bound, LGRNN essentially replaces the most ineffective
kernel with a new kernel, whose center position is equivalent to the new current
input vector.

Unfortunately, there are cases in which the replacement process destroys a
part of the knowledge that is learned and the generalization capability is de-
graded.
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To overcome this problem, when the upper bound for the number of kernels
is reached, the LGRNN selects one of the four learning options according to the
predicted error. The four learning options are explained in section 2.2. Moreover,
section 2.1 explains how the most ineffective kernel is determined to be replaced
with a new kernel.

2.1 Finding the Most Ineffective Kernel

The kernel, which is to be replaced with a new kernel, is determined by an
approximated linear dependency. Let us assume that one of the vectors K(ui.·)
can be written as a linear combination of K(uj , ·) (j 
= i). This means that
K(uj , ·) is redundant in this function approximation.

Therefore, the system chooses the i-th hidden unit that has the smallest value
δi:

δi = min
ai

∥∥∥∥∥∥K(ui, ·)−
∑
j �=i

aijK(uj , ·)
∥∥∥∥∥∥
2

. (2)

The hidden unit having the minimum δi value is suitable for being relieved of
its duty since the adverse effects from its substitution is minimal. The optimal
value of ai and δi are obtained from:

ai = K−1k(ui), δi =
{
1− kT (ui)ai

}
, (3)

where [K]ij=K(ui,uj) and k(x)=[K(u1,x), · · · ,K(ui−1,x),K(ui+1,x), · · ·]T .
The system chooses the i-th kernel where i = argminj{δj}, and projects the

i-th kernel to the space spanned by It−1 − {i} according to ai derived in Eq(3),
where I is the support set. After the projection, a new kernel is appended, whose
center is at the new instance.

The replacement process is represented by

ft = ft−1−i + τiwiPt−1−iK(ui, ·) + ytK(xt, ·),
gt = gt−1−i + τiRiPt−1−iK(ui, ·) +K(xt, ·), (4)

where ft−1−i and Pt−iK(ui, ·) denote the function after pruning the i-th kernel
and the projected vector, respectively. τi ∈ {0, 1} denotes the projection ratio.
If τi = 0, the projection process is not executed.

Similarly, there is a possibility that the learning is achieved without replace-
ment. In this case, the new instance is projected to the space spanned by It−1.

ft = ft−1 + τaytPt−1K(xt, ·), gt = gt−1 + τaPt−1K(xt, ·). (5)

A similar technique, which uses an Approximated Linear Dependency (ALD),
was presented by Xu et al.[7]. The authors applied this method to a kernel ma-
chine that learns the ‘Q-value’ for reinforcement learning. In their method, ALD
is used to evaluate whether or not a new kernel should be added. A “Projectron”
proposed by Francesco et al.[2] uses a similar technique as the Xu’s model for
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improving the kernel perceptron based classifier. If a new instance can be rep-
resented by a linear combination of the existing kernels, the Projectron projects
the new instance by modifying the coefficients of all kernels, otherwise, it adds
a new kernel for recording the instance.

Perceptron with Dynamic Memory (PDM) proposed by Wenwu He et al.[3]
discussed a similar technique called the “decremental projection” to reduce the
adverse effect of replacing a kernel. They applied the method on a kernel percep-
tron. However, their method applies the decremental projection even if important
past memory is being destroyed.

Our method, on the other hand, determines whether each learning option is
really applied according to the prediction of the effect of the substitution process
beforehand. So, our method is better than PDM to retain crucial memory.

2.2 LGRNN Algorithm

The pseudo code of LGRNN learning algorithm is shown in Algorithm1.

Algorithm 1. Pseudo-code for LGRNN

Require: new learning sample (xt, yt), upper bound for # of RBFNN hidden units:
B, the importance weight of new samples: Nnew The previous functions ft−1, gt−1

if J (# of hidden units) +1 ≤ B then
ft = ft−1 + ytk(xt, ·), gt = gt−1 + k(xt, ·),

else
{find the most ineffective hidden unit}
Calculate δj (j = 1, 2, · · · , B) by using Eq(3).
i← argminj{δj}
{Choose the next action from the four options}
Estimate the expected loss of the four options (Eq(7)(8)(9)(10)).
set τp ∈ {0, 1} and τa ∈ {0, 1} according to the selected learning option.
if esubstitute or ereplace is the minimum of all then
ft = ft−1−i + τpwiPt−1−iK(ui, ·) + ytK(xt, ·)
gt = gt−1−i + τpRiPt−1−iK(ui, ·) +K(xt, ·)

else
ft = ft−1 + τaytPt−1K(xt, ·)
gt = gt−1 + τaPt−1K(xt, ·)

end if

end if
RETURN ft+1, gt+1

The early steps of the LGRNN algorithm is the same as that of the original
GRNN. However, when the number of kernels reaches the upper bound, LGRNN
selects the best learning option from the four options. The selection of the best
learning option is achieved in accordance to the predicted errors observed after
the application of each of the four learning options.

The predicted errors are calculated as follows. Let e∗ denote the expected loss
for a learning option. Then, e∗ should be the sum of the predicted magnitude of
forgetting old samples and the predicted error of new samples.
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e∗ ≡
∫
x∈old

{ynew(x)− yold(x)}2P (x)dx+Nnew{yt − ynew(xt)}2 (6)

where P (x) and Nnew are the probability distribution of input and the impor-
tance weight of the new instance, respectively.

The four learning options and their predicted losses are explained in the fol-
lowing section. To estimate P (x) and the importance weight, each kernel also
counts the number of learned samples, Ni. Ni is normally a natural number but
is a real number in cases where the i-th unit substitutes other ineffective units.
The LGRNN selects the learning option, which has the least expected loss.

– Pruning with Substitution and Replacement: This option sets the
projection and append ratios as (τi, τa) = (1, 0). The expected loss in this
option is the sum of the loss due to the projection and pruning. Therefore,

esubstitute ≡
∑
j �=i

{
aji(w

∗
i − w∗

j )

Rj(t) +Ri(t)aji

}2

Nj +Ni(w
∗
Nearest(i) − yt)

2δi (7)

where i denotes the index of the most ineffective kernel and w∗
i is w∗

i ≡
wi/Ri. Ni denotes the number of samples, recorded by the i-th kernel. The
default number of Ni is one, but if the i-th kernel substitutes another kernel,
Ni increases: Ni := Ni+Nj|aji|/{

∑
k |ajk|}. Nearest(i) denotes the nearest

kernel to the i-th kernel. Note that the second term of Eq(7) is a simplified
term over our previous work[5] without affecting its performance.
However, if Rj + Riaij < 0 for j 
= i, this option is passed over for the
candidate Rj to prevent from being negative value.

– Pruning with Replacement: The “Pruning with Substitution and Re-
placement” option sometimes causes interference because of the projection
process. A “Pruning with Replacement” option achieves the replacement
process without the projection process so that (τi, τa) = (0, 0). However, the
number of learned samples for the i-th unit is added to NNearest(i) before re-
placement, where the latter is the number of samples learned by the nearest
kernel. NNearest(i) := NNearest(i) +Ni The expected loss from this option is
the loss due to pruning. Therefore,

eprune ≡ (w∗
Nearest(i) − w∗

i )
2Ni, (8)

After the replacement, Ni is reset to 1.
– Modification:This option sets the projection and append ratios as (τi, τa) =

(0, 1). The expected loss with this option is the sum of the losses due to the
projection and pruning. Therefore,

emodify ≡
∑
j

{
ajnew(ynew − w∗

j )

Rj(t) + ajnew

}2

Nj +Nnew(w
∗
Nearest(New) − yt)

2δnew

(9)
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where Nearest(New) denotes the nearest kernel to the new instance and
δnew = ‖K(xt, ·) − Pt−1K(xt, ·)‖2. Ni is updated by Ni := Ni + |ainew |/
{∑j |ajnew |}.

– Ignore: Sometimes, doing nothing is the best option. In this option, (τi, τa) =
(0, 0). The expected loss is the loss cased by doing nothing.

eignore ≡ Nnew(yt − y(xt))
2 (10)

After the estimation procedures, the option with the least expected loss is
selected for incremental learning.

2.3 Comparison with Other Methods

The proposed LGRNN, which is an extension of our previous work, was com-
pared with other kernel perceptron based methods: Projectron++ [2], PDM [3]
and the crisp-projection method for kernel perceptron[8]. The crisp-projection
method is similar to LGRNN learning but it uses kernel perceptron as its out-
put function. We checked the effect of using GRNN based output function by
comparing LGRNN’s performance with that of the crisp-projection method.

The procedure for this comparison is similar to that of our previous work [8].
These models were examined by using the servo, housing for regression stored
in the UCI machine learning repository[9]. A benchmark test was repeated 50
times by changing the dataset sequence. The results were averaged over 50 trials
and 95% confidence intervals were also estimated.

Fig 1 shows an example of the performances for servo and housing datasets.
In this example, the number of kernels was restricted to 10. We can see that the
LGRNN shows the smallest Mean Squared Error(MSE) of all in the early steps
of the learning in serve dataset, but the MSE is closed to that of crisp-projection
in the latter steps of the learning. In the case of housing dataset, LGRNN shows
the smallest MSE of all.

As LGRNN chooses the best learning option from the four learning options
including the ignore option, it can continue the learning without increasing the
errors. Moreover, the output function of LGRNN Eq(1) reduces the errors if the
input includes noise[10] making the generalization capability of LGRNN superior
to that of the kernel perceptron based crisp-projection.

LGRNN performances were also compared with other algorithms for different
upper bound on the number of kernels. Fig 2 shows the results in case of servo
and housing datasets. In this figure, the mean square error had been examined
after the learning of all learning samples. We can see that LGRNN is superior to
PDM and Projectron even if the upper bound of the number of kernels is small.

3 Applications of LGRNN

LGRNN is useful to embed the learning engine into a micro-computer. It might
be able to speed up the traditional adaptive systems such as feedback controller
by using LGRNN to predict the solution directory. A LGRNN system integrated
with traditional adaptive system needs to be designed to ensure that LGRNN
learns correct solutions.
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Fig. 1. Performances for servo(left) and housing(right) datasets. Upper bound on the
number of kernels: 10, Vertical bar denotes 95% confidence interval
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Fig. 2. The mean squared error versus the support set. The upper and lower figures
are the results for servo(left) and housing(right) dataset, respectively.

3.1 Application for a Micro-converter of Photovoltaic

Solar panel is a current source, whose current strength depends on the solar radi-
ation. Therefore, we have to set the output voltage of the solar panel correctly to
obtain the maximum power. The voltage, which generates the maximum power
is called ”Maximum Power Point(MPP)” and is varies depending on solar radia-
tion, and the temperature on the surface of the solar panel. Traditionally, MPP
is tracked by the perturbation and observation (P&O) algorithm. However, the
P&O method tracks MPP gradually, and its response is delayed in case of sud-
den changes in solar radiation. Various MPPT algorithms have been proposed
[11] to overcome this problem.

In our previous work, we had developed a micro converter, which functioned
as the maximum power point tracker for each solar panel using LGRNN [5].
This system consisted of a micro computer (H83069F) and an step up / down
chopper. The micro computer executes a conventional P&O method, LGRNN
and a PID controller for the chopper circuit (Fig. 3).

If irradiation is stable, the P&O yields the operating photovoltaic(PV) volt-
age. However, if the irradiation changes rapidly, the LGRNN yields the operating
voltage according to the learned MPP.

Although the previous one[5] realizes quick responses to the sudden changes
in the solar radiation, it fails to react to the shadow flicker quickly because
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Algorithm 2. Pseudo code of proposed MPPT algorithm

solar irradiation S, tempeleture T , PV voltage VPV , current I , and ResumeFlag.
if VPV < Vthreshold then
ResumeF lag = 1; Save LGRNN parameters and shutdown.

end if
x = (S, T )T , ΔS := S − Sprevious, P := I × VPV

unearest = the nearest kernel center to x
if ResumeF lag == 1 or |ΔS| > γ and ‖x− unearest‖2 < θ then
Vref =LGRNN output y
ResumeF lag = 0.

else
if P < Pprevious then
ΔV := −ΔV

end if
Vref := Vref +ΔV

end if
Vref = moving average of Vref during the last 20 steps.
ΔV = moving average of ΔV during the last 20 steps.
if ΔV == 0 then

Make the LGRNN learn (x, Vref )
end if
Sprevious := S
Pprevious := P
RETURN Vref

the micro-computer has to search the MPP again from its initial state after
recovering from the short interruption due to shadow-flicker. The solar panels
located near by a large wind turbine face many shadow flicker situations. In this
paper, we extended the previous system[5] to realize an efficient power generation
even under the shadow flicker conditions. This has been achieved by changing
the load for the micro-converter from rechargeable-battery to a constant-current
load (see Fig. 6). Therefore, the constant current condition makes the behaviors
of series connected micro-converter stable. Moreover, the software that yields
LGRNN output immediately after the micro-converters recover from shadow
flicker has been charged.

The micro converter connected to a 50W silicon solar panel was tested using
a 1500W halogen lamp. In this experiment, we created pseudo shadow flicker
situations by letting the halogen lamp blink, and investigated the status of the
micro converter under such a situation. An example of the results obtained is
shown in Figure 4. It can be observed from this result that the proposed micro-
converter reacts to the short shadow flicker corresponding to the sudden changes
in solar radiation. However, if the duration of the shadowing was prolonged a
power-down sequence of the micro-converter was observed. Even in the latter
case, the modified MPPT algorithm enables the activation of LGRNN activate
in the start-up timing so that the reference voltage was recovered.
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Fig. 3. MPPT method using LGRNN and P&O methods and its circuit configuration

Fig. 4. An example of the behavior of the Micro converter under shadow flicker con-
ditions: Short shadow flicker(left), Long shadow flicker(right). (Upper bound on the
number of kernels: 20)

3.2 Application for a DC-DC Converter

We also developed a model-based controller using the LGRNN (See 5).
In this controller, the chopper circuit is normally controlled by PID controller.

When the LGRNN is certain of the current input, the controller is switched from
the PID controller to the LGRNN. However, when the controller is switched back
to the PID controller, care must be taken to maintain stability. This is because,
under normal circumstances, the PID controller outputs is not equivalent to
that of LGRNN. Therefore, to ensure that stability maintained, the proposed
controller resets the PID controller equals that of LGRNN.

Fig. 5. Model-based controller for step down chopper circuit

The DC-DC converter was made to work on various input voltages (15V to
20V) to aid LGRNN learn. After that, the output voltage was checked by altering
the input voltages.
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Algorithm 3. Rough Pseudo code of the model-based control

input voltage E1(t), target voltage Ỹ , output voltage E2(t− 1)
xt = (E1(t), E2(t− 1))T

if ‖x− unearest‖2 < θ then
C(t) =LGRNN output y
reset the PID controller.

else
C(t) = PID controller output.

end if
if C(t) is converged then

Make the LGRNN learn (xt, C(t))
end if
RETURN C(t)

Fig. 6. Responses of DCDC converters: Only using PID controller(left), LGRNN to-
gether with PID controller(right). Red curve: Input voltage, Blue curve: Output volt-
age.(Upper bound on number of the kernels: 10)

Figure 6 shows the output voltage from the DC-DC converter for varying input
voltages. The behavior of the DC-DC converter controlled by PID controller was
also recorded for comparison. It is evident from the figure that the PID controller
with LGRNN respond quickly to the changes in input voltage. Note that the
converter controlling the chopper circuit was forced to perform in a slow pace to
record the behavior clearly. The speed of the PID controller with LGRNN was
about 5 times faster than that of PID controller individually.

4 Conclusion

Limited General Regression Neural Network(LGRNN) is presented in this paper.
LGRNN continued the incremental learning using a fixed number of kernels. The
comparison of LGRNN with the other kernel perceptron based learning methods
provided that LGRNN is superior to the rest.

LGRNN was also applied to the micro converter of photovoltaic, which re-
alized the Maximum Power Point Tracking(MPPT). In particular, the MPPT
method in this paper was improved to realize the effective power generation even
under the shadow flicker conditions. That is a condition which the solar panels
located near wind turbines often face. In addition, we applied LGRNN to the
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model-based controller of DC-DC converter. The results provided that LGRNN
can speed up the feedback control.
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Abstract. Multiple-instance Learning (MIL) copes with classification
of sets of instances named bags, as opposed to the traditional view
that aims at learning from single instances. Recently, several instance
selection-based MIL algorithms have been presented to tackle the MIL
problem. Multiple-Instance Learning via Embedded Instance Selection
(MILES) is so far the most effective one among them, at least in our
experiments. However, MILES regards all instances in the training set
as initial instance prototypes, which leads to high complexity for both
feature mapping and classifier learning. In this paper, we try to address
this issue based on the similarity between paired instances within a bag.
The main idea is choosing a pair of instances with the lowest similarity
value from each bag and using all such pairs of instances as initial in-
stance prototypes that are applied to MILES instead of the original set
of initial instance prototypes. The evaluation on two benchmark datasets
demonstrates that our approach can significantly improve the efficiency
of MILES while maintaining or even strengthening its effectivenss.

Keywords: Multiple-instance learning, Instance selection, Similarity.

1 Introduction

Multiple-instance learning (MIL) is a variation on standard supervised learning,
which was first introduced by Dietterich et al. when they were investigating
the problem of drug activity prediction [1]. In this learning framework, training
examples are bags of instances not single ones. Labels are associated with bags
rather than instances in them. A bag is labeled as positive if it contains at least
one positive instance; otherwise, labeled as negative. The aim of a MIL algorithm
is to learn a classifier for predicting the labels of unseen bags.

The notion of bag together with the labeling protocol often make MIL more
realistic than standard supervised learning for particular types of applications,
such as drug activity prediction [1], stock selection [2], natural scene classification
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[3], computer aided diagnosis [4], content-based image retrieval (CBIR) [5], as
well as object detection [6,7] and tracking [8,9].

In recent years, several instance selection-based MIL (ISMIL) algorithms have
been proposed, including DD-SVM [10], MILES [11], MILD [12] and MILIS [13],
which will be described later in Sect. 2. MILES (Multiple-Instance Learning
via Embedded Instance Selection) is the most effective one among all these algo-
rithms, which has been demonstrated by our experimental studies on the MUSK
and COREL datasets. However, MILES considers all instances in the training set
as initial instance prototypes, which leads to high complexity for the subsequent
feature mapping and classifier learning, especially for large-scale datasets. As we
know, computational efficiency is an important issue for practical applications,
so it is necessary to design an efficient approach to speed up the whole learning
process of MILES while not sacrificing its generalization accuracy much. Fol-
lowing the above analysis, we know that the high computational complexity of
MILES is mainly due to the fact that it uses all instances in the whole training
set as initial instance prototypes. Inspired by this observation, we attempt to
improve the efficiency of MILES from the perspective of instance pruning. In this
paper, we propose an efficient instance pruning approach to address the above
issue based on the similarity between paired instances within a bag. We call it
Instance Pruning via Similarity between Paired Instances (PSIP). The main
idea is choosing a pair of instances with the lowest similarity value from each
bag and using all such pairs of instances as initial instance prototypes, which are
applied to MILES instead of the original set of initial instance prototypes. With
the help of our instance pruning approach, MILES could accomplish the further
feature mapping and classifier learning more quickly, and thus its efficiency could
be significantly improved. Meanwhile, its effectiveness could be maintained or
even strengthened sometimes.

The remainder of this paper is organized as follows. In Sect. 2, we review
some related work to our research. Our PSIP approach is presented in Sect. 3.
In Sect. 4, we evaluate PSIP on two MIL tasks, i.e. drug activity prediction and
region-based image categorization. Conclusions are drawn in the last section of
the paper.

2 Related Work

Since MIL was first proposed in the context of drug activity prediction, many
efforts have been endeavored to address this learning with ambiguous labeling.
The first MIL algorithm is called axis-parallel rectangle (APR), which is aimed
at finding an APR including at least one instance from each positive bag but
excluding all instances from negative bags [1]. A bag is classified as positive
if at least one of its instances falls within the APR; otherwise, it is classified
as negative. Similarly, Maron and Lozano-Pérez proposed a new concept called
diverse density (DD) for MIL, which measures how many different positive bags
have instances near a point in the feature space and how far negative instances
are from that point [2]. The EM-DD algorithm combines DD with expectation
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maximization, aimed at locating the target concept in a more efficient manner
[14]. The mi-SVM/MI-SVM algorithm treats the unobservable instance labels
as hidden variables and formulates MIL as a mixed integer quadratic program
[15]. Ramon and De Raedt extended neural networks to the multiple-instance
setting [16]. Wang and Zucker adapted the standard kNN algorithm to the MIL
scenario using the Hausdorff distance [17].

Recently, several ISMIL algorithms have been presented, namely DD-SVM
[10], MILES [11], MILD [12] and MILIS [13]. The basic idea is mapping each
bag into a new feature space called embedding space, which is constructed using
some instance prototypes chosen from the training set. Thus, training bags are
represented by single feature vectors and the MIL problem is converted to a stan-
dard supervised learning one. Then standard SVMs are trained using these bag-
level feature vectors. Specifically, DD-SVM uses the DD function [2] to identify
instance prototypes. MILES considers all instances in the training set as initial
instance prototypes and instance selection is implicitly performed via learning
a 1-norm SVM with a linear kernel. MILD performs instance selection based on
a conditional probability model. MILIS achieves the initial instance selection by
modeling the distribution of the negative population with the Gaussian-kernel-
based kernel density estimator. Then it depends on an iterative optimization
framework to update instance prototypes and learn a linear SVM.

3 Instance Pruning via Similarity between Paired
Instances

In this section, we first describe the details of MILES. The motivation for this
work is then provided. Finally, we present our PSIP approach. To describe
MILES and PSIP, we need to introduce some notations. Let B represent all
training bags and m represent the size of B. We denote the ith bag in B as Bi

and the jth instance in that bag as Bij . The bag Bi is composed of ni instances
Bij , j = 1, 2, . . . , ni.

3.1 MILES

MILES actually follows the work of DD-SVM. Although effective, DD-SVM is
very sensitive to labeling noise since the DD value at a point will be exponentially
reduced if there is a single instance from a negative bag close to that point.
This conclusion has been empirically validated by [11]. To address this issue,
MILES presented a more general framework to tackle the MIL problem. The
common ground of DD-SVM with MILES lies in the inspiration by the same
DD framework [2], while the differences are the usages of DD. As introduced
in Sect. 2, DD-SVM uses DD to search for the most likely concepts or instance
prototypes, while MILES interprets DD from the feature selection point of view.
Specifically, given a concept class C, each concept t ∈ C is viewed as an attribute
or a feature for bags [11]. The value of the feature for bag Bi is defined as

ht(Bi) = Pr(t|Bi) . (1)
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From the perspective of feature selection, the DD framework appears to be rather
restrictive because it always seeks for one and only one feature. Starting from the
motivation of attempting to improve the performance by searching for multiple
features, MILES further extends the idea of the DD framework in constructing
the features. Specifically, MILES regards every instance in the training set as
a candidate of target concepts. By interpreting the most-likely-cause estimator
[19] as a measure of similarity between a concept and a bag, i.e.

Pr(t|Bi) ∝ s(t, Bi) = max
j

exp(−γ ‖ t−Bij ‖2) , (2)

where γ is a scaling factor larger than 0, MILES embeds each bag into a new fea-
ture space formed by all instances in the training set. Moreover, MILES indicates
that the embedding produces a possibly high-dimensional space when the num-
ber of instances in the training set is large. In addition, many features may be
redundant or irrelevant because some of the instances might not be responsible
for the observed classification of bags, or might be similar to each other. Thus, it
is essential and indispensable to select a subset of features that is most relevant
to the classification problem of interest. For this purpose, MILES adopts a joint
approach that applies a 1-norm SVM to build the classifier and select impor-
tant features simultaneously. Note that feature selection is essentially instance
selection since each feature is defined by an instance.

3.2 Motivation

As indicated by the original authors of MILES, many candidates of target con-
cepts or initial instance prototypes are similar to each other. To solve this prob-
lem, they depend on a 1-norm SVM to perform an implicit instance selection.
However, instance selection is integrated with classifier learning that is before
feature mapping, thus this leads to high complexity for feature mapping and
classifier learning since all instances in the training set are used as initial in-
stance prototypes. If some explicit instance pruning is performed before feature
mapping, the whole computational complexity will be decreased.

Motivated by the idea of removing similar initial instance prototypes, we try
to use the concept of the similarity between paired instances within a bag to
conduct instance pruning for MILES. We focus on the structure within a bag,
i.e. selecting a pair of instances with the lowest similarity value as initial instance
prototypes. In this way, most similar instances are eliminated from the original
set of initial instance prototypes used by the original algorithm.

When the above idea comes into mind, one may come up with selecting a
number of paired instances with the lowest similarity values from the original
set of initial instance prototypes. Nevertheless, this is not a reasonable way
and the reason resides in the following fact. First, we do not know the exact
pair number. Without doubt, we could determine a principle for this purpose,
such as setting a threshold for the exact number. However, this will definitely
incur some unnecessary cost. Second, this strategy does not consider bag-level
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structure or discriminative information, and may discard small clusters in the
feature space where informative features may be located. Finally, as we know,
negative instances might be uniformly or randomly distributed in the feature
space. Thus, a pair of instances with the lowest similarity in the whole instance
feature space may not contain any target concept.

3.3 The Proposed Algorithm

PIPS starts with searching every training bag for a pair of instances with the
lowest similarity. For this purpose, we first compute the similarity between any
two instances within every training bag. We use the Euclidean distance to eval-
uate the similarity between all paired instances Bij and Bik in a bag Bi, i.e.
‖Bij − Bik‖, i ∈ {1, 2, . . . ,m}, j, k ∈ {1, 2, . . . , ni} and j 
= k. Note that the
less the distance, the higher the similarity. Then, the paired instances with the
lowest similarity within a training bag are used as initial instance prototypes.
The pseudo-code for the above discussion has been summarized in Algorithm 1.

Algorithm 1. Pseudo-code for PSIP

Input: Training set B
Output: Set of initial instance prototypes T = {}
1: for i = 1 to m do
2: d max = −∞
3: for j = 1 to ni − 1 do
4: for k = j + 1 to ni do
5: d = ‖Bij −Bik‖
6: if d > d max then
7: d max = d, t1 = Bij , t2 = Bik

8: T ⇐ T ∪ {t1, t2}

4 Experiments and Analysis

4.1 Drug Activity Prediction

The MUSK datasets, MUSK1 and MUSK2, are standard benchmark datasets for
MIL [1], which are publicly available from the UCI Machine Learning Repository
[20]. These datasets consist of descriptions of molecules and the task is to predict
whether a given molecule is active or inactive. Each molecule is viewed as a bag,
the instances of which are the different low-energy conformations of the molecule.
If one of the conformations of a molecule binds well to the target protein, the
molecule is said active; otherwise, the molecule is inactive. MUSK1 contains 47
positive bags and 45 negative bags. MUSK2 contains 39 positive bags and 63
negative bags. MUSK2 shares 72 molecules with MUSK1, but includes more
conformations for those shared molecules.
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Table 1. Classification accuracies (%) of various algorithms on the MUSK datasets

Algorithm MUSK1 MUSK2 Mean

MILESPSIP 88.2 : [87.5, 88.9] 88.8 : [87.9, 89.6] 88.5

MILES [11] 87.4 : [86.1, 88.7] 90.9 : [90.0, 91.8] 89.2

DD-SVM [10] 78.6 : [77.1, 80.1] 85.3 : [84.5, 86.1] 82.0

MILD [12] 82.2 : [80.8, 83.6] 86.2 : [84.5, 87.9] 84.2

MILIS [13] 84.4 : [83.2, 85.6] 88.8 : [87.6, 90.0] 86.6

APR [1] 92.4 89.2 90.8

DD [2] 88.9 82.5 85.7

EM-DD [14] 84.8 84.9 84.9

MI-SVM [15] 77.9 84.3 81.1

mi-SVM [15] 87.4 83.6 85.5

Table 2. Computation time (minutes) of all ISMIL algorithms on the MUSK datasets:
time spent on model selection + training time after model selection.

Algorithm MUSK1 MUSK2

MILESPSIP 0.7 + 0.7 5.6 + 4.9

MILES [11] 1.0 + 1.0 180.8 + 218.9

DD-SVM [10] 165.4 + 111.5 2321.8 + 1170.1

MILD [12] 0.5 + 0.4 36.6 + 27.4

MILIS [13] 2.5 + 2.0 705.9 + 814.2

We used LIBSVM [21] to train all the SVMs for DD-SVM [10], MILES [11],
MILD [12] and MILIS [13]. All the parameters required by them were selected
according to a twofold cross-validation on the training set. Table 1 reports the
means and 95% confidence intervals of the results over ten runs of tenfold cross-
validation. For completeness, we have also included the results from some other
MIL algorithms. Table 1 shows that APR achieves the best overall performance
on the MUSK datasets. However, it is more meaningful to examine the classifi-
cation accuracy of MILES after using PSIP. The overall classification accuracy
of MILES decreases only 0.7% when PSIP is applied. This result indicates that
PSIP could guarantee the effectiveness of MILES.

Then we examined the influence of PSIP to MILES with respect to com-
putational efficiency. Table 2 reports the overall computation time of various
ISMIL algorithms on the MUSK datasets. The time spent on model selection
and the training time after model selection are reported separately. The time
spent on model selection is that consumed on selecting the optimal parameter
values for every ISMIL algorithm. The training time after model selection is the
total training time of ten runs of tenfold cross-validation. All the experiments
were conducted on a 3.1 GHz PC. We can find that MILESPSIP is superior to
other algorithms (except for MILD on MUSK1) in terms of computation time
and the efficiency of MILES is obviously improved with the help of PSIP. The
speedup for the MUSK2 dataset is more obvious due to the large number of
instances in this dataset and the powerful instance pruning ability of PSIP.
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Table 3. Classification accuracies (%) of all ISMIL algorithms on the COREL datasets

Algorithm COREL10 COREL20 Mean

MILESPSIP 81.6 : [80.7, 82.6] 72.1 : [70.8, 73.4] 76.9

MILES [11] 82.3 : [81.6, 83.0] 71.7 : [70.8, 72.6] 77.0

DD-SVM [10] 80.2 : [79.5, 80.9] 67.8 : [66.7, 68.9] 74.0

MILD [12] 76.2 : [75.3, 77.1] 68.4 : [67.4, 69.4] 72.3

MILIS [13] 82.4 : [81.8, 83.0] 69.6 : [68.7, 70.5] 76.0

4.2 Region-Based Image Categorization

The COREL dataset has been widely used for region-based image categorization.
The dataset contains 20 thematically diverse image categories with 100 images of
size 384×256or 256×384 in each category.Each image is segmented into several lo-
cal regions and features are extracted from each region. The dataset and extracted
features are available at http://www.cs.olemiss.edu/~ychen/ddsvm.html. De-
tails of segmentation and feature extraction are beyond the scope of this paper and
interested readers are referred to [10,11] for further information. Since this is amul-
ticlass classification problem, we apply the one-against-the-rest approach to train
20 binary SVMs. A test bag is assigned to the category with the largest decision
value given by the SVMs.

We have conducted two tests for the 10-category and 20-category categoriza-
tions. The first 10 categories in the COREL dataset were used for training and
testing in the first test while all 20 categories were used in the second test. For
each category, we randomly selected half of images as training bags and the re-
maining half as test bags. Training and testing were repeated for five different
random partitions. We used the same experimental setting as in Sect. 4.1 to
determine all the parameters needed by various ISMIL algorithms. The average
classification accuracies over five different random test sets and the correspond-
ing 95% confidence intervals are provided in Table 3. Overall, the performance of
MILESPSIP is almost the same as that of MILES and better than that of others.

5 Conclusions

In this paper, we have proposed a novel instance pruning approach to MILES,
PSIP, which is based on the similarity between paired instances within a bag.
The goal of PIPS is to improve the efficiency of MILES with its effectiveness
guaranteed. We have applied PSIP to MILES and examined the influence of
PSIP to it from the perspectives of effectiveness and efficiency. The empirical
studies on the tasks of drug activity prediction and region-based image cate-
gorization demonstrate that our PSIP approach could remarkably improve the
computational efficiency of MILES while maintaining or even improving its gen-
eralization accuracy, especially for large-scale datasets.

http://www.cs.olemiss.edu/~ychen/ddsvm.html
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Abstract. The article describes a new concept of interactive hybrid
systems for monitoring and optimization of micro- and nano-machining
processes, which are equipped with voice and visual communication be-
tween the human operator and the system. These remote systems con-
tain a speech interface and artificial intelligence. They are presented in
exemplary application in the precision grinding process. The developed
concept proposes an architecture of the systems equipped with a data
analysis layer, process supervision layer, decision layer, communication
subsystem by speech and natural language, and visual communication
subsystem using voice descriptions. In the system, computational intelli-
gence methods allow for real-time data analysis of monitored processes,
configuration of the system, process supervision and optimization based
on the process features and quality models. The concept allows for the
development of universal and elastic systems which are independent of a
type of manufacturing process, machining parameters and conditions.

Keywords: interactive hybrid system, neural networks, intelligent super-
vision system, interaction between human operators and systems,
intelligent interface, voice and visual communication, monitoring and op-
timization of micro- and nano-machining processes, process quality, mea-
surement data analysis, modern machining process, artificial intelligence.

1 Introduction

In the industry processes of micro- and nano-machining can be performed using
a hybrid system for monitoring, optimization and forecasting of the machining
process quality, equipped with artificial intelligence methods and a layer of re-
mote voice and visual communication between the system and human operators.
This system is presented in exemplary application in the precision grinding pro-
cesses. It features the possibility for many other applications, future development
and experiments. Its main tasks include: modeling of the manufacturing process,
assessment of inaccuracy effects, identification of inaccuracy causes, optimization
of the process conditions and parameters.
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The scientific aim of the research is to develop fundamentals of building in-
teractive hybrid systems (fig. 1) for monitoring and optimization of micro- and
nano-machining processes. The design and implementation of these systems is
an important field of research. This concept proposes a novel approach to these
systems, with particular emphasis on their ability to be truly flexible, adaptive,
human error-tolerant, and supportive both of human operators and intelligent
agents in distributed systems architectures. The interactive hybrid system allows
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Fig. 1. Concept of interactive hybrid systems for monitoring and optimization of micro-
and nano-machining processes

for higher organization level of manufacturing processes, which is significant for
their efficiency and humanization. Decision and optimization systems can be re-
mote elements of manufacturing processes. The design of the proposed system
can be considered as an attempt to create a standard interactive system for
monitoring and optimization of machining processes. It is very significant for
the development of new effective and flexible manufacturing methods.
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2 The State of the Art

There is a need for remote systems of monitoring and optimization of machining
processes in reconfigurable manufacturing systems to reduce bottlenecks that
occur in associated tasks to be performed by these systems using technological
devices. The tasks include: modeling of the process features and quality, assess-
ment of inaccuracy effects, identification of inaccuracy causes, optimization of
the process conditions and parameters. These bottlenecks can occur as a result
of the mass production of custom products.

The sustainability of existing manufacturing resources and enhancement of the
machining efficiency is an important field of applied research. The current re-
search and recent advances in development of prototypes of systems for monitor-
ing and optimization of machining processes are described in articles [1,2]. Those
systems consist of computational algorithms for sensor base monitoring and con-
trol, and simulations of virtual machining processes. Those systems have been
accepted for real-time decision making, sustainable development and efficient
use of machining resources. In many potential applications of these monitoring
and optimization systems, the limiting factor may be an ability of the system to
model the process features and quality, process the inaccuracy symptoms, solve
the misconfiguration issues, compensate the inaccuracy effects, determine the
process conditions and parameters.

This article offers an approach by using the developed concept of the interac-
tive hybrid system of monitoring and optimization of the processes of micro- and
nano-machining to deal with the above problems. Selected article [2] presents in-
novative solutions in supervision of precise grinding processes and development
of a hybrid system for monitoring, optimization and forecasting of machining
process quality. Articles [3,4,5,6,7,8,9] describe the developed solutions in intel-
ligent voice communication between human operators and technical devices.

3 Description of the System

The developed concept proposes an architecture of the interactive hybrid system
for monitoring and optimization, which is equipped with a data analysis layer,
process supervision layer, decision layer, communication subsystem by speech
and natural language, and visual communication subsystem using voice descrip-
tions. The structure of the system is presented in abbreviated form on Fig. 2.
The numbers in the cycle represent the successive phases of information process-
ing. The novelty of the system (fig. 3) consists of inclusion of adaptive intelligent
layers for data analysis, supervision and decision. The system is also capable of
analysis of the supervised machining process, configuration of the supervision
system, neural modeling of process features, neural modeling of process quality,
detection of the inaccuracies, estimation of the inaccuracy results, compensation
of the inaccuracy results, and selection of the machining parameters and condi-
tions. The core of the system consists of the following process models: the neural
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model of the optimal process parameters for determination of optimal values
of the process features, and the neural model for assessment of influence of the
measured process features on the process quality parameters.
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The neural models of the process features and quality are used in a subsystem
for detection of inaccuracies and optimization of machining parameters. The
system also consists of mechanisms (fig. 4) for meaning analysis of operator’s
messages and commands given by voice in a natural language, and various visual
communication forms with the operator using voice descriptions.
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Fig. 4. Illustration of a cycle of meaning analysis of the human operator’s messages
and commands given by voice in a natural language using evolvable neural networks

The interaction between the operator and the system by speech and natural
language contains intelligent mechanisms for operator biometric identification,
speech recognition, word recognition, recognition of messages and commands
(fig. 5), syntax analysis of messages, and safety assessment of commands. The
interaction between the system and the operator using visual messages with
voice descriptions includes intelligent mechanisms for generation of graphical
and textual reports, classification of message forms, generation of messages in
the graphical and textual forms, consolidation and analysis of message contents,
synthesis of multimedia messages.
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4 Conclusions and Perspectives

The proposed concept of the interactive hybrid systems for monitoring and opti-
mization of machining processes, equipped with a speech interface and artificial
intelligence, allows for the development of universal and elastic systems which
are independent of a type of manufacturing process, machining parameters and
conditions. The condition of effectiveness of the system is to equip it with intelli-
gent mechanisms for modeling of the process features and quality, assessment of
inaccuracy effects, identification of inaccuracy causes, optimization of the pro-
cess conditions and parameters. The experimental results of the proposed system
show its promising performance. The concept can be used for further develop-
ment and experiments. The system is both effective and flexible which makes its
applications possible. It features the universality of application of the developed
artificial intelligence algorithms. The hybrid system allows for more robustness
to human’s errors. The proposed complex solution also eliminates scarcities of
the typical co-operation between human operators and technological devices.
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Abstract. Plagiarism and copyright infringement are major problems in aca-
demic and corporate environments. Importance of source code authorship attri-
bution arises as it is the starting point of detection for plagiarism, copyright  
infringement and law suit prosecution etc. There have been many research re-
gard to this topic. Majority of these researches are based on various algorithms 
which compute similarity amongst source code files. However, for this Paper 
we have proposed Deep Neural Network (DNN) based technique to be used for 
source code authorship attribution. Results proved that DNN based author iden-
tification brings promising results once compared the accuracy against pre-
viously published research. 

Keywords: Restricted Boltzmann Machine, Deep Neural Networks, Source 
Code Authorship Attribution. 

1 Introduction 

Source code authorship attribution has many applications in different fields such as 
source code plagiarism detection, digital forensics, and intellectual property infringe-
ment [1]. Since magnitude of source code repositories are growing very rapidly, it is 
impractical to use manual techniques for source code authorship attribution. There-
fore, automatic techniques could be ideal solutions for identifying authors of source 
codes.  

In this paper we investigate deep neural networks for source code authorship at-
tribution task. Training deep neural networks are known to be hard. It is empirical-
ly shown that the standard backpropagation algorithm could easily get stuck in a 
local minimum. Therefore, until recently neural networks have been limited to one 
or two hidden layers [2]. However, training deep neural networks using greedy 
layer-wise pre-training before fine-tuning using backpropagation enables to over-
come above limitation [3]. Therefore, we employed that technique to train our 
deep neural network. Our system was evaluated with several datasets and results 
have shown that performance is very close to the state of art techniques in the 
source code identification field. 
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2 Previous Work 

A few research papers have been written on source author identification using ma-
chine learning techniques.  Following briefs such important techniques we found are 
useful during literature surveying phase. 

Lange and Mancoridis [4] have proposed a source code authorship attribution me-
thod using source code metric histograms and genetic algorithm. From source code 
metrics, an optimum set of source code metrics were selected using genetic algo-
rithms. Selected metrics were used as the input for the nearest neighbor classifier and 
the system is capable of identifying the true author of each source code file with 55 
percent accuracy. 

Burrows and Tahaghoghi [5] described a system for source code author identifica-
tion using an information retrieval approach. First, the n-gram tokens were generated 
from each source code file. Then the generated tokens were indexed in a search en-
gine. During the testing period each test document was converted into a collection of 
n-gram tokens and was compared with indexed source code files. According to the 
paper, their system is capable of identifying true authors with 67 percent of accuracy. 

Frantzeskou et al. [1] described a technique called, Source Code Author Profiles 
(SCAP) for authorship attribution. SCAP is based on generating byte level n-gram 
author profiles. In order to classify a test source code file, its profile is compared with 
the pre-calculated training author profiles and the most likely author is the one who 
has the least dissimilar profile. According the paper, accuracy of the SCAP method is 
very equal to 100 percent. 

Application of decision tree techniques and programming style metrics for source 
code author identification are described by Elenbogen and Seliya [6]. Performance of 
their system was evaluated with a dataset consisted of 82 source code files belonging to 
12 authors and they have achieved 74.70 percent of accuracy. Shevertalov et al. [7] 
described a source code discretization based method for generating source code author 
profiles. They evaluated their system with a dataset consisting of 75 000 Java source 
code files, belonging to 20 authors and reported 75 percent of classification accuracy. 

3 Training the Deep Neural Network 

3.1 Restricted Boltzmann Machine (RBM) 

RBM is a bipartite graph in which visible units represent the input data and hidden 
units represent features using undirected connections [8]. RBM has been used for 
various supervised and unsupervised applications such as, dimensionality reduction, 
classification, collaborative filtering, and clustering. RBM was invented by Smo-
lensky [9], however, it became very popular after introducing fast learning algorithms 
by Hinton [10]. RBM is an energy based model and the joint energy between visible 
and hidden units is defined by Eq. 1. 

, ;   (1)
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Where , ,  represent the parameters of the model.  represents the 
symmetric weight between  visible unit and the  hidden unit.  denotes con-
nection between bias term and the  visible unit.  denotes the connection be-
tween bias unit and the  hidden unit.  and  represent the visible and hidden 
vectors respectively. 

The joint probability distribution of visible and hidden units is given by Eq. 2 and 
Eq. 3 and  is known as the partition function. , ; 1 , ;  (2)

, ;  (3)

The probability that the model assigns to the visible vector  is given by Eq. 4. ; 1 , ;  (4)

By taking the derivatives of Eq. 1 with respect to model parameters we can derive 
following learning rules. ;   (5)

;   (6)

;  (7)

Where, . is the expected value evaluated on data distribution and . shows the expected value calculated on model distribution. 
Contrastive divergence is a recipe widely used for training RBM. It approximates 

the gradient of log likelihood of RBM using Gibbs sampling. For this research we 
used contrastive divergence for training RBMs. 

4 Source Code Authorship Attribution System 

Under this heading we describe the main components of our source code authorship 
attribution system. 

Fig.1 (a) shows the high-level architecture of the system. Source codes were con-
verted to code metrics and used as the input for the system. Although, a large number of 
metrics can be generated from source code files, Lange and Mancoridis [4] have con-
ducted an extensive research and identified eight source code metrics, which shows the 
best performance in the context of source code author identification. However, some of 



 Deep Neural Networks for Source Code Author Identification 371 

 

these metrics are not fully independent from others. For example, trail-space, and trail-
tab (measure the trailing whitespaces and tabs at the end of a line) are very similar to 
each other. Therefore, we represent these two as a single metric called "TrailTabSpace-
Calculator" in our system. Similarly, we combined all the metrics which are not fully 
independent from others, as single metrics. Moreover, we have introduced three more 
code metrics. Altogether, there were nine metrics as shown in the Table 1. 
 

 

Fig. 1. (a) The high-level architecture of the source code author attribution system, (b) The steps 
required to implement the deep neural network with three hidden layers and one output layer 

Table 1. Source code metrics used for source code author identification 

Metric name Code Description 
LineLengthCalculator LLC This metric measures the number of characters in 

one source code line 
LineWordsCalculator LWC This metric measures the number of words in one 

source code line 
AccessCalculator ACL Java uses the four levels of access control: public, 

protected, default and private. This metric calcu-
lates the relative frequency of these access levels 
used by the programmers 

CommentsFrequency-
Calculator 

CFC Java uses three types of comments. This metric 
calculates the relative frequency of those com-
ment types used by the programmers 

IndentifiersLengthCal-
culator 

ILC This metric calculates the length of each identifier 
of Java programs 

InLineSpaceInlineTab-
Calculator 

INT This metric calculates the whitespaces that occurs 
on the interior areas of non-whitespace lines 

TrailTabSpaceCalcula-
tor 

TTS This metric measures the whitespace and tab  
occurrence at the end of each non-whitespace line 

UnderscoresCalculator USC This metric measures the number of underscore 
characters used in identifiers 

IndentSpaceTabCalcu-
lator 

IST This metric calculates the indentation whitespaces 
used at the beginning of each non-whitespace line 
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The source code metrics as it is cannot be used as the input of the source code au-
thor identification system. Therefore, metrics were converted to a stream of tokens. 
This process is better explained with an example. 

Table 2. Source code metric and token frequencies generated by “LineLengthCalculator” 
metric 

Line length Number of occurrences Token Token frequency 
1 2 LLC_1 2 
8 12 LLC_8 12 
14 3 LLC_14 3 
21 1 LC_21 1 

 
Consider a metric generated by the "LineLengthCalculator" for a particular source 

code file as shown in the first two columns of the Table 2. This code metric generates 
a set of tokens and token frequencies as depicted in last two columns of the Table 2. 
Similarly, we converted all the metrics generated from source codes into a set of to-
kens with token frequencies. These tokens together with token frequencies are used as 
the input for our system. 

Fig.1 (b) shows the sequence of operations required to construct the deep neural 
network of the system. Source code metrics generated from the "Source Code Metrics 
Generator" module of the system are used as the input for the first RBM. Output of 
the fist RBM is used as the input of the second RBM. Following the same procedure 
we trained three RBMs. Finally, the pre-trained DNN was created by adding the out-
put layer on top of the last RBM. 

5 Training and Evaluation 

We have measured the performance of our system using five datasets. Find below the 
details about these five datasets. 

Dataset I was created by LangeandMancoridis [4]. It consists of Java source code 
files belonging to 10 authors. These files were extracted from the Sourcefore1 web-
site. Then we created Dataset II by downloading Java source code files from free and 
open source projects in the Internet. It consists of Java source code files belonging to 
10 authors. Dataset III consists of Java source code files belonging to eight authors 
and it was created by using source codes shipped with the Java Development Kit2. 
Dataset IV consists of Java files downloaded from Plant Source Code3 website and it 
contains code files belonging to five authors. Finally, we created Dataset V by using 
Java codes freely available with several programming books published by ApressInc4. 
Details information about these five datasets is given in Table 3. 

                                                           
1 http://sourceforge.net/ [Accessed: 2012, March 12] 
2 http://www.java.com/en/download/index.jsp [Accessed: 2012, April 02] 
3 http://www.planet-source-code.com/ [Accessed: 2012, August 01] 
4 http://www.apress.com/ [Accessed: 2012, August 03] 
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Table 3. Detailed information for datasets used in this study. Program lengths are measured by 
means of Lines of Codes (LOC) 

Property I II III IV V 
Number of authors 10 10 8 5 9 
No of source code files 1644 780 475 131 520 
Minimum files per author 61  28 33 20 5 
Maximum files per author 377 128 118 36 118 
Size of the smallest file (LOC) 7 28 91 8 20 
Size of the largest file (LOC) 3691 15052 4880 654 1135 
Average LOC per author 29857 44620 26690 2452 6268 

 
We divided first dataset into three subsets called as training, cross validation, and 

testing. The rest of the datasets were divided into two training and testing subsets. The 
system also consists of several hyper-parameters as given below and which were es-
timated using the cross validation dataset. 

1. Learning rate of RBMs. 
2. Regularization parameter of the neural network. 
3. Number of logistic units in hidden layer 1, hidden layer 2, and hidden layer 3. 

Presently, manual search and grid search are the most widely used techniques for 
estimating optimum values for the hyper-parameters of learning systems. However, 
Bergstra and Bengio [11] have shown that random search is more effective than ma-
nual and grid search. Hence, we employed random search as the method for finding 
optimum values for the hyper-papers of our system. 

We initiated the training process with a batch of 50 source code files. With each 
iteration training dataset size was increased by 50 and process continued until 850 
files in the final training dataset. For each iteration, we tested the accuracy of the sys-
tem, 25 times with randomly selected values for hyper-parameters using the cross 
validation dataset. The accuracy of the cross validation dataset was plotted as scatter 
graphs as shown in Fig 2(a) to Fig 2(q). Next, we selected the best cross validation 
accuracy from each iteration and drew the cross validation accuracy vs. training batch 
size graph as depicted in Fig 2(s). We used it has a tool for selecting training batch 
sizes and hyper-parameter values for other datasets. 

Table 4. Percentage accuracies on five datasets mentioned in Table 3 

System I II III IV V 
Lange and Mancoridis[12] 55.00% - - - - 
Bandara and Wijayarathna[13] 86.64% - - - - 
Bandara and Wijayarathna[14] 92.82% 93.64% 90.78% 77.42% 89.62% 
This paper 93.65% 93.22% 93.62% 78.12% 89.62% 
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Fig. 2. Classification accuracy of cross validation dataset as a function of hyper-parameters of 
the system. (a)- (q) cross validation accuracy vs. number of iterations for different training 
batch sizes (r) cross validation accuracy vs. training batch size 

6 Conclusion and Future Works 

The paper has investigated Deep Neural Networks for source code authorship attribu-
tion. There we have used Restricted Boltzmann Machine for pre-training hidden  
layers of deep neural networks. Test results confirm a considerable improvement in 
accuracy compared to the existing published methods for author identification. 

Literature also suggest that, for pre-training of deep neural network, not only the 
Restricted Boltzmann Machine algorithm but also other algorithms like Autoassocia-
tors, Denoising Auto Encoders, and Predictive Sparse Coding are used. Therefore, it 
should be an interesting alternative to investigate performance of other pre-training 
algorithms in this regard. 
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Abstract. This paper proposes a novel desert vehicle detection method using 
adaptive visual attention model and pulse coupled neural network. Firstly, an 
adaptive phase spectrum of quaternion Fourier transform (APQFT) model is 
proposed to generate and weight information channel of background, intensity, 
and image colors into a visual saliency map. This model has learning ability and 
weight values are calculated by least square method. Meanwhile, using bilinear 
transformation improves computing efficiency. Secondly, using pulse coupled 
neural network (PCNN) detects regions of interests (ROIs) and using scale-
invariant feature transform (SIFT) extracts features of ROIs. Finally, using hie-
rarchical discriminant regression (HDR) tree identifies vehicle areas 
.Experimental results shows that proposed method is faster with higher recogni-
tion rate and lower false alarm than Zheng’s and Thomas’s methods. 

Keywords: desert vehicle detection, adaptive visual attention, least square me-
thod, pulse coupled neural network, SIFT feature, HDR tree. 

1 Introduction 

In vehicle rescue field, because of the high temperature, strong sand storms and weak 
GPS signal in the complex and variable desert environment, vehicles are more prone 
to break down and difficult to detect. Firstly, the resolution of remote sensing image 
is very low compared to those shoot by traditional cameras. Secondly, vehicle unit is 
small in the remote sensing image so that it’s hard to extract model and vehicle in-
formation which is important to traditional detection algorithms. Thirdly, interfering 
factors in the background whose areas and colors is similar to these of vehicles, such 
as plants and hills, regions of interest (ROI) are hard to be located. For these reasons, 
traditional vehicle detection algorithms have the disadvantage of low recognition rate 
and high false alarm rate in desert sense, which cannot meet the requirements of high 
computational efficiency and accuracy in desert vehicle rescue. 

                                                           
*  Corresponding author. 
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2 Related Work 

In recent years, visual attention is gradually applied to pattern detection field and 
obtains the desired performance result. Itti [2] and Walther [3] propose the model that 
imitates human vision mechanism to calculates the salient map which the intensity of 
each pixel represents interesting extent. After that, models in frequency domain are 
proposed, such as phase spectrum of quaternion Fourier transforms (PQFT) [4]. This 
model utilizes quaternion to composite image color, intensity and motion can process 
multi-channel information simultaneously to achieve better performance. 

In our work, desert images usually have large size and background color is also 
similar. For these characteristics, this paper proposes an adaptive quaternion visual 
attention model, which adds a background adaptive channel to original model to en-
hance background color antagonism and also introduce bilinear transformation to 
improve computational efficiency. Moreover, least square method is used to calculate 
a specific weight for each channel, which provides visual attention model learning 
ability. After that, we combine our visual attention model with pulse-coupled neural 
network (PCNN) [5]. Use the pulse propagation effect in PCNN to extract ROIs in 
desert images. Afterwards, scale-invariant feature transform (SIFT) [6] features are 
extracted from each ROI and then to be compared by trained hierarchical discriminate 
tree (HDR) [7]. Finally, appraisement standard is established to detect vehicle areas.  

3 Algorithm Structure  

3.1 Adaptive Visual Attention Model 

(a) Construct Quaternion Image 
Assume the input image at time t as in which N is the number of 

frames. Each frame has four channels: one motion channel, tow color difference 
channel and one intensity channel, which are all combined as following equation, 

( ) ( ) ( ) ( )1 2 3( )G Yq t M t R t B t I tμ μ μ= + + + , where is the input image, 

1 2 2 3 3 1 3 1 2μ μ μ μ μ μ μ μ μ⊥ ⊥ ⊥ =， ， ， . Four channels are obtained by following 

ways respectively. Firstly, the red, green and blue information in each frame are rec-
orded as ( ), ( ), ( )r t g t b t . The intensity channel I(t) can be further calculated as

( ) ( ( ) ( ) ( )) / 3I t r t g t b t= + + . The quaternion color model imitates the human vision 

system. There are many color antagonisms in our brain, namely neurons are excited 
by some colors whereas inhibited by another one. In human’s visual cortex, red/green, 
green/red, blue/yellow and yellow/blue are four mainly color couples. Therefore, two 
color channels in quaternion color model can be obtained by RG(t)=R(t)-G(t) and 
BY(t)=B(t)-Y(t). 

(b) Construct Adaptive Background Channel 
The motion channel in quaternion image is utilized to calculate image variation. Due 
to fact that the vehicle detection uses the static image, we set this channel as 0. 

( ), 1,2, ,F t t N= 

( )q t
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Meanwhile, although there are a lot of interfering factors in desert, such as plants, 
hills, ravines and so on, the overall background color is similar. Thus we add a chan-
nel into the model to increase the inhibition effect against background color, 

( ) ( ) ( ) ( ) ( )( ) ( )

3
b b bR t R t G t G t B t B t

W t
− + − + −

= , where bR , bG , bB is the average 

level of background’s red, green and blue level. To better distinct the target area, pro-
posed algorithm further revises the quaternion image to be 1.5 times the original one. 
The new one decreases the calculation time and also enlarges the object area. The 
processed quaternion image is ( )q t . 

(c) Calculate Saliency Map 
Ell and Sangwine first propose the quaternion transform of color images, which we 
can convert the formula using the inverse transform as  

 [ ] [ ]1
1 1 2 ( )

0 0

1
, ,

mv nuM N
M N

i i
m n

f n m e F u v
MN

μ π    − − +   
   

= =

=   (1) 

Then the frequency expression of quaternion image can be expressed as 

( ) ( )( ) tQ t Q t eμφ= , where ϕ(t) is the phase spectrum of Q(t), μ is quaternion unit. We 

make  so that  only includes the phase spectrum information. To 

provide this model learning ability for specific environment, weight is considered for 

each channel. Then, ( )tq  can be expressed as:  Where ϕ(t) is the phase spectrum of 

Q(t), μ is quaternion unit. We make  so that  only includes the phase 

spectrum information. To provide this model learning ability for specific environ-

ment, weight is considered for each channel. Then, can be expressed as, 

 ( ) ( ) ( ) ( )1 2 1 3 2 4 3t a t b t ( )q w w w c t w d tμ μ μ= + + +  (2) 

where  could be set by least square method using training Samples and 

( ), ( ), ( ), ( )a t b t c t d t represents four parts of quaternion. 

The saliency map is ( ) 2* ( )MS t G q t=  . We zoom in to the original size using 

bilinear interpolation to obtain the final saliency map we need . The G in the 

above equation is a two-dimensional low-pass Gaussian filter (  ). 

3.2 Pulse Coupled Neural Network 

Unit-linking PCNN comprises of three parts, which are receptive field, modulation 
field and pulse generator respectively. Each neuron in the unit-linking PCNN corres-
ponds to one pixel in the saliency map. The intensity I of pixel j inputs to F channel 

of corresponding pixel as j jF I= . Making seed neurons (pixel that intensity is greater 

than preset threshold) initially (intensities set to 1), then the pulses produced by these 
pixels propagate to the 8-neighborhood. L is the other input channel of pixels which 

( )Q t ( )q t

( ) 1Q t = ( )Q t

( ) 1Q t = ( )Q t

( )tq

1 2 3 4, , ,w w w w

( )MS t

( )'

MS t

σ 8=
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We calculate weight for each channel in adaptive visual attention model from training 
samples: 1 2 3 40.0114, 0.0004, 0.0147, 0.9736.w w w w= = = = All the programs are 

coded by Matlab R2010a and run in Windows 7 environment. The configuration of 
the operating system is Inter Core i7-2600 CPU, 3.8GHz frequency and 16GB ram. 

4.1 Comparisons of Visual Attention Models 

Our adaptive PQFT model is firstly compared with other visual attention models. The 
visual attention models compared with the proposed on include: GBVS, STB, AIM 
and PQFT. Fig.2 shows these experimental results. 
 

  
Original image   AIM        STB             GBVS        PQFT       APQFT 

Fig. 2. Comparisons of different Visual Attention Model 

Fig.2 illustrates that the saliency map produced by adaptive PQFT has distinct le-
vels: background is dark and uniform white vehicles on the road have higher intensity 
value and stronger saliency. 

Table 1. Comparisons of different Visual Attention Model 

Model AIM STB GBVS PQFT Adaptive PQFT 

Time 22.79s 2.33s 2.41s 0.327s 0.136s 

 
Table 1 show that Adaptive PQFT is much faster than any other visual attention 

models. Because this model utilizes quaternion Fourier transform that can be decom-
posed to traditional two-dimensional Fast Fourier Transform added to a simple linear 
transform, thus its calculation has high speed. Meanwhile, Adaptive PQFT utilizes 
bilinear interpolation to reduce the amount of data in Fourier transform. 

4.2 Comparisons of Processing Effects 

Our algorithm utilizes the pulse-coupled neural network to process saliency map in 
order to remove noise and background interference. The results are shown in Fig.3. 
 

 
 Original Image   Saliency Map  Processed Image 

Fig. 3. Processing results with PCNN and without PCNN 
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After processed by pulse-couple neural network, a large number of scattered noise 
are removed that we get saliency map with distinct level and simple background. 

4.3 Vehicle Detection Effect 

As Fig.4 shows, proposed algorithm can detect all the vehicles correctly. Especially in 
the third subfigure, although there are three different vehicles running on two separate 
roads, our algorithm can detect all of them correctly. Through the test of our database, 
proposed algorithm detects vehicles in the desert effectively and in fast speed. 
 

 

Fig. 4. Several samples’ experimental results of proposed method 

4.4 Comparisons with the Other Two Related Algorithms 

The algorithms proposed by Zheng [1] and Thomas [8] are compared with our algo-
rithm. In Fig.5, we show the results of these two methods using the above figures.  
 

 

Fig. 5. Examples of Zheng’s method [1] (middle one) and Thomas’s method [8] (left and right 
ones) 

Fig.5 illustrates that the false alarm problem is very serious, which many parts of 
the complex background are detected as vehicle regions.  

Assuming m is the number of test images, n the number of images having false 
alarm region and y the number of images having detected all the vehicle re-
gion(allowed to have false alarm region), we can define the false alarm rate

( )n / m 100%FPR = ×  and the detection rate ( )RF y / m 100%R = × . 

Table 2. Comparisons of different methods 

Algorithm Detection rate False Alarm rate Time 

Zheng[1] 88.4% 67.3% 0.188s 

Thomas[8] 78.8% 71.2% 6.5s 

Proposed Method 96.5% 10.5% 0.371s 
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Table.2 illustrates that the proposed algorithm has evident advantages on detection 
rate and false alarm rate. On time cost, the proposed algorithm is similar to Zheng’s 
[1] but improves a lot compared to Thomas’s. Thomas’s algorithm has low detection 
rate and also much time cost. 

 

 

Fig. 6. Relation of Training Samples and False Alarm Rate 

This paper further compares the proposed algorithm with Zheng’s [1] and Tho-
mas’s [8] on the false alarm rate with different training samples. The result is shown 
in Fig.6. Experimental results demonstrates that the proposed algorithm has lower 
false alarm rate and the speed of improvement by training samples is fast which 
means it can achieve a low false alarm rate with only a few training samples. 

5 Conclusion 

In this paper, we propose a desert vehicle detection algorithm that combines the visual 
attention model with pulse coupled neural network. The adaptive PQFT model is 
combined with PCNN to locate the regions of interest which may contains vehicles. 
SIFT features are extracted from regions of interest and input to the trained HDR tree 
for classification. Experimental results show that proposed method has faster speed, 
higher detection rate and lower false alarm rate compared with other two works, 
which could meet the requirements of desert rescue. 
 
Acknowledgments. This work was supported in part by National Natural Science 
Foundation of China under grant 61371148 and Shanghai National Natural Science 
Foundation under grant 12ZR1402500. 

References  

1. Zheng, Z.Z., Wang, X.T., Zhou, G.Q., et al.: Vehicle detection based on morphology from 
highway aerial images. In: 2012 IEEE International Conference on Geoscience and Remote 
Sensing Symposium (IGARSS), pp. 5997–6000 (2012) 

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training Samples

F
al

se
 A

la
rm

 R
at

e

 

 
Thomas[9]
Zheng[1]
Proposed Method



 Desert Vehicle Detection Based on Adaptive Visual Attention and Neural Network 383 

 

2. Ltti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid  
scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 
1254–1259 (1998) 

3. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 
1395–1407 (2006) 

4. Guo, C.L., Ma, Q., Zhang, L.M.: Spatio-temporal saliency detection using phase spectrum 
of quaternion Fourier transform. In: IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 1–8 (2008) 

5. Johnson, J.L., Padgett, M.L.: PCNN models and applications. IEEE Transactions on Neural 
Networks 10(3), 480–498 (1999) 

6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision 60(2), 91–110 (2004) 

7. Hwang, W.S., Weng, J.: Hierarchical discriminant regression. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 22(11), 1277–1293 (2000) 

8. Moranduzzo, T., Melgani, F.: A Sift-SVM for detecting cars in UAV Images. In: 2012 
IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), 
pp. 6868–6871 (2012) 

 



 

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 384–391, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

An Integrated Intelligent Technique for Monthly Rainfall 
Spatial Interpolation in the Northeast Region of Thailand  

Jesada Kajornrit1, Kok Wai Wong2, and Chun Che Fung3 

School of Engineering and Information Technology, Murdoch University  
South Street, Murdoch, Western Australia, 6150 

j_kajornrit@hotmail.com, {k.wong,l.fung}@murdoch.edu.au 

Abstract. Spatial interpolation is a method to create spatial continuous surface 
from observed data points. Spatial interpolation is important to water manage-
ment and planning because it could provide estimation of rainfall at unobserved 
area. This paper proposes a methodology to analyze and establish an integrated 
intelligent spatial interpolation model for monthly rainfall data. The proposed 
methodology starts with determining the optimal number of sub-regions by 
means of standard deviation analysis and artificial neural networks. Once the 
optimal number of sub-regions is determined, a Mamdani fuzzy inference sys-
tem is generated by fuzzy c-means and then optimized by genetic algorithm. 
Four case studies were used to evaluate the accuracy of the established models 
and compared with trend surface analysis and artificial neural networks. The 
experimental results demonstrated that the proposed methodology provided rea-
sonable interpolation accuracy and the methodology gave human understanda-
ble fuzzy rules to human analysts.  

Keywords: Monthly rainfall, Spatial interpolation, Fuzzy inference system, 
Standard deviation, Artificial neural network, Genetic algorithm.  

1 Introduction 

Spatial continuous surface of rainfall variable is important to the estimation of the 
amount of rainfall in an entire study area [1]. In order to acquire the spatial conti-
nuous surface of rainfall data, a number of rain gauge stations are installed throughout 
the study area to measure the amount of rainfall. However, the number of rain gauge 
stations installed could be limited due to practical reasons such as difficulty in access-
ing the location and cost factors. Therefore, spatial interpolation process is necessary 
to construct a spatial continuous surface for analysis purpose [2].  

Spatial interpolation is a method used to estimate values at unsampled points by 
using the values from neighbouring sampled points [3]. In general, spatial interpola-
tion process can be divided into global and local methods [4]. In the local method, 
spatial continuous surface is created from weighting method such as deterministic or 
geostatistic approaches [5]. In this method, a certain number of neighbouring sampled 
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points are used for interpolation. In the global method, spatial continuous surface is 
created from an interpolation model, in which all sampled data points are used to 
calibrate the interpolation model such as Trend Surface Analysis (TSA) [3], [6] and 
Artificial Neural Network (ANN) [1], [3]. This paper focuses on the global method.   

In terms of model establishment, ANN is capable to generalize the resultant model 
from the calibration data through nominated learning algorithms. Due to this reason, 
ANN is commonly recognized as an "easy-to-use" technique and it has become a 
popular technique in solving problem in hydrological discipline. However, the ex-
pression of ANN (or TSA) is data-oriented or being shown in the form of a set of 
parameters. Such characteristic can make them difficult for human analysts to under-
stand and enhance, especially when the models are complex. 

The understandability (or interpretability) of the model is another important issue 
in data-driven modeling because human analysts could gain the insight knowledge of 
the data through the model established. Further analysis can be enhanced if an expla-
nation of the model established can be provided. This study therefore aims to propose 
an alternative methodology by integrating the advantages of ANN, fuzzy system and 
genetic algorithm for the analysis and establishment of rainfall spatial interpolation 
model for the northeastern Thailand region. 

The rest of the paper is organized as follows. Section 2 describes the case study 
and datasets and Section 3 describes the proposed methodology. Section 4 illustrates 
the experimental results and analysis. Finally, Section 5 presents the conclusion. 

2 Case Study and Datasets 

The case study area is the northeast region of Thailand as shown in Fig. 1 which is 
located at latitude from 14.11°N to 18.45°N and longitude from 100.83°E to 
105.63°E. This area covers about one third of total area of Thailand. This study  
selects four highest monthly rainfall data from year 1998 to 2001. The datasets com-
prise of information on the longitude (x), latitude (y) and amount of rainfall (z). Sam-
ples of information in the datasets are showed in Table 1. The datasets are normalized 
by linear transformation. In this study, approximately 30 percent of the rain gauge 
stations are randomly selected to validate the interpolation accuracy. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. The case study area locates in the northeast region of Thailand 

N 
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Table 1. Information on the four datasets used in this study 

Statistics Case 1 Case 2 Case 3 Case 4 
Mean 2317 2433 2756 3696 

Calibration Stations 198 200 197 178 
Validation Stations 80 80 80 80 

Correlation -0.047 -0.001 -0.240 -0.046 

 
The correlation in Table 1 indicates the relationship between the amount of rainfall 

and the altitude of the rain gauge stations. Since the correlation values are close to 
zero, it could be considered that the orographic effect is not strong in the study area. 
So, this study does not use the altitude as one of the input to the models. 

3 The Proposed Methodology 

The proposed methodology consists of four steps. In the first step, the minimum num-
ber of cluster is determined. In the second step, the optimal number of cluster is se-
lected. Once the number of cluster is selected, a Mamdani-type FIS (MFIS) is created 
in the third step. In the final step, the created MFIS model is optimized. Overall, step 
1 and step 2 could be seen as cluster analysis, whereas step 3 and step 4 could be seen 
as model establishment and optimization. Fig. 2 illustrates an overview of the pro-
posed methodology.  

The first step in the proposed methodology is to determine the minimum number of 
clusters (or sub-regions) for the spatial data. Since the spatial data may contain uncer-
tainty, fuzzy c-means (FCM) clustering technique is used. In the work of [7], the min-
imum number is determined by analyzing the standard deviation of spatial data. In 
this method, calibration data (x, y, z) are clustered in to n clusters where 2 ≤ n ≤ Cmax. 
Next, find the proportion, Pn = E(SDi) / n for each n where 1 ≤ i ≤ n and SDi is the 
standard deviation of the z value in cluster i. Then, calculate the difference, Dn = Pn-1 
- Pn and plot Dn against the number of cluster. The minimum number of cluster could 
be counted from the point when the decrease of Dn becomes stable.  

The second step is to select the optimal number of cluster. Since the problem is un-
supervised in which the real answer is not known. This study used two validation 
methods at the same time to select the optimal number of cluster. In the first method, 
Tutmez et al. [8] suggested that the optimal number of cluster for spatial data could be 
determined by  

 Minimize nc under, Std[z(x)] ≈ Std[z(c)]       (1) 

where nc is the optimal number of cluster, Std is the standard deviation, z(x) are the 
observed values of the dataset and z(c) are the observed values at the cluster centers. 
Based on this criterion the numbers of cluster are plotted against Std[z(c)]. The num-
ber of clusters satisfying constrain (1) is retained as the optimal number. 

For the second method, the training performance of Back-propagation Neural Net-
work (BPNN) has been considered [7]. In this method calibration data (x, y, z) are 
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clustered in to n clusters where 2 ≤ n ≤ Cmax. After that, for each n, the trainingset 
(network's input is the calibration data and network's target is the assigned number of 
cluster) is used to train a group of BPNNs. The BPNNs in the group are one hidden 
layer BPNN with various numbers of hidden nodes. The performance, En = Perfn / n 
are calculated for each n and Perfn is the average training performance of the group of 
the BPNNs. The lowest En indicates the most appropriate number of clusters. 

In the third step, once the number of cluster is determined, MFIS is generated from 
the calibration data by using FCM. The Membership Function (MF) used is a Gaus-
sian function because it provides smooth surfaces and has low degree of freedom [9]. 
After the MFIS has been generated, it is optimized by the Genetic Algorithm (GA) 
technique. The chromosome of the algorithm consists of the sequence of input 1, in-
put 2 and output respectively. In turn, the input and output are the sequence of MF 
which consists of two parameters (sigma and center). The fitness function is the mi-
nimize sum square error between observed value (z) and interpolated value (z') of 
calibration data and it is given as ∑                                             (2) 

The important point of optimization is how to control the diversity of individuals 
[10]. In this process, the MFIS parameters are allowed to vary in certain controlled 
ranges based on the hypothesis that MFIS generated from cluster analysis should be 
near to the optimal solution. Let α and β be user-defined control parameters, the cen-
ter (c) parameters are allowed to vary in the range of [c - α, c + α] and the sigma (σ) 
parameters are allowed to vary within the range of [σ - β, σ + β].  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An overview of the proposed integrated intelligent technique 

4 Experimental Results and Analysis 

In this study, interpolation accuracy of the proposed model, Integrated Intelligent 
Technique (IIT), was compared to TSA [3], BPNN [1], [3] and Radial Basis Function 
Network (RBFN) [11]. For TSA, third order polynomial equation is normally used 
because this order is appropriate for real-world data, which has both hill and valley 

Step 1: Define the minimum cluster 

Step 2: Select the optimal cluster 

Step 3: Create the MFIS model 

Step 4: Optimize the MFIS model 

Fuzzy c-means clustering 

Genetic algorithm optimization 

Artificial Neural Network 

Standard Deviation Analysis 
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surfaces [6] and it was therefore adopted in this study. For BPNN and RBFN, this 
study selected the model's parameters from K-folds cross-validation method [13]. The 
calibration data were divided into five partitions (or about 20%). For each partition n, 
1 ≤ n ≤ 5, calibrate model with other partitions and use partition n for validation. The 
lowest average error from all n is used to indicate the model's parameters. For BPNN 
the optimal number of hidden nodes/epoch obtained from case 1 to 4 were 8/20, 7/20, 
10/15 and 8 /15 respectively. For RBFN the number of hidden node were aligned with 
to the number of calibration data [11]. The optimal spread parameters [12] from case 
1 to case 4 were 5.5, 5.0, 6.0 and 4.0. 

According to Fig. 3, in case 1, the selected cluster was 7 because Dn became stable 
at n = 7 and the difference between Std(z(x)) and Std(z(c)) showed small variation 
after n = 6 (Fig. 3a). Furthermore, En showed the smallest value at n = 7 (Fig. 3b). In 
case 2, the selected cluster was 7 because Dn was stabilized after n = 6 and the differ-
ence of Std(z(x)) and Std(z(c)) showed a small variation after n = 5 (Fig. 3c), En 
showed relatively low value at n = 7 (Fig. 3d). Although En at n = 7 did not show 
lower value than at n = 9, choosing a small number of cluster could avoid making the 
model too complicated. Furthermore, the difference between Std(z(x)) and Std(z(c)) at 
n = 7 was smaller than n = 9. In case 3, Dn became stable at n = 8 and the difference 
between Std(z(x)) and Std(z(c)) shifted up at n = 6 and a small variation was observed 
after n = 8 (Fig. 3e). Therefore, n = 8 was selected as the cluster number. The lowest 
En took place at n = 8 (Fig. 3f). In case 4,Dn became stable at n = 7 and the minimum 
difference between Std(z(x)) and Std(z(c)) took place at n = 8 (Fig. 3g). Therefore, n = 
8 was selected as the cluster number. At n = 8, it also showed the lowest value of En 
(Fig. 3h). 

Once the number of cluster is determined, the MFIS is generated from the FCM 
technique. The number of fuzzy rules was aligned with the number of clusters. In the 
optimization process, the user parameter α and β were set to 0.1 and 0.05 respectively. 
These values were approximately 10 percent of the universe of discourse as stated 
before that the MFIS parameters were allowed to vary in certain controlled ranges. In 
this study, the number of population of GA was set to 200 (or about four times of the 
number of gene in the chromosome) to ensure that there are at least four individuals 
for each parameter. The number of generation was set to 150, where the SSE became 
stable and did not show any more improvement. The results are shown in Table 2. 

In term of the Relative Mean Error (RME), all models showed consistent results. 
No suspicious of bias event was indicated. The average of the absolute RME is shown 
in the row Avg (i.e. average) as shown in Table 2. The models that provided better 
results are ranked in the following sequence: BPNN > IIT = RBFN > TSA. In terms 
of Relative Mean Absolute Error (RMAE) and Relative Root Mean Square Error 
(RRMSE), the average accuracies ranked in the order of IIT > RBFN > BPNN > 
TSA. However, BPNN and TSA provided almost equal interpolation accuracy. In 
term of Correlation Coefficient (R) the average accuracy have similar patterns as IIT 
> RBFN > BPNN > TSA. In the row Imp (i.e. improvement) in Table 2, the values 
are the percentage improvement based on TSA. 

With respect to overall results, IIT can be considered as a good alternative interpo-
lator for the Thailand northeast region because the results indicated that it provided 
acceptable interpolation accuracy in general. However, the objective of the proposed 
methodology is not only to provide an accurate interpolator for the Thailand region 
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but also to provide interpretable model for human analysts. As expressions in fuzzy 
rules are closer to human reasoning, analysts could understand how the model per-
formed the interpolation. An example of fuzzy rules and its MFs are shown in Fig. 4. 
In the clustering analysis, this study made use of the standard deviation analysis to 
validate the number of clusters. This method is reasonable in terms of statistical point 
of view. Furthermore, BPNN analysis can assist the decision process with improved 
confidence. 
 

 
(a)     (b) 

 
(c)     (d) 

 
(e)     (f) 

 
(g)     (h) 

 

Fig. 3. The results from clustering analysis. (Note that, in Fig. a, c, e and g, the left-hand axis is 
for Pn and Dn values, and the right-hand axis is for std(g(c)) and std(g(x)) values 
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Table 2. RME, RMAE, RRMSE and R of validation data 

Relative Mean Error Relative Mean Absolute Error 
Case TSA BPNN RBFN IIT TSA BPNN RBFN IIT 

1 0.025 0.000 0.023 0.013 0.279 0.300 0.286 0.284 
2 0.077 0.049 0.060 0.049 0.253 0.236 0.227 0.224 
3 -0.008 -0.011 -0.001 -0.013 0.282 0.276 0.266 0.267 
4 -0.031 -0.028 -0.019 -0.023 0.256 0.254 0.260 0.233 

Avg 0.036 0.022 0.026 0.025 0.268 0.267 0.260 0.252 
Imp - 38.11 27.09 30.89 - 0.356 2.940 5.822 

 
Relative Root Mean Square Error Correlation Coefficient 

Case TSA BPNN RBFN IIT TSA BPNN RBFN IIT 
1 0.368 0.368 0.361 0.366 0.357 0.383 0.404 0.370 
2 0.327 0.318 0.309 0.290 0.674 0.691 0.712 0.749 
3 0.367 0.365 0.353 0.353 0.461 0.478 0.515 0.513 
4 0.353 0.349 0.345 0.326 0.712 0.720 0.725 0.760 

Avg 0.354 0.350 0.342 0.334 0.551 0.568 0.589 0.598 
Imp - 1.081 3.404 5.689 - 3.06 6.86 8.493 

 

 

Fig. 4. An example of fuzzy rules and its membership functions (case 1) 

5 Conclusions  

This study proposes a methodology to analyze and establish an integrated intelligent 
spatial interpolation model for monthly rainfall data in the northeast Thailand. The 
proposed methodology starts with cluster analysis to determine the optimal number of 
sub-regions. Once the optimal number of sub-regions is determined, a Mamdani-type 
fuzzy inference system is generated. The generated fuzzy inference system is then 
optimized by using a genetic algorithm approach. The proposed methodology has 
been experimented with the monthly rainfall data in the northeast region of Thailand.  
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Fuzzy Rules: 

IF x = cls1 AND y = cls1 THEN z = cls1 

IF x = cls2 AND y = cls2 THEN z = cls2 

IF x = cls3 AND y = cls3 THEN z = cls3 

IF x = cls4 AND y = cls4 THEN z = cls4 

IF x = cls5 AND y = cls5 THEN z = cls5 

IF x = cls6 AND y = cls6 THEN z = cls6 

IF x = cls7 AND y = cls7 THEN z = cls7 
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Four case studies were used to evaluate the interpolation accuracy and compared to 
commonly-used interpolation models. The experimental results demonstrated that the 
proposed model was capable to generate acceptable interpolation accuracy. Further-
more, the proposed methodology provided interpolation models that are human un-
derstandable through the use of fuzzy rule. 
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Abstract. The spherical K-means algorithm is frequently used in high-
dimensional data clustering. Although there are some GPU algorithms
for K-means training, their implementations suffer from a large amount
of data transfer between CPU and GPU, and a large number of rendering
passes. By utilizing the random write ability of vertex shaders, we can
reduce the overheads mentioned above. However, this vertex shader based
approach can handle low dimensional data only. This paper presents
a GPU-based training implementation for spherical K-means for high
dimensional data. We utilizes the feature of geometry shaders to generate
new vertices to handle high-dimensional data.

Keywords: GPU, Spherica k-means, Geometry shaders.

1 Introduction

The spherical K-means algorithm, which uses the cosine dissimilarity instead of
Euclidean distance, is a special case of the K-means algorithm. It is frequently
used in high-dimensional data clustering applications, such as document clus-
tering [1] and market basket analysis [2]. Due to the large data volume in these
applications, the training speed of spherical K-means is an important concern.

Nowadays, graphics processing units (GPUs) become popular computing
tools [3] for non-graphics applications, such as wavelet transform [4] and neural
network simulation [5]. Takizawa et al. [6] proposed a CPU–GPU co-processing
solution for K-means training. One of drawbacks of Takizawa’s approach is that
the data transfer between CPU and GPU is very large. Also the large number
of rendering passes within a training iteration is very large. Xiao et al. [7] solved
the above problems by investigating the random write ability of vertex shaders.
In their method, each training vector is held by a vertex. Since the number of
attributes in a vertex is limited and the number of writable textures in a frag-
ment shader is limited, their implementation can handle low dimensional data
only.

This paper addresses this limitation based on geometry shaders which have
the ability to generate vertices. In our approach, training vectors are stored
in a texture. The codebook is stored in eight textures. Each training vector is
associated with a vertex (calling training vector vertex) but the vertex stores
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the training vector index only. A vertex shader finds out the winner for each
training vector, and then stores the winner index and the training vector index
in a processed vertex (calling winner vertex). All the winner vertices are then
passed to a geometry shader. For each winner vertex, the geometry shader creates
a number of sub–winner vertices. Each sub–winner corresponds to updating 32
elements in a codevector. In general, a vertex can generate 1024 vertices in a
geometry shader. Therefore, our algorithm can handle data vectors with very
large dimension.

2 Background

Spherical K-means: The spherical K-means partitions a set of training vectors
D = {x0, · · · ,xN−1} in &k into M clusters Ωi, i = 0, · · · ,M − 1, whose codevec-
tors (centers of clusters) are given by Y = {c0, · · · , cM−1}. In training, the ob-
jective is to minimize the objective function: E = 1

N

∑
i

∑
xj∈Ωi

(1−cos(xj , ci)),

where cos(xj , ci) =
<xj ,ci>
‖xj‖‖ci‖ . The collection of codevectors Y is called a code-

book. Given the data set D and the initial codebook Y(0), the training process
can be summarized as follows.

1. t = 0.
2. Set Ωi = ∅, for all i = 0, · · · ,M − 1.
3. For each training vector xj , find out the winner codevector ci∗ , where i∗ =

arg min
i∈{0,···,M−1}

(1− <xj ,ci>
‖xj‖‖ci‖ ). Put xj into the subset Ωi∗ .

4. Update the codevectors: ci(t+ 1) =

∑
xj∈Ωi

xj

‖
∑

xj∈Ωi

xj‖ , ∀i.
5. Set t=t+1 and go to Step 2.

The above iterative procedure repeats until the objective value E is less than a
threshold, or the number of iterations has reached a pre-defined number.

GPU : In the GPU pipeline, there are three kinds of programs (shaders): vertex
shader, geometry shader and fragment shader. A vertex shader is response for
transforming properties of the input vertices. The outputs of the vertex shader
are then assembled to geometries, which can be vertices, lines or triangles. A
geometry shader performs the operations on these geometries. It can generate
new graphics primitives, such as points, lines, and vertices. The rasterization then
outputs fragments (pixels) based on the received geometries. A fragment shader
deals with the rasterized fragments. It computes color and other attributes of
each fragment.

3 Our Method

Our implementation can be considered as a multi-client-multi-server model. Each
training vector is a client and each codevector is a server. Each client finds its
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winner codevector and sends itself to the server. The server accumulates the
training vectors arrived. After all clients are served, each server normalizes its
accumulated vector. Let N be the number of training vectors, let M be the
number of clusters, and let k be the dimension of the vectors. Without loss of
generality, we assume that k can be divided by 4.

3.1 Initialization

The training vectors are linearly stored in the texture memory, as shown in
Fig. 1(a). This texture is called training data texture. The resolution of the
texture is 1 × k

4N . Each texel stores 4 elements of a training vector. To access
the training vectors on the GPU, we prepare a list of N vertices, each of which
stores the index of a training vector(from 0 to N − 1). The list is stored on the
GPU as a display list. These vertices are called training vector vertices.

A codebook is organized as a collection of T textures. Nowadays, the max-
imum number of textures that can be written simultaneously is 8. So, we use
T = 8 textures. The logical structure of a codebook on the GPU for k = 64 is
shown in Fig. 1(b). For large M and k, 2D textures are used. The resolution of
each texture is equal to 1× k

4T M = 1 × k
32M . Each texel corresponds to 4 ele-

ments of a codevector, and then each texel position corresponds to 32 elements
of a codevector. In the implementation, there are two codebooks. One stores
the current codebook. The initial current codebook is transferred to the texture
memory. The other one is the temporary codebook which contains the summa-
tion of training vectors arrived in clusters. That means, there are 16 textures for
codebooks.

To facilitate updating the codebook, we prepare another list of M vertices,
each of which stores the indices of codevectors (from 0 to M − 1). The list is
stored as a display list. After the textures and display lists are initialized, we then
use 6 shaders to implement the spherical k-means training. The flow diagram of
one training iteration is shown in Figure 2. The whole implementation consists
of two stages. In the first stage, we perform two tasks. We search the winner
codevector and sum the training vectors in clusters. In the second stage, we
normalize the codevectors.
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Fig. 1. (a) The logical structure of the training vectors stored in GPU. Each grid
denotes a 4 channel texel. (b) The logical structure of codevectors stored in GPU for
dimension k = 64.
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Fig. 2. The overview of our algorithm

3.2 Winner Codevector Searching and Training Vector Summation

In the first part, the GPU searches the winner codevector for each training vec-
tor. It then puts the training vector into the corresponding cluster, and calculates
the summation of all the training vectors received in each cluster. In the imple-
mentation, we use a vertex shader, a geometry shader and a fragment shader
to perform the above tasks. As mentioned in the above, there are 16 textures
for codebooks. One set of 8 textures (for read) holds the current codebook. The
other set of 8 textures (for write) holds the accumulation sum of training vectors
in clusters, which are initially set to zero. The write ability of textures is realized
by using frame buffer objects (FBOs).

Winner Codevector Searching (vertex shader): A vertex shader is used to
search the winner codevector for each training vector. It then passes the informa-
tion of the training vector and the winner codevector to the geometry shader. A
display list contains a number of vertices. Each of them stores a training vector
index as the position information of the vertex. For ease of read, we call these
vertices as training vector vertices. For each index (training vector vertex), the
vertex shader finds its winner codevector by reading its corresponding training
vector from the training vector texture and the current codebook textures. The
outputs of this shader are vertices.

For each training vector vertex, the shader generates an output vertex that
contains the winner codevector index and the training vector index. The winner
index is transformed into the texture coordinate of the winner codevector. The
coordinate is then set as the position information of the output vertex. Mean-
while, the training vector index and the winner index are set as attributes of
the vertex. For ease of read, we call those output vertices as winner vertices.
For instance, for k = 64 and M = 256, if the training vector index is j and
the winner index is i∗, then the corresponding winner vertex contains the fol-

lowing messages: {pos =
k
32×i∗+0.5

k
32×M

, j, i∗} = {pos = 2×i∗+0.5
512 , j, i∗}. Note that a

fragment shader in GPU can only access 8 “writing” textures. Hence the vector
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dimension in the training is limited to 32 only, if we directly use winner vertices
to generate fragments.

Vertices Generation (geometry shader): The geometry shader receives the
winner vertices. For each winner vertex, the geometry shader generates k

32 output
vertices based on the received messages. Each of the output vertices corresponds
to 32 elements in the winner codevector. For ease of read, we call those output
vertices as sub-winner vertices. The k

32 sub-winner vertices of the winner code-
vector is used to accumulate a training vector to a winner cluster. Each of them
handles 32 elements.

A sub-winner vertex contains three messages: the texture coordinate of the 32
elements concerned, the training vector index j, and an element index which in-
dicates which set of 32 elements is used. For k = 64 and M = 256, if an incoming
winner vertex contains the following messages: {pos = 2×i∗+0.5

512 , j, i∗}, the geome-
try shader generates two sub-winner vertices:SWV0 and SWV1. Their messages
are SWV0 = {pos = 2×i∗+0+0.5

512 , j, 0} and SWV1 = {pos = 2×i∗+1+0.5
512 , j, 1}.

Note that {0, 1} here are the element indices which the vertex handles.

Training Vectors Summation (fragment shader): In our setting, each sub-
winner vertex generates a fragment after rasterization. The texture coordinate of
the fragment is given by the sub-winner vertex. Since each fragment contains its
training vector index and an element index, for each fragment the shader can di-
rectly read the corresponding 32 elements from the training vector texture. These
elements are set as the colors of the fragment, and output to the 8 “writing”
accumulation sum textures. This is implemented by the multi-rendering tar-
gets functionality of GPU. With the blending functionality enabled, the training
vectors which belong to each cluster are then accumulated in the 8 “writing”
accumulation sum textures. After all the fragment are processed, the writing
textures hold the summation of all the training vectors received in each cluster.

3.3 Normalization Stage

In this stage, the GPU calculates the length of each accumulated codevector. By
the normalizing the accumulated codevectors with the lengths, the GPU obtains
the updated codebook. In the implementation, we also use a vertex shader, a
geometry shader and a fragment shader to perform the above tasks. In this stage,
the 8 current codebook textures become “writing”set, and the 8 accumulation
sum textures becomes “reading” set. In this stage, we also have a display list
containing the indices of accumulated codevectors. Each input vertex in the list
stores the index of a accumulated codevector as the position information of the
vertex. For ease of read, we call these vertices as accumulated codevector vertices.

Length Calculation (vertex shader): This vertex shader is response for cal-
culating the lengths of the accumulated codevectors, and passing the lengths
to the geometry shader. By drawing the display list containing the indices
of codevectors, the indices (as the position information of the vertices) are
passed to the vertex shader. For each index, the vertex shader reads its accumu-
lated codevector from the “reading” textures and calculates its length. For each
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index (accumulated codevector vertices), the shader outputs a vertex. For ease
of read, we call the output vertex as codevector vertex. The index of the code-
vector is set as the position information of the output vertex. Meanwhile, the
calculated length is set as an attribute of the vertex. If the codevector index
is i and the calculated length is 4567, then the codevector vertex contains the

following message: {pos = k
32×i+0.5

k
32×M

, i, 4567} = {pos = 2×i+0.5
512 , i, 4567}.

Table 1. Speeds of different approaches. The speed is measured in number of iterations
per second. The vector dimension is 512. N : the number of training vectors, and M :
the number of codevectors.

N M=32 M=64 M=128 M=256 M=512

4096 CPU Method 7.204 3.617 0.594 0.222 0.046
Takizawa’s Method 28.32 14.70 7.168 3.608 1.810

Our Method 149.25 70.42 41.84 15.33 8.733

16384 CPU Method 1.771 0.897 0.224 0.074 0.034
Takizawa’s Method 10.07 5.235 2.628 1.328 0.667

Our Method 32.05 21.50 10.23 5.20 2.880

65536 CPU Method 0.449 0.226 0.113 0.056 0.016
Takizawa’s Method 2.635 1.367 0.695 0.351 0.175

Our Method 9.025 5.120 2.840 1.489 0.736

Vertices Generation (geometry shader): Thereafter, the geometry shader
receives the information of vertices. Based on each input vertex, the shader
emits k

32 vertices, each of which corresponds to 32 elements in the codevec-
tor. For ease of read, we call those output vertices as sub-codevector vertices.
A sub-winner vertex contains two messages: the texture coordinate of the 32
elements concerned and the length of the codevector. For k = 64, N = 65536,
and M = 256, if an incoming codevector vertex contains the following messages:
{coord = 2×i+0.5

512 , i, 4567}, the geometry shader generates two sub-codevector
vertices:SCV0 and SCV1.

Their messages are SCV0 = {pos = 2×i+0+0.5
512 , 2×i+0+0.5

512 , 4567} and SCV1 =

{pos = 2×i+1+0.5
512 , 2×i+1+0.5

512 , 4567}. Note that the texture coordinate appears
twice. One is set as the position information of the sub-codevector vertex. The
position information is for GPU to determine the texture coordinate of the “writ-
ing” textures in the later stage. The other one is set as the attribute of the
sub-codevector vertex, and it is for GPU to determine the texture coordinate of
the “reading” textures in the later stage.

Normalization (fragment shader): In our setting, each sub-codevector vertex
generates a fragment after rasterization. The texture coordinate of the fragment
is given by the position information from the sub-codevector vertex. The length
of the codevector is also obtained. The fragment shader can directly read the
corresponding 32 elements of the accumulation sum from the “reading” textures.
These elements are then divided by the length. The normalized vales are output
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to the “writing” textures. Thereafter, the “writing” textures will store the new
codebook, which will be used as “reading” textures in the next iteration.

4 Experiments and Discussion

Three approaches are considered. They are our approach, the Takizawa’s ap-
proach, and the CPU approach. All results are obtained using a PC with its
configuration: Intel i7-3770 CPU, 16GB Memory, GeForce GTX 690 Display
Card, 2GB Video Memory, PCI-Express 16 X Interface, Windows 7 (64 bit),
and GLSL Shader Language.

The dimension k we test are 512 and 2048. All the training vectors and initial
codevectors are randomly generated unit vectors. For each dimension, we test
different number of training vectors N and number of codevectors M . The train-
ing speeds for different settings, measured with iterations per seconds, are given
in Tables 1-2. As we can see from the tables, the CPU method is quite slow. Our
GPU method can run more than 10-50 times faster than the CPU method. For
example, when k = 512,M = 65532, N = 512, our algorithm is about 46 times
faster than the CPU method. Meanwhile, our GPU method is also 2 to 8 times
faster than Takizawa’s. The improvement is due to the reduction of the number
of rendering passes, and the reduction of the amount of data transfer between
CPU and GPU memories.

Table 2. Speeds of different approaches. The speed is measured in number of iterations
per second. The vector dimension is 2048. N : the number of training vectors, and M :
the number of codevectors

N M=32 M=64 M=128 M=256 M=512

4096 CPU Method 1.800 0.897 0.148 0.055 0.011
Takizawa’s Method 2.396 1.209 0.584 0.292 0.145

Our Method 11.94 6.540 3.103 1.633 0.836

16384 CPU Method 0.448 0.226 0.055 0.018 0.008
Takizawa’s Method 0.966 0.489 0.237 0.118 0.059

Our Method 2.927 1.269 0.638 0.334 0.164

65536 CPU Method 0.112 0.056 0.028 0.014 0.004
Takizawa’s Method 0.250 0.127 0.062 0.031 0.015

Our Method 0.631 0.289 0.144 0.072 0.037

5 Conclusion

In this paper, we present a novel GPU accelerated spherical K-means training
for high dimensional data. Using the scattering ability of the vertex shader, we
accumulate the training vector to the position of nearest codevector. We then use
the geometry shader to generate extra vertices for handling the high dimensional
data. With these two operations, we then accumulate the codevectors to the
frame buffer with the fragment shader. Similar tricks are used in updating the
codevectors. Therefore, all the operations are performed on GPU.
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Abstract. Learning from data streams in the presence of concept drifts
has becomean important application area.When the environment changes,
it is necessary to rely on on-line learning with the capability to forget out-
dated information. Ensemble methods have been among the most success-
ful approaches because they do not need hard-coded and difficult to obtain
prior knowledge about the changes in the environment. However, the man-
agement of the committee of experts which ultimately controls how past
data is forgotten has not been thoroughly investigated so far. This paper
shows the importance of the forgetting strategy by comparing several ap-
proaches. The results lead us to propose a new ensemble method which
compares favorably with the well-known CDC system based on the classi-
cal “replace the worst experts” forgetting strategy.

Keywords: Online learning, ensemble methods, concept drift.

1 Introduction

Recent years have witnessed the emergence of a new research area which focuses
on learning from data streams in the presence of evolving concepts. For instance,
spam filtering systems are continuously classifying incoming emails (observation
x) into spam or non-spam (label y) depending on their content. Because of
changes in the spammers’ strategies, corresponding to a change of the conditional
distribution function p(y|x), the filtering systems must adapt their decision rule
lest they rapidly become useless.

When learning under concept drift, one central concern is to optimize a trade-
off between learning from as much data as possible, in order to get the most pre-
cise classification model, while at the same time recognizing when data points
become obsolete and potentially misleading, impeding the adaptation to new
trends. This is known as the stability-plasticity dilemma. While stability en-
tails accumulating knowledge regarding the supposedly stationary underlying
concept, plasticity, however, requires forgetting some or all of the old acquired
knowledge in order to learn the new upcoming concept.

On-line ensemble methods have raised much interest in recent years ([1–6]).
For a large part, this is due to the fact that they seem to adapt more naturally
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to changes in the environment than other approaches based on explicit strate-
gies for controlling the stability-plasticity dilemma ([7]). Because of the assumed
diversity of the base learners1 in the committee, it is indeed expected that at
any time some of them are ready to take over and adapt to the novelties of the
environment ([8]). This diversity, however, ultimately depends on the informa-
tion kept by each base learner and on the control of which learner is authorized
to be part of the committee. In addition, the way the votes of the base learners
are combined participates also in the overall solution to the stability-plasticity
dilemma. Each of these three factors: the memory of each expert, the control of
the population of experts in the committee and the weight attached to each ex-
pert in the final decision, plays a role in the way past data is taken into account
by the system, what can be called the forgetting strategy.

In most ensemble methods, the first factor is implicitly governed by the second
one. Each expert learns using an ever growing memory of the past data until the
controller of the pool of experts decides to expel it from the committee.

In compliance with the demands of the stability-plasticity dilemma, the con-
trol strategy must be ready to introduce in the committee new base learners that
will try to catch up with potential novel regularities in the environment. At the
same time, it must weaken the effect of past data that no longer represent relevant
information. There exist two main approaches to this problem. One is to set a
threshold on the performance of the expert and to remove from the committee
all experts of which the prediction performance falls below this threshold. The
idea is to remove all experts that are overly biased toward obsolete regularities
of the environment. This approach raises two issues. First, how to measure the
prediction performance of each base learner? Second, how to set the threshold?
The second family of methods does not depend on a threshold but relies instead
on a perpetual renewal of the population of the committee which tends to favor
a higher level of diversity. The concern here is to remove the experts that are
less relevant to the current environment. Again, the question arises about the
appropriate measure of performance. In addition, one must choose an insertion
strategy in order to allow for the introduction of new base learners in the pool.

This paper focuses on the possible control strategies and on their impact on
the performance of the system depending on the characteristics of the changing
environment. We compare the two families of approaches with a special attention
to the study of the deletion strategy. We do not consider the voting strategy here
and keep it constant for all systems that we compare.

In the following, Section 2 describes the framework of the ensemble methods
used to adapt to concept drifts while Section 3 addresses the analysis of the
strategies presented above. Section 4 presents a new ensemble method using an
enhanced forgetting strategy. Section 5 then reports an extensive comparison of
our method with CDC ([2]) a well-known and representative ensemble method.
Finally, Section 6 concludes and suggests future research directions.

1 We use interchangeably the terms “base learner” and “expert” in this paper.
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2 Ensemble Methods for On-Line Learning

Ensemblemethods for on-line learningmaintain a pool of base learners {hi
t}1≤i≤N ,

each of them adapting to the new input data, and administer this pool or ensem-
ble thanks to a deleting strategy and an insertion one. The main components of
these ensemble methods are the following:

– Learning: each base learner in the pool continuously adapts with new in-
coming data until it is removed from the pool.

– Deletion strategy: every τ time steps, the base learners are evaluated on a
window of size τeval. Based on the results of the evaluation, base learners
might be eliminated from the committee.

– Insertion strategy: every τ time steps, new base learners can be created and
inserted in the pool. Each new learner starts from scratch with no knowledge
of the past. It is protected from possible deletion for a duration τmat.

– Prediction: For each new incoming instance xt, the prediction ỹt = H(xt) of
the committee results from a combination of the predictions of the individual
base learners ht(xt).

Variations around this general framework lead to specific algorithms ([2–6]).
The remainder of this paper will be concerned with the deletion strategy i.e.
with the base learners selected for deletion. The insertion strategy will simply
replace deleted base learners by new ones in order to keep the committee size
fixed. This approach is used in most current ensemble methods ([2, 3, 5, 6]).

3 Analysis of the Deletion Strategies

The deletion strategy plays a key role in the adaptation process since it allows
the system to forget the memory of outdated training data. In this section, we
explicitly study deletion strategies based on a threshold and deletion strategies
that remove the worst base learners in the committee. For the latter approach,
we compare systems based on the removal of the worst expert with systems that
remove experts based on other strategies.

3.1 Deletion Strategies Using a Threshold Value

A deletion strategy based on a threshold replaces base learners in the ensemble
when their prediction record, evaluated on the window size τeval, is below a
predefined threshold θd. When the performance is computed as the percentage
of correctly classified instances on the evaluation window, only the base learners
with a classification accuracy of at least θd% thus remain in the committee.

This strategy leads to different behaviors depending on the characteristics of
the environment. For the sake of the analysis, let us suppose that a concept drift
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occurs corresponding to a change in the label of sev% of the input space. This
is called the severity of the concept drift ([8]). Let’s suppose further that all
learners in the committee have a perfect classification accuracy of 100% before
the drift. We are then faced with a difficult conundrum.

If sev << 1 − θd, the severity of the concept change is below the detection
capability, and we may end up with an unchanged committee of base learners.

However, the choice of a higher threshold is loaded with two potential pitfalls.
First, in case of a noisy environment, the classification accuracy of many learners
may drop under the θd value resulting in a severely impoverished committee even
though no real concept drift did happen. Second, new base learners may not be
able to reach the exacting threshold before they reach the maturity age (τmat)
and are therefore no longer protected from deletion.

Overall, it is difficult to set a value for a threshold without well-informed prior
knowledge on the dynamics of the environment. Too low a threshold threatens
the plasticity of the system, while a high one may cause havoc in the commit-
tee and prevent stability and good prediction performance. For these reasons,
ensemble methods that do not rely on explicit threshold have been promoted.

3.2 Strategies That Delete the Worst Base Learner

Rather than setting a threshold for deciding which base learners to eliminate, one
can encourage the diversity in the committee while preserving the best current
base learners by removing the worst one every τ time steps. This should discard
base learners that no longer correspond to the current state of the environment
and introduce at the same time new base learners. However, a potentially vicious
interaction involving the parameters τ and τmat may ruin this hope.

Let us first suppose that the period of time during which a new base learner
is protected from deletion: τmat is less than τ . At each new deletion time, the
newest base learner is prone to be deleted and will be if it did not have time to
learn enough of the regularities in the environment. But τ cannot be too large
lest the system looses any plasticity.

Suppose then that τ ≤ τmat. Again the risk exists that deletion will affect
only the newest learners in the committee effectively dividing the committee
into a protected subset of the best and oldest base learners and a subset of the
newest ones that are never able to catch up with the other ones except when
the overall performance of the system has so declined that even a low prediction
performance may allow a base learner to avoid elimination. And decreasing the
value of τ cannot solve this problem either because if then the newly introduced
base learners can survive more deletion cycles, they will still not be able to
reach the performance of the established experts. Moreover, this will then tend
to introduce new learners at a too high rate, threatening now to disrupt the
stability and therefore the committee’s performance. A question is then whether
it is possible to break this poor behavior which impedes plasticity by never
allowing new learners to enter the top subset.



404 G. Jaber, A. Cornuéjols, and P. Tarroux

3.3 A New Deletion Strategy Based on a Stochastic Mechanism

One can soften the “eliminate the worst learner” strategy’s drawbacks by picking
randomly a learner from the subset of the k (k < N) worst base learners. In this
way, the newest base learners have a chance to learn enough of the regularities
of the current environment to enter the pool of the top experts, and, at the same
time, preserving the best performers. This promotes the plasticity of the system
while not deteriorating its stability. The size k of the subset where base learners
can be picked up to be eliminated controls the plasticity-stability trade-off.

We studied the effect of five deletion sizes (by setting the value of k) on
the forgetting strategy: N , 0.75 ∗ N , 0.5 ∗ N , 0.25 ∗ N and 1 (corresponding
to the “always eliminate the worst base learner)”. Figure 1 shows the mean
classification error depending on the different deletion sizes on the datasets of
the Line, SineH and Circle artificial problems suggested by Minku et al. [8] to
evaluate drift handling methods. The parameters were set to the values: τ =
τmat = τeval = 20, and N is 10, 20 or 30. The global prediction merely uses the
prediction from the current best base learner. The base learners are decision trees
(as implemented in Matlab) and all the experiments start with the same random
seed so that we have the same learners at the beginning of the experiments.
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Fig. 1. The mean classification error using different deletion sizes

Case of a Stationary Environment. The deletion size k = 1 gives the best
classification accuracy when learning in a stationary environment. The learners
trained on the smallest windows are generally the ones that tend to be removed
from the ensemble since they perform poorly compared to learners that have
benefited from a large training set. Meanwhile, the remaining learners tune up
their knowledge of the current concept, improving their classification record. By
increasing k, the probability of removing a relatively good learner is also in-
creased which hurts (to some extent) the classification accuracy of the ensemble.

Case of a Concept Drift. Increasing k increases the probability of a newly
added learner to survive a deletion. A large deletion size removes most of the
learners from the ensemble after a concept drift. Thus, for maximum plasticity,
the best deletion size is k = N .
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The experiments suggest that k should be small enough for stability and large
enough for plasticity. With a minimum deletion size (k = 1), the ensemble has
the lowest classification error before the drift because stability is favored over
plasticity. With a maximum deletion size however (k = N) the ensemble favors
plasticity over stability which hurts the classification performance when learning
stationary concepts.

A deletion size that is half the size of the ensemble (k = 0.5 ∗ N) seems to
correspond to a satisfactory trade-off between plasticity and stability. It yields
the lowest classification error in average, before and after the concept drift.

4 DACC

We devised DACC (dynamic adaptation to concept changes), an online ensemble
method with adaptation to possible concept drifts.

Instead of removing the worst learner of the pool, DACC selects randomly a
member from the worst half of the pool and forces it to retire. In order to control
the rate of deletion, we impose all the learners to be mature before a deletion
operation. Therefore, τ = τmat time steps separates two consecutive deletions.

A learner hbad belonging to the worst half of the pool survives a deletion
operation with a probability

p =
N/2− 1

N/2
(1)

Each time hbad escapes deletion, it is given another τmat time steps of training
data before the next deletion operation. The expectation of s, the number of
times hbad survives a deletion operation, is:

E[s] =
∞∑

m=1

mpm(1 − p) = p(1− p)
∞∑

m=1

mpm−1

= p(1− p)
d

dp

( ∞∑
m=1

pm
)

= p(1− p)
d

dp

(
p

1− p

)
E[s] =

p

(1− p)

By replacing p with its value from equation 1, we get: E[s] = N
2 − 1

Increasing the life expectancy of the relatively bad learners in the pool makes
DACC less exposed to cases where new learners are expelled from pool because
they didn’t get enough time to improve their predictive performance. In other
words, the suggested forgetting strategy is less sensitive to a high deletion rate
than the replace the worst learner strategy. A higher deletion rate entails a faster
reactivity to a potential concept drift.

The new deletion strategy creates the following behavior. In periods of stabil-
ity, the top base learners, being protected from deletion, will have their prediction
performance improved with time as new training data are received and learnt.
Their improved performance will further keep them in the top subset, allowing
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them to accumulate knowledge about the underlying stable target concept. The
worst half of the pool will undergo periodic deletion operations. By constantly
adding new learners, DACC is ready to any upcoming change, and this, without
explicitly identifying a concept drift. Hence, young learners tend to be valuable
during changing times while oldest learners are reliable in stable environments.

DACC follows the framework described in Section 2. The evaluation procedure
simply counts the number of erroneous predictions on the last τeval time steps.
The deletion strategy randomly selects one base learner from the worst half of the
pool evaluated as above every τ = τmat time steps. The global prediction merely
uses the prediction from the current best base learner (a vote is applied in case
of ties). An unmature learner does not contribute to the global prediction.

5 Experiments

We evaluated the mean classification error of DACC, CDC [2] and a learning
system that does not handle drifting concepts. CDC differs from DACC in two
major points. First, its deletion strategy evaluates the learners each time step
(i.e. τ = 1). A learner is removed if it is mature, if its evaluation record is below
a threshold value, and if it is the worst learner in the ensemble. Secondly, the
global prediction is the result of a weighted vote, where the weight of a learner
reflects its evaluation record.

The experiments used artificial, semi-artificial and real datasets. The base
learners were decision trees. The system that does not handle drifting concepts
was a single decision tree trained on every training example received. CDC was
evaluated with three thresholds: 0.6, 0.7 and 0.8.

The datasets used in the experiments are described in Table 1. The artifi-
cial datasets included Minku’s et al. artificial problems [8]: Circle, Line, SineH,
SineV, Boolean and Plane. Each problem consists of 9 datasets with different
drift severity and speed levels (3 severities×3 speeds). The STAGGER [9] and
FLORA [10] problems are among the pioneer artificial problems simulating drift-
ing scenarios. FLORA consists of two datasets, with moderate and slow speeds of
concept drifts, respectively. The semi-artificial datasets included IRIS and CAR
[8], which are modified versions of the IRIS and CAR real datasets available in
the UCI Machine Learning Repository [11]. The original real datasets were repli-
cated several times and class labels were modified in order to simulate datas-
treams with multiple concept drifts. Finally, the real dataset was issued from
the COLD database of the Saarbrücken laboratory [12], a benchmark for vision-
based localization systems. It contains sequences of images recorded by a mobile
robot under different variations of illumination and weather: sunny, cloudy and
night. We worked on the dataset captured in sunny conditions. Images were
first pre-processed into a 128-dimensional space using the Self-Organizing Map
described in [13].

Table 1 reports the mean classification error of the different approaches along
with the preset parameter values. For Minku’s artificial problems, the error was
averaged over the 9 different datasets of the corresponding problem. For STAG-
GER and FLORA problems, the error was averaged over 10 instantiations of the
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Table 1. The mean classification error of the different approaches along with the
predefined parameter values, with τmat = τeval. We detail the size of each dataset,
the size of its feature space, the number of classes and the dataset type: A, S, R, for
artificial, semi-artificial and real, respectively.

Datasets mean classification error Settings
name size #feat. #class. type DACC CDC 0.8 CDC 0.7 CDC 0.6 NoDriftH. τeval, N

CAR 1296 6 2 S 14.66 23.47 15.14 13.98 40.77 20,20
IRIS 338 4 4 S 15.33 15.38 18.34 20.71 34.62 20,20
Circle 2000 2 2 A 6.92 35.66 8.09 8.73 12.56 20,20
Line 2000 2 2 A 3.72 8.12 4.64 7.01 10.52 20,20
Boolean 1000 3 2 A 2.75 3.85 4.17 4.47 17.63 20,20
SineH 2000 2 2 A 13.0 47.81 20.66 13.26 21.25 20,20
SineV 2000 2 2 A 4.32 7.98 5.15 5.85 11.08 20,20
Plane 1000 11 2 A 20.87 20.55 18.01 19.95 27.23 20,20
STAGGER 120 3 2 A 14.33 16.08 17.75 20.25 32.52 10,10
FLORA-M 500 6 2 A 5.34 10.19 6.32 6.02 16 10,10
FLORA-S 500 6 2 A 7.7 12.46 9.21 9 18.9 10,10
COLD 753 128 4 R 6.04 7.83 8.23 9.16 35.46 10,30

datasets. For IRIS, CAR and the COLD datasets, the error was averaged over
10 runs on the same dataset.

DACC has the smallest classification error in all cases, except for the CAR and
Plane datasets. The results on the CAR dataset suggest that a deletion threshold
of 0.6 is adapted to the CAR learning problem. Hence, removing learners with
a classification accuracy smaller than 60% allows the ensemble to adapt to the
simulated concept changes. For the Plane dataset, the difference between DACC
and CDC 0.7 is likely due to the noise in the Plane dataset. Generally, the use
of a max function for the global prediction (as in DACC) instead of a weighted
combination (as in CDC) affects the predictive accuracy in noisy environments.
It results in this case in a higher classification error for DACC by a margin of
2.86%.

6 Conclusion and Future Work

This paper presents an analysis of two main forgetting strategies used by ex-
isting online ensemble methods to adapt to concept drifts: (a) deleting experts
with poor predictive performance, according to a preset threshold value, and (b)
deleting periodically the worst expert in the ensemble. The ensuing analysis lead
to the definition of a new approach (DACC) to handle concept drifts.

The analysis shows that the forgetting strategy r(a) equires prior knowledge
on the dynamics of the environment in order to choose an adapted threshold
value, while strategy (b) may result in unwanted behavior, affecting the ability
of the ensemble to adapt to new trends.

DACC deletes periodically one expert chosen randomly from the worst half
of the ensemble. According to our study, this strategy corrects unexpected be-
haviors of the latter forgetting strategy. Empirical comparisons with CDC, a
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representative method based on the former forgetting strategy, show that DACC
overcomes the difficulty of finding the appropriate threshold, and this on a large
variety of concept drifts, with several levels of severity and speed.

For future work, we plan to study another key component of the forgetting
strategy: the way experts are weighted and the way their decisions are combined
in the ensemble’s final decision.
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Abstract. The recognition of emotions from others’ faces is a universal
and fundamental skill for social interaction. Many researchers argue that
there is a set of basic emotions which were preserved during evolutive
process because they allow the adaption of the organisms behavior to
distinct daily situations. In these sense, this paper investigates emotion
recognition based on sets of facial expression elements. Different fea-
ture sets are proposed to represent the characteristics of the human face
and an analysis of the performance of each one is evaluated by Machine
Learning techniques. It will be shown that the use of predefined areas of
the face in conjunction with angles and distances is a valid proposal to
construct models for emotion classification.

Keywords: Emotion Recognition, Facial Expression, Human-Computer
Interaction, Machine Learning.

1 Introduction

Social interactions are complex, so each human being presents specific behaviors.
In relation to interaction, emotions have a fundamental role. The capacity to
express emotions during social interactions is an area with growing importance
in the last years. Several mechanisms, which explores distinct ways to express
emotion using body, facial expressions, colors, sounds and so on, have been
developed in literature [1] [7].

According to Picard [11], for computers to be genuinely intelligent and to
interact naturally with humans, they need the ability to recognize, understand
and even to have and express emotions. Emotion is fundamental to human ex-
perience, influencing cognition, perception, and everyday tasks such as learning,
communication, and even rational decision making. Also, they can act as a con-
trol and learning mechanism, driving behavior and reflecting how the system is
affected by, and adapts to, different factors over time.

Automatic emotion recognition is a multidisciplinary task involving different
research fields such as psychology, computer vision, speech analysis and machine
learning. Different methods, such as voice intonation, body movements and facial
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expressions are used by humans to express emotions. Even though body move-
ments or voice are used to express them, emotions are more precisely described
by facial expressions, without the need to analyze gestures or voice [4].

Facial expression figures in research on almost every aspect of emotion, in-
cluding psychophysiology, perception, emotional disorders, and others [1] [7].
This paper focus on the task of emotion recognition based on facial expression
analysis of frontal pictures. The six basic emotions presented by Ekman [2], to
know: happiness, sadness, anger, surprise, fear and disgust are investigated. Dif-
ferent facial feature sets are proposed and analyzed by Machine Learning (ML)
techniques. The evaluated ML techniques are Support Vector Machines (SVMs)
and C4.5 algorithm.

2 Facial Analysis for Emotion Recognition

Emotionally intelligent systems must be able to create an affective interaction
with users: they must be endowed with the ability to perceive, interpret, express
and regulate emotions [11]. Recognize users’ emotional state is then one of the
main requirements for computers to successfully interact with humans.

In the psychological and cognitive science literature, there are two primary
views on the representation of emotions: categorical and continuous. Ekman and
others [2] argue for a set of basic emotions, and a set of facial expressions related
to them, which are innate and universal across cultures. All other emotional
categories are then built up from combinations of these basic emotions. Russell
[12] argue that all emotions lie in a continuous two-dimensional space, where
the dimensions are typically taken to be valence (how positive or negative the
emotion is) and arousal (the energy or excitation level associated with the emo-
tion). Both representations have been used in various computing and robotic
applications and the underlying representation does not seem to have a major
effect on people’s understanding of the machine’s emotion.

The task of automatic facial expression analysis can be divided into three
main steps: face detection, facial feature extraction and classification. Face de-
tection automatically finds the face region for the input images or sequences.
In facial feature extraction, mainly two types of approaches are employed: ge-
ometric feature-based methods and appearance-based methods. The geometric
facial features present the shape and locations of facial components (including
mouth, eyes, eyebrows and nose). The facial components or facial feature points
are extracted to form a feature vector that represents the geometry of the face.
The appearance facial features present the appearance (skin texture) changes
of the face, such as wrinkles and furrows. Both, geometric and appearance fea-
tures can be also used in a system. Facial expression classification is the last
stage. Many classifiers have been applied to emotion recognition such as neural
networks (NNs), support vector machines (SVMs), linear discriminant analysis
(LDA), K-nearest neighbor, Hidden Markov models (HMM), and others.
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2.1 Facial Features Investigated

Six different facial feature sets, which are able to encode distinct aspects of the
face: peculiar aspects of the facial expression during each emotion and dynamics
or differences of the face according to its neutral state, have been proposed. The
vision system employed for facial detection was the Face Tracker [13].

All feature sets proposed in this paper, denoted from now on as FS1, FS2,
FS3, FS4, FS1−3 and FS2−4, are based on geometric facial features. To obtain
them, Face Tracker was modified to map only 33 feature points, instead of the 66
originally mapped. A small set of original points was chosen based on previous
experiments in which the face was mapped only by feature points, considering
different subsets of them. Each subset was chosen by selecting a different amount
of points to describe the elements (mouth, eyes, eyebrows, chin and nostrils) of
the face. So, three distinct subsets were analyzed: the 66 original Face Tracker
points, a subset of 33 selected points and a reduced subset with only 26 points.
The obtained results were not satisfactory, but they pointed out that mapping
the face relying only in feature points is not sufficient to describe a human face
for emotion recognition. As the best achieved results were for the 33 points
subset, that number of points was adopted for the feature sets presented here,
but new facial information was added to improve the facial modeling.

The elements considered in the proposed feature sets aim to model the face
parts which are intrinsically related to movements due to emotion expression
according to psychologists [2] [3]. Figure 1 presents the graphical elements of the
proposed feature sets, illustrated in an image of the Radboud Faces database
[6]. As mentioned, they are based on 33 facial points: eight mapping the mouth,
six for each one of the eyes, three for each eyebrow and the chin, two for nostrils
and two delimiting the lateral extremities of the face near the eyes. The points
are represented by red dots. Also, to model the shape of the eyes, the mouth
and of face regions related to emotional muscular movements, eight areas are
mapped, which can be identified by the geometric regions delimited by the black
color line segments.

To obtain FS1 and FS2, different distances and angles among the 33 feature
points are considered. For the first one, in all possible combinations of points,
the distances and the angles that the line connecting two distinct points makes
with the horizontal axis are obtained. It creates a feature set of dimensionality
D1 = 2 • 33 + 8 + 2 • 528 = 1130.

For the second one, only a subset of the distances and angles from FS1 are
calculated. We chose only the distances and angles which map the regions of
the eyes, the mouth, the upper mouth lip with nostrils and the lower mouth
lip with the chin. This subset is able to describe mouth and eye states and
also movements of the mouth in relation to the chin or nostrils. Considering
that the eight mapped areas can correctly represent the remaining emotional
facial movements not mapped by the absent angles or distances, this feature
set can indeed be representative, with the advantage of the low dimensionality,
which is D2 = 2 • 33 + 8 + 2 • 107 = 288. The main goal of FS2 is to avoid the
calculations of all distances and angles from FS1, which can result in redundancy.
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Fig. 1. Graphical representation of the proposed feature sets

Also, the extra information from FS1 may slow down the ML generalization
process and lead to the generation of high complexity and specialized classifiers,
resulting in poor performance.

These two feature sets represent only single frame-based features, no infor-
mation about the relation of these measurements to their values in a frame
displaying a neutral expression is encoded. To capture this information, feature
sets FS3 and FS4, based respectively on the single frame-based feature sets FS1

and FS2, were created. These feature sets compare the changes in feature values
between the current frame, which represents an emotion, and the frame in which
the neutral expression of the subject is present. It is important to highlight they
only represent the differences of the values (points coordinates, distances, angles
and areas), not the values itself.

The FS1−3 and FS2−4 are, respectively, a combination of FS1 with FS3,
and FS2 with FS4. The objective is to investigate whether combinations of the
created feature sets, which map distinct characteristics of a subjects’ expression,
can result in better performance for the task of emotion recognition.

3 Experiments and Results

The experiments were performed using the Weka simulator with SVMs or the
C4.5 algorithm as classifiers [5]. The 10-fold cross validation methodology [10]
was applied for training the classifiers. The proposed system should be able to
recognize emotions of any person, including people who were not encountered
previously. To report on person-independent system performance, it is important
to partition the data in such a way that there are no data from one subject in
both the training and the test sets. In this sense, data was partitioned in 80%
of samples used for training and the remaining 20% for tests. Samples from a
given subject are not present in both training and test sets.

The ML techniques investigated have different parameters to set. To find the
optimal parameters in terms of classification performance, it is important that
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the whole parameter optimization process is done independently of the test set
[14]. To find optimal parameter values, a separate 3-fold cross validation loop
[10] is employed each time a classifier is training when searching for the optimal
parameters. The classifier performance is evaluated for different values of each
parameter. This process is repeated for each of the three folds and the final
chosen parameter value is the average over the values found for the three folds.
Parameters are assumed independent and there is no specific order in which they
are optimized. In all the reported experiments, optimization for all unknown
parameters was performed this way.

The data analyzed consists of the Radboud Faces database (RaFD) [6] and the
Extended Cohn-Kanade (CK+) database [8]. Both databases are freely available
and all displayed facial expressions present information about emotion and were
also coded according to the Facial Action Coding System (FACS) [3]. For the
performed experiments, only subsets of the RaFD and CK+ databases were
used. For RaFD, it contains all images in which models are in frontal view, with
eyes directed straight ahead and expressing one of six basic emotions [2]. This
resulted in 67 subjects, including both adults and children, with 67 samples
from each of the analyzed emotions. For CK+, it possesses information from 50
subjects and contains only image sequences of the same emotions considered for
the RaFD database. Also, a balanced number of emotion expressions were kept,
resulting in 50 samples from each of the analyzed emotions.

Rotation and translation were applied to each image before their analysis by
ML techniques. Rotation aligns the face to the horizontal axis and translation
puts it in first quadrant. Also, each image was normalized by its intra-eyes dis-
tance. This was done to correct problems of subjects being at distinct distances
from the camera, presenting diverse head inclinations or possessing different face
formats.

The best results for both data sets can be seen in Table 1. The explored
SVM kernels were Linear, Polynomial and Gaussian and all kernel dependent
parameters were optimized. For C4.5 algorithm, optimized parameters were the
number of minimum instances per node and the Confidence Factor. In general,
best SVMs results presented high accuracy rates and were obtained with Gaus-
sian kernels. Accuracy rates for RaFD were from 5% to 19% better than for
CK+, depending on the feature set evaluated. The C4.5 algorithm results also
achieved mainly high accuracy rates, however not as good as the SVMs ones.
Besides, it is important to note the accuracy rates for RaFD were 4% to 18%
better than the ones obtained for CK+, depending on the analyzed feature set.

When comparing different approaches, a statistical test is needed to determine
the superiority of a particular one among others. Statistical tests were carried
out to determine whether any feature set analyzed resulted in better perfor-
mance, with 95% of certainty, according to Student t test [9], for each of the ML
techniques investigated.

According to results presented, when using the same classifiers, for RaFD
data set, SVMs with FS1−3 presented better results, with 95% of certainty,
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Table 1. Accuracy obtained by SVMs and C4.5 algorithm for RaFD and CK+ data
sets

RaFD data set CK+ data set
Feature Set SVMs C4.5 SVMs C4.5

Kernel Accuracy (%) Accuracy (%) Kernel Accuracy (%) Accuracy (%)

FS1 Gaussian 80.22 +
− 1.05 71.43 +

− 1.01 Gaussian 69.24 +
− 1.08 58.42 +

− 1.03

FS2 Gaussian 75.82 +
− 1.12 71.43 +

− 0.97 Gaussian 70.27 +
− 1.11 64.87 +

− 1.00

FS3 Linear 90.11 +
− 1.07 86.81 +

− 1.04 Gaussian 79.49 +
− 1.09 68.67 +

− 1.06

FS4 Linear 87.91 +
− 1.03 79.12 +

− 1.01 Gaussian 79.73 +
− 1.06 75.68 +

− 1.04

FS1−3 Gaussian 94.51 +
− 1.08 84.62 +

− 1.03 Gaussian 75.81 +
− 1.11 70.97 +

− 1.05

FS2−4 Gaussian 90.11 +
− 1.09 84.62 +

− 1.03 Gaussian 79.17 +
− 1.13 79.17 +

− 1.04

than with FS2−4 and FS3. However, for C4.5 algorithm, FS3 presented better
results than FS2−4 and FS1−3, with 95% of certainty. For CK+ data set, SVMs
with FS4 performed better, without 95% of certainty, than with FS3 and FS2−4.
While FS1−3 performed statistically worse. However, for C4.5 algorithm, FS2−4

presented better results than FS4 and FS1−3, with 95% of certainty.
Besides, the statistical analysis also demonstrated, with 95% of certainty, that

results for RaFD data set were better. It assures the already proven hypothesis
that images with less variability conditions in quality or lighting yields better
generalization for ML techniques. Also, SVMs performed better than C4.5 algo-
rithm, with 95% of certainty, for this data set, but this it not true for CK+ data
set, in which performance for both ML techniques was quite similar.

As can be noted, for RaFD data set, the best performance was achieved with
feature sets FS1−3, FS2−4 and FS3, and the worst can be seen with feature
sets FS1 and FS2, for SVMs or C4.5 algorithm. For CK+ data set, there is
no difference when comparing the worst performance, but the best results for
SVMs and C4.5 algorithm were slightly different, even though feature sets FS4

and FS2−4 always appear among best performance. This analysis can lead to
an important difference: while RaFD images are of better quality and lightning
conditions, resulting in better performance from Face Tracker adopted vision
system, the extra information existent in FS1 provided better generalization
capacity for the classifiers investigated. When analyzing the CK+ data set, which
possesses images of low quality and worse lighting conditions if compared to
the RaFD images, the proposed FS2, with reduced information to avoid facial
data redundancy, consistently improved the final performance for the classifiers
investigated. As in real conditions there is no easy way to control image quality
or lightning conditions, this feature set seems to be quite adequate, not only
because of its reduced dimensionality, but also because of the better performance
imposed to the classifiers.

Additionally, the results show the chosen facial characteristics provided to ML
techniques the capacity to model the emotion recognition task. It is important
to highlight that the feature sets based on facial differences according to its
neutral state (FS3 and FS4) and the combined feature sets (FS1−3 and FS2−4),
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which capture differences of the face according to its neutral state as well as
characteristics of the facial expression during each emotion, achieved better ML
performance, regardless of the data set used. Also, whereas FS1-based sets have
benefited from higher quality images, FS2-based ones showed themselves robust
for less reliable images.

An analysis of which emotion was easily identified by ML techniques was
also made. For RaFD data set, the emotions Happiness, Neutral and Disgust
were the most easily recognizable. Fear and Anger presented good results, while
Surprise and Sadness showed to be the most difficult ones. The only exception
is found for Fear when analyzed by the C4.5 algorithm, which presented high
error rates, being misclassified mainly as Surprise or Sadness. For CK+ data
set, the emotions Happiness, Neutral, Surprise and Disgust were the most easily
recognizable. Sadness, Fear and Anger seemed to be the most difficult to identify.
One exception can also be found for the C4.5 algorithm, which presented high
accuracy rates for emotion Fear, while poor accuracy for Happiness.

It is possible that differences in emotion recognition for each data set have
occurred because, for RaFD data set, better results were mainly achieved with
FS1-based sets, while for CK+ data set, best performance was obtained by
FS2-based sets. The Surprise and Sadness recognition problem may be partially
explained because Face Tracker presented problems in identifying the mouth
wide open, an important characteristic of Surprise, in which was identified the
tongue as the lower mouth lip. And also the mouth lips downwards, an intrinsic
characteristic of Sadness.

4 Conclusions

The identification of emotions based on facial characteristics was investigated in
this paper. For such, geometric features as the shapes of the facial components
and the location of facial salient points were used to propose six distinct feature
sets which represent characteristics of the human face.

All feature sets were completely developed and validated for the emotion
recognition task. An important contribution of this work is in the use of prede-
fined areas of the face in conjunction with angles and distances for constructing
feature sets to be used for emotion classification, since the ML techniques pre-
sented good performance with high hit rates when applied to both data sets,
specially for RaFD data set.

According to FACS [3], distinct facial muscles are activated for each basic
emotion. As future work, we intend to investigate the use of the proposed feature
sets to analyze the human face in terms of muscular movements or action units
(AUs). If these feature sets be able to accurately identify such facial muscles,
they can be applied to other areas such as autism, lie detection and son on.

Acknowledgments. The authors thank FAPESP (grant 2008/10554-5).



416 G.L. Libralon and R.A. Francelin Romero

References

1. Cohn, J.F.: Foundations of human computing: Facial expression and emotion. In:
ACM Int. Conf. Multimodal Interfaces, vol. 1, pp. 610–616 (2006)

2. Ekman, P.: Basic emotions. Wiley (1999)
3. Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System. A Human

Face (2002)
4. Ekman, P., Friesen, W.V.: Unmasking the face. Malor Books, Cambridge (2003)
5. Frank, E., Witten, I.H.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann (2005)
6. Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H.J., Hawk, S.T., van Knippen-

berg, A.: Presentation and validation of the Radboud Faces Database. Cognition
and Emotion 24(8), 1377–1388 (2010)

7. Lee, H., Park, J., Chung, M.: A linear affect-expression space model and control
points for mascot-type facial robots. IEEE Transactions on Robotics 23(5), 863–873
(2007)

8. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The
Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and
emotion-specified expression. In: IEEE Workshop on CVPR for Human Commu-
nicative Behavior Analysis, San Francisco, USA (2010)

9. Mason, R., Gunst, R., Hess, J.: Statistical design and analysis of experiments. John
Wiley and Sons (1989)

10. Mitchell, T.: Machine Learning. McGraw Hill (1997)
11. Picard, R.: Affective computing. MIT Press, Boston (1997)
12. Russell, J.: A circumplex model of affect. Journal of Personality and Social Psy-

chology 39, 1161–1178 (1980)
13. Saragih, J., Lucey, S., Cohn, J.: Deformable Model Fitting by Regularized Land-

mark Mean-Shift. Int. Journal of Computer Vision 91(2), 200–215 (2011)
14. Wessels, L., Reinders, M., Hart, A., Veenman, C., Dai, H., He, T., van’t Veer, L.: A

protocol for building and evaluating predictors of disease state based on microarray
data. Bioinformatics 21(19), 3755–3762 (2005)



Regularly Frequent Patterns Mining

from Sensor Data Stream

Md. Mamunur Rashid, Iqbal Gondal, and Joarder Kamruzzaman

Faculty of Information Technology,
Monash University, Melbourne, Australia

{md.rashid,iqbal.gondal,joarder.kamruzzaman}@monash.edu

Abstract. Mining interesting and useful knowledge from the huge
amount of data gathered in wireless sensor networks is a challenging
task. Works reported in literature use support metric-based sensor as-
sociation rule which employs the occurrence frequency of patterns as
criteria. Such criteria may not be appropriate for finding significant pat-
terns. Moreover, temporal regularity in occurrence behavior should be
considered as another important measure for assessing the importance
of patterns in WSNs. Frequent sensor patterns that occur after regular
intervals is called regularly frequent sensor patterns. Even though mining
regularly frequent sensor patterns from sensor data stream is extremely
important in many real-time applications, no such algorithm has been
proposed yet. In this paper, we propose a novel tree structure called
Regularly Frequent Sensor Pattern-tree (RSP-tree) and an efficient min-
ing approach for finding regularly frequent sensor patterns from WSNs.
Extensive performance analyses show that our technique is time and
memory efficient in finding regularly frequent sensor patterns.

Keywords: Wireless sensor networks, data mining, knowledge discov-
ery, frequent pattern, regularly frequent sensor pattern.

1 Introduction

Recently, wireless sensor networks (WSNs) have emerged as a promising research
area with strong practical applications in many areas including environment
monitoring, industrial and machine health monitoring, waste water monitoring
and military surveillance [1]. A WSN consists of many tiny and low cost hetero-
geneous or homogeneous sensor nodes that are formed to sense the environment
around them and send the detected events to a well-equipped node known as
sink, through multihop communication. The detected events are transmitted to
the sink periodically or based upon satisfying a particular predicate or as an
answer to a query [2]. In this mode of operation WSNs generate a large amount
of data in the form of streams. Such stream data from WSN become useful when
they can be mined for knowledge in real time, which presents new challenges for
the data mining techniques.

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 417–424, 2013.
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Recently, sensor association rules have received a great deal of concentration
due to their significance in capturing the temporal relationship among sensor
nodes in WSNs [7, 8]. An example of sensor association rules could be (s1, s2 →
s3, 85%, λ) which means that if sensor s1 and s2 detect events within time λ,
then there is 85% of chance that s3 detects events within same time interval. of
chance that s3 detects events within same time interval.

Another important criterion for identifying the interestingness of frequent
patterns might be the shape of occurrence, i.e., whether they occur regularly,
irregularly, or mostly in specic time interval in the sensor database. Regularly
frequent sensor patterns can be used for predicting the source of future events.
By knowing the source of future event, we can detect the faulty nodes easily from
the network. For example, we are expecting to get an event from a particular
node, and it does not occur signifying that the node might have faulty. Regularly
frequent sensor patterns also can identify a set of temporally correlated sensors.
This knowledge can be helpful to overcome the undesirable effects (e.g., missed
reading) of the unreliable wireless communications.

Traditional frequent pattern mining methods [3, 4] fail to discover such regu-
larly frequent sensor patterns because they only focus on the high frequency pat-
tern. Tanbeer et al. [5] proposed the RP-tree (Regular Pattern tree) to mine the
regularly occurs patterns from static transactional databases. Recently, Rashid
et al. [6] have introduced a problem of discovering regularly frequent patterns
that follow a temporal regularity in their occurrence characteristics. For regularly
frequent patterns mining, they proposed a tree structure, called a RF-tree (Reg-
ularly Frequent Pattern tree), which capture the database contents in a highly
compact manner with two database scans. To find regularly frequent sensor pat-
tern from sensor data stream, we no longer to have the luxury of performing
multiple data scans. Therefore, for the two database scans requirement RF-tree
is inefficient in mining regularly frequent sensor patterns from the stream of
sensor data.

Motivated from the above requirements, in this paper, we develop a single-
pass tree structure, called the RSP-tree (regularly frequent sensor patterns tree),
that can capture important knowledge from the stream contents of sensor data
in a very compact manner. Using a pattern-growth approach, RSP-tree can
efficiently mine the regularly frequent sensor patterns from sensor stream. To
the best of our knowledge, RSP-tree is the first effort to mine regularly frequent
sensor patterns from sensor stream data. Extensive performance study shows
that our proposed technique is very efficient in discovering regularly frequent
sensor patterns over sensor data stream.

The remainder of this paper is organized as follows. In section 2, we discuss
the problem of mining regularly frequent sensor pattern in WSNs. In Section 3,
we develop our proposed RSP-tree structure and algorithm. In Section 4, our
experimental results are presented and analyzed. Finally, Section 5 concludes
the paper.
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Table 1. A Sensor database (SD)

TS Epoch TS Epoch TS Epoch TS Epoch

1 s1s2s5s6 3 s1s2s5s6 5 s2s3s4 7 s4s5s6
2 s1s2s3s5 4 s1s2s3s5 6 s3s4s5 8 s2s3s4

2 Regularly Frequent Sensor Patterns Mining Problem
in WSNs

Let S = {s1, s2, ..., sp} be a set of sensor in a particular wireless sensor network.
We assume that the time is divided into equal-sized slots t = {t1, ..., tq} such
that tj+1 − tj = λ, j ∈ [1, q − 1] where λ is the size of the each time slot. A set
P = {s1, s2, ..., sn} ⊆ S is called a pattern of a sensors.

An epoch is a tuple e(ets, Y ) such that Y is a pattern of the event detecting
sensors that report events within the same time slot and ets is the epoch’s time
slot. A sensor database SD is a set of epochs E = {e1, e2, ..., em} with m = |SD|,
i.e., total number of epochs in SD. If X ⊆ Y , it is said that X occurs in e and
denoted as eXj , j ∈ [1,m]. Let EX =

{
eXj , ..., eXk

}
, where j ≤ k and j, k ∈ [1,m]

be be the ordered set of epochs in which pattern X has occurred in SD. Let eXs
and eXt , where j ≤ s < t ≤ k be the two consecutive epochs in EX . The number
of epochs or time difference between eXt and eXs , can be defined as a period of
X, say pX . Then a period of X, pX =

{
eXt − eXs

}
. Let PX =

{
pX1 , ..., pXs

}
be the

set of periods for patterns X. For simplicity in period computation, assume the
first and last epochs in SD as null with ef = 0 and (el = em) respectively.

Definition 1 (Regularity of Patten X ): Let for a EX , PX be the set of
all periods of X i.e., , where n is the total number of periods in PX . Then the

average period value of pattern X represent as, X̄ =
∑N

k=1
PX

k

n and the variance

of periods for pattern X is represent as σX =
∑N

k=1
(PX

k −X̄)
2

n . The regularity of
X can be denoted as Reg(X) = σX (variance of periods for pattern X).

Definition 2 (Support of a pattern X ): The number of epochs in a SD that
contain X is called the support of X in SD and is denoted as Sup(X) = |EX |,
where |EX | is the size of EX .

Definition 3 (Regularly frequent sensor Pattern): A pattern is called a
regularly frequent pattern if it satisfies both of the following two conditions:
(i) its support is no less than a user-given minimum support threshold, say,
min sup, α and (ii) its regularity is no greater than a user-given maximum reg-
ularity threshold say, max variance, β.

Problemdefinition:Given a SD,min sup(α) andmax variance(β) constraints,
the objective is to discover the complete set of interesting patterns in SD having
than support no less than α and regularity no more β.
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Fig. 1. RSP-tree construction

3 Proposed RSP-Tree Structure and Algorithm

In this section, we present the construction and mining process of the regularly
frequent sensor pattern tree (RSP-tree) for finding regularly frequent sensor
patterns. The RSP-tree construction has two phases: insertion phase and re-
construction phase. The step-by-step construction process of the RSP-tree is
presented below, with examples based on the sensor database of Table I shown
in Fig. 1(a-e). For the figure simplicity, we do not show the node traversal point-
ers in the tree. Each node in a RSP-tree represents a sensor set in the path from
the root up to that node. An important feature of a RSP-tree is that, in the tree
structure it maintains the appearance information for each epoch. To explicitly
track such information, it keeps a list of TS (time-slot) information only at the
last sensor-node for an epoch. Such a node is denoted as tail-node. Hence, a
RSP-tree maintains two types of nodes; namely ordinary node and tail node.
The former are types of nodes used in FP-tree that do not maintain TS infor-
mation. On the other hand, the latter type used in RP-tree [5], can be defined
as follows:

Definition 4 (tail node): Let e = y1, y2, ..., yn be an epoch that is sorted
according to the SL-list order. If e is inserted into RSP-tree in this order, then
the node of the tree that represents item yn is defined as the tail-node for e and
it explicitly maintains e’s TS. Irrespective of the node type, no node in RSP-tree
needs to maintain a support count value like FP-tree. Each node in the RSP-tree
maintains parents, children, and node traversal pointers. So, the structures of an
ordinary node and a tail node are given as follows: For ordinary node: M, where
M is the sensor name of the node. For tail node:M [e1, e2, ..., en], where M is the
sensor name of the node and ei, iε[1, n], is an epoch TS in the TS-list, indicating
that M is the tail-node for epoch ei.

Lemma 1: A tail-node in an RSP-tree inherits an ordinary node; but not vice
versa.

Proof. The structure of an ordinary node states that it exactly maintains three
types of pointers: a parent pointer, a list of child pointers, and a node traversal
pointer. A tail-node maintains all such information like an ordinary node. It also
maintains the TS-list, which is additional information. Since the TS-list is not
maintained in an ordinary node, so we can say, there is an ordinary node in every
tail-node and in contrast, no tail-node in an ordinary node.
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Insertion Phase: For the insertion phase, RSP-tree arranges the sensors ac-
cording to lexicographic sensor order in the database and is built by inserting
every epoch in database one after another into it and at this stage we call it
RSP-treeL . Simply, it maintains a sensor lexicographic order (SL-list). SL-list
includes each distinct sensor found in all epochs in database according to sensor
lexicographic order (e.g.,s1, s2, s3, s4, s5, s6 for example sensor databse show in
Table 1) and contains the support value of each sensor in the database. Initially
the RSP-tree is empty and starts construction with null root node shown in
Figure 2(a). First epoch (i.e., TS =1) {s1, s2, s5, s6, s7} is inserted into the tree
< {} → s1 → s2 → s5 → s6 : 1 > as-it-is manner and results the first branch
of the tree being s1 as the initial node; just after root node and s6 : 1 is the
lail-node is shown in Figure 2(b). Hence, it carries the TS (i.e., 1) epoch in its
TS-list. The support count entries for sensors s1, s2, s5 and s6 are also updated
at the same time. Fig. 1(c) shows the status of SL-list and the RSP-treeL after
inserting TS = 2{s1s2s3s5}. Ts=2 has its prefix < {} → s1 → s2 > common
with TS=1. Therefore, the epoch TS=2 is inserted in the tree following the path
< {} → s1 → s2 > and then creating a new child from s2 for uncommon part of
the epoch with node s5 : 2 being the tail-node that carries the TS information
for the epoch.In this way, after adding all epochs (TS=3, TS=4, TS=5, TS=6,
TS=7 and TS=8), we get the complete RSP-treeL shown in Fig. 1(d). We call
the SL-list of the constructed RSP-treeL as SL. Here, the insertion phase is end
and the reconstruction phase starts.

Reconstruction Phase: The purpose of the restructuring phase is to achieve
a highly compact RSP-tree which will utilize less memory and facilitate a fast
mining process. In the restructuring phase, we first sort the SL in frequency-
descending order SFD using merge sort and reorganize the tree structure ac-
cording to SFD order. For restructuring our RSP-tree, we use BSM (branch
sorting method) proposed in [9]. BSM uses the merge sort to sort every path of
the prefix tree. This approach, first remove the unsorted paths and then sorts
the paths and reinserted to the tree. Fig. 1(e) shows the structure of the final
RSP-tree that we obtained by restructuring operation.

Property 1: An RSP-tree contains a complete set of frequent sensor projection
for each epoch in sensor databse (SD) only once.

Now we describe the mining process of our proposed algorithm. Similar to the
FP-growth [4] mining approach, we recursively mine the RSP-tree of decreasing
size to generated regularly frequent patterns by creating conditional pattern-
bases (PB) and the corresponding conditional trees (CT) without additional
database scan. Then we generate the frequent patterns from the conditional
tree. At the end we check the regularity of generated frequent pattern to find
regularly frequent sensor pattern.

Property 2: The TS-list in a RSP-tree maintains the occurrence information
for all the nodes in the path (from that tail-node to the root) at least in the
epochs of the list.
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Fig. 2. Conditional pattern-base and conditional tree construction with the RSP-tree

Lemma 2: Let P = b1, b2, ..., bn be a path in a RSP-tree where node bn is
the tail node that carries the TS-list of the path. If the TS-list is pushed-up to
node bn−1, then the node bn−1 maintain the occurrence information of the path
P ′ = b1, b2, ..., bn−1 for the same set of epochs in TS-list without any loss.

Proof. Based on Property 2, the TS-list at node bn maintains the occurrence
information of the path Z’ at least in epochs it contains. So, the same TS-list
at node bn−1 exactly maintains the same epoch information for Z’ without any
lose.

For example database shown in Table 1, suppose the min sup = 3 and
max var = 1.1. We explain our mining procedure from below using the bottom-
most sensor s6. The conditional pattern-base tree of s6 is shown in Fig. 2 (a).
According to the Lemma 2, the TS-list of s6 is pushed-up to its respective parent
nodes s1 and s4. So, each parent node of s6 is converted to a tail-node. For node
s6, its immediate frequent pattern is (s6 : 1, 3, 7) i.e., s6 occurs in epoch 1, 3 and
7 so its support is 3 and it has two paths in RSP-tree: (s2, s5, s1, s6 : 1, 3) and
(s5, s4, s6 : 7) where the number after ”:” indicates each sub-pattern occurring
TS. Then s6 conditional pattern-base is {(s2, s5, s1 : 1, 3), (s5, s4 : 7)} which is
shown in Fig. 2 (a). s6 conditional tree leads to only one branch (s5 : 1, 3, 7)
and the generated frequent patterns are (s5s6 : 1, 3, 7) and (s6 : 1, 3, 7). We
then calculate the regularity of s5s6 and s6 by the Definition 1 andobtain their
regularity values 1.5 and 1.5, respectively. Since {Reg(s5s6), Reg(s6)} > 1.1, the
patterns s5s6 and s6 are not regularly frequent sensor patterns. Similar process
is repeated for other sensors in the RSP-tree to find the complete set of regularly
frequent sensor patterns which are shown in Fig. 2(b-e).

4 Experimental Results

In this section, we present the experimental results on mining the regularly
frequent sensor patterns on the proposed RSP-tree. In absence of any existing
method that can mine regularly frequent patterns on sensor data; we compare its
performance with the existing method [6] that applies to transactional database.
Our programs are written in Microsoft Visual C++ and run with Windows 7
on a 2.66 GHz machine with 4GB of main memory. To evaluate the perfor-
mance of our proposed approach, we have performed experiments on IBM syn-
thetic dataset (T10I4D100K ) and real life dataset (musroom and kosarak) from
frequent itemset mining dataset repository [10]. Context and objects in these
datasets are similar to the epochs and sensors in the terminology of this paper.
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Fig. 3. Execution time comparison

In the first experiment, we show the effectiveness of RSP-tree in mining regu-
larly frequent sensor pattern mining in terms of execution time. To analysis the
execution time performance, experiments were conducted with a mining request
for the given datasets by varying the min sup and max var values. The x-axis
in each graph shows the change of min sup value in the form of percentage of
database size and the y-axis indicates the overall execution time. It is shown
from the Fig. 3 that, RSP-tree structure outperforms the RF-tree structure in
terms of overall execution time in all cases. The reason of this performance gain
is that the RF-tree construction requires two database scans, while RSP-tree
construction requires only one database scan.

Fig. 4. Compactness of the RSP-tree Fig.5. Scalability of RSP-tee

In the second experiment we show the compactness of the RSP-tree. RSP-tree
is a threshold independent tree structure. For this reason, we do not compare
its memory requirement with RPS-tree. The memory usages of our RSP-tree for
different datasets have shown in Fig. 4. Fig. 4 shows that RSP-tree size can easily
handle with available memory when it captures the whole database information.

Finally, we study the scalability of the RSP-tree by varying the number of
transactions in the database on overall execution time. To test the scalability of
RSP-tree, we use kosarak dataset for its huge sparse dataset with a large number
of distinct items (41,270) and transactions (990,002). This dataset is divided
into five portions each of 0.2 million transactions. The experimental results are
present in Fig. 5, where we fix min sup3% and max var40%. From Fig. 5, we
can see that as the size of database increases, the execution time increase for
RSP-tree and RF-tree, but RSP-tree requires comparatively less execution time
with respect of the size of the database.
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5 Conclusion

The key contribution of this paper is to provide a novel method for mining regu-
larly frequent sensor patterns over sensor data streams. We have used a pattern
growth approach to avoid the level-wise candidate generation-and-test method.
The proposed RSP-tree has build once and mine many property and is highly
suitable for interactive mining. This tree structure require only one database
scan to determine the complete set of regularly frequent sensor patterns. Ex-
tensive performance analyses show that our tree structure is very efficient for
regularly frequent sensor patterns mining and outperform the existing algorithm
in both execution time and memory usage.
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Abstract. With the fast development of online Social Network Services(SNS), 
social members get large amounts of interactions which can be presented as 
links with values. The link prediction problem is to estimate the values of un-
known links by the known links' information. In this paper, based on deep 
learning approaches, methods for link prediction are proposed. Firstly, an unsu-
pervised method that can works well with little samples is introduced. Second-
ly, we propose a feature representation method, and the represented features 
perform better than original ones for link prediction. Thirdly, based on Re-
stricted Boltzmann Machine (RBM) that present the joint distribution of link 
samples and their values, we propose a method for link prediction. By the expe-
riments' results, our method can predict links' values with high accuracy for da-
ta from SNS websites. 

Keywords: Link Prediction, Deep Belief Networks, Restricted Boltzmann  
Machine. 

1 Introduction 

Nowdays, a great number of SNS(Social Networking Services) with different interests 
are available online. Almost all SNS websites allow their social members to interact 
with each other. The interaction may be showing agreement or disagreement. Taking 
social members as vertexes in a graph, such interaction can be represented as the 'link' 
(a direct edge) between them. The interaction of showing agreement can be presented 
as a link with a positive value between the users, while showing disagreement is a 
link with a negative value. Because a member’s state in the social network is almost 
valued by these links, estimating the links' values could provide insight into some of 
the fundamental principles that drive the behaviors of social members. 

As defined in [1], link prediction is the problem of predicting the existence of a 
link between two entities, based on attributes of the objects and other observed links. 
The predicting task, in this paper, is to predict the attitude of one user toward another 
from the evidence provided by their relationships with other members of the sur-
rounding social network. Many research about link prediction has been done and sev-
eral methods have been used. 
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In the survey by Linyuan Lü et al. [2], many similarity-based algorithms and prob-
abilistic models for link prediction are introduced. Taskar et al. in [3] and Popescul et 
al. in [4] use supervised statistical models to predict co-authorship. Brzozowski et al. 
in [5] use decision tree to predict that weather a user will vote on a resolve under the 
given conditions. Leskovec et al. in [6] use a logical regression model to predict links' 
values in signed networks. 

In order to improve the performance of statistical models, which are used to solve 
link prediction, more and more features are taking into account. We did that study in 
[7]. However, how to improve the performance by representing existing features is 
seldom discussed. At the same time, all of above methods need a lot of samples and 
every sample must have a exactly class label. In some conditions, it is not easy to get 
so many samples with labels. As introduced in [9-11], the high representational ability 
of DBN based on RBMs suggests us to use deep learning approaches to solve link 
predicting problems. 

In this paper, based on deep learning approaches, we propose an unsurprised me-
thod for link prediction, a method to represent features for link prediction and a link 
prediction method by DBN based on RBMs. The experiments' results show these 
three methods work well. In section 2, the background knowledge of RBM and DBN 
are introduced. In section 3, our methods are described. Experiments and results anal-
ysis are in section 4 and section 5 is conclusion. 

2 Background Knowledge 

2.1 Restricted Boltzmann Machine (RBM) 

A RBM is a neural network that contains two layers. It has a single layer of hidden 
units that are not connected with each other. And the hidden units have undirected, 
symmetrical connections to a layer of visible units. To each unit, including  
both hidden units and visible units, in the network has a bias. The value of visible 
units and hidden units are often binary or stochastic units (assume 0 or 1 based on 
probability).  

 

            Fig. 1. (a) left is the structure of a RBM              (b) right is a visible unit 
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As shown in figure 1(a), the bottom layer represents a visible vector v and the top 
layer represents a hidden vector h. The matrix W contains the symmetric, interaction 
terms between the visible units and the hidden units. 

When input a vector v (v1,v2…vi...) to the visible layer, the binary state, hj of each 
hidden unit is set to 1 with probability by  

 ( 1| ) ( )j j i ij
i

p h v b v wσ= = +  (1) 

where  σ x 1/ 1 e , and bj is the bias of hidden unit j. 
When input a vector h (h1,h2,...hj...) to the hidden layer, the binary state, vi of each 

visible unit is set to 1 with probability by (as shown in figure 1(b)) 

 ( 1| ) ( )i i j ij
j

p v h a h wσ= = +  (2) 

where ai is the bias of visible unit i. 
RBMs are usually trained by using the Contrastive Divergence(CD) learning pro-

cedure, which is described in [8]. To avoid the difficulty in computing the log-
likelihood gradient, the CD method approximately follows the gradient of a different 
function. CD has been applied effectively to various problems, using Gibbs sampling 
or hybrid Monte Carlo as the transition operator for the Markov chain.  

2.2 Deep Belief Network (DBN)  

DBNs are multilayer, stochastic generative models that are created by learning a stack 
of Restricted Boltzmann Machines (RBMs), each of which is trained by using the 
hidden activities of the previous RBM as its training data. Each time a new RBM is 
added to the stack, the new DBN has a better lower bound on the log probability of 
the data than the previous DBN. 

One DBN is shown in figure 2(a). Through each layer RBM, the dimension of in-
put visible vector can be decreased, unchanged or increased, when they are 
represented by the hidden vector. Only the first RBM is trained by the original sam-
ples. Then the second RBM is trained by the first RBM's hidden vectors which are 
generated from the original samples. Do that iteratively until the top RBM is learned. 
If a sample is inputted to the first RBM of that DBN, the highly abstract vector of that 
sample would be gotten from the top RBM's hidden layer. 

Another DBN is shown in figure 2(b). The network's structure is nearly the same as 
figure 2(a) except the top RBM. In order to get a model that presents joint distribution 
of samples and their labels, the labels are transformed to binary vectors firstly. Then 
the sample label vector is joined with the vector generated by previous RBM from 
that sample. And get a new vector, which is used to train the top RBM. By such 
trained DBN, a sample's label can be predicted by trying to join its abstracted vector 
with all possible label vectors as input for the top RBM. 
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Fig. 2.(a) left is DBN structure for unsupervised link prediction and feature representation. 
(b)right is  DBN structure for link prediction. 

3 Deep Learning Approaches for Link Prediction 

3.1 Unsupervised Link Prediction 

Hinton uses a DBN to learn low-dimensional codes in [10] and shows that work much 
better than using principal components analysis to reduce the dimensionality of data. 
With a 4 layer DBN, the image feature's dimension is decreased from 768 to 2. That 
suggests us to use it in abstracting the features for link prediction 

To learn a model for unsupervised link prediction, We use a DBN has the same 
structure as the one shown in figure 2(a). Through all RBMs, the dimension of input 
sample vector is decreased. As there are two classes of our link values in our problem, 
we can predict the input sample's label by the last hidden layer's vector. If the last 
hidden layer only has one unit, which output is a probability value to be 0 or 1, we 
can take the probability value as how it look like to belong to a class label. Because 
the DBN is based on unsupervised training as clustering, the hidden unit's value 
stands for which label is known. However, the link value can be determined by the 
most part of the train samples' labels. 

3.2 Feature Representation 

Well learned RBMs have high representational power. In order to speed up the image 
retrieval process, only 28 bits are used to represent a 32 x 32 color images in [11]. 
That suggests us to use RBMs to represent  the link prediction features, and use the 
represented features as another classifier's input. 

We use the DBN as shown in figure 2(a) to represent link prediction features. The 
original feature vectors as the first RBM's visible units' input and use the top RBM's 
hidden units' output as their represented features. Then we use the represented fea-
tures to train a logistic regression model to do link prediction. 
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3.3 DBN for Link Prediction 

A DBN is used to recognize handwrite digit images with high accuracy in [9]. The 
DBN with RBMs forms a very good generative model of the joint distribution of 
handwritten digit images and their labels. That suggests us to use this method to get 
the joint distribution of link samples and their values. 

We use a DBN as shown in figure 2(b). We transform the link value label to a bi-
nary vector. The dimension of the vector is the same as how many classes that we 
have in samples. At the beginning, set all the bits to '0', then only turn up the ith bit to 
'1', if the sample belong to the ith class. We join the class label vector and the hidden 
value vector form lower RBM as the input for the top RBM. This method could mod-
el the joint distribution of link samples and their labels. When test a sample, we use 
the following metric. 

After training the top RBM, each possible label is tried in turn with a test vector 
and get a set of free energy(by equation (3)) for each combination. Then we can use a 
Softmax method to get the log probability of which class label should the sample has. 

 ( ) log(1 )jh

i i
i j

F v v a e= − − +   (3) 

where vi is the value of visible unit i and ai is that unit's bias; hj is calculated by  
equation (1). 

4 Experiments and Analysis 

There are three parts of our experiments. The first one is to use a DBN to solve unsu-
pervised link predicting as introduced in 3.1; The second one is to test RBMs' feature 
representation ability as introduced in 3.2. We get the represented features and test 
them by a logistic regression model as a classifier; The third one is to use the RBM as 
a classifier for link prediction as introduced in 3.3. 

4.1 Dataset and Features 

We use the Wikipedia adminship promotion dataset1 and features introduced in [7]. 
In Wikipedia, It allow users to edit others' UGC(User Generate Context) and make 
commits to them. In order to manage such a huge quantity of UGC, a quite large 
number of page administers are needed. Wikipedia set up a strategy called Requests 
for Adminship (RfA) to select administers from normal users. 

The features contain the statistics information of users' self degrees and common 
neighbors. The detail is described in [7], and we get a good prediction result by them. 
Including the 26 kinds of features, we add another 2 binary features: whether this 
candidate is supported by a nominator and whether the 'vote' happened in weekend. 

                                                           
1  http://snap.stanford.edu/ 
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4.2 Experiment Setup 

We first normalize all the features to a real value from 0 to 1. The dataset is unbalance 
for ‘support’ : 'oppose' as 3.6 : 1, we randomly select a balance subset of 5000 sam-
ples from all samples. For the first experiment, different ratio of training and testing 
sets are used. For the second one, all the 5000 samples are used to get represented 
features. Then a 5 fold cross validation is performed by a Logistic Regression (LR) 
model that uses the Newton-Raphson algorithm to calculate maximum likehood esti-
mates. We use 80% for training and 20% for testing in each fold. For the third expe-
riment, we use 50% for training and 50% for testing. 

4.3 Results and Analysis 

In order to make a comprehensive comparison, we use three evaluation criterions. 
There are Precision of all samples in test dataset, Area Under Curve (AUC) based on 
Receiver Operating Characteristic (ROC) and Average Precision (AP). And all Preci-
sion values are calculated by the threshold equals to 0.5. In the following result tables, 
the DBN structure is presented as each RBM with (number of visible units x number 
of hidden units). 

The results of our first experiment are shown in table 1. The unsupervised learning 
method works well with only 20%(1000) train samples, and gets best result with 80% 
train samples.  

Table 1. Results of unsupervised link prediction method 

DBN Structure 
Two RBMs Train: Test AUC AP Precision 

1st (28 x 28) 
2nd (28 x 1) 

20%:80% 0.722 0.717 67.7% 

1st (28 x 28) 
2nd (28 x 1) 

50%:50% 0.716 0.759 68.6 % 

1st (28 x 28) 
2nd (28 x 1) 

80%:20% 0.820 0.804 71.2% 

 
The results of our second experiment are shown in table 2. The first row of results 

is got by using the original features as inputs to the LR model. And the following 
rows are the results of LR with represented features by DBN. By using the 
represented features, the logistic regression (LR) model’s performance is improved 
about 2%. The result shows that RBM can represent the link prediction features well 
and the represented features work better for other classifiers, such as a LR model.  
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Table 2. Results by represented features 

DBN Structure 
Two RBMs 

AUC AP Precision 

Logistic Regression 
with original features 

0.861 0.846 79.7% 

1st (28 x 20) 
2nd (20 x 20) 

0.884 0.899 81.6% 

1st (28 x 28) 
2nd (28 x 28) 

0.886 0.895 81.8% 

1st (28 x 56) 
2nd (56 x 56) 

0.899 0.900 82.1% 

 
The results of our third experiment are shown in table 3. When train the top RBM, 

we add two label units to the visible layer. We also use the LR model's results used in 
the second experiment as baseline. Our method's performance is better than the LR 
model. With adding another RBM to the DBN, the performance is improved. 

Table 3. Results of link prediction method based on DBN 

DBN Structure 
Two and Three RBMs 

AUC AP Precision 

Logistic Regression 
with original features 

0.861 0.846 79.7% 

Two RBMs 
1st (28 x 56) 
2nd (58 x 58) 

0. 877 0. 957 83.5% 

Three RBMs 
1st (28 x 56) 
2nd (56 x 56) 
3rd (58 x 116) 

0.891 0. 959 84.6% 

 
By analysis above three experiments' results, our methods work well for link pre-

diction problems. At the same time, we tried to add even more RBMs in the DBN, but 
the result do not improve as we thought. After analysis on hidden unit values of each 
layer’s RBM, we find the reason is that both the feature’s dimension and the labels 
dimension are low. It does not need so many RBMs to make the features more ab-
stractly. Maybe we will take much more other features into our method in future re-
search,  and we have confidence that our method could have better performance. 

5 Conclusions 

This paper focus on link prediction methods based on deep learning approaches. We 
see our contribution as follows: (1)We propose a unsupervised learning method for 
link prediction in social networks. This method has good performance when lack of 



432 F. Liu et al. 

 

training samples, so it can work properly in most conditions. (2) We propose a me-
thod to represent link prediction features and these features can improve link predic-
tion performance. This method does not need new features or change the models used 
in the existing link prediction methods. (3)We tried to use DBN based on RBMs to 
solve link prediction problem. In the DBN, the top RBM can represent the joint dis-
tribution of link values and samples that can predict link values very well. 
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Abstract. Brain Computer Interface (BCI) is a powerful tool to con-
trol a computer or machine without body movement. There has been
great interest in using Steady-State Visual Evoked Potential (SSVEP)
for BCI [1]. Various signal processing and classification techniques are
proposed to extract SSVEP from Electroencephalograph (EEG). The
feature extraction of SSVEP is developed in the frequency domain re-
gardless of the limitation in hardware architecture, i.e. a low power and
simple calculation. We introduced a spectrum intensity ratio as a sim-
ple characterization and separation of SSVEP. However, it is difficult
to classify an unseeing state of subjects. In addition, we only tried the
wide band flickering frequency as visual stimuli. In this paper, we adopt
a classification using a simple calculation with threshold to detect the
unseeing state from SSVEP in a narrow frequency band.

Keywords: Brain Computer Interface, SSVEP, Spectrun Intensity Ra-
tio, Unseeing Detection.

1 Introduction

BCI provides a direct communication between a human brain and a hardware
device [2]. EEG measuring and analysis is one of the major way to transmit a
will to BCI. Common characteristics used in BCI are mu and beta wave, Event-
Related Potentials and SSVEP [3].

Recent years, SSVEP is often used as a basis for BCI. SSVEP is the periodic
EEG response to visual stimuli with a defined or periodic flashing. When we
focus our attention or interest on a periodic flickering stimulus, the EEG signal,
which includes corresponding frequency and its harmonic of stimuli, is recorded
at occipital lobe. The largest response is given at a flickering frequency of 15Hz
[4], [5]. SSVEP shows the same fundamental frequency as the flickering visual
stimulus and its harmonics [6]. The major SSVEP based BCI adopts the first
harmonic [4], first and second harmonics [7], [8], and higher harmonics [9]. Tra-
ditional SSVEP detections use an amplitude or a power spectrum to identify
the flickering frequency of visual stimuli. M.Cheng used an amplitude spectra
of fundamental frequency and second harmonic [10]. The feature extraction and
clustering using multi-channel EEG signals achieves a high detection ratio and

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 433–440, 2013.
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Table 1. Recording conditions

Stimuli (F ) 13 to 18 Hz
Recording length 60 sec.
Sampling rate 1000 Hz

Num. of recording 2

FP1 FP2

F7
F3 Fz F4

F8

T4C4CzC3T3

T5
P3 Pz

P4
T6

O1 O2

Inion

Left ear Right ear

Nasion

Fig. 1. International 10-20 electrode system

information transfer [11]. If an effective spectrum-based feature extraction is
proposed, the simple and reasonable SSVEP detection will be achieved for BCI
systems. DFT based feature extraction is employed to extract high-frequency
SSVEP [12], however, it requires the baseline spectrum derived from previous
EEG data. This means that the subject requires the training time for each trial.
We proposed the spectrum intensity ratio (SIR) to extract an enhanced SSVEP
[13]. SIR is a ratio of an amplitude spectrum on target frequency to a spectrum
around the target frequency, is adopted However, it is difficult to classify an
unseeing state of examinees by using our technique. In this paper, we proposed
an unseeing state detection based on adaptive threshold.

2 Recording Conditions

Table 1 lists recording conditions for our experiment. The visual stimulus whose
flickering frequency is set by a controller is employed to derive SSVEP. The
flickering frequency (F ) used in our narrow band experiment is 13, 14, 15, 16,
17 and 18 Hz.

The recording is performed in the shielded dark room for reducing an electro-
magnetic noise and an environmental visual stimulus. The visual stimulus (LED)
is located 90cm away from the nasion of the subject. The subject seated in a
chair in front of LED looks at a flickering stimulus over 60 seconds. EEG data
is collected using 19 electrodes, which are placed at the location based on the
international 10-20 system (Fig. 1). EEG is recorded twice. In order to detect
an eye movement and blinking, two pairs of electrodes are attached to the right-
left side (HEOG) and top-bottom side (VEOG) of a right eye. The reference
electrode is placed on both ears.

All potentials are digitally sampled at 1000Hz through the BrainAmp MR
Plus (Brain Products Co.) for the off-line signal processing. A high-pass filter
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Fig. 2. Amplitude spectrum of EEG recorded for 60 seconds (F = 16Hz)

(cut-off 0.53Hz) and a low-pass filter (cut-off 120Hz) is applied to the collected
EEG data through the amplifier. The subject is a right-handed male who has a
normal vision.

The data selection is important factor to extract SSVEP efficiently. Right
occipital lobe shows the better response for flickering visual stimuli [1], [6]. On
the other hand, the clear oscillation is given by subtracting EEG recorded at
Cz from occipital lobe [14]. We employed a bipolar channel O1-P3 for signal
processing [15]. It is well known that frequency peaks of SSVEP appear on the
flickering frequency and its harmonics. Fig. 2 draws the amplitude spectrum
calculated from 60 seconds EEG when the subject focuses his attention on the
flickering stimulus of 16Hz. We can see the sharp spectrum peaks at 16 and 32Hz
due to SSVEP. However, EEG strongly includes low-frequency component due
to spontaneous activity.

3 Data Analysis

The single-trial analysis using an amplitude spectrum is adopted to detect the
fundamental frequency of SSVEP. Assume that xi(t) is the ith segment of 2
seconds length extracted from EEG. The spectrum of xi(t) is expressed asXi(ω).
The sum of amplitude spectrum with overlapping is used to enhance the SSVEP.
Then, we get

Yi(ω) =

M−1∑
j=0

|Xi−j(ω)| (1)

where M is the number of segment for sum.
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Fig. 4. An example of short term spectrum Yi(ω) (F = 16Hz)

3.1 Spectrum Intensity Ratio

The SSVEP origin spectrum peak does not appear around the target frequency
(see Fig. 3). This is useful characteristics to measure strength of SSVEP from
a short term EEG. The spectrum ratio between a recorded EEG and baseline
signal is used to enhance SSVEP. However, the normalizing method requires
the baseline spectrum calculated from the previous EEG signals [14]. In order
to reduce the pre-recording task, the SIR is employed to extract SSVEP. This
parameter is represented as a ratio of target frequency to spectrum component
around target frequency(see Fig. 4). The SSVEP detection with spectrum inten-
sity ratio is performed as:

Si(ωk) =
Yi(ωk)∑m

j=−m Yi(ωk + j)
, (2)

Pi(ωk) = Si(ωk) + Si(2ωk), (3)

Ωi = arg max
ωk

(Pi(ωk)) (4)

where ωk corresponds to the interest frequencies F of LED i.e. 13, 14, ..., 18Hz,
Ωi shows the estimated frequency of SSVEP. The parameter m indicates the
bandwidth for feature extraction. We call this detection technique as SSVEP
classification.
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Table 2. Parameters

Length of DFT window - 2 seconds
Shift width - 0.2 seconds

Num. of frames for sum M 5
Frequency width m 9 samples

3.2 Unseeing Detection

Unseeing state is that the subject does not focus his attention on the visual
stimulus. SSVEP classification does not focus on unseeing state. It is assumed
that the subject is always looking at stimulation. We adopt adaptive threshold
using average μ and standard deviation σ of SIR to detect unseeing state. The
threshold Ti on ith frame is defined as:

μi =
1

L− 1

∑
ωk �=Ωi

Pi(ωk), (5)

σi =
∑

ωk �=Ωi

(Pi(ωk)− μi)
2

L− 1
, (6)

Ti = μi + ασi (7)

where, α is a constant number, L is the number of flickering frequency for visual
stimuli. To evaluate the unseeing detection technique, we record 60 seconds EEG
when the subject does not watch visual stimuli. If the SIR satisfies;

Pi(ωk) > Ti, (8)

Pi(ωk) is classified as (4). When (8) is not satisfied, Pi(ωk) is detected as unseeing
state.

3.3 Detection Ratio

In three methods described above, Si indicates the estimated frequency of SSVEP
which yields the maximum value in each feature extraction. The detection ratio
Rωk is expressed as:

Rωk
=

1

N

N−1∑
i=0

δ(i) (9)

δ(i) =

{
1 (Ωi = ω̂ki)

0 (otherwise)

where N is the number of frames. The ω̂ki represents the flickering frequency of
the EEG on ith frame. This criterion represents that the how many frames are
detected as ω̂k and unseeing state. In this paper, the evaluation is performed by
using 420 seconds EEG when the subject is looking at 6 stimuli or not looking.
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Fig. 5. Detection ratio of SSVEP classification for narrow band stimuli. (1st recording)
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Fig. 6. Detection ratio of SSVEP classification for narrow band stimuli (2nd recording)

4 Experimental Results

4.1 Parameters

Table 2 lists parameters for feature extraction and detection of SSVEP. DFT
is applied to EEG recorded for two seconds. The window for DFT shifts at the
interval of 0.2 seconds. The number of frame to calculate the sum of amplitude
spectrum is 5 related to M in (1). Note that one detection result at ith frame is
given by 3 seconds EEG. The bandwidth m for the SIR corresponds to ωk ± 4.5
Hz to have a good intensity ratio.

4.2 Detection Results (SSVEP Classification on Narrow Band
Stimuli)

At first, we confirm the detection performance of SIR for narrow band visual
stimuli. Fig. 5 and 6 draw a detection ratio for 2 recording EEGs. From Fig. 5
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and 6, the detection ratio is increasing with a flickering frequency. One possible
reason is the increasing of amplitude spectrum at 10 Hz (see Fig. 2). This means
that the SSVEP of 13 Hz is not enhanced by the large amplitude spectrum in
lower band. On the other hand, the detection ratio of wide-band setting (F =
10, 15, 20 and 25 Hz) is 90% [13] while the SSVEP detection proposed here
indicates 35%. From this fact, SIR is useful for the wide-band setting.

4.3 Detection Results (SSVEP and Unseeing State Classification)

The detection ratio of unseeing state depends on the constant value α. Fig. 7
shows the relationship between detection ratio and α. Note that the detection
ratio for SSVEP represents the averaged value from 13 to 18 Hz. From this figure,
the detection ration of unseeing state is improved rapidly around α = 1.3. On
the other hand, the ratio for SSVEP is degraded with α. This means that the
SSVEP is classified as unseeing state in α > 1.3.

5 Conclusion

In this paper, we introduce the spectrum based feature extraction for SSVEP
and unseeing state detection. Results show that the detection ratio is 35% for
narrow band SSVEP detection. It is confirmed that the SSVEP is not enhanced
by using spectrum intensity ratio in the narrow band condition. On the other
hand, the unseeing state is detected by using simple threshold. The detection
ratio for unseeing state is increasing with constant α while the detection ratio of
SSVEP is decreasing. Future task is to unseeing state detection for wide band
conditions and define a suitable constant α.
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Abstract. Over the past ten years, there has been a growing interest
in hand-based recognition in biometric technology systems. In this pa-
per, we investigated the application of random decision tree forests for
hand identification using geometric hand measurements. We evaluated
and compared the performance of the proposed method using out-of-bag
validation and 10-fold cross validation in terms of identification. We also
studied the impact of the forest size on the performance. The experi-
mental results showed significant improvement over single decision trees,
rule-based and nearest-neighbor machine learning algorithms.

Keywords: Biometrics, Hand Recognition, Machine Learning, Decision
Trees, Random Forests, Geometric Features.

1 Introduction

Over years biometric technology has attracted the attention of many machine
learning, pattern recognition and image processing researchers. It can provide
more promising and reliable results to complement or replace traditional personal
identification techniques such as keys, passwords, passports and smart cards.
Biometric identification uses patterns of one or more intrinsic anatomical or
behavioral human traits such as fingerprint, face, iris, voice, gait or signature
[1], [2].

One of the lately emerged biometric technologies that has drawn a growing
interest is hand-based identification [3], [4], [5], [6]. Its successful deployment can
be attributed to several advantageous characteristics. Unlike other biometrics,
hand based identification requires less sophisticated, affordable and user-friendly
systems. Thus, it can be applied in different environments with low to moderate
security requirements. For example, it can be used in work places, airports, and
hospitals to access restricted areas and facilities. It can be also used for accessing
patient databases in healthcare and medical information systems. Hand image
acquisition devices are relatively inexpensive and less complex. In addition, hand
geometric features can be easily extracted from low or medium resolution hand
images. Moreover, hand based identification is non-intrusive, more convenient
and publicly accepted [6]. It also requires low amount of data to identify an
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individual, has low failure to enroll (FTE) rate, and can be fused easily with
other hand-based biometrics (e.g. finger print and veins, palm print and veins,
finger and hand shapes, etc.) using same or fewer scanners [7], [8]. Hand geometry
has been also used with other biometrics such as face, iris and voice [6].

In a typical system a user should hold his/her hand on a fixed platform with
pegs to guide the right position and help feature extraction [9], [10]. However, in
more recent work, new techniques with peg-free and/or even contact-less designs
are proposed to provide more flexible environments [3], [11], [12], [13].

This paper aims at exploring a new methodology for hand based identifica-
tion based on random forests of decision trees. This method is evaluated and
compared to other machine learning based methods.

The rest of the paper is organized as follows. Section 2 describes distinguishing
hand features that can be adopted for hand shape based identification. Section
3 presents the identification method using random forests. The evaluation and
discussion of the results are presented in Section 4. Finally, Section 5 concludes
the paper.

2 Hand Shape Characteristics

The operation of a hand-based identification system is divided into two phases:
enrollment and matching. During enrollment, a number of hand images is cap-
tured for each potential user of the system and distinguishing features are ex-
tracted and stored in a database. Finally, a computational model for hand based
automatic identification is built using a machine learning methodology. During
the second phase, the system is used to determine the identity of a person by
capturing his hand image and following steps similar to those performed during
the enrollment phase to extract distinguishing features. These features are en-
tered to the computational model which outputs the identity that is most likely
for the acquired hand image.

Human hands have many distinct features that can be useful in biometric
recognition. One of the simplest set of features is the appearance or shape based
features [14]. These features often locates important points on the hand shape
such as finger tips and valleys and utilizes a limited number of geometric mea-
surements of the hand characteristics in the range of 20 to 30 features. Examples
of these features can include lengths and widths of fingers, palm length, hand
contour length, etc. After acquiring the hand image, the processing takes place
in consecutive steps to segment hand shape from background, remove artifacts,
rotate and translate to standard positions, and find important distinguishing
features. Figure 1 shows 15 of the features used in this study. These features
include 4 features representing lengths of four fingers (little, ring, middle and
index) (FLi), 8 features representing widths of the same four fingers (FWia and
FWib) at two different locations, palm length and width (PL and PW ), and
hand length (HL). Two other features, not shown in the Figure, are also used
to represent the hand contour length (HCL) and hand area (HA).
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Fig. 1. Typical hand geometry features

3 Identification Method

The decision tree forest consists of an ensemble of decision trees trained inde-
pendently. The final classification decision is made by aggregating decisions by
individual trees using a majority vote rule. Figure 2 shows the typical layout
of constructing a decision tree forest. The algorithm for building decision tree
forest is random forest and it has been developed by Breiman [15]. Rather than
generating trees in series similar to TreeBoost, a decision tree forest builds trees
independently in parallel. The overall performance of the forest depends on the
performance of individual trees composing the forest and the correlation among
them. The upper bound on the generalization error is proportional to the average
correlation among trees in the forest. The more correlated the trees, the larger
the upper bound on the generalization error. To reduce the correlation among
trees, each tree is constructed using a set of instances randomly chosen with
replacement from the original training dataset according to a fixed probability
distribution.

In contrast to the single decision tree [16], random forest avoids the problem
of overfitting noisy training data and thus generalizes better when applied to
classify instance unseen during training. Consequently, the construction time for
each individual tree in the forest is much less than the time taken to build a
single tree model; this can be attributed to not pruning trees in a forest while
pruning is necessary to build an optimal single decision tree.

4 Evaluation

In order to evaluate the performance of the proposed methodology, a bench-
marking dataset [17] of 1000 left hand images for 100 persons with 10 images
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Fig. 2. Typical hand geometry features

Fig. 3. Tradeoff between error rate and number of trees in the forest

from each person. This dataset has 28 noisy images due to the failure of persons
to pose their hands properly. Images are processed and 17 geometric features are
extracted for each image as described in Section 2.

In the first experiment, we created and evaluated a decision tree random for-
est (RF) model. The size of the decision tree forest is controlled by the number
of trees in the forest and the size of each tree (depends on the maximum tree
depth and the minimum number of instances per node). The results reported in
this paper is based on the implementations that exist in the DTREG Software,
Enterprise version 9.8.1 [18]. The following parameters were used for the decision
tree forest: Maximum trees in the forest was set to 500, maximum splitting levels
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Table 1. Identification accuracy comparison of random forest model with other meth-
ods

Table 2. Classification error rate for each class when the forest model has 100 trees

was set to 50, minimum size node to split was set to 2, random predictor control
was set to square-root of total predictors, and the validation method was set
to out-of-bag method. For the sake of comparison, we used single decision tree
method (J48), two rule-based methods (RIPPER and PART), and k-nearest
neighbor (k-NN) (with k = 3 and k = 5); these implementations are available in
Weka [19].

As depicted by the results in Table 1, the decision tree forest is capable of
providing higher identification accuracy than other models. Although nearest
neighbor models can provide comparable results, these are lazy classifiers which
require storage of the whole dataset and perform comparison during classifica-
tion; thus no training is conducted. However, other methods build more compact
models without requiring the actual instances of the dataset. A disadvantage of
decision tree forest as compared to a single decision tree is that it can not be
visualized due to the increased complexity. The tradeoff between the percentage
error rate and number of trees in the forest is shown in Figure 3. As the number
of trees increases, the percentage error decreases and it becomes less than 5%
when the number of trees is more than 70. With 100 or more trees, the error
becomes less than 3.2%. Table 2 lists the error category for each identity. There
are four categories of errors: 30%, 20%, 10% and 0%. Most of the identities are
recognized correctly and hence the error is 0%. Figure 4 shows the importance of
each feature which is calculated by adding up the improvement in classification
gained by each split that used that feature.
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Fig. 4. Importance of each feature when the forest model has 100 trees

5 Conclusion

The performance of decision tree forest for hand shape identification is explored
in this paper. The hand shape is described using a limited number of geomet-
ric features and an identification model is constructed using the random forest
algorithm. The performance is compared with that of single decision trees, rule
based, and nearest neighbor methods. The results showed that random forest
can be a promising candidate for hand shape identification. Yet it builds rela-
tively complex models as compared to single decision trees. However, in security
systems accuracy is a stringent requirement than complexity. In future work, we
intend to compare the performance with other methods and using other criteria
and datasets.
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Abstract. Particle swarm optimisation (PSO) is applied for the first time to the 
problem of optimal trade execution, which aims to partition a large trade so as 
to minimise hidden costs, here specifically a combination of market impact and 
opportunity risk. A large order is divided into a set of smaller ones, with both 
the length of time these remain open and the proportion of the original order 
they represent being subject to optimisation. It is found that the proposed me-
thod can equal the performance of the very popular volume-based VWAP me-
thod without in our case having access to trading volume information. 

Keywords: Particle swarm optimisation, optimal trade execution. 

1 Introduction 

With the automation of electronic exchanges the capture of a large volume of market 
transaction data has become possible and has led to an increased interest in investigat-
ing the microstructure of markets in order to discover better trading strategies. An 
optimal execution strategy is one that maximises opportunities for profit by also mi-
nimising trading costs such as market impact (the effect one's own actions have on the 
price of an asset, moving the price up (down) if one's intention is to buy (sell)) and 
opportunity risk (missed opportunity due to a delay in action). 

The problem of finding an optimal execution strategy has been approached using a 
number of different techniques: analytical [1-3]; machine learning [4]; and biological-
ly inspired methods such as genetic algorithms (GAs) [5]. Such methods are useful 
and especially when the search space is complex, large, or poorly understood. How-
ever the current work is to our knowledge the first application of particle swarm op-
timisation (PSO) to the problem of optimal trade execution.  

The data used comprise one year of millisecond microstructure foreign exchange 
data (EUR/USD), and the aim is to determine a sequence of trades minimising oppor-
tunity risk and market impact. It is found that the fitness of discovered solutions com-
pares favourably to naïve strategies such as dividing the order into equal parts held 
open for identical, non-overlapping time periods, and to the VWAP (volume weighted 
average price) strategy that is commonly used in the industry. 
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3 Particle Swarm Optimisation 

There has recently been a growing interest in the application of particle swarm opti-
misation (PSO) to financial problems [7]. PSO is a stochastic computation technique 
developed by Kennedy and Eberhart [8] which like GAs is a biologically inspired 
population-based method but in this case based on a social learning rather than 
evolutionary metaphor. Studies have shown PSO is at least competitive with GAs, 
usually achieving equal or better quality solutions at less computational cost [9].  

The following is a description of a continuous PSO. A population of i=1..S par-
ticles is generated, with each particle's random (subject to satisfying any constraints 
on the system) initial position representing a solution. At each iteration t each particle 
i changes its velocity vi and position xi according to  

  (1a) 

  (1b) 

The velocity update rule for a particle is a mix of a push in its previous direction vi,t, 
of a size governed by the (usually linearly time-decreasing)  inertia weight w, com-
bined with cognitive (following after its own personal best or pbest position pi,t) and 
social (following after the swarm's global best or gbest position gt) contributions, in 
which c1, c2 are constant and r1, r2 random numbers generated uniformly from [0,1].  

4 Methods 

4.1 Data 

High frequency foreign exchange (FX) data, gathered at millisecond intervals for the 
currency pairs EUR/USD and USD/CHF, were used for this study. Ideally we would 
have preferred to use equity data to allow for direct comparison with [5], but due to 
the limited online resources available to us only access to FX data was possible. 
However to make our framework more similar to that of [5] the data were filtered to 
include only equity market hours of 09:00—17:00, giving an 8 hour time horizon for 
the execution of the order, the size of which was taken to be 10% of  daily volume, in 
the range considered by Kissell feasible within one day "with some work" [7].  

The data set, starting from January 2011, was split into 90 day training, 20 day va-
lidation, and 20 day test periods, with the last being most chronologically recent. The 
gbest training strategy doing best on the validation data, denoted vbest, is recorded 
and is the parameter set used for final testing on out-of-sample data. It was noted in 
16/20 runs vbest was the same parameter set as the gbest for the last training iteration, 
evidence overfitting is not here a problem. This is as might be expected given the very 
large size of the training set (bear in mind these are millisecond data) compared to the 
size of the search space (16 or 32 dimensional depending on whether only the dura-
tions of suborders are allowed to vary (Section 5.1) or volumes also (Section 5.2)). 

vi,t+1 = wvi,t + c1r1(pi,t − xi,t )+ c2r2 (gt − xi,t )   ,

xi,t+1 = xi,t + vi,t+1    
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4.2 Problem Representation 

As in [5] the original order is divided into 16 parts, submitted at 30 minute intervals 
during the day from 09:00 to 16:30. The lifetime of these sub-orders is expressed in 
minutes and represents the time such an order should stay in the limit order book be-
fore being executed at whatever is the then-market price, with the maximum lifetime 
of an order depending on the time it is submitted, ranging from 480 minutes in the 
case of the first order at 09:00 down to 30 minutes for the last order at 16:30.  

Hence we are initially in Section 5.1 dealing with a 16-dim search space as in [5], 
with search in each dimension  j=0..15 constrained to [0, maxj], where maxj=480-30j 
minutes. However in Section 5.2 this space will be expanded to include also Vj, the 
volume traded during each (variable within the appropriate limit) time interval, with 
the constraint that the sum of the Vj must equal the total volume V of the order.  

This representation allows two kinds of extreme strategies to be discovered, one in 
which all orders are market orders, of lifetime zero, and one in which all orders are 
defined as limit orders open until the end of the day, when any remaining parts are 
executed as market orders. While the first of these strategies is little used because 
traders would thus very strongly signal their intentions, the second, referred to here as 
'equal division', is sometimes used, though much less frequently than VWAP. 

4.3 Fitness Function 

The fitness of a solution (trading strategy) is defined as the average price achieved 
using this strategy over a given period, averaging over all sub-orders. We note that 
when executing each sub-order, depending on its size we may need to consume more 
than one record in the order book. Therefore we calculate fitness as follows 

                                                                                                (2) 

where N is the number of sub-orders (16 in this case), Mi is the number of records in 
the order book that was consumed by the ith sub-order, pi,j is the price of the jth 
record used during this execution, si,j is the volume of the jth record used, and S is the 
total volume of the order. Without loss of generality it will be assumed we are deadl-
ing with a buy order, so that the objective here will be to minimise this function. 

4.4 Learning Algorithm Parameters 

In all the experiments to be described below 100 iterations of the PSO algorithm were 
used, with c1 and c2 were set to 2.0 (the most usual choice for these constants), an 
inertia weight w linearly decreasing from 1.0 to 0.4, and with 20 runs performed un-
der each set of experimental conditions. While some early work used larger swarms, 
which did not seem to be necessary for good results, the swarm size for the described 
experiments was set to 27 (= 33), reflective of experiments (not here reported) with a 
Von Neumann local topology as an alternative to a global neighbourhood topology, 
the intention being to avoid premature convergence of the algorithm. However this 

F = 1

S
pi, j × si, j

j=1

Mi


i=1

N

    ,
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resulted in no significant improvement and was discontinued in favour of a less com-
putationally costly global topology. As will be seen later the bulk of the swarm do not 
closely follow the leader and it is clear premature convergence does not occur.  

4.5 Comparison Strategies 

Results from the PSO-based method are compared with four alternative strategies: (i) 
market order, in which a single market order with size equal to the total volume is 
submitted to the market at the beginning of the day; (ii) limit order, in which a single 
limit order is submitted, with any part of the trade remaining unexecuted at the end of 
the day being then executed as a market order; (iii) equal division, in which the total 
volume is divided into 16 equal parts with each sub-order, initiated at 09:00, 
09:30...16:30, held open as a limit order until the end of the day, when any unexe-
cuted parts are again executed as a market order; and (iv) the VWAP strategy de-
scribed in Section 2. As noted in Section 4.2 while the first two of these might be 
considered unrealistic the second two are used in practice, with VWAP being industry 
standard. 

5 Results 

Two sets of experiments were performed. In the first set (Section 5.1) the search 
space was 16-dimensional, the parameters being the durations as limit orders of the 
equally sized sub-orders places at times of the day from 09:00 to 16:30. In the second 
(Section 5.2) the search space is expanded to 32 dimensions so as to allow the propor-
tion of the daily trade allocated to each time interval to also be a variable. 

5.1 Optimisation of  Sub-order Durations with Fixed Volumes 

Table 1 shows the average difference, in USD, in the cost of a total daily trade 
achieved during the 10 week test period of mid-June 2011 to end of August 2011 by 
PSO and by the comparison strategies, totalled for each day over each millisecond-
separated trading opportunity and averaged over 20 separate runs. Recall this was 
assumed to be a buy trade, so the lower the price achieved the more effective the 
strategy, a positive value in the table below indicating the relative superiority of PSO.  

Table 1. Differences in the overall cost of the trade between the PSO method (TotPSO) and the 
four comparison strategies (Totalt) of Section 4.5 

 PSO Market 
order 

Limit 
order 

Equal 
division 

VWAP 

Totalt - TotPSO    — +263.84 +32431.41 +215.05 +196.20 
 

It can be seen that in each case the PSO method is superior, the best of the com-
petitors being the VWAP method, as might be expected given that this is the method 
most commonly used in practice to divide up a large trade. It is noteworthy that the 
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proposed method can offer such a challenge to VWAP given that the latter strategy is 
based on additional information about daily trading volumes. The second best com-
petitor is equal division, also used occasionally. The result that might appear most 
surprising is that the limit order strategy does much worse than the market order one, 
in spite of the latter being a poor choice for a large trade as it would very strongly 
signal a trader's intentions and cause the market to move against him. However this is 
an effect that could not be replicated here as there was no way to do so without also 
creating a full market simulator, something outside of the scope of the current work.  

The behaviour of the time duration parameters during training was investigated, 
with the intention of discovering the nature of the solutions reached by the PSO me-
thod, and it was found that while on average durations as limit orders converge to 
around half the maximum allowed for that starting time this is not typical of the fit-
test, gbest, particle (whose parameters as noted were in most runs also fittest when 
applied to the validation set). Figure 2 shows the run-averaged gbest durations in the 
last iteration of training, compared to uniformly decreasing duration weights equal to 
half the maximum time allowed (from 240 at 09:00 down to 15 minutes at 16:30). 

 

Fig. 2. Run-averaged gbest duration weights compared to uniformly decreasing weights 

Limit orders initiated around 09:30 are seen to be left open considerably longer 
than half of the maximum time then allowed, while conversely sub-orders initiated 
around 11:30 appear to be handled more quickly. This suggests the PSO algorithm 
has discovered that some times of the day are more favourable for trading while oth-
ers are 'dead times' that have to be compensated for by leaving the orders open longer.  

One way to investigate this hypothesis is to look at volumes traded at particular 
times of day, to see if this might be correlated with the pattern displayed in Figure 2. 
The average EUR/USD trading volume was calculated for equivalent 30 minute inter-
vals during the 90 day training period, with results displayed in Figure 3. It is appar-
ent that activity is peaked between 3:00 and 5:00 pm, with the lowest level of activity 
around mid-day, and relatively low activity in the morning. Thus it is reasonable that 
limit orders submitted in the earlier part of the day might need to be left open propor-
tionally longer (compared to the maximum time allowed) so as to wait for better-
priced opportunities at a time of day when more liquidity is available. 

This trading pattern is close to that behind the volume-based trading strategy 
VWAP, though it should be re-emphasised our algorithm at this point has no explicit 
knowledge of market activity, and is not able to apportion different parts of its overall 
order to different time intervals. This latter will be explored in the next section. 
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Fig. 3. Average intraday volume for EUR/USD during the training period 

5.2 Optimisation of Sub-order Durations and Volumes 

Here the search space is extended to 32 dimensions to include the proportion of the 
overall order handled at each of the 16 daily opportunities, with the length of time 
each sub-order is open remaining variable as before. Table 2 gives equivalent results 
to those of Table 1, which show a similar pattern to those of the earlier table. 

Table 2. Performance on test data of the PSO algorithm compared to the four alternate 
strategies, in the case that volumes as well as durations of sub-orders can vary 

 
 

PSO Market 
order 

Limit 
order 

Equal 
division 

VWAP 

Totalt - TotPSO    — +274.19 +32441.76 +274.19 +206.55 

 
However the more significant result here is shown in Figure 4, which displays the 

recommended volume to trade during each 30 minute time slice (09:00-9:30 to 16:30-
17:00), accumulated over all sub-orders that extend over the given slice, and where it 
is seen that the algorithm is recommending that larger amounts be bought at times of 
higher liquidity. The interesting point is that unlike VWAP the PSO algorithm 
achieves this result without having prior knowledge about intraday volume. 
 

 

Fig. 4. Recommended volume to trade during each 30 minute time slice 
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6 Discussion 

The trading strategy discovered here by PSO, while demonstrably effective and on a 
par with VWAP, did not utilise knowledge of recent of recent price histories, or of the 
trading volumes that are fundamental to VWAP. However the most effective strategy 
is likely to be one that is responsive to market conditions, trading more or less aggres-
sively as appropriate. By incorporating additional input reflecting recent prices and 
volumes, and by allowing the starting points of sub-orders to be additional free para-
meters an aggressive strategy could be achieved by submitting more sub-orders to-
ward the beginning of a time period and a passive one by spreading the orders 
throughout it. It would also be of interest to seed the initial population with solutions 
corresponding to the VWAP strategy, and see if in this way the PSO method could be 
more effectively forced to improve on VWAP. Since results competitive with VWAP 
have already been achieved it is likely these investigations could result in some sub-
stantial improvement over existing popular trading strategies.  
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Abstract. Stock prices are influenced by many external factors such as the oil 
prices, the exchange rates, the money interest rates, the certificate of deposit 
(CD), the gold prices, the exchange rates, the composite indexes in global mar-
kets, and so on. And the influence among these factors is reciprocal, cyclic, and 
often hierarchical, which can be naturally presented as a network. In this paper, 
a prediction method based on hierarchical structure of financial networks is 
proposed. Semi-supervised learning (SSL) is employed as a base algorithm, and 
revised to be suited for time series prediction. A network consists of nodes of 
the factors and edges of similarities between them. The layered structure of 
networks is implemented by reforming the existing integration method for mul-
tiple graphs. With the hierarchical structure of financial networks, it is able to 
reflect the complicated influences among the factors to prediction. The pro-
posed method is applied to the stock price prediction from January 2007 to Au-
gust 2008, using 16 global economic indexes and 200 individual companies 
listed to KOSPI200. 

Keywords: Stock Price Forecasting, Hierarchical Structure, Semi-Supervised 
Learning (SSL), Machine Learning. 

1 Introduction 

Stock prince prediction is one of the most difficult issues because of its irregularity of 
the movement and high uncertainty caused by external economic factors. Many stu-
dies on stock price prediction employ various economic factors such as oil prices, 
exchange rates, interest rates, stock price indexes in other countries, and domes-
tic/global economic situations, etc. [1-4]. Methods for stock price prediction are di-
verse. Time series analysis is one of the most frequently adopted methods: Jeantheau 
(2004) predicted stock prices using an ARCH model, and Amilon (2003) and Liu et 
al. (2009) proposed a prediction method using a GARCH model based on the 
Skewed-GED Distribution for Chinese stock markets [1-3]. These methods assume 
that the future data will be varied as similar to those of the past. It is true, and a rea-
sonable result can be obtained from time series analysis if given time series data are 
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originated from natural phenomena, such as the numbers of sunspot, rain-falls, tem-
perature, and so on. However, if data are given from economic or financial factors, it 
is difficult to expect reasonable prediction performance because of reciprocal and 
complex influences among the factors. [4]. On the other hand, many studies on the 
stock price prediction have also been conducted in the machine learning domain. The 
artificial neural network (ANN) and support vector machine (SVM) methods have 
been frequently used as a typical model [5-8, 13]. Tay and Cao (2001) proposed a 
method that introduces financial time series data to the SVM, and Kanas (2003) at-
tempted the prediction of the S&P500 index using the ANN model [9, 10]. Also, 
Yang et al. (2001) proposed an early warning system of commercial bank loan risks 
using the ANN model, and Bekiros and Georgoutsos (2008) analyzed that how uncer-
tain news, which show a difficulty in identifying bullish and bearish factors, affect the 
NASDAQ index using the ANN model [11, 12]. The methods using ANN and SVM 
may include the interrelation between the stock price and these factors in modeling. 
However it is still insufficient to explicitly formalize the mutual, complicated, and 
often hierarchical between the factors.  

In this study, we propose a method of stock price prediction by using the hierar-
chical structure of layers of differently scaled networks: a layer of global economic 
indicators and a layer of individual stock prices. The former includes global indicators 
such as certificates of deposit (CD), gold prices, exchange rates, and oil prices, and 
global composite stock indexes of representative stock exchange markets like 
NASDAQ, DOW, S&P500, etc.  The latter, on the other hand, is composed of indi-
vidual stock prices of domestic companies, e.g., HYUNDAI Motors, SAMSUNG 
Electronics, LG Chemicals, and so on. To implement the idea, semi-supervised learn-
ing (SSL) is employed as the base algorithm which is most recently emerged a cate-
gory of machine learning algorithms [14, 17]. With SSL, the reciprocal and compli-
cated relations between economic factors can be naturally implemented. To adapt it 
for time series prediction, the original formula of SSL are revised and reformulated 
[15, 16]. To implement hierarchical relations between layers, the SSL based graph-
integration method is employed [18, 19].  

The rest of this paper is organized as follows. Section 2 briefly introduces the SSL 
algorithm. Section 3 presents the proposed method: the revised SSL for time series 
prediction and hierarchical structure. Section 4 provides the experimental results as 
evaluated with the stock prices of 200 individual companies listed to KOSPI from 
January 2007 to August 2008. Finally, in Section 5, conclusions will be drawn.  

2 Semi-Supervised Learning 

In graph-based SSL algorithm, a data point (or entity) x ∈ RM (i = 1,…, n) is 
represented as a node i in a graph (or network), and the relationship between data 
points is represented by an edge where the connection strength from  node j to other 
node i is encoded as w  of a similarity matrix W [20].  Figure 1 presents a graphi-
cal representation of SSL. 
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for the 'hierarchical' structure but for 'parallel'.  Therefore, in order for utilizing the 
integration method, it requires an idea of parallel representation for the layers in the 
hierarchical structure. Figure 3 describes the idea. For each of the layers, an extended 
similarity matrix is prepared: the extension is performed in order to set the dimensions 
of multiple matrices are equal, but most elements of which are null-valued. In the 
figure, WUL represents the similarity matrix in the upper layer, and WLL for the low-
er layer, and WBL for the between layer. Then, by applying the integration method, 
we can obtain integrated results of the layers in the hierarchical structure. According 
to [18,19],  integrating multiple networks literally translates to finding an optimum 
value of the linear combination coefficients α 's for the individual k graphs. The 
value of the coefficient tells significance of the corresponding network for prediction.  

 

 

Fig. 3. An idea of parallel representation for the layers in the hierarchical structure 

The formulation for integration of the layers in the hierarchical structure is summa-
rized as follows:  Min ,   f y T f y ∑ ∈ , , f TL f,                    (5) f I ∑ ∈ , , y,                            (6) 

where k is the number of layers, and L  means the graph-Laplacian in the kth layer.  

4 Experiment 

4.1 Experimental Setting 

A total of 403 daily prices of 216 economic/financial indicators were used for expe-
riment during the period from January 2007 to August 2008. The 16 global economic 
indicators which consist of the upper layer of the hierarchical network included Dow-
Jones average (DOW), National association of securities dealers automated quotations 
(NASDAQ), Japanese stock market index (NIKKEI), Hang seng index (HSI), Shang-
hai composite index (SSE), Taiwan stock exchange corporation (TSEC), Financial 
times security exchange (FTSE), Deutscher aktien index (DAX), Continuous assisted 
quotation index (CAC), Bombay stock exchange portmanteau of sensitive and index 
(BSE_SENSEX), Indice bovespa (IBOVESPA), Australia all ordinaries index 
(AORD), Korea composite stock price index (KOSPI), Exchange rate(KRW-USD), 
the west Texas intermediate oil price (WTI), and the certificate of deposit (CD). And 
the lower layer was composed of the 200 individual stock prices of domestic compa-
nies, which are listed to KOSPI200 during the period. 

The proposed method--the SSL based on the hierarchical structure of networks 
(SSLHR), was compared with three representative machine learning models: an ordinary 
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The structural design of the proposed method leads to several benefits. First, it re-
flects reciprocal, cyclic, and hierarchical influences among the financial factors to 
prediction, and thus better performance can be obtained. If combined with a portfolio 
optimization method, better profits and stabilities in investments can be expected. 
Second, it is robust against global economic shocks, which has a potential to be used 
as an early warning system.  
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Abstract. The Internet is one of the most widely available services in the world 
today. With the Internet, people are now looking for reviews on the Internet; 
more specifically, the social networking services. Within the social network 
medium, we can identify a suitable service that describes more about a person’s 
personality as the subject. The growth of social networking popularity has con-
tributed to the increase in information available on social networking services. 
The flexibility of these services allows writing individual thoughts without re-
strictions. With the vast information available on social networking sites today, 
how is it possible to look all of these opinions? How do we know which opi-
nion holds truth? How do we know if someone is not bias based on his writing? 
Hence, it is seen necessary to filter opinions. In this paper we look at the possi-
bility of using search ranking as a medium of filter opinions by exploring  
opinion mining methods, social networking candidates and search ranking me-
thods. With existing sentiment analysis techniques, we can obtain opinions that 
are then ranked against a set of keywords. 

Keywords: Search Ranking, Opinion Mining, Web Search. 

1 Introduction 

The idea of searching, ranking, opinion mining and social networks are not new in 
today’s research[4]. Generally speaking the possibility of opinion mining itself is 
endless. With many techniques that has been thoroughly studied and prototypes built, 
performing search ranking on a result data mined poses a challenge that ought to be 
considered. For example, given a carpooling system that uses the social network, how 
would it be possible to know who to trust from opinions that have been written by that 
particular person? Is that person good or bad at handling cars? Is he or she a cautious 
driver? Why should I carpool with him or her? These are questions that search en-
gines cannot answer as they are subjective in nature.  This may not be the case for 
data mining; in particular opinion mining. For instance, in Google search ranking has 
proven to be a useful suggestion to answers that relate to factual questions. Most often 
than not, the first result from Google is usually what we are looking for. Should simi-
lar concept apply to opinion mining on social networks, we can perform conclusive 
searches that answer the previous questions. 

If Google can answer factual questions, what about subjective questions? If we  
ask Wolfram Alpha a mathematical question, there would always be an answer.  
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Subjective questions may not be the same. Instead, there could be various possibilities 
when determining the process for answering such questions. Such complexity is de-
fined as a complex problem in our case. A complex problem may require thorough 
investigation, researching before ending up on a decision. Most of the time, these are 
factored to scarce resources such as time and money.Assuming that most decision 
making can be simplified, perhaps these scarce resources could be put to better use. 
Therefore, we believe that the very first step for such achievement can be done with 
search ranking and opinion mining. Our domain of focus would be on social networks 
which we believe is the glue of most sparse data (opinions, reviews). 

2 Related Work 

2.1 Opinion Mining General Concept and Background 

Opinion Mining or Sentiment Analysis is a Natural Language Processing technique 
(NLP) that analyses sentiment within a text [2]. Most technique revolves around the 
idea of sentiment polarity. This separates texts or words into positivity, negativity and 
sometimes neutrality. The process may look simple; but the process is complicated 
with many general challenges that have been investigated thoroughly by researchers. 
Opinion mining is subject of its own as there are many areas and possibility that needs 
to be covered to perform satisfactory segmentation when classifying opinions as posi-
tive or negative. Most opinion mining technique focuses on textual information, 
which could be classified broadly into two main categories, facts and opinions [3]. 
Facts are objective statements about entities and events in the world. Opinions are 
subjective statements that reflect people’s sentiments or perceptions about the entities 
and events. Much of the existing research on text information processing has been 
(almost exclusively) focused on mining and retrieval of factual information, e.g, in-
formation retrieval, Web search, and many other text mining and natural language 
processing tasks. Little work has been done on the processing of opinions until only 
recently.  

2.2 Search Ranking Using Sentiment Analysis 

When information is plenty, but the search results returned are irrelevant, the search 
engine has failed to perform. The idea of search ranking has been created by founders 
of Google during their days as a PhD student; although Jon Kleinberg proposed his 
algorithm about the same time. Search ranking is widely used in their product, Google 
which is popularized by the term “Page Rank” [1], [10]. It describes the relevancy of 
results against the search keyword. Therefore, improving search result accuracy and 
plausibility; improving overall searching experience for their users. Likewise, the 
same concept applies on top of opinion mining. If we can identify which opinions are 
relevant search, we can obtain similar results. In more detail, it performs a simple 
filter that describes more about opinions. Taking our previous example, a carpooling 
system that identifies opinions of its driver and their passengers; we can identify if a 
driver is trustworthy or the passenger is civilized. Notice that we used terms that  
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describe about people. Another form of great example would be the use of search 
ranking to filter off irrelevant opinions. For instance, one would write reviews on a 
product but instead of criticizing the product, most complaints are about the publisher 
of the book. Such cases could still contribute to decision making, but it should not 
influence the outcome should someone asks “Is this book worth reading?”[7], [8]. 

2.3 Decision Making Support 

Decision making is a complex problem in most cases. However, in our research, we 
would classify these problems into a much broader category; namely simple problems 
and complex problems. The goal of decision making support is to assist users with 
their decision making process. For instance, “iPhone vs Android, which is better?” 
would rule out to be a complex problem. To simplify things, most of our discussion 
focuses on a small subset of complex problems. In computer science, decision making 
would probably be classified under fuzzy systems or fuzzy logic. In this case howev-
er, it’s not the decision of agents that we would like to assist, but rather humans them-
selves. If one would look up for something he/she is interested to buy and has limited 
resources (money), he/she would spend countless of hours before making this final 
crucial decision. If a bad choice is made, obviously money gone down the drain. Oth-
erwise, the money is well spent. 

3 Motivation of Using Social Network as Domain 

The rise of social networking has increase the surge of interest in sentiment analysis. 
It is no doubt that social network has been the catalyst to sentiment analysis.Social 
networking services such as Facebook, Blogger, Youtube, Twitter etc. are widely 
used by users to share information. The flow of information propagates faster in so-
cial network services than any other comparable mediums such as printed newspa-
pers. With speed comes at price. Information that propagates the social medium is not 
moderated. Hence, information written on the social network tends to be subjective in 
nature. Notably, this information is there to describe on a topic and share points of 
view with their respective audience. Due to its un-moderated nature, it is an ideal 
candidate for sentiment analysis.Often social networking services do not promote text 
searching. For instance, in Facebook searching focuses on looking up people and 
pages. Youtube on the other hand focuses on video title and description. There is no 
need to search on comments or other information. To business people, these are im-
portant factors that reflect upon their marketing strategy. “How do people like my 
product?” are often questions raised. Unlike reviews on niche oriented website,  
reviews are listed based on its usefulness to another buyer (eBay, Amazon), social 
networking services does not have such similarities. With exceptional cases, crowd-
sourcing social networking sites such as Stackoverflow and Youtube or any other 
sites within the Stack Exchange network has voting ranking. Unfortunately these sites 
are restricted to factual answers and not opinions. 
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4 Problem Formulation 

From the concepts and definition of sentiment analysis, we get a glimpse of how sen-
timent analysis works. In addition, we discussed existing state-of-the-art techniques, 
double propagation as a method of identifying important features from a corpus. We 
also discussed the improvement of feature ranking mechanism used in the double 
propagation technique. From double propagation, we can see that the opinion lexicon 
is used to promote opinion mining towards a semi-supervised learning approach. Fur-
thermore, double propagation allows us to identify the topic feature in a given corpus. 
The improvised feature on double propagation allows features to be more accurately 
extracted from the given corpus. The basis of the technique takes two different pat-
terns namely, part-whole and “no” patterns to increase recall. It then ranks the ex-
tracted feature candidates by feature importance, which is determined by two factors: 
feature relevance and feature frequency. In terms of relevancy, a web page ranking 
algorithm was used (HITS)[5], [6]. The frequency is applied using a computational 
algorithm to increase the ranking of feature. The improvised double propagation has 
successfully increased feature extraction precision. 

5 Objectives 

In our problem statement, we stated that search ranking is necessary to act as a filter 
when using opinion mining. The idea behind this allows people to go beyond asking 
Google factual questions such as “Who is the prime minister of Malaysia?” instead, 
questions like “How does the battery lifespan of the iPhone 5 perform?” can be ans-
wered using a search ranking algorithm. Imagine, answers given back in a statistical 
manner. You would not need to spend time searching through thousands of newsfeed 
to conclude your decision for purchasing the iPhone 5. The potential of solving this 
problem would save each individual a lot of time for decision making. Although the 
domain could potentially be unlimited, to narrow down the scope, we would only 
discuss on social networking services.Hence, our technique needs to be as generic as 
possible. By the definition of generic, it should not only work on a single social net-
working service such as Facebook. It should ideally, be able to identify similar opi-
nions across all social networking services and return an aggregate answer. To do so, 
one has to rely on method that could be plausible enough to distinguish opinion given 
are not fake or even bias. In addition, given that it has to work across different do-
mains, we need to identify the common grounds between these social networking 
sites. We classify this as an extraction problem which will be discussed in the follow-
ing section. However, in our proposed search ranking algorithm, we do not take this 
into account as there is only a single domain focus. 

Within our objective, we will need to narrow our scope. There may be problems re-
lated to opinion mining which could affect our hypothesis, but most are out of our 
research scope. For instance, we need to identify a common problem within each 
social networking service simply because there are too many different types of social 
networking websites. Websites like Flickr socializes via photos and sites like Twitter 
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socializes via text messaging. The next problem we discovered is the language bar-
rier. What happens if someone posts an opinion which could be useful, but contain a 
mixture of languages? Therefore, our technique should realize such problem exist but 
not to solve it. Part of this problem relates to computer vision to identify objects. This 
is also an extraction problem which we classify it in next section.Assuming that we 
have solved the smaller problems of extraction and identification of a topic feature 
(such as using double propagation), we need formulate a suitable ranking algorithm. 
One way is to use existing solutions such as HITS or PageRank[9]. Alternatively, we 
could propose an improvement on existing solutions but adding additional vectors 
into consideration in the ranking algorithm. In the following section, we take a look at 
a few proposed examples that we think are important in addition to frequency and 
relevancy. 

6 Proposed Solutions 

6.1 Overview 

With HITS as the basis for our search ranking algorithm, we include an additional 
vector that can be obtained from opinion mining. This vector includes the overall 
polarity (positivity, negativity or neutrality) of a given corpus. To obtain this vector, 
an initial run of sentiment analysis algorithm is done on the given corpus. The result 
returned is the polarity of the corpus.In relations to HITS which uses authority and 
hub to rank the importance of a given page, we need to translate such vector from 
opinion mining to HITS [13]. In our solution we would classify an opinionated text as 
hubs and the authority as the owner of the text. There is more than one way to do this. 
For most social networking sites, a single user may have different types of friends. 
Among these friends, some would be reputable, smart, or possibly unknown. If taken 
into consideration of such status, we can formulate a similarity between HITS algo-
rithm and our opinion based search ranking algorithm. Alternatively, we can also 
consider the number of shares, likes etc. Although useful, there is a sign of bias vector 
being included in the algorithm. What happens if an opinionated text is written with 
honesty from an unknown individual compared to popular individuals who wrote 
short and biased opinions? Truthfully, the popular individual will be given more 
weightage in terms of authority. In most cases, PageRank works the same way but 
with additional vectors such as content quality being a consideration. PageRank 
would give higher ranking to well establish sites like bbc.co.uk and then consider the 
links in that site (hubs) as important. 

Unlike Google’s PageRank, we cannot take quality of content as a vector; rather 
we consider the overall sentiment polarity as sufficient vector to denote that an opin-
ion is of higher quality. Since polarity can be higher or lower, our next step is to nor-
malise it. Consider that we have a total polarity equating to 1. We would consider 0.5 
being neutral, < 0.5 being negative and > 0.5 being positive. The calculation to per-
form the normalisation would be dependent on the type of opinion mining method 
used and its accuracy.Next, we would need to consider the scaling factor. Should the 
scale of opinion increase, we need another way to determine the existing standings of 
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previous opinions. In this case, we would follow HITS algorithm. For each iteration, 
we will compute a normalisation value for the authority and the hub. This would cre-
ate a converging value. The iteration would stop upon reaching a converging value 
that is negligible of changes. 

6.2 HITS Algorithm Revisited 

To understand how our algorithm works, we need to reiterate the importance of HITS 
algorithm. Using HITS idea of authority and hubs, we can relate to which opinion 
carries higher importance over another opinion. The idea behind authority and hubs is 
a mutually reinforcing relationship. In the case of opinion mining, the terms are 
changed. A good hub is a comment/feed points to many good authorities; a good au-
thority is a comment/feed that is pointed to by many good hubs.For example, consider 
the case where a comment on iPhone battery lifespan. John is a highly reputable user 
on the social network having many friends or followers comments on the iPhone bat-
tery lifespan. His comments are “retweeted” by many of his followers (Twitter) or 
shared by many friends (Facebook). The mutually reinforcing relationship states that 
such condition would provide John’s opinion with higher weightage. Obviously, the 
vector to determine whether what is an authority and hub can differ in different social 
networking sites. In this case, Facebook could be number of shares, comments, likes 
or in the case of Twitter; it could be the number of retweets, or replies. 

The method we used to determine the authority or hub is by using HITS algorithm. 
More precisely, we take the sum of authority and hub score from each node and com-
pared them to see which is higher. The higher score for authority vector would be the 
authority node.By using HITS algorithm as our foundation, we have successfully 
connected the search term a relevancy. That is, given that a user has so many news 
feed or comments, we are likely to know which opinion we are looking for. In other 
words, we have performed a filter on all opinions that could be related to the search 
query.HITS algorithm has its limitations if we consider its usage in opinion based 
search ranking. We need to provide the algorithm with an extra vector that justifies 
this weakness. Hence, in the section, we propose simple strategy by first deducing the 
overall polarity of the opinionated text.  

6.3 Sentiment Polarity as Vector 

One of the benefits when using opinion mining is the underlying technique used. 
Opinion mining simplest technique could classify a given text in its overall sentiment 
polarity form given an opinionated text. In questions such as “Is the iPhone battery 
durable and lasting?” which we have used throughout our example, HITS alone was 
insufficient to justify a decision making. Looking back at the previous section, we 
conclude that an authority node is a highly trusted opinion. Subsequent shares, likes, 
comments from it would reinforce the relationship between the authority and hubs. 
What is missing is the weightage of a given opinion. With weightage taken into con-
sideration, we can make decisions on opinions that are old, fake or even biased. Over-
all, we are only interested in the output value from the opinion. Additional factors 
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would be included as considerations in an opinion mining technique; a filter in opin-
ions itself.For instance, given the example text “iPhone has tremendous battery life!” 
we would run a sentiment analysis on it. Assume the function f(opinion, e) where e is 
the optional parameter for consideration such as date, length of opinion etc. The func-
tion should return a weightage in the form of normalised vector; between 0 and 1. 

 

Equation 1: , ,  

 

Where x, y and z denotes the normalised value for opinion, date and length respec-
tively such that x would denote the overall polarity of the text (x> 0.5 for positivity, x 
< 0.5 for negativity or 0.5 for neutrality). The remaining variables y and z could be a 
scale determine by the search engine. For example, saying y = 0.8 would mean that 
the date is of 80% accurate. Alternatively we could say that the importance of the date 
hereby can be determined by a scale of 0.8. The vector produced by the function 
would return 0.9 which denotes the positivity of the opinion, y which determines if 
the date is within exactly 2013-05-01 and finally z which tells the function that length 
can be anything with the input value being 0.This function provides a simple example 
on how we can go about identifying the weightage of the opinion with other factors 
into consideration. The assumption of implementing this function is such that there is 
a way to determine the polarity of the opinionated text. The method of determining is 
taken into consideration during opinion mining. Therefore, the additional overhead 
may be negligible.  

7 Conclusions 

The aim of this paper is to hypothesise a possibility such that opinions can be ranked 
given the usage of opinion mining techniques either by indexing or real-time. The 
algorithm may or may not proof to be useful, it shows that there is a possibility of 
requiring ranking algorithms with the boom of user generated content on social net-
working mediums. Ideally, we would like to be able to ask the search engine and con-
clude our decision immediately (decision making support). By taking the very first 
step of linking both opinion mining and search ranking, we can see that there is a 
possibility to produce a system that could truly be of use to save time and money.In 
future possibilities, we look forward to investigating alternative search ranking algo-
rithms that could potentially show its usefulness with opinion mining. Perhaps an 
algorithm that goes beyond considering authority and hubs or even probability of a 
user clicking a particular link.  
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Abstract. Researchers have been building robots able to interact and work with 
people at home. To share and reuse robot code between different developers, 
we present a service-based approach that exploits the standard web interface to 
create reusable robotic services. Our approach includes knowledge ontology 
planning and neural network learning strategies for robot control. In addition, 
several service functions, including service discovery, selection, composition, 
and reconfiguration have been developed for operating the services. The pro-
posed approach has been implemented and evaluated. The results show that our 
approach can be used to build robotic services successfully. 

Keywords: service-oriented computing, robot control, neural controller, know-
ledge ontology, AI planning, service composition. 

1 Introduction 

Building home service robots is a significant issue and researchers have now been 
developing robot design frameworks to manage the complexity and facilitate the reu-
sability of robot code (e.g., [1-2]). From the point of view of the end-users, they ex-
pect to obtain and use robot application software conveniently; on the other hand, 
from the point of view of the robot designers, they prefer an easy-to-share environ-
ment in order to integrate application services constructed by different providers. 
Taking into account the needs of both sides, service-oriented architecture (SOA, [3]) 
provides a promising option for developing robotic services. Ideally, with a SOA-
based robotic framework, end-users can control their robot in the similar way of using 
web services, and robot designers can share services with each other and reuse availa-
ble code to design more comprehensive services. 

However, unlike the traditional web services, applying SOA to robot applications 
involves the complicated control of robot actions, and thus the design of robotic ser-
vices becomes challenging. To develop robot code to solve complicated application 
tasks, a common way is to adopt a divide-and-conquer strategy to reduce the task 
complexity. The process of dividing and solving robotic task is similar to that of task 
decomposition and service composition in the web service domain, in which most 
problems can be solved by workflow-based or AI planning methods [4-5]. Hierar-
chical Task Network (HTN) planners are typical examples [6]. With the aid of an 
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ontology defined to describe robot tasks and to guide the task decomposition, the 
methods used in web composition can also be applied to developing of composite 
robotic services to solve complicated tasks. 

In the study of service-oriented computing and modeling, web service technolo-
gies have been widely applied to different types of applications. With many success-
ful experiences, researchers are now pressing on to extend these techniques to the 
development of robot systems. The most related works are the ones regarding robots 
as services and exploiting the web service architecture to create robots. For example, 
Yachir et al. employed service composition techniques to plan robotic services to help 
an elderly person [7]. Kim et al. focused on how to control a robot through the inte-
gration of web service and robot application technologies [8]. Similarly, Ha et al. 
proposed a service-oriented architecture for the integration of ubiquitous robot devic-
es, including sensors and motors [9]. In addition, Osentoski and colleagues have built 
a framework to enable web interfaces for robot code sharing [10]. 

Different from the above studies, our work dedicates to construct the explicit task 
ontology for daily home tasks, and focuses on the planning-based service configura-
tion to obtain robotic services. In particular, we develop a practical method to create 
new services and this issue has not been addressed in the work described above. Our 
method is a kind of demonstration-based programming [11], which is to teach a robot 
how to achieve a task through human demonstration. This method represents a task as 
the behavior trajectories at the data level, and it includes a neural network learning 
procedure to derive controllers. Once robot controllers are created and regarded as 
services, our framework integrates these services with a HTN planner to perform 
ontology-based service composition to achieve more complicated tasks. In addition, 
we develop an adaptive mechanism with a service re-planning procedure to modify 
the incorrect or unexpected robot action sequences during the composition process. 
To verify the proposed system, we have conducted different sets of experiments in 
which the robot can successfully achieve user-specified control tasks in a home envi-
ronment. 

2 A Service-Oriented Approach for Robot Control 

Service-oriented computing (SOC) has been widely used to support the development 
of software applications. Following the SOC design principles, we present a service-
oriented robotic framework (as illustrated in Fig. 1) to provide rapidly prototyping 
robotic services. As can be seen, our work mainly includes knowledge ontologies and 
three service modules. The task ontology shown in the figure is built for command 
interpretation and service mapping. It describes the semantics of a task in terms of 
task structure and task-solving process. The service modules are a machine learning 
mechanism for the creation of new services, a service discovery module (that analyzes 
the user command, searches the service repository, and chooses the most suitable 
service), and a service composition module (that finds relevant services and integrates 
them to achieve the target task). The details are described in the subsections below. 



 A Service-Oriented Approach with Neural Networks and Knowledge Ontologies 475 

 

2.1 Using Knowledge Ontology to Identify Robot Task 

Ontology plays an important role in knowledge representation. For an action planning 
problem, ontology can be defined to provide the sequence of problem-solving steps 
through organizing domain knowledge, and then the planner can exploit domain 
knowledge and the related techniques defined within the ontology to achieve the ap-
plication task. In this work, we construct two ontologies, task ontology and position 
ontology, to specify the structure of the problem-solving process and to describe the 
environmental knowledge for the robot, respectively. To accomplish the target task, a 
service robot should understand both ontologies. 
 

 
 
 
 
 
 
 
 

 

Fig. 1. Schematic diagram of the proposed system 

The first ontology, position ontology, defines the locations of different objects in a 
home environment and the containment relationships between the objects. For exam-
ple, this ontology indicates that the bowls, plates, and cups are put on a cupboard, and 
a TV is placed in the living room. And the second ontology, task ontology, describes 
how to resolve a user’s request by a sequence of steps. It interprets the task complexi-
ty in a hierarchical way. The task ontology has included the possible robot ac-
tions/tasks in the environment so that the robot can follow it to achieve the target task.  

The procedure for using task ontology is that, after receiving a user command, the 
system will parse the command to extract the verb part as the action description, and 
then use the description to match the task terms recorded in the task ontology. Cur-
rently, we take a simplified natural language toolkit (i.e., NLTK, [12]) for command 
parsing. For example, a command “give me a cup” will be analyzed to get the verb 
“give”, and then use the word “give” to match the terms included in the task ontology.  

In our framework, we use the powerful ontology description language OWL-S to 
implement the ontology. It has three major parts with essential types of knowledge: 
service profile, service model, and service grounding. In general, service profile pro-
vides the information to express “what the service does”; service model describes 
“how to use the service”; and service grounding presents “how to access a service”. 
Fig. 2 shows an OWL-S example that describes the service model defined for the 
robot behavior “Give”, which is composed by one atomic process “Find” and two 
composite processes “Get” and “Put”. The details are described in section 3.2. 
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Fig. 2. The OWL-S example of a robotic service model 

2.2 Learning Neural Controllers 

The core of creating a new service is to develop the service function, which can then 
be combined with other relevant service descriptions and specifications to constitute a 
service. On the robotic service domain, the service function means the control code 
for driving the robot to achieve a task. The code can be written manually by a pro-
grammer or alternatively be learnt without explicit programming. 

To create new services, here we adopt the demonstration-based approach we de-
veloped previously for robot learning ([13]), and then pack the control code to work 
as the service functions. In this approach, perception and motion information of the 
behavior sequences demonstrated by the user are first recorded, and then a machine 
learning mechanism is used to derive controllers. Fig. 3 illustrates the procedure. At 
first, the robot is driven manually to achieve the target task. In this stage, the robot is 
regarded as a teacher showing the correct behavior. During the demonstration period, 
the relevant information is recorded to form a data set for later training. In other 
words, it is to derive the time-series profiles of perception and motion information 
from the qualitative behavior demonstrated by the robot. After that, in the second 
stage, the robot plays the role of a learner that is trained to achieve the target task. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 3. The learning procedure and the neural network controller for the robot 

 

<process:CompositeProcess rdf:ID="Give"> 
<process:hasInput rdf:resource="#Person"/> 
<process:hasInput rdf:resource="#Object"/> 
<process:hasPreconditoion rdf:resource="#ExistPerson"/> 
<process:hasPreconditoion rdf:resource="#ExistObject"/> 
<process:hasEffect rdf:resource="#PersonHasObject"/> 
<process:composedOF> 

<process:Sequence> 
<process:components rdf:parseType="Collection"> 

<process:CompositeProcess rdf:about="#Get"/> 
<process:AtomicProcess rdf:about="#Find"/> 
<process:CompositeProcess rdf:about="#Put"/> 

</process:components> 
</process:Sequence> 

</process:composedOf> 
</process:CompositeProcess>
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In this work, a recurrent neural network (RNN) model is adopted as a behavior 
controller for the learner. Here, we take a fully connected RNN architecture as the 
robot controller, and implement a learning mechanism to train the controller. In a 
fully recurrent net, each node has a link to any node of the net, including itself. When 
activity flows through the network in response to an input, each node influences the 
states of all nodes in the same net. The regulatory effect toward a node is transformed 
by a sigmoidal transfer function into a value between 0 and 1 for normalization. 

When the above model is used to control a robot, each network node corresponds 
to an actuator of the robot in principle. Also, two extra nodes are added to serve as 
buffers, and their roles are not specified in advance. The redundancy makes the con-
trollers easier to be learnt from data. Fig. 3 (left) illustrates the architecture of our 
robot controller. In this architecture, the sensor information received from the envi-
ronment is continuously sent to all nodes of the fully interconnected network, and the 
outputs of the actuator nodes are interpreted as motor commands to control the robot. 
To find the settings of a neural network, we adopt the back-propagation through time 
learning algorithm (BPTT, [14]) to update the relevant parameters. The goal here is to 
minimize the accumulated discrepancy between the time-series data recorded in the 
demonstration procedure (i.e., desired values) and the values produced by the control 
model (i.e., actual values). Hence, the above error function is defined as the mean 
squared error over the time period: 
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In the above equation, ( )d
ix t  is the desired output of node i at time t, ( )a

ix t  is the 

value generated from node i of the learnt model, N is the number of nodes in the  
network, and T is the number of time points for data collection.  

2.3 Service Functions 

In this work, four types of functions, including service discovery, selection, composi-
tion, and reconfiguration, are developed to launch the framework. The first type of 
functions is service discovery. As mentioned, we use OWL-S to describe services, so 
an automatic method can be developed to find appropriate services. In our system, the 
OWL-S service profile defines the IOPE elements (i.e., Input, Output, Precondition, 
and Effect), which are used to match the user’s service requests. A successful match 
means that the system can find services (i.e., find the task terms defined in the ontolo-
gy) to fulfill the user’s request. More comprehensive method (e.g., Jaccard coefficient) 
can be taken and modified slightly as similarity calculation, based on the name, essen-
tial information, and relationship defined in the ontology. 

The second type of functions, service selection, is to choose the most suitable ser-
vices from the candidates obtained from the service discovery process. To perform 
service selection, many researchers have defined various attributes (such as cost,  
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response time, reputation, etc. [5]) and proposed different quality-of service (QoS) 
based methods. Among these attributes, service reputation represents the direct evalu-
ation results from the service requesters or the neutral party. It is an objective  
and easy-to-measure attribute. Therefore, we choose to use this attribute for service 
selection, and design a rating strategy to measure service reputation. It is to combine 
all ratings given by users to rank the candidate services. The system will then select 
services according to the ranking order, in response to the user’s request. 

The third type of functions is service composition, which is to automatically 
compose services already existing in the repository to complete more complex tasks. 
In our framework, we adopt the AI planning techniques to achieve service composi-
tion. Among others, HTN planning is a well-designed methodology most suitable for 
the service composition, in which the tasks are categorized into two types: the primi-
tive and the compound. A primitive task can be performed directly by the predefined 
planning operators, while a compound task needs to be decomposed by a planning 
method before being performed. The concept of task decomposition in HTN is in fact 
very similar to the composite process decomposition in the OWL-S service model: it 
reduces the complexity of reasoning by eliminating uncertainty during the planning 
process. One well-implemented HTN planner is the Simple Hierarchical Ordered 
Planner 2 (SHOP2, [6]). Following their studies, we choose to employ SHOP2 to 
conduct our service composition and take the task ontology defined above to guide 
the decomposition. It should be noted that as OWL-S and SHOP2 have their own 
internal representations, to use SHOP2 for service composition, translations between 
OWL-S and SHOP2 need to be defined. Sirin et al. have defined some translations 
between them [6]. Thus, a service originally created by the OWL-S descriptions can 
have its SHOP2 format and be used by the planner for service composition. 

The final type of functions is service reconfiguration. Though the above service 
functions can offer the user a set of services for his task, however, due to some unfo-
reseen environmental situations, in some cases the robot cannot achieve the task by 
the services organized by the planner. To remedy this problem, our system performs a 
re-planning procedure iteratively, by accounting for the newly acquired world states. 
The system will highlight the planning steps related to the incorrect behavior se-
quences, so that the user can inspect the highlighted parts to find out the failure, modi-
fy the world states, and then activate the planer again to find other services to substi-
tute the current ones. The user can also create new services to fix an incomplete plan 
through the demonstration-based mechanism described previously. 

3 Experiments and Results 

3.1 Service Creation through Robot Learning 

To evaluate our framework, two sets of experiments have been conducted to investi-
gate whether the neural controllers can be built through the learning module, and to  
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examine how our service modules can be used to achieve a more complicated task at a 
higher level. In the first set of experiments, a robot arm with a camera has been used 
to learn a controller for a sequential task of opening a box and picking-up a cup inside 
the box. To save evaluation time, the experiments were performed in simulation. 

The learning module has been used to achieve a sequential task that involves the 
integration of perception information and internal state of the controller for action 
selection. Initially, a box was put on the table. The robot needed to open the box and 
decided what to do next according to what it observed. If the robot found a cup in the 
box, it was required to pick up the cup, put the cup on the table, and then close the 
box. If the box was empty, the robot simply closed the box. After the box was closed, 
the robot had to decide to take which of the following two actions: whether to open 
the box (in order to check the box and pick up the cup if there was any) or to move 
back to its initial position (the task had been completed). To make the correct decision, 
the robot needs to integrate both the perception information and the previous task. 

The control mechanism for the above sequential task can in fact be considered as 
a finite state machine that includes four internal states to represent respectively the 
task status below: (1) the box is on the table and the robot is in its initial position; (2) 
the box is on the table and robot has moved to the position ready for operation; (3) the 
box has been opened by the robot; and (4) the box has been closed by the robot. For 
this task, the perception input to the finite state machine is one of the three situations 
(the box is close, the box is open and the cup is in the box, and the box is open and it 
is empty) derived from the visual results that have been processed by the camera on 
the robot arm. Therefore, the control task is to deal with the state transitions based on 
both the current state and sensor information, and then to generate an appropriate 
action. Here, the possible actions for the robot are to move to the position ready for 
operation, to open the box, to pick up the box, to close the box, and to move to the 
initial position. To obtain a controller that can produce the expected sequential beha-
vior, the proposed approach has been used to learn a six nodes network. Fig. 4 illu-
strates the behavior generated by the controller in the robot software OpenRAVE [15]. 
As we can see, a sequential controller can be learnt to achieve the task successfully. 
 

  
(1) (2) (3) (4) (5) 

  
(6) (7) (8) (9) (10) 

Fig. 4. The behavior sequence produced by the neural controller learnt 
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3.2 Service Composition through Task Planning 

In the second series of experiments, we use our framework to derive a composite 
service to achieve an application task: the user asked the robot to give him a cup in a 
home environment. Two test scenarios have been arranged for this task. In the first 
case, the cup is placed on the table and it is visible to the robot; while in the second 
case, the cup is moved to an opaque cupboard so that the robot must find the cup  
before picking it up. The former is to verify whether the system can find a suitable  
service to drive the robot to pick up the cup, and the latter, to examine whether the 
system can make a new plan to fulfill the target task in a changed environment, by 
retrieving available services (controllers) or creating composite ones.  

To understand the user’s request, the robot needs to connect to the ontology server 
for parsing the command “give me a cup”. In this application, the system used a natu-
ral-language parser to check the syntax of the command and generate a syntax tree. It 
then sent the verb part to the task ontology and the noun part to the position ontology 
to search for suitable services. The OWL-S example shown in Fig. 2 describes the 
service model defined for the robot behavior “Give”, which is composed by one 
atomic process “Find” and two composite processes “Get” and “Put”. That is, the task 
“Give an object to a person” can be decomposed into three subtasks: “Get the object”, 
“Find the person”, and “Put the object to the person (meaning location here)”. In addi-
tion, the process for “Give” has two inputs “Person” and “Object” (to tell the robot 
which object to take, and to whom) and two preconditions “ExistPerson” and “Exis-
tObject” (to indicate if any person or object exists in the world state). 

With the decomposition result, the system can translate the “Give” service de-
scribed by OWL-S into a HTN method, and invoke the sub-services included in the 
“Give” process to complete the overall task. Fig. 5 shows the HTN method corres-
ponding to the “Give” service, which includes the subtasks “Get”, “Find”, and “Put”. 
The action steps of “Give me a cup” can be carried out by the relevant atomic services 
(i.e., HTN operators), in the order of the following verb-object pairs: (find cup), 
(move table), (grasp cup), (find user), (move user), and (release cup). 

Fig. 6 illustrates how the robot achieved the task in the two test scenarios in simu-
lation. The first three steps in the figure (i.e., steps (1)-(3)) show that the robot used 
the position ontology to infer where the cup was located. For the first scenario, once 
the robot knew that the cup was in the kitchen, it went there and recognized that the 
cup was put on the table. Then the robot moved to the region around the cup so that it 
could grasp the cup. Steps (4)-(6) describe such a situation: the robot moved to a posi-
tion close to the cup, and performed the “Get” service. Next, steps (7)-(10) show that 
after the robot picked up the cup, it invoked the other two services “Find” and “Put” 
to find the user and give him the cup. 

As mentioned, in the second test scenario, the cup was moved to an opaque  
cupboard, and the robot could not grasp the cup directly (though it could obtain the 
cup’s position from the environment file and move to a position around the cup).  
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Fig. 5. The HTN method for the target service 

  
(1) (2) (3) (4) (5) 

  
(6) (7) (8) (9) (10) 

Fig. 6. Simulation results of the first case 

This means that the current service could not fulfill the user’s requirement, as the 
service “find” in Fig. 7 could not result in any state “found object” which was the 
precondition of the service followed. To cope with such failure, the system hig-
hlighted the relevant steps in the HTN plan, so that the user could inspect this part to 
find out the reasons that caused the failure, modify the world state, and then make a 
new plan. 

In the experiment, the user found that the cup did not appear in a visible place so 
the robot could not complete the subtask “grasp”. To solve this problem, the user 
changed the world state from “cup is visible” to “cup is invisible”, and then used the 
HTN planner again to make a new plan. That is, the user added a new world state 
“(isContainer cupboard)” as the precondition and a new input “cupboard” to the plan-
ner to find suitable services. After that, the system found a “search” service (to open 
containers to check if any of them contains the target object) that matched the new 
requirement. As shown in Fig. 7, the new plan also indicated that this “search” service 
must be performed before the “grasp” service. 

Taking the new plan, the robot first checked the position ontology to obtain the 
possible cup position, and it then examined the world states to find the objects “con-
tainers” which could be used to store the cup. For any object with a property “con-
tainer”, the robot activated the service “open” to open it, and checked if the cup was 
inside there. In this way, the robot realized that the cup was placed in the cupboard 
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and it confirmed that the world state “(isContainer cupboard)” was true. According to 
the other world state “(isClosed cupboard)”, the robot tried to open the cupboard, and 
then grasped the cup successfully. Fig. 8 shows to the above process: the robot 
opened the cupboard and grasped the cup to achieve the task successfully. 

 

 

 

Fig. 7. Reconfigured plan for the target task 

 

  
(1) (2) (3) (4) (5) 

Fig. 8. Simulation results of the second case 

4 Conclusions 

In this work, we indicated the importance of developing an easy-to-share networking 
platform for the reuse of robot code distributed by different providers. Taking into 
account the needs of both sides of end-users and robot designers, we presented a ser-
vice-oriented approach that exploits the standard web interface for the development of 
shared robotic services. Our approach includes knowledge ontology and neural net-
work learning strategies for robot control. The task ontology has been constructed and 
used for command interpretation and service mapping, and the neural network has 
been used to create new services through a learning procedure. In addition, several 
service functions have been developed for operating the services. Under the guidance 
of task ontology, our work employs a planning-based service composition process to 
generate composite robotic services to solve complicated tasks in the home environ-
ment. Experiments have been conducted to verify the proposed methodology, and the 
results show that new services can be built through human-machine interaction and 
composite services can be derived for the application task successfully. Currently, we 
are extending this robotic service approach to investigate more comprehensive service 
mapping and composition strategies to take more task-related issues into account to 
infer composite services precisely. 
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Abstract. With the advancement of bioinformatics, the research on the gene 
chips has been paid more attention by the researchers in recent years. Applica-
tions of gene expression profiles on cancer diagnosis and classification have 
gradually become one of the hot topics in the field of bioinformatics. According 
to the gene expression profiles characteristics of high dimension and small 
sample set, we propose a classify method for cancer classification, which is 
based on neighborhood rough set theory and probabilistic neural network  
ensemble classification algorithm. Firstly, genes are sorted by using Relief al-
gorithm. Then, classification informative genes are selected using the neighbor-
hood rough set theory. At last, we do cancer classification with probabilistic 
neural networks ensemble classification model. The experimental results show 
that the proposed method can effectively select cancer genes, and can obtain 
better classification results. 

Keywords: Gene Expression Profiles, Neighborhood Rough Set, Probabilistic 
Neural Networks Ensemble Classification Algorithm. 

1 Introduction 

DNA microarray is a new technology which is an efficient detection of DNA se-
quence. The researchers used microarray technology have obtained the expression 
levels of tens of thousands of genes, resulting in large scale gene expression profiles. 
It is very important significance by gene expression profiling for cancer diagnosis and 
treatment. In addition, it is also one of the important subjects of current research in 
bioinformatics[1]. In fact, only a small number of genes are really related to the same 
sample categories. These genes are referred to as the information gene. They contain 
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the classification information of the samples[2]. How to use the microarray data to 
identify feature genes, this study has proposed the new task of data mining, and be-
came a hotspot in the research of gene expression data processing and analysis[3-
4].Domestic researchers have conducted more comprehensive and detailed review of 
the results of these studies[3-5]. In order to select feature genes, we propose a feature 
gene selection algorithm based on neighborhood rough set. By using this method, we 
can select a relatively small number of feature genes with strong classification ability. 
Recently, researchers begin to pay more attention to the ensemble classification  
method which has higher classification accuracy and better generalization ability[6]. 
Hansen and Salamon proof that simply by training multiple neural networks and  
integration of their results can significantly improve the generalization ability of the 
neural network[7].Tan et al. concluded that the ensemble method can improve  
the classification accuracy of gene expression data [8]. In [9], A.Ben-Dor examined 
the use of scoring methods, measuring separation of tissue type using individual gene 
expression levels. In [10], a support vector machine and the decision tree were em-
ployed. For cancer classification problem, combined with the idea of ensemble learn-
ing, we propose bagging-based probabilistic neural network ensemble classification 
algorithm for classification of cancer gene expression profiles. To compare with the 
[9] and [10], our experimental results show that the proposed method can effectively 
reduce the classification errors, improve the classification accuracy and has better 
generalization ability. 

The following sections of the paper are organized as follows. In section 2, we out-
line the methodology of feature gene selection. In section 3, we present probabilistic 
neural networks ensemble classification method. In section 4, we present gene expres-
sion profiles classification method based on neighborhood rough set and probabilistic 
neural networks ensemble. In section 5, we present experimental results and analysis. 
Finally, in section 6, we show our conclusions and future work. 

2 Feature Gene Selection 

The high dimensionality of the gene and the high noise, redundancy which the gene 
contains is the main reason for the low efficiency and poor performance of a variety 
of classifiers in the analysis of cancer gene expression data. Relief algorithm[11] as a 
kind of sorting algorithm has been widely used in feature selection. But, there is still a 
high degree of redundancy and noise among genes selected by using it. 

The rough set theory is proposed by Pawlak to deal with ambiguity and uncertain-
ty of knowledge[12]. The gene expression value is a continuous real data while Paw-
lak rough set cannot directly deal with. Neighborhood rough set is developed on the 
basis of the classical rough set theory model to deal with continuous data directly. 
Cancer classification problem can be formalized expressed as a neighborhood deci-
sion table , , ,NDT S A G D V f=< = > . { }1 2, , , mS s s s=  is a non-empty set of cancer 

samples. { }1 2, , , mG g g g=  is a non-empty gene subset. { }D L= is an output feature 

vector. L  represents sample category tag. aV is the range of the property a G D∈  . 
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And f is an information function which can be expressed as : ( )f S G D V× → . If

is S∀ ∈ and B G⊆ , and the neighborhood of samples is in the sub gene space B are 

denoted by ( )B isδ , there is ( ) ( ){ }| , ,B i j j B i js s s S s sδ δ= ∈ Δ ≤  accordingly.Typically, 

there are three widely used measure functions: the Manhattan distance, Euclidean 

distance and the Chebychev distance. Set is and js are two samples of n  dimension-

al gene space { }1 2, , , nG g g g=  , ( ), if s g is the value of the sample s  in the i th dimen-

sion gene. Then the Minkowsky distance can be defined as following (1): 

 ( ) ( ) ( )
1/

1 2 1 2
1

, | , , |
pn

p
p i i

i

s s f s g f s g
=

 Δ = − 
 
       (1) 

Given a neighborhood decision table , is a sample subset which 
has specific category value of the decision attribute from 1 to . Where

, is a division of .

which is produced by the gene subset is neighborhood information granularity 

including a sample . 

The gene selection method based on attribute reduction algorithm is to obtain a 
feature gene subset as small as possible while its classification ability will be as 
strong as possible. Here, we use the attribute reduction algorithm based on neighbor-
hood rough set model which is FARNeM[12]. But, because of the influence from 
cancer unrelated genes and noise, the classification performance of the genes reduc-
tion subset obtained in this way is not very good. Accordingly, using the Relief algo-
rithm to sort genes and select initial feature subset is very important. 

3 Bagging-Based Probabilistic Neural Networks Ensemble 
Classification Method (Bagging-PNN) 

In practical applications, Probabilistic Neural Networks(PNN)[13] has the advantage 
of using linear learning algorithm to complete the work which is ever done by nonli-
near learning algorithm. Such networks corresponding weights are related to the dis-
tribution of model samples. The network does not require repeated training. It selects 
data separately from the original data set randomly. By giving a weak learning algo-
rithm, bagging technology can learn multiple training sample set. The results with the 
largest number of votes will be the final results. Bagging-PNN Ensemble Classifier 
Algorithm is as following. 

Algorithm: Bagging-PNN Ensemble Classifier 
Input: D--training dataset; T--number of individual classifiers; 

A--Probabilistic neural network classification algorithm 

NDT { }1 , , cX X
c

[ ]
1

, , 1, , ,
c

i j i
i

X X i j c i j X S
=

= ∅ ∈ ≠ =  { }1 , , cX X S ( )B ixδ

B G⊂

ix
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Output: Bagging classifier  
(a) . For i=1 to T  
(b). n samples are extracted by a randomly put back extraction from the training set 

. Create a sample set . 

(c). Using Sample sets and probabilistic neural network classification algorithm   to 
train, probabilistic neural network classifier  is obtained. 

(d) . End For 

(e). Output bagging classifier . 

And then, the bagging classifier is used to classify the unknown sample . 
1. When bagging classifier classifies the unknown sample , every classifier 

will get a classification result. Then T classifier votes, the most votes of 
the class is the classification result of the unknown sample . 

2. Output classification results by voting . 

4 Gene Expression Profiles Classification Method Based on 
Neighborhood Rough Set and Probabilistic Neural Networks 
Ensemble 

In this paper, we propose an improved method based on neighborhood rough sets and 
probabilistic neural network ensemble classifier for cancer classification. The detailed 
steps of the ensemble classification method are as follows: 

Step 1 Sorting all the genes using the algorithm Relief, and then we select the first 
genes to constitute the initial feature gene subset ; 

Step 2 The algorithm FARNem based on neighborhood rough sets is used to reduce 
genes of feature genes subset . Further, it will select the feature gene sub-
set which is appropriate to classification. 

Step 3 Feature gene subset is the input of the ensemble classification algorithm 
Bagging-PNN which is based on probabilistic neural network. And it will 
carry classification training on the input sample set of cancer gene expres-
sion profiles. After training, we get the classification model ; 

Step 4 Assessing classification model by using test samples; 

5 Experimental Results and Analysis 

Experimental datasets include Colon dataset[14], Gastric dataset[15]and Ovarian 
dataset[16]. Their cancer gene expression profiles are standard datasets to verify can-
cer classification and gene expression analysis method. Colon dataset contains a total 
of 62 samples, which include 22 normal samples and 40 abnormal samples. Each 
sample contains 2000 level values of gene expression. Ovarian dataset has a total of 

( )C X

D iD

A
( )ic x

( ) arg m ax ( )
T

i
i

C X c x= 
( )C X x

x
( )ic x

x

( ) arg max ( )
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i
i
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n nG

nG
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253 samples, which include 91 normal samples and 162 abnormal samples. Each 
sample contains 15154 level values of gene expression. In our experiment, we use 
intestinal type gastric cancer data for Gastric dataset. It contains a total of 40 samples, 
which include 20 normal samples and 20 abnormal samples. Each sample contains 
1519 level values of gene expression. Their main characteristics are shown in Table 1. 

Table 1. Characterized description of the data sets 

Gene expression profile Gene Sample Class1 Class2 

Colon dataset 2000 62 40(cancer) 22(normal) 

Gastric dataset 1519 40 20(cancer) 20(normal) 
Ovarian dataset 15154 253 162(cancer) 91(normal) 

We use leave-one-out cross validation method. From the results of the Table 2, the 
proposed Bagging-PNN ensemble classifier can achieve 90.32% accuracy in the colon 
cancer dataset. In [9],the method can achieve 77.4% and 88.7% classification accura-
cy respectively. For ovarian cancer dataset, Bagging-PNN classifier can achieve 
96.44% accuracy, which outperforms the boosting method in [9] with 7.14% increas-
ing. In gastric cancer dataset, the [10] used genetic algorithm to select 28 information 
genes which classification accuracy is 100%. But the proposed algorithm only needs 3 
characteristic genes to get 100% classification accuracy.  

Table 2. The classification results of the data sets 

Gene expression 
profile 

The number of 
feature genes 

Correctly identify the number of 
samples 

Colon dataset 3 56/62 

Gastric dataset 3 40/40 

Ovarian dataset 9 244/253 

6 Conclusion 

In this paper, we propose a new classification method based on cancer gene expres-
sion profiles structural characteristics. Firstly, we propose feature gene selection me-
thod based on neighborhood rough set to select a handful of feature genes with strong 
classification ability from thousands of genes. And then, we propose an ensemble 
classification algorithm based on the Bagging-PNN. Classification experiments on 
three gene expression datasets using this method have achieved better results than the 
method used in [9] and [10]. Experimental results show that the method we propose 
has achieved higher classification accuracy and stability. It is effective and practical 
for cancer gene expression data classification. 
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Abstract. Breast cancer is the second leading reason of fatality among all can-
cers for women. In this paper, we propose a novel method for early breast cancer 
intelligent classification. We combine wavelet theory with neural network theory 
to construct an improved wavelet neural network (IWNN) for digital mammo-
graphy classification. Firstly, we combine redundant dyadic wavelet transform 
with ridgelet transform to enhance the image. Because most of the wavelet 
coefficients containing signals are retained, the image detail can be kept better. 
And then, the statistical coefficients of the source regions are extracted as fea-
tures for classification. At last, the medical images are classified by using IWNN 
on real datasets MIAS(the Mammographic Image Analysis Society). The expe-
rimental results show that proposed IWNN classifier can achieve 86.71% accu-
racy, which outperform the traditional neural network method with 5.46% of 
increase of classification accuracy. The correct recognition rates are close to 
100% averagely. 

Keywords: mammography, wavelet transform, ridgelet Transform, Neural 
Networks. 

1 Introduction 

Breast Cancer is the second leading cause of death in women. At present, lacking of 
effective technological aides makes higher misdiagnosis rate[1-3]. In [2], the authors 
use data mining techniques to classify anomalies in the breast. In [4], the authors use a 
Bayesian network to find and classify regions of interesting. In [5], the authors present 
a method for feature extraction of lesions in mammograms. In [6], the authors find an 
evaluation of different methods that can be used to get texture features from regions of 
interest extracted from mammogram images. In [7], we can see how the rough set has 
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been used to detect groups of micro-calcifications in digital mammograms. Ribeiro et 
al. [8] use text features and association rules to classify mammogram images. In addi-
tion, some other methods were presented in the literature[9-11]. With all this effort, 
there is still no widely used method to classify medical images.  

Artificial neural network has great application effect to the knowledge that lacks 
relation between attribute and class. At present, many articles put forward its improved 
algorithm[12-14], but each of the algorithms has limitations in the application. In this 
paper, we proposed a novel method for mammograms classification. Firstly, we pre-
process the image by combining redundant dyadic wavelet transform with ridgelet 
transform to enhance the image. And then, we propose an improved wavelet neural 
network (IWNN), which makes full use of wavelet transform, and analyzes image 
signal using multi-scale through dilation and shift operations. As a consequence, the 
IWNN has stronger capacity of approximation and fault tolerance which can classify 
the breast cancer data more efficiently.  

2 Image Classification Based on Improved Wavelet Neural 
Network Algorithm   

2.1 Image Preprocessing 

Firstly, the image signal is decomposed by using wavelet through the soft threshold 
formula sgn(η ω ω ω ω( ) = ( − )Τ)Ι(| |> Τ)Where, is the wavelet transform coeffi-

cient, T is pre-selected threshold. Then, the high frequency coefficient gets thresholds 
quantization. Finally, the image signal is reconstructed using two-dimensional wavelet. 
For the medical image , after L layer of wavelet transform, original image 

can be decomposed into a low frequency sub-image  and a series 

of sub-band images  According to the sizes of the two 
components, position and attribute of the edge can be judged. Enhance processing is to 

transform these sub-band images

 ( ) ( )( ), ,
d

d d
j j jW m n f W m n= where is the enhance function in scale j. 

We get the image from  ’s reconstruction to processed images. 

Then the images reconstructed are transformed using j layer of the two-dimensional 
wavelet transform. With formula (1) and after ridgelet transform, the coefficient is , 

and the coefficient after enhance transform is .The function  is dyadic 
wavelet transform. While strengthening, noises can not be amplified and not distorted in 

the original clear edge, only coefficients in  are corrected. Coefficients out 

of  remain invariant, where  decides nonlinear of the enhancement 

curve. m inT cσ= , whereσ is the noise standard deviation of original image, and c is 
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the parameters to be determined. Here we suppose 3c = . m axT  can be determined on 
the basis of the noise standard deviation. 
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After pre-processing the images, features relevant to the classification are extracted 
from the cleaned images. The extracted features are four kinds of statistical parameters: 
mean, variance, partial gradient and kurtosis[2]. 

2.2 Improved Wavelet Neural Network (IWNN) 

In this paper, the wavelet function is embedded in neural network, which is called 
wavelet neurons instead of the traditional neurons in back-propagation neural network. 
And the wavelet function takes the place of the conventional neural network of hidden 
function. The weights of corresponding input layer to the hidden and the threshold of 
hidden layer are replaced by wavelet function’s scale and translation parameters re-
spectively. By means of wavelet theory, the neural network has a simple topology 
structure and higher convergence speed. But the scale and the translation parameters 
are adjustable, which make network and its output have nonlinear relationship. By 
using nonlinear optimization method to fix the parameters, it is easy to have minimum 
weakness in fix similar BP network parameters. 

Let us suppose that the improved wavelet neural network have three layers. The 
neurons activation function is discrete dyadic wavelet: 

 ( )( ) 2 2 ,− −= −m m
m, ψ x ψ xk k    2.∈Ζk,  m  (2) 

Where  is stretch and shift factor respectively. We introduce two filters H and G, 
which impulse responses are: 

 ( ) ( ) ( ) ( )0 1 0 1,k k k k k kh φ x φ x dx g φ x ψ x dx
+∞ +∞

−∞ −∞
= =   (3) 

Where 1 0 ,k k k
k

a h a
∞

=−∞

=   1 0k k k
k

d g a
∞

=−∞

=   

For a group of discrete samples, we can get the following recursive formula:  

 ( ) ( ) ( )1 .m mk mk mk mk
k k

A F x a φ x d ψ x−
∈ ∈

= + 
 

 (4) 

Where coefficient ,mk mka d  satisfy: 

 1 1, , .mk m k mk m ka Ha d Ga k− −= = ∀  (5) 

 

,m k
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This forms the wavelet network which has two units in hidden layer. 

(1). Scale functions unit  are orthogonal basis 

functions in different displacement, when under the resolution L (lowest resolution), 
and then construct approach for unknown function in a minimum of the resolution. 

(2). The wavelet function ( )xψ and unit ( )mk xψ are the orthogonal basis func-

tions of the details of ( )F x . 

The algorithm of improved wavelet neural network (IWNN) is as following: 

Algorithm two: Improved Wavelet Neural Network (IWNN) 

Input: Network parameters initialization (Wavelet’s adjustable factor , trans-

lation factor , network connection weights and , learning rate 

and momentum factor are given initial value. And 

it input sample calculator ). 

Output: Classification results  

(a) Input study sample and the corresponding expected output value . 

(b) With the fast wavelet transform the original signal into different scales. 
(c) Calculate the output of hidden and output layer, and deposit in the prediction 

matrix. 
(d) Calculate error and gradient vector; 
(e) Input next sample ; 

(f) Judge if algorithms are over. When , cost function  less than pre-set 

precision value , stop network learning; otherwise reset for 1, 

and then return to (a). 

3 Experimental Results 

In our experiments, the data collection was taken from MIAS[2]. The first step is 
cutting operation on the image. The images are cropped to 454 × 605. Then, the wavelet 
packet of the images is decomposed to determine the optimal wavelet, and the wavelet 
packet decomposition coefficients are quantitative. Finally, the image wavelet packet is 
reconstructed into de-noised images. In this paper, the dyadic wavelet transform and 
ridge wavelet transform method are combined together to enhance the image. We 
extract 64 feature values for each image. And then, the initial values of the weight 
factor are set. The initial size is 15. The original units are two φ  nodes. The ψ  nodes 

are increased one by one for improving the approximation accuracy. The different 
levels of approximation error and prediction error are shown in Table 1 for the estab-
lished wavelet network. At last, 12 is selected as the final size. After 100 times training, 
the Standard Deviation is 0.0742244/0, and Gradient is 0.0104811/1e-006. The error is 
smaller when the prediction classifier is used. 
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Table 1. Different levels of approximation error and prediction error with initial weight factor 

No. Size New units Approximation error Prediction error 

1 15 two φ  1.832 1.376 

2 15 two ψ  0.532 0.343 

3 14  three ψ  0.203 0.132 

4 13 four ψ  0.133 0.156 

5 12 five ψ  0.183 0.038 

We use the 10 fold cross-validation techniques to evaluate the algorithm perfor-
mance. There are 288 images in the training set and 34 images in the testing set. The 
results of the experiment are shown in Figure 1, in which the abscissa shows the data 
set’s 10 times randomly partition, and the vertical axis shows classification accuracy of 
10 times. The average classification accuracy using IWNN algorithm is 86.71 %, which 
is higher than [2].  
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Fig. 1. Experimental results on the MIAS Dataset using IWNN algorithm 

In our experiments, the positive predictive values and the negative predictive values 
are close to 100%. This shows that there is a high rate of correct classification on 
normal and abnormal mammography. It is expected by medical experts.  

4 Conclusion 

In this paper, we construct a novel improved wavelet neural network (IWNN) classifier 
for medical devices. We use the MIAS dataset to evaluate the performance of our 
method. Experiments show that the average classification accuracy by using this al-
gorithm is 86.71%, which is higher about 5.46% than 81.25% in [2]. There is a very low 
probability to wrongly merge the abnormal images into others. It can be able to meet 
the needs of the actual medical diagnosis. 
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Abstract. Existing SOM based visualization methods have the limita-
tion of not being able to show detailed local distance information and
global similarity of data at the same time. In this paper, we propose
two approaches to overcome this limitation for better data navigation.
In our experiments, we used MPEG-7 shape image dataset and classic
IRIS dataset to demonstrate our approaches are superior to previous
approaches in providing sufficient local and global information for data
visual navigation.

Keywords: Self Organizing Map(SOM), Data visualization and navi-
gation, Local distances preserving, Global distances preserving.

1 Introduction

Self Organizing Map (SOM) [1] is widely used in exploratory data analysis and
visualization. Through unsupervised training, SOM can project high-dimension
data to low-dimension (typically 2) regular grids which is called the ”map”. The
visualization and navigation of high-dimension data are made possible through
their Best Matching Units (BMUs) [1] on the map. In the past, many SOM based
methods were proposed for visualizing data cluster structure [2]. They can be
generally categorized as local or global distance preserving techniques.

Among local distance preserving techniques, the most widely used are distance
matrices [2]. U-matrix [3], for instance, calculates the distances of each map unit
to its immediate neighbors, which can be visualized via gray shades. Usually
darker shades indicate greater distances. A simplified version is to calculate a
single value for each map unit (e.g. the averaged distances to its neighbors)
and use it to control the size or color of the map unit for visualization [4].
Apart from distance matrices, Polzlbauer et al. [5] borrowed ideas from flow and
vector field visualization, Tasdemir [6] borrowed ideas from graph visualization
for visualizing local similarity of SOM map units.

Among global distance preserving techniques, one of the earliest is similarity
color coding [7]. In this approach, a nonlinear projection is used to map the
cluster structure of trained SOM to different hue values. As a result, the per-
ceptual similarity between hues reflects the global order (i.e. similarity) between

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 496–503, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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clusters. On the other hand, the perceived differences between hues reveals clus-
ter borders. Himberg [8] introduced a contraction model to pull similar map
units together and assign them with similar coloring iteratively to visualize the
hierarchical clustering structure of data. Recently, Runz et al. [9] introduced a
data-driven color mapping algorithm to visualize the global similarity of data
cluster. The common problem in these previous approaches is that nodes within
the same cluster tend to have uniform colors, hence detailed local distance in-
formation is lost.

In summary, local distance preserving techniques help to visualize local sim-
ilarity of each map unit to its neighbors. With local distance preserving visu-
alizations [3–6], although local information such as local minima (i.e. cluster
center) and cluster border can be easily identified, global relationships of sepa-
rate clusters can not be captured. On the other hand, global distance preserv-
ing techniques help to visualize global order (i.e. similarity) of individual data
clusters and identify possible distortions caused by dimension reduction (when
two similar clusters are separately located on SOM). With global distance pre-
serving visualizations [7–9], although global relationship of data clusters can be
perceived, local information are not well preserved [7]: only the most impor-
tant local information (i.e. cluster borders) are captured, information such as
neighborhood distances and cluster centers are not discernible. Therefore, in
this paper we propose two approaches to overcome the limitations of existing
SOM based visualization methods. Using our proposed approaches, both local
distances and global ordering of the data can be visualized on a single map to
facilitate SOM based data navigation.

2 Our Approaches

In this section, two approaches are proposed for displaying both local distances
and global ordering of input data on a single map. Classic IRIS dataset [10] which
presents 3 different classes of iris flowers is used for illustrating our approaches.
In IRIS dataset, 150 instances are defined by 4 variables.

2.1 Contour Overlay with Interactive Coloring (1st Approach)

The idea of this approach is to use contour plot of distance matrix for displaying
local distances, and colors of map units for interactively displaying the similar-
ity between the user selected map unit and the rest of units. Such similarity
can be pre-calculated through pair wised distances of model vectors. Fig. 1 il-
lustrates this approach. In the distance matrix (Fig. 1a), small local distances
(shown by deep blue) indicate cluster structures of the data, yet global similarity
among clusters is not perceivable. Therefore, in Fig. 1c, we interactively re-color
all the nodes based on their distances to user’s current selection (node marked
with ”1”) to show the global distances among all the nodes while user navigating
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Fig. 1. Our 1st approach using IRIS dataset. (b) is the contour plot of (a). (c) is the
visualization result: contour plot is imposed on SOM to show local distances, colors of
nodes indicate the distances of every nodes to the user selected node (marked as ”1”).
Sizes of nodes denote the number of data hits.

(a) Our 2nd approach (b) Color legend for (a)

Fig. 2. Our 2nd approach using IRIS dataset. (a) is the visualization result: lightness
of nodes indicate local distances: the smaller (bigger) the local distance, the darker
(lighter) the node; similarity of hues indicate global similarity. (b) is the color legend
which is obtained by unfolding HSL cylindrical surface.

through the map, meanwhile, local distances can be visualized via the contour
overlay (Fig. 1b) imposed on the map. Sizes of the nodes in Fig. 1c indicate the
number of data hits. The larger the size, the more data entries are mapped to
the node. The algorithm of this approach is summarized as follows:

Contour Overlay with Interactive Coloring (1st Approach)

PROGRAM InteractiveApproach (InputData)

TrainedSOM = TrainSOM(InputData);

Calculate DistanceMatrix via Umatrix;
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Obtain ContourPlot of DistanceMatrix;

Calculate PairWisedDistances of ModelVectors in TrainedSOM;

Display DistaceMatrix with ContourPlot overlay;

Allow user’s selection;

WHILE UserClick <= MaximumClick

ClickedNode = IOHandling(UserClick);

Distances = PairWisedDistance(ClickedNode, OtherNodes);

Display Distances with ContourPlot overlay;

END WHILE

END PROGRAM

2.2 HSL Color space Mapping Based Color Coding (2nd Approach)

In the past, only single channel (typically hue) of a color model is chosen to show
global similarity. Even if multiple channels are used, only one channel is used
predominantly, other channels are used for smoothing color transitions. There-
fore, using previous global distance preserving techniques, nodes within the same
cluster tend to have uniform colors (see Fig. 5c). Although cluster borders are
still perceivable, detailed local distance information (e.g. neighborhood distances
and local minima) is lost. This will be further discussed in section 3.2.

To be able to visualize both local and global distances on the same map,
we use hue and lightness in HSL color space, so that cluster border and global
distances can be seen via hues, neighborhood distances and local minima can
be seen via lightnesses. For instance, in Fig. 2a, the perceptual similarity of
hues indicate global similarity of clusters; meanwhile, lightness of each node
indicates neighborhood distances: the smaller (bigger) the local distance, the
darker (lighter) the node. The range of colors used in our visualization is obtained
by unfolding the HSL cylindrical surface at maximum saturation (Fig. 2b). After
the initial SOM is trained with input data, hue and lightness of each node can be
decided by training another SOM to map its model vectors to the HSL cylindrical
space at maximum saturation (Fig. 2b). Here, we use two 1D SOMs trained
with the model vectors and distance matrix to simplify this process, which can
be easily extended to its full version by using a 2D SOM and possibly color
interpolation. The algorithm of this approach is summarized as follows:

HSL Color space Mapping Based Color Coding (2nd Approach)

PROGRAM HSLMappingApproach (InputData)

TrainedSOM = TrainSOM(InputData);

Calculate DistanceMatrix via Umatrix;

Train a 1D SOM with 360 neurons ring topology

to map ModelVectors of TrainedSOM to Hue channel;

Train a 1D SOM with 100 neurons chain topology

to map DistanceMatrix to Lightness channel;

Set Saturation to maximum value;

HSLNodeColors = (Hue, Saturation, Lightness);

RGBNodeColors = HSLToRGB(HSLNodeColors);
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Display SOM grids with RGBNodeColors;

END PROGRAM

3 Experimental Results

Our approaches are implemented in MATLAB using SOM toolbox [2]. MPEG-7
shape [11] image dataset and IRIS dataset [10] are used for our experiments.

3.1 Data Navigation of MPEG-7 Shape Image Dataset

MPEG-7 shape image dataset [11] (1400 images of 70 different shapes) is used for
testing our proposed visualization approaches for data navigation. Space filling
curve based shape descriptor [12] is applied to obtain our input data. The input
data size is 1400× 64. We use a 17× 11 SOM with toroid topology to train the
input data, the visualization results can be seen in Fig. 3 and Fig. 4.
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(c) Images mapped to node ”1” in (b) (d) Images mapped to node ”2” in (b)

Fig. 3. Data navigation of MPEG-7 dataset using our 1st approach. (a)(b) share the
same color bar. In (b), colors of contour lines indicate local distances; colors of nodes
indicate global distances relative to user’s current selection (node ”2”).
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In Fig. 3, the image (”bone.jpg”) displayed in the center of Fig. 3c and Fig. 3d
is the searched image while the user is navigating through the map. All the
images around the center are the ones mapped to the clicked node. They are
organized into eight positions based on which (1 out of 8) mediate neighbors of
the clicked node they are closest to. Such organization of mapped images provides
guidance of direction to the user when searching an image. For instance, the user
can move the mouse in the same direction where similar images to the searched
image are arranged. Also the user can also move the mouse based on the colors of
map nodes: blue colors indicate similar images are mapped to them (Fig. 3c and
Fig. 3d). Meanwhile, blue contour lines in Fig. 3b show detailed local distance
information (i.e. cluster structures) within the dataset. Fig. 4 is the visualization
result using our HSL colorspace mapping based method. Lightness of nodes
show local distances (the darker (lighter) the node, the smaller (bigger) the
averaged neighborhood distances); similarity of hues indicate global similarity
among clusters. Therefore, in Fig. 4a, similar clusters are colored by similar
hues although they may be separately located (e.g. the four corners of the map).
Cluster borders can be seen via different hues, which also appear lighter. Darkest
nodes within clusters denote local minima. Fig. 4b also enables users to navigate
the data by clicking the map nodes (similar to Fig. 3c, 3d). Fig. 4c shows such
an example.

In summary, either the interactive approach (Fig. 3) or the color space map-
ping approach (Fig. 4) is able to display sufficient local and global information
of data at the same time. Particularly, by interactively displaying mapped image
data of each map node, our approaches facilitate the visual navigation of data.

(a) Our colorspace
mapping approach

1

(b) Data hits shown
by sizes of nodes

(c) Image data mapped to node
marked as ”1” in (b)

Fig. 4. Data navigation of MPEG-7 dataset using our 2nd approach. In (a)(b), the
smaller (bigger) the local distance, the darker (lighter) the node; similarity of hues
indicate global similarity of clusters. In (b), sizes of nodes denote how many data
entries (images) are mapped to the node.
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Fig. 5. Comparison of our approaches to previous approaches using IRIS dataset.
(a)(c)(d)(e) are introduced by [4] [7] [8] [9]. Perceptual differences of hues indicate
dis-similarities of nodes. (b) is our interactive method: colors of contours indicate local
distances; colors of nodes indicate global distances relative to user’s selection (marked
as ”1”). (f) is our HSL colorspace mapping method. See Fig 2b for color legend of (f).

3.2 Visualization Methods Comparison Using IRIS Dataset

We compare the visualization results of our approaches with previous approaches
using IRIS dataset [10] which represents 3 classes of iris flowers having size of
150× 4. In Fig. 5, we train a 16× 4 SOM with hexagon lattice to generate visu-
alization results using our approaches and global distance preserving techniques
introduced by [4, 7, 8]. Fig. 5e is extracted from [9]. In the distance matrix [4]
(Fig. 5a), although local distances, cluster borders are shown; global distances of
clusters are not discernible. In Fig. 5c, 5d and 5e, although similarity of clusters
and cluster borders are perceivable, colors within the same cluster tend to be
uniform, hence detailed local information such as neighborhood distances and lo-
cal minima can not be visualized. However, both our approaches have overcome
above limitations and are able to display sufficient local information and global
similarity of data clusters at the same time to facilitate better data navigation.
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4 Conclusion

In this paper, we proposed two approaches to enhance existing SOM based data
visualization methods for better data navigation. Using our approaches, both
detailed local information and global ordering of the data can be visualized on
the same map. Through our experiments, we have shown our approaches have
overcome the limitations of previous approaches and facilitated SOM based data
navigation.
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Abstract. Physiological signals have certain prominent characteristics that dis-
tinguish them from other types of physiological signals which are familiar to 
experts and assessed by inspection. The aim of this paper is to develop a com-
putational model that can distinguish electrocardiogram, galvanic skin response 
and blood pressure signals acquired from sensors as well as detect corrupted 
signals which can arise due to hardware problems including sensor malfunction. 
Our work also investigates the impact of the signal modeling for various time 
lengths and determines an optimal signal time length for classification. This 
provides a method for automatic detection of corrupted signals during signal da-
ta collection which can be incorporated as a support tool during real-time sensor 
data acquisition. 

Keywords: signal classification, artificial neural networks, physiological sig-
nals, time series data, signal modeling. 

1 Introduction 

Physiological signals are generated by the human body and have been analyzed to 
classify different states of a person including health condition detection [1-3] and 
affective state classification [4, 5] however little attention has been given to develop 
models for model free recognition of physiological signals and detection of corrupted 
signals. Filtering techniques have been utilized for artifact classification in physiolog-
ical signals such as EEG signals [6]. Our work is focused on computationally  
capturing the underlying properties that distinguish the nature of the different types of 
signals and separate the different types of signals. 

Artificial neural networks (ANNs), inspired by biological neural networks, have 
characteristics for learning patterns to classify input tuples into classes. It is made up 
of interconnected processors, known as artificial neurons, which are connected by 
weighted links that pass signals between neurons to learn relationships between tuples 
and output classes. In this work, we used feed-forward ANNs trained using backpro-
pagation to generate signal classification models. 

This paper presents the signal data that will be modeled using ANNs for classifica-
tion. The ANN models to model and classify physiological signals and corrupted 
signals using individual-independent models and models for a particular individual 
are proposed. We provide results of the ANNs on the data and analyses of the results. 
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We also investigated how the length of the signal affects the performances of the 
ANNs for signal classification. The paper concludes by summarizing the work and 
suggests future work.  

2 Physiological Signal Sensor Data 

The physiological sensor signal data used for our models were obtained from the data 
set collected in [7]. Three different types of physiological signals are used in this 
work and they are electrocardiogram (ECG), blood pressure (BP) and galvanic skin 
response (GSR). Examples of the signals in the data set are shown in Fig. 1. 

 

     
(a)     (b) 

 
(c) 

Fig. 1. Sample physiological signals (a) ECG signal (b) GSR signal (c) BP signal 

The physiological signals modeled in this work are produced by different activities 
in the Autonomic Nervous System of the human body. An ECG signal captures elec-
trical activity produced by the impulse of ions flowing through cardiac muscles, 
which dissipates into the region around the heart with diminished amounts spreading 
around the surface of the body. The ECG waveform is characterized by the dominant 
QRS wave where the R is the peak of the wave. ECG signals can be used to determine 
cardiovascular fitness, and dynamic and cumulative load of a person [8]. 

A GSR signal provides a measurement of the flow of electricity through the skin  
of an individual. Variations in GSR have been found to reflect stress levels in  
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individuals while they played a competitive racing game [9]. In addition, cognitive 
load [10] and work performance [11], which can be seen as stressors [12, 13], have 
strong correlations with GSR. GSR waveforms may have consistent shapes in reac-
tion to stressors but are not usually periodic. 

A BP signal shows the amount of pressure exerted on the walls of blood vessels 
due to blood circulation. The signal shows variations of the pressure between a systol-
ic (maximum) and a diastolic (minimum) pressure. 

The physiological sensor signal data set was used to model the three types of sig-
nals spanning 15 minutes for 22 subjects. For the purpose of this work, the signals 
were sampled at 10 Hz and this captured the main properties of the physiological 
signals such as the QRS waveforms in the ECG signals and the systolic and diastolic 
pressures in the BP signals as shown in Fig. 1. There were 10 other subjects who had 
their signals recorded but at least one of their signals were corrupted by manual in-
spection. This data was used to develop modeling systems that recognized corrupted 
signals as well as the physiological signals. Further, the signals were normalized to 
minimize the impact of individual bias, offset and noise in the signals for modeling 
and to better capture the underlying properties of the signals such as the QRS wave-
form for ECG signals. 

3 Artificial Neural Network Signal Classifiers 

ANN models were developed to recognize the different physiological signals and 
corrupted signals. The ANNs differed in terms of the data modeled and the topology. 
They are described as follows: 

1. ANN-10s: the ANN modeled signals segmented in 10 seconds time segments 
and used data from all subjects for training and testing the model 

2. ANN-Ind-10s: the ANN modeled signals segmented in 10 seconds time seg-
ments and used data from a particular individual (i.e. one subject) for training 
and testing the model 

3. ANN-10s-Corrupt: the ANN modeled signals segmented in 10 seconds time 
segments and used data from all subjects and subjects who had corrupted sig-
nals for training and testing the model 

Similarly, ANN-5s, ANN-Ind-5s, ANN-5s-Corrupt, ANN-1s, ANN-Ind-1s, 
ANN-1s-Corrupt, ANN-0.5s, ANN-Ind-0.5s and ANN-0.5s-Corrupt were devel-
oped for signals segmented in 5 seconds, 1 second and 0.5 seconds time segments. 
The ANNs that modeled corrupted signals in addition to the physiological signals had 
four output neurons, which was one more neuron than the ANNs that did not model 
the corrupted signals. 

Each type of ANN defined above had three different topologies for the hidden layers: 

1. One hidden layer with 7 neurons 
2. Two hidden layers with 7 neurons in the first hidden layer and 5 neurons in the 

second hidden layer 
3. Three hidden layers with 7 neurons in the first hidden layer, 5 neurons in the 

second hidden layer and 3 neurons in the third hidden layer 



 Classification of Physiological Sensor Signals Using Artificial Neural Networks 507 

 

Additionally, ANN models were developed that took two types of physiological 
signals as input: 

1. ANN-ECG-GSR: the ANN was modeled to recognize ECG and GSR signals 
2. ANN-ECG-BP: the ANN was modeled to recognize ECG and BP signals 
3. ANN-GSR-BP: the ANN was modeled to recognize GSR and BP signals 

All the ANNs were implemented and tested using MATLAB. The MATLAB adapt 
function was used for training the ANN on an incremental basis. Each ANN was 
trained using the Levenberg-Marquardt algorithm for 1000 epochs or until the magni-
tude of the gradient for the mean squared error (MSE) was less than 10-5 during the 
validation phase. 

4 Results and Discussion 

The ANNs for signal recognition were trained and tested on the sensor signal data sets 
collected in [7] using 10-fold cross-validation process. The process was executed 20 
times to obtain the mean and standard deviation of the recognition rates for the differ-
ent types of signals. 

Results of the individual-independent ANNs for physiological signal classification 
are shown in Fig. 2. ANN-1s produced the best recognition rates for all the signals 
and the results were statistically significant according to the Student’s T-test 
(p < 0.001). 

 

 
(a) 

 
(b) 

Fig. 2. Recognition rates for the physiological signals from individual-independent ANN clas-
sifiers based on 10-fold cross-validation (a) ANN-10s – its recognition rates were similar to 
ANN-5s (b) ANN-1s – it produced optimal results (c) ANN-0.5s 
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(c) 

Fig. 2. (Continued) 

The trend in the signal recognition rates for ANN-Ind-10s on each individual signal 
data set was statistically similar (p < 0.05) to the trend in the signal recognition rates 
for ANN-10s in that the GSR, ECG and BP signals had the highest, second highest 
and the lowest recognition rates respectively. The recognition rates for ANN-Ind-10s 
are provided in Fig. 3. Trends in the recognition rates for ANN-Ind-5s, ANN-Ind-1s 
and ANN-Ind-0.5s were similar to ANN-5s, ANN-1s and ANN-0.5s in the same way 
as well. 

 

 

Fig. 3. Recognition rates for the physiological signals for individuals from ANN classifiers 
based on 10-fold cross-validation for ANN-Ind-10s 

The recognition rates of the ANNs modeled on only two types of signals using the 
data provided to ANN-10s are provided in Table 1. The results show that ANN-ECG-
BP produced the lowest classification rates compared to ANN-ECG-GSR and ANN-
GSR-BP. The accuracy for ANN-ECG-BP was at least 0.27 lower than the other two 
ANNs. The ANN could not distinguish the ECG and BP signals as strongly as GSR  
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and the other types of signals. From the results, GSR signals were less similar to the 
other two types of signal so this explains why the GSR recognition rates were the 
highest for ANN-10s and with similar reasoning, it explains the trend in the recogni-
tion rates for the other types of signals. Further, the data provided to ANN-5s,  
ANN-1s and ANN-0.5s were provided to ANNs that modeled two types of signals to 
explain their trends in a similar fashion. 

Table 1. Signal recognition rates produced from ANN models classifying two types of signals 

ANN Accuracy ECG GSR BP 

ANN-ECG-GSR 0.99 1.00 0.99 - 
ANN-ECG-BP 0.68 0.73 - 0.62 
ANN-GSR-BP 0.95 - 0.96 0.95 

 
The recognition rates for ANN-10s-Corrupt, ANN-5s-Corrupt, ANN-1s-Corrupt 

and ANN-0.5s-Corrupt are shown in Fig. 4. Results show that the recognition rate for 
corrupted signals was the highest for ANN-10s-Corrupt compared to the other ANNs 
that recognized corrupted signals. Nevertheless, the ANN-1s-Corrupt produced the 
highest combined classification accuracy and the highest recognition rates for the 
other signals i.e. physiological signals just as ANN-1s did. 

 

 
(a) 

 
(b) 

Fig. 4. Recognition rates for the physiological signals and corrupted signals from individual-
independent ANN classifiers based on 10-fold cross-validation (a) ANN-10s-Corrupt (b) ANN-
5s-Corrupt (c) ANN-1s-Corrupt (d) ANN-0.5s-Corrupt 
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(c) 

 
(d) 

Fig. 4. (Continued) 

The results in Fig. 2 and Fig. 4 show that the best signal classification rates are 
achieved when signals segmented into one second time lengths are modeled. Signals 
that spanned 0.5 seconds did not have sufficient data in input tuples for ANNs to rec-
ognize patterns that distinguished one type of signal from the others as well as signals 
that spanned one second. ANNs that modeled signals which spanned more than one 
second learnt less general and poorer relationships between data in the signals for the 
time lengths and the signal class type. 

Further, the different topologies of the hidden layers of the ANNs did not show a 
statistical difference between the classification results according to the Student’s T-
test (p > 0.1). Future work could investigate optimizing the topology of the ANNs 
including investigating recurrent ANNs and time-delay ANNs for signal classifica-
tion. 

5 Conclusion and Future Work 

Different physiological signals were modeled and classified by individual-
independent ANNs and ANNs for a particular individual. Signals spanning various 
time lengths were modeled. Results showed that the highest accuracy values for phy-
siological signals without corrupted signal recognition were produced by the ANNs 
that modeled signals with a span of one second. However, corrupted signal recogni-
tion rates were the highest for ANNs that modeled signals spanning 10 seconds.  
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Future work can investigate developing an ANN that classifies signals using signals 
of different time lengths and produce classification rates that are highest for both phy-
siological signals and corrupted signals. Alternatively, it may be beneficial to develop 
a system that uses a sampling frequency recognizing corruption which is different to 
the best frequency for recognizing physiological signals. The latter would be better 
for cutting through the noise which is in some ways the converse of recognizing cor-
rupted signals. Further, the proposed classification system can be extended to model 
and recognize other types of physiological signals and applied to automatic online 
signal classification. 
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Abstract. Despite clear evidence of connections between chronic stress, brain 
patterns, age and gender, few studies have explored stressor differences in stress 
detection. This paper presents a stressor-specific evaluation model conducted 
between stress levels and electroencephalogram(EEG) features. The overall 
complexity, chaos of EEG signals, and spectrum power of certain EEG bands 
from pre-frontal lobe(Fp1, Fp2 and Fpz) was analyzed. The results showed that 
different stressors can lead to varying degree of changes of frontal EEG com-
plexity. Future study will build the stressor-specific evaluation model under 
considering the effects of gender and age. 

Keywords: Stress, Stressor, Electroencephalogram, Complexity, Frontal 
Asymmetry. 

1 Introduction 

All of us are exposed frequently to a stressful situation at the societal, community and 
interpersonal levels. Recently, the number of stress victims is growing at an alarming 
rate with millions of people on stress relief medication [1].Chronic stress is consi-
dered to be the most harmful in people’s daily lives and affects people more intensely 
than other types of stress. Research has consistently demonstrated that chronic stress 
increases risk for developing a number of negative mental health outcomes such as 
depression [2, 3]. 

Most important is how the persons cope up with stress and the brain responds to 
it. Hence utilizing effective tools to detect stress at an early date is of great signific-
ance. Though psychology instruments and hormone for stress identification are utility, 
the disadvantages of conventional methods are apparent either. As an objective and 
non-invasive brain function measurement, electroencephalogram (EEG) is an useful 
tool for investigation of physiological and psychological functions. And quantified 
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EEG (qEEG) analysis methods have played an important role in clinical diagnosis and 
brain research [4].  

EEG alpha asymmetry has been used as a measure of cortical activity linked to 
emotional process, mood, and psychopathology for years. The frontal cortex is partic-
ularly critical in emotional processing [5]. The left hemisphere is more involved in the 
processing of positive emotions and active behavior, whereas the right hemisphere is 
more involved in the processing of negative emotions and withdrawal behavior[5]. 
Consequently, it has been hypothesized that relatively greater right anterior EEG ac-
tivity may predict the development of psychopathology, specifically anxiety and de-
pression. In [6], a closely link between resting frontal EEG asymmetry and depression 
and anxiety was demonstrated. Researchers investigated the stability of resting frontal 
EEG asymmetry in depression in [7], suggesting that resting EEG alpha asymmetry 
can be reliably assessed in clinical depressed individuals. 

During the past years, nonlinear dynamics, such as the correlation dimension 
(D2), the first positive Lyapunov exponent (L1) and LZ-complexity (LZC) of EEG, 
have been found valid in detecting changes under different physiological or psycho-
logical states. Most of the previous work on analyzing EEG from depressed patients is 
based on linear methods. Nonlinear analyses of EEG from depressed patients are rare-
ly employed. In [8] researchers demonstrated a link between a decrease of D2 and the 
symptom of depression, implying that nonlinear tools could be utility in the study of 
chronic stress. 

As a ubiquitous application, Online Predictive Tools for Intervention in Mental 
Illness (OPTIMI) has been developing tools for stress level prediction through early 
identification of the onset by monitoring poor stress behavior [9, 10]. As one of the 
partners of OPTIMI we focus on researching chronic stress identification using EEG. 
The purpose of this study is stress detection from three groups faced with different 
social stressors through analyzing EEG recordings. EEG features (extracted from raw 
EEGs) including linear features such as absolute power, relative power, max power, 
mean frequency and asymmetry indices as well as nonlinear dynamical measures, 
namely C0-complexity (C0), LZ-complexity (LZC), correlation dimension (D2), 
Renyi Entropy (RE) and the first positive Lyapunov exponent (L1) were employed in 
our study. we are trying to answer the following three questions: (1) which EEG fea-
ture can differentiate the stress group from normal ones efficiently; (2) differences of 
EEG pattern among three stress groups faced with different stressors; (3) hemispheric 
differences specifically in power values of theta, alpha and beta bands in the stress 
group. 

2 Methods 

2.1 Participants 

53 right-handed participants volunteered to take part in the study. 18 unemployed men 
aged from 21 to 41 (mean age = 32.9; S.D. = 7.9) were recruited in group 1.  
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And participants of group 2 were students aged from 20 to 35 (mean age = 21.9; S.D. 
= 6.1) at risk of chronic stress due to frequent examinations and graduation pressure, 
while group3 were mothers of retarded children aged 30-52 (mean age = 36.4; S.D. = 
7.6). All the participants were free of prior history of psychopathology, cardiovascular 
or medications with a potentially negative impact on the heart and using of medica-
tion affecting mood. Participants filled in a scale of Beck Depression Inventory (BDI) 
first. Individuals with a BDI score below 10 were comprised in the control group, 
while individuals with a BDI score of 10 or higher were included in the stress group 
[11]. The number of volunteers in the stress and control group was shown in Table1. 

Table 1. The number of volunteers in the stress and control group 

 Stress group Control group 
Group 1 9 9 
Group 2 
Group 3 

7 
9 

8 
11 

2.2 EEG Recording 

Participants were seated in a comfortable sound and light attenuated room. Data col-
lection, which lasted two minutes for each person, was made while participants kept 
relaxing state with their eyes closed. Resting EEG was collected from three electro-
desFp1, Fp2 and Fpz referenced to earlobes according to International 10-20 system. 
EEG data were sampled at 256Hz. A wearable EEG sensor we developed was utilized 
in our experiment [12]. 

2.3 EEG Data Processing 

Raw EEG usually contains lots of artifacts due to eye-blink, eyeball movements, fa-
cial and body movements, etc. Hence it is necessary to remove these artifacts. Firstly, 
a low-pass filter with cutoff 40Hz was adopted to eliminate EEG signals drifting and 
EMG disturbances. Then we eliminated EOG disturbances with the wavelet algo-
rithm. 

EEG recordings were segmented into 4-s epochs within 2-s overlap. After remov-
ing frequency interference and artifacts, the fast Fourier transform method was uti-
lized to calculate the absolute power (μV ), relative power (%), max power (μV ), and 
mean frequency (Hz) in theta (4-8 Hz), alpha (8-13 Hz) and beta (13-20 Hz) bands on 
each electrode. Relative power indices for each band were derived by expressing ab-
solute power in each separate band as a percent of the absolute power summed over 
the four frequency bands. Mean frequency was also derived for the entire spectrum. 

A number of studies have reported that greater relative right anterior and posterior 
EEG activity is related to symptoms of depression and anxiety [6, 13, 14]. Frontal 
asymmetry is defined as ln(F2)-ln(F1), where higher scores reflect lower left alpha  
 



 Investigation of Chronic Stress Differences 515 

 

power, and consequently higher left cortical activation, relative to the right cortex. We 
computed hemispheric asymmetry of alpha power as well as that of beta and theta 
bands. 

Nonlinear features of EEG contain the complexity of EEG and the chaotic characte-
ristics of the brain. In this paper, we employed methods of nonlinear dynamics, includ-
ing C0-complexity (C0), LZ-complexity (LZC), the correlation dimension (D2), Renyi 
spectral (RE)and the largest Lyapunov exponent (L1) on each electrode respectively. 

Lempel–Ziv complexity (LZC) tests the randomness of a sequence by searching 
for patterns in a series. It has been extensively employed in EEG data analysis and 
proved an effective tool in researching biomedical signals. In [15], researchers pro-
posed an algorithm to generate a given sequence using two fundamental operations, 
namely: copy and insert by parsing it from left to right. The Lempel-Ziv complexity 
c(n) of a sequence of length n is given by the shortest sequence generated using the 
copy and insert operation that can generate the given sequence. 

The correlation dimension (D ) describes the complexity of EEG data in the phase 
space. We defined the EEG signal as a time sequences X(t), t =1, 2, 3, ...,N, which can 
be reconstructed into a m-dimensional vector Y , j = 1, 2, 3, ...,M(M = N −(m− 1) * 
time − delay) with time-delay embedding as given in Grassberger and Procaccia (GP) 
[16]. In order to calculate D2, the correlation integral function should be estimated 
first [17]:   

 C r M M ∑ ∑MM                     (1) 

Where θ is the Heaviside unit function. The Heaviside function is 0 if the distance 
between the vectors is greater than r, while it is 1 if the distance between the vectors 
is less than r. Theoretically if m is sufficiently large and r is small enough, we can 
assume the following relation: C r rD.  

The correlation dimension (D2) is then defined as: 

                          D lim C
                            (2) 

The dimension of the attractor is estimated from the slope of a linear scaling region 
in the log C r logr plot.  

The largest Lyapunov exponent [18] measures the exponential divergence of in-
itially close state-space trajectories and estimates the amount of chaos in a system. If 
the largest lyapunov exponent L1 <0, standing for two trajectories with nearby initial 
conditions contract; If L1 >0, standing for two trajectories with nearby initial condi-
tions diverge at an exponential rate and the system sensitivity to initial conditions, 
also indicating chaos. In this paper, Michael T.Rosenstein et al. [18] algorithm is ap-
plied in calculating the largest lyapunov exponent. 

The concept of C0-complexity, a description of time sequences randomness was 
provided in [2]. The dynamic tendency of C0-complextiy to EEG signal agrees with 
Approximate Entropy. Compared to Approximate Entropy, C0-complexity is mainly  
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calculating through Fast Fourier Transform (FFT). Extract ing C0-complexity only 
need running FFT once, so it has advantage of saving a part of the computational 
effort. Xu et al. [2] put forward C0-complexity at practical analysis of EEG signal 
processing. The concept of Renyi spectral (generalized entropy) of a probability dis-
tribution was introduced by Alfred Rényi [19].  

2.4 Statistical Analysis 

Statistical analysis was done with SPSS17.0. To compare statistically significant dif-
ferences in the stress group and control group, an independent-sample t-test was used 
for each feature at three electrodes. Significance levels were set at p≤0.05 for all sta-
tistical analyses. 

3 Results 

The results of t-test of each feature are presented in Tables 2-4.  

Table 2. The results of t-test for participants of Group 1 Sig value p<0.05 means difference 

 
 
 
Group1 

Feature Electrodes 
Fp1 Fp2 Fpz 

D2 0.060 0.009 0.039 
L1 0.019 0.004 0.006 
LZC 0.002 0.001 0.000 

Table 3. The results of t-test for participants of Group 2 Sig value p<0.05 means difference 

 
 
 
Group2 

Feature Electrodes 
Fp1 Fp2 Fpz 

D2 0.042 0.043 0.021 
L1 0.037 0.047 0.034 
LZC 0.029 0.016 0.039 

Table 4. The results of t-test for participants of Group 3 Sig value p<0.05 means difference 

 
 
 
Group3 

Feature Electrodes 

Fp1 Fp2 Fpz 
D_inf 0.005 0.001 0.027 
D_q_0 0.005 0.001 0.024 
D_q_1 0.006 0.002 0.021 

For Group 1(unemployed men), the mean difference between groups (stress vs. 
control) was significant for features L1 and LZC at electrode Fp1. And the difference 
was significant for D2, L1 and LZC at both Fp2 and Fpz. As to D2 and LZC, the  
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mean value of the stress group was higher than the control group at all the three elec-
trodes, while the mean value of stress group was lower than control group in Fp2 and 
Fpz with regard to L1 (Figure 1). For Group 2(students faced with frequent examina-
tions and graduation pressure), there was significantly difference between groups for 
D2, L1 and LZC at Fp1, Fp2 and Fpz. The mean value of the stress group was higher 
than the control group for D2 and LZC, while the mean value of stress group was 
lower than control group for L1(Figure 2).For Group 3(mothers with retarded child-
ren), it was obvious that the stressful individuals had higher mean value of D_inf, 
D_q_0 and D_q_1than normal controls (Figure 3).  

          
 

 Fig. 1. The mean value of EEG features of Group 1 (the result of t-test is significant)  

  
   

Fig. 2. The mean value of EEG features of Group 2 (the result of t-test is significant)  

 
  

Fig. 3. The mean value of EEG features of Group 3 (the result of t-test is significant) 

There was a significant difference between groups (stress vs. control) for hemis-
pheric asymmetry indices at all theta, alpha and beta band (p<0.01). The controls had 
distinctly higher hemispheric asymmetry indices than the stressful subjects (Figure 4).  

5

6

D
2

Fp1    Fp2    Fpz

2

2.5

3

L
1

Fp1  Fp2  Fpz

0.4

0.5

0.6

L
Z

C

Fp1  Fp2   Fpz

4

6

8

D
2

Fp1    Fp2   Fpz

0

5

L
1

Fp1   Fp2    Fpz
0.4

0.6

L
Z

C

Fp1   Fp2   Fpz

1.2

1.3

D
_i

nf

Fp1   Fp2  Fpz
1.2

1.3

D
_q

_0

Fp1    Fp2    Fpz
1.4

1.45

1.5

D
_q

_1

Fp1    Fp2   Fpz

Control group Stress group 

Stress group Control group 

Control group Stress group 



518 N. Li et al. 

 

          
Group1                               Group2       

 

      
         Group3 

Fig. 4. The mean value of frontal asymmetry indices for theta, alpha and beta band of Group 1, 
Group2 and Group3 

4 Discussion 

In this part we discuss the results from two aspects including nonlinear dynamics 
features and frontal hemispheric asymmetry. 

4.1 Nonlinear Dynamics Signal Features 

EEG is recognized as a dynamical system, which is neither purely chaotic nor sto-
chastic. Consequently it is reasonable to analyze such signals employing nonlinear 
features of EEG. For both Group1 and Group2, D2, L1 and LZC can effectively dis-
tinguish stressful individuals from normal controls. The stress group presented a sig-
nificantly higher LZC than the normal control group. A higher LZC implies a greater 
chance of the occurrence of new sequence patterns and thus a more complex dynami-
cal behavior. We also found a higher D2 in the stress group relative to the control 
group, opposite to the result provided by Nandrino [8]. The possible reason is that D2 
is a measure of dimensional complexity of a chaotic system, while LZC represents the 
sequence pattern complexity in a dynamic system. Compared to normal controls, the 
stressful subjects showed significantly lower L1 values, confirming that L1 is effec-
tive. As to Group3, mothers of retarded children, the Renyi entropy of the stress group 
was significantly higher than the control group. Our results were consistent with the 
finding given by Tang [20], showing the alpha activity of depression patients is more 
complex during resting.  

Similar results were obtained from three stress groups, demonstrating the stress 
subjects have more complex brain activity than normal controls. Nevertheless, the 
differences of the results may due to the various stressors subjects bear. Social stress 
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is typically the most frequent type of stressor that people experience in their daily 
lives. Stress may arise from one’s relationships with others and from the social envi-
ronment. We recruited subjects undergoing three different stressors, including unem-
ployed men, students faced with frequent examinations and graduation pressure and 
mothers of retarded children. The results of Group 1 and Group 2 were similar except 
Group 3, which may be caused by various experiences they underwent. Different 
stressors can lead to varying degrees of emotional, behavioral and physiological 
changes as well as brain function, reflecting in complexity of frontal EEG. The long-
term effect of chronic stress may produce diverse changes in brain function. This can 
explain the distinction among groups. Future study will investigate this issue in depth.  

4.2 Frontal Hemispheric Asymmetry 

As said before numbers of studies have reported that greater relative right anterior and 
posterior EEG activity is related to symptoms of depression and anxiety. Recent fMRI 
studies have also reported that depression shows different patterns of hemispheric acti-
vations in the superior frontal areas [21]. Frontal asymmetry indices of EEG power 
have been put forward as a biological indicator for depression for years. In our study, 
frontal hemispheric power asymmetry indices of alpha band were employed as meas-
ures as well as theta and beta power asymmetry indices. There was a significant differ-
ence on power asymmetry of three bands between stressful individuals and normal 
controls in all the three groups faced with different kinds of stressors. Stressful subjects 
had negative hemispheric asymmetry indices, and the controls were the opposite, im-
plying greater relative right anterior EEG activity in the stressful subjects. The finding 
in our study is in keeping with some results in other researches like [13, 14]. 

Much of the previous literatures came to the finding that frontal asymmetry was 
related to depression restricted to females [14]. This can be observed in several stu-
dies [22-25]. Gender difference was an issue in this research. Some literatures ex-
posed that increased right frontal activity was only found in depressed females and no 
effects in males [26]. Coan [27] proposed that gender difference might exist in frontal 
asymmetry and negative emotionality owing to some genes issues.  

Additionally, previous results showed frontal asymmetry closely related to age in 
individuals at the risk of depression. Alessandro Carvalho et al. [11] found no differ-
ence regarding the alpha frontal asymmetry in depressed, remitted and non-depressed 
elderly subjects. Findings from functional neuroimaging studies in elderly people tend 
to find in most cases a weaker and more diffuse cortical activation, with reduced he-
mispheric asymmetry [28]. Similar results were also found in some other studies, 
observing no differences in frontal asymmetry between depressive people and normal 
controls [29, 30]. A possible explanation is a structural and functional impairment of 
the right hemisphere with the aging process [11]. Our future research will carefully 
consider the factors of both gender and age into the present study. 

5 Conclusion  

Our findings demonstrate EEG nonlinear dynamics features are effective measures to 
detect chronic stress. EEG frontal asymmetry of theta, alpha and beta bands can be 
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biological indicators for chronic stress, showing relative greater right anterior EEG 
activity in stressful individuals, which is consistent with previous researches. In addi-
tion, different stressors can lead to varying degrees of emotional, behavioral and phy-
siological changes, reflecting in complexity of frontal EEG. Consequently, analysis of 
chronic stress according to the specific stressor is requisite. 
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Abstract. This paper proposes an efficient hybrid approach based on
the stochastic competitive Hopfield neural network(SCHNN) and artifi-
cial bee colony (ABC), which named SCH-ABC. The hybrid algorithm
aims to cope with the frequency assignment problem (FAP). The ob-
jective of FAP is to minimize the cochannel interference between satel-
lite communication systems by rearranging the frequency assignments
so that they can accommodate the increasing demands. In fact, as our
SCH-ABC algorithm owns good adaptability, it can not only deal with
the frequency assignment problem, but also cope with other problems
including the clustering, classification, the maximum clique problem etc.
With the help of hybridization, SCH-ABC makes up for the defects in the
Hopfield neural network and ABC while fully utilizing the advantages of
the two algorithms.

Keywords: Frequency assignment problem, artificial bee colony, neural
network, hybrid algorithm.

1 Introduction

The frequency assignment problem (FAP) is a famous problem due to its widely
applications including satellite communication systems, mobile telephone and
TV broadcasting. In satellite communication systems, the reduction of the
cochannel interference has become a major factor for determining system design
[1], [2]. Furthermore, due to the necessity of accommodating as many satellites
as possible in geostationary orbit, this interference reduction has become an even
more important issue with the increasing number of geostationary satellites [3].
To deal with interference reduction in practical situations, the rearrangement of
frequency assignments is considered as an effective measure [4].

FAP is a NP-complete combinatorial optimization problem and many ap-
proaches have been proposed to tackle it [5]. The application of neural
networks in frequency assignment problems was first proposed Kunz [6]. Then
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Funabiki and Nishikawa(1997) proposed a gradual neural network(GNN). Af-
ter that, Salcedo-Sanz et al. (2004) combined a binary Hopfield neural net-
work with simulated annealing(HopSA) for the FAP[2]. The disadvantages of
these algorithms are their heavy computation burden and excessive computa-
tion time. Wang et al. (2011) proposed a stochastic competitive Hopfield neural
network(SCHNN)[7]. They introduced stochastic dynamics to help the network
escape from local minima, but the way only using the dynamics is not efficient.
Recently, modeling the behavior of social insects including bees, birds and ants
has become an emerging area for the optimization problems[8]. Among these
algorithms, the artificial bee colony(ABC) algorithm is the promising one. It has
obtained better performances on many problems than other well-known modern
heuristic algorithms such as genetic algorithm, differential evolutional algorithm
and particle swarm optimization algorithm[9]. However, it also has many disad-
vantages including prematurity and the low searching speed.

The contributions of this paper are: (1) a novel hybrid SCH-ABC approach is
proposed that can make up for the defects in the neural network and ABC while
improving their abilities to search better solutions; (2) the proposed SCH-ABC
obtains better performance than other algorithms compared in this paper, which
is the contribution to the available literature on the FAP.

The rest of the paper is organized as follows: in the next section we define
and analyze the FAP. In section 3, our hybrid algorithm is described in detail.
Experiments and results are shown in Section 4. Finally, Section 5 ends the paper
with concluding remarks.

2 Problem Definition

In this section, the FAP in satellite communications systems can be described
as a combinatorial optimization problem with three constraints and two objec-
tives [10]. Given two adjacent satellite systems, FAP consists of reducing the
inter-system cochannel interference by rearranging the frequency assignment on
carriers in system #2(M segments, N carriers), while the assignment in sys-
tem #1(M segments) remains fixed(Fig.1(a)). The interference between two M -
segment systems is described by a M×M interference matrix IM (Fig.1(b)), in
which the ijth element eij stands for the cochannel interference when segment i
in system #2 uses a common frequency with segment j in system #1.

There are three constraints in FAP(Funabiki & Nishikawa, 1997)[10]:

(1)Every segment in system #2 must be assigned to a segment in system
#1. (2)Each segment in system #1 can be assigned by at most one segment in
system #2. (3)All segments of each carrier in system #2 must be assigned to
consecutive segments in system #1 in the same order.

The two objectives are shown as follows: (1)Minimize the largest element of the
interference matrix selected in the assignment. (2)Minimize the total interference
of all the selected elements. Note that the first objective has a higher priority
over the second objective.
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(a) Cochannel interference model. (b) Interference matrix IM.

Fig. 1. Graphs of the cochannel interference model and interference matrix

3 Our hybrid SCH-ABC for FAP

Based on the stochastic competitive Hopfield neural network(SCHNN) and ar-
tificial colony bee(ABC), three hybridizations between the two algorithms are
explored. Linear structure has been taken in order to make the hybridization
owning favorable commonality, which can be helpful for hybridizations between
Hopfield-type neural networks and other evolutionary algorithms.

The first hybridization aims to improve the ability of bee colony to search
better food sources by adding solutions of neural network as high quality scouts.
As the scouts in bee colony just search food source randomly, the solutions from
neural network may help the bee colony find better food sources. The second
hybridization is to help the neural network to escape from local minima efficiently
by bee colony. The solutions in neural network will be compared with the best
food source in colony. If the solution is worse, it will be replaced by the best food
source. The third hybridization combines the first two hybridizations. Not only
the solutions in neural network will be added to colony as high quality scouts,
but also the best food sources in colony may help neural network to escape
from local minima efficiently. In our research, the third hybridization obtains
better performance than the other two hybridizations. Then we select the third
hybridization for SCH-ABC algorithm and show it in Algorithm 1.

In Algorithm 1, the parameters will be initialized first. Then the neural net-
work named SCH in our hybrid algorithm updates to search solutions for FAP.
In SCH, a total energy function proposed for the first two constraints is shown
as follows.

E =
A

2

N∑
i=1

(

M∑
q=1

Viq − 1)2 +
B

2

N∑
i=1

M∑
j=1

N∑
p=1
p�=i

j+ci−1∑
q=j−cp+1

VijVpq (1)

where A and B are coefficients. As the neural network itself satisfies the third
constraint, the neural network has met all the three constraints when E becomes
zero [7].
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Algorithm 1. SCH-ABC Algorithm

1: Initialize the parameters of SCH-ABC;
2: Set t=0;
3: while t < the max number of iterations or stability criteria are not satisfied do
4: for i = 1 to N do
5: for j = 1 to M do
6: s=�t/N�;
7: Compute the inputs of neurons with Eq.2;
8: end for
9: for j = 1 to M do
10: Update the outputs of neurons with Eq.4;
11: end for
12: end for
13: Move the employed bees onto the food sources;
14: Move the onlookers onto the food sources;
15: if A food source is not improved by limit times then
16: the food is abandoned by its employed bee;
17: the employed bee is converted to a scout;
18: end if
19: Add the solution of neural network into the bee colony as a scout;
20: Move the scouts onto new food sources randomly;
21: Memorize the best food source found so far;
22: if the solution of neural network is worse than the best food source then
23: the outputs will be replaced by the food source;
24: end if
25: t = t+1;
26: end while

SCH satisfies the rule that large carriers with many segments should be as-
signed as early as possible, or else, it would be difficult to assign them after
many carriers have been already assigned [10]. Thus, the inputs of the neurons
are modified by

uij(t+ 1) = −W2

N∑
p=1
p�=i

min(j+ci−1,M)∑
q=max(j−cp+1,M)

cpvpq(t)−W3d
′ (2)

where W2 and W3 are weighting factors.
In SCH, the outputs of the neurons are modified by

u′
ij(t+ 1) = α(s) · uij(t+ 1) (3)

vij(t+ 1) =

⎧⎨⎩1, u′
ij = max

k=1,...M
{u′

ik(t+ 1)}
0, otherwise

(4)

where s is the updating step number, α(s) is a randommultiplier, and u′
ij(t+1)

is the transient variable. The multiplier α(s) in Eq.3 is given by
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α(s) = random(h(s), 1) (5)

where h(s) = 1−Q · e−s/λ. Q just is a parameter.
SCH obtains good performance for FAP, but it still has many disadvantages.

Its ability for escaping from local minima only utilizing the stochastic dynamics
is not strong. At the same time, the two objectives of FAP are not fully synchro-
nized which means that a result with a smaller value of the largest interference
may have a larger total interference. There is no good solution in SCH for this
phenomenon. In SCH-ABC, we select the artificial bee colony(ABC) algorithm
to help SCH to deal with these disadvantages of SCH.

ABC is one of the most recently introduced swarm-based algorithms and it
has been used for optimizing many problems. In ABC, food sources standing
for the solutions of FAP are found by bees. The three types of bees in ABC
are the employed bees, onlookers and scouts. The employed bees are associated
with a food source which they are currently exploiting. The scouts search the
environment surrounding the nest for new food sources and onlookers wait in the
nest and establish a food source through the information shared by employed
foragers [9]. In our SCH-ABC algorithm, when the updating of neural network
ends, bees in colony start to search solutions for FAP.

The main steps for searching solutions by bees are given as follows: Ne, No,
Ns standing for the number of employed bees, onlookers and scouts respectively
are initialized and the parameter limit is determined in the first step of SCH-
ABC. After the updating of neural network, the employed bees are randomly
moved onto different food sources which have met the three constrains of FAP.
Then the nectar amounts of food sources associated with the employed bees
are calculated. Specifically, the nectar amounts are the reciprocals of the largest
interferences. If two food sources have the same amounts, their reciprocals of the
total interferences will be compared. Thus, the smaller interference means more
nectar amounts. The probability values for food sources with which they are
preferred by the onlooker bees will be calculated. In step 14 in Algorithm 1, the
onlooker bees are moved onto new food sources and their nectar amounts will be
calculated. If a food source is not improved by limit times, it will be abandoned
by its employed bee and the employed bee is converted to a scout. Afterwards,
the solution of neural network will be added into bee colony as scouts and the
scouts in colony will be sent into the search area for discovering new food sources,
randomly. Then the best food source discovered so far will be memorized.

When searching food sources by bees is over, SCH-ABC will check whether the
neural network gets trapped in local minima. As shown in step 22 in Algorithm
1, if the solution of neural network is worse than best food source in bee colony,
it will be replaced by that food source. By the bee colony, the neural network can
escape from local minima efficiently. The cycles increase until the requirements
are met or it runs to the max number of iterations. Finally, the best food source
in bee colony is the best solution of SCH-ABC algorithm.

In SCH-ABC, SCH improves the ability of bee colony to search better solu-
tions and the bee colony also help SCH to escape from local minima efficiently.
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By combining the SCH and ABC, SCH-ABC remedies the shortcomings of the
two algorithms while fully utilizing their advantages.

4 Simulation Results and Discussions

In order to test the performance of SCH-ABC, simulations were implemented in
Matlab on a PC(Core(TM) i5-3450 3.10GHz, 8.0G RAM). In our experiments,
SCH-ABC was compared with other algorithms on 5 benchmark problems and
12 large problems randomly generated. Our SCH-ABC algorithm obtains better
or comparable performance on all cases.

Table 1 shows the detailed results obtained by HopSA, GNN, SCHNN, ABC
and SCH-ABC on 5 benchmark problems which were called instances 1-5 re-
spectively in Funabiki and Nishikawa(1997) [10]. In Table 1, each result includes
the largest interference and total interference. Since BM1-BM5 are benchmark
problems, the results of GNN on BM1-BM5 are directly from Funabiki and
Nishikawa(1997)[10], the results of the HopSA are directly from Salcedo-Sanz
et al.(2004)[2] and the results of SCHNN are directly from Wang et al(2011)[7].
Note that only the best values are shown in Table 1.

Table 1. Comparison of different algorithms for benchmark problems BM1-BM5. Our
SCH-ABC approach obtains better or comparable results than other algorithms.

Group Instance
HopSA GNN SCHNN ABC SCH-ABC

Largest Total Largest Total Largest Total Largest Total Largest Total

BM1 30 100 30 100 30 100 30 100 30 100
BM2 4 13 4 13 4 13 4 13 4 13

Group 1 BM3 7 85 7 85 7 85 7 85 7 85
BM4 64 880 64 880 64 880 64 873 64 855
BM5 817 6910 640 8693 640 7243 640 7335 640 7006

As can be seen from Table 1, the five algorithms obtain the same results on
BM1-BM3. On BM4, the five algorithms obtain the same values of the largest
interference and the ABC and SCH-ABC obtain smaller values for the total
interference. On BM5, the total interference of HopSA is the smallest, but its
value of the largest interference element is larger than other algorithms. As the
first objective of decreasing the largest interference has a higher priority, the
performance of HopSA is not good. The performance of SCH-ABC is the best
among these algorithms. It shows that the hybridization between SCHNN and
ABC can help the neural network escape from local minima and help the bee
colony find better results.

As the performance of HopSA is worse than other algorithms, only the evolu-
tions of GNN, SCHNN, ABC and SCH-ABC on BM5 are shown in Fig.2. In the
evolution process, two characteristics can be found in Fig.2. The first charac-
teristic is that the largest and total interferences for GNN increase continually.
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Fig. 2. Evolutions of the four algorithms for the largest and total interferences on BM5

Table 2. Comparison of the results obtained by SCHNN, ABC, GNN and SCH-ABC
for 12 large problems randomly generated

Group Instance
SCHNN ABC GNN SCH-ABC

Largest Total Largest Total Largest Total Largest Total

Group 2
Case 6 9 882 9 897 9 933 8 778
Case 7 92 7481 94 8362 95 8531 85 6532
Case 8 939 78910 963 83269 982 89326 913 77052

Group 3

Case 9 92 5643 96 6209 99 7149 87 5136
Case 10 96 11076 98 13556 99 15232 94 10017
Case 11 97 16839 98 19931 99 21367 95 17694
Case 12 98 18542 99 20149 99 23524 97 18077
Case 13 99 22685 99 24065 99 25986 98 22336
Case 14 99 26398 99 28627 99 29473 98 21531

Group 4
Case 15 92 20812 95 25343 97 26394 85 19968
Case 16 91 11551 94 17874 97 20305 82 10545
Case 17 84 3381 89 4237 93 5749 73 3159

In the early stage evolution, the outputs of GNN do not satisfy the three con-
straints and the majority of outputs are zeros. Thus, both the largest and the
total interferences are very small. Then the outputs satisfy the three constraints
gradually and the interferences increase with the evolution of the neural net-
work. The second characteristic is that both the largest interference and total
interference of SCHNN, ABC and SCH-ABC become smaller and smaller. The
SCH-ABC is more likely to find better solutions with less iterations. In SCH-
ABC, when the neural network gets trapped in local minima, the food source can
help the neural network to escape from it efficiently. And the neural network as
a scout also can improve ability of the bee colony to search better food sources.

We also compare SCH-ABC with SCHNN, ABC and GNN on 12 large prob-
lems(Case 6-17) randomly generated. The detailed results can be found in Table
2. From Table 2, we observe that the advantages of SCH-ABC are more obvi-
ous on large problems. As the hybridization can help the neural network and
bee colony to find better solutions with less iterations, SCH-ABC can cope with
large problems very well.
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5 Conclusion

In this paper, we propose a novel hybrid approach SCH-ABC based on the
stochastic competitive Hopfield neural network(SCHNN) and artificial bee
colony(ABC) to tackle the frequency assignment problem(FAP). With the help of
hybridization, SCH-ABC can help the neural network to escape from local min-
ima efficiently and help the bee colony to find better solutions. As SCH-ABC is
very robust, it can not only deal with the frequency assignment problem, but also
tackle with other problems including the clustering, classification, the maximum
clique problem etc. In the experiments, we test our SCH-ABC on 5 benchmark
problems and 12 large problems randomly generated. SCH-ABC obtains bet-
ter or comparable performance on all cases. Since the SCH-ABC algorithm is
a general optimization algorithm, our future work will include applications of
SCH-ABC to other practical optimization problems.
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Abstract. Point-of-Interest (POI) recommendation is a significant ser-
vice for location-based social networks (LBSNs). It recommends new
places such as clubs, restaurants, and coffee bars to users. Whether rec-
ommended locations meet users’ interests depends on three factors: user
preference, social influence, and geographical influence. Hence extracting
the information from users’ check-in records is the key to POI recommen-
dation in LBSNs. Capturing user preference and social influence is rela-
tively easy since it is analogical to the methods in a movie recommender
system. However, it is a new topic to capture geographical influence.
Previous studies indicate that check-in locations disperse around several
centers and we are able to employ Gaussian distribution based models
to approximate users’ check-in behaviors. Yet centers discovering meth-
ods are dissatisfactory. In this paper, we propose two models—Gaussian
mixture model (GMM) and genetic algorithm based Gaussian mixture
model (GA-GMM) to capture geographical influence. More specifically,
we exploit GMM to automatically learn users’ activity centers; further
we utilize GA-GMM to improve GMM by eliminating outliers. Exper-
imental results on a real-world LBSN dataset show that GMM beats
several popular geographical capturing models in terms of POI recom-
mendation, while GA-GMM excludes the effect of outliers and enhances
GMM.

Keywords: Gaussian Mixture Model, Genetic Algorithm, Geographical
Influence, Point-of-Interest, Location Recommendation.

1 Introduction

Point-of-interest (POI) recommendation is a significant service for location-based
social networks (LBSNs). With the development of mobile devices and Web 2.0
technologies, many LBSNs like Foursquare and Gowalla emerge and attract many
users. These LBSNs allow users to check in their locations, make friends, and
share location-related information. In order to help users discover new interesting
places in LBSNs, POI recommendations arise.
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How to recommend a point of interest? User preference, social influence, and
geographical influence are three aspects responsible for users’ check-in activi-
ties [14,15]. Generally we derive user preference from user-based collaborative
filtering, explore social influence based on users’ social relationships, and model
geographical influence from check-in locations’ spacial features. And then we
construct a POI recommendation system in the way of combining those three
kinds of influence. The representative work is as follows. Ye et al. [15] propose
a linear fused framework to combine them and Cheng et al. [2] propose a fused
model to recommend a point of interest.

For POI recommendation in LBSNs, research about geographical influence
is new and requires more attention, comparing with user preference and social
influence. It is well-defined on how to derive user preference and social influence
in a recommendation system [7,11]. Note that users’ evaluations for items reflect
their preferences and friends are inclined to share preferences. We derive user
preference from user-based collaborative filtering and introduce social influence
by containing similarity among friends. For POI recommendation system, we use
collaborative filtering method to get user preference through treating location
as item and check-in frequency as rating value, and we capture social influ-
ence by including friends’ similarity in check-in locations [2,14,15,1]. In 2010,
Ye et al. [14] first propose POI recommendation for LBSNs and utilize power
law principle to model users’ geographical influence. It is similar to a Gaussian
model. Cho et al. [3] study user movement in LBSNs inspired by Gonzalez’s
discovery [4]. The study focuses on those users who frequently check in, since
Gonzalez’s discovery bases on call logs data that have strong periodic property.
They propose a periodic mobility model (PMM) to capture user’s geographical
influence for location prediction in LBSNs. Experimental data select users whose
check-in records are more than 10 times one day. Cheng et al. [2] propose multi-
center Gaussian model (MGM) to capture geographical influence. This model
assumes a user’s check-in locations disperse around several centers and utilizes
a greedy method to discover centers. It defines a district by a fixed distance and
thus ignores discrepancy between users. How to capture geographical influence?
Gaussian distribution based models perform well in previous studies but we still
encounter problems in discovering centers accurately and eliminating the effect
of outliers.

To find activity centers more accurately and eliminate outliers, we propose two
models—Gaussian mixture model (GMM) and genetic algorithm based Gaus-
sian mixture model (GA-GMM) to capture geographical influence. In geograph-
ical perspective, whether one checks in depends on the locations’ transport
convenience—people prefer places that are nearer to their activity centers. Those
frequent check-in places naturally form one’s activity district. According to lo-
cation’s spacial clustering feature, we apply GMM to find one’s activity district
centers. However, outliers exist in the observed data that do harm to learn
the model. How to eliminate the impact of outliers? Thang et al. [12] pro-
pose a genetic algorithm based EM algorithm to implement the trimmed likeli-
hood estimate (TLE) method [10] to eliminate the outliers in mixture models.
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We exploit this genetic based EM algorithm to train GMM. The genetic algo-
rithm based GMM (GA-GMM) improves GMM and finds user’s activity centers
more accurately.

Our contributions are as follows. First, we propose GMM to automatically
learn users’ activity centers via exploring their check-in history records. More-
over, we enhance GMM by GA-GMM to intelligently eliminate outliers. Finally,
we conduct experiments on a real-world LBSN dataset and demonstrate that
the proposed models capture the geographical information better and improve
the accuracy of POI recommendation.

The remainder is organized as follows. Section 2 introduces the related work.
Section 3 demonstrates the two models: GMM and GA-GMM. Section 4 com-
pares experimental results of different models. In the end, section 5 summarizes
and outlines further work.

2 Related Work

In this part, we introduce related work in three aspects: POI recommendation
in LBSNs, geographical influence capturing methods, and GA-GMM.

POI recommendation in LBSNs is a new research topic. POI recommendation
is widely used in GPS-based mobile devices at first [5,6]. In 2010 Ye et al. [14] first
propose POI recommendation in LBSNs. Further Ye et al. [15] point out that
user preference, social influence, and geographical influence are three aspects
responsible for recommending a point of interest and among them geographical
influence is the most important. The representative work is as follows. Ye et
al. recommend a point of interest through a linear fused framework combining
user preference, social influence, and geographical influence [15]. Cheng et al. [2]
propose a fused model to combine them to recommend a point of interest.

Study of geographical influence capturing methods is new for POI recommen-
dation. In 2010 Ye et al. [14] first propose POI recommendation for LBSNs and
arise a power law principle to capture geographical influence for POI recommen-
dation. Earlier related work about geographical influence appears in the study
of user movement pattern. Gonzalez et al. [4] build a model using call logs and
discover that activities of an individual usually center around a small number
of frequently visited locations. Based on this, Cho et al. [3] study the specific
users frequently checking in and propose a periodic mobility model (PMM) to
capture geographical influence for location prediction in LBSNs. Cheng et al. [2]
employ multi-center Gaussian model (MGM) to capture the geographical feature
of locations in the proposed fused POI recommendation model.

Genetic algorithm based GMM (GA-GMM) is a method to eliminate outliers
when learning GMM. Trimmed likelihood estimate (TLE) method is adopted to
eliminate outliers in some studies of mixture model analysis [10]. Thang et al. [12]
first propose a genetic algorithm based method to implement the trimmed likeli-
hood estimate method to train mixture models and demonstrate the performance
through a genetic algorithm based GMM (GA-GMM). Wang et al. utilize the
GA-GMM to process EEG signal and apply it on brain-computer interface [13].
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3 Models

3.1 Gaussian Mixture Model (GMM)

Gaussian mixture model (GMM) [9] is the most widely used mixture model. We
can formulize it as follows:

p(Xi) =

K∑
k=1

πkN (Xi|μk,
∑

k),

where p(Xi) denotes probability dense distribution of data xi, μk indicates mean
value,

∑
k indicates covariance matrix for a base distribution, K denotes the

number of base components, and πk is the mixing coefficient.
We exploit GMM to capture geographical influence in POI recommendation.

Each Gaussian distribution component represents an activity district and the
mean value denotes the longitude and latitude of the district center. Centers
may be his home, office, or some specific entertainment place. We assume places
nearer to some center are geographically easier to arrive and people prefer those
places.

How to recommend a point of interest through GMM? For a user, a location’s
geographical information ([longitude, latitude]) in his check-in history records
represents data xi. We recommend POIs through the following steps:

1. Learn the parameters of GMM,
2. Calculate candidate locations’ probabilities fitting the trained model, and
3. Sort the candidate locations and recommend the top K locations.

3.2 Genetic Algorithm Based Gaussian Mixture Model (GA-GMM)

In order to eliminate the effect of outliers, we introduce a genetic algorithm
based Gaussian mixture model (GA-GMM). Generally we could use maximum
likelihood EM algorithm to learn GMM [9]. If we use Θ to denote the parameters,
likelihood function could be represented as

p(X |Θ)ML =

n∏
i=1

p(Xi|Θ).

Further, if we use the logarithm form, we can denote the objective of maximum
likelihood EM algorithm as follows:

Θ̂ML = argmax log p(X |Θ)ML = argmax

n∑
i=1

log p(Xi|Θ). (1)

This formula includes all observed data. Trimmed likelihood estimate (TLE)—
that aims to to select the subset of data with maximum sum of likelihood
values—is used to eliminate the outliers [10]. We can use a genetic algorithm
to find the optimal subset and exploit maximum likelihood EM algorithm to
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learn the parameters of GMM, as illustrated in Algorithm 1 [12]. In this case,
the objective function could be represented as

log pTLE(X |Θ) =

n∑
i=1

wi log p(Xi|Θ), (2)

where ∀i = 1, 2, ..., n, wi ∈ {0, 1} and
∑n

i=1 wi = m, m represents the number of
valid data. When wi = 1, it indicates that the corresponding data is chosen into
the subset. Otherwise, the data is an outlier and should be discarded. Hence,
the result is a subset of size m out of n original samples, which fits GMM most
in terms of likelihood contribution.

As a genetic algorithm, GA-GMM contains properties of genetic algorithm—it
includes encoding scheme, fitness function, and operators like crossover, muta-
tion, and selection. We use the standard way to implement crossover and selec-
tion [8]. Encoding scheme, fitness function, and a self-defined mutation (Guided
Mutation) are defined as follows.

Definition 1. Encoding scheme. The chromosome is encoded into a binary string
and each bit represents the existence of corresponding observed data. Each chromo-
some and its corresponding mixturemodel will be a possible solution to our problem.

Definition 2. Fitness function. The fitness score function is set as the trimmed
logarithm likelihood of the corresponding GMMof a chromosome—log pTLE(X |Θ).

Definition 3. Guided Mutation. Guided Mutation ensures the chromosome in
a population to mutate toward maximizing fitness score. It means we choose
chromosome that has higher value fitting trained GMM.

4 Experiment

4.1 Setup and Metrics

We prepare the data by cleaning and splitting. We filter locations of less than 10
visits. And then we split the dataset into three non-overlapping sets in sequence:
a redundant set, a training set, and a test set. The test set keeps 10% of the
whole data set. We test different cases in which the proportion of training data is
90% and 50% respectively. When training data set is 90%, there is no redundant
data. When the training data set is 50%, redundant data is the former 40% data
that will be discarded.

We evaluate the performance of different models in capturing geographical
influence by the accuracy of POI recommendation that is measured by Precision
and Recall. POI recommendation is to recommend the top-N highest ranked lo-
cations. However, the system should not recommend locations user has checked
in. To evaluate the performance of POI recommendation, we use the Precision@N
and Recall@N as the metrics that are standard metrics to measure the perfor-
mance of POI recommendation [15]. Precision@N defines the ratio of recovered
POIs to the N recommended POIs and Recall@N defines the ratio of recovered
POIs to the size of test set.
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Algorithm 1. Genetic-based Expectation Maximization Algorithm

1. t=0;
2. Initialize P0(t);
3. for t = 1 : G do
4. P1(t) ← perform several cycles of EM on P0(t);
5. P2(t) ← Guided Mutation in P1(t);
6. fScore2 ← evaluate P2(t);

7. P0(t)
′ ← selection and crossover to generate offspring from P2(t);

8. P1(t)
′ ← perform several cycles of EM on P0(t)

′
;

9. P2(t)
′ ← Guided Mutation in P1(t)

′
;

10. fScore
′
2 ← evaluate P2(t)

′
;

11. P3(t) ← selection from [P2(t), P2(t)
′
];

12. iBest← best individual from P3(t);
13. if iBest satisfies convergence condition then break;
14. P0(t+ 1) ← P3(t);
15. t = t+ 1;
16. Perform EM on iBest until convergence;

4.2 Dataset

We use the Gowalla data records from February 2009 to September 2011. We
select 3836 active users’ records to experiment. We define active users as users
whose check-ins are more than 1000 times and experience of using Gowalla is
more than 1 year. After removing locations with less than 10 visits, all check-ins
of active users include 183,667 different locations. We illustrate statistics of the
data in Table 1, where “C.” represents the check-in times of a user and “T.”
represents the time span (unit is day) from first check-in to last check-in.

Table 1. Data statistics

Min. C. Max. C. Avg. C. Min. T. Max. T. Avg. T.

1,001 50,243 2,505 366 968 593

4.3 Results

We compare the POI recommendation performance of GMM and GA-GMM
with Gaussian model (GM) and Multi-center of Gaussian model (MGM) [2]
when training data set is 90% and 50% respectively.

Gaussian model (GM) [4] is a baseline model used in [3]. It models human
movement as a stochastic process centered around a single point.

Multi-center Gaussian model (MGM) [2] is a latest model. It uses a
fixed distance to define a district. When check-ins in a district are more than a
threshold, the mean of all check-ins is the center. It utilizes a greedy method to
find the district and requires no overlapping between two districts.
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We illustrate experimental results in Fig. 1. GMM outperforms GM and
MGM; further GA-GMM improves GMM. Hence, GA-GMM could better cap-
ture the geographical influence. In the experiment we set the number of centers
in GMM and GA-GMM as 2 for simplicity, since Cho et al. pose that the check-
in behaviour comprises two states in [3]. We set the radius of region in MGM as
1 kilometer and the threshold as 10% (that means the ratio of check-ins in one
district is at least 10% of all his check-ins).

Fig. 1. Comparison of different models

5 Conclusions and Further Work

We apply GMM and GA-GMM to capture geographical influence in POI recom-
mendation. According to experimental results, we draw conclusions as follows.
1) GMM outperforms the baseline model GM and the latest model MGM. 2)
GA-GMM eliminates the outliers of data and improves GMM. It discovers the
activity centers more precisely, which increases the accuracy of POI recommen-
dation.

There are two aspects of further work. One is to establish a sophisticated
POI recommendation system through adding the influence of user preference
and social relationship. In this paper, we focus on how to model the geographical
feature of check-in activities. For a POI recommendation system, we still have to
consider more features of LBSNs such as user preference and social relationship.
The other is to improve the efficiency. We learn each user’s model separately.
That provides opportunities to implement a parallel version.
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Abstract. In this paper, we study an efficient nonconvex optimization
method for clustering on massive datasets. Our approach consists of two
phases and is based on DC (Difference of Convex functions) programming
and DCA (DC Algorithms). In the first phase, the data is divided into
subsets on which an efficient DCA for clustering is investigated. In the
second phase, another DCA for weighted clustering on the set of centers
obtained by phase 1 is presented. The numerical results on real datasets
show the efficiency of our method.

Keywords: Clustering, Data stream, Massive dataset, DCA, DCA
Weight.

1 Introduction

Clustering on massive datasets is a challenging research area in data mining.
The data massive will be linked not only to the volume, but also the complexity
of processing. The technical data clustering and learning must adapt to such
problems.

Nowadays, various massive data exists in the form of data streams. It concerns
applications such as telephone records, banking, multimedia data,... For these
applications, data stream is an appropriate model when a large volume of data is
arriving continuously and it is either unnecessary or impractical to store the data
in some form of memory [3]. In this context, we have focused on the approaches
of data processing as an optimization problem and applied with data streams.

Nittel et al. [9] introduced a partial/merge method which consists of 2 phases
for problem clustering mass of data. In the phase 1, data is subdivided into
p subsets and one performs an algorithm clustering on each subset, and the
classical K-Means is used. In the phase 2, a K-Means Weight based algorithm
is applied on the set of weight centers obtained from phase 1. The geoscientific
datasets have been tested. Since two problems above are nonconvex optimization
problems, so our approach explore an optimization nonconvex technique based
on DC programming (Difference of Convex functions) and DCA (DC Algorithm)

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 538–545, 2013.
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[8]. We use a DCA clustering algorithm instead of K-Means classical in the first
phase. Subsequently, we developed another DCA clustering algorithm for second
phase. Comparative experiments with clustering K-Means Weight approach [9]
on different datasets are reported.

The remaining paper is structured as follows: section 2 introduces DC pro-
gramming and DCA. Section 3 introduces DCA clustering algorithms. Numerical
results on real data sets and some remarks will be presented in section 4. Con-
cludes the paper and future works in last section.

2 DC Programming and DCA

In this paper we study a clustering algorithm in the nonconvex programming
framework based on DC programming and DC Algorithm, which were intro-
duced by Pham Dinh Tao in their preliminary form in 1985 [8]. They have been
extensively developed since 1994 by Le Thi Hoai An and Pham Dinh Tao and
now, DCA has been successfully applied to a lot of various large-scale (smooth
or non-smooth) nonconvex programs [6], [7], [8].
General DC program as:

α = inf{f(x) := g(x) − h(x) : x ∈ IRn} (Pdc)

where g, h are lower semi-continuous proper convex functions on IRn. The idea
of DCA is simple: each iteration � of DCA approximates the concave part −h
by its affine majorization (that corresponds to taking y� ∈ ∂h(x�)) and mini-
mizes the resulting convex function (that is equivalent to determining a point
x�+1 ∈ ∂g∗(y�) with g∗ is the conjugate function of the convex function g).

The generic DCA schema is shown below.
DCA Schema:

Let x0 ∈ Rn be an initial guess. Set k := 0
REPEAT
γk ∈ ∂H(xk). xk+1 ∈ argmin{G(x)− 〈x, γk〉 : x ∈ Rn}.
Set k + 1← k
UNTIL ‖xk+1 − xk‖ ≤ ε(|xk|+ 1) or |f(xk+1)− f(xk)| ≤ ε(|f(x(k))|+ 1).

DCA schema have the following properties ([7], [8]):

i) the sequence {g(xk)− h(xk)} is decreasing,
ii) if the optimal value α of problem (Pdc) is finite and the infinite sequences
{xk} is bounded, then every limit point x̃ of the sequence {xk} is a critical
point of g − h.

For instant, it is worth to note that the construction of DCA involves the convex
DC components g and h but not the DC function f itself. Moreover, a DC
function f has infinitely many DC decompositions g − h which have a crucial
impact on the qualities (speed of convergence, robustness, efficiency, globality of
computed solutions,...) of DCA. The solution of a nonconvex program by DCA
must be composed of two stages: the search of an appropriate DC decomposition
and that of a good initial point.
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3 DCA Clustering Algorithms

3.1 DCA for the First Phase

An instance of the partitional clustering problem consists of a data set A :={
a1, ..., aq

}
of q points in IRn, a measured distance, and an integer k; we are to

choose k members x� ∈ IRn(� = 1, ..., k) as ”centroid” and assign each member
of A to its closest centroid. The assignment distance of a point a ∈ A is the
distance from a to the centroid to which it is assigned, and the objective function,
which is to be minimized, is the sum of assignment distances. The corresponding
optimization formulation is expressed as: (‖.‖ denotes the Euclidean norm)

min

{
q∑

i=1

min
�=1,...,k

∥∥x� − ai
∥∥2 : x� ∈ IRn, � = 1, . . . , k

}
. (1)

The DCA applied to problem (1) has been developed in [6]. We will give below
a brief description of this algorithm:

DCA for Solving the Problem (1):
Initialization: Let ε > 0 be given, X(0) be an initial point in IRk×n, p := 0;
Repeat:

Calculate Y (p) ∈ ∂H(X(p)) by: Y (p) = qX(p)−B−∑q
i=1 e

[k]
j(i)(X

(p)
j(i) − ai)

Calculate X(p+1) according to: X(p+1) := (B + Y (p))/q.
Set p = p+ 1.

Until: convergence of {X(p)}.
where B ∈ IRk×n, B� :=

∑q
i=1 a

i and e
[k]
j being the canonical basis of IRk.

3.2 DCA for Second Phase

In this section, we developed a DC decomposition for problem clustering on the
set of weight centers, the DC Algorithm for this problem called by DCA Weight.

Denote bi(i = 1, ..., s = k ∗p) is the set of centers obtained from phase 1. Each
bi is weighted by wi which is the number of points that were assigned to the
centers bi. In the second phase, we are to find again k members u� as ”centroid”
of the set bi, then the corresponding optimization formulation is expressed as:

min

{
s∑

i=1

wi ∗ min
�=1,...,k

∥∥u� − bi
∥∥2 : u� ∈ IRn, � = 1, . . . , k

}
. (2)

To simplify related computations in DCA for solving problem (2) we will work
on the vector space IRk×n of (k × n) real matrices. We have:

F (U) =
1

2

s∑
i=1

wi ∗ min
�=1,..,k

‖U� − bi‖2

=

s∑
i=1

k∑
�=1

wi ∗ 1

2
‖U� − bi‖2 −

s∑
i=1

wi ∗ max
j=1,..,k

1

2

k∑
�=1,� �=j

‖U� − bi‖2

= G(U)−H(U). (3)
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where G(U) =
∑s

i=1

∑k
�=1 Gi�(U), Gi�(U) = 1

2 wi‖U� − bi‖2 and H(U) =∑s
i=1 Hi(U), Hi(U) = max

j=1,..,k
Hij(U) = max

j=1,..,k

∑k
�=1,� �=j

1
2 wi‖U� − bi‖2. Since

G(U) and H(U) are convex functions, problem (2) is a DC program.
Recall that m is the objects in whole data set, wi denote the number of points

that were assigned to the centers bi, s = k ∗ p with p is number of subsets, so∑s
i=1 wi = m. It leads to:

G(U) =
1

2

s∑
i=1

k∑
�=1

wi ∗ ‖U� − bi‖2 =
m

2
‖U‖2 − 〈B,U〉+ 1

2
‖A‖2 (4)

where Ai =
√
wib

i ∈ IRn (i=1,..., s); B� =
∑s

i=1 wib
i ∈ IRn(� = 1, ..., k). The DC

program (3) then is minimizing the difference of the simplest convex quadratic
function G(U) and the nonsmooth convex function one H(U). This nice feature
is very convenient for applying DCA, which consists of solving a sequence of
approximate convex quadratic programs whose solutions are explicit.

a) DCA for Solving the Problem (2)
According to the description of DCA, the DCA schema applied to (3) amounts
to computing the two sequences {U (p)} and {V (p)} in IRk×n such that: V (p) ∈
∂H(U (p)), U (p+1) ∈ ∂G∗(V (p)). First, we express the convex function Hij by:

Hij(U) =

k∑
�=1,� �=j

1

2
wi‖U� − bi‖2 =

k∑
�=1

1

2
wi‖U� − bi‖2 − 1

2
wi‖Uj − bi‖2

=
1

2
wi‖U −B[i]‖2 − 1

2
wi‖Uj − bi‖2

where B[i] ∈ IRk×n is the matrix whose rows are all equal to bi.

Therefore, ∇Hij(U) = wi(U − B[i]) − e
[k]
j wi(Uj − bi) with e

[k]
j : j = 1, ..., k

being the canonical basis of IRk. Hence, we get the following simpler matrix
formula for computing ∂H : V ∈ ∂H(U) ⇔ V =

∑s
i=1 V

[i] with V [i] ∈ ∂Hi(U)
where V [i] is a convex combination of {∇Hij(U) : j ∈ Ki(U)}, i.e:

V [i] =
∑

j∈Ki(U)

λ
[i]
j ∇Hij(U) with λ

[i]
j ≥ 0 for j ∈ Ki(U) and

∑
j∈Ki(U)

λ
[i]
j = 1,

with Ki(U) := {j = 1, . . . , k : Hij(U) = Hi(U)}. In particular, we can take

for i = 1, ..., s : V [i] = wi(U − B[i]) − ∑j∈Ki(U) λ
[i]
j e

[k]
j wi(Uj − bi) and the

corresponding V ∈ ∂H(U) is defined by:

V = mU −
s∑

i=1

wiB
[i] −

s∑
i=1

e
[k]
j(i)wi(Uj − bi). (5)

Now, we focus on computing U by DCA schema. As the functionG is strictly con-
vex quadratic and its conjugate G∗ is differentiable, from (4) we have:



542 T. Minh Thuy, H.A. Le Thi, and L. Boudjeloud-Assala

U = ∇G∗(V ). So, V = ∇G(U) = mU −B. Finally:

U = (V +B)/m. (6)

b) Description of DCA to solve problem (2)

Initialization: Let ε > 0 be given, p := 0. U (0): initial cluster centers.
Repeat:

Calculate V (p) from (5).
Calculate U (p+1) from (6).
Set p = p+ 1.

Until: |F (p+1) − F (p)| ≤ ε(|F (p)|+ 1) or ‖U (p+1) − U (p)‖ ≤ ε(‖U (p)‖+ 1).

This algorithm has convergence properties of general DC programs [7], [8].

4 Experiments

a) Datasets
We perform experiments with 7 real-world datasets: Forest Covertype (FCT)
taken from [1], KDD98 [5], KDD99, HyperPlane(HP) from [13], SEA[10], Sen-
sor 1[12] and Sensor 2 from [11]. The information is summarized in table 1.

KDD98 contains 95.412 records of information about people who have made
charitable donations. This dataset is converted into a data stream with 56 at-
tributes, 10 classes (as [5]). KDD-CUP’99 corresponds to a challenging problem
for dynamic stream clustering. Dataset contains 494.021 points, 41 attributes
with 24 types attack. We only use 34 continuous attributes (as [4]) and the type
attacks fall into two main category: normal and abnormal. Sensor 1 holds five
information: rcd minutes, temperature, humidity, light and voltage that selected
from four regions and the processed stream has 1.169.260 points. Sensor 2 con-
tains 2.219.803 points, this experiment aims to infer the illuminance state based
on the measurements provided by each sensor, illuminance higher than 200 are
considered as class 1, otherwise considered as class −1. All datasets are normal-
ized before experiments.

Table 1. Datasets

Dataset No. Points No. Att No. Clusters No. Subsets No. Elements/Subset

SEA 60000 3 2 10 6.000
HP 100000 10 5 10 10.000
KDD98 95412 56 10 10 9.541
KDD99 494021 34 2 10 49.402
FCT 581012 54 7 10 58.101
SENSOR 1 1169260 5 4 10 116.926
SENSOR 2 2219803 5 2 10 221.980
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b) Testing Protocols
We perform clustering on each subset by two algorithms DCA and K-Means
with the same initial points, which are randomly chosen from given objects.
Then, two algorithms DCA Weight and K-Means Weight are applied on the set
of centers obtained. Initial points are chosen from s center points with k largest
weights. Since the object function is sensitive to the initial seeds, we have run
each algorithm with 5 different sets of initial seeds. By investigating regrouping
of data after getting the centers of dataset, we study 2 approaches:

Option 1: if the data scanned only once, the elements are assigned to cluster
corresponding to their center in the phase 1.
Option 2: the data can be scanned in the subset more than one time. Then,
the elements are assigned to the closest center which obtained in phase 2.

c) Evaluation
In our study, we focus on 3 criteria: the value of objective function, the CH
value ([2]) and CPU running time.

Objective Function: The objective function of method with 2 phases is sum
of the assignment distances and defined as, with cj are centers data in step 2 :

F =
k∑

j=1

∑
xi∈Cj

wi∗ ‖ xi − cj ‖2; i = 1, ..., s

CH Value (Calinski RB, Harabasz): The value cluster index of Calinski and
Harabasz [2] describe the values of between-cluster and within-cluster, where
traceB denotes the sum of squares between different clusters and traceW is the
squared differences of all objects in a cluster from their respective cluster center.

CH(K) :=
[traceB/(k − 1)]

[traceW/(m− k)]

d) Numerical Results
All algorithms have been implemented in the VisualC++2008, run on a PC Intel
i5CPU650, 3.2 GHz of 4GB RAM. From numerical results, we observe that:

i) DCA in general is better than the one based on K-Means. DCA Weight
gives better objective function on all experiments. The CH values of DCA
is better than the CH value of K-Means on 6/7 datasets with the option 1;
on all datasets with the option 2.

ii) In the set of datasets SEA, KDD99, FCT, Sensor 1 : DCA-Weight not only
gives better solutions in term of CH values and objective function, but also
on the standard deviation (SD) values.

iii) DCA provides good solutions in reasonable time.
iv) The execution time of option 1 is faster than option 2, but the result of CH

values of option 2 is better than option 1 in all experiments.
v) The method explores parallel process by multi processer or multi-machines

in the first step.
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Table 2. The objective functions of DCA (1) and K-Means (2)

Datasets Min Obj. Max. Obj Avg. Obj SD

Name (1) (2) (1) (2) (1) (2) (1) (2)

SEA 155606 180179 189572 219446 176025 195418 11278 16205
KDD98 19307 25551 42024 45091 29205 32097 7528 6859
HP 39058 42588 41061 44968 40266 43404 700 833
KDD99 78732 97846 112099 113118 90054 105460 11521 5883
FCT 172924 199414 214908 275989 190057 225873 18660 26875
Sensor 1 40215 52755 87710 93620 54792 68986 17097 19734
Sensor 2 74318 89156 94469 108838 86837 96987 8377 6463

Table 3. The CH values of DCA (1) and K-Means (2) with option 1

Datasets Min.CH Max.CH Avg.CH SD

Name (1) (2) (1) (2) (1) (2) (1) (2)

SEA 7074 5227 8748 7538 7701 6655 600 960
KDD98 5813 5648 8118 7719 7083 6963 764 758
HP 1466 1387 1571 1599 1510 1516 37 71
KDD99 212862 117160 326221 262529 279700 199994 40251 59966
FCT 78769 73023 96441 93040 88739 85390 5903 7338
Sensor 1 402415 375917 875661 767465 656922 594034 157291 179894
Sensor 2 587780 446899 807009 644869 669221 550953 84888 84591

Table 4. The CH values of DCA (1) and K-Means (2) with option 2

Datasets Min.CH Max.CH Avg.CH SD

Name (1) (2) (1) (2) (1) (2) (1) (2)

SEA 7921 6557 9933 8552 8687 7657 718 858
KDD98 6501 6292 9582 8734 8287 7815 1001 889
HP 1689 1680 1814 1802 1770 1755 47 40
KDD99 344742 241201 368429 345925 358484 303059 8650 45627
FCT 88219 76833 104638 99653 97823 92091 6116 7955
Sensor 1 436826 415603 1027300 984041 812461 724526 201102 249924
Sensor 2 710050 550402 937843 773868 799818 670419 83689 93094

Table 5. The CPU Time of DCA (1) and K-Means (2)

Datasets Avg.Time(Option 1) SD(Option 1) Avg.Time(Option 2) SD(Option 2)

Name (1) (2) (1) (2) (1) (2) (1) (2)

SEA 3,870 2,294 0,018 0,030 4,962 3,336 0,289 0,254
KDD98 165,999 37,743 0,004 0,024 174,965 46,500 0,383 0,384
HP 8,742 14,201 0,026 0,028 12,064 17,465 0,383 0,483
KDD99 41,383 30,874 1,348 0,616 64,073 60,218 1,551 1,319
FCT 295,961 98,133 16,477 3,033 335,945 146,997 16,422 3,077
Sensor 1 85,621 53,305 5,837 3,153 108,533 95,569 6,239 4,623
Sensor 2 113,530 81,505 11,289 7,207 155,846 153,308 11,438 8,900
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5 Conclusion and Future Works

We have rigorously studied the DC programming and DCA for clustering on mass
of data. The classical K-Mean and K-Mean Weight models were reformulated as
DC programs. The effects of DC decompositions are well exploited for obtaining
effective algorithms. The numerical results on several real datasets show that
DCA is an efficient approach for clustering in large datasets. The performance
of DCA suggests us to investigating it for feature selection or clustering based
on the relationships of the attributes. Works in these directions are in progress.
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Abstract. Predicting the minimum energy protein structure from its
amino acid sequence, even under the rather simplified HP lattice model,
continues to be an important and challenging problem in computational
biology. In this paper, we propose a novel initial population genera-
tion strategy for evolutionary algorithm incorporating domain knowledge
based on the concept of maximum hydrophobic core formation for Pro-
tein structure prediction (PSP) problem. The proposed technique helps
the optimization process to commence with diverse seeds and thereby
aids in converging to the global solution quickly. The experimental re-
sults, conducted on PSP problem using HP benchmark sequences for 2D
square and 3D cubic lattice model, demonstrate that the proposed evo-
lutionary algorithm with new core-based population initialization tech-
nique is very effective in improving the optimization process in terms of
convergence as well as in achieving the optimal energy.

Keywords: Protein Structure Prediction, Hydrophobic Core, Lattice.

1 Introduction

Proteins are important biological macromolecules that play vital role in living
organisms. The protein structure prediction problem (PSP) that can be defined
as the problem of finding the native structure of a protein having the lowest
possible free energy given its amino acid sequence. To deal with the compu-
tation complexity of this long-standing NP-hard problem [1], researches have
often been carried out with simplified models [2]. The hydrophobic-polar (HP)
model [2] is one such abstraction for the PSP that captures the hydrophobic
effect as the main driving forces for the formation of protein structure. The
hydrophobic effect causes hydrophobic amino acids to minimize contact with
water and consequently, the hydrophobic residues tend to aggregate together
and form a ‘core’ in the spatial structure, shielded from the surrounding sol-
vent by hydrophilic amino acids. This type of conformation is stable and has
global minimum free energy. More details about the model can be found in [3,4].
However, computational complexity of PSP problem even with the simplified
models has motivated the investigation of various approximation methods. The
non-deterministic methods to solve PSP include genetic algorithms (GA) [5],
memetic algorithms (MA) [6], ant colony optimization (ACO) [7], particle swarm
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optimization (PSO) [8], estimation of distribution algorithms (EDA) [9]. The
heuristic methods based on the hydrophobic core are: Constrained Hydrophobic
Core Construction (CHCC) [10], Core-directed chain growth algorithm (CG)
[11], hybrid GA [12,13]. Recently, we have proposed the Hydrophobic Core Di-
rected Protein Structure Prediction (HCD-PSP) [3] that estimates the size of
maximum core by scrutinizing the input sequence aided with knowledge about
the positioning of residues which are critical for folding, based on their own
and neighborhood observations. However, the application of the estimated core
sizes are limited only to chain-growth algorithm in [3] and cannot cater to the
possibility of occurrence of multiple cores in the optimal solution.

In this paper, we propose a new evolutionary approach for protein structure
prediction by incorporating the concept of maximum hydrophobic core estima-
tion technique as prior knowledge to generate initial population in memetic al-
gorithm (MA). Both 2D square and 3D cubic HP lattice models are considered
here to demonstrate the concept of implementing hydrophobic core in popula-
tion initialization and also for studying the effect of the proposed strategy in
predicting the structure of protein.

2 Preliminaries

2.1 Basic Definitions

Definition 1: Hydrophobic Core (H-Core). In a protein conformation, by
hydrophobic core (H-Core), we refer to the set of all lattice points which are
occupied by hydrophobic residues only. Here, we consider the H-Core as a stack
of Z (=1 in case of 2D square lattice) layers, each having a dimension (X × Y ).

Definition 2: Total H (TH), Cored-H (CH), Outside H (OH). Total H
(TH) is defined as the total number of Hs in the input protein sequence, whereas
Cored-H (CH) denotes the number of Hs inside the H-Core. Outside H (OH)
i.e., (TH − CH) is the number of Hs that are allowed to be outside the H-Core.

Definition 3: Classified Residue (Isolated H (IH), Isolated P (IP ), Asso-
ciated H (AH)). In a sequence of length Len, an H residue at the ith position
(1 < i ≤ Len − 1) is defined as an Isolated H (IH) if both the (i − 1)th and
(i + 1)th residues are P residues. Isolated P (IP ) is defined in a manner similar
to the definition of IH . The H residues that are connected with an IP in either of
the sides, are called Associated H (AH). In this paper, we call all these residues
as the Classified Residues since they play a very important role in estimating
the size of the H-Core. The total number of IH , IP , AH are denoted by TIH ,
TIP , TAH , respectively.

Definition 4: Classified Location C
′
L. It has been observed that, Classified

Residues apply restrictions while positioning the H residues anywhere inside the
H-Core. In a 2D HP lattice, a core of any dimension (X × Y ), has exactly the
four corner locations that allows only four IH residues to be placed. On the other
hand, for a 3D HP lattice, all the border locations of the top and bottom layers,
can accommodate the IH residues, whereas in the remaining Z − 2 intermediate
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layers, only four corner locations can place at most four IH residues (similar to
H-Core in 2D HP lattice). We call all of these locations as Classified Locations.
In 3D lattice, for a core with dimensions (X

′
, Y

′
, Z

′
), the number of such Clas-

sified Locations C
′
L is (Border locations of the top and bottom layers) + (corner

locations of the intermediate layers)= (2 ∗ (2 ∗ (X ′
+Y

′
)− 4))+ (4 ∗ (Z ′ − 2)). A

conceptual H-Core with the corresponding Classified Locations is shown for 3D
cubic lattice model in Fig. 1.

Fig. 1. A conceptual core in 3D HP lattice with possible Classified Locations in various
layers. The Classified Locations in the left and down edges for the first and last layers
and only 4 possible Classified Locations in the intermediate layers are shown.

2.2 Existing Initial Population Generation Techniques

In all population based methods, initial population play an important role to
maintain diversity. Among different techniques for generating initial population,
the most widely used approach generates every individual in the population with
random moves, followed by verifying the moves with Self-avoiding-walk (SAW)
constraints [4, 6]. This technique, although computationally inefficient, is very
simple. However, in a recently proposed initial population generation technique
DIG (Dynamic Initial-population Generation) [4], an individual is created by
sequentially adding moves ensuring that SAW is maintained. Although, this
method is faster than the random generation technique, it does not ensure that
resulting conformations contain hydrophobic core.

3 Proposed Method

3.1 Core-Based Initial Population Generation

The incorporation of knowledge from the problem domain that can improve
the performance of the optimization, can be done either implicitly (i.e., dur-
ing encoding or constraint optimization) or explicitly during initial population
generation [14]. Incorporating prior knowledge in initial population can play an
important role because quality seeds can increase the possibility of achieving the
global optimal solution through the iterative process of information exchange. In
this section, we introduce a novel initial population generation technique called
Core-based Initial Population Generation (CIPG) for incorporating knowledge
in the population based method (memetic algorithm in our case).

The CIPG algorithm works in two stages. The first stage starts with esti-
mating the Cored-H (CH), that indicates the number of H residues forming the
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maximum possible H-Core by analyzing the Classified Residues in the sequence
and then calculate the dimensions (MaxDim) of the maximum possible H-Core
with the aid of the estimated CH . With the calculated CH and MaxDim, in the
second stage, we constitute the set of possible cores of various dimensions with
a fraction of CH and generate the initial population.

Stage-I: (Core Estimation) While calculating the CH , first we calculate
the total number of Hs (TH) from the given sequence (S). Our assessment on
Classified Residues illustrates that, these residues cannot be placed every-
where inside the core due to their position as well as the neighborhood in the
sequence. According to the definition of associated H (AH) and the orientation

of 2D square or 3D cubic lattice, at least (TAH

2 ) residues must be placed outside
the H-Core. Further, only four of the total IH residues can be placed inside the
core on any of the four corner locations for 2D HP lattice irrespective of the size
of the core. Hence, in case of 2D square lattice, we estimate the number of CH

based on the two observations according to CH = TH −max(TIH − 4,
⌊
TAH

2

⌋
).

Further, the maximum dimension of the approximated core (Xmax,Ymax) are:
Xmax =

√
CH , Ymax = CH/Xmax [3]. However, in case of 3D HP lattice, the

number of Classified Locations (C
′
L) varies with the dimensions of the core and

thereby CH is calculated by subtracting only (TAH

2 ) from TH , i.e., CH=TH-

(TAH

2 ). Further, while calculating the maximum core dimension, we apply a
constraint to accommodate the maximum possible IH residues in the Classified
Locations of the core with that particular dimension, as shown in Algorithm 1.

Algorithm 1. MaxCoreDimension3D (CH , TIH
, C

′
L)

1: Input: CH=Maximum possible H for core, TIH
= total number of IH , C

′
L= total

number of Classified Locations
2: MaxCore = 0
3: For Z = 3

√
CH to 2 do

4: For X =

√
CH
Z to 2 do

5: Y =
CH
X∗Z

6: CL
′
← CalculateClassLoc(X, Y,Z)

7: if C
′
L ≥ TIH

and(X ∗ Y ∗ Z) ≥ MaxCore then
8: MaxCore = X ∗ Y ∗ Z, MaxDim=(X, Y, Z)
9: End If

10: End For
11: End For
12: Return (MaxCore, MaxDim)

Stage-II: (Initial Population Generation with Cores) In this stage, we
opt to incorporate the knowledge of the estimated Cored-H (CH) and dimensions
(MaxDim) of the maximum possible H-Core in the population initialization of
the memetic algorithm. As stated earlier, rather than generating cores with the
total CH for the initial population, we select a smaller percentage of CH i.e.,
allowed Cored-H (ACH ) to generate the initial seeds. Further, we generate the set
of possible cores of varying dimensions such that for a particular (kth) core size,
any of its dimensions does not exceed theMaxDim (i.e.,Xk ≤ Xmax, Yk ≤ Ymax

and Zk ≤ Zmax in 3D lattice) and the total Hs consisting of the core is less than
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or equal to ACH (i.e., Xk × Yk × Zk ≤ ACH ). Let, TC be the total number of
unique core sizes to be generated for a given sequence. However, in our proposed
CIPG algorithm, we allow Trand (=RND% of the population) individuals to be
generated with random initialization method. Thus, we calculate the number of
individuals to be generated for each unique core size as: Icore = (pop−Trand)/TC .
Finally, the following three-step method is applied to generate a conformation
for kth core dimension (Xk, Yk, Zk), where 1 ≤ k ≤ TC .

Step-1 (FillCore): The method starts with selecting a random starting H
(StartPos) from first 50% Hs (to ensure sufficient number of Hs are available for
generating the core) and then consider a sub-sequence containing SH number of
H residues (where SH = Xk×Yk×Zk) to fill the core. Then a sub-conformation
generated with SH by filling the core with H residues only. Here, we employ
chain growth algorithm with random walk that places one monomer at a time by
satisfying the SAW constraint. If the sub-conformation is produced successfully,
we move to the Step-2. Otherwise, we restart this step (FillCore) extending the
sub-sequence (maximum up to the length) that increases SH by one at a time
(at most up to the final H residue of the sequence).

Step-2 (CreatePrefix): Once the first step is successful, we create the sub-
conformation for the prefix part in the reverse direction starting from (StartPos−
1)th position to the starting position of the sequence and then move into the next
stage.

Step-3 (CreatePostfix): After the successful completion of core and prefix
generation, we start creating the sub-conformation for the postfix part of the
sequence starting from the immediate next residue at which the core generation
ended, till the end of the sequence. It should be noted that, while generating
both the prefix and postfix part, we place one move at a time satisfying the SAW
constraint. However, if this step successfully generates the sub-conformation, we
combine all those three sub-conformations to form a valid conformation having
a core of dimension (Xk×Yk×Zk). We repeat all the three steps to create Icore
number of conformations with the particular kth core dimension.

4 Experimental Results and Discussions

The performance of the proposed CIPG is evaluated with widely used benchmark
sequences (defined in [4]), while the results are shown for complex sequences (i.e.,
B5-B9) having moderate length (i.e., 48 to 85). The comparisons are shown with
the most recent technique DIG [4] as it is significantly faster than conventional
random initial population generation technique. The results of the studies for the
timing requirement and the quality of the initial population (number of unique
cores, average and best energy) with different fractions of CH (i.e., ACH ) to
generate the core for 2D and 3D HP lattice are shown in Table 1 and Fig. 2, re-
spectively. To balance the trade-off between the time required for pre-processing
and the quality of the seeds, we select 25% and 50% of CH (i.e., ACH = CH/4
and ACH = CH/2) for 2D and 3D HP lattice, respectively, to generate the ini-
tial population. The sequences are executed in 25 separate runs for both the
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Table 1. Comparison of the proposed CIPG and existing DIG [4] for 2D HP lattice
model with different ACH in terms of computation time and quality of solutions. UC∗

indicates number of unique cores, T# indicates required time in seconds.

Core Dim B5 B6 B7 B8 B9

(% of CH) Avg UC∗ T# Avg UC∗ T# Avg UC∗ T# Avg UC∗ T# Avg UC∗ T#

C
IP

G 50% -6.57 8 <1 -7.11 6 <1 -13.68 15 4 -14.06 15 42 -18.51 20 46
33% -6.12 7 <1 -5.86 5 <1 -13.05 13 <1 -12.78 13 12 -18.37 17 15
25% -5.22 6 <0.5 -5.19 4 <1 -11.45 9 <1 -11.60 9 <1 -16.50 13 <1

DIG [4] -3.48 - <0.1 -3.65 - <0.2 -8.06 - <0.2 -7.93 - <0.3 -11.65 - <1

(a) (b)

Fig. 2. Performance analysis of proposed CIPG (a) number of generated unique cores
(b) required computation time, for different percentage of Cored-H (25%, 33%, 50%,
66%) to generate initial solution

(a) (b) (c)

Fig. 3. Average of best energies with 95%CI for 5 benchmark sequences in (a) 2D
lattice (b) 3D lattice. (c) Average of mean energies in 3D lattice.

proposed and existing initial population generation techniques. The average of
best starting energy for the five sequences in all 25 runs, shown in Fig. 3(a),
exhibits apparent superiority of the proposed CIPG over the existing DIG [4].
This superiority is even better for 3D HP lattice (Fig. 3(b)), except the sequence
B6. The reason for failure in the sequence is anticipated as the small number of
Cored-H as well as allowed H, that are insufficient to form any core using CIPG.
The best starting energies for proposed and existing initial population genera-
tion techniques are shown in Fig. 3(b), which clearly shows that, other than B6,
proposed CIPG starts with better energies than DIG. The 95% confidence inter-
vals (95CI) are also calculated for all 5 sequences using both the initialization
techniques, which are shown as error bars in Fig. 3(a) and Fig. 3(b), respec-
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Table 2. Best energies reported by memetic algorithms initialized with proposed
(CIPG) and existing (DIG) initial population generation technique with and without
applying the diversification technique. E∗ indicates the corresponding best energies.

MA(without Diversification) MA(with Diversification)

CIPG DIG [4] CIPG DIG [4]

BN(E∗) Best Avg±STD Best Avg±STD Best Avg±STD Best Avg±STD

B5(-31) -29 -27.5 ±1.27 -27 -26.4 ±0.52 -30 -27.80 ±1.82 -27 -26.20 ±0.79
B6(-32) -25 -24.3 ±0.82 -26 -24.4 ±0.70 -27 -23.93 ±1.49 -28 -24.73 ±1.91
B7(-54) -47 -45.1 ±1.91 -46 -44.5 ±0.97 -51 -46.27 ±2.49 -47 -44.40 ±1.68
B8(-58) -50 -48.6 ±1.35 -47 -42.8 ±3.08 -50 -47.33 ±1.63 -46 -42.33 ±1.80
B9(-79) -70 -66.4 ±2.59 -63 -60.6 ±1.65 -72 -65.93 ±2.71 -62 -59.33 ±2.06

tively for 2D and 3D lattice. The 95% CI bars for the proposed CIPG show that
the deviation of the energies in 25 separate runs are very little, indicating the
robustness of the proposed method. Finally, the average of mean energies are
shown in Fig. 3(c), which indicates the start of initial population having better
average energies with the proposed method than the existing one.

Further, we have investigated the effect of initial population in optimal protein
structure prediction with a simple Memetic Algorithm (MA) where both CIPG
and DIG have been used separately for 3D HP lattice. We have conducted two
different experiments with and without applying any diversification technique for
both the MAs. All the experiments are executed for 25 runs with a maximum
100000 fitness evaluations in each run. We plot the energy values obtained for
each method in Table 2 and observe that, other than B6 among the the five
benchmark sequences, the conformations with the proposed CIPG technique
have better fitness values than the existing DIG [4] at the end of the termination
criteria. The superior performance of CIPG in both the cases (MAs with and
without diversification) proves the contribution of the proposed CIPG towards
successful inclusion of good seeds which lead to the convergence with better
energy value in the optimization process.

5 Conclusion

In this paper, a prior knowledge based initial population generation technique
has been proposed for Memetic Algorithm (MA) applied for the problem of pro-
tein structure prediction using simplified 2D and 3D HP lattice models. The pro-
posed initialization technique speeds up the optimization process by providing
quality seeds as well as by maintaining diverse solutions in the initial popula-
tion. Although, only good quality seeding in initial population is not sufficient
to guarantee the optimal solution or faster convergence, the variety of ‘distinct’
individuals seeded with prior knowledge can play significant role to explore the
search space more exhaustively. An extensive analysis has been performed and
comparisons have been shown with an existing technique for generating initial
population.
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Abstract. According to Multiple Intelligences (MI) theory by Howard Gardner, 
human’s intelligence can be divided into linguistic, logical/mathematical, musi-
cal, spatial, bodily/kinesthetic, interpersonal, intrapersonal and naturalistic 
areas. In this paper, two groups of students with high and low MI scores in each 
area for linguistic and logical/mathematical intelligences were categorized and 
tested based on a questionnaire in an experiment. Electroencephalogram (EEG) 
was recorded from 16 electrodes using Emotiv EPOC for 29 kindergarten child-
ren and 9 high school students during the assessment. To investigate the neuro-
physiological substrates of intelligence, EEG signal based coherence analysis in 
alpha, beta, gamma and theta frequency bands was performed. Our findings in-
dicate that the group with low MI score for both language and logic showed 
wider and distributed cognitive activations suggesting an increased effort in 
processing a particular task. The group with high MI score for language showed 
effective connectivity within left-hemisphere and low activation in the right pa-
rietal lobe. The group with high MI score for logic/mathematics showed in-
creased frontal activation. Performance in language and logic test was further 
correlated with effective connectivity in the task specific areas of brain. Based 
on our results we conclude that a smarter brain for language and logic is asso-
ciated with the limited but affective connectivity.  

Keywords: Multiple intelligence, coherence analysis, cognition, EEG. 

1 Introduction 

Understanding human intelligence has interesting applications in psychology as well 
as neuroscience.  Intelligence is one of the most important psychometric constructs in 
the study of individual differences in cognitive abilities [1]. An understanding of these 
individual differences can provide improved ways to compensate for one’s needs. 
Howard Gardner proposed Multiple Intelligence (MI) theory suggesting eight basic 
criteria that contribute to intelligence. MI theory not only broadened  the perception 
of understanding intelligence beyond IQ scores [2] but also opened up new vistas of 
research, especially in teaching strategies for children with different predispositions in 
eight intelligences. It is possible that a particular strategy is more likely to be highly 
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successful with one group of students and less successful with other groups. These 
kinds of personalized education strategies can make children more competitive.  

The inter individual differences between people with good and poor achievements 
(either because of high or low aptitude or due to more or less training) can be ad-
dressed by the concept of neuronal efficiency.  It is assumed that higher ability in a 
cognitive task is associated with more efficient neuronal processing of the task. For 
several years, attempts have been made to correlate intelligence with EEG. These 
attempts have shown a high inter individual variability [3]. In general, EEG variables 
that are correlated with IQ and neuropsychological test performances include power 
or amplitude measures and network connection measures such as coherence and phase 
delays [4,5]. It is interesting to note that among several reported EEG studies explor-
ing intelligence [6,7], EEG measures indicating neural interactions showed more  
intense relationship with intelligence  than other EEG indices, such as asymmetry 
indices or regional power [8]. The EEG coherence typically reports a positive correla-
tion between neural complexity and intelligence [9]. Scalp recorded EEG coherence is 
a large scale measure of functional interrelation between pairs of cortical regions that 
is often closely related to particular cognitive task, rather than general mental ability.  

In this paper we investigate the neurophysiological substrates of intelligence that 
contributes to a difference in language and logic/mathematics abilities of primary 
school children and high school students. To do this, we evaluated a subject’s MI 
intelligence score in a particular task using performance assessment or a questionnaire. 
We also acquired a subject’s brain wave (using wireless EEG) during performance 
assessment. The acquired EEG data was analyzed by a coherence analysis method in 
various frequency bands, in which we checked top 15 connections. The objective of 
the present study is to investigate the group differences in EEG coherence for excel-
lent and poor performers in a language and logic task. 

Rest of the paper is organized as follows: The theoretical aspects of this research 
are presented in the next section. In section 3, we present the experiment environment 
and results of this study. Conclusion and discussion are presented in section 4.  

2 Theoretical Aspects of This Research 

2.1 Multiple Intelligence(MI) Theory 

MI theory was introduced by Howard Gardner. He challenged the conventional notion 
that intelligence can be objectively measured and reduced to a single quotient or 
score. He proposed the existence of at least seven basic intelligences in his book 
namely “Frames of Mind [10]”; Later an eighth on was added [11]. His work has 
encouraged educators and parents to view children as equals regardless of a quotient 
produced from an intelligence exam or of academic areas for which they develop 
competence. Practitioners of MI understand that children do not fit into a single  
prototype. 

He sought to broaden the perception of human potential beyond the confines of 
traditional IQ scores, seriously questioning the validity of determining an individual’s 
intelligence through the practice of taking the person out of his or her natural  
environment and asking him or her to attempt isolated tasks never done before and 
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probably never to be done again. Thus, He suggested educators to view intelligence as 
the capacity for solving problems and fashioning products in context-rich and natura-
listic settings [12] rather than placing the traditional importance on the ability to pro-
duce a large quotient. 

Each MI’s intelligence is described in [11]. 

2.2 Coherence Analysis for EEG Signals 

Coherence analysis of EEG signals is used to quantitatively measure the linear depen-
dency between two distant brain regions as expressed by their EEG activities. Scalp 
recorded EEG coherence is a large-scale measure which depicts dynamic functional 
interactions between electrode signals. High coherence between EEG signals recorded 
at different sites of the scalp hints at an increased functional interplay between the 
underlying neuronal networks. A coherence value of 1 is interpreted as identifying 
two signals, independent of their amplitudes, whereas a coherence value of 0 corres-
ponds to unrelated patterns of electrical activity. 

With the development of computational techniques, a broader application of cohe-
rence analysis as a method to monitor frequency dependent large-scale synchroniza-
tion during human intact and disturbed information processing has been established.  
Number of studies on EEG coherence and cognitive information processing in healthy 
humans has exponentially increased during the past four years. The contribution of 
EEG coherence analysis to the investigation of cognition and in particular language 
and logic is demonstrated with examples in the recent EEG studies. 

Mathematically, the coherence function is obtained by cross-spectral analysis. It is 
an essential part of EEG spectral analysis because it enables us to quantify the rela-
tionships between different EEG signals. Detailed reviews on methodical aspects of 
EEG coherence analysis are given in Shaw [13], Challis and Kitney [14], etc.  Here, 
we recall the basic definitions. Let  and  be the (complex) Fourier trans-
forms of the time series  and   of channel i and j, respectively. Then the 
cross-spectrum is defined as   

  (1) 
where * means complex conjugation and < > means expectation value. Coherence is 
now defined as the absolute value of normalized cross-spectrum:   

   /  (2) 

3 Experimental Setup 

3.1 Classifying the Excellent Group and the Poor Group in Each MI’s Area 

29 kindergarten children and 9 high school students participated in the experiment. 
Kindergarten children were given a performance assessment related to their MI. Dur-
ing the performance assessment, an expert observer recorded participants’ reply and 
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behavior. Their EEG signal was also collected at the same time. Participants’ re-
sponse was analyzed by Multiple Intelligence Institute in Korea, which provides each 
subject’s MI’s score. This MI’s score was used to group them excellent and poor sub-
jects. We analyzed representative brain wave of two groups with excellent MI score 
and worst MI score. On the other hand high school students (around 18 years old), 
were requested to do two surveys before the actual experiment. These two surveys 
include MI survey for high school students and Job aptitude psychological survey. 
These survey scores were used for sorting excellent and poorest subjects. 

3.2 EEG Data Acquisition for Children  

For children subjects, we used Emotiv EPOC wireless EEG equipment to acquire 
their EEG during natural performance assessment. As the preparation time for wire 
type EEG equipment needed about 20~30 minutes, we had to avoid children’s tired-
ness during preparation time and we did it by using wireless EEG equipment.  Partic-
ipant’s EEG was recorded from 16 electrodes according to the 10/20 system, as 
shown in Fig 1(a) and was digitalized at a rate of 128 Hz. The continuous EEG signal 
was referenced to a common mode sense (CMS) electrode and a driven right leg 
(DRL) electrode.  

The EEG was recorded during the MI performance assessment. Fig. 1 (b) shows a 
scheme of the paradigm for recording EEG signal. First, to relax, participants played a 
simple game using EPOC about 3 minutes. After the relaxation step, participants took 
a performance assessment task for each MI’s area. We recorded each MI’s area, ex-
cept bodily/Kinesthetic area. As the objective of this experiment was to study child-
ren’s naturalistic response, we didn’t consider the relaxation time for each MI area.  

 

Fig. 1. (a) The green circles mark the sensor location for EEG experiment; (b) A scheme of the 
paradigm for recording EEG signal 

3.3 EEG Data Acquisition for High School Students 

Emotiv EPOC was used to record high school students EEG. The participant’s EEG 
was collected while they took a linguistic and logical/mathematical test. We selected 
the test contents from metropolitan office of education’s item pool. Each test included 
6 problems (2 easy problems, 2 mid- level problems, 2 difficult problems). Fig. 2 
shows a scheme of the paradigm for recording EEG signal.  
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Fig. 2. Experiment scheme of the paradigm for recording EEG signal 

First, participants were instructed to maintain gaze on a cross in the center of the 
video and start when they were ready. After 10 seconds, a test content showed up, 
participants were asked to avoid unnecessary body movements. At the end of each 
test, we conducted an off-line survey to determine the accuracy of participant’s re-
sponse.  

4 Experimental Results 

In this study, we analyzed only 2 MI areas (linguistic intelligence, logi-
cal/mathematical intelligence). Fig. 3 shows the scalp’s topographical differences of a 
representative excellent child and poor child. In this figure, we display top 15 cohe-
rence value’s location. 

For the children, the excellent representative child with high MI score for language 
showed effective connectivity within left-hemisphere.  Also the excellent representa-
tive child showed more activation on left frontal and parietal lobes and low activation 
in the right parietal lobe than poor representative child which means that the left he-
misphere is related with language. 

On the other hand, excellent child with a high MI score for logic/mathematics 
showed increased frontal activation which is frequently associated with arithmetic 
calculations in fMRI imaging studies. 

 

Fig. 3. EEG signal based coherence analysis in frequency bands for children (a) In the linguis-
tic intelligence, excellent child shows weak activation on right parietal lobe in lower alpha, 
upper alpha and lower beta band; (b) In the logical/mathematical intelligence, excellent child 
activate mainly on the left cortex but poor child shows left/right cortex long connection 
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Fig. 4 shows differences between excellent and poor high school students. Out-
standing students in linguistic intelligence showed more activation on left parietal 
lobe than poor students but with wider and distributed connectivity. However, for 
logical/mathematical intelligence, excellent students showed increased frontal activa-
tion and effective connectivity in the left frontal hemisphere that is known to be asso-
ciated with arithmetic processing as compared to the poor students.  

We found some interesting common patterns by comparing children’s data with 
high school students’ data. The excellent participants showed less activation on right 
parietal lobe than poor participants in the linguistic intelligence. Also, the excellent 
ones, in logical/mathematical intelligence, showed less connection between left and 
right cortex than the poor ones. The poor child with low MI score for both language 
and logic tasks showed wider and distributed cognitive activations suggesting an in-
creased effort in processing different tasks.  Performance in the language and logic 
test can further be correlated with effective connectivity in the task specific areas of 
brain. As the occipital lobe is related with visual stimuli, all subjects showed high 
activation on the occipital lobe. 

 

Fig. 4. EEG signal based coherence analysis in frequency bands for high school students (a) In 
the linguistic intelligence, excellent high school student got high activation in right parietal lobe 
than in left parietal lobe, (b) In the logical/mathematical intelligence, excellent high school 
students had weak connection between left and right cortex 

5 Conclusion and Discussion 

In this study, we compared excellent and poor groups of children and high school 
students based on their MI scores. We found effective connectivity within left-
hemisphere in a language task where the excellent subjects showed less activation in 
the right parietal lobe than the poor ones. It has been shown that the right parietal lobe 
is related with visuo-spatial tasks [15] whereas left parietal lobe is mainly related with 
symbolic numerical information and language understanding [16]. Our results showed 
that the excellent group mainly uses the brain areas (left parietal lobe) corresponding 
to the respective cognitive tasks. For logic/mathematic intelligence, the excellent 
subject showed less connection between left and right hemisphere for both child and 
high school subjects. We argue that since the human brain is prone to constant 



560 J.-S. Kang, S. Kavuri, and M. Lee 

 

change, the primary brain area changes for processing language. During infancy, an 
excellent child mainly uses left hemisphere but as he/she grows, language, with the 
increase in knowledge and experiences, languages gets processed in both hemis-
pheres. But this does not happen with poor ones and as a result they show similar 
connections during infancy and high school.  Based on our results, we conclude that 
a smarter brain for language and logic is associated with limited but effective  
connectivity.  

In our future work, we plan to analyze remaining areas of MI intelligence such as 
spatial, musical, natural, interpersonal and intrapersonal intelligence using various 
statistical methods.  
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Abstract. Authentication is to verify if one is who he/she claims. It plays an 
important role in security systems. In this paper, we study the feasibility of us-
ing Electroencephalography (EEG) brain signals for authentication purpose. In 
a general sense, there are three types of authentications including password 
based, token based, and biometric based. Each of them has its own merit and 
drawback. Technology advancing makes it possible to easily obtain EEG sig-
nals. The evidences show that finding repeatable and stable brainwave patterns 
in EEG data is feasible. The prospect of using EEG signals for authentication is 
promising. An EEG based authentication system has the combined advantages 
of both password based and biometric based authentication systems, yet without 
their drawbacks. Therefore, it makes an EEG signal based authentication suita-
ble for especially high security system. Through the analysis and processing of 
EEG signals of motor imagery from BCI Competition, our experiment results 
confirm the theories stated in this paper. 

Keywords: EEG, machine learning, pattern recognition, authentication,  
security. 

1 Introduction 

Authentication is the fundamental function of a security system to verify if one is who 
he/she claims. In general, there are three means of authentications: password based 
(something the individual knows), token based (something the individual possesses), 
and biometric based authentication (something the individual is). Each of them has its 
own vulnerabilities [3]. A password can be guessed or stolen by an imposter. Similar-
ly, a token can be duplicated or stolen. Biometric information, such as voice, face, 
iris, retina, and finger print, can be recorded or photographed. Recently, EEG (Elec-
troencephalography) signal emerges as a potential biometric modality with advantag-
es of difficult (close to impossible) to fake, impossible to observe or intercept, unique, 
un-intrusive, and alive [7]. An EEG signal is a measurement of the electrical field 
which is generated when neurons are activated. There are a lot of studies on EEG 
based biometric recognition including person identification and person verification by 
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applying machine learning [2, 6, 8, 11-13, 15-17, 18, 21]. The purpose of study so  
far is mainly on person recognition [5]. Although person recognition is related to 
authentication, the focus is different. An authentication system requires accuracy and 
stability, minimum risk of being faked or information disclosure, nonintrusive, easy to 
implement and operate, and having different credentials for different levels of securi-
ty. In addition, the same person may want to set different levels of “EEG password” 
to the systems of different levels of security. EEG can have all those characteristics. 
The experimental results of these studies are very high at true positive rate that means 
the existing of repeatable and stable brainwave patterns correspond to mental tasks is 
potential. Inspired by these results, in this paper we study the feasibility of an EEG 
based authentication system. 

The rest of the paper is organized as follows. We first introduce EEG and the ap-
plication of machine learning in processing signals in Section 2. Section 3 presents 
using EEG for person recognition. In Section 4 and Section 5, we highlight the draw-
backs of conventional types of authentication, and study the feasible to use EEG for 
authentication. Experiments and results are presented in Section 6. We conclude the 
paper with a discussion and our future work in Section 7. 

2 EEG and Its Applications 

An EEG signal is a measurement of the electrical field which is generated when neu-
rons are activated [19]. EEG signals contain the information about brain activities, 
and they are usually recorded by placing electrodes on the scalp of a person. In this 
paper, we concern only human EEG. 

EEG signals are divided into five major bands, delta (0.5-3 Hz), theta (4-7 Hz), al-
pha (8-13 Hz), beta (14-30 Hz), and gamma (>30 Hz). Delta waves are mainly asso-
ciated with deep sleep and may also be observed in a waking state while theta waves 
are associated with creative inspiration and deep meditation. Alpha waves are the 
most popular in the brain activities. They appear in both relaxed awareness without 
attention and with concentration. Beta waves are the usual waking rhythms in the 
brain associated with active thinking, active attention, or solving problems. Gamma 
waves usually have low amplitudes, rare occurrence, and relate to left index finger, 
right toes, and tongue movement [19].  

EEG signals have been playing an important role in health and medical applica-
tions. Epileptic seizure detection is one of the most well-known applications. Another 
common usage of EEG signal in health is the study of sleep disorders. In additional, 
the relations between EEG signals and brain diseases have been investigated [19]. 

Recording EEG signals is non-invasive with a portable device; therefore, EEG is 
widely used in Brain Computer Interface (BCI) which can provide a link between the 
human subject and the computer without physical contact [19]. Affective computing 
is also an attractive area with many researchers trying to understand the states of hu-
man minds, emotion etc. [20]. In addition, EEG is used to reveal concealed informa-
tion for forensics, for example, lie detection [4]. 

In recent years, researchers start to establish the fact that brain-wave patterns are 
unique to every individual, and thus EEG signals can be used in biometrics [8].  
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3 Using EEG for Person Recognition 

Machine learning is a branch of computer science, artificial intelligent, and pattern 
recognition. It has been found wide application in processing EEG signals particular 
in BCI [19] and also EEG-based person identification. An EEG-based person recogni-
tion system usually has two phases training and testing. There are two main compo-
nents in the each of the phases feature selection and classification. First of all, the 
biometric information of a user is acquired from his or her brainwave signals. Next, in 
the training phase, EEG data pre-processing is conducted to reduce noise. Afterwards, 
features are extracted by a feature selection algorithm to select only useful features. 
Finally, these extracted feature vectors are used to train a classifier to build a model of 
the EEG signal patterns of the person. In the testing phase, the same feature extraction 
algorithm processes EEG signals of a person, and those features are compared to the 
models created during the training phase.  

A variety of models have been used for person recognition purpose. Linear support 
vector machine with cross validation was employed for the classification in [2]. Neur-
al network with spectral features was used in [16]. In [8], a Gaussian mixture model 
with maximum a posteriori adaptation was applied for person verification. AR (Auto 
Regression) coefficients with PCA (Principle Component Analysis) were used in [15]. 
Fisher’s Linear Discriminant (FLD) was first deployed in [21] to reduce the dimen-
sions of AR and power spectrum density (PSD) feature vectors, and then a k-Nearest 
Neighbours (kNN) classifier was applied. 

Some more studies in applying machine learning algorithms for EEG based recog-
nition can be found in [6, 11, 12]. Multi-sphere Support vector data description 
(MSSVDD) is used in [11]. MSSVDD is also used with universal background model 
(UBM) in [12]. In [6], J.Hu tried to analysis EEG signals for person authentication 
based on an ARMA (Auto-Regressive and Moving Average) model. 

All this research work is concentrating on person recognition. We will review au-
thentication in next section again, very briefly here. 

4 A Review on Authentication Systems 

Authentication is the foundation of any security system, in which a person is verified 
to be timely who he or she claims. There are 3 means of authentication: (i) something 
a person knows, for example, password and PIN (personal identity number), (ii) 
something a person has, for example, physical keys, smart cards etc., and (iii) some-
thing a person is and does – so called biometric authentication, such as voice recogni-
tion, fingerprints matching, and iris scanning etc. [9].  

Authentication by something a person knows, also known as password based au-
thentication, is the most popular authentic mechanism, where a user has to provide not 
only ID but also a password [3]. The system is simple, accurate, and effective. It will 
continue to be the working horse for authentication for many years to come [9].  
However, password based authentication is not immune from malicious attacks. The 
popular ones are offline dictionary attack, popular password attack, exploiting user 
mistakes, and exploiting multiple password use [3]. The dilemma now is that with 
ever increasing computer power, which can crack even longer password with shorter 
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time, the memorability of human brain or the length password stays the same. There-
fore, a feasibility alternative is extreme desirable.  

Authentication by something a person has, also known as token based authentica-
tion, is an authentic mechanism that bases on objects a user possesses such as a bank 
card, a memory card, a smart card, and a USB Dongle [3]. This kind of authentication 
requires users always bringing and providing tokens when accessing the system. Pre-
senting a token, which is not a part of a human body, can cause inconvenient. Another 
inconvenient of token based authentication is that all the tokens require special reader. 
In additional, tokens can be physically stolen, be duplicated, as well as be hacked by 
engineering techniques [3].  Securing the tokens is itself a challenge. 

Authentication by something a person is and does, also known as biometric based 
authentication, tries to authenticate users based on their biometric characteristics. 
User characteristics can be divided into two classes including physiological characte-
ristics such as fingerprint, face recognition, print, hand geometry, and iris recognition, 
and behavioral characteristics, such as hand writing, and voice etc. [3, 18]. Although 
biometric authentication can avoid some disadvantages of password based and token 
based authentication, the conventional biometrics modalities have some security dis-
advantages. Face, fingerprint, and iris information can be photographed. Voice could 
be recorded, and hand writing may be mimicked [5, 10]. Moreover, individuals can be 
lost or changed their biometric characteristics such as finger or face. These disadvan-
tages require a better biometric modality for security systems. 

5 Using EEG for Authentication Purpose 

While the conventional types of authentication have their own shortcomings as above, 
EEG emerges as a potential modality for authentication because of following advan-
tages, yet without shortcomings of the conventional types:  

1. EEG is confidential because it corresponds to a mental task;  
2. It is very difficult to mimic because similar mental tasks are person dependent;  
3. It is almost impossible to steal because the brain activity is sensitive to the stress 

and the mood of the person, an aggressor cannot force the person to reproduce his 
or her mental pass-phrase [8]; and 

4. EEG exists in every person and requires the alive person recording [1]. 

Therefore, we propose an authentication system using EEG signals. The system 
can be regarded as authentication by something a person thinks. An EEG based au-
thentication system has two phases: enrollment and verification. In the enrollment 
phase, a person is asked to do some tasks, for example imagining moving a hand, a 
foot, a finger or the tongue, and EEG signals are recorded. For authentication purpose, 
which is different from person recognition purpose, the imagery tasks themselves are 
also a part of the credential and could not be seen by a third party. The number of 
tasks can be flexible and depends on the security of the system. After collecting the 
data, the EEG signals of each task corresponding to the user are pre-processed, ex-
tracted features, and are used to train and build the model which is kept securely in a 
database. 
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In the verification phase, when a user wants to access the system, he or she has to 
provide EEG signals by repeating the tasks which he/she did in the enrolment phase. 
These input EEG data are processed the same as in the enrolment. The obtained vec-
tor features are then fed into the classifier as testing data to match the model of the 
individual who he or she claims to be. 

The number of tasks need to repeat depends on the requirement of the security pol-
icy. It can be just a single match or multi-match policy. A single match means the 
user can perform a few tasks while the verification is done by, and at least one task is 
matched. On the other hand, multi-match requires the EEG patterns of more than one 
tasks are matched for the person to be authenticated. 

To use EEG for authentication purpose, EEG patterns of an individual have to be 
repeatable and stable on the one hand, and distinguishable from an individual to 
another. In this section, we study the feasibility of using EEG for authentication pur-
pose, i.e., if EEG signals indeed have aforementioned characteristics.  From the re-
search that has been done so far on person recognition, stable patterns are feasible 
with motor imagination, and motor imagination is repeatable [12-14].  

Therefore, we can confident that EEG patterns are stable enough for person recog-
nition. However, more is needed to use EEG for authentication purpose than just sim-
ple person recognition. EEG based authentication system uses EEG based “password” 
that is the combination of personal characteristics of EEG patterns and secret task 
performed as seen in Table 2. The analogy can be seen in the voice based authentica-
tion system where a person can be identified from the voice, but only specific voice 
phrases can be used as “password”, e.g., saying a special sequence of words. 

6 Experiments and Results 

6.1 Data Set 

The Graz dataset B in the BCI Competition 2008 comes from the Department of Med-
ical Informatics, Institute of Biomedical Engineering, Graz University of Technology 
for motor imagery classification problem in BCI Competition 2008 [7]. The Graz B 
2008 dataset consists of EEG data from 9 subjects. The subjects were right-handed, 
had normal or corrected-to-normal vision and were paid for participating in the expe-
riments. The subjects participated in two sessions contain training data without feed-
back (screening), and three sessions were recorded with feedback. It consisted of two 
classes: the motor imagery (MI) of left hand and right hand. Three bipolar recordings 
(C3, Cz, and C4) were recorded at sampling frequency of 250 Hz. 

6.2 Feature Extraction 

The signals from electrodes C3, C4, Cz were selected to extract features. The autore-
gressive (AR) linear parameters and power spectral density (PSD) components from 
these signals are extracted as features. In details, the power spectral density (PSD)  
in the band 8-30 Hz was estimated. The Welch's averaged modified periodogram 
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method was used for spectral estimation. Hamming window was 1 second 50% over-
lap. 12 power components in the frequency band 8-30 Hz were extracted.  

Besides PSD features, autoregressive (AR) model parameters were extracted. In 
AR model, each sample is considered linearly related with a number of its previous 
samples. The AR model has the advantage of low complexity and has been used for 
person identification and authentication [16] [17]. Burg's lattice-based method was 
used with the AR model order 21, as a previous study [16] suggested when there were 
many subjects and epochs. The resulting feature set consists of 3*(12+21) = 99  
features. 

6.3 Results 

The Support Vector Data Description (SVDD) method was used to train person EEG 
models. Experiments were conducted using 5-fold cross validation training and the 
best parameters found were used to train models on the whole training set and test on 
a separate test set. The RBF kernel function | |  was used. The 
parameters for SVDD training are γ and ν. The parameter γ was searched in {2k: k = 
2l + 1, l = -8, -7, …, 2}. The parameter ν was searched in {0.001, 0.01, 0.1}. The best 
parameters found are ν = 0.1, γ =2-3 for left and right hand motor imagery for each 
subject. 

Table 1. Dataset description 

Dataset #subjects #tasks #trials #sessions Length(secs) 
Graz 2008 B 9 2 120 5 7.5 

Table 2. Recognition rates of 9 subjects B01-B09 using the left and right motor imagery tasks  

        Task 
Subject 

Left hand (L) Right hand (R) (L . R) (L , R) 

B01 95.3% 95.3% 99.8% 90.8% 
B02 95.0% 96.3% 99.8% 91.5% 
B03 96.9% 98.9% 99.9% 95.8% 
B04 90.9% 92.6% 99.3% 84.2% 
B05 83.0% 93.8% 98.9% 77.9% 
B06 91.4% 95.9% 99.6% 87.7% 
B07 94.7% 93.1% 99.6% 88.2% 
B08 92.5% 93.2% 99.5% 86.3% 
B09 92.6% 99.8% 99.9% 92.4% 

 
Due to the levels of security system, tasks matched can be any of a few, e.g. (T1 . 

T2 . T3), or all of them in the right order, e.g. (T1 , T2 , T3).  Let T1 and T2 be the 
events of correct classification of Task 1 and Task 2, respectively, we will have the 
probability of successfully classifying at least one of the tasks as P(T1 . T2) = P(T1) + 
P(T2) - P(T1 . T2). 
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Two designated motor imagery tasks were to cue left hand and right hand as seen 
in Table 1. If the system is more important, all sequence tasks must be matched, so 
with 2 tasks T1 and T2 the probability of successful access will be P(T1 . T2) = P(T1) 
* P(T2). Table 2 summarizes the two figures P(L . R) and P(L , R) for 9 subjects for 
authentication with tasks.  

Table 2 shows that the probability of successful access is very high when the sin-
gle match policy is applied with only two tasks (L . R). It is also seen that security is 
considerable strengthened when the authentication system applies the multiple match 
policy (L , R). 

7 Discussion and Future Work 

Using EEG signals for authentication has the advantages of both password based and 
biometric based authentications, yet without their drawbacks. Firstly, EEG signals are 
biometric information of individuals, and have the advantages of biometric based 
authentication, yet EEG based authentication can overcome the disadvantages of con-
ventional biometric based authentication. 

On the other hand, EEG based authentication brain patterns correspond to particu-
lar mental tasks, and they are considered as passwords. As the result, EEG based au-
thentication has all the benefits of password based authentication, yet without the 
vulnerabilities. 

Moreover, security systems may have a multiple security levels with EEG based 
authentication because it can be adjusted by the number of matched tasks. If a system 
is of a lower security level, an individual can perform a few tasks, and the system 
only requires that at least one task is matched. If a system is of a high security level, 
all tasks in the sequence also in the right order must be matched, so it helps to 
strength the security system. 

Using EEG for authentication purpose is feasible, and also desirable. In the near 
future, we will investigate the EEG based authentication on a large dataset. The im-
pact of different individuals performing the same task and the same single person 
performing different tasks will also be studied. Repeatable and stable EEG patterns 
also remind us a research direction in which EEG based biometric is combined with 
cryptography effectively for information security applications, and we will study the 
possibility of using the task sequence as the key for encryption. 
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Abstract. Conventional frame synchronization detection algorithms in
the communication system, such as correlation and maximum likelihood,
either fails to deal with frequency deviation problem or requires great ef-
forts to be implemented on the hardware platform. Therefore, we paral-
lel the frame synchronization detection problem with the Multi-instance
Learning (MIL) in the field of machine learning, and propose a novel
Learning to Detect Frame Synchronization algorithm (LDFS). This al-
gorithm is mainly conducted offline to learn preamble signal detectors,
which can then be efficiently implemented on the hardware platform
to accomplish the synchronous detection task. In this paper, we first
solve frame synchronization detection problem from the point of ma-
chine learning, and thus our algorithm displays some advantages over
the existing algorithms. First, the resulted detector is simple and effi-
ciently realized on the hardware platform. Second, the learned detector
is adaptive to work under different communication frequencies straight-
forwardly without extra modifications. Experimental results demonstrate
the effectiveness and promise of the proposed LDFS algorithm.

Keywords: Frame synchronization detection, Multi-instance Learning,
Signal Processing.

1 Introduction

In communication system, such as RFID and WiFi, data is transmitted as the
format of frame, which consists of the message information following synchro-
nization marker (preamble) embedded in the bitstream. The preamble signal
indicates the beginning of message and the accurate transmission frequency [1].
Detecting frame synchronization is composed of a series of tasks that: recogniz-
ing the preamble signal, labeling its location, adjusting the sampling frequency,
and preparing for the reception of subsequent message information. Since the
accuracy of the frame synchronization detection determines the success of com-
munication establishment, the detector of frame synchronization shall be reliable
and robust against the interference signal and the variation of communication
frequency in a practical communication system.

Conventional frame synchronization detection methods can be classified into
two groups, which are correlation-based methods and maximum likelihood meth-
ods. Since the preamble signal is often defined as the local autocorrelation function

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 570–578, 2013.
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with sharp unimodal characteristics, the correlationmethods [2][3] were proposed
to detect the preamble signal indicated by the correlation peak, through corre-
lating the local preamble sequence with the received sequence sequentially. These
correlation techniques, which often obtain satisfactory performances in dealing
with high Signal-Noise-Ratio (SNR) signals, are easily understood and realized
on hardware platform. However, they cannot be applied in non-ideal communica-
tion system, due to their sensitives to the variation of signal frequency. In order
to solve the frequency deviation problem, [4] introduced an improved correlation
algorithm based on the differential demodulation decisions, allowing for less than
8% frequency offset, but this anti-offset property will be damaged seriously when
the offset grows gradually.

Another kind of frame synchronization detection method, i.e. maximum like-
lihood, which has an improved performance in fading channel, was proposed by
[5] to maximize the tolerance of frequency offset. However, this algorithm re-
quires great efforts to be realized on the hardware platform and huge expenses
in detecting frame synchronous online. [6][7] proposed the Likelihood Ratio Test
(LRT) and Generalized likelihood Ratio Test(GLRT) algorithms, which make
tradeoffs between the detection accuracy and cost of hardware realization. How-
ever, they have less-than-ideal performances with low SNR signal as input.

Different from the existing frame synchronization detection algorithms, we
propose to detect the preamble signal in a novel approach by paralleling the
frame synchronization detection problem with the Multi-instance Learning (MIL)
in the field of machine learning. The problem of Multi-instance Learning is first
studied by Dietterich [8][9] for drug activity prediction. In that problem, each
drug molecule is seen as a bag, which is composed of different instances, corre-
sponding to diverse low-energy shapes of this molecule. It is difficult to know
which shape of the molecule is active, but it is explicit to distinguish whether the
molecule is active or not. Thus multi-instance learning is proposed as a weakly
supervised learning paradigm, and receives a great deal of attention. A variety of
improved MIL algorithms have been developed over the past years. In particular,
Andrews et al. [10] formulated the multi-instance learning problem with support
vector machines and proposed mi-SVM algorithm, that relabels the instances in
positive bags using the learned decision hyperplane; Zhang et al. [11] focused on
the most positive or least negative instance for a positive or negative bag, and
presented the EMDD method.

The goal of frame synchronizationdetection is to distinguish the preamble signal
out from the other kinds of signal in a basic communication system.We classify the
preamble signal and other signals into two different categories, then the frame syn-
chronizationdetection canbe interpretedas a classification task,which is a classical
problem in the field of machine learning. Moreover, in a practical communication
system, we are not provided with the particular communication frequency while
conducting frame synchronization detection, and thus we cannot figure out the
true length of the preamble signal sequence. However, if we assume that there is a
specified range of the allowed communication frequency, then the length of the true
preamble signal would also be in a certain range, whose upper bound is determined
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by the lowest allowed communication frequency; likewise, the lower bound is deter-
mined by the highest allowed communication frequency. Therefore, the preamble
signal candidate must appear as a signal sequence fraction corresponding to the
aforementioned longest length, as shown in Fig. 1. If we regard this longest signal
sequence as a bag, then all its fraction signal sequences of the lengths larger than
the lower bound can be seen as the instance and have probabilities to be the pream-
ble signal. Following this idea, we regard the frame synchronization detection as a
multi-instance learning problem, and propose the Learning to Detect Frame Syn-
chronization algorithm (LDFS). This algorithmhas two advantages: 1) the pream-
ble detector can be efficiently learned offline, and then effectively used for online
detecting; 2) since the detector is learned through comprehensively considering
the frequency deviation, its performance under different communication frequen-
cies can be well ensured. Experimental results demonstrate the effectiveness and
promise of the proposed LDFS algorithm.

Fig. 1. Illustration of the possible preamble signal sequence

2 Problem Formulation

We implement the LDFS in the RFID communication system based on
IEC18000 − 6C protocol, where the preamble signal is composed of 6 sym-
bols, as shown in Fig. 2. In practice, signal would be interfered by the noise
when propagating through physical communication medium, which degrades the
signal-noise ratio. Since there is no reference clock in a RFID Tag to calibrate
the communication frequency, the transmitted signal from RFID tag may have
a large frequency deviation up to ± 22%, which increases the difficulty in frame
synchronization detection of RFID reader.

1 1 1 0 0 V 

Fig. 2. Preamble signal sequence composed of 6 symbols in RFID protocol
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If the sampling frequency we use to transform the analog signal into digital
signal is 8 times of communication frequency, the ideal preamble signal of 6 sym-
bols can be formulated to a 48-dimensional vector x. However, if the sampling
frequency is fixed, while exists communication frequency deviation, the length of
generated preamble vector would not be constant ever. Given ± 22% frequency
deviation, the length of preamble signal would vary from 40 to 62, corresponding
to the +22% and −22% communication frequency deviation respectively. There-
fore, the preamble signal candidate can appear as a signal sequence fraction
corresponding to the longest length 62. If we regard this longest signal sequence
as a bag, then all its signal sequences fraction of the lengths larger than 40 can be
seen as the instance and have probabilities to be the preamble signal. Following
this idea, we regard the frame synchronization detection as the multi-instance
learning problem, and propose the Learning to Detect Frame Synchronization
algorithm (LDFS). The flowchart of learning to detect frame synchronization
consists of the offline training and online detecting, as shown in Fig.3

Prediction 
Model 

Train 

Predict 

Fig. 3. Flowchart of learning to detect frame synchronization

In particular, we construct a queue with a fixed length 62 to save the signal
sequence, and generate the bags and their instances. At a particular time, the
new coming signal would be inserted into the tail of the queue, and the oldest
signal would be popped from the head of the queue at the same time. We can
regard the queue as a bag, then the vectors extract from the queue with different
start indexes but with the same end index at the tail of the queue can be consid-
ered as its instances. If there is a preamble signal in the queue (bag), it must be
represented by one of its extracted vectors (instances). After a period of time, we
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can obtain a serious of queues (bags) Q = {X1, · · · , Xn}, where n is the number
of bags. As for the queue (bag) Xi. All its extracted vectors (instances) make
up the set {xi1, · · · , xim}, where m is the number of instances in the current
bag. Assume that instance label yij ∈ {−1,+1} indicates whether the instance
xij in the bag Xi represents the preamble signal or not. If a bag Xi contains a
preamble signal, there shall be one positive instance label and then we assign
the bag label Yi = 1 to this bag. Likewise, if a bag Xi has no preamble signal,
all its instances label are negative, and then we assign the bag label Yi = −1.
Formally this constrait can be written as:∑

j

yij + 1

2
≥ 1, ∀i s.t. Yi = 1 and yij = −1, ∀i s.t. Yi = −1 (1)

For simplicity, we consider a linear function to predict whether the label for
the instance xij is positive or negative,

yij = sign(fij), fij = wxij + b. (2)

Since instances in a particular bag are represented by vectors of different lengths,
we have to learn a group of weight vectors {w1, · · · , wm}. In the large margin
principle, similar with SVM, the final objective function can be formulated as:

min
{yij}

min
w,b,ξ

1

2

m∑
j=1

‖wj‖2 + C
∑
i,j

ξij (3)

s.t. yij(wjxij + bj) ≥ 1− ξij , ξij > 0, yij ∈ {−1, 1}
m∑
j

yij + 1

2
≥ 1,∀i s.t. Yi = 1 and yij = −1, ∀i s.t. Yi = −1

where C is a constant selected via cross validation.

3 Optimization

An alternating optimization procedure can be utilized to solve the problem (3) by
iteratively updating {yij} and wj until convergence, which includes the following
two steps: 1) For given instance labels {yij}, solve the QP program for each wj

and find the optimal discriminant functions; 2) For given discriminant functions,
update one, several or all instance labels {yij} in a way that locally minimize
the objective. Note that we re-initialize the QP-solver at every iteration with the
previously found solution, which will usually result in a significant speed up. In
terms of initialization of optimization procedure, we suggest to impute positive
labels for instances in positive bag as the initial configuration. The complete
iteration optimization procedure is illustrated in Algorithm 1.

After the optimization process, we can obtain the objective detection model
composed of m weight vectors {w1, · · · , wm} and biases {b1, · · · , bm}, which will
be implemented in the hardware architecture. In order to balance the detection
speed and accuracy, we extract instance vectors of lengths varying from 40 to
62 at the step of 2, and thus we have m = 12.
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Algorithm 1. Algorithm for LDFS

Input: {xij , yij} for i ⊂ Q, j = 1, 2...m., ε0, err
while err > ε0 do

for j = 1, ...m do
{wj , bj} ← QP Solution {xij , yij} for i ⊂ I, j = 1, 2...m.
fij = 〈wj, xij〉+ bj , for i ⊂ I, j = 1, 2...m.

end for
for i ⊂ I do

if Yi = −1 then
yij = −1

end if
if Yi = 1 then
yij� = sign(fij) s.t. fij� = maxj(fij), j = 1, ..m

end if
end for
err = 1

2

∑m
j=1 ‖wj‖2 + C

∑
i,j ξij

end while
Output: {wj , bj}, j = 1, 2..m

For online detection, we use Verilog to programm the frame synchronization
detection module, which is composed of an offline learned detection model, a
shifter to save the received signal sequence, a Finite State Mechine (FSM) as
the control center and an interrupt response unit for output.

4 Experiment

In this section, we evaluate the effectiveness of the proposed LDFS algorithm
and compare it with the correlation and maximum likelihood (ML) algorithms
under different simulations of communication environment.

4.1 Experimental Setup

We compare the preamble detection performance of different algorithms by con-
sidering two important factors in communication system, i.e., signal-noise ratio
(SNR) and frequency deviation. Under different conditions of SNR and frequency
deviation, we use a queue of length 62 to record the received signal sequences
by RFID reader. The dataset can be constructed by copying the data of queues
(bags), starting from the time that the preamble signal sequence enters the queue
and stopping when the preamble signal sequence exits the queue. Specifically,
by fixing the communication frequency as 240KHz, we change the SNR from
0 dB to 12 dB at the step of 1 to collect the data under different SNR condi-
tions. Likewise, by fixing the SNR as 10 dB, we consider ±24% deviation of the
240 KHz communication frequency at the step of 4% to collect the data under
different frequency deviation conditions.
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Fig. 4. Simulation waves on ModelSim

We split the dataset equally to obtain the training set and test set. The offline
training process is accomplished on the training set to generate the preamble
detection model, which would be evaluated on the test set in the accuracy rate.

4.2 Experimental Results

We sampled a fraction of preamble signal of 10dB SNR and 280KHz frequency,
whose length is 42 under the sampling frequency 8 times over 240KHz communi-
cation frequency, for simulation with ModelSim 6.5c. On Figure 4, the prediction
score Y2 of the 2-th detection function (w2, b2), has a peak value at the end of
preamble signal sequence. This score exceeds the pre-defined threshold of frame
synchronization detection, whereas the other scores Yi(i 
= 2) only have some
oscillations at that time. Hence, the preamble detector module successfully rec-
ognizes the preamble signal and approximates its corresponding communication
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frequency. Once the preamble signal has been detected, the interrupt response
unit produces a pulse signal, the finite state mechine enters into the next state,
and then the preamble signal detection task with the frequency deviation is
accomplished.

We compare the LDFS to both the correlation and maximum likelihood algo-
rithms for frame synchronization detection task on two datasets under different
SNR and frequency deviation conditions. We group the test data into different
subsets according to their SNRs, and then report the detection results of differ-
ent algorithms under specifical SNRs in Figure 5 (a). From the result, we find
that the detection accuracy rate of LDFS outperforms other competitors under
different SNRs stably. As for the frequency deviation comparison, we similarly
group the test data into different subsets, and the detection results are shown
in Figure 5 (b). For example, LDFS obtains about 25.0% and 10.0% relative
improvements in accuracy rate compared with those of the correlation and max-
imum likelihood algorithms at −12% frequency deviation point respectively.

5 Conclusion

In this paper, we parallel the frame synchronization detection problem with the
Multi-Instance Learning (MIL) in the field of machine learning, and propose a
novel Learning to Detect Frame Synchronization algorithm (LDFS), which has
two advantages: 1) the preamble detector can be efficiently learned offline, and
then effectively used for online detecting; 2) the learned detector is adaptive to
work under different communication frequencies straightforwardly without extra
modifications. Experimental results demonstrate the proposed LDFS algorithm
is effective and efficient.
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Abstract. How to build optimal vehicular powertrains? We study this question
and propose an algorithm inspired by a domain-general design process. The basic
idea is to interplay co-biasingly between the local approximations of discrete de-
sign and the global refinements of continuous parameters. The proposed method
was evaluated to design powertrains of four types of vehicles: Series Hybrid
Electric Vehicle(SHEV), Parallel Hybrid Electric Vehicle(PHEV), Fuel Cell(FC)
and Electric Vehicle(EV). Simulation results show noticeable improvements on
mileage per gas emissions over different study cases. To our knowledge, this is
the first study aiming at designing vehicle powertrains considering the holistic
point of view.

Keywords: Series Hybrid Electric Vehicle, Parallel Hybrid Electric Vehicle, Fuel
Cell, Electric Vehicle, Reinforcement Learning, Explorit.

1 Introduction

How to build optimal vehicular design layouts? Answering this question implies de-
veloping effective search heuristics and compact knowledge representations for mean-
ingful designing. Often, such heuristics use rules that link preferential and functional
requirements and design parameters[1,2]. How to build such rules?

The general problem is to map functional requirements to concrete definitions so
that the whole designing optimises pre-stated goals[3]. Similarly, effective design of
vehicular layouts means optimising the powertrain structure and the design parameters
such that the relation of fuel consumption to gas emissions is maximised. During the
last decade, researchers have mainly focused on parameter optimization of pre-defined
vehicle powertrains[4,5,6,7,8,9,10]. However, the holistic view on how to build optimal
vehicular systems has remained elusive.

Here we introduce a simple and effective algorithm for problems involving optimal
structure and parameter configuration. The basic idea is to optimise the structure and
parameters as interdependent and co-biasing problems: Sarsa-Learning is used to map
functional definitions to concrete hardware realizations, and Explorit is used to opti-
mise the parameter configurations. The aim of combining these heuristics is to map the
fast approximations of online learning(in discrete space) to the global refinements of
parameter optimization(in continuous space), so that the overall optimisation is focused
on improving the most promising regions in the vehicular search space. Our approach
aims at contributing towards the holistic design of things.

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 579–586, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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2 Reinforced Explorit

Reinforced Explorit(RE) uses the concept of co-search by linking the learning of struc-
tural discrete approximations with the searching of parameter definitions for optimal
design layouts. It also uses the general representation ability of graphs for sequen-
tial decision making problems. The phenotype structure is inspired by evolutionary
graphs[11,12], where state machines are allowed to evolve; but the learning algorithm
extends the interplay between exploration and exploitation as a search mechanism. This
section describes the structure and the algorithm.

2.1 Structure

An individual in Reinforced Explorit models a process P as a network of connected node
functions P= {F1, ..., i, j, ...,FN}, where the node i comprises both a set of discrete means
definitions M(i) = {i1, i2, ..., iI} and a set of continuous parameters p(i)= {p1, p2, ..., pMi},
where Mi is the number of continuous parameters of node i. The search space is a vector
with elements of the set P

⋃
p(i),∀i ∈ P. By representing a process P as a network wit

sub-nodes and parameters, we aim to model a machine as a concatenation of singular
processes, where each node represents a functional component, and each connection
represents the interaction and flow among components. Fig. 1 shows an example of
two functional components (node i and j) and their flow interaction. The connectiv-
ity(network topology) and the number of functional components(vertices) is known a
priori. We assume a ring topology(the node transition is fixed), and leave the problem
of building variable networks for future work.

Function i

...
...

Function j

i1

i2

iI

 t  t + 1

Time

Next 
Function

Previous 
Function

Chosen

Chosen

j1

jJ

Flow 
Interaction

Fig. 1. Basic phenotype and node transition of an individual in Reinforced Explorit



Reinforced Explorit on Optimizing Vehicle Powertrains 581

End? START Initialize Reinforcement Learning Explorit END

Fig. 2. Flowchart of Reinforced Explorit

2.2 Optimisation Algorithm

Fig. 2 shows the general algorithm of Reinforced Explorit. The basic idea is to map
and link the local approximations of desirable solutions to the performance of global
refinements iteratively. That is,

– Q-learning has the role to approximate the mappings of every function node i in the
process P to its means M(i) so that Q− values represent the degree of desirability
to link the function i to the means M(i); and

– Explorit has the role of refining these approximations through systematic explo-
ration and exploitation of the space concerned with the process P.

During the Reinforcement Learning, Q-values are updated following:

Q(st,at)← Q(st,at)+α
[
rt +γQ(st+1,at+1)−Q(st,at)

]
, (1)

where state s refers to node function i, t refers to the ordinal index in the node transi-
tions, action at refers to the means M(i) chosen for node function i, α refers to learning
rate, γ refers to discount rate, and rt refers to the reward obtained by choosing the action
at at state st during time t. Rewards are computed following:

rt = tanh
[ f (P′)

f (P)
−1
]
, (2)

where f () means ”fitness function of ”, and P′ refers to the state of the process P after
taking action at at state st. The reason of using the above to compute rewards during the
learning phase is to quantify the fitness improvements of the process P after changing
the discrete means definitions for each node function i ∈ P. The function f () is problem
dependant.

Fig. 1 shows an example of the node transition to update the Q-values in Sarsa:
1. At time t, the node i refers to the set M(i), and selects one element using ε-greedy

policy: a maximum Q-value among Q(i, i1),Q(i, i2), . . . ,Q(i, iI) with probability 1− ε, or
a random one with probability ε. Let us assume QiI is selected.

2. Set i to iI , observe reward rt. The next node becomes node j.
3. At time t+1, the node j selects an element from M( j) following the same proce-

dure of step 1. Let us assume Q j1 is selected.

4. Q-values are updated as follows: Q(i, iI)← Q(i, iI)+α
[
rt +γQ( j, j1)−Q(i, iI)

]

5. t← t+1, i← j, iI ← j1. Go to step 2.
The advantage of using Reinforcement Learning to map node functions to means

definitions is economical: the increase of the number of node functions increases the
number of states linearly; whereas in the conventional Q-learning case, state would
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refer to total information from the environment, and action would refer to current avail-
able option to the agent.

During the Explorit phase, the space S = p(i),∀i ∈ P is optimised keeping P con-
stant. We use Explorit, due to its feature to avoid premature convergence by interplay-
ing exploration and exploitation systematically[13]. The basic idea behind Reinforced
Explorit is to model an organism to maintain the stable energy incomes while searching
entities E with high degrees of value, quality and novelty in a space S .

The space S is a collection of entities E with cardinality |S |=∏D
i=1 η

E , where D is the
dimensionality of S , and ηE is the number of discrete divisions for all dimensions of S .
While novelty is computed using set theory, value and quality are computed using quan-
tiles qR over improvements of the objective function. To guide its search, the organism
uses a generalized heuristic and adaptive memory elements. Improvements found by
Explorit are used to update the Q-values for the Reinforcement Learning phase, where
the improvements are computed as follows:

rE = tanh
[ fE

fĒ
−1
]
, (3)

where fĒ and fE refer to the fitness function of process P before and after Explorit is
executed. Since Q-values approximate the degree of desirability to link the function re-
quirements i ∈ P to their means specifications M(i), the above has the role of explicitly
biasing the initial approximations of the Q-values to obtain more accurate definitions of
such desirability. Thus, the basic search behaviour is co-dependant, i.e., Reinforced Ex-
plorit uses online learning to approximate the desirability of solutions, and continuous
optimization to improve such approximations globally.

3 Simulations

3.1 Simulation Conditions

Leaving adaptive approaches in parameter tuning for future work, we use Sarsa with ε,
α and γ set to 0.1, 0.1, and 0.9 respectively. As for Explorit, we set ηE and qR to 50
and 0.75, respectively. Furthermore, in the best of our knowledge, there is no previous
benchmark on optimizing vehicle layouts on a discrete-continuous approach, so we use
a well known derivative-free algorithm(Genetic Algorithm of the Global Optimization
Toolbox in Matlab) as the main benchmark. For both algorithms, the maximum number
of evaluations is set at 500.

3.2 Vehicle Models

Advisor1 was used as the vehicle simulation tool[14]. Advisor enables the modelling
transient vehicle behaviour by using measured data through look-up tables, rather than
equations, thus making simulations reasonably accurate. Fig. 3 shows the types of vehi-
cle powertrains used, and the Table 1 shows the list of vehicle components and variables.

1 http://bigladdersoftware.com/advisor/

http://bigladdersoftware.com/advisor/
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The objective function is designed to maximise fuel economy and minimise gas
emissions following:

f =
MPGGE

1+HC+CO+NOX
, (4)

where MPGGE refers to the consumption of miles per gallon gasoline equiva-
lent(mi/gal), and HC, CO and NOX refer to hydrocarbon, carbon monoxide and ox-
ide of nitrogen(g/mi). These quantities are computed over two different driving cycles:
FTP-75 cycle(urban) and HWFET cycle(highway) as shown by Fig. 4. Furthermore, in
order to ensure quality in driving requirements, the vehicles are evaluated with addi-
tional testings, as shown by the list of constraints in Table 2.

Fig. 3. Vehicle Models Used in Advisor

3.3 Simulation Results

In order to evaluate the quality and behaviour of fitness convergence, Fig. 5 shows the
fitness values versus the number of fitness evaluations, where the performance over 25
independent runs shows the average, lower and upper bounds of the fitness performance.

Note that Reinforced Explorit(RE) is an individual based algorithm, compared to the
population based approach of the referential algorithm(GA). Thus the first line plots of
GA follow after evaluating the whole population in the first generation. In both cases,
RE and GA stop after 500 fitness evaluations.

Fig. 5 shows that the convergence speed of the proposed method is comparable or su-
perior to the referential algorithm, where the proposed method outperforms consistently
in the cases of Series Hybrid Electric Vehicle and the Parallel Hybrid Electric Vehicle.
Furthermore, these results show that Reinforced Explorit avoids getting trapped in pre-
mature convergence, as it occurs with the referential heuristic in the Series powertrain.
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Table 1. Vehicle components and parameters for each vehicle in Advisor

SYMBOL ADVISOR VARIABLE VEHICLE TYPE
Name Description SHEV PHEV FC EV

F1 ’energy storage’ Battery system � � � �
F2 ’motor controller’ Motor and Inverter system � � � �
F3 ’fuel converter’ Fuel converter system � � � ×
F3 ’generator’ Generator system � × × ×
F4 ’transmission’ Transmission system � � � �
F5 ’exhaust aftertreat’ Exhaust and catalyst system � � � ×
F6 ’wheel axle’ Wheel and axle system � � � �
p1 ’ess module num’ Number of modules in the battery. � � � �
p2 ’ess cap scale’ Scaling capacity for battery. � � � �
p3 ’fc pwr scale’ Scaling factor for power. � � � ×
p4 ’gb spd scale’ Speed parameter for gearbox. � � � �
p5 ’gb trq scale’ Torque for gearbox. � � � �
p6 ’mc spd scale’ Speed factor for motor. � � � �
p7 ’mc trq scale’ Torque factor for motor. � � � �

Table 2. Performance constraints for each vehicle in Advisor

Constraint Description

Gradeability Test At 88.5 km/h for 20 min. at Curb Weight and
5 passengers and cargo(408kg) = 6.5%

Acceleration Test Time for 0-96.5km/h ≤11.2 s.
Time for 64-96.5km/h ≤ 4.4 s.
Time for 0-137km/h ≤ 20 s.

Drive Cycle Difference between drive cycle requested speed and
achieved speed at every second during the drive cycle ≤ 3.2 km/h

State of Charge (Final battery state - Initial battery state) ≤ 0.5%
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Fig. 5. Fitness values during the first five hundred evaluations in the used vehicle powertrains.

The reason of this behaviour is mainly due to the fact of interplaying between explo-
ration and exploitation systematically and co-biasingly, where Sarsa Learning roughly
approximates the desirable solutions in the discrete space and Explorit aims at refining
such approximations through global updates in the Q-values.

4 Conclusion

Inspired by a domain-general design process, we have proposed Reinforced Explorit as
an optimization algorithm for discrete-continuous space. The main idea is to link the ini-
tial approximations of online learning to the enhanced global refinements in the search
space. Simulation using relevant vehicles show that the proposed method obtains vehi-
cle powertrains with improved ratio of mileage to gas emissions. Our future work aims
at building driveable modular vehicles. Furthermore, we will study the applicability of
Reinforced Explorit on solving mixed integer nonlinear problems in manufacturing and
engineering problems.
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Abstract. A new experiment design is proposed to understand human
implicit intention by using electroencephalography (EEG). EEG data
is recorded using 32-channel electrodes while seeing various sentences
which contain self-relevant contents. Subjects are asked to make a deci-
sion of agreement or disagreement just after sentence ending is shown.
Based on their answer, support vector machine is used for pattern classi-
fication with radial basis function kernel. The classification result shows
the intention to the sentences can be classified with 67.89% of maxi-
mum average accuracy. The spatial relationship of average classification
accuracy shows right frontal areas have relatively high classification ac-
curacy. Our findings indicate that covert representation of agreement or
disagreement intention can be found in the EEG band power and it is
also possible to predict subjects implicit intention even before making
explicit expression.

Keywords: Implicit intention, EEG band power, support vector
machine.

1 Introduction

Understanding others intention is an important aspect in communications be-
tween human. Human mainly interacts by speech with others, but also explicit
expressions like facial expression and gestures can be used to emphasize. How-
ever, explicit information may not be enough to understand what human really
intends to. Furthermore, whether it is intended or by accident, humans explicit
expression is not always the same with his true intention. If machine learned
only interpreting one or two explicit expressions, it may work well only some
fixed command in a limited environment, but not in the natural situation. Thus,
understanding human implicit intention is necessary to improve current human
computer interacting system. Here we define implicit intention as a hidden in-
tention not explicitly expressed, but reflect his real mind at this moment.

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 587–594, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Most well-known application of implicit intention study is a lie-detector. When
telling a lie, deceptive intention is explicitly expressed while a goal is figuring
out implicitly reflected truth. As many lie-detection researches have been done
with brain activities [1–3], brain signals cannot be intentionally deceived or hid-
den. Thus, we assume that neural activities can be used to measure implicit
intention. Modern techniques enable to measure brain activities associated with
thoughts, feelings, and behaviors. Scalp recorded electroencephalography (EEG)
has a significant advantage of non-invasiveness and high temporal resolution in
recording brain signals. Event-related potential (ERP) is the most frequent used
analysis techniques to observe neural activities in time domain. Motor intent can
also be detected by ERP observations, before actual movement or even during
imagination of moving [4, 5]. However, our goal is to understand implicit inten-
tion which is a higher level of cognition. Even though human does not express
his mind, machine can detect what he wants now and do so. In this study, it
is investigated that either agreement or disagreement towards given statements
on the basis of personal experience as two types of intention. We assumed brain
activity, especially at the frontal sites, precedes the conscious decision for how
to answer, so neural activities in pre-decision stage can help us to predict how
they are going to answer in real decision stage. Many studies have been trying
to investigate the frontal EEG dynamics in working memory task [6], and theta
activities in frontal EEG in mental activity [7]. However there is no previous
research of decoding implicit intention in a higher cognitive task.

2 Methods

2.1 Subjects

Nine healthy right-handed Korean subjects (6 males and 3 females) were re-
cruited from the students community. They are undergraduate or graduate stu-
dents, and voluntarily participated. All participants did not have a history of
psychiatric disorder, significant physical illness, head injury, neurological disor-
der, and alcohol or drug dependence. After complete explanation of the study,
written informed consent was obtained from all subjects. The study was submit-
ted to the regular review in the institutional review board and approved.

2.2 Materials

74 stimulus sentences were selected for the experiment. Sentences were chosen
from the list of Minnesota multiphasic inventory (MMPI) which is one of the
most frequently used for psychological tests. Selected sentences were identified
into two types; affirmative and negative sentence which are all written in Korean.
In linguistic typology, Korean is a SOV language because the subject, object,
and verb of a sentence appear in this order. If English follows SOV, “I read
a book” becomes “I book read”. Also, selected sentences had only one type of
a verb, an existence verb that indicates simply the existence of objects in the
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sentence. Allowing negations, verbs are either “to be” or “not to be”, and due
to the word order, verbs appear at the end of the sentences.

Sentences were asking his/her experience or opinion then after reading a com-
plete sentence, subjects were asked to explicitly express either agreement or dis-
agreement by responding “yes” or “no”. To prevent other sentence components
interferences, unnecessary adverbs or adjectives were all left out. Also, some
components which can imply negative form such as “any”, “at all”, “even once”
etc. were removed.

2.3 Experimental Paradigm

Experiment consists of two trials interleaved with break between them. Subjects
were asked to see 37 sentences in each trial, so 74 sentences were shown for one
subject. Type of sentences was classified according to the sentence end either
positive or negative sentence, but the order of presentation was random to avoid
that subjects can be aware of which type is coming next. Fig. 1 shows the
experiment paradigm.

Fig. 1. Experiment design. Each sentence part is separately presented. Subjects were
asked to respond “Yes” or “No” when the asterisk (*) is shown on the screen.

2.4 Data Acquisition

The EEG was recorded from BrainAmp system (Brain Products GmbH, Ger-
many) and 32 electrodes of an EEG cap (BrainCap). 30 electrodes were placed on
the scalp according to the International 10-20 system. One electrode for record-
ing eye movement (EOG) was positioned below subjects left eye. One other
electrode dedicated to the electrocardiogram (ECG) was placed on subjects col-
larbones in left side. The impedance of each electrode was maintained below
10kΩ using gel.

2.5 Preprocessing

Data were acquired with a sampling rate of 500Hz, along with 60Hz notch filter-
ing. As widely known in the field, raw EEG signals are highly contaminated with
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various noises. There are movement artifacts made by human such as eye blink,
muscle, or heartbeat as well as artifacts caused by electrical power lines. First,
acquired EEG signals were high-pass filtered with a cut-off frequency at 1Hz and
transition bandwidth 0.2Hz in order to remove line noise. Movement artifacts
cannot be eliminated easily because one artifact affected many channels simul-
taneously. Therefore, independent component analysis (ICA) was widely used to
find artifact-related independent component [8, 9]. ICA is a statistical method
that maximizes the mutual independence of components. So ICA enables to
select contaminated independent component, and reconstruct uncontaminated
signals. In this study, extended ICA in EEGLAB was used to extract indepen-
dent components [10], and artifact components related to the eye blinks, eye
movements, and ECG were removed.

3 Analysis and Results

We focused on whether subjects agree or disagree on the statements while see-
ing contents block. Before sentence ending is presented, decision that agrees or
disagrees on those statements may be determined in the contents block. Consid-
ering the EEG signal characteristics, averaging is the most simple and efficient
techniques to diminish the artifacts and noises on the signal as well as to inves-
tigate the representative response of the experimental task. However, single trial
classification has become an important approach for application-purpose in the
real life, such as brain-computer interface (BCI). In this study, single trial classi-
fication in frequency domain has been done using pattern classification. Overall
analysis procedure will be introduced: feature extraction, classification, and the
result.

3.1 Feature Extraction

EEG oscillations have been related to a variety of functions such as perception,
cognition, sleep, etc. For a long time, researchers have found the sensory and
cognitive processes are modulated by synchronous neural activity which is in
turn induced by oscillations. A variety of studies have demonstrated that neural
oscillations like frontal midline theta are closely associated with memory pro-
cesses and mental activities [6, 7]. In this study, features were extracted from
the neural oscillations during the task (reading sentence contents) and applied
to the nonlinear classifier. The procedure for feature extraction is illustrated in
fig. 2. For each trial, the 4-s time epoch during contents block is extracted from
the preprocessed signal of an EEG channel. The power spectrum is obtained by
applying N-point Fast Fourier Transform (FFT). To extract features for underly-
ing neural oscillations related to human implicit intention, 6 frequency bands are
considered: delta (2−4Hz), theta (4−8Hz), alpha (8−13Hz), beta1 (13−20Hz),
beta2 (20− 30Hz) and gamma (30− 40Hz). Concatenating spectral powers for
6 frequency bands leads to a feature vector of each channel. Each feature vector
is normalized to become the sum of entries to be one.
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Fig. 2. Feature extraction procedure

3.2 Classification

Input feature vectors are applied into the nonlinear classifier. Classification has
done into two steps: training phase and testing phase. In training, 80% of input
samples are used to train classifier with known labels. After training, rest of 20%
input samples are applied to the pre-trained classifier and predict the labels of
testing samples. Then classification accuracy can be obtained. This procedure
is repeated for 5 times changing the dataset of training and testing for reliable
performance evaluation. It is called 5-fold cross-validation. Classification perfor-
mance is evaluated for each channel and each subject. There are many classifier
for pattern classification, we selected support vector machine (SVM), and used
LIBSVM tool [11]. The radial basis function (RBF) kernel is the most popular
kernel function used in SVM classification. RBF kernel on two samples xi and
xj is defined as,

K(xi, xj) = exp(−||xi − xj ||2
2σ2

), (1)

but it is possible to make it simple using parameter γ = 1
2σ2 ,

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0. (2)

The objective function with soft margin also includes the question of selecting
appropriate slack parameter C. As seen in Eq. 3, slack parameter, also called
penalty parameter, C decides the contribution of ξi, which is the degree of mis-
classification, on the objective function.

minw,b,ξi =
1

2
wTw+ C

l∑
i=1

ξi (3)
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It is conventional to find optimal kernel parameter γ and penalty parameter
C in training phase using grid search [12]. We find the optimal γ and C which
make high training accuracy and apply to the testing data.

3.3 Result

Our experimental design demonstrates and decodes implicit intention for each
single trial using the selective attention algorithm. Average recognition rate dur-
ing 5-fold cross validation is obtained from the subject-dependent classification
at 30 EEG channels. The maximum mean accuracy is achieved at FP2 channel
as 67.89%. In fig.3, right frontal areas have relatively high classification accu-
racy distribution. It is considered as the representative brain pattern involved
in implicit intention process

Fig. 3. Average classification accuracy distribution on the scalp illustration

In the right frontal channels, frequency band characteristics are also analyzed
using Fisher’s score (FS). We calculated FS for each frequency band power in 4
selected right frontal channels as following relationship in eq.4.

FS =
N1(μ1 − μ)2 +N2(μ2 − μ)2

N1σ2
1 +N2σ2

2

(4)

In eq.4, μi indicates sample mean of class i, σ2
i is sample variance of class i,

Ni is number of samples in class i, and μ is overall sample mean. Higher FS value
means well-discriminative feature of two classes. For any single frequency band,
FS values are distributed within 0.01 to 0.03, whereby sample data in one class
are not clearly distinguishable with those in other class. However, we observe
beta2 band power has relatively higher FS value compared to other frequency
band powers, commonly in 4 selected right frontal channels (Fp2, F4, FC2, and
Fz). On the basis of this finding, beta2 band power has major contribution of
implicit intention recognition.
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4 Discussion

Machine understanding human is a key objective of this field of research. Starting
from the assistant robot which recognizes limited number of speech commands,
the multimodal sensory approach is currently increasing. Also EEG-based BCI
is rapidly growing. The common aim of various types of human computer inter-
face is translating user behavior or bio signals into machine commands. However,
there are not many higher-level cognition tasks even in the EEG-based approach,
while there were a lot of simple tasks such as motor imagery. Polygraph was one
of the higher task which draws attention in the field. An established system had
been troubled due to a lot of malfunctioning in natural situation. In order to
make lying situation, subjects were asked to tell a lie regardless of his real inten-
tion. Sometimes, they were asked to answer reversely to their thoughts. Reaction
from the required action may not be able to reflect his true intention. These dif-
ferences may cause a malfunctioning in the real situation. In this study, whether
subject tells a truth or lie is not our concern. While decision-making related to
the personal issue, his real intention may be revealed in neural activities. Thus,
we predicted implicit intention states using EEG band power, particularly with
high accuracy at the right frontal sites. We defined implicit intention is an in-
tention which can be observed in neural activities, but not explicitly found yet.
In decision making of agreement and disagreement, we found implicit intention
is generated in a brain before making an answer explicitly.

5 Conclusion

In this study, we aimed to discriminate implicit intentions, particularly either
agreement or disagreement towards given statements, based on a conventional
nonlinear SVM. Our experimental design employed separate presentation of sen-
tence contents and either a positive or negative ending. Nonlinear SVM classifies
EEG band power features with higher average accuracies in the right frontal
channels. Maximum recognition rate of 67.89% is achieved at FP2 channel. The
spatial distribution of average classification accuracy is investigated by the topo-
graphic accuracy maps. Furthermore, using Fisher’s score, high beta band power
has relatively high contibution to classification. In conclusion, the proposed ex-
perimental paradigm can deduce a subjects implicit intention while reading self-
relevant sentences and our pattern classification approach can decode implicit
intention with high accuracy in frontal EEG channels.
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Abstract. When the environment changes, as is increasingly the case
when considering unending streams and long-life learning tasks, it is nec-
essary to rely on on-line learning with the capability to adapt to changing
conditions a.k.a. concept drifts. Previous works have focused on means to
detect changes and to adapt to them. Ensemble methods relying on com-
mittees of base learners have been among the most successful approaches.
In this paper, we introduce a new second-order learning mechanism that
is able to detect relevant states of the environment in order to recognize
recurring contexts and act pro-actively to concepts changes. Empirical
comparisons with existing methods on well-known data sets show the
advantage of the proposed algorithm.

Keywords: online learning, ensemble methods, concept drift.

1 Introduction

Recent years have witnessed the emergence of a whole new set of applications
involving data streams made of pairs (xt, yt), where the “answer” or true label yt
is revealed (sometimes long) after the input xt. Additionally, it is often the case
that the unknown target function evolves with time, something known as concept
drift. These new needs have spurred a surge of research works geared towards the
development of adaptive strategies [1]. Most of them operate either by passively
tracking the evolving concept or by using an explicit detection mechanism of
concept changes before launching an adaptation or relearning process.

However, better learning strategies may take advantage of the examination
of the history of past concept in order to anticipate likely future changes or to
recognize when a past concept recurs. We have developed ADACC (Anticipative
Dynamic Adaptation to Concept Change), a system that uses this kind of second
order learning to accelerate its adaptation to changing conditions in the envi-
ronment. This is accomplished through an ensemble method that controls a pool
of incremental learners. Our main innovation lies in the design of a method to
select decisive concepts in the history of the system. This enables the recognition
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of recurring concepts and opens at the same time the possibility of learning the
underlying trends. The latter will be described elsewhere.

In the following, noticeable existing works on online learning in the context
of concept changes are described in Section 2. ADACC is presented in Section
3 while Section 4 reports our empirical results and a comparison to the state of
the art methods. Section 5 concludes with possible avenues for future work.

2 Relevant Works

In presence of concept drift, the central concern it to learn from data relevant
to the regularities currently governing the world. Several directions have been
proposed to dynamically adapt the memory of the past data. One is to use time
sliding windows with a fixed or a varying size [2]. This necessitates either a
priori knowledge about the dynamics of the environment, or a good heuristic
that guesses when to shrink or expand the sliding window. Another approach
relies on weighting past data with respect to their relevance to the current situ-
ation [3]. Again, this is all dependent on the design of an appropriate weighting
mechanism. By contrast with these types of approaches that explicitly control
the memory of past data, another set of techniques relies instead on the con-
trol of past hypotheses. Thus, ensemble-based approaches maintain a pool of
on-line learners that each maintain their own memory of the past and com-
pete for giving advice on the current query xt. By managing the population of
these base-learners, and possibly their weights, based on their current prediction
performance, one is implicitly controlling the use of past data [4].

A specially interesting case is the one of recurring concepts. This may happen
for instance when the environment is subject to seasonal variations which repeats
over time. This problem introduces a new challenge in that apparently obsolete
data or learned concepts may well be relevant again in the future. It would
thus be profitable to exploit this past knowledge as soon as it is appropriate
rather than learn anew from the incoming data stream. This requires, however,
that interesting memory traces be stored and that their relevance to the current
situation be quickly recognized. In recent years, several proposals have been put
forward to meet this challenge, particularly within the ensemble-based approach
(see for instance [5–9]). They either work at the level of the examples themselves,
by chunking them in some way, possibly organizing a hierarchy of chunks, or they
work at the level of the learned concepts, trying to learn significant concepts in
the stream of examples while avoiding redundancy.

This paper presents a new technique which solves both the problem of de-
tecting regularities (concepts) that are significant and new, and the problem of
recognizing when to use past knowledge. It is supposed that the data stream is
governed by piecewise stationary environments with concept shifts in between.
We show how an ensemble-based method can be used to detect stable envi-
ronments and how a memory of past concepts can be built which both avoids
redundancies and permits a quicker recognition of relevant past concepts than
a purely adaptive approach. Unlike other systems handling concept recurrence
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[6, 7], our method does not recognize new concepts using a drift detection sys-
tem. Thus, it avoids the difficulties inherent in having to detect gradual concept
changes while still being robust to false alarms.

3 Concept Changes: Adaptive and Anticipative

The proposed technique, called ADACC, implements an anticipative mechanism,
able in particular to exploit recurring concepts, build on top of an ensemble-based
adaptive online learner. We first briefly describe the latter one.

3.1 Adapting to Concept Changes

The main idea is to maintain a pool of base learners {hi
t}1≤i≤N , each of them

adapting to the new input data, and to administer this pool or ensemble thanks
to a strategy for inserting and deleting base learners. Sketchily:

– Each base learner in the pool continuously adapts with new incoming data
until it is removed from the pool.

– Every τ time steps, the base learners are evaluated on a window of size τeval.
– Based on the results of this evaluation, the deletion procedure chooses a base

learner to be removed.
– A new base learner is created and inserted in the pool. It is protected from

possible deletion for a duration τmat.
– For each new incoming instance xt, the prediction H(xt) results from a

combination of the prediction of the individual base learners ht(xt).

Variations around this general framework lead to specific algorithms [4, 10–13].
For instance, after extensive testings, we converged on the following settings.
The evaluation procedure counts the number of erroneous predictions on the
last τeval time steps. The deletion strategy randomly selects one base learner
from the worst half of the pool evaluated as above. The global prediction uses
the prediction from the current best base learner (a vote is applied in case of
ties). For simplicity τ = τmat. This simple method offers a good trade-off between
keeping as much as possible relevant information about the past and be reactive
when the underlying concept changes aka. the stability-plasticity dilemma.

3.2 Recognizing Recurring Concepts

Coping with recurring concepts implies, first, to be able to store memory traces
of past relevant concepts and, second, to recognize which past concept is relevant
again in order to exploit this knowledge.

In our approach, the memory lies entirely in the pool of base-learners. The
question is then to use this pool in order to detect when a regularity deserves to
be stored away and then to memorize this regularity for potential future use.

The technique we propose is based on the assumption that the base learners
converge toward approximately the same, near optimal, concept, as measured
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by their prediction performance, given a stationary environment and a sequence
of examples of sufficient length. Assuming this, therefore, one way to detect that
a stationary environment has settled is to check that the diversity of the base
learners is low, under some threshold, while their prediction rate peaks.

Accordingly, we define a stability index that compounds a measure of diversity
with an estimation of performance for the best half of the base learners in the
pool1. We suggest the kappa statistics K [14] in order to compute diversity. This
statistics measure evaluates the degree of agreement between the classification
of a set of items by two classifiers2. In case of complete agreement, K = 1. If
there is no agreement other than what would be expected by chance, K = 0.
The stability index at time t is computed over the last τs received examples:
Istability = agreement− error where agreement and error are computed over
the best half of the current hypotheses in the pool.

agreement =

∑N/2
i=1

∑N/2
j=1
i�=j

Khi
t,h

j
t

N
2 ∗ (N2 − 1)

(1)

and:

error =

∑τs−1
j=0

∑N/2
i=1 err

(
hi
t(xt−j), yt−j

)
τs ∗ N

2

(2)

where N is the size of the pool.
It is then possible to draw a curve of the successive stability indexes (see Figure

1 bottom). For each time step when the curve overcomes a given threshold, the
best base learner in the pool is considered as a candidate snapshot (a description
of the current governing concept). This snapshot is compared with the list of
already stored ones and is kept only insofar as it sufficiently differs from all of
them. Here again the agreement statistics can be used to measure the difference
between a candidate snapshot h∗

t and each stored snapshot h∗
tk on the last τs

examples. In case the agreement is less than some predefined threshold θd, the
current candidate snapshot h∗

t is added to the list MLT (Long Term Memory)
which represents past stationary states of the environment. These snapshots are
evaluated in the same way as the base learners in the pool and compete for the
prediction of yt given the current xt. In this way, except for a moderate overhead,
the prediction performance of the system is guaranteed to be at least as good as
the one of the purely adaptive strategy. (See Algorithm 1)

4 Datasets and Experiments

We carried out experiments on two artificial datasets (STAGGER and ELIST)
and one real dataset (SPAM). These data sets are well-known benchmarks (see
for instance [2, 5, 10, 12]).

1 Taking into account the poorest base learners induces instabilities that lead to infe-
rior performances.

2 Other agreement statistics should do as well.
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Algorithm 1. Selection of snapshots by ADACC.

input : The stability threshold θI , the difference threshold θd, and the
evaluation window τs

1 begin
2 E0 ← ∅; /* Ensemble of experts */

3 MLT ← ∅; /* List of snapshots */

4 k ← 0;
5 for t = 1 to ∞ do

/* Adaptation */

6 (xt, yt) is the current training instance;
7 [Et, ỹt] ← AdaptationEnsemble(Et−1,xt, yt);

/* Anticipation */

8 H =
{
hi
t

}N/2

i=1
is the best half of experts in Et;

9 agr =
1

N
2
∗ (N

2
− 1)

N/2∑
i=1

N/2∑
j=1
i�=j

K
hi
t,h

j
t
;

10 error =
1

τs ∗ N
2

τs−1∑
j=0

N/2∑
i=1

err
(
hi
t(xt−j), yt−j

)
;

11 Istability = agr − error;
/* Detect Stable Concept */

12 if Istability ≥ θI then
13 h∗

t = snapshot(Et);
/* Detect New Concept */

14 if isEmpty(MLT ) or KCj ,h
∗
t
≤ θd,∀j ∈ [1 . . . k] then

15 k = k + 1;
16 Ck = h∗

t ;
17 MLT = add(MLT , Ck);

STAGGER [15]. This data stream corresponds to three successive target
concepts: A ⇔ size = small ∧ color = red, B ⇔ color = green ∧ shape =
circular and C ⇔ size = medium∨ large. Each concept governs the labeling of
10,000 training instances chosen uniformly from the instance space. To simulate
recurring contexts, we concatenated the original sequence with a copy of it,
creating a stream of size 60,000.

ELIST [5]. This is a stream of email messages from different topics that
are sequentially labeled as interesting or junk by a user. The stream contains
1,500 examples with 913 attributes (boolean bag-of-words representation). Two
contexts succeed each other. In one, the user is only interested in messages related
to medicine. In the other, the user’s interest switches to space and baseball. The
stream is the sequence C1, C2, C1, C2, C1 where C1 and C2 are sequences of 300
email messages, labeled according to the first and second context respectively.
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SPAM. This dataset [5] consists of 9,324 instances drawn from the email mes-
sages of the Spam Assassin Collection using the boolean bag-of-words represen-
tation with 500 attributes. As mentioned in [5], the characteristics of the spam
messages gradually change as time passes. ELIST and SPAM are available in
arff format at http://mlkd.csd.auth.gr/concept_drift.html.

4.1 Experiments

The ADACC system was evaluated against the following methods:

Simple incremental classifier (SIC): a single incremental classifier.
Moving window (MW): incrementally learns over the last w instances.
Weighted examples (WE): larger weights are assigned to recent examples in
order to gradually forget the outdated information.
Dynamic Weighted Majority (DWM) [10]: an ensemble method that does
not use a drift detection system. Each classifier is initially assigned a weight of
one. If a classifier misclassifies an instance, its weight is multiplied by a factor
ρ < 1. A classifier is removed if its weight falls below a threshold θ. A new clas-
sifier is added when the ensemble misclassifies an instance. The ensemble size is
thus variable. The frequency of updating weights, removing and adding classi-
fiers, is controlled by a parameter p. The decision of the ensemble is obtained by
weighted majority voting.
Leveraging Bagging (LBAG) [16]: a version of online bagging that uses the
ADWIN method [17] to detect concept drifts. The instances are weighted accord-
ing to a Poisson(λ) distribution with λ > 1 in order to achieve more diversity in
the generated weight values. When a concept drift is detected, the worst classi-
fier is replaced with a new one. ADWIN’s parameter is a confidence bound γ.
Early Drift Detection Method (EDDM) [18]: a classifier with a drift de-
tection system. EDDM monitors the distance between consecutive classifica-
tion errors d and defines two distance levels (warning and drift) with respective
thresholds α, β ( β < α). If d < α, the examples are stored in anticipation for
change. If d < β, the classifier is reset and trained on the examples stored since
the warning level.
Conceptual Clustering and Prediction (CCP) [5] : an ensemble method
that uses clustering and is able to handle recurring concepts. Each batch of m
instances is mapped into a conceptual vector (descriptor). The vector is either
assigned to an existing cluster according to a distance threshold θ or a new clus-
ter is created. In the latter case, a classifier trained on the batch is assigned
to the cluster. In the former case, the classifier of the corresponding cluster is
updated with the batch instances. The classifier of the new or existing cluster
is then used to classify the next m instances. The number of clusters cannot be
larger than cmax otherwise the new item is incorporated into the nearest cluster.
Dynamic Adaptation to Concept Changes (DACC) the mere adaptive
side of the ADACC approach, as presented in Section 3.1.

http://mlkd.csd.auth.gr/concept_drift.html
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4.2 Experimental Setup

Incremental Naive Bayes classifiers were used as base learners, because they
naturally learn incrementally and are often used in studies of on-line learning.

LBAG and EDDM algorithms are available in the MOA (Massive Online
Analysis) API3. We implemented all remaining algorithms on top of MOA, ex-
cept for CCP and DWM whose results reported below are taken from the work
of Katakis et al. in [5]. The parameters of DWM were set to ρ = 0.5, θ = 0.01,
p = 1 and those of CCP were set to b = 50, cmax = 10 and θ = 4 for ELIST and
θ = 2.5 for SPAM. Both DWM and CCP were not evaluated on STAGGER in
[5] and thus no results are reported on this dataset.

We evaluated MW with three different window sizes: 50, 100 and 200 (re-
taining the best one: 100). WE was tested with the weighting formula w(n) =
w(n−1)+n2 where w(n) is the weight of the n-th example. The threshold values
of EDDM are automatically set by MOA.

In LBAG, we tuned the parameters λ and γ experimentally converging on
λ = 20, γ = 0.002 for ELIST and STAGGER and on λ = 20, γ = 0.01 for
SPAM. Error correcting codes can be used for LBAG to add more diversity in
the ensemble, but this does not improve the accuracy and is thus not used.

The parameters of ADACC, our anticipative meta-learning approach, were set
to θI = 0.8, θd = 0.7 and τs = 100 in all experiments. To reduce the computation
cost, the anticipation mechanism is called every p = 100 time steps (lines 8 to
17 of Algorithm 1). Finally, the parameters of the adaptive learning mechanism,
DACC, were optimized experimentally and τeval = τmat = 20 were used for all
datasets. The ensemble size was fixed to 20 for DACC and LBAG.

4.3 Results

Table 1 reports the results averaged over 10 runs showing the accuracy, precision,
recall and the run time in CPU seconds. All experiments were executed on an
Intel Core i5 CPU at 2.4 GHz with 4.0 GB of RAM. The execution time of DWM
and CCP are not given since they were tested in [5] on a different machine.

In all cases, ADACC yields the best accuracy. Figure 1 (top) shows a mov-
ing average of the accuracy of DACC, ADACC, LBAG and EDDM over sliding
windows of 1,000 instances. DACC adapts faster to concept drifts than EDDM
and LBAG, probably because of the frequent removal and addition of classifiers
(every 20 time steps) which makes it ready to any upcoming change. However,
despite the very good performance of DACC, ADACC still tops it by recognizing
recurring concepts starting at time step 30,000. This comes at the expense of the
execution time which is multiplied by a factor of 1.5 to 3. The amount of com-
putation can be reduced by increasing the value of p, the period separating two
calls of the meta-learning mechanism. In STAGGER, the run time of ADACC
is reduced to 2.8 CPU seconds when p = 1, 000 time steps (instead of 100).

3 http://sourceforge.net/projects/moa-datastream/

http://sourceforge.net/projects/moa-datastream/
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Table 1. The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the ELIST, SPAM and STAGGER
datasets using Naive Bayes classifiers as base learners.

ELIST SPAM STAGGER
Algorithm Acc. Precis. Recall Time Acc. Precis. Recall Time Acc. Precis. Recall Time

SIC 54.2 50.7 69.3 0.53 90.7 94.2 93.2 1.27 64.5 62.4 89.5 0.35
MW 74.7 70.6 78.4 0.48 90.7 90.6 97.5 1.28 98.8 98.4 99.3 0.39
WE 66.9 64.9 63.9 0.53 92.8 95.2 95.0 1.28 78.5 77.6 85.9 0.4
DWM 43.8 47 42.5 - 91.8 84.8 83.1 - - - - -
CCP 77.5 79.7 77.6 - 92.3 85.7 83.9 - - - - -
EDDM 75.6 72.9 75.9 1.15 90.8 92.0 95.9 1.68 99.7 99.73 99.8 0.6
LBAG 58.5 54.4 68.3 15.0 91.8 95.6 93.3 14.60 89.9 85.7 98.1 1.51
DACC 76.2 73.8 75.9 9.52 94.7 95.1 97.8 11.9 99.9 99.9 99.9 1.06
ADACC 77.5 75.2 77.2 13.6 94.9 95.6 97.6 18.92 99.9 99.9 99.9 3.22

Note that the classification performance is not hurt as long as p is small enough
to take snapshots of all encountered concepts (i.e. p < 10, 000 for STAGGER).

Figure 1 (bottom) shows the stability index on the STAGGER dataset and
highlights when snapshots are stored. All data points above θI = 0.8 are can-
didate snapshots (a total of 575) but only 5 are kept as relevant in the list
MLT . The unstable behavior of the stability index from time step 1 to 10,000
reflects the difficulty of learning the first concept. Three different snapshots of
the first concept are stored during this period, capturing different subspaces.
Only one additional snapshot is stored for the first concept when it reappears
(time steps 30,000 to 40,000) confirming that redundant snapshots are avoided
by ADACC. The second concept is learnt more easily and only two distinct snap-
shots are taken. Learning the third concept corresponds to the highest stability
index, suggesting a rather easy learning task. Only one representative snapshot
of the third concept is stored at the end of the experiment. Regarding the other
streams, a total of 8 snapshots were stored for SPAM and 4 for ELIST.

In our experiments, the threshold values for stability and conceptual equiv-
alence were fixed. We varied their values on the STAGGER dataset to study
their effect on the number of candidate snapshots, the number of stored snap-
shots and the classification performance of ADACC. The results are shown in
Table 2. Smaller stability thresholds increase the number of candidate snapshots
and thus of the stored ones but very much less significantly. Only 5 additional
snapshots are stored when the threshold switches from 0.9 to 0.5. When vary-
ing the concept equivalence threshold, the number of candidates doesn’t change
since it is only related to the stability threshold value. The stored snapshots
however evolve. Larger threshold values entice larger numbers of stored snap-
shots. Remarkably, changing both threshold values may impact the accuracy of
the anticipative mechanism (ADACC) but never to the extent of being worse
than the mere adaptive scheme (DACC).
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Fig. 1. (Top) The classification accuracy of ADACC, DACC, LBAG and EDDM on
STAGGER, averaged over sliding windows of size 1,000. (Bottom) The evolution of
the stability index on STAGGER

Table 2. Left : The effect of the conceptual equivalence threshold on ADACC with
θI = 0.8. Right : The effect of the stability index threshold on ADACC with θd = 0.7.

θd # candidates # stored Accuracy

0.5 575 4 99.918
0.6 575 5 99.915
0.7 575 7 99.916
0.8 575 9 99.918
0.9 575 12 99.918

θI # candidates # stored Accuracy

0.5 596 9 99.908
0.6 594 9 99.908
0.7 587 9 99.91
0.8 575 7 99.916
0.9 540 4 99.916

5 Conclusions and Future Work

A meta-learning mechanism that deals with recurrent concepts in the context of
online machine learning has been presented. The main contribution of ADACC,
which explains the good performances obtained on the benchmark datasets, lies
in the use of a stability measure that monitors the pool of base learners and the
long-term memory of past useful concepts. Snapshots of the relevant states of the
world are stored and re-used them when old contexts reappear. This mechanism
is completely embedded in the natural functioning of the ensemble method. It
relies on few parameters that do not need to be finely tuned.

We conducted experiments on real and artificial benchmark datasets and com-
pared our method with various online learning systems. The empirical results
show that combining the meta-learning mechanism with an ensemble method
that adapts rapidly to drifting concepts (in comparison to other systems) can
bring improvement in the classification performance, outperforming all compared
systems.

In the future, we will explore ways to keep constant the size of the long
term memory of the memorized snapshots. One such promising avenue is to
store prototypes of snapshots instead of the original ones, using a hierarchical
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clustering technique. We also plan to reduce the execution time of ADACC,
and this, by computing the stability index using an agreement measure whose
computational cost is less than quadratic in the number of base learners.
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In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010,
Part I. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010)

17. Bifet, A.: Adaptive learning and mining for data streams and frequent patterns.
ACM SIGKDD Explorations Newsletter 11(1), 55–56 (2009)

18. Baena-Garca, M., del Campo-vila, J., Fidalgo, R., Bifet, A., Gaval, R., Morales-
Bueno, R.: Early drift detection method. In: Fourth International Workshop on
Knowledge Discovery from Data Streams (2006)



 

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 605–615, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Control of an Inverted Pendulum Using the NeuraBase 
Network Model 

Robert Hercus, Kit-Yee Wong, See-Kiong Shee, and Kim-Fong Ho 

Neuramatix Sdn Bhd, Kuala Lumpur, 59200 Malaysia 
{Hercus,SeeKiong,KitYee,kfho}@neuramatix.com 

Abstract. This paper presents an alternative approach for the control and 
balancing operations of an inverted pendulum. The proposed method uses a 
neuronal network called NeuraBase to learn the sensor events obtained via a 
rotary encoder and the motor events controlling a stepper motor, which rotates 
the swinging arm. A neuron layer called the controller network will link the 
sensor neuron events to the motor neurons. The proposed NeuraBase network 
model (NNM) has demonstrated its ability to successfully control the balancing 
operation of the pendulum in the absence of a dynamic model and theoretical 
control methods. The controller also demonstrated its robustness in the adaptive 
learning of pendulum balancing with imposed system changes. 

Keywords: Adaptive Control, Real-time Control, Online Control, Neural 
Network, Inverted Pendulum, Balancing Control. 

1 Introduction 

The inverted pendulum is a classic problem in non-linear control systems. Much 
research has been made to solve this problem as the balancing control of an inverted 
pendulum forms the basis of many diverse phenomena such as walking, aircraft roll 
control and planar robot arm control. The inverted pendulum has been widely used as 
a platform for testing the efficacy of various types of controllers [1-12]. However, the 
controller design of an inverted pendulum is difficult due to its multi-variability and 
inherent instability.  

There are generally two categories of controllers, namely, dynamic modeling and 
control, as well as, machine learning. In dynamic modeling and control, controllers 
using the methods of Proportional-Integral-Derivative (PID), pole placement, Linear-
Quadratic-Regulator (LQR) and Linear-Quadratic-Gaussian (LQG), have been 
previously applied to the control of inverted pendulum systems [1-4]. Although most 
of these approaches achieved good balancing performance, an accurate mathematical 
representation for the inverted pendulum is not easily formulated, as extensive 
knowledge of the system dynamics is required. Machine learning approaches such as 
fuzzy logic, artificial neural networks, neuro-fuzzy, self-organizing maps, recurrent 
neural networks, cerebellar model articulation controller (CMAC) and genetic 
algorithms have also been studied extensively [5-12]. The abilities of these machine-
learning methods in mapping non-linearity, and in dealing with uncertainties in 
system parameters, eliminate the need for exact mathematical models.  
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In this paper, the balancing control of an inverted pendulum using a temporal-
based neural network model named NeuraBase [13] is introduced. The proposed 
NeuraBase controller does not require the system’s mathematical model as its online 
training attribute allows it to continuously adapt to a changing environment. The same 
controller has been previously applied in the balancing control of a simulated inverted 
pendulum [14] as well as the navigation control of UAV [15]. The reinforced learning 
method used in this work is similar to the unsupervised spike-based Hebbian learning 
method presented in [16] in term of updating the strength of controller’s connection 
between the sensor and motor neurons. In this paper, the implementation is not 
intended to make direct comparisons with other pendulum balancing methods, but to 
introduce an alternative and novel approach. The NeuraBase generic toolbox can be 
downloaded at [17]. 

As shown in Figure 1, the rotary inverted pendulum consists of a pivot arm rotating 
in a horizontal plane by means of a motor. At the other end of the arm, a pendulum is 
mounted, rotating in a plane that is always perpendicular to the rotating arm. (The 
swing-up process necessary to bring the pendulum to the balancing region of 0 ± 10° 
at the outset was controlled using another NeuraBase controller, and will not be 
discussed in this paper.) 
 

 

Fig. 1. The rotary inverted pendulum 

This paper is organized as follows: Section 2 of this paper describes the usage of 
the NeuraBase Network Model (NNM) as a controller. In Section 3, the model of the 
inverted pendulum and the experimental set up is described. Section 4 describes the 
online learning logic used with the NNM, and in section 5 experimental results and 
discussions are presented.  

2 NeuraBase Network Model (NNM) 

The NNM is a network data structure that stores a sequence of events. The basic unit 
of the NNM is a neuron. Each neuron represents an event. Two neurons can be joined 
to represent a sequence of sensor or motor events. As shown in Figure 2a below, the 
neurons in the NNM can be associated temporally or spatially. These events are 
constructed in a way that provide for fast searching and matching. For instance,  
as shown in Figure 2b, if each alphabet is represented by a sensor neuron (Level 1), 
the association of overlapping sensory events can represent words. 
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Fig. 2. a) The NeuraBase Network Model where t denotes time proximity and p denotes spatial 
proximity; b) Words as sequences of events constructed using characters 

The proposed NNM controller for the inverted pendulum consists of three different 
networks as shown in Figure 3. For the inverted pendulum, both the motor and 
controller networks have a single level architecture while the sensor network has a 
multi-level architecture. These three networks store different types of events, namely, 
a) sensor events - input to the system (the pendulum position readout from the 
encoder); b) motor neurons - outputs from the system (the motor velocity change for 
driving the arm); c) controller neurons - associations between the sensor events and 
motor neurons. Each type of event builds an association of events in their respective 
network. The sensor network, motor network and the controller network store sensor 
neurons events, motor neurons events, and controller neurons associations, 
respectively. A simplified data structure of the neurons used in NNM is described in 
Table 1. More detailed descriptions of the sensor, motor and controller neurons are 
provided in Section 3. 
 

 

Fig. 3. The architecture of the network of NeuraBase used in the balancing of the inverted 
pendulum 

Table 1. Data structure of a neuron (basic), * denotes fields that are only applicable to the 
controller neuron 

Field Data Type 
Head unsigned int 
Tail unsigned int 
Successor unsigned int 
Frequency/ Weight* signed int  
Next 
Overshoot/Undershoot Flags* 

unsigned int 
unsigned short 

a     b 
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Fig. 5. The segmentation of angular positions of the inverted pendulum in the balancing zone 

which is then applied to the arm rotation, where each unit corresponded to a shift of 0.02 / , with either a positive or negative sign representing counter-clockwise or 
clockwise rotation respectively. With a change limit of /  imposed in either 
direction 50), there are consequently 101 basic motor neurons defined to 
represent these changes in arm velocity. 

The controller neurons associate sensor event sequences with motor neurons. The 
association indicates the possible variables to control the pendulum through a learning 
process. The inverted pendulum problem is proposed to be solved using the learning 
model - given a sequence of angular positions (S) of the pendulum, a change in motor 
speed or arm velocity (M) can be applied to move the pendulum to the desired balance 
position. The relationship between the sensor events and the motor neurons are 
associated (linked) via a controller neuron. At the frequency of seventy times per 
second, S was obtained and stored in the sensor network, forming a sequence of position 
segments. Similarly, each M defined for the motor was stored in the motor network.  

Figure 6a depicts the neuron structure of a sample sensor event C, within  
the sensor network, which represents the sequence of positions   6, 4, 1 .  
 

 

Fig. 6. a) The structure of a sensor event; b) The structure of a controller neuron 

a                            b 
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The neuron A (head of C) represents the sensor sequence of 6, 4  and the neuron B 
(tail of C) represents the sensor sequence of 4, 1 . Neuron D represents a set of 
successors of C, which can be a sequence of position segments e.g. 6, 4, 1, 0  
etc. or D, could be controller neuron for C, linking to a specific motor action. 

Each motor neuron represents a unit velocity change to the arm rotation. Figure 6b 
depicts the neuron structure of a sample controller neuron (E) within the controller 
network. The neuron C (head of E) is the sensor event mentioned above and the 
neuron F (tail of E) is a motor neuron.  

4 Learning Logic 

Using the reinforcement learning method, the goal of the NNM controller is to bring 
the pendulum into the target region 0 1° or [ 1, 1] and maintain the pendulum in 
the target region for as long as possible. The proposed learning method is different 
from supervised learning, which depends strongly on the availability of an external 
teacher, whereby, the system output is assessed according to the desired output given 
by the external teacher.  

The direction of the motor speed change applied in order to balance the pendulum 
was based on the following learning rule: whenever the inverted pendulum falls out of 
the target [ 1, 1] region, the NNM controller will attempt to predict the best motor 
action to execute, by searching within the controller network for the strongest motor 
actions exceeding a predefined weight, which will bring the pendulum into the target 
area [ 1, 1]. The sensor sequence events have a fixed maximum length of n, which 
is set to 5. For instance, given a sequence of sensor events 3, 2, 2, 1, 1 , there may be three trained controller neurons 3, 4, 5 which correspond to motor neurons -2, -1, and 1, respectively. The 
strength of each controller neuron is represented by its trained weight; hence, the 
controller neuron with the highest weight will be the most reliable prediction because 
it is the accumulated result of learning, using both positive and negative feedbacks 
from past trials. 

The association of a sensor event (S) and a motor neuron (M) in the controller 
network is a reinforced learning process, whereby positive and negative feedbacks 
dictate how the learning takes place by tuning the weight of the controller neurons. 
The association of the sensor event and the motor neurons in the controller network 
essentially gives rise to a learned inverse model that can generate motor actions given 
the desired sensor event sequence. Based on a predefined learning goal, the positive 
and negative feedback rules are defined based on whether the goal is achieved. The 
feedback rule is constructed according to the strategy that, given a sequence of sensor 
events collected using a fixed time interval (e.g. pendulum traversal path from 3  1  0 1 1) and a motor neuron effecting a change in speed 
(e.g. M3) has been applied, the current sensor data is 1. This represents the 
segment position of the pendulum after the speed change (M3) has been applied.  

A positive feedback is given if the pendulum managed to reach within the target 
region of [ 1, 1], upon which, the weight of the controller neuron is incremented 
by 1. The more the controller neuron experiences positive feedbacks for its motor 
predictions, the stronger the link coupling will be, thereby resulting in a stronger 
positive memory of the respective motor action. A negative feedback is evoked if the 
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pendulum fails to reach the target region [ 1, 1], upon which, the weight of the 
controller neuron is decremented by 1, thus reducing the coupling strength of that 
link. Alternatively, if a controller neuron does not already exist, the NNM controller 
will create a controller neuron linking the sensor event to the motor action executed. 
Eventually, a network of almost all possible sensor events associated with possible 
motor actions will be stored within NeuraBase, and the controller neurons linking 
sensor events to the right motor actions will have higher weights compared to those 
linking sensor events to incorrect motor actions. 

In the case where there are no controller neurons with strength exceeding the 
weight, which is common at the beginning of training, the controller will set the 
sensor sequence to its tail (meaning it will check recursively for the latest n-1, n-2,… 
1 events for any matches). If none can be found even for the shortest sensor event, a 
random motor neuron within a reducing range will be chosen. 

This motor range is bounded by motor neurons linked to previously used controller 
neurons which, have either been flagged as overshooting and / or undershooting 
controller neurons according to the rules outlined in Table 2. Each time a controller 
neuron’s overshoot / undershoot flag is set, the set range becomes smaller with the 
controller neuron’s linked motor neuron as the new upper or lower boundary of the 
set. This method helps the controller narrow down its choices of approximately 
correct motor actions for the sensor event more quickly, compared to the controller 
having to attempt all motor neurons before finding a suitable one. 

Table 2. Controller neuron overshoot / undershoot flagging rules 

                      Pendulum position Flag 
Before: [-S10,-S2]  After: [S2,S10] Overshoot 
Before: [S2, S10]  After: [-S10,-S2] Overshoot 
Before: [-S10,-S2]  After: [-S10,-S2] Undershoot 
Before: [-S10,-S2]  After: [-S10,-S2] Undershoot 
Before: [-S10,-S2]  After: [-S1,S1] None 
Before: [S2,S10]  After: [-S1,S1] None 

5 Results and Discussions 

The experiment was run for a total of 90 trials, which recorded a total of ~2.7  10  
motor events, with each motor event representing an event where a motor action is 
executed as the pendulum falls out of the target balancing area[ 1 1]. 
Experimental results of the pendulum balancing performance (see Figure 7) show that 
the pendulum was able to balance for longer duration after training.  

In the same figure, the Total line depicts the growth trend of total neurons in 
NeuraBase, which correlates with the upward trend of the average pendulum 
balancing time. Also shown are the neuron growth trends for each level of the sensor 
network (higher levels indicate longer sensor event sequences), and the controller 
network (the neuron count of the motor network is negligible). Initially, the balancing 
durations were generally less than 10 minutes. This is to be expected, as at the 
commencement of training, the NNM did not contain any stored patterns. The default 
motor actions 10 may not have been sufficient for all sensor events, therefore it 
would take time for NeuraBase to learn the correct motor actions.  
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Fig. 7. Average pendulum balancing time and NeuraBase node growth vs the number of 
NeuraBase motor events 

Additionally, the pendulum's stability does not only depend on the immediate 
motor action but also on all previous motor actions. All of which, have not been 
learned extensively, which also contributed to the short balancing times. Many of the 
new patterns (new neurons) were created during this period. After approximately 
30,000 motor events (~40 trials), the results showed that the NNM controller was able 
to balance the pendulum up to the 10 minutes mark. At this point, the neuron count 
almost reached the 5,000 mark. After that, the controller was able to learn relatively 
faster (more rapidly growing average balancing time), and the NNM was able to 
balance the pendulum at an average of 150 minutes after 90 trials and ~2.7  10  
motor events later. This apparent improvement in performance can be attributed by 
the fact that, once the NNM controller succeeded in bringing the pendulum into the 
target region and maintaining it for a few time steps, more and more motor events 
occurred from frequently repeating sensor events. Therefore, approximately correct 
motor actions would have already been learned and the controller was able to sustain 
its balance more easily, at which point, the pendulum can be considered to be stable.  

The growth trend of NNM neurons had yet to reach saturation point after 90 
trials (~2.7  10  motor events), as the NNM was still learning new patterns, whilst 
balancing the pendulum. Even in supposed stability, the pendulum did not remain 
static at the 0° point. Learning continued to occur whenever the pendulum fell 
outside the target [ 1 1] region, during which the NNM controller may 
encounter new sensor events and / or learns new motor actions or strengthens / 
penalizes current motor actions in order to bring the pendulum back into 
the [ 1 1] region. As a result, the total number of cumulative motor events was 
observed to be increasing exponentially with respect to the number of trials, as 
shown in Figure 8. A video, which demonstrates our experiment can be found in 
http://www.neuramatix.com/video_inverted.php    

An additional experiment was performed to further demonstrate the effectiveness 
of the proposed NNM as an adaptive controller using varying weights for the tip  
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Fig. 8. Total cumulative motor events vs number of the inverted pendulum balancing trials in 
NeuraBase 

 

Fig. 9. Average balancing time (minutes) vs. number of motor events using three different 
weights of tip mass trained on the same NeuraBase (orange line with markers) 

mass, which was attached to the pendulum rod. In this test, the inverted pendulum 
was initially trained with an empty NNM. Three different weights (70, 50 and 30 
grams) were attached to the pendulum at the same distance from the pivot to 
introduce different three centers of mass.  

In Figure 9, the vertical blue, red and green lines denote the number of motor 
events when the weight of the tip mass is changed from 30 gram  50 gram  70 
gram  30 gram, respectively. After 50 training trials (~380,000 motor events) with 
the 30 gram tip mass, the inverted pendulum was replaced with a heavier weight, 
which lowered the center of mass of the system. The NNM that was previously 
trained using the lighter weight was put into use and run for another 8 trials (~460,000 
motor events). Another change was introduced to the pendulum, whereby the tip mass 
was changed to an even heavier weight. The tip mass was replaced with the original 
weight of 30 gram after a further training of another 6 trials (~226,000 motor events).  
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It is noted that the reduced amount of motor events recorded as the tip mass was 
changed indicates that the pendulum was generally able to spend more time in the 
target [ 1 1] area after the motor action has been executed by the NNM controller, 
and does not have any significant meaning, as ‘time spent in the target area’ was not 
part of the learning feedback rules. The orange line with markers represents the 
performance of the NNM controller (average balancing time) trained using a single 
NNM with three different top masses continuously in real-time. Results showed that 
the NNM controller was robust in handling changes to the system as the balancing 
persists even when changes have been made twice to the system.  
 

 

Fig. 10. Average balancing time (minutes) vs. number of motor events using three different 
centers of mass trained on the same NeuraBase (orange line with markers) 

In another separate experiment, a 50-gram tip mass was attached to the pendulum 
at three different positions measured from the pendulum pivot to introduce three 
centers of mass. The inverted pendulum was trained with an empty NNM. Figure 10 
depicts the balancing performance of the NNM controller and the experimental results 
showed that the NNM controller was well equipped to balance the pendulum in the 
event of system changes. 

6 Conclusion 

The self-learning NNM controller presented in this paper is a proof of concept that the 
NNM can be easily adapted to handle the classic control problem for the balancing 
operation of an inverted pendulum. The experiment’s results showed that the NNM 
controller was able to learn to balance the pendulum. The learning element was 
evidenced by the increasing average balancing time and growth trend of NeuraBase 
nodes. The proposed NNM controller also demonstrated its robustness in adaptively 
learning to balance the pendulum in the event of system changes. 
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Abstract. The Gene Regulatory Network (GRN) is the collection of
genes and interactions among them, which captures the mutual interac-
tions among genes. Amongst the various currently available models for
inferring GRN, the S-System formalism is often considered as an excellent
compromise between accuracy and mathematical tractability, although
limited to represent the instantaneous interactions only. Recently pro-
posed Time-delayed S-System Model (TDSS), an improved version of
the traditional S-System model, is capable of representing the delayed
interactions present in the genetic network. In this paper, we have shown
the results of extensive analysis performed on TDSS over a widely used
synthetic network. The two well-known performance measures applied
to the synthetic network with various time-delayed regulations clearly
demonstrate that the TDSS can capture both the instantaneous and de-
layed interactions correctly with high precision. Further, we have shown
the effect of various samples sizes during the optimization where average
error for the inferred parameters are reported and compared with an
existing state-or-the-art algorithm.

Keywords: Gene Regulatory Network, S-System, Time-delay.

1 Introduction

Reverse engineering GRN with the S-System model carry out the attraction
of the researchers in the last decade due to its originality in the applications.
Despite of the large number of parameters, the S-System formalism has great
ability to cope with non-linearity and to infer GRNs more accurately than the
other available models [1–5]. However, the applications of the S-System in GRN
are limited to the reverse engineering of small scale genetic networks due to very
high computational complexity. Gradually, these limitations were overcome by
the decomposition technique and parallel computation, which were found useful
in reconstructing medium scale networks [2,4], although inappropriate for large
scale network.

In the biological system, almost all genetic interactions in GRNs are invari-
ably delayed with different time lags [6]. An interaction among two genes is said
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to be instantaneous if it occurs in the same time-sample/timestamp (TS). On
the other hand, if the interaction from the source gene starts in one TS and
ends in a later TS of another gene is known as time-delayed interaction. In the
currently existing S-System model based reconstruction techniques, that use the
time-series data, the interactions are by default assumed to be instantaneous.
Hence, the delayed interactions, if present in the network, are missed or inferred
with incorrect regulatory weight by the reconstruction method. Being cognizant
about the limitations of the existing S-System based modeling approaches, our
recently proposed Time-delayed S-System Model (TDSS) [7], in contrast to other
non-S-System based time-delayed modeling approached [8,9], is capable of simul-
taneously inferring both the instantaneous regulations and time-delayed regula-
tions of any fractional delay present in a genetic network. This paper presents the
evaluation of the proposed TDSS for extensive analysis performed over different
delay networks with variations in number of samples in the time-series data. The
average errors incurred by the TDSS for various networks are also reported and
compared with recently proposed S-System based method REGARD [10]. Unlike
the existing TDSS proposed in [7], we have kept the delay parameters as fixed
throughout the optimization and performances are observed in order to retrieve
the regulatory interactions (both delayed and instantaneous). We observe that,
with the known delay parameters, TDSS can infer the regulations more quickly
than learning those parameters in the optimization.

2 Preliminaries on S-System Model

For a network of N genes, the S-System model is given by:

dXi

dt
= αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij

j , i = 1 . . .N (1)

Here, for any ith gene, Xi is the expression level, {αi, βi} > 0 are the rate
constants, {gij , hij} are the kinetic orders (generally −3.0 ≤ {gij , hij} ≤ 3.0
in regular biochemical systems [5]). gij = 0 implies that there is no regulation
in production from gene j on gene i. If gij > 0, gene j activates gene i and if
gij < 0, gene j inhibits gene i. In contrast to gij , the term hij represents an
opposite effect of the gene j on i for degradation. To infer a GRN of N genes
using the S-System model, 2N (N+1) parameters must be estimated. To over-
come high computational complexity, a decoupled system [1] divides the given
problem into N sub-problems, where each of having 2(N+1) parameters are es-
timated by solving decoupled S-System equation. Although the accuracy may
slightly decrease due to direct estimation rather than numerical integration of
time series data, this approximation greatly reduces the computational burden.
However, the S-System model (Eqn. (1)) calculates the change of expression for
each gene depending on the current expression levels of all genes’, which implies
that traditional S-System model works on instantaneous regulations only.
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3 The Representation Framework

In this section, we introduce the Time-delayed S-System model [7], with the pa-
rameter learning mechanism applied in this paper for reverse engineering GRN.

3.1 Time-Delayed S-System (TDSS): The Model

It is already mentioned that, for a particular gene (gene-i) in an N gene network,
the S-System can represent 2N interactions with N interactions of production
phase and remaining of degradation phase [5]. As a result, delay can occur in any
of the 2N interactions. Thus, we propose the Time-delayed S-System (TDSS) [7]
model in the following way (canonical version):

dXi,t

dt
= αi

N∏
j=1

X
gij
j,(t−τg

i,j)
− βi

N∏
j=1

X
hij

j,(t−τh
i,j)

i = 1 . . .N, t = 0 . . . T (2)

Here, T being the number of samples in the time-series data. τg and τh are
delay matrices represent the delays (or lags) for g and h metrics, respectively.
The delay matrices are represented as follows:

τg =

⎛⎜⎜⎜⎝
τg1,1 τg1,2 · · · τg1,N
τg2,1 τg2,2 · · · τg2,N
...

...
. . .

...
τgN,1 τgN,2 · · · τgN,N

⎞⎟⎟⎟⎠ τh =

⎛⎜⎜⎜⎝
τh1,1 τh1,2 · · · τh1,N
τh2,1 τh2,2 · · · τh2,N
...

...
. . .

...
τhN,1 τhN,2 · · · τhN,N

⎞⎟⎟⎟⎠ (3)

The values in τgi,j (τhi,j) represent the corresponding delay for the interaction
of gene-j on gene-i in the production (degradation) phase, represented in g
(h) metric with gi,j (hi,j). These two metrics are calculated according to the
following equations:

τgi,j(τ
h
i,j)=

⎧⎨⎩
d if gi,j (hi,j) is a delayed interaction of d time, where 0<d≤τmax

0 if no interaction from j to i in the production (degradation)
or gi,j (hi,j) is an instantaneous interaction

(4)
Here, τmax is the maximum allowed delay in the GRN. In [7], along with the
S-System parameters (i.e., α, β, g, h), the delay parameters (i.e., τg , τh) are also
learnt during the optimization phase. However, in this paper we have considered
the delay metrics as known and kept as fixed during the optimization.

3.2 Reverse Engineering GRN with TDSS

The Trigonometric Differential Evolution (TDE) method, a class of Differential
Evolutionary Algorithm, has been employed here to reverse engineer the genetic
network with the new TDSS model. This method begins with a knowledge based
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papulation initialization algorithm [10]. In order to evaluate a solution, we have
used the fitness function of REGARD [10], as shown in Eqn. (5):

fMSE
i =

M∑
k=1

T∑
t=1

{
Xcal

k,i (t)−Xexp
k,i (t)

Xexp
k,i (t)

}2

+ Ci
2N

ZCount
(5)

Here, ZCount is the total number of non-regulations for the ith gene (= 2N -
total regulations) and, Ci is the scaling factor for the ith gene calculated based
on adaptive regulatory genes cardinality. Iteratively, crossovers, mutations and
flip-operations [10] of TDE [4] within a population are performed and the best
fitting individuals are taken in to account for the future generation. Within
the optimization, we have used the Hill Climbing Local Search (HCLS) [4] to
randomly selected 10% individuals and a flip operation [10] over 5% individuals
in the first 200 generations for better mating of parameters. In this paper, we
have evaluated the performances of TDSS [7] for the fixed and known delays,
hence we have limited the experiment to reconstructing the synthetic networks
only.

4 Experimental Results and Discussions

The performance of the proposed technique is studied by investigating the 5-
gene synthetic network of [1]. This 5-gene synthetic network, shown in Table
1, was first reported in [1] and later studied with other S-System and non S-
System based approaches for GRN modeling [2–4, 11, 12]. For comparison, we
have considered the well-known performance measures, namely, sensitivity (Sn),
specificity (Sp) and average error (AE) [10]. Two different cases of the 5-gene
synthetic network are considered for evaluation: Case 1, that includes 5 delayed
regulations of equal and integer delay, and Case 2, that has 6 delayed regulations
of various fractional units. The delay matrices for Case 1 and Case 2 are shown
in Eqn. (6) and Eqn. (7), respectively. Equation (2) has been used in the bench-
mark synthetic network with 10 and 20 random initial conditions to produce 10
and 20 data sets, respectively. As mentioned earlier, unlike our recently proposed
technique in [7], the delay parameters are assumed to be fixed during the opti-
mization. For each gene-i, the maximum in-degree I was chosen as 3 while the
minimum in-degree J was set to the number of delayed regulations for gene-i.
These in-degree values are updated using Adaptive Regulatory Genes Cardinal-
ity algorithm [7, 10], applied every 40 iterations. The parameter values for the
TDE algorithm were set to Fo = 0.5 (Mutation Factor), Ft = 0.05 (Trigono-
metric Mutation Factor), CF = 0.8 (Crossover Factor), population size = 100.
For these two types of cases, average errors reported for each cases (Case 1 and

Case 2) according to the equation E = 1
QP

∑Q
1

∑P
1 |d1 − d2|, where Q=number

of runs (=5), P=number of parameters, d1 and d2 are the target and inferred
parameter values, respectively. We execute both TDSS and REGARD [10] for
400 iterations in each run.
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Table 1. Target parameters for 5-gene Synthetic Network [1]

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

1 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00
2 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00
3 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00
4 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00
5 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00

τgCase1 =

⎛⎜⎜⎜⎜⎝
0.0 0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0

⎞⎟⎟⎟⎟⎠ τhCase1 =

⎛⎜⎜⎜⎜⎝
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

⎞⎟⎟⎟⎟⎠ (6)

τgCase2 =

⎛⎜⎜⎜⎜⎝
0.0 0.0 1.1 0.0 0.0
1.2 0.0 0.0 0.0 0.0
0.0 1.3 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 2.1 0.0

⎞⎟⎟⎟⎟⎠ τhCase2 =

⎛⎜⎜⎜⎜⎝
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

⎞⎟⎟⎟⎟⎠ (7)

It can be observed that, proposed algorithm infer the first delayed network (‘Case
1’) accurately with high precision. On the other hand, the existing method [10],
that does not have the knowledge of delayed interactions, misses inferring two of
the delayed regulations. Moreover, using [10], correctly inferred parameters have
poor precision. Due to the presence of delayed interactions in the GRN and hence
the effect of the delayed interactions in the microarray data, REGARD [10] also
failed to retrieve one instantaneous interaction as well. The proposed TDSS also
reported excellent result while tested with ‘Case 2’. The best and average case
results of sensitivity and specificity, shown in Table 2, demonstrate that for both
the cases with 10 and 20 samples, proposed method can infer all the delayed and
instantaneous interactions correctly. Although, in the best case, TDSS could
infer all the parameters correctly with T = 10 and T = 20 samples for both
the networks (i.e., Case 1 and Case 2), the accuracy of average case results are
improved with the increase of sample sizes (T ), indicating a influence of number
of samples in the data-set. It should be noted that the proposed TDSS not only
inferred all the regulations correctly but also the with high precision, as shown
in Table 3. The average errors (AE), which also reflects the preciseness of the
regulatory weights, are shown in Fig. 1 indicating the comprehensive superiority
of TDSS for reverse engineering time-delayed GRNs.

So far, the experiment has been carried out for synthetic network. We observe
that, while the TDSS in [7] can infer all the S-System parameters (including de-
lay matrices) within 1000 iterations, the TDSS used in this paper can infer the
regulations only in less than half of the iterations than [7] when the delay matri-
ces are known. The model and method can be easily applicable to real genetic
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Table 2. Performance comparison for 5-gene synthetic network [1] with TDSS and
REGARD [10]. Two different cases of delay are testing with Sn and Sp

Case 1 Case 2
T=10 T=20 T=10 T=20

Sn Sp Sn Sp Sn Sp Sn Sp

TDSS (Best) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TDSS (Average) 0.91 0.94 1.00 1.00 0.90 0.81 0.92 0.94

± 0.02 ± 0.03 ± 0.00 ± 0.00 ± 0.02 ± 0.03 ± 0.02 ± 0.03

REGARD [10] (Best) 0.92 0.95 0.92 0.95 0.85 0.95 0.85 0.95
REGARD [10] (Average) 0.86 0.84 0.88 0.91 0.80 0.85 0.78 0.85

± 0.02 ± 0.03 ± 0.01 ± 0.04 ± 0.02 ± 0.01 ± 0.01 ±0.02

Table 3. Experimental results (best case) to infer 5-gene synthetic network [1] for two
different cases: “Case 1” and “Case 2” for 10 data sets

Case 1

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

P
ro
p
o
se
d

(T
D
S
S
)

1 4.32 0.00 0.00 1.04 0.00 -1.05 9.23 2.07 0.00 0.00 0.00 0.00
2 9.48 2.05 0.00 0.00 0.00 0.00 9.43 0.00 2.06 0.00 0.00 0.00
3 8.82 0.00 -0.99 0.00 0.00 0.00 8.87 0.00 -0.97 2.22 0.00 0.00
4 7.12 0.00 0.00 2.13 0.00 -1.06 9.11 0.00 0.00 0.00 2.13 0.00
5 9.24 0.00 0.00 0.00 2.09 0.00 9.25 0.00 0.00 0.00 0.00 2.12

R
E
G
A
R
D

[1
0
]

1 2.56 -0.26 0.00 1.18 0.00 -1.19 7.96 2.79 0.00 0.00 0.00 0.00
2 11.26 2.51 0.00 0.00 0.00 0.00 10.37 0.00 2.28 0.00 0.00 0.00
3 4.21 0.00 -0.99 -0.61 0.00 0.00 6.37 1.30 0.00 0.00 0.00 0.00
4 7.60 0.00 0.00 2.05 0.00 -1.09 9.84 0.00 0.00 0.00 1.86 0.00
5 10.21 0.00 0.00 0.00 2.00 0.00 10.22 0.00 0.00 0.00 0.00 1.97

Case 2

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

P
ro
p
o
se
d

(T
D
S
S
)

1 5.02 0.00 0.00 1.02 0.00 -0.97 10.23 2.04 0.00 0.00 0.00 0.00
2 9.28 2.25 0.00 0.00 0.00 0.00 9.32 0.00 2.10 0.00 0.00 0.00
3 9.02 0.00 -1.09 0.00 0.00 0.00 9.87 0.00 -0.99 2.12 0.00 0.00
4 7.72 0.00 0.00 2.02 0.00 -1.05 9.51 0.00 0.00 0.00 2.01 0.00
5 10.14 0.00 0.00 0.00 2.10 0.00 9.95 0.00 0.00 0.00 0.00 2.20

R
E
G
A
R
D

[1
0
]

1 3.90 0.00 0.00 0.00 0.53 -0.83 9.32 1.15 0.00 0.00 0.00 0.00
2 13.39 2.25 0.00 0.39 0.00 0.36 11.12 0.00 2.17 0.00 0.00 0.00
3 19.74 0.00 -0.81 0.00 0.00 0.00 17.73 0.00 0.00 3.00 0.00 0.00
4 13.22 0.00 0.00 2.14 0.00 -0.76 16.17 0.00 0.00 0.00 1.48 0.00
5 20.00 0.00 0.00 0.00 1.91 0.00 16.81 0.00 0.00 0.00 0.00 2.34

network by performing a pre-processing stage to generate the delay metrics (τg

and τh). The Pearson correlation coefficient, mutual information, conditional
mutual information are few well-known and widely used statistical models to
find the rate of interactions among variables (genes in this regard), although
these methods will not provide the true delay metrics in most of the cases.
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Fig. 1. Average errors reported by proposed and existing methods for two different
delay networks in terms of number of samples in the time-series data

5 Conclusion

In this paper, we have evaluated the performance of newly proposed Time-
delayed S-System model for various delayed networks with known delay. A new
reconstruction algorithm, built upon the Trigonometric Differential Evolution
(TDE), is designed based on the adaptive regulatory-genes cardinality based
fitness function. A well-studied synthetic network, incorporating two delay sce-
narios, is considered for evaluation The performance is measured by the two
widely accepted performance measures (i.e., Sensitivity and Specificity), where
average errors are also plotted for both the cases. We have also investigated
the effect of sample sizes in the reconstruction procedure for the same delayed
networks. In all the cases, excellent performances are observed for TDSS over
state-of-the-art algorithm. The focus of our current research is to extend the
applications to medium and large-scale network for higher number of delayed
interactions.
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Information and Communication Technology Australia) research in Systems Bi-
ology flagship program.
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Abstract. In almost all biological systems including genetic networks,
the complex simultaneous interactions occurring amongst different or-
ganelles within a cell are both - instantaneous and time-delayed. Among
the various modeling approaches, applied for inferring Gene Regula-
tory Network (GRN), recently proposed Time-delayed S-System Model
(TDSS) is capable of simultaneously represent both the instantaneous
and time-delayed interactions. While the delay parameters are incorpo-
rated in the S-System model to propose TDSS, this open a new challenge
in GRN reconstruction. This paper proposes a systematic approach to fit
in various level of knowledge in the delay parameters during the reverse
engineering process. Further, we have approximated the delay parame-
ters with well-known statistical measure Pearson correlation coefficient.
Experimental studies have been carried out considering two widely used
synthetic networks with various delays and real-life network of Saccha-
romyces cerevisiae called IRMA. The results clearly exhibit the influence
of incorporating knowledge in the parameter learning process.

Keywords: Pearson correlation coefficient, Reverse Engineering,
Time-delay.

1 Introduction

A Gene Regulatory Network (GRN) captures the mutual interactions among
genes and helps in better understanding of the interactions at cellular level. The
analysis of GRNs and metabolic pathways is carried out with various types of
GRN models, e.g., Boolean Network, Petri Net, Bayesian Network (BN), Dy-
namic Bayesian Network (DBN) [1]. The S-System model, first proposed by
Savageau [2], is a well-known formalism for modeling biochemical systems and
was applied for GRN modeling in the late 90s. Despite its large number of
parameters, the S-System formalism has an excellent ability to cope with non-
linearity and to infer a GRN accurately [2–6]. However, the applications of the
S-System model was limited to very small networks due to the high compu-
tational complexity. Later, a decoupled version S-System greatly improved the
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overall performance of GRN reconstruction [3], but still the application is lim-
ited to medium scale network consists of 30-50 genes [5]. Other than our recently
proposed TDSS [7], all the so far proposed method for GRN reconstruction with
S-System model consider instantaneous interactions in the network, hence the
delayed regulations are either missed or inferred with inappropriate weights. The
TDSS [7] has included the time-delays in the regulatory interactions while in-
ferring GRNs with S-System model and capable of simultaneously representing
both instantaneous and time-delayed regulations. The proposed TDSS is capable
of learning the delay parameters during the evolutionary optimization process,
along with the other S-System parameters. As the new modeling parameters
(delay) are included in the TDSS, it opens the further scope of optimization
in the reverse engineering process. This paper presents a systematic approach
to include knowledge in the delay parameters, excluding them from the learning
process. In addition, we have proposed a new technique for generating the knowl-
edge using modified Pearson correlation coefficient technique. The experiential
results clearly demonstrates the effect of knowledge in the optimization.

2 Literature Review

2.1 The S-System Model

For a network of N genes, the S-System model is given by the following set of
ordinary differential equations (ODEs):

dXi

dt
= αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij

j , i = 1 . . .N (1)

Here, for any ith gene, Xi is the expression level, {αi, βi gij , hij} are traditional
S-System parameters that represent the network. To infer a GRN of N genes
using the S-System model, 2N (N+1) parameters must be estimated, which are
reduced to 2(N+1) by introducing the decoupled S-System [4, 5].

2.2 Time Delays in Biological Network

In the biological system, various genetic interactions occur amongst different
genes concurrently. An interaction among two genes is said to be instantaneous
if it occurs within single time-sample/timestamp (TS). On the other hand,
if the interaction from the source gene starts in one TS and ends in a later
TS it is known as time-delayed interaction. In the currently existing S-System
model based reconstruction techniques the delayed interactions are missed or in-
ferred with incorrect regulatory weights by the reconstruction method. However,
our recently proposed TDSS [7] can reconstruct the delayed interactions, along
with the instantaneous interactions, using the modified S-System model and im-
proved inference method with compatible accuracies in the learning of system
parameters.
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3 The Proposed Framework for GRN Reconstruction

3.1 TDSS: The Model

It is already mentioned that, for a particular gene (gene-i) in a N -gene network,
the S-System can represent 2N interactions with N interactions of production
phase and remaining of degradation phase [2]. As a result, delay can occur in
any of the 2N interactions. Hence we derive the time-delayed S-System equation
accordingly:

dXi,t

dt
= αi

N∏
j=1

X
gij
j,(t−τg

i,j)
− βi

N∏
j=1

X
hij

j,(t−τh
i,j)

i = 1 . . .N, t = 0 . . . T (2)

where, the delay parameters τg and τh are considered as two matrices of di-
mension N ∗N , defined as {0 ≤ {dgi,j , dhi,j} ≤ τmax}, ∀i,j=1...N . Here, dgi,j (dhi,j)
indicate the delay unit for regulation on i from j in production (degradation)
phase, and τmax represents the maximum delay of the GRN. The new model
requires both τg and τh as the input of the model or should be learned during
the optimization along with other S-System parameters (α, β, g, h). For synthetic
data, we have generated the time-series data from the network parameters by
experimentally adding delays on predefined interactions in the network. Hence,
we get the delay matrices directly from our estimation. However, delay matri-
ces are not known in the same way for real genetic network and they should
be constructed fully or partially by applying a suitable preprocessing technique,
or should consider as parameters to learn during the optimization. We propose
a heuristic pre-processing phase in the following section to obtain the delay
matrices.

3.2 Constructing Delay Matrices with Modified Pearson Correlation
Coefficient

We have used Pearson correlation coefficient (PCC) technique [8] to obtain the
approximated lag values for the interaction based on our improved Pearson cor-
relation coefficient. The conventional PCC is a measure of dependance (linear)
between two variables X and Y (genes in our case), and returns a value between
+1 and -1 inclusive. If we shift variable Y to s cell(s) and perform the PCC,
it will return a value which indicates the mutual interaction of variable X on
variable Y with s unit delay. However, due to the non-linear nature of genes’
interactions and linearly testing property of the PCC, the precalculation of de-
lay matrices yields the values that may have inappropriate meaning in terms
of true regulatory network. We propose a heuristic algorithm to calculate more
accurate matrices using PCC and then extract the approximate delay unit for
each interaction. Lets consider that a GRN of N genes are sampled T times
to produce a microarray data. Moreover, there are M datasets, which are pro-
duced from M initial conditions for each genes. In between two time-samples,
we generate 9 more values using well-known Linear Spline Interpolation. At the
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end, each data set has 10×T samples which we will use to generate the delay
matrices. After that, we apply the following improvement over standard PCC to
obtain the probable delay for the interactions of the given network. We define
the following operation as the standard PCC between gene-i (Gi) and gene-j
(Gj) of k

th data set, shifting Gj expression by s cells to the right.

PCCk(s)[i, j], s = 0 . . . 10τmax, k = 1 . . .M, i = 1 . . .N, j = 1 . . .N (3)

Here, s = 0 implies conventional PCC operation, while other values of s define
PCC for s unit delay between genes Gi and Gj . We set the maximum value of s
to τmax before computing the PCC based on some “prior knowledge” about the
network. Every PCCk(s)[i, j] for a particular s value construct M matrices (for
M data sets), each having N ×N cells. According to the following equation, we
obtain the average among M absolute values for each interaction:

PCC0(s)[i, j] = Average(|PCC1(s)[i, j]|, |PCC2(s)[i, j]|, . . . , |PCCM (s)[i, j]|),
∀i, j = 1, . . . , N, ∀s = 0, . . . , 10× τmax

(4)
Then we filter every cells of each matrix based on the threshold ζ (=0.9 for our
experiment) and mark the cell by its corresponding s value:

PCC0(s)[i, j] =

{
s if PCC0(s)[i, j] > ζ
0 otherwise

, ∀i, j = 1, . . . , N, ∀s = 0, . . . , 10× τmax

(5)
Finally, we obtain the PCC matrix for a microarray data by taking the maximum
lag values among all 10× τmax+1 values for every interaction:

PCC[i, j] = max{PCC0(0)[i, j], PCC0(1)[i, j], . . . , PCC0(10× τmax)[i, j]}
∀i, j = 1 . . . N

(6)
This matrix is considered as the prior knowledge for the delayed regulations and
used throughout the optimization in one separate experiment. Although, the
proposed TDSS requires two delay matrices, i.e., τg and τh, we set the value of
the matrix of Eqn. (6) to τg and consider 0 to all entries in τh. These values are
initialized once to τg and τh, and remain fixed throughout the optimization.

3.3 Inference Method

In this research, we have used the recently proposed inference method ‘RE-
GARD’ [9], which is a two phase optimizer. REGARD first initializes the popu-
lation with a domain knowledge based ‘Prediction Initialization Algorithm’ that
initializes 90% individuals with exactly I regulations, where I is the maximum in-
degree of a genetic network, and remaining 10% individuals are initialized with
zero regulation. Moreover, we have used the fitness function of REGARD [9]
in this method to measure the goodness of a solution. During the optimization,
where the procedures of Trigonometric Differential Evolution (TDE) are invoked
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(i.e., Mutation, Crossover), a local search heuristic [5] is applied to iteratively
check an individual by forcing low weighted values to zero. After certain gen-
erations or when the terminal condition is met, the first phase ends up with
probable candidate solution. Then a two stage pruning algorithm (Multistage
Refinement Algorithm) is invoked to further improve the learned parameters.
It should be noted that, similar to REGARD [9] the max in-degree value for
each gene is initialized to N , however, the min-degree in initialized to the total
number of delayed regulations of the corresponding gene. The proposed TDSS
is executed for 400 generations in each runs, while 5 runs are taken in total. In
each run, the individual with minimum fitness value is reported as candidate
solution.

4 Experimental Results and Discussions

We have segregated the experimentation in two sections: the first section demon-
strate the performance of TDSS on two two synthetic networks, while the inves-
tigation results on real-life IRMA network are shown in the following section.
For the first section, we have incorporated knowledge of various levels (i.e., 0%,
50%, 75%, 100%) for the delay matrices, as the delays for each regulations are
known. Further, we have shown the results of TDSS by including the knowledge
about the delay calculated using the modified PCC technique. Since, the delayed
regulations are not known as prior knowledge for the real-life networks, we have
applied the information extracted from our modified PCC as the value for delay
parameters.

4.1 Synthetic Networks

The performance of the new model TDSS is studied by investigating the 5-gene
synthetic network of [3]. For comparison, we have implemented the same ex-
perimental setup reported in [9]. Two well-known performance measures, i.e.,
Sensitivity (Sn) and Specificity (Sp), are used to demonstrate the performance
of TDSS. We have considered two different cases of the 5-gene synthetic network,
can be found as Conf-2 and Conf-3, respectively in [7]. It is already mentioned
that, both the delay matrices (τg and τh) should be given as the input to the
optimization method, which is known to verify the synthetic networks. Consid-
ering this known matrices are knowledge, we have investigated the efficacy of
the proposed method for different levels of knowledge, and results are shown in
Table 1. Case 1 has single TS delay on 5 regulations, while Case 2 has four in-
teractions with fractional TS values, and two more interactions with integer TS.
It can be observed that, proposed algorithm infer the delayed network (‘Case
1’) accurately with high precision. Due to the presence of delayed interactions
in the GRN and hence the effect of the delayed interactions in the microarray
data, proposed TDSS failed to retrieve one instantaneous regulation up to 50% of
knowledge was provided about the delay matrices. However, TDSS was successful
to infer all the regulations correctly when 75% of knowledge was incorporated,
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while the entire network was inferred correctly with the full knowledge. Due to
the fractional delays in ‘Case 2’, TDSS failed to infer all the regulations without
incorporating 100% knowledge. We also test the performance of TDSS when the
given knowledge is constructed from the modified PCC. Although not optimal,
the performance of TDSS for both the Cases are satisfactory and indicate the
effect of modified PCC in creating delay matrices. The proposed TDSS is also

Table 1. Experimental result for infer 5-gene Synthetic Network [3] with TDSS for
two different cases: “Case 1” and “Case 2”

Given Knowledge in Delay Matrices (τ g and τh)

0% 50% 75% 100% Using PCC%

Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

C
a
se

1 Best Case 0.92 0.89 0.92 0.94 1.00 0.97 1.00 1.00 0.92 0.90
Average 0.86 0.84 0.89 0.90 0.93 0.94 0.95 0.98 0.90 0.87
Case ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.02 ±0.03

C
a
se

2 Best Case 0.86 0.70 0.91 0.84 0.94 0.90 1.00 1.00 0.90 0.87
Average 0.84 0.65 0.86 0.75 0.86 0.80 0.94 0.84 0.87 0.84
Case ±0.02 ±0.03 ±0.02 ±0.03 ±0.02 ±0.03 ±0.02 ±0.05 ±0.02 ±0.03

evaluated with a 20-gene synthetic network [5] with a delay configuration shown
as Conf-5 in [7]. The results, shown in Fig. 1, demonstrate that with the 100%
knowledge given as input the proposed TDSS can infer the entire network within
considered 400 iterations. However, the performance of TDSS for 0% knowledge
which indicates the clear influence of delayed regulations in the microarray data.
Moreover, when the knowledge is constructed from modified PCC the result is
again not very satisfactory, which implies the lack of accuracy for PCC in de-
tecting the non-linear dependency between regulations in a delayed network.

Fig. 1. ROC graph of TDSS for inferring 20-gene delayed network with various levels
of given knowledge in delay matrices.
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4.2 Real-Network of IRMA

The proposed technique is next applied to a real-life biological network of Sac-
charomyces cerevisiae (yeast) called IRMA [10]. The network is composed of five
genes (CBF1, GAL4, SWI5, GAL80, ASH1), regulating each other. There are
two sets of gene expression profiles, namely Switch ON and Switch OFF data
having 16 and 21 time series data points, respectively. In our experiment, we
have used the Switch ON data set which consisting of 8 regulations in the origi-
nal network. The evaluation is performed in two ways: no knowledge were given
as input in the first case, while in the later case, delay parameters were given
as input which is obtained by modified Pearson correlation coefficient technique
(discussed in Section 3.2). The experimental result, shown in Table 2, highlights
that the proposed TDSS with delayed matrix performs better than all the ex-
isting methods in literature in terms of Sensitivity. Although, the Specificity is
slightly inferior, still comparable to the existing state-of-the-art methods.

Table 2. Performance Comparison with IRMA real network in terms of Sensitivity
(Sn) and Specificity (Sp) among existing and proposed TDSS

TDSS TDARACNE NIR & BANJO
without PCC with PCC [11] TSNI [12] [13]

(Best) (Average±StdDev) (Best) (Average±StdDev) (Best) (Best) (Best)

Sn 0.69 0.65 ±0.04 0.76 0.70±0.03 0.63 0.50 0.25

Sp 0.83 0.80±0.02 0.86 0.82±0.03 0.88 0.94 0.76

5 Conclusion

In this paper, we have evaluated the performance of Time-delayed S-System
(TDSS) model for various Synthetic and Real-networks. While the delay pa-
rameters are included in the S-System equations to form TDSS model, the op-
timization in the delay parameters opens a new field of research. In contrast
to learning the delay parameters, we have proposed an heuristic approach to
estimate those parameters using modified Pearson correlation coefficient. The
experiments have been carried out by including various levels of knowledge (%
of total delayed regulations) for different delayed networks. We observe a grad-
ual improvement in the learning process with the increase of knowledge level in
the delay parameter. Investigations carried on both the synthetic networks and
real networks show that our approach outperforms (in terms of sensitivity and
specificity) the existing methods used for comparison in this paper.
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Abstract. Extracting age and gender information from EEG data has
not been investigated. This information is useful in building automatic
systems that can classify a person into gender or age groups based on
EEG characteristics of that person, index EEG data for searching, iden-
tify or verify a person, and improve performance of brain-computer inter-
face systems. In this paper, we propose a framework based on PARAFAC
and SVM that can automatically classify age and gender using EEG data.
We also propose a method using N-PLS and SVM to improve the classifi-
cation rate. Experimental results for the proposed method are presented.

Keywords: Electroencephalogram (EEG), age and gender Recognition,
Speech Features, parallel factors (PARAFAC), multilinear partial least
squares (N-PLS), support vector machine (SVM).

1 Introduction

In clinical psychophysiology, the effects of age and gender on electroencephalo-
gram (EEG) signal have been investigated [1], [2]. Topographic differences in
EEG maturation have been found. The differences in the EEGs of normal chil-
dren and children with attention-deficit/hyperactivity disorder was also reported
[1]. Particularly, there is a shrinkage of large neurons and an increasing the
number of small neurons and glia [3]. The reason for these changes could be
the decrease in cerebral blood flow [4]. When age increases the low frequencies
of EEG seem to be replaced by faster waves. In children, the delta and theta
waves are dominant before the age of 4 years then decreasing. Meanwhile the
alpha and beta waves increase throughout childhood and the total amplitude
decreased with age during childhood [5]. In the elderly, the reduction of the al-
pha frequency causes a greater anterior spread to frontal regions and reduces the
alpha wave blocking response and reactivity. Increment in beta wave activities
has been reported and considered as an early indication of intellectual loss [3].
Bioelectrical correlates of face gender recognition was investigated in [6], where
visual stimulation was performed with 64 pictures of human faces. However ex-
tracting age and gender information from EEG data has not been addressed as

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 632–639, 2013.
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a problem in knowledge discovery and data mining area. This information is
useful in building automatic systems that can classify a person in to gender or
age groups based on EEG characteristics of that person, index EEG data for
searching, identify or verify a person based on his/her EEG data, and improve
performance of brain-computer interface systems.

In neuroscience, principal component analysis (PCA) and independent com-
ponent analysis (ICA) have been mainly utilised for decomposing multi-channel
EEG signals. These methods, however, require two-dimensional representation
of the data and have disadvantages when high-dimensional representation is
needed. Recently, multi-way analysis or tensor decomposition has gained many
interests due to the multi-dimensional nature of neuroscience data. Tensor de-
composition has been used to model EEG signal as space-time-frequency ar-
rays. Specifically, PARAFAC was used to decompose wavelet transformed event-
related EEG consisting of either channel-frequency-time 3-way arrays, [7] and
[8], or channel-frequency-time-subject-condition 5-way arrays, [7].

In [9], multiway partial least squares (N-PLS) was used to analyse concurrent
EEG/fMRI data. The EEG (independent variable) was decomposed as spatial-
spectral-temporal atoms and the fMRI (dependent variable) as spatial-temporal
atoms with the constraints to maximize the covariance between temporal signa-
tures of the EEG and fMRI. In [10], canonical decomposition (CANDECOMP)
was used to detect the seizure onset zone from the potential distribution of the
ictal activity from EEG. The author showed that only one atom is related to the
seizure activity. In [11], PARAFAC was employed to detect neonatal seizure lo-
calization by using a sum of rank-1 components to extract oscillatory seizure ac-
tivity and spike train activity. In [12], PARAFAC was used to model the epilepsy
seizure structure, localize a seizure origin and extracting artifacts. An epilepsy
tensor was constructed with three modes time-scales-electrodes using wavelet
analysis of multi-channel ictal EEG. In [13], PARAFAC was combined with
SVM to classify left and right index imagery movements. The spatial-temporal-
spectral characteristics of the single trial EEG signal were decomposed into two
distinct factors and SVM was utilised to classify these factors. More reviews of
tensor decompositions and its applications can be found in [14].

We propose in this paper a framework based on PARAFAC and SVM to
automatically classify age and gender from EEG signal. Features extracted from
each EEG channel consist of popular EEG features and the speech processing-
based features. The latter feature extraction method was also used in [15] and
[16] to detect neonatal seizures. After extracting features, we used these features
to build a third-order tensor with the following modes: time epochs, features
and electrodes. Then we use PARAFAC to decompose the tensor into sum of
rank-one tensors. These tensors were then used to extract features and sent to
a machine learning method such as SVM to build age and gender models for
that person. Additionally, in order to improve the recognition rate we propose
a method that utilise the N-PLS regression model to extract the components
that can fit the tensor and predict the class labels at the same time. These
components were used to extract features for the SVM classifier. Experimental
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results show that our propose system can recognise age and gender from EEG
signal and using N-PLS and SVM can improve the recognition rate.

2 EEG Database

The Australian EEG Database used in this research consists of EEG recordings
of 40 patients at the John Hunter Hospital [17], near University of Newcastle,
over an 11-year period. There are 20 male and 20 female and their ages are
between 19 and 69. The EEGs were recorded using 23 electrodes followed the
standard International System 10-20 electrode placements. The recordings were
sampled at 167 Hz for about 20 minutes in the resting state with eyes open and
eyes closed. The recordings were split equally into a training set to train age and
gender models and a test set to evaluate the performance of the age and gender
classification system.

3 Feature Extraction

As described in the Introduction section, we extracted features for the EEG data
and saved them in 2 sets. The first set contains the popular EEG features (rela-
tive powers in different frequency bands, auto regressive and Hjorth parameters)
and the second set contains the speech features (MFCC, Log filter-bank powers
and Line spectral pairs).

Popular EEG Features: The spectral power in 2 Hz frequency bins from 1 to
30 Hz was computed for each channel. The central frequency of each bin was an
integer. The relative power, which is the power in a specific frequency divided
by the total power in all frequency bins from 1 to 30 Hz, together with the total
power were also used. In addition, 11 AR coefficients of the 11th-order AR model
and 3 Hjorth parameters (activity, mobility and complexity) were extracted for
each electrode site.

Speech Features: We used the open-source Emotion and Affect Recognition
toolkit’s feature extraction backend openSMILE [18] for extracting speech fea-
tures. Each channel is considered as an EEG signal and is extracted speech
features. The features include 10 Mel-frequency cepstral coefficients (MFCC)
calculated from the discrete cosine transform (DCT) the log filterbank powers,
15 log filter-bank powers (LFBP) computed from the corresponding filter-banks
[18] and 8 line spectral pairs (LSP) coefficients. LSP have smaller sensitivity to
quantization noise than linear prediction coefficients (LPC) hence are useful in
speech coding and speaker recognition [19].

4 Parallel Factor Analysis (PARAFAC)

The PARAFAC model with R components of a three-way array X(I × J ×K),
with elements xijk can be written as a trilinear model [20]:
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xijk =

R∑
r=1

airbjrckr + eijk (1)

or using the tensor products notation:

X =

R∑
r=1

arΔbrΔcr +E (2)

where ar, br, cr with elements air, bjr, ckr respectively are the rth columns of
the component matrices A(I × R), B(J × R) and C(K × R) respectively and
E(I × J ×K) is a three-way array containing the residuals with elements eijk.

The PARAFAC decomposition was performed using orthogonal loadings. Af-
ter the decomposition, the matrices B and C were used to project the tensor to
the factor subspace. The resulting tensor was then matricized to make feature
vectors for feeding to an SVM classifier.

The PARAFAC decomposition can decompose the tensor into components
that best explain the variance of the tensor. However these components may be
good in one way of labeling data but may not be good in other ways of labeling
them. Some possible ways to label EEG data can be by age, gender, epileptic
seizure and motor imagery information. Especially when various features of EEG
signal are extracted from many electrodes and some features and electrode sites
are better in explaining one kind of labeling than others. This problem motivates
us to consider utilising the N-PLS regression model to extract the components
that can at the same time fit the tensor and predict the class labels. These
components were then used to extract features for the SVM classifier.

5 Multi-linear Partial Less Square (N-PLS) Regression

TheN -PLS regression or three-way regression problem find a connection between
a three-way array X and a vector y through trying to predict y and decomposes
X in a PARAFAC-like model at the same time. It can be written [20]:

T = XV (3)

X = TW′ +EX; W = [wK
1 ⊗wJ

1 ‖...‖wK
R ⊗wJ

R] (4)

y = TbR + ey (5)

max
wJ

r ,w
K
r

cov(tr ,y
r−1); r = 1, ..., R (6)

where T is a matrix of component vectors T = [t1, ..., tR], X is a properly
unfolded two-way form of three-way array X, bR is the regression coefficient, W
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and V are matrices of weighing coefficients, where W is not orthogonal and V
can be written in terms of w1 = (wK

1 ⊗wJ
1 ) to wR = (wK

R ⊗wJ
R):

V = [w1 (I−w1w
′
1)w2 .. (I−w1w

′
1)(I−w2w

′
2)...(I−wR−1w

′
R−1)wR] (7)

In test phase a component matrix Tt = XtV was calculated from equation
(3) and used as feature vectors for test data Xt. The matrix V can be considered
as feature selection matrix.

6 Experiments

6.1 Experiment Setup

The recordings in training and test phases were splitted into 15s epochs. The 8
channels F3, F4, C3, C4, P3, P4, O1 and O2 in the frontal, central, parietal and
occipital sites were used. The channel signals in each epoch were used to extract
features and these features were merged together to make a single feature vector
for each epoch. The selected features are the popular EEG features (relative
powers in different frequency bands, auto regressive and Hjorth parameters) or
the speech features (MFCC, Log filter-bank powers and Line spectral pairs)
presented above.

All feature vectors were first scaled and centered. They are then labeled for 3
age groups and 2 gender groups resulting to 6 classes which are young female,
young male, middle age female, middle age male, elderly female and elderly male.
The young age range is 19-34, middle age range is 35-54 and elderly is 55-69.

A third-order tensor was constructed in each of the training set and test
set from the above features with modes time epochs, features and electrodes.
Then the PARAFAC decomposition or N-PLS regression were performed on the
training tensor to extract factors and loadings.

SVMwas trained usingGaussianRBF kernel functionK(xi, xj) = e−γ‖xi−xj‖2

.
Experiments were conducted using 10-fold cross validation on training set to find
the best parameters and age and gender SVMmodels and these models were used
to predict age and gender in test set. SVM parameter was search in the grid
{(C, γ)|C = {2−3, ..., 215} and γ = {2−15, ..., 23}}

6.2 Results

Figure 1 shows the recognition rate of the two method in training phase and
test phase using different number of tensor factors in PARAFAC and N-PLS
model. It can be seen from the figure that the number of tensor factors should
be greater than 6 for the robust age and gender recognition, the performances
are low when less than 4 factors are used.

Tables 1 and 2 show the confusion matrices of age and gender classification
using PARAFAC-SVM and N-PLS SVM respectively. These matrices were cal-
culated from the confusion matrix of 6-class classification experiment in the test
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Fig. 1. Accuracy versus number of factors in EEG-based age and gender recognition.
Left figure is training phase and right figure is testing phase

Table 1. Confusion matrix of age classification in test phase using 8-factor N-
PLS+SVM (A) (with classification rate of 92.5%), and using 8-factor PARAFAC
(B)(with classification rate of 91.9%

(A)

Classified as → Young Middle Elderly

Young 494 6 17
Middle 29 599 23
Elderly 4 40 374

(B)

Classified as → Young Middle Elderly

Young 481 12 24
Middle 14 592 45
Elderly 9 24 385

Table 2. Confusion matrix of gender classification in test phase using 8-factor N-
PLS+SVM (A) (with classification rate of 93.8%), and using 8-factor PARAFAC
(B)(with classification rate of 93.4%)

(A)
Classified as → Female Male

Female 718 38
Male 61 769

(B)
Classified as → Female Male

Female 715 41
Male 63 767

phase by summing the predictions over the desired classes. The tables show bet-
ter performance in age and gender classification using the N-PLS SVM method.

Table 3 showed the top 10 factor loading coefficients getting from the first
factor loading vector wJ

1 averaged across the channel dimension in equation (4).
It can be seen that the log filter band power, line spectral pair and cepstral
coefficients have the most loading weights for the first factor
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Table 3. Top 10 factor loading coefficients getting from the first factor loading vector
wJ

1 averaged across the channel dimension

# Loading coefficients Features

1 0.30538 logMelFreqBand[5]
2 0.30268 logMelFreqBand[10]
3 0.26764 lspFreq[7]
4 0.25214 logMelFreqBand[14]
5 0.24784 mfcc[4]
6 0.23394 logMelFreqBand[1]
7 0.22775 lspFreq[3]
8 0.22163 mfcc[8]
9 0.16134 logMelFreqBand[13]
10 0.16121 mfcc[8]

7 Conclusion

We have shown that age and gender information can be extracted from EEG
signal and can be exploited for future applications. Feature extraction methods
for speech signals which are normally used for age, gender and speaker recogni-
tion can also be employed for age and gender classification using EEG data. We
have also demonstrated that tensor decomposition can be used to decompose
the EEG and the speech features tensor. In addition the N-PLS regression can
be used to improve the performance by extracting the components that can fit
the tensor and predict the class labels at the same time.

References

1. Clarke, A.R., Barry, R.J., McCarthy, R., Selikowitz, M.: Age and sex effects in the
eeg: development of the normal child. Clinical Neurophysiology 112(5), 806–814
(2001)

2. Carrier, J., Land, S., Buysse, D.J., Kupfer, D.J., Monk, T.H.: The effects of age
and gender on sleep eeg power spectral density in the middle years of life (ages
20–60 years old). Psychophysiology 38(2), 232–242 (2001)

3. Van Sweden, B., Wauquier, A., Niedermeyer, E.: Normal aging and transient cog-
nitive disorders in the elderly. Electroencephalography: Basic Principles, Clinical
Applications and Related Fields 4, 340–348 (1999)

4. Sanei, S., Chambers, J.A.: EEG signal processing. Wiley-Interscience (2008)
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Abstract. Diverse machine learning models have applied to cancer survivabili-
ty prediction. But most of them tend to report only the performance of the mod-
el. However, in order to help medical specialists to establish a treatment plan by 
using machine learning models, it is more pragmatic to elucidate which va-
riables (markers) have most significantly influenced to the resulting outcome of 
cancer. This motivated us to propose a hybrid approach of two machine learn-
ing models, semi-supervised learning co-training and decision trees. The former 
performs prediction for cancer survivability, and the latter post-processes the 
results mainly focusing on which variables are more highly ranked. The pro-
posed method was tested on the breast cancer survivability problem based on 
the surveillance, epidemiology, and end results database for breast cancer 
(SEER).  

1 Introduction  

Although breast cancer is the second most lethal cancer in women, the mortality rates 
have declined by about 25% since 1990, due to early detection, better treatment op-
tions, and particularly increased accuracy in cancer prognosis [1, 2]. Cancer prognosis 
includes cancer susceptibility, cancer recurrence, and cancer survivability [3-5]. Di-
verse predictive models from machine learning or data mining have employed to per-
form predictions on cancer survivability which stands for the problem of whether a 
patient is to be or not to be a survivor after 1,825 days (5 years) from the date of can-
cer diagnosis.  

In [6], the authors conducted a wide ranging investigation of different machine 
learning methods, discussing issues related to the types of data incorporated and the 
performance of these techniques in breast cancer prognosis. The authors of [5] used 
two popular data mining algorithms, artificial neural networks (ANN) and decision 
trees (DT), together with a common statistical method, logistic regression, to develop 
prediction models for breast cancer survivability. In [4], a hybrid prognostic scheme 
based on weighted fuzzy decision trees is proposed, which has shown to be an effec-
tive alternative to independent use of crisp classifiers. In [7], support vector machines 
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(SVM) based classification was carried out concerning both the prognosis and diag-
nosis problems of breast cancer. From the comparison results with ANN and Bayesian 
method, they demonstrates the superiority of SVM in terms of sensitivity, specificity 
and accuracy. 

In prediction of survival of breast cancer patients, the performance of the estab-
lished machine learning models including ANN, SVM, semi-supervised learning 
(SSL), Bayesian Methods, etc., has been often compared and the winner model is 
renewed paper by paper [7-10]. While such studies have been devoted to enhance-
ment of the predictive power or accuracy of the predictive model, interpretability of 
the predicted results has received less attention. Most of them are like a black-box 
module only producing the prediction results and accuracy as a measure of perfor-
mance for comparison. In other words, it is difficult to know what happened during 
prediction and how we obtained the results: for instance, the question like 'which 
factors(variables) are most significantly contributed to survival/death classification?' 
is usually veiled. In practice, however, the answer benefits for medical practitioners 
and patients in many ways. By knowing the significant factors, we can make a proper 
choice of therapy, which may elevate the likelihood of successful treatments. At the 
same time, redundant or unimportant factors for breast cancer can be ruled out from 
then on, which will lead to reduction in time and cost during data collection and dur-
ing treatment as well. Among the representatives in machine learning models, a DT is 
a model equipped with reasonably good general ability and interpretability [10, 12, 
16-18]. However, it would occur that its performance does not reach to those of the 
up-to-date models, i.e., SVM, SSL, Bayesian Methods [13, 14]. To investigate the 
predicted results further, one may not want to simply give up using the winner model. 

To circumvent the dilemma, we suggest a hybrid approach of two machine learn-
ing models, SSL Co-training [8] and DT [17]. SSL Co-training generates the  
predicted output for cancer survivability. The model generates pseudo-labels by co-
training multiple SSL member models, which assign them to unlabeled data before 
treating them as if they were labeled. As the labeled data increase, the predictive per-
formance of the ordinary SSL increases. The algorithm realizes the tenet of 'the more 
labeled data, the better prediction' which would be applied to most machine learning 
algorithms. After prediction, DT post-processes the results in order to provide varia-
ble importance: which variables are more highly or less significantly ranked when 
describing the results of the prediction. The proposed method is validated on the sur-
veillance, epidemiology, and end results cancer incidence database (SEER), which is 
known as the most comprehensive source of information on cancer incidence and 
survival [20]. Performance comparison of the proposed method with the latest ma-
chine learning models is provided with clinical implications on the results. 

2 Proposed Method 

The proposed model employs two models: SSL Co-training and DT. SSL Co-training 
generates the predicted labels for patient samples on whether the patient will be sur-
vived or not [8]. After then, DT post-processes the prediction results by using deci-
sion trees [16-18]. It profiles the reasons which variables are most determinant in 
identifying survived/dead patients, which translates as variable importance.  
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2.1 Prediction with Semi-Supervised Learning Co-training 

Recently, many machine learning researchers have found that unlabeled data, when 
used in conjunction with a small amount of labeled data, can produce considerable 
improvement in learning accuracy. And it is "paradigmed" as semi-supervised learn-
ing. SSL exploits the knowledge of the input structure from unlabeled data and at the 
same time utilizes the label information provided by labeled data [13, 14].  SSL may 
be a good candidate to use a predictive model for cancer survivability, particularly 
when the available dataset for model learning has an abundance of unlabeled patient 
cases but a lack of labeled ones. Like many other machine learning algorithms, how-
ever, the availability of more labeled data leads to better performance. This motivated 
our previous work, SSL Co-training, which is designed to generate "pseudo-labels" 
and increases the performance of SSL. The model is based on graph-based SSL [13, 
14, 19].  

In graph-based SSL, a weighted graph is constructed where the nodes represent the 
labeled and unlabeled data points while the edges reflect the similarity between data 
points. Figure 1(a) depicts a graph with two labeled and three unlabeled data points. 
Given  data points, the labeled nodes are set to ∈ 1, 1 , while 
the unlabeled nodes are set to zero (y 0). The edge between the two nodes is 
usually measured by the Gaussian function, and the value of the similarity is 
represented by a matrix W . The algorithm will output an n-dimensional real-
valued vector [ ] , … , , , … ,  , which can generate a 
threshold value to perform the label predictions on  , … ,  as a result of the learn-
ing. The label information propagates from the (labeled) node to an (unlabeled) node 
when they are coupled by a path of high density (e.g., the value of  is large), their 
outputs ′  are likely to be close, whereas their outputs need not be close if they are 
separated by a low-density region (e.g., the value of  is small). These assumptions 
are reflected in the value of f by minimizing the following quadratic function [13, 21]: min  

where L is the graph Laplacian, defined as L = D - W where  ,∑ . The parameter μ trades off loss and smoothness. Thus, the solution of this 
problem becomes  . 
Based on the basic framework of graph-based SSL, SSL Co-training obtains more 
labeled data by assigning labels to unlabeled data, i.e., "pseudo-labels," and uses them 
for model learning as if they were labeled [8]. The model involves multiple member 
models where pseudo-labels are determined based on agreements among the mem-
bers. Therefore, it is named as SSL Co-training. The toy example shown in Figure 1 is 
helpful for understanding the model. At the start of the algorithm, each of the member 
models (for simplicity, we assume two classifiers) is trained on the original graph (a). 
After training, both member models produce predicted labels for the unlabeled nodes. 
The unlabeled nodes are pseudo-labeled when the member models agree on labeling, 
or it remains unlabeled. The resulting graph is shown in (c).  SSL Co-training  
increases the performance of an ordinary SSL thanks to the pseudo-labeled data 
points. Further details on the method can be found in [8]. 
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3 Experiments  

3.1 Experimental Setting 

The SEER database claims to have one of the most comprehensive collections of 
cancer statistics [1, 15]. The data consists of 162,500 records with 16 input variables 
and one target class variable. The input variables include incidence, mortality, preva-
lence, survival, lifetime risk, and statistics by race/ethnicity, etc. The target variable 
'survivability' is a binary categorical feature with values ‘–1’ (not survived or dead) or 
+1 (survived). The first three columns of Table 1 summarizes the variables and the 
corresponding descriptions.  

Table 1. Prognostic elements of breast cancer survivability (SEER) and the resulting ranking 
by the order of variable importance 

Prognostic 
elements Description 

Variable 
Importance 

1 Lymph Node  
Involvement 

None, (1–3) Minimal, (4–9) Significant, etc. 1.00 

2 Stage Defined by size of cancer tumor and its spread 0.87 

3 Site Specific 
Surgery 

Information on surgery during first course of therapy, whether 
cancer-directed or not. 

0.77 

4 
Number of Positive 

Nodes Examined 
When lymph nodes are involved in cancer, they are known as posi-

tive. 0.75 

5 Tumor Size 2–5 cm; at 5 cm, the prognosis worsens 0.61 

6 Age at Diagnosis Actual age of patient in years 0.44 

7 Clinical Extension of 
tumor 

Defines the spread of the tumor relative to the breast 0.38 

8 
Number of Nodes  

Examined 
The total number of (positive/negative) lymph nodes that 

were removed and examined by the pathologist. 0.12 

9 Histological Type Form and structure of tumor 0.12 

10 Primary Site 
Presence of tumor at particular location in body. Topographi-

cal classification of cancer. 0.07 

11 Grade 
Appearance of tumor and its similarity to more or less aggressive 

tumors 
0.05 

12 Marital Status Married, Single, Divorced, Widowed, Separated 0.05 

13 Race Ethnicity: White, Black, Chinese, etc. 0.02 

14 
Number of 
Primaries 

Number of primary tumors (1–6) 0.01 

15 Behavior Code Normal or aggressive tumor behavior is defined using codes. 0.00 

16 Radiation None, Beam Radiation, Radioisotopes, Refused, Recommended, etc. 0.00 

Survivability Target binary variable defines class of survival of patient. 

 
The generalization abilities of five representative predictive models, i.e., DT, 

ANN, SVM, SSL, and SSL-Co training, were compared. For each of the five models, 
the best performance was selected by searching over the respective model-parameter 
spaces.  The area under the receiver operating characteristic (ROC) curve (AUC) was 
used as performance measures. To avoid the difficulties in learning of the predictive 
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models, caused by the large-sized and class-imbalanced dataset, 40,000 data points 
were used for the training set and 10,000 for the test set, which were drawn randomly 
without replacement. The equipoise dataset of 50,000 data points was eventually di-
vided into ten groups and five-fold cross validation was applied to each.  

3.2 Results 

Figure 2 shows a comparison of the AUC results of DT, ANN, SVM, SSL, and SSL 
Co-training in due order, for each of the 10 data sets. SSL Co-training produced an 
average AUC of 0.81, which was the best of the five models although comparable 
performance was delivered by SVM. On the other hand, DT showed an average AUC 
of 0.73, and just ranked the worst performed model ANN. Either DT or ANN may be 
a good predictive model for some other problems, but are less likely to be the one 
than other three models in the current study. 

 

Fig. 2. Performance comparison over 10 data sets: DT, ANN, SVM, SSL, and SSL Co-training. 
The average AUCs are 0.73, 0.70, 0.80, 0.78, and 0.81, respectively.  

The labels for the test samples were obtained from SSL Co-training, which per-
formed best among the five competing models. The test samples with predicted labels 
were input to DT, together with the training samples.  

The last column of Table 1 shows ranking of the 16 input variables in terms of 
Eq.(1), the relative magnitudes to the value of the most important variable. It shows 
that 'Lymph Node Involvement' is the most determinant variable in identifying sur-
vived/dead patients, therefore it has a value of 1. And in order of variable importance, 
'Stage', 'Site-specific Surgery', 'Number of Positive Nodes Examined' and 'Tumor 
Size' belong to the top-tier ranked up to 5th variables, and are regarded as more im-
portant ones than the rest. The five variables are all related to the findings from a 
pathologic exam. It is known as the best way to assess lymph node status and can give 
a first estimate of breast cancer stage and the size of tumor. 

To discern that how those variables influence to classification, the two patient 
groups of the survived and the dead were profiled, respectively. Figure 3 shows a 
graph of the average values of 16 variables for the two patient groups. The grey line 
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in the center stands for the overall average of the variable, whereas the blue/red line 
stands for the group average of the survived/dead, a scaled value relative to the over-
all average. Compared the averages of the two groups, significant differences can be 
found by 'Lymph Node Involvement', 'Number of Positive Nodes Examined', 'Stage', 
'Behavior Code', 'Site-Specific Surgery', 'Tumor Size', 'Age at Diagnosis', whereas 
'Marital Status' and 'Race' do not provide significant information on discriminating the 
two groups. Relatively, a general pattern of the survived patients is less involvement 
of lymph nodes, an earlier stage, a smaller sized tumor, non-invasive in cancer beha-
vior, less (site-specific) surgeries, younger in terms of age at diagnosis. On the other 
hand, the dead patients show a pattern of larger spread of cancer over lymph nodes, a 
larger tumor size, more aggressive and invasive cancer behavior, more surgeries and 
radiation therapies, and an older age at diagnosis. This comparative profiling can help 
predict and understand the chances for long-term survival of the patients and also 
guide proper treatments that fit for each of the patients.  

 

 

Fig. 3. Variable profiling for (a) survived patients and (b) dead patients 

4 Conclusion 

Although most of the up-to-date machine learning algorithms offer daily updated best 
predictions for survivability of the breast cancer patients, they seldom provide explicit 
explicability of which variable is the most significant during prediction. To unveil the 
implicit mechanism of the prediction procedure, an idea of embedding the procedure 
for variable importance calculation was proposed. The proposed model hybridizes 
two sub-models: (1) SSL Co-training classifies patients into two classes of the sur-
vived and the dead, and then (2) DT calculates the importance of prognosis factors. 
Knowing the significant variables will lead to better insights in cancer prognosis, and 
less time and cost by excluding redundant ones during data collection. The present 
study triggers possible future works. First, the proposed method is flexible in that any 



 A Hybrid Cancer Prognosis System Based on SSL and DT 647 

 

winner model can be employed instead of SSL Co-training. Therefore, a further ex-
tension will be made on comparative study with other models. The hybrid approach 
for breast cancer prognosis is yet general and its full application for different cancer 
types will still require a continued refinement.  
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Abstract. Protein structure prediction (PSP) problem is a multimodal
problem that can be tackled efficiently by evolutionary algorithms. How-
ever, evolutionary algorithms often fail to find the global optima due to
genetic drift while solving the complex problems with a lot of peaks in
the fitness landscape. Therefore, the need to efficiently measure as well as
maintaining population diversity has significant effects in performance of
evolutionary algorithms. In this paper, we introduce a composite mea-
sure of population diversity by hybridizing the phenotypic properties
along with the distribution of individuals in a population over the fitness
landscape. We further propose a memory-based diversification technique
for the maintenance and promotion of diversity to prevent occurrence of
stuck condition in multimodal problems such as PSP. Experiments con-
ducted on protein structure prediction with HP benchmark sequences for
3D cubic lattice model illustrate that the proposed techniques are useful
in improving the optimization process in terms of convergence as well as
for achieving the optimal energy.

Keywords: Protein Structure Prediction, Diversity, Phenotype.

1 Introduction

The success of searching for the global optima through the complex fitness land-
scape of a multimodal problem having several peaks, greatly depends on both the
search approach as well as on the search space. While dealing with the compu-
tational complexity of a long-standing NP-hard problem [1] like PSP, even with
simplified lattice models [2], deterministic algorithms cannot provide satisfactory
solutions in reasonable amount of time [3]. Consequently, it has motivated the
investigation of various stochastic search methods (e.g., evolutionary algorithms)
such as genetic algorithms (GA) [4], memetic algorithms (MA) [3], estimation
of distribution algorithms (EDA) [5] to address the problem. Among these evo-
lutionary methods, MA that offers the goodness of both local and global search
algorithms, can be more robust than other approaches to deal with the complex
and challenging nature of PSP. However, like other evolutionary approaches, the
problem of getting stuck in local optima at an early stage of evolution due to
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the lack of diversity is frequently observed in MA. Hence, in multimodal prob-
lems, it is necessary to maintain a sufficiently diverse population of potential
solutions so that the search can trail different paths through the landscape to
explore it efficiently. It is therefore considered as a key factor in success of MA to
measure and subsequently preserve required level of diversity in the population.
Diversity usually refers differences in structures [6] or behaviors [7, 8] of indi-
viduals in a population. In this paper, to address the issue associated with the
aim of maintaining diversity, we propose a new composite measure of diversity
based on phenotypic and distribution of individuals over the fitness landscape.
Further, we propose a diversification mechanism to maintain the required level
of diversity in the population when it reaches below a certain threshold value.
The efficacy of the proposed techniques has been investigated with the protein
structure prediction problem for benchmark sequences of 3D cubic HP model.

2 Background

2.1 HP Lattice Model

Protein structure prediction (PSP) problem can be defined as the problem of
finding the native structure of a protein having the lowest possible free energy
given only its amino acid sequence. The Hydrophobic-Polar (HP) model [2] is
the most widely used model for lattice simulation that considers the hydrophobic
effect as the main driving forces for the formation of protein structure. According
to the model, amino acids are classified either as hydrophobic (H) or polar (P)
based on their affinity for water. More details about the model and the energy
function used in this paper can be found in [3, 9].

2.2 Existing Measures of Diversity

In the field of evolutionary computation, the pre-requisite of maintaining diver-
sity is to measure it by a metric based on some population features such as
individual fitness values (phenotype), structures (genotype) or the combination
of two [6]. Among these, the most common approach is to quantify the structural
varieties in the population by hamming distance which calculates the distance
between two individuals by the number of bitwise differences (moves, in our
case) they have. However, phenotypic or behavioral measures have the following
advantages over the genotypic one: i) The phenotypic diversity usually implies
genotypic diversity, but the reverse is not necessarily true ii) Phenotypic measure
does not depend on a particular encoding scheme iii) Due to the straightforward-
ness of phenotypic diversity measure, it requires less time in computation [6].
Measuring diversity based on phenotype has been proposed in [7, 8, 10, 11].

Furthermore, the extreme disorder or uneven distribution of population can
be considered as an indication of premature convergence [12]. However, the lim-
itation of all the above measures is that these do not convey enough information
about the distribution of fitness values over the fitness landscape and none of
these measures can differentiate among the different diverse situations occurring
through the evolutionary process.
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2.3 Existing Diversification Techniques

When the optimization process gets stuck in local minima, the number of the sub-
optimal solutions increases over the generations due to the selection pressure and
spreads over the entire population resulting in loss of diversity [6]. Consequently,
it leads to premature convergence affecting further improvement. Hence, it is nec-
essary to trigger a mechanism to increase the level of diversity when it is dropped
below a certain threshold value or the evolution is stagnant for specified number
of generations. The most conventional diversification strategy is to replace certain
percentage of individuals from the population with new randomly generated in-
dividuals either i) in every generation [13] or ii) whenever current diversity goes
below a pre-defined threshold value [14]. In most cases, randomly generated in-
dividuals replace the existing ones that are selected either randomly or based on
specific criteria such as genotypic similarity or the fitness values.

3 Proposed Method

3.1 Novel Composite Metric for Measuring Diversity

To appraise the diversity of population we have proposed a novel metric to mea-
sure the diversity based on the phenotypic feature of population. The proposed
measure not only highlights on the phenotypic property, also capable of differen-
tiating among various situations with different distribution of fitness values over
the fitness landscape. Therefore, our proposed composite measure of diversity
comprises of two terms: for any population, the first term (T1) measures the
phenotypic differences among individuals and the second term (T2) evaluates
the distribution of individuals over the fitness landscape.

A. Phenotypic Measure: To measure the diversity in any Gth
t generation, we

partition the population into equidistant groups called fitness bucket according
to their fitness values. If fworst

t and f best
t respectively denote the worst and the

best fitness values in the tth (current) population, and ε represents the difference
between the lower and upper limit value of each bucket, the number of possible
fitness buckets (denoted by Ft) is obtained as (+f best

t , − (fworst
t ))/ε. Here, the

ith bucket contains the individuals with fitness values in the range (fmin
t,i , fmax

t,i ],

where fmax
t,i −fmin

t,i = ε. The number of buckets containing at least one individual
is denoted as Favailable. Finally, Fmax represents the number of maximum pos-
sible fitness bucket up to the Gth

t generation, obtained by (+f best
t ,−(fworst

0 ))/ε.
The first term or phenotypic measure is computed according to the following
equation:

T1 =
(Ft − Favailable)× Favailable

Ft
+ Favailable

Fmax
(1)

Although the diversity can be measured by Favailable/Fmax representing the ra-
tio of available fitness buckets and maximum possible fitness buckets, the other
term in numerator is used to represent the distribution of these fitness buckets
over the fitness landscape. For example, if we compare between two populations
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both having the same number of possible fitness buckets (Ft) but with differ-
ent number of occupied fitness buckets (Favailable), the population having more
occupied buckets must be considered more diverse than the other one. On the
contrary, while comparing two populations having same number of occupied fit-
ness buckets in different span (i.e., the number of possible fitness buckets Ft),
the population with larger span is considered as more diverse since the occupied
fitness buckets are more sparse here. The term (Ft − Favailable) × Favailable

Ft
is

used to balance between the two different aforementioned situations. In brief,
the proposed term quantifying phenotypic diversity not only measures diver-
sity based on fitness values, but also considers the distribution of these values.
To comprehend the scenario clearly, let us consider Table 1, that shows three
different scenarios for varying Fmax, Ft and Favailable values:

Table 1. Different scenarios of T1, in terms of numerical values, for two different Fmax

values with corresponding various Favailable and Ft

Fmax 15 20

Ft 9 9 10 10 15 15 9 9 10 10 20 20

Favailable 2 5 9 10 10 15 2 5 9 10 10 20

T1 0.24 0.48 0.66 0.67 0.89 1.00 0.18 0.36 0.50 0.50 0.75 1.00

B. Fitness Based Distribution of Population (DoP): To measure the
DoP, as a first step, we sum up the absolute values of deviation of number
of individuals actually contained in each fitness bucket (ni) from the number
(nb = N/Favailable, where N denotes the population size) residing in the fitness
bucket in an evenly distributed population.

DoPsum =

Favailable∑
i=1

|nb − ni| (2)

Further, the value of DoPsum is normalized to [0, 1] by dividing it with a value
corresponding to the worst case scenario. The worst case calculation is performed
according to the following equation by considering Favailable-1 buckets each with
only one individual and one bucket containing the remaining individuals:

DoPworst = |nb − 1| × (Favailable − 1) + |nb − (N − (Favailable − 1))| (3)

To get the final value of DoPnorm, we divide Eq. 2 by Eq. 3

DoPnorm =

∑Favailable

i=1 |nb − ni|
|nb − 1| × (Favailable − 1) + |nb − (N − (Favailable − 1))| (4)

As Eq. 4 is a minimization function (the more individuals are distributed evenly,
the lower the value of DoPnorm is), we subtract DoPnorm from 1 to obtain the
final value for T2 in terms of maximization function:

T2 = 1−DoPnorm (5)
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C. Composite Metric to Measure Diversity: Finally, diversity of the pop-
ulation (Dv) is calculated as follows:

Dv = w1 × T1 + w2 × T2 (6)

where, w1 and w2 are two weighing factors. To execute predominance of T1 over
T2 , the value of w1 should be greater than w2 and has been set based on empirical
observations. It should be noted that, the complexity of Hamming-distance based
diversity measurement technique is O(N2L), which is NL (L=length of the
sequence) times higher than the proposed technique.

D. Novel Memory-Based Diversification Strategy: Although, the tradi-
tional random immigrant scheme maintains the diversity level of the population,
it may have no actual effect in later phases of evolution. This is due to the fact
that, for survival, these individuals may have to compete with the existing in-
dividuals that are more fitter than the random immigrants. Here, we propose
a new diversification strategy using memory-based immigrants with a memory
size m = x% ∗N ∗ div interval, where x is the percentage of immigrants during
the diversification, N is the size of the population and div interval denotes the
frequency at which diversification procedure is invoked. This memory is used
to store unexploited individuals having different fitness values generated by the
cross-over operation at every generation during the course of evolution. These
individuals are used as immigrants to diversify the population in later stages.
With respect to which individuals should be stored in the memory, we consider
the offspring with worse fitness value than the other one generated by a cross-
over operation, since it has not yet been exploited in the optimization. At every
generation, exactly one individual having an unique fitness value is selected to
be stored into the memory. Once the memory is full, we insert an individual with
fitness value fnew if any other individual with the same fitness values does not
exist in the memory. To accommodate the individuals with fnew in the memory,
we replace the most recently inserted individuals from the crowded region, i.e.,
the maximum number of individuals with the same fitness value. The rationale
behind this is to use the individuals from memory as immigrants with sufficient
generation difference to prevent the co-existence of offspring generated from the
same parents. The proposed technique ensures the inclusion of completely new
and unexploited individuals as immigrants for diversifying the population. Fur-
ther issues as to when and how to use the memory, is described below.

In order to apply the diversification, we check the diversity of the population
in every DVF generation, and if the diversity of a population (Dv) is less than
the threshold ψt and the best fitness of the population is not changing for the
last h generations, we apply the proposed diversification technique as follows:

– x% individuals of the population are selected probabilistically (using fitness-
based probability) from the memory having fitness values in the range
((fWorst

0 ) − +fBest
t ,) giving preferences to relatively fitter individuals.

– In order to accommodate the incoming immigrants in the population, we
select the individuals from existing fitness buckets for replacement. While
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selecting the individuals to be replaced, the crowded buckets (according to
the DoP) are given preference.

– While selecting an immigrant from the stored individuals with the same
fitness value in the memory, we apply First-in-First-out (FIFO) technique
to prevent the coexistence of closely similar individuals.

4 Experimental Results and Discussion

To evaluate the performance of the proposed and random diversification tech-
nique, we consider all non-benchmark and benchmark sequences defined in [3],
which are widely used to testify the methods for realizing 2D and 3D HP lattice
models. The evaluation of the proposed diversification has been demonstrated
for the complicated sequences (B5-B9) having moderate length (i.e., 48 to 85).
To get an empirical observation on the influence of the proposed and random
diversification, we have executed a sample run of 100 generations without any
diversification. In 100th generation, we have separately applied the proposed and
random diversification over the population. Fig. 1 (a)-(d) shows the snapshot of
individuals in the population over different generations (i.e., 1, 10, 50, 100). At
100th iteration, we have separately applied both the random and proposed di-
versification, where the population after diversifications are shown in Fig. 1(e)
and Fig. 1(f), respectively. First four snapshots in Fig. 1 clearly shows the grad-
ual decrease of diversity over the generation and the span of energy values has
become narrow in 100th generation. Although, the diversity of the population
has been increased after applying the random diversification, it divides the pop-
ulation into two visible spans. On the other hand, the distribution of population
is found to be excellent after applying the proposed diversification, as shown
in Fig. 1(f). Further, we have investigated the effect of proposed diversification
in protein structure prediction with a simple Memetic Algorithm (MA) where
both proposed and existing diversification techniques have been used separately
for 3D HP lattice. Other than the diversification algorithms, the cross-over and
mutation rate used here are 0.8 and 0.1, respectively. Here we have applied pull-
move as local search [3] with the rate 0.3 over the individuals of the population
in every 30 generations interval. In both the diversification techniques, 30% of
total population are selected for replacement. The selected individuals are then
replaced by randomly generated individuals in the existing diversification tech-
nique, whereas in the proposed technique, previously generated but unexploited
solutions, which are retrieved from memory are used as immigrants. Both the
MAs are executed for 25 runs with maximum 1,00,000 fitness evaluations in each
runs. For five benchmark functions (B5−B9), we plot the obtained energy values
for each modules in Table 2. We observe that, for all the sequences, the MA with
proposed diversification technique ends up the final 1,00,000th fitness evaluation
with better fitness values than the MA with random diversification. The average
energies in the MA with proposed diversification technique are found superior
than the MA with random diversification.
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(a) At Generation 1 (b) At Generation 10 (c) At Generation 50

(d) At Generation 100 (e) After Random Diversi-
fication

(f) After Proposed Diversi-
fication

Fig. 1. Effect of Random and proposed Diversification. Snapshots of individuals in
the population at generation (a) 1 (b) 10 (c) 50 and (d) 100 (before diversification).
Individuals in the population after (e) Random and (f) Proposed diversification. For
better viewing perspective, absolute values of energies are considered in the Y-axis

Table 2. Best energies reported by MAs with proposed and random diversification.
E∗ for each benchmark sequence numbers indicate the known best energies.

With Proposed (Memory With Existing (Random)
based) Diversification Diversification

BN(E∗) Best Avg±STD Best Avg±STD

B5(-31) -29 -28.2 ±1.10 -25 -24.0 ±0.71
B6(-32) -28 -26.8 ±0.84 -24 -22.6 ±1.52
B7(-54) -47 -45.6 ±0.89 -45 -43.6 ±1.14
B8(-58) -49 -46.2 ±2.17 -42 -40.4 ±0.89
B9(-79) -68 -65.6 ±1.52 -63 -61.4 ±1.52

5 Conclusion

In this paper, we have proposed a new metric to measure the diversity of a
population based on its phenotypic feature along with the distribution of the
individuals over the fitness landscape. Moreover, we have also introduced a novel
memory-based diversification mechanism that ensures required level of diversity
in the population. An extensive analysis is performed to assess the efficacy of
the proposed measure of diversity and diversification technique with widely used
benchmark protein sequences, that has shown excellent performance.
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Abstract. In this paper, a new algorithm for training support vector machines 
(SVMs) for classification problems with parallel sequential minimal optimiza-
tion (SMO) is proposed. The selection of the working set is paralleled so that 
the iteration of the optimization process is reduced greatly. The experimental 
results show the training time of the proposed method is always less than the 
original SMO algorithm, and at the same time the classification accuracy is 
kept. 

Keywords: SVM, SMO, Parallelization. 

1 Introduction 

Support Vector Machines (SVM) is a very useful tool for solving pattern recognition 
problems [1]. Due to its good performance in generalization on the basis of statistical 
learning theory [2], more and more research on SVM has been done and a lot of va-
riants of SVM have been implemented. 

The training step of SVM in the dual space was proposed in [1] using Lagrange 
multipliers. With the increasing number of the training data and support vectors, more 
optimization strategies have been adopted, especially some decomposition methods 
such as chunking[1], Osuna’s algorithm, and Sequential Minimal Optimization(SMO) 
[3, 4].  

The chunking method starts with a subset of data called chunks and iteratively en-
larges that subset by including those examples that violate the optimization conditions. 
In Osuna’s algorithm, the training examples were separated into two groups: the 
working set denoted as B and the rest of the data defined as N. In [4], Osuna’s theo-
rem demonstrates that moving a variable from set B to set N does not change the cost 
function and ensures that there is a strict improvement in the cost function after mov-
ing a variable that violates the optimality condition. Osuna’s algorithm makes training 
SVMs tractable especially when the number of support vectors is quite large. SMO [3] 
ensures its convergence due to Osuna’s theorem and optimizes only two Lagrange 
multipliers at a time, which means that the size of working set is only two. The per-
formance of SMO in training time is better than Osuna’s algorithm according to most 
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of the experiments in [3]. This leads to a better performance in many circumstances 
and can be applied to both classification and regression problems. There are also some 
other algorithms using decomposition methods like SVML [5] and the algorithm 
used in LIBSVM [6, 7]. The former utilizes a first-order approximation of the object 
function and seeks a steepest direction of descent. The latter considers a more precise 
approximation using second order information, aiming at obtaining a faster conver-
gence speed [6]. 

There are some researches about the parallelizing SMO algorithm, reducing the 
training time of SVM considerably. In [8], the whole data set is divided into smaller 
subsets and distributed to different processors. By parallelizing the procedure of up-
dating the error array denoted by F , the parallel SMO algorithm is much faster than 
the original one, especially when the number of data is large. The Casade SVM was 
introduced in [9], which trains SVMs in layers like filters. Because some examples 
are unlikely to be support vectors in an early stage of optimization, they are filtered. 
Those being support vectors are passed down to another layer for further training and 
testing. The process iterates until convergence. The main idea in parallel SVM is to 
reduce the time and memory cost by training, which derives our parallel algorithm 
dealing with working set selection.  

In this paper, an algorithm of parallelizing the procedure in training SVM is pro-
posed. We focus on the selection of working sets and choose two pairs at the same 
time. From the experiment, we show that the time of training is less than the original 
serial SMO. Furthermore, the prediction accuracy is maintained. 

This paper is organized as follows: section 2 gives a brief introduction to SVM, de-
composition methods and some related works. In section 3, we propose our paralleliz-
ing solutions and the experiment results are shown in section 4. Finally, section 5 
discusses some problems in our method and gives a possible solution in future works. 

2 Support Vector Machines 

In classification problems, we denote 
l

i i i 1{X ,y } =  as input samples where 
l

i i 1{X } =

are the training examples and 
l

i i 1y { 1,1} == − are the corresponding labels. Training 

an SVM aims at solving an optimization problem given below: 

                       T

w

1
min f (w) w w

2
=                            (1) 

subject to 
T

i iy (w x b) 1 i 1,2,..., l+ ≥ =  

In order to handle misclassifications when the input samples contain noises, slack 

variables iξ  are added into (1). Thus we obtain a soft margin classification problem. 
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l

T
i

w
i 1

1
min f (w) w w C

2 =

= + ξ                      (2) 

subject to    
T

i i iy (w x b) 1+ ≥ − ξ  

i 0, i 1,2,..., lξ ≥ =  

where C > 0 is the regularization parameter. One way of solving (2) is to handle with 
the following dual problem based on Lagrange duality theorem and get the following 
optimization problem in the dual. 

      
l l l

T
i i j i j i j

i 1 i 1 j 1

1
max Q( ) y y (x ) (x )

2α = = =

α = α − α α ϕ ϕ             (3) 

subject to  
l

i i
i 1

y 0
=

α =  

i0 C i 1,2,..., l≤ α ≤ =  

where α  is the Lagrange multiplier and (x)ϕ is the mapping function and we denote 
TK(x,x ) (x) (x )′ ′= ϕ ϕ known as the kernel function which implicitly maps data to 

a high-dimensional space without computing the mapping function. There are some 
typical kernel functions such as polynomial kernel and Gaussian kernel. Finally, if the 
kernel matrix satisfies Mercer’s condition which means that K is positive semi-
definite, (1) becomes a QP optimization problem which contains no local minima.  

3 Sequential Minimal Optimization 

However, the Kernel matrix i j i jy y K(x ,x )  may be too costly to be fit into the 

memory due to its size and density. Platt’s sequential minimal optimization (SMO) 
[3] focuses on choosing two instances as working set. However, due to its underlying 
inefficiency in choosing the threshold value, modifications of Platt’s SMO are pro-
posed in [10], which introduces an improvement by choosing and updating the worst 
violating pair and also deals with two threshold parameters. The optimization problem 
is defined as follows. First, we rewrite the optimization problem from (3). 

            
l l l

i i j i j i j
i 1 i 1 j 1

1
max Q( ) y y K(x , x )

2α = = =

α = α − α α               (4) 
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subject to 
l

i i
i 1

y 0
=

α =  

i0 C i 1,2,..., l≤ α ≤ =  

According to [10], we define:  

up 0 1 2I ( ) I ( ) I ( ) I ( )α = α α α   

low 0 3 4I ( ) I ( ) I ( ) I ( )α = α α α   

where 

0I ( ) {i : 0 C}α = < α <  

1 i iI ( ) {i : y 1, 0}α = = α =  

2 i iI ( ) {i : y 1, C}α = = − α =  

3 i iI ( ) {i : y 1, C}α = = α =  

4 i iI ( ) {i : y 1, 0}α = = − α =  

The optimization condition for the problem is the following: 

                
up low

i ji I ( ) j I ( )
min F ( ) max F ( )
∈ α ∈ α

α ≥ α                         (5) 

where
l

i i i j i j i jj 1
i

Q( )
F ( ) y y ( y y K(x ,x ) 1)

=

∂ αα = = α −
∂α  . Thus, if a pair of indices 

(i, j) violates the above optimization condition, it is called a violating pair. Due to 
[10], the optimality holds if and only if no violating pair exists.  

4 Parallelizing the Process of Working Set Selection 

In this section, the parallel algorithm is proposed. First, we briefly introduce the idea 
of our algorithm and its difference from some other solutions. Then we give a more 
detailed picture of how to perform our parallelization on choosing violating pairs in 
working set selection.  

Different from the methods above, we parallelize the process of working set selec-
tion and the updates of Lagrange multipliers in LIBSVM. In one of the parallelizing 
processes, we choose the maximal violating pair and we also choose the second max-
imal violating pair in the other one. Thus we make the time spent on training de-
creased in classification problems. Different from [8], our method is not similar to a 
single program multiple data model (SPMD) because we choose different working 
sets in the two parallel processes. Also, our algorithm does not require interaction 
between the two parallelizing processes because we simultaneously choose the max-
imal and the second maximal violating pairs and thus do not use the information from 
each other until they complete their updates. 
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Then, we provide a description of the parallel algorithm. Recall that problem (3) is 
to be solved. Based on [6, 7], we are going to solve the object function using its 
second order information. After initialization, the parallelization phase begins. We 
denote the maximal violating pair as iα , 

jα  and the second maximal violating pair as

mα , nα . The training algorithm works as follows: 

Algorithm 1: 
begin 
Initialize step:  

Initialize gradient ∇ αQ( ) and Lagrange multipliers 
αi, i = 1….l,  
where l is the total number of training instances 
repeat 
Parallel step:  

  1: Select working set and choose the maximal violating 
pair αi and α j  

2: Select working set and choose the second maximal 
violating pair αm  and αn   

Serialization step: 
  Update the status of αi and α j  

  Update the status of gradient ∇ αiQ( ) and ∇ α jQ( )  
 Update the status of αm  and αn  
  Update the status of gradient ∇ αmQ( ) and ∇ αnQ( )  
   Compute the object value 
until the optimization criteria are met 

Calculate the object value and output the decision func-
tion 
end. 

5 Experiments 

The algorithm is implemented on LIBSVM and it shows that the algorithm approx-
imately halves the time cost by the serial LIBSVM algorithm. Furthermore, the loss in 
accuracy of the parallel algorithm is acceptable. The data sets used are from the web 
page of LIBSVM [13]. The first data set is the Adult data set, which contains 14 fea-
tures originally and is preprocessed according to [4]. The number of training exam-
ples range from 1605 to 16100 and the number of test examples range from 16461 to 
30956. It shows that there is a speedup at almost 50%. We also examine data sets 
from [3], which show nearly the same result as the Adult data set. We also test our 
algorithm on small data sets such as splice from Delve and SVMguide from [11], 
obtaining results similar to the above ones. 
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Table 1. Experiments on data sets with test examples 

Data Sets 

Size of 
training 
examples 

Size of test 
examples 

Accuracy 
(LIBSVM / Parallel SVM) 

Time Elapsed 
(LIBSVM / Parallel SVM)  (ms) 

a1a(UCI) 1605 30956 84.4166% / 84.2422% 483 /220 
a2a(UCI) 2265 30296 84.592% / 84.5887% 936 /562 

a4a(UCI) 4781 27780 84.5392% / 84.5887% 3588 / 1482 
a5a(UCI) 6414 26147 84.4227% / 84.4418% 6599 / 3197 
a6a(UCI) 11220 21341 84.4806% / 84.4853% 20561/ 11451 
a7a(UCI) 16100 16461 84.8065% / 84.7336% 42292/20878 
w1a (JP98a) 2477 47272 97.9121% / 97.9311% 297 / 109 
w2a (JP98a) 3470 46279 98.0704% / 98.0704% 546 / 298 
w3a (JP98a) 4912 44837 98.2314% / 98.1823% 904 / 544 
w4a (JP98a) 7366 42383 98.1667% / 98.1667% 1591 / 998 
w5a (JP98a) 9888 39861 98.2063% / 98.1987% 2543 / 1219 
w6a (JP98a) 17188 32561 98.4184% /  98.4184% 

 
8065 / 4322 

splice(Delve) 1000 2175 88.5517% / 88.5517% 483 / 264 
svmguide(CWH03a) 3089 4000 93.025% / 94.075% 4805 / 923 

There are also some data sets which do not include specific data for testing. Thus, 
we split the whole data set into 7 pieces randomly and choose 6 of the 7 pieces of data 
for training and the rest one for testing. Because such preprocessing is done every 
time before running an experiment, the data is quite reliable. We average the results 
from the sum of the 10 experiments. 

Table 2. Experiments on data sets without test examples 

Data sets 

Size of train-
ing examples 

Accuracy 
(LIBSVM / Parallel SVM) 

Time Elapsed 
(LIBSVM / Parallel 
SVM) (ms) 

breast-cancer(scaled) 683 
 

96.30712% / 96.18366% 9.4 / 9.3 

diabetes(scaled) 768 76.38394% / 75.78623% 71.7 / 48.5 
heart(scaled) 270 80.71581% / 81.27854%  26.6 / 9.5 

From the table above, it shows that the time cost by LIBSVM is almost the same as 
the time cost by the parallel algorithm in breast-cancer data set from UCI. Actually, 
the above three data set does not contain a large number of examples, leading to short 
running time in both LIBSVM and parallel algorithm. The accuracy is also quite ac-
ceptable as we can see from above. In diabetes, the LIBSVM outperforms the parallel 
algorithm by less than 0.6% in prediction while they are very close to each other in 
the rest two data sets. 

We next do our experiments on the MNIST data set which consists of 60000 in-
stances for training examples and 10000 for testing. Actually, training MNIST is a 
problem of multiclass-classification since the data from MNIST is from 10 classes. 
According to [7], “one against one” strategy is used in such classification problems, 
so k(k-1)/2 classifiers are created where k is the number of classes. In MNIST, this 
means that 45 classifiers will be constructed before the training model is built.  
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We average the sum of all the running time in the training process and then do the 
prediction. The average time and the accuracy are listed in the table below and we 
find that the training time is reduced by 53.45% and the loss in prediction accuracy is 
about 0.08%. Therefore, the result is quite acceptable. 

Table 3.  Experiment on multi-class data sets 

Data sets 

Size of 
training 
examples 

Size of test 
examples 

Accuracy 
(LIBSVM 
/Parallel SVM) 

Time Elapsed 
(LIBSVM / Parallel SVM) (ms) 

MNIST 60000 10000 98.21%  /  98.13% 15687.8 / 7302.178 

6 Discussion 

Based on the algorithm in [6, 7], we proposed a parallel method of training support 
vector machines. We choose and update both the maximal violating pair and the 
second maximal violating pair in the working set, approximately halving the time 
consumed by LIBSVM and maintaining the prediction accuracy in most cases. 

However, in some cases the algorithm fails to converge. Although some of the 
problems are solved after tuning the parameter C and gamma, the convergence of the 
algorithm is not confirmed yet. In future works, we will attempt to make the algo-
rithm surely converge by introducing the idea of function gain [12] into our work. 
After a considerable gain from the parallel step of our algorithm is obtained, we will 
stop the parallel phase of the algorithm and come back again to run LIBSVM which is 
serial so as to guarantee the convergence of our algorithm. 
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Abstract. This research aimed to program and test a neural network can predict 
the size of the wetted in drip irrigation from about pressure and flow. The study 
is important for the design of drip irrigation systems that aim to minimize costs 
and avoid waste in the application of water, fertilizers and other inputs. The 
neural network model was used with the supervised back propagation 
algorithm. Various network topologies with different activation functions were 
tested, and one presented the best index prediction, ie, lower error was found 
with five layers being 4:20:40:20:2 with linear activation function. The cross 
validation system was used to validate the results statistically, since the number 
of measurements is small (120). The final average error for the bulb diameter 
was at 6.67%, while the average error to end the vertical distance resulted in 
9.09%. 

Keywords: drip irrigation, wetted bulb, neural networks. 

1 Introduction 

The rational management of water in irrigation ensures the best use of a smaller 
amount of water, at a lower cost. Knowledge of the soil's ability to store water in 
irrigated crops is crucial for the proper establishment of the frequency of irrigation. 

To this end it created the precision irrigation, which consists in monitoring the area 
to be irrigated, providing up water only where and when appropriate, thereby 
avoiding wastage and preventing water stress in plants. In drip irrigation the best way 
to know the distribution and, consequently, the redistribution of water in soil is by 
monitoring the wetted bulb. 

For this purpose, it is necessary to develop tools that allow the monitoring of water 
supply for each soil type, as the distribution and redistribution of soil water are 
different according to the characteristics of the soil. One of the tools used for this 
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analysis is the modeling, able to simulate various combinations of working pressure, 
flow rate and dimensions of the wetted. 

In the paper of Levin et. al. [1] was estimated size of wet soil volume in different 
soils under surface drip irrigation, using mathematical models in the literature. As a 
result it was concluded that the simulated data volume dimensions of wet soil of 
medium texture, for different flow rates of emitters at different times of application, 
can be used to guide irrigation in similar soils, noting that the models numerical and 
analytical exhibit more reliable results [1]. 

In this context, the present study aimed to program and test a neural network can 
predict the size of the wetted from information of pressure and flow. The study is 
important for the design of drip irrigation methods that seek to minimize costs and 
waste mainly in the application of water, fertilizers and other inputs. 

2 The Importance of Precision Irrigation 

The method of drip irrigation is in one of the best alternatives to overcome the 
occurrence of significant spatial variability of physical, chemical and morphological 
characteristics of soils in irrigated areas. Through simple operational modifications, 
the method can take into account possible variations in retention characteristics and 
movement of water in irrigated area. In drip irrigation operating pressures are 
generally low and small changes in pressure produce significant effect on the 
variation of flow and, consequently, the uniformity of water application, increasing 
the accuracy of the application. 

At paper Burneya et. al. [2], the researchers assessed the drip irrigation powered by 
solar energy as a strategy to improve food security in rural Sudano-Sahelian West 
Africa. They observed that the drip irrigation solar-powered household income 
increased significantly compared to alternative technologies. Moreover, they also 
found improvements in the three components that ensure food security, increasing the 
steady supply of food, significant improvement in the ability of nutritional and still 
increase the ability to consume and benefit from nutritious foods, showing the 
positive impacts of drip irrigation in the region studied [2]. 

The main way to study the efficiency of drip irrigation is through the evaluation of 
the wetted bulb. The shape and size of the bulb depend on the flow rate applied, the 
type of transmitter, the duration of irrigation and the soil type. 

3 Neural Networks 

Neural networks are models of inference and nonlinear multidimensional [3]. The 
great advantage of these models is their ability to "learn", generalizing rules 
automatically extract or complex datasets. Currently, neural networks are being 
applied successfully in a wide range of problem domains, in areas such as finance, 
medicine, engineering, geology and physics [4]. 

As a neural network can accept different input data, the use of this technology 
proved to be adequate for modeling data collected in the field, such as: data 
monitoring water quality, hydrological parameters for disaster prediction, topographic 
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information, edaphic parameters, biomass values, stages of crop development, 
simulaçõesda influence of environmental conditions on the water quality and the flow 
of small water bodies, soil water distribution, among others.  

At paper Sporl, Castro and Luchiari [5], the researchers developed a methodology 
for building models of environmental fragility in neural networks and concluded that 
the RNA is efficient to do this translation. The results showed that it is possible to 
emulate, with reasonable reliability, the standard of review in the definition of weak 
environmental systems [5]. 

The behavior of discriminant variables in digital soil mapping using artificial 
neural networks was evaluated in the work of Chagas et. al. [6]. The maps generated 
by each of the six sets of variables were compared to reference points for determining 
the accuracy of classification. It was concluded that the approach using neural 
networks can help make the survey solosmais faster and less subjective [6]. 

The efficiency of artificial neural networks, compared with the maximum 
likelihood classifier for the classification of land use, with emphasis on levels of 
pasture degradation in City of Viçosa, State Minas Gerais - Brazil, has been studied 
by other work Chagas et. al. [7]. In this work, it was observed that the use of artificial 
neural networks for classification of the use and land cover is extremely efficient. 

The work Kisi [8] investigated the potential of techniques and MLP RBNN 
(Recurrent Backpropagation Neural Network) for application in the investigation of 
monthly estimates of evaporation using climatic data entries. It was found that the 
models used are more suitable than other applications in multi-stations and that such 
techniques ANN (Artificial Neural Networks) can be applied in the modeling of water 
use in project reservoirs, and several other hydrological applications [8]. 

4 Methodology Applied 

The experiment was conducted in a greenhouse built in the Experimental Center of 
Agricultural Engineering of the State University of West Paraná, city Cascavel, State 
of  Paraná-Brazil, whose geographical coordinates are: latitude 24 ° 53'S, 53 ° 23'W 
longitude and altitude of 682 meters. The soil of the region is classified as Hapludox 
[9]. The soil of the experiment consists of 68% clay, 13% silt and 19% sand.  

To measure the dimensions of the wetted bulb inside the greenhouse, a trench of 1 
m3 was opened, across the irrigation line. It was installed a drip pipe with a flow rate 
of 3.73 l / h / m and pressure ranging from 3, 5, 7 and 9 mca with emitter spacing of 
20.3 cm. The slope was found in level, working with a uniformity of distribution of 
95% and for that, lines with 61 m long were used. Two pressure gauges were installed 
at the beginning and at the end of the irrigation line to control the pressure along the 
irrigation. In the field wet bulb was measured at intervals of 30, 60, 120, 180 and 240 
minutes, being used later when the results will be compared with the simulated 
dimensions through the neural networks model.  

Altogether 120 repetitions were performed, so in order to make the model it was 
developed a neural network composed of multilayers with a backpropagation 
algorithm. In it, the learning is done based on the error included in the response 
provided by the network, which means that the difference between the actual response 
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Several neural network configurations were used, the criterion was to evaluate 
configurations close to that which presented the best fit.  

To compare the variances of the measured and estimated values for the network 
validation sets F-test was applied, which is one of the tools of data analysis, which 
involves comparing the results to variations in population. The result data are 
presented in Table 3.  

Table 3. Results obtained by F-test 

Experiment p-value Confidence interval for the ratio of the variance 
Validation 01 0.84 99% 
Validation 02 1.26 99% 
Validation 03 0.76 99% 
Validation 04 0.97 99% 
Validation 05 1.36 99% 

Through table 02, it can be concluded that the estimates made by the neural model 
for the five data sets evaluated had their variances equal to the measured data, the 
99% confidence level. Finaly, it can be concluded, therefore, that the modeling of the 
distribution of ground water using RNA satisfactorily meet the application tested, 
since it allows the characterization of the wetted times and to certain crops, favoring 
the application of water with precision while minimizing waste of water. 
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Abstract. It is shown that ensemble classifiers composed of neural networks 
trained using particle swarm optimisation can uncover a substantial degree of 
predictability in stock price movements. As in a previous work by the authors 
use is made here of a training metric, the Matthews correlation coefficient, that 
has been shown to better handle numerically unbalanced data sets. The work 
provides a solid basis for the future construction of a trading model. 

Keywords: Particle swarm optimisation, ensemble classifiers, forecasting, 
portfolio management. 

1 Introduction 

In spite of past academic scepticism as to the predictability of markets [1] there do 
appear to be periods of predictability [2]. Investors are demanding of active money 
management that can exploit such opportunities. However managers need to be wary 
of 'black box' solutions, since some patterns may persist only for short time periods 
and it is important to pre-empt changes in underlying market structure by retiring 
from use inappropriate models. Thus the ideal model from a fund manager's point of 
view would be one that both facilitates profitable decisions and also to some degree 
explanation for these decisions. This paper presents results that while preliminary go 
some considerable way toward achieving these simultaneous desirable objectives. 

Steel companies were used in this study because they have been among the worst 
performers since the global financial crisis in 2008. Although a recovery is not likely 
to be imminent, it is nevertheless perceived to be possible beyond 2013, the argument 
being supported by the fact that the price of steel is currently at its lowest since July 
2009.  This study aims to highlight some of the factors that drive stock prices for steel 
companies, and tests the ability of these drivers to predict aggregate returns using a 
methodology based on previous work by the authors [3], which showed that an 
ensemble of neural networks trained using particle swarm optimisation (PSO), and 
making use of the Matthews correlation coefficient as a fitness function, could 
identify those financial factors most strongly associated with firm-specific risk.  
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fitness measure, since the MCC was shown in our previous work to be more effective 
than training on mean squared error for unbalanced data sets.  

The data were chosen with a focus on identifying factors that could be used to 
predict price movements, not on the back-testing of a trading model, and for this 
reason factor averages were taken over the twelve weeks comprising each quarter of 
the moving window, and these values used to predict the signs of forward returns. 
However the relevant factors that were identified could of course become the basis for 
a trading model, and it is intended to make this the subject of future work. 

3 Methods 

3.1 Particle Swarm Optimisation 

Particle swarm optimisation (PSO) [4] is a biologically inspired, population based 
search algorithm that has been applied successfully in many areas, including finance 
[3,5,6]. Every particle in the swarm has a velocity vi and position xi, where the latter 
will here correspond to the full list of weights possessed by the ith neural network. 
The equations used to update the velocity and position are 

                                   vi,t+1 =Wvi,t +φ1β1(pi,t − xi,t )+φ2β2 (gt − xi,t )   ,                        (1a) 

                                                        xi,t+1 = xi,t + vi,t+1                                                (1b) 

where pi,t 
is the best position (weight set) found at time t by particle (net) i, gt (gbest) 

is the best position found at this time by any particle, β1, β2 are random numbers 
chosen uniformly from the interval [0,1], and W is an iteration-decreasing inertia 
weight. In the current work as in [3] 500 training iterations were used, with a swarm 
size of 25 particles, φ1 =φ2 = 2, with decreasing inertia weight W in the range [1, 0.2].  

3.2 Matthews Correlation Coefficient (MCC) as a Fitness Metric 

The MCC is for a two-class problem defined by  

              ,          (2)  

where n00 (n10) is the number of true (false) negative examples and n11 (n01) is the 
number of true (false) positive examples. An MCC of 1 denotes perfect performance, 
a value of 0 either a random guess or the assignment of everything to one class. 
Because the MCC is a counting measure its use as a training metric is problematic for 
methods such as error backpropagation that require a differentiable performance 
metric; differentiability of the fitness function is not however necessary for PSO, and 
this feature of PSO is one of the motivations for its use in the current work. 

MCC = n11n00 − n01n10

(n11 + n01)(n11 + n10 )(n00 + n01)(n00 + n10 )
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3.3 k-Means Clustering  

This was required for the weight vector analysis of Section 4.2, and was done using 
Matlab. The Euclidian distance was minimised to estimate the cluster centroids, 
which were initially approximated by partitioning 10% of the data randomly. 

3.4 Training Methodology and Assessment of Results  

Each of the 69 consecutive experiments consisted of five runs, each run consisting of:   
 

• The set of 307 companies is randomised and divided into five non-overlapping but 
roughly equally sized subsets which will be the five test sets for this run;  

• For each such division the remaining four-fifths of the data is itself divided into 
five non-overlapping subsets and fivefold validation carried out, with the gbests at 
each iteration also assessed on the validation data, the gbest weight set saved from 
each training/validation split being that which did best on the validation set; 

• The five weight sets thus selected are used as a committee to classify the test set 
by taking an average of their outputs. 
 

As in our previous work [3] it was discovered here that using multilayer nets as 
swarm/ensemble members did not improve classification performance on validation 
sets; a not unexpected result given the amount of noise typically present in financial 
data, but as in [3] useful in that with single layer nets the magnitudes of input layer 
weights can then give an indication of the degree to which factors are involved in the 
classifier decision process. Test results (each of the 307 companies during a given run 
being used for testing once and only once) were assessed according to the normalised 
percentage better than random (NPBR), defined here as in [3]. 

4 Results 

4.1 Predictability of One Month and Twelve Month Returns 

This section will investigate the degree to which aggregate returns (averaging across 
all 307 steel companies) can be predicted from the 32 financial factors mentioned in 
the introduction, highlighting those factors that appear most predictive over the one 
month and twelve month periods, and showing that restriction of the input factors to 
only those deemed most predictive can improve the reliability of the predictions. 

Fig. 2 below shows the average (± one standard deviation) NPBR achieved for one 
month or twelve month forward prediction for all 69 successive financial quarters 
(around six years of data), using the training methodology described above. The 
breaks in the NPBR curves for the twelve month problem correspond to periods in 
which data are too severely imbalanced (for example in time period 36 all stock price 
returns were positive) to support training, even using the MCC as a fitness measure. 
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As can be seen from the table, for the one month forward return problem the 
primary splitting of ensemble classifier weight vectors does indeed appear to be on 
the basis of the classifier's reliability, measured by the average NBPR achieved during 
those time periods belonging to the relevant cluster. For the twelve month forward 
return problem, which is somewhat easier, the primary basis for clustering was 
instead the proportion of predictions of positive returns, essentially a prediction of 
whether the steel market as a whole will rise or fall during the next year. It can further 
be noted that while k=3 clustering was somewhat difficult to interpret, k=4 clustering 
created a split in each of the clusters discovered at the k=2 level into subclusters based 
on whichever of the above two criteria was not used at the primary k=2 level. 

5 Discussion  

The work presented here has established it is possible to discover financial factors 
relevant to the prediction of returns in the steel industry, one for which predictions are 
considered to be challenging. Results for the prediction of positive versus negative 
returns were sufficiently above random; we believe the incorporation of trading costs 
will not undermine the system, and we now intend to create a realistic trading model 
for backtesting. Within this trading model we believe it may be possible to use the 
results of our clustering analysis, in particular for k=2, to create weight filters based 
on past training experience that will allow an informed decision to be made about the 
use of a newly trained predictor. Overall we feel our results are encouraging, and 
while the use made by the PSO ensemble of some of the financial factors was found 
at least at first inspection to be counter to industry intuition, the quality of the results 
strongly supports further work in the direction of the construction of a trading model. 
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Abstract. Haemophilia A is a genetic disease resulting from deficiency
of factor VIII. The database of mutations causing haemophilia A has
been developed by the world wide collaboration. In this study, we ex-
amined the relation between activity of factor VIII and the missense
mutation by using Support Vector Machine (SVM). As parameters, we
used four physical-chemical parameters of amino acids and a structural
feature. As a result, we predicted the severity of haemophilia A by using
SVM in A domains of factor VIII. The structural parameters influence
the prediction in A domains.

Keywords: Haemophilia A, Factor VIII, Amino Acid, Support Vector
Machine.

1 Introduction

The haemophilia is a group of hereditary genetic disorders, in which one of the
coagulation factors is deficient [1]. Haemophilia A is the most common form of
disorder caused by low concentration of the coagulation factor VIII. Haemophilia
B is another form of disorder caused by deficient factor IX. Haempphilia A
accounts for about 85% of this disorder, while haemophilia B for 10− 12 % [2].
Haemophilias A and B are clinically indistinguishable from each other. Diagnosis
must be confirmed by specific factor assay.

It becomes very important to study mutations in genes responsible for dis-
eases by biological experiment. However, it is a time-consuming, laborious and
expensive task. Thus, it is necessary to develop computational method by ap-
plying various approaches. We used a multiple regression model to predict the
effect of a missense mutation in Factor IX gene of haemoplilia B patients [3].
In ICONIP-2012, we have demonstrated the calculations using Support Vector
Machin (SVM) for the analysis of mutant Factor IX genes [4].

There have been reported a variety of defects in the factor VIII gene from
haemophilia A patients[5], and these are summarized in the haemophilia A

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 681–688, 2013.
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database [6]. In this study, we analyzed amino acid changing mitations, or mis-
sense mutations in the database described with factor VIII activity values. We
adopted 439 cases from the database. We use the distances between 20 amino
acids by using the four physical-chemical properties: Molecular volume, Hydropa-
thy, Polar requirement and Isoelectric point.

In this study, we also use the parameters obtained by using the 3D structure of
factor VIII protein; Accessible area and Fractional sidechain solvent accessibility.
The values of these two parameters are presented in the database [6].

2 Haemophilia A

The gene coding for human factor VIII consists of 26 exons and 25 introns, and
is located on the X chromosome [5]. Factor VIII is an essential blood-clotting
protein, and synthesized as a precursor protein of 2351 amino acids. This includes
a signal peptide and a mature protein of 2332 amino acids with domain structure
A1-A2-B-A3-C1-C2. Three A domains display approximately 30% homology to
each other. The C domains are structurally related to the C domains of factor V.
The B domain exhibits no significant homology with any other known protein.

We used Haemophilia A Mutation Database [6].

Table 1. Domain Structure of Factor VIII

Domain Location Number of mutants

A1 1 to 329 111
A2 330 to 711 131
B 712 to 1648 18
A3 1649 to 2019 107
C1 2020 to 2172 39
C2 2173 to 2332 33

Activity of factor VIII in a patient’s blood depends on a position of the substi-
tution and combination of original and substituting amino acids. Classification
of haemophilia A is presented in Table 2.

3 Methods

3.1 Support Vector Machine

Support vector machine (SVM)[8][9] can classify the samples xi (i = 1, · · · , n)
belonging to unknown class into two classes C1 or C2. The classification function
f(x) is defined as the Equation (1).

f(x) = sign (g(x)) = sign(wtx+ b), (1)

where w and b are parameters.
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Table 2. Classification of Haemophilia A

Concentration Classification Clinical

< 1% of normal Severe Spontaneous joint and muscle bleeding,
bleeding after injuries, accidents,
and surgery

1− 5% of normal Moderate Bleeding into joints and muscles
after minor injuries,
excessive bleeding after surgery

5− 40% of normal Mild Spontaneous bleeding does not occur,
bleeding after surgery, and accidents

Let xi belong to the class yi (= {1,−1}), and if all the samples are correctly
classified, Equation (2) will be satisfied.

∀i, yi ·
(
wtxi + b

)− 1 ≥ 0. (2)

When Equation (2) is satisfied, no samples exist between the H1 : (wtx+ b) = 1
and the H2 : (wtx + b) = −1, and the distance between H1 and H2, called as
margin, becomes 2

||w|| . To obtain the maximum margin, we minimize 1
2 ||w||2. In

SVM, it is solved by a Lagrange-multiplier method. To maximize the margin,
we rewrite the objective function as Equation (3) in subject to Equation (2),

L (w, b,α) =
1

2
||w||2 −

n∑
i=1

αi

[
yi
(
wtx+ b

)− 1
]
. (3)

where α ≥ 0 denotes Lagrange-multiplier. Partial differentiations of Equation
(3) by w and b are substituted for Equation (3), we obtain Equation (4).

L(α) =
n∑

i=1

αi − 1

2

n∑
i,j=1

αiαjyiyjx
t
ixj , (4)

in subject to

∀i, αj ≥ 0,

n∑
i=1

αiyi = 0. (5)

Here we denote αi to maximize Equation (4) as α∗
i . The sample xi with

α∗
i > 0 is called as Support Vector (SV), it exists on H1 or H2. The optimum

of w denoted as w∗ is obtained from the partial differentiations of Equation (3)
and α∗

i by Equation (6).

w∗ =

n∑
i=1

α∗yixi. (6)

The optimum of b denoted as b∗ is obtained from the Equation (7) with any
xs (s ∈ SV ).

b∗ = ys −w∗txs. (7)
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Finally, we obtain the discriminant function of SVM for linearly separable
problem as Equation (8).

f(x) = sign

(∑
i∈SV

α∗
i yix

t
ix+ b∗

)
. (8)

We use kernel trick for non-linear problems in usual. The kernel function
was radial basis function (RBF) in this study. We used the application program
SVM light to calculate the support vector machine [7]. The parameter C which
is the trade-off between training error and margin is 1, and γ which is parameter
in RBF kernel is 1.

3.2 Dataset

We used data of haemophilia A Mutation Database. The number of data in A1,
A2, B, A3, C1 and C2 domain are 111, 131, 18, 107, 39 and 33 respectively.
We used all data in each domain for training data and test data of SVM. We
considered serious illness with less than 1% of factor VIII activity, and slight
illness with more than 1% of one. We predicted the serious or slight illness of
haemophilia A by SVM based on these data.

We used a distance between amino acids for each four amino acid physical-
chemical parameters (Molecular volume, Hydropathy, Polar requirement and
Isoelectric poin). The k-th distance between amino acid Ai and Aj is defined as

D
(k)
ij = | fk(Ai) − fk(Aj) |, (k = 1, 2, 3, 4). (9)

In this study, Ai is a normal amino acid, and Aj is a substituting amino acid.
Moreover, we used the calculated accessible area and fractional sidechain sol-

vent accessibility in addition to physical-chemical parameters. The accessible
area of the side chain was given in Angstroms squared. The fractional sidechain
solvent accessibility is accessible to a 1.4 Angstrom squared probe, rolled over
the model. A value of 0 = inaccessible, 1 = totally accessible.

4 Results

4.1 Prediction of the Severity

At first, we studied whether we could predict the severity of haemophilia A by
using SVM. Furthermore, we compared the results of using all domain data and
each domain data.

In Fig. 1, the horizontal axis is the false positive ratio, and the vertical axis is
the true positive ratio. False positive means that the predicted result is positive
(serious), but observed result is negative (slight). True positive means that both
the prediction result and observed result are positive. False negative and true
negative are similar to these. We calculated the ratios in cut-off point into every
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Fig. 1. The relationship between the false positive ratio and the true positive ratio in
A1, A2 and A3 domain

0.1 from 0 to 1 using these values. We plot the relationship of the false positive
ratio and the true positive ratio in Fig. 1. Such a figure is called ROC curve.
ROC curve is used for a comparison of the inspection performance, which in the
upper left indicates more superior performance.

In Fig. 1, circle mark shows the result of prediction using all domain data.
The triangle mark shows the result of prediction using A1 domain data. The
square mark shows the result of prediction using A2 domain data. The diamond
mark shows the result of prediction using A3 domain data. Three curves of the
using A1, A2 and A3 domain data are situated in upper left of the curve of the
using all domain data. We ware not able to get a clear result in other domains.
Therefore, this result suggested that the predictions by using A domain data are
more superior performance than using all data.

4.2 Influence of Structural Parameter

Secondly, we studied influence of structural parameter to prediction of severity of
haemophilia A. We predicted the severity using SVM with structural parameters
which are accessible area and fractional accessibility.

In Fig. 2, 3 and 4 the horizontal axis is the false positive ratio, and the vertical
axis is the true positive ratio. This figure shows result of prediction of serious
or slight illness in A domain. The circle mark shows the result of prediction
using A domain data without structural parameters. The triangle mark shows
the result of prediction using A domain data with the accessible area parameter.
The square mark shows the result of prediction using A domain data with the
fractional accessibility parameter. Fig. 2, Fig. 3 and Fig. 4 are the result in A1,
A2 and A3 domains respectively.

The curves of result using structural parameters laid on more upper left in
every figures. Especially, the curve of using accessible area parameter is situated
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Fig. 2. The comparison between prediction with structural parameter and without
structural parameter in A1 domain
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Fig. 3. The comparison between prediction with structural parameter and without
structural parameter in A2 domain

on more upper left. Therefore, the results using structural parameters is more
superior than the result without structural parameters. This result suggests that
structural feature is the important to severity of haemophilia A.

4.3 Relationship between Domains

Finally, we studied relationships between domain in prediction of severity of
haemophilia A. We predicted the severity by using SVM with some domain data
for training and another domain data for test.

In Fig. 5 and Fig. 6, the horizontal axis is the false positive ratio, and the
vertical axis is the true positive ratio. In Fig. 5, circle mark shows the result
of prediction using A1 domain data only. The triangle mark shows the result
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Fig. 4. The comparison between prediction with structural parameter and without
structural parameter in A3 domain
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Fig. 5. The relationship between A1 do-
main and other domain
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Fig. 6. The relationship between A3 do-
main and other domain

of prediction using A1 domain data for training and C1 domain data for test.
These two curves are similar. Therefore, we suppose that the model of SVM in
A1 domain can be applied to the prediction of severity in C1 domain. On the
other hand, the square mark shows the result of prediction using A1 domain
data for training and A2 domain data for test. This curve is not similar with
other two curves.

In Fig. 6, circle mark shows the result of prediction using A3 domain data
only. The triangle mark shows the result of prediction using A3 domain data for
training and B domain data for test. These two curves are similar. Therefore,
we suppose that the model of SVM in A3 domain can be applied to the predic-
tion of severity in B domain. On the other hand, the square mark shows the result
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of prediction using A3 domain data for training and A2 domain data for test.
This curve is not similar with other two curves.

We could predict the severity of haemophilia B using others domain data
which have homological structure in past study[4]. We know that there is ap-
proximately 30% homology of amino acid alignment between A1, A2 and A3
domain. However, we could not observe the good prediction of severity in A
domains in this study.

5 Conclusion

We predicted the severity of haemophilia A by using SVM analysis in each A
domain. In addition, we examined the influence of the structural parameter to
prediction of severity in haemophilia A. In A1, A2 and A3 domain, we got
the result that structural parameters influence the prediction. We analyzed the
relationship between domains by SVM. As a result, A1 and C1, A3 and B have
the relationship in the prediction of serious or slight illness in haemophilia A.
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Abstract. Authentication systems enable the verification of claimed
identity; on computer systems these are typically password-based. How-
ever, such systems are vulnerable to numerous attack vectors and are
responsible for a large number of security breaches. Biometrics is now
commonly investigated as an alternative to password-based systems.
There are numerous biometric characteristics that can be used for au-
thentication purposes, each with different levels of accuracy and positive
and negative implementation factors. The objective of the current study
was to investigate fingerprint recognition utilizing Artificial Neural Net-
works (ANNs) as a classifier. An innovative representation method for
fingerprint features was developed to facilitate verification by ANNs. For
each participant, the method required the alignment of their fingerprint
samples (based on extracted local features), and the selection of 8 of
these aligned features common to their samples. The six attributes be-
longing to each of the selected features were used for ANN input. Unlike
the common usage, each participant had one dedicated ANN trained to
recognize only their fingerprint samples. Experimental results returned
a false acceptance rate (FAR) of 0.0 and a false rejection rate (FRR)
of 0.0022, which were comparable to (and in some cases, slightly better
than) other research efforts in the field.

Keywords: Authentication, Verification, Biometrics, Fingerprint
Recognition, Artificial Neural Networks, Feature Representation, Pat-
tern Recognition.

1 Introduction

Traditional authentication procedures require legitimate personal to supply a
unique identifier (e.g. username) and a verification token (e.g. password). How-
ever, user defined passwords are low in entropy (i.e. randomness) and therefore
easily ‘cracked’ [1]. Higher entropy passwords are more difficult to remember,
and are commonly written down and left in the vicinity of the computer desk;
this makes them vulnerable to loss or theft. Therefore contrary to popular belief,
knowledge or possession of a verification token does not truly verify identity; it
merely verifies the token holder, who may or may not be the legitimate identity.
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Biometrics is an area of research now commonly investigated as an alterna-
tive to token-based authentication. Biometrics concerns the use of the physical
traits and behavioural characteristics1 that make each individual unique, and
encompasses any personal characteristic that can be used to uniquely verify a
person’s identity [2].

A biometric authentication system essentially operates as a pattern recogni-
tion system [2]. Automated methods used in biometric authentication involve:
the capture of biological data; the extraction of uniquely identifiable features
from these data; the processing of extracted features into a format that can be
stored and later retrieved—referred to as the ‘registered template’; the com-
parison of a ‘query template’2 with the registered template. This comparison,
or verification of fingerprints, is usually reliant on minutiae-based techniques.
Artificial Neural Networks (ANNs) have also featured in fingerprint verification
research (Sect 3). The typical usage of ANNs in this context is to train an ANN
to differentiate between all subjects in a subject group. However, it becomes
inconvenient and cumbersome to re-train an ANN every time a subject needs
to be added to the subject group [3]. To resolve this issue, the current study
adopted a different approach; to train one ANN for each subject.

Section 2 discusses fingerprint recognition and Sect 3 provides a brief review
of related research. The research method is presented in Sect 4, and the results
and conclusion are presented in Sects 5 and 6.

2 Fingerprint Recognition

The epidermal layer of the distal phalanx of a finger or thumb is covered with
concentric raised friction ridges. Ridges (and the consequent furrows) eventuate
in the most prominent characteristics of a fingerprint impression. A fingerprint is
produced when the bulbous region of the distal phalanx makes contact with an-
other surface, thus creating a duplicate impression of the existent characteristics
of that finger tip [4]. Fingerprint characteristics are either global or local.

Global features are those fingerprint characteristics that are visible to the
naked eye, and are described as follows [5]: a. Pattern area: the region of the
fingerprint where ridge lines form clearly apparent and highly distinguishable
shapes or patterns; b. Basic ridge pattern: the discernible patterns (located
within the pattern area) made by ridge lines that have been defined into cate-
gories or classes; c. Core point (if existent): the upper most point (in relation
to the tip of the finger) of the inner most ridge line; d. Delta point (if existent):
when a single ridge abruptly bifurcates into two and the diverging ridges depart
in opposite directions; e. Ridge count: the number of ridges crossing the imagi-
nary line segment between a core point and a delta point; f. Minutiae count: the
total number of minutia.

1 Eg: fingerprints, retinal/iris patterns, voice/speech patterns, facial image patterns.
2 The query template is formulated from a sample obtained during attempted authen-
tication, and processed in exactly the same manner as the registered template.
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Global features are commonly used to categorize fingerprints into general
classes [6]. These are broadly classified as: arch, loop, and whorl. Importantly,
global features are insufficiently distinctive enough for verification purposes.

Local features are not visible to the naked eye. Fingerprint ridges are not
continuous straight lines; they may break, fork, change direction, or terminate
[5]. The point of discontinuity is called a minutia point (plural term minutiae).
There are five attributes of a minutia: a. Primary Type3: ridge termination,
when a ridge ends abruptly; ridge bifurcation, when a ridge divides into two or
more individual ridges; b. Position: the location of the minutia, determined as
(x, y) coordinates in a two dimensional coordinate system; c. Spatial frequency:
the average distance between ridges in the neighbourhood of a minutia; d. Orien-
tation: the angle between the tangent to the ridge at a minutia position and the
horizontal axis (at right angles to the vertical axis of the finger); e. Curvature:
the rate of change of the ridge orientation as the ridge approaches a minutia.

Typically, all fingers have a different number of minutiae. Even if two fingers
have the same number of minutiae, they will be in different relative positions.
The relative position of minutiae forms a unique configuration or pattern. This
pattern and the other minutiae attributes are used for verification [6].

Previous studies have shown that successive scans of the same finger produce
images that are rarely identical [6]. Reasons for variability can be sensor inaccu-
racy (resulting in missing data or introduced artifacts), instrument noise, adverse
ambient conditions, changes in physiological characteristics, and the elasticity of
the epidermal layer of the finger [6]. However, the distinctive feature patterns
will still be evident (though typically subject to local distortions).

3 Related Research

There are two common steps required in feature matching techniques: feature
alignment (registration) and the matching process. Registration attempts to
align a query feature set with those of the registered feature set.

A number of the research efforts utilized a curved line segment in both feature
sets as a basis for the alignment process—with both line segments originating
at a respective reference minutia [7,10]. Typically, nominated points along the
ridge were determined and utilized in the alignment process. This process was
performed for a localized area of the fingerprints under examination.

Jiang and Yau (2000), utilized the configuration of local and global fingerprint
structures to first align two samples; the same structure information was then
used in the matching process [8]. Lee et al. (2002), calculated the normalized
ridge distance of a fingerprint and used this in conjunction with the configuration
of structures in a localized area (within a prescribed circle of arbitrary radius)
[9]. Tong et al. (2005), based alignment on points along ridges (in the local area)
adjacent to the ridge originating at a reference minutia, to construct adjacent
feature vectors [11].

3 Variations of the two primary types do occur, and include: independent ridge, dot
or island, and enclosure.
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Qi and Wang (2005), based alignment on a sampling of points along imaginary
lines whose orientations were at nominated angles around a reference minutia
[12]. The angles around the minutia were specified as θ1, θ1+(2π/3), θ1+(4π/3),
where θ1 was the orientation of the ridge originating at the reference minutia
(again a local area alignment). Jie et al. (2006), utilized core points (refer Sect
2) in the alignment process [13].

The matching process conducted by a number of the above research efforts
utilized converted polar coordinates. According to Jain et al. (1997), polar co-
ordinates minimize the radial distortion properties associated with local area
non-linear deformations [7]. Also, reduced error in the calculation of the rota-
tional factor (during alignment) is more likely if polar coordinates are used.

Bounding boxes are commonly utilized during the determination of matching
points. A bounding box allows two points to be considered to match even if
their aligned locations are not precisely the same; this allows a small degree of
flexibility to compensate for non-linear distortions.

Examples of research investigating ANNs for verification are Kumar and Deva
Vikram (2010) and Sadi and Tanij (2011) [14,15]. Kumar and Deva Vikram
(2010) enhanced a fingerprint image to isolate minutiae, and reduced it to a 15
x 15 matrix. In each matrix the intensity values of each pixel were summed; this
sum was then normalized to the interval [0,1] and applied to a Multi-Dimensional
ANN. Whilst novel, the approach may not preserve the uniqueness provided by
the local feature configuration [14]. Sadi and Tanij (2011) used an edge detection
technique to obtain binarized images, which were applied to ANNs (back prop-
agation network) for verification (achieved by comparing the weight matrices of
trained networks) [15].

ANNs have also been used for classification purposes [16,17]. However, clas-
sification performance measures a recognition rate, which cannot be compared
to those used to measure verification performance—the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) (refer Sect 5).

Table 1 demonstrates the reported FAR and FRR for the experiments re-
viewed in this section.

Table 1. Summary results for reviewed papers in verification research

Reviewed Paper FAR FRR

Jiang and Yau, 2000 0.0 0.0997
Lee et al., 2002 0.0002 0.1666
He et al., 2003 0.0001 0.045
Tong et al., 2005 0.00001 0.07
Qi and Wang, 2005 0.0325 0.0605
Jie et al., 2006 0.00001 0.001
Kumar and Deva Vikram, 2010 0.0113 0.015
Sadi and Tanij 2011 0.0 0.172
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4 Research Method

From the review in Sect 3, it is apparent that fingerprint recognition typically
involves two commensurate and integrated processes: an alignment and a match-
ing process. The approach adopted in the current experiment differs in that
alignment was carried out at the feature level as a separate process. A feature
selection process was then applied to the aligned local fingerprint features. This
selection process determined the input features for the ANN, and the ANN was
then trained to recognize only one person and reject all others.

Ninety participants were recruited from the authors’ institution. Fingerprint
scans (of participants right index finger) were captured using the Digital Persona
U.ARE.U 4000 optical fingerprint scanner; participants provided 140 scans each.
The Verifinger SDK was used to extract global and local feature information from
each scan, which were subsequently used in the experiment. These extracted data
were written to a uniquely named file for each participant.

The newly developed fingerprint feature representation method (described be-
low) required fingerprint feature alignment (registration) and matching of cor-
responding minutiae between feature sets. The registration process adopted the
point pattern matching algorithm proposed by Van Wamelin et at. [18]. They
tested the accuracy of the algorithm, and showed that it was rotation, scale and
translation invariant and robust to missing data and/or introduced artifacts.
The matching process was influenced by the intention to use dedicated ANNs
to perform verification of each participants fingerprint feature data. To facilitate
ease of ANN training and testing, all input vectors to the ANNs were required
to be of a standard length, which was achieved via a feature selection process.

For fingerprint data, accurately registered features should not exhibit noise or
variability (to any great degree). However as discussed in Sect 2, they do exhibit
variability of a different nature (specifically variation in the number of features
for the same person’s scans from sample to sample, and the number of features
from person to person). Therefore, formulating ANN input vectors of a standard
length required a feature selection process.

Typically, the x and y coordinates and the orientation are the attributes used
in minutiae matching algorithms [6]; with the x and y coordinates considered as
2 separate attributes, this results in 3 attributes. For the current experiment it
was considered that the use of all available local feature attributes (refer Sect 2)
might be more distinctive, and more beneficial to the pattern recognition task.
Thus there were 6 available attributes for each local feature. As far as is known,
no other study has incorporated all 6 local feature attributes.

Historically, fingerprint matching for law enforcement requires a 12 minutia
point match to be considered incontrovertible. However as all 6 attributes were
being utilized, a quantity of 8 local features (minutiae) was considered adequate
for this experiment. Therefore, the selection process involved the determination
of 8 local features occurring in all 140 samples for a participant; resulting in a
total of 48 local feature attributes (for each sample for each participant).

The selected features were extracted and normalized according to the minimax
method, and written to uniquely named metrics files for each participant.
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Fifty participants metrics files were randomly assigned to the training group,
and the remaining 40 to the non-training group.

An ANN was trained for each training group member (refer Sect 1) and an
input file for training was generated as follows: 30 samples were randomly chosen
(and removed) from that member’s metrics file, for the positive training case; 1
sample was randomly chosen (but not removed) from each of the other training
group members metrics files (1 x 49), for the negative training case.

A cross validation file (to assist training) was generated for each training group
member. Ten samples were randomly chosen (and removed) from the same file
from which the 30 training samples were chosen. Therefore, the 50 training group
members training input files consisted of 79 samples each, and their validation
files consisted of 10 samples each4.

The objective of the training phase was to obtain a registered template (for
each training group member) associated with their training input file. A two
layer Multi-Layer Perceptron architecture (with back propagation) was used as
a pattern classifier; thus a dedicated ANN was trained for each training group
member, applying their training input file. Once the ANNs were trained, the
weights from each member’s trained ANN were saved and used as their registered
template; this meant a specific ANN configuration for that member.

A testing input file was generated for each training group member as follows:
100 samples (those not used in training/validation) were used to test for Type II
errors (incorrect rejection); 100 unused samples from each of the other training
group members (100 x 49), and 140 samples from each of the non-training group
members (140 x 40), were used to test for Type I errors (incorrect acceptance).

Therefore, the 50 training group members testing input files consisted of
10,600 samples each. For the testing phase, weights representing a member’s
registered template were loaded into an ANN, thus utilizing the specific ANN
configuration for that member. The testing input file for that member was ap-
plied to the ANN, and the predicted outcomes were used to calculate results.

5 Results

The classification outcome for an authentication system involving biometrics is
the likelihood that two samples belong to the same individual [6]. This necessi-
tates a subjective decision based on whether or not the predicted outcome (in
this case, ANN output) should be accepted or rejected. This determination may
be termed ‘the final classification decision’, and typically involves the use of a
‘decision threshold’ applied to the predicted outcome.

The two performance variables used to measure experimental results were
the False Acceptance Rate (FAR)—the number of Type I errors divided by the
number of samples available to test for Type I errors—and the False Rejection
Rate (FRR)—the number of Type II errors divided by the number of samples
available to test for Type II errors.

4 With 40 samples removed from members metrics files and used for training purposes,
100 samples remained per training group member to test Type II errors.
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The individual results demonstrated that all training group members achieved
a FAR of 0.0. This meant that all training group members had no impostor
samples (out of 10,500 each) accepted as their own. It was also demonstrated
that only three training group members registered a non-zero FRR. The highest
FRR was 0.05, which meant that for two members 5 samples (of 100 genuine
samples) were incorrectly rejected; the other non-zero FRR was 0.01, which
meant that only 1 genuine sample was incorrectly rejected.

The average FAR was 0.0 and the average FRR was 0.0022. This means that
for all training group members, no impostor samples were incorrectly accepted,
and there was approximately 2 in 1,000 genuine samples incorrectly rejected.

In comparison to the results shown in Table 1 Sect 3, the current experiment
returned FAR results comparable to Jiang and Yau (2000) and Sadi and Tanij
(2011), and better than the other reviewed works. Jiang and Yau (2000) used
1,503 samples (per participant) to test Type I errors, Sadi and Tanij (2011)
used 90, whereas the current experiment used 10,500. The FRR results were
comparable to results achieved by Jie et al. (2006), and better than the other
reviewed works. Jie et al. (2006) used 10 samples (per participant) to test Type
II errors, whereas the current experiment used 100.

Of the 10,500 samples tested per training group member for Type I errors,
5,600 comprised 140 samples from each of the 40 non-training group members.
Samples from these participants data were not seen at all by the ANNs during
the training process, so the results should be considered generalizable.

An inherent property of performance measurement in biometric systems is the
trade-off between the FAR and FRR; they are functions of the decision threshold
[6]. If the threshold is decreased—to provide tolerance—the FAR increases. Con-
versely, if it is increased—to increase security—the FRR increases. Thus if ANN
over training was evident, FAR scores of 0.0 would result in higher FRR scores
and vice versa. As this did not occur in the current experiment, it is believed
that the excellent results were attributable to correct classification rather than
ANN over training.

6 Conclusion

The discussion presented in Sect 5 demonstrated that the newly developed finger-
print feature representation method achieved results comparable to (and in some
cases, slightly better than) most previous studies involving fingerprint recogni-
tion. The experimental methodology involved more participants than many stud-
ies reviewed in Sect 3, and there were generally many more samples provided by
participants in the current study.

The innovative fingerprint feature representation method developed for this
experiment, and the subsequent feature selection process, performed extremely
well. Using a dedicated ANN per person, simplified ANN training as issues re-
lating to inter-class versus intra-class variances were minimized. Though the
treatment of data for this experiment was heavily influenced by the utilization of
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ANNs as a pattern classifier, it could be expected that there may be other appro-
priate methods for fingerprint feature representation that could return equally
good results.
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Abstract. This paper studies application of the dynamic binary neural
network to control signal of switching circuits. The network is charac-
terized by the signum activation function and ternary weighting param-
eters. In the application, the teacher signal is one binary periodic orbit
corresponding to the controls. The learning algorithm is based on the
genetic algorithm. As an application object, we consider a control signal
of the basic matrix converter. Performing a basic numerical experiment,
we have confirmed that the teacher signal is stored successfully and is
stabilized automatically.

Keywords: supervised learning, binary neural networks, power elec-
tronics.

1 Introduction

The dynamic binary neural network (DBNN) is a digital dynamical system con-
structed by applying the delayed feedback to the three-layer neural network [1]
[2]. The DBNN has signum activation function and can exhibit various binary
periodic orbits (BPOs). The DBNN is suitable for precise numerical analysis of
the dynamics and hardware implementation by digital circuits.

This paper studies an application of the DBNN to control signal of switching
circuits. In the application, the teacher signal is one BPO that corresponds to the
control signal. The learning algorithm is based on the genetic algorithm (GA).
In the algorithm, chromosomes correspond to the ternary weighting parame-
ters. If the BPO is stored successfully, we measure a basic feature quantity that
characterizes domain of attraction (DOA [3]) to the teacher signal BPO: it is ba-
sic to consider the stability of the BPO. Although there exist many examples of
the switching circuit, we consider the basic matrix converter that converts three-
phase ac input signals to the other three-phase ac output signals having different
frequency. The matrix converter is an important circuit in the power electronics
[4] [5] and has switches whose control signal corresponds to the teacher signal
BPO. Performing numerical experiment, we have confirmed that the GA-based
learning can store the BPO into a DBNN with simple structure. We have also
confirmed that the stored BPO can be stabilized automatically. These results can

� This work is supported in part by JSPS KAKENHI#24500284.
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be basic information not only for application to various switching circuits but
also for analysis/synthesis of various digital dynamical systems. Note that the
DBNN is a digital dynamical system with various real/potential applications
as digital dynamical systems [6]-[10]. For novelty of this paper, we note that
Refs. [11] [12] have discussed neither application to the matrix converters nor
general discussion on application to switching circuits.

2 Dynamic Binary Neural Networks

The DBNN is constructed by applying the delayed feedback to the three-layer
network as shown in Fig. 1. Each hidden neuron has signum activation function
and the DBNN dynamics is described by the following:

xi(t+ 1) = sgn

⎛⎝ M∑
j=1

wo
ijξj(t)− T o

i

⎞⎠ , i = 1 ∼ N

ξj(t) = sgn

(
N∑
i=1

wjixi(t)− Tj

)
, j = 1 ∼M

sgn(x) =

{
1 for x ≥ 0
−1 for x < 0

(1)

where x(t) = (x1(t), · · · , xN (t)), xi(t) ∈ {−1, 1} ≡ B, is an N -dimensional
binary state vector at a discrete time t. ξ(t) ≡ (ξ1(t), · · · , ξM (t)), ξj(t) ∈ B, is an
M -dimensional hidden output vector at t. The hidden neurons are characterized
by the ternary connection parameters wij and integer threshold parameters Tj :

wji ∈ {−1, 0, 1}, Tj ∈ {−N − 1,−N, · · · , N,N + 1} (2)

Fig. 1. Dynamic Binary Neural Network (DBNN) for N = 3. Blue and red segments
represent connection value 1 and -1, respectively. wji = 0 means no connection.
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The output neurons are characterized by the binary connection parameters wo
ij

wo
ij ∈ {0, 1}, T o

i = 1−
M∑
j=1

|wo
ji| (3)

Note that the integer thresholds T o
j are determined uniquely by wo

ij . In order to
clarify the meaning of this output neuron, we define a subset of hidden outputs
that connect to the i-th output neuron: Hi ≡ {ξj | wo

ji = 1}. In the DBNN in
Fig. 1, H1 = {ξ1, ξ2}, H2 = {ξ2, ξ3, ξ4} and H3 = {ξ2, ξ3}. The output neuron
operates equivalently to the logical OR of all the elements in Hi:

xi(t+ 1) =

{−1 if all the elements of Hi are -1
1 otherwise

(4)

We refer to Hi as the i-th hidden set. The DBNN dynamics is controlled by the
three kinds of parameters wji, Ti and wo

ij . The DBNN realizes a mapping of
N -D binary vector. For simplicity, Eq. (1) is abbreviated by

x(t+ 1) = FD(x(t)), FD : BN → BN

FD ≡ (FD1, FD2, · · · , FDN )
(5)

As a present state x(t) is input, the DBNN outputs the next state x(t + 1).
Repeating in this manner, the DBNN can output a sequence of binary vectors.
Since the domain of FD consists of finite elements, the steady state of the DBNN
is a binary periodic orbit (BPO) as illustrated in Fig. 1 caption. Here we give
basic definitions of the BPO.

A vector x ∈ BN is said to be a binary periodic vector (BPV) with period p
if F p

D(xp) = xp and F k
D(xp) 
= xp for k < p where F p

D is the p-fold composition

of FD ( F p
D = F (F p−1

D (x)) ). A sequence of the BPVs, {FD(xp), · · · ,F p
D(xp)},

is said to be a binary periodic orbit (BPO) with period p.
In this paper, we consider basic learning problem: finding suitable parameter

values of wji, Tj and wo
ij in order to store one desired BPO with period T :

z(t+ T ) = z(t), t = 1, 2, 3, · · · (6)

We use the T binary vectors, z(1) to z(T ), as the actual teacher signal. There exist
many methods to implement such a BPO. However, this paper considers several
basic problems: making the DBNN configuration as simple as possible and inves-
tigation of the domain of attraction (DOA) to the BPO. The DOA is important
to clarify the stability of the BPO. We give basic definition for the DOA.

A vector xe ∈ IN is said to be an eventually periodic vector (EPV) if it is not
a BPV and there exists some integer m such that Fm

D (xe) is a BPV. The orbit
started from the EPP falls into either BPO. The EPPs construct the domain of
attraction (DOA) to the BPO. As a basic measure to characterized the DOA to
the stored BPO, we present the convergence rate to the BPO:

CR =
#EPV to the BPO

2N −#BPV of the BPO
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Fig. 2. Switching circuits controlled by a BPO. (a) switching circuit. (b) AC/ACmatrix
converter, The input three-phase voltages with period T (VR, VS, VT ). The output is
three-phase voltages with period T (VU , VV , VW ).

If CR=1 then all the initial points fall into the BPO and the DOA is the largest.
If CR=0 then no initial point fall into the BPO except for BPVs of the BPO
and the DOA is the smallest. We can calculate the #EPV and #BPV directly if
N is not too large. Note that the DOA of BPO has not been studied sufficiently
in existing works.

3 Application to the Matrix Converter

Although there are many practical examples of the teacher signal BPOs, we
consider the BPO in the switching circuits. Figure 2 (a) illustrates a circuit
that converts an input u to an output y via a switching circuit consisting of N
switches. The switch=on and =off can be symbolized by 1 and -1, respectively;
and the operation of the switching are represented by a dynamic binary sequence.
In the steady state, the switching operation is described by some BPO that can
be a teacher signal of the DBNN. Examples of such switching circuits are many
and the switching power converters are typical ones. As is well known, there
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exists four kinds of power converters: dc-dc, dc-ac, ac-dc and ac-ac converters
[4]. This paper considers a basic ac-ac converter as shown in Fig. 2 (b). This is
a matrix converter that converts a three-phase ac input into some three-phase
ac output via nine switches [5]. Table 1 shows the teacher signal BPO with
period 12: z(t) = (z1(t), · · · .z9(t)) and z(t + 12) = z(t). This BPO controls
the nine switches such that zi(t) = +1 and zi(t) = −1 correspond to Si(t) =on
and Si(t) =off, respectively, where i = 1 ∼ 12. Using this switching signal, the
3-phase ac inputs VR, VS , VT with period 12 are converted into the 3-phase
ac outputs VU , VV , VW with period 6. Figure 2 shows the three-phase output
waveforms. Filtering them, we obtain the 3-phase ac waveforms with period T .

Applying the GA-based learning in Appendix, we can store the BPO into
the DBNN. Figure 3 shows an example of the DBNN with 15 hidden neu-
rons. The parameter values and hidden sets are shown in Tables 2 and 3. In
order to visualize the dynamics of the DBNN, we introduce the Gray-code-
based return map (Gmap). First, we use the Gray code to express the domain
of the DBNN BN . Let GN ≡ (G0, · · · , G2N ) be the Gray code of the BN . The
GN is equivalent to the set of rational numbers in [0, 1) with denominator 2N :
LN ≡ (0/2N , 1/2N , · · · , (2N − 1)/2N). We then notice that the dynamics of the
DBNN can be simplified into the Gmap:

θ(t+ 1) = FG(θ(t)), θ(t) ∈ LN . (7)

Figure 4 shows the Gmap of the DBNN in Fig. 3. In the Gmap, we can see one
red periodic orbit with period 12 that corresponds to the teacher signal BPO.
In this example, we can confirm that the BPO is stored successfully and all the
initial points fall into to BPO: CR=1. Note that the teacher signal BPO does
not include information of the DOA, this BPO is stabilized automatically. If CR
is large, the BPO has wide DOA and is suitable for robust circuit operation.
Performing 100 trials of the learning with different initial condition of the GA,
the algorithm can store the BPO in all the trials and we have obtained the
following statistic data.

# hidden neurons: max=17, min=14, avg=15.2
CR to the BPO: max=1, min=0.11, avg=0.45

4 Conclusions

Application of the DBNN to switching circuit has been studied in this paper. The
teacher signal BPO corresponds to a control signal of switches in the circuits.
As an example of the circuits, we consider the matrix converter. Applying the
GA-based learning, we can store the BPO into the DBNN. Using the Gmap, the
storage of BPO and its local stability (DOA) are visualized.

Future problems include analysis of learning process, mechanism of automatic
stabilization, reduction of the number of hidden neurons application to various
switching circuits and hardware implementation of the DBNN.
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Appendix

Here we explain an outline of the GA-based algorithm that is an improved version
of the algorithm in [1]. Our algorithm aims at finding parameters in order to store
the teacher signal BPO. Note that the signum activation function prohibits the
gradient descent method, the brute force is very hard to find the parameters
wij in search space of 3NM candidates and application of the logical synthesis
often causes many redundant hidden neurons [1] [11]. These are reasons why
we use the GA. Let an unknown Boolean function zi(t + 1) = Gi(z(t)) govern
the i-th element of the teacher signal BPO. Let G ≡ (G1, · · · , GN ). For the
Boolean function Gi, i = 1 ∼ N , an element x ∈ BN is said to be a true vertex
if Gi(x) = 1. Our learning algorithm tries to separate the true vertices of the

teacher signal by the separating hyper planes: SHPj =
∑N

i=1 wjixi − Tj = 0,
j = 1 ∼ M , where j is the index of the SHP and M is the number of SHPs
(i.e., the number of hidden neurons) determined after the learning. The SHPj

corresponds to the j-th hidden neuron.

Step 1: (initialization) let j = 1.

Step 2: Find some component Gk of G that has the largest number of the true
vertices.

Step 3: For Gk, we apply the GA having Mg chromosomes {C1, · · · ,CMg}
each of which is a candidate of the {wk1, · · · , wkN}. One of the initial chromo-
somes is selected from true vertices of teacher signals and other chromosomes
are set randomly. It guarantees separation of at least one true vertex. The fit-
ness is the number of separated true vertices when the SHPj is applied to all
the components of G1. For each chromosome, the parameter Tj is determined
to give the maximum fitness. Repeating the elite strategy and ranking selection,
the chromosomes are evolved. The two-point crossover is applied with probabil-
ity Pc and the one point mutation is applied with probability Pm. After Gmax

times evolution, the SHPj is determined.

Step 4: For all the components Gl in which true vertices are separated by the
SHPj , the j-th hidden output ξj is added to the l-th hidden sets Hl. All the
separated true vertices are declared as “don’t care”.

Step 5: Let j = j + 1, go to Step 2 and repeat until all the true vertices are
separated.

For the teacher signal BPO in Table 1, we have selected the following values
after trial-and-errors: Mg = 50, Pc = 0.8, Pm = 0.1, and Gmax = 50.

1 The fitness in [1] is the number of the separated true vertices in each SHP. It causes
redundant hidden neurons.



Application of the Dynamic Binary Neural Network to Switching Circuits 703

Table 1. Teacher signal BPO with period 12: z(t+ 12) = z(t)

z(1) (−1,−1,+1,−1,+1,−1,−1,−1,+1)
z(2) (+1,−1,−1,−1,+1,−1,−1,+1,−1)
z(3) (+1,−1,−1,+1,−1,−1,−1,+1,−1)
z(4) (−1,−1,+1,+1,−1,−1,−1,−1,+1)
z(5) (−1,−1,+1,+1,−1,−1,+1,−1,−1)
z(6) (−1,−1,+1,−1,−1,+1,−1,+1,−1)
z(7) (−1,+1,−1,−1,−1,+1,−1,+1,−1)
z(8) (−1,+1,−1,+1,−1,−1,+1,−1,−1)
z(9) (−1,+1,−1,−1,+1,−1,+1,−1,−1)
z(10) (+1,−1,−1,−1,−1,+1,+1,−1,−1)
z(11) (+1,−1,−1,−1,−1,+1,+1,−1,−1)
z(12) (+1,−1,−1,−1,−1,+1,−1,−1,+1)

Table 2. Parameters wji and Tj after the learning

j wj1 wj2 wj3 wj4 wj5 wj6 wj7 wj8 wj9 Tj
1 0 +1 −1 −1 0 +1 −1 −1 +1 4
2 +1 −1 +1 −1 +1 −1 0 0 0 3
3 −1 +1 −1 +1 0 +1 +1 +1 +1 1
4 −1 −1 +1 −1 −1 0 +1 0 −1 4
5 −1 −1 −1 +1 0 0 −1 +1 +1 2
6 0 −1 −1 −1 −1 0 +1 0 −1 5
7 −1 +1 −1 0 +1 −1 0 +1 −1 4
8 0 0 −1 0 −1 −1 −1 +1 0 2
9 −1 −1 0 +1 0 −1 −1 0 −1 3
10 0 0 +1 −1 −1 +1 0 +1 +1 1
11 0 +1 +1 −1 0 −1 −1 +1 +1 2
12 0 +1 0 0 0 0 −1 −1 +1 3
13 0 −1 0 +1 0 −1 −1 −1 +1 5
14 −1 +1 0 +1 −1 0 +1 −1 −1 6
15 +1 −1 −1 0 −1 −1 +1 0 0 3

Table 3. Hidden Sets after the learning

H1 {ξ2, ξ6, ξ7}
H2 {ξ3, ξ10}
H3 {ξ5, ξ9, ξ12}
H4 {ξ5, ξ8}
H5 {ξ1, ξ11, ξ12, ξ14}
H6 {ξ4, ξ6, ξ7}
H7 {ξ3, ξ7, ξ13}
H8 {ξ2, ξ4}
H9 {ξ1, ξ6, ξ15}
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Fig. 3. Configuration of DBNN after the learning. Blue and red segments represent
connection value 1 and -1, respectively.
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Abstract. This paper presents a new method of stock price prediction
based on the phase space analysis for stock price series. For the prediction
model, a network with Gaussian kernel functions is selected and this
network is optimized by using a noise variance estimate. As a result, the
proposed model provides the high accuracy of predicted values. Through
the simulation for the prediction of KOSPI 200 stock price values, the
effectiveness of the proposed prediction model has been demonstrated.

Keywords: stock price prediction, regression model, nonparametric es-
timation, noise variance.

1 Introduction

It has been known that stock price values are generated by a nonlinear and
non-stationary dynamic system according to the trend of market which is asso-
ciated with economic situation. For the problem of time series prediction, the
linear regression models such as ARMA and ARIMA models are usually used.
However, these models may not provide good estimates of predicted stock price
values. If the stock price values are complete random, it is not possible to predict
the future values. However, in many cases, the stock price values are not com-
pletely random. Rather, in most cases, they show coherent or sometimes chaotic
behavior [1]. In this case, stock price values can be described by a nonlinear
dynamics. In this respect, the nonlinear and nonparametric regression model is
investigated to provide the better estimates of predicted values. As a nonlinear
regression model, a network with Gaussian kernel functions is considered since
this model is a nonparametric estimation model and good for incremental learn-
ing due to the locality of kernel functions. Here, the problems are to determine
the input structure for the given prediction of stock price values and also to de-
termine the proper size of regression models for the given stock price series. For
this purpose, the input structure is investigated by analyzing the phase space
of stock price dynamics and the proper size of regression models is investigated
using the estimation of noise variances embedded in stock price series. As a re-
sult, the proposed model provides an accurate estimation of predicted values.
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To demonstrate the effectiveness of the proposed model, the Korea Composite
Stock Price Index (KOSPI) 200 stock price series from June 2008 to June 2012
is used for the prediction of stock price values. The proposed model can also
be applied to other cases of time series prediction since our model is not just
restricted to the problem of stock price prediction.

2 Phase Space Analysis of Stock Price Series

The goal of time series prediction is to predict future values from a series of past
values observed at regular time intervals. For the modeling of time series data,
we usually rely on the theory called the delay coordinate embedding proposed
by Packard et al. [2] and Takens [3]. Their purpose is to find the appropriate
dimension of attractors generated by the dynamical system. To describe the
dynamical system, let us assume that there exists a D dimensional state vector
x(t), t ∈ IR; that is,

x(t) = [x(t), x(1)(t), · · · , x(D−1)(t)]T (1)

where x(i)(t) represents the ith derivative of x(t) with respect to t. This vector
can be produced by a dynamical system,

ẋ = F (x, t) (2)

where F represents the D dimensional mapping function from the state vector
x to the vector ẋ at time t. With no information on the state space (or phase
space), we can only observe x(t). Moreover, we usually consider the sampled
discrete time series data x(tk); that is,

x(tk) = x(t0 + kΔt) ≡ x(k), k = 0, 1, 2, · · · (3)

where t0, k, and Δt represent the initial time, sampling step, and sampling
interval, respectively. Here, let us construct E-dimensional vectors

xτ,E(k) = [x(k), x(k − τ), . . . , x(k − (E − 1)τ)]T , k = (E − 1)τ, · · · (4)

where τ and E represent the delay time measured as the unit of Δt and embed-
ding dimension, respectively.

For the prediction of future values, we assume that the state vectors in the
reconstructed state space are governed by a nonlinear function f ; that is,

x(tk + P ) = f(xτ,E(k)) (5)

where P represents the prediction step. Then, our goal is to make a prediction
model f̂ estimating the unknown target function f . However, since the geomet-
ric structure of f is determined by the embedding parameters τ and E, the
performance of the prediction model is strongly affected by the choice of the
embedding parameters. One of the typical methods is to choose the embedding
dimension E by estimating the correlation dimension of the system [4], and to
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choose the delay time τ at which the first minimum of the mutual information
occurs. However, the correlation dimension does not indicate any information on
the target function f . In this context, we consider to determine the embedding
parameters using the measure related to the smoothness of the target function.

For the analysis of time series data, let us denote the rth nearest neighbor of
the vector xτ,E(k) by xr

τ,E(k). Since the difficulty of estimation depends on the
smoothness of the target function f , we define the gradient of f at each point
xτ,E(k) by

Δf(xr
τ,E) =

∣∣f(xτ,E(k))− f(xr
τ,E(k))

∣∣
||xτ,E(k)− xr

τ,E(k)||
, (6)

where the norm in the denominator represents the Euclidian distance in IRE . In
this paper, r = 1 is used; that is, the nearest neighbor of the state vector. Here,
the smoothness measure S(τ, E) of a target function f [5] is defined by using an
average of the gradient values for time series x(tk), k = 0, 1, · · · , n− 1; that is,

S(τ, E) = 1− 1

n− (E − 1)τ

n−1∑
k=(E−1)τ

Δf(x1
τ,E(k)). (7)

The smoothness measure S(τ, E) is closely related to the unfolding of the or-
bits of the vectors in the reconstructed state space. If the embedding dimension
E is too small, the state space is yet restricted to the low dimensional space.
This restriction makes different orbits of vectors to be folded and placed closely
to each other; that is, even the nearest neighbor vectors might have come from
different orbits. Since the vectors on the different orbits are likely to have largely
different target function values, large gradient values imply that the embedding
dimension is too small. On the other hand, if the embedding dimension E is large
enough, the nearest neighbor vectors are obtained from the same orbit, which
results in the small gradient values. Also, the smoothness measure S(τ, E) will
not be much influenced by changes in E when E is large, because the state space
is already unfolded. From these observations, the optimal embedding dimension
and delay time can be determined by identifying the points where the smoothness
measure S(τ, E) changes rapidly from the smaller values to the larger values. For
the analysis of one step prediction for KOSPI 200 stock prices, the smoothness
measure of (7) is calculated for every delay time τ between 1 and 20, and every
embedding dimension E between 2 and 10. The calculated smoothness measure
of KOSPI 200 stock prices is illustrated in Fig. 1. From the plot of smoothness
measure, the smallest embedding dimension is selected first. Here, the proper
embedding dimension is selected as E = 3. Then, for the given embedding di-
mension E = 3, the proper delay time is selected as τ = 4. As a result, the model
of one step prediction is determined as

x(t + 1) = f(x(t), x(t − 4), x(t− 8)). (8)

From this phase space analysis, it is evident that the information of 3 data within
8 day window provides an important cue to determine the next day prediction
of KOSPI 200 stock price values.
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(a) (b)

Fig. 1. The plot of smoothness measure for stock price prediction: (a) and (b) represent
the 3D plot and contour map of stock price series. The dot in the contour map represents
the selected delay time τ = 4 and embedding dimension E = 3.

3 Nonlinear Stock Price Prediction Model

As a nonlinear prediction model for stock prices, a network with Gaussian kernel
function is selected since this network is able to perform nonlinear and nonpara-
metric estimation and good for incremental learning due to the locality of kernel
functions. The suggested prediction model f̂ with m kernel functions is described
by

f̂(x) =

m∑
i=1

wiψi(x), ψi(x) = e−||x−μi||2/2σ2
i , (9)

where wi represents the connection weight between the output and the ith kernel
function ψi in which μi and σi represent the mean and standard deviation,
respectively. In (9), we need to determine the parameters of m and also kernel
related parameters wi, μi, σi. Foe kernel related parameters, [6] suggested an
efficient estimation method in such a way of minimizing the mean square error
(MSE). However, for our problem of prediction model, an optimal number m
of kernel functions should be determined to be fitted to the stock price series
so that the generalization error is minimized. Here, in the case of time series
x(tk + P ), it can be described by

x(tk + P ) = f(xτ,E(k)) + ε, (10)

where f represent an embedded function for the generation of time series data
and ε represents a noise term expressed as a random variable with mean 0 and
variance σ2.

Then, for x(tk + P ), the predicted value x̂(tk + P ) is described by

x̂(tk + P ) = f̂(xτ,E(k)). (11)

The expected risk (or MSE) between the true and predicted values is described
by

E[(x − x̂)2] = E[(f − f̂)2] + V ar(ε), (12)
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where E[(f − f̂)2] represents the regression error and V ar(ε) represents the
variance of noise.

From the above equation, it is clear that the expected risk is always greater
than or equal to the variance of noise. This implies that the empirical error (or
training error) should not be less than the variance of noise to avoid over-fitting
of the regression model for the given time series. Here, the variance of noise
should be estimated. One method of estimating the variance of noise is using
the squares of time series differences [7]:

σ̂2 =
1

2(n− 1)

n−1∑
k=1

(x(tk)− x(tk−1))
2, (13)

where σ̂2 represents an estimator of noise variance.
Assuming that the random noise follows a normal distribution, an estimator

of (13) follows a chi-square distribution; that is,

(n− 1)σ̂2

σ2
∼ χ2

n−1. (14)

Then, with a confidence level of 1 − α, the following probability of (14) is de-
scribed:

P

(
χ2
1−α/2,n−1 ≤

(n− 1)σ̂2

σ2
≤ χ2

α/2,n−1

)
= 1− α. (15)

From the above equation, a 100(1− α)% confidence interval for noise variance
σ2 is determined by

(n− 1)σ̂2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)σ̂2

χ2
1−α/2,n−1

. (16)

In the case of large sample size, this interval is also effective even if the dis-
tribution of random noise is unknown because both an estimator of (13) and
chi-square random variable approximately follow a normal distribution for large
n according to the central limit theorem. Then, from (12) and (16), it is recom-
mended that the training error should not be within the confidence interval for
noise variance. From this point of view, the following algorithm of constructing
a stock price prediction model is suggested:

Construction of Nonlinear Stock Price Prediction Model

Step 1. From the given stock price series x(tk), k = 0, 1, · · · , n − 1 and pre-
diction time P , determine the values of smoothness measure of (7). Then,
determine the embedding dimension E and delay time τ when the value of
smoothness measure is large (usually, greater than -1) at the smaller embed-
ding dimension.

Step 2. Determine the structure of nonlinear prediction model of (5).
Step 3. Estimate the noise variance using (13) and determine a 100(1 − α)%

confidence interval for noise variance using (16).
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Step 4. Train the nonlinear prediction model using an incremental learning al-
gorithm such as [6] as the number of kernel functions increases and determine
the following training error:

Remp(f̂) =
1

n

n−1∑
k=0

(x(tk)− x̂(tk))
2. (17)

Step 5. If the condition

Remp(f̂) >
(n− 1)σ̂2

χ2
1−α/2,n−1

(18)

is met, continue the learning process of Step 4. Otherwise, stop the learning
process.

This construction algorithm was applied to KOSPI 200 stock price series using
the prediction model of (8). In this experiment, an 80% of stock price series was
used as training data and the remaining 20% was used as test data. Here, the
noise variance was estimated as σ̂2 = 0.000127 and a 99% confidence interval for
noise variance σ2 was determined by

0.000115 ≤ σ2 ≤ 0.000159.

Here, to compare with the training and test error with respect to the number
of kernel functions, the training error, test error, and confidence interval were
plotted as illustrated in Fig. 2.

Fig. 2. Selection of the number of kernel functions by comparing the training error
with the confidence interval for noise variance

As shown in Fig. 2, the over-fitting of regression model occurs when the num-
ber of kernel function is greater than or equal to 54. In this case, the train-
ing error is within the confidence interval for noise variance. Therefore, in this
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experiment, it is clear that the proper number of kernel functions is less than or
equal to 42 which makes the training error just greater than the upper limit of
the confidence interval.

4 Simulation

For the simulation for stock price prediction, the data set of Korea Composite
Stock Price Index (KOSPI) 200 stock price series from June 2008 to June 2012
was selected and normalized by dividing the price values by 200 so that approx-
imate price range was between 0.5 and 1.5. In this data set, the first 70%, 80%,
and 90% of data were used as training data sets, and the remaining data sets
were used as test data sets. First, to identify the dynamics of stock price series
for the given prediction time P = 1, the embedding dimension E and delay time
τ were determined using the smoothness measure of (7). As a result, the predic-
tion model of (8) was obtained. Then, the noise variance was estimated using
the estimator of (13) and a 99% confidence interval for noise variance was de-
termined using the form of (16). For the given prediction model, the parameters
of Gaussian kernel function network (GKFN) of (9) were trained using the non-
parametric estimation method of [6] as the number of kernel functions increased.
This training was continuously performed until the training error reached the
upper limit of the confidence interval for noise variance. Here, to measure the
performances of stock price prediction, the following root mean square error
(RMSE) and the coefficient of determination R2 were use for the test data y(ti),
i = 0, · · · , l − 1:

RMSE =

(
1

l

l−1∑
i=0

(y(ti)− ŷ(ti))
2

)1/2

, (19)

where l represents the number of test data and

R2 = 1−
(

l−1∑
l=0

(y(ti)− ŷ(ti))
2/

l−1∑
l=0

(y(ti)− ȳ)2

)
, (20)

where ȳ represent the sample mean of y(ti); that is, ȳ = (1/l)
∑l−1

l=0 y(ti). Here,
the range of R2 is between 0 and 1, and R2 indicates the degree of how well the
regression model covers the variation of time series data; for example, if R2 = 0.9,
the regression model covers 90% of the variation of time series data and the
remaining 10% of the variation is not explained. Then, the simulation results for
stock price prediction using the proposed GKFN were obtained and described
in Table 1. For the comparison, simulation results for stock price prediction
using the kernel support vector machine (k-SVM) [8], one of popular methods in
nonlinear regression models, were also obtained. In the k-SVM, the same form
of the prediction model of (8) was also used.

These simulation results showed that the RMSE was decreased as the ratio of
training data was increased and the proposed GKFN outperformed the k-SVM
from the view points of the RMSE and also R2. In general, if R2 is greater
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Table 1. Simulation results for stock price prediction

Ratio of k-SVM GKFN
training data RMSE R2 RMSE R2

70% 0.058423 0.60 0.035879 0.87

80% 0.039960 0.64 0.020517 0.90

90% 0.036820 0.41 0.016172 0.88

than or equal to 0.9, we consider that the regression model performs very good
fit to the given data. The proposed GKFN was very close to this performance.
The main reason was due to the fact that the prediction model was determined
by phase space analysis and the optimization of regression model was done by
comparing the training error with the noise variance estimate.

5 Conclusion

The stock price prediction involves the analysis of stock price series and also
optimization of regression models. In this work, the stock price series is analyzed
by the phase space analysis method [5]. As the prediction model, a network with
Gaussian kernel functions is selected since this model is good for incremental
learning due to the locality of kernel functions. For the optimization of regression
model, the noise variance is estimated and used to determine the proper number
of kernel functions. As a result, the proposed model provides the high accuracy
of predicted values. Through the simulation for the prediction of KOSPI 200
stock price values, the effectiveness of the proposed prediction model has been
demonstrated. The proposed model can also be applied to various problems of
time series prediction.

References

1. Peters, E.E.: Fractal market analysis: applying chaos theory to investment and eco-
nomics. John Wiley & Sons, New York (1994)

2. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a Time
Series. Phys. Rev. Lett. 45, 712–716 (1980)

3. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young,
L.S. (eds.) EAMT-WS 1993. Lecture Notes in Mathematics, vol. 898, pp. 366–381.
Springer-Verlag, Berlin (1981)

4. Havstad, J.W., Ehlers, C.L.: Attractor dimension of nonstationary dynamical sys-
tems from small data sets. Phys. Rev. A 39(2), 845–853 (1989)

5. Kil, R., Park, S., Kim, S.: Time series analysis based on the smoothness measure
of mapping in the phse space of attractors. In: International Joint Conference on
Neural Networks, vol. 4, pp. 2584–2589 (1999)

6. Kil, R.: Function approximation based on a network with kernel functions of bounds
and locality. ETRI Journal 15, 35–51 (1993)

7. Rice, J.: Bandwidth choice for nonparametric regression. Annals of Statistics 12(4),
1215–1230 (1984)

8. SVMlight ver 6.02, Cornell University, http://svmlight.joachims.org

http://svmlight.joachims.org


Enhanced GPU Accelerated K-Means Algorithm

for Gene Clustering Based on a Merging Thread
Strategy

Yau-King Lam, Peter W.M. Tsang, and Chi-Sing Leung

Dept. of Electronic Engineering, City University of Hong Kong, Hong Kong
kinglam4-c@my.cityu.edu.hk, {eewmtsan,eeleungc}@cityu.edu.hk

Abstract. Past research has demonstrated that gene clustering can be
effectively accomplished with the K-means algorithm. Furthermore, the
clustering process can be conducted swiftly with the use of graphic pro-
cessing units (GPUs). However, due to the limited number of processing
units (cores) on a GPU, the computation time will be lengthened if the
number of gene data is too large. To alleviate this problem, a novel
method for realizing the K-means algorithm on GPUs has been devel-
oped and presented in this paper. Essentially, a fragment shader program
is implemented to process multiple data points in a single thread. Ex-
perimental results show that our proposed GPU accelerated scheme can
attain over 25 % increase in the computation speed as compared with
the existing method.

Keywords: Gene Clustering, K-Means, Merging Thread, GPU.

1 Introduction

The advancement of computing and the Microarray technologies [1][2] have en-
abled the extraction of important information from massive gene data sets.
Amongst different methods, the cluster analysis is an important means to encap-
sulate the huge data sets into a relatively small group of characteristic features
[3]. The latter is generally obtained with the K-means algorithm [4][5], a classi-
cal clustering tool which has been applied in numerous engineering and scientific
disciplines.

Starting with an initial set of centroids, each of which corresponds to a char-
acteristic feature, clustering of the data set to the group (a.k.a centroid) is con-
ducted in repetitively rounds of calculations. At each iteration, each member
in the data set (hereafter refer as a training vector) is allocated to the nearest
centroid according to the Euclidean distance. The latter is then updated by aver-
aging the values of the training vectors under its coverage. Despite the success of
the K-means algorithm, the computation time is often overwhelming, especially
in the processing of large data sets. This problem is particular serious in gene
data clustering as both the size of the data set, and the dimension of the data
points, are large.

M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 713–720, 2013.
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Recently, graphics processing units (GPUs) have been rapidly evolved because
of the requirements from computer game industries. They are also suitable for
general purpose computations, such as image-based relighting [6], wavelet trans-
form [7], neural network simulation [8,9], and pattern recognition [10].

Start

End

Prepare the texture maps

Recalculate codevectors, 
until convergence and 

stop

CPU GPU

Fragment shader program:
Find the nearest codevector for 

each training vector and 
represent it as a codeindex

Texture 1: Holding training
vectors

Texture 2: Holding
codevectors

Texture 3: Output texture 
with frame buffer

Texture 1: Holding training
vectors

Fig. 1. Realization of the K-means algorithm with the GPU

Some GPU-based training realizations for K-means have also been
proposed [11,12]. Takizawa et al. [11] proposed a CPU–GPU co-processing solu-
tion for K-means, where GPU is mainly for Euclidean distance calculation and
CPU is for updating the centroids. In their implementation, a training iteration
consists of a number of rendering passes, where each rendering pass is associated
with a centroid. Within a rendering pass, a fragment shader is used for Euclidean
distance calculation. Each training vector is associated with a fragment, and its
temporary nearest centroid index and its corresponding distance are updated
as the color values of the fragment. With the z-buffering functionality of GPU,
the nearest centroid indices are available on the GPU when all the rendering
passes are finished. The indices are then transferred to the main memory, and
the CPU is account for sequentially updating the centroids. By using their GPU
approach, the training speed can be accelerated by about 35 times, compared
with a decent CPU implementation.

In the ideal single instruction multiple data (SIMD) situation, the determi-
nation of the nearest centroid for each training vector will be encapsulated as
a single thread that is handled by a unique core processor. As such, the evalu-
ation of the entire training data set in each iteration could be conducted in a
totally parallel fashion. However, in practice, this ideality is not realizable as the
number of core processors on a GPU is limited in number, and each of them has
to operate on multiple threads in a sequential manner. In this paper, we report
a method to alleviate this problem with a merging thread strategy, so that the
evaluation of 2 or more training vectors can be combined into a single thread.

Organization of this paper is listed as follows. In Section 2, a brief review of
the realization of the K-means algorithm on GPUs based on a classical fragment
shader architecture is outlined. Subsequently, we shall describe our proposed
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Fig. 2. The difference between our proposed method and the direct method. (a) The
direct method. (b) Our proposed merging thread strategy.

method that incorporates the merging thread strategy into the fragment shader
program. Experimental evaluation is given in Section 3, followed by a conclusion
in Section 4.

2 Typical GPU Realization of the K-Means Clustering
Algorithm

In the Takizawa’s approach [11], a training iteration consists of a number of
rendering passes. At each rendering pass, a fragment shader is used for calcu-
lating the distance from the centroid to each training vector and for comparing
the calculated distance with the temporary minimum distance. The reason of
using multiple passes is that at their time the number of instructions in a shader
is limited. Nowadays, due to the improvement of the GPU technology, a single
rendering pass is able to determine the nearest centroid.

A general GPU realization is shown in Fig. 1. The CPU first prepares the
training vectors and initial centroids as textures. Those textures are then stored
on the GPU. On the GPU, a fragment shader determines the nearest centroid for
each training vector in a parallel manner, and the nearest centroid index of each
training vector is returned to the CPU. The mean square error (MSE) of the
quantization of the training vector is also returned to the CPU. The CPU then
calculates the new set of centroids and the average MSE. The updated centroids
are passed to the fragment shader program on the GPU, and invokes next round
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of clustering. The process repeats until the average MSE is lower than certain
threshold, or when the number of iterations exceeds a given limit.

Fig. 2(a) shows the implementation for the fragment shader program with
the direct method. In this direct method, for each training vector, the fragment
shader calculate the distances from the training vector to all centroids. After
the calculation, the nearest centroid index and the MSE of the quantization are
obtained. From the parallel computing’s point of view, the evaluation of the
nearest centroid for each training vector is treated as a thread. Since there are a
lot of training vectors, many threads are created. In the ideal case, each thread
will be handled independently by a single processor. However, in practice, this
ideality is not realizable as the number of core processors on a GPU is limited in
number. Hence each GPU core processor has to operate on multiple threads in
a sequential manner. Also, those threads compete for the same set of resources,
such as GPU memory access. In view of this, we propose a merging thread
strategy to reduce the competition between those threads.

3 Merging Thread Strategy

We propose a merging thread strategy so that a plurality of training vectors
will be grouped into a thread before they are evaluated by their associated core
processor. In this merging thread approach, a thread processes a few training
vectors. The new fragment shader program for processing four training vectors
is shown in Fig. 2(b). The corresponding Cg codes is shown in Listing 1.1.

Without loss of generality, we consider that each thread processes four train-
ing vectors. There are two input textures for this merging thread strategy. One
texture, calling codebook texture, stores the centroids. Another texture, calling
training vector texture, stores the training vectors. Let k be the number elements
in the data vectors, let M be the number of centroids, and let N be the number
of training vectors. As a texel can store four floating-point values (RGBA), an
k-dimensional vector occupies k

4 texels. Therefore, the resolution of the centriod

texture is equal to M × k
4 , as shown in Fig. 3(a). The resolution of the training
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Fig. 3. The organization of textures. (a) Codebook texture. (b) Training vector texture.
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Listing 1.1. Our proposed method that incorporates the merging thread strategy (for
4 data points as an example) to enhance the computation efficiency of the fragment
shader in realizing the K-means algorithm

#define FLT MAX 3.402823466 e+38F
#define P BookSize 256 // the s i z e of codebook
#define P TexDim (256/4) // the number of dimensions in unit o f t e x e l
// i f new min . distance , then record the new one
#define IF MIN REC( f2Best , d i s t , k ) i f ( ( d i s t )<f 2Best . y ) {( f2Best ) =

f l o a t 2 ( ( k ) , ( d i s t ) ) ; }
// eva luate the dis tance for each data point
#define EVALUATE DIST( d i s t 1 ) \

t4 = p4 − texRECT( texData , f 2pos ) ;
( d i s t 1 ) += dot ( t4 , t4 ) ;
f 2pos . x += nOf f se t ;

void main FragKM matching (
f l o a t 2 index : TEXCOORD0, // The index of a vec tor in the data

se t
uniform samplerRECT texData , // Texture ho ld ing the data vec tors
uniform samplerRECT texBook , // Texture ho ld ing the codebook (

centroids )
out f l o a t 4 oResu l t s : COLOR0, // Textures ho ld ing the output ( code

ind ic e s )
out f l o a t 4 oResu l t s1 : COLOR1 ){
f l o a t 4 p4 , t4 ;
int i , j , k , nOf f se t ;
f loat xStart ;
f loat fSSE ;
f l o a t 2 f2pos ;
f loat d i st1 , d i s t2 , d i s t3 , d i s t 4 ; // the minimum error with

corresponding
// index for the data vec tors

f l o a t 2 out1 , out2 , out3 , out4 ;
out4 = out3 = out2 = out1 = f l o a t 2 (−1 , FLTMAX) ;
xStart = ( index . x−0.5)∗P TexDim+0.5;
f 2pos . y = index . y ;
nOf f se t = (P QuadWidth∗P TexDim) ;

for (k=0; k<P BookSize ; k++) {
// re se t the dis tances for the data vec tors

d i s t 4 = d i s t 3 = d i s t 2 = d i s t 1 = 0 ;
for ( i =0; i<P TexDim ; i++ ) {

// share the centrods for more data vec tors at a time
p4 = texRECT( texBook , f l o a t 2 ( i +0.5 , k+0.5) ) ;
// the k−th vec tor in codebook
f 2pos . x = ( xStart+i ) ;
EVALUATE DIST( d i s t 1 ) ; // the 1 s t data vec tor
EVALUATE DIST( d i s t 2 ) ; // the 2nd data vec tor
EVALUATE DIST( d i s t 3 ) ; // the 3rd data vec tor
EVALUATE DIST( d i s t 4 ) ; // the 4 th data vec tor

} // i<P TexDim for a vec tor of a l l dimensions
IF MIN REC( out1 , d i s t1 , k )
IF MIN REC( out2 , d i s t2 , k )
IF MIN REC( out3 , d i s t3 , k )
IF MIN REC( out4 , d i s t4 , k )

} // for k<P BookSize
//sum the squared error of the r e s u l t s
fSSE = out1 . y + out2 . y + out3 . y + out4 . y ;
// output t e x e l s for the fragment in the two te x tu re s
oResu l t s = f l o a t 4 ( out1 . x , out2 . x , out3 . x , out4 . x ) ;
oResu l t s1 = f l o a t 4 ( fSSE , 0 , 0 , 0) ;

}
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vector texture is N
4 × k, as shown in Fig. 3(b). With the above arrangement,

each row of the training vector texture corresponds to four training vectors.
After preparing these two textures, they are put into the GPU memory. We also
define two output textures. One is used to store the nearest centroid indices,
and its resolution 1 is equal to 1 × N

4 . It is called as centroid index texture.
Another output texture, calling MSE texture, is used to hold the MSE values of
the quantization, and its resolution is also equal to 1× N

4 .
To start the fragment shader, in the OpenGL environment, we draw a picture

with resolution of 1 × N
4 . That means, we define N

4 fragments, as well as N
4

threads, on the GPU. The texture coordinate of each fragment is used to indi-
cate the four training vectors that the fragment owns. For each fragment, the
fragment shader then find out the corresponding four nearest centroids. After-
wards, the nearest centroid indices and MSE values are output to the centroid
index texture and the MSE texture, respectively. Thereafter, the CPU updates
the codebook. The updated codebook is then passed to the GPU for the next
round of clustering.

4 Experimental Evaluation and Discussion

The proposed scheme is evaluated with two popular gene datasets. The Lym-
phoma [13] gene expression dataset consists of 4022 data. Each of them is rep-
resented by 96 dimensional vector. The dataset is partitioned into 256 clusters.

The Yeast cell-cycle [14] dataset is comprising of 6178 data. Each of them
is represented as a 77 dimensional vector. The dataset is partitioned into 256
clusters with the K-means algorithm running on the GPU.

All the evaluations are conducted on the CPU equipped with ”Intel Core i7
920” CPU, and the ”nVidia GTX260” GPU card. We compare the realization of
the K-means algorithm using the direct method in Fig. 2(a), that employs the
traditional fragment shader, and our proposed method in Fig.2(b).

The performance (in terms of number of iterations per second) of the direct
method, and our proposed method based on the merging of 2 to 4 training
vectors, is shown in Table 1. The results are the average values of 10 runs. We
observed that the proposed merging thread strategy could result in over 25%
improvement in the computation efficiency when we merge four training vectors
into one thread.

There are several reasons why the merging thread strategy can improve the
efficient. First, using the merging thread strategy can reduce the overhead for
switching threads. In the direct method, the number of threads is equal to the
number N of training vectors. The merging thread strategy can reduce the num-
ber of threads,as well as the overhead for switching threads. Second, in the direct
method and the merging thread strategy, each thread needs to access the whole
codebook one time. Therefore, at each training iteration, the direct method ac-
cesses the whole codebook N times. On the other hand, the merging thread
strategy accesses the whole codebook N

4 times only.

1 Note that each texel can hold four values.
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Table 1. Speed, and speed-up gain of of our proposed scheme with respect to the
direct method for gene clustering

Data Sets The number of Speed Speed up gain
merging threads

Lymphoma 1 87.3 0
(direct method)

2 105.2 21%
3 109.8 26%
4 109.8 26%

Yeast-cell-cycle 1 69.5 0
(direct method)

2 79.3 14%
3 83.7 20%
4 87.8 26%

5 Conclusion

In this paper we reported an enhanced method for realizing gene clustering on a
GPU. We have built a fragment shader program to conduct the K-means algo-
rithm, which is employed to partition the gene data into a group of centroids. A
merging thread strategy for reducing the number of threads associated with each
processing core, has been adopted to increase the computational efficiency. Ex-
perimental evaluation reveals that our proposed method is capable of increasing
the computation speed by over 25% as compare with existing approach.

Acknowledgement. The work was supported by RGC General Research Fund
from Hong Kong (Project No.: CityU 116511).
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Abstract. In this paper we propose a novel multimodal feature learning 
technique based on deep learning for gait biometric based human-identification 
scheme from surveillance videos. Experimental evaluation of proposed learning 
features based on novel deep learning and standard (PCA/LDA) features in 
combination with classifier techniques (NN/MLP/SVM/SMO) on different 
datasets from two gait databases (the publicly available CASIA multiview 
multispectral database, and the UCMG multiview database), show a significant 
improvement in recognition accuracies with proposed fused deep  learning 
features.  

Keywords: multimodal, multiview, gait, vPCA, Deep Learning, identification, 
fusion. 

1  Introduction 

Over the last few years, several research works have been reported on use of different 
biometric modalities for establishing identity, and have recognized the importance of 
gait patterns (walking style), for recognizing human ID at a distance, where the face 
cannot be clearly seen in video footage.  However, these complex surveillance 
environments are characterized by uncooperative cameras and uncooperative subjects, 
where most of traditional approaches used for biometric identity recognition with face, 
iris and fingerprint biometrics normally fail. However, several physiological and 
biomechanical studies have shown that human gait is a unique and an inherently 
multimodal biometric, and involves a complex  kinematic interaction between several 
motion articulators, and includes interplay between lower and upper limbs and other 
biomechanics of joints. It is person specific based on body weight, height, joint 
mobility in the limbs, and other person specific behavioral nuances. Due to this it is 
unique and cannot be forged, and if we can model these inherently multimodal traits by 
extracting compact representations from multiple sources, in terms of robust features 
and combine them appropriately, it is possible to identify humans from a distance from 
their gait or from the way they walk, irrespective of uncooperative cameras and 
uncooperative subjects. Automatic identification systems built using these features, can 
make a great contribution to surveillance and security area, can lead to better 
understanding of gait abnormalities, and lead to development of better human 
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computer interfaces. However, each of these cues or traits captured from long range 
low resolution surveillance video cameras on their own are not powerful enough for 
ascertaining identity, a combination or fusion of each of them, along with suitable 
automatic processing approaches can result in robust recognition.  

In this paper, we propose usage of full profile silhouettes of persons from multi-
view low resolution cameras for capturing inherently multi-modal cues available from 
the gait patterns of the walking humans, and use it for establishing their identity. 
Further, we propose the use of unsupervised feature learning techniques, based on 
variants of principal component analysis (PCA) and deep learning (DL) approaches, 
which allow an in-depth analysis of the underlying pixel data. We compare these new 
features to standard features based on multivariate statistical techniques, such as PCA 
and linear discriminant analysis (LDA), along with well known learning classifier 
approaches based on support vector machines, NN and MLP classifiers [2, 19, 27]. The 
experimental evaluation of the proposed approach with two different databases, the 
publicly available CASIA [1] gait database, and the newly developed UCMG database 
[22], show a significant improvement in recognition performance with the proposed 
unsupervised learning features, as compared to standard features proposed in the 
literature, particularly for uncooperative camera conditions, simulated with 
mismatched train and test data sets. The rest of the paper is organised as follows. Next 
Section describes the background and motivation for proposed work, followed by the 
proposed multiview multimodal feature learning scheme in Section 3. The details of 
the experiments performed are described in Section 4, and conclusions and plans for 
further work are described in Section 5. 

2 Background 

To address the next generation security and surveillance requirements for not just 
high security environments, but also for day-to-day civilian access control 
applications with low level security requirements, we need a robust and invariant 
biometric trait [3]. According to the authors in [4], the expectations of next generation 
identity verification involve, addressing issues related to application requirements, 
user concern and integration. Some of the suggestions made to address the 
requirements of these emerging applications were use of non-intrusive biometric 
traits, role of soft biometrics or dominant primary and non-dominant secondary 
identifiers and importance of novel automatic processing techniques. To conform to 
these recommendations; often there is a need to combine multiple physiological and 
behavioral biometric cues, leading to so called multimodal biometric identification 
system. While most behavioral biometrics are not unique enough to provide reliable 
human identification they have been proved to be sufficiently high accurate [5, 6]. 
Gait, is a similar powerful behavioral biometric, but as a single mode, on its own, it 
cannot be considered as a strong biometric to identify a person. However, if we 
combine complementary gait information from another source, the multi-modal 
combination is expected to be powerful for human identification. Researchers have 
found that one of the most promising techniques is the use of multimodality or 
combination of different biometric traits or same biometric trait from multiple 
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disparate sources. For example, researchers in [7, 8] have found that multi-modal 
scheme involving PCA on combined image of ear and face biometric results in 
significant improvement over either individual biometric. In addition, other recent 
attempts to improve the recognition accuracy include face, fingerprint and hand 
geometry [9]; face, fingerprint and speech [10]; face and iris [11]; face and ear [12]; 
and face and speech [13].  

 

 
(a): CASIA database images 

 

 
(b) UCMG database images  

Fig. 1. Sample images from CASIA and UCMG gait databases 

However, the power of automatic discovery of suitable feature representations 
extracted from disparate but complementary sources straight from pixels, that do not 
rely on  elaborate computation intensive features and application-specific expert 
knowledge, and their fusion did not attract much attention from the research 
community. As opposed to traditional sophisticated computation intensive feature 
extraction stages, and use of domain specific expert knowledge to manually specify 
features, the proposed feature learning and discovery based on the variants of 
principal component analysis and the deep learning approach, seeks to optimize an 
objective function that captures the appropriateness of the features, and includes 
approaches based on energy minimization, manifold learning, and deep learning using 
auto-encoders [23, 24, 25]. 
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3 Multimodal Feature Learning Scheme 

For experimental evaluation of our proposed multimodal gait identification scheme, 
we used two different gait databases, CASIA Gait Database [1] and UCMG  Gait 
databas3 [22]. Both the databases are large multi-view databases, and consist of video 
sequences of walking persons captured from multiple video cameras.   Further, both 
the databases consist of subsets of gait data  captured from multiple view angles (0, 
30,60, 90 etc),  with different walking styles (slow, normal, fast), and with different 
props (bag, hat, coat etc.).  For all experiments reported in this paper, we used 10 
subjects with a set of extracted silhouettes from Dataset B  in CASIA and a  dataset  
with similar matched conditions from the UCMG dataset. Each subject consists of 16 
images and in total 160 images for 10 subjects (people). Figure 1 shows some sample 
sequences from CASIA Dataset B and UCMG Database. 

3.1 Variant of PCA Features (v-PCA)  

PCA is a basic form of feature learning and it allows automatic discovery of compact 
and meaningful representation of raw data without relying complex feature extractio 
techniques or on domain specific (or expert) knowledge. It is a well established 
technique used for decorrelation and dimensionality reduction of data.  The variance 
of the original data is concentrated in low dimensional subspace characterized by 
eigenvectors and eigenvalues.  The projection of the original data onto the variance-
maximizing sub-space serves as a feature representation, and automatic analysis of 
the eigenvalue spectrum of the sample covariance uncovers the appropriate target-
dimensionality of the feature space. However, the PCA features perform poorly if the 
input data are not properly normalized. Using blind range normalization does not 
solve the problem especially when the components relate to completely different 
aspects of a phenomenon. In the context of gait recognition from multiple views this 
becomes problematic and to address this issue we developed an alternate 
representation based on the empirical cumulative distribution function (ECDF) of the 
gait silhouette/contour (x, y) from each frame. This representation is independent of 
the absolute ranges but preserves structural information.  

3.2 Deep Learning Features (DLF) 

Hinton et al., [23] have proposed a powerful tool for generic semi-supervised 
discovery of features called autoencoder networks, which aim to learn a lower-
dimensional representation of input data. This produces a minimal error when used 
for reconstructing the original data. For autoencoder based feature learning on 
sequential data we used a novel deep learning approach. In this approach, the lower 
dimensional features are discovered by means of feed-forward neural networks  that 
consist of one input layer, one output layer and an odd number of hidden layers. 
Every layer is fully connected to the adjacent layers and a non-linear activation 
function is used. The objective function during training is the reconstruction of  
the input data at the output layer. The autoencoder transmits a description of the 
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input-data across each layer of the network. This non-linear low-dimensional 
encoding is hence an automatically learned feature representation. For robust model 
training, we used the techniques suggested by Hinton et al[24],  where the layers of 
the autoencoder network are learnt greedily in a bottom-up procedure, by treating 
each pair of subsequent layers in the encoder as a Restricted Boltzmann Machine 
(RBM).  

An RBM is a fully connected, bipartite, two-layer graphical model, which is able to 
generatively model data. It trains a set of stochastic binary hidden units which 
effectively act as low-level feature detectors. One RBM is trained for each pair of 
subsequent layers by treating the activation probabilities of the feature detectors of 
one RBM as input-data for the next. Once the stack of RBMs is trained, the generative 
model is unrolled to obtain our final fully initialized autoencoder network for feature 
learning. Different methods exist to model real-valued input units in RBMs. We used 
Gaussian visible units for the first level RBM that activate binary, stochastic feature 
detectors (Gaussian-binary). The subsequent layers rely on the common binary-binary 
RBM, and the final layer is a binary linear RBM, which effectively performs a linear 
projection. During training, the sample data is processed batch-wise, where each 
batch ideally comprises samples from all classes in the training-set. As the availability 
of the class information is not mandatory, we trained RBMs in a completely 
unsupervised manner. To evaluate the two feature learning approaches, vPCA and 
DLF features for gait based human identity recognition, we conducted a number of 
experiments using different subsets of data from the CASIA dataset B and UCMG 
database. For baseline comparison, we also extract standard PCA and LDA features. 
Further, we examined how these features perform with different classifiers and hence 
tested with  Nearest Neighbor (NN), MLP, SVM and SMO classifiers, and is 
described in detail in some of the previously reported works [15, 16, 17, 19, 24, 27].  

4 Experiments and Results 

Three sets of experiments were performed on different subsets of data from two 
databases, the CASIA Dataset B (Visible spectrum), Dataset C(Infrared spectrum) 
and the. UCMG database. Table 1 to Table 5 show the recognition performance for 
each set of experiments in terms of recognition accuracy and several statistically 
significant performance measures such as true positive rate (TPR), false positive rate 
(FPR), precision, recall and Fmeasure. 

By using PCA, LDA, vPCA and DLF feature learning techniques, we extracted the 
gait feature vectors from the silhouette images of walking humans in each video 
sequence, and performed identification experiments in single mode and multimodal 
fusion mode. To examine the performance of features under uncooperative camera 
conditions, we used different views for training and test conditions. We obtained a 
fused(averaged) training template by combining features extracted from different 
views, and used the testing data from a view other than those used for building the 
fused training template. Without this approach, the error becomes too large if training 
data is used from one view and test data is used from a different view.  
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Table 1. Performance of Learning Features (dimension = 20) with MLP classifier with 5 fold 
cross validation 

 
 

Table 2. Performance of Learning Features (dimension = 20) for different classifiers with 5 
fold cross validation 

 
 

Table 3. Performance of Decision Fusion of LDF and DLF Features (dimension = 20) for 
CASIA Dataset B with different  classifiers 
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The first  set of experiments show the performance for proposed learning features 
in single mode for CASIA dataset B and UCMG datasets, under matched conditions 
(gender, walking styles and presence of props). For all experiments we used a reduced 
dataset, with 10 classes (10 persons) with 20 features (PCA, vPCA, LDA, DLF), as 
preliminary experimentation showed that about 95% of variations can be modelled by 
around 10 features, and any more increase in dimensionality  does not result in 
significant improvement in performance. As can  be seen in Table 1, the proposed 
deep learning and vPCA features perform better than the standard PCA features, 
though LDA features perform equally well here. The second set of experiments 
involved testing whether other established classifiers with different kernels result in 
better performance, and is shown in Table 2. As can be seen in Table 2, for both 
datasets, simple nearest neighbour classifier outperforms other sophisticated SVM 
classifier for all kernel types, which could be due to better learning ability of DLF 
features. The final set of experiments involved examining the decision level fusion of 
LDA and DLF features for different types of classifiers. As can be seen in Table 3, 
the decision fusion of LDA and DLF features results is better performance than the 
single mode features, particularly for NN and SVM classifier with linear kernels.  

5 Conclusions  

In this paper we proposed novel learning features based on deep learning and variants 
of PCA from long range gait profiles in surveillance videos. We investigated the 
performance of these features for uncooperative camera conditions with multi view 
gait images with mismatched train and test conditions. The proposed learning features 
perform better when the best performing features are fused (DLF+LDA), even for a 
simple NN based classifier. This shows a significant improvement in recognition 
accuracies  can be achieved with appropriate learning features and their fusion in real 
world surveillance scenarios with uncooperative camera conditions (simulated with 
mismatched train and test conditions).  
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Abstract. This paper proposes a new embedded system which can selectively 
detect human face based on eye gaze information and can also incrementally 
recognize the human subject. The proposed embedded system comprises of one 
glass-type platform, two embedded modules and one android platform. The 
glass-type platform can detect user’s eye gaze through eye camera, human faces 
through frontal camera and selects the face of the preferred human subject 
based on their gaze information. Android platform performs face recognition 
and information displaying operation. All modules in the system are connected 
and communicate wirelessly. The experimental results indicate that the pro-
posed system is reasonable. 

Keywords: bottom-up selective attention, gaze tracking, embedded platform, 
android platform, modified census transform, adaboost face detection. 

1 Introduction 

The human visual system seems to effortlessly focus and detect an area of interest to 
identify an object within natural or cluttered scenes with noisy environment. Howev-
er, this effective task of processing complex visual scenes is performed by a cognitive 
function known as selective attention. 

In last few years, there have been several studies to understand the process of se-
lective attention and to model it for improvised computer vision. For instance, Itti, 
Koch, and Niebur [1] introduced a brain-like model to generate a saliency map (SM). 
SM is a brain-like vision model that imitates receptive parts of human visual cortex. It 
uses bottom-up features such as color, intensity, and edge information to infer salient 
regions and compare them with surrounding environment. Jeong and his colleagues 
[2] introduced a dynamic saliency model, which considers temporal dynamics of sa-
liency changing through time at each salient point. This model is based on a modified 
static saliency model, which additionally considers symmetry information. Further, 
Ban and his colleagues [3] proposed an effective method to generate saliency map 
considering psychological distance as well as visual features.  
                                                           
∗ Corresponding author. 
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In cognitive psychology, it is widely assumed that human eye gaze contains impor-
tant information related to human intention during a visual search task. The notions 
that direct gaze facilitates processing of an observed face is supported by several be-
havioral studies such as [4]. This study showed  improved performance in gender 
categorization and face recognition tasks when the face stimuli display direct rather 
than averted gaze. 

Face detection is still an active research area in machine vision. The Haar-like fea-
ture based adaboost algorithm proposed by Viola & Jones [5] and the MCT feature 
based adaboost algorithm proposed by Fröba & Ernst [6] are widely used algorithms 
among several other face detection algorithms. Haar-like feature based face detector 
is weak at handling illumination because Haar-like features are calculated by subtract-
ing the summation of pixels in two different regions. On the other hand, MCT feature 
based face detector is robust to illumination. Therefore, in this paper, we use MCT 
feature based adaboost algorithm for face detection. 

In human social interaction, human identification in addition to human face detec-
tion is essential for an efficient communication. But human subjects tend to forget the 
information which is not used frequently. Therefore, the purpose of the proposed 
embedded face recognition model is to support human subjects by augmenting thier 
memory. 

Our previous research introduced an embedded system that incorporates bottom-up 
selective attention model into adaboost based face detection. [7] In this paper, we 
propose an embedded platform for incremental face recognition. The system consists 
of following: 1) a glass-type platform to acquire user’s eye image and out-scene im-
age; 2) two embedded modules to detect multiple faces and eye gaze to select a face 
based on eye gaze; 3) android platform for recognizing detected face and displaying 
its information.  

This paper is organized as follows: Section 2 describes the proposed embedded 
system for human augmented cognition. The experimental results are presented in 
Section 3. Finally, section 4 presents conclusions and future works. 

2 Proposed Embedded System  

Figure 1 outlines an overall architecture of the proposed model. The input images are 
obtained from both frontal camera and eye camera and they are attached to the main 
and sub embedded processors respectively. The obtained images are transferred to the 
respective embedded module. The sub embedded module detects eye pupil of the user 
and its center position in the image. The detected position is then transferred to main 
embedded module which in turn detects multiple human faces based on face selective 
attention model and maps eye gaze position to out-scene image. Then a face is se-
lected from the detected faces by considering eye gaze point and is transferred to an 
android platform. Finally, the android platform recognizes the face based on incre-
mental two-dimensional two-directional principal component analysis (I(2D)2PCA) 
[8]. The recognized results are displayed on android platform. The communication 
between the two embedded modules and the android platform happens wirelessly. 
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Feature Selection for Stock Market Analysis 
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Singapore 

Abstract. The analysis of the financial market always draws a lot of attention 
from investors and researchers. The trend of stock market is very complex and 
is influenced by various factors. Therefore to find out the most significant fac-
tors to the stock market is very important. Feature Selection is such an algo-
rithm that can remove the redundant and irrelevant factors, and figure out the 
most significant subset of factors to build the analysis model. This paper ana-
lyzes a series of technical indicators used in conventional studies of the stock 
market and uses various feature selection algorithms, such as principal compo-
nent analysis, genetic algorithms, and sequential forward search, to find out the 
most important indicators.  

Keywords: Stock Market Analysis, Principal Component Analysis, Genetic 
Algorithm, Feature Selection. 

1 Introduction 

Stock market analysis has always been a hot area for researchers and investors. 
People have come up with a lot of theoretical foundation in mathematics, and devel-
oped a variety of methods to analyze the stock market with the help of modern com-
puter technology. Among them, the Feature Selection method is a very important 
research field. It evaluates a lot of factors that are considered important to the stock 
market, and selects out the most significant ones for people to depict the market trend. 
The function of Feature Selection method is to discard the dross and select the es-
sence. The computational time could be dramatically reduced, since the significant 
factors are pointed out for the investors. In order to figure out the prominent features 
in the stock market, researches on effective Feature Selection methods are extremely 
needed.  

This paper begins with a literature review of the stock price, analysis of the stock 
market and feature selection algorithm. Subsequently in chapter 3, technical indica-
tors, principal component analysis, genetic algorithm and sequential forward feature 
selection are given. Then, in chapter 4 the results are discussed and analyzed. Lastly, 
in chapter 5, we draw our conclusion and talk about future works. 
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2 Related Work 

2.1 Stock Price 

A stock itself has no values, but it can be set a certain price as a commodity for selling 
and buying, and this price is called stock price [1]. Stock price is also known as the 
quotation of a stock market, refers to the price of the stock traded in the securities 
market. The stock price is divided into two categories, theoretical-price and market-
price. Theoretical-price of a stock not only provides a significant basis to predict 
changes in the trend of the stock market-price, but also is a basic factor for the forma-
tion of market-price in the stock market. Market-price of a stock refers to the actual 
price of the stock traded on the stock market. Since the stock market can be catego-
rized into issuing market and circulation market, the market-price also has two types: 
the issue price and the circulation price [1]. The issue price is the price determined by 
the issuing company and the securities underwriter, when the stock enters the market 
at the first time. Therefore, when people talk about the market-price, they normally 
mean the circulation price of the stock. The market-price contains a lot of details, 
such as the opening price, closing price, highest price and many other records. The 
closing price is the most important one among them. It is the basic data that is used in 
analysis of the stock market [1].  

2.2 Analysis about the Stock Market 

Investors have to learn to understand a series of theories and scientific methods, in 
order to analyze all kinds of the information of the stock market. The most famous 
theory is the Efficient Market Hypothesis Theory (EMH), and the analysis method is 
generally divided into two types, technical analysis and fundamental analysis [2]. 

Efficient Market Hypothesis Theory, proposed by E.F. Fama in 1965, is a perfectly 
competitive market model with an entirely rational basis. It is the cornerstone of the 
traditional mainstream financial theory [3]. The kernel of this theory is that the stock 
price always tells all the relevant information accurately, adequately, and in time in an 
effective market. 

The purpose of fundamental analysis is to determine whether the current stock 
price is reasonable and depict the long-term development space, whereas the technical 
analysis to predict the short term ups and downs of the trend of the stock price. With 
fundamental analysis, people can be aware of what stocks they should buy, while 
technical analysis helps them to detect the timing of specific purchase.  

2.3 Feature Selection Algorithm 

Feature Selection, also known as the feature subset selection (FSS), or attribute selec-
tion (Attribute Selection), is a method to select a feature subset from all the input 
features to make the constructed model better. In the practical application of machine 
learning, the quantity of features is normally very large, in which there may exist 
irrelevant features, or the features may have dependence on each other 
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Feature Selection can remove irrelevant or redundant features, and thus decrease 
the number of features to improve the accuracy of the model. The purpose of reducing 
the running time can also be achieved. On the other hand, selecting the really relevant 
features can simplify the model, and make the data generation process easy-to-
understand for the researchers. 

3 Theory and Methodology 

3.1 Technical Indicators 

Technical indicator is a proper noun in finance [4]. It refers to a collection of stock 
data calculated by mathematical formulas. This kind of indicators needs to take all the 
aspects of the market’s behavior into consideration, and build a mathematical model, 
giving out the calculation formula, and then get a number reflecting the intrinsic es-
sence of a certain aspect of the stock market.  

There are 12 indicators in total used as the input factors for the stock market. These 
indicators include SMA (simple moving average), EMA (exponential moving aver-
age),  ALF (Alexander’s filter, which is used to estimate the percentage changes in 
the prices of financial varieties within a specific period), Relative Strength (it is used 
to compare the stock price with the whole market in a certain period), RSI (relative 
strength index), MFI (money flow index, which evaluates the selling and buying pres-
sure with the help of trading price and volume), %B Indicator, Volatility, Volatility 
Band, CHO (Chaikin Oscillator, which measures the change of the average range of 
prices in a certain period), MACD (Moving Average Convergence-Divergence), %K 
Indicator (it focuses on the relationship between the day’s high, day’s low and the 
closing prices in the calculation process), Accumulation and distribution (AD) oscilla-
tor and Williams %R indicator (analyzes the short-term trend of the market by fore-
casting the high and low points in a cycle period and picking up the effective signals). 

All the 12 indicators are calculated as a line vector. To form the original input fea-
ture set, all the 12 vectors are put together into a matrix called feature, and after the 
selecting process of the Feature Selection algorithms, some of them will be chosen to 
be the optimized feature subset. The elements of the optimized subset are exactly the 
most significant factors to the stock market. 

3.2 Principle Component Analysis 

Principle Component Analysis (PCA) is a statistical analysis method to extract the 
principle contradiction of things, proposed by K. Pearson in 1901 [5]. The essence of 
this method is to reveal the nature of things by resolving the main factors and simpli-
fying complex problems. PCA is mainly used for dimensionality reduction of data. 

The calculation purpose of PCA is to make a projection from the main components 
of high-dimensional data, onto a lower dimensional space. A multidimensional vector 
is composed of a series of examples of the characteristics, and some of the elements  
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have no distinction themselves. The goal is to find elements with huge changes, i.e. 
the dimensions with high variances, and removing those with little changes, in order 
to reduce the computation time. 

The detailed steps of doing PCA are: 

• Calculate the covariance matrix S of the sample matrix X. 
• Obtain the eigenvalues (1, 2, …, N) and eigenvectors (e1, e2,…, eN) of the cova-

riance matrix X. Sort the eigenvalues in descending order. 
• Project the sample data onto the space formed by the eigenvectors, and get the 

new sample matrix. 

3.3 Genetic Algorithm 

Genetic Algorithm (GA) is a kind of random search methods, which is inspired by the 
laws of evolution in the biosphere (the survival of fittest) [6]. This algorithm has in-
ternal implicit-parallelism and better global optimization capability. GA can automat-
ically access and guide the optimized search space, with the probabilistic optimization 
methods, and there is no need of certain search rules, GA can adjust the search direc-
tion self-adaptively. These properties of genetic algorithm have been widely used in 
combinatorial optimization, machine learning, signal processing, adaptive control and 
artificial life. It is one of the key technologies in the area of modern intelligent com-
putation. The process of the genetic algorithm includes Initialization of the Popula-
tion, Individual Evaluation, Selection, Crossover and Mutation steps. 

3.4 Sequential Forward Feature Selection 

Sequential Forward Selection (SFS) algorithm is one kind of Heuristic searching me-
thods. This method starts with an empty feature subset X, and adds a feature x to 
make the Criterion function J (X) optimal at each decision step [7]. Simply speaking, 
it selects a feature that could give the optimal value of the evaluation function each 
time, and in fact, it is a simple greedy algorithm. 

However, there is a disadvantage that it could result in nesting problem, since once 
a selected feature is added to the subnet X, it would not be discarded any more. For 
example, if one feature A is completely dependent on the other two features B and C, 
then it is obvious that A is superfluous since B and C are the dominant factors. Sup-
pose that the Sequential Forward Selection algorithm select feature A first, and then 
adds B and C, therefore the selected subset will be redundant since it could not re-
move feature A. 

Another sequential Feature Selection algorithm called Sequential Backward Fea-
ture Selection (SBS) method has the opposite mechanism. It starts with the full set X 
= Y, and each time removes one feature so that the evaluation function achieves op-
timal. Similarly, this algorithm also has the drawback of nesting problem. It cannot 
add back the removed feature, and needs more computation than SFS. Therefore, the 
Sequential Forward Selection is used to do the selection in this part. 
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The selecting process of SFS is similar to a searching process. The algorithm starts 
with an empty set, and each time chooses one feature to make the evaluation function 
optimal until all the features are added into the subset or the evaluation function could 
not be better any more. The detailed procedures of doing the selection are illustrated 
below: 
 
• Define an empty feature subset S. 
• Evaluate each feature in the input feature set and choose one feature that could 

make the evaluation function have the optimal value. 
• Add this feature into the subset S, and choose the second feature out of all the 

other left features with the same evaluation criterion as the previous step. 
• Repeatedly evaluate the left features and add them into S until there is no im-

provement when adding a new feature or the criterion is met. 

4 Discussion and Analysis 

All the results obtained from the three algorithms are shown below together with the 
result got in [8]. This proposed data was evaluated by Sui et al. using Genetic Algo-
rithm with the criterion of measuring classification complexity. From Table 1, it could 
be concluded that the results of the four programs turned to be good.  

The result got from PCA should be relatively “correct”, since the mathematics is 
designed to find out the most efficient dimensions to describe the target. The order of 
the output has specific meaning, since it is ordered according to each factor’s contri-
bution rate. From Table 1, it can be seen that the most significant feature is Volatility, 
and the least ones are Chaikin Osillator and Williams %R. This result is the same as 
the one that proposed in [8], it selects 10 features out of 12, excluding Chaikin Osilla-
tor and Williams %R as well. 

In the meanwhile, the Genetic Algorithm has some randomness, which will influ-
ence the result if the iteration times are not enough. The number of features could not 
be controlled in the first version since there might be crossover and mutation happen-
ing at any time. Besides, the result might be different due to the randomness of Genet-
ic Algorithm, however, if the number of generation and the size of population are 
large enough, the result should go into a steady situation and have optimal solution. 
Although this program only selects five features to form the output subset, the chosen 
ones are the first five features in the output of PCA. The accumulative contribution of 
the first five features is 94% (in Part 3.2.5), which is much higher than the normal 
criterion 70%. Therefore, the result of GA_1 can be concluded trustworthy and  
concise. 

According to the explanation before, the output of GA_2 only denotes which fea-
tures are selected by the subset, and there is no difference in the importance. The 
number of features to be selected to form the feature subset can be controlled with a 
parameter feaN, and the output with feaN = 10 has the same ten features as that of [8], 
meaning that this program also works well. 
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Table 1. Comparison of the results 

 Technical 
Indicator 

Proposed 
Result 

PCA GA_1 GA_2 SFS 

1 ALF (1)ALF (6)V (1)ALF (7)VB (4)MFI 
2 RS (4)MFI (5)B (3)RSI (3)RSI (6)V 
3 RSI (10)%K (1)ALF (5)%B (11)ADO (9)MACD 
4 MFI (5)%B (3)RSI (6)V (5)%B (7)VB 
5 %B (7)VB (9)MACD (9)MACD (2)RS (1)ALF 
6 V (6)V (10)%K  (9)MACD (8)CHO 
7 VB (3)RSI (7)VB  (4)MFI (3)RSI 
8 CHO (9)MACD (2)RS  (10)%K (5)%B 
9 MACD (2)RS (4)MFI  (6)V (2)RS 
10 %K (11)ADO (11)ADO  (1)ALF (10)%K 
11 ADO  (8)CHO   (12)%R 
12 %R  (12)%R   (11)ADO 

 
The output of SFS has the discarded feature “Chaikin Osillator” on the sixth posi-

tion, which makes the subset seem not good as those of the others. This is due to the 
drawback “nesting problem” of SFS which is explained in Part 3.4.1. If the feature 
has been selected, it could not be removed any more. Therefore, SFS might not be 
very efficient during actual practice. 

Overall, PCA is the most suitable method in this paper, since it is reliable and ac-
curate. However, the computation time might be very long if the input data has too 
many factors. In such a situation Genetic Algorithm will have a better performance 
since it takes the advantage of randomness. 

5 Conclusion 

In this paper, we did researches on the principles and theories in the field of financial 
market, and basic technical analysis methodologies about the stock market was stu-
died and practiced with the help of Feature Selection algorithms. We used the data of 
Shanghai Stock Exchange Composite Index (SSECI) from 24/03/1997 to 23/08/2006 
to measure twelve technical indicators for later research. The twelve chosen technical 
indicators were calculated, and the results were taken as the input of the Feature Se-
lection algorithms. The three kinds of Feature Selection algorithms, Principle Com-
ponent Analysis (PCA), Genetic Algorithm (GA) and Sequential Forward Selection 
(SFS) were studied. According to the results and analysis, PCA is the most reliable, 
but might be time-consuming if the input has very large dimensions. Genetic Algo-
rithm will have a better performance since it takes the advantage of randomness in 
such a situation. SFS could generate the local optimal solution, but with a risk of 
“nesting problem”. 
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Based on this paper, there are still many improvements that can be made to get bet-
ter results. Here are some recommendations we summarized for a better work. 

● This paper only studies on three kinds of Feature Selection algorithms, so 
other algorithms [13]-[19] can be researched and compared with these three 
to provide more convenient and reliable method for building models. More-
over, the study on a hybrid algorithm will also have great potential to come 
out a better solution. 

● Pattern recognition techniques like Artificial Neural Network and Support 
Vector Machine could be used to do further analysis. By training the learning 
machine with the selected features, the resultant model will be more reliable 
and practical. 
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Abstract. A vehicle classification is essential for effective transportation sys-
tem, parking optimization and law enforcement. Proposed methods of vehicle 
image classification, obtained from videos of road traffic, have known limita-
tions, such as dependence on detection methods, hard image normalization and 
low accuracy. This paper presents a classification method for vehicle images 
using NN with conditional adaptive distance. Its aims are to improve the classi-
fication accuracy, evaluate the conditional adaptive-NN rule and to discuss the 
feasibility of the features based on the edge. Results are compared with NN, 
adaptive-NN and SVM. The experimental platform is built on Matlab R2009a.  

Keywords: traffic parameters, vehicle image classification, adaptive distance.  

1 Introduction 

Traffic parameters are required in an effective transportation system, such as vehicle 
count, speed, congestion level, movement of vehicles in the intersection, vehicle 
classification, vehicle identity via the number plate, identification of suspected 
behavior, passenger count and number of accidents. Various kinds of traffic control 
system, for example, law enforcement, automatic tolls, automatic routing in 
congestion and incident detection can be implemented with these parameters [1]. 

Automatic vehicle classification is an important task in Intelligent Transportation 
System (ITS) because it enables the attainment of traffic parameter called vehicle 
count by category, which is used to control and manage the roadway traffic. Vehicle 
class is noteworthy both for statistic purposes and access control, as closed areas for 
some vehicle classes and limits of velocity [2]. 

The application of image processing and computer vision techniques to the 
analysis of video sequence of traffic flow offers considerable improvements over the 
existent methods of traffic data collection and road traffic monitoring. Challenges are 
not so simple: a vision-based system for such traffic applications must have the 
features of a short processing time, low processing cost and high reliability. As the 
images are represented in the 2D space, some inaccuracies occur in the acquisition 
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system, because the real context corresponds to 3D scenes. Moreover, noise is 
expected, mainly, due to vehicle movement and climatic variations [3].  

Real scenes consist in overcoming challenges to methods for collecting traffic 
parameters based on image processing. Lighting and climatic variations, shadows 
away from the camera, image quality, dynamic positioning of vehicles on the roads 
and heavy reliance on detection techniques are considered aspects that hinder the 
collection automation of traffic parameters from videos, by using image processing. 
Errors in the detection and classification of vehicles from video may be significant, 
particularly when traffic congestion is high, because the occlusion is inevitable [4]. 

The vehicle image classification proposed in this paper is based on vehicle edge 
images and NN with conditional adaptive distance. Detection of vehicles in the video 
and normalization are not covered by the proposed method. 

Four labels (motorcycle, car, bus and truck) are assigned by classification. The four 
classes are defined based on reports of the Brazilian Ministry of Transport [5]. The 
separation of the bus and truck classes, instead of considering only large vehicles, is 
important for this ministry because there are planning, investments and political 
decisions, related to public transport, focused on vehicles of the bus class. 

This paper is organized as follows: related works are presented in Section 2; details 
of the proposed classification methods, features and test methodology are in Section 
3; reports of the experimental results are presented in Section 4. Finally, a conclusion 
is presented in Section 5. 

2 Related Works 

Neural-edge-based for vehicle detection and classification was presented in [6]. The 
height and width of a rectangle region, detected as a vehicle, were placed in input 
lines of a feed-forward network that does the classification into three categories: 
small, medium and large. The network was trained with back propagation and 3000 
samples collected under weather and lighting conditions. Vehicle classification rate 
reached above 95%.  

Morphological techniques are used for vehicle image classification in [7]. After a 
second level concerning morphological dilatation and removed unwanted objects, the 
image is binary and ready for classification. The total number of pixels in each 
vehicle is calculated and based on this feature, a vehicle is classified into small (100-
400 pixels), medium (401-700 pixels) and large (701 - 1000 pixels), by fixing some 
measurement range values.  

By using an analysis of time-spatial image (TSI), seven features (width, area, 
compactness, length-width ratio, major axis, minor rectangularity and solidity) are 
obtained from segmented image for vehicle classification [4]. Five classes are 
considered and error rate ranges from 6,9% up to 14,29%, depending on the 
controlled time conditions (normal, summer and clouds). 

Edge-based features, as number of edge points, block of PCA and two 
classification levels were proposed in [8]. The classification level 1, based on the 
number of edge points and on the distance to prototype, divides the vehicles into two 
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groups, small and large. Afterwards, using PCA blocks of the original image as 
features and applying NN and A-NN[9], the classification level 2 divides each group 
into two classes: the small group is divided into motorcycle and car; the large group is 
divided into bus and truck. Twenty images were used in the tests, five in each class. 
The accuracy was 100% and 95%, respectively, for classification level 1 and level 2.  

A method that trains SVM with MBF and HOG is proposed in [10]. A background 
Gaussian Mixture Model (GMM) and shadow removal method have been used to deal 
with sudden illumination. Majority vote over five consecutive frames makes the final 
classification. Classification accuracy of 94% was achieved. 

2.1 NN with Adaptive Distance (A-NN) 

NN with adaptive distance is a classification algorithm that penalizes the distance 
between classification object and training examples positioned close to decision 
boundary.  

Comparisons of error rates associated to the use of  NN, A-NN and SVM classifier, 
considering five databases from the UCI machine learning repository and Euclidean 
and Manhattan distances were presented in [9]. In all considered databases, results 
based on A-NN overcame NN rule.  

3 Proposed Method 

Proposed method for vehicles image classification is a classification process including 
pre-processing, training and classification steps. It classified a test image into one of 
the four classes: motorbike, car, bus and truck.  

3.1 Pre-processing  

The pre-processing step carries out the following processing phases: background 
subtraction, noise reduction, edge detection and non-contiguous elimination of 
horizontal and vertical bands. These five pre-processing steps were proposed in [11]. 

3.2 Training 

The training step makes the following feature extractions: edge point number (NP), 
width (W), height (H), fractal dimension (FD), average of block width (BW) and 
average of block height (BH). The first four features (NP, W, H, FD) are described in 
[11] and the features BW and BH are described in [12].  

Firstly, each feature values are calculated for all database vehicles. Each feature is, 
then, normalized by fulfilling its division (of the feature value) by the maximum value 
of the respective feature, considering in the maximum value calculation all the 
vehicles of the database.    

Afterwards, the conditional radius and the neighbor conditional radius are 
calculated. These radiuses, which are proposed in this paper, are separately calculated 
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by each feature of each training example. With these conditional radius is made a 
simplification in the A-NN rule, considering that the distance will be penalized  by the 
radius only when the extern radius is greater  than the intern radius.  
 
Conditional Radius (cr): Being  i a training example of c class. External radius (er) 
of i is calculated according to [9]. In a similar way, the internal radius (ir) of i is 
calculated, considering only samples of the c class. The distinction with reference to 
calculus of er and ir consists only in the set of training examples such as: calculating 
er examples which do not belong to the c class are considered whereas in ir 
calculation only the examples of the c class are considered.  

The conditional radius of the example i is defined according to:  

if er ≤ ir 
 cr = er 
else 
 cr = 1 
end 

Neighbor Conditional Radius (ncr): Let us assume that fc,i  is the value of the 
feature f of the example i, that is of class c, that there are a classes and b examples in 
each class. The ncr of  i, associated to the f feature, is calculated in accordance with 
the following pseudo-code: 

1. for x=1 to a 
1.1 for y=1 to b 

1.1.1 d1x,y = |fc,i - fx,y| 
3. for x=1 to a 

3.1 d2 = d1x,1:b 

3.2 the k lowest vales of d2 and its number of 
ocurrences are stored, respectively, in d3 and n 

3.3 px = ∑k(d3*n) 
4. p_int = px ; to x = c 
5. p_ext = min(px) ; to x ≠ c 
6.if p_ext <= p_int 
  ncri = p_ext 
  else 
  ncri = 1 

3.3 Classification 

The used classification is a hierarchical process based on [8]. Two classified levels 
are defined: level 1 classifies a test image into small or large group; and level 2 
categorizes each group into its respective classes. For example, if level 1 sets the label 
small group to a test image, in level 2, the test image will only be classified as 
motorcycle or car. 
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Two conditions for widening the adaptive distance are defined: the first one is 
based on the conditional radius (cr); and the second one is based on the neighbor 
conditional radius (ncr).  

Let us assume that there are n training examples,  f  features and i is a training 
example, with i = [1, ..., n]. Being Xi the feature value vector of  i,  R_cri the radius cr   
value vector  of i and Y the feature value vector of the test image. The classification 
rule for conditional A-NN, based on cr, is presented in the following pseudo-code. 
The neighbor conditional A-NN is obtained only by exchanging cr by ncr. 

for t=1 to n 
 dt = |Xt - Y| 
  cond_dt = ∑ (dt / R_crt) 
end 
class = label of min(cond_d) 

Classification levels 1 and 2 use conditional adaptive-NN distance. In level 1, the 
radiuses are calculated by considering two groups, small and large. In this level, all 
the vehicles of the motorcycle and car class are considered as small group, and all the 
vehicles of the truck and bus class are referred as large group. In level 2, the radiuses 
are also calculated by considering two classes. Nevertheless, these two groups 
correspond to the two internal classes of the respective group.   

In defining external class of a training example, in level 1 one group is defined and 
in level 2 a class is characterized. For example, if a training example is a car, so for 
calculating the radiuses of levels 1 and 2, the external class corresponds, respectively, 
to the large group (truck and bus) and the motorcycle class. Similarly, if the training 
example is a truck, so for calculating the radiuses of levels 1 and 2, the external class 
corresponds, respectively, to the small group (motorcycle and car) and the bus class.  

3.4 Test Methodology 

The used dataset image is the same dataset used in [11]. In Figure 1, one image of 
each of the four classes were presented in sequence (motorcycle, car, bus and truck). 
There is neither centralization, nor illumination normalization. 

 

 

Fig. 1. Vehicle image examples (motorcycle, car, bus and truck) 

By leaving one image out, it was meant to divide the dataset into training and test. 

Being all dataset B = {Ic,1, Ic,2, ..., Ic,m}, c ∈ [1,4] and m = 25. When the test image is 
Ip,q four images are removed of the dataset (one of each class) and the training set 
becomes B' = B -  {I1,q , I2,q , I3,q , I4,q}. Four images are removed in order to maintain 
equivalent the number of representatives from each class. 
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Every combination of six features (from 1 to 6) is made, and each one is used as 
input to four classifiers:  NN, A-NN, conditional A-NN and SVM (kernel linear).  

The experimental platform is built on Matlab R2009a. 

4 Results and Discussions 

Figure 2 presents the results of classification by considering six features, used alone, 
and 4 classification rules. The features in sequence are: NP, W, H, FD, BW and BH. 
The classification rules applied here are without level, that is, a test image is 
compared with all training examples and the label is related to one of the four classes 
(motorcycle, car, truck or bus).  Conditional A-NN reaches better results with five of 
the six features analyzed,  and the use of the cr radius presents better results than the 
ncr radius. Considering the average results, A-NN, Conditional A-NN with cr and 
Conditional A-NN with ncr, reach, respectively, 39.43 and 43.83 and 37.5.   
 

 

Fig. 2. Accuracy of six features versus four classifiers 

Accuracy and  number of errors of the better results of level 1, of each classifiers, 
is presented in Table I. These better results were all reach with two features.  

Table 1. Level 1: Accuracy and number of classification errors, per class 

Classifier Features Accuracy (%) Number of errors  
Motorcycle Car Truck Bus 

A-NN PN + FD 91 2 4 1 2 
C.A-NN, cr PN + BH 92 1 4 1 2 

C.A-NN, ncr PN + BH 92 1 4 1 2 
SVM PN + H 86 2 9 1 2 

 
The errors in level 1 classification are heavily concentrated in the small group, of 

the car type. These errors occur because many car images have more than one car; 
consequently the width and height of these images are not suitable. 
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Figure 3 presents the classification results of  level 2. Results of level 2 represent 
final classification accuracy for 100 tests and the number of tests of level 2 depends 
on the right classification of level 1. All combinations 2 x 2 of the six features were 
used. The A-NN, conditional A-NN (with radius cr and ncr) and SVM classifiers are 
presented. In the best result (69%), reach with conditional A-NN with cr, the errors 
are concentrated in separation of the truck and bus classes.   

 

 

Fig. 3. Level 2 accuracy: 15 set of features versus 4 classifiers 

Considering this database, in [11] achieved accuracy was 55%. With hierarchical 
classification and conditional A-NN with cr, the proposed method reaches 69%. 

5 Conclusion 

In the test, the results of conditional A-NN are slightly better than A-NN. This 
suggests that the proposed classification rule makes it an appealing tool for pattern 
recognition. In this database, using only one feature,  the  errors of A-NN occur 
because some radius values  are equal to zero, and this produces  draws. 

The final accuracy (69%) is low for real applications of traffic. So, the method 
need to be improved because the error tolerated in this area is approximately 5%. 

If there is more than a vehicle in the image, features based on the vehicle edge 
which are used,  in an isolated or combined form, do not represent well the scene and, 
consequently, produce an accuracy rate of low classification, even when the 
classification rules, such as SVM, are used. Furthermore, even when images with one 
single vehicle are considered, edge-based features present limitations while describing 
the difference between a truck and a bus because these two classes demonstrate 
similar width and height.   

Future works include analysis of new features for the classification. The 
conditional A-NN should also be tested in another database. 
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Abstract. Smartphone is now playing an important role in our daily life. The 
various sensors and multiple features of smartphones can collect abundant in-
formation about people’s life experience, which is called mobile life-log.  
Life-logs are useful for people to recall past meaningful events and remind of 
meaningful experiences. However, as the amount of life-log becomes vast, it 
requires an efficient way to organize and store such vast information. Semantic 
networks, which are used to implement human retrieval system, can help people 
to effectively organize and retrieve life-logs collected from smartphones. In this 
paper, we propose a method of mobile life-log search based on semantic  
relation in semantic networks. By using semantic relation, we reduce the unne-
cessary intermediate results so as to reduce the usage of computer memory and 
retrieval time. To demonstrate the usefulness of the proposed method, we con-
structed mobile life-log semantic networks and conducted experiment on it. As 
a result, the proposed method is useful for life-log retrieval in the semantic  
networks. 

1 Introduction 

Smartphones are very popular and become a personal assistant in our daily life. With 
the rapid popularization of smartphones and a variety of practical applications, it be-
comes possible to collect large amounts of personal life experience of daily life, 
which is called life-log. Smartphones can automatically generate and store various 
life-logs, which contain such information as call history, SMS (short message ser-
vice), photos, music files, video files and GPS (global positioning system). As the 
amount of these life-log information becomes larger, it is difficult for people to effec-
tively store and manage such huge information.  One may suffer great difficulties 
from recalling certain events experienced before. It requires an effective way to or-
ganize, store and retrieve these personal life-logs.  

Semantic Network has an advantage of storing mobile life-logs, because informa-
tion is saved as interconnected network just like human long-term memory [1]. Se-
mantic network can help people recall some specific objects, which were associated to 
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particular events. With semantic network, people can manage information in human-
centered manner.  

There exists various search methods in semantic networks. A traditional search 
system does not return the best relevant results to users, because the results returned 
to user contain large amount of unnecessary intermediate results. Users should be 
very patient to pick up their interests from enormous returned results [2]. 

In this paper, we propose a search method using semantic relation. By using se-
mantic relations and their weight values during search process, it is possible to reduce 
the unnecessary intermediate results so that reduce the usage of computer memory 
and retrieval time. 

2 Related Works 

Human’s memory captures life in terms of events and experience. People tend to be 
more easily remember materials on subjects that they already know, since the infor-
mation has more meaning to them and can be mentally connected to related informa-
tion that is already stored in their long-term memory [3].  

Human memory structure is interconnected network structure. When people pay at-
tention to some information, related information will be activated.  

Semantic Networks are designed to implement human retrieval system. It is possi-
ble to retrieve related information like the way human memory retrieval mechanism. 
There are several searching methods in semantic networks. Keyword-based searching 
method and spreading activation associative searching method are the well-known 
methods.  

The amount of returned results is an important factor in semantic network search. 
Keyword based searching method is very useful one. Keyword search method enables 
information discovery by providing a simple interface. Even more, the user does not 
need to know either a query language or the structure of the network [4][5]. However, 
the returned results could be very huge, which is the main disadvantage of traditional 
keyword based searching method. Hristidis designed interactive spreading activation 
searching method[6]. During the search, users can select what they are interested 
among the relevant results. However, the relevant results could be so huge that user 
may have difficulties in finding what they are interested in. In order to solve this 
problem, Oh [7] proposed a mobile life-log search using semantic memory learning 
and priming. Priming based on spreading activation makes it possible to search the 
data with insufficient and inexact queries and relatively less returned results.Tran uses 
top-k explosion of query candidates mechanism to calculate the similarity of 
keywords[8]. 

In this paper, we propose a mobile life-log search method. We exploit the semantic 
relation during the search process. With utilizing semantic relation and calculation of 
its weight value, we reduce the useless intermediate results, the usage of computer 
memory and retrieval time. By using semantic relation, we could retrieve some nodes 
with low weight value, which cannot be seen during the expanding procedure. 
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3 Mobile Life Log Network 

Mobile life-log is the information we get from smartphone devices. The mobile life-
logs consist of call history, SMS, photos, music files, videos, GPS, Bluetooth, weath-
er, emotion, and so on. These mobile logs should be structured and stored in a way 
that people can easily retrieve. In order to make life-logs useful, we construct mobile 
life-log semantic network to manage them. 

Fig. 1 shows the mobile life-log network system structure. The user logs are col-
lected from the mobile phones and stored as XML documents. After XML parsing 
and network generation process, mobile life-logs network is created. User inputs que-
ries and system gives back the user with filtered results from the search process. 
 

 
Fig. 1. Mobile life-log network system structure 

3.1 Mobile Life Logging 

Smartphones are very powerful tools. They equip with computing power and audio, 
visual sensors such as camera and microphone, as well as contextual sensors such as 
GPS, lighting, and RFID. With these different sensors embedded in smartphones, we 
can collect a variety of personal information. Other information such as weather and 
emotion can also be collected through smartphone applications.  

3.2 Semantic Relation 

Semantic networks consist of nodes and arcs. In mobile life-log semantic network, the 
nodes represent life-log objects and arcs represent the relationship between nodes. 
Every arc or edge has its own weight value. 

To construct mobile life-log semantic network, we need to define semantic relation 
to connect related information. Activity based organization of personal life-logs could 
not only provide effective visualization and retrieval of information, but also benefit 
of augmenting human memory [9].  

Semantic relation we use in this paper is defined as follows: 
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Definition (Semantic Relation): According to the GSS (General Social Survey on 
Time Use), people’s activities can be categorized in several groups. In our system, we 
define semantic relations based on the activities which are from GSS. The main se-
mantic relations are defined as Table 1. 

Table 1. Defined semantic relation distribution 

Semantic Relation Count

General semantic relation (Is A et al.) 12

Paid work related 90

Household work 12

Sleep, meal and related work 36

Education and related activities 36

Socializing activities related 12

Passive leisure related 126

Entertainment event related 48

Active leisure related 258

Social and voluntary activities related 6

Residual 18

Total 654

3.3 Semantic Relation Weight 

In semantic network, every relation has its weight value. Weight value is important 
factor that determines the intimacy between connected two nodes. The higher the 
relation weight value is, the more intimate two connected nodes are. When a node is 
paid attention, the neighbor nodes with higher weight value than the threshold value 
will be activated.  

If all the related nodes activated and return to users, it is very difficult to find what 
users interested in. To avoid this problem and to represent the association between 
two nodes, we calculate the weight value of semantic relation. The calculation of 
semantic relation weight value is indicated as equation (1) , , ∑ ,∈∑ ,∈  (1)

Where Wv,u shows the weight value of semantic relation between start node v and 
end node u. ,  means the frequency of start node v and end node u appear togeth-
er.  means the sets of nodes pointing at node v.  means the set of nodes pointed 
by start node v. c1 is the normalized constant. 
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6 Conclusion 

In this paper, we have proposed a mobile life-log retrieval method using semantic 
relation. We use the life-logs collected from smartphones to construct life-log seman-
tic network. We calculate the weight value of relations in semantic network. By using 
semantic relation, we can retrieve the target information with expanding fewer nodes. 
Semantic relation based search can also retrieve the information with low weight 
value. In order to show the usefulness and practicality of the proposed method, we 
showed searching procedure and conducted experiments on accuracy and retrieval 
time of the proposed method. From the experiments, we have confirmed the useful-
ness of the proposed method. For the future work, we are trying to improve the 
searching algorithm to reduce the time complexity. Along with this, we will work on 
using multi semantic relations during the search procedure. 
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Abstract. Self-Organizing Maps have been shown to be a powerful unsuper-
vised learning a tool in the analysis of complex high dimensional data. SOMs 
are capable of performing topological mapping, clustering and dimensionality 
reduction in order to effectively visualize and understand data and it is desirable 
to apply these techniques to time–series data. In this project a novel approach to 
time-series learning using Concentric Multi-Sphere SOMs has been expanded 
and generalized into a unified framework in order to thoroughly test the learn-
ing capabilities. It is found that Quantization and Topological Error are not suit-
able to test the learning performance of the algorithms and it is suggested that 
future work focus on developing new error measures and learning algorithms. 

Keywords: Spherical SOM, time series, topological error, quantization error, 
concentric multi-sphere SOM (CSM-SOM). 

1 Introduction 

Self-Organizing Maps (SOMs) are primarily used for clustering, classification, sam-
pling and visualizing high dimensional data [1]. This technique has been widely ap-
plied in many ways, for instance clustering high-frequency financial data. The con-
ventional neighborhood arrangements are planar SOM made of two-dimensional rec-
tangular or hexagonal lattices. However, the planar SOM has a disadvantage which is 
the “border effect” [2]. During training, the neurons compete with others. The weight 
of the winning neuron and its neighbor are updated. Ideally, all the units have the 
same chance to be updated. However, in the planar map, the units at the border of the 
map have fewer neighbors than the inside units. At the end of training, the map may 
not form expected similar regions of the data space, since there are many units with 
unequal chances of being modified during training [3]. Therefore, many spherical 
SOMs were proposed in order to solve that problem.  

The motivation of this research is to provide a method that users can use an arbitrary 
number of spheres, and to observe the results of clustering data as well as the quality of 
SOMs on multiple spheres. I this paper, we consider the Spherical SOM introduced in 
[4] as the base for our Concentric Multi-Spherical SOM (CMS-SOM) topology. 
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3.4 Data Order and Sphere Targeting 

Our objective is to compare a number of distance metrics and error measures on our 
concentric multi-sphere SOMs (CMS-SOMs). With multiple spheres and a data set 
we can identify an number of plausible training regimes.  

Data order refers to the presentation order of the input data set and can be rando-
mised or preserved. For a time-series data set, we would expect better results if the 
data order is preserved if we learn useful time-based features in our model.  

Sphere targeting refers to the restriction that the best matching neuron must be se-
lected from a specific sphere. In this case during training the sphere targeted is incre-
mented in order as the patterns are presented. The other option for targeting is ‘any’ 
where all spheres are candidates to select a winning neuron. For time-series data, we 
would expect better results from ‘preserved, specific’ if consistent time-based features 
were extracted. On the other hand, ‘random, any’ would provide little evidence for 
good learning of time-based features but would demonstrate the general power of our 
approach.  

4 Data Set – ECSH 

The Easy Calm Stressful Hard (ECSH) dataset contains eye gaze and physiological 
data collected while the subject is reading some paragraphs of text which are from 
these four categories. This dataset is from a larger project [11-12] on computational 
models for stress.  

The ECSH dataset has 7 input fields being the x,y co-ordinates of the eye gaze, left 
and right pupil diameters, electrocardiogram (ECG), galvanic skin response (GSR) 
and instantaneous blood pressure (BP).  

Biopac ECG100C, Biopac GSR100C and Finapres Finger Cuff systems were used 
to take ECG, GSR and blood pressure recordings at a sampling rate of 1000 Hz. Eye 
gaze and pupil dilation signals were obtained using a Seeing Machines FaceLAB 
system with a pair of infrared cameras at 60 Hz.  

The data was synchronized and the ECSH dataset consists of 3,461 pattern vectors 
corresponding to a sampling rate of 60Hz. The data is classified into the four catego-
ries being the nature of the text being read, and is in 4 contiguous blocks of patterns.  

5 Experiment and Results 

In this experiment each inter-sphere connection metric is is used to train a range of 
numbers of spheres of different sizes and the Quantisation and Topological Errors are 
calculated for each combination of the data order and sphere targeting parameters. 

Table 1. Shows the different cases of sphere numbers and sizes 

No. spheres Sphere structure Neurons / sphere Total neurons 
1 ICOSA4 2562 2562 
4 ICOSA3 642 2568 

15 ICOSA2 162 2430 
61 ICOSA1 42 2562 

214 ICOSA0 12 2568 
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the quality of learning of time-based features on an SOM structure designed for that 
goal. We have introduced a scheme of DataOrder X Targeting to demonstrate this. Of 
the four cases, random-any clearly demonstrates the (non-time-based) power of our 
algorithm, preserved-specific would show good time-based feature learning well 
aligned to our SOM structure, preserved-any would show time-based feature learning 
less well aligned to our SOM structure (time-based features are learnt, but would 
imply some alternative topology could achieve better results), while finally random-
specific is a general control and has no particular useful meaning, so a good result 
here implies both a better topology and distance metric / learning algorithm should be 
used. 
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de S. Matos, Fabŕızia Medeiros II-745
de Souza, Renata Maria Cardoso R.

II-745
Dey, Sreya II-273
Diaz-Chito, Katerine III-368
Diaz-Villanueva, Wladimiro III-368
Dillon, Harvey I-176
Ding, Li III-157
Ding, Xinghao I-42, III-258
Djouani, Karim I-257
Dobosz, Krzysztof I-623
Domı́nguez-Morales, Manuel Jesus

I-267, I-276
Dong, Haiwei I-233
Dong, Suh-Yeon II-587
Duan, Fuqing I-113
Duch, W�lodzis�law I-623
Duong, Duc Anh III-433, III-608,

III-616

El-Alfy, El-Sayed M. II-441
Elouedi, Zied II-164
Erhan, Dumitru III-117
Eun, Jihyun III-241
Eyng, Eduardo II-665

Fataliyev, Kamaladdin II-737
Faye, Ibrahima III-533
Feng, Fangxiang III-117
Feng, Jianfeng I-191
Feng, Ruibin II-392
Feng, Shaokun III-360
Ferri, Francesc J. III-368
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